

C14-A/AA/BM/CH/CHST/AEI/MET/ MNG/IT/TT/PCT-103

4003

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2016

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Define fundamental quantities and derived quantities, and give two examples for each.
- **2.** A force of 200 N is inclined at an angle 30° to the horizontal. Find the components in horizontal and vertical directions.
- **3.** Define projectile. Give two examples.
- **4.** State the conditions of simple harmonic motion.
- **5.** Define two molar specific heats of a gas.
- 6. What is Doppler effect? Mention any two applications.

/4003

[Contd...

- 7. Define surface tension and give two examples.
- **8.** What is the effect of temperature on viscosity of liquids and gases?
- 9. State Kirchhoff's laws.
- 10. Write any three applications of photoelectric cell.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

 $10 \times 5 = 50$

11.	(a)	Define vector product.	2
	(b)	State any four properties of cross product.	4
	(c)	If $\vec{A} = 2\vec{i} = 3\vec{j} = \vec{k}$ and $\vec{B} = \vec{i} = 4\vec{j} = 2\vec{k}$, find $\vec{A} = \vec{B}$.	4
12.	(a)	Derive an expression for the path of projectile in horizontal projection.	5
	(b)	A bomb is dropped from an aeroplane flying horizontally with a velocity of 9.8 m/s at a height 78.4 m from the ground. Find when and where it reaches the ground.	5
13.	(a)	Define normal reaction.	2
	(b)	Derive an expression for acceleration of a body projected upon a rough inclined plane.	5
	(c)	Write any three methods of reducing friction.	3
14.	(a)	Define potential energy and give two examples.	3
	(b)	State the law of conservation of energy. Verify the law in case of a free falling body.	+6
/4003		2 [Conto	ł

15.	(a)	Derive the expressions for <i>(i)</i> displacements and <i>(ii)</i> acceleration of a body executing simple harmonic motion.	6
	(b)	Calculate the maximum acceleration of a particle executing simple harmonic motion whose amplitude is 0.02 m and frequency is 50 Hz.	4
16.	(a)	Write any four differences between isothermal and adiabatic processes.	4
	(b)	Derive the ideal gas equation, PV RT.	6
17.	(a)	State the conditions of a good auditorium.	4
	(b)	1	+4
18.	(a)	State Ohm's law.	2
	(b)	Draw a neat sketch of metre bridge.	3
	(c)	Derive an expression for moment of couple on a bar magnet placed in a uniform magnetic field.	5
	2	***	

*

*