

C16-C/CM-102

6017

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018

DCE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-

Time: 3 hours]

PART—A

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple steps.
- 1. Resolve $\frac{2x-3}{(x-1)(x-2)}$ into partial fractions.
- **2.** If A $\begin{pmatrix} 1 & 2 & 3 & 8 \\ 3 & 4 & 7 & 2 \end{pmatrix}$ and 2X A B, then find X. **3.** If A $\begin{pmatrix} 2 & 5 & 8 \\ 2 & 5 & 8 \end{pmatrix}$ and B $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix}$, then find $(A \ B)^T$.
- **4.** If $A B 45^{\circ}$, then prove that $(1 \tan A)(1 \tan B) 2$.
- **5.** Prove that $\frac{1 \cos}{\sin} \tan \frac{\pi}{2}$.
- **6.** Find the modulus of $\frac{7 24i}{3 4i}$.

- **7.** Find the perpendicular distance of a point (3, 5) from the line 3x + 4y + 26 = 0.
- **8.** Find the equation of a straight line parallel to x 2y 1 0 and passing through the point (1, 2).
- **9.** Evaluate $\lim_{x \to 0} \frac{\tan 3x}{\sin 5x}$.
- **10.** If $y \log \frac{1}{1} \frac{x^2}{x^2}$, then find $\frac{dy}{dx}$.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve the equation 2x + 3y + z + 1, x + 4y + 2z + 3 and 4x + y + 3z + 11 by using Cramer's method.
 - (b) Show that

hat
$$\begin{vmatrix}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{vmatrix}$$
(a b)(b c)(c a)

- **12.** (a) If $\sin x = \sin y = \frac{3}{4}$ and $\sin x = \sin y = \frac{2}{5}$, then prove that $8\cot \frac{x}{2} = 15\cot \frac{x}{2}$
 - (b) If $\tan^{-1} x \tan^{-1} y \tan^{-1} z$, then prove that x y z xyz
- **13.** (a) Solve $2\sin^2 3\cos 3$ 0.
 - (b) In triangle ABC, if $\frac{1}{a + c} = \frac{1}{b + c} = \frac{3}{a + b + c}$, show that $C = 60^{\circ}$.

- **14.** (a) Find the equation of the circle passing through the points (0, 0), (1, 2) and (2, 0).
 - (b) Find the eccentricity, foci, length of latus rectum and equation of directrices of the ellipse $16x^2 9y^2 144$.
- **15.** (a) If $y = x^{x^{x...}}$, then prove that $\frac{dy}{dx} = \frac{y^2}{x(1 + y \log x)}$.
 - (b) Differentiate $e^{\tan^{-1}x}$ with respect to $\tan^{-1}x$.
- **16.** (a) If $y = \sin(\log x)$, show that $x^2y_2 = xy_1 y = 0$.
 - (b) If $z \log(e^x + e^y)$, then prove that $\frac{z}{x} + \frac{z}{y} = 1$
- **17.** (a) Find the equations of tangent and normal to the curve $Y x^2 6x 11$ at (6, 11).
 - (b) The radius of a sphere is decreasing at the rate of 0.2 cm/sec. Find the rate at which its volume is decreasing when the radius of the sphere is 10 cm.
- **18.** (a) The sum of two numbers is 24. Find the numbers when the sum of their squares is minimum.
 - (b) If an error of 2% is made in measuring the side of a square plate, find % error in its area.

* * *

3