

C14-C/CM-103

4016

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2015 DCE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

PART—A

3×10=30

[Total Marks: 80

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** State the dimensional formula for the following physical quantities:
 - (a) Force

Time: 3 hours

- (b) Pressure
- (c) Frequency
- **2.** Define vector and scalar, and give one example for each.
- **3.** Write the equations of motion of a freely falling body.
- **4.** A body is executing SHM with an acceleration of 0.4 ms 2 at displacement of 0.6m. Find its acceleration at a displacement of 0.4 m.
- **5.** Distinguish between specific gas constant and universal gas constant.

6.	Write	any	three	applications	of	Doppler's	effect.
----	-------	-----	-------	--------------	----	-----------	---------

- 7. Define stress and strain. What is the relation between them?
- **8.** Define surface tension. Give one example.
- 9. Define magnetic lines of force and magnetic field.
- 10. Write any three applications of photoelectric effect.

PART—B

10×5=50

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) State parallelogram law of vector. Derive an expression for the magnitude and direction of their resultant vector. 2+5
 - (b) Find the angle between two forces 1N and 24N which produces a resultant of 25N.
- **12.** (a) Show that the path of a projectile is a parabola in case of horizontal projection.
 - (b) A football is projected with a velocity of 29.4 m/s at an angle of 30° to the horizontal. Find the maximum height reached by it.
- **13.** (a) Obtain an expression for th displacement and time taken of a body to come to rest on a rough horizontal surface. 6
 - (b) Find the force of friction on a body of mass 1000kg when it just start sliding on horizontal surface if 0 41.
- **14.** (a) State the law of conservation energy. Verify the law of conservation energy in case of a freely falling body. 1+6
 - (b) A body of mass 10 kg is lifted to a height 20 m from the ground. Find the work done.

15.	(a)	Derive an expression for the time period of oscillations of a simple pendulum.	7
	(b)	Find the acceleration due to gravity (g) at a place when the length of the seconds pendulum is 1m.	3
16.	(a)	Define absolute zero temperature. Derive the relation C_p C_v = R .	+6
	(b)	The density of air at STP is 1.293 gm/litre. Find its density at 45 °C and at a pressure of 70 cm of Hg.	3
17.	(a)	Define musical sound and noise.	2
	(b)	Write any four causes and four effects of noise pollution.	8
18.	(a)	State Ohm's law.	2
	(b)	Derive an expression for the magnetic induction field strength B at a point on the equilateral line of a short bar magnetic.	8