

C14-C-402

4425

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2021

DEE - FOURTH SEMESTER EXAMINATION

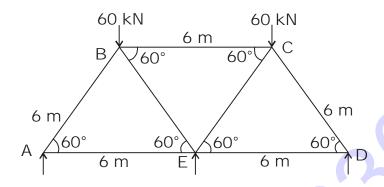
THEORY OF STRUCTURES

Time: 3 hours] [Total Marks: 80

PART-A

 $4 \times 5 = 20$

- **Instructions**: (1) Answer *any* **five** questions.
 - (2) Each question carries four marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - Define (a) compression member and (b) axial loading. 1.
 - 2. Define a dam and sketch the typical cross-section of the dam.
 - List out the forces acting on a dam section. 3.
 - Define the middle third rule. 4.
 - 5. Define the term 'retaining wall'.
 - Differentiate between statically determinate and indeterminate 6. structures.
 - What is meant by propped cantilever? 7.


- 8. State merits and demerits of continuous beams.
- 9. Classify the frames.
- Mention any two methods of analysis for frames. 10.

PART—B

 $15 \times 4 = 60$

- **Instructions**: (1) Answer *any* **four** questions.
 - (2) Each question carries fifteen marks.
 - (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
 - 11. Calculate the least radius of gyration for the following:
 - (a) Square section of 60 mm side
 - (b) Rectangle of 50 mm wide and 100 mm deep
 - 12. State the Euler's formulae for crippling load and calculate Euler's crippling load for a column 4m long both ends hinged. Flexural rigidity $EI = 3 \times 10^{12} \text{ Nmm}^2$.
 - 13. State the formulae for maximum and minimum stresses at the base of a trapezoidal dam with vertical water face and name the terms. Sketch a neat diagram.
 - List the conditions for the stability of a dam and define minimum base width of a dam.
 - 15. What are the general structural elements that are observed in a building? State their functions.
 - 16. Calculate the prop reaction for a propped cantilever of span 4 m propped at the free end when it is subjected to a central point load of 30 kN.
 - 17. Calculate the fixed end moments for a fixed beam of span 6 m subjected to a udl of 20 kN/m over the entire span.

18. Analyse the frame shown in figure given below by method of joints :

