## 

## C20-AEI-106

# 7013

#### **BOARD DIPLOMA EXAMINATION, (C-20)**

#### JUNE/JULY-2022

#### **DAEI – FIRST YEAR EXAMINATION**

BASIC ELECTRICAL ENGINEERING

Time: 3 hours ]

## PART—A

[ Total Marks : 80

3×10=30

**Instructions :** (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** Define loop and branch in circuit.
- **2.** State the differences between active and passive circuits.
- **3.** Define resonance in series circuit.
- **4.** Write the formula of Impedance and power in RLC series circuit.
- **5.** Define the term Q factor.
- 6. List the practical applications of heat produced due to electric current in metal.
- **7.** State the need for cooling of transformer.
- **8.** Define regulation of transformer.
- **9.** Define back EMF of DC motor.
- **10.** Classify DC machines with reference to excitation.

/7013

[ Contd...

- **Instructions :** (1) Answer **all** questions.
  - (2) Each question carries **eight** marks.
  - (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
  - **11.** Calculate loop currents by using Kirchhoff's laws.



#### ( **OR** )

Explain Kirchhoff's laws with examples.

**12.** Derive the relationship between voltage and current in pure inductive circuit.

### ( OR )

Differentiate between series and parallel resonance.

**13.** Explain the construction and working of electric kettle with diagram.

## ( OR )

Explain the construction and working of geyser with diagram.

**14.** Explain the working principle of current transformer with diagram.

## ( OR )

Explain the working principle of shell type transformer with diagram.

**15.** Explain the construction of DC Motor with diagram.

## ( OR )

Explain the principle of alternator with diagram.

/7013

[ Contd...

#### PART—C

# **Instructions :** (1) Answer the following question.

(2) Its carries **ten** marks.

**16.** Derive the resonance frequency in parallel resonant circuit.



\*