

C16- COMMON - 103

6003

BOARD DIPLOMA EXAMINATION, (C-16)

JUNE/JULY-2022

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours]

PART-A

[Total Marks : 80

3×10=30

- **Instructions :** (1) Answer **all** questions.
 - (2) Each question carries **three** marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - 1. Write the base units and supplementary units of SI system along with their symbols.
 - 2. Define scalar product of two vectors. Give one example.
 - **3.** Find the maximum height reached by a vertically projected body in the upward direction with an initial velocity of 9.8 m/s.
 - **4.** Define the terms amplitude, time period and frequency of a body in SHM.
 - 5. Distinguish between isothermal process and adiabatic process.
 - **6.** Write Sabine's formula and name the physical quantities involved in it.
 - 7. Explain the effect of temperature on viscosity of liquids and gases.
 - 8. Define capillarity and give two examples.
 - 9. State Kirchhoff's laws.
 - **10.** List out the applications of superconductivity.

/6003

[Contd...

PART—B

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.

11.	(a)	Write the properties of cross product.	4
	(b)	State and explain triangle law of vectors with a neat diagram.	3
	(C)	If two vectors $A = 6i + 2j + 2k$ and $B = 5i + 4j + k$ form two adjacent sides of a triangle, find the area formed by them.	3
12.	(a)	Show that the path of a horizontally projected body is parabola.	6
	(b)	A stone is thrown vertically up with a velocity of 15 m/s from the top of a building. If it reaches the ground in 8 s, find the height of the building.	4
13.	(a)	Derive the expression for acceleration of a body moving up on a rough inclined plane.	6
	(b)	State laws of static friction.	4
14.	(a)	Verify the law of conservation of energy in the case of a freely falling body.	7
	(b)	A machine gun fires 120 bullets per minute with a velocity of 300 m/s . If the mass of each bullet is 3 gm, find the power of the machine gun.	3
15.	(a)	Derive the expressions for velocity and acceleration of a particle in SHM.	6
	(b)	Calculate the change in the length of a simple pendulum in order to double its time period.	4
16.	(a)	Derive the gas equation $PV = RT$.	7
	(b)	The volume of a gas is 20 c.c. at 30 °C. Pressure remaining constant, what is the temperature at which the volume of the gas is 60 c.c.?	3

/6003

*

- **17.** (a) State the conditions of a good auditorium.5(b) Define echo. Write the applications of echoes.5
- 18. (a) If 5 ohm and 20 ohm are connected in the left and the right gap respectively in metre bridge experiment, find the balancing length.
 - (b) Derive an expression for the magnetic induction field strength at a point on the axial line of a bar magnet.

*

3

7