

c14-c-**404**

4427

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER - 2020

DCE—FOURTH SEMESTER EXAMINATION

SURVEYING—III

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. What is trigonometric levelling? When is it used?
- **2.** State the term 'staff intercept' and list the constants of tacheometry in stadia tacheometry.
- **3.** State the principle of stadia tacheometry.
- **4.** Sketch any three types of horizontal circular curves.
- **5.** Define the terms (*a*) point of tangency, (*b*) long chord and (*c*) normal chord.
- **6.** State the features and use of electronic theodolite.
- 7. State the importance of GPS receivers.
- 8. List the types of map projections.

* /4427

[Contd...

- 9. Write any three advantages of total station.
- **10.** List any three parts of total station and state their functions.

PART—B

10×5=50

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Enumerate the different cases that occur in trigonometric levelling to find the elevation and distance of a given object.
 - (b) Derive the formula for finding height and elevation of an object when the base of the object is accessible.
- **12.** Find the elevation of a top of a tower with the data given below :

Instrument at	Reading on BM	Angle of elevation	Remarks
A	0.865	20 30	RL of BM=156·45 m
В	1.225	12 20	Distance AB 40 m

Stations A, B and top of the tower are in same vertical plane.

- **13.** (a) Explain briefly two methods of tacheometry.
 - (b) The following observations are made on a staff held vertical with a tacheometer fitted with an anallatic lens. The constant of the instrument is 100 :

Instr. at	Height of axis	Staff station	Vertical angle	Hair readings
0	1.56	Α	0°0	1.88 2.25 2.62
		В	15°10	1.83 2.15 2.47

RL of station *O* is 130.25. Find the reduced levels of *A* and *B*.

/4427

[Contd...

- k
 - **14.** A tacheometer was set up at an intermediate station *P* on a line *AB* and the following observations were made on a vertically held staff at *A* and *B* :

Staff at	Vertical angle	Stadia readings		
A	9 30	2.100 2.700 3.300		
В	6 20	1.650 1.900 2.150		

Compute the horizontal and vertical distances between A and B. The instrument is fitted with anallatic lens and multiplying constant is 100.

- **15.** Describe how you would set out a circular curve by the method of offsets from the chords produced with the help of chain and tape.
- 16. Determine the offsets to be set out at 10 m interval along the tangents to locate a 310 m radius curve by using (a) radial offsets and (b) perpendicular offsets, the length of each chain = 20 m.
- **17.** Explain the procedure for measurement of area with single-station setup using total station.
- 18. (a) State any six applications of GIS in civil engineering.
 - (b) Write a short note on electronic theodolite.