

C14-AEI-106

4048

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2018 DAEIE-FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time: 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** State ohm's law.
- 2. Define (i) electric charge (ii) electric current
- **3.** Define work, power and energy.
- **4.** List the practical applications of heat produced due to electricity.
- 5. State Right-hand thumb rule.
- 6. State work law and its applications.
- 7. State Lenz's law.
- **8.** Define self inductance and mutual inductance.
- **9.** State different types of capacitors.
- **10.** List the indications of fully charged lead-acid battery.

/4048

1

[Contd...

PART—B

- * *Instructions* : (1) Answer *any* **five** questions.
 - (2) Each question carries **ten** marks.
 - (3) Answers should be comprehensive and the criteria for evaluation is the content but not the length of the answer.

11.	(a)	State parameters affecting the resistance.	4
	(b)	Three resistors 4Ω , 12Ω and 6Ω are connected in	n 5
		parallel. If the total current is 12A, find the curren	t
		through the each resistor.	
12.	A ho	ouse has the following loads :	10
	(a)	An immersion heater of 1000W working for 2hrs/day	_
	(b)	2KW heater working for 3hrs/day	
	(c)	10 lamps of 100W each working for 10hrs/day	
	(d)	5 ceiling fans of 60W each working for 10hrs/day	
	Cal	rulate the monthly energy charges for the month of	f 10
	Jan	uary charges being \gtrless 3 per unit with a monthly ren	t 10
	of ₹	$100/_{-}$	L
	01 (
		\sim J	
13.	Exp	lain with neat diagram, construction and working o	f 10
	elec	tric cooker.	
	ろ		
14	(a)	Compare magnetic circuit with electric circuit	5
1.	(h)	Evaluation the Lanlace law	5
	(D)	Explain the Explace law.	0
15	(α)	Derive on expression for energy stored in a magnetic	. =
15.	(<i>u</i>)	C-14	; 5
	(1.)	neia.	-
	(b)	Explain dynamically induced EMF.	5
/4048	5	2	[Contd
*			

*

16.	(a) (b)	Derive an expression for energy stored in capacitor. Determine the force between two charges 8μ C, 6μ C when they are spaced at 10cm apart in air.	5 5
17.	(a) (b)	Explain charging of batteries by constant voltage method. Write differences between maintenance free and lead- acid batteries.	5
18.	(a)	State the nature of force with different directions of the current.	5
	(b)	Explain dielectric strength and dielectric constant.	5

(b) Explain dielectric strength and dielectric constant.

* * *

*

*