6017

BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019 COMMON FIRST YEAR EXAMINATION **ENGINEERING MATHEMATICS - I**

Time: 3Hours Max. Marks: 80

 $\overline{PART - A}$

 $30 \times 3 = 30$

Instructions:

Instructions:

• Answer ALL questions and each question carries THREE marks
• Answers should be brief and straight to the point and shall not exceed FIVE simple sentences

(1) Resolve
$$\frac{6-5x}{(x+2)(x-1)}$$
 into Partial Fractions

(2) If $A = \begin{bmatrix} 3 & 2 & 3 \\ 4 & 5 & 2 \\ 1 & 6 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$ then find $(A+B)^T$

(3) Evaluate $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$

- (4) Prove that $\frac{\cos 15^{o} \sin 15^{o}}{\cos 15^{o} + \sin 15^{o}} = \frac{1}{\sqrt{3}}$ (5) Prove that $\frac{\sin 2\theta}{1 \cos 2\theta} = \cot \theta$
- (6) Find the conjugate of the complex number $\frac{3-4i}{2i}$
- (7) Find the equation of the straight line passing through the points (-4, 6) and (6, 8)
- (8) Find the perpendicular distance of the point (7, -2) from the line 9x + 17y 13 = 0

- (9) Evaluate $\lim_{\theta \to 0} \left(\frac{\sin 4\theta + \sin 2\theta}{\sin 6\theta} \right)$
- (10) Find the derivative of $x^8 \cot x$ with respect to x

$$\boxed{PART - B} \qquad \qquad 5 \times 10 = 50$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
- (11) (a) Solve the equations x + y + 4z = 6, 3x + 2y 2z = 9 and 5x + y + 2z = 13 by Crammer's Rule
 - (b) Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
- (12) (a) If $\cos x + \cos y = \frac{3}{7}$ and $\cos x \cos y = \frac{5}{9}$ then show that $27 \tan\left(\frac{x-y}{2}\right) + 35 \cot\left(\frac{x+y}{2}\right) = 0$ (b) Prove that $Tan^{-1}\left(\frac{3}{4}\right) + Tan^{-1}\left(\frac{3}{5}\right) Tan^{-1}\left(\frac{8}{19}\right) = \frac{\pi}{4}$
- (13) (a) Solve the equation $4 \sin^2 \theta + 2 \sin \theta 1 = 0$
 - (b) In a $\Delta^{le}ABC$ prove that $b \cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{B}{2}\right) = s$
- (14) (a) Find the equation of the Circle with center at the point (2, -2) and passing through the point (-1, 2)
 - (b) Find the vertex, focus equation of axis, latus rectum, directrix and length of latus rectum of the Parabola $x^2 = -8y$

(15) (a) Find $\frac{dy}{dx}$, if $y = \sin^{-1}(3x - 4x^3)$

(b) Find
$$\frac{dy}{dx}$$
 if $y = x^{\sin^{-1}x}$

(16) (a) Find $\frac{d^2y}{dx^2}$, if $x = a \sec^3\theta$, $y = a \tan^3\theta$

(b) If
$$u(x, y) = \log(xy + x^2)$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2$

- (17) (a) Find the angle between the curves y² = 8x and x² = 8y at the point (8, 8).
 (b) The edge of a cube is decreasing at the rate of 0.03 cm/sec. Find the rate at which the volume is decreasing when the edge is 12 cm. Also find the rate of decrease in result. is decreasing when the edge is $12 \ cm$. Also find the rate of decrease in surface area
- (18) (a) Find the maximum and minimum values of $f(x) = 4x^3 3x^2 18x + 12$ in the interval $\left[-\frac{3}{2}, \frac{3}{2} \right]$ (b) If time and length of a simple pendulum is given by the equation $T = 2\pi \sqrt{\frac{l}{g}}$ where g is constant.
 - Find the approximate percentage error in the calculated value of T corresponding to an error 3% in the value of l