

CO9-A-AA-AEI-BM-C-CM-CH-CHPC-CHPP-CHOT-CHST-EC-EE-IT-M-MET-MNG-

PET-TT-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL-2021

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - I

Time: 3 hours]

[Total Marks: 80

PART-A

4×5=20

Instructions : (1) Answer *any* **five** questions.

(2) Each question carries **four** marks.

- **1.** Simplify : $\frac{a+b}{a-b} \frac{a-b}{a+b}$.
- **2.** Simplify by removing the brackets :

$$2a - \left\lceil 3b - (2b + c) - a - 2b \right\rceil$$

3. Resolve $\frac{1}{(x+2)(x+4)}$ into partial tractions.

/3002

[Contd...

- **4.** Prove that $(45^\circ + A)$. $tan(45^\circ A) = 1$.
- **5.** If $\tan A = \frac{1}{2}$, then find the value of $\tan 2A$.
- 6. Simplify (3-7i)(2+4i).
- **7.** Find the equation of the straight line passing through (-1, 1) and whose slope is 2.
- 8. Find the centre of the circle $x^2 + y^2 4x + 8y 2 = 0$.
- 9. Evaluate $\lim_{x \to 1} \frac{x^3 + x^2 + x + 1}{x^2 + 2x + 5}$.

10. Find
$$\frac{dy}{dx}$$
, if $y = 3\tan x - 4\sec x + 2\log x$.

15×4=60

Instructions : (1) Answer *any* **four** questions.

(2) Each question carries fifteen marks.

11. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 4 & 7 \\ 5 & -2 & 1 \end{bmatrix}$$
; $B = \begin{bmatrix} -2 & 4 & 3 \\ 1 & 7 & -2 \\ 3 & 5 & -1 \end{bmatrix}$, then find $3A + 4B$.

12. If $A + B + C = 180^{\circ}$, prove that

 $\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C$

13. Show that
$$\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{16}{65}\right)$$
.

/3002

- **14.** Find the equation of the Parabola passing through the points (1, 0), (0, 4) and (-1, 1) and having its axis is parallel to the *x*-axis.
- **15.** Find the perimeter and centroid of the triangle formed by the points (2, 3, 7), (-4, 1, 0) and (-5, -11, 3).
- **16.** If $Y = x^{\sin x}$, find $\frac{dy}{dx}$.
- 17. Find the equation to the tangent and normal to the curve $y = 2x^2 4x + 5$, at (3, 11).
- **18.** If there is an error of 1% in measuring the side of a square plate, find the percentage error in its area.