Set Code:

Booklet Code:

B

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than one circle is shaded against each question.

MATHEMATICS

1.
$$\lim_{x \to 0} \left[\frac{e^{2x} - 1 - 2x}{x^2} \right] =$$

- (1) 1
- $(2) \cdot 2$
- (3) 3

2.
$$\lim_{x \to 0} \left[\frac{\sin x}{x} \right]^{\frac{1}{x^2}} =$$

- (1) 0
- (2) 1
- $(3) e^{-1}$

3. If
$$x^y = e^{x-y}$$
, then $\frac{dy}{dx} =$

$$(1) \quad \frac{\log x}{\left(1 + \log x\right)^2}$$

- (1) $\frac{\log x}{(1 + \log x)^2}$ (2) $\frac{1}{1 + \log x}$ (3) $\left(\frac{\log x}{1 + \log x}\right)^2$ (4) $\frac{e^x}{1 + e^x}$

4. If
$$f(x) = (x^2 + 2x + 1)^{10}$$
, then $f'(x) =$

- (1) $20(x + 1)^{19}$ (2) $20(1 + x)^{10}$
- (3) $20(1+x)^{21}$ (4) $20(1+x)^{11}$

5. If
$$f(x) = 7^{x^3 + 3x}$$
; $(x > 0)$, then $f'(x) =$

(1) $(x^2+1) 7^{x^3+3x}$

- (2) $3(x^2+1)7^{x^3+3x} \cdot \log 7$
- (3) $(x^2+1) \cdot 7^{x^3+3x} \cdot \log 7$
- (4) $(x^2+1)(27)^{x^3+3x}$

								, ,	
6.	If $f(x) =$	sin	x	-	cos	x ,	then f'	$\left(\frac{\pi}{2}\right)$	=

(1) -1

(2) 0

(3) $\frac{1}{\sqrt{2}}$

7. If
$$y = \frac{1}{x^2 + 1}$$
, then $\frac{d^4y(0)}{dx^4} =$

(1) 12

(2) 24

(3) 6

8. The normal to the curve $x = a(1 + \cos \theta)$; $y = a \sin \theta$ at ' θ ' always passes through the

(1) (0,0)

(2) (a,0)

(3) (0,a)

(4) (a,a)

9. The maximum and minimum values of $f(x) = \sin^2 x + \cos^4 x$ are

(1) 1,0

 $(2) \frac{1}{2}, \frac{1}{2}$

(3) $1, \frac{1}{2}$

(4) 1, $\frac{3}{4}$

If $u = \log(\tan x + \tan y)$, then $(\sin 2x) \frac{\partial u}{\partial x} + (\sin 2y) \frac{\partial u}{\partial y} =$ 10.

(1) 1

(2) 0

(3) 2

 $(4) \frac{1}{2}$

If $u = e^{x+y} + f(x) + g(y)$, then $\frac{\partial^2 u}{\partial x \partial y} =$ 11.

 $(2) e^{xy}$

(3) e^{x+y}

(4) 0

The value of $\int x^2 \sqrt{1+x^3} dx =$ 12.

 $(1) \frac{1}{9} (1+x^3)^{\frac{3}{2}} + C$

 $(2) \ \frac{2}{9} \left(1 + x^3\right)^{\frac{3}{2}} + C$

(3) $\frac{1}{3}(1+x^3)^{\frac{2}{3}} + C$

(4) $(1+x^3)^{\frac{3}{2}} + C$

13. $\int \frac{1}{(e^x + e^{-x})^2} dx =$

(1) $\frac{-1}{2(e^{2x}+1)} + C$ (2) $\frac{1}{e^{2x}+1} + C$ (3) $\frac{e^x}{1+e^{-x}} + C$ (4) $e^x + C$

14.
$$\int \frac{x^5}{1+x^{12}} \, dx =$$

(1) $\frac{1}{6} \tan^{-1} (x^6) + C$

(2) $\frac{1}{3} \tan^{-1} (x^3) + C$

(3) $\frac{1}{6} \cot^{-1} (x^3) + C$

(4) $\frac{1}{9} \tan^{-1} (x^3) + C$

15.
$$\int_{0}^{\pi/2} \frac{\cos x \, dx}{(1 + \sin x)(2 + \sin x)} =$$

- (1) $\log\left(\frac{1}{3}\right)$ (2) $\log\left(\frac{2}{3}\right)$ (3) $\log\left(\frac{4}{3}\right)$ (4) $\log 2$

$$16. \qquad \int_{0}^{1} \frac{\log(1-x)}{x} \, dx =$$

- (1) $\frac{\pi^2}{2}$ (2) $\frac{\pi^2}{3}$
- (3) $\frac{\pi^2}{12}$ (4) $\frac{-\pi^2}{6}$

$$17. \qquad \int \frac{xe^x}{(x+1)^2} \ dx =$$

(1)
$$\frac{e^x}{e^x + 1} + C$$

(2)
$$\frac{e^{-x}}{1+x^2} + C$$

(3)
$$\frac{e^x}{1+x} + 0$$

(1)
$$\frac{e^x}{e^x + 1} + C$$
 (2) $\frac{e^{-x}}{1 + x^2} + C$ (3) $\frac{e^x}{1 + x} + C$ (4) $\frac{e^{-x}}{1 + x} + C$

18.
$$\int_{0}^{\frac{\pi}{4}} \log (1 + \tan \theta) d\theta =$$

- (1) $\frac{1}{8} \log 2$ (2) $\frac{\pi}{2} \log 2$ (3) $\frac{\pi}{8} \log 2$ (4) $\frac{-\pi}{6} \log 2$
- The area of the cardioid $r = a(1 \cos \theta)$ is
 - $(1) \frac{3a^2\pi}{2}$

- (2) $\frac{a^2\pi}{2}$ (3) $\frac{a\pi^2}{2}$ (4) $\frac{3a\pi^2}{2}$
- The area bounded by the curve $y = 7x 10 x^2$ and the x-axis is

- (1) $\frac{9}{2}$ sq.units (2) $\frac{1}{3}$ sq.units (3) $\frac{2}{3}$ sq.units (4) $\frac{3}{5}$ sq.units

- The area bounded by the curve $x^2 = 4ay$ and the line y = 2a is
 - (1) $\frac{\sqrt{2}}{2} \cdot a^2$ sq.units

(2) $\frac{8\sqrt{2}}{2}a^2$ sq.units

(3) $\frac{8}{3}a^2$ sq.units

- (4) $\frac{1}{\sqrt{2}} a^2$ sq.units
- The area of the ellipse $x = a \cos t$; $y = b \sin t$ is 22.
 - (1) $\frac{\pi}{2}ab$
- (2) $\frac{\pi}{3}ab$
- (3) $\pi a^2 b^2$
- (4) πab
- The length of the arc of the equiangular spiral $r=e^{\theta cot\alpha}$, between the points for which the radii vectors are r₁ and r₂ is
 - (1) $r_1 \cdot r_2 \sec \alpha$

- (2) $r_1 \cdot r_2 \csc \alpha$ (3) $(r_2 r_1) \sec \alpha$ (4) $(r_1 r_2) \csc \alpha$
- 24. Solution of $yxdy = (y^2 - 1) dx$ is
 - (1) $y^2 = \frac{x^2}{2} + 1$ (2) $y^2 = cx^2 + 1$ (3) $y = \sqrt{x + \frac{1}{2}}$ (4) $y = cx^2 + x$

- Solution of e^x cot $y dx^2 + (1 e^x) \csc^2 y dy = 0$ is
 - (1) $e^{-x} \cot y = C$

(2) $(e^x - 1)\cot y = C$

(3) $e^x + \cot y \cdot x = C$

- (4) $(e^x \cot y) + 1 = C$
- Solution of $(D^2 2D + 1)y = e^{-x}$ is
 - (1) $y = (c_1 + c_2 x)e^x + \frac{1}{4}e^{-x}$ (2) $y = (c_1 + c_2 x)e^{-x} + \frac{1}{4}e^x$

 - (3) $y = (c_1 + c_2 x)e^x + \frac{1}{2}e^x$ (4) $y = c_1 \cos x + c_2 \sin x + \frac{1}{4}e^{-x}$
- 27. Solution of $xe^{x^2+y} = y \frac{dy}{dx}$ is
 - (1) $(y+1)e^{-y} + \frac{1}{2}e^{x^2} = C$ (2) $ye^{-y} + \frac{1}{2}e^{x^2} = C$
 - (3) $\left(y + \frac{1}{2}e^{x^2}\right)e^{-y} = C$
- (4) $y = e^{-y} + 1 + \frac{1}{2} e^{x^2}$
- The solution of $ydx + (x + x^2y) dy = 0$ is 28.
 - (1) $\log y = cx$

(2) $\log y = \frac{1}{xy} + c$

(3) $-\frac{1}{xy} + \log y = c$

(4) $\log \left(\frac{y}{y} \right) = c$

29. If
$$y - \cos x \frac{dy}{dx} = y^2 (1 - \sin x) \cos x$$
; $y(0) = 1$, then $y(\frac{\pi}{3}) = 1$

(2) 1

(3) 2

(4) $\sqrt{3}$

30. If
$$A = \begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix}$$
; $B = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$, then $(A + B)^2 =$

 $(1) \begin{bmatrix} 10 & 18 \\ 12 & 22 \end{bmatrix} \qquad (2) \begin{bmatrix} 10 & 12 \\ 18 & 22 \end{bmatrix} \qquad (3) \begin{bmatrix} 9 & 4 \\ 4 & 11 \end{bmatrix} \qquad (4) \begin{bmatrix} 5 & 6 \\ 7 & 11 \end{bmatrix}$

31. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, then $A^2 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$

$$(1) \begin{bmatrix} 9 & 8 & 7 \\ 8 & 8 & 8 \\ 8 & 7 & 9 \end{bmatrix}$$

32.
$$\begin{vmatrix} a-b & m-n & x-y \\ b-c & n-p & y-z \\ c-a & p-m & z-x \end{vmatrix} =$$

(1) abcmnpxyz

(2) 1

(3) 0

(4) 3

33. The inverse of the matrix
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
 is

(1)
$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

(2) $\frac{1}{2}\begin{bmatrix}\cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha\end{bmatrix}$

(3)
$$\begin{bmatrix} -\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

(4) $\begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}$

34. If
$$A = \begin{bmatrix} 4-5i & 3+4i \\ 2 & 4-5i \end{bmatrix}$$
, then adj $A = \begin{bmatrix} 4-5i & 3+4i \\ 2 & 4-5i \end{bmatrix}$

$$(1) \begin{bmatrix} 4+5i & 3-4i \\ 2 & 4-5i \end{bmatrix}$$

 $(2) \begin{bmatrix} 4-5i & 3+4i \\ -2 & 4+5i \end{bmatrix}$

$$(3) \begin{bmatrix} 4-5i & 3-4i \\ 2 & 4-5i \end{bmatrix}$$

 $(4) \begin{bmatrix} 4-5i & -3-4i \\ -2 & 4-5i \end{bmatrix}$

35.	$If \frac{1-x+6x^2}{x-x^3}$	$= \frac{A}{x} + \frac{B}{1-x} + \frac{C}{1+x}$, then A =
	(1) 0	(2) 1	(3) 2
36.	If $\frac{3+2i\sin\theta}{}$	is real, then the valu	e of $\theta =$

 $1-2i \sin \theta$

$$(1) \quad \frac{\pi}{6}$$

(2) 0

$$(3) \ \frac{\pi}{4}$$

 $(4) \ \frac{\pi}{8}$

 $(4) \ 3$

37.
$$(1 + i\sqrt{3})^9 =$$

(1) -2^9

$$(2) 2^9$$

$$(3) -1$$

(4) 2

38. If
$$\left| \frac{z-i}{z+i} \right| = 1$$
, then the locus of z is

$$(1) x = 1$$

(2)
$$y = 1$$

(4) y-axis

19. If
$$\sin \theta + \sin^2 \theta = 1$$
, then $\cos^8 \theta + 2 \cos^6 \theta + \cos^4 \theta =$

$$(2) -1_{max}$$

(4) (0

40.
$$\sin \left[\cot^{-1} \left(\frac{2x}{1-x^2} \right) + \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$$

(1) 0

$$(2) -1$$

(3)
$$\frac{1}{2}$$

(4) 1

41. If
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$
, then $\cos^{-1} x + \cos^{-1} y =$

(2)
$$\pi + \frac{x}{2}$$
 (3) $\frac{\pi}{3}$

(3)
$$\frac{\pi}{3}$$

 $(4) \ \frac{\pi}{4}$

Solution of
$$7 \sin^2 x + 3 \cos^2 x - 4 = 0$$
 is

(1)
$$n\pi \pm \frac{\pi}{2}$$
; $n \in \mathbb{Z}$

(2)
$$n\pi \pm \frac{\pi}{3}$$
; $n \in \mathbb{Z}$

(3)
$$n\pi \pm \frac{\pi}{4}$$
; $n \in \mathbb{Z}$

(4)
$$n\pi \pm \frac{\pi}{6}$$
; $n \in \mathbb{Z}$

If the sum of acute angles $\tan^{-1} x$ and $\tan^{-1} \left(\frac{1}{2}\right)$ is 45°, then the values of x is equal to

(1)
$$\frac{1}{\sqrt{3}}$$
 (2) $\frac{1}{3}$

(2)
$$\frac{1}{3}$$

(3)
$$\frac{1}{\sqrt{2}}$$
 (4) $\frac{1}{2}$

$$(4) \frac{1}{2}$$

44. If $z_1 = 8 + 3i$; $z_2 = 9 - 2i$, then $\frac{z_1}{z_2} =$

(1)
$$\frac{11}{15} + \frac{43}{85}$$

(2)
$$\frac{66}{85} + \frac{43}{85}$$

$$(3)$$
 $\frac{55}{85} + \frac{42}{85}$

(1)
$$\frac{11}{15} + \frac{43}{85}i$$
 (2) $\frac{66}{85} + \frac{43}{85}i$ (3) $\frac{55}{85} + \frac{42}{85}i$ (4) $\frac{66}{85} + \frac{78}{85}i$

45. If $z_1 = -2 + 2i$ and $z_2 = 3i$, then arg $z_1 z_2 =$

$$(1) \ \frac{3\pi}{2}$$

$$(2) \ \frac{3\pi}{4}$$

(3)
$$\frac{-3\pi}{4}$$

(4) π

The angle between the tangents from the point (4, -2) to the circle $x^2 + y^2 = 10$ is 46.

$$(1) \ \frac{\pi}{6}$$

$$(2) \ \frac{\pi}{4}$$

$$(3) \ \frac{\pi}{2}$$

 $(4) \ \frac{2\pi}{3}$

The value of 'a', if the line 2y - 5x = a touches the parabola $y^2 = 6x$ is

(1)
$$\frac{6}{5}$$

$$(2) \frac{4}{5}$$

$$(3) \frac{3}{5}$$

 $(4)^{-\frac{2}{5}}$

48. The pole of 2x + 3y = 1 with respect to $\frac{x^2}{3} + \frac{y^2}{2} = 1$ is

$$(1)$$
 $(3,4)$

$$(3)$$
 $(5,5)$

(4) (6,6)

The equation of hyperbola whose vertices are (2, 5), (2, -1) is 49.

(1)
$$\frac{(x-1)^2}{7} - \frac{(y-2)^2}{9} = 1$$

(2)
$$\frac{(x-2)^2}{7} - \frac{(y-2)^2}{9} = -1$$

(3)
$$\frac{(x-2)^2}{9} - \frac{(y-1)^2}{9}$$

(4)
$$\frac{(x-2)^2}{9} - \frac{(y-2)^2}{7}$$

If f(x) satisfies the functional equation $x^2 f(x) + f(1-x) = 2x - x^4$, then $f\left(\frac{1}{2}\right) = \frac{1}{2}$ 50.

(1)
$$\frac{1}{2}$$
 (2) $\frac{3}{4}$ (3) $\frac{1}{4}$ (4) $\frac{3}{2}$

(2)
$$\frac{3}{4}$$

(3)
$$\frac{1}{4}$$

$$(4) \frac{3}{2}$$

ANSWERS

1)	2	2) 4	3) 1	4) 1	5) 2
6)	4	7) 1	8) 2	9) 4	10) 3
11)	3	12) 2	13) 1	14) 1	15) 3
16)	4	17) 3	18) 3	19) 4	20) 1
21)	none	22) 4	23) 3	24) 2	25) 2
26)	1	27) 1	28) 3	29) 3	30) 2
31)	3	32) 3	33) 1	34) 4	35) 2
36)	2	37) 1	38) 3	39) 1	40) 4
41)	3	42) 4	43) 2	. 44) 2	45) none
46)	3	47) 1	48) 4 .	49) 2	50) 2

ECET PHYSICS (T.S)

51.	A body is falling fre	ely from a height of 7	78.4 m. Its velocity o	n reaching ground	is (given th	nat
	$g = 9.8 \text{ m/s}^2$. ()
	(1) 10.6 m/s	(2) 20 2/-	(2) 70 4			

(2) 39.2 m/s

(3) 78.4 m/s

(4) 156.8 m/s

The maximum height reached by a ball thrown at an angle 60° to the horizontal with an initial 52. velocity 9.8 m/s is (given that $g = m/s^2$)

(1) 7.35 m

(2) 14.70 m

(3) 29.4 m

(4) 3.675 m

Which of the following statement is wrong pertaining to coefficient of static friction (μ_{ν}) 53.

(1) μ_s is different for different pairs of surfaces

(2) $\mu_s = 0$ when there is no applied force

(3) $\mu_s > 0$ when there is an applied force

(4) μ_c < 0 when there is an huge applied force

If θ is the angle of inclination plane and α is the angle of repose then the body slides down with 54. some accelaration when

(1) $\theta = \alpha$

 $(2) \theta > \alpha$

(3) $\theta > \alpha$

The mass of a person in kg, if the work done in carrying a box of mass 20 kg through a vertical 55. height of 10 m is 9800 J is $(g = 9.8 \text{ ms}^{-2})$

(1)80

(2)40

(3)60

(4)70

The horse power of the engine required to lift $0.54 \times 10^6 \, \mathrm{kg}$ of coal in 30 minutes from a mine 56. of 37.3 m deep is $(g = 9.8 \text{ ms}^{-2})$

(1) 294

(2)588

(3)688

(4) 147

57. In hydroelectric stations

(1) Kinetic energy is converted into heat energy

(2) Potential energy is converted into electrical energy

(3) Kinetic energy is converted into electrical energy

(4) Kinetic energy is converted into potential energy

If 'X' is displacement and 'a' is acceleration of a particle executing simple harmonic motion 58. then its time period (T) is given by

 $(1) 2\pi \sqrt{\frac{X}{a}}$

 $(2) 2\pi \sqrt{\frac{a}{x}}$

(3) $\frac{1}{2\pi} \sqrt{\frac{X}{a}}$

 $(4) \ \frac{1}{2\pi} \sqrt{\frac{a}{X}}$

59.	If T is time period of a	a particle executing sir	nple harmonic motion th	en the phase of the particle
	when $t = \frac{T}{4}$ is			
	(1) Zero	(2) $\frac{\pi}{2}$	(3) π	$(4) \ \frac{3\pi}{2}$
60.	The displacement of	f a particle executir	ng simple harmonic m	otion is given by $y = 8$
	$\sin\left(0.4\pi t + \frac{\pi}{2}\right)$. Then	its time period in sec	onds is	
	(1) 20	(2) 10	(3) 5	(4) 2.5
61.	A seconds pendulum i value on the earth, the			gravity is one-fourth of the
	(1) 1 s	(2) 2 s	(3) 4 s	(4) 8 s
62.			conds when dropped from seconds, then its length of	m a height of 32 metres. If on the planet is
	(1) 4 m	(2) 8 m	(3) 32 m	(4) 16 m
63.	A boy hears an echo o is 330 m/s, the distant	The state of the s	distant hill after 5 secon	nds. If the velocity of sound
	(1) 425 m	(2) 825 m	(3) 1650 m	(4) 850 m
64.	A litre of gas is at 27 ^o	C. Then the temperatu	are required to heat to ma	ake its volume double is
	(1) 600° C	(2) 300° C	(3) 100° C	(4) 327° C
65.	Which of the following	g statement is correct	in case of a isothermal	process of a gas
	(1) Temperature chan	ges		
	(2) Exchange of heat	takes place between g	as and surroundings	
	(3) Internal energy ch	anges		
	(4) It is a quick proce	SS		
66.	If the pressure of gas its initial value, then the			rature is reduced to half of
	(1) 8:1	(2) 4:1	(3) 1:8	(4) 1:4
67.	Light transmitted thro	ugh the optical fiber b	y the phenomenon of	
	(1) Reflection		(2) Refraction	
	(3) Interference	*	(4) Total internal ref	lection
68.	The superconductivity	of a substance below	critical temperature can	n be destroyed by
	(1) Increasing tempera	ature	(2) Decreasing temp	perature
	(3) Application of mag	metic field	(4) Application of el	ectric field
	Radian	nt's		ECET PHYSICS 2016

TI 1:			ECET [FDH] PHYSIC
The dimensional f	formula of Planck's cons	stant, h is	File Difference and Late of
(1) ML^2T^{-1}	(2) MLT ⁻¹	(3) ML^2T^{-2}	(4) MLT ⁻¹
Which one of the	following physical quan	tity has the dimensional	formula MLT ⁻¹
(1) Work	(2) Power	(3) Impulse	(4) Pressure
The angle in radia equal to one of the	ans between two vector m is	s of equal magnitude w	whose resultant magnitude i
$(1) \frac{2\pi}{3}$	$(2) \frac{\pi}{3}$	(3) π	$(4) \frac{\pi}{2}$
If two vectors are	parallel to each other, th	nen their dot product is	
	equal to product of their		Mi dhan ak le zilizi
	equal to sum of their ma		
	equal to product of their		
(4) Maximum and	equal to sum of their ma	agnitudes	

2i + j + k metres is

time of flight is

 $(1) \sqrt{20}$

 $(2) \frac{2u}{g} \qquad \qquad (3) \frac{3u}{g}$

(3) 6

The area of the parallelogram in square metres formed by adjacent sides 2i + j + 3k and

If a body is projected vertically up with a velocity 'u' and acceleration due to gravity 'g' then

 $(4) \frac{u^2}{g}$

 $(4) \sqrt{68}$

The initial velocity of a body projected upwards from the ground reaches maximum height of 75. 10 metres is (given that $g = 9.8 \text{ m/s}^2$)

(1) 225 m/s

73.

74.

(2) 196 m/s

(2) 5

(3) 15 m/s

(4) 14 m/s

KEY

51. 2	52. 4	53. 4	54. 2	55. 1	56. 4	57. 3	58. 1	59. 2	60. 3
61. 3	62. 4	63. 2	64. 4	65. 2	66. 1	67. 4	68. 3	69. 1	70. 3
71. 1	72. 1	73. 1	74. 2	75. 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Radiant's

CHEMISTRY (T.S) 76. E⁰ of Zn electrode is -0.762 volts. The circumstance of ZnSO solution.

/0.	ZnSO ₄ solution is	-0.762 volts. The single	e electrode potential of Zn	electrode in dec	i mo	olar)
	(1) -0.7915 V *	(2) -0.671 V	(3) +0.7915 V	(4) +0.671 V		
77.	The function of salt b	oridge is			()
	(1) to produce a link	between two half cells				
	(2) to allow ions to g	o from one cell to anoth	er cell			
	(3) to keep the EMF	of the cell positive				
	(4) to maintain electri	cal neutrality of the solu	ation in two half cells ?			
78.	The chemical compos	sition of rust is			()
	(H) Fe ₂ O ₃ .XH ₂ O '	(2) $\operatorname{Fe_2O_3}$	(3) Fe ₃ O ₄ .XH ₂ O	(4) Fe ₃ O ₄		
79.	Which one of the foll	owing could provide ca	thodic protection to iron?		()
	(1) Cu	(2) Zn •	(3) Ni	(4) Co		
80.	Degree French (°F) is	S			()
	(1) The parts of CaC	O ₃ equivalent hardness p	per 10 ⁵ parts of water			
	(2) The parts of CaCo	O ₃ equivalent hardness p	per 106 parts of water			
	(3) The parts of CaCo	O ₃ equivalent hardness p	per 10 ⁴ parts of water			
	(4) The parts of CaCo	O ₃ equivalent hardness p	per 10 ⁷ parts of water			
81.	The chemical formula	of Zeolite is			()
	(1) Na ₂ OAl ₂ O ₃ xSiO ₂ y	VH_2O (x = 2–10, y=2–6)	•			
	(2) K ₂ OAl ₂ O ₃ SiO ₂ H ₂ O					
	(3) CaOAl ₂ O ₃ xSiO ₂ yI	$H_2O(x=2-10, y=2-6)$				
	(4) BaOAl ₂ O ₃ SiO ₂ H ₂ O	-				
82.	2 3 2 2	lids in drinking water sh	ould be		.()
	(1) Less than 600 ppr		(2) Less than 700 ppm		`	-
	(3) Less than 500 ppr	n e	(4) Less than 1000 ppm			
83.	The monomer of Tefle	on is			()
	(1) FCIC = CCIF	(2) Cl2C = CCl2	(3) $F_2C = CF_2 \bullet$	(4) FCIC = CI	7	
	Radia			ET CHEMISTRY	1	16

40		ECET IFD	H) CHEMIS	TRY
84.	Which one of the following is a thermosetting	ng polymer?	()
	(1) Nylon (2) Terylene	(3) Bakelite • (4) I	Poly ethane	
85.	The monomers of Buna-S polymer are		()
	(1) Vinyl chloride & vinylidene	(2) Styrene & butadiene		
	(3) Acrylonitrile & butadiene	(4) Isobutylene & isoprene		
86.	Which one of the following is present in max			
	(1) CH_4 (2) C_2H_6	$(3) C_3 H_8$ (4) (Н	
87.	The chief pollutants which are responsible for		2-4	,
	(1) SO ₂ & CO ₂	(2) CO & SO,		,
	(3) CO & CO ₂	(4) Oxides of nitrogen & CFC	's ·	
-88.	Which one of the following is secondary poll		(
	(1) CO (2) SO,		erosol	
89.	The BOD value in clean water is		(1
	(1) Less than 5 ppm (2) More than 5 ppm	n (3) Less than 10 ppm (4) M	lore than 10 p)
90.	Which one of the following pairs of atoms or)
	(1) F ⁺ and Ne (2) Li ⁺ and He ⁻	(2) (1)	a and K	,
91.	Which one of the following is most covalent		a and K	1
	(1) NaCl (2) MgCl ₂		CI	,
92.	The oxidation number of 'S' in H ₂ SO ₅ is		3.	,
	(1) 5 (2) 6	(3) 7)
93.	Which one of the following sets of quantum	() (~9
		represents an impossible	arrangement)
	(1) == 2 1 2 2		1	
	(1) $n = 3$, $l = 2$, $m_1 = -2$, $m_s = \frac{1}{2}$	(2) $n = 3$, $l = 2$, $m_1 = -3$, $m_s =$	$\frac{1}{2}$	
	(2)		1	
	(3) $n = 4$, $l = 0$, $m_1 = 0$, $m_s = \frac{1}{2}$	(4) $n = 5$, $l = 3$, $m_1 = 0$, $m_s = -1$	$-\frac{1}{2}$	
94.	The number of moles of hydroxide (OH) ions	in 0.3 liter of 0.0005 M solution of	of Ba (OH)	ic
		in an artist of the second	())
	(1) 0.0050 (2) 0.0030	(3) 0.0015 (4) 0.0	0075	
95.	The normality of 0.3 M of H ₃ PO ₃ is		()
	(1) 0.1 (2) 0.97	(3) 0.6 (4) 0.3		
FCFT	CHEMISTRY 2016			

(3) $\Omega^{-2} \text{ cm}^{-2} \text{ mol}^{-1}$

(4) Ω cm²mol

(2) Ω^{-1} cm² mol⁻¹.

100. The units of molar conductance are

(1) Ω cm mol⁻¹

KEY

76. 1	77. 4	78. 1	79. 2	80. 1	81. 1	82. 3	83. 3	84 3	05 2
				A CONTRACTOR OF THE PARTY OF TH					
86. 1	87. 4	88. 3	89. 1	90, 3	91. 4	92. 4	93. 2	94. 3	95. 2
96. 1	97. 3	98. 4	99. 1	100. 2					