6222

BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMISTER OCT/NOV-2019

ENGINEERING MATHEMATICS - II

Time: 3 hours

PART - A

Instructions: 1. Answer all questions.

- 2. Each question carries Three Marks.
- 3. Answer should be brief and straight to the point and should not exceed Five simple sentences.

1. Evaluate
$$\int (\frac{1}{2\sqrt{x}} + 7sec^2x + \frac{1}{2\sqrt{x}})^3 dx$$

2. Evaluate $\int e^{5x-7} dx$

3. Evaluate $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$

- Find the mean value of f(x) = log x over the interval [1,e]
- Find L{ $3\cos 2t 4\sin 3t$ }
- Find $L^{-1} \{ \frac{1}{s(s+2)} \}$

[Cont...

- Find the value of a₀ in the Fourier series expansion of the function $f(x) = e^{-x}$ in the interval $[0, 2\pi]$
- Find the order and degree of the Differential Equation

$$\frac{d^3y}{dx^3} = \log_e (x \frac{d^2y}{dx^2} + y)$$

9. Solve
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

10. Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$

 $5 \times 10 = 50$

- Instructions: 1. Answer any Five questions
 - 2. Each question carries TEN Marks.
 - 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.

11.

- a) Evaluate $\int \sin^5\theta \cos^3\theta \ dx$
- b) Evaluate $\int \left(\frac{1}{3+4\cos x} \right) dx$
- 12.
 - a) Evaluate $\int x \sin x dx$
 - b) Evaluate $\int_0^{\pi/2} \log \tan x \ dx$

- (a) Find the area bounded by the curve $y^2 = 16x$, y-axis and the line y = 2 and y=6
 - (b)Using the method of integration find the volume of Cylinder with radius r units and height h units.
- a) Calculate the approximate value of $\int_{-3}^{3} x^4 dx$ using Simpson's rule by dividing [-3,3] into 6 equal parts. Verify the result with its exact value by integration techniques.

 b) Find L{ t^2 cost}

 a) Find L⁻¹ { $\frac{s}{(s+2)^2+4}$ }
- - b) using Convolution theorem Find L⁻¹{ $\frac{1}{s(s^2 + 25)}$ } Expand $f(x) = e^{-x}$, $-\pi < x < \pi$ in Fourier Series. (a) Solve $\frac{dx}{dx} = \sin(x + y) + \cos(x + y)$ (b) solve $\frac{d}{dx} + \frac{y}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$

(b) solve
$$\frac{d}{dx} + \frac{y}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$$

- a) Solve $(D^2 + D 6)y = e^{3x}$, where $D = \frac{dy}{dx}$
 - b) Solve $(D^3 + D)y = \sin 2x$