4217

BOARD DIPLOMA EXAMINATION, (C-14) MARCH /APRIL-2019 DAELE - THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time: 3 Hours] [Max. Marks: 80

PART-A

10x3 = 30M

Instructions: 1) Answer **all** the questions. Each question carries **three** marks.

- 2) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1) State De- Morgan's theorems.
- 2) Add (1101), and (1001),
- 3) Draw the circuit of 3x8 decoder.
- 4) List any three applications of multipexer.
- 5) Draw the diagram of D filps flop and write its truth table.
- 6) Define sequential logic circuit.
- 7) Differentiate between synchoronus and asynchronous counters in any three aspects.
- 8) State the use of shift register as memory.
- 9) Compare static RAM and dynamic RAM in any three aspects.
- 10) State the need for A/D converter.

PART-B 5x10=	=50N
--------------	------

- **Instructions:** 1) Answer any **five** questions. Each question carries **ten** marks.
 - 2) Answers should be comprehensive and the critertion for valuation is the content but not the length of answer.
- 11) a) Convert (10010), into decimal and hexadecimal number. (4M)
 - b) Simplify the Boolean expression $Y = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + ABC + AB\overline{C}$ using Boolean laws. (6M)
- 12) a) State any five postulates of Boolean algebra. (5M)
 - b) Explain the working of Exclusive- OR gate with its truth table. (5M)
- 13) a) Explain the working of serial adder with a block diagram. (6M)
 - b) Compare the performance of Serial and parallel adder. (4M)
- 14) Realise a half adder using NAND Gates and NOR Gates only.
- 15) (a) Explain JK flip flop with the help of truth table. (6M)
 - (b) State the need for preset and clear inputs. (4M)
- 16) Explain the Working of Ring counter and list its any two aplications.
- 17) Explain the working of the Universal shift register.
- 18) Explain the working of A/D converter using successive approximation method.

* * *

/4217 2