$\operatorname{COMMON} - 102$

7002

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH – 2022

DAE - FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - I

Time: 3 hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. If $A = \{-2, -1, 0, 1, 2\}$ and $f : A \rightarrow B$ is a function such that $f(x) = x^2 + x + 1$, then find the range of f.
- 2. Resolve $\frac{x}{(x-3)(x+2)}$ into partial fractions.

3. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$, then find 3B - 2A.

4. Show that
$$\frac{\cos 36^\circ + \sin 36^\circ}{\cos 36^\circ - \sin 36^\circ} = \tan 81^\circ.$$

- **5.** Prove that $\frac{\sin 2\theta}{1 \cos 2\theta} = \cot \theta$.
- 6. Find the real and imaginary parts of the complex number (3 + 4i)(2 3i).

/7002

[Contd...

7. Find the distance between the parallel lines 2x + 3y + 5 = 0 and 2x + 3y + 9 = 0.

8. Evaluate
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

9. Find the derivative of
$$x^3 + 6x^2 + 12x - 13$$

10. If
$$y = 4x^2 - 8x + 2$$
, find $\frac{d^2y}{dx^2}$.

PART-B

8×5=40

Instructions : (1) Answer **all** questions.

- (2) Each question carries eight marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.

									(1	3	3)	
11.	(a)	Find	the	adjoint	and	inverse	of the	matrix	1	4 3		

(OR)

(b) Solve the system of linear equations

3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4 using Cramer's rule.

12. (a) Prove that $\cos A + \cos(120 + A) + \cos(120 - A) = 0$.

(**OR**)

(b) Prove that
$$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{2}{9}\right)$$
.

13. (a) Solve $\cos \theta + \sin \theta = \sqrt{2}$.

(b) In any $\triangle ABC$, Show that $\sin A + \sin B + \sin C = \frac{s}{R}$.

/7002

[Contd...

14. (a) Find the equation of the circle with (1,2) and (-2,3) as the two ends of its diameter and find its centre and radius.

(OR)

(b) Find the equation of the conic whose focus is (1,-1), directrix is x - y + 3 = 0 and eccentricity is 1/2.

15. (a) Find
$$\frac{dy}{dx}$$
, if $x^2 + y^2 + 2gx + 2fy + c = 0$, where g, f, c are constants.

(OR)

(b) If
$$u(x, y, z) = \log(x + y + z)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 1$.

 $10 \times 1 = 10$

Instructions : (1) Answer the following question.

- (2) Each question carries **ten** marks.
- 16. Find the lengths of the tangent, normal, sub-tangent and subnormal for the curve $y = x^2 + 2x + 1$ at (1,4).

 $\star \star \star$

*