

co9-c-**103**

3013

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2014

DCE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write the dimensional formulae of the following :
 - (a) Density
 - (b) Surface tension
 - (c) Acceleration due to gravity
- 2. Define scalar and vector. Give one example for each.
- **3.** Derive the expression for the range of a projectiel in oblique projection.
- 4. Define friction. Write any two advantages of friction.
- 5. If Y $2 \sin 2t \frac{1}{3}$ is the expression for displacement of a particle in SHM, then find the amplitude, time period and initial phase in SI units.
- **6.** A gas at 10⁵ Pa pressure expands isothermally until its volume is doubled. Find its final pressure.

/3013

1

[Contd...

- 7. Explain the phenomenon of beats.
- 8. State different types of stress.
- 9. State and explain Kirchhoff's laws.
- **10.** State and explain the phenomenon of superconductivity.

PART-B

10×5=50

6

4

4

3

7

3

3 7

Instructions	:	(1)	Answer	any	five	questions.
--------------	---	-----	--------	-----	------	------------

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11.	(a)	State	and	explain	triangle	and	polygon	law	of vectors.	6
-----	-----	-------	-----	---------	----------	-----	---------	-----	-------------	---

(b) If the resultant of two equal and perpendicular forces is1414 N, find the magnitude of each force.

12. (a) Derive the expression for maximum height, time of ascent and time of flight of a body, projected vertically pwards.

(b) A body is projected at an angle of 60° with horizontal with a velocity of 19 6 m/s. Calculate the maximum height reached and the range of a projectile.

13.	(a)	State	law	of	conse	ervation	of en	ergy	and	give	two	example	s. 3	3

- (b) Derive an expression for potential energy.
- (c) A body of mass 2 kg is allowed to fall freely from the height of 10 m. Find its kinetic and potential energies at a height of 3 m from the ground.
- **14.** (a) What is ideal simple pendulum? Derive the expression for the time period of a simple pendulum.
 - (b) The time period of a simple pendulum is 3 sec if the length is doubled then what will be its new time period?
- 15. (a) State gas laws.(b) Derive ideal gas equation.

16. (a) Distinguish between musical sound and noise.4(b) What is Doppler effect? Write any four applications of

(b) What is Doppler effect? Write any four applications of Doppler effect.6

/3013

 17. (a) State Hooke's law and write different types of elastic modulus. (b) Write the experimental method of determining surface tension of liquid. (a) Define specific resistance and write its SI unit. (b) Derive the expression for magnetic induction field strength at a point on the axis of a bar magnet. 7 					
 (b) Write the experimental method of determining surface tension of liquid. 6 18. (a) Define specific resistance and write its SI unit. (b) Derive the expression for magnetic induction field strength at a point on the axis of a bar magnet. 7 	*	17.	(a)	State Hooke's law and write different types of elastic modulus.	4
 18. (a) Define specific resistance and write its SI unit. (b) Derive the expression for magnetic induction field strength at a point on the axis of a bar magnet. *** 			(b)	Write the experimental method of determining surface tension of liquid.	6
(b) Derive the expression for magnetic induction field strength at a point on the axis of a bar magnet. 7		18.	(a)	Define specific resistance and write its SI unit.	3
			(b)	Derive the expression for magnetic induction field strength at a point on the axis of a bar magnet.	7

*