

C09-AEI-305

3215

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL—2014

DAEI—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Convert the given number 36 into excess-3 code.
- **2.** State De Morgan's theorems.
- 3. Compare the performance of serial adder and parallel adder.
- **4.** List any three applications of decoder.
- 5. Explain T flip-flop with the help of truth table with diagram.
- 6. Explain the working SR latch using NAND gates only.
- 7. Explain the working of ring counter with figure and truth table.
- 8. List different types of ROM.
- **9.** Draw the diagram of *J*-*K* flip-flop and truth table.
- **10.** Define the terms resolution and monotonicity of a D/A converter.

* /3215

[Contd...

Instructions : (1) Answer any **five** questions.

(2) Each question carries **ten** marks.

PART—B

(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11.	(a) Simplify the following expression using Boolean expressions :	5
	\overline{ABC} \overline{ABC} \overline{ABC} \overline{ABC} \overline{ABC} \overline{ABC}	
	(b) Simplify the following expression using K-map : $\overline{ABC} \overline{ABC} AB\overline{C} A\overline{BC}$	5
12.	(a) Convert the given binary number into gray number : $(1001101)_2$	5
	(b) Subtract $(1000)_2$ from $(1100)_2$ in 2's compliment method.	5
13.	Explain the working of 3 8 decoder with diagram.	10
14.	Draw and explain the operation of 4 1 multiplexer.	10
15.	Explain the working of asynchronous ripple counter with diagram.	10
16.	(a) State the need of preset and clear inputs.	5
	(b) Explain the concept of modulo-N counter.	5
17.	Explain the working of SISO, PIPO, SIPO, PISO.	10
18.	Explain the A/D conversion of successive approximation method.	10
	* * *	

* /3215

*

*