C-16-A/AA/AEI/BM/CH/ CHST/MET/MNG/TT-301

6201

BOARD DIPLOMA EXAMINATIONS

DMET-THIRD SEMESTER

SEPTEMBER/OCTOBER - 2020

ENGINEERING MATHEMATICS - II

Time: 3 hours

PART - A

 $3 \times 10 = 30$

Max. Marks: 80

- **Instructions**: 1. Answer all questions.
 - 2. Each question carries Three Marks.
 - 3. Answer should be brief and straight to the point and should not exceed Five simple sentences.
- Evaluate $\int (sec^2 e^x + \sin x)^2 dx$ Evaluate $\int (2x 3)^8 dx$ Evaluate $\int_0^1 \frac{1}{4x^2} dx$
- 2.
- Find the mean value of $f(x) = x^2 + 3$ on the interval [0,4] 4.
- Find the Laplace Transform of the function $7e^{2t} 5t^4 + 6$ 5.
- Find L⁻¹ $\{\frac{s}{s^2+9}\}$ 6.
- Find the value of a_0 in the Fourier Series expansion of f(x) = |x| in $-\pi < x < \pi$ 7.
- 8. find the order and degree of the Differential Equation $\frac{d^2y}{d^2x} = \{y + (\frac{dy}{dx})^6\}^{\frac{1}{4}}$

- Solve $x^5 dy + y^5 dx = 0$
- 10. Solve $\frac{d^2y}{d^2x} 5\frac{dy}{dx} + 6y = 0$

PART - B

 $5 \times 10 = 50$

- **Instructions**: 1. Answer any **Five** questions
 - 2. Each question carries TEN Marks.
- 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.

 a) Evaluate $\int \sin^3 x \cos^6 x \ dx$ b) Evaluate $\int \left(\frac{1}{4 + 5\cos x}\right) \ dx$ a) Evaluate $\int x \tan^{-1} x \ dx$ b) Evaluate $\int_0^4 x \sqrt{x^2 + 1} \ dx$ 3. Answer should be comprehensive and a criterion for
- 11.
- 12.
- 13. a) Find the area bounded by the Parabola $y = x^2$, x-axis and the ordinate x = 3
 - b) Find the volume generated by revolving the area bounded by curve $y = x^3$ about y-axis, between the lines y = 0 and y = 8.
- 14. a) Evaluate $\int_0^1 x^3 dx$ using Simpson's rule by taking n = 4.
 - b) Find L{t cos 3t}
- 15. a) Find L⁻¹ $\{\frac{s}{(s-4)^3}\}$
 - b) using Convolution theorem Find L⁻¹ $\{\frac{1}{s(s^2-4)}\}$

[Cont...

 $\frac{1}{x} = 1$ We the following differential equations
a) (D³ + D² + 4D + 4) y = 0, Where D = $\frac{d}{dx}$ b) (D² + 3D + 2) y = x, Where D = $\frac{d}{dx}$ Reduction of the property of the p

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

a)
$$(D^3 + D^2 + 4D + 4)$$
 y = 0, Where D = $\frac{d}{dx}$