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vi Preface

large cross-sectional dimensions required. At infrared or optical frequencies,
they again become impractical since the cross-sectional dimensions become
too small. As a result, the microwave portion of the spectrum is the only
region in which ordinary waveguides can be used in practice.

In ordinary waveguides, there are no separate conductors between which
the voltage can be defined and the concept of power expressed by the product
of voltage and current is no longer directly applicable. Consequently, the
electromagnetic field itself has to be investigated first rather than the voltage
and current which, in a sense, represent the field. In general, it is hopelessly
difficult to solve Maxwell's equations under appropriate boundary conditions
and to analyze the electromagnetic field of complex waveguide systems en-
countered in practice or in laboratories. Even if a formal solution is easily
obtainable, the interpretation of the result may become so complicated that
no usefull information can be extracted from it. In conventional circuit
theory, the resistance, capacitance, and inductance are defined without
specifying their physical structures or materials used. The relations between
the voltage and current at the terminals of such elements are first clarified,
Then, the properties of a complex network are studied as a combination
of the effects of each element making up the network. There is no need to
solve Maxwell’s equations explicitly and yet much useful information is
obtainable. In a similar fashion, it is possible to study each discontinuity or
Jjunction of waveguides separately and to clarify its effect on the propagating
modes of the electromagnetic fields either by experiments or by solving
Maxwell’s equations. The behavior of a complex waveguide system can then
be discussed as a combination of the effects of such elements. By this ap-
proach, a better understanding can be obtained with less difficulty than
trying to solve Maxwell's equations directly for the whole system. The
theory of microwave circuits is the study of this approach. The word circuit
comes from the similarity existing between this approach and that of con-
ventional circuit theory. The concept of voltage and current can be esta-
blished by observing the fact that the transverse electric and magnetic fields
in a waveguide vary with distance in the same manner as the voltage and
current do along a conventional transmission line. Using this concept,
impedance can be defined and power appears as the product of voltage and
current. Many other useful theorems in conventional ac circuits also become
applicable to waveguide systems.

In our category of microwave circuits, we shall include any electromagnetic
phenomena in the inside of a hollow region enclosed by conducting walls.
We are especially interested in the study of their effect on the propagating
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modes of electromagnetic fields in waveguides connected to the hollow region.
The actual wavelength is not important; it can be longer or shorter than the
centimeter or millimeter ranges as long as the electromagnetic field is
confined in a finite region. On the other hand, we shall not discuss waves in
free space as in radio and in optics nor those along a dielectric rod or coated
wires in open space.

In Chapter 1, some of the topics in the conventional circuit theory are
reviewed, which have particular importance in the theory of microwave
circuits, These include the theory of transmission lines, bilingar transforma-
tions, and power waves. Chapter 2 gives a review of vector analysis and the
fundamental properties of electromagnetic fields to facilitate our later study.
In Chapter 3, waveguides are discussed for the first time. Here, the eigenvalue
problem is studied in detail including the completeness of eigenfunctions.
Without the discussion of the completeness, the theory is only partially
correct since no answer is given to certain fundamental questions such as
why an exponential variation with distance is assumed for each mode and
no other possible functional form is considered. Chapter 4 discusses resonant
cavities using a similar eigenfunction approach. In Chapter 5, various
properties of waveguide junctions are discussed using matrices.

Matrices are introduced since the multitude of symbols and lengthy
expressions, which would otherwise be necessary, could interfere with our
concentration on the heart of a problem. Just as vectors do, matrices help
in studying relatively complex problems, systematically. Chapter 6 discusses
two phenomena: One is the coupling between traveling waves and the other
is that between electromagnetic fields in cavities. Each illustrates an in-
teresting application of eigenvalue problems. Chapter 7 is a study of linear
amplifiers. The centra! topic is their noise performance. In Chapter 8, we
discuss a circuit-theoretical analysis of electron beams which clarifies a
number of properties of practical interest. Finally, Chapter 9 contains a
discussion of oscillators. Although oscillators are inherently nonlinear, some
of their important properties are studied here without specifying the details
of the nonlinearity.

Each chapter is followed by a set containing two types of problems: one
helps to give deeper understanding of the discussion in the text while the
other covers topics which could not be included in the text. The reader is
advised to at least read each problem even when he has no time to solve it.

Obviously, this book is not intended to supply microwave circuit design
data. Those who want such information should refer to a large collection
of books already available on the market (for example, MIT Radiation
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Laboratory series). The objective of this book is to convey to the reader,
through the discussion of the theory of microwave circuits, some basic ideas
and a few mathematical techniques, which are found to be useful in many
branches of engineering and science.

In a classroom, since only a few percent of the students will be involved
with waveguides and related subjects in the future, there is no reason why
details of presently available design techniques should be presented since
these will soon be obsolete. On the other hand, bzsic ideas will ultimately
prove to be more useful for solving problems in other fields in which the
student may become involved. As a textbook, however, it is not necessary
to follow each chapter closely. For example, one could start from Chapter
3 depending on the background of the average student. Furthermore, the
teacher does not need to cover the eigenfunction completeness discussion in
the classroom; he has only to stimulate the students’ interest. They may read
the appropriate parts by themselves or refer to them when a similar problem
interest them. Similarly, many other parts can be bypassed in the classroom
or presented in a simplified form by restricting the discussion to a special
case; for example, the reference impendances can be made equal to 1 in the
scattering matrices of Chapter 5.

The current volume is based on a first-year graduate text written in Japan-
ese and published by the Maruzen Company in 1963. A number of revisions and
additions were made before the book was translated in this final form. The
author’s cordial thanks are due to the publishing company for allowing
him to use material freely for publication.

The English text has been read by many colleagues at Bell Telephone
Laboratories. Among them, the author is particularly indebted to Dr.
M. R, Barber who accepted the burden of correcting the English. Without
his help, this book would not have come into existence.
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CHAPTER 1
ELEMENTS OF
CONVENTIONAL CIRCUIT THEORY

This chapter reviews several topics in conventional ac circuit theory
which are of particular importance in the theory of microwave circuits.
They are the theory of transmission lines, Smith chart, bilinear transfor-
mations, and power waves. In the discussion of the transmission lines,
special emphasis is given to explaining a standard approach in natural
science in which an idealized model in one sense or another is constructed
and studied in detail. Not only in microwave circuits but also in almost
every branch of physics, it is important to construct an appropriate model
and to study its behavior in order to obtain a better understanding of the
actual situation, which is always far more complicated and difficult to study.
Another technique explained in connection with the transmission line theory
is that a change in viewpoint of a problem sometimes makes the solution
considerably easier. A mathematical operation called linear transformation
is one of the methods to change a viewpoint. Since the same kind of oper-
ation will be repeatedly employed later in this book, use is explicitly made
of a linear transformation, and its meaning and merits are explained. From
such a discussion, it will become evident that a problem can become easy or
difficult to understand depending on the way it is approached. It is, therefore,
of utmost importance for us to keep a flexible attitude and to study various
approaches in order to find the simplest techniques.

1.1 Transmission Line Theory

When current i flows through an inductance L,, the energy stored in the
inductance is magnetic and given by 3L,i2. Conversely, if a circuit element

1



2 1. ELEMENTS OF CONVENTIONAL CIRCUIT THEORY

stores magnetic energy when current { is flowing through it, the element has
an inductance given by the stored magnetic energy divided by 1i%. Similarly,
if voltage v is applied to a capacitance C,, the electric energy stored in the
capacitance is given by 3Cyv>. Therefore, the stored electric energy divided
by 4v? gives the capacitance.

When direct current 7 is flowing through a thin wire situated above a
conductor ground plane to form a transmission line as shown in Fig. 1.1,
there is magnetic field surrounding the wire and, hence, some stored mag-
netic energy. Except for a small fringing effect at both ends, the magnetic
field and, hence, the magnetic energy density is independent of longitudinal
position z in Fig. 1.1. Thus, the magnetic energy stored per unit length of

iz +A2,1)

vizthaz,t)

-----
---------
o

Fig. 1.1. Transmission line above ground plane,

the line is given by the total stored encrgy divided by the total length of the
line. If the energy stored per unit length is further divided by 472, then it
should give the inductance L per unit length of the line. On the other hand,
if static voltage v is applied between the wire and the ground plane, an
electric field appears between them. This means that some electric energy
is stored in the space. In a similar way to the above, it is possible to define
the electric energy stored per unit length of the line and, hence, the capac-
itance C per unit length of the line. Thus, L and C defined are constants
which are independent of z.

Next, let us consider the case in which a slowly varying voltage is applied
to one end of the line instead of static voltage, as before. In this case, one

=
H
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might expect the voltage and current on the transmission line to be functions
of time ¢ as well as of z. Let us first derive the relations between the voltage
and current at z and z + Az where Az is a small increment in z. Since the
inductance per unit length of the line is given by L, a length Az of the line
has an inductance L Az. The current i(z, t) flowing into this inductance
produces potential difference L Az {@i(z, t)/0t} between z and z + Az. The
current also changes with z. In this calculation, however, it is assumed that
i(z, t) can represent the current at any point between z and z + Az inclusive
since Az is small and later it will be shrunk to zero. The partial differentiation
means that the differentiation is with respect to ¢ alone while the current is a
function of both z and . Since the sum of the voltage at z + Az and the
potential difference between the terminals of the inductance L 4z has to be
equal to the voltage at z, we have

di(z, 1)

v(z,t)=v{z + 4z, 1) + L 4z

or equivalently,
di(z, 1)

-L4
z Ot

=v(z + 4z, 1) —v(z, 1) (1.1)

The difference in the currents at z and z + Az is attributable to the current
flowing through the shunt capacitance C 4z of the length Az of the line.
The shunt current is given by C Az {dv{(z, £)/dt}, hence, we have

ov(z, t
i(z,1)=C 4z DE; )+ i(z +4z,1)
or equivalently
dv(z, 1) .
- C Az % =i(z +4z,1)~ (z,1) (1.2)

Dividing (1.1) and (1.2) by Az and taking the limits of 4z—0, we have

L 0i(z,1) dv(z,1)
o az

(1.3)
and

ot 0z

_ o iz (1.4)

respectively. By differentiating (1.3) with respect to z and (1.4) with respect
to t, i(z, £} can be eliminated. The order of differentiations with respect to ¢



4 1. ELEMENTS OF CONVENTIONAL CIRCUIT THEORY

and z can be reversed without changing the final result. Thus, we obtain a
differential equation for v(z, t) alone:

d*(z, 1) 0%v(z, 1)

C % T T

The problem is now reduced to the solution of this equation with appropriate
boundary conditions. However, before trying to solve the differential equa-
tion, let us consider what assumption have been made. There is an endless
list of neglected phenomena, but some of the more important ones are as
follows. First, the effect of resistances in the wire as well as in the ground
plane is completely neglected. The potential difference between z and z + 4z
is therefore assumed to be attributable to the inductance L Az alone. Next,
if the applied voltage is a function of time, the distribution of current
density in the cross section of the wire changes from that for the dc case.
The inductance per unit length of the line is therefore different from the de
value, but L is assumed to be a constant in our discussion. Furthermore,
when the voltage between conductors becomes sufficiently large, corona
discharge and sparks generally take place, and the shunt current can no
longer be approximated by C Az{dv(z,)/dt}. Finally, the complicated
effect of fringing fields at the ends of the line are ignored.

Any phenomenon that actually takes place is always too complicated to
deal with exactly. In order to study it, therefore, a number of things which
hopefully produce only minor effects are neglected, and an idealized model
is constructed. The phenomenon which takes place in this simplified model
is then studied in detail, and the result is compared with the experimentally
observed behavior in order to understand actual effects and their causes.
Often the first model may not fully explain the actual phenomenon. In such
cases, another model has to be constructed which includes one or several
factors previously neglected, therefore, it is closer to the actual situation,
Sometimes, the same procedure may have to be repeated several times before
a satisfactory result is obtained. Selecting an appropriate model constitutes
the most important part of any study. If the model is too complicated, a final
conclusion may not be obtainable. On the other hand, if it is too simplified,
the model may not explain the actual phenomenon at all. Thus, the success
or failure of a theory is primarily determined by the selection of an appro-
priate model.

Now, returning to (1.3)-(1.5), they are the equations which the voltage
and current of the idealized model must satisfy. The simplicity of these
equations is attributable to the fact that we ignored many, but hopefully

(1.5)
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minor, factors in the derivation as explained before. As far as the voltage
and current of the model are concerned, we have only to consider these
equations. Therefore, let us forget the actual transmission line for the time
being, keeping in mind, however, that if the conclusion from these equations
fails to explain the actual phenomenon, the actual transmission line must be
reconsidered to obtain an improved model.

The differential equation (1.5) is linear: (i) If some voltage v satisfies the
differential equation, then a constant times », Av, also satisfies the same
equation; and (i) If », and v, satisfy the differential equation separately,
then their sum v, + v, also satisfies the equation. It follows from (i) that if
the voltage applied- to the model transmission line is increased by a certain
factor, the voltage at every point along the ling will be increased by the same
factor. (ii) asserts that the principle of superposition holds for the model.
For instance, when the applied voltage has a complex waveform, it can be
decomposed into simpler components, and the line voltage can be calculated
for each separately. The line voltage corresponding to the original complicated
applied voltage can then be obtained by summing the results thus obtained.
Another important point in connection with (1.5) is that the coefficient of
the differential equation is real, i.e., the constant LC is not a complex
quantity but rather a real quantity.

Since Eq. (1.5) is a linear differential equation with real coefficients, we
can use a special function of time, e/*'. Suppose v, = V{(z) e/ satisfies the
differential equation, then the complex conjugate v, = V*(z) e™ /' is also
seen to satisfy the same differential equation since LC is real. Because of
the linearity, a constant times their sum as well as their difference will also
satisfy (1.5):

2V (@) e+ V*(2) e 7} 2 =Re{J2V(2) e}

— 2V (@)™ —V*(2) e M2 = Im {2 V(z) &}

where the asterisk (*) indicates the complex conjugate, and Re and Im
indicate the real and imaginary parts of the quantity following. The quantity
\/ 2 is introduced in front of V(z) so that V(z) represents the effective value
as is familiar in the ac circuit theory. The above two quantities are both real
functions of time, and they can be interpreted as the actual voltages which
are measurable on the model transmission line. Therefore, let us agree to
take either the real or the imaginary part of /2 ¢/ times V(z) for the
interpretation of V(z). Since @ is arbitrary, by the theory of Fourier
integral, the result can be integrated with respect to © with a proper weighting
function to obtain the line voltage corresponding to any time-varying
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applied voltage. For this reason, we shall use ¢/ as the time factor unless
otherwise specified. With the time factor e, the differentiation with respect
to time becomes equivalent to the multiplication by jw thereby simplifying
the calculation. If sin wt is adopted as the time factor, the differentiation
will produce a term like @ x cos o and the calculation will not be as simple
as in the case in which /! is used.

Substituting v = ¥(z) ¢/*' into (1.5) and dividing both sides by &/, we
obtain the differential equation for ¥(z):

a*v
— ?LCV (z) = dzﬁz) (1.6)

Since ¥(z) is not a function of ¢, the partial derivative with respect to z is
changed to an ordinary derivative. Since (1.6) is a linear ordinary differential
equation, it has a solution of the form

V(z)=Ae " (L.7)

where 4 and y are constants. The substitution of (1.7) into (1.6) gives the
condition for (1.7) to be a solution,

72 =—’LC
y=21jo(LCY* =+ jp (1.8)

Here, in order to eliminate possible confusion about the sign of square
roots, let us agree that (}'/? expresses a positive value. The negative root is
expressed by —()'2. The constant y is called the propagation constant,
and f the phase constant.

From (1.7) and (1.8), it follows that

V(z) = Ae /% + B (1.9)

is also a solution of (1.6). A and B are constants to be determined by
boundary conditions. Since (1.6) is a second order ordinary differential
equation and (1.9) has two constants to be determined, this is the most
general form of the solution and no other functions have to be examined.
The proof of this assertion for our special case is not difficult. Let V' (z) be
any solution of (1.6) with nonzero y* = — @w?LC. We shall assume that A
and B are not constant but that they are functions of z satisfying the follow-
ing equations.

V(z) = A(z) e " + B(z) ¢~ (1.10)

V'(z) = A(z) {(— ye~ ) + B(z) ye'* (1.11)

gt

2
,‘i’{(’

A
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where the prime indicates the derivative with respect to z. Since the deter-
minant of the coefficients of A(z) and B(z) is not equal to zero, it is always
possible to solve for A(z) and B(z) for a given V{(z). From (1.10), ¥'(2) is
calculated as

V'(z) = A(z)(— ye ")} + B(z) ye”* + A'(z) e " + B'(z) &~

Since the first two terms on the right-hand side represent V'(z) as given by
(1.11), we have
A(z)e ™ +B'(z)e”" =0 (1.12)

From (1.11), ¥"(z) can be calculated:
V'(2) = A() e + B(z) e + A'(2) (- 7¢T) + B (2) ye”
The first two terms on the right-hand side represent y*¥(z). However, since
V(z) is a solution of the differential equation ¥”(z) = y*¥(z), we must have
A (D) (~=ye ™)+ B'(2)ye" =0 (1.13)

From (1.12) and (1.13), both A’(z) and B’(z) are found to be zero. Thus, we
conclude that any solution of the differential equation can be expressed in
the form (1.9) with 4 and B being constant.

From (1.4), it follows that i(z, f) can also have the time factor e
Therefore, let us write i(z, t) = I(z) e/. Substituting this and (1.9) into (1.3)
we have

Jeat

— joLI(z) = — jfAe™ ™ + jpBe’*

Using the relation ff = w(LC)'/?, the above equation can be rewritten in
the form
1(z) = Z5' (Ae™ = — Be'?) (1.14)
where
Z,=(LIC)'* = Y5 ! (1.15)

Since wL Az has the dimension of impedance and @ C 4z that of admittance
(where L =inductance per unit length), (L/C)"? has the dimension of
impedance. It is, therefore, indicated by Z, and called the characteristic
impedance of the line, its inverse ¥; is called the characteristic admittance.

It follows from (1.9) and (1.14) that the voltage and current on the line are
completely determined when the two constants 4 and B are fixed. This means
that the voltage and current at every point on the line are automatically
determined if the following conditions are specified:

(i) both voltage and current are given at one point along the line;
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(ii) the voltages are given at two different points a distance / apart where
Bl # nr (n: integer);
(iii) the currents at these two points are given; and
(iv) the ratio of the voltage to the current at one point and either the
voltage or current at another are specified.
Since both 4 and B are complex numbers, four real numbers are specified
in the above procedure.
Up to this point, our discussion has been based on the voltage and current.
Let us now introduce the following quantities

a(2) =325 {V() + Zol (2}, b(2) =3Z5"* {V (2) — ZoI(2)}
(1.16)

which are the result of a linear transformation applied to ¥(z) and I(z).
With Z; being fixed, both a(z) and &(z) are determined if ¥ (z) and I(z) are
given. Conversely, if a(z) and b(z) are given, from the inverse transformation

V@) =2 a@ + 5@}, 1()=2"{a(@) - bz} (117)

both V(z) and I(z) can be obtained. Consequently, there should be no
difference in the result whether the transmission line is studied in terms of
V(z) and I(z) or in terms of a(z) and b(z). However, since a(z) and b(z)
can be shown to have physical meaning which helps in the understanding
of transmission line phenomena, it is worthwhile to introduce them. Before

Fig.1.2. An example of coordinate-transformations.

1.1. Transmission Line Theory ‘ 9

explaining the physical meaning, let us look at a familiar example in which
a linear transformation facilitates our study. Referring to Fig. 1.2, various
properties of an ellipse can be studied in terms of the coordinates (x, y) as
well as in terms of (x, ¥} which are obtained by a linear transformation of
{x, ). Since everything that can be explained in terms of (x’, ¥') can be
explained in terms of (x, y), the linear transformation is not entirely neces-
sary in the study of the ellipse. However, since the coordinates (x', y') give a
simpler expression for the ellipse, properties which are not clear in terms of
(x, ¥) may be disclosed in terms of (x', »"). For this reason (x’, "} has an
advantage over (x, »), and one should be familiar with this kind of trans-
formation.

Let us now substitute (1.9) and (1.14) into (1.16) and investigate the
physical meaning of @(z) and b(z). The results are

a(z)=Z5'"%4e7 %, b(z)=Z, "B (1.18)

a(z) and b{(z) are directly related to A and B, respectively. It is worth noting
that the magnitudes of both «(z) and b(z) are kept constant along the line.
Their phases change but the angles are directly proportional to z. Thus, the
variations of a(z) and h(z) with z are considerably simpler than those of
V(z) and I(z).

In the lower frequency ranges, a piece of wire is generally used to connect
circuit elements together, and in this wire the voltage and current are kept
constant. Voltage and current are primarily used for the study of networks
in which many clements are connected together by means of conducting
wires because of this simple relation of constancy. In the higher frequency
ranges, the connections are made through transmission lines. When their
length can no longer be neglected, the voltage and current vary with z in the
complicated manner shown in (1.9) and (1.14). It is natural, therefore, to
look for substitutes which are the most simple functions of z as possible
while providing the same amount of information as V{(z) and I(z). In order
to satisfy the last condition, quantities obtainable through a linear trans-
formation of ¥V (z} and I{z) are considered, and a(z)} and &(z), which have
constant magnitudes and phases directly proportional to z, are chosen.
Because of these simple relations, a(z) and b(z) will be found particularly
suitable for the study of transmission line phenomena.

For the interpretation of a(z} when quantities are varying sinusoidally
with time, we have to take the real or imaginary part of /2 &/** times a(z}
just as we did for the interpretation of ¥(z). Let us consider the real part.
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Referring to Fig. 1.3, we obtain using (1.18)
Re{\/2a(z) &} = /2 Z5"* Re {Ae ™%}
= J2Z5'"?|4] cos(wt — Bz + ¢) (1.19)
where
tan @ = Im {A}/Re {4} (1.20)
With fixed ¢, the right-hand side of (1.19) represents a sinusoidal waveform
as shown in Fig. 1.4. The wavelength A is equal to 2=/f. If Az = (w/f) 41,

Im
4

Re[Aejtwt-Bz)]

L —

B

Im[Aej(wt-BZ )]

Aej(wt-,ez)
Y
Y

» Re

«— Re A ————n|

Fig. 1.3. Relation between two complex vectors A and Ael(wt—fz),

the arguments of the cosine are equal at {z, ¢) and (z 4- 4z, £ 4 Ar), as we
can easily see from

wi—fz+p=w(t+4)— f{z + (0/f) 4t} + ¢
=wt+d4)—-pz+42)+ o

Since z is arbitrary, this means that after the time interval 4¢, the function
as a whole is translated toward the positive z-direction by the amount Az as
shown by the dotted line in Fig. 1.4. The velocity of the translation is given
by

v, = (42/41) = (]B) (1.21)

From these observations, we conclude that (1.19) represents a wave moving

I.1. Transmission Line Theory 11

toward the positive z-direction with a constant velocity v, which is called
the phase velocity. In our case, since f = w(LC)'/?,

v, = ] = (LC) 2 (1.22)

Thus, we see that a(z) is a wave moving in the positive z-direction with the
phase velocity (LC)™ /2. Similarly, 5(z) represents a wave moving in the

'y

L

PR,
~

|
l

L]
|
|
1

Fig. 1.4, [Explanation for the wave motion of a(z).

negative z-direction with the same phase velocity. For this reason, they are
called traveling waves.

Finally, let us calculate the net power at z flowing toward the positive
z direction. Referring to Fig. 1.5, the power is given by

P =Re{(V(5) I*(2)} = Re[{a(2) + b(2)} {a* (z) - * (2}}]
= Re{la(2)? — 1b()? +a* (2) b(2) — a(z) b* (2)}

bop
I —
I
—
«—— NEGATIVE Z - DIRECTION \ POSITIVE Z - DIRECTION —e=

1
|
z

Fig. 1.5. Relation between ¥V, [, and P.
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where use is made of (1.17). Since a*(2) 5(z) — a(z)b*(2) is the difference
between a complex number and its conjugate, it is always imaginary.
Therefore, we have

P=la(z) — [b(z) (1.23)

This result can be interpreted as follows. The wave a(z) moving in the
positive z-direction carries the power |a{(z)|%, and similarly the wave b(z)
carries the power |b(z)|* toward the negative z-direction. The net power
toward the positive z-direction is therefore given by |a(z)|? — |b(z)}%. In
other words, each wave defined above is accompanied by the power equal
to the square of its magnitude.

The advantages of introducing a(z) and b(z) will be further exploited in
connection with the following discussion of the Smith chart.

1.2 Smith Chart

When we study electric circuits in terms of voltage and current, their ratio,
i.e., impedance, proves to be a useful quantity. Since voltage and current
have been replaced by a(z) and b(z), let us take the ratio of the latter
quantities:

r = b(z)/a(z) = (Bj4) & (1.24)

This is called the reflection coefficient. At a reference plane z, if a(z) is
considered to be an incident wave, b(z) represents the reflected wave, and
r expresses the magnitude and phase of the reflected wave relative to the
incident wave, In other words, r is the reflection corresponding to a unit-
incident wave. When the reference plane z is shifted toward the positive
z-direction with a constant velocity, r rotates counterclockwise in the com-
plex plane with an uniform speed without changing its magnitude as we
can se¢ from (1.24). When z changes by n/f = /2, r completes one rotation.
If there is no power source on the right-hand side of the reference plane z,
the net power flow toward the positive z-direction must be positive and
hence |a(z)|* = |b(2)|* from (1.23). This means that |r| is smaller than unity
in cases in which the transmission line is terminated by a passive circuit.

Although in Eq. (1.9), the variation of the magnitude of the line voltage
with z appears, at first, to be complicated, the use of r provides a considerable
simplification. From (1.17), (1.18), and (1.24), we have

V() =1Zs"{a(z) + b(2)}t = Zo la(Z) L+ ri=|A| L + 7] (1.25)

[V(z)| is, therefore, proportional to |1+ r|. Since 1 is a constant and r

1.2. Smith Chart 13

uniformly rotates with z, the vector diagram shown in Fig. 1.6 clarifies how
|V(2)| varies with z. The reflection coefficient r rotates once as z shifts by
A2 hence the variation of |V (z)| repeats itself every half wavelength as
shown by the solid line in Fig. 1.7. Similarly, from (1.17), the magnitude
of the line current is given by

(=) =125 {a(z) — b(2)}| = Z5 ' *a(2)| |1 — 1|
=Z; Al |1 -1l (1.26)

o Re

Fig. 1.6, Vectors | +rand 1 —r.

vl \ZUI“

- -

Ny

Fig. 1.7. Relative amplitudes of voltage and current.
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Referring to Fig. 1.6, it is clear that the magnitude of current changes with
2 as shown by the dotted line in Fig. 1.7. At the maximum point of |V (z2)|,
[{(z)| becomes minimum and vice versa. Except for the fact that they are
shifted by A/4 relative to each other, the two curves have identical shape.

As we have explained in connection with (1.16) and (1.17), effects which
can be discussed in terms of voltage and current can be explained in terms
of a(z) and b(z). Consequently, concept of impedance may seem redundant
once the reflection coefficient is introduced. Inasmuch as we are already
familiar with the concept of impedance at low frequencies and because the
series or parallel connection of circuit elements can be expressed by the
simple addition of their impedances or admittances, respectively, it is advan-
tageous to use freely both the reflection coefficient and impedance, switching
from one quantity to another during a course of circuit study. For this pur-
pose, let us clarify the relation between the reflection coefficient r and
impedance Z. By definition, the impedance is given as the ratio of V(z) to
I(z). Therefore using (1.17), we have

=V(z)= Z2y* {a(z) + b(2)} _, L+
I(z)  Z'*{a(z)—b(z)} “°1—r

or equivalently,
ZIZy=(1+ 1)1 —r) (1.27)

The left-hand side of (1.27) is a dimensionless quantity representing the
impedance Z relative to Z,. This is called the normalized impedance.
Solving (1.27) for r, the reflection coefficient can be expressed in terms of the
normalized impedance:

,_@z)-1

T2z + 1 (1.23)

From (1.27) and (1.28), we see that there is 2 one-to-one correspondence
between r and Z/Z,,. If Z/Z, is plotted on an r plane or if r is plotted on
the Z/Z, plane, when one is given, the other can be obtained conveniently
from the chart. When the reference plane is shifted, a new reflection coeffi-
cient can be obtained on the r plane simply by rotating the original vector r
by the angle corresponding to the distance between the new and old reference
planes. Such a simple operation is not available for obtaining the new
Z/Z, on the ZjZ, plane. For this reason, a plot of Z/Z, on the r plane is
preferred. Among the various ways to plot Z/Z,, the most common is to
draw two sets of curves: constant resistance and constant reactance. The
real and imaginary parts of Z/Z, corresponding to a given r can be read

1.2, Smith Chart 15

on the chart from the two curves intersecting at the point representing r.
The reflection coeflicient plane on which the normalized impedance is
plotted in this way is called a Smith chart.

In order to construct the Smith chart, let us first consider the constant
resistance locus on the r plane, i.e., the image on the » plane of a straight
line parallel to the imaginary axis on the Z/Z, plane, as shown by K, in
Fig. 1.8(a). The strategy, here, is to decompose the transformation (1.28)

R
q—H-zO-
|
2 LR
f— —— 2o
R
|+z—0
R,
20
R
Z—o'!'i
{a) (b} (c)

Fig. 1.8. Drawing of Smith chart (1).

into several simpler ones and to study the steps one by one. Equation (1.28)

can be rewritten in the form

2
T @izy+ (-2

The first step is to determine {(Z/Z,)+ 1}. For this transformation, each
point on K| is shifted to the right by a unit distance giving K, in Fig. 1.8(a).
We now use the result that the inverse of a complex number is expressed on



16 1. ELEMENTS OF CONVENTIONAL CIRCUIT THEQRY

the complex plane by a vector with an inverse magnitude and having an
angle which is the negative of the original one. The inverse of each point on
K, can therefore be plotted, resulting in circle K, shown in Fig. 1.8(b).
This is 1/{(Z/Z,) + 1}. The proof that the inverse of a straight line is a
circle is given in Section 1.3. Multiplying K; by — 2, we obtain circle K,
which corresponds to the second term on the right-hand side of (1.29).
By adding 1 to K, i.e., shifting K, to the right by a unit distance, the locus
on the r plane is obtained which corresponds to a constant resistance line
on the Z/Z, plane. This is circle K, in Fig. 1.8(c). For different values of
R/Z,, the radius of the circle changes. However, regardless of the value of
R{Z,, the circle is symmetrical with respect to the real axis and always
passes through the point (1, jO).

Next, let us consider the constant reactance locus. The straight line C,
in Fig. 1.9(a) for which X/Z, is constant coincides with itself when trans-

i Cx Ca

-g'|x-

C2

{a) ()] (]
Fig. 1.9. Drawing of Smith chart (2).

formed to {(Z/Z,) + 1} as indicated by C,. The inverse of C, is circle C,,
shown in Fig. 1.9(b), which represents 1/{(Z/Z;)+ 1}, and from this
—2/{(Z{Zy) + 1} is given by C, in Fig. 1.9(b). Shifting C; to the right by a
unit distance, the desired locus on the r plane is obtained as shown by C,
in Fig. 1.9(c). For different values of X/Z,, the radius of the circle varies.
For a negative value of X/Z,, the circle appears below the real axis. However,
regardless of the value of X/Z;, the circle passes through the point (1, j0)
and is tangent to the real axis.

ot gt o5
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Thus, two sets of circles corresponding to various values of R/Z, and
X/R, can be drawn on the r plane. Excluding the region in which |rj> 1, we
obtain the Smith chart shown in Fig. 1.10. The region where |r|>1 is
excluded because the transmission line is ordinarily terminated by a passive
network for which |r| is less than unity, as we explained before. It follows
from Fig. 1.8 that the excluded part in the r plane of Fig. 1.8(c) corresponds
to the left-hand side of the imaginary axis of the Z/Z; plane which is shown
in Fig. 1.8(a), i.e., to the region where the resistance is negative. In addition
to these two sets of curves, the Smith chart, shown in Fig. 1.10, has scales
around it showing angles in the corresponding distances in wavelenghts.
These are convenient for obtaining the reflection coefficients at different
points along the transmission line when the distance is measured in wave-
lengths.

To illustrate how to use the Smith chart, let us discuss the case in which
a load impedance Z; is connected at the far end of a transmission line. First
Z,/Z, is calculated and the point P corresponding to Z;/Z; is located on the
Smith chart. The vector OP with its tip at P and its tail at the origin O on
the r plane gives the reflection coefficient r, at the reference plane where Z;
is connected. Let OP in Fig. 1.11 be the vector ry. If the reference plane is
shifted by k wavelengths toward the generator, i.c., toward the negative
z-direction, the reflection coefficient vector r rotates clockwise by £ on the
scale around the Smith chart. The reflection coefficient at the new reference
plane is given by OQ in Fig. 1.11, and Z/Z,, corresponding to Q gives the
normalized impedance looking into the load at the new reference plane.
The actual impedance is then obtained by multiplying this value by Z;. As
the reference plane shifts further toward the generator, r rotates, and at a
certain point the vector r lies on the real axis. This means that the impedance
looking into the load from this point becomes purely resistive. Further
movement of the plane by 1/4 gives another pure resistance with the nor-
malized value being the inverse of the previous one. The magnitude of the
line voltage is proportional to |1 + r| which is equal to the length of the
vector drawn from the point r = — 1 + ;0 to the tip of vector r. Note that
r=—1+j0 corresponds to Z/Z, =0+ j0. In the case of Fig. 1.11, as the
reference plane moves toward the generator from the load, the voltage first
increases. It takes the maximum value when r lics on the real axis and then
decreases to the minimum point located a quarter wavelength from the
maximum. A further shift increases the voltage again and thereafter repeats
the cycle.

The ratio of the maximum to the minimum voltage is called the standing
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wave ratio (SWR). From Fig. 1.11, the standing wave ratio is given by

SWR = (1.30)

where r; is the reflection coefficient of the load. A comparison of (1.27)
with (1.30) shows that the standing wave ratio is given by the normalized
impedance at the point where r is equal to |r;]. To obtain the value of
standing wave ratio, therefore, draw a circle with center at the origin O and
passing through the point P. It crosses the real axis at two points. Take the
right-hand point and read the normalized resistance. This gives the desired
standing wave ratio.

Fig. 1.11, Example of using Smith chart.

Now suppose that the standing wave ratio and the distance from the
load to the first voltage minimum point are given and the load impedance
is to be calculated. To obtain the normalized impedance, first draw a circle
with center at the origin passing through the point whose normalized impe-
dance is equal to the standing wave ratio. Next, measure the given distance
counterclockwise from the (0 + jO) impedance point on the scale around the

e

et
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Smith chart and draw a straight line from there to the origin. This follows
since minimum voltages always occur at points whose position corresponds
to Z/Z,=0+j0. The intersection of this line and the circle previously
drawn gives the reflection coefficient and, hence, the normalized impedance
of the load. In this way, the normalized impedance can be obtained once the
SWR along a transmission line and the voltage minimum point have been
measured. This is called the standing wave method and is one of the most
commonly used methods of measuring high frequency impedances. Once the
charateristic impedance is calculated or calibrated against some standard
impedance, the unknown impedance can be determined.

So far, the veltage and impedance have been almost exclusively used.
Essentially the same procedure can be developed using current and admit-
tance, but this will be omitted except for some comments concerning the
following useful relations. The inverse of the normalized impedance is
called the normalized admittance, since

(Z/Zo)—l =Z,/Z=7Y[Y,
Taking the inverse of {1.27), we have
YiYo=(1=7)(1+7r) (1.31)

A comparison of (1.27) with (1.31) shows that if r is replaced by —r, the
nermalized impedance is transformed into the normalized admittance.
Since the normalized impedance is given at the point r on the Smith chart,
the normalize admittance is obtained at the point — r. In other words,
given a normalized impedance on the Smith chart, the normalized admittance
is obtained at the opposite point with respect to the origin. This means that
the same chart can be used for admittance as well as for impedance calcula-
tions. The point (— 1, 0) on the r plane corresponds to the normalized
impedance 0 + jO and also to the normalized admittance ¢ +joo.

At this point, in order to become more familiar with the Smith chart,
let us solve a particular problem.

Exercise: Suppose that a 50 Q transmission line is terminated by a 30 Q
resistor. By connecting a capacitor in shunt at an appropriate point along
the line, eliminate the reflection toward the generator.

Answer; The normalized impedance of the load is given by

ZiZ, = (30 + j0)/50 = 0.6 + jO

Let us draw a circle with center at the origin passing through the point
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whose normalized impedance is 0.6 + j0. The normalized impedance looking
into the load at any point along the line should be found on this circle.
The normalized admittance is also located on the same circle. We wish to
eliminate the reflection by inserting a capacitor in. shunt. To do this, on the
same circle, we must find a point whose normalized admittance plus
jb (b >0) is equal to 1 + O, implying no reflection where b is the normalized
susceptance of the capacitor to be determined. The desired point corresponds
to the normalized admittance 1 — jb. Therefore, the point we are seeking is
one of the intersections between the above circle and the unit conductance
circle. Since b > 0, the imaginary part must be negative. Thus, the normal-
ized admittance is determined on the Smith chart as 1 —j0.5. The opposite

{a) 500 -jl0on 30n

(b} S00 l/ on

Fig. 1.12. Example of matching circuit.

point with respect to the origin gives the normalized impedance. On the scale
around the Smith chart, this point is found to be about 0.103 wavelength
away from the load. In other words, if a capacitor, whose normalized
admittance is j0.5, is inserted in shunt at a point 0.103 wavelength from the
resistor, the reflection is canceled out and the generator sees a matched load.
The normalized impedance of the capacitor is —j2 and the impedance
—jl100 Q. The circuit configuration is shown in Fig. 1.12(a). The same
normalized admittance j0.5 can also be obtained using an open-ended 50 Q
transmission line about 0.073 wavelength long which is easily seen using the
Smith chart, Thus, Figs. 1.12(a) and (b) are equivalent to each other.

In the above discussion, the losses of the transmission line have been
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completely neglected. However, it should be remembered that because of the
resistance in the wire and in the ground plane and because of the possible
dielectric loss in the medium, the magnitudes of the waves along an actual
transmission line decrease as they progress. If the losses are taken into
account, the propagation constant y which was defined in (1.7) becomes a
complex quantity « + j§ and, at the same time, a nonzere imaginary part
appears in Z,. The real part of y, o, is called the attenuation constant. When
the losses are small, both a and the imaginary part of Z, are small and of
the same order of magnitude. The effect of «, however, appears in the
exponential form ¢~ %, and it becomes larger as |z| increases; in other words,
o is a measure of the loss per unit length. On the other hand, the effect of the
imaginary part of Z, has no such enhancement with increasing |z|. For these
reasons, Z, is generally assumed to be real, and y complex. In this case,

r = (B/A) e**=7 2= (1.32)

The locus of r, therefore, becomes a spiral instead of a circle, with a radius
which increases with increasing z. If the reference plane is moved away from
the load, [r| gets smaller. When the generator is sufficiently far away from
the load, it sees no reflection regardless of the load impedance at the other
end. If » is given at z,, and r is required at another point z,, the magnitude
has to be multiplied by €***>7*" while the phase must be rotated by
ef2#=2-21)  provided that r is transformed in this manner, the normalized
impedance as well as the admittance can be obtained in the same manner
as in the previous lossless case. However, the magnitude of the voltage or
current is no longer porportional to ]1 4- r) or |1 — r|, respectively, as z varies.

1.3 Bilinear Transformations

A complex variable w is described as being a bilinear transformation of
another complex variable z when w is expressed in the form

po 24D (1.33)

where a, b, ¢, and d are constants. Solving (1.33) for z, we have

—dw+b
P (1.34)

cw—a

This shows that when w is a bilinear transformation of z, z is also a bilinear
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transformation of w. From (1.27) and {(1.28), Z/Z, and r are bilinear trans-
formations of each other. In this section, we shall discuss some of elementary
properties of bilinear transformations and derive an equivalent circuit of
two-port networks. Suppose that v is a bilinear transformation of w, i.e.,

L) (1.35)
gw+h
where ¢, f, g, and h are constants. Since the substitution of (1.33) into
(1.35) gives
(ea + fc) z + (eb + fd)
v_(ga + he) z + (gb + hd)

v is a bilinear transformation of z. It follows from this that a bilinear
transformation of a bilinear transformation is also a bilinear transformation.

Next, let us prove the following important theorem of bilinear trans-
formations: Any circle on the complex plane is transformed into a circle by
a bilinear transformation. In this statement, a circle can be a straight line
as the limiting case of increasing the radius and removing the center away
from the origin. First, let us study a particular case in which the bilincar
transformation w of z is simply the inverse of z and the circle on the z plane
passes through the origin. Let D be the diameter and ¢ be the angle between
the real axis and the diameter through the origin, as shown in Fig. 1.13.

Fig. 1.13. Circle passing through the origin.
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Then, the circle is represented by
z =Dcosg®t?
where @ varies from — /2 to n/2. Taking the inverse,
1 e ®e™ ¢ MPcosf—jsing e

z= Dcos6 D cos @ D

(1 -jtan#)

When 6 varies, (1 —jtan 8)/D represents a straight line parallel to the
imaginary axis and 1/D away from it. By rotating this straight line around
the origin by — ¢, the locus of 1/z is obtained. Thus, we see that the inverse
image of a circle passing through the origin is a straight line. Conversely,
the inverse image of a straight line which does not pass through the origin
is a circle passing through the origin, The circles K, in Fig. 1.8(b) and C,
in Fig. 1.9(b) are examples.

Since the inverse of a complex number is obtained by taking the inverse of
its magnitude and changing the sign of its angle, the inverse image of a
straight line passing through the origin is a straight line symmetric to it with
respect to the real axis.

Next, let us consider the case in which the circle does not pass through
the origin; 1/z can always be expressed in the form

1 - L - 1 (1.36)

z —kf(k+z)+1 k
where & is a nonzero constant. This is easily proved by simplifying the right-
hand side of the equation. When z represents a circle or a straight line which
does not pass through the origin, £ + z can be made to pass through the
origin by choosing a proper nonzero constant k. Then, from the previous
discussions, 1/(k -+ z) becomes a straight line. A constant times a straight
line is also a straight line, and the addition of a constant does not change
the shape of the locus. Therefore,— k/(k +z)+ 1 is a straight line. This
line does not pass through the origin for the following reason. Assume to
the contrary, then, there should be a point z which satisfies

—kitk+z)+1=z/(k+2)=0

This, however, requires that z=0, i.e., the original locus passes through
the origin contradicting the hypothesis. Thus, the straight line we obtained
does not pass through the origin. The inverse of this line is a circle. Thus, the
first term on the right-hand side of (1.36) is a circle and hence 1/z is also a
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circle. In other words, the inverse image of a circle or a straight line which
does not pass through the origin is a circle. Combining this with the results
obtained previously, we conclude that the inverse image of a circle or a
straight line is a circle or a straight line depending on whether the original
locus passes through the origin or not.

We are now in a position to discuss the general case. In general, a bilinear
transformation can be rewritten in the form

_a+b _a + b — (ad/c) (137)

cz+d ¢ cz+d

where ¢ is assumed not to be equal to zero. When ¢ =0, w is a simple linear
function of z, and it is obvious that w represents a circle when z is a circle.
Therefore, we shall concentrate on the case is which ¢ # 0. When z represents
a circle or a straight line on the complex plane, ¢z +d also represents a
circle or a straight line. Since the second term on the right-hand side of
(1.37) is a constant times the inverse of ¢z + d, it is a circle or a straight line
according to the previous discussion. Adding a/c, w is seen to be a circle
or a straight line. This completes the proof of the theorem.

When a circle is transformed into a circle by a bilinear transformation,
there are two possible cases: (i) The inside of one circle is transformed to
the inside of the other; and (ii) The inside of one circle corresponds to the
outside of the other. In the first case, the rotational directions of the

o|-

Fig. 1.14. The directions of rotation are the same when the inside of one circle
corresponds to the inside of the other.

1.3. Bilinear Transformations 27

corresponding poinis on the circles are the same while in the second case,
they are opposite to each other. The proof is as follows: Since any bilinear
transformation can be decomposed into the inverse transformation,
multiplications by a constant and additions of a constant, and since the last
two operations do not change the rotational direction, we have only to
discuss the inverse transformations. When the origin is outside of a circle
as shown in Fig. 1.14, the transformed circle does not include the origin,
and the rotational directions of the corresponding points on the circles
are the same. This is obvious from the fact that the inverse of a complex
number is represented by a complex vector whose magnitude is the inverse
of the original magnitude and whose angle is the negative of the original
angle. When the origin is inside of a circle as shown in Fig. 1.15, the trans-

Fig. 1.15. The directions of rotation are opposite when the inside of one circle
corresponds to the outside of the other.

formed circle encloses the origin, and, since the inverse of the origin corre-
sponds to infinity, it is obvious that the inside of one circle corresponds to
the outside of the other. Furthermore, for the same reason used above, the
rotational directions of the corresponding points on the circles become
opposite. This completes the proof. From Figs. 1.14 and .15, it can be seen
that corresponding points move in such a way that corresponding areas
would appear on the same side if a person were to stand on each circle
facing in the direction of the moving point. This statement is also true
when one circle becomes a straight line as a limiting case.

Next, let us derive an equivalent circuit of reciprocal two-port networks
as an example of using belinear transformations. Suppose the relation be-
tween the terminal voltages and currents of a given two-port network is
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expressed by
Vl _ 21111 + 21212 (1.38)

V2 = 21211 + 22212 (1.39)

where the polarities of the voltages and currents are as shown in Fig. 1.16.
Because of the reciprocity of the network under consideration, the coefficient
of I, in (1.38) is equal to that of I, in (1.39). We shall discuss the reciprocity
of microwave circuits in detail in Chapter 3.

] Iz‘

R
B

2

N

R

Fig. 1.16. Two-port network.

If a load impedance Z; is connected to port 2 of the two-port network,
V, is given by
Vo=—211,

Substituting this into (1.39}, I, can be obtained in terms of I;. Then, sub-
stituting this result into (1.38), we have

V1 = {Zn - Z%Z(ZL + Zzz)_l} Il

This means that when port 2 is terminated by Z,, the input impedance at
port 1 becomes
Z,=V /i = {Zu - Zfz(zz. + Zzz)_l} (1.40)

Thus, Z; is a bilinear transformation of Z;. When Z; changes from —joo
to joo as shown in Fig. 1.17(a), the locus of Z, is a circle as shown in Fig.
1.17(b). The circle is in the right-half plane with its internal area correspond-
ing to the right-half plane of Z; for the following reason. Assume the
contrary, then Z; can have a negative real part when Z, has a positive real
part. However, this is impossible since the passive two-port network
terminated by a load impedance with a positive real part is 2 passive circuit
and the input impedance must have a positive real part.
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jX' I~

{a) {bl
Fig. 1.17. Correspondence between Zr and Z;.

Let Z,(1) = R, +jX, be the point with the smallest real part on the circle
and let jx, be the corresponding Z;. Similarly, let Z,(2) = R,+/X, be the
point with the largest real part and let jx, be the corresponding Z;. Finally,
let jx; be a different point on the imaginary axis of Z; and let the corre-
sponding point on Z; be as shown by (jx;) in Fig. 1.17(b). When Z, traces
out a circle, Z; — (R, +jX,) represents a circle passing through the origin
tangential to the imaginary axis as shown in Fig. 1.18(a). The other point at
which the circle intersects the real axis is given by R, — R,. The inverse of
this circle, i.e. the admittance, becomes a constant conductance line with a
value 1/{R, — R;) as shown in Fig. 1.18(b). When 1/(R, — R,} is sub-
tracted, the admittance becomes a pure susceptance, jB. It is casily seen
from Figs. 1.17 and 1.18 that the susceptance becomes zero when Z; is
equal to jx, and infinite when Z; is equal to jx,. An equivalent circuit for
B with these properties is shown in Fig. 1.19. The transformer ratio » is to
be determined by the requirement that jB becomes jB,, shown in Fig. 1.18(b),
when Z, becomes jx,. Since the admittance is increased a® times by the
transformer, it follows that

[0 —x )} + {ixe = x2)} '] n? = jBy
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Z;- R+ )X} Z-(R;+X))
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Fig. 1.18. Complex transformations.

-ill

Fig. 1.19. An equivalent circuit for jB = {Z; — (Ry + jX1}™! — {Ra — R1)"L

or equivalently,

= Bi(x3 — x;) (x4 — x3) (L.41D)

X3 — X3

When Z;(3), shown by (jx;) in Fig. 1.17(b}, is located below the jX, level,
B is positive as shown in Fig. 1.18(b).

From the discussion on the directions of corresponding moving points,
it is clear that the point on the circle rotates clockwise when the corre-
sponding point moves upward on the imaginary axis of the Z; plane.There-
fore, only one of three cases is possible, depending on the location of the
point corresponding to Z; = joo on the Z; plane x; > x; > x5, X3 > x, > x{,
X, > x; > x;. For each of these three cases, since B; >0, Eq. (1.41) gives
positive #? and, hence, the transformer ratio n is realizable. Similarly, if the
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point (jx,) is located above the jX, level, By is negative and one of three
inequalities,

Xq > X3 > Xy, X3 > X; > X, Xp > Xy > X3

has to be satisfied. This means that n* is again positive and the transformer
ratio is realizable. Thus, the circuit shown in Fig. 1.19 is realizable and gives
correct values of jB at three different values of Z; =jx.

It follows from the foregoing discussion that the circuit shown in Fig.
1.20 gives the correct values of input impedance Z;(1), Z;(2), and Z,(3) for
three different values of Zp, jx,,jx,, and jx;. Note that the impedance
R, +jX, and conductance 1/(R, — R,) subtracted out to obtain ;B are all

Fig. 1.20. An equivlaent circuit for reciprocal two-port networks,

restored in Fig. 1.20. Let us consider the two-port network inside the dotted
line. This can be specified by equations similar to (1.38) and (1.39). Let
Z{1, Z1{,, and Z;, be the coeflicients corresponding to Z,;, Z,,, and Z,,,
respectively. Then, we have

Z(k)={Z - Z5(xa+ 227" (k=1,23)
Multiplying both sides by jx, + Z;,, a little manipulation gives

jxszll - Zx(k) Z + (ZIIZZZ !122) = Zi(k)jxk (k = ]a 25 3) (142)

This can be considered as three simultaneous linear equations for three
unknown quantities Z;,, Z;,, and Z; ,Z;, — Z,3. When the equations are
solved, these quantities are uniquely determined in terms of x, and Z;(k).
On the other hand, from the network defined by (1.38) and (1.39), three
simultaneous equations are also obtained for Z,,, Z,,, and Z,,Z,, — Z7,
with identical coefficients to those in (1.42). Therefore, Z,, Z;,, and
Z{\Z3, — Z]3 must be equal to Z,,, Z,,, and Z,,Z,, — Z2,, respectively.
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That is,
Zy =Z’11! Zy, =Z;az; Z%z'_—'zflzz (1-43)

From (1.43} we sce, except for the ambiguity in the sign of Z;,, that Fig. 1.20
is equivalent to the given network. The ambiguity in the sign of Z{, can not
be eliminated from the above discussion. However, since #? but not » itself
is specified by (1.41), if the sign is opposite to that of the given network,
Z [, can be made equal to Z, ; by reversing the transformer polarity without
disturbing other conditions. Thus, we conclude that the desired equivalent
circuit is given by Fig. 1.20 with a proper choice of transformer polarity.

When the network is lossless, the resistances in the equivalent circuit can
be eliminated. Furthermore, if a certain length of transmission line is con-
sidered part of the network, the equivalent circuit takes a particularly simple
form. Suppose that a transmission line is connected at port 1 of the given
network and that port 2 is open-circuited. Then, since the circuit is [ossless,
the incident and reflected waves a(z) and b(z) must satisfy the conditions
la(2)|2 = 6@)}2 =0, |r] = 1, and the standing wave ratio is infinite. Let us
shift the reference plane (along the transmission line) to a voltage maximum
point and consider the circuit consisting of the given two-port network and
transmission line beyond this new reference plane, as shown by Fig. 1.21.

o— 0O o
. z z
| | 1" 12 s
Ziz Zz2
Oo—F—0— —O

Fig. 1.21. Composite circuit of two-port network and a length of transmission line.

For this new two-port network, Z,=o0 when Z; =o0. Therefore, the
parallel reactance j(x, — x,) in Fig. 1.20 is also eliminated. The equivalent
circuit becomes a series reactance, a transformer, and another series
reactance. However, the series reactance on the left of the transformer can
be transferred to the right after multiplying by »n2. Therefore, the equivalent
circuit of Fig. 1.21 becomes simply a transformer and a series reactance as
shown in Fig. 1.22. Note that in addition to these two parameters, the
length of the transmission tine has been specified thus making a total of
three independent parameters. To determine the transformer ratio # and the
reactance X, the Z;'s for two different Z;’s other than Z; = co are necessary.
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X

Fig. 1.22. An equivalent circuit of Fig. 1.21.

For example, let Z, be zero when Z, = — jx,, then X is equal to x,. Further-
more, if Z; =jX, when Z, =0, n? is given by X/X,.

1.4 Power Waves

Let us consider a linear one-port network containing voltage and current
sources. First suppose that a voltage source with the same magnitude as
that of the open-circuited voltage at the terminals, but with the opposite
phase, is inserted in series before connecting to a load. The effects of all the
sources within the network and the added voltage source cancel each other
and the circuit as a whole acts as a simple impedance Z, as far as the outside
phenomena are concerned. Next, suppose that the sources inside the one-
port network are all nullified and the phase of the added voltage source is
reversed. The super-position of these two cases is equivalent to the original
one-port network. As a result, any linear one-port network can be repre-
sented by the series connection of Z, and a voltage source equal to the open-
circuited terminal voltage, Therefore, in the following discussion we shall
use Fig. 1.23 to represent an arbitrary linear one-port generator. Referring

Fig. 1.23.  An equivalent circuit of one-port generators,
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to Fig. 1.23, let V¥, be the voltage across the load impedance Z; and I, be
the current flowing through it. The power consumed in the load is given by
P, =Re{Z;} 1)

Since the magnitude of the current is |E,/(Z; + Z )|, Py is rewritten in the
form

P — R El iz — . RLlEllz (1 44)
- t ZL + Zg! (RL + Rg)z + (XL + Xg)z -
R, —R)* (X,+ X)*
= E,? 4Rg+( L= R) Kt X) (1.45)

R; R,

where R, and R, are the real parts of Z; and Z, respectively and X; and
X, are the imaginary parts. With R, > 0, we can easily see from (1.45), that
the power becomes maximum when

R,=R,, X, =-0X, (1.46)

This maximum power is called the available power of the generator and
indicated by P,:

P, =|E,|*/4R, (R, > 0) (1.47)

and P, is solely determined by the parameters of the generator, hence itis a
characteristic of the generator independent of the load. In order to realize
the maximum power consumption, (1.46) has to be satisfied. This condition,
Z, = Z}*, is called the matching condition and if it is not satisfied, the load
consumes less power than P,.

When R, is negative, P, becomes infinite as R, and X, approach — R,
and —X,, respectively, as can easily be seen from (1.44), therefore the
available power is infinite if R, is negative. However, the power expressed
by the right-hand side of (1.47) remains finite for any nonzero R,, and it is
called the exchangeable power P, of the generator. That is,

P, =|E,|’/4R, (R,$0) (1.48)

When R, is positive, P, is equal to the available power from the generator,
however, if R, is negative, it is no longer the maximum power available.
Since a small variation in Z; from Z,* produces only a second order
variation in the right-hand side of (1.45), P, can be considered as the sta-
tionary value of P, with respect to a variation of Z;. Sometimes, P, is
called the characteristic power of the generator, emphasizing that it is

3
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invariant to nonsingular lossless transformations as we shall explain in
Section 5.3 and again in Section 7.1.

With this preparation, let us introduce power waves a, and b, which are
defined by linear transformations of ¥, and I,;

a; = %IRCZQI_HZ(Vi + Zgll)s bl = %lRezgl_uz(Vl - Zg*Il) (149)

Note the similarity between these equations and the waves (1.16) introduced
in Section 1.1. With a fixed Z,, and if ¥, and I, are given, then @, and &,
can be readily calculated from (1.49). On the other hand, if @, and b, are
given, V; and I, are obtained from the inverse transformation

Vi=p, lRezgl_”z(zg*ai + Zgbl)s L=p |Rezgl_”2 (a, — bl)

' (1.50)
where p, is defined by

_ 1
b= _’1

Thus, any result in terms of one set of variables can easily be converted to
that in terms of the other set of variables. This justifics the use of @, and b,

when ReZ, >0

when ReZ <0 (1.51)

“defined by (1.49) in place of the terminal voltage and current for any

analysis. Referring to Fig. 1.23, V¥, is given by
V,=E, —Z,],
From this and (1.49), we have

a,)* = 1E,{*/4[R,|
which is equivalent to
P, = la,|*R,R, = p,|a,|? (1.52)

Next, let us consider the meaning of |a,|* — {b,]*. From (1.49), this becomes

(Vi + Z,1,) (V" + Zg*Il*) - =z, n)(v* - Z,1,")

la,* = |by)? =
4|R,|
_(2,+ Z,,-‘i'*) (V" + V,*1)
4|R,|
R
=% Re{V,I,*}
IR,
from which we have
Re{V111*} =N (|“1|2 - |b1|2) (1.53)

Since Re{V,I;*} is the net power transferred from the generator to the
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load, we see from (1.52) and (1.53) that the exchangeable power is given by
pyla,|* and the net power by p,(|a;|?> — [b,}%). This leads to the following
interpretation: The generator sends the exchangeable power p, |a,)? to the
load, however, p,|b,|? is reflected back to the generator, and hence the net
power to the load is given by p,(|a,|* —|5,|?), where a, and b, are the
waves associated with these forward and reflected powers. Since |b,|? is
nonnegative, |a,]’>—|b,|*> becomes maximum when |b,|? is equal to zero.
Therefore, whether the load contains some power sources or not, the mag-
nitude of the exchangeable power can be identified as the maximum power
that the generator can supply when R, >0 and the maximum power that
the generator can absorb when R, < 0. In other words, the maximum power
that the generator can exchange with the external circuit is the exchangeable
power although the generator can absorb, or supply, more than |P,| when
R, >0 or R, <0, respectively.

Power waves a; and b, use the generator impedance in their definition.
Similar waves a, and &, can be defined from the other side of the center
line of the circuit in Fig. 1.23, using the load impedance rather than generator
impedance in the definition. In this case, the direction of the current has to
be reversed. Thus, we have

d; = ‘HRE:ZLJ_UZ(Vz + ZLIZ) = %|R32L|_I!2(Vl - ZLII)
b, = 4{ReZ;| "2 (V, — Z,* L) = $|Re Z,| 2 (V, + Z,*L,)  (1.54)

Note that ¢, and b, are not necessarily equal to b, and a,, respectively.
Let p, be + 1 or — 1 when the sign of ReZ; is positive or negative, respec-
tively. Then, p,|a,|? represents the exchangeable power of the load. If the
open-circuited terminal voltage of the load is zero, this is equal to zero.
The net power transferred from the load to the generator is given by
P ([a3)* = |b,|*). Therefore, the net power from the generator to the load is
given by p,(|b;|* — |a,|?). Although p,|b,|? was considered as the power
reflected from the load back to the generator, we shall call p,|b,|* the
actual power flowing into the load. Note that because of the voltage source
in the generator, it can be a finite quantity even when the exchangeable
power of the load is zero and hence the load does not send out any power to
be reflected back. The actual power is equal to the net power transferred
to the load plus the exchangeable power of the load, if any. Of course,
P116,1* could be called the actual power flowing into the generator.

Let us next introduce the power wave reflection coefficient s, defired by

s; = (by/a,) (1.55)
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When the exchangeable power of the load is equal to zero, V; = Z; 1) and s,
can be expressed in terms of impedances:

81 = (2, — 2,20 + 2,) (1.56)

Substituting Z, = R, + jX, and Z; = Ry + jX, into (1.56), 5, can be rewritten
in the form

_ RL +j(XL + Xg)_ Rg
B RL +.j(XL + Xg) + Rg

(1.57)

5y

Comparing this expression with that of the reflection coefficient (1.28),
we see that s, corresponds to the vector drawn from the center of the
Smith chart to the point where the normalized impedance is given by

{RL+j(X, + X)}/R, In other words, if the reactive part of Z, is added

to Z, and normalized with respect to the real part of Z,, the correspond-
ing point on the Smith chart gives the magnitude and phase of the power
wave reflection coefficient. From this, the following important property of
s, is derived: When R, and R, have the same sign, |s,| < 1, and when they
have opposite signs, |s,| > L.

The power reflection coefficient is given by

Isi|* =H(Z, — Zg*)/(ZL + Zg)|2 (1.58)

When the matching condition (1.46) is satisfied, the power reflection coefii-
cient becomes zero, as is expected.

Looking into the load from the generator, s, and |s,|* are the reflection
coefficients. The corresponding reflection coefficients 5, and |5,|* looking
into the generator from the load are given by

s, =(2,— Z,NZ, + Z,), Is2|* = (Z, — ZM(Z, + Z)?

where the subscripts g and L are interchanged. The reflection coefficient s,
is not necessarily equal to s,. However, since |Z,—Z,*|=|Z* - Z,|
=|Z, — Z*|, Is,|* is always equal to |s,|*.

The quantity 1 — |5} is called the power transmission coefficient which is,
of course, equal to | — |s,|2. Tt is worth noting that the power transmission
coefficient multiplied by the exchangeable power of the generator is equal
to the net power transferred to the load and conversely the net power
divided by the power transmission coefficient is the exchangeable power.

If Z, is replaced by positive real Z,, the power waves a; and b, defined
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by (1.49) become identical to the traveling waves a(z) and b(z) given by
(1.16). As a result, the various relations derived for power waves also hold
for traveling waves provided that Z, is replaced by positive real Z,. One
example is the result that the power transmitted in the z-positive direction
is given by |a(z)|> — |b(z)|*. The same relation is easily derived from (1.53)
since p, is equal to plus one in that case. On the other hand, when the char-
acteristic impedance is complex, the situation becomes slightly different,
and la(2))* — |5(z)|* no longer gives the net power Re{¥I*}. Furthermore,
as we shall see in Chapter 2, when there is no reflection in terms of power
waves, the traveling wave has some reflection from the load and vice versa,

PROBLEMS

1.1 Derive the transmission line equations corresponding to (1.3) and (1.4) and (1.5}
taking into account the resistance of the wire, Then calculate the characteristic
impedance and propagation constant of the line.

1.2 Suppose that a length of 50 Q transmission line is terminated by a 20 Q resistor
and 30 pF capacitor connected in series and calculate the SWR and first voltage
minimum point at 1 GHz using the Smith chart,

1.3 Suppose that the SWR is 2.6 and the first voltage minimum point is 0.338 wavelengths
away from a load terminating a 50 ) transmission line. Calculate the impedance of
the load on the Smith chart.

1.4 Suppose that a 50 Q transmission line is terminated by (15 + j 15) © and the incident
power is 5 kW, Calculate the net power consumed in the termination. Also calculate
the maximum voltage on the line.

1.5 Calculate the inverse of 1.0 + f1.0 using the Smith chart.

1.6 Convert the circuit shown in Fig. 1.24 to the equivalent circuit corresponding to
Fig. 1.20.

LIS

Fig. 1.24. A two-port network.
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1.7 Prove that the exchangeable power is invariant to the insertion of ideal transformers
or the connection of shunt and series reactances.

-R Rg

||

\‘ -0 1

Fig. 1.25, P. as a function of Rr, when R; > O and X; + X0 = 0.

1.8 When X1 + X;isequal to zero and R, > 0, Pg varies with Ry as shown in Fig. 1.25.
Investigate the case in which R, << 0 and X + X, is not necessarily equal to zero.



CHAPTER 2

ELECTROMAGNETIC
FIELD VECTORS

In order to discuss microwave circuits, Maxwell's equations must be
studied since these describe the relations between clectric and magnetic
fields. If the concept of a vector is introduced, the relations between the
fields become stmpler to describe and easier to understand. Therefore, we
shall make extensive use of vectors in this book. This chapter reviews some
of the important theorems on vector analysis which will facilitate our later
study. In Section 2.1, elements of vectors and vector analysis are presented,
and in Section 2.2, Maxwell’s equations are explained in terms of the field
vectors in order to refresh the reader’s understanding of electromagnetic
theory. Section 2.3 gives an analysis of plane waves, first in terms of scalar
quantities resolving the ficld vectors into their components, and then in
terms of vectors after which the results are compared.

2.1 Vectors

A vector is a quantity with magnitude and direction. To visualize it, we
usually consider an arrow whose length and direction expresses the magnitude
and direction of the vector, respectively, as shown in Fig. 2.1. The space of

A

Fig. 2.1. Arrow representing vector A.
40
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this figure is not the actual space in which we live, but rather it is an abstract
space where the magnitude and direction of the vector is represented by the
length and direction of the corresponding arrow. Vectors are generally
functions of time and position existing in actual space, therefore, depending
on the position and time, the lengths and the directions of the vector arrows
vary in abstract space. Sometimes however, the tail of the arrow is located
at the point in the actual space where the vector is considered. An example
will be shown in Fig. 2.10. In such a case, the illustrated space has two
meanings; one is the actual space, and the other is the abstract space in
which we consider the arrows representing vectors. Vectors representing the
velocity of liquid, electric field, or magnetic field, which are functions of
position, are sometimes represented by a cluster of curves with arrow heads.
In this case, the direction of the vector at each point on a curve is given by
the tangent in the direction indicated by the arrow. The magnitude of the
vector at a particular point is given by the density of curves in the vicinity
of that point.

When the length of an arrow shrinks to zero, its direction loses meaning.
The corresponding vector is called a zero vector and is indicated by 0.
The vector which has the same direction as a vector A, but with a magnitude
k times as large, is indicated by KA. The addition of two vectors A and B is
defined as foliows. Place the tails of the corresponding arrows at the same
point in abstract space as shown in Fig. 2.2 and consider the plane which

Fig. 2.2. Addition of two vectors A and B,

they define. On this plane construct a parallelogram with two of its sides
coinciding with the arrows. Then, the arrow C corresponding to the diagonal
as shown in Fig. 2.2 represents the vector A + B. Alternatively, translate B
until its tail coincides with the tip of vector A. If an arrow C is now drawn
from the tail of A to the tip of B, then C represents A + B. In these operations,
it is immaterial whether A or B comes first, i.e., the addition is commutative.

Thus, we have
A+B=B+A=C (2.1)
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Furthermore, note that A and B could be vectors defined at different times
and different points in the actual space.

Vectors with magnitudes equal to unity are called unit vectors. Let the
unit vectorsi,, i, and i, have the directions of the x, y, and z axes of a rec-
tangular coordinate system. Then, as is easily seen from Fig. 2.3, an arbitrary
vector A can be expressed as

A=A, +i A, +i4, (2.2)

z

Lray s

r'd Lyay

x

Fig. 2.3. Vector A and its rectangular components.

A,, A, and A, are called the x, y, and z components of vector A while i, A
is called the projection of A in the x-direction or the projection of A on i,

The scalar product A -B of two vectors A and B is defined as |A| {B] cos §
where [A| and |B| represent the magnitudes of vectors A and B, respectively,
and # is the angle between them. Whether A or B comes first, the scalar
product remains the same:

A-B=B-A=|A||B|cosf (2.3)

The scalar product can be considered as the product of the length of A and
the length of B’, where B’ is the projection of B on A as shown in Fig. 2.4.

|
|
|
i
¥
I
1
1
1

A

Bl
Fig. 2.4. Explanation of scalar product.
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If 0 is greater than 90°, the value of the scalar product becomes negative.
The scalar product of A and the addition of two vectors B and C is equal
to the addition of the scalar product of A and B plus the scalar product of
A and C. That is,
A(B+C)=A-B+A-C (2.4)

This is proved as follows. The left-hand side of (2.4) is equal to the length of
A multiplied by the length of the projection (B + C)’ of (B + C) on A. The
right-hand side is equal to the length of A times the length of the projection
B’ of B on A plus the length of A times the length of the projection C' of C
on A. Referring to Fig. 2.5, however, we see that the projection (B + C)' is

Fig. 2.5. Scalar product of a vector and the sum of two vectors.

equal to the addition of the projection B’ and C'. Thus, we have

A:(B+C)=A-(B+C)y =[A||(B+C)|=[Al {|B'|+|C|}
=A-B+A-C=A-B+A-C (2.5)

This completes the proof. From (2.5) and the relations i, -i, = I, i,i,=0,
etc., the scalar product of A and B can be expressed in terms of the x, y, z
components as follows:

A-B=(iA, +id, +iA)-(iB, +iB,+iB)=A,B,+AB,+AB,
(2.6)
The vector product A x B of two vectors A and B is a vector defined as
follows. The magnitude of the vector is equal to the area of parallelogram
defined by A and B while its direction is normal to the plane of the paralielo-
gram and given by the right-hand screw rule as shown in Fig. 2.6. A screw

" would advance in the direction of the vector when turned from A to B

through the smaller angle 0 as shown. Referring to Fig. 2.6, the magnitude
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Fig. 2.6. Explanation of vector product.

of A x B is equal to A| |B| sinf. The vector product B x A has the same
magnitude as A x B. However,since the right-handed screw advances in the
opposite direction when it is turned from B to A, the direction of B x A is
opposite to the direction of A x B. That is,

BxA=-AxB (2.7)

If we draw a straight line parallel to A passing through the tip of B and take
an arbitrary vector drawn from the tail of A to this line, then the vector
product of this new vector and A is equal to A x B. Let B’ the be one normal
to A as shown in Fig. 2.6. Then, of course, we have

AxB=AxB (2.8)

Suppose that one of the vectors in a vector product, say the second one,
is expressed as an addition of two vectors B and C. Then,

Ax(B+C)=AxB+AxC (2.9)

The proof is as follows. In Fig. 2.7, dotted lines are drawn from the tips of
vectors B, C, and B + C parallel with A, and the projections of these vectors
on to the plane perpendicular to A are indicated by B’, C’, and (B + C)’,
respectively. From (2.8), we have

Ax(B+C)=Ax(B+C)
AxB=AxB (2.10)
AxC=AxC

These vector products lie in the plane perpendicular to A since they are all
normal to A. They are obtained by rotating (B + C)’, B’, and C’ by %0°
around A and multiplying the lengths by a factor [A|, respectively. From
Fig. 2.7, we see that the projection of B+ C to a plane is equal to the
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addition of the projections of B and C to the same plane, i.e.,
(B+C) =B +C

Since neither the rotation of each vector in the same direction by the same
angle nor the multiplication of its length by the same factor does change the
additive relation between the vectors, we have

Ax(B+CY=AxB +AxC

The substitution of (2.10) gives (2.9).
The repeated use of (2.9) and the relations i, xi, =0, i, xi, =i, etc,
gives A x B in terms of the rectangular components of A and B as follows:

A x B=(i.A, + A4, +i,4.) x (i,B, +i,B, +1,B,)
= ix(A,,Bz — Asz) +i, (Asz — Asz) +1, (AxBy — A,,Bx) (2.11)

Ax(g+CY
= AX{B+C)

Fig. 2.7. Vector product of a vector and the sum of two vectors.

Treating iy, i, i, as if they were ordinary numbers, the above formula can
be expressed as the determinant

i iy
AxB=d, 4, A (2.12)
B, B, B,

The vector product of two vectors B and C, namely, B x C, is itself a
vector. We can, therefore, consider the scalar product with another vector
A, ie., A-(B x C). Referring to Fig. 2.8, B x C has a magnitude which is
equal to the area of the parallelogram defined by B and C and a direction
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Fig. 2.8. Scalar product of a vector and the vector product of two vectors.

normal to the plane of the parallelogram. Since the magnitude of A-(B x C)
is equal to the magnitude of (B x C) times the length of the projection of
A on (B x C), it is equal to the volume, or the base area times the height,
of the parallelepiped defined by A, B, and C. This volume remains the same
whether the parallelogram defined by A and B or the one defined by Cand A
is considered as the base. Thus, we have

A:BxC)=C-(AxB)=B-(C x A) (2.13)

However, if C x B is taken instead of B x C, the direction of the vector is
opposite and the volume becomes negative.

In a similar way to the preceding discussion, we can consider the vector
product of A and (B x C). This is represented by A x (B x C) where the
parentheses indicate that the inside operation must be carried out first,
Since it is perpendicular to B x C, which is in turn normal to the plane defined
by B and C, A x (B x C) lies in this plane. This means that A x (BxC)is
expressible as a linear combination of B and C, i.e., the sum of some coeffi-
cients times B and C. These coefficients are found to be {A-C) and
— (A-B), respectively. That is,

Ax(BxC)=(A-C)B—(A-B)C (2.14)

Since this formula will be used several times, we shall prove it as follows.
First consider the special case in which A is equal to B. In Fig. 2.9, a dotted
line parallel to B is drawn passing through the tip of C, and C’ is drawn
perpendicular to B from the tail of B to the dotted line. From (2.8), B x C
is equal to B x C’. The vector C' — C, drawn from the tip of C to that of ',
is parallel to B but the direction is opposite. Its magnitude is equal to that
of the projection of C on B, which is given by |C| cos 8 where 8 is the angle
between B and C. Since this magnitude can be expressed as (|Bf |C| cos 8/
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|B|%) [B|, C' — C is equal to — {(B-C)/(B-B)} B. From this, we have
C' =C—B(B-C)/(B-B) (2.15)

Noting that B x (B x C") is perpendicular to both B and B x C’, it follows
from Fig. 2.9 that the direction of the vector B x (B x C’) is parallel but
opposite to €’ and its magnitude is given by |B| (|B| JC’|). Therefore, we

have
B x (B x C')=—(B-B)C’

Fig. 2.9. Explanation of vector preduct formula,

Substituting (2.15) in the right-hand side and using the fact that B x C” is
equal to B x C, the desired result

Bx(BxC)=(B-C)B—(B-B)C (2.16)

is obtained. This shows that (2.14) is correct in this special case where A = B.
Let us now consider the general case in which A is not necessarily equal
to B. From the explanation preceding (2.14), A x (B x C) can be written

in the form
Ax(BxC)=kB+k,C (2.17)

We must, therefore, determine the coefficients &k, and k,. To do so, first
multiply (2.17) by A from the left, then we have

AAx(BxC)=k (A-B)+ k,(A-C)

The left-hand side of this equation represents the volume of parallelepiped
defined by A, A, and B x C. However, since the two edges coincide with
each other, the volume is zero. Setting the right-hand side equal to zero, we

obtain
ky = -k, (A-B){A-C)
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Substituting into (2.17), we have
Ax(BxC)=k {B~- C(A-B)(A-C)} (2.18)
Multiplying (2.18) by B-, we have
B:-Ax(BxC)=k {(B-B)—(B-C)(A-B)/(A-C)} (2.19)

Considering (B x C) as the third vector in the left-hand side of (2.13), the
left-hand side of (2.19) is seen to be equal to — A+B x (B x C). Therefore,
applying (2.16), we obtain

B-Ax(BxC)=—A-Bx(BxC)=—A{(B-C)B—(B-B)C}
=(B-B)(A-C)—(A-B)(B-C)
Comparing this with (2.19), we see that

ki ={(A-C)

Finally, substitution into (2.18) gives the desired relation (2.14).

Let us now study the differentiations of vectors. There are two different
kinds of differentiation, divergence and rotation, just as there are two
multiplications, scalar product and vector product. The divergence (V+A:
del dot A) is defined by

VA= lim 1— A-ndS (2.20)

AV -0 4V AS
where the integral is over the closed surface of a small volume element AV
and n is the outer normal unit vector, i.e., the unit vector normal to the
surface and pointing outward. If A represents the velocity of incompressible
liquid, since the integral gives the amount of the liquid emerging from the
closed surface, V+A represents the amount of the liquid generated per unit
volume. The divergence V-A is a scalar quantity which has no direction
associated with it. The integration of V+A over a certain volume V is
equivalent to the summation of ¥-A AV over the same volume. Because
of the definition, V-A AV can be written in the form of a surface integral.
Since the outflow through a surface from 4V means the inflow through the
same surface for the adjacent AV, when summing the surface integrals, the
contributions from such common surfaces cancel each other. Thus, there
remains only the contribution from the outermost surface which is not

shared by the neighboring volume clements:

f V-Adu=f A-nds (2.21)
v b

T
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where § is the closed surface of the volume V and n is the outer normal unit
vector as shown in Fig. 2.10. This is called Gauss’s theorem,

Let us consider how to express the divergence in terms of the rectangular
components A,, 4,. and 4, of the vector A. The shape of AV is irrelevant
to the final result, however, to avoid unnecessary complication, let A¥ be a
cube whose edges are parallel to the x, y, and z axes as shown in Fig. 2.11.

A

Fig. 2.10. Explanation of Gauss’s theorem.

1 bz

fit ]

X
Fig. 2.11. Volume element for divergence calculation.

Let (x, y, z) be the center of the cube. The contribution to the surface integral
from the two surfaces perpendicular to the x-axis is given by

f A-ndS+J A-ndS
1 it
= A (x+44x,y,2) Ay Az — A (x — 3 Ax, y, 2) Ay Az

= {A.(x, y,2) + $4x(04,/0x)} Ay Az — (A (x, y, z) — } Ax (P A,[dx)} Ay Az
= (04,/0x) Ax Ay Az
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Similarly, the contributions from other surfaces can be calculated, and when
all are added, we have

dA, 04, dA
Awmds={"= 42 Tl y
Ls {6x 2y + az} x Ay Az

Dividing by 4V =4x Ay Az and taking the limit of AV > 0, we obtain
04, 04, 84,

VA= ™ + a—y— P (2.22)
Let V be an operator defined by
vei Ly 2a 2 (2.23)
Tox Yoy oz '

Treating 8/0x, 8/dy, and 5/0z as if they were the rectangular components of
a vector, when we calculate the scalar product of V and A, we get exactly
the same expression as (2.22). For this reason, we indicate the divergence of
AbyV-A,

Let us consider a special case in which A is a vector in a two dimensional
space, i.e., A is parallel to the xy plane and is a function of x and y only
(independent of z). Let ¥ be a volume S, x 1 where S, is the base area, and
the height is unity as shown in Fig. 2.12. The integration of V-A over ¥ is
given by

f V-AdV=f V:AdS x1
v Sg

4

Fig. 2.12. Explanation for two-dimensional Gauss’s theorem.
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By Gauss’s theorem, this is equal to the surface integral of A-n over the
closed surface S of . However, since by hypothesis, A is parallel to the xy
plane, the contributions from the top and bottom surfaces vanish, and hence
the surface integral over § is equal to the contribution from the cylindrical
surface whose length is L:

f A»ndS:f A-ndl x1
5 L

From the above two equations and Gauss’s theorem, we obtain
J. V-Aa’S:f Aendl (2.24)
So L

This is the two-dimensional Gauss’s theorem. A comparison of (2.21) and
(2.24) shows that the two dimensional case is obtainable simply by changing
the volume and surface integrals in the ordinary Gauss’s theorem to the
surface and line'integrals, respectively.

The other differentiation, the rotation of vector A, is indicated by V x A
(del cross A). This is a vector quantity in contrast to the divergence which
is a scalar quantity. The component of the rotation in the direction of an
arbitrary unit vector n is given by

1
n'¥xA=lim — A-dl (2.25)
450 AS AC

where A4S is a small area with n being normal to it, AC is the closed contour
of AS and 4l is the tangential vector of AC with a magnitude equal to the
length of the small segment of AC, as illustrated in Fig. 2.13. The integration
of m-V x A over a surface § is equivalent to the summation of a large
number of quantities n+V x A AS over the surface. Each can be converted

&c

4s dL

Fig. 2.13. Vector relation in the definition of rotation.
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to the line integral along the closed contour AC. However, the contributions
from the common borderline of the neighboring areas cancel each other since
the directions of the integrals are opposite, as shown in Fig. 2.14. The re-
maining contribution comes from the outermost periphery of S only.
Therefore, we obtain Stokes’s theorem:

f ‘7X4&-ndS:=.[ A-dl (226)
5 c

where C is the closed contour of 5. The direction of the contour integral is
shown in Fig. 2.14.

A

5

Fig. 2.14. Explanation of Stokes’s theorem.

Let us consider how V x A should be expressed in terms of the rectangular
components. If n is the unit vector in the x-direction, then, (2.25) gives the
x-component of V x A, namely (V x A),. The shape of AS is arbitrary as
long as it is small and perpendicular to n. However, in order to make the
calculation simple, let us consider a rectangle with sides parallel to the
y- and z-axes, as shown in Fig. 2.15. The center of the rectangle is given by
(x, », z) and the lengths of the sides are 4y and Az, respectively. Then we
have

(VxA), =lim(dydz)"" f

=lm(dy 4z)" {A.(x, y + 1Ay, 2) Az — A (x, y — 1 Ay, z) Az
+ Ay(x, ¥,z —34z) Ay — Ay(x, y, z + $ 4z) Ay}

=lim(Ady Az)~" {(04./3y) Ay Az — (9A,[dz) Az Ay}

= (0A,/0y) — (84,/0z)

A-dl
c

In a similar manner, other components can be obtained. Combining the re-
sults, we obtain

Pk (Ve PN (0A_BAN (04, oAN o
xA=i| F_ T {0 Y e .
"oy oz ) e T )T e T %y )

it R St e

LY S S et T
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Ay

X
Fig. 2.15. Integral contour for calculation of x-component of rotation.

The vector product of the operator V defined in (2.23) and A gives-the same
expression; hence, the rotation of A is indicated by V x A. Equation (2.27)
can also be expressed in determinant form similar to (2.12):

i, i i,
V xA=0/dx 8/dy &foz (2.28)
A, A, A

Since V X A is a vector, we can consider the divergence of Vx A, V-¥ x A,
By definition,
1
V.VxA= lim —J‘ VxA-ndS
48

AV =0

1
= lim —- A-dl
quoﬁllfdc
where Stokes’s theorem is used, 45 is the closed surface of AV and AC is

the closed contour of 45. However, since ASisa closed surface, the (r‘ontour
AC shrinks to a point and its length becomes zero. Thus, the contour integral

is always equal to zero. This means that
V-VxA=0 (2.29)

Since V x A is a vector, we can also consider the rotation of V x A,
V x (V x A). However, in order to simplify the explanation, let us first
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discuss a differentiation of scalar functions, which leads to a vector. A point
in actual space can be specified by a vector drawn from the origin to the
point. Therefore, let us identify each point by a vector r. Let r; and r, be
two points close to each other, and let ¢ be a single valued function whose
values at r; and r, are indicated by ¢, and ¢,, respectively. In the limit of
r; —r; =dr—0, let us express dp = ¢, — ¢, in the form of a scalar product
of dr and some vector Vo, i.e.,

dp =V dr (2.30)

The vector Yo defined through (2.30) is called the gradient of ¢. Suppose dr
lies on a constant ¢ surface, then do is equal to zero and so is Vg «dr by
definition. This means that V¢ is perpendicular to dr. Since the direction of
dr is arbitrary as long as it lies on the surface, it follows that V¢ is normal
to the constant ¢ surface. When ¢ changes rapidly with distance normal to
the constant ¢ surface, from the definition (2.30) the magnitude of Vo is
large and vice versa. This is the reason why V¢ is called the gradient of ¢.
The integral of {2.30) along a closed path C must be equal to zero:

f d(p=f Yo+«dr=0
c c

This is because ¢ has the same value at both ends of the path which are
really one and the same point. Since C is arbitrary, the definition of the
rotation (2.25) shows that ¥ x V¢ is always equal to zero, i.e.,

VxVp=0 (2.31)

Since Vo is a vector, we can consider the divergence of Vo, V-V which
is sometimes written in the form VZ¢.

Let us derive an expression for V¢ in terms of its rectangular components.
In the rectangular coordinate system, we have

dr=1i,dx +i,dy+1i,4dz

i 0 ]
(?-dx+—q)dy+—q’dz
X

do =2
®=3 oy T ez

Substituting these expressions into (2.30), we obtain

F F 0
@ ax+Lay+ L dz = (i, Vo) dx + (i, Vo) dy + (i, Vo) dz
&x dy oz
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Since dx, dy, dz are arbitrary infinitesimals, the above relation requires

do dp dp
= - - = lz * V(p
0z
This means that the x, y, and z components of ¥V¢ are given by d¢/dx,
dp/dy, and dg/dz, respectively. Thus, we have
dp . dp  Op
Yo=0 —+i,—+1i, — 2.32
¢ lx6x+ly6y lzaz ( )
If ¢ is placed after the operator V defined by (2.23), the same expression can
be obtained, and it is for this reason that the gradient of ¢ is indicated by V.
Since the divergence of a vector is obtainable by formally taking the scalar
product of ¥ and the vector in the system of rectangular coordinates, the
expression for V-Ve is given by

aZ(p an} an)

— =+ 2.33
ox? " oy? 8z (2.33)

V-V =
which is simply the scalar product of V and (2.32). The divergence of a
vector A is a scalar function and we can, therefore, consider the gradient.
This is expressed by V(V-A), where the parentheses indicate that the inside
operation must be performed first.
We are now in a position to discuss the rotation of V x A, which was
previously postponed. Treating V as if it were a vector defined by (2.23),
the formal application of (2.14) to V x (V x A) gives

Vx(VxA)=(V-A)V-—(V-V)A

Since B in the first term on the right-hand side of (2.14) can be placed in
front of (A.C) without changing the relation, and since V is a differential
operator on A which is customarily placed in front of A, let us move V
to come before (V-A) in the first term on the right-hand side of the above
equation. This gives

Vx(VxA)=V(V-A)—(V-V)A (2.34)

The first term on the right-hand side is the gradient of the divergence A.
The second term is similar to the divergence of a gradient. Since A is a
vector however, (V-V} A has yet to be defined. If we use (2.34) to define
(V-V)A and also use V2 to indicate (V-V), even when a vector follows it,
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then we have
(V-V)A=V?A =V(V-A) -V x (VxA) (2.35)

Since each term on the right-hand side is a vector, VZA thus defined is a
vector,

Let us derive an expression for V2A in the rectangular coordinate system.
In this system the divergence, gradient, and rotation are all obtained by the
formal application of V defined by (2.23) and since the definition of VZA
is obtained by the formal application of vector multiplication formula (2.14)
to V x (V x A), if we place A after the scalar multiplication of two V’s as
defined by (2.35) the expression for V?A is obtained:

VA ,a+_a+_a _8+_6+_6A

=i, —4+i, —4+i, — )+[i,—+i,— +i, —
Tox  Yay Ceéz) \Tox ey Teéz
_aZA J’A  8°A

=S+t 2.36
axz + ayz + azz ( )

In the rectangular coordinate system, V2¢ and VZA have exactly the same
form, as we can see from (2.33) and (2.36). This is not necessarily true,
however, in other coordinate systems. When V2A is defined through (2.35),
it generally has a different differential form from that for V¢ in the same
coordinate system.

Let us next consider the differentiation of the product of functions. In
ordinary differentiation, the derivative of a product of functions is given by
the sum of terms in which only one of the functions is differentiated with the
others remaining unchanged. For example, the derivative of fg is given by
f'g + fg' where the prime indicates the derivative. Since V can be expressed
in the form of (2.23), a similar operation is possible. Indicating the differential
operators on A and on B by V, and Vj, respectively, we have

V:(AV-B)=V,-(AV:B) + V;-(AV-B) = (V:A)(V-B) + A.VV.B
(2.37)
Similarly, we have

Vi AxVxB)=VxA:VxB-A-VYxVxB {2.38)

The negative sign in front of the second term on the right-hand side is the
result of interchanging the order of V and A during the derivation. The
rectangular coordinate system was used to derive (2.37) and (2.38). Once
both sides of an equation become vector expressions, however, the equation
is valid, independent of the coordinate system utilized. If we take the volume
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integrals of (2.37) and (2.38), by Gauss’s theorem, the left-hand sides become
the surface integrals. After the proper transposition of terms, we have

f A-VV-BaV =—f (V-A)(V-B)dV + f (n-A) (V-B) dS
v v 3 239

f A-VxVdeV=f VxA-VdeV—f AxVxB-ndS
' ’ ’ (2.40)
These are formulas of integration by parts. When A and B are two-
dimensional vectors, one can obtain the corresponding formulas by changing

volume integrals to surface integrals and surface integrals to line integrals
just as we did in the two-dimensional Gauss’s theorem.

fA-VV-BdS=—L(V-A)(V-B)d5+fL(n-A)(V-B)dI (2.41)

fA-VxVdeS=f VxA-VdeS—J. AxVxB-ndl (242)
s s

L

The differentiation of a function of a function can also be discussed in a
similar manner to the ordinary differentiation of a function of a function.
As an example, let us consider Vr where r is a scalar given by (r-r)*/2. Since
Vr? is in the form of the differentiation of a function of a function, it is given
by 2r Vr. On the other hand, from the differentiation of a product of func-
tions, we have

Vri=V({-r)=2(r-V)r
=2{x(8/ex) + y(8/dy) + z(8/0z)} (i,x + L,y +iz)=2r

Combining these two results, we obtain
Vr =(1/r) (2.43)
The same result is obtainable through the following manipulation.
Vr=V(r-r)V* =1(r-r)""? 2r- Vr = (r/r)

where the relation r-Vr = r calculated for (2.43) is used.
Let us apply (2.43) to the calculation of V2(1/r). Since

V(1/r)=—Vr[r’ = — 1/ (2.44)
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we have
vv1 v r Ver V1 3+3 Vr 3+3r-r
» _-_-—= — . — o= — - — I — = e r- = — — c— =
r r r? r’ I rt r’ r’

where use is made of the relation
V.r = {i,(3/0x) +1,(8/0y) +1.(8/d2)} - (i.x + i,y +i.2) =3

Our next task is to derive Helmholtz’s theorem which states: A differenti-
able but otherwise arbitrary vector function can always be expressed as the
sum of the gradient of a scalar function and the rotation of a vector function.
Before proceeding, let us first prove the following lemma: One of the
solutions of Poisson’s cquation

Vig=—gq (2.46)
is given by
o) = J‘q( ) o (2.47)
where R is defined by
R={r-r)(r-r)'? (2.48)

We shall indicate the differentiations with respect to r and r’ by V and V',
respectively. Let us apply V to (2.47) and then integrate the result over a
closed surface §. Interchanging the order of integrations on the right-hand

side, we have
q( r') .
V(p ndS = =7 V i 0 dS dv (2.49)

If r' is located outside the §, the surface integral on the right-hand side can
be converted to a volume integral, i.e.,

J.-q—(—)v}—{ dg=f 1) o, vld (2.50)

45 Fis

where V is the volume enclosed by S. Since V-V(I/R) is equivalent to
V-V(1/r) with origin at x’, from (2.45) V-V (l/R) is equal to zero provided
that R does not vanish. From this it follows that, when r’ is outside S, the
left-hand side of (2.50) is equal to zero. If ' should be inside S, R becomes
zero at r=r' and the integrand on the right-hand side of (2.49) loses the
meaning at this point. To avoid this difficulty, let us consider a small
sphere centered at r’ with volume vg and surface S;. Using Gauss’s theorem,

i
L4
i
i
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we have
r r
ACORE N 10 vy ‘L)Vf-ndS (2.51)
5 471' R V—ro 471' R 5o R

where n is the outer normal unit vector from V — v,. Note that n is directed
toward the center of the sphere on S,. The first term on the right-hand side
of (2.51) is equal to zero since V-V (1/R) vanishes everywhere in the three-
dimensional region defined by (¥ — v,). The second term can be calcualted
as follows. Since

n=—(r-r)R

on §,, and since (2.44) clearly shows

V(L/R) = —(r —r)/R®

r
[ 9Oy s f ) 4o
So 4 R 4zR
The integrand on the right-hand side is a constant on §,; and the surface

area of S, is 4wR?, hence the value of the integral is equal to g(r'). From
this and (2.51), it follows that when r’ is inside S,

q(r)

ﬁV—-ndS—— '
JS 47 R q(r)

we have

If r' is outside S, the surface integral is equal to zero as we showed before.
Therefore, the contribution to the volume integral on the right-hand side of
(2.49) comes from the elementary volume dv’ inside S, i.e., from the volume
V only. That is,

f V(p-ndS=—j q(r')dv’
b v
By Gauss’s theorem, the left-hand side becomes the volume integral of

V-V¢. The primes in the left-hand side can be omitted without changing the
result. Therefore, we obtain

fV{V-V(p+q(r)}dv=0

Since V' is arbitrary, it follows from this that (2.47) satisfies (2.46). This
completes the proof of the lemma.
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In order to get Helmholtz’s theorem, we next apply the above resuit to
the following vector version of Poisson’s equation

V'W=—F (2.52)

Since in the rectangular coordinate system, (2.52) is satisfied if each compo-
nent satisfics Poisson’s equation (2.46),

F(r)
W= .f e (2.53)

must be a solution of (2.52). On the other hand, from (2.35) and (2.52,) we
have
F=—VW=—V(V-W)+ V¥ x(VxW) (2.54)

To obtain an explicit form of F, let us calculate the divergence and rotation
of (2.53) and substitute into the above equation. — V- W is given by

¥ 1 F 1
V. W=—|—V_dv=| .V _dv 2.55
Y- W ‘[% VRdv I4“ R v (2.55)
Using the relation
F V-.F 1
V.= +F-V —
R R R

we can rewrite the right-hand side of (2.55) and then apply Gauss’s theorem.

The result is
F. V.F
_V-W= j s - .[ dv' (2.56)

On the other hand, V x W is given by

F 1 F 1
- _ - - r= - v:_df
VxW J‘%xVRdv J‘4nx R v

Using the relation
V xF 1
F_VxF_ FxV

V*xr= R R

the above equation becomes

VxF F
= =V x 2.57
VxW j AR dv J X (2.57)
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If K is a constant vector, using Gauss’s theorem, we have

, Fo ,  F
V.K x dv'=—K-+| V x —dv
4z R t 47 R
F ! F
= | K % ndS' =K+| — x nds§’
4zR 4R

Since K is arbitrary, it follows from this that

V’x——dv = —xndS
47R 47R

Substituting this into the right-hand side of (2.57), we have

Far+ [EX" s 2.58
v .
4nR ( )
The primes on the right-hand sides of (2.56) and (2.58) can be omitted with-
out changing these results. Substituting (2.56) and (2.58) into (2.54), we
obtain the desired expression for Helmholtz’s theorem,

F ¥-F Fxn VxF
F=V sndS — | —dv ]|+ V x dS + do
(_[ 4nR J47rR ) (J 4nR J 4nR )

(2.59)
This shows that an arbitrary, but differentiable, vector function F can be
expressed as the sum of the gradient of the scalar function in the parentheses
of the first term and the rotation of the vector function in the second term.
As is casily seen, V+.F =0 {(in volume V) alone is not sufficient for F to be
expressible as the rotation of a vector function. On the other hand, V-F =0
{in volume V) and F+n=0 (on surface .5) are sufficient to ensure F to be
the rotation of a vector. Similarly, V x F=0 (in volume ¥) alone is not
sufficient, but together with F x n =0 {on surface §), it guarantees that F is
the gradient of a scalar function.

Before closing this section, let us derive the expressions for V-A, Ve,
and Vg in the cylindrical coordinate system, for later use. We apply the
definition (2.20) for the divergence to the volume element AV given by
Ar - rd8 - Az shown in Fig. 2.16. The surface integral is given by

{A,(r + Ar)- Az (r + Ar) 40 — A, (r) Az -r 40}
+ {A,(8 + 46) Ar- Az — Ay(0) Ar- 42}
+{A4,(z + 4z) Ar-r 40 — A, (z) Ar-r A8}
= (0r A,[or) Ar Az A0 + (0A4/20) Ar Az AB + (8A,/0z) Ar Azr A8
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Fig. 2.16. Volume element 4V in cylindrical coordinate system.

where the first, second, and third terms express the contribution from the
r-constant, f-constant, and z-constant surfaces, respectively, and use is
made of the abbreviated forms of functions in which only that coordinate
of primary concern is explicitly given in the parentheses. Dividing the above
expression by AV, we obtain

1 aA9 oA,

+ = (2.60)

V-A =ﬁ—(A)

In order to obtain the expression for Ve, let i, iy, and i, be the unit
vectors in the », A, and z directions. The elementary displacement dr is
given by

dr=1i,dr+igrdf +1i,dz

The increment dg of a function ¢ due to the displacement dr is given by

d —d % 10 —d
e et

L0p | 1dp g
=(|,5r—+19r69+ 25, ) (i, dr +igr d0 + i, dz)

= Vp-dr
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It follows from this that
do 1de d¢
Vo=1i,— +iy - — +1i, — 2.61
¢ l'6r+ler66+lzaz (2.61)

Substituting this in place of A in (2.60), we obtain

12/ do 1329 o
V:Vop=-—|r— —— t+ — 2.62
¢ (r 6r) + r* 00* + fz? (2:62)

which is the expression for V2¢ in the cylinderical coordinate system.

2.2 Maxwell’s Equations

If we take a coil having many turns with a voltmeter connected between
its terminals and then move a magnet so that its flux threads the coil, the
pointer of the voltmeter moves, indicating that some voltage is developed
between the terminals, Since the voltage disappears when the magnet is
stationary, the terminal voltage seems to be related to the time variation of
the magnetic flux passing through the coil. By increasing the size of magnet,
reversing the polartiy, or by varying the speed with which the magnet
approaches the coil, one is gradually convinced that the terminal voltage is
proportional to the time derivative of the total flux crossing the coil, é®/at.
Keeping the motion of the magnet relative to the coil the same, if the
number of turns of the coil is increased, the terminal voltage increases
proportionally. From this, it is reasonable to assume that a voltage appears
in a coil with only one turn, which is proportional to the time derivative of
the flux through the turn, i.e.,

V oc 0P[dt

where oc indicates proportionality. On the right-hand side & can be expressed
as the integral of the scalar product of magnetic flux density B, i.e., magnetic
induction, and the normal unit vector m over a surface S surrounded by the
contour € which coincides with the coil as shown in Fig. 2.17. Also V is
equal to the negative of the integral of electric field E from p to p’, however,
the existence of ¥ depends more on the coil surrounding the flux @ than on
the gap between p and p’. Since E must be small along the conductor, the
limit of the integral from p to p' can be extended to include the entire
closed contour C without changing the value appreciably. The above
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Fig. 2.17. Explanation of electromagnetic induction.

proportionality relation can then be rewritten in the form

0
—f E-dloc—f B-ndS
¢ ot)s

Let use choose the unit of B so that the constant of proportionality becomes
unity, i.e.,

5
J. Eodl:—mJ‘ Bends (2.63)
¢ ot )s

where the direction of C is such that when a right-handed screw is turned in
that direction, it will advance in the direction of n.

Next, suppose a conducting wire carrying a heavy current passes vertically
through the center of a sheet of paper with iron powder scattered on it.
The iron powder will indicate that a magnetic field surrounds the current.
A more elaborate experiment telis us that the magnetic field intensity is
proportional to the magnitude of the current / and is inversely proportional
to the distance from the conductor. Consider the contour integral of magnetic
field H along a circle C, with the center at the conductor and radius r on a
plane perpendicular to the conductor. Since the length of the contour is
proportional to r and the intensity of H inversely proportional to r, the value
of the integral becomes independent of r. However, since H is proportional
to I, we have

H-dlocl

Co

The current can be expressed as the surface integral of the scalar product of
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the current density i and the normal unit vector n over a surface S surrounded
by C,. The above result then becomes similar to (2.63), for which the shape
of C is arbitrary. Therefore, it may be natural to assume that

f H-dl:f i-ndS$ (2.64)
c s

where C is an arbitrary closed contour and S is a surface surrounded by C.
The constant of proportionality is made unity by properly selecting the
unit for H.

Let us first check the validity of (2.64) for the special case of the vertical
conducting wire discussed above. If we use the cylindrical coordinate
system with the z-axis coinciding with the conductor, then since

H o iy (If7)
and
dl=i,dr +irdd+i,dz

the contour integral of H becomes

f H-d!ocf 140
c c

which is equal to 2nf when C encloses the conductor and is equal to zero,
otherwise. If 27 is included in the constant of proportionality, this result
confirms (2.64) for this special case. However, if we assume that (2.64) is
always correct, we encounter some difficulties, especially when a capacitor is
inserted in the conducting path as shown in Fig. 2.18. A magnetic field

CAPACITOR
ELECTRODES

FIXED
CONTOUR

Fig. 2.18. Explanation of displacement current.
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surrounds the conductor as long as current is flowing through it, and if §
is chosen so as to cut the vertical conducting wire in Fig. 2.18, there is no
problem. However, if S passes between the electrodes of the capacitor, as
shown in Fig. 2.18, the current density i is zero everywhere on S, and
hence (2.64) leads to a contradiction that the line integral of H along the
same contour C becomes zero or finite, depending on how .5 is chosen. This
necessitates some modification of (2.64). When current is flowing into a
capacitor, it is gradually charged and the electric field between its electrodes
increases with time. Therefore, 0D/ét exists in place of i, where D =:¢E
is the electric displacement. Let us call éD/ét the displacement current
(although nothing is displaced in vacuum) and add this to the current in the
right-hand side of (2.64) to take care of the above difficulty:

Db
'[ H-dl=.[ (i+
c s ot

where the magnitude of ¢ is so chosen that the constant of proportionality
in front of ¢D/d¢ becomes unity.

We have now obtained (2.63) and (2.65) as the most plausible equations
expressing electromagnetic field relations. Although the left-hand sides of the
two equations are contour integrals whereas the right-hand sides are surface
integrals, we can convert the contour integrals to surface integrals by
Stokes’ theorem. After transpositions, we have

VxE+ D
J.s( e
J.{VXH—(i+?—l—)-)}-ndS=0 (2.67)
S E

Since S is arbitrary, the integrands have to be zero:

) -nds (2.65)

)-n ds =0 (2.66)

B
VxE=— _ 2.68
X a1 : (2.68)

D
VxH=i+— (2.69)

Since there is always electric charge ¢ at the terminal point of D which is
considered as the source of D, from the definition of divergence (2.20), we

have
V-D=p (2.70)

R e

g
3
i’
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where the unit of charge is again properly chosen so that the constant of
proportionality is unity. On the other hand, positive and negative magnetic
charges are always found in pairs, and in any finite volume there is no net
magnetic charge. This experimental fact is expressed in the form

V:B=0 (2.71)

The four equations (2.68), (2.69), (2.70), and (2.71) are called Maxwell’s
equations.

Taking the divergence of (2.69) and noting that the order of differentia-
tions with respect to time and position can be interchanged, we obtain

G
Vii+_V.D=0
at

since the divergence of rotation is always equal to zero. The substitution of
(2.70) into the equation gives
do

Vei=—
ar

(2.72)

This expresses the conservation of charge since by Gauss’s theorem it means
that the decrease of ¢ in a certain volume V is due to the outflow of ¢ in the
form of current through the surface S enclosing V. Similarly, taking the
divergence of (2.68), it can be shown that V-B is a constant independent of
time. This constant is chosen to be zero in (2.71) to conform with experi-
ments.

As we have already discussed, the choice of the units for electromagnetic
quantities is made in such a way that the constants of proportionality
become unity in Maxwell’s equations. The unit of each quantity appearing
in the equations is listed below:

E: [volt)/ [meter] [V/m]
H: [ampere-turn]/[meter] [AT/m]
B: [weber]/[meter]® [Wb/m?]
D: [coulomb]/[meter]* [C/m?]

i: [ampere]/ [meter]? [A/m?]
o: fcoulomb]/[meter]? {[C/m*]

Maxwell derived his equations through more or less the same argument
described above after being stimulated by the experimental results of Faraday
and others. Mathematically, the equations do not contradict each other, but
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this does not mean that they are proved. In fact, there is no proof that
electromagnetic phenomena should obey Maxwell’s equations which must,
therefore, be considered as bold postulates. The only support for the validity
of Maxwell’s equations is the fact that no macroscopic experiment has been
conducted successfully which disproves them. Although there is no proof,
let us accept their validity and consider how various phenomena can be
explained or what kind of phenomena should be expected as natural con-
sequences of Maxwell’s equations. For instance, one argument goes as
follows: Equation (2.69) gives (2.67) which in turn becomes (2.65), and it
follows from this and a symmetry argument that the intensity of H around
a straight conductor carrying a current [ is proportional to I and inversely
proportional to the distance from the conductor. Although this explanation
of Maxwell’s equations might sound strange to some of us, it should be
remembered that physics is generally based upon similar foundations. Let us
consider Newtonian mechanics. From experiments, it was inferred that force
f was proportional to mass m times acceleration, i.c.,
d*r

f=m' 2.73)
where r indicates the position. By assuming that this equation always holds,
a number of useful theorems were deducted from it. There was no proof for
(2.73), in fact, it was later discovered that when the velocity of an object
approached light velocity, (2.73) was no longer adequate and this led to the
theory of relativity. In spite of these limitations, (2.73) is a very valuable
result and worth studying together with the theorems deduced from it.
Similarly, some macroscopic phenomena might be discovered in the future
which disprove the universal validity of Maxwell’s equations. Then, the
equations will have to be revised accordingly. Nevertheless, the present
form of Maxwell’s equations will remain worth studying which is one of the
objectives of this book.

In ordinary media, D and B are approximately proportional to E and H,
respectively. The constants of proportionality are generally indicated by
g and u:

D=:E (2.74)

B = H (2.75)

Since the units of D and B have been chosen so as to make the constants of
proportionality in Maxwell’s equations unity, & and g for a vacuum are not

b
i

|
|

2.2. Maxwell’s Equations 69

unity but have the following values:

g = 8.854 x 10”'? [farad/meter]

o = 1257 x 107°  [henry/meter]

where the subscript 0 is used to indicate the values for vacuum. In other
media, & and u are different from g, and y,. Therefore, we write as

&= 8,.50

= H g

and call ¢, the relative dielectric constant and g, the relative permeability
of the material. The current density is also approximately proportional to
E in ordinary materials, i.e.,

i=oE (2.76)

The constant of proportionality ¢ is called the conductivity of the material.
Equations (2.74)-(2.76) are approximations. However, if we consider an
idealized model for which these relations hold, then (2.68) and (2.69)
become
oH

VxE=—y-— 2.77
X neg (2.77)

JE
VXH=0‘E+EE (2.78)

These equations are linear and the coefficients are real, therefore the same
arguments we used in the discussion of transmission line theory can be
applied here, and the same time factor /' can be used for the electromagnetic
field. The differentiation with respect to time becomes equivalent to the
multiplication by jw. Thus, (2.77) and (2.78) become

VxE=—jouH {2.79)
VY x H=0oFE + joxE (2.80)

These are Maxwell’s equations in the present case. Equation (2.71) can be
derived from (2.79), and (2.70) from the conservation of charge and (2.80).
Let us turn our attention to energy. Substituting (2.77) and (2.78} into
the identity
V-ExH=H-VxE—-E:-VxH
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and integrating the result over a volume ¥, we obtain

2 ¢ 2 2
ExH-ndS=—| oE%dv— | 3(eE* + pH*)dv  (2.81)
5 14 6t v

where the left-hand side is converted into the surface integral by Gauss’s
theorem. The surface enclosing V is S, and E? is an abbreviation for E-E.
The vector E x H appearing in the left integral is called Poynting vector.

Let us assume that there are electrodes at the top and bottom surfaces
of a small cylindrical volume AV whose axis is parallel to E, as shown in
Fig. 2.19, and consider the power consumption in AV. The voltage between

aSs

Fig. 2.19. Explanation of power consumption in conductive medium.

the electrodes is given by |E| A/ and the current by ¢|E| AS. The ohmic loss
is given by voltage times current which is equal to oE2 AS Al = gE? AV.
Eliminating the electrodes, the same amount of power is considered being
consumed since the electric field in 4V stays the same. Therefore, [, 6E? dv
should give the total power consumption in V. Since this term is related to
energy, the other terms in (2.81) must also be related to energy. Although
there is no particular reason for the following approach, for convenience, let
us argue as follows: The integral of the Poynting vector over S, [ E x H-n dS,
represents the power flowing out through S, f, 1eE? dv is the electric energy
stored in ¥ and j}, 3pH? dv is the magnetic energy stored in ¥, Then, (2.81)
expresses the conservation of energy since the sum of the power consumed
in V and the outflow of power through S becomes equal to the rate of de-
crease of the total stored energy.

Let us next consider the case in which the electric and magnetic fields
have the time factor e/*, Maxwell’s equations are then given by (2.79) and
(2.80). The average power consumption in ¥ can be calcutated by multi-
plying E by /2 e/ and taking the real part for the interpretation of E in the

o R AR B
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equations. Therefore, for cE?, we have

o {Re(\/2 E¢™)}* = 26 {cos ot (Re E) — sinot(ImE)}*
— 20 {cos® wt (Re E)? — 2 cos wf sin wt(Re E)-(ImE) + sin® wt (Im E)*}

We integrate this over one period T and divide the result by T to take the
time-average. The average of cos® w? over a period is seen to be one-half from
Fig. 2.20. Similarly, the average value of sin®et is given by 1, while the
average of cos wt sin wt is zero. Therefore, the average power consumption
is given by

J‘V T™! f: o [Re(/Z Ee’))* di dv = fV o {(ReE)* + (ImE)*} dv

=J' oE-E* dv
v
w costwt
1
1 -4
|
|
|
Tt
|
|
cos wt :
T |

cos wisinwt

Cos wt Sinwt

Fig. 2.20. Graphs of cos2et and cosct sinwt.



72 2. ELECTROMAGNETIC FIELD VECTORS

A similar discussion shows that the average electric and magnetic energies
stored in V over a period are given by [, ¢E<E* dv and {, uH-H* db,
respectively.

Now, subtracting H*(2.79) from E: {the complex conjugate of (2.80)}
and integrating the result over V, we have

f(E-VxH*—H*-VxE)dv
v
=f oE-E* dv +jmf (WH-H* — ¢E-E¥)dv  (2.82)
14 v

Using the identity
V-ExH*=H*"VXxE-E-VxH*

the left-hand side of (2.82) can be converted to a surface integral by Gauss's
theorem. The result is

J.(EXH*)-(—n)dS=f ok -E* dv +jcoJ‘ (1H-H* —:E-E*) dv
b V v

E x H* in the left integral is called the complex Poynting vector. The first
integral on the right-hand side is the average power consumption while the
second integral is twice the difference between the average magnetic and
electric energy stored in V. Since the real and imaginary parts can be equated
separately, we have

Re f E x H*+(— n) dS = (average power consumption in ) (2.83)
A

Im f E x H*.(— 1) dS = 2w{average magnetic stored energy 2.84)
§ — average electric stored energy) '

The power consumed in ¥ may be considered as coming through S, and
if we assume that the incoming power per unit area is given by Re (E x H¥)
-(—n) at each point on S, the total power coming through S becomes
exactly equal to the power consumption in ¥, as shown in (2.83). For this
reason, let us consider that the real part of the complex Poynting vector
represents the power flow density. However, this interpretation of Poynting
vector is rather arbitrary, We could consider that the power flow per unit
area was given by {Re(E x H*) + V x X} «(— n) where X was an arbitrary
single valued vector function of position. By Stokes’s theorem, the integra-
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tion of V x X «(—n) over a closed surface always vanishes, and X does not
appear in the final result.

2.3 Plane Waves

In this section, we shall consider electromagnetic waves which depend
upon a single straight-space coordinate, i.e., waves whose amplitude and
phase are constant over each plane perpendicular to the coordinate. Qur
first problem is to determine whether or not such electromagnetic fields can
exist. To do so, we assume that E and H are independent of x and y in the
rectangular coordinate system and then seek solutions of Maxwell’s equation.
Since E and H are independent of x and y, the derivatives 6/0x and d/dy
must be zero, and when the field vectors are decomposed into their compo-
nents, Maxwell’s equations (2.79) and {2.80) take the form

— (8B,/32) = (o + juwe) E, (2.85)
(0H6z) = (¢ + jwe) E, (2.86)
0= (o + jor) E, (2.87)

— (6E,/0z) = — jowuH, (2.88)
(OE,jéz) = — jeouH, (2.89)
0= — jouH, (2.90)

From (2.87) and (2.90), it is obvious that E, and H, become zero. Next,
eliminating H, from (2.85) and (2.89), we have

d’E,

17 + (@7 — jopo) E, =0 (2.91)

where the symbol for ordinary differentiation is used instead of the one for
partial differentiation since E, is a function of z only. If £, is obtained from
this equation under appropriate boundary conditions, H, is then determined
from (2.89), £, and H, however, remain undetermined. If we eliminate H,
from (2.86) and (2.88), we obtain an equation for E, identical to (2.91).
This equation and appropriate boundary conditions determine E, and H,
is then obtained from (2.88). Thus, E, and H, constitute one pair of related
vectors, and E, and H, another. These pairs are generally independent of
each other, except for possible interaction at the boundary. Since they are
similar, let us first concentrate on the first pair E_ and H,. Equation (2.91)
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is an ordinary differential equation with constant coeflicients. Therefore, if
we assume that E = de™ ", just as we did in (1.7), and substitute it into
(2.91), we have

Y’ = — (@’ep — jopo) (2.92)

For the two solutions of (2.92), let us use the expression
v==x(x+jh) (2.93)

where o and § are real, and assume that § is positive. Since yZ, given by
(2.92), is in the second quadrant of the complex plane, the y’s are in the

Im

f

» Re

Fig. 2.21. Relation between ¥? and y.

first and third quadrants, as shown in Fig. 2.21. From this we see that « is
also positive since ff is assumed to be positive. From (2.92), we can write

« + jf = j(w e — jous)'? {2.94)

where the real part of the square root is taken as positive. To eliminate
unnecessary confusion in future, let us now agree that the real part of ( )'/?
is always positive. When the other root is required we shall write it as
— ()''2. Note that the sign in (1.8) complies with this rule.

From the above discussion, the most general expression for E, is given by

E, = Ae” @t ih | platih): ' (2.95)
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Substituting (2.95) into (2.89), we obtain

Hy — Z(;I {A€7(1+"iﬂ)z _ Be(“"'jﬂ)z} (2.96)
where
Zo = [ul{e — j{ow)}]"'? (2.97)

Substituting (2.95) and (2.96) into (2.85), we see that {2.85) is also satisfied.
Thus, we conclude that an electromagnetic field does exist which is indepen-
dent of the x- and p-coordinates and satisfies Maxwell’s equations.

Since it is the ratio of electric to magnetic fields Z, has the dimension of
impedance; electric field times distance has the dimension of voltage, and
magnetic field times distance has that of current. The quantity Z, is deter-
mined by the property of the medium only and is referred to as its characteristic
impedance with a positive real part in accordance with the agreement on the
sign of square root. Note that we used Z; in Section 1.1 with a different
meaning. From a figure similar to Fig. 2.21, it can be shown that the imagi-
nary part of Z, is also positive, in other words, Z, is inductive.

The constants 4 and B in (2.95) and (2.96) are determined by boundary
conditions. First, however, let us assume B = 0 and concentrate on the terms
with 4 only. The term e™/#* represents a wave traveling in the positive z
direction, and ¢~ ** represents the exponential decay with distance. Since
Z, ' has a negative imaginary part, let us write it in the form |Zo| ™t e Je,
To interpret the magnetic field expression, we multiply it by /2 ¢/ and
take the real part of the resuit:

Re{(J2iZ,| 7! €79 Ae™ @I 0y = 217,171 7% A cos(wt — Bz — @)

Thus, the phase of magnetic field lags by ¢ behind that of electric field as
depicted in Fig. 2.22. Similarly, the terms with B are found to represent an

Fig. 2.22, Electromagnetic field of a plane wave,
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electromagnetic wave traveling in the negative z direction with decreasing
amplitude as it propagates. Since at each instant, the electric and magnetic
fields are both constant over each plane perpendicular to the z axis, the
above electromagnetic waves are called plane waves.

When ¢ is equal to zero, no attenuation takes place. Furthermore, the
phase lag of the magnetic field disappears. In this case, the propagation
constant and the characteristic impedance are given by

a+ jB =0+ jo(eu)'’? (2.98)
Zo = (nfe)'"? (2.99)
respectively. The corresponding wavelength is
A =2n/B = 2njw (ep)'?

On the other hand, when o is large, ¢ can be neglected compared to a/w.

Thus, we have
&+ jf ~ (jouo)'? = (1 + j) (wpaj2)!? (2.100)

Zo = {uf(— jolo)}'* = (1 + J) (wp/20)"? (2.101)

This means that the phase of magnetic field lags 45° behind that of electric
field and since the magnitude of Z, is small, the magnetic field predominates
over the electric field, compared to the free space case. The ampiitudes of
both electric and magnetic fields decrease by a factor of 1/e when they travel
a distance 1/a = (2/ouc)'* called the skin depth of the conductor.

Let us consider the transmission power per unit area. Since the electric and
magnetic fields are orthogonal to each other and both are perpendicular to
the direction of propagation, the Poynting vector is in the z direction, and
its value is given by E, H, *. Therefore, the transmission power is Re{E, H,*}
per unit area.

Let @ and b be defined by

a=13IReZy| VE, + Z,H), b=4|ReZo| '*(E,—Z,*H,) (2.102)
Then, a calculation similar to the one leading to (1.53) gives

la]* — |b|* = Re {E_H*} (2.103)
This means that |a|®> — |6|? is equal to the transmission power per unit area.
Substituting (2.95) and (2.96) into (2.102), we have

a = |[ReZ,|~V?* Ae” e+ /P (2.104)

2l
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ImZ,

ReZ
b=|RcZO|_”2{ 7 + =

Ae‘(¢+iﬂ)z Be(ﬂ"'_fﬁ)Z} (2105)

0 0

When ¢ =0, Z, becomes real, and the first term in the parentheses on the
right-hand side of (2.105) disappears. In this case, a and & can be interpreted
as the waves traveling in the positive z and negative z directions, respectively,
and the square of the magnitude of each wave gives the power transmitted
in the direction of propagation. On the other hand, when ¢ # 0, 5 can no
longer be interpreted as a wave traveling in one direction since it consists
of two terms, one traveling in one direction, and the other in the opposite
direction. Nevertheless, @ and b can be considered as waves associated with
the incident and reflected powers, respectively. Even when the fields travel in
one direction, e.g., when B =0, there is, in general, a power reflection |5|2.
Therefore, when Z, is complex and A4 is fixed, it is necessary to introduce some
field reflection, i.e., a finite B, if the maximum power is to be transmitted.

On the other hand, in.contrast to the definition in (2.102) where a and b
represented power waves, another paic of waves a{z) and »(z) can be defined
by

a(z) =37 *(Ec + ZoH,),  b(2)=1Z5"*(E,— Z,H,)  (2.106)

corresponding to (1.16). Then, we have

a(z) — Zauz Ae-(aﬂﬁ)z, b(z) — Zo—uz Belatimz (2.107)

which indicate that a(z) and b(z) are the traveling waves in the positive and
negative z directions, respectively. Now however, the power expression
corresponding to (2.103) can no longer be obtained (see Problem 2.8). In
other words, the traveling waves a(z) and b(z) are not associated directly
with the transmission power when Z, is complex,

As we mentioned before, there is another pair of vectors E, and H, in
addition to the one we have discussed so far. For this pair, repeating the
same procedure, we obtain

E, = Ce™ @R 4 pelrtibr= (2.108)
Hx - _ ZO_I {Ce“(ﬂ*‘fﬁ)z _ De(a"'.fﬁ)z} (2109)

corresponding to (2.95) and (2.96), respectively. Because of the negative sign
in front of the right-hand side of (2.109), when D = 0, the Poynting vector
E x H* points in the positive z-direction indicating that power is being
transmitted in the direction of propagation. The relation between E, and
— H,_ is exactly the same as the relation between E, and H,, hence these two
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electromagnetic waves have identical properties except for their field
directions.

A more general expression for a plane wave is obtained by the super-
position of i E, and i E, for the electric field and that of i H, and i,H, for
the magnetic field. The transmission power due to this superposition is
given by

Re(E x H*) = Re {(i,E, + i,E,) x (i,H,* + i,H,*)}
= Re(L,E H,*) + Re(L,E,- — HF) (2.110)

The first and second terms on the right-hand side of {2.110) express the
power transmitted by the pairs E,, H,,and E,, H, respectively. Thus the total
power is the sum of the powers of individual waves. In other words, each
wave can be considered as carrying its own power independent of the other.
One might think this is obvious, however, if £, =A,e™ 2 H = Z7'4,e”
represent one electromagnetic wave and E, = d,e” %, H = Z; ' 4,075
another, then the superposition of these two waves gives E, = (4, + 4,)
e H,=Z, "' (4, + Ay) e %, and the transmission power becomes

Re(E x HY) = Re[i.(4, + 4,) {Z;' (4, + A4,)}*]
=Re{i,(Z,')* iALIZ} + Re {iz(z(;l)* |A2|2}
+Refi,(Zo )" (A4, + A, 4,%)]

The first term on the right-hand side is the power transmitted by the first
wave alone and the second term that due to the second wave alone. The
existence of the third term shows that the transmission power is not given
by the superposition of the individual powers. Thus, the principle of super-
position does not generally hold for power. The reason why the total power
is given by the direct sum of the powers of two waves in (2.110) is that the
electric fields and hence the magnetic fields of these two waves are orthogonal
in space. Generalizing this concept of orthogonality, whenever there are
two waves whose powers add when their fields are superposed, they are said
to be orthogonal to each other. Examples will be given in Chapter 3.

Let us now turn our attention to the superposed electric field itself. From
(2.95) and (2.108), we have

E = (i,4 +i,C) e "7 1 (i,B +i,D) /P (2.111)

Since the two terms on the right-hand side represent waves propagating in
the positive and negative z-directions, respectively, let us concentrate on the
first term and investigate how it changes with time. To do so, we take the real
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part of /2 e/ times the first term, i.c.,

Re {\/2(i A + i,C) e/t~ @+ im=
=2 e ™ {cos(wt — fz) (i, Re 4 + i, ReC)
—sin(wt — fz) (i, Im A + i, Im C)}
=2e " {i |A|cos(wt — Bz + ) + i,|Cl cos(ewt — Bz + @)}

2.112
where ¢ )

tang, = (ImA4/Re A},  tang, = (ImC/Re )

The factor ¢ ** shows that the amplitude decreases exponentially with dis-
tance. The expression inside of the parentheses on the right-hand side is the
sum of two simple harmonic motions, one oscillating in the x-direction with
an amplitude [4] and the other in the y-direction with an amplitude |C|.
For a moment, let us fix z and consider the locus of the tip of vector E as
shown in Fig. 2.23 where it is clear that the locus generally becomes an
ellipse. Since the locus of the tip of the corresponding magnetic vector H
also becomes an ellipse, the wave is said to be elliptically polarized. When
pa=9.0r |4 =0or |C| =0, the ellipse degenerates to a straight line and

e
o

{13

Fig. 2.23. Locus of the tip of the electric field vector.
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the corresponding wave is said to be linearly polarized. When 4| =|C]|
and ¢, = @+ 90° the ellipse becomes a circle and we have a circularly
polarized wave. It may also be clear from Fig. 2.23 that the rotational
direction becomes either clockwise or counterclockwise depending on
whether ¢, < ¢, or ¢, < ¢,. If we move the observation point z in the
direction of propagation, the size of the ellipse becomes smaller and the
direction of the field vector at the same instant changes.

The wave propagating in the negative z-direction has identical properties,
e.g., depending on the amplitude and phase relations between B and D, the
locus of the tip of vector E becomes an ellipse, a straight line, or a circle.
The superposition of these two waves propagating in the positive and
negative z-directions produces a locus which can be an ellipse, a straight
line, or a circle at a fixed distance z. However, if the observation point is
moved, the locus changes not only its size but also its shape resulting in a
rather complicated polarization which depends on z.

So far in this section, we have assumed E and H to be independent of x and
¥, and we assumed terms of the type 8/0x and ¢/dy to be zero. Let us next
study the same waves from a slightly different viewpoint using vector expres-
sion with o, &, and u assumed constant and independent of the position in
space, as before.

Taking V x (2.79) and substituting (2.80) into this result, we eliminate H:

VxVxE=—jopVxH=-jou(s +joe)E

The left-hand side is equal to V(V-E)— V2E and since V-E is equal to
zero, as can be shown by taking the divergence of (2.80), the above equation
can be rewritten in the form

V’E + (w’eu — jops) E =0 (2.113)

Comparing (2.113) with (2.91), we see that d?/dz® and E, in (2.91) have been
replaced by V2 and E, respectively, however, they both belong to the same
type of differential equation. Since the solution of {2.91) was obtained by
assuming the functional form of A4e™*?, in the present case

E = A exp(— h-r) = Ae! Th=*T#¥8:D chould give a solution where his a
constant vector to be determined. Using the relation

V’E = A{(azlaxz) + (62/6y2) + (62]622)} g~ Uex+hyy +itz)

=A(h 24 h? 4 h 2) o~ Urxx Ay +haz)
x y z
=A(h-h)exp(—h-r)
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{2.113) becomes
A{b-h+(o’cu — jous)} exp(—h 1) =0
Therefore,
h+h = — (0’eu — jouo) (2.114)
is a necessary and sufficient conditon for E = A exp(—h-r) to be a solution
of (2.113). It is also necessary to check whether or not this satisfies Maxwell’s

equation which is done by substituting this expression into (2.79) and (2.80).
From (2.79), we have

VXxE=VxAexp(—h'r)=Vexp(—h-r) x A = — jouH
Since
Vexp(— h-r) = {i,(9/0x) + i, (8/y) + i, (8/dz)} &~ hex+iw+hat)

=—(ih, +ih, +ih)exp(—h-r)
=—hexp(—-h-1)

H is given by

H = (jou)"'h x Aexp(—h+r) = (jou) 'h x E (2.115)
Substituting this into (2.80), we obtain

VxH=V x (jop) " hx Aexp(—h-r) = Vexp(—h-r) x (jog) ! (h x A)
=—(jwp) 'hxhx Aexp(—h-r)
= (0 + jowe) E = (6 + jwe) A exp(—h-r)

This requires A to satisfy
hx h x A =(0’y — jous) A

The left-hand side is equal to h(h-A) — (h-h) A, and since h-h is given by
(2.114), the above requirement reduces to

h-A=0 (2.116)

It follows from the above discussion that E = A exp(—h-r) satisfies Max-
well’s equations provided that (2.114) and (2.116) are satisfied.

Both A and h can be complex vectors. For example, the directions of the
real and imaginary parts of the vector h may not be the same, and, therefore,
the direction of maximur attenuation may be different from the direction of
maximum phase variation. For simplicity, however, let us confine ourselves
to the case in which these two directions coincide and let m be a unit vector
in that direction. Then,

h=n(«+ jf) (2.117)
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where « and f are real. Since exp(—h-r)=exp{—(x+jf)n-r}, both E
and H become constant over the surface where n+r is constant. As is illus-
trated in Fig. 2.24, a constant n-r surface is a plane and, hence, the electro-
magnetic wave under consideration is a plane wave. Substituting (2.117)

into (2.114), we have .
(a +JjB)* = — (w"eu — joopo)

'\/ N-t = CONSTANT

Fig. 2.24. Plane satisfying n-r = constant.

This indicates that « and B are exactly the same as those obtained from
(2.94). In addition, by comparing (2.116) and (2.117), it can be seen that

neA=0 (2.118)

since («+jB) is constant and not equal to zero, and consequently, A is
normal to the direction of propagation.
From (2.115), H is given by
H=Z;'nxE (2.119)

where Z, is the characteristic impedance defined by (2.97); and H is normal
to both n and E. We, therefore, see that the electric and magnetic ficlds are
perpendicular to each other and at the same time both are normal to the
direction of propagation. This corresponds to the result that E, and H,
made one pair of vectors, and E, and H, another, while E; and H, were zero
in the previous discussion. _

As long as A and h satisfy (2.114) and (2.116), E = A exp(—h-r) gives a
solution of Maxwell’s equations. A superposition of many solutions of this
type also contitutes a solution which will not be discussed here because of

its complexity.
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PROBLEMS
2.1 By decomposing vectors into their rectangular components, prove the following
formulas:
AXBXQ=@A-COB—(A-BIC
V-VXA=0
VXVp=0

2.2 Derive the expressions for V-A, Vg, V-V in the spherical coordinate system.

2.3 Prove in the cylindrical coordinate system, that ¥ X A is given by

Vo A L2424 L a4, 8d, +_gla(“ 124}
=i, | - —_— i - iz — - (r -
"\ rao oz ¢ 3z ér z(rar ’ ¥ 398

2.4 Prove that the integer », satisfying V2 ¢n = 0, is either O or — 1,

2.5 Prove that
f ¢V2l,fldv=—f Vgp-dev—&—f o Vy-ndS
v v s

f e V2w dS = 7J- V.;a-\’n,f/dSJrf o Vy-ndl
5 s L

2.6 Calculate the skin depth of copper at 4 GHz. The conductivity of copper is approx-
imately 5.8 x 107 U/m and the permeability is 1. Also, calculate the characteristic
impedance of copper at 4 GHz.

2.7 The tangential components of electric and magnetic fields must be continuous at an
interface of two media. Assume that a plane wave is incident on an interface from
the normal direction and calculate the power reflected relative to the incident power
in terms of the dielectric constants and permeabilities of the media on both sides of
the interface.

2.8 Prove that
la(2)|2 — |6(z}]? = | Zo|™! Re {ZoE*H,}

where a(z) and b(z) are defined by (2.106) and that the right-hand side is not equal
to Re {EzHy*} when Zy is complex.

2.9 Show that Maxwell’s equations (2,79} and (2.80) have no solution other than a
trivial one when 2 # 0 and the electric and magnetic fields are functions of r only,
i.e., distance from the origin. In other words, show that an electromagnetic wave
with spherical symmetry cannot exist. (Hint: Use Gauss’s and Stoke’s theorems.)



CHAPTER3

WAVEGUIDES

A cylindrical pipe designed to contain one or more propagating electro-
magnetic waves is called a waveguide. We shall discuss the theory of wa\fe-
guides in detail in this chapter. Since waveguides require a treatment quite
different from conventional circuit theory and radically new to some of us,
we shall first introduce the particular case of rectangular waveguides. This
will enable us to become acquainted with new terminology and some
methods we shall use later. Fellowing this will be an introduction to eigen-
value problems using an equation derived in the above discussion. Soluti(?ns
of an eigenvalue problem are called the eigenfunctions, and these ha.ve wide
applications in many branches of physics, particularly. In acoustics and
quantum mechanics. Suppose a function representing a linear ‘phenomfenon
is to be determined, we can express it as a linear combination of eigen-
functions and determine the coefficients using appropriate equations
governing the process. Once this expression is obtained, we interpret Fhe
phenomenon as the superposition of simple phenomena, each corresponding
to an eigenfunction; the methed is called the eigenfunction app‘roach. For
this approach to be useful, it is important to select eigenfunctions whgse
individual behavior is simple and well understood. Therefore, depending
on the problem, a set of eigenfunctions is chosen to satisfy a certain eigen-
value problem closely related to the phenomenon under study. Whe?her. or
not the function te be determined can be expressed as a linear combination
of eigenfunctions thus selected remains to be inlvestig?.tec!. This, of course,
depends on the eigenvalue problem used for their derivation, but whm‘a the
linear combination is possible for any function of interest, the set of eigen-
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functions is said to be complete. If the set does not have this property, the
eigenfunction approach breaks down, even though all the coeflicients could
be determined, since the functions itself cannot be expressed as the linear
combination in the first place, The completeness of eigenfunctions is dis-
cussed, therefore, as thoroughly as possible within the reach of elementary
mathematics. This is followed by discussions on eigenfunctions for wave-
guides, their general theory, waveguide discontinuities, the effect of lossy
walls, and waveguides with inhomogeneous media.

3.1 Perfect Conductors

Although actual conductors are not perfect, we shall, nevertheless, first
study a straight waveguide bounded by a perfect conductor. To prepare for
this discussion, let us consider what a perfect conductor is, A perfect conduc-
tor is an idealized medium within which the electric field is always equal to
zero. A good conductor is generally considered as a medium whose conduc-
tivity o is large. Therefore, it seems appropriate to define a perfect conductor
as a medivm whose conductivity is infinite. The conditions ¢ — oo and
E =0 can be considered equivalent to each other, using the following
reasoning. The power consumed in a volume V inside a conductor is given
by {y 6E? dv. If ¢ increases indefinitely while E remains finite, the power
consumption must approach infinity. However, since any realistic power
source can deliver only a finite amount of power, it seems appropriate to
assume that the condition 6 -0 corresponds to E— 0 in ordinary cases,
Furthermore, as we discussed in Section 2.3, the amplitude of a plane wave
diminishes quickly as it propagates in a conductor, and as ¢ increases, the
attenuation becomes so large that an electromagnetic field inside a good
conductor must become negligibly small. Tn the limit as 6 — o0, the field
must be zero.

Let us consider an interface between a perfect conductor and a medium
with finite values of conductivity, dielectric constant and permeability.
Taking a rectangular path as shown in Fig. 3.1, we integrate both sides of
(2.79) over the area S of the rectangle, By Stokes’s theorem, the left-hand
side can be converted to a line integral around the closed path g-b-c-d;

f E-dlz—jw,uj H:n, ds
abed As

where n, is the unit vector normal to A4S Letting the width & of the rectangle
diminish, only those contributions from ab and cd remain on the left-hand
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Fig. 3.1. Integral contour abcd.

side, while the right-hand side becomes negligibly small since H-n, stays
finite and & approaches zero. Thus, we have

f E-d!+f E-dl=0
b P

Assuming the length A7 of the rectangle is small, this equation can be
rewritten in the form

(E;—E)nxnAdl=—nx(E, —E;)n 41=0

where n is the unit vector normal to the interface, as shown in Fig. 3.1,
and E, is the electric field just outside the conductor and E, just inside the
conductor., The orientation of the rectangle, and hence that of n, is arbitrary
as long as n, lies in the interface. Therefore, from the above equation we
obtain

nx(E, —E;)=0

However, since E; = 0 by the definition of a perfect conductor, the electric
field E, just outside the conductor must satisfy

nxE =0 3.1)

This indicates that the tangential component of an electric field at the
surface of a perfect conductor is zero. Since n x E =0 at the surface, the
the Poynting vector E x H* has no component directed toward the inside
of a perfect conductor, i.e., n-E x H* =0. Therefore, alt of the incident
power is reflected back from the surface and none penctrates the perfect
conductor.

g i

Y
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Let us consider the magnetic field at the interface, It follows from (2.79)
that H is zero inside a perfect conductor since E is equal to zero. If H is
zero, (2.80) shows that not only E but also ¢E is zero inside a perfect
conductor. That is, no conduction current flows inside it even though ¢ is
infinite. However, conduction current can flow at the interface. Let us inte-
grate (2.80) over the rectangular area shown in Fig. 3.1. By Stokes’s theorem
we obtain

—nx(H, —H;)n, 4l = 6E«n  AS =i+n, A4S

where H; is the magnetic field just outside the conductor and H, just inside
it. Since ¢ is infinite, i AS =6E-AS is assumed to be finite in the limit of
& —0. Let us define the surface current density K through

K Ai =1imi 45

50
Since H, is equal to zero, the above equations show that
—nxH, =K (3.2)

The tangential component of E vanishes at the interface; however, that of H
usually does not, and the corresponding surface current flows perpendicular
to it.

3.2 TE,; Mode in Rectangular Waveguides

Let us first consider a straight waveguide with a rectangular cross section
as shown in Fig. 3.2. We choose this particular model because of its practical
value and its simplicity in mathematical treatment. The inside medium is
assumed to be homogeneous and its conductivity equal to zero, Furthermore,
it is assumed that the electric field has y-component (E,)} only, ie.,
E,=E,=0. Under these conditions, Maxwell’s equations become

(8H,joy) — (8H,/6z) = 0 (3.3)
(0H,82) — (0H,{0x) = joeE, (3.4)
(0H,j0x) — (2H,foy) = 0 (3.5)
— (3E,}0z) = — joouH, (3.6)

0 = — jouH, (3.7)

(3E, fox) = — joopH, (3.8)
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Fig. 3.2. Rectangular waveguide.

From (3.7), we obtain H, = 0. Substitution of this result into (3.3) and (3.5)
gives ¢H,jdy = 0H,jdy =0. Since &H,/dy =0, the magnetic field H does
not change in the y-direction. Next, differentiating (3.6) and (3.8) with
respect to z and x, respectively, and substituting the results into (3.4), we
obtain the wave equation for E,,
2 2
%’ + aa;” + o?euE, =0 (3.9)
Thus, the problem is reduced to the solution of this equation under appro-
priate boundary conditions given by E,=0 at x=0 and x=a which
ensure that the tangential field component at the surface of the perfect
conductor is equal to zero. Since E =i ,E, has no tangential components at
y=0 and y=b, the boundary condition there is automatically satisfied.
Once E, is obtained, H, and H, can be calculated from (3.6) and (3.8?,
respectively. Therefore, all the nonzero components of the electromagnetic
field can be determined.
Let us consider particular solutions of (3.9) which vary with z as e™ ™.
Differentiation with respect to z therefore becomes equivalent to the multi-
plication by —y. Thus, the wave equation and the boundary conditions

become

2

G'E
S+l E, =0 (3.10)

E,=0 (x=0,x=a) (3.11)
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Since (3.10) can be considered as an ordinary linear differential equation,
the solutions must be exponential, sine or cosine functions of x. In order to
satisfly the boundary conditions at x =0 and x = g, sin(nnx/a) must be
used where # is an integer. Since (3.10) does not specify variation in the
y-direction, we must take

E, = A, sin(nrx/a) f(y)e™ "

as a trial function for the solution where f(y) is an arbitrary function of y
only. Substituting this expression into (3.6) and (3.8) and remembering that
H has no variation in the y-direction, f{y) is found to be & constant, There-
fore, we have

E, = A,sin(nnx/a) e ™* (3.12)

Substituting this into (3.10), we obtain the necessary and sufficient condition
for (3.12) to be a solution of (3.10), i.e.,

—(nmfa)’ +7° + e =0
or, equivalently,
v =t {(nm/a)’* — w’ep}'? (3.13)

Substituting (3.12) into the original simultaneous equations (3.3) to (3.8),
we find no contradiction regardless of the value of integer » in (3.13). This
shows that E, in (3.12), indeed, gives a solution for Maxwell’s equations
provided that y satisfies (3.13),

Since the simultaneous equations (3.3) to (3.8) together with the boundary
conditions {3.11} are linear, any linear combination of the functions on the
right-hand side of (3.12) with various values of n should also represent a
possible E,. However, let us concentrate on individual terms. For each #,
(3.12) gives a possible configuration of the electric field and hence that of
the electromagnetic field in the waveguide. Such a configuration of the
electromagnetic field is called a mode. For each mode, as w is increased, y
always becomes purely imaginary beyond a particular value w, = (sp)™ /2
(#mja). This indicates that the field as a whole begins to propagate through
the waveguide above the frequency f, = w,/2xn, where f, is called the cutoflf
frequency of the mode. The free space cutoff wavelength, A, corresponding
to £, is given by 2a/n. Below £, v is real, showing that the amplitude of the
electromagnetic field changes exponentially with z, If 2 mode is excited below
the cutoff frequency in a certain section of the waveguide, then the amplitude
cannot increase with distance away from that section. Therefore, the sign of
y must be selected so that the wave amplitude decreases with distance in
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both directions. It becomes positive on the positive side and negative on
the negative side of the source of excitation.

As the frequency is raised, the first mode to start propagating corresponds
to n = 1. In practice, if several modes propagate simultaneously, the behavior
of the waveguide becomes complicated and hard to control. The cross-
sectional dimensions are generally chosen so that the mode corresponding
to n=1 becomes the only propagating mode with the remaining modes in
the cutoff region, Since no z-component (i.c., longitudinal component)
exists in the electric field of the basic mode, it is called a transverse electric
mode or, in short, a TE mode. For n = 1, since the y-directed field intensity
has one maximum in the x-direction and none in y, the subscript 1,0 is
attached, and the mode is identified as the TE,; mode in the rectangular
waveguide. This particular mode is sometimes called a dominant mode since
it can exist when all other modes are in the cutoff condition, and they
become negligibly small beyond a certain distance from their source of
excitation,

The phase constant of the TE,, mode is given by

§ = {wten — (nfa)’}'? = 2007 {1 — (AP} (19)

where y = + j# and (3.13) are used. The corresponding wavelength in the

waveguide becomes
A, =2l =A{l — (WA} 12 (3.15)

When the free space wavelength approaches i, A, becomes longer and at
A=A, it becomes infinite. Beyond 4, the field ceases to propagate.

All the nonzero components of the electromagnetic field are obtained
from (3.12), (3.6) and (3.8). Thus, for the TE,, mode, we have

E.=0
E, = (Ae” /" + B/ sin(nx/a)
E =0

i , . 3.16
H, = —(Z5") (Ae™#%* — Be'*)} sin(nx/a) (3.16)
H,=0

H, = j(n/a) (o) ' (Ae™#* + Be'™) cos(nx/a)
where A and B are constants and
Zy = (ufe)'? {1 = (A2 )*}7172 (3.17)

Let us investigate the field configuration concentrating on the terms with
A only, since the terms with B give identical field configurations except that
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the direction of the propagation is opposite. The field repeats itself with a
period of 4, in the z-direction. In the x-direction, E, shows a sinusoidal
variation with its maximum at the center (x = a/2) of the waveguide while
H, has the same variation except for the opposite sign. On the other hand,
H, is a cosine function of x with its zero at the center and with a phase
differing 90° from E, or H,. Therefore, the electric and magnetic field
configurations must look like those in Figs. 3.3(a) and (b), respectively.

(e} E (b} H
Fig. 3.3. Electric and magnetic fields in waveguide.

The vector H encircles the point where E =0 or, equivalently, where the
displacement current ¢ JE/J¢ becomes maximum. Figure 3.3 shows the
patterns over a half wavelength in the z-direction at a fixed instant of time,
The other half wavelength is identical except for the direction of the arrow-
heads. Those patterns move in the z-direction with time travelling with a
phase velocity v, = w/f.

Let us next consider the surface current on the waveguide wall, from (3.2).
This is perpendicular to the magnetic field and hence should look like Fig.
3.4. If we remember that this pattern moves in the z-direction with time, at a
fixed point on the wall, the surface current changes its magnitude and direc-
tion with time. At the center of the broad surface where x = aj2, the trans-
verse current always remains zero. Therefore, the waveguide can either be
split in two or a longitudinal slot can be cut along the center line without
disturbing the inside fields appreciably.

To excite the TE;, mode, the center conductor of a coaxial line can be
extended into the waveguide in the form of an antenna from the broad
surface while its outer conductor is short-circuited to the wall. A short-
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2P

Fig. 3.4. Surface current on wall.

circuiting plunger is usually inserted in the waveguide behind the antenna
to prevent power going in the other direction. This type of antenna excites a
number of other modes, but if the TE,, mode is the only propagating mode,
this can be launched efficiently by adjusting the size of the antenna as well
as the position of the plunger.

A comparison of E,, — H, in (3.16) with the voitage (1.9) and the current
(1.14) on a transmission line shows that they are identical except for the
factor sin(mx/a). As far as longitudinal variations are concerned, the
electric and magnetic fields vary exactly in the same way as ¥ and Jon a
transmission line with characteristic impedance Z, and phase constant f.
Thus, introducing ¥ and I, we can write the ficlds as follows:

E,= KV sin(rnx/a) (3.18)
— H, = KI sin(nx/{a) (3.19)

where K is a constant. Since the behavior of ¥ and 7 can be studied on the
Smith chart, the variation of E, and — H, in the z-direction can also be inves-
tigated on the same chart. In the theory of transmission lines, the variation
of the impedance Z defined by the ratio of ¥ to / is obtaind from the Smith
chart. The corresponding quantity in the waveguide is the impedance

defined by
= — (E,/H,) (3.20)

The power transmitted in the positive z-direction is given by the real part
of the integration of Poynting vector over the waveguide cross section,

_[E X H*-de:fE,(—H,*)ds

= f {sin(nx/a)}* KK*VI* dS = JabKK*VI*
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where k is a unit vector in the z-direction. If X is defined as
K = Z(ab)""? (3.21)

then the power is given simply by Re{¥VI*} which is equal to the trans-
mission power on the transmission line. It is worth mentioning that (3.21)
is not the only condition for the power to be expressed as Re {V'T*}. Since
the power relation specifies the magnitude of K only, the phase of K is still
arbitrary. This phase is set equal to zero to avoid unnecessary complications.
If V' =nV and I' = Ijn, where n is a positive constant, are substituted into
(3.18) and (3.19), a comparison with (3.16) shows that ¥’ and I represent
the voltage and current on a transmission line with the characteristic
impedance n*Z, and the phase constant . Furthermore, the transmission
power in the waveguide is given by Re {¥"I'"} while the ratio of E, to— H,
is given by Z'/n?, where Z’ is the impedance defined by the ratio of ¥’
and I'. Therefore, ¥’ and I’ can be adopted equally well to represent the
variation of the electric and magnetic fields inside the waveguide. It follows
from this argument that the value of the characteristic impedance of the
transmission line is not uniquely determined for representing the waveguide.
In particular, the characteristic impedance n*Z; can be chosen to be unity
in which case the difference between the normalized impedance and actual
impedance disappears.

Although there is a one-to-one correspondence between the longitudinal
variations of the transverse electric and magnetic fields of one mode in the
waveguide and the variations of the voltage and current on the transmission
line, the phase constant and the characteristic impedance considered above
change with @ quite differently from those of the transmission line discussed
in Section 1.1. There, Z, was independent of @ while § was proportional to
®. Since B given by (3.14) is not proportional to ®, the phase velocity
v, = w/f changes with w. Two waves, one at frequency o and the other at
@ + Aw, have different velocities, When they are superposed, the velocity
of the envelope is, therefore, different from either of their individual phase
velocities. For simplicity, let us consider a superposition of two waves with
the same amplitude. It is given by

Acos(fz —wt) + Acos{(B+ AB) z — (v + dw) 1}
=2Acos{4(4Bz — Aot)) cos{(f+ 1 4B) z — (0 + } Aw) 1}  (3.22)

The first cosine term cos {4(4 z — Adw t}} represents the envelope. Repeating
a discussion similar to the one used for the phase velocity in Section 1.1,
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the velocity of the envelope is found to be Aw/Af. The last cosine term in
(3.22) shows that the wave inside the envelope travels with the mean phase
velocity of the two individual waves. If we illustrate the superposed wave as
shown in Fig. 3.5, the dotted line representing the envelope moves with a
velocity different from that of the solid line representing the detail. If we
watch the space between two adjacent nodes of the envelope, the detailed
wave may appear to be generated at the left-hand side and to propagate
toward the right. At the nodes indicated by A4, and A4, in Fig. 3.5,

-

Fig. 3.5. Superposition of two waves with frequencies o and o + dw.

V and I, and, hence, the electric and magnetic fields are zero. It is, therefore,
unlikely that electromagnetic energy is transferred in either direction across
these points. The energy stored between 4, and A4, must travel with the
same velocity as the envelope and is that carried by the superposition of the
two waves. In the limit when dw—0, the two frequencies coincide with
each other, and the velocity of the envelope becomes

v, = lim (3.23)

=W dp = ap

This is called the group velocity. Since the argument about the velocity of
energy holds regardless of the value of dw, it is considered to be valid in the
limit when Aw — 0. Hence, the group velocity is considered to be the velocity
of energy carried by the electromagnetic wave at frequency w.

Note that the above argument holds only when the system is lossless; if
it is lossy, nodes like the ones shown in Fig. 3.5 may not exist. Even if they
do exist, as Aw approaches zero, the distance between nodes becomes long
and the wave amplitude decreases with distance. In the limiting case in
which de» —0, it disappears before reaching the next node. Therefore, the
above conclusion of energy velocity being equal to the group velocity can no
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longer be reached. In other words, the group velocity defined by (3.23)
generally does not represent the velocity of energy in lossy cases.
For the present waveguide, we have from (3.14)

v, =(0/B) = FA{l — (HL )} P =0 {1 = (YA} (324

d g\’ _
Dy = £ B (Ei%) = (wsp) ™" {@’ep — (nfa)’}'"?
2
Sl - Gy (329
bplt Uy
where
vo = (ep) ™/

As the free space wavelength A approaches 2, the phase velocity v, increases
indefinitely. On the other hand, the group velocity v, always stays below v,
confirming a result of the theory of relativity: The velocity of substance or
energy never exceeds the light velocity. From (3.24) and (3.25), we obtain an
interesting relation between v, and v,,

_ 2
vp0, = vy
This relation holds for lossless waveguides filled with homogeneous media;
however, one should not jump to a quick conclusion that the product of
phase and group velocities is always a constant. Let us assume the product
is constant, then we obtain the relation

v,0, = {(w/f) (dw/df) = const

which gives the solution f= 1(c,w*+¢,;)"/? where ¢; and ¢, are arbitrary
constants. The f# given by (3.14) corresponds to this expression with ¢, =&u
and ¢, = —(nja)’. This result is generally not true; for example, when the
waveguide is lossy, and hence the product of v, and v, is not necessarily a
constant.

Finally, let us consider briefly the effect of discontinuities in the waveguide.
If there is a window in the waveguide as shown in Fig. 3.6, the tangential
electric field must vanish on the conducting walls indicated by the shaded
area. This boundary condition is not generally satisfied by the electro-
magnetic field given in (3.16). Therefore, a number of other modes are
generated to satisfy it when all are added together. Since these additional
modes are usually in the cutoff region, their amplitudes decrease with
distance away from the window, and beyond a certain distance 4, all the
modes except the TE,, mode practically disappear. Let 4 and B in Fig. 3.7
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Fig. 3.6. Inductive window in waveguide,
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Fig. 3.7. Explanation of equivalent circuit of window (a) Waveguide top view;
(b) Equivalent circuit.

be reference planes located as shown. Then as far as the region outside of
A and B is concerned, the waveguide on each side can be represented by a
transmission line corresponding to the TE,, mode. Since both Maxwell's
equations and the boundary conditions are linear, there should be a linear
relation between the E£’s and H’s at A and B and, hence, between the ¥’s
and I’s at the corresponding points on the transmission lines. This is express-
ed by

Vi=2Zy, I + 2,1, Vo=2,,1, +Z,,1,
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where ¥, and V, are the voltages at 4 and B, respectively, and I and I,
are the corresponding currents. Thus, each discontinuity in the waveguide
can be treated as a two-port network inserted in the corresponding trans-
mission line. The coefficient of I, in the first equation and that of I in
the second equation are the same if the circuit is reciprocal. This point will
be explained in Section 5.2 in detail.

When a thin window is placed perpendicular to the waveguide axis as
shown in Fig. 3.6, it is known that the two-port network is equivalent to a
length of transmission line with the same electrical length as the waveguide
between A and B, shunted by a reactance at the position of the window, as
shown in Fig. 3.8. Furthermore, if the window has the shape shown in the

{a)

{p}

D R G —
e s ke =

Fig. 3.8. Equivalent circuit of inductive window (a) Waveguide top view; (by Corre-
sponding equivalent circuit.

figure, the reactance is inductive. This may become plausible if we consider
that the window introduces excess conduction current on the wall and, hence,
increases the magnetic energy stored in its vicinity. A more detailed dis-
cussion will be given in Section 3.7. 1t is worth noting that the above equiva-
lent circuit is valid only when the effect of the window on the region outside
A and B is considered. If the equivalent circuit is used to discuss the region
between 4 and B, wrong conclusions may be reached since the cutoff modes
may not be adequately attenuated. For instance, suppose that an equivalent
circuit of two inductive windows closely spaced to each other is expressed
by two inductances inserted across the transmission line as shown in Fig. 3.9.
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The value of each inductance is not generally equal to the value of the induc-
tance for the same window situated an appreciable distance from other
possible discontinuities. This is due to various interactions between the
cutoff modes excited by the two windows, which do not exist in the case of a
well-separated window,

The parameters of the two-port network Z,,, Z,,, and Z,, can be
obtained by measuring the input impedance at 4 with various [oads
connected to B. The input impedance at 4 can be determined from a Smith
chart, once the standing wave along the transmission line, and hence the
relative magnitude of E, in the waveguide has been measured as a function

{a)

(b}

(I}

Fig. 3.9. Equivalent circuit of closely located inductive windows (a) Waveguide top
view; (b) Corresponding equivalent circuit.

of z. This measurement is generally done using a movable probe inserted
vertically into the waveguide through a longitudinal slot cut along the center
line (x = a/2) of the broad surface. Since the slot does not interrupt the wall
current as explained before, the TE,, mode disturbance is negligible. The
probe couples to E, only, and the output indicates its relative magnitude
when detected and measured on a meter. From this, the standing wave ratio
and the voltage minimum point can be determined, which are sufficient to
obtain the impedance. A slotted waveguide with a movable probe for this
purpose is called a standing wave detector.

The impedances required at B for the above measurement are provided
by a movable short and a matched load. The former consists of a short-

i
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=
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circuiting metal plunger in the waveguide which completely reflects the
incident wave. The position of the plunger and, hence, the phase of the
reflected wave are adjustable, giving any impedance on the periphery of the
Smith chart. The matched load usually consists of a resistive card longitu-
dinally placed in the waveguide which completely absorbs the incident
power, thus giving an impedance corresponding to the center of the Smith
chart, The input end of the card is tapered to a point in order to eliminate
reflections which might be caused by a sudden change in line properties,
This technique of gradually changing line properties is often used to reduce
reflections at discontinuities. That part of the line introduced for this purpose
is called a tapered section.

3.3 Introductory Eigenvalue Problem

In the previous section, the problem of finding possible fields in the wave-
guide was reduced to that of selving the differential Eq. (3.10) under the
boundary conditions (3.11). The constant £k = y* + w?sx had to be deter-
mined in order to make the solution satisfy the boundary conditions at
x=0 and x =a. As illustrated by that example, the problem of solving a
differential equaticn that has a constant to be determined under appropriate
boundary cenditions is called an eigenvalue problem. The solutions are
called the eigenfunctions and the corresponding constant for each eigen-
functions is the eigenvalue. We know by substitution that the eigenfunctions
and eigenvalues of (3.10) and (3.11) are given by

E,, = A,sin(nnxfa), k=17, + w’ep = (nnja)®

respectively. Since eigenvalue problems play an important role in the theory
of waveguides, let us reconsider the same problem using a more general
approach.

The k,?’s take discrete positive values in the above solutions, however, it
is not clear whether or not other solutions exist in which the k,2’s are com-
plex numbers. To investigate this point let E,, be an eigenfunction of (3.10)
and (3.11). By definition, we have

d’E,,
prva +k,E,,=0 (3.26)
E,=0 (x=0,x= a) (3.27)

Since E,, may be a complex function, multiplying (3.26) by its conjugate, we
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obtain
d’E d dE dE¥ dE

gprem o 2prp T (EX ) - yn “5pn

A + K Koy dx\ 77" dx dx dx

+ k,E*E,, =0

Integrating this with respect to x from 0 to @, we have

dE_T dE, *
EX ol 2 dx 4+ k2| |E, dx=0
[ ] - o

where the limits of the integrals are from 0 to @, and [ ]," indicates the differ-
ence of values for the inside function at x=0 and x =4, e.g., [f{x)]o" =
fla) — f(0). Since E,, is equal to zero at x = 0 and x = g, its conjugate is
also zero at these two points, and the first term on the left hand side vanishes
giving a simple expression for k2;

f |dE,fdx|* dx
2 - -
f |E,|* dx

This expression shows that for a nonzero solution E,,, k,” can take neither
negative nor complex values, which is the point we wanted to check. Now
suppose that E,, is a complex function, then since k,2 is real, the real and
imaginary parts of E,, satisfy (3.26), separately. Therefore, each E,, can be
considered as a real function without loss of generality.

To sec why the cigenvalues are discrete, let us next investigate (3.26) and
(3.27) with the restriction that E, is real and k? positive. To satisfy the
boundary condition at x = 0, E, starts from the origin as shown in Fig. 3.10.
The solid and dotted lines illustrate the cases in which E, starts into the
positive or negative direction, respectively at x = 0. Since E, obeys the differ-
ential equation which can be rewritten in the form

1 d’E, 2
T 2
E, dx

k, (3.28)

when E, is positive, a’:"Ey,fa'x2 must be negative, i.e., dE,fdx must decrease
with increasing x. On the other hand, when E, is negative, d>E,/dx? must
be positive and dE,/dx increases with increasing x. Therefore, E, must be a
convex function of x which tends to return to the base line E, = 0. If k% is
small, this tendency to return to the base line is weak resulting in a nonzero
value of E, at x = a, as shown in Fig. 3.10(a). As k2 increases, the curvature
increases and a value of k2 must exist which causes E, to become exactly zero
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Fig. 3.10. Explanation of the existance of discrete eigenvalues.

at x = @, as shown in Fig. 3.10(b). This value of k? gives the first cigenvalue
k,%. The corresponding function E, is the first eigenfunction E,,. If k?
increases further, E, crosses the baseline and overswings at x = a, as shown
in Fig, 3.10(c). Therefore, such a value of k? cannot be an eigenvalue since
the boundary condition is not satisfied, but when k2 increases further, another
value occurs which causes E, to return to the baseline exactly at x=a.
This is shown in Fig. 3.10(d). The corresponding k* and E, are the second
eigenvalue k,? and eigenfunction E,,, respectively. In this way, k* can take
only discrete values for E, to satisfy the differential equation and the
boundary conditions.

There is an important relation known as the orthogonality between any
two different eigenfunctions having different eigenvalues and is given by

f EpEpmdx=0  (n#m) (3.29)



102 3. WAVEGUIDES

where the integral is from x = 0 to x = a. The word orthogonality is employed
here because of a similarity between (3.29) and the orthogonal relation
between two vectors,

A'B=AB,+AB,+ A,B,=0

A function defined over a finite interval can be represented conceptionally
by a vector in an infinite dimensional abstract space whose components give
the values of the function at each point in the interval. The scalar product
between two such vectors can be expressed as the infinite summation of the
products of corresponding components, which is proportional to the integral
of the product of the corresponding functions, Therefore, the orthogonal
relation is given by equating the integral to zero which is essentially done
in (3.29). There is another reason for this terminology related to power
which we shall discuss shortly.

The proof for (3.29) is as follows. Since £, is an eigenfunction, it satisfies

d°E

W;’" + k, Ey,, =0 (3.30)

Multiplying (3.26) and (3.30) by E,,, and E,,,
their difference from x =0 to a, we have

d’E,, d’E,
J.(Eym *d?’ ~En— )d x + (k,* — Z)J'Ey,,Ey,,, dx=0 (3.31)

respectively, and integrating

The first integral on the left-hand side can be transformed to
d dE dE,,, dE d dE dE . dE
7 E ” J ym yn _ _ E ﬂ _ n ym d
J{dx( Y a’x) dx dx} {dx( ™ odx ) dx dx } *
d dE, dE dE dE, |*
=|—\E.—"-E,—2")dx=|E,—— —E,—"
dx dx dx dx dx |,

Since both E,, and E,,, become zero at x =0 and x = g, this is equal to zero
and (3.31) reduces to

k.2 f E,E,dx=0 (3.32)

(k,* — k) does not vanish by hypothesis, and hence (3.32) is equivalent
to the orthogonality relation (3.29) which we wished to prove.
In our case, the eigenfunctions are sinsoidal and (3.29) corresponds to a
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well-known formula
f sin(nrxfa)sin(mnxfa)dx =0  (n# m) (3.33)
0

This can be proved without relying on the above derivation as follows:

ZJsinEsinnﬂcdx =f{cosm - cos(n—i—m)rrx} dx

aq a a a

- [(n e i ] - [(n by - L] =0

In order to see the physical meaning of the orthogonality, let us calculate
transmission power due to the superposition of two modes, # and m. From
(3.6), the value of H, corresponding to £, = A,E,, is given by

Hx =" (Jwﬂ)fl AnEyn

Similarly, when E,=A_E, then H,=—y,(jou) ' A4,E,,. The super-
position of these two modes gives

Ey = (AnEyn + AmEym) H Hx = (jw#)_ ! (An?nEyn + Am?mEym)

The power in the z-direction is given by the integral of the Poynting vector
over the cross section of the waveguide, i.e.,

Re j E x H* .k dS =Re ff E(—HY dxdy
= Re ff (A,E,, + AgE,,) (— jou) ' (A9 E,, + A,*y,."E,.) dx dy
- Re{(ﬂwu)‘l [J 0408 + a8 5,
+ ApA 9, EyEpn + | Al 7 EL,) dx d y}

Since the integral of E, E,,, with respect to x vanishes from the orthogonality
relation, the above expression reduces to

Re {(—jwu)" _” (1 4uf* YuTEpy + [Apl” v EDy) dx dy} =P, + P,

where P, and P, arc the transmission powers of the individual modes » and
m, respectively. From this, we conclude that when the orthogonality
relation (3.29) holds, the total transmission power is equal to the summation
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of the powers transmitted separately by each mode. Referring to the dis-
cussion on the superposition of powers in Section 2.3, the above two modes
n and m can be said to be orthogonal to each other, which is another reason
for calling (3.29) the orthogonality relation.

Let us introduce an expression k?(E,) given by

; f (dE,/dx)* dx — 2 [E,(dE,/dx)1}
K*(E,) =
f E} dx

where E, is restricted to be real and the integrals apply to the interval from
x =0 to x =a. For k*(E,), the value is specified when a function of x, E,,
is given while the value of a function of x is specified when x is given. In
general, a quantity whose value is fixed when a function is given is called
a functional. Thus, £*(E,) is a functional of E,.

Let k% and k*+ Ak* be values of k*(E,) corresponding to E, and
E, + AE,, respectively, where AE, is a small change from E,. Since k* + Ak®
is given by the right-hand side of (3.34) when E, is replaced everywhere by
E,+ AE,, we have

(3.34)

(k* + 4k?) J‘ (E, + 4E,)* dx = f {d(E, + AE)dx}* dx
—2[(E, + 4E,) {d(E, + AE,)/dx}];

where both sides have been multiplied by the denominator. Neglecting
higher order terms of the small quantities Ak* and AE,, the above equation
reduces to

szEf dx+2k2fAEy'E, dx+Ak2ny2 dx
dE)\® d AE, dE dE, T
=|{- ) dx+2 Y.~ ldx-2|E, -2
f(dx) * J.( dx dx) * l: ’ dx]0

d AE} dE, T’
-2 [E, ”] -2 [AEy —’] (3.35)

dx |y dx |y

It is worth mentioning that d AE,/dx is also assumed to be small and its
higher order terms are neglected in the above reduction. This assumption
imposes a rather stringent requirement on possible AE,’s; namely, when
AE, is said to be small in the following discussion, it means that not only
the value of AE, itseif but also its derivative is small.
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The first term on the left hand side of (3.35) cancels with the first and the
third terms on the right-hand side because of (3.34). The second term on the
right-hand side can be rewritten in the form

d dE d’E dE T d’E
2|{--{4E, =2 ) — 4E,—Fydx=2|4E,—2| —2 | 4E,—dx
dx dx dx dx |o dx

Therefore, (3.35) becomes

&I’E, ., d AE, T 5 ,
2| 4E, i + k’E, ) dx + 2| E, y +4k* | E2dx =0 (3.36)

X o

If E, happens to be one of the eigenfunctions, say E,,, the value of the
expression k%(E,) given by (3.34) is equal to the corresponding eigenvalue
k,? as we can see from (3.27) and (3.28). In this case, since E,, satisfies both
the differential equation and the boundary conditions, the first and second
terms on the left-hand side of (3.36) vanish, and the first order variation
Ak* of k*(E,) due to a small variation AE, from E,, is thus equal to zero.
That is, if a trial function E, which is slightly different from a true eigen-
function is inserted in the expression k*(E,), it gives an approximate value
for the eigenvalue which is accurate up to the first order term of the difference
AE,. Conversely, if the first order variation 4k* is kept equal to zero for any
small variation 4E, from a function E,, then this function E, is an eigen-
function for the following reason. Suppose (3.26) is not satistied somewhere
in the region under consideration, then AE, can be chosen in such a way
that it has the same sign as that of d*E,/dx* + k*E, everywhere, provided
the latter is not equal to zero. At the same time, 4 AE,/dx can be chosen
to be equal to zero at x =0 and x =qa. Therefore, for this AE,, the first
term on the left-hand side of (3.36) becomes positive, the second term is
zero and Ak? cannot be equal to zero. If, on the other hand, the differential
equation is satisfied but the boundary condition at x=0 or x =g is not
satisfied, the sign of d AE, /dx can be made the same as that of E, at the
boundary, giving nonzero Ak? again.

It follows from the above discussion that the following two statements
are equivalent: (a) The first order variation Ak?* of k*(E,) is equal to zero
for arbitrary AE’s whose values and derivatives are small; and (b) E, is an
eigenfunction. In other words, the eigenvalue problem is equivalent to that
of finding E,’s which give stationary values of &*(E,) with respect to small
variations in E,. Such a functional &% (£.) is called the variational expression
for the eigenvalues.



106 3. WAVEGUIDES

Since k*(E,)=0 for all functions satisfying the boundary conditions
(3.27), there must be a function which minimizes k*(E,). Let E,; be this
function, then, for any small variation AE, satisfying the same boundary
conditions, the first order variation Ak* from k*(E,,) is equal to zero.
Since the second and third terms on the left-hand side of {3.36) are zero,
E,; must satisfy the differential equation. Otherwise, if the first term is made
positive by choosing the sign of 4E, to be the same as that of (d2E,, /dx?) +
+ szyl everywhere, then a contradiction is obtained. From this, it follows
that E,, thus chosen is an eigenfunction. Next, let £, be a function which
satisfies the boundary conditions and at the same time minimizes k*(E,)
with the additional condition that it is orthogonal to E;. Then, for any small
AE, satisfying the boundary conditions, Ak? is again found to be zero as
follows. Since an arbitrary function F can be written in the form

JF-EN dx fF~Ey, dx

W +| F—E,; —

fEf,, dx f EZ, dx
where the first term is proportional to E,; and the second term is orthogonal
to E,, AE, can be decomposed into two parts, one proportional to E,;
and the other orthogonal. From the definition of E,,, it is obvious that Ak?
corresponding to that part of AE, orthogonal to E,,; always vanishes. Let us,
therefore, consider Ak* corresponding to the part of AL, proportional to
E,;. We have

d’E,,
j En ( ot kzzEﬂ) o

d dE dE d*E
- J {E (EM T;z —E,, —d;‘) +E, ( dx;” + kzzEﬂ)} dx

dE,, dE,, T
- [Ey, —d; —E, T; ]0 + (ky? — k%) IENEy2 dx

F=E

in which the first and second terms on the right-hand side disappear because
of the boundary conditions for E,; and E,, and the orthogonality relation, re-
spectively. Consequently, the first term on the left-hand side of (3.36) becomes
zero for AE, proportional to E,;. The second term is zero from the boundary
conditions for E,,, thus leading to the conclusions that Ak?, corresponding
to the part of AE, proportional to E,,, is equal to zero. Therefore, Ak*> =0
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for any small AE, satisfying the boundary conditions. Applying the same
argument used for E,;, E,; is found to be another eigenfunction. Similarly,
let E,; be a function which satisfies the boundary conditions and minimizes
k*(E,} under two additional conditions of being orthogonal to E,; and
E,,. An argument similar to the above shows that £, is also an cigen-
function. In this way, adding the orthogonality conditions one by one, one
can find an infinite series of eigenfunctions F,,, K ,,... with the corre-
sponding eigenvalues satisfying 0 <k,* <k, <..., and &,% thus obtained
increases indefinitely with », i.e.,

lim k,> =0

n—oo
A proof as to why k,? increases with » which can be generalized to two
and three dimensional cases will be given in Appendix I,

If we now assume the infinite growth of the eigenvalues, one of the most
important properties of the set of eigenfunctions, called the completeness,
can be derived as follows, Since an eigenfunction multiplied by a constant
is still an eigenfunction with the same eigenvalue, let us first normalize every
eigenfunction by multiplying with a proper constant, ie., for every E,,
the relation

f El, dx =1 (3.37)

is assumed to hold. In our case, E,, =./2 a™'/? sin{nnx/a) is the appropriate
form of normalized eigenfunctions. For convenience, let us call a function
piecewise-continuous when it is continuous except at a finite number of
points in the domain of interest, i.e., in the interval from x=0to x=ga
in the present case. We shall also call it square-integrable when the integral
of its square exists over the same domain. Let a function f satisfying the
boundary conditions have a square-integrable derivative, but otherwise, be
arbitrary, We define £y by

N—1 .
fN = f - Z AnE_vn (338)
n=1
where
A, = ff Ky, dx {3.39)
Also, let ay® be given by
ay’ = J' it dx (3.40)
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From (3.38) and (3.39), using the orthogonality and normalization condi-
tions, we have

a' = [ (f ~ T 4B, dx

- f (fP—2Y AfE, +Y ACE,)dx = ffz dx — NE_I A2 (34D
n=0

From the definitions of f and a,, we obtain

J‘ (Fylay)* dx =1 (3.42)

and

f (fulay) E,ndx =0  (n<N) (3.43)
Since fy/ay is orthogonal to E, (n < N)and satisfies the boundary conditions,
k*(fy/ay) cannot be less than k2. This is due to the fact that E,y minimizes
k%*(E,) to ky? while at the same time it satisfies the boundary conditions

and is orthogonal to each E,, for which # < N. The denominator of k%( fy/ay)
is unity from (3.42), and hence we have

(o) () o= (- Lz o
e {&) 2L Q) e
EICR R s
2
e RSN
o[ (&) emarf +ai Z
=&% (‘-‘Z) x—*z Ak} (3.44)

where the boundary conditions, {3.39) and the orthogonality conditions are
used. Noting that the second term on the lefthand side of the inequality is
positive, we have

-2 f (df Jdx)* dx > ky?

o R

§ Ko it b i 1
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or equivalently,
v <kt [ (afia? dx

It follows from this that

lim ay” =0

N—=w
since [(df/dx)* dx has a finite value and k® increases indefinitely with N.
From the definition of ay, the above equation is equivalent to

N-1 2
lim ( -3 A,,Ey,,) dx =10 (3.45)
N—o+wx =1

This means that an arbitrary function f which satisfies the boundary condi-
tions and has a square-integrable derivative can be expanded in terms of the
E,’s which implies that the integral of the square of the difference between
Sfand } A,E,, converges to zero.

Let F be an arbitrary function which is square integrable and piece-wise-
continuons. Then F can be approximated by a function f which satisfies the
boundary conditions and whose derivative is square-integrable, as shown
in Fig. 3.11, so as to satisfy

f(F—f)z dx < ¢4

where ¢ is a fixed, but arbitrarily small, positive value, On the other hand,
from (3.45)

f (f — 1:;1 A,,Ey,,)2 dx < ef4

Fig. 3.11. Approximation of a discontinuous function by a continuous function with
square-integrable derivative.
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for a sufficiently large N. Therefore, we have
N-1 2

f(F - A,,Ey,,) dx = f(F—f +f -Y 4,E,) dx
n=1

g2f(F-f)2dx+2J‘(f—ZA,,Ey")z dx<¢

where use is made of the relation (2) in Appendix I. Since ¢ is arbitrary, the
above relation shows that a piecewise continuous and square-integrable, but
otherwise arbitrary, function F can be expanded in terms of the E,,’s:

N-1 2
lim (F— y A,,Ey,,) dx =0 (3.46)
N-ow n=1

This property of the E,’s is called the completeness. The above relation is
usually written in the form

F=13} Ak, (3.47)

n=1

where

A, = f F-E,, dx (3.48)
0

The reason that (3.39) can be rewritten in the form of (3.48) is easily seen
from the following:

{J‘F-Ey,, dx — J‘f-Ey,, dx}2=U(F—f)-EM dx}z
sf(F—f)defE;,dxsam

where use is made of (1) in Appendix I and the normalization condition
for E_,.

In the present case of the eigenvalue problem under consideration (3.26)
and (3.27), the E,’s are sinusoidal functions and (3.47) is the Fourier
expansion of F:

F=7% A,J2a " sin(nnx/a)
=1
where

A, = f F-\/2 a” "*sin(nnx/a) dx
0

Although we wrote (3.47) in the form of an ordinary equation, the real
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meaning of the equality is given by (3.46) in which the equality does not
mean that the value of the left-hand side of (3.47) is equal to the value of the
right at each point in the domain of interest. For instance, it is well known
that the Fourier expansion gives the mean value at each discontinuity point,
This restriction does not bother us, however, since any measured value of a
physical quantity at a point is actually the average over a certain region in the
vicinity of that point. It is immaterial what value is given by the functions
at each point as long as the average value over a neighborhood stays the
same, In this sense, both sides of (3.47) are equal.

With this understanding of the meaning of the equality, let us next study
how to use it. Let the expansion of F and G be given by A,E,, and
Y B,E,,, respectively. If F and G are equal in the sense that [(F— G)? dx =0,
then A4, = B, for each n. The proof is as follows. For a given ¢ no matter how
small it may be, the following inequality can be satisfied with a sufficient
large N where Lemma 2 in Appendix I is used twice for the second inequality.

N—1 N—1 2
f ( S AE, - Y B,,E,,,,) dx
n=1 =1
gf(F—G+ZA,,Ey,,—F+G—ZB,Eyn)zdx

sZJ.(F-G)de+4J.(F—ZA,,Ey,,)Zdx+4f(G—ZB,,EJ,,,)de

&

N

However, the left-hand side is equal to Y .=/ (4, — B,)* because of the
orthogonality between the E,,’s. It follows from this that 4, = B, for each n,
otherwise &£ cannot be arbitrarily small, Conversely, if 4, = B, for every »,

f (F— G) dx = f (F—% A,E,. + Y B,E,, — G dx

€2 f (F— E A,,E},,,)2 dx + 2 f (G - z JB,,E),,,)2 dx
L&

Therefore =G in the sense that [(F — G)? dx=0. The same conclusion
can be obtained by a slightly less rigorous but more popular method.
Disregarding the real meaning of the equality between series expansions,
first equate the two expansion forms as ) A.E,,=3% B,E,, next multiply
both sides by E,, and integrate with respect to x over the domain of interest
from x =0 to x = . We are then left with only one term, A, = B,, because
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of the orthogonality of the E,,’s. Conversely, if A, = B, for every n, obviously

n-1 Ay, =YN_| B.E, for all N, which means F=G.
Another interesting formula is given by

f F-Gdx=Y A,B, (3.49)
n=1

To prove this, let us calculate the square of

N—-1 N—-1
f (F— ¥ A,,E,,,,) (G _y B,,Ey,,) dx
n=1 n=
The result is I

{ JF-TaE)G-38E,) dx}z
={f F-deuZAnfG-Ey,,dx—ZB,,"‘F'E,,,.dx+ZA..B,.}2

=UF-G dx —ZA,,B,,}Z

However, because of Lemma 1 in Appendix I, the left-hand side is smaller

than
N—-1 2 N-1 2
J-(F - ZI A,,Ey,,) dx- f (G -3 B,,Ey,,) dx
n= n=1

which can be made arbitrarily small. Thus, for a given ¢ > 0, no matter how

small it may be,
N-1 2
{fF-de—- y A,,B,,} <e
n=1

This inequality can be satisfied by making N sufficiently large, which is
equivalent to the desired formula (3.49). In particular, when F = G, we have

szdx= Yy 4,7

n=1

The same conclusion can be obtained by the following less rigorous method :

f F-Gdx=| Y AE, Y BE,dx=Y A,B,
n=1 n=1 n=1

where the orthogonality and normalization conditions between the E,’s
are used.

Finally, it is worth mentioning that, when F is complex, the real and imag-

g
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inary parts can be expanded separately and then added together to obtain
exactly the same formula as (3.47) and (3.48). In this case, (3.46) is replaced
by 5

dx =0

oo

N—-1
lim f 11: - > AE,
n=1

Similarly, (3.49) holds even if F and G are complex.

3.4 Eigenfunctions for Waveguides

In Section 3.2, we investigated properties of electromagnetic waves in
rectangular waveguides, assuming that the fields varied exponentially in the
longitudinal direction and that E, was the only nonzero component of the
electric field. In this section, eliminating the second assumption, we shall
set up an eigenvalue problem for the transverse electric field in a straight
waveguide with arbitrary cross section. The solutions of this problem play
an important role in the theory of waveguides to be discussed in the next
section.

Because of the particular geometry of a waveguide extended in one
direction, for example in the z-direction, and limited in other directions, it
is convenient to first separate the fields into their longitudinal and trans-
verse components:

E=(E,+kE)e ™ (3.50)
H=(H +kH)e ™ (3.51)

where the exponential variation with respect to z is written explicitly so that
E, H,, E,, and H, become independent of z. Vector k is a unit vector in the
z direction while E, H, are the transverse components of the electric and
magnetic fields, respectively.

Let us substitute (3.50) and (3.51) into Maxwell’s equations

V x H=joeE (3.52)
VxE=—jouH (3.53)
where ¢ is assumed to be zero. First, substituting into (3.52), we have
Vx(H, +kH)e " = jwe(E, + kE,} e (3.54)
The left-hand side of (3.54) consists of two terms,

VxHe ¥=¢"VxH +Ve ™ xH,
=e "V xH, —kye ” x H, (3.55)
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VxkHe " =e ”VH, xk+ Ve x kH,
=—¢ Yk x VH, — kye™ " x kH, (3.56)
where the ordinary rule for differentiating a product of functions is used.
The second term on the right-hand side of (3,55) and the first term on the
right-hand side of (3.56) are both perpendicular to k. The second term on the

right-hand side of (3.56) is equal to zero because of its form k x k. In order
to find the direction of V x H,, let us consider

kx{(VxH)=V(k-H)-(k-V)H,

Since H, has no k component, the first term on the right-hand side is equal
to zero, Because H, is independent of z and k-V = 8/dz, the second term
also vanishes. Thus, k x (V x H,) is found to be zero from which we can
conclude that V x H; is parallel to k and the first term on the right-hand
side of (3.55) gives the k-component only, Equation (3.54) can now be
decomposed into two equations, one for the k-component and the other
for the transverse component:

V x H, = jwekE, (3.57)
vk x H, + k x VH_ = — jweF, (3.58)
Similarly, from (3.53) we have two equations
¥ x E, = — joukH, (3.59)
yk x E, + k x VE, = jouH, (3.60)
Next, applying V- to (3.52), we obtain
V:E=0

since V-V x is always equal to zero. A substitution of (3.50) into this
equation gives
e (V.E,+ V.kE_)+ (E, + kE)-Ve " =0

Since E, is independent of z and V.k = 2/0z, V-kE_ is therefore equal to
zero. In addition Ve™ 7% is equal to k(— y) e~ ", and since E, is perpendicular
to k, E,«Ve™ " also vanishes, Thus, we are left with

V-E =3E, (3.61)
Similarly, we have from V. (3.53)
V-H, =yH, (3.62)

ENRC N
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We shall now try to obtain an equation for E, alone by eliminating H,, H,,
and E, from the above equations. First, calculate V x (3.59):

VxVxE =—jouV xkH,
= jouk x VH,

Using (3.58), the above equation is shown to be equivalent to
V x Vx E, — w?euE, = — jouyk x H, (3.63)
Subtracting ¥ (3.61) from (3.63), we have
VxVxE —VV-E, — ok, =—jouyk x H,—yVE,  (3.64)

However, 7k x (3.60) gives

vk x k x E, + yk x k x VE_ = jopyk x H,
which can be rewritten as follows using (2.14) and the fact that E, and VE,
are both perpendicular to k.

—y’E; —y VE, = jouyk x H,

Substituting this into (3.64), the desired equation for E, is obtained:

VxVxE —VV.-E,—KE=0 (inS) (3.65)
where S is the waveguide cross section and

k% = wleu +7° (3.66)

There are two boundary conditions: On the waveguide wall, the tangential
component of E, must vanish, i.e., nx E, =0, and, in addition, E, has to
be zero, ie., V-E, =0 from (3.61). Thus, the problem is reduced to an
eigenvalue problem of solving (3.65) under the boundary conditions

nx E =0, V.-E,=0 (onl) (3.67)

where L indicates the waveguide wall and n is the outer normal unit vector.
Once E, is obtained, E, can be calculated from (3.61), H, from (3.59), and
H, from (3.60).

Following the procedure employed in the previous section, et us now
study the eigenvalue problem for E,. We shall prove that the eigenvalues
are real and nonnegative (zero or positive). Multiplying

VxVxE,—VV-E,—k’E,=0 (3.68)
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by Ef - and integrating the result over S, we have
f {E}.VxVxE,—E.-VV.E, — k,’E}-E,} dS

— [V X ED-(9 X B) + (V-E) (V-B) — KBS} dS
=0

where the formula for integration by parts and the boundary conditions are
used. From the above equation, we obtain

f {IV x Ey* + |V -E,|?} S
2 —_—

f |E,}1* dS

k

(3.69)

which indicates that k,? is real and nonnegative. Since k,? is real, the same
argument used in Section 3.3 shows that all the eigenfunction E,’s can be
assumed to be real without the loss of generality. In order to show the
orthogonality between the E,’s, let us next multiply (3.68) by E,,- and
subtract this same expression with the subscripts m and #» interchanged.
If the result is integrated over S and the formula for integrating by parts is
used together with the boundary conditions, we obtain

(62 = k) [ BB ds =0
It follows from this that the orthogonality relation

f E,-E,dS=0 (n#m) (3.70)

holds between any two eigenfunctions with different eigenvalues.
Inspection of the variational expression (3.34) and a comparison of it
with (3.28) and (3.69) suggests that

f{(v xE,)Z+(V-E,)2}dS—-2§;an,-VxE,dl

f EZ dS

may be an appropriate variational expression for the present eigenvalue

K(E)= (3.71)
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problem, where § dl indicates the contour integral along the boundary L.
To verify this, let 6k be a first order variation corresponding to oK, a small
variation from E,. When 6E, is said to be small, it means that in addition
to the magnitude of 8E,, the magnitude of the derivatives V -0E, and ¥ x 3E,
are assumed to be small as before. Neglecting the higher order terms, we
have from (3.71)

k? f EdS + 2k* f E,-JE, dS + 8k* j EZ’ dS
= f{(v x E) +(V-E)’}dS + ZJ‘{V %X E,-V x 6E, + V-EV:5E} dS
—2§ nxE :VXE +nxdE-VxE +nxE-Vx SE}dl  (3.72)
Using (3.71) and the formula for integration by parts, (3.72) reduces to
ok* f EZdS=2 J SE,«(V x V x E, — VV-E, — K’E,) dS
+2 E[) {(n+SE)(V-E)—nxE-Vx3E}dl (373

1t follows from (3.73) that if E, is an eigenfunction, the first order variation
5k? corresponding to any small 8E, vanishes. Conversely, if 8k? is equal to
zero for every possible small variation 0K, from E, E, is an eigenfunction
for the following reasons.

(i) If the differential equation is not satisfied somewhere in §, dE, can
be made parallel toV x V x E, — VV<E, — kK’E, and bothn-JE, and V x o,
can be made equal to zero on L. Why V x SE, can be made zero whenn -8, =0
will be seen if we write V x 8K, in the form i, {(& 0E,/on}~(@ OE,[d,)}, where
8E, and SE, are the normal and tangential components of JE,, respectively.

(ii) If the differential equation is satisfied but the boundary condition
V.E, =0 is not, then n.8E, can be made to have the same sign as V-E,
along L and V x JE, can be made to vanish on L.

(iii) Tf the differential equation and the boundary condition V-E, =0
are satisfied but n x E, = 0 is not, then V x SE, can be chosen so as to have
the same sign as nx E, on L. In every case, &k? takes a nonzerc value,
Thus, we conclude that (3.71) is indeed a variational expression for k2.

Once the variational expression is obtained we can derive an infinite
series of eigenfunctions conceptionally as we did before. Let us consider a set
of all functions which are real and which satisfy the boundary conditions.
Among them, let E,, be a function which minimizes k*(E,), then, E,, is an
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eigenfunction with the smallest eigenvalue k,?>>0. Next, let E, be a
function which minimizes k?(E,) with the additional condition that it is
orthogonal to E,,. Then, E,, is another eigenfunction with k,* = k2. In
this way, adding orthogonality conditions one by one, a series of eigen-
functions E,(, E,», E,5,... can be obtained. The corresponding eigenvalues
satisfy the relation 0 < k,2 < k,% <k,;*... . Note that the E,,’s thus obtained
satisfy (3.70) even if k,® = k,* as long as n# m. A proof will be given in
Appendix I to show that k,” increases indefinitely with n, i.e.,lim, , , k,* = co.

Let us next prove the completeness of the set of eigenfunctions assuming
the infinite growth of the eigenvalues. To do so, we first normalize all the
eigenfunctions, i.e.,

f E,dS=1 (3.74)

Let f be an arbitrary function which satisfies the boundary conditions and
has derivatives V-f and V x f which are square-integrable over S. We
define £ by

fy=1— Nil AE, (3.79)
where "
A, = f I-E,dS (3.76)
and a,?% by
ay’ = ijz 48 (3.77)

Using the orthogonality and normalization conditions for the E,’s, (3.77)
can be written in the form

N-1
ay’ = f (f~Y AE,) dS= sz as— 3% 47 (3.78)
n=1

From the definition of f, fy/ay is orthogonal to all the E,’s for which # is
smaller than N, 1.e.,

f (fy/an)-E,dS=0 (n<N) (3.79)

Since E,y gives the smallest value ky* of k*(E) under the same ortho-
gonality and boundary conditions as for fy/ay. k*(fy/ay) cannot be less
than k,2 Noting that fy/ay is normalized by definition, we calcuiate

AL S
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k*(fy/ay) as follows:
K (fylan) = ai® [ (7 % )" +(V-1)°} ds

=ay’ f {(VxI—-VxYAE,) +{(V-i—-V.Y AE,)}dS

= a? [V X0 + (V07 - 2L A {V-(Ex V xE,)

+f.VxVxE,}—2Y 4,{V-(IV-E,) —{-VV.E,}
+YY A, A, (Ve (B x VX Ep) + E,eV x V x Ey}
+YY 4,4,{V-(E,V-E,) —E,-VV.E,}] dS

=ay’ f {V x£)* + (V) —2Y A f-k°E,
+ 2% ApAnEin K By} dS

1 N-1
=a§2j{(fo)2+(V-f)2} as— 5 ¥ A%k}
Ay n=1

where the boundary, orthogonality and normalization conditions are used.
Noting that this has to be larger than k,? and that the last term is positive,
we have

i [ {9 x 1 + (V1) dS > ky?
which is equivalent to

ay’ < kg’ f {(V x £)* +(V-£°} dS (3.80)

Since the integral is finite and k” increases indefinitely, ay® approaches
zero with increasing N. From the definition of ay, we have

N-1 2
lim (f— y A,,E,,,) ds=0 (3.81)
n=1

N-w

which shows that f can be expanded in terms of the eigenfunctions.

Let us call a function defined over a two-dimensional domain piecewise-
continuous when it is continuous in the domain except along a finite number
of lines each having a finite length. Let F be a piecewise-continuous and
square-integrable function defined in §, the cross section of the waveguide.
The function F does not have to satisfy the boundary conditions, but it can
be approximated by a function f, which satisfies the boundary conditions
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and has square-integrable derivatives, in the sense that
f (F —1)* dS < ¢/4 (3.82)

where ¢ is an. arbitrary small positive number. This is possible because a
continuous function f can be constructed in such a way that fis equal to F
outside S(e) while both its magnitude and direction continuously change
inside S(e), where S(¢) indicates the small area which completely contains
the lines of discontinuity of F. It is always possible, therefore, to satisfy
(3.82) by making S(e) sufficiently small. Once, (3.82) is obtained, an argu-
ment similar to the one used in the previous section to obtain (3.46) shows
that
N-1 2

lim (F -y A,,E,,,) ds=0

N-oo =1
and the E,’s are complete. In other words, F can be expanded in terms of
the E,’s:

F= Z AE, (3.83)
where

A, = f F-E,, dS (3.84)

LetF=3%",4E, and G=3 7., BE,. IfFis equal to G in the sense that
{(F—G)* dS =0, then A, = B, for each n and vice versa. Furthermore,

f F-GdS= ) A,B, (3.85)
n=1

The proofs for these assertion are almost identical with those for the one-

dimensional case.

Now consider F x k. Since it satisfies the conditions for the expansion
to be possible, we have

Fxk=) E,,,fok-E,,,dS
n=1
After multiplying both sides by k x, a little manipulation yields:

kxE,,,fF-kxE,,,dS

Pl IR et e i

&
4
Ed
*
A
5

3.4. Eigenfunctions for Waveguides 121
This means that F can be expanded in terms of the k x E,’s:

F = Z Bk x E, (3.86)
=1
where

B, = J F.k x E, dS (3.87)

Either (3.83) or (3.86) can be used equally for the expansion of F; however,
if nx Fis small on L, (3.83) is more suitable since the convergence of
the serigs is generally better. On the other hand, if a-F is small on L, since
n-kxE,=—k-nxE,=0, k x E,, satisfies a condition similar to that for
F and (3.86) then becomes the first choice. Although there is no general proof
for the somewhat ambiguous statement above, the situation may become
plausible if we consider the following extreme case. If E,; is expanded in
terms of the E,’s, only one term is necessary. On the other hand if the
k x E,’s are used, since the tangential component of each k x E,, on L does
not vanish, a large number of terms are necessary to resemble E,; whose
tangential component on L is zero.

When F is complex, the real and imaginary parts can be expanded
separately and then added together to obtain the same formulas as (3.83)
and (3.86).

Each eigenfunction E,, belongs to one of the following four groups, since
they exhaust all possible combinations.

I. VxE,=0, V.E,=0
II. VxE,#0, V-E,=0
Il. VxE,=0, V.E,#0
IV. VxE,#0, V.E_ %0

Our next task is to show the following: A complete set of eigenfunctions can
be derived such that each function in the set belongs to any one of the first
three groups.

Using E,, belonging to group IV, we can define two new functions,
E/ =AVxV¥xE,, E/ = BYV-E,

where 4 and B are normalizing constants for E, and E,”, respectively
E,, can be rewritten in the form

E, = k; > {(1/A)E/ - (1/B) E]} (3.88)
where use is made of (3.68). Since £,2 # 0 from (3.69), (3.88) shows that
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E,, can be expressed as a linear combination of E, and E,” in which neither
E, nor E,” vanishes. If E,” is equal to zero, we have V x E,, = 0 from (3.88)
contradicting the assumption that E,, belongs to group 1V (V x E,” is equal
to zero due to its form, a constant times V x V(V.E,)). Similarly, if E,” is
equal to zero, V-E, becomes zero contradicting the same assumption.
Substituting E,” into ¥V x V x (3.68), we obtain

VxVxE —kE =0

Since V-E, is equal to zero from the definition of E/, VV-E, can be added
to the left-hand side without changing the value, ie.,

VxVxE —VV.-E —Kk’E' =0 (inS)

which is exactly the same differential equation as (3.65). Next, n x E,” can
be calculated from (3.68) as follows.

an;w_—AnxvaxEm=AnX kanm-FAﬂXV(V'Em)

The first term on the right-hand side is zero because of the boundary
condition for E,,. Except for a constant factor, the second term can be
rewritten in the form

nx V(V.E,) =n x {n(é/on) + 1{8jo])} (V-E,)
—n x 1{o(V +E,)/ol}

However, since V-E, is equal to zero along L, the derivative with respect
to [ also must be equal to zero, and as a result, we have n x E/ = 0. Since
V.E, is always equal to zero from the definition of E,', E; satisfies

nxE' =0, V:E/=0 (onL)

which give the same boundary condition as (3.67). From these observations,
we conclude that E, is an eigenfunction, Since both E;” and E,, satisfy the
differential equation and the boundary conditions all of which are linear,
the linear combination of E, and E,,, namely E,, must satisfy the same
equation and boundary conditions. Thus, E,” is another eigenfunction. The
orthogonality relation between E, and E,” can be established as follows:

J-E,'-E;’ ds =ABJ-(V x V x E,)+(VV-E,) dS

=ABfV-(V-Er,,)(V x V x E,,,)dS—ABf(v-E,,,)v-V x V x E, dS

3
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The first term on the right-hand side can be converted to a contour integral
by Gauss’s theorem, and since V-E,, vanishes on L, it is equal to zero.
The second term is, likewise, equal to zero because V-V x vanishes.

Now suppose that eigenfunctions are obtained successively by adding an
orthogonality condition each time and we find that the nth function happens
to appear in group IV for the first time. Instead of taking E,, itself, let us
take E,” derived from it as the nth function and E,” as the n + st function,
E/ and E,” are orthogonal to E, (m <#). For example, the proof for E/
to be orthogonal to E, ,{m < n) is as follows. If E,, belongs to group I or I,
V x V x E,, is equal to zero; whereas, if E,, belongs to group I, V x Vx E,,
= k,'E,,. In cither case

fE,,,,-E; dS=AJE",,-v x V x E,, dS

=AJVxVxE,,,,-EmdS=0

where the formula for integration by parts and the boundary conditions
are used. The proof for E,” is similar.

The n + 2nd function can be obtained so as to minimize the variational
expression for &2 under the condition that this function is orthogonal to all
the functions up to the # + 1st. In this way, without the loss of completeness,
a set of orthogonal eigenfunctions can be derived such that each function
belongs to any one of groups 1, 11, or 111. Hereafter we shall assume that
this has been done.

The electromagnetic waves derived from the E,’s in group I have no
longitudinal components, since £, =0 and H, =0 from (3.61) and (3.59)
when y # 0. These waves are called transverse electromagnetic modes or, in
short, TEM modes. Similarly, for the waves derived from groups Il and III,
we have £, =0 and H, = 0, respectively. Thus, transverse electric modes, or
TE modes, are derived from group Il and transverse magnetic modes, or
TM modes, from group 11, From this, one might be temped to conclude
that all the electromagnetic fields in a waveguide with a homogeneous
medium and perfectly conducting walls can be divided into three groups,
TEM, TE, and TM modes. We must recall, however, that an assumption was
made at the beginning of this analysis that the fields vary exponentially with
z. Because of this rather stringent restriction, the above fields may not repre-
sent the most general case. There is no guarantee that an electromagnetic
field does not exist which is not expressible as a linear combination of the



124 3. WAVEGUIDES

waves obtained above. To obtain this guarantee, we shall proceed a little

further in the next section.
Let us now consider TEM modes. Since Vx E,,=0in Sand nx E,, =0
on L for E,, from group I, two-dimensional Helmholtz’s theorem shows

that it can be written in the form

E,=Vgp (3.89)

Since V+E,,=01in S and n x E, =0 on L, ¢ satisfies
V-Vo=0 (in¥§) (3.90)
nxVe=0 f(onl) (3.91)

The other two conditions, Vx E,, =0 in § and V-E,, =0 on L are auto-
matically satisfied. The boundary condition (3.91) is equivalent to dg/dl =0,
which means that ¢ is a constant along each connected boundary. From
(3.89) and (3.90), ¢ can be considered as a two-dimensional potential
function and E,, as the corresponding static field.

Suppose that L is a singly connected contour, then by inspection, ¢ =
constant satisfies (3.90) and (3.91) which gives E,, = 0. This is, of course,
what we expected since in an empty space completely enclosed by a conductor
wall, no static field can exist. The proof is as follows: Since ¢ is a constant

on L, we have

JV.(qa V(p)dS=f@V@-ndI=constfn-V¢ dl
=constf(V-V<p) ds=0

where Gauss’s theorem and (3.90) are used. On the other hand, the left-hand
side can be written in the form

fV-(rquo) dS=j(V(p-V(p+(pV-ch)dS= f(V(p)z ds

where (3.90) is again used. Combining these two equations, we conclude that
E, = V@ =0 in S. This means that in a waveguide with a singly connected
boundary, a TEM mode cannot exist.

The above argument does not hold if there are two or more independent
boundaries. In this case, ¢ can take a different value on each boundary and
since there are (¥ — 1) independent ways of assigning potentials between N
conductors, (N — 1) independent solutions belong to group I. For instance,
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In a coaxial transmission line where N is equal to two, there is only one
TEM mode.

Note that since V x E,, =0 and V-E, = 0 for E,, from group I, Eq. (3.69)
shows that k,2 = 0. On the other hand, k,2 # 0 for groups II and III.

Let us now consider TE modes, i.e., group II. By definition, V x E,, is
not equal to zero for E,, from group II. Let us write this nonzero V x E,,
in the form

Y x E,, =kk,H, (3.92)

This is possible because k x Vx E, =V(k-E,)— (k-V)E, =0 and the
transverse component of V x E,, always vanishes. The notation H,, is used
since it is equal to the z-component of the magnetic field of the mode
except for a constant factor. Substituting (3.92) into V x (3.68) and noting
that &, # 0, we have
VxVxkH,—k'kH, =0

Since
VxVxkH,=—VxkxVH, =

—k(V-VH_)+(k-V)VH,,= —kV.VH,
the above equation is equivalent to

V’H,, + k,H,,=0 (in8) (3.93)

The boundary condition V-E,, =0 on L is automatically satisfied. On the
other hand, since n x E,, can be written in the form

nxE,=k’ ’nxVxVxE,=k 'nxV xkH, =k, 'k(n-VH,,)
the boundary condition n x E,, = 0 gives
n-Vi,=0  (onL) (3.94)

Suppose H,, and H_, correspond to E,, and E,,, respectively, then we have

f H,H.,, dS = (kk,) ' f VxE, - VxE,dS

= (koK) f K, -E,, dS

where the formula for integration by parts and the differential equation for
E,. are used together with the conditions V-E,,, =0in Sandn x E, =0on L.
This equation shows that the H,’s obtained from the E,’s satisfy the
orthogonality and normalization conditions, i.e., they are orthonormal to
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each other. If n # m, the right-hand side vanishes, and if # = m, it becomes
unity.

It follows from this that a set of orthonormal eigenfunctions of (3.93)
and (3.94) can be derived from the E,’s belonging to group IL. Conversely,
a set of the eigenfunctions belonging to group Il can be derived from the
eigenfunctions of (3.93) and (3.94) using

-k x VH,=kE, (3.95)
where k, #0 is assumed. To show this, let us first consider V-E,. Since
V.E,=—k; ' V.(k x VH,,) = k; 'k+(V x VH_,) =0
always V-E,, vanishes. Next, the boundary condition n x E,, =0 can be

checked by the following calculation,

nxE, =—k 'nxkxVH,=—k, 'k(n-VH,)=0

Finally, writing (3.95) in the form
VH,=kk xE,
and substituting into V (3.93), we obtain

VxVxE,—k’E,=0

where we have used

—kxVxVxE,=—V(k-VxE,)+ (k-V)(VxE,)
=V(V-k x E,)

together with the fact that both V x V x E,, and E,, have no k components.
Since V-E,, =0, the above result shows that E,, satisfies (3.68). Thus, we
have shown that E,, derived from (3.95) belongs to group 11. Furthermore,
since '

[ BB s = (k) | VH.p- Vit s

= (kuik) f H,,H,,, dS

if the H,'s are orthonormal to cach other, so are the E,’s. The above
discussion shows that all the E,’s in group II can be derived from the
independent solutions for (3.93) and (3.94) with the condition k.2 #0
and vice versa. In other words, there is a one-to-one correspondence between
the E,,’s in group 1T and the H,,’s for which k2 #0. It should be noted here
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that the eigenfunctions of (3.93) and (3.94) can form a complete set of ortho-
normal functions. The proof for the completeness is essentially the same as
before if we use the variational expression

f (VH,) dS
f H?ds

In the above one-to-one correspondence, if we take all the eigenfunctions,
the only missing one is that for k,> =0. From (3.96), VH, = 0 if the eigen-
value is equal to zere; therefore, H, = constant is the missing eigenfunction.
Thus, we conclude that any piecewise-continuous square-integrable scalar
function defined in § can be expanded in terms of the (k-V x E,/k,)’s
except for the constant term.

One might fear that the particular choice of functions in group 1I1I may
prevent some of the E,’s in group II from appearing in the selection of the
complete set of eigenfunctions thus making the (k-V x E,,/k,)'s incomplete
even after a constant term is added. However, this kind of interference
among different groups does not exist since every function in group III is
automatically orthogenal to any possible function in group 1I. This is
shown by the following calculation.

k*(H,) = (3.96)

fE,,,-E,m ds =—k; k. *? f(VV-Em)-(V xVxE,)dS

=— ki %k,? J‘ {(V(V'E,)(VxVxE,)-V-E,V.-Vx VxE,}dS
=0
where E,, and E,, are assumed to belong to group III and group 11, respec-
tively.
Let us now turn our attention to TM modes, i.e., group 1Il. Defining

E,, through
V-E, = k.E., (3.97)

and substituting into (3.68), we have
V-VE,,+ &k E.,,=0 (in§) (3.98)
The boundary condition V-E,, =0 gives
E,=0 (onL) (3.99)
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On the other hand, n x E,, =0 is satisfied automatically if (3.99) holds,
since

nxE,=nx(—k ?)VV.E,=—k, 'n x VE,,

==k, 'nx {n(@/én) + 1(8/0D)} E,, =0 (3.100)

Furthermore, from
f E,E..dS = (kk,) " Jl V-E,V-E,dS
= (kalk) [ B dS

it follows that if the E,’s are orthonormal to each other, so are the E,’s.
In other words, from the set of eigenfunctions belonging to group 111, a set
of orthonormal eigenfunctions for (3.98) and (3.99) are derived. Conversely,
we can derive the E,’s belonging to group Ill from the E,’s using the

relation
(3.101)

—VE, = knEm
Obviously, Vx E,, =0 is satisfied. A substitution of (3.101) into (3.98)
gives VV-E,, + k,E,, = 0 which is equivalent to (3.68) since V x E,,=0.
The boundary condition V-E,, =0 on L is obtainable when (3.98), (3.99),
and (3.101) are combined. The other boundary condition nx E, =0 is
obvious from (3.100). Furthermore, since

f E,-E, dS = (k.k,) "' J VE, -VE,, dS
= (km/kn) f Ezn'Ezm as

the E,’s thus obtained are orthonormal to each other provided that the
E_’s are selected to be orthonormal. It follows from the above discussion
that there is a one-to-one correspondence between the E,’s in group III
and the eigenfunctions for (3.98) and (3.99). These eigenfunctions can from
a complete set of orthonormal functions. The variational expression neces-

sary for the proof is given by

I(VE,)Z ds —2 Ei; E,(0E,jon) dI

.[ E*ds

(3.102)

K(E,) =

S siggd
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Thus, we conclude that an arbitrary piecewise-continuous square-integrable
scalar function defined in S can be expanded in terms of the (V-E,/k,)s.
In the above discussion, we did not consider the possibility of k,2 being
equal to zero. If k,2 is equal to zero, VE, = 0 in S from (3.102) which means
that F, is a constant in 5. However, since E, =0 on L, this constant must
be zero and the constant termt is not necessary to form a complete set in the
present case.

The above discussion used E,. However, H, can be used equally well to
replace E,. The equation for H, corresponding to (3.65) becomes

VxVxH —VV.H ~kKH =0 (inS)
the boundary conditions are

n-H,=0, nxVxH =0 (onk)

A variational expression for k? is given by
J{(V xH) +(V-H)*}dS -2 § (n-H,)(V-H,) dl
'[ H’ds

It follows from this that a complete set of orthonormal eigenfunctions can
be formed. Furthermore, it can be shown that the H,,’s can be chosen in
such a way that each of them belongs to any one of the three groups which
lead to TEM, TE, and TM modes. The proofs for these statements are very
similar to those for the E,’s and hence we do not repeat them,

This has been a lengthy section, therefore, it may be worth summarizing
the discussion. First, an exponential variation of the fields is assumed and
then an equation is found which the transverse electric field must satisty.
This equation contains a constant which is selected so that the solutions
satisfy appropriate boundary conditions. It is shown that there is an infinite
number of independent solutions satisfying the boundary conditions. When
properly chosen, they form a complete set of orthonormal functions, each
of which belongs to one of three groups leading to TEM, TE, and TM
modes. Let the E,’s indicate this set of solutions. Then, an arbitrary
piecewise-continuous and square-integrable vector function defined over
the waveguide cross section can be expanded in terms of the E,,’s as well as
in terms of the (k x E,,)’s. Furthermore, an arbitrary piecewise-continuous
and square-integrable scalar function defined over the waveguide cross

K (1) =
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section can be expanded in terms of the (k-V x E, /k,)’s and a constant term
as well as in terms of the (V-E,/k,)’s where the terms for which k=0
are excluded. Note that V x E,, and V.E,, for E,, from the TM and TE
groups, respectively, are equal to zero and do not appear in the above
expansions,

How to eliminate the assumption of the exponential field variation is a
subject of the next section.

3.5 General Theory of Waveguides

In this section, we shall derive the most general form of an electromagnetic
field in a straight lossless waveguide with a uniform cross section. To do so,
we first observe that E, H, V x E, and V x H in Maxwell’s equations are all
well behaved (i.e., piecewise-continuous and square-integrable) functions,
each of which can be expanded in terms of an appropriate set of functions
studied in the previous section. Then, by substituting their expanded forms
into Maxwell’s equations, all the expansion coefficients and, hence, the
electric and magnetic fields will be determined. Since no a priori assumption
is required on the functional forms of the fields such as the exponential
variation with z, this method should give all the possible solutions of Max-
well’s equations in the waveguide.

Considering the similarity of the boundary conditions, we expand the
transverse component of E in terms of the E,,’s and the longitudinal compo-
nent in terms of the (V<E,/k,)’s:

E= ZE,,,JE-E,,, ds + EkY;CE‘"'[k-EV;CE'"

"

ds  (3.103)

where the real and imaginary parts are expanded separattly and then added
together, and the summation is from n=1 to n =o0. Similarly, we use the
k x E,’s and the (V x E,/k,)'s for the expansion of H:

H=7Yk xE,,,JH-k x E,, dS

VxE,[ VxE, k k

(3.104)

The last term corresponds to the constant term which is necessary to expand
an arbitrary scalar function in terms of the (k- V x E,/k,)'s as we explained
in Section 3.4. The normalizing factor is 1/8'/%,
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Next, noting that ¥V x E is an H-like function, we expand it in terms of
the k x E,,’s and the (V x E,, /k,Ys:

VxE=kaE,,,J‘V><E-kxE,,,dS

¥ x E, VxE, k k
+Z kn JVXE' kndS‘I'SIIZJ\VxE‘ST/zdS

Since we are going to substitute these expanded forms into Maxwell’s
equations and compare the expansion coefficients, let us transform each
expansion coefficient in (3.105) into a form which can easily be compared
with the corresponding coefficient in (3.104). To this end, we write V xE
in the form

(3.105)

VxE= {V, + kaaz} x {E,(z) + kE,(z)}

é
=V, x E(z) —k x V,E,(z) + P k x E,(z) (3.106)
z

where E,(z) and kE, (z) indicate the transverse and longitudinal components
of E emphasizing that they are functions of z in contrast to the E,’s which
are independent. The first term on the right-hand side of (3.106) has only the
k-component while the remaining terms have only the transverse cornponent.
With the help of (3.106), the first expansion coefficients in (3.105) can be
rewritten in the form

&
IV x E+k x E,nd5=f{6—k x E,(z) — k x V,E,(z)}-k x E, dS

Zz

d
= J.E, (z)-E, dS —JV,EZ (z)-E, dS
Using the relation
V.E, (Z) ‘E,=V,. {Ez (Z) Em} —E, (Z) V-E,

the second integral on the right-hand side can be rewritten further in the
form of a contour integral plus a surface integral. The final result is

d
J\V xE-kxE,dS= d—JE,(z)-E,,, ds
z

+jk-EV.E," ds—agEz(z)n-E,,, dl - (3.107)

Similarly, we can rewrite the other coefficients as follows.
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VxE VxE,
IVXE- X ‘"dS:JV,xE,(z)-—k ™ ds

n

n

YxE,

= kJEE ds + 39 nx E,(z)- dl (3.108)

n

k k k-nx E
jv X E-dS:jv, x E:(Z)'guids=§T[(Z)dl

gz (3.109)

For the field in a waveguide with perfect conductor walls, the last terms in
(3.107) and (3.108) become zero because of the boundary conditions
E (z2)=0 and n x E,(z) =0 on L. Similarly the right-hand side of (3.109)
vanishes.

For the expansion of V x H, we use the E,’s and the (kV-E,/k,)s.

kV-E V-.E,
VxH=ZE,,,.fvxH-E,nds+k—”’ijH-k p TdS  (3.110)

R "

Using an expression for V x H similar to (3.106) and following the method
employed to obtain (3.107), the coefficients in (3.110) are calculated to be

d
Jv x H-E,ndS=~de-kx E,,,dS+JH-V xE,dS  (3.111)
z

V-E
ijH-k p ‘"dS=JH-kxk,,E,,,dS (3.112)

where n x E,, =0and V-E,, = 0 on L are used to eliminate contour integrals.
Substituting (3.103) and (3.110) into V x H = jweE and writing the trans-
verse and longitudinal components separately, we have

d
EE,,,{W MjH-k x E,, dS +J.H-V x E,, dS} =jmsZE,nfE-E,n ds
(3.113)

V-E V.E, V-E,
Z k'"fH-kxk,,E,,dS=jwsZ 'Jk-E “dS  (3.114)

k k

where (3.111) and (3.112) are used. Similarly, we obtain two equations
from ¥V x E = — joull:

d
Yk x E, {;EJ.E-E,,,dS +Jk-EV-E,,,dS}

= —jouY k x E,,,fH-k x E,dS  (3.115)
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VxE,
k k, | E-E,, dS

. V x E,, VxE, k k
= — jou K H. k. dS+W H°ST1'2 ds (3.116)

Equating the coefficients of the corresponding E,, on both sides of (3.113),
we have

d
—d—J.H-kxE,,,dS+JH-VxE,,,dS:jwst-E,,,dS (3.117)
z

Similarly, (3.114) gives

V-E,,

J.H-kx k.E, ds.—_jcusfk-E s (3.118)

n

provided that V:.E,, is not equal to zero. In much the same way, (3.113)
gives

d
E;J.E-Em ds +Jk-EV-E,,,dS=—jcu,ujH-k xE,dS  (3.119)

and finally (3.116) gives

VxE
kJEE dS:—jwujH-mdS (3.120)
and "
k
H-W ds =0 (3.121)

provided that ¥V x E,, is not equal to zero,
Suppose E,, belongs to group I defined in Section 3.4 then (3.117) and
{3.119) together with Vx E,, =0 and V.E,, =0 give

d
- chJH-k x E,dS =jwaJE-Em dS

d
— | E*E, dS=—jmpJH-k x E,, dS
Z

Eliminating [ H-k x E,, dS from these equations, a differential equation
for { E+E,, dS is obtained:

dz
PJE'E‘" as + wzapJE-Em dS =0
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The most general solution is given by

J.E ‘E,, dS = A,e” " + B,e"™

where 4, and B, are constants and y, is given by

7 = Joo ()"

Substituting this selution back into the original equations, we obtain
f H-k x E,, dS = Z;,} (A,e™" — B,e")

where
ZOn = (#/8)1."2

If E,, belongs to group I, since V-E, =0, then (3.119) reduces to

d
djE-Et" ds = ij,uJ‘H-k x E,, dS
2

Eliminating { H-k x E,, dS and [ H-V x E,, dS from (3.117), (3.120), and

the above equation, we have

2

d , R .
2 | E*E,dS +(@’en — k%) | E-E, dS =0 (3.122)

hence, the solution becomes
f E-E,, dS = 4,e ™ + B,

provided that
’Pnz = knz - wzgﬂ

is not equal to zero. Substituting the above solution back into the original

equations, we obtain

f H-k x E,, dS = Z3}! (A,e”™ - B,e™")

VxE k
JH " Mds =_— " (Aye™ + Boe™)

n Onin

where
ZOH = jw,u./y,,
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When y? = 0, the corresponding solutions are
jE-E'" dS=C,+ D,z

(3.123)

1
J.H-k x K, dS=—— D,
Jop

VxE k,
[CRAL TR
k Jou

L

If E,, belongs to group 111, since ¥ x E, =0, then (3.117) reduces to

d
—— |H.kxE, dS=jw£JE-E,ndS

dz

An elimination of { H-k x E,, dS and [ k-EV-E,, 45 from (3.118), (3.119)
and the above equation gives exactly the same equation for E,, as (3.122).
When 7,2 =k,% — w?eu is not equal to zero, we have

f E-E, dS = A, ™" + B

f H-kxE, dS=2Z,'(A,e” ™ — B,

V.E k,
Ik -E p TdS = "(A,e7" — Be™)

i
b
i

n

where

ZOn = ’yn/jfUE
o If p,2 =0, the above expressions are replaced by
b —~1
Eid E-E,dS=— D,
# J0E
IH kxE,dS=C,+D,z (3.124)

V-E, k,
k«-E— "dS=-—"(C,+D,z)

k, Joe

Thus, the expansion coefficients in (3.103) and (3.104) have been determined
; for all possible cases for @ 0. We conclude from this that if none of the

y, 8 are cqual to zero, the most general expression for the electromagnetic
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field in the waveguide when w is not zero is given by

V-E,,

E=Y {E,,, (Aye™ "™ + B,e™) + k (A~ " — B,,e”“’)} (3.125)

_ B VxE, _
H= Z {k x E,,Z;, (A,e” ™ — B,e™) — ‘ (Ape™ ™ + B,,ey"z)} (3.126)
On}'n
where
1.2 = k2 — wlep (3.127)

and

Zo, = (ufe)'”>  TEM

Zoy = jooply, TE (3.128)

Zon = Valiwe ™

In (3.128), Z,, for groups I, II, and III are indicated by TEM, TE, and TM,
respectively, for the obvious reason explained previously. 1If some of the
y.'s are equal to zero, the coefficients of the corresponding terms must be
replaced by either (3.123) or (3.124) depending on the particular group
concerned.

In the previous section, it was shown that electromagnetic fields in a wave-
guide could be divided into three groups, TEM, TE, and TM modes,
assuming the exponential field variation with z. However, because of this
assumption, it was not clear whether or not all possible electromagnetic
fields in a waveguide could be expressed as a linear combination of those
modes. In this section, the exponential field variation was not assumed
(indeed, nonexponential field variation appeared in the particular case of
¥, =0), and we have demonstrated that every possible electromagnetic field
in a waveguide is given by the above expressions and that no other functional
forms need be considered. This is a far stronger assertion than we could
have made before; however, without this guarantee, the discussions in
Sections 3.7 and 3.8 would have little meaning. _

Suppose the transverse components of both E and H are given on a refer-
ence plane perpendicular to the axis of the waveguide. Let the position of
this reference plane be at z=0. Then, from (3.125) and (3.126), we have

E(0)=3}E,(4,+B), H(0)=YkxE,Z; (4,—B,)

which give simultaneous equations for 4, and B,,

fE,(O)-E,, dS=A, +B,, fH,(O)-k x Ey dS = Z5. (4, — B,)
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These equations determine 4, and B, for each » and, hence, the electro-
magnetic field in the waveguide uniquely. In other words, the transverse
components of E and H at a reference plane are sufficient to specify the
electromagnetic field in the waveguide. This is true even when some of the
y,'s are equal to zero. The transverse components of E on two different
reference planes at z =z, and z = z, are also sufficient to specify the electro-
magnetic field provided that none of the y,(z, —z,)’s are equal to jmx
where m is an integer including zero. If v,(z, - z;) is equal to jmn, the
transverse components of E cannot be specified independently on the two
planes, and the electromagnetic field in the waveguide is not determined
uniquely. Many other ways exist for specifying the electromagnetic field
uniquely, apart from the two described above, but we shall not discuss
these here.

Let us now look at the expansion coefficients appearing in (3.125) and
(3.126). They have exactly the same functional forms as those of voltage
and current along a transmission line. We can, therefore, introduce a one-
to-one correspondence between the electric and magnetic fields in a wave-
guide and the voltage ¥,(z) and current [,(z) on an infinite number of trans-
mission lines, each representing one mode in the waveguide,

V-E,
E=Y {E,,,V,,(z) +hk— Zo,,l,,(z)} (3.129)
v,
H=) {k x E, L(z)— VxE, ZH(Z)} (3.130)
Onin
Since the transmission power in the wavegwide is given by
P=ReJ.k-Ex H*dS:ReJE-(—k x H*) dS
= Re f Y E,V,(z)- Y E,L* (2} dS
=Re Y V,(2) ,*(2) (3.131)
it is equal to the sum of the transmission power on each transmission line

separately.

For a fixed frequency w, only a finite number of p,’s can become imaginary
since lim,_, .k, =cc. This means that all but a finite number of modes
are in the cutoff region (cf. Section 3.2). Therefore, as long as we avoid
sections of the waveguide where cutoff modes are excited, the waveguide
can be represented by a finite number of transmission lines. The effect of the
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cutoff modes is usually expressed by multiport netwoerks which connect the
transmission lines representing the propagating modes as we shall see in
Chapter 5.

For each propagating mode, the wavelength in the guide is given by

Ao =A{L— (A )y}

where 1 is the free-space wavelength and A, the cutoff wavelength. The phase
and group velocities are

v, =10 {1 _(A/’lc)z}A”z’ Ug=v0{1 _(}L/AC)Z}Uz

where v, ={(en)”"? and 2, for TEM modes is infinite. These are the
same formulas as those for the rectangular TE,, mode. The characteristic
impedance is real and it decreases or increases with increasing frequency in
the case of TE modes or TM modes, respectively. For TEM modes, the
characteristic impedance is independent of the frequency. It may be worth
mentioning that the above choice of voltage and current are somewhat
arbitrary. As we explained in Section 3.2, nV, (z) and I,(z)/n can also be
considered as the voltage and current of a transmission line whose charac-
teristic impedance is n>Z,,.

3.6 Examples of Waveguides

As the first example, let us again consider a rectangular waveguide. As we
discussed in Section 3.4, no TEM modes exist in this case and, since the
fields for TE and TM modes can all be derived from H, and E,, respectively,
it is not necessary to deal with the vector differential equation (3.65) di-
rectly. The scalar eigenvalue problems for H, and E, should suffice.

For TE modes, the eigenvalue problem is given by

9*H, . °H, CKRH =0
axt = ay? 2
OH,
=0 (x=0, x=a) (3.132)
0x
O0H,
=0 (,V =0, y= a)

dy
The solution can be found by inspection as follows

H, = A cos{nznx[a) cos(mny/b)

K2 = (nnfa)? + (mrfby’ (3.133)

&
i
A

?
f
[
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If n=m=0, k* becomes zero and H,, a constant. However, this is the
constant term we discussed in Section 3.5, and no flelds exist corresponding
to this solution. If a> b, the smallest eigenvalue which gives nontrivial
fields is obtained when # = 1 and m = 0. This corresponds to the TE,, mode
discussed in Section 3.2.

We know that (3.133) satisfies (3.132); however, a question may arise
whether or not the functions can form the complete set necessary for our
discussion, The answer is yes and the proof is given below. Let f be an
arbitrary well-behaved function defined in § (0<x<a, 0<y<b). Since
cos(nnxfa)(n=0,1,2,..) are the eigenfunctions of (d?¢/dx*)+ k*¢ =0
with the boundary conditions de/dx =0 at x=0 and x=a, they form a
complete set of orthogonal functions over the region from x =0 to x=a.
Similarly, cos{mry/b)(m=0,1,2,...) form a complete set. From the
completeness of cos{nnxfa) (n=0,1,2,...),

a N-1 2

f {f(x, W- Y A.,(y)cos(nnx/a)} x

) n=0

can be made arbitrarily small for each y with sufficiently large N, where
the A,(y)’s are the expansion coefficients. Similarly, for each A4,(y),

Ji {An (») - tz; B,), cos(mn y/b)}z dy

can be made arbitrarily small with sufficiently large A, where the B, s
are the expansion coefficients, 1t follows from this that, for a given £ >0,
the reiation

fJ. {f(x, y)— 1:2; 1:2;:; B,,, cos(nnx/a) cos(rmrrx/b)}2 dx dy

N—-1 N—-1

- ff {f(x, y) - "20 A,(y) cos(nmxja) + A () cos (nnx/a)

n=

n=0 m=0

- Nil Mz_l B, cos(nnxfa) sin(rmry/b)}2 dx dy
€2 fj {f(x, y}— N,,Z’: A,(y) cos(r.!:n:)c/a)}2 dx dy

N—-1 M-1 2
#2350 [{4.0)-" Bcosrmm| ay
n=0 m=0
< &

can be satisficd with sufficiently large N and M, where Lemma 2 in Appendix I
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is used, and the integration of the second term with respect to x is performed
utilizing the orthogonal relations between cosine functions on the right-hand
side of the first inequality (2/2 for nonzero » is replaced by a). However,
since ¢ is arbitrary, the above relation shows that cos(nnx/a) cos(mny/b)
(n,m=0,1,2,...) form a complete set of orthogonal functions. This
completes the proof.
For TM modes, the eigenvalue problem is given by

&’E, O°E, ,
a2 T THE=D (3.134)
E, =0 (x=0, x=a, y=0, y=>5)

and the solutions are
E, = Asin(nnx/a) sin(mny/b),  k*=(nnja)* + (mn/b)* (3.135)

If either » or m becomes zero, £, =0 and no corresponding fields exist.
Therefore, n=m =1 gives the smallest eigenvalue in TM modes. Since this
is larger than the eigenvalue for the TE,, mode, we conclude that among all
possible waves the TE,, mode has the smallest eigenvalue and, hence, the
Iowest cutoff frequency, provided that a> 5. Consequently, there is a
frequency range in which all modes except the TE,, are in the cutoff region
as we stated in Section 3.2 without proof.

At least, two modes, one TE and the other TM, share one eigenvalue
k% when » and m are equal to or larger than 1; in this case, these modes are
said to be degenerate to each other. When n modes share the same k2, they
are n-fold degenerate. In a square waveguide of side length @, four TE and
two TM modes share the eigenvalue 2577 /a® and, the degeneracy is sixfold.

Let us next consider a circular waveguide with radius a. Again, no TEM
modes exist. For the TE modes, referring to (2.62) we have

10 2 oH,
( aHZ) 1 8°H, 20 (r=a) (3.136)

-—lr=}+5 +Kk*H,=0,
ror r@r -i_r2 962 or

where cylindrical coordinates are used to simplify the boundary condition.
A method called the separation of variables is often found useful in the
solution of equations like (3.136). We shall, therefore, assume the functional
form of the solutions to be the product of a function of r alone and that of §

alone, i.e.,
H =u(r)v(9) (3.137)
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Substituting this into (3.136) and multiplying the result by r?/us, we have

rd du+k22 +1dzv 0
——— r - =
udr dr v do*?

The quantity inside the bracket is a function of r alone while the remaining
term is a function of # alone. The equation implies that the first function
is equal to the negative of the second function. However, a function of r
cannot be equal to a function of 8, unless they are both constant. Thus, we

have
1d* R rd{ du
e r_ , e - k2 2_ 2 138
pdor " udr(rdr)+ T (3.138)
The first equation is equivalent to
2
v.oo2
—+nv=0 (3.139)

de*

and the solution is given by
v = Acosnf + Bsinnf

Since we return to the original position when 0 is increased by 2z, the value
of H; and hence that of v has also returned to the original value. This requires
n ta be an integer or zero. The second equation in (3.138) is equivalent to

Pu T (e PN, o 3.140
drt  r dr =) A (3.140)

which is obviously a linear second-order ordinary differential equation
having two independent solutions. Just as two particular independent
solutions of (3.139) are called cosine and sine functions and are indicated by
cos nl and sin #f, two particular independent solutions of (3.140) are called
Bessel and Neumann functions and are indicated by J,(kr) and N,(kr),
respectively. Figure 3.12 shows J,(kr) and N,(kr) versus kr for n =0, 1,
and 2.

Since N,(kr) approaches minus infinity as r tends to zero, H, becomes
discontinuous in S(r € a) and is not acceptable as an cigenfunction. There-
fore, we are left with J,(kr) and the corresponding eigenfunction becomes

H, = (A cosnfl + B sinnb) J, (kr) (3.141)
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05

Fig. 3.12. Graphs of Ju(kr) and Na(kr) versus kr.

In order to satisfy the boundary condition for I,

dJ,(ka) 0
dr

(3.142)

must be satisfied. Indicating the mth stationary point of J,(x) by x =U,,,
the corresponding eigenvalue is therefore given by

k2 = (Upnfa) (3.143)

Similarly, the eigenvalue problem for TM modes is given by

2
li ,.‘?‘?E +._1.-a b;‘+k2Ez=0, E,=0 (r=a) (3.144)
ror\ or r2 a0

The solution for the differential equation which is continuous in S(r < a)

]
H
¥
{
£
¥
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is given by

E, = (Acosnf + Bsinn6) J,(kr) (3.145)

To satisfy the boundary condition, the eigenvalue k* must be such that

J (ka)=0 (3.146)

Indicating the mth zero of J,(x) by x =U,,, k? is therefore given by

K = (U, a)? (3.147)

We have obtained an infinite number of possible solutions for both TE
and TM modes. Again, however, we have to recall that an assumption was
made as to the functional form of the solutions in the beginning of the
analysis when we separated variables. It is, therefore, necessary to show the
completeness of each set of solutions given by (3.141) and (3.145). To this
end, let us first consider the orthogonality between the Bessel functions.
Since U,, and U, (p # q) give different eigenvalues for (3.136), the corre-
sponding H,’s must be orthogonal to each other. For instance, we have

a In
f f cos” nJ,(U,ria) J(U,rla)r d0 dr =0  (p # q)
0J o

The integral with respect to # does not vanish and, hence, we obtain

Jm L (Uppria) J, (U rla)rdr =0 (p#4q) (3.148)

Stmilarly, from the orthogonality between the E.’s, we have

fa S (Uprfa) J,(Uyrfa)rdr=0  (p#4q) (3.149)
0

These are the relations corresponding to (3.33) and are called the (weighted)
orthogonality relations between the Bessel functions with r being the weight
function.

When p = g =m, the left-hand sides of (3.148) and (3.149) are no longer
equal to zero. Their values can be calculated as follows, Writing (3.140) in

the form
d du n®
—r— Er——Ju=0
dr (r dr) * ( TS ) *

and multiplying by r(du/dr), we integrate the result with respect to r from
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r =0 to a. Integrating by parts, this leads to
2 f k*u?r dr = [(r dufdr¥]s + [(K*r* — n¥) u*]]
o

Substituting u = J,(U,rfa), k*=(U.,/a)* and noting that J,(0)=0 for
nonzero n and r dufdr =0 at r =0 and r = g, we obtain
f J2 (Uprlayr dr = 3a*Un 2 (U2 = 0 2 (Up)  (3150)
0
Similarly, substituting u = J,(U,.r/a), k* =(U,.fa)® and noting that u =0
at r=0 and r=a when n#0, and ru=0 at these points when n =0, we
have

f JE(Ugrla)r dr = 3a* {J,/ (U,n)}? (3.151)
L]
where J,'(U,,) indicates the value of the derivative of the Bessel function
J(x)at x=U,,.

We are now in a position to discuss the completeness of the eigen-
functions. For example, (3.141) with k% given by (3.143) can form a com-
plete set of orthogonal functions if the relation

a plm N M
lim J J‘ {f(r,@)— Y Y (A,,cosnf
M, N-w JO0JO n=0 m=1

2

+ B, sin n6) J,,(U,;,,,r/a)} rdfdr=0
holds for any well-behaved function f defined over S (r < a) with the properly
chosen A,,’s and B,,’s. To prove that this is the case, we first observe that
cos nf and sin nf (=0, 1, 2,...) form a complete set of orthogonal functions
over the range from 6 = 0 to 2z as the eigenfunctions of (3.139) under the
boundary conditions v(0) = »(2n} and v'(0)=v'(27) (see Problem 3.10).
Comparing the present problem with the proof of the completeness of the
functions given in (3.133), it suffices to show that, for a given >0, the
relation

a M 2

f {g n-3 C,,,,,J,,(U,:mr/a)} rdr<g

0 m=1
can be satisfied with sufficiently large M for every n, where g (r) is a piecewise-
continuous function with the integral {§ g*(r) r dr being finite. However, this
can be proved by the familiar technique using the following three relations:
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the orthogonality relation (3.148), the variational expression for k? of
(3.140) under the boundary conditions ¢(du/dr) =0 at r =0 and r =g,

f {r(duldry + (n?[r) u®} dr
k=

fruz dr

and the relation lim,. . k2, =00 where k2, is the mth eigenvalue of
(3.140). The infinite growth of k2, is obvious, since if k2, remained finite with
increasing m, the eigenvalues of (3.136) should remain finite, but this is not
the case. Similarly, the variational expression for k2 applicable in (3.140)
under the boundary condition ru=0 at r=0 and r = a becomes

f {r(dufdr)* + (n*r) u*} dr — [2ru(dujdr)]}
k*=<

fruz dr

and the functions given by (3.145) with k? satisfying (3.147) form a complete
set of orthogonal functions.

Table 3.1 shows the values of U, and U, for the first three #’s and m’s.
The fields corresponding to U,,, and U,, are called the TM,,, and TE,,
modes, respectively. The table shows that the TE,, mode has the smallest
eigenvalue and, hence, the lowest cutoff frequency, There are two independent
TE,; modes corresponding to the cos § and sin @ terms in (3.141); thus, the
degeneracy is twofold. The TE;, and TM,; modes share the same eigen-
value, and since there are two independent TM,; modes, the degeneracy is
threefold.,

Let us now consider the TE,; modes. Since the 90° rotation of one field
pattern around the z axis gives the other pattern, we have only to investigate

TABLE 3.1
Values of Unm and U'nm
Uﬂm U’ﬂm
n m=1 m=2 m=73 m=1 m=2 m=273
0 2.40 5.52 8.65 3.83 7.02 10.17
1 3.83 7.02 10.17 1.84 5.33 8.54
2 5.14 8.42 11.62 3.05 6.70 9.97
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the term with, say, the cosine variation in (3.141). The coefficient is usually
determined so as to ensure the normalization condition of E,; derived
through (3.95). However, since the normalization of H,, guarantees that of
E,,, let us find the normalization constant for H,,. Writing the normalized

function H, in the form
H,, = K cos0J, (kr)

the value of K can be determined from the condition

a 2n
J‘ H2 dS = f f K?cos?0JZ(kr)rdf dr =1
4] 1]

where
k= (Uil/“)

The above integral is readily performed using (3.150), and we obtain
K=Zz 20Uy Ui -k

Using the expression for gradient in cylindrical coordinates given by (2.61),
an explicit form for E,; can be derived. Substituting the result into (3.125)
and (3.126), all the components of the electric and magnetic fields are obtained.

E, = K (kr) " sin 8J, (kr) (de”™ 7 + Be"?)

E, = K cos8J,' (kr) (de™*** + Be')

E.=0

H = — K cos0J, (kr) Z5* (Ae™ % — Be'™)

H, = K(kr)™ " sin8J, (kr) Zg" (4e”#* — Be'™)
H, = Kk (jou)™* cos0J, (kr) (de™* + Be/™)

where A and B are constants, and
B = {o’en— (Upfa)'}'?,  Zo=(aulf)

Figures 3.13(a) and (b) show the electric and magnetic field patterns,
respectively, corresponding to the A terms only, i.e., those of the wave
traveling in the positive z direction.

One method which will excite the circular TE; ; mode is shown in Fig. 3.14
where a rectangular waveguide is gradually deformed into a circular wave-
guide so that the rectangular TE;, mode is gradually transformed into a
circular TE,, mode. This is a tapered mode transducer. Since circular TE,
modes have the lowest cutofl frequency, they are relatively easy to handle,
and because of their degeneracy, there are several interesting applications.

3,
]
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{a) E {b} H
Fig. 3.13. Electric and magnetic fields of circular TE;; mode.

Fig. 3.14. Transformation from rectangular TE10 mode to circular TE; mode.

The rotary vane type attenuator is an example which has two tapered trans-
duc’ers to transform the circular TE, ; mode into the rectangular TE, , modes
a_t either end. A thin resistive film is placed diagonaily through the axis of the
circular section, as shown in Fig. 3.15(a). By rotating the circular section
as a whole, one can vary the angle ¢ of the film with respect to the incident
electric field from the rectangular section. The wave in the circular section
can be considered as the sum of two TE,, modes, one having the electric
field parallel to the film and the other normal to it. The former is attenuated
by ohmic loss due to the induced current in the resistive film while the latter
passes through the section without loss. Therefore, if the length of the
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Fig. 3.15. Explanation of the principle of the rotary vane type attenuator.

circular section is sufficiently long, the first component becomes negligible
whereas the second component with amplitude E sing appears at the other
end. This wave can in turn be considered as the sum of two modes, one
with the amplitude Esing sing, and the other E sing cos¢ as shown in
Fig. 3.15(b). If the input and output rectangular waveguides have the same
orientation (not twisted to each other), the Esing sin¢ component exists
through the output rectangular waveguide while the other one is reflected
due to the cutoff characteristic of the rectangular TE;; mode. In practice, a
thin resistive film is inserted in each tapered transducer section so that the
cutoff mode is absorbed rather than reflected. Thus, the output electric field
is proportional to sin?¢ and the power is proportional to sin®@. When the
resistive film is not ideal and has a finite thickness or is slightly misplaced,
the E sin¢ component in the circular section is attenuated slightly ; however,
this attenuation remains the same regardless of the value of ¢. The attenu-
ation in the two tapered transducer sections is also constant. Hence, these
three attenuations can be considered as the initial insertion loss A,. Therefore,
as long as the E cos@ component in the circular section is well attenuated,
the total attenuation is given by

A=A, —40log,,sing (dB)

This shows that the relative attenuation is determined solely by the angle ¢
and is independent of frequency. For this reason, rotary vane type attenuators
are widely used as standards.

In the above expalanation, the wave incident in the circular section was
decomposed into two parts, one having substantial attenuation, and the
other no attenuation. This is due to the fact that the removal of degeneracy
by the resistive film takes place in such a way that each propagation constant

ER RSN
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becomes stationary with respect to a small variation of the field. This pheno-
menon will be further explained in Section 3.9 for waveguides with inhomo-
geneous media,

3.7 Waveguide Discontinuities

In this section, let us consider an infinitely thin window across a waveguide
such as the one shown in Fig. 3.16(a). The shaded area is a conducting
diaphragm perpendicular to the waveguide axis and located at z =0. We
assume that only one propagating mode exists in the waveguide and use
subscript 1 to indicate the corresponding fields. All the other modes are in
the cutoﬂ‘ region. For convenience, let us take the reference planes of the two-
port network representing the window at z =0, coinciding with the dia-

CakY

{0)

s

(b)

o O

Fig. 3.16. Waveguide window and its equivalent circuit.

phragm position. The two-port network can be expressed by the equivalent
circuit shown in Fig. 3.7(b}. This equivalent circuit of course cannot be
used unless a certain length of the transmission line representing the propa-
gating mode is attached on each side as we explained in Section 3.2. Because
of the symmetry, Z,, =Z,, and the equivalent circuit reduces to Fig.
3.16(b). Now, suppose a wave with a unit magnitude is incident from
z=—ue; then, since this mode cannot satisfy the boundary condition
imposed by the diaphragm, a number of higher modes will be generated at
z=0. The transverse component of the electric field is therefore expressed



150 3. WAVEGUIDES

in the forms
E,=(c " +B,e")Ey + ¥ B E,
E =) Ce ™E, (z2>0)

(z < 0)

where Y’ indicates the summation over all possible n except 1 and no wave
is assumed to be reflected back at z = co. E, must be continuous across the
aperture and vanish on the diaphragm. Consequently, at z =0 the above
two expressions should give the same function E,(Q) which is zero on the

diaphram. From this we obtain

1 4+B,=C, = f E,(0)-E,; dS (3.152)

B, =C,= f E(0)-E.dS (122 (3.153)

The first condition shows that the voltages associated with mode 1 on each
side of the window are equal. Referring to Fig. 3.16, this means that Z,,
is equal to Z,, since otherwise the two voltages at the references plane
cannot be equal. Thus, the window is found to be represented by a simple
shunt admittance Y across the transmission line corresponding to mode I as
we stated in Section 3.2 without proof. Furthermore, the two conditions
guarantee the continuation of H, across the aperture as well as its cancella-
tion on the diaphragm. A comparison of (3.125) and (3.126) shows that the
expansion coefficients of E, are equal to the corresponding expansion
coefficients of H, and, hence, the continuity of E, represented by (3.152) and
(3.153) also guarantees that of H.. To verify the cancellation of H,, let us
expand V x E,(0) in terms of the (V x E,/k,)'s:

VxE VxE,
VxE,(O):Z—k “‘foE,(O)-— X " ds

Using the formula for integration by parts and the boundary condition
n x E,(0) =0 on the waveguide wall, the above expression reduces to

VxE(0)=YV x E,,,fE,(O)-E,H ds

Since E,(0) and hence ¥ x E,(0) vanishes on the diaphragm, the right-hand

side must be equal to zero. However, using (3.126), the right-hand side is

equal to — jwuH,, since Z,, = joopfy, for the modes with nonzero VxE,’s,

and therefore H, vanishes on the diaphragm.
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Next, let us consider H, which is given by

H, =k xE, Z;' (7" — B¢} + Y 'k x E,Z5,' (- B,) ™"
H =k xE,Z;'Cie7"* + Y k x E,Z5,'Coe™™  (z>0)

(z<0)

The condition that H, is continuous across the aperture gives
kxE,Z;!(1-B)-Y kxE,Z,'B,
=k x E,Z;,'C, + Y’k x E, Z;'C,
Substituting (3.152) and (3.153), we have
Y E,ZoiB,=0 (inS,)

where S, indicates the aperture area. This same condition guarantees the
continuity of £ across the aperture. Referring to (3.125), E, is continuous if

the relation
V-E,
B, =0
Tn

holds in .§,. Let F be the left-hand side of (3.154), then F is equal to zero in
:S‘o. Expanding V.F in terms of the (V.E,/k,)’s and using the formula for
integration by parts and the boundary condition V-E, =0 on the wave-
guide wall, we have

(3.154)

(3.155)

V-F=ZV-E,,,.[F-EmdS
=Y V-E.Z,,'B,

However, since Z,, = 7,/jwe, for the modes with nonzero V-E,’s, the left-
hand side of (3.155) is found to be jweV -F, and if we recall that F and hence
VF vanishes in Sy, (3.155) is proved showing the continuity of E, across
the aperture.

.Since we have seen that all the boundary conditions for the fields at the
window are automatically satisfied if (3.152), (3.153) and (3.154) are satisfied,
let us now try to obtain the admittance Y, representing the window from
Fhese equations. Using Eqs. (3.152) and (3.153), Eq. (3.154) can be rewritten
in the form

E, =E, f E(0)-E,; dS + Y Ep(Zo1/Zo) j E,(0)-E,dS (inS,)
(3.156)

This is an integral equation for E,(0); therefore, if E,(0) is determined, B,
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can be calculated using (3.152) and the normalized shunt admittance Y/Y,
of the window will be obtained from

1+ (YY) =(1 - By)/{(1 + B,) (3.157)

where use is made of (1.31) together with the knowledge that the reflection
B, is produced by the parallel connection of the admittance ¥ and the line
admittance Y,,. However, it is relatively difficult to solve the integral
equation (3.156). Instead of solving (3.156), let us, therefore, express ¥/Y;,
in terms of E,{0) and rewrite it with the help of (3.156) in order to study
general proporties of ¥/Y,,. From (3.152) and (3.157), Y/Y,, can be ex-

pressed by
v o _2('[12,(0)-12,1 dS—l)

= (3.158)
o1 145 .[E,(O)-E,lds

Also, if we multiply both sides of (3.156) by E,*(0)- and integrating over .S,
we have after a transposition

2

(1 - fE,(O)-E,1 a’S) f E*(0)-E, dS =} (Zo1/Zon)

f E,(0)E,, dS

Substituting this into (3.158), we obtain

2

y 2X(Zolze) [E0)-E,as

Yo,

(3.159)

2

U E,(0)-E, dS

Since all the modes except the one with subscript 1 are in the cutoff region,
the (Z41/Z,,)’s are all pure imaginary, and hence ¥/Y,, is a pure susceptance.
Furthermore, if only one type of mode, for example, TE or TM, is excited
by the window, a compariosn of (3.128) and (3.159) shows that ¥/Yy;
becomes inductive or capacitive, respectively.

If we look at the expression (3.159) closely, we soon realize that the value
of Y/Y,, remains the same when E,(0) is multiplied by a constant. This
reminds us that all the variational expressions previously discussed had a
similar property. Let us therefore check to determine whether or not (3.159)
is a variational expression for ¥/Yy;. To this end, we multiply both sides of
(3.139) by the denominator on the right-hand side and take the variation.

-
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The result is given by
(%) | BB, 5 [ 487(0)-B, 05

¥ f E*(0)-E,, dS f AE,(0)-E,, dS} F(AY[Y,)

f E,(0)-E,, dSr
=25 (Zo,/Zs,) { f E(0)-E, dS f AE*(0).E, dS
+JE,*(0)-E,,, ds f AF,(0)-E,, dS} (3.160)

The right-hand side can be rewritten first using (3.156) and then (3.158), as
follows,

2 f AE*(0)-E,, dS (1 - I E (0)-E, dS)
-2 f AE,(0)-E,, dS (1 - fE,*(O).Etl dS)
=(Y[Yy,) “ AE*(0)-E,, deE,(O)-E“ ds
+fAE,(0)-E,1 dsfla,"‘(o)-}:,1 dS}

where use is made of the fact that ¥/Y,; and the (Z,,/Z,,)’s are all pure
imaginary. Substituting this into {(3.160), we obtain the desired result

2

(4Y[Y,,) =0

fE,(O)-E,I ds

This shows that if a trial function slightly different from E,(0) is substituted
in {3.159), it gives an approximation at least one order higher for Y/ ¥, than
that of the trial function. Conversely, suppose that AY/Y,, is equal to zero
for all possible variations AE,(0) from E,(0). Although this E,(0) may not
satisfy (3.156), it is always possible to choose a constant K such that KE,(0)
becomes a solution of (3.156). This will be shown as follows. If AY/Y,, is
equal to zero, (3.160) becomes

Re f {(Y/Ym) E, f E,(0)-E,, dS

~ 25! (ZrlZo) B [ B,(0)-E, ds} AE*(0)dS =0
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However, since 4E,*(0) is arbitrary over the aperture, the terms inside the
brackets must equal zero in S. Equivalently, we have

%U%J%Iﬂwﬁmﬁ=fﬂw%M%JMMﬂms (in So)
(3.161)

which is linear with respect to E,(0}. Let K be a constant satisfying
K{1+3(7/%0)} [ B.(0)EydS =1

Replacing E,(0) by KE,(0) everywhere in (3.156) and substituting (3.161),
we can easily see that KE,(0) satisfy (3.156). We conclude from this that
the solution of (3.156) is equivalent to the discovery of E (0} which makes
(3.159) stationary. Thus, (3.159) is a variational expression for Y/Yy; in
which E,(0) is a solution of the integral equation (3.156). At this point the
question may arise as to whether or not the solution of (3.156) is unigue.
The answer is generally no. Nevertheless, we can assert that Y/Y,, is uniquely
determined. Suppose A and B are the two solutions of (3.156), then the
difference (A — B) satisfies the equation

E, J(A ~B)-E, dS + Y Ey(Zo1/Zon) f (A —B)-E,, dS=0

Multiplying by (A — B)*. and integrating the result over So, we have
2

+ Y (Zo1/Zos) =0

U(A«B)-Eﬂ ds f(A_B).E,"ds

Since the first term is pure real while the second term is pure imaginary,
the first term must be zero which implies

JA-E” dS=fB-E,1 ds

Consequently, the values of ¥/Yy, for E, (0)=A and E,(0) =B must be
the same as we can easily see from (3.158). The field corresponding to A — B
does not couple to the outside, and there is no way of exciting it; however,
such fields can exist mathematically at certain discrete frequencies determined
by the shape and size of the aperture. In practice, by deforming the aperture
slightly, we can couple the fields to the outside and observe resonances in
the vicinity of the discrete frequencies, the effect appearing in Y/ ¥y, for the
deformed window.

Once we have established that the window can be represented by a simple
shunt susceptance across the transmission line representing the dominant
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mode, the value of the susceptance is best determined experimentally using
a standing wave detector as described in Section 3.2, especially when the
shape of the aperture is irregular.

To illustrate how to use the variational expression (3.159), let us next
consider a symmetrical inductive window in a rectangular waveguide, as
shown in Fig. 3.6 where the aperture width is indicated by ¢. The dominant
mode is the rectangular TE,, mode, and it is obvious from the configuration
of thc? window that only the TE,, modes are necessary to satisfy the boundary
condition on the diaphragm. E,, and Z,,/Z,, for these modes are given by

E,, =i,./2Z(ab) "? sin(nnx/a)
Zo1|Zon = yulv1 = — J (A4/2) {(nAj2a)* — 1}1/2
Substituting into (3.159), we have

Y 2 ' 2 1/2
— =2 _f n_j' —1
Yy, A 2a )
Since E,(0) has only the ycomponent and it vanishes at the diaphragm,

E,(0) = Ki, sin [n {x — 1(a — ¢)}/c]

2

f E,(0)+i, sin{(nnx/a) dx

2

U E, (0) -i, sin (mx/a) dx

fel
]

| N

o 0.2 0.4 0.6 Q.8 1.0

£
a

Fig. 3.17. The normalized admittance of a symmetrical inductive window (@ = 4.755
cm; b = 2215 cm; ¢: opening; A = 6.32 cm).
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is chosen as a trial function for E,{0) over the aperture. This is exact in the
extreme case of no diaphragm. With the trial function, ¥/Y,, becomes:

272 n a2__ 1/2
Y A= (e Z {(nj20)" - 1)

g N — -— cos® (nnc/2a

Yy, 77 cos? (mc/2a) {1 — (nefa)’}? (nre/2a)
n=3,517, ..

Although this is an approximate expression for ¥/Yo, it is expected to be a
good one. If @ — ¢ is small, the series converges rapidly and only the first
few terms are necessary to obtain as much accuracy as the trial function will
permit. As an example, | ¥/¥,,| is calculated using the first three terms and
shown by the solid line in Fig. 3.17 (a=4.755 cm, 1=6.32 cm). The white
circles indicate the experimental results. The agreement is fairly good,
considering the crude approximation of the trial function.

3.8 Effect of Wall Losses

So far we have discussed wavegnides with perfectly conducting walls. In
practice, however, waveguides have finite conductivity and elctromagnetic
energy is converted into heat due to ohmic losses when wall currents flow.
Consequently, attenuation of wave amplitude takes place whenever a wave
propagates down the waveguide. If attenuation is neglected in a long
waveguide, an erroncous conclusion may be reached; hence, a new wave-
guide model is required which gives a better representation than the one
with perfectly conducting walls. To obtain such a model, let us first consider
the boundary conditions at the conducting walls, Let rectangular coordinates
&, n, £ be such that the &x plane coincides with the conductor surface, and
the positive direction of the { axis is toward the inside of the conductor.
The conductor surface may be curved, but we are only interested in a very
small area of the surface which can be well represented by the {x plane.
Since a very thin conductor sheet can shield a high frequency electromagnetic
field quite effectively, let us assume that the electromagnetic field attenu.ates
rapidly with {, and, hence, the change of the field in both £ and » directions
can be neglected compared to its change in the { direction. This means that
we can assume 8/0¢ = d/dn =0. Hence, the electromagnetic field in the
conductor becomes that of the plane wave discussed in Section 2.3.

Of the two solutions for the plane wave, the one with a growing exponential
factor has to be abandoned to comply with the above assumption of attenu-
ation with increasing {. The ratio of E, to H, as well as that of E, to — H,
therefore becomes the characteristic impedance Z,, of the wall conductor.
This fact can be expressed by

nxE=ZH (3.162)
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where n is the normal unit vector coinciding with the { axis. From (2.101),
Z,is given b .
sen Z, = (1 +)) (on,/20,)"?

where ¢, and p,, are the conductivity and permeability of the wall conductor,
respectively.

Since the tangential components of E and H must be continuous across
the boundary surface, as we can easily see from a discussion similar to the
one presented in Section 3.1, (3.162) serves as the boundary condition for
the electromagnetic field inside the waveguide. It can be rewritten in terms
of the transverse and longitudinal components of the electric and magnetic
fields:

nx ki, =Z H, (3.163)

nxE =2ZkH, (3.164)
Using (3.60) and (3.61), (3.163) becomes
nxky ' VeE =Z,(jou) ' (}k x E,+k x 37! VV-E,)
Multiplying both sides of this equation by yk x, we have
nV-E =—Z, (jop) ! (4E, + VV-E,)

Since the right-hand side contains y which is yet to be determined, let us
rewrite this last equation with the help of (3.65) in the form

0V E =—Z (jop) ' (VxV xE — k) (3.165)
On the other hand, using (3.59), (3.164) becomes
nxE =-2Z, (jou) ' VxE, (3.166)

These are the boundary conditions which the electromagnetic field must
satisfy in the new model of the waveguide. The problem of investigating the
effect of wall losses is thus reduced to that of solving (3.65) under the boundary
condictions (3.165) and (3.166), which is again an eigenvalue problem, If
E, is obtained for a certain k%, the other field components can easily be
derived from it as before. It is worth mentioning that the equations involved
are all linear, and therefore any superposition of the electromagnetic fields
thus obtained also constitutes a solution for the field in the waveguide.
When Z,, is small, as is usually the case, it might be expected that there
is a solution E, similar to E,, the solution of the original eigenvalue
problem whose boundary conditions are given by (3.67). Thus, if we expand

E,, in terms of a complete orthonormal set E,, (1= 1, 2, ...} in the form
E.=E,+ z C.E, (3.167)

n¥a
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where
C,= f E,-E, dS (3.168)
the C,’s are expected to be small and of the same order of magnitude as
Z,,. Since E,, is a solution of (3.65), it satisfies
VxVxE,—VV.E,—k’E, =0

where k,2 is the corresponding eigenvalue, To determine %, as well as the
C.’s, let us multiply the above equation by E,,« and integrate over S, the
waveguide cross section. Using the formula for integration by parts twice,
we have

J‘(Et,,-V xVxE,-E,-VV-E, — k,’E,-E,)dS
= fEm-(V x Vx E, —VV.E, — k’E,)dS

+ fn-(Em xVxE,~E,xVxE,—EV-E,+E.V.E,.)dl
=0

The first and second terms in the bracket in the second surface integral can
be replaced by a single term k,°E,,. The second term in the contour integral
is equal to nx E_Vx E,, and since nx E, is equal to zero on L, this
term vanishes. Similarly, the fourth term vanishes because V.E, is equal
to zero on L. The first and third terms are nx E,,-Vx E,, and E, -nVE,
respectively. Substituting (3.166) and (3.165) into these expressions, the
above equation gives

(knz - kuz) f E.-E,dS= Umﬂ)71 f Z{VxE,-VxE,
—(V x V x E,, — ’euE,)-E,} di (3.169)

Let us assume for the moment that all the C,’s are of the same order of
magnitude as Z,. Then, E_ in (3.169) can be replaced by E,,, as long as
we are interested in the approximation up to the first order of Z,. Setting

n=a, (3.169) becomes
k2 — k2 = (o)™ f Z,{V xE,-VxE,
—(Vx VxE, —w’cuE,) E,} dl (3.170)

from which the new eigenvalue &, can be calculated.
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Since integrations similar to the one which appears on the right-hand
side of (3.170) will be used several times later, let us introduce a symbol
Z,,(n, m) defined by

Z,(1,m) = (op)™* [ 2,4 X BV x B
—(Vx V x E,, — o*uE,)-E,,} dl (3.171)
Since we have, from the definition of E,,,

VxVxE, - wz'g.uEm =VV-E, + '}"anm =jw#’)’nzanlE

tn

where Z,, is the characteristic impedance of the nth mode given by (3.128),
then it follows that Z, (», m) can also be written in the form

Z,,(n, m) = j Z, {(jor) ' V x E+V X Epp — 720 B B} dl - (3.172)

Next, setting # # a in (3.169) and substituting the result into (3.168), we
obtain C, to the same order of approximation as before.

C,= f E,-E,dS=(k’~k’)"' Z,{a,n) (3.173)

If every k,* (n # a) is sufficiently different from k2, then every C, becomes
of the same order of magnitude as Z,,, as expected, and E,, is determined in
its expanded form. However, if E,, is degenerate, there is at least one k,2
equal to k,” in which case the denominator on the right-hand side of (3.173)
becomes zero and the corresponding C, can no longer be considered small.
This requires a reconsideration of the assumption we made in the derivation
(3.170) and (3.173) from (3.169).
To facilitate the discussion of degenerate cases, we first show that

{Zw (GS b)/ZOb} = {zw(b! a)/ZOa} (3.174)

where @ and & indicate the degenerate modes and hence &, =k,* and
72 =75 If one of the degenerate modes is a TM mode or if both are TEM
modes, the first term in the integral on the right-hand side of (3.172) dis-
appears, and it is obvious that (3.174) holds. If both modes a and & are TE,
then Z,, = Z,, and (3.172) show that Z,(a, b) = Z,.(b, a). However, using
the relation Z,, = Z,, again, it is obvious that (3.174) holds. We conclude
from these observations that the relation (3.174) holds between any two
modes degenerate to each other.

For the moment let us confine ourselves to the case of twofold degeneracy.
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When mode b is degenerate to mode a, C, may become large, and the deri-
vations of (3.170) and (3.173) become invalid since they assume that all the
C,’s are small. To avoid this difficulty, we remove the assumption that the
coefficient of E,; is mall in (3.167) and write E,, in the form
E, =AE, + BE, + Y C,E, (3.175)
n#a, b

where the C,’s are expected to be small. Substituting this into (3.169),
setting n equal to a and to b in turn, and taking terms up to the first order
of Z,,, we obtain

(k2 — k,*) A = AZ,(a, a) + BZ,,(b, a)

(k> — k,*) B= AZ,(a, b) + BZ, (b, b)

Transposing all the terms to the left, they become

{Zu(a, @) — (k' — k') A+ Z,(b,a) B=0
Z,(a,b) A+ {Z, (b, b)— (k) — k,2)} B=0 (3.176)

These are simultaneous equations for 4 and B. For nontrivial solutions to

exist, the determinant of the coefficients must vanish. This condition gives a

quadratic equation from which the value of (k,* — k,*) can be determined.

Substituting this into (3.176), the ratio of A and B is determined. By sub-

stituting the first two terms on the right-hand side of (3.175) for E,, every-

where on the right-hand side of (3.169) and combining the result with (3.168),
the coefficient C, can be obtained for any particular set of 4 and B, one of
which is arbitrary. Since a quadratic equation generally has two different
roots, two independent solutions E,, and E,; are determined by this proce-
dure. In this case, E,, and E,; are no longer degenerate. As in this example,
there are many cases in which degeneracy disappears due to a small pertur-
bation given to the originally degenerate system, this phenomenon is called
the removal of degeneracy (cf., discussion at the end of Section 3.6).

In order to solve (3.176), it is not necessary to follow the above general

procedure. Because of the relation (3.174) between the coefficients of (3.176),
the simultaneous equations are satisfied, if

A=2ZL%cosd, B=2Z3*sin@ 3.177)
or
A=—2Z?sin8, B=Z}?cosd (3.178)

where 0 1s determined by
2(20;;/205)”2 Z,(a, b)

Z,(a,a)—Z,(b,b) (3.179)

tan20 =
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This can be checked by substituting (3.177) or (3.178) into (3.176) and
showing, with the help of (3.174), that the two equations give the same
(k. — k,%). The two solutions E,, and E,; are, therefore, given by

E, = Zi? cosOE, + Z}}* sin6E, + ¥ C/E, (3.180)
n¥a, b
E,=—ZysinfE, + Z}? cos0E, + ¥ C,E, (3.181)
n#a b

The corresponding eigenvalues are obtained from the following relations
which are the result of substituting (3.177) and (3.178) into (3.176).

k' — k2 =2Z,(a,a) + (Zoo/Zo)''* Z,,(b, a) tan B (3.182)
ki —kg* =Z,(b, b) — (ZoofZop)""? Z,,(a, b) tan# (3.183)

Similarly, C,” and C, can be obtained from (3.168) if E,, is replaced by the
first two terms of E,, and E,, respectively.

Let E’ and E{§” be the principal parts; i.e., the first two terms, of E,,
and E,;, respectively. The terms E{_’ and E{p’ are not necessarily orthogonal
to each other in the sense of (3.70); however, since the magnetic field H{y’

corresponding to Ef’ is given by

) — sin g cosfl
Htﬂ =k h.4 Zé";z E,“'I'Zéi;z E!b
we have the relation

fE},?) x H) kdS=0

The subscripts  and p can be interchanged without changing the result, If
modes a and & are in the frequency range where propagation is possible,
Zo. and Z,, are both positive real, and hence the above relation can be

rewritten in the form
fE,‘;’) x HP* kdS =0
This indicates to a first order approximation, that the two waves corre-
sponding to E,, and E,; carry power independently of each other.
When the degeneracy is more than twofold, (3.175) has to be replaced by
E,, = AE,, + BE, + CE, +---+ ) C,E,,

where modes g, b, ¢, etc., are degenerate to each other and the last summa-
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tion is over all possible # excluding a, b, ¢,... . The procedure to obtain
appropriate solutions is essentially the same as before. It must be realized,
however, that an mth order algebraic equation has to be solved in the case

of m-fold degeneracy.
Suppose that the eigenvalue k,” is obtained using the above procedure,

usually called the perturbation method. Then since k* = y* + w?sy, we have
R
from which v, can be calculated. Let 4y be the variation from y, due to the
wall impedance Z,,; i.e., 4y =y, — 7,. Then Ay is given by
Ay ==yt (k) — k)

If subscript @ indicates 2 nondegenerate propagating mode, then y, =B,
and we obtain the following formula from (3.170) and (3.171):

Ay =13jB. " Z.(a, a)

The real part of this expression gives the attenuation constant due to the

(3.184)

lossy walls.
As an example illustrating how Ay is calculated in practice, let us take the

TE,, mode in a rectangular waveguide. For this mode, E, is given by

E, =i,./2(ab)”"'* sin(nx/a)

Therefore, we have
V x E, = k(z/a)/2(ab)”"'? cos(nx/a)

V x V x E, =i,(nfa)’ \/2(ab)"*'? sin(nx/a)

Substituting these into (3.171) and then inserting the result in (3.184), 4y

is calculated to be

z 2 [r? L TX
m;=l Zo | Y 2 o ™ _ (Ei—wza,u) sin® —} di
28 wu a/ ab a ab\a a

qa
) 7! 2y —1/2 Zw 1 5 N 2(?1_)2}
@ a wp b KT a\a

The real part of this expression gives the attenuation constant.
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In general, Z,, is proportional to w'/?, and for large w, f§ is proportional
to . Therefore, the attenuation constant due to the wall losses increases in
a manner approximately proportional to w'/? for large w. On the other
hand, as w decreases toward the cutoff frequency, the attenuation constant
again increases, since ff decreases, and at the cutoff frequency the attenu-
ation becomes infinite. As a result, at a certain o, the attenuation constant
takes a minimum value. For certain waves whose E, vanishes on the wall,
the term proportional to w® in (3.171) disappears and the attenuation
constant decreases indefinitely as o increases. The TE,, modes in circular
waveguides are an example, Although the circular TE,, modes are degen-
erate to the TM,, modes, the removal of the degeneracy takes place in such
a way that (3.184) is directly applicable since Z,(a, b) happens to be zero
when a and b indicate the TE,, and TM,, modes, respectively (the degen-
eracy between two independent TM,, modes is not removed by uniform
wall impedance Z,).

Let P be the transmission power of a wave propagating in the positive z
direction and P, be the power loss per unit length of the waveguide walls,
From the conservation of energy, the decrease of P per unit distance must

be equal to P ; i.e.,
P, = — (dP}dz)

Since the amplitude of the wave is proportional to exp(— xz)} where o is
the attenuation constant, P is proportional to exp(— 2uz) and we have

a =—3(dP[dz)[P = L(P,/P) (3.185)
In order to obtain « from this formula, we calculate P, and P assuming that
the transverse electric field of the wave is approximately given by AE,,,
where A is a real constant. The wall loss per unit length is calculated from

the integral of the Poynting vector over a unit length of the wall. Using the
boundary condition (3.162), the loss is given by

PL=RefExI-I*-ndl=RewaH-H*dl

2 |Em!2 1 2
=A*Re | Z, | +0072#2 IV x E,|*\dl

Ga
If E,, belongs to TEM of TM modes, Vx E,, =0, and we have
PL =- Az Re (?azﬂa)_l Zw(“’ a)
On the other hand, if E,, belongs to a TE mode, then Z,, = joufy, and P,
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becomes ~

P, =— A* Re(jou) ' Z,(a, a)
Since P is given by the integral of the Poynting vector over the waveguide
cross section, we have

P=Re.[E x H* .k dS = A*Z;}
Substituting these expressions into (3.185), the attenuation constant is given

b
’ @ = — Re {1y 'Z, (4, a)} = Re {36, 'Z, (4, a)}

regardless of the type of the mode under consideration. This result is identical
with that obtainable from (3.184). Since the present method for calculating
a utilizes the relation between the transmission power and wall loss, it is
called the power-loss method. A serious drawback to the method is the
possibility of obtaining wrong attenuation constans for degenerate modes
since the assumption that the transverse field is approximately given by
AE,, is wrong in most cases. When E,, is degenerate, as we discussed before,
there is no easy way of finding appropriate field configurations by the power-
loss method in contrast to the perturbation method previously employed.

Before closing this section, let us briefly discuss the effect of lossy media.
When the conductivity ¢ of the medium inside the waveguide is finite, jweE
on the right-hand side of (3.52) is replaced by (¢ + jewe) E. No other modifi-
cation is necessary, and all the results obtained from (3.52) and (3.53) are
valid if ¢ is everywhere replaced by & + (¢/jw). Thus, the relation between
k,? and the propagation constant y is given by

k2 =79+ 0 {& + (o/jo)} (3.186)

from which the effect of the conductivity on the propagation constant can
be calculated. Assuming that ¢ is small, and writing y =y, + 4y, 4y becomes

Ay =~ 3jy; 'wop = 3p; wap.

Therefore, when ¢ is taken into account, the increment in y is real and
positive for a propagating mode, which means that the attenuation constant
increases but the phase constant stays the same.

3.9 Wavegnides with Inhomogeneous Media

In this section, we consider the case in which & and u are functions of
transverse position but are independent of z. Maxwell’s equations are given
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by (3.52) and (3.53) and, hence, (3.57)-(3.60) are all valid without modifi-
cation. On the other hand, the divergences of (3.52) and (3.53) give V-¢E =0
and V.uH =0, respectively, from which we obtain

Y «eE, = y¢E_, V.uH, = yuH, (3.187)
in place of (3.61) and (3.62). We can climinate H,, E,, and H, from Eqgs
(3.57)(3.60) and (3.187) leaving a differential equation involving E, alone.

UV x 'V x E, — Ve ' VoeE, — (0%en + ) E, = 0 (inS)  (3.188)

If both & and p are constant in the waveguide cross section S, this equation
obviously reduces to (3.65). From the requirement that the tangential
component of electric field must equal zero on the waveguide walls, the
boundary conditions are given by

nxE=0, V-eE=0 (onL) (3.189)

Thus, we have an eigenvalue problem, namely, the differential equation
(3.188) with the boundary conditions (3.189) and a constant ¥2 to be deter-
mined. Since ¢ and u are not constant over the waveguide cross section,
w’ey +7* can no longer be considered as a constant to be determined.
Once the solutions of the eigenvalue problem are obtained, all the other
components of the electric and magnetic fields can be calculated using Eqs.
(3.57)—(3.60) and (3.187) as in the case with a uniform medium.

Let E,, and E,, be two different eigenfunctions and y,,* and y,% be the
corresponding eigenvalues. Since E,,, is a solution of (3.188), we have

#V x u 'V x E,, ~ Ve ' VeE,, — (0%t + 10°) By = 0

Multiplying by (Vx p™! Vx E,, — w*FE,,)- and integrating the result over
S, we obtain

fu(v Xpu ' VxE, ~o%E,) (Vxu'VxE, - w’kE,)dsS
— f ™ (V-eE,) (V-¢E,) dS

—y,,f{f#‘l(v XEp)(V x ) dS - [ 0’ak,, E, ds}=o

(3.190)
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where use is made of (3.189). Interchanging the subscripts m and » and
subtracting the result from (3.190), we have

0 — 7.) { [ 57 x B9 x By ds - [ w?ek, B, ds} _o

This shows that, between two eigenfunctions with different eigenvalues,
there is an orthogonality relation expressed by

fp“(v x E,)-(V x E,)dS — J' w%*E,, +E,dS=0  (3.191)

Let H,, be the magnetic field corresponding to E,,. From Egs. (3.57)(3.60),
kx H,, is expressed in terms of E,, as follows:

k x H,, = — (jwy,) ' (V x 4! V x E, — 0’¢E,,) (3.192)
Therefore, the above orthogonality relation is equivalent to

j k-E, xH,dS=0 (3.193)

When the orthogonality relation (3.191) holds, we can derive another
orthogonality relation from (3.190) given by
f,u(V x p~ 'V x K, — 0%E,)(Vxu 'VxE, - wE,)dS

- J- w?e” ' (VeE,) (V-2E, ) dS=0  (3.194)
Using (3.57), (3.187), and (3.192), this can be rewritten in the form
f e ' (VxH,)-(VxH,)dS - sz,uH,m-H,,, dS=0  (3.195)

which is the dual of (3.191). ‘
For waveguides with homogeneous media, we found the simple ortho-

gonality relation given by (3.70). In general, however, it is impossible to
find a corresponding simple orthogonality relation when the medium is

inhomogeneous; i.e.,

fls,,,.-Em £0, fsE,m-E,..ae 0

<

)
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A variational expression for y? is given by

f,u(V x u 'V x E — w’E) dS — f w’s" (V-eE)* dS

?2 (El‘) = | 5 s
f,u (VxE,) dS-—fwsE, ds (3.196)
In the derivation, an assumption is made that the denominator does not
vanish. Although it is likely that the eigenfunctions of (3.188) and (3.189)
form a complete set of orthonormal functions, a procedure similar to the
one employed in Section 3.4 fails to prove the completeness when use is made
of (3.196). To the author’s knowledge, the completeness has not yet been
proved. However, since (3.196) is a variational expression, it can be used
advantageously to obtain approximate values for the y2’s.

If the waveguide medium is homogeneous, we could classify the fields
into three groups: TEM, TE, and TM modes. This kind of classification,
however, is not possible if the medium is inhomogeneous. For almost all
modes, both E, and H, are finite.

Itis a straightforward process to extend the discussion to include the effects
of finite conductivity in the medium, we have only to replace z by & + (a/jw)
everywhere in the above discussion. In the rotary vane attenuator discussed
in Section 3.6, the degeneracy of two TE,; modes is removed in such a way
that the expression (3.196) with & replaced by ¢ + (o/jw) becomes stationary
for cach independent mode. The modes with the electric fields perpendicular
and parallel to the resistive film give the smallest and the largest attenuations,
respectively, and, hence, they are independent of each other. When the
film resistivity is small, the ficld configuration for the second mode will be
considerably distorted by the presence of the film. Nevertheless, the dis-
cussion for the total attenuation of the attenuator remains unchanged.

PROBLEMS

3.1 Using the variational expression given by (3.34) and a trial function sin(zx/a),
calculate the first eigenvalue of the following eigenvalue problem.

(d2Ey/dx®) + k®E, = 0
E, =0 at x=0 and x=ag—4d
where d is assumed to be small. Compare the result with the exact value A2 — w2/
(@ — dy.

3.2 Prove that (3.96) is a variational expression for the eigenvalue problem defined by
(3.93) and (3.94).
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3.3 Using the variational expression (3.96), calculate the eigenvalue of the TEio-like from port TII since the waves coming through the two holes cancel each other due to
X sdgin a waveguide whose cross section is a rectangle with the four corners removed the half wavelength path difference. Similarly, if a wave is incident on port 11, some
mo he in Fig. 3.18 power leaks out from port II, but none emerges from port IV. Because of this

as shown in Fig. 3.18.

directional property, the device is called the directional coupler. If three holes are
drilled, each a quarter wavelength apart, and the amount of leakage through each
hole has the voltage ratio 1:2:1, then the directional property is obtained over a
wider frequency bandwidth than in the case with only two holes. Using a complex
vector diagram with three vectors, each representing the magnitude and phase of the
leakage through each hole, explain why the bandwidth becomes wider,

o

3.8 Cross one rectangular waveguide on top of another and drill two cross-shaped holes
through the common wall as shown in Fig. 3.20. Then, part of the power coming in

!
_L | / o

. | —
a
r—' E

oo b !

Fig. 3.18. Deformed cross section of a rectangular waveguide. ‘ ,

3.4 Calculate the electric and magnetic fields of the dominant mode in a semicircular y:
waveguide. =

3.5 The rectangular TE;; and TM11 modes are degenerate to each other. Following the g
discussion in Section 3.8, calculate how the removal of the degeneracy takes place 7
when the wall losses are taken into account. T

3.6 Suppose the inner surface of a circular waveguide with radius a is coated by dielectric Fig. 3.20. Cross-guide directional coupler.
material (¢ = eozs) of thickness & (§ < a). Discuss the effect of the coating on the

TEo: and TM;1 modes by calculating how the degeneracy is removed.

from port T leaks out from port IV but none from port ITI, giving the directional

lar waveguides are placed side by side and two holes are drilled coupler action. Explain the principle of operation qualitatively, considering the ficld
o Sl:l ppf;hse ::’0 oo wall a qguarter wavelengths apart as shown in Fig. 3.19. Part configuration of the rectangular TEio mode. This is inherently a broadband device
throu, e common - 2L . . - .
of the power coming in from port T will leak out from port IV, but none will emerge since the cancellation does not utilize the path length difference.

3.9 Prove that »? is real for the waveguides with inhomogeneous media when o = 0.
The E:a’s can be chosen to be real, and (3.193) is equivalent to

fk-Em X HE dS =0

for the propagating modes m and #, which indicates that each wave carries its own
independent power.
3.10 Prove thata variational expression for the eigenvalue problem (d2E,/dx2) 4 k2E, =0
i under the boundary conditions ¥,(0) = E,(a) and {dEy(Q)dx} = {dE,(a)/dx} is
s given by
! k2(E) =

S r A

f (dEy/dx ) dx — [Ey dEyldx]),™ + Ey(0) {dEy(a)dx ) — Ey(a) {dE, (0)/dx }

f Eyﬂ dx

Fig. 3.19. Directional coupler.

o



CHAPTER 4

RESONANT CAVITIES

Resonant cavities are devices constructed so that one can utilize resonant
phenomena of electromagnetic fields in a space enclosed b){ good conducting
walls. They are useful as circuit elements, particularly as microwave countef-
parts of LC resonant circuits in low frequency ranges. Furthe'rmore, tl'felr
analysis offers an opportunity to demonstrate a powerful eigenfunction
approach. For these reasons, this whole chapter is devoted to _the theory
of resonant cavities. An equivalent circuit of the cavities is obtained and.a
method to experimentally determine the circuit parameters is studief:l in
detail. In addition, a discussion of cavities with inhomogeneous media is
briefly presented. In contrast to waveguides with inhomogen_eous media, the
completeness of the eigenfunctions can be shown without difficulty.

4.1 Introduction

Conductor walls forming a resonant cavity generally have finite con-
ductives and, hence, introduce losses of electromagnetic energy. Further,' in
order to utilize the resonances in the cavity, there must be at least one opening
through which the inside and outside of the cavity are connected. However,
as an idealized model, let us first consider a space completely ent_:lo*_sed by a
perfect conductor and study how electromagnetic fields behave in it. Max-

well’s equations are given by
V x H=jutE 4.1)
VxE=—jouH (4.2)
170
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Substituting V x (4.2) into (4.1), we have an equation in E alone;
VxVXE-o’uE=0 (inV) (4.3)

where an assumption is made that & and u are constant in the volume ¥V of
the cavity. The boundary condition for E is given by

nxE=0 (on5) (4.4)

where n is the unit vector directed outwards normal to the wall sutface S.
Equations (4.3) and (4.4) constitute another cigenvalue problem whose
solutions can exist only when w?eu = k? takes certain discrete values. For
instance, for a rectangular enclosure with sides a, b and ¢, the eigenvalues
are given by

: ki® = wlep = (nmja)? + (mnfb)® + (injc)? (4.5)

where n, m, and 7 are arbitrary integers including zero, provided two of
them do not become zero simultaneously. This type of cavity can be con-
sideted to be a rectangular waveguide which is an integer multiple of a half
wavelength long and short circuited at both ends. There are two different
field configurations for each set of n, m, and I, one corresponding to a TE
mode, and the other to a TM mode. Accordingly, the field configurations
are designated as TE,,, and TM,,, modes. There is one exception; no TE
mode exists for / = 0.

For a cylindrical cavity of radius ¢ and length L, corresponding to TE
modes in a cylindrical waveguide, there are TE,,; modes (f# 0) whose
eigenvalues are given by

ki = oep = (Up,fa)? + (In/L)? (4.6)

Similarly, corresponding to TM modes of the waveguide, there are ™,
modes with the eigenvalues given by

ket = ;%04 = (Unfa) + (InfLY? @7

where [ is allowed to be equal to zero. The resonant frequencies for I=0
are exactly the cutoff frequencies of the corresponding modes in the wave-
guide.

As illustrated above, if a finite electromagnetic field exists in a space
completely enclosed by a perfect conductor, the field should have at least
one of the discrete frequencies determined by w, =k,(e)"'? where the
k.’s are the eigenvalues of (4.3) and (4.4).

In order to excite, detect, or utilize the electromagnetic field in the cavity,
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let us next consider two small openings as shown in Fig. 4.1, which connect
the inside of the cavity to waveguide ports I and II. Suppose a wave with
frequency @ is incident on port I, and @ is equal to one of the discrete
frequencies mentioned above, then the electromagnetic field will be strongly
excited in the cavity and a substantial amount of power will leak out to
port II. On the other hand, if w is different from any one of the w,’s, port 1
and port II will be isolated by the cavity since it cannot contain a field with

WINDOWS

CAVITY
Fig. 4.1. Resonant cavity with coupling windows.

1
I
I

l
|
|
| j\
| ! 1 -

w, Wy Wy W

Fig. 4.2. Cavity output power versus .

o different from the ,’s. This, however, is true only for the idealized cavity
with no opening. Because of the opening, if the difference between w and w,
is small, a weak electromagnetic field will be excited in the cavity and some
power will leak out of port II. As a result, when o is varied keeping the
amplitude of the wave incident on port I constant, the power out of port II
may look like Fig. 4.2. At w,, w,, @3, and so on, determined by the geometry
of the cavity, the output power becomes large and as @ moves away from
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these discrete frequencies, it drops rapidly. Each of the bell shaped curves is
called a resonant curve. The heights of the peaks are different from one
another because different modes are excited differently. When the cavity is
close to the idealized case, the output power drops quickly as e changes
from each e, and the width of the resonant curve becomes narrow. On the
other hand, if the resonant curve is broad, it shows that the cavity behaves
quite differently from the idealized case for the particular mode. Thus, the
width of the resonant curve gives some indication about the quality of the
cavity and how close it is to being ideal. The resonant curve is sometimes
called the Q-curve after the first letter of the word “quality.” The center
frequency of the curve is equal to @, (for a more precise discussion, see
Sections 4.2 and 4.3), a property which can be used to measure frequencies
when we change the length of the cavity to make the output power maximum.
If either the approximate frequency is known beforehand or the cavity is
constructed so that only one mode can be excited easily, the resonant mode
can be identified, and the frequency w, can be calculated from the dimen-
sions of the cavity. Cylindrical cavities are widely used for this purpose
since it is relatively easy to build them precisely using a lathe. The modes
usually employed for frequency measurements are circular TE,,; or TE,
where [ is a small integer such as 1, 2, or 3.

4.2 Expansions of Electromagnetic Fields

A complete set of orthonormal functions cannot be derived from the
eigenvalue problem defined by (4.3) and (4.4); nevertheless, the two-
dimensional problem studied in the previous chapter suggests that the solu-
tions of the eigenvalue problem

VxVXxE—-VW.-E—KE=0 (inV) (4.8)

nxE=0, V.E=0 (onS) {4.9)

may give a desired set; in fact, this eigenvalue problem can be discussed in
exactly the same manner as before. Thus, the eigenvalues are real and non-
negative (positive or zero), and the real eigenfunctions can be chosen to
form a complete set. The variational expression for k2 is given by

f{(V x E)* + (V-E)*} dv—2fn x E-V x EdS
k*(E) = - (410)

sz dv
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where the volume integral and surface integral are over ¥ and S, respectively.
The orthogonality and normalization conditions ar¢ expressed by

'[E"-Emdv=0 (n £ m)
J.E,,-Emdv=1 (n=m)

Furthermore, each function in the complete set can be chosen so as to belong
to one of the following three groups.
L VxE =0, V.E =0
IL VxXE,#0, V:E, =0
llI. VxE, =0, V-E,#0

In terms of the eigenfunctions thus obtained, an arbitrary vector function
F can be expanded as follows, provided it is piecewise-continuous (i.e.,
continuous except on a finite number of surfaces each with a finite area) and

square-integrable over V:
F=) AE, (4.11)
n=1

where
A, = f F-E, dv (4.12)

The real meaning of the equality in (4.11) is given by

N—-1 2
lim f (F— ¥ A,,E,,) do=0 (4.13)

N—-o n=1

When F is a complex vector function, the real and imaginary parts can be
expanded separately and then added to obtain the formulas identical to
(4.11) and (4.12). No proofs will be given here for the above assertions
since they are obvious from the previous discussion for the two-dimensional
case. A brief discussion concerning the proof of the relation lim,_, , k,” = o0
will, however, be given in Appendix 1.
Following a procedure similar to the eigenvalue problem for H, in the
previous chapter, we have
VxVxH-VV-H-KH=0 (inV) (4.14)

n-H=0, nxVxH=0 (onS) (4.15)

:
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A variational expression for £? is given by

f{(v x HY? +(V-H)?) du-2f(n-H)(V-H)dS

JHZ dv

The orthogonality and normalization conditions are

kK*(H) = (4.16)

fH,,-Hma'u=0 (n#m), fH,,-H,,,dv=1 (n=m)

Furthermore, we shall assume that the eigenfunctions are real and belong
to one of the following three groups:

1. VxH,=0, V.-H =0
IL VxH,#0, V.H,=0
L VxH,=0, V.H_ %0

A piecewise-continuous and square-integrable, but otherwise arbirtary,
vector function F, defined in V, can be expanded in terms of these functions:

F= 2-:1 B H, (4.17)
where
Bm=fF-Hm dv (4.18)

We have obtained two complete sets of orthonormal functions, the E,s
and the H,’s, but those belonging to group II are closely related to each
other. To show this, we first note that their eigenvalues are not equal to
Zero, as can be seen from the variational expressions, Using E,, which is
one of the E,’s belonging to group II, we can define a function H, through

VxE,=kH, (4.19)

where k, is the nonzero eigenvalue of E,. Therefore, H, belongs to group 11
and can be adapted as one of the H,’s to form a complete set for the follow-
ing reasons. Since V-H, =0, V.E, =0, and

VxVxH,—k'H,=k;'Vx(VxVxE,~k’E)=0 {in V)
the function H, satisfies (4.14). On S, it satisfies
axVxH,=k'nxVxVxE =k 'nxk’E,=0 (onS§)
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which is one of the boundary conditions in (4.15). For the other boundary
condition, let us consider the surface integral of m-H, over AS, an arbitrary
part of S. It is given by

fn-HadS=k;‘f n-VandS=k;1f E,-dl
A8 A8 AL

where AL is a closed contour around AS. Since the component of E,
tangential to §'is equal to zero, the right-hand side vanishes regardless of the
size and shape of AS. This means that

n-H,=0 (onS)

Thus, H, satisfies (4.14) and (4.15). Furthermore, for H, and H, corre-
sponding to £, and E,, respectively, we have

fH,,-Hb dv = (koky) ! fv x E,+V x E, dv
== (kukb)_l f]l X E,,-V X Eb dS +(kb/ka) f Ea'Eb dv

The first term on the right-hand side is equal to zero since n x E, =0, If
a # b, the second term also vanishes due to the orthogonality relation between
E, and E,. If @ = b, the integral becomes unity. These two conclusions mean
that the H_’s satisfy the orthonormal conditions when the E;’s do. We have
seen that an eigenfunction H, belonging to group II can be derived from
each eigenfunction E, in group II. Conversely, if H, belongs to group II,
E, can be defined through

Vx H,=kE, (4.20}

As a result, every eigenfunction belonging to group IT can be made to have a
counterpart in the other set without loss of completeness. Let us assume that
this has been done in the remainder of the discussion.

In order to distinguish eigenfunctions in groups I and III from those in
group I1I, Greek subscripts will be used, i.e.;

VxE, =0 (4.21)
VxH, =0 {4.22)

We are now in a position to solve Maxwell's equations using a strategy
similar to the one employed in Section 3.5, First, we shall expand all the
quantities appearing in Maxwell's equations in terms of appropriate sets of

e T
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functions obtained above. We shall then determine the coefficients by sub-
stituting the results into Maxwell’s equations, thereby obtaining the electric
and magnetic fields in expanded forms.

If there were no openings or losses in the walls, the E,’s and the H,’s
would suffice to define the electric and magnetic fields. However, because of
these imperfections, all the functions, the E,’s, E,’s, H,’s, and H,’s, become
necessary for our discussion. For simplicity, let us first consider a cavity
with only one opening connected to a waveguide. In order to facilitate the
connection of the fields in the cavity with those in the waveguide, let us
extend the cavity region ¥ into the waveguide, as shown in Fig. 4.3 where

Fig. 4.3. Cavity volume ¥V is extended to reference plane So.

S is a cross section of the waveguide defining the extent of ¥. Let S be the
cavity wall surface so that S’ + .5, forms a closed surface § completely
enclosing V.

Maxwell’s equations, which we are going to solve, are given by

V x E =~ jopH (4.23)
VxH=(s+joe)E (4.24)

On the right-hand side of (4.24), ¢ has been introduced for several reasons.
Although we shall assume that o < jwe, if ¢ is finite, the effect of ¢ becomes
important at and near the resonant frequencies and hence cannot be neglect-
ed. Furthermore, use will be made of the fact that k,> = w,%ep is real and,
hence, the replacement of ¢ by ¢ + o/jw in the final result will not give a
correct answer as it did in the case of waveguides.
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The expansions of E and H are given by

E=2EafE-Eadv+ZEva-Evdv (4.25)

H=ZHafH-Hgdu+EHAJH-Hidu (4.26)
a i

Next, considering that V x E is an H-like function, let us expand it in
the form

VxE:ZHﬂJ‘VxE-HadU+ZHJ_fVxE.Hidu (4.27)
a A

The first expansion coefficients on the right-hand side can be rewritten as
follows:

J‘V X E-Haa'v=J-(E-V xH,+ V-E x H,} dv
=k‘,fE-Eaa’v+ '[n xE-H,dS
Similarly, since V x H, =0, we have
J‘V x EH,dv= J.nx E-H, dS
Substituting these expression sinto (4.27), the expansion of V x E becomes

VxE=ZH,,(kafE-Eadv+fan-HadS)+ZHAJ‘an-HAdS
‘ * (4.28)

If we took V x (4.25) and calculated the term-by-term differentiation of the -

right-hand side, the surface integrals in (4.28) would not appear, thus leading
to an incorrect result. This is due to the fact that the term-by-term differen-
tiation of an infinite series is not always allowable, especially when the bound-
ary conditions of the functions in the series expansion are different from

those of the function being expanded. _ _
Finally, let us expand V x H in terms of the E_’s and E,’s. A little manip-

ulation similar to that leading to (4.28) gives

VxH=Y Ek, J H-H, dv (4.29)

The surface integrals corresponding to the ones in (4.28) do not appear
because n x E, and n x E, are both cqual to zero on §.
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Since all the necessary quantities have been obtained in their expanded
forms, let us substitute them into (4.23) and (4.24). The results are given by

ZHa(k,fE-Eadu+fnxE-H,,dS)%-;HlfnxE-HadS

= — jou (z H,,fH-Ha a’v+§:Hin-H,1 du) (4.30)
ZEakafH-Hadv

= {0 + jwe) (ZEafE-Eadv+ZEva-Evdv) (4.31)

Equating the coeflicients of each eigenfunction on both sides of these equa-
tions we obtain

kafE-Eﬂdv+fnxE-HadS=—ja),ufH-Hadv (4.32)
IHXE.H’I dS=—jcopr-H,'dv (4.33)
k,,fH-Ha dv= (o +jwe)fE-Ea dv  (4.34)

fE-Ev dv=0 (4.35)

If we eliminate one of the volume integrals from {4.32) and (4.34), say
JE-E, dv, we obtain

{jwu + k(o + jwe)) fH H, dv=— f nxE-H, dS (4.36)

Now suppose n x E is given on S, then J H-H, dv can be calculated from
(4.36). Substituting this into (4.34), [ E-E, dv will be determined. Further-
more, [ H-H, dv can be calculated from (4.33) while { E-E, dv is equal to
zero from (4.35). Substituting all these volume integrals into (4.25) and
(4.26), the electric and magnetic fields are obtained in their expanded forms
and Maxwell’s equations are solved assuming n x E is known. To complete
the solution our next task is to find n x E on § = Sp + S’ First consider
n x E on S;. Since S, is a cross section of the waveguide, the component E I
of E tangential to S, can be expanded in terms of the eigenfunctions in the

N
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waveguide:
E,=YE,V, (4.37)

where V, is the expansion coefficient which can be interpreted as the voltage
associated with the #th mode in the waveguide as discussed in Section 3.5.

Next, to calculate the surface integral on the right-hand side of (4.36),
let us expand —k x H, on S, in terms of the E,’s:

-k x Ha = Z EtnIan

where 1., is the expansion coefficient. Multiplying both sides by k x and
using the relation

kxk x H, =k(k-H,)~ H,(k-k) = — H,
we have
H,=Yk xE,_, ‘ (4.38)

Noting that the direction of k is opposite to that of m, we obtain from (4.37)
and (4.38)

—f an-H,dS=f k x E-H, dS
So So

xj YkxE,V,-Y k xE,L,dS

Son n

=3 Val (4.39)

where a formula similar to (3.85) is used. In much the same way, H, can be
expressed in the form
H, =Y kxE,I, (4.40)

and the contribution from S, to the surface integral on the left-hand side
of (4.33) becomes

f nxE-H,dS=-Y VI, (4.41)
Sp n

Having obtained the integrals over 5, let us now turn our attention to
the wall surface S’. For simplicity, we assume that w is close to w,=
k,(et)~"/* where k, is one of the k,’s and that only the pth mode is strongly
excited. All the other terms in the field expansions will be considered small
compared to this mode. Then H can be replaced by H, [ H-H, dv in order
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to calculate the effect of the wall losses. As we discussed in Section 3.8, the
boundary condition on §” is given by

nxE=2H
and, hence, we have

nxE=2Z2H, f H-H, dv (4.42)

under the assumption mentioned above. From (4.42), the surface integral
of n x E-H, over §' becomes

f nxE-H,dS=(1+))o,uQ. f H-H, dv (4.43)
- .

where
05! =(1+) @) [z} as (4.44)

Substituting (4.39) and (4.43) into (4.36), with a = p and assuming jwe > o,
we obtain

{ky* — @’ep + jopos + (1 + j) jore w,uQ,") f H-H,dv=jocy VI,
(4.45)

Dividing both sides by jww,eu and rearranging the terms, when o is close
to o, the above cquation reduces to

J 1 2V
H.H,do=— " 4.46
P i) — (@ o+ @gy)

where

o, = 0,(1 - 305,),  (1Q,)) = (1/Q,) +(1/Qs,),  (1/Q,) = (o/e,e)
(4.47)

Since the first and second terms in the brackets on the left-hand side of
(4.45) almost cancel each other, the contribution from (4.43) to the left-hand
side of (4.45) cannot be neglected in obtaining (4.46). On the other hand, since
Z,, is small, the contribution from the surface integral of n x E-H, (a # p)
over §" is negligible compared to the other terms in (4.36). Thus, we have

J 1 2 VL
H-H, dv=— —e —
Wbt ] {(0f0r,) ~ (wif@)} + (1/Q,)

(4.48)
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where a is not equal to p. Similarly, we obtain from (4.33) and (4.41)

ZVnIAn
J.H.H,1 dv ="

- {4.49)
Jop

Substituting (4.46), (4.48), and (4.49) into (4.26), the magnetic field in the
cavity is obtained:

1 AN

ot j {(fe,’) — (w0, fo)} + (1/Q,)
. 2. Velo Y VL,

* agp B o gt j {(wfew,) — (wa/w)} + (I/Qa) Z H; "Tw’!r (4.50)

Similarly, E is given by

12 YV,
(Y [ L :
£= “’() Er o (@ly) — (o)} + (10
Y Vi,

1
n;p E, GTIU {(w/wu) — ((Da/a))} + (”Qﬂ) (4.51)

+

This completes the solution of Maxwell’s equations.

Let us next calculate the input admittance of the cavity, looking in from
S¢. To do so, we assume that S is far from any waveguide discontinuities
and that only one propagating waveguide mode exists there; i.c., all the
other modes are negligibly small. From (4.38), (4.40), and (4.50), the
tangential component of H on S, is given by

1 VI
- k Etm
Hy =2 2k x Bunlyn O Gty — @yl T (0)) T 22 & ¥

1 V,.,Ia,, VnIAn
Tnh 4.52
[Z’ ] {(@f0s) — (o)) + (1700 T % I jw#] *32)

If subscript 1 indicates the propagating mode in (4.52), the terms other than
those corresponding to m =n =1 must all be negligible, by hypothesis. On
the other hand, the same magnetic field can be written in the form

H" = k X EIIII (4<53)

where I, is the current associated with the propagating mode. Therefore,
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I, is given by
r Vil
wp”j {(w/wp’) - (wp’/w)} + (I/QD')

+ z ““L s VlIZ + ﬂ{)._l
Wit J {w]e,) — (@af0)} +(1/Q.) jou
a¥p A
Since V| is the voltage associated with the propagating mode in the wave-

guide, the input admittance of the cavity becomes

=£ 1 I
Vi wupj{(wfw,) (o, ICO)}+(1/Qp) i

(4.54)

where

Y = X _1_ _7 131 I 4
7 ] o (o) = (@ o)) +(1/Q.,)+Z}"&m (4:33)
a*p A

The term Y, is a slowly varying function of e in the vicinity of w = w, in
contrast to the first term on the right-hand side of (4. 54).

Corresponding to (4.54), for resonant cavities with two openings, such
as that illustrated in Fig. 4.1, we obtain

L =Y, Vi+ Y,,V,, L=Y,V+ 7,0, (4.56)
where
1 I.I

pitoi

5= i (@loy) (o, o)} +(170,)

+ Z 71 — iI‘” Ly, [ i=1.2
a watt J {(@for,) — (w.fw)} + (1/0,) iju (hj=1.2)
e (4.57)

Equations (4.54) and (4.56) will be studied in detail in the next section,
The clectric and magnetic fields of the pth mode in the cavity, [E], and
[H],. are given by

1/2 ZV
El —— (" L _
LE], ’(e) o j{(wfo,) - (wp/w)}+(1/Q,,) &
{ 2 Vil
ogt (@], — (@ )] + e,

[H], =
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Therefore, the relation
i [ o[E],[E)," do =4 | wie, -, ao (.58)

holds at @ = w,. This means that the average electric and magnetic stored
energies of a resonant mode arc equal at the resonant frequency. Since E,
and H, are real, [E], and [H], are 90° out of phase. When the electric
stored energy becomes maximum, the magnetic stored energy becomes zero
and vice versa. However, the sum of these stored energies always remains
constant at the resonant frequency. This sum is twice as large as the average
electric or magnetic stored energy.

As defined in (4.47), Q" has the same physical meaning as the ordinary
Q of a resonant circuit in low frequency ranges. This can be shown by re-
writing 1/Q," as follows

1 c 1 1 2
—=—+——\|ZH, dS
Q) wg wul+j

f o[E],-[E]*dv Re f z,[H],-[H],* dS

= +

@, [ (Bl [E) o o, [ ulH], [H)," d

{(power loss in medium)

- 23_,, (average electric stored energy)
(power loss in wall)

Z—w,,(average magnetic stored energy)
(total power loss)

" w, (total electromagnetic stored energy)

In order to obtain (4.50), an assumption was made that only the pth
mode was strongly excited in the cavity. However, if the mode is degenerate
or if there are on¢ or more @,’s close to w,, this assumption is no longer
valid. In this case, several modes must be assumed, having the same order of
magnitude, and whose resonant frequencies are close to the frequency
under consideration, The right-hand side of (4.42) becomgs a linear combi-
nation of the contributions from all of these modes, and corresponding to
(4.45), we obtain simultaneous equations from which the expansion coeffi-
cients can be calculated. This situation is similar to the degenerate case in
Section 3.8 in which the effect of waveguide wall losses is discussed.
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4.3 Equivalent Circuits

In the previous section, the input admittance of a cavity with one opening
was calculated and given by (4.54). If ¢ =0, all the (1/Q,)’s vanish and Y,
must become pure imaginary. In practice, however, a finite conductance may
appear due to wall losses. This follows even though the conductance of each
term in Y, attributable to the wall losses is negligible compared to the sus-
ceptance of the same term. When the summation of an infinite number of
terms is carried out, the conductance components add to a small, but finite,
contribution while most of the susceptance components cancel each other.
The effect of wall losses cannot be calculated by the simple approximate
method we have used. However, the following discussion will not be affected
since no assumption will be made as to the origin of the real part of ¥,

For simplicity, let us assume that Y, is a constant since it varies slowly
with @ in the vicinity of w,, the frequency of interest. The inverse of the
first term on the right-hand side of (4.54) expresses the impedance due to
the resonant mode. Since the real part remains constant as w varies, the
locus of the impedance on the Smith chart must therefore be a constant
resistance circle. The admittance locus, i.e., the inverse of the impedance,
is a circle tangent to the periphery of the Smith chart where the reflection
coefficient r = — 1 as shown in Fig. 4.4(a). Adding ¥, to the circle, it follows
from the property of bilinear transformations that the locus of ¥ becomes
another circle as shown in Fig. 4.4(b). Let 8, be the angle between the zero-
susceptance line and the straight line passing through Y, and the center of
the Smith chart. Furthermore, let w, be the angular frequency corresponding
to the intersection of the admittance locus with this straight line as shown
in Fig. 4.4(b). If the reference plane S, at which the input admittance is

e
’

(a) (b)
Fig. 4.4. Construction of the locus ¥ on a Smith chart.
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calculated, is shifted toward the generator by
Lp = (Bp/4‘n:) j‘y

the locus as a whole rotates clockwise by 8, around the center of the Smith
chart. As a result, the input admittance locus from the new reference plane
may look like the circle shown in Fig. 4.5. Strictly speaking, the wavelength
2, in the guide varies with w. However, 1  is assumed to be constant since
we are considering a narrow range of  in the vicinity of w,.

Fig. 4.5, Input admittance at the new reference plane Su.

With the new S, plane, the region ¥ of the cavity is no longer the same
as before, and the resonant frequencies together with the eigenfunctions
are different from the original ones. However, the general expression for
the input admittance should remain unchanged and is given by (4.54). As
we can easily see from Fig. 4.5, w,” and Y, for the new cavity must be given
by w, and a small conductance G, respectively. Thus, the normatized input
admittance becomes

Y 1/Qex LG
Yo Jj{(@fwe) — (wolo)} +(1/Q0) " Yo

where the external Q and the unloaded Q are defined through
1Qexe = IptfouYo,  1/Q =1j0Q)

for the new cavity, and ¥, is the characteristic admittance of the propagating
mode in the waveguide. The admittance ¥ can be considered as a parallel
connection of a series resonant circuit and the conductance G. Comparing

(4.59)
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the inverse of the resonant term

(@) — (@olw)} ‘i,— 4 5“;;0

and an ordinary impedance expression for a series resonant circuit

j{oL —(1/oC)} + R
we obtain an equivalent circuit of ¥ as shown in Fig. 4.6 where

L= Qext/wo YO > C= Yo/wogext s R = Qext/QO Y, (460)

o .
L
G ¢
R
o .

Fig. 4.6. Equivalent circuit of ¥,

Let us consider the voltage at the original plane S, or at a reference plane
distant 74,/2 from it, where » is a small integer. As a function of w, this
voltage changes proportionally to the straight-line distance from P to the
point corresponding to @ on the locus in Fig. 4.4(b). Therefore, if w is varied,
while the incident voltage remains constant, the voltage at this plane should
vary as illustrated by the curve in Fig. 4.7(a). On the other hand, the voltage
as a function of w at the new S, plane, or 14, /2 away from it, should look
like the solid curve in Fig. 4.7(b). Consequently, the new So plane can easily
be determined with a standing wave detector. Note that the new S plane
is a voltage maximum point at frequencies far from resonance. The dotted
line in Fig. 4.7(b) shows the voltage at a reference plane A,/4 away from the
new S, plane. This voltage is proportional to the straight-line distance
from the point O to the point corresponding to w on the locus in Fig. 4.5.
When the center of the Smith chart is inside the locus, the solid and dotted
curves overlap each other as shown in Fig. 4.7(b); however, if the center is
outside, the peak of the dotted curve becomes lower than the valley of the
solid curve and no overlapping takes place. For a reason which will become
clear after the discussion of power, the cavity is said to be overcoupled when
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£
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1
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1
|
wy wp

{o) (b}
Fig. 4.7. Voltage versus o at the reference planes,

the locus includes the center of the Smith chart, and undercoupled if it does
not.

We next consider the position of the voltage minimum as a function of w.
In the case of overcoupling, referring to Fig. 4.5, the straight-line distance
from P to the point corresponding to w, + 4w on the locus is minimized
when the locus as a whole is rotated counterclockwise around the center of
the Smith chart through the angle #. The counterclockwise rotation of the
locus through  means that the reference plane is shifted toward the load,
a distance L = (#/4n) i,, and the length being minimum indicates that the
voltage at this new reference plane is minimum. Thus, the position of voltage
minimum at @ =wq, + 4w is located L = (6/4n) 1, toward the load from the
voltage minimum point for @,. In the above procedure, instead of rotating
the locus, P can be rotated in the opposite direction through 0 to P'. The
straight-line distance from P’ to the point corresponding to @, + 4w on
the locus is then minimized indicating that the voltage minimum point for
Wy + Ao shifts L = (0/4r) A, toward the load from the minimum point for
w,. Repeating a similar procedure for each @ in the vicinity of @, the
position of voltage minimum versus @ can be plotted as illustrated in Fig.
4.8(a). In the case of undercoupling, the locus does not enclose the center
of the Smith chart, and the position of voltage minimum remains in the
vicinity of the point O, shown in Fig. 4.5. The position of voltage minimum
then changes with w, as shown in Fig. 4.8(b), which is quite different from
Fig. 4.8(a).

oy

Al

[ P s
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(a} (o
Fig. 4.8. Voltage minimum point versus o (a) overcoupling; (b) undercoupling.

The value of G/Y, can be obtained from the standing wave ratio at
frequencies sufficiently away from resonance (w,) that the first term on the
right-hand side of (4.59) can be neglected compared to the second term.
The frequencies should not be so far away that the value of Y, is affected
by the resonances of other modes. On the other hand, the value of Qo/Qeyi +
+ G/Y, can be obtained from the standing waves ratio at @gy. From these
two values, we calculate

r, Qo G

PRI MA
and obtain the straight-line distances from P or O to Y,/Y; on the Smith
chart, and hence the relative voltages at frequencies oy =wy + Aw, corre-
sponding to Y,/Y,. The frequency Aw, can be determined by measuring the
voltage versus  at an appropriate reference plane as shown in Fig.4.7(b)
and finding the frequencies at which the relative voltage becomes the value
obtained above. Similarly, if 8, corresponding to Y,/Y, is obtained on the
Smith chart, the same frequencies w, + 4w, can be determined by taking
two points distant L, = (6, /4n) 4, from the point of symmetry on the mea-
sured curve of the voltage minimum point versus e as shown in Fig. 4.8(a)
or (b). Once dw, is obtained, @, can be calculated from

Qo = (wo/2 4w,) (4.62)
since a comparison of (4.59) and (4.61) shows that

1/Q4 = |(w,/we) — (of00, )] ~ (2 4w, fwq)

(4.61)
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Furthermore, Q,,, can be determined from the measured values of G/Y,
and Q¢/Q.,. + G/Y,. Thus, all the parameters necessary to determine the
equivalent circuit shown in Fig. 4.6 are experimentally obtainable.

Neglecting G, which is usually small, and assuming the generator admit-
tance is equal to the characteristic-admittance of the wavegnide propagating
mode, the equivalent circuit including the generator admittance is represented
by Fig. 4.9. The @ of the circuit on the right-hand side of 5, is given by

o = wsL/R. The @ of the whole circuit including Y, is called the loaded Q
and is indicated by Q,; and 1/Q, is calculated as

LR _ 1

S (4.63)
o woL Qo Qe

w
a

23

3
%R

e e -O—

i

Fig. 4.9. Equivalent circuit of a cavity including the gensrator admittance.

Consequently, Q.,, can be interpreted as the ¢ corresponding to the power
loss into ¥, through the S, plane. If O, is smaller than @, the energy
escaping to the outside through the S, plane is larger than the energy
consumed inside the cavity, and hence the cavity is overcoupled. On the
other hand, if Q.,, is larger than @, the cavity is undercoupled to the
outside. The center of the Smith chart is inside or outside the locus depending
on whether the cavity is over- or undercoupled, respectively. If the effect of
G is taken into account, the situation is different. Generally speaking,
however, the cavity is said to be overcoupled whenever the locus includes
the Smith chart center and is otherwise undercoupled. These two different
states can easily be distinguished by performing an experiment similar to
the one leading to Fig. 4.7(b) or Fig. 4.8.

Let us next discuss the equivalent circuit of a two-port resonant cavity.
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To simplify the discussion, we restrict ourselves to the case in which the
coupling between the input and output is due to one single resonant mode.
In this case, the contribution to Y;, comes from the first term on the right-
hand side of (4.57), and other terms become zero. Furthermore, if the S,
plane in each waveguide is shifted to a voltage maximum point for frequencies
far from resonance, as we did with the one-port cavity, Y;; as well as Y,,
is represented by a resonant term plus a small conductance. We neglect the
effect of the small conductances in Y,, and ¥,,. Equation (4.56) then
becomes

I = ﬁl_ 101102 B IOI V V
" ot j {(@]er0) — (wol@)] + (105) (f ot )
L1 Toulo ( I, (464
= v+ 22y,
Wol J {(w/wo) - (wofw)} + (I/Qo) Iy )

If port IT is short circuited, for example, by setting V, = 0, the input imped-
ance of the resonant cavity from port I becomes a series resonant circuit.
Similarly, if port I is short circuited, the cavity appears to port Il as a series
resonant circuit with the same resonant frequency as before, but the magni-
tude of the impedance is different. Therefore, an equivalent circuit of the
cavity may look like Fig. 4.10, where a series resonant circuit Z is connected
to the input and output circuits through transformers.

Let us study the relation between the currents and voltages in Fig. 4.10,
The current /, flowing through Z is driven by the difference of electromotive
forces n ¥V, and n,V,, and we have

Iy = ZLl(""‘1V1 - n, ;)
From this, I, is given by

L=nl,=Z"" {"12V1 —nn,Vs}

L)

Fig. 4.10. Equivalent circuit of a two-port resonant cavity.
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Similarly, I, becomes
Iz = - n2I0 = Z—1 {— nln2V1 + nszl}

Comparing these equations with (4.64), if the equivalent circuit is to represent
the two-port cavity under consideration, we obtain

1
{l-2)ahi
Wy @ Qo) Ini Iy,

n; = (1'01/1702)”2 » Hy =— (102/1'01)”2

and Z is a series resonant circuit of L, C, and R given by

L=ypllyly,, C=lfw,’L, R=uw,L/Q, (4.65)
respectively.

Now, we are in a position to calculate the output power as a function of
« using this equivalent circuit. For simplicity, both generator and load are
assumed to be matched to the waveguide characteristic impedances. The
equivalent circuit, including the generator and load, is therefore given by
Fig. 4.11(a) which becomes Fig. 4.11(b) when the transformers are elimi-
nated. From Fig. 4.11(b), the output power is calculated to be

P, (w)

2 2
ny Ry |1y R
2
ny"Ry [n E|

- (4.66)

In\*Ry + ny"Ry, + R + jwoL {(@jwo) — (wolw)}?

P

1:n, z ny ‘i i
R V
g R 3

. é/vvvx_{ | -
9 ! 4

n2Rr

g 2 ¥

(b} N2 R i
N Eg

Fig. 4.11, Equivalent circuit of the two-port cavity including the generator and load.
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If @y, and Q.. , are defined by
IIQexl, 1= nlzRg/moL, I/Qext, 2 = n’ZZRL/mOL (467)

then, these external Qs have a physical meaning similar to the external o
of one-port resonant cavities; i.c., Q.. ; and Q.. > are the s due to the
power losses through ports 1 and 2, respectively. The loaded @ is then
calculated from

(1/QL) = (I/Qexl, 1) + (I/Qexl, 2) + (I/QO) (4'68)
In terms of Q;, (4.66) can be rewritten in the form
Py(w) = ”12"22RLE,.;2QL2 ~ Py (wy)
- (“"OL)2 11 +jQ; {ofoy) — (mO/m)}|2 1+ Q.2 (2 Aﬂ’/mo)z

(4.69)

where dw = w — w,y. The output power as a function of @ becomes a
typical bell shape as shown in Fig. 4.12. The difference of the frequencies
at which the output power decreases to the one-half of the maximum is
given by 2 Aw = w,/Q,. This relation is often used for the measurement

of QL'

I
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|
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Wy - A w, W +Aw

Fig. 4.12, Output power versus w of the two-port cavity.

4.4 Perturbation of Boundaries

Suppose the cavity wall is slightly deformed from S’ to 87 as shown in
Fig. 4.13, where the deformed surface is indicated by A4S. The volume of
the cavity is now ¥ — AV, where AV is the volume of the deformed part.
The cigenfunctions as well as the eigenvalues will now all be different from
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Fig. 4.13. A small perturbation of the wall of a cavity.

the original ones. As a result, J 2, w,,and Y, in (4.54) are ex'pected to cl}ange.
However, since the denominator of the first term on the right-hand s.1de al-
most cancels in the vicinity of @', the largest effect on the .inl.)ut adm1ttrance
comes from the variation in w,’. For this reason, the varation .of w, cilulc
to the deformation is particularly worth studying. However, since w, 18
directly proportional to w, and Qs, is expected to remaizn al@ost_ the same,
we have only to investigate the variation of w,, or k,? which is equal to

w, ext, in order to study the o, variz.a.tion. . . o
Let us use the variational expression for &% to investigate the variatio

of k,2. Noting that the expression gives an approximation for the eigenvalue
p ) . - - .
one order higher than that of the trial function used, we use the original

eigenfunction E, as a trial function. Then, k*(E,} is given by

(VxE)Zdv—zf nxE,.VxE,ds
V-4V F §"+ S0
J. E,’ dv
L gar:1 4
2 do - E, VxE,dS
fy (Vx E,) dv— JAV(V x E,) dv—2 J.SWSOn xE, »

Ezdv—f E2dv
‘ fV 4 AV r

k*(E,) =

4
E

4

g
=

gt

RO gy

B o

e
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>~ k,? - f (VxE,) dv+ kpzf E? dv
4V A¥
—Zf nxE,.VxE,dS
5" +5q
where (V-E, =0} and the normalization condition of E, are used. The last

surface integral is equal to the integral over A4S since n x E, = 0 clsewhere.
However, using Gauss’s theorem and n x E,=0o0n S', we have

f nxE,.V prdS=—f V:E,x VxE,dv
A5 AV
=—f {(VXE) —E,-VxVxE,}dv
AV
= f (VxE,y do+ f k,’E? dv
AV AV
Combining the above two equations, we have
K*(E,) ~k,> + f (Vx E) dv—k,? f E? dv
4av AV
It follows from (4.19) that this is equivalent to
K(E) =k’ {1 + f (H,’ —E}) du} (4.70)
AV

Equation (4.70) gives the approximate eigenvalue for the deformed cavity,
Writing the variation in the resonant frequency by Aw,, we obtain
Awp kz(Ep) - kpz
o2k,

= %j (H,” —E*) dv (4.71)

Wy

This can also be considered to give Aw,'jw,’. From (4.71) we see that the
resonant frequency increases or decreases depending on whether the mag-
netic-stored energy is larger or smaller than the electric-stored energy in the
region removed from the cavity by the deformation. In other words, if the
wall is pushed in where the electric or magnetic field is concentrated, the
resonant frequency will be lowered or raised, respectively. This corresponds
to the behavior of an LC resonant circuit where the resonant frequency
goes down if we bring the electrodes of the capacitor closer together;
whereas, if we insert a piece of metal inside the coil, the inductance decreases
and the resonant frequency goes up.
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In the above discussion, when E, was used as a trial function, it was tacitly
assumed that E, was not a degenerate eigenfunction. If it is, a linear combi-
nation of all the eigenfunctions which are degenerate to E, must be used
in place of E in the variational expression, and the coefficients have to be
determined so as to make k*(E) stationary. Each stationary value of k*(E)
gives an eigenvalue from which the resonant frequency can be calculated.
The situation is somewhat similar to the degenerate case discussed in

Section 3.8.

4.5 Cavities with Inhomogeneous Media

In this section, let us discuss briefly how to obtain the equivalent circuit
of resonant cavities with inhomogeneous media. Since the two seis of eigen-
functions obtained in Section 4.2 are complete, it is possible to expand the
expressions for electric and magnetic fields in a cavity with an inhomogeneous
medium in terms of these sets of eigenfunctions. If this is done, however, it
becomes impossible to assume that only one or a small number of modes are
excited strongly, and that others are negligible. In other words, the conver-
gence of the series becomes so poor that no useful information can be ob-
tained. Consequently, some other sets of functions have to be found which
are suitable for the expansion of electromagnetic fields in such cavities.
Fortunately, the following eigenvalue problems give suitable sets of eigen-
functions provided that g, = ¢/e, and u, = p/p, remain positive and finite
everywhere in the cavity.

Vxu 'VXE—gVV.gE—k%E=0 (inV)

mxE=0, V.E=0 (ons) 7D

Vxe ! VxH-pVV-pH-kuH=0 (in¥)

4.73
n-pH=0, nxg!'VxH=0 (onS) (a.73)

Under the assumption that ¢, and p, are positive and finite, k? becomes real
and nonnegative, and the eigenfunctions can be chosen to be real, without
loss of generality. The variational expressions for the k¥s are given by

J#:I(VxE)ldv+f(V-£,E)2dv—2fﬂXE°H:lVXEdS
k* (E) =

J. e E* dv

(8.74)
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fs,."(V x H)? dv+f(V-,u,H)2 dv —2fn-,u,HV-,u,HdS
K (H) =

f wH? dy
(4.75)

Using these expressions, the eigenfunctions can be obtained, at least con-
ceptionally, one by one to satisfy the orthonormal conditions

0 #
f &K, E, dv = { X g ” :; (4.76)
. _J0 (n#Em)
J‘y,H,, H,dv= {1 (n = m) {4.77)

In this process, every E, can be made to belong to one of three groups

I. VXE, =0, V..E =0
I VXxE,#0, V.E =0
M. VxE =0, V.¢E, #0

Similarly, we have for H,,

L VxH,=0, V.uH =0
I VxH,#0, V-gH, =0
Il VxH,=0, V. H, £0

Furthermore, each function belonging to group I can be selected so as to
make a pair, E, and H,, satisfying

VxE,=kuH,, VxH,=keE, (4.78)

If Greek subscripts are used for the functions belonging to groups I and 111
we have ,

VxE, =0, VxH,; =0 (4.79)

Comparing the magnitudes of the eigenvalues for cavities with homogeneous
and inhomogeneous media, the infinite growth of the eigenvalues of the
present probiems can be proved as shown in Appendix 1. Therefore, each
set of the orthonormal functions obtained above is complete. An arbitrary
vector function F which is piecewise-continuous and square-integrable over
¥V can be expanded in terms of either set of these functions; i.e.,

F=Y 4E, F= Y B,H, (4.80)
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where

A, = f eF+E, dv, B, = f,u,F-Hm du (4.81)

For the analysis of the cavity, the quantities appearing in Maxwell’s
equations are to be expanded in terms of these sets of functions, We use the
E,’s and the H,’s to expand E and H, respectively. However, if we try to
expand Vx E and V x H, we shall find that the convergences are poor
since they do not resemble H, and E,, respectively. Therefore, we expand
' VxEand g ' Vx H in terms of the H,’s and the Es, instead of
V x E and V x H. The remainder of the discussion then becomes almost
identical to that for cavities with homogeneous media. The expression for
the input admittance remains the same as (4.54), and the discussions in
Section 4.3 apply equally well, without modification, to the present in-
homogeneous case.

PROBLEMS

4.1 Try to prove the completeness of the eigenfunctions defined by the eigenvalue
problem: VXV X E — &2E = 0 (in V) and n X E = 0 {on §). Point out where
the discussion fails.

4.2 Calculate the change in the resonant frequency of an LC resonant circuit due to the
insertion of a dielectric slab between the electrodes of the capacitor as shown in
Fig. 4.14. Use two different methods: (1) Calculating the change of the capacitance;
(2) Using the variational expression {(4.74).

Figi4.14. LC resonator with a dielectric slab between the capacitance electrodes.

4.3 Suppose that a piece of waveguide an integer multiple of a half-wavelength long is
short-circuited at both ends to form a cavity, Show that the attenuation constant of
the waveguide can be calculated from the Qsp of the cavity through a = (rd,/QspA?)
where the wall losses in the end plates are neglected.

4.4 Considering a length L of a rectangular waveguide short circuited at one end as a
cavity, obtain the Hg's and Hy's, explicitly.
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4.5 Using the above expressions and neglecting the wall losses, calculate the input
admittance of the rectangular waveguide (TE1p mode) at the reference plane distant
L from the short-circuited end.

4.6 Prove that the input admittance in Problem 4.5 is equal to that obtainable by treating
the waveguide as a transmission line. (Hint: A well-known formula

o

1
cotfh =<1 + #
7 1 — (nnf0)?

n=1

may be helpful to equate the two expressions.)
4.7 Show that the solutions of {4.8) under the boundary conditions
nxVxE=0, nE=0 (on So}
nx E=0, V:E=20 (on §)

form a complete set of orthonormal functions. Also show that the solutions of (4.14)
under the boundary conditions

nx H=0,
nxVxH=0,

V.-H=0 (on So)
n-H=0 {on §7)

form another complete set of orthonormal functions. The boundary conditions on
So correspond to the open-circuited condition.

4.8 Using the above sets of eigenfunctions, obtain the input impedance of the cavity at
the reference plane So.

4.9 Calculate the input admittance of a cavity with twofold degenerate resonant modes.
4,10 Use a perturbation method, similar to the one used in Section 3.8, to obtain (4.71).

4.11 Carry out the discussion of boundary perturbation assuming the twofold degeneracy
of the resonant modes,

4.12 Complete the discussion for obtaining an equivalent circuit representing cavities with
inhomogeneous media.



CHAPTER 5
MATRICES AND
WAVEGUIDE JUNCTIONS

In Chapter 2, some fundamental properties of vectors were reviewed.
It was shown that a single letter could represent three components of a vector,
and relations between the components of various vectors were conveniently
studied using certain rules of mathematical vector operations. The intro-
duction of vectors provided a space saving technique for describing these
relations, and also reduced the tremendous mental effort otherwise necessary
to handle threec times as many variables representing vector components.

In much the same way, a matrix represents several quantities in a pre-
scribed manner. Using certain operating rules between matrices, it becomes
possible to describe complex relations between many quantities in an orderly
fashion. Thus, by the introduction of matrices, the description of the input
and output relations of complex waveguide junctions becomes simpler,
and the understanding of their behavior becomes easier. As a result, several
useful theorems for treating microwave circuits, which otherwise would be
difficult to find, now become readily obtainable.

In this chapter, we shall first present matrix analysis which has proved
useful in many branches of applied physics, including the theory of micro-
wave circuits. Then, using matrix notations, the reciprocal theorem, lossless
conditions, and frequency characteristics of lossless reciprocal circuits will
be described. Also, the properties of symmetrical Y junctions and circulators
will be discussed in detail.

5.1 Matrices
A matrix A of order m x n is a particular collection of m x n quantities.

-
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They are generally arranged in m rows and n columns as follows:

Air Qyz e iy
a a .o a

A= |73 T8 o (5.0
Ay Oz wee Oy

and a;; is called the ij component of A. Two matrices A and B are said to be
equal when, and only when, all the corresponding components exist and
are equal to each other; i.e., a;; = b;;. Therefore, when they are equal, the
matrices are of the same order. The addition of two matrices A and B is
defined as a matrix C with its i component ¢;; being a;; + b,;. Addition is
only defined between matrices of the same order. Since g; s+ b= b +ay,
we have

C=A+B=B+A (5.2)

That is, addition is commutative; the order of addition is interchangeabie
without changing the result.

The product of matrices A of order m x f and B of order [ x # is defined
as a matrix C of order m x n with its if component being

Cij = Z a:’kbkj
k

Multiplication between matrices is defined only when the number of columns
in the first matrix is equal to the number of rows in the second matrix. When
matrices of order 2 x 3 and 3 x 2 are multiplied, we obtain a matrix of
order 2 x 2,

11 biz

K

b
[ dy, diz 413 ] 221 by, =[‘311 CIZ]
B [

b

dy1—d—dy3>

31 b32

L |

Here, for example, the elements of the second row in A are multipled by
corresponding elements of the first column in B, and added together to
yield the 21 component ¢, of C; a3,y + a3,b,; + 23385, = ¢,,. From the
definitions of addition and multiplication, it follows that

A(B + C) =AB + AC (5.3)
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This is because the ij component of the matrix on the left-hand side is given
by

> @ulbey + ) = Y auby; + ; jaCyj

k k

which is exactly equal to the sum of the /i components of the matrices on
the right-hand side. Similarly, when multiplying a matrix by the preduct of

two matrices, we have
A(BC)=(AB)C (5.4)

where the parentheses indicate the first operation to be performed. It is
worth noting that AB is not necessarily equal to BA.

A zero matrix 0 is a matrix whose components are all equal to zero. It is
different from zero which is usually indicated by 0. However, when 0
appears in matrix equations, it may mean a 0 matrix. The product of a 0
matrix and an ordinary matrix makes another 0 matrix:

AO=0, O0A=0 (5.5)

Although we use the same symbol @ for all zero matrices, they may not be
the same matrix; the numbers of rows and columns may be different for
different 0's in (5.5).

A matrix with the same number of rows and columns {m) is called a
square matrix of order mr; it is really a matrix of order m x m. A unit
matrix I is a square matrix whose main diagonal components are cach
equal to unity while all the other components are zero. We have

IA=A, AI=A (5.6)

In the multiplication of a matrix with a constant, all the components of the
matrix are multiplied by the constant. Thus, ¢I is a square matrix with each
of its main diagonal components equal to ¢ while the remainder are zero.

It follows from this that
cA=(d)A (5.7)

The inverse matrix of a square matrix A is indicated by A™!, and it is defined
as a matrix which satisfies the following relations:
AAT' =1, AT'A=I (5.8)

From this definition, we see that if the inverse matrix of a matrix exists, it is

unique.
Let det A be the determinant with the same components as matrix A,

H

2

k4

L
#
i
2
7
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and let A;; be the cofactor of the ij component. Then, since
detA = Z aj A = Z ajA;
Y ashy =0 (%K) (5.9)
JIZ a;Ag =0 (j # k)

the ji component of A7 is given by A4;; divided by det A. This can be easily
checked by substituting into (5.8). When det A =0, A~ does not exist. A
square matrix A without A™' is said to be singular; when A™' exists, A is
nonsingular. A nonsingular matrix is a square matrix by definition. The
inverse matrix of the product of two nonsingular matrices A and B is given
by

(ABy' =B7'A™! (5.10)

This is because B~ A" satisfies the definition (5.8) of the inverse matrix as
follows:

ABB!AT!=AA™'=I, B !AT'AB=B'B=I

Similarly, for the product of three matrices, we have

(ABCY ' =C"'B7'A7! (5.11)

Hence, when the inverse is taken, the order of product is reversed.
The transposed matrix A, of a matrix A is the one with the rows and
columns interchanged. For example,

ayy da

Ty Qya Ay

A=[ : A =|a, ay,
Az dz2 a3

dy3 dz3

The if component of the transposed matrix of a product AB is given by
Z apby = Z byt jp
k k

However, since the right-hand side is equal to the i/ component of BA,,
we have

(AB), = BA, (5.12)

The order of product is reversed for the transposed matrix. In the case of
the product of three matrices, we have

(ABC)t =CBA, (5.13)
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If the transposed matrix of A has all its components changed to their
complex conjugates, the matrix thus obtained is called the adjoint matrix
of A and is indicated by A*. Just as the transposed matrix reverses the order
of a product, so does the adjoint matrix, i.e.,

(AB)" =B*A” (5.14)
When A" is equal to A, A is called a self-adjoint matrix. If
At =A"1 ' (5.15)

then A is called a unitary matrix. The product of two unitary matrices is
again a unitary matrix since

(AB)' =B'A* =B 'A™! =(AB)"! (5.16)

where (5.10) and (5.14) are used together with (5.15).

A constant times a vector in three dimensional space is a vector whose
components are multiplied by the constant. The sum of vectors is defined
to be a vector with each component representing the sum of the correspond-
ing components in the vectors. Consequently, there is one-to-one corre-
spondence between matrices of order 3 x 1 and vectors in the three-
dimensional space. Extending this correspondence to multidimensional
spaces, let us call a matrix of order nx | a vector in n-dimensional space.
The operation of multiplying a square matrix A of order # and a matrix x
of order n x1 to obtain another matrix y of order n x 1, can then be ex-
pressed as follows: Vector x is transformed into vector y by A. When A is
a unitary matrix, we have

Yy=(Ax)" Ax=x"ATAx =x"x (5.17)

where use is made of (5.15). When the components of the vector x in three-
dimensional space are all real, x*x expresses the square of the magnitude
of x. Extending this notion of magnitude to more general cases, a real
quantity x*x is considered as the square of the magnitude of vector x even
when x is an r-dimensional vector with complex components. With this
interpretation, {5.17) shows that the magnitude of a vector remains un-
changed during the transformation by a unitary matrix. In other words, the
magnitudes of vectors are invariant to unitary transformations.

Now suppose that
¥y = Ax (5.18)

and let us study how A changes during a coordinate transformation. If T

2

e

R T

St
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is a nonsingular matrix which expresses the coordinate transformation, and
if X" and ¥’ are the results of the transformation, then
x' =Tx, y =Ty (5.19)

Substituting into (5.18), we have

T 'y = AT ¥
or equivalently
y = TAT 'x’
Comparing this with
y =A'X

we see that A is transformed into
A =TAT ! (5.20)

The transformation expressed by (5.20) is called the similarity transforma-
tion by T. This name comes from the fact that the form of a matrix equation
is preserved during the transformation. For example, suppose

AB+ CDE=F
After the similarity transformation by T, we have
TABT ' + TCDET ™' = TFT™!
which can be rewritten in the form
TAT 'TBT ™' + TCT™'TDT 'TET ! = TFT ™!

or equivalently,
AB +CDE =F

This has the same form as the original equation, Thus, the forms of matrix
equations are invariant to similarity transformations.

When a vector is transformed by A, its direction generally changes, i.e.,
the ratios between components become different from the original values.
However, there are vectors whose directions are invariant to a given trans-
formation A. Let us try to find such vectors. Since vector directions do not
change by constant multiplications, we look for vectors which satisfy

Ax = Ix (5.21)
or equivalently
(A-iD)x=0
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where 0 on the right-hand side means a ¢ matrix as we mentioned earlier.
The above equation is equivalent to # simultaneous equations

(@ =) x +a,x; ++a,x,=0

da1Xy +(azz e A)X2 + -+ azlx":()

ApiXy + GpyXy +o+ (@, — 1) x, =0

For nontrivial solutions te exist, the determinant of the coefficients must
be equal to zero:
det(A—AI)=0 (5.22)

This is an nth degree algebraic equation for 1 which will generally have n
different roots. Corresponding to the #» roots, n independent vectors
x; (i=1,2,..., n) satisfying (5.21) can be determined; the vector x; is called
an eigenvector, and the corresponding root 4; is called the eigenvalue, We
use this terminology because of the similarity between this and the eigenvalue
problems discussed previously in connection with waveguides and cavities.
In those problems, we essentially searched for vector functions which became
k? times the original ones when certain differential operations were per-
formed.
Let us define /(4) by
S(A) = det (I — A) (5.23)

Then, (5.22) can be written as f(A) = 0. The form of /(1) is invariant to the
similarity transformation of A by T; the proof is as follows. From (5.20),
we have T 'A" = AT . Therefore, we obtain

T '(AI-A)=(-A)T!
Taking the determinants of both sides, we have
detT ' det(Al —A') =det(Al —A)det T™*

Since T is nonsingular and det T ™! is not equal to zero, the above expression
is equivalent to
det (T — A") = det (il — A) (5.24)

which is the result we wished to prove.
Let 4y, 4;,..., 4, be the eigenvalues. Then we have

FA =G =)= 4y)..(A—4) (5.25)

Since f(1) is invariant, the eigenvalues are also invariant to similarity
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transformations of A. Furthermore, since (1) is an ath-degree polynominal
of 4, it can be rewritten in the form

JA = s " 4t (= 1)'s, (5.26)

Because of the invariance of /(4), 5, 55, ..., 5, are all invariant to similarity
transformations of A, In particular, s, is given by

Si=autapn+ta,=24 +++4, (5.27)

It is called the trace of A and is indicated by #r A. Setting 4 is equal to zero,
$, is seen to be

Sw==Agdy . A, = det A (5.28)

Thus, rrA and detA are both invariant to similarity transformations.

Let us now restrict ourselves to the case in which A is a self-adjoint
matrix. Then the discussion becomes similar to that for the eigenvalue
problems of waveguides and cavities. Let x, and A, be an eigenvector and
the corresponding eigenvalue, respectively, Then, we have by definition

Ax, - A%, =0 (5.29)
Multiplying by x;* from the left, this becomes
X, AX; — Ax ' x, =0 (5.30)

Next, taking the adjoint matrix of (5.29) and then multiplying by x, from
the right, we obtain

X TATx, - A%x, X, =0 (5.31)
Since A is self-adjoint, the first terms in (5.30) and (5.31) are equal to each
other. Subtracting (5.31) from (5.30), we have

(4" =2 x" % =0 (5.32)

which shows that A; = 4*, since x;"x;5 0. In other words, the eigenvalues
of a self-adjoint matrix are real.

Let x; and x; be two eigenvectors with different eigenvalues. Multiplying
(5.29) by x;* from the left, we have

x;,"Ax;, — Ax,7x, =0 (5.33)

After changing the subscript 7 in (5.29) to j and taking the adjoint matrix,
if we multiply by x; from the right, we obtain

X ATX, — %% %, =0 (5.34)

i)
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The first terms in (5.33) and (5.34) are equal to each other. Subtracting (5.33)
from (5.34), we have
(4= 245 x,"x,=0 (5.35)

Since A; is real, 2;* can be replaced by 4; which is different from J; by
hypothesis. Thus, it is shown that

X" x; =0 (5.36)

This is called the orthogonality relation between x; and x;. The orthogonal
refation between two vectors in real three-dimensional space can be ex-
pressed in the same form, as is easily seen from (2.3) and (2.6) by setting
8 =90°,
Let us assume that all the eigenvectors are multiplied by appropriate
constants so as to satisfy
x, ' x, =1 (5.37)

This is the normalization condition corresponding to (3.37) or (3.74). The
normalization process, of course, does not change x; from being an eigen-
vector.

A matrix of order 1 x 1 is different from an ordinary number, but treating
this matrix as if it were a number whose value is equal to that of the only
component, Eq. (5.30) gives

x; Ax,
A=—1 (5.38)
X" X;
This suggests that
x"Ax
Ax) ="— (5.39)
XX

may be a variational expression for the eigenvalues. Since 4 is self-adjoint,
we have

(x*Ax)*" x'A'x x'Ax

W = 5. = l(x)

Fx=" L =" "o
) (x"x)* x"x x*x

which shows that A(x} is real, regardiess of the value of nonzero x. Suppose
that 4 becomes 4+ &4 when x becomes x + dx. Multiplying (5.39) by the
denominator on the right-hand side and taking the variation, we obtain

A(0xY X + x7 6x) + SAxTx = 5xT Ax + xTA Ox
A little manipulation shows that this is equivalent to

dAxTx = 6x” (Ax — Ix) + (Ax — Ix)* 6x (5.40)

g s .

SpeE
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where we have nsed A = A* and 4 = A*. If x is an eigenvector, from (5.40),
the first order variation 84 of A becomes zero. Conversely, if 64 =0 for all
possible first order variations dx from x, (5.40) shows that the real part of
dx* (Ax — Ax) must be zero, regardless of the direction of éx*. However, if
Ax —Jx is not a 0 matrix, by choosing a proper dx*, the real part of
5x* (Ax — Ax) can be made nonzero leading to a contradiction. Therefore,
if 64 =0 for all possible variations dx drom x, we can conclude that x is an
eigenvector and that A(x) gives the corresponding eigenvalue. This completes
the proof that (5.39) is, indeed, a variational expression for the eigenvalues.

Once the variational expression for 4 has been obtained, all the eigenvectors
can be found sequentially, at least conceptionally. For example, we first
obtain a vector x; which minimizes A(x). Then, we obtain x, which minimizes
A(x) under the restriction of being orthogonal to x,. Since §4 = 0 for all
dx, X, is obviously an eigenvector; x, is also an eigenvector which can be
shown as follows. An arbitrary vector x can be written in the form

x=(x,"x)x, + {x —(x; 'x) x,} (5.41)

This shows that x can be expressed as the sum of two vectors, one parallel
to x;, and the other orthogona! to x,. In that part of §x which is orthogonal
to x,, 64 is equal to zero, as can be seen from the method of obtaining x,.
In that part of éx which is parallel to x,, éx,,

0%, " x,; = 6x, " (Ax, — Ax,) + (Ax, — ix,)" 8x,

Since §x, is now orthogonal to x,, dx;* ix, and 1*x,* 8x, are both equal
to zero. Furthermore, we have

3x," Ax, = (A ox,)" x, =4, 6x,7 x,=0

Similarly, (Ax,)* dx, is equal to zero. As a result, §1 =0 for dx,. We can
conclude, therefore, that 4 is equal to zero, regardless of the direction of
ox, and hence x, is an eigenvector. Similarly, under the restriction of being
orthogonal to x;, X,,..., X;_;, if we obtain a vector x; which minimizes
A(x), then x; becomes the ith eigenvector. When i becomes #, the number
of the dimensions of the space under consideration, no further eigenvectors
can be obtained, for in the #-dimensional space, there is no nonzero vector
which is orthogonal to » orthogonal vectors. Therefore, the above procedure
gives exactly » eigenvectors.

As we stated in connection with (5.37), the eigenvectors are all assumed
to be normalized. An arbitrary vector x in the r-dimensional space can
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therefore be expressed in the form
x=3 (x"X)x (5.42)
=1

which can be checked by multiplying x,* (i=1,2,...,n) from the left.
Multiplying (5.42) by A from the left, we obtain

n
Ax = Y (X" x) 2x; (5.43)
i=1
where Ax; = 4,x; is used. From this, A can be written in the form
A=Y Axx' (5.44)
i=1

This is called the spectral representation of A where the dot signifies that
A is an operator. When none of the eigenvalues become zero, A™' exists
and is given by

n
A l.= Z /1‘-_1 x,-x,-+
i=1
The validity of this expression can be checked by substituting into (5.8).

Let X be a matrix constructed by the eigenvectors x,, X,,...,x, of a
self-adjoint matrix A in the form

X=[x; X2 ... X,]

Note that X is a square matrix. Because of the orthogonality condition
between the eigenvectors, we have

x,* 1 0 .. 0
¥ 0 1 0

X2 2 | ox e w120 O ot )
x* 00 .. 1

Taking the determinant of (5.45), the left-hand side becomes det X* detX,
and the right-hand side becomes unity. From this we see that detX clzannot
be equal to zero, and hence X' exists. Multiplying (5.45) by X™* from

the right, we obtain
Xt=x"! (5.46)

which shows that X is a unitary matrix. Multiplying A by X* and X from
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the left and right, respectively, we have

XTAX = X* [4,%, 4%, ... 4x,]
Ay 0 .00
= (f ’fz ? =diag[4, 4, ... 4] (547
0 0 .. i

n

where Ax; = A;x; is used. The symbol on the right-hand side indicates the
diagonal matrix with diagonal components 4,, Azseony Ay Using (5.46), the
left-hand side of (5.47) is seen to be the similarity transformation of A by
X! Thus, all the eigenvalues of A can be obtained from the similarity
transformation by X1,

Now suppose that x*Bx vanishes regardless of the value of x (ie.,
regardless of the values of the components of x), then we have

*
in B,'ij =0
i

If we assume that the components of x are all zero, except for x; and x;,
the above equation reduces to

* ®
X Bix;+ x; Byx; =0

Setting x; = x; =1, this becomes
B;+B;=0
Similarly, setting x; = j and x; =1, we obtain
- B;+B;,=0

These two equations show that B;; = Bj;= 0, and since i and j are arbitrary,
we can conclude that if x*Bx vanishes, regardless of the value of x, B must
be a 0 matrix.

Next, suppose that x*Ax is real regardless of the value of x. Since
(x*Ax)" has the same value as x* Ax, we have x'Ax =x*A*x, or equiv-
alently

xX(A-A")x=0

This equation holds regardless of the value of x, hence A— A* must be a
0 matrix; in other words, A is self-adjoint (A=A"). Conversely, if A is
self-adjoint, x*Ax = (x*Ax)*, and x"Ax becomes real regardless of the
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value of x. Thus, A is a self-adjoint matrix if, and only if, x*Ax is real,
regardless of the value of x.

If x* Ax is always positive for nonzero x, A is said to be positive-definite.
If A is positive-definite, it is, of course, self-adjoint for positive numbers are
real. It is also obvious from (5.39) that, if A is positive-definite, the eigen-
values are all positive. Conversely, if the eigenvalues are all positive, A is
positive-definite. This can be seen as follows from (5.42) and (5.43)

xTAX =Y (xTx) 4 (%, x) = Y 4 |x, x|’
which is always positive for nonzero x. Thus, A is positive-definite if, and
only if, the eigenvalues are all positive.

Suppose that A is positive-definite, then a square matrix T can be defined
by

T =[i, 2%, A;'x%,...07 %]

where A, #£0 (i=1,2,..., n)is used. It can easily be seen that T is non-
singular since T*T =diag[4;" A;"...4, "], and detT #0. Furthermore,
using (5.47), we have
TYAT =1
Conversely, suppose that T* AT forms a unit matrix for a particular T, then
Yy T*ATy =y7y

is always positive for nonzero y. Setting x = Ty and noting that x can take
any nonzero value, since y is an arbitrary nonzero vector and T is non-
singular, x*Ax is then seen be to positive for any nonzero x. Thus, A is
positive-definite if, and only if, there exists a nonsingular matrix T which
makes T*AT a unit matrix.

Another necessary and sufficient condition for a self-adjoint matrix A to
be positive-definite is that the components of A satisfy

d11 0 dyp
>0,...,| >0 (5.48)

apm o Aun

a a
a11>09 11 12

az; dzz

The conditions given in (5.48) do not require the knowledge of the eigen-
values, and hence they provide a practical method for checking the positive-
definiteness of a self-adjoint matrix. Although the proof is lengthy, it will
be given below.

When A is a square matrix of order 1, the necessary and sufficient condi-
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tion for A to be positive-definite is obviously given by a,; > 0. It will be
appropriate, therefore, to attempt a proof for the general case by mathe-
matical induction. First, let us prove the sufficiency. Let A,_, be a square
matrix of order n —1 with the first n— 1 rows and n~—1 columns of A.
When the first n —1 conditions in (5.48) are satisfied, assume that A,_, is
positive-definite; i.e., there exists a nonsingular matrix T,_, satisfying

T, A, T, , =1 (5.49)

With this assumption, if A can be proved to be positive-definite using the
last condition in (5.48), then (5.48) is sufficient. Let us write x and A in the
forms

then we have
R e I

n—1 Qpp Xn
" + *_+ *
- xn—lAn—lxn—l + XpXp—18 -y + Xy g1 Xy + QAppXy X, (550)

Let y be a vector defined by means of the relation
I Y I | v '_Tn—lTnjlan—I Yort| _ _

Since detL =detT,_, and T,_, is nonsingular, L is also nonsingular. With
this y, (5.50) can be rewritten in the form

y'L*ALy = (Yo-1 — T:— lanflyn)+ T, /A, Ty (¥am1 — T:~1an71]’n)
+ Ya(¥uo1 — T, ,a,_ 1)’n)+ T,_8,-,
+ yn*a:— lTn—l (Y,,_ 1= T:—lanulyn) + annyu*yn
The right-hand side can be simplified using (5.49) which results in
y+L+ALy = y:k IYH-I + (a?ﬂ’l - a:— lTn— lT:—lan—l) yn*yn (552)
This shows that L* AL is a diagonal matrix given by
L*AL =diag[1 1...1 a,,—a}) T, T} ,a, ,] (5.53)

where the first # —1 diagonal components are all unity. Taking the deter-
minant of (5.53), we have

(detL¥}{detA)(detL) = |detL|* detA = a,, —a,; T, ,T,_,a,_, (5.54)
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From the last condition in (5.48), det A is positive; hence, the right-hand
side of (5.54) must be positive. Again, introducing a new vector z defined

by
0 Y, —l] -1
— i =M 5.55
: [é (ap — a:—lTn—lT:—lan—l)llz] [ Yn y ( )

where M~ is clearly nonsingular, (5.52) becomes
M LTALMz =z"z (5.56)

Noting that x is an arbitrary nonzero vector, which means that y and z are
both arbitrary, (5.56) indicates that

M LTALM =1 (5.57)

If we set LM =T, then since T is nonsingular, (5.57) shows that a non-
singular matrix T exists which makes T*AT a unit matrix. Therefore, A
is positive-definite, and the proof of sufficiency is complete.

Let us next consider the necessity of (5.48). If @;; <0, then x* Ax cannot
be positive for a particular x* given by [100...0]. Therefore, a,; >0
is 2 necessary condition for A to be positive-definite. To apply the principle
of mathematical induction, let us assume that the first m — 1 conditions in
(5.48) hold, but the mth condition does not. Then, from the sufficiency of
the first m —1 conditions, there exists a nonsingular matrix T, _, satisfying

Ti_ Ay T, =1 (5.58)

Define a square matrix L,, similar to L, in (5.51) using T,,_, and a,,_, in
place of T, , and a, ..,, respectively. Then, L,, is nonsingular, and we have

LiAL,=diag[l 1 .. 1 ap,—a} T,_,T} ,a,.,] (559

If det A, <0, @pm—2a,_,T,_,Tr_,a,_, can be proved nonpositive (nega-
tive or zero) using an expression similar to (5.54). Let x,,=L,y, and
Y. =[00...01]. Then, for x* given by

x" =[x, 0 0 .. 0]
where the last # — m components are all zero, we have
X+AX = xr:;‘Awrxm = Y;:L;AmLmym = lmm — a;*le* ITJ:I-— 13—

which is nonpositive. Therefore, the mth conditon is also necessary for the
positive definiteness. Since m1 is arbitrary, all the conditions in (5.48) are
necessary, and the proof is complete.
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If the range of x* Ax for arbitrary nonzero x includes zero and otherwise
remains positive, A is said to be semipositive-definite. Matrix A is semi-
positive-definite if, and only if, at least one of the eigenvalues is zero and the
remainder are not negative. From (5.28), det A is equal to zero in this case,
and A1 does not exist.

Now, suppose that there are two self-adjoint matrices, A and B, and A is
positive-definite, then from the positive-definiteness of A, there is a non-
singular matrix T which satisfies T*AT =1. Since

(T"BT)" =T'B'T =T'BT

then T*BT is self-adjoint. Let x,, X, ..., X, be the normalized eigenvectors of
T*BT, and let X be a square matrix constructed from them, i.e., X = [x,
Xz -+X,]. Then, X" T"BTX must be diag[4; 1,...4,) where 4,(i=1,2,..., n)
is the cigenvalue corresponding to x;. On the other hand, we obviously have

XTTATX = X"IX = X*X =1

therefore, if we define H by H = TX, H is nonsingular and
H'AH =1 (5.60)
H'BH =diag[1, 4, .. 4] (5.61)

The above discussion shows that if there are two self-adjoint matrices A
and B, and one of them, say A, is positive-definite, then there is a non-
singular matrix H which diagonalizes both H*AH and H*BH, simul-
taneously; i.e., all of their components except those on the main diagonal
are made zero. This fact will be used in the noise discussion of linear ampli-
fiers in Chapter 7.

In the above discussion, H is not necessarily equal to H™'. From (5.60),
we have

H" =(AH) ' =H 'A™!

Substituting this into (5.61), we obtain
H 'AT'BH =diag[2, #, .. ]

The similarity transformation of A™'B by H™! gives the eigenvalues
215 Ags-.., A,. However, since similarity transformations do not change the
eigenvalues of a matrix, as explained in connection with (5.24) and (5.29),
A1, A3y..., A, must also be eigenvalues of A™!B. Consequently, A, 4,,..., 4,
in (5.61) can be obtained by calculating the cigenvalues of A~'B. Both A
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and B are self-adjoint, but A™!B is not necessarily so. Nevertheless, its
eigenvalues are all real because A, 4,,..., 4, are the eigenvalues of a self-
adjoint matrix T*BT.

Finally, let us consider a necessary and sufficient condition for two different
self-adjoint matrices A and B to be simultaneously diagonalized by a unitary
matrix through the similarity transformation. Although the discussion is
instructive and worth presenting, we shall not utilize the result in this book,
and one may omit the remainder of this section on a first reading and
proceed to Section 5.2,

Suppose that the similarity transformations of two different self-adjoint
matrices A and B by a unitary matrix give diagonal matrices A’ and B',
respectively. The order of the product of two diagonal matrices can be
interchanged without changing the result; i.e.,

A'B =FBA’

The forms of matrix equations are invariant to similarity transformations,
and hence we have
AB =BA (5.62)

The above discussion shows that (5.62) is a necessary condition for A and B
to be simultaneously diagonalized by a unitary matrix through the similarity
transformation. The proof that (5.62) is also sufficient will be given below.
We first assume that (5.62) holds, and prove that there is a unitary matrix
whicle diagonalizes both A and B through the similarity transformation.
Let x,, X5, ..., X, be the normalized eigenvectors of A, and let X be a matrix
constructed from them; i.e.,

X=[x; x ... x,]
Then, we have
X 'AX = X"AX =diag[4, 4, ... 4,] (5.63)

where 4, is the eigenvalue corresponding to x;. For convenience, we assume
that 1, €1, €4, < - < 4, In order to calculate X™'BX, let us consider
x;"ABx;. From (5.62), x;"ABx; is equal to x;*BAx;. From the fact that
both A and B are self-adjoint, we have

x;TABx,; = (Ax)" Bx; = 1x,”Bx; = x," BAx; = x;* Bl ;x; = Ax,"Bx;
It follows from this that, if 4; #4;,

x;"Bx; =0

N
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In other words, X*BX must have the form

B, 0 0
x'BX=x"'Bx=]? B O

0 0 B,

where B, (/=1, 2,..)) is a square matrix with the number of columns (and
rows) equal to the degree of the degeneracy of the /th smallest eigenvalue of
A, where the /th smallest eigenvalue is such that there are /—1 discrete
eigenvalues smaller than it. The largest subscript is equal to the number of
different cigenvalues of A. Since (X*BX)* = X*B*'X = X*BX, we have

Bt+ =B

which shows that the B,’s are also self-adjoint. Let Y, be a unitary matrix
constructed from the normalized eigenvectors of B, in an usual manner.
Then the similarity transformation of B, by Y,' gives a diagonal matrix.
Let Y be a square matrix defined by

Y, 0 0
10 Y, 0
Y= 0 0 Y,

Then Y itself becomes a unitary matrix. From the method of constructing Y,
it is obvious that Y*X*BXY is a diagonal matrix and that Y*X tAXY
becomes diag[4, 4,...4,] from (5.63). Noting that XY is a product of
two unitary matrices, it must be a unitary matrix, and therefore we see that
(XY) '=Y*X"* is a unitary matrix. Thus, both A and B are shown to be
diagonalized through the similarity transformations by the unitary matrix
Y*X*. This completes the proof,

5.2 Reciprocal Conditions

Suppose that several waveguides are connected together to form a wave-
guide junction as schematically shown in Fig, 5.1. At a reference plane far
from the discontinuities in each waveguide, all the higher modes with fre-
quencies below cutoff can be neglected, and only a finite number of prop-
agating modes have to be considered. At such a reference plane, the voltage
and current can be defined for each propagating mode as we explained in
Chapter 3. Since Maxwell’s equations indicate a linear relation between the
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Fig. 5.1. Waveguide junction.

electric and magnetic fields, there should be a linear relation between the
voltages and currents which represent the fields. Let us consider the case
in which all currents are given independently, and the voltages are uniquely
determined by them. In such a case, we have

Vi=Zhh + 2,05+ + 2,1
Vy=Zaihy + Zyody +++ Zyl, (5.64)

Ve=Z, I, + Z, 0+ + 2,1,

where V,and I;(i =1, 2,..., n) are the voltage and current for a propagating
mode at the reference plane in a waveguide shown in Fig. 5.1. When two
or more propagating modes exist in some of the waveguides, n becomes
larger than the number of actual openings of the junction. Since we are
interested in the behavior of the waveguide junction as viewed from outside
the reference planes, from (5.64) the junction as a whole can be considered
as an n-port network. We can now use the concept of matrices explained
in the previous section and define v, i, and Z by

Vi I Zyy Zyy oo Iy
Y= I./Z * i= I.Z L] Z= Z?I 2:22 - Z:zn (5'65)
v, 1 Zy Zyy ... Z,,

T
'
L

ke
£
E
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respectively. Then (5.64) can be written in a particularly simple form,
v=2Zi (5.66)

Similarly, if the voltages can be given independently of each other, and
the currents are uniquely determined by them, we have

i=Yy (5.67)
If Z is nonsingular, we have from (5.66) and (5.67)
Z7'=Y (5.68)

In otder to study relations between components of the matrix Z, let EV
and H be the electric and magnetic fields inside the junction corre-
sponding to a set of currents given at the ports. Similarly, let E** and H*®
be the ficlds corresponding to another set of currents. Using Maxwell’s
equations

VxH=(o+jwe)E, VxE=—jouH

we have

V-(EV x H? - E® x H(”)
=H?.VxEV —E". ¥ x H® —H".V x E? + E®.V¥ x HV
= — joH® «yH' — EV (¢ + jwe) E®

+ joH" - yH® + E® (6 + jwe) B (5.69)

Since (¢ + jwe) and p are ordinary scalar quantities and the order of a scalar
product of vectors is interchangeable, the terms on the right-hand side
cancel. If we integrate (5.69) over the volume of the waveguide junction
enclosed by S shown in Fig. 5.1, we obtain

J' (E“’ x H® _ E? H“’)-ndS =0 (5.70)
s

where use is made of Gauss’s theorem to convert the volume integral to a
surface integral. The contribution to the integral comes from that part of S
consisting of the reference planes in the waveguides only. Let us now assume
that E and H' correspond to a set of currents which are all zero except
IV at the ith port. Similarly, let E‘® and H*® correspond to a set of currents
which are zero except I{” at the jth port. For the surface integral in (5.70),
we then only have to consider the contributions from the ith and Jjth ports,
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The integral of the first term in the bracket becomes

I .nds

L]

J E" x H?.ndSs = f E, V" x k x E,
5
=VIPken = — P12

where E,; is the waveguide eigenfunction at the jth port, and the normal-
ization condition for E,; is used. The integral of the second term can be
calculated in a similar manner, and (5.70) reduces to

_ V}“I}z) 4 Vj{Z)Ii(l) =0 (5.71)

in this particular case. Since the I’s with superscript two are all zero except
I, v can be expressed by Z;;I® from (5.64). Similarly, V{" is given by

Zyl 1) Substituting into (5.71), we have
1 2
(Z;, - Z,) V1P =0
Noting that I{*” and I{*’ can be specified arbitrarily, we must conclude

Zij = Zji
or equivalently,
Z=1Z, (5.72)

The expression (5.72) is known as the reciprocal condition in ac circuit
theory. The n-port network representing the waveguide junction is, therefore,
reciprocal.
In much the same way, given the voltages instead of the currents at the
ports, we obtain
Y=Y, (5.73)

Of course, if Z is nonsingular, (5.73) also fellows from (5.68) and (5.72).

In the above discussion, we considered reference planes far from wave-
guide discontinuities; however, (5.64) has broader applications. For example,
when there are several pairs of terminals inside the waveguide junction,
the terminals in each pair being closely spaced compared to a wavelength
[A=2n/w(ew)'/?], then the voltage between the terminals and the current
flowing through them can be defined with little ambiguity. This follows
because the electric field satisfies V x V x E — w?euE = 0, assuming that
is negligible, and that the first term on the left-hand side is made up of
second derivatives which are individually much greater than the second
term in the vicinity of the pair of terminals where field variation is large.
As a result, the field should approximately satisfy V x V x E=0 which
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is an equation for the static field. The voltage can be defined as the line
integral of the electric field if the field resembles the static one. Some of the
voltages and corresponding currents in (5.64) can, therefore, be considered
to represent the conventional voltages and currents at the pairs of terminals.
The linear relations and the reciprocal conditions (5.72) and (5.73) still hold
due to the particular form of Maxweil’s equations which have been used.
However, a slight modification is required in the evaluation of the surface
integral leading to (5.71). Let the jth port be the one representing such a
pair of terminals, and let S; be the closed surface enclosing a small volume
in the vicinity of the pair of terminals as shownin Fig. 5.2. In order to evaluate
the surface integral, we choose the elementary surface

ndS=—edi xhdy

Fig. 5.2. A pair of terminals in junction and ;.

where e and b are unit vectors in the direction of E and perpendicular to
it, respectively. Then we have

J‘ EY x Hu)-ndS:—f EY x H?.e dé x hdy
S 5;

=— ”S EV.ediH® chdy = — vV1»

from which (5.71) follows. '

From the above discussion, we see that if a waveguide junction includes a
small nonlinear device such as a semiconductor dicde, then the junction
can be treated as an n-port linear network with the device connected to one
of the ports. This enables us to handle the nonlinearity of the device separately
from the remainder of the microwave circuit. The n-port network in this
case represents the junction which excludes a small volume occupied by the
active nonlinear part of the device.
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Now let us consider a linear transformation of the voltage and current
given by

a;=3ReZ)'2(V,+ Z1),  b;=3IReZ|'*(V, - Z*I)  (5.74)

where Re Z, is assumed to have a nonzero value. If the reference impedance
Z, is the impedance looking out from the ith port of the junction, a; and b,
become the power waves introduced in Section 1.4, If Z, is real and positive,
and represents the characteristic impedance of the waveguide mode to
which the ith port is assigned, then a; and b, are the traveling waves at the
reference plane. Let a and b be the vectors with the ith component being
a; and b, respectively. If we define F and G by

F =diag[}|ReZ,| 7Y% L|ReZ,| '/? }|Re Z,) 7]
G=diag{Z, Z, .. Z,] (5.75)
we have
a=F(v+Gi), b=FF-G") (5.76)

Since v and i are related linearly, there must be a linear relation between a
and b; let us write it in the form
b==Sa (5.77)

where S is a square matrix, This 8 is called the scattering matrix. Substituting
(5.76) into (5.77), we have

F(v — G*i)=SF(v + Gi)
Using v = Zi, this reduces to
F(Z - G*)i=SF(Z + G}i
from which S can be obtained in terms of Z,
S=F(Z-G")(Z+G) 'F! (5.78)
Similarly, Z can be expressed in terms of S,
Z=F '(I-S)'(8G+GHF (5.79)

The reciprocal condition of the junction in terms of S is given by

S, — PSP (5.80)
where
ReZ ReZ ReZ
P —diag| - ! 2 A (5.81)
[ReZ;| |ReZ,| [ReZ,|

i g, s
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We shall now derive this formula from Z = Z,. First, we note that P is a
diagonal matrix whose ith diagonal component

ReZ,;

= — 5.82
iReZj| (582)

Pi
is +1 or —1I depending on whether the real part of Z; is positive or negative,
tespectively. Therefore, P is nonsingular, and P = P!, Substituting (5.79)
into Z =Z,, we have

F'(I-S)'(SG + G*)F=F(GS, + G")(I—8) ' F!
This is equivalent to
(SG+GHF (I-8)=(I-S)F*(GS, +G")
Expanding this and subtracting G*F? — SGF?S, from both sides, we have

SGF? — GTF’S, = F’GS, ~ SF’G*
or equivalently,
SF?(G + G*)=F*(G + G") S,
However, since
F (G+GY)=4pP=1pP!

the above equation gives (3.80), which is what we wished to derive.
When the signs of Re Z; and Re Z; are the same, (5.80) gives

Sij =S Ji
and when they are opposite, it gives
Sij =-8 Ji
In either case, we have
15,17 = 1S4/ (5.83)

Suppose that the a;’s and the b,’s represent power waves and none of the
circuits contains a source, except the one connected to the ith port of the
network. The power from the jth circuit to the network is given by
pi(la;)* —16,%) and a,(j # i) is equal to zero in this case. Therefore, the
power to the jth circuit from the network is given by p ;b j|2. Furthermore,
b; is equal to Sa; in the present case, and hence the ratio of the net power
p;lb;|* into the jth circuit to the exchangeable power p;|a|? from the ith
circuit is equal to p,p 1S ﬁiz. Since (5.83) indicates that the value of this ratio
does not change when the subscripts i and j are interchanged, we can
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conclude that the relation between the net power into a load and the
exchangeable power from the source remains the same in a reciprocal
network when the roles of source and load are interchanged. This is a power
reciprocal relation. Note in the above interchange of generator and load
relation, only the location of the voltage source is changed while the
impedances connected to the ports are kept constant.

When the a/s and b’s express traveling waves along the waveguides,
(5.80) reduces to

S=8,

since P =1 in this case. Although the relation (5.83) remains the same, the
interpretation is different. Assume that the ith port is the only one with a
nonzero incoming wave, then |S;{” is the ratio of the power emerging from
the jth port to the incoming power at the ith port. This ratio remains con-
stant when the roles of the ith and jth ports are interchanged. However, if
the circuit connected to some port, say the kth port, is not matched to the
characteristic impedance of the line, a reflection takes place resulting in an
incoming wave, @, which invalidates the assumption. Therefore, the power
reciprocal relation |5 = |S;|? for traveling waves has only limited
applications.

5.3 Lossless Conditions

When losses in a waveguide junction are small, it is convenient to consider
a model in which the effect of losses is completely neglected. Let us consider
the lossless conditions which Z, Y, and S must satisfy when these represent
such an idealized model. Since the net power entering from the ith port is
given by Re V,1;*, the total power entering from all ports becomes
YRe(Vd ) =Y y(VIF + VD) =1 v + v =3t (Z+Z%)i (5.84)
where the summations are over all possible i’s and use is made of (5.66).
For the lossless network, the total power must be zero regardless of the value
of i. Thus, we obtain
Z"+Z=0 (5.85)
It is obvious from the derivation that this is a necessary and sufficient con-
dition for Z to express a lossless network. For one-port networks, (5.85)
becomes ReZ = 0, which shows that the real part of the input impedance
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is equal to zero. If we use (5.67) instead of (5.66), we obtain from (5.84)

Y+Y =0 (5.80)

This is also necessary and sufficient for Y to represent a lossless network.

From (5.84), we find that Z;; = — Z}; for a lossless network. Since Zy=%Z;
for a reciprocal network, it follows that Z,; = — Z,-’j for a lossless reciprocal
network. This means that all the Z;;’s are pure imaginary in this case.
Similarly, all the ¥;;’s are pure imaginary for a lossless reciprocal network.

For a general passive network, since the total power expressed by (5.84)
must not be negative, Z + Z* and Y + Y™ have to be either positive-definite
or semipositive-definite,

Next, let us consider the lossless condition in terms of S. The net power
into the ith port of a network is given by p;({a;]* — |5;|*). Therefore, the total
power is given by

Y p(al* — b )=a*Pa—b*Pb=2a*Pa—a’S*PSa=a* (P - S'PS)a

where use is made of (5.77). This must be zerc regardless of the value of a,
and hence the lossless condition is given by

S*PS=P (5.87)

When the ReZ;’s are all positive, P =1, and (5.87) shows that S must be
an unitary matrix.

Multiplying (5.87) by P from the right and utilizing (5.80), we find that
S*S, =1 for a lossless reciprocal network. Taking the transposed matrix,
this becomes

SS* =1

For a general passive network, since the total input power must not be
negative, P —S*PS has to be either positive-definite or semipositive-
definite.

For a simple example, let us consider a lossless two-port network. Equa-
tion (5.87) gives three independent conditions

P11S1 1P + pa ISP =py
P151:18T2 + P25, 83, =0
P IS + ps 1S221> = p,

(5.88)

From the second condition, we have

|S“]2 |S12|2 = ESZI|2 |Szzl2
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Combining the first and last conditions in (5.88) with this equation, we
obtain

(P2fp)(1 = 1822 1841 * = (py/p2) (L = 181117 (S, )?

which is equivalent to
|Su|2 = |Szz|2

When S represents the power wave scatiering matrix, this relation shows
that the power reflection coefficient at one port is equal to that at the other
port for a lossless two-port network. From this we conclude that the power
reflection coefficient as well as the power transmission coefficient remains
the same regardless of the position of the reference plane selected along a
lossless transmission system. The fact that the exchangeable power is
preserved during a nonsingular lossless transformation can also be easily
shown using (5.88). Assume that a, is zero for the moment, then the
exchangeable power from port 2 is given by

Pz Ib2|2 _ P2 fS21|2 |a1|2
1— 185, -8,/

2
= pyla,|

where we have used the first condition in (5.88). The right-hand side is
exactly equal to the exchangeable power from the source connected to port 1.
We have, therefore, shown that the exchangeable powers are the same at
the input and output ports of a lossless two-port network, provided that
IS111% = 182212 #1. If |S;4]* =|S5212 =1, the input and output ports are
effectively disconnected inside the network, and the transformation from
the input port to the output port is said to be singular.

5.4 Frequency Characteristic of Lossless Reciprocal Junctions

Let us first consider Z and Y representing a lossless reciprocal junction.
Maxwell’s equations are given by

Vx E=—jorH (5.89)
V x H = jeocE (5.90)
Differentiating with respect to e, we have
V x (0E/dw) = — juH — jou(tH/dw) {5.91)
V x (6H/dw) = j¢E + jwe(FE/dw) {5.92)
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Subtracting (éE/éw)- times the complex conjugate of (5.90) from H*. (5.91),
we have

V- {(0E/dw) x H*} = — juH* - H — jou (0H/0w) - H* + joek* - (3E/dw)
(5.93)
Similarly, we have from (5.89) and (5.92)

V- {(fH/6w) x E™} = jéE* - E + joe(0E/dw) - E* — jouH* + (6H/éw)
(5.94)
Subtracting (5.94) from (5.93), we obtain
V- {(0E/éw) x H* ~ (0H/éw) x B*} = — j(uH*-H + :E*-E)  (5.95)

Let us integrate (5.95) throughout the volume within § in Fig. 5.1. The
left integral becomes a surface integral over the waveguide cross section
only, and is given by

| (@ki20) x 1" — @Hj6) x E%} mas
= Zf {E.(V/éw) x (k x B,) I* — (k x E,) (8/0w) x E,V;*} -ndS
== 2 {(0Vifow) I* + (810w} V*} = — it (0v/dw) + v* (difow)}

where E,; indicates the normalized eigenfunction of a waveguide propagating
mode. The volume integral of (5.95), therefore gives

(i (@vow) + v* (Bijde)} = ; f (uH*-H 4 eE*.E)dv  (5.96)

Using v = Zi, the left-hand side is rewritten in the form

{17 (0Z/ew) i + " Z(3ifow) +i*Z" (3i/de)}
={i" (0Zjew)i+i*(Z + Z7) (difdw)}

However, the second term on the right-hand side vanishes because of
(5.85), and (5.96) therefore reduces to

it (0Zjow)i=j f (uH* -H + ¢E* - E) dv (5.97)

For a lossless reciprocal junction, all the components of Z are pure imaginary,
and if we write Z = jX, the components of X will be real. Substituting this
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into (5.97), we have
it (0X/ow)i= f (uH* -H + ¢E*-E) dv (5.98)

This shows that 8X/dw is positive definite, since the right-hand side is always
positive for nonzero fields. If we use i=Yv instead of v=Zi, we obtain
from (5.96)

v (eBjéw) v = f (uH*-H + ¢E*-E) dv (5.99)

where Y=jB is used. This shows that dB/dw is also positive definite.

For one-port networks, the above relations indicate that the derivatives
with respect to @ of the input reactance X, and susceptance B, are always
positive; ie.,

(0X/ow) > 0, (0Bfow) > 0

which correspond to Foster’s reactance theorem. As illustrated in Fig. 5.3,
X and B increase with «w almost everywhere.

XORB 4

Ey

Fig. 5.3. Frequency characteristic of pure reactance X or pure susceptance B.

Next, let us consider the relation for 8 corresponding to (5.98) or (5.99).
To do so, we express v and i in terms of a and b and substitute into (5.96).

We have from (5.76)
a—-b=F(G+G")i

Multiplying by 2FP from the left and using 2FPF(G + G*)} =1, we obtain

i=2FP(a —b) (5.100)

B
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A combination of (5.76) and (5.100) gives
a+b=2Fv+F(G—-G")i=2Fv+2FPF(G - G")(a—b)

from which v can be obtained in terms of a and b, If use is made of R =
PF(G+ G"), the expression for v is simplified as follows:

v=_2F)"'(a+b) - PF(G - G*)(a—h)
=PF{(G+G")a+bh)~(G-G")(a— b)}
=2PF(G*a + Gb) (5.101)
Now, let us substitute (5.100} and (5.101) in the lefi-hand side of (5.96).
After a little manipulation, we have
{i” (ovjew) + v* (Gijow)} = 4[a” {F* (6FG™ jow) + GF* (0F/0w)} a
+a' (F'FG* + GF'F) (da/éw)
—b* {F* (8FG/éw) + G"F" (6F/0w)} b
—b* (F*FG + G*F*F) (éb/0w)] (5.102)

The second and fourth terms on the right-hand side can be simplified using
the relations,

F'FG" + GF'F=iP, F'FG+G F'F=1P  (5.103)

The expressions within the brackets of the first and third terms on the right-
hand side of (5.102) are more complicated. Let us calculate the ith diagonal
component of the first one. Since the ith diagonal component of 0F/dw is given

by
1(0IReZi ™ 2}dw) = — }|Re Z)) "2 |Re Z)| ' (4 [Re Z,|dw)
=—1IReZ|™'?|Z* + Z|7' (3127 + Zil/ow)
the ith diagonal component of
{F* (0F G* [6w) + GF* (6F/0w)} = F(G* + G)(3F/dw) + F'F(3G™ [dw)
becomes
—$[ReZ| ™ {3(Z* + Z)jow) + }Re Z ™" (0Z;* 0w)
=31Z* + zZ|™! {a(zi* — Z)}jow}

Let K be a diagonal matrix whose ith component is given by

Z* +Z)7 {8(z" - Z){ow}
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then we have
{F*(¢F G” [dw) + GF" (0F/dw)} = 3K (5.104)

Noting that K is pure imaginary, the expression within the brackets of the
third term on the right-hand side of (5.102) becomes

{F* (0F G/dw) + G* F* (0F/dw)} = }K* = ~ 1K (5.105)
Substituting (5.103), (5.104}, and (5.1035) into (5.102), we have

{i* (0v/0w) + v" (3i/dw)} = a*Ka + b* Kb + 2 {a " P(9a/0w) — b" P(6b/dw)}
(5.106)

Using b = Sa, the second term on the right-hand side becomes a*S*KSa.
Furthermore, the expression within the bracket of the last term can be
rewritten in the form

{a*P(0a/dw) — b P(db/dw)} = a*P(dajdw) — a*STP(3S a/dw)
— a*P(fafow) — a*S*P(3Sjiw)a  (5.107)
— a*S*PS(da/dw)

The first and the last terms cancel each other because of the lossless con-
dition (5.87), and only the second term remains. Consequently, (5.96)
becomes

a* {K + S*KS — 28" P(3S/6w)} a = j f (LH®-H + ¢E* -E) do
Dividing both sides by j, and using —K = K™, we obtain

a'j{K* +STK'S + 28" P(aS/00)} # = f (uH *-H +E *E) do
(5.108)

This shows that j{K* + S*K*S + 28*P (3S/dw)} is positive-definite.
When all the Z;’s are real, K =0, and (5.108) reduces to

a*2jS*P(0S/ow)a = f(,uH*-H + ¢E* . E) dv (5.109)

When the Z.’s express the real characteristic impedances of the waveguide
propagating modes, P =1, and we have

a*2jS* (8Sfdw)a = f (uH*-H + E* . E) dv

In order to see the physical meaning of (5.108), let us consider the simplest

. AJ.?; .
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case where a lossless reciprocal one-port network is connected to a generator
having an internal impedance with a positive real part. Let the incident
wave be the addition of two waves having equal amplitudes at frequencies
wand o + dw

a(w) — Aejwr + Aej(errAm)t

Taking the real part and multiplying by /2, the actual wave as a function
of time is given by

a(t)= /24 coswt + /24 cos(w + Aw) t
=224 cos(§ dw 1) cos(w + § dw) 1

The slowly varying function 2./2 Acos(34w ¢t) expresses the envelope of
the waveform.

We shall now consider the reflected wave. Since the magnitude of §,,
Is unity, from the lossless condition, S,, can be written in the form

Siy = e e (5.110)
If we write @ (w + dw) = ¢ + A, the reflected waves becomes
b(w) = Al T8 | goiletdon—latde)
This represents an actual wave as a function of time which is given by
b(1)=2,/2ZA cos{1(dw t — 4¢)} cos {{(w + } dw) t — ¢}

The envelope of A(¢) lags behind that of a(r) by d¢/dw. If no energy is to
be transferred through the nodal points of the envelope, as we discussed in
Section 3.2, the above result indicates that the energy is reflected back at a
time A@/dw after its entrance into the network. Let 7 be the limiting value
of A¢p/Aw when Aw approaches zero, then t becomes the time delay required
for incident energy with angular frequency @ to enter the network and leave
it again. Strictly speaking, (2nn 4+ A@)/Aw has to be considered as the time
delay, where # is an integer since it is not certain which nodal peints in the
incident and reflected waves correspond to each other. However, if n # 0,
(217 + Ap)/Aw becomes infinite as Aw approaches zero, and it cannot be
considered as an appropriate value for the time delay. Therefore, # was
chosen to be zero in the above discussion. From (5.109) and (5.110), = is
given by

T = (do/dw) = jS||' (85,1/6w) = }(a*a)™! f (uH* -H + ¢E* .E) dv
(5.111)
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The time delay is equal to the total stored energy in the network divided
by the incident power. The larger the stored energy per unit incident power,
the longer the delay.

5.5 Lossless Reciprocal Three-port Networks

To illustrate the utilization of some of the results obtained for the
impedance matrix in Sections 5.2 and 5.3, let us derive an equivalent circuit
for lossless, reciprocal, three-port networks. In general, a three-port network
is characterized by a matrix of order 3 x 3, and is therefore determined by
nine complex numbers. However, since Z;;=Z for reciprocal networks,
only six complex numbers, or equivalently, twelve real numbers are sufficient
to determine a reciprocal three-port network; furthermore, all the Z;’s
are pure imaginary for lossless networks. Consequently, a lossless reciprocal
three-port network is specified by only six real numbers. Let us choose these
six real numbers to be Xy, X3, X3, X2, X33, and X5 where X;; = —jZ,..

For the moment, we shall assume that X,,, X, ;, and X,; do not vanish.
Suppose that the transmission line connected to port Il is open-circuited
at a reference plane III’ and the impedance looking out from port III
becomes jX;. Then, V, is given by —jX,I;. Substituting this into the
simultaneous equations represented by v =Zi, we can climinate V; and
I5. The result is given by

[V1] . {X11—Xf3(X3+X33)‘1}
Vel

{X12 — X13X03 (X3 +X33)_1}] Il]
4 {X12 — X13X03 (X3 + X33) 1} Iy

{X22 — X35 (X5 + X33)~1)

If we shift the open-circuited position III" along the transmission line, X,
changes from — oo to +co; therefore, by choosing a proper position, we
can make the off-diagonal components vanish, i.e.,

{ X2 — XX (X, + Xas)_l} =0 (5.112)

In other words, the coupling between ports I and II disappears when the
transmission line is open-circuited at the proper position III'. If we look at
the junction from ports I, 11, and the new reference plane III', the impedance
matrix must have the form
Xip 0 Xj,
Jl 0 X3 Xis
Xis Xis Xi

An equivalent circuit for this matrix is given by Fig. 5.4(a) where X’ + X* =

e g e
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Fig. 5.4. Construction of an equivalent circuit for a lossless reciprocal three-port
network,

X33- Since each of the two-port networks is lossless and reciprocal, they can
each be represented by a series reactance, a transformer, and a certain length
of transmission line, as shown from the discussion given in Section 1.3. The
length of the line can always be chosen to be positive by adding an integer
multiple of a wavelength. The equivalent circuit Fig, 5.4(a) can then be
simplified to the form shown in Fig. 5.4(b) where the two series reactances
are combined to give a single reactance X. From this discussion, an equivalent
circuit for the junction looking in from the original ports 1, TI, and III can
be represented by Fig. 5.4(c), where the line length attached to port IIT is
again made positive by adding an integer multipie of a wavelength. In the
equivalent circuit, the six real numbers characterizing the junction are
byl liyny, ny, and X
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If either X,5 or X, is equal to zero, (5.112) may not be satisfied by any
X ;. In this case, we can use port I or port I in place of port III, in the above
discussion, and the same type of equivalent circuit will be obtained. In
case, any two of X,,,X,;, and X,; are egaul to zero, say X,, and X,,,
port I is completely isolated from ports II and III. The three-port network
actually consists of a two-port network and an independent one-port
network. Setting #, =0, Fig. 5.4(c) can still serve as an equivalent circuit
for the junction, Finally, if X,,, X,,, and X,; are all equal to zero, the
junction consists of three independent one-port networks.

Fig. 5.5. Another equivalent circuit for a lossless reciprocal three-port network.

If we use the admittance matrix instead of the impedance matrix, an
equivalent circuit, shown in Fig. 5.5, will be obtained, which is dual to
Fig. 5.4(c).

5.6 Symmetrical ¥ Junctions

We shall now discuss some important properties of symmetrical ¥
junctions to familiarize ourselves with scattering matrices, as well as to
prepare for Section 5.8 in which ¥ circulators will be studied. The circuit we
shall discuss is a symmetrical junction with three identical transmission
lines attached. These lines can be in the form of waveguides, coaxial lines,
or any other type of transmission line supporting only one propagating
mode. Let us assume that reference planes I, I, and III are symmetrically
located with respect to the center of the junction, as shown in Fig. 5.6, and
the reference impedances Z;(i =1, 2, 3} are all equal to each other. Since
the reflection from a port corresponding to a unit incident wave must be the
same from the symmetry regardless of the port number, we must have
S, = 8, =535, Similarly, the outgoing wave from port I, corresponding
to a unit wave incident on port III, must be equal to the outgoing waves
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Fig. 5.6. Symmetrical ¥ junction.

from port IIT or port II corresponding to a unit wave incident on port II or
port I, respectively, and we have S5 = S;, =S,,. In much the same way,
we have another relation S, = §,; = §;,. However, 513 may not be equal
to §3, if no reciprocal condition is assumed. The most general form of the
scattering matrix for the symmetrical Y junction is, therefore, given by

Sll S[Z Sl3
S= SIS Sll Slz (5.113)
S12 SlS Sll

If identical incident waves are applied to all three ports simultaneously, the
outgoing waves from all the ports are expected to be identical to each other
from the symmetry. In other words, we expect that
1 1
= —= 1
V3[4

X

is an eigenvector for S, where /3 is a normalizing factor. This can be verified

* by calculating Sx, as follows.

i Si1 Sz Sy3 1 1 1
—_ SIS Sll SIZ 1 =(S +S +S )_ 1
3 i1 12 13) 5
Vs, s, solls V34

Thus, x, is, indeed, an eigenvector of S, and the corresponding eigenvalue
4y is given by Sy, + Sy, + 8}5. Similarly, if the incident waves have relative
phase angles of 0°, 120°, and 240°, the outgoing waves will be expected to
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have similar phase relations. Therefore,

1 1

1 : 1 :
= ejﬂ s Xa = —— e_rZa
V3 l2e Y3 o

Xz

are expected to be eigenvectors of S, where
a = (2xn/3)
Since Sx, and Sx, are calculated to be
Sxy = (Sy, + S126” + 81362 Xy,  Sx3=(8;; + 826> + 5,26 x5

%, and x, are, indeed, cigenvectors, and the corresponding eigenvalues are
given by i, =S, +85,,6"+ S;;¢/%%, and A; =8, + S;,e/2" + §,e’%, res-
pectively.

Let us consider the electric field along the axis of symmetry as the center
of the junction. We choose a coordinate system with the z axis coinciding
with the axis of symmetry, the y axis in the direction of the wave incident
on port I, and the x axis perpendicular to the ¥ and z axes as shown in Fig.
5.7. The field corresponding to x, is given by the superposition of three
cases:

(i) Port I has an incident wave 1/,/3 and the remainder have none;

(ii) Similarly, port II has 1/,/3 and the remainder none;

(iif) Port III has 1/,/3 and the remainder none.

The axial component of the electric field in each case must be the same from
the symmetry. Let us indicate it by E, then we have 3E at the center corre-
sponding to x,. On the other hand, we have to superpose the following
three cases for x;:

Fig. 5.7. Top view of symmetrical Y junction and the coordinate axes.
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(i) Port I has an incident wave 1/,/3 and the remainder have none;
(i) Port II has e’%/,/3 and the remainder none;
(iif) Port IIT has ¢/*?/,/3 and the remainder none.
The axial components of electric field at the center are given by E for (i),
Eef® for (ii) and Ee? for (iii). Superposing these three fields, we have

E(L+ ¢ 4+ &%) =0

which indicates that no axial component exists for x,. Similarly, the axial
component corresponding to x; is equal to zero.

Suppose that a thin conductor is introduced along the z-axis of the
junction without destroying the symmetry; then the electromagnetic field
corresponding to x, is affected, but those corresponding to x, and x, are not.
This conclusion follows from the fact that the thin conductor forces the
electric field along it to vanish; whereas the axial components for x, and x;
do not exist. Consequently, the eigenvalue 1, can be changed without
affecting the eigenvalues 1, and A; by the introduction of a thin conductor
along the axis of symmetry.

Let us next consider the magnetic field perpendicular to the axis of
symmetry. Let H, be the x component of the magnetic field when an incident
wave of magnitude 1/\/3 is applied to port I; then the x components
corresponding to waves 1 /\/3 incident to port IT and port II1 are given by
H, cosa and H, cos2a, respectively. The corresponding y components are 0,
H, sing and H, sin2a. Suppose that the incident wave expressed by x; is
applied to the junction, then the x and y components of the magnetic field
are obtained by the superposition of the three cases as follows:

H . =H (1 +cosa+cos2a)=0, H,=H (0+sina +sin2a)=0
When x, is applied, the same components are given by

H.=H, (1 + ¢ cosa + ¢ cos2a) = 3H,

H,=H,(0+ ¢’*sina + ¢*/* sin2a) = }jH,

To interpret this result, let us follow the usual procedure of multiplying the
expressions by /2 e/ and taking the real parts which gives

H,=2|H | 3cos(wt +6), H,=-—.2|H,|sin(wt+0)
where [H;| and @ are defined through

Hl =|H1|£’js
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Drawing a diagram similar to Fig. 2.23, as shown in Fig. 5.8, we see that
the magnetic field maintains a constant magnitude and rotates clockwise
with angular velocity w; i.e., the field is circularly polarized. Similarly,
corresponding to x,, we have

sz%Hls Hy=_ %]H]

v
t

Fig. 5.8. Explanation for the circular polarization of magnetic field.

Therefore, the magnetic field for x, is circularly polarized at the center and
rotates counterclockwise with the same angular velocity  as for x,. These
results concerning the electric and magnetic fields at the center will be used
in the discussion of ¥ circulators in Section 5.8.

Now, let us restrict ourselves to the symmetrical ¥ junctions satisfying
the reciprocal condition discussed in Section 5.2. Since P is equal to either
Ior —Ifrom the symmetry, (5.80) gives S;; = S ;. A comparison with (5.113)
shows that §;; = §;,. The eigenvalues of S become

A =S, +25,, (5.114)
AZ=A3=S11_S12 (5115)

This indicates that x, and x; are degenerate,

e
In

B T
e LT

&

5.6. Symmetrical Y Junctions 239

Let us further assume that the junction is lossless. Then S must be a
unitary matrix from (5.87); i.e.,
S*S=1

Multiplying x;(f=1, 2, 3) from the right and x,* from the left, we obtain

Al?=1 (i=1,2,3) (5.116)

The magnitudes of the eigenvalues are, therefore, all unity. If we set §,; =0,
we have 4, =25, from (5.114), and 1, = 1, = —§,, from (5.115). However,
(5.116) cannot be satisfied simultaneously with these eigenvalues. We con-
clude from this that S;, cannot be equal to zero for any symmetrical ¥
Jjunction if it is lossless and reciprocal. If all the diagonal components of a
scattering matrix vanish, i.e., if all the ports are simultaneously matched,
the junction is said to be totally matched. With this terminology, the above
conclusion of S§;; # 0 can be restated as follows: A symmetrical Y junction
can never be totally matched if it is lossless and reciprocal. We can prove a
slightly more general theorem: Any lossless reciprocal three-port network
cannot be totally matched. Assume the contrary; then from the reciprocal
condition (5.80) we have
0 2181 piSis
(PS), =PS=|pS:, 0 p2Sis
PS13 P2Sa; 0

which is symmetrical with respect to the main diagonal. From the lossless
condition (5.87) or equivalently from (PS)* P(PS) =P, we obtain
ST:8,5=0, 5125,,=0, 5§1,8,3=0

where the off-diagonal components of the above relation are calculated.
To satisfy the three equations simultaneously, at least two of the components
812, 813, and §,; must be zero. Suppose that S, and S, are rero; then
the first diagonal component of (PS)" P(PS)=P cannot be satisfied.
Similarly, every possible combination of vanishing components leads to
a contradiction showing that the initail assumption of total matching is
wrong. This completes the proof.

Finally, let us ask how small we can make |S;,|? of a symmetrical ¥
Junction when it is lossless and reciprocal? Eliminating S|, from (5.114) and
(5.115), we have '

35, =4, +24,
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Writing 4, and A, in the forms

Ay=€", 1, =e"
the above equation gives

918> =5+4cos(8, —8,)

Since the minimum value for cos(#;, —#,) is —1, the minimum value of
|S;,|% is given by
IS 11|2 =3}

In other words, one-ninth of the incident power is reflected back even with
the best possible adjustment. The condition to give the minimum reflection
is given by

Ay=— A,y

As discussed previously, 4; can be changed by inserting a thin conductor
along the axis of symmetry without affecting A, = A5, and it is possible in
most cases to satisfy the above condition.

5.7 Tensor Permeability of Ferrites

If &, u, and ¢ are ordinary scalar quantities, the product order in each
term on the right-hand side of (5.69) can be changed without altering the
value. Consequently, the terms on the right-hand side canceled each other,
and the reciprocal relations were obtained. However, if the permeability is
expressed by a matrix [z] of order 3 x 3 and vectors are represented by
matrices of order 3 x 1, then H, - [ 1] H, is not necessarily equal to H, « [] H,
since the order of matrix product cannot generally be interchanged. The
reciprocal relations do not follow, therefore, and the possibility arises that
useful circuits can now be found which were not possible under the restric-
tion of the reciprocal conditions, such as (5.80). For this reason, a large
number of materials were investigated, and a class of magnetic materials
called ferrites was experimentally found to have desired nonreciprocal char-
acteristics when a static magnetic field was applied. The permeability of
ferrites for small microwave fields is generally expressed in the form

p —jx 0
[l=|ix » O (5.117)
0 0 e

where the z direction is chosen to coincide with the internal static magnetic

&,

5.7. Tensor Permeability of Ferrites 241

field H,. The values of u and x in (5.117), and hence those of p + » and
u —«, change with {H,|. The typical variations are shown in Fig, 5.9.

The product of a matrix [¢] and a vector H gives another vector B.
A matrix which gives a vector in this way, when multiplied by another vector,
is called a tensor, and ferrites are therefore said to have tensor permeabilities.
The only information required for a discussion of microwave circuits
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Fig. 5.9. The permeabilities # + x and # — « as function of static magnetic field.

containing ferrites is the knowledge concerning [ ] expressed in (5.117), and
the variations of u + x and u — x with |H,| as illustrated in Fig. 5.9. In this
section we will briefly review the origin fo such a tensor permeability.
Suppose that there is a small loop carrying a current 1. Let 4 be the area
inside the loop and k be the unit vector normal to the loop surface, as shown
in Fig. 5.10. Then the current loop is said to have a magnetic moment given
by m =/4k. In an atom each electron is orbiting and spinning, thereby

A

Fig. 5.10. Current loop.
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forming two types of current loop. Ordinary substances can therefore be
considered as a large number of current loops floating in a vacuum.
Classifying the current loops by their current 7 and Ak, let us assume that
there are many different kinds of current loops, and that the density of the
Jjth kind is given by #; per unit volume in the vicinity of r. Summing all the
the magnetic moments per unit volume, we can define a quantity M called

the magnetization at r by
Y I,(4k),n; =M (5.118)
i

The magnetization is the density of the total magnetic moment.
Now consider a macroscopic surface § in the space where the current
loops exist, as shown in Fig. 5.11, and let us calculate the net current

Fig. 5.11. Macroscopic surface S and its periphery € used in the derivation of im =
V x M.

crossing the surface, which is given by [i,-n dS, where the integration is
over S, iy, is the effective current density due to the current loops and n the
unit vector normal to S. If C is the periphery of S, then the current loop
which does not enclose C has no net contribution to the integral since, for
such a loop, the same current crossing .5 from one side also crosses S from
the other side. In order to calculate the net contribution, let us estimate the
number of loops of the jth kind which encircle a short length &l of C.
Atlthough dl is considered to be macroscopically short and almost straight,
it is very long compared to the size of the current loops. For a current loop
to encircle d/, a certain point of the loop surface, say the center of gravity,
has to be located inside a cylinder whose volume is (4k);-dl, where dlisthe
vector representing the axis of the cylinder, as shown in Fig. 5.12. Since the
density of the current loops is #;, the number of current loops which encircle
dl is given by (4k);z;-dl on the average, each of which contributes I; to the
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Fig. 5.12. Explanation of counting the number of current loops encircling 4.

integral. Summing all the contributions, we have

fi,,,-.:dS: S 1,(Ak); n, - d
€ J

fim-ndS=f M. dl

The integral on the right-hand side can be rewritten using Stokes’ theorem.
After transposing to the left, the result gives

or equivalently

fﬁm—VxNDmdS=0

Since this equation holds for any macroscopic surface S, we conclude that
the effective current density is given by

i,=VxM (5.119)

whenever there is nonzero V x M,

Maxwell’s equation
Vx H=1i+(éD/ot) {5.120)

holds in magnetic materials as well as in vacuum where it can be written

in the form
Vv x,uo_lB=i+(6D/6t)

However, this particular form is not valid in magnetic materials since i



244 5. MATRICES AND WAVEGUIDE JUNCTIONS

represents the free current density and does not include the effect of the
current loops due to bounded electrons in atoms, If we include all the
current effects on the right-hand side, it should hold in magnetic materials as
well, Thus, we have

V % jg'B =i+i,+ (6D/a1) =i+ V x M + (8D/or)

or equivalently
V x (g 'B — M) =i + (éD/or) (5.121)

A comparison of (5.120) and (5.121) shows that
B = o (H+ M) (5.122)

For a given applied H, B becomes larger in magnetic materials than in
vacuum due to the effects of bounded electrons in atoms which create M in
(5.122). 7

In ordinary nonmagnetic materials, the effects of bounded electrons in
atoms cancel each other and give no net contribution to M. In ferrites,
however, the magnetic moments due to the effective current loops of some
of the spinning electrons remain uncanceled and give rise to the magnetic
properties. An electron has its own mass and charge, and since the charge
is negative, the effective current loop is formed in the opposite direction
from the spin direction. Consequently, its magnetic moment m and angular
momentum J have opposite directions as shown in Fig. 5.13. If we write
the relation between m and J in the form

m= y,] (5123)

then y must be negative. Also y is considered to be one of the fundamental

B

J

Fig. 5.13. Electron angular momentum J and magnetic moment m.
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constants of an electron, and its value has been experimentally determined
as
y=—1.76 x 10'" [radian-m?*/weber-sec]

When a current loop with magnetic moment m is placed in flux density
B, the loop receives a torque m x B,, in a direction which tends to maximize
the flux linkage. This is the same kind of torque which causes a magnetic
needle to point at the north pole. In general, the time derivative of angular
momentum must be equal to the torque applied. In the case of an equivalent
current loop due to an electron spinning about its axis in a ferrite, we have

dJ
~— = X Bm
dt

Using (5.123), this becomes
dm B 5.124
— = ym x .
=7 m (5.124)

As we can see from (5.122), B,, consists of two terms, one due to the internal
magnetic field H;, and the other due to the magnetization M. Let us now
assume that the internal magnetic field is sufficiently strong to saturate the
ferrite, in which case all the m’s in a localized region will have the same
direction. Then p,M; gives no contribution to the right-hand side of (5.124),
and B, can be replaced by p,H; since m and M, are in the same direction.
Multiplying by the number of m’s pet unit volume, (5.124) becomes
dM,
— =yu,M; x H; (5.125)
dt
It is worth noting that H, is generally not equal to the external magnetic
field applied to the ferrite because of a demagnetizing effect.
Let us now write H; as the sum of the static magnetic field H, and the
microwave field He’', and let us write M; as the sum of M, and Me/®*:

H,=H, + Re{ZHe™"}, M;=M, + Re{{/ZMe™}  (5.126)

Assuming that the directions of H, and M, coincide, we take the z axis to
be this direction. Furthermore, let us assume that the magnitudes of H and
M are both small compared to those of H, and M,, respectively. Substituting
(5.126) into (5.125) and neglecting the product of H and M, we have the
following relations between the alternating components:

ijx = THo [MyHO - MOHy] s ijy =Yg I:MOHx - M.xHD:l [ ijz =0
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Solving these equations for M,, M,, and M, we have

V't MoHoH, — jwyitoMoH,

M =200 700
Vo Ho® — @*
JjoyuMoH, + ?ZﬂonoHoHy
My = 2 2772 3 (5.127)
Ve Hy —w
M =0

The alternating component of magnetic induction B is given by u, (H +M);
B can also be expressed as [ 1] H, using the tensor permeability [x] in (5.117);
therefore, we have

g —jx 0
Bop(H+M)=[jx p 0|H
0 0 Ho

A comparison of this equation with (5.127) shows that

'})2#03M0H0 Wty
B=fot 3735 32 Hoyl+ 35 5
w w

Z 2552
Hy" —w -
¥ 1;0 0 0 (5.128)
o Ot Mo OO
V2ol Hy? — ® 0ol — @

where
Wy = — Yoy, Wy = — YoMy

The term w, is the natural precession frequency of the electrons and is
proportional to the magnitude of the static magnetic field H,. The term
s is proportional to M, the saturation magnetization which is a property
of the ferrite under consideration. From (5.128), we obtain

w
u+x=uo{1+%-’——}, #—K=#o{1+ " } (5.129)
Wy +w Wp —@

Since , is proportional to H,, (5.129) gives a good explanation of why
g+ x and g —k vary with H, as shown in Fig. 5.9, excluding the region
where H, is small, and the assumption of ferrite saturation is not valid.
When H is perpendicular to the z axis and circularly polarized, it is
proportional to either
1 1
j or -

e

3

e
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depending on the direction of rotation as we discussed in Section 5.6. The
magnetic induction B is given by (1 + ) H or (1 — ) Hif H is proportional
to the first or second vector, respectively. In other words, the effective perme-
ability of the ferrite for the circularly polarized field becomes u + x or
u# — & depending on the direction of rotation.

Both p and x become infinite in (5.128) as w approaches w,; however, in
practice, various effects neglected in the above discussion, such as spin-spin
and spin-lattice interactions, introduce losses, and consequently p and
remain finite. This situation is similar to that of a cavity near the resonant
frequency; no matter how small the losses are, the fields are kept from growing
infinite. In addition to the above-mentioned losses, introduced at or near
my, when the applied magnetic field is below saturation, ferromagnetic
domains are formed, and resonances due to the natural internal magnetic
fields in the domains may also absorb microwave energy. Furthermore, the
domains tend to move under the influence of low frequency microwave fields,
thereby introducing another loss-mechanism in the ferrite. In order to
minimize the effect of these “low-field” losses, H, must be made sufficiently
large to saturate the ferrite,

5.8 Three-port Circulators

In Section 5.6, two of the eigenvalues of 8, 4, and A, were found to be
equal to each other for a symmetrical ¥ junction when it was reciprocal.
Suppose, however, that a piece of ferrite is introduced at the center of the ¥
junction without destroying the symmetry, then 1, and 4; may no longer be
the same since the restricting reciprocal condition has been removed. The
eigenvectors, on the other hand, remain the same because of the symmetry,
and they are given by x,, x,, and x, defined in Section 5.6.

Let us assume that 4, 4, and 1; are somehow adjusted to have the same
magnitude but different phases 120° apart from each other; i.c.,

A=A, A=A

where g is given by 27/3, as before. Under this assumption, if a unit wave is
incident on port I; i.e., if

1
a=|0|=(x; +x; +x;)//3
0
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is incident on the junction, then the reflected wave b is given by

b = Sa = (Sx, + Sx, + Sx,)/./3
= 111 (Xl 3 ejaxz + ejzaX:,})/\/i

-

where use is made of the fact that the eigenvectors are multiplied by their
eigenvalues when 8 is applied. The above result indicates that A, emerges
from port III, and nothing emerges from port II when a unit wave is incident
on port 1. Similarly, when a unit wave is incident on port II or port III, 4,
emerges from port I or port I, respectively. The junction is called a circulator
when there is a rotational relation between the incident and reflected waves
as illustrated in this example. If the order of leading phases is changed from
Ay, Az, and Ay to Ay, A5, and A,, an incident wave on ports I, IT, and III
emerges from ports 11, II1, and I, respectively, and a circulator with rotational
direction opposite to the previous case will be obtained.

With this much preparation, let us now consider how the phases of the
eigenvalues can be adjusted to 120° apart. Let v; and i; be the voltage and
current at the junction ports when x; is incident. Furthermore, let the
superscript (0) indicate the case with no static magnetic field applied to the
ferrite. Noting that b = Sx; = 4,x,, we have from (5.100) and (5.101)

(M) d; = ()il = (G*x; + GAx,), 2FP2FP (x; — 4;x,)
- (G*x; + GAx;), 2FP2FP(x; — 1{%x)
Since F, G, and P are diagonal matrices, transposing them introduces no
change, and the order of their product can be interchanged. Furthermore,
since each term on the right-hand side is a matrix of order 1 x 1, we can

take the transposed matrix of the second term without changing the result.
Thus, a little manipulation shows that

(V) by — () 89 = (x,), (A2 ~ 1)) 4F* (G + G 1) x;
Using the relation 4F?(G + G*) = 2P, this reduces to
ey — (9 = 247 - 1)) (x,), Px, (5.130)

The left-hand side can be rewritten in terms of the electric and magnetic

A

T

i
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fields at the port reference planes:
W), — (v K9 = ZJ {E” x H; — E; x HY} .k dS

where the summation is over all the ports. Let m be the outward unit vector
normal to a closed surface S enclosing the junction; then n = — k over the
reference planes, as illustrated in Fig. 5.1. Therefore, the right-hand side
becomes

_ZJ‘{EP) x H; —E; x H”} -0 dS = — fV-{EEO) x H; — E; x H{¥} dv

where use is made of Gauss’s theorem. Following the method employed in
(5.69), the volume integral can now be calculated

[ VB0 x B, B B o= [ joHO (] - u ) B do

As a result, (5.130) becomes

(2 — A7) (x), Px; = (jeo[2) f H® ([u] — u)H;dv (5.131)

Setting i = j = 1, the change of 4,, due to the application of a static magnetic
field on the ferrite, is calculated to be ’

L =20 =+ bjo [ O[] - 4 By do

where the upper and lower signs correspond to cases where P is equal to
I and — I, respectively. Similarly, setting either i=3, j=2 or i=2, j =3,
we have

o= A =+ 4jo [ B (0] - 1) B do
dy— 49 =% djo [ B ([ - 1) H do

where use is made of the relation 1 = A{?,

Now suppose that the static magnetic field is gradually increased in the
axial direction of the Y junction. The initial contribution to the integral
in the first equation from the axial component of H, is negligibly small,
since pt, = %, Furthermore, the component perpendicular to the axis is zero
at the center and small in the vicinity of the center; hence, |4, — 2{”| will
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remain small. On the other hand, H, and H; have perpendicular components,
and both |2, — 2| and [A; — A grow rapidly with increasing static
magnetic field. The magnetic fields H, and H; are respectively proportional
to

1 1
j and —j
0 0

along the center axis; consequently, we have
p —jx 077m1
HY [ H, >~ HPH, [1 —j 0]|jk u 0[]
¢ 0 ued L0
= HYH,2 (1 + x)
where H{” and H, are complex quantities representing the x components
of HY and H,, respectively. Similarly, we have

H3 «[1] H3 ~ H{”H;2 (1 — x)

From these relations, the changes of 1, and A, due to the static magnetic
field are given by

Ay =20~k joo {(u + K) — 1) f HOH, dv

L= i =t jo (=)~ i) [ BOH do

When the static magnetic field H, is small, ¢ and & vary with H,, as shown
in Fig.5.14, and u remains approximately equal to p(®’. Furthermore,
H® is equal to H{” and, both H, and H, are expected to be initially close to

oy

> Ho

|
|
!
1
|
1
|
!
1
1
|
1
i
It

Fig. 5.14. The permeabilities # and x versus static magnetic field Ho.
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this value which corresponds te zero static magnetic field. Therefore, the
above equations show that A, — A and 1, — A{» must change proportion-
ally to k and — x, respectively. That is, with increasing Hy, 4, and A; move in
opposite directions starting from the original value Ay’ = 1. If we neglect
the losses in the junction, the magnitudes of the eigenvalues become unity, -
and they should appear as illustrated in Fig. 5.15(a). If we further increase

Az
(0 (0) (0 (o) (0) ‘o
Xo=Az A Aoz A3

A3
(a) {b)

Fig. 5.15. Variations of the eigenvalues A1, A2, and s with static magnetic field.

H,, then H, and H, may no longer be close to their original value, and hence
A, and A; cease to be symmetrical with respect to the original eigenvalue
A9 = A5 At some value of H,, the angle between A, and A, will become
120°, and 2, may have shifted slightly from 1{” since H, is not exactly equal
to zero over the ferrite. As aresult, 4,, 4,, and A, will have taken the positions
in Fig. 5.15(b). If we now insert a thin conductor along the center axis and
adjust A;, without changing 4, and 25 as explained in Section 5.6, until the
angles from 4, to 4, and A, become 120° then the junction becomes a
circulator.

In practice, we carry out the reverse process to minimize the insertion loss.
First, we choose the dimension of the ferrite in such a way that it resonates
at the desired frequency as a transmission type cavity (i.e., no power trans-
mission takes place at detuned frequencies) with no static magnetic field
applied. To observe the resonance clearly, we may have to decrease the
coupling between the waveguides and the central part of the junction where
the ferrite is located. Once the dimensions are properly chosen, we apply the
static magnetic field and observe the split of the resonance curve due to the
removal of the degeneracy. If a wrong resonant mode was picked up, the
split would not occur. As we increase the static magnetic field, the separation
between the two resonances becomes wider, and at a certain point, the lower
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resonant frequency becomes stationary and then starts increasing. This
corresponds to the point where u+ k starts decreasing in Fig. 5.9 and
indicates that the ferrite is saturated. We fix the static magnetic field at this
value to obtain the minimum low field losses without suffering excessive
losses due to the ferromagnetic resonance discussed at the end of Section
5.7. We then adjust the coupling between the waveguides and the central
part of the junction to obtain proper circulator action. The reason for the
success of this procedure can be seen as follows. At detuned frequencies, the
cigenvalues 2;, 4,, and A; are identical if the original resonance is a trans-
mission type. As we increase the frequency and pass through the resonances,
4, first rotates 360°, since H, sees 1 + x, and then 2, rotates 360°, while 1,
more or less stands still. By changing the couplings, we change the Q,_s,
and hence the speed with which 4, and 4; rotate. When the speed is properly
adjusted, 4,, 4,, and A; will be positioned 120° apart from each other at
(or at least near) the desired frequency, and the junction will become a
circulator.

Let Z, be the reference impedance for the symmetrical circulator, then
the impedance looking into the circulator from each port must be Zj*.
If we connect a lossless two-port network to port I in order to transform
Zo* to Z,*, and consider the other port of the two-port network as a new
port of the junction with reference impedance Z,, then the junction acts as a
circulator with the reference impedances Z,, Z,, and Z,y at ports I, II, and
III, respectively. Similarly, by adding a lossless two-port network which
transforms Z,* to Z,* at port II and another which transforms Z,* to Z,*
at port III, we obtain a circulator with reference impedances Z,, Z,, and,
Z4; these impedances are arbitrary as long as their real parts have the same
sign as that of Z,,.

The general form of a lossless circulation is given by either

0 &% 0 0 0 ¢
S=|0 0 g or S=|% 0 o
e 0 0 0 ” o

depending on the direction of the circulation, where 0,, 0,, and 8, are
arbitrary real angles. Now suppose that the scattering matrix is given by the
first form, and that an impedance Z, instead of Z,, is connected to port III,
and a unit power wave is incident on port 1. Since the relation between the
voltage and current at port III is given by V, = — ZI,, a, is given by

ay={(Z - Z)(Z + Z,*)} b, (5.132)

S e

i it
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where use is made of (5.74) with i = 3. Substituting this into the relation
b = Sa, and noting that ¢, =1 and g, = 0, we have

by =" N7 — ZIWZ + 2,*)}

Assuming that the real parts of the Z’s are all positive, the output power
at port 11 therefore becomes [(Z — Z,)/(Z + Z;*)|* times the incident power
on port I. If ReZ is negative, [(Z — Z,)/(Z + Z;*)| > 1 and power amplifi-
cation is obtained,

PROBLEMS

5.1 Following the discussion on self-adjoint matrices, obtain the spectral representation
of a unitary matrix. Show also that if two unitary matrices commute, they can be
simultaneously diagonalized by a unitary matrix through the similarity transfor-
mation,

5.2 Suppose that three rectangular waveguides are connected to form a four-port
Junction, as shown in Fig. 5.16(a), and each has only one propagating mode TEio,

(a)

i

-
>

TN

Fig. 5.16. (a) Magic 7, (b) Intuitive explanation of the phase relation between ports
I and 1I.

(b}

P

I
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then an incident wave on port I will be divided in two and will emerge from poris I
and II with equal, but out-of-phase, amplitudes, as shown in Fig. 5.16(b). Port 1V
has no output since the wave into port III tries to excite a TEo; mode in the port IV
waveguide which is in the cutoff region. Similarly, an incident wave on port IV will
emerge from ports T and II in-phase but nothing emerges from port ITI. This wave-
guide junction is called a magic T, Assuming total matching, calculate the scattering
matrix of a lossless magic 7.

Repeat the discussion given in Section 5.6 for symmetrical cross junctions.

Calculate the internal static magnetic field Hy that is necessary for the natural
precession frequency of electrons to be 4000 MHz.

Suppose that a thin ferrite rod is inserted along the center axis of a circular waveguide
and a static magnetic field is applied in the axial direction. Then the plane of polar-
ization of the TE1; mode will rotate with distance along the axis. This phenomenon
is known as Faraday rotation. By decomposing the linearly polarized wave into two
oppositely rotating circularly polarized waves, explain why such a rotation takes
place.

Adjust the length of the above ferrite rod and/or the static magnetic field so as to
rotate the plan e of polarization 45° and connect transducers from the circular TE),
to the rectangular TEio mode at both ends, after twisting one 45° with respect to
the other, as shown in Fig. 5.17. If a resistive film is placed in each transducer to

RESISTIVE FILM

RESISTIVE FILM YFERRITE ROD

""’Wllllﬂl.....

Fig. 5.17. Faraday rotation isolator.

absorb the mode corresponding to the rectangular TEg1, the device acts as an
isolator; the wave passes through the device in one direction with little attenuation,
whereas it is almost completely absorbed in the other direction. Explain qualitatively
how the isolator action takes place.

Prove that a Iossless symmetrical ¥ junction is a circulator if it is totally matched.

If the ferrite dimension for a symmetrical three port circulator is chosen so as to
reflect the incident power at the resonant frequency, and if a separate resonator is
properly coupled to x1 mode only, then, with a proper magnetic field applied, the
circulator action takes place over a relatively wide frequency range. This is because
all three vectors A1, Az, and 13 rotate in the same direction with similar velocities
maintaining the proper phase relation (120° apart) near the resonance. Explain
qualitatively how this proper phase relation can be obtained.

S
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5.9 Prove that, if reference impedances are changed from Zito Zy' (i = 1, 2, ..., n), the
scaftering matrix is transformed from S to 8';

S =AUS —I'"H{d - T8 A*

where T and A are the diagonal matrices with fth diagonal components r; = (Z," — Z;)/
(Z¢ +Z*) and |1 — rip*{12(1 — r*)/|1 — ril, respectively.



CHAPTER 6
COUPLED MODES
AND PERIODIC STRUCTURES

When several transmission lines are coupled together through pertur-
bations of various kinds, we can treat the resultant complicated trans-
mission system as a waveguide and develop an appropriate new theory for
it as we did in Chapter 3. Instead of proceeding in this manner, however, it
is more advantageous in many cases to discuss the complicated system as a
combination of individual simple transmission lines; in this way we can
make full use of knowledge concerning individual transmission line properties
since these are generally well understood from separate studies. In this
chapter, we shall study one such approach called the theory of coupled
modes; this provides a powerful tool for the understanding of relatively
complicated combined systems often encountered in practice.

The discussion will reduce to an eigenvalue problem of a matrix. However,
since the matrix is not self-adjoint, a new method is developed to study the
eigenvalue problem. This method is applicable to many problems, including
the discussion of periodic structures.

First, we set up an equation for a system with lossless distributed coupling,
and then deduce the eigenvalue problem. After discussing the general
properties of the solutions, we solve the eigenvalue problem using a pertur-
bation method. We then discuss in detail the interaction of two waves as
the simplest, important example of coupled modes. We next formulate
two eigenvalue problems for periodic structures, one for lossless systems,
and the other for reciprocal systems, and then discuss the properties of their
solutions following the method developed for distributed coupling. Finally,
taking the specific example of a waveguide with periodically placed identical
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discontinuities, we discuss the w-f§ diagram and the space harmonics: these
are found to be particularly useful concepts when a periodic structure is
designed for a practical application.

6.1 Distributed Couplings

Suppose that # propagating waves exist along a transmission system and
other waves can be neglected, either because they are in the cut-off frequency
ranges or because they are not excited. Let us indicate the magnitudes and
phases of the » waves by complex numbers a,(z), a,(z2),..., a,(z} and let
a(z) be a vector having the 4,(z)’s as its components. We assume that the
waves are orthogonal to each other and normalized so that p;|e;(2)|? gives
the transmission power of the ith wave in the positive z-direction, where
piis 1 or —1, and that the total transmission power is equal to the sum of
individual transmission powers. In other words, the total power is given by

P=3 pla;(z)* =a" (z) Pa(z) (6.1)
where

P= dlag [ph Pz pn] (62)

and a* (z) is an abbreviation for {a(z)}*. In Chapter 3 the waves in a guide
were shown to have this property.

Now, let us introduce some couplings between the » independent waves,
The wall losses discussed in Section 3.8 certainly provide an example of
coupling, however, in the present discussion we shall restrict ourselves to
lossless couplings. An example of lossless coupling is shown in Fig. 6.1 in
which two waveguides are coupled together through a large number of small
windows in the common sidewall. If each waveguide has only one propaga-
ting mode, and if the waves propagating in the negative z-direction can be

Fig. 6,1. An example of coupled circuits.
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neglected because of the method of excitation, a,(z) may represent the wave
propagating in the positive z-direction in one waveguide, and a,(z) in the
other. The original unperturbed transmission lines in this case are two
waveguides in parallel, each supporting only one propagating mode.
Strictly speaking, a finite number of waves cannot satisfy the boundary
conditions which are modified by couplings; however, for minor modifica-
tions, the effect of other waves on the transmission power may be negligible,
and hence the total power is still given by (6.1) to a first order approximation.
In the following discussion, this is assumed to be the case, and we shall
study how a(z) changes with z.

The vector a(z) represents the magnitudes and phases of the waves at z,
and hence a(z + Az) represents those at z + Az. Since the relation between
the electromagnetic fields represented by a(z) and a(z + Az} is linear, there
must be a linear relation between a(z) and a(z + 4z). When higher order
terms of Az are neglected, this lincar relation should be expressible in the
form a{z + dz) = a(z) — Ca(z) 4z (6.3)
since a(z -+ Az) should coincide with a(z) in the limit of 4z — 0. The square
matrix C thus introduced is called the coupling matrix. The negative sign in
front of C is conveniently chosen so as to enable us to reach an eigenvalue
problem in a conventional form. Transposing a(z) to the left-hand side,
and taking the limit of Az — 0 after dividing both sides by 4z, we obtain
a matrix differential equation

dz

The transmission power in the positive z-direction is given by (6.1), and
this must be independent of z when the system is lossless. Therefore, we have

¢t () Pa()) =0 (65)

Using the standard formula for differentiating a product of functions, we
can write (6.5) as follows.

da* (z)

dz

da(z}
dz

0

Pa(z)+a' (z) P

Substituting (6.4) into this expression gives

—a* (z2)(C*P + PC)a(z) =0 (6.6)

i
!
i
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Since this equation holds regardless of the value of a(z), we obtain
C'P+PC=0 (6.7)

This is the condition which the lossless coupling matrix C has to satisfy.
From (6.7), the diagonal components of C must satisfy
Co=—C} (68)

in other words, the diagonal components of C are all pure imaginary. To
evaluate the magnitude of Cj;, let us assume that the magnitudes of all the
waves except @;(z) are zero at z, then from (6.4) we have

dai(z) _
dz - it

Suppose that a;(z) changes with z as exp(— jB;z) before the couplings are
introduced; the introduction of small couplings represented by C should,
in general, cause ¢;(z) to behave somewhat differently. However, when no
other waves exist at z, as we have assumed, no effects are expected through the
couplings, and hence a;(z) is expected to change as exp(—jBiz). A sub-
stitution of this functional form into the above equation shows that C,
must be approximated by jf; which is pure imaginary as required form (6.8).
From (6.7) the off-diagonal components of C have to satisfy

Cyy=— CT: (Pi = Pj) (6.9)
Cij = C; (Pi =- Pj) (6.10)

The first condition applies when p; and p; have the same sign while the
second one applies when the signs are opposite. Note that these conditions
impose a restriction on the relation between C;; and C;; but no direct restric-
tions on the value of Cj; itself.

In order to derive an appropriate eigenvalue problem from (6.4), let us
assume that a(z) changes exponentially with z, i.e., a(z) = xe™ **, as we did
in the discussion of waveguides. Substituting this expression into (6.4), we
obtain the desired equation

(C-—M)x=0 (6.11)

It is expected that any solution of (6.4) may be expressible as a linear
combination of the solutions of the eigenvalue problem (6.11); the behavior
of these solutions is simple and well understood, and hence a systematic
eigenfunction approach to the coupling problem should become possible,
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For this reason, we shall proceed with a study of the above eigenvalue prob-
lem and establish the basis for the eigenfunction approach.

First, we note that the discussion of the eigenvalue problem of self-
adjoint matrices given in Section 5.1 is not applicable to the present problem,
since C* is not equal to C. Using the relation (6.7), however, we can derive
several important theorems. Equation (6.11) represents n simultaneous
linear equations for the components of x. To ensure nontrivial solutions,
the determinant of the coefficients must equal zero which leads to an alge-
braic equation of the nth degree for y whose roots give the eigenvalues,

det(C—y) =0 (6.12)

Let us consider the case in which all the roost are distinct, then the
following four theorems I-IV can be derived. The proof will be given after
each statement.

I.  Any n-dimensional vector can be expressed as a linear combination of
the eigenvectors.

Proof. Since each root of (6.12) gives an ¢igenvector, we obtain n different
eigenvectors. Suppose that the eigenvectors x4, X,, ..., X,_; are independent
(i.e., Y72} a;x; = 0 cannot be satisfied unless the «;’s are all zero), but that

x, (p < n) is not, then we have

p—1

X,= Y ox (6.13)

k=1
Applying C from the left, we obtain

r—1

YoXp = E % Vi Xg (6.14)

k=1

Substitution of (6.13) into (6.14) gives

p—1
kZ1 (7 — '}’p) 4x, =0 (6.15)

By hypothesis, y, # y, and not all of the «,’s are equal to zero, (6.15)
therefore shows that x,, x,,..., X,_, are notindependent of each other which
leads to a contradiction. Thus, x,is proved to beindependent of xy, X5, ..., X, _;
provided that these p —1 eigenvectors are independent of each other. Pro-
ceeding from p = 2 and increasing p in unit steps, we see that all the cigen-
vectors are independent of each other. Since an arbitrary vector can be
expressed as a linear combination of » independent vectors in an »-dimen-

"
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sional space, and since the eigenvectors form a set of # independent vectors,
any vector can be expressed as a linear combination of the eigenvectors.

. If y, is an eigenvalue, — y,* also becomes an eigenvalue.
Proof. Since y; is an eigenvalue, we have
det(C—yI}=0
Taking the complex conjugate transposed determinant, we obtain
det(C' — y*1) =0

Multiplying det P! and det P from the left and from the right, respectively,
the above equation becomes

det(PTICTP ~ 1) = 0

Replacing C*P by —PC, which are equal to each other from (6.7), we
obtain
det(C + 3,1} =0

which shows that —y,* is an eigenvalue of C. When y, is pure imaginary,
the theorem is trivial since y, is equal to —y,*, however, when y, has a
real part, the theorem asserts that an eigenvalue having the opposite sign in
front of the real part also exists. In other words, whenever a mode exists
which grows with distance, a corresponding decaying mode exists having
the same phase constant.

I Let y, and y, be the eigenvalues corresponding to eigenvectors x, and
X;, respectively. If y, # — y,*, there is an orthogonal relation between X, and
x, of the form N
x, Px, =10 (6.16)
Proof. By definition, we have
Cx; = 1%y, Cx; =yx,

Multiplying the first equation by x," P from the left, and the adjoint of the
second equation by Px, from the right, and then adding the two equations,
we have . s N
X POx, + %, CPx, = (7, 4+ 7/7) x, " Px,

The left-hand side can be rewritten in the form x,* (PC + C*P) x,, which
15 equal to zero from (6.7). Therefore, the right-hand side must also vanish
which means that (6.16) holds, since y, + y,* is not equal to zero by hy-
pothesis,
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IvV. If y,=—p*, we have
x,'Px, #0 (6.17)

Proof. By theorem I, P'x; can be expressed as a linear combination of the
eigenvectors, i.e.,

Px, =Y o,X,
m

where the summation is extended from m =1 to ». Multiplying the above
equation by (Px;)* = x,"P from the left, and since x, is not equal to zero,

we have
0#(Px)" (Px) =Y a,x,"Px,

However, all the terms on the right-hand side, except the kth term for which
7 = — 7%, are equal to zero. Therefore, we obtain

ax, Px, #0

from which (6.17) follows immediately.
When 7y, is pure imaginary, let us define X, to be

%, =ex, (6.18)
On the other hand, when y, has a nonzero real part
%, =cx,” (6.19)

where x; is the eigenvector corresponding to y, = — 7,* whose existence is
guaranteed by Thecorem II. It follows from Theorem IV that X, Px, is not
equal to zero provided the constant ¢ is not equal to zero. Let us choose the
value of ¢ in such a way that X, Px, becomes unity, then we have the
orthogonality and normalization conditions

%Px, =0 (I#k) (6.20)
% Px, = 1 (6.21)

The normalization condition does not uniquely determine x,; if one wants
to determine it uniquely, another condition must be imposed such as
X, x, =1, in our present discussion, however, this is not necessary.

The above results are derived under the assumption that all the » eigen-
values are distinct, however, (6.12) may have one or more multiple roots.
In such a case, the number of distinct eigenvalues is less than », and the above
technique of proving Theorem 1 fails. Fortunately, we can still obtain »n

o

]
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independent eigenvectors, as we shall discuss next, and hence the theorem
itself holds without modification.

Let C’ be a coupling matrix satisfying (6.7), and let us consider C + ¢C",
where C is the coupling matrix under consideration, and ¢ is a small positive
number. The # eigenvalues of C + ¢C’ can be made distinct from one another
by choosing C’ and ¢ properly; the eigenvectors x,(g) of C + &C’ and the
corresponding X;(e)’s will then satisfy (6.20) and (6.21). The cigenvalue
v (&), corresponding to x,(g), is a root of

det(C+eC’' —yI)=0

The coefficients of this algebraic equation vary continuously with &, hence
the root also changes continuously with e since it is a continuous function
of the coeflicients. In other words, y,(e) is a continuous function .
The components of x,(g) are given by the solutions of » simultaneous
equations
(C+eC —p()Dx=0

Since y,(¢) is assumed to be a simple root, the ratios of the components of
x. (&) are given by
—-Dyi—Dyie-i =D, _ 1D

where D is the determinant of the coefficients of the above simuitaneous
equations with its nth row and sth column removed, and D, is this modified
determinant except that the ith column is made up of the last coefficient in
each equation. Therefore, the ratios also vary continuously with &.

If we define y,, x;, and X, by

%e=limy(e), x,=limx (), & = lim%(e)
e—+0 e—~+0 =0

respectively, then y,, the component ratios of x, and those of X, are uniquely
determined since they are all continuous functions of e. Furthermore, y,
and x; respectively become an eigenvalue of (6.11) and the corresponding
eigenvector. Since the x, (e)’s and the %, (e)’s satisfy (6.20) and (6.21) regard-
less of the value of ¢, the x,’s and the ;s thus defined also satisfy these two
equations. The x,’s are independent of each other from the proof of theorem
I provided the corresponding eigenvalues are distinct. However, for the
degenerate eigenvectors, we have to modify the discussion as follows.
Suppose that they are not independent, then we have

Y ax; =0
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where the x,’s are degenerate eigenvectors and the «;’s are not all equal to
zero. Assuming o, is not equal to zero, and multiplying by %,P from the
left, we have

X Px, =0

which contradicts (6.21). Thus, we see that the » eigenvectors are independent
of each other, and Theorems I-IV hold without modification, even in
degencrate cases,

It may be worth noting that different sets of eigenvectors will be obtained
depending on the choice of C’ in the above procedure. However, each set
satisfies (6.20} and (6.21), and there is no preference for any particular set,
unless we wish to introduce another perturbation in the system.

An arbitrary vector can be expressed as a linear combination of the n
independent eigenvectors:

X =3 0%

If we multiply this equation by X, P from the left, all the terms on the right-
hand side, except the kth one, disappear because of (6.20) and (6.21), leaving

o = X, Px

A substitution into the original expression for x gives

x =) x,.(%Px) (6.22)

Multiplying by C from the left and using Cx, = 7,X;, we have
Cx =) 7% (%, Px) (6.23)
Since (6.23) holds regardless of the value of x, € can be written in the form
C: =) nx%P- (6.24)

which is called the spectral representation of C, where the dot signifies that
C is an operator.

6.2 Perturbation Method for the Figenvalue Problem

To obtain the solutions of (6.11), we have to solve an algebraic equation
of nth degree. In principle, this is always possible, but, in practice, it may
prove to be a formidable problem. Fortunately, when the couplings are
small, good approximate solutions can be obtained by a perturbation method.
In this section, we shall study this method in detail, assuming that the
couplings are small. Two distinct types of wave interaction will be shown to
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exist depending on the signs of the transmission powers of interacting waves.

Let Cy be a diagonal matrix having diagonal components identical to
those of C itself, and let C,; be C— C,, then the diagonal components of
C, are all zero, and its off-diagonal components are small. We write C, and
C, as follows:

C,, 0 ... 0 0 Cy ... Cy
C, = (:) Cyy ... (:) - c:21 ? c:z,, 6.25)
6 0 .. C, Coi .. O

By inspection, the eigenvalues of C, are found to be C,,, C,,,..., C,,, and
the eigenvectors are given by

1 0 0
x(¥ = 0 S .1 e e, xO= 0 (6.26)
0 0 1
The corresponding &:"”’s are
£V =[p, 0 - 0], &=[0 p, - 0], (6:27)

Since C, is small, there may be an eigenvector of C, namely x;, which is
similar to x{®. Let us write x; in the form

x=x7+ Y cx” (6.28)
n¥Ei
The eigenvalue y; is expected to be close to y{% = Cy;, hence we write
in the form
v =70 + Ay, (6.29)

Substituting (6.28) and (6.29) into the left-hand side of (6.11), we obtain
(C— D) x; = (C, — 4y) x{” + 2 Ca (}’io) - ?EO)) x{? (6.30)
n#i

where all the product terms between C,, Ay,, and ¢, are neglected since they
are all assumed to be small. Since x; is an eigenvector of C with eigenvalue
7;, the left-hand side is equal to zero. Multiplying (6.30) by %P from the

left and using the orthonormal property of the x{®”s, we have

FOPC,x!V ~ Ay, (6.31)
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The left-hand side is equal to zero because the diagonal components of C,
are all zero. To a first order approximation, therefore, ¥; is equal to the
original eigenvalue y{. Next, multiplying (6.30) by %'“P from he left
and using the orthonormal property, we obtain

-(O)PC X(0)
Cy = SO o (n#1i) (6.32)

Substituting this into (6.28) gives the first order approximation of x;.
If one of the y{*"s, say v\ (j # 1), is equal to or close to v'®, the right-
hand side of (6.32) for n =j becomes infinite or large, and the assumption
that the ¢,’s are small is no longer valid. In such a case, we proceed as in
the discussion of the waveguide wall losses, and write x; in the form

x, = Ax{” + Bx!V + ¥ ox(® (6.33)

n¥i,

where 4, B, and the ¢,’s are constants to be determined. Let 24y, be
71 — 58 and 2y, be (¥ + 3{%, then

B =%+ Ay, ¥ =70 — 470 (6.34)
Assuming that vy, is close to y,, we write it in the form
¥i="Yo + 4% (6.35)

and determine Ay;. To do so, we first substitute (6.33), (6.34), and (6.35)
into the left-hand side of (6.11) and obtain

(C—yD)x, = C, {4Ax{? + Bx{”} — (4y; — dy,) Ax®
— (dy; + 4y0) Bx{” + 2 (715 —y) x40 (6.36)
n¥+ IJ'
where the products of small terms are again neglected. The left-hand side
is equal to zero. Multiplying (6.36) from the left by /P and by £'*’P in
turn, we obtain
— A{dy; — 4yo) + BX{"PC,x{» =0 (6.37)

AROPC (Y — B(dy; + 4y,) =0 (6.38)
where the orthonormal property between the x(%s as well as %{“PC,x{¥ =0
and X{VPC,x{*" = 0 is used. If the simultaneous equations (6.37) and (6.38)

for A and B are to have nontrivial solutions, the determinant of the coeffi-
cients must vanish, This condition gives

4y = FOPCxY . PPCx(? + 4y’
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and %{¥PC,x{ is calculated to be C;; and {”PC,x{”) is equal to Cj,
hence the ﬁrst term on the right-hand 51de becomes C;;Cj» which is equal
to —|Cy|* or |C;|* from (6.9) and (6.10) depending on the sign of pp;.
Since Ayg is always pure imaginary, let us write it as j A8, where 48, is
real, then the second term on the right-hand side becomes - (4f,)?. Thus,
we have

A?iz = ul (Aﬁ())z (pl = p_r) (6'39)
A?iz = !JI (Aﬁo)z (P.’ == Pj) (6.40)

When p; = p;, 4y;, and hence y; become pure imaginary. On the other hand,
when p; = — p; and |C,-J.i2 >{48,)%, Ay, becomes real, and hence y; becomes
complex. Since (6.40) only determines the square of Ay, two different y,’s
with opposite signs in front of the real part are obtained, as Theorem II in
Section 6.1 indicated. Figures 6.2(a) and (b) illustrate the relation between
¥; =« +jB and 4P, for the cases in which p; = p; and p; = — p;, respectively,
where o and f§ are the real and imaginary parts of y;. The term B, is the
mean value while Afl; is the difference of the phase constants of the two
original unperturbed waves.
The ratio of A to B is calculated from (6.37) to be

A “‘°’PC
4 _XVPCxy (6.41)
B i - A?O

Corresponding to two different values of Ay;, two different ratios are obtained,
The value of ¢, is easily determined by multiplying (6.36) by P from the
left:

PC, {Ax“” + Bx!"%}

0
y -

(6.42)

€, =—

When the y4"s (r # i, j) are not close to y,, the ¢,’s are all small and can
be neglected since they only introduce second order variations to the trans-
mission powers. On the other hand, 4y, cannot be neglected, even though its
magnitude is small since its effect appears as the exponential of Avyz
which becomes large as z increases. The wave amplitude corresponding to
real and negative Ay, grows with z. This suggest that there is a possibility
of obtaining power amplification when a small coupling is introduced between
two waves propagating in the same direction with nearly equal propagation
constants but with positive and negative transmission powers. In ordinary
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Fig. 6.2, The components « and # of the propagation constant y as functions of 4 8.
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passive networks, no such amplification takes place since waves do not
carry negative transmission powers. An electron beam, however, can support
waves with negative transmission powers, and amplification does take place
when one such wave is coupled to a wave propagating along a nearby
passive circuit with a similar propagation constant as we shall discuss in
Chapter 8.

From (6.31) and (6.32), we saw that waves with sufficiently different
propagation constants do not interact with each other under the small
coupling condition. This is understandable since the phase relation between
waves changes rapidly with distance, and if there is some kind of interaction
at one point, just the opposite kind of interaction takes place at another
point thus causing the effects to cancel each other. On the other hand, if
the propagation constants are similar, the effects of interaction accumulate
with distance to such an extent that the originaly independent waves can no
longer be considered as independent, and a pair of new waves with different
propagation constants resuit.

In the above discussion, only two waves were assumed to have similar
propagation constants, however, a similar method can be applied to cases
in which the propagation constants of threec or more waves are similar. In
such cases, algebraic equations of correspondingly higher degree have to
be solved. An example of three-wave interaction will be given in Chapter 8
in connection with coupling between an electron beam and a transmission
circuit.

6.3 Interactions between Two Waves

As a simple, but important, example of distributed coupling, let us con-
sider the interactions between two waves propagating in the positive
z-direction. When there are several coupled waves, only waves with similar
Propagation constants interact, and the remainder can be considered to
propagate independently, as we learned in the previous section. Since there
are a number of cases in which only two waves have similar propagation
constants, our present study has definite practical value besides having the
advantage of mathematical simplicity.

Let @, (z) represent one wave at z and a,(z) the other, and let 8, + 48,
and f, — A8, be their respective propagation constants, First, we shall
consider the case in which the total transmission power in the positive
z-direction is given by |a, (2)|? + |a,(2){%. In this case, py =p, =1 and the
coupling coefficients C,, and C,; satisfy the relation Ci2=—C}, from
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(6.9). Thus we have P =diag{1 1], and

e AT TP B I

The eigenvectors of C, are given by

1 0
o[ -]

. " = (0 .
and the corresponding %{» and %{*’ are given by

¥ =[1 0], xV=[0 1]
Let us write Ady; = £ j AB, then we have from (6.39)
48 ={ICi.l” + (4Bo)*}'"? (6.43)

The eigenvalues of C,+ C, are approximately given by j{(f, + 48) and
J(By — Af), and the corresponding eigenvectors are calculated to be

e [J’(Aﬁ - Lﬁo)/clz] s [—f(Aﬂ +ldﬂo)/cu]

where use is made of (6.41). The corresponding £, and %X, are

) ICul” = JC12 (4B — 4By ]
= [lclzﬁ + (4 — 4By |C1o? + (4B — AB,)?
... |C1z|2 JCM(ABJFJBO) ]
= [lcul“r (4B + 46 ICL1* + (4B + 4B,)

Since we have obtained all the necessary quantities in their explicit forms,
let us next study how a, {z) and a, (z) change with z, assuming that q; (z) = A,
and a,(z) =0 at z = 0. The condition at z =0 can be expressed by

A
0= 5]
In terms of the eigenvectors x, and x,, a(0) becomes

' A _o 4
a(0) =%, P [00] X, +%,P [00] X,

2 Xy _ X
= Ao |C sl {IC,AZ+(Aﬁ~ABo)2+|C12|2+(AB+A'8°)2}

6.3. Interactions between Two Waves 271

The wave corresponding to x, varies with z as exp {—j(Bo + 4P) z} and that
corresponding to x, varies as exp {—J(Bo— 4P} z}. As a result, a(z) at
arbitrary z becomes

0 1] oo

e~ 4Pz 1
" {Wﬂﬂ — 4,y [j (46 - Aﬁo)/cnz]
el 1
" 1Cl @+ apoy [ —j(4p + Aﬁo)/cu]}
Therefore, a,(z) is given by
Ay |C1:al2 e Por
P 4 apy
{IC121* + (48 - 4Be)*} {IC1a)* + (48 + 4B}
Using (6.43) the denominator and numerator can both be simplified to

4 AB%|Cy,* and 4 AB%cosAfz — 4j A B ABy sindpz, respectively, and a,(z)
becomes

a1 (z) = Age™ " {cos AP z — j (4B, AB) sin AR z}
To interpret this expression, we multiply by V2" and take the real part:
Re{\/2a,(z) &™)
= V240 {L = (ICy,1/48)* sin® 4B 23112 cos (0t — Boz — ;)  (6.44)
where ¢, is defined through
tan @, = (A8,/AB) tan Af z (6.45)
Similarly, for a,(z) we obtain
Re{\/2a,(z) €'} = /24, (1C,,|/4B) sin 4 = cos(wt — foz — @,)  (6.46)
where ¢, is defined through
CTy = |C,,| e (6.47)

We see from (6.44) and (6.46) that both waves a,(z) and a,(z) propagate
with the same phase constant By in the positive z-direction, but their magni-
tudes fluctuate with z. Since the power carried by each wave is given by the
sqaure of the magnitude, it also fluctuates with z as shown in Fig. 6.3.
When A8, =0, |Cy,%/A482 =1, |a,(2)}* =0, and la,(2)* =42 at z=
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Fig. 6.3. Exchange of transmission power between two coupled modes.

{(2n —1) n/2 AB}. Furthermore, at z =(nr/AB), |a, (z)|* returns to 4,> and
la,(2)}* becomes zero, where n is an arbitrary integer. In other words,
when the original unperturbed waves have the same phase velocity, the
power introduced into one wave at z=0 is completely transferred to the
other wave and back again by the time it reaches z = (n/2 48) and z = (n/Af),
respectively. This exchange of power continues back and forth between the
two waves until the coupling is removed at some point along the trans-
mission system.

Let us next consider the case where the total transmission power is given
by la, (2)I* ~ |a,(2)|% In this case, P = diag[1 — 1], and

%z[ﬂmgdm)ﬂmfamﬂ’ c=|a, 7l

Suppose that [C,,|* = (48,)?, then from (6.40), we have
o = {|Cy,l* - (4Bo)*}1/* (6.48)

where Ay, is indicated by & a. The eigenvalues of C,+ C, are given by
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%+ jBy and — a + jB,. The corresponding eigenvectors are calculated to be

X = [(oc —j ;ﬁo)/c,z] > 2T [(— * —J'lf'ﬁo)/clz]

and X; and %, are given by

% _[ |C 12 Cyz(—a+j4B,)
1= -
(Cial* + (=2 +j4B0)*  |Cpl? +(— o +j ABo)
% = [_ 1Cyal? Ciz(ax+j ABy)
.= e T -
|Cpal® + (x+] Aﬁo)z IC1a)® + o+ Aﬁo)2

If a,(z) = A, and a,(z) =0 at z=0, as in the previous example, we have

[Z;EE;J = Ay |Cyy|* e HPor

e—az eaz
X 4 R X, + -
{|C12|2 +(—a+] Aﬁo)z ! €2l + {0 + j 4B,)° Xz}

|°|(Z)|2
A3
az
logt2)}
ag
az

Fig. 6.4. Growing transmission power. Note that [@1(z)|2 — |a2(z)|? is kept constant.
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To interpret this result, we take the real parts of ./2e’*" times g, (z) and
a,{(z):

Re{\/2a, (2) €'} = J24, {1 + (|Cyl/a)* sinh® az}'/? cos(wt — Poz —(;,0.2)9)

Re {/2a,(z) €™} = — J24,(ICy, /) sinhaz cos{wt — Boz — @) (6.50)

where ¢, and ¢, are defined through

tan ¢, = (48,/«) tanh oz (6.51)

and .
CYy=|Cyal e/ (6.52)

Although the total power |a,(z)|> — |a2(2)i* is kepti constant, the trans-
mission power carried by a; (z) alone increases with increasing z'as sh?wn
in Fig. 6.4. If the coupling is removed at some point z, and ay (z)1s fed‘ into
a load, the output power becomes {1 + (|C;,/x)* sinh? oa.?} times the input
power introduced at z=0. This type of power amplification by .wave
interaction can be realized in traveling wave tubes, which we shall discuss

in Chapter 8.

6.4 Periodic Structures

In this section, we shall study spatially periodic structures, such as the
one illustrated in Fig. 6.5. We can consider each period of .tl.le structure as a
cavity and the whole structure as a chain of iden%ical cav1t‘|es. The e‘]f.‘:CtI'fJ-
magnetic field in each cavity interacts with those in the adjacent c_av1t§es in
a complicated manner; however, a systematic study beco‘mes possible if use
is made of an eigenfunction approach. Although the input and ou.t put
waveguides are aligned in Fig. 6.5, this is not essential in the present discus-
sion. Here, all that is required is periodicity; the cavity between reference
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Fig. 6.5. A periodic structure.
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planes 1 and 2 is identical with the cavity between 2 and 3, and so forth.
The transverse electric and magnetic fields at reference planes 1 and 2 can
be expanded in terms of the waveguide eigenfunctions:

EII (1) = Z Emp:-(l) ’ EH (2) = Z ErnVn(z)
Hy()=YkxE,0,(1), H(2)=Ykx E,L(2)

where V, (i), I,({) (i =1, 2) are the expansion coefficients at reference plane i.
Instead of taking an infinite number of terms with respect to # in the above
summations, let us terminate at the Nth term, then the field expressions
become approximations. Since these approximations can be made as good
as we desire by choosing sufficiently large N, a sacrifice in accuracy need
not be considered in the following discussion. The transverse electric and
magnetic fields are now uniquely determined by ¥;, v, i, and i, which are
defined by

(6.53)

Vi(l) Vi(2) 1 (1) —1,(2)
v, = V2(l) , ¥y = V2'(2) , = 12(]) , i2 —| = 12 (2) (654)
V(1) v,(2) L(1) ~L(2)

The sign of i, is reversed so that it represents currents flowing into the next
cavity. Suppose v, and v, are somehow given, then the transverse electric
fields at the input and output reference planes are fixed, and from them the
electromagnetic field in the cavity can be calculated, in principle, as we did
in Chapter 4. The transverse magnetic fields at the reference planes, and
hence i) and i, can therefore generally be determined. Assuming the linearity
of the field relation, this fact can be expressed in the form

i =Y v, +Y,v,, — iy =Y, + Yy,v, (6.55)

These equations indicate that if v, and v, are given, i; and i, can be deter-
mined. However, the expressions in (6.55) are not convenient for deriving
an eigenvalue problem for the study of periodic structures since quantities
at two different reference planes appear on both sides. We would like to
place quantities related to one reference plane on one side and those related
to the other reference plane on the other side. The cavity would then be
represented by a matrix which transforms a vector representing quantities
at one plane to another vector representing the same quantities at the other
plane. Hence, » identical cavities in cascade could be represented simply by
the nth power of the matrix; this is accomplished by defining a transfer-
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matrix through the equation

w, = Tw, (6.56)
where
el 1 E el Bl o
By substitution, we see that
Ty, —‘—Y1_21Y11= Tw.=Y1_21
Ty =— Yy, + Y5, Y Yy, Top=—YyY5,

where an assumption is made that Y, , is nonsingular,

T is a square matrix of order 2/, and hence it is expected that there are
2N independent eigenvectors; any vectors w can be expressed by their linear
combination, Unless some restriction is imposed on T, no fruitful discussion
of the eigenvalue problem is possible; therefore, let us consider reciprocal
and lossless conditions either of which can be used in the present discussion
in the same way as (6.7) was used previously.

The reciprocal condition in terms of T is given by

TRT =R

0 —
=y 5]
The proof is as follows. Rewriting (5.70) in terms of vy, ¥,, i;, and i,, we
have

(6.58)
where

(6.59)

VDI — DI — VN 4 VDI =0
Using (6.56) and (6.57), this can be expressed in terms of v, and i; only,
WP — (VT g + 15T 50 (T2 v + Taail?)
— VI + (VT + 1T 1) (T2v8) + Th,iiY) =0
which is equivalent to

Vi (I — Ty, Ty + T2y, Ty5) i)
—vP (I =TTz + T,y T1) 157
- V(xi)(Tu:Tu — T24T14) v(12)
- i‘li)(leszz - Tzz:le) i(lz) =0

Noting that ¥{",i{", v{?, and i{® are arbitrary, we obtain from this

¥
K
K
P!

T A

PR
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relation
1-T,,T;; +T,,T,=0
Ty F2 — T3, T =0
Ty 2T — Ty Ty, =0

This completes the proof, since (6.58) is equivalent to these three equations.
The lossless condition in terms of T is given by

T'LT =1L

01

t=7 o

The proof is as follows. If the circuit is lossless, the net power flowing into
it must be equal to zero, i.e.,

i, vy + v i) - (i, v, + v, i)} =0

In terms of w, and w,, this can be rewritten in the form

(6.60)
where

(6.61)

w,'Lw, —w, " Lw, =0
which is equivalent to
w, " (L-T'LT)w, =0

where use is made of (6.56). Noting that this relation holds for arbitrary
w,, we see that (6.60) is therefore proved.

We are now in a position to discuss the eigenvalue problem of T, following
the discussion given in Section 6.1. Let us first use (6.58).

The eigenvalue problem of T is given by

(T—y)x=0 (6.62)

The eigenvalues of T are obtained by solving the algebraic equation for s

(6.63)

If alf the roots of this equation are distinct, Theorem I, in Section 6.1, and
its proof holds for the eigenvectors of T without modification.

Corresponding to Theorem II, we find that if y, is an eigenvalue, y, ! is
also a eigenvalue. This can be proved as follows. First, we note that T is
nonsingular and T~* exists since det T # 0 as we can see by taking the
determinant of (6.58) and using det R # 0. Applying T™! from the right,
(6.58) becomes

det(T —31) =0

TR=RT ' (6.64)
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Using this equation, we obtain the following relation from (6.63)

det(T, — y,I) detR = det(T,R — v, R)
=det(RT™! — pR) =detRdet(T"' —yI)=0
Since detR # 0, we have
det(T"' —pI)=0
or equivalently,
det(T—y;, ') =0

which shows that y, ! is also an eigenvalue of T.
Corresponding to Theorem III, we find that if y, and y, are the eigenvalues
corresponding to eigenvectors x, and x,, respectively, and if y, # y; !, then

x,Rx; =0 (6.65)
This can be shown as follows. Eigenvectors x; and x; safisfy

Tx, = 14X, Tx, = 7%

which are equivalent to

X T = PXpes T ]XI =y 1":
respectively. Multiplying the first equation by Rx, from the right and the
second equation by x,,R from the left, we obtain

-1 -1
X, TRX; = 7%, Rx,, X RT ™ 'x; =9, x,Rx,

The left-hand sides of these two equations are equal from (6.64); therefore

we have
(Ve — 70 1) X, Rx; =0

By hypothesis y, # y; ! and (6.65) is therefore deduced.
Finally, corresponding to Theorem IV, we find that if y, =y, ', then
x.Rx, #0 (6.66)

From the first theorem, (Rx,)* can be expressed as a linear combination of

eigenvectors.
(Rx,)" =3 Xy

where the o,’s are the expansion coefficients, and the eigenvectors are all
transposed. Multiplying by Rx, from the right, we have

Rx)" (Rx;) =Y %, Rx,

S
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All the terms on the right-hand side disappear except the kth one, according
to the previous theorem (6.65). The kth term cannot be equal to zero since
the left-hand side is nonzero; this is impossible unless (6.66) holds, and the

proof is therefore complete.

Let us define X, by
ik == ka! (6.67)

when y, is either 1 or —1, but when y,2 #1, then
X, = cx;; (6.68)

where x, is the eigenvector corresponding to y, =7y, ' whose existence is
guaranteed by the second theorem. By selecting ¢ properly, let

%Rx, =1 (6.69)
If I # k, we have from (6.65)

%Rx, =0 (6.70)

The above discussion is based on the assumption that the 2N roots of
(6.63} are all distinct. When (6.63) has multiple roots, we can still obtain 2N
independent eigenvectors using a discussion similar to that presented in
Section 6.1. Therefore, an arbitrary vector x in the 2N dimensional space
can be expressed in the form

x =Y x,(%Rx) (6.71)

where the summation is over & from 1 to 2¥. Multiplying by T from the
left, we have

Tx = ¥ 7% (%Rx) (6.72)
The spectral representation of T is given by
T-=3Y ynx%R- {6.73)
and that of T" by
T =Y 7'x%R- (6.74)

The transverse electric and magnetic fields corresponding to an eigen-
vector of T are multiplied by the corresponding eigenvalue each time the
reference plane is shifted one period in Fig. 6.5, Therefore, the electro-
magnetic field inside the nth period must be the nth power of the eigenvalue
times the electromagnetic field inside the first period. Each independent
electromagneticfield pattern with this property is called a mode of the periodic
structure. It follows from the above discussion that any electromagnetic
field in a periodic structure with reciprocity can be expressed as a lincar
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combination of the modes to any desired accuracy, assuming the esixtence
of the transfer matrix.

Let us next use (6.60) in place of (6.58) to reach a similar conclusion.
Assuming that the 2N roots of {6.63) are distinct, Theorem I holds without
modification, Corresponding to Theorem II, we find that if y, is an eigen-
value, (7,*)"! is also an eigenvalue of T. To prove this, we note that T is
nonsingular from (6.60), and hence the lossless condition can be written in

the form
T*L=LT!

From this and (6.63), we obtain the following relation.
det(T* — 7, *I) det L = det(T*L — y,*L)
=det(LT™! — 3,*L) = detL det(T~' — 7,*I) =0

Since detL # 0, this shows that y,* is an eigenvalue of T, or equivalently,
(y,¥)~ ' is an eigenvalue of T. Theorems III and TV become

x'Lx,=0 (3! #%")
(it =10")

The proofs are similar to those for the previous case, and we shall not
repeat them. Once these relations are obtained, we can define X, by

(I = 1) (6.75)
(I # 1) (6.76)

where x, is the eigenvector corresponding to y, = (y,*) !, whose existence
is guaranteed by the second theorem. Let us choose ¢ properly so that

X, Lx, #0

~ +
Xk = ka

ik = CXI+

% Lx, = 1 (6.77)
Then, using a discussion similar to the one given in Section 6.1, we have
x =3 X, (%Lx) (6.78)

regardless of whether or not some of the eigenvalues are degenerate. The
spectral representation of T is given by

T .= Z ‘}’kxkikL 4 (6.79)
Modes in a lossless periodic structure can be defined in the same way as

for the reciprocal case. We, therefore, conclude that any electromagnetic
field in a lossless periodic structure can be expressed as a linear combination

A g Vg

A g g
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of the modes to any desired accuracy, assuming the existence of the transfer
matrix.

Each mode can be excited separately by generating a proper field pattern
at a reference plane. Suppose that only one mode k& is excited, then the surface
integral jE x H*«(—n) dS over reference planes 1 and 2 (n points out-
wards) becomes

(,7v, — i V) =i v (1 - )
When {y,/2 =1, no attenuation takes place between one reference plane and
the next one, and the mode is said to be in the passband. In this case, the
above surface integral vanishes and (2.84) shows that the average electric
and magnetic energies stored in one spatial period are equal, assuming
nonzero w. When Jy, [ # 1, since 7, # (7,*)” ", we have

x,"Lx, =0
or equivalently,
. 0 I [v . .
[V1+11+ [I 0] I:iijl = 11+V1 + V1+11 = 0

Therefore, no real power is transmitted, and the mode is said to be in the
stopband.

Let us next apply (5.96) to one spatial period in Fig. 6.5. To do so, we
assume both the reciprocal and lossless conditions. For the kth mode, the
left-hand side becomes

3v1+v IR/ PR\ ) L Ciy

s +
i -y, =
Jw

e T e 2 e
ov i ay
.4+ U¥q + v * .+ +2 * U Tk
=it = T " —
(l o + ¥ aw)( Yoy + {1V vy '1)( Tk aco)
In the passband, the first term on the right-hand side vanishes, since |y,4* =1,
and (5.96) reduces to

— 7.5 (8yjow) = 4jP7! f (uH* -H + E*-E) dv (6.80)
where P is the transmission power given by
P=Re{i,*v,}
Let L be the length of one period and § be defined by
T = exp(— jAL)
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Then (6.80) becomes
(ép1ow) = 1P7'L7! f(uH*-H + ¢E*-E) dv (6.81)

Comparing this with (3.23) in the discussion of waveguides, we see that the
left-hand side corresponds to the reciprocal of the group velocity, From this
observation, we may say that the group velocity of a mode in the passband
is equal to the transmission-power times the length of cne period divided
by the electromagnetic energy stored therein.

In a lossless, reciprocal, periodic structure, if v, is an eigenvalue, y, !
and (y,*)™! must also be eigenvalues. If y, is not real and |y,{ #1, then at
least four different eigenvalues v,, 7., 7z ', (7*)”" have to exist. When we
take into account only one E,, in our calculation, as we shall do in the next
section, T becomes a two-by-two matrix, and hence only two eigenvalues
can exist. In this case, either the eigenvalues have to be real or their magni-
tude is unity, otherwise four different eigenvalues are required.

6.5 -f Diagram

Let us consider a waveguide with identical windows periodically spaced
as shown in Fig. 6.6, and suppose that only one waveguide mode is necessary
to approximate the fields at the reference planes located midway between
any two adjacent windows. Let b, represent the normalized susceptance of
the window with respect to the waveguide admittance. Then an equivalent
circuit representing one period of the structure becomes a transmission line
with electrical lenght B, L shunted by an admittance jb,Y, at the midpoint
as shown in Fig. 6.7. The term f, is the phase constant and Y} is the charac-

REFERENCE REFERENCE
PLANE | /PLANE 2

Fig. 6.6. Waveguide with periodically spaced windows.
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}baYo

Fig. 6.7. Equivalent circuit for one section of the periodically loaded waveguide.

teristic admittance of the waveguide mode under consideration, and L is
the length of one period.

The voltage and current at port I can be expressed in terms of the incident
and reflected waves 4 and B (see Section 3.5) as follows:

Vi=A+B, I =Y,(4A—B) (6.82)

The voltage and current at the left-hand side of jb,Y, are given by

V=dAe "+ Be, [I=7Y,(de " — Be® (6.83)
where 0 = fi;L/2. The voltage and current at the right-hand side of jb, ¥,
become V and f—jb,YyV, respectively, since current jb ¥,V is diverted
into the shunt admittance. In terms of the waves 4" and B’ on the right-hand
side of the window, V and I—jb,Y,} must be expressible in the forms

V=A+B, I—jbY,V="Y,(d-B) (6.84)

and the voltage and current at port II are given by

V,=Ae "+ B, L=Y,(4e "B (6.85)
Note that the direction of I, is chosen to be outward so as to conform with
the sign of i, in Section 6.4.

Eliminating } and [ from (6.83) and (6.84), 4" and B’ can be expressed in
terms of A and B. Substituting this result into (6.85) and then using (6.82),
we can write ¥, and I, in terms of ¥; and I,. The result is given by

GRIR
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where T is a square matrix of order 2 with the following components:

Tll = T22 = COS ﬁoL - %bo Sil’l ﬁoL
Ty, =Yy '(4bo — sin foL — by cos foL) (6.87)
T21 = __]Yo (%bo + Sin ﬁoL + ‘l‘bo COSﬁOL)

The two eigenvalues of T, y; and y,, are obtained by solving the quadratic
equation det (T — I} =0.

71,2 = €08 Bo L— $bg sin B L F {{(4bo)* — (sin BoL + 4b; cos BoL)*}'2
(6.88)
When
($ho)? < (sin BoL + by cos By LY (6.89)

the eigenvalues become complex and their magnitudes are found to be
unity, indicating that the corresponding modes are in the passband, On the
other hand, if

(3bo)? > (sin BoL + b, cos B, LY (6.90)

both of the eigenvalues are real and their magnitudes are not equal to
unity, which means the corresponding modes are in the stopband.

If the opening of a waveguide window is small, b, is large and the passband
condition (6.89) is satisfied only when {cos 8,1 is close to unity; or equiva-
lently, when the length of one period of the structure becomes approxi-
mately an integer multiple of a half-wavelength, thereby forming a resonator.
When the length deviates from such a value, the sections between two adja-
cent windows cease to resonate, and no transmission of power becomes
possible thus resulting in a stopband. Similarly, if &, is small, the stopband
condition (6.90) is satisfied only when the length of one period becomes
approximately an integer multiple of a half-wavelength. In this case, although
the reflections from individual windows are small, the reflections from suc-
cessive windows arrive back in phase and the overall result is no trans-
mission of power. When the length of one period deviates appreciably from
an integer multiple of a half-wavelength, the small reflections do not add in
phase and introduce only a minor modification in the wave propagation.

Let us now concentrate on the passband. Since one of the eigenvalues is
the complex conjugate of the other and their magnitudes are unity, y, and
v, can be expressed as

pp=e P, g, =P (6.91)

where the phase shift from one reference plane to the next is indicated by
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BL. Substituting (6.91) into (6.88), we obtain
cos fL = cos L — 1by sin By L (6.92)

from which we learn how S changes with w.
From (3.127), the relation between f§, and  is given by

Bo® = wep — ko*

where k,” is the eigenvalue of the waveguide mode. Therefore, w as a
function of f,L should appear as the broken line in Fig. 6.8(a). If b, is a
slowly varying function of w, the right-hand side of (6.92) as a function of

{a}

BoL OR BL

by .
Cos Byl - ?smﬁoL\}’
I

(b)
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Fig. 6.8, Construction of the curve w versus SL.
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BoL may, look like the broken line in Fig. 6.8(b). The solid line indicates
cos fL as a function of BL. For a given w, f,L is determined from Fig. 6.8(a),
and hence the corresponding value of SL can be found from Fig. 6.8(b)
following the dotted lines with arrowheads. Thus, @ versus SL should
appear as the solid lines in Fig. 6.8(a). Note that the broken line « versus
BoL and one of the solid lines w versus fL intersect at §L=f,L=nn
(n: integer). Also note that the tangent to the solid lines becomes horizontal
at 1. = nm, indicating that the group velocity becomes zero at the corre-
sponding «’s. Those ranges of w for which there is no corresponding L
in Fig. 6.8(a) represent the stopbands.

A graph which shows @ versus ff in a similar way is called the w-f# diagram
for the periodic structure. From the above discussion, we see that the general
appearance of the w-f§ diagram for a periodic structure should like look
Fig. 6.9. Each of the curves extends from f= — o0 to +o0 as a periodic
function of f with a period 2x/L. Since SL and BL + 2nn give the same
eigenvalues in (6.91), one period of the curves, say from f = — n/L to /L,
contains all the information about the eigenvalues, and the remaining
periods are redundant. The particular range of f mentioned above is called
the first Brillouin zone. As far as the phase shift of the electromagnetic field
at the reference planes is concerned, only the first Brillouin zone is of interest.
The situation is slightly different, however, if we are interested in the more
general problem of the fields throughout the waveguide. Let us consider
the electric field, first concentrating on the mode corresponding to v,. Each
time we move to the next section of the periodic structure, the phase of the
electric field changes by SL since the phases of the electromagnetic fields at
the boundary reference planes shift the same amount. Thus, we have

E(x,y,z + nL)=e *E(x, y, 2)

where the z-axis is taken in the longitudinal direction of the waveguide.
The above expression is equivalent to

SPE(x, y,7) = ¢ DE(x, y, z + nl)

which indicates that e/*?E(x, y, z) is a periodic function of z with period L.

Using a Fourier series expansion, it is expressed in the form

ad
" E(x, y, z) = Y. A{(x, y)exp(j2nnz/L)
n=-o

i,

i
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or equivalently, we have
E(x,y.2)= 3 Auxy)exp[—j{f - (2nmfL)} 7]

In other words, the electric field consists of many components, each with
the same group velocity but different phase velocities; the velocity of the
nth component is given by

v, = w{f — (2nm/L)} "’

The nth component is sometimes called the nth space harmonic. The phase
velocity appears as the slope of the dotted line drawn from the origin to the
corresponding point on the w-§ diagram as shown in Fig, 6.9. Depending

2T/l ~T/L 0 m/L 27/l A

Fig. 6.9. An example of an -8 diagram.

on the value of n, the phase velocity becomes very small, and for some com-
ponents it may even become negative; these components appear to travel
in the direction opposite to the power transmission. The magnetic field cor-
responding to y, and the electric and magnetic fields corresponding to 7,
can be discussed in a similar manner.

In many electron beam devices, such as the traveling wave tube which we
shall discuss in Chapter 8, the necessary interaction between the circuit and
the electron beam requires a slow electric field component traveling with a
velocity approximately equal to that of the electrons. Since various periodic
structures are used to obtain such a slow component, periodic structures
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are often called slow-wave structures. In the traveling wave tube, the structure
must be designed so as to make the z-component of A, (x, y) at the electron
beam as large as possible and the other field components as small as possible
in order to minimize unnecessary losses. It should be noted that A (x, y)
has the proper phase velocity.

In the above analysis, an assumption was made that only one waveguide
mode was necessary to approximate the fields at the reference planes. As w
increases, however, more and more waveguide modes start to propagate and
sooner or later the assumption becomes invalid. Several propagating modes
may interact with each other in a complicated manner, and the w-f diagram
fails to resemble the one derived in this section. To avoid such a complicated
situation, the operating frequency is generally kept low and/or the structure
is made to satisfy certain symmetry conditions under which the excitation
of higher order propagating modes is prohibited.

PROBLEMS

6.1 Following the argument in Section 6.3., discuss the exchange of transmission power
between the two coupled modes under the condition that a1(z) = 4o and a2(z) =
— Agatz =0,

6.2 In the above problem change the condition at z = @ to @1(z) = az(z) = Ap.

6.3 Give an example of a periodic structure without Y;; (i, j = 1, 2). Also give an example
with Yi; but with a singular Y.

6.4 When only one propagating mode is excited in a periodic structure, the average
electric and magnetic energies stored in one period are equal to each other as shown
inSection 6.4. Investigate the cases in which two modes are excited, and givean example
in which the electric and magnetic energies stored in one period are not equal to
each other.

6.5 Prove that when several modes are excited in a lossless periodic structure, the total
transmission power is equal to the sum of the transmission powers due to the
individual modes.

6.6 Suppose that each period of a periodic structure has a plane of symmetry at its
midpoint and obtain the condition that must be satisfied by T. Also investigate what
kinds of relations exist among the eigenvalues,

6.7 Construct the w-f diagram for an ordinary transmission line (TEM mode) having
identical shunt capacitances periodically spaced,

e o e
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CHAPTER?7
LINEAR AMPLIFIERS

In many practical applications, a signal level may be too low to perform a
desired operation without introducing excessive noise or distortion. In such
cases the signal is often amplified to a more useful level. To indicate the
amount of amplification introduced by the amplifier, we define the trans-
ducer gain as the ratio of the actual signal power absorbed in the load to the
available signal power from the generator. An amplifier is supposed to have a
transducer gain larger than unity, When the transducer gain is large over a
wide frequency range, the amplifier is described as having a broadband and
high gain.

If excessive noise or distortion is introduced during the amplification
process, the amplifier may become useless, even though it provides high gain.
Consequently, the noise performance and distortion are considered to be
important factors in determining the quality of amplifiers. In this chapter,
we shall concentrate mostly on the amplifier noise performance, assuming
that the input-output relationis linear, i.e., neglecting any possible distortion.
This does not mean that distortion is unimportant; on the contrary, in many
cases it becomes a vital factor. Unfortunately, no unified theory of amplifier
distortion is available in a form suitable for presentation here.

The conventional theory of amplifier noise performance almost exclusively
express results in terms of the available gain, which is defined as the ratio of
available signal power at the amplifier output port to the available signal
power from the generator. This quantity is convenient because the available
gain of a cascade amplifier is equal to the product of the available gains of
the component amplifiers. In addition, the discussion of noise performance

289
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of the cascade amplifier can be made particularly simple since the use of
available gain conceals the real complexity which exists. On the other hand,
when the gain of practical amplifiers is discussed, it is generally in terms of
their transducer gain. If the available gain is used, the available signal power
at the output port is of primary interest rather than the actual signal power,
and hence the user is left with the burden of providing a proper load im-
pedance to utilize it; this often turns out to be the most difficult part of the
whole operation. Both the generator and load impedances are therefore
specified beforechand, and the amplifier is designed to deliver the amplified
signal to the specified load impedance, ie., to provide a proper transducer
gain. Usnally, the generator and load impedances are equal to the charac-
teristic impedances of the transmission lines at the amplifier input and
output ports, respectively. Under these circumstances, if we develop the theory
of amplifier noise performance with emphasis on the available gain, many con-
fusing or misleading conclusions are reached. For this reason, we shall foliow
an alternative course and develop a theory based on the transducer gain.

We first derive an equivalent circuit for linear noisy multiport networks,
The noise performance of amplifiers is discussed next, considering an ampli-
fier as a two-port, linear, noisy network with a transducer gain larger than
unity. The unconditional stability conditions and the unilateral gain are
also presented. The last three sections are devoted to the discussion of
tunnel-diode and parametric amplifiers that illustrate the kind of noise
performance to be expected from these practical devices.

7.1 Canonical Forms

It was shown in Section 5.3 that the exchangeable power of a generator
is invariant to lossless nonsingular transformations. A different proof of
this theorem will now be given, using the impedance matrix of a lossless
two-port network since it will set a pattern for deriving invariants of n-port

noisy networks.
In the circuit shown in Fig. 7.1, the exchangeable power of the generator

connected to port I of the two-port network is given by
P, = |E|’/(4 Re Z)) (7.1)

and the relation among V,, V5, I, and I, is given by

=1 22l ) 72

e
)

ey B g L

el A ktE

R

s

7.1. Canonical Forms 201

L

-—
_T.__1I
LOSSLESS v o
NETWORK 2 s

Fig. 7.1. Lossless transformation of a one-port generator.

Since V| is equal to E— Z,1,, we have from (7.2)
Vi=Zydy+ Zly =E—-Z1 (7.3)

Assuming that Z,, + Z; is not equal to zero, I, is obtained in terms of £

and I,
L =(Z,+ Zi)_l (E—Z,,1,)

Substituting this into (7.2), we have

Vo=Zodi + 2321, =25, (Z;+ Z,,) ' E+{Z,, - Z2Z(Z;+ 2,) "V L
{7.4)

Comparing this with (7.3), and remembering that the positive direction of
I, is inward, the open-circuit voltage and the output impedance looking
back at port IT are given by

23 (Z,+Z, ) 'E and  {Z,,—Z,7,,(Z,+ Z;) 1)
respectively. The exchangeable power at port II therefore becomes
Py=|E*Zy P 1Z,+ 2,174 Re{Z,, — Z 1,2, (Z,+ Z,)) 1} (7.5)
the denominator of which can be rewritten in the form

4Re{Z,y — Z,,Z,(Z; + Z,)) 1}

Z,Z VAPV A
=2z, 4 z¥ _ 272t T2t 76
{ 2 2 Z;+ 2y, (Zi+zll)* 7.9
When the two-port network is lossless, the impedance matrix Z must satisfy
the lossless condition
Z+Z"=0

or equivalently,

Zu=_ZT1= le=_Z:1, Zzz=—zzz
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With these relations, the right-hand side of (7.6} reduces to

5 1Z54)? (Z,+Z,, +_Zi* +Z7,)
1Z + Zy,1

= |221|2|Z,- + Zn|m2 4ReZ;

Replacing the denominator of (7.5) by this expression, we have
Py’ = |E|*/(4ReZ) =P, (7.7

which shows the exchangeable power is invariant to the lossless transfor-
mation. It is worth noting that we assumed nonzero Z;, + Z; and nonzero
£, in the above calculation. The assumption of nonzero Z,, was used to
aveid making (7.5) indeterminate,

Since the exchangeable power has been defined only for one-port generators,
a question arises whether or not there are some quantities for an n-port
generator which are invariant to lossless transformations and hence corre-
spond to the exchangeable power of a one-port generator. To answer this
question, let us study a lossless transformation of a linear #-port generator
following the pattern set by the above discussion.

Some voltages may appear at each port of the »-port generator when all
the ports are open circuited. Let E,, F,,..., E, be the voltages where the
subscripts refer to the port numbers. We define e by

e=|". (7.8)

Referring again to the discussion concerning an equivalent circuit for one-
port generators in Section 1.4, we see that the relation between the voltages
and current at the ports is given by

v=~Zi+e (1.9)

where v is the voltage vector, i the current vector, and Z the internal imped-
ance matrix of the r-port generator. An equivalent circuit for (7.9) is shown
in Fig. 7.2.

Since we used a two-port lossless network to transform a one-port
generator, we should consider using a 2n-port lossless network to transform
an n-port generator. Taking the voltage and current directions for the 2»-

R g T g S

¥
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Fig, 7.2, Equivalent circuit of an n-port generator.

port network as shown in Fig. 7.3, we have

[va] — [Zﬂa Zab] I:fa] (710)
Vb Zpo Ly i

where v, and v, are the voltage vectors, while i, and i, are the current
vectors at reference planes g and b, respectively. The terms Z,,, Z_,, Z;.,
and Zg, are all square matrices of order », and together they form the
impedance matrix of the 2n-port network. Since v =v,, we have from (7.9)

and (7.10)
Zite=12Z,i,+Z,i,

=

Vv
a vb

Fig. 7.3. Lossless transformation of an »#-port generator.
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Keeping in mind that i and i, are equal, except for their directions being
opposite, we obtain from the above equation

i,=(Z +Z,) " (e — Zyi,)

where an assumption is made that (Z + Z,,) is nonsingular. Substituting
this into (7.10), v, can be expressed in terms of e and i,;

¥p = Zbaia + beib
={Zo — Ly (Z+2,) ' L} iy + Zpo(Z+ Z,,) e (7.11)

Let ¢’ be the open-circuited voltage vector and Z' the internal impedance
matrix observed at reference plane b, then we have from (7.11)

¢ =Z,(Z+Z,)" e (7.12)
Z=Z,-2,,(L+2,) "' Z, (7.13)

The exchangeable power of a one-port generator is given by the square of
the absolute value of the open-circuited voltage divided by four times the
real part of the internal impedance. Corresponding to the real part of the
internal impedance, we should take one half of Z + Z*, the sum of the
impedance matrix and its adjoint. Corresponding to the square of the
magnitude of the open-circuited voltage, |E|? = EE*, we may consider
either ee* or e e; however, since e*e becomes a matrix of order 1 x L, or
equivalently, a scalar quantity, it does not match the above matrix form of
the impedance. Thus, ee”, a square matrix of order », seems to be a natural
choice. In following sections, we shall study the case in which the £s
represent noise voltages, and hence the ensemble average { £.£,*) is more
meaningful than the particular value of E,E;* itself. For this reason, let us
choose {ee®), whose ij component is {EE*), instead of ee® itself.
Corresponding to the fact that {£|* is either positive or zero, {ee*) is
either positive-definite or positive-semidefinite. This can be seen from

{xte(xTe) ) =x"Cee™>x =0 (7.14)

where x is an arbitrary fixed vector and the angle brackets { > indicate the
ensemble average of the quantity within.

We are now in a position to investigate with the help of (7.12) and (7.13)
how {ee*> and Z +Z* are transformed by the lossless 2#-port network.
From the lossless condition, the sum of the impedance matrix of the 2a-
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port network and its adjoint must be zero;

Zaa Zab] I:Z:;l th:]
+ =0
[Zba Zy, b Loy
or equivalently,
Zaa=—Z5, Zo=—1Zg, ITy=-17; (7.15)

From this, we see that Z,, and Z,, are restricted by the condition that their
adjoint matrices must be equal to themselves except for the opposite signs.
On the other hand, there is no real restriction imposed on Z,,. Once Z,,
is given, Z,, is fixed by the middle condition of (7.15); it therefore follows
that either Z,, or Z,, can be chosen arbitrarily.

For convenience, let us define H* as

HY=7,(Z+Z,)"! (7.16)

Since Z,, is arbitrary, H" can also be chosen arbitrarily by selecting a proper
lossless network for the transformation. Using H* thus defined, {e'e’*)
can be written in the form

ety =(H'e¢e(H"e)'>=H"'¢ee'>H (7.17)

where (7.12) is used. This equation indicates how {ee* ) is transformed
by the 2n-port network. For the transformation of Z + Z*, let us consider
Z’' +Z'". From (7.13), we have

L+ 2 =22y (Z+Z,) "L+ 2y —Z (2" +2]) ' 2,
Using (7.15), this can be simplified as follows:

Z+Z2" =2, (Z+2,) "L +Z,(Z" +Z})"'Z;,
=Z,{(Z+Zw) ' + (2" +Z,) 1V Ly,
=Zpo(Z+Z,) {27 + L)+ (Z+ L)} (2" + Z,,) ' Z,,
=H"(Z+Z")H (7.18)

A comparison of (7.17) and (7.18) shows that {ee™> and Z + Z* undergo
the same transformation by the lossless 2n-port network. Since (Z + Z1)" =
Z+Z% and ({ee™>}* =(ee*), it follows that {ee*) and Z -+ Z* are
both self-adjoint. Furthermore, {ee™) is either positive-definite or posi-
tive-semidefinite from (7.14). Let us assume for the moment that {ee*)
is positive-definite. Then there are two self-adjoint matrices, and one of
them is positive-definite. Consequently, it is possible to select a nonsingu-
lar H which diagonalizes both {e’e’*> and Z’' + Z’'*, simultaneously, as
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shown by (5.60) and (5.61). The diagonal components of Z' + Z'* are
given by the eigenvalues of ({ee®})™! (Z +Z*) which are all real. Let
Ats A2,..., 4, be the real eigenvalues, then we have

ety =1 (7.19)
Z + 72 =diag[d, 4, ... A (7.20)

In order for H to exist, Z + Z,, has to be nonsingular, and for H to be
nonsingular, Z,, has to be nonsingular. Since these conditions do net
contradict the lossless condition given by (7.15), it is always possible to get
an appropriate lossless 2n-port network which gives (7.19) and (7.20).

Let us investigate the physical meaning of the result obtained above. It
follows from (7.20) that the new a-port generator has an internal impedance
matrix of the form

Z' = diagfd, 4, ... A]+Z, (7.21)
where Z_ is an n-port impedance matrix satisfying the lossless condition
Z+Z" =0 (7.22)

In order to obtain (7.19) and (7.20), we have selected an appropriate H;
however, since H contains only Z,, and Z,, Z,, of the 2»n-port network can
still be selected arbitrarily provided that Z;;, + Z;,, = 0. Since the subtraction
of Z, from Z,, does not change this condition, we can always select a
proper Z,, which makes Z,_ in (7.21) disappear. Remembering that 1,, 1,,
. 4, are all real, this means that by selecting a proper lossless 2r-port
network the transformed circuit is equivalent to n resistors, each connected
in series with a voltage source expressed by a component of e'. Since
{e'e’"> =1, each voltage source is uncorrelated with the others and has a
unit magnitude as illustrated in box C on the left-hand side of Fig. 7.4.
This is called the canonical form of the original n-port generator, and the
operation performed by the lossless 2n-port network is called the canonical
transformation.

The lossless 2r-port network transforms v and i of the a-port generator

into v, and i,. Since v =v, and i = —i,, we have
v=—Z i+ Z,i, (7.23)
Yp = — Zbai + beib (7.24)

From (7.23), i, is given by

iy =2Z,'v+Z,'Z, i
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Fig, 7.4. Equivalent circuit of an #-port generator including the canonical form C and
2n-port transforming network T-! where T is the canonical transformation.

where the existance of Z_,' is guaranteed since H, and hence Z,,, is chosen
to be nonsingular and Z,,= — Z,. from (7.15). Substituting the above
equation into (7.24), we obtain

vb = bezﬁ_blv + (beza_blz‘aﬂ - Zbﬂ)i

The relation between the voltages and currents at the input and output ports
of the 2n-port network is therefore given by

Yo | _ Z,Zy' Zy, - beza_blzaa] { v ] — v ] 725
I i § B B A Y

Thus defined, T is the transfer matrix representing the lossless 2n-port
network which performs the canonical transformation; T satisfies the loss-
less condition (6.60), and if T exists, it is nonsingular from (6.60). In general,
the transformation performed by a circuit with nonsingular transfer matrix
is said to be nonsingular; therefore the canonical transformation is non-
singular.
Multiplying (6.60) by (T™)~! from the left and by T~' from the right,
we obtain
(T"H* LT ' =L (7.26)

A comparison of (7.26) with (6.60) shows that T ! represents another loss-
less 2rn-port network. Suppose that the original n-port generator is first
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transformed by T into its canonical form and is next transformed by T™1,
then the resultant network has exactly the same v and i as those of the original
n-port generator. We, therefore, conclude that an arbitrary a-port generator
is equivalent to its canonical form followed by a lossless 2n-port network
whose transfer matrix is given by T™1.

The eigenvalues, A, A,,..., 4,, of ({ee*>)™! (Z + Z") are invariant to a
nonsingular, lossless, but otherwise arbitrary, transformation T,. This
follows because the cascade connection of two lossless 2n-port networks
with transfer matrices T ' and T gives the same canonical form characterized
by 4,, 42, ..., 4,. Furthermore, since the canonical form is solely determined
by the eigenvalues, there are no invariants other than A;, 4,,..., 4, and their
functions when arbitrary nonsingular lossless transformations are considered.

For one-port generators, the exchangeable power is invariant to lossless
nonsingular transformations. This is understandable because the exchange-
able power is given by 1/(24;), where A, is the eigenvalue of {<ee*>) ™" x
(Z+ Z*) which is a matrix of order 1 x 1 in this case. The exchangeable
power and its functions are the only invariants to lossless nonsingular
transformations.

Finally, let us investigate the case in which {ee®™) is positive-semi-
definite. In this case ({ee™>)™! does not exist; however, by adding a small
voltage vector de to the open-circuited voltage e at the terminals {{e + Ae) x
(e + de)* ) can be made positive-definite. For this perturbed r-port generator,
the canonical form can be obtained as we have done above. In this canonical
form, 4, 45, ..., 4, are functions of the small voltages making up the vector
de. Since the perturbed generator approaches the original generator as de
approaches zero, let us assume that the canonical form of the original #-port
generator is obtained by taking the limit as Ae — 0,

During this limiting process, one or more of 1, 4,,..., 4, may become
infinite showing that the values of the corresponding resistor are infinite.
There are two possible cases: (i) The resistor should have a finite value in
series with a zero-voltage source, but since a unit voltage source is assumed,
the resistance becomes infinite; (ii) The resistor is actually open-circuited
and its value is infinite, It is difficult to distinguish these two cases in a
general discussion,

Summarizing the above results, the following conclusion will be reached:
An n-port generator is equivalent to » resistors each with an independent
voltage source, followed by a lossless 2n-port transforming network as
illustrated in Fig. 7.4. When {ee' ) is positive-semidefinite, the number of
the resistors may be less than n and/or some of the voltage sources disappear.
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7.2 Noise Measure

An amplifier can be considered as a two-port network which has specific
generator and load impedances assigned to it. In addition the network
generally contains noise sources. From the conclusion reached in the previous
section, such & two-port network is equivalent to the canonical form followed
by a lossless four-port network. The canonical form may have two resistors,
one resistor, or none at all. With a passive network, the output power can
never be larger than the input power, hence at least one resistor in the
canonical form of an amplifier must be negative. This enables us to concen-
trate on the following three cases: The canonical form has (i) two negative
resistances, (ii) one negative resistance and one positive resistance, (iii) only
one negative resistance.

Let us first study case (i) for which the equivalent amplifier circuit is
illustrated in Fig. 7.5. Ports I and TI of the lossless four-port network

CANONICAL LOSSLESS
FORM CIRCUIT GENERATOR
N —
R z
|
3 m I
E, E,
—o— S
C e
R, z,
™ T
E, E,
I
LOAD

Fig. 7.5. Equivalent circuit of a linear noisy amplifier.

represent the input and output ports of the amplifier, respectively. Ports I11
and IV are connected to the negative resistances Z;=— Ry and Z, =— R,
in the canonical form. Let incident and reflected waves @ and b be defined
such that their ith components are given by

a;=7%|Re Zi]_”z (V: + Z,1), b;=1%|Re Z.~|A”2 (v, - Zi*Ii) (7.27)

where the subscript refers to the port number. The scattering matrix S of
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the lossless four-port network times a then becomes b,

b = Sa (7.28)
From (5.87), S satisfies the lossless condition
SPS=P (7.29)
where P is given by
P=diag[l 1 -1 -—1] (7.30)

since negative resistances are connected to ports III and IV. Multiplying
(7.29) by (PS)"'=S"'P~! from the right and by SP~! from the left,
we have

SPIS* =pP! (7.31)

Equations (7.29) and (7.31) are equivalent to each other, and either one can
be used as the lossless condition for S. The 22 component of (7.31) gives

IS211 + 15221" — |S23]* — 15247 = 1 (7.32)

which is the condition the §,;’s must satisfy.

With this much preparation, we are in a position to discuss the noise
performance of the amplifier in detail, The transducer gain of an amplifier
is defined by

actual signal power into load (7.33)

" available signal power from generator

For an amplifier shown in Fig. 7.5, the numerator is given by the signal
component of |b,|%. If |a,|® represents the available signal power of the
generator, |b,|% =1S,,|? |a,|%. Thus, we have

G = [by)*/las|* = |S,,1° (7.34)

The exchangeable power is not used in the denominator of (7.33) because
when the real part of the generator impedance is negative, the actual signal
power flowing into a load impedance with a positive real part can be made
as large as one wishes by inserting a lossless nonamplifying network.

The operating noise temperature T,, of an amplifier is defined by

actual noise power into load

7.35)
or kBG (

where k is the Boltzmann constant, and the noise power is measured in a
narrow bandwidth B with a generator having a noise temperature T

-
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From the definition of noise temperature, the available noise power of the
generator is given by kT.B. When B=1MHz and T,=290°K, kT.B is
4 x107"* W, or equivalently, —114 dBm. In general, the available noise
power from an ordinary resistor at T°K is given by k7B as derived by a
statistical consideration and confirmed by experiments, which we shall not
discuss any further.

The noise originating in and reflected back to the load is just as trouble-
some as other noise components, and hence it is inciuded in the operating
noise temperature of (7.35). This can be seen from the definition of actual
power given in Section 1.4. When the load impedance has a positive real part,
the actual noise power flowing into the load is defined to be the net noise
power transferred to the load plus the available noise power of the load, all
in the bandwidth B. Thus, the operating noise temperature T,, is a function
of the noise temperature T, of the load, and T, may be assumed to be 290°K
if not stated otherwise.

For the amplifier shown in Fig. 7.5, the ratio of the operating noise
temperature T, to the generator noise temperature 7T; is given by

T, 7|biz|27 _ 152117 1a,)? + [S32217 |aa|? '|‘7|£"23|2 |asl” + [S24)? |as|?
|S2,1% fa,|?

T, |a,)*G
(7.36)

where all the power waves are comprised of noise components only and
la,|* = kT.B.
Using G and the noise temperature ratio T,,/T,, we define the operating
noise measure of an amplifier as
_ (Toplln) -1

RN "

If the transducer gain is large, M is essentially equal to (T,, — T)/T; which
is the ratio of the noise introduced in the amplification process to the
amplified noise from the generator, (kT,,BG — kT,BG)/kT,BG. A negative
value of M means that G is smaller than unity. When G is larger than unity,
as it should be for an amplifier, Af is always positive; the amplifier will
obviously become less noisy as M becomes smaller. When G decreases and
(T,./T;) —1 does not become smaller in value, then M cannot remain
unchanged. When the gain is small, the added noise must be correspondingly
small for the amplifier to be considered equally noisy.

For a comparison of different amplifiers we use M x T, rather than M
itself, for the following reason: If T; is inceased for one amplifier, keeping
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everything else the same, [S,,1? |a,|? increases in (7.36) and the output of
the amplifier becomes noisier. At the same time M decreases giving the
misleading impression that the amplifier is now quieter. On the other hand,
M x T, is independent of T, indicating the noise introduced in the ampli-
fication process divided by kB(G —1).

Those who are familiar with the IRE (Institute of Radio Engineers)
definition of noise figure F will notice that for a high gain amplifier with
T; =290°K and a negligible load noise contribution, M is essentially equal
to the excess noise figure (F — 1} of the amplifier.

The noise figure F, at a specified input frequency, is defined as: the ratio of
(1) the total noise power per unit bandwidth at a corresponding output
frequency “available™ at the output port when the noise temperature of the
input termination is standard (290 °K) to (2) that portion of (1) engendered at
the input frequency by the input termination. The contribution from the
noise originating in and reflected back to the load is not included in this
definition. Realizing its importance, however, the IRE subsequently defined
the operating noise temperature so as to include the noise contribution
from the load.

In our case, M can be written in the form

_ |§gz|2 laa|? + 1523_|2 las)® + (S.4l? Jﬂ4|2
(ISZI|2 - 1) |a1|2

whete (7.34) and (7.36) are used. Rewriting the denominator with the help
of (7.32), (7.38) becomes

(7.38)

_ |Szzfz_ faz|2 + |Sz3l2 |"-1'2.f2 + 15,407 lagl?

T = (7.39)
(= 1S2a1° + 1S25" + |Sz4i2) @]

The expression inside the parentheses in the denominator cannot becomes
less than —1 since |.S,5;]% 2 0 in (7.32); |.5,,1%, 1525]%, and |S,4]? otherwise
can take any positive values.

Without a loss of generality, assume that {a,)? < |a4|® and under this
assumption, let us investigate the possible range of the value of M. When
182217 > 185317 + |S,4]% M is negative. In addition, the condition

!S23I2 = 5524|2 =0

gives the minimum value for | M|, because when |S,,|? or 15,4]® departs
from zero, the denominator on the right-hand side of {7.39) becomes smaller
in magnitude and the numerator larger. Thus, M cannot come closer to

%
@
i
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zero than —[a,|*/la;|? in the negative range. Since |a,|? is given by kT, B
and |a,|* by kT;B, the maximum value in the negative range is

M =~ lay|*flay|* = — (TT)) (7.40)

When |S5,]% < (8331 + (8,417, M is positive, If |S,5)* and |S,,]? are kept
constant, the condition {S,,|*> =0 minimizes M since the denominator in
(7.39) decreases and the numerator increases if |S,,|> departs from zero.
Therefore, in order to obtain the smallest value of M in the positive range,
we have only to consider the case in which |5,,}? = 0. Since |a,}% < [a,|* by
hypothesis, we have

IS23|2 |‘513,2 + |Sz4|2 ["14|2 |stl2 |a3]2 + !SZ4|2 |a3|2 |f13|2
= - - =
(|S23|2 + lsz4|2) |a1i2 (|323|2 + |Sz4[2) la1|2 |a1|2

It follows that when |S,,|* =|S,4? =0, M attains the smallest positive
value M, which is called the optimum noise measure and is given by

Moy = las)/]a;|* = — (P, pinf kT;B) (7.41)

where P, ... indicates the exchangeable noise power with the smaller
magnitude obtainable from the two negative resistances in the equivalent
circuit. Later we shall discuss a case in which many negative resistances are
involved. i

The magnitude of M can increase indefinitely in the negative as well as
in the positive range if the scattering coefficients are properly selected. The
solid lines in Fig. 7.6, therefore, give the possible range of Af. In order to
obtain M,,, the conditions [S,;/*=0 and |S,,]> =0 must be satisfied,
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Fig. 7.6. The possible range of M.
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unless T, =0 and |a3|* = |a,)?, respectively. In other words, the output
port must satisfy the matching condition and the negative resistance with
the smaller absolute value in the canonical form must be effectively discon-
nected from the output port.

Given an amplifier, one method to achieve M, is shown in Fig. 7.7.
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Fig. 7.7. Realization of Mgpi.

Here the amplifier is represented by an equivalent circuit comprising the
canonical form C followed by a lossless transformation T, The lossless
four-port network with the transfer matrix T connected to the amplifier
restores the canonical form and the negative resistance with exchangeable
noise power P, ...=—|as|* in the canonical form is connected to the
generator and load through a three-port circulator. The other resistance is
left open. Both conditions [S,,/* =0 and |S,,|* =0 are satisfied by this
arrangement, and hence M, is realized. It may be worth mentioning that
the input port is also matched in this realization of M.

We have so far discussed case (i} in which two resistances in the canonical
form are negative. The discussions for the other two cases are similar. When
one resistance is negative and the other is positive in the canonical form, we
assume that the negative one is connected to port III and the positive one
to port IV of the lossless four-port network shown in Fig. 7.5. Then,
corresponding to (7.39), we have

182 laal® + 1S23)° lasi® + 1S2al” lagl®
(_" IS:,!Zl2 + |Sz3|2 - 182412) |a1|2

When there is only one negative resistance in the canonical form, we assume

b
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that the negative resistance is connected to port 1II, and that port IV is
eliminated from the beginning. Then, we have

_ 1S221% la,|* + |S;_3|2 |a3|2
(- [S221* + 'st|2) |‘511|2

=

For both cases, the optimum noise measure is given by
Mopt = Ia3l2/|al |2 = - (Pe, min/kTiB)

where P, ., 18 equal to the exchangeable noise power of the negative

resistance in each case.
Let us now ask the following question: What is the best {i.c., smallest
positive) noise measure obtainable when we are given several amplifiers
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Fig. 7.8. [Equivalent circuit of the composite amplifier.
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and are allowed to use any passive networks in order to connect them? A
passive network can be considered to be a lossless multiport network with
some of the ports connected to positive resistances. The most general
equivalent circuit of the amplifier we can construct is therefore given by
Fig. 7.8 where the lossless parts of the component amplifiers are all included
in the lossless network. Once this equivalent circuit is obtained, we can
easily apply an argument similar to the one previously used, and the optimum
noise measure is given by

M,

opt = — (Pe, min/ KT, B)

where P, .. is the exchangeable noise power with the smallest magnitude
among all the negative resistances in the equivalent circuit. This result
showsthatthereis no possibility of improving the noise measure by combining
amplifiers. The best value we can obtain from the combined amplifier is
equal to the best value obtainable from the single amplifier having the
smallest M .

On the other hand, M, is given by

Mm == (Tmin/Ti)

where T,;, is the lowest noise temperature of all the positive resistances in
the equivalent circuit. The range of possible M is from M, through infinity
to M, which is similar to Fig. 7.6.

Suppose that two amplifiers are connected in cascade through a circulator
as shown in Fig. 7.9. The third port of the circulator is terminated by the
matched resistance R, having a noise temperature 7y;. The reference
impedances of the circulator used to define the scattering matrix are
assumed to be given by

* *
Zl - ZL]_ 9 Zz = zgz . 23 = RO (7.42)
Ro‘Tu
I
T.Z AMP | - AMP 2
v zu_. I o) 7y, 2
E
~__
CIRCULATOR

Fig. 7.9. Cascade connection of two amplifiers.
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so that both amplifiers see the correct load and generator impedances assigned
to them. Since the actual power flowing into port I of the circulator is
transformed to the available power from port 11, the overall gain G becomes
the product of the individual amplifier gains:

6 actual signal power into load

available sighal poWer from generator

actual signal power into circulator

available signal power from generator
actual signal power into load

X
available signal power from circulator
= G,G, (7.43)

where G; and G, represent the transducer gains of the first and second
amplifiers, respectively.

The actual noise power N flowing into the load is given by the sum of the
amplified noise and the noise added by the second amplifier. The added
noise is equal to M,kT,B(G, —1), where M, is the noise measure of the
second amplifier with generator noise temperature T,. The available noise
power at the input of the second amplifier is equal to the actual noise power
flowing into port I of the circulator in Fig. 7.9, namely, M A T,B(G, - 1) +
+ kT, BG,, where M is the noise measure of the first amplifier with generator
noise temperature T,. Thus, we have

N = kT,BG,G, + MikT;B(G, — 1) G, + M,kT;B(G, — 1)
from which the overall operating noise temperature T, can be obtained as
follows:

1 G, —1
=T, (1 +M, - M, -+ M, 2—) (7.44)

T =
° " kBG G, G,G

where use is made of (7.43). Substituting (7.43) and (7.44) into (7.37), the
overall noisc measure becomes

1 G, —1 1\
M=(M1—M1——+M2 G |
G, GG, G,G,
oM, (M, - M) 2 (7.45)
ST Y66, -1 '

Suppose that the two amplifiers are identical, then M, =M, and the second
term on the right-hand side of (7.45) disappears which makes M =M, and
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G = G, . If we connect another amplifier to this cascaded amplifier through
a second circulator, we obtain an amplifier with M =M, and G=G,3
Continuing this process, if we connect a large number of identical amplifiers
in cascade, we obtain a high gain amplifier having the same noise measure
as that of the individual amplifters. From this observation, we can interpret
the noise measure of an individual amplifier as the excess noise figure
(Fe —1) of a high gain amplifier constructed by cascading a large number
of such amplifiers. When the amplifier under consideration is matched at
both ends and Z, = Z,*, the circulators can be eliminated from the above
discussion.

One might think that the circulator with a resistor R, at the third port
can be replaced by a lossless network in Fig. 7.9. This is generally not true,
however. First of all, the noise temperature of the input impedance of the
second amplifier may not be the same as that of the load impedance of the
first amplifier. Furthermore, if the first amplifier has an output impedance
with a negative real part, there is no way of transforming this to have a
positive real part by any lossless transformation, and hence the second
amplifier is unable to see a proper generator impedance. The circulator
effectively isolates the two amplifiers which would otherwise interfere with
each other as described.

The discussion in this section can be summarized as follows:

(i) The smaller the positive value of M is, the less noisy the amplifier.

(ii) Negative noise measure means that the gain of the amplifier is less
than one, i.e., attenuation occurs rather than amplification.

(iii) M, can be realized by a lossless transformation.

(iv) It is impossible to achieve positive M less than M, by any passive
transformation,

(v) The M, of a combined amplifier is equal to the best M, among the
component amplifiers.

7.3 Unconditional Stability

An amplifier is sald to be unconditionally stable if the real parts of its
input and output impedances remain positive when the load and generator
impedances are changed arbitrarily provided their real parts remain positive.
Let us consider the condition for the unconditional stability. Let S;,, Siz,
8,5, and \5;; represent the scattering coefficients of the amplifier where
subscripts 1 and 2 refer to the input and output ports, respectively. We assume
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that the real parts of the reference impedances Z; and Z, are both positive
and that [S,;| <1 and | S,,| <1; otherwise the real parts of the input and
output impedances cannot be assumed to remain positive. Suppose that the
load impedance Z; is connected to the output port, then a, is found to be

ay={(Zy — ZINZy, + Z,*)) by = r3b,

in a similar manner to the derivation of (5.132) where r, is the reflection
coefficient of Z; with respect to Z,*. Since we keep the real part of Z;
positive, |r,] < 1. The equation b = Sa becomes

by = 8,a, + 812720, b, = S8y,a; + 83,7130,

from which we obtain
b, = {81 +512r2521(1—r2822)'1}a1 (7.46)

It follows from'this that the condition for the real part of the input impedance
to remain positive is given by

IS+ 8,2r28,, (1 — J"2522)_1| <1
which is equivalent to

|— AS3) + B(1 —r,8,,)7 | <1 (7.47)
where
A=15251 — S11522 B= 8125213521 (7.48)
The problem has now been reduced to finding the condition for (7.47) to
hold regardless of the value of r, when |r,| <1.
To find the above condition, let us next investigate the bilinear trans-
formation
z=—AS;; + B(l —r,8,,) " (7.49)

and find the image of the unit circle |r,| =1 on the z plane. The image of the
unit circle on the —r,S,, plane is a circle with its center at the origin and
radius |.S,,|. The image on the (1 —r,S;,) plane is obtained by shifting the
previous image to the right by a unit distance. The image on the (1 — £, 53,)" !
plane is a circle with its center on the real axis and with intersection points
on the real axis at (1 +[S,,0)"! and (1 —|S,,))"". On the B(l —r,5,,)""
plane, it becomes a circle with the center at

1( B B ) B
Z — 4 — L
201 — 185, 1 +(8,,] 1 — S5,
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and radius

g(_ Bl |B|) 1Bl Sl

2N = 1S, 14185, 1-18,,)°

Note that the inside of the unit circle |r,| =1 corresponds to the inside of
this circle since |S,,| <1. The complex vector representation of this circle
is given by

B BISy]
=Sy T 1= 18507

i

0

where 8 varies from 0 to 2z and g represents the vector drawn from the origin

to the moving point on the circle. From this, we see that the unit circle

|ry] =1 is transformed by (7.49) into a circle represented by

_A B 18ISy
Szz L—1Sn)* 1185/

_AS3, + S, | |Bl1Syl

L DT e 7.50
1— S0 11850 (7.50)

1]
z= d

If the real part of the input impedance is to remain positive, the magnitude
of z has to be smaller than unity regardless of the value of 8, i.e.,
A4S, + 11| + Bl ISz,

1—iSnl*

<1

The above inequality is equivalent to

SHSuSs _ | _ 1SSl

—r<1=- (7.5
S e 1— 18y,

Let us assume that
81285 <1 - |Szzl2 (7.52)

otherwise (7.51) does not hold. Squaring both sides of (7.51}, we obtain
after a little manipulation

2ReS;; 8,581,587, <1 — 8,17 — 182,17 + 151,85,/
+18128211% — 215,2524]
which reduces to

1S 1%+ 182207 + 218125211 < 1+ 515551 ~ 5115517 (7.53)

Thus, we see that the real part of the input impedance remains positive if
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(7.52) and (7.53) are satisfied. The corresponding conditions for the real
part of the output impedance to remain positive are obtained by inter-
changing the subscripts 1 and 2, However, since (7.53) remains unchanged
during this interchange, the conditions for the amplifier to be unconditionally
stable are given by

1128;,) <1 =185,

1S285,] <1 — |85, (7.54)

1S,11% + 18,5207 + 20815821 <1418,,8;,, — §;,85,/°

Note that (7.54) is a necessary and sufficient condition for unconditional
stability.

If an amplifier is unconditionally stable, it can be simultaneously matched
to generator and load impedances with positive real parts, For the proof of
this statement, we proceed as follows. When the load impedance Z, is
connected to the output port, from (7.46) the reflection coefficient at the
input port is given by

(Zi—Z"WZi+ Z) =811+ 502085, (1 —7,8,,)7 1

where Z; is the corresponding input impedance. Let r, be the reflection
coefficient of Z, with respect to Z,*, i.e.,

Fp = (Zy - Zi)/(zg + Zl*) (7.55)

and suppose that 7 * is equal to (Z;— Z,*){(Z,+ Z,), then Z, becomes the
complex conjugate of Z; indicating that the input port is matched. Thus,

I‘l* :Sll +512F2S21(1—r2522)71 (7.56)

gives the matching condition at the input port when the load impedance is
Z,;. Similarly, when the generator impedance Z, is cornected to the input
port, the matching condition at the output port is given by

1‘2*:822+821r1812(1—rlsll)_l (757)

For simultaneous matchings, these two equations must both be satisfied.
To simplify the following discussion, let us now assume that either one of
S1, or §,,, say 8,,, is equal to zero, This can be done without loss of
generality when we discuss unconditionally stable amplifiers since, for a given
Z, with a positive real part, Z, with a positive real part can always be chosen
to satisfy the matching condition S,,=0. Under this assumption, elimi-
nating r, from (7.56) and (7.57), we have

r’Si +’"1(|512521|2—|SI1|2_1)+ST1:0 (7.58)
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The solutions of this equation are given by
LIS = [S00S0 7 3 {1+ 1S4l = 18,555, 2) — 415,172
284, (7.59)

where Sy, 5 0 is assumed; otherwise the input is matched to Z,, and no
discussion is necessary. The expression inside the square root is positive
since (7.54) reduces to 1 —[S,,| > |5,,S5,,| which is equivalent to

1+ !5"11|2 - |SIZS21l2 > 2184

ry

The product of two solutions of (7.58) is equal to S7,/S,,. Hence, one of
the solutions should have a magnitude smaller than one. With this solution,
the simultaneous matchings can be achieved keeping the real part of the
generator impedance positive. Since the output impedance has a positive
real part under this condition, the matched load impedance must also have
a positive real part, which completes the proof.

From the above discussion concerning unconditionally stable amplifiers,
we see that Sy, and S,, can be set equal to zero from the beginning by
choosing proper values for Z, and Z,, each with a positive real part. This
greatly simplifies the discussion, for example, if 5|, =5,,=0, (7.54)
reduces to

81282, <1 (7.60)

For a given unconditionally stable amplifier and a fixed generator impe-
dance, let us consider the effect of varying the load impedance on the trans-
ducer gain. The maximum transducer gain is obtained when the output
port is matched since the generator and the amplifier together can be
considered as a new generator with an internal impedance having a positive
real part. Next, let us consider the case in which the generator impedance is
varied, keeping the available power of the generator constant. For a given
load impedance, the output power, and hence the transducer gain is
maximized when the input port is matched since the load current is propor-
tional to the input current which is maximized when the input port is
matched. Now suppose that we simultaneously change the generator and
load impedances keeping the output port matched. Suppose also that under
this condition, the generator impedance Z, gives the highest transducer
gain and let Z, be the corresponding load impedance, then the cutput port
is guaranteed to be matched. If the input port is not matched, then the same
load impedance Z, has a corresponding generator impedance Z,’ which
gives the matching condition at the input port and hence a higher transducer

ST g e e g,

5 i P i

. wtwﬁm“ﬂ%w :
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gain. With Z,", the output port may not be matched. However, there is a
load impedance Z,” which satisfies the matching condition at the output
port, and hence gives a still higher transducer gain. This contradicts the
assumnption that Z, gives the highest transducer gain under the matched
condition at the output port. We, therefore, conclude that when the generator
and load impedances of an unconditionally stable amplifier are allowed to
change arbitrarily, provided their real parts are positive, the maximum
transducer gain is obtained when both ports are simultaneously matched.

Let us consider the canenical form of an unconditionally stable amplifier.
If the amplifier does not contain a positive resistance, the real part of the
impedance Iooking into one port of the amplifier must become negative
when the termination at the other port becomes almost purely reactive.
Consequently, there must be a positive and a negative resistance in the
canonical form of an unconditionally stable amplifier to ensure the impedance
has a positive real part. The equivalent circuit is shown in Fig. 7.10. Let Z,
and Z, be the reference impedances at the input and output ports used to
define the scattering matrix such that ReZ, > 0,ReZ, >0, §;; =0, S5, =0.
Note that we can assume |S,;| > 1, since |.S,,|? is the maximum transducer
gain of the amplifier.

I
. z
Ry bl 1 9
[ E
| o
c
O—
& 7.7
LA T L' 'L
i
_0—4

Fig. 7.10. Equivalent circuit of an unconditionally stable amplifier.

Now assume that port IV in Fig. 7.10 can be effectively disconnected
from port1l by choosing a proper generator impedance, then M, is
realized provided an appropriate load impedance is chosen to satisfy the
matching condition at the output port. The existance of such a load imped-
ance with a positive real part is guaranteed by the unconditional stability.
Let us now investigate whether or not ports IT and IV can be effectively
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disconnected as assumed above by connecting some Z, with a positive real
part at port . When Z, (with no voltage source in series) is connected to
port I,

a, =rib, (7.01)

where r, is the reflection coeflicient of Z, with respect to Z,* as shown in
(7.55). Since the voltage sources in Fig. 7.10 are independent of each other
and the circuit is linear, the principle of superposition holds, and we can
assume that a, = a; = 0 when investigating the effect of a, on the output
port. Remembering that 8, =0, the first two scattering equations then
become

by =Syay + Sysay

by, =8,,40,,
Substituting (7.61) in the second equation and solving for b,, we obtain
by, =(S;,r 814 + 8,4) a4
Therefore, if we choose Z, such that
Fi=—1(574/5:.54) ‘ (7.62)

then ports II and IV are effectively disconnected. In order to ensure
ReZ, > 0, we have to show that |rj| < 1. From the lossless condition (7.31),
the 11, 22, and 12 components give

[S12l* = 1+ (S, = Islslz
(S5 — 1+ 182417 =1S,4)°
|S13323| = 1514524|

respectively. Multiplying the left-hand sides of the first and second equations
and equating the result to |$,,5,4)%, which is equal to 18,3575/ from the
equation, we obtain

(1S241* = D (IS12® = 1)+ 1S24* (1S121* = 1) + 15,42 (1S4 — 1) = 0
which is equivalent to
(U= 1SL1") {L+ 18242 (1520 = 7'} =[S, (7.63)
Since [S,,|* > 1, and from (7.60)
|S121* < 182,72
the substitution of |§,,|? by |.S,,]* in (7.63) gives
(L= 1820 D {1 + 1824 (1821 * = 1)7"} < 1Syl

ST e STy
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which reduces to
(S, -1+ 1S,41% < f51432:|2

However, since |.S,,|% > 1, this shows that
|SZ412 < |Sl4S2l|2

which guarantees |r,| <1 from (7.62).

From the above discussion, we conclude that M, can be realized by
choosing proper generator and load impedances when the amplifier is
unconditionally stable. In other words, neither feedback nor a circulator
is necessary to obtain the optimum nois¢ measure. If the generator and load
impedances are specified beforehand, we can insert lossless two-port net-
works at the input and output ports to transform these impedances to
appropriate values. The unconditional stability at one frequency does not
guarantee the same stability at other frequencies. If adjustable circuits are
inserted at the input and output in order to obtain M., the system may
oscillate at some other frequency. The circuits which transform the generator,
and lead impedances for M, must, therefore, be designed carefully in order
to maintain negligibly small insertion loss at the desired frequency while at
the same time preventing possible oscillations at other frequencies.

7.4 Unilateral Gain

In Section 7.1, it was shown that the values of the resistances in the
canonical form are invariant to nonsingular lossless transformations. These
invariants are unique in the sense that they and their functions are the only
invariants. However, if the transformations are assumed to be reciprocal as
well as lossless, we can expect still more invariants. In fact, there is at least
one more invariant called the unilateral gain which is defined by

|det (Z — Z,)
=— — = (7.64)

det(Z + Z*)
In this section, we shall prove the invariance and then rewrite the formula
in terms of the scattering matrix in order to see the origin of its name.

Suppose that an n-port network having an impedance matrix Z is trans-
formed into another n-port network by a nonsingular, lossless, reciprocal
2n-port network. The new impedance matrix Z' is given by (7.13). The
lossless condition for the 2n-port network is expressed by (7.15). The
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reciprocal condition gives
Zio=2Zyy, Z,, =Ly, , Zy, =1, (7.65)

Combining (7.15) and (7.65), we see that the component matrices are
expressible in terms of real matrices X,,, X,,. X,, as follows:

Zaa = jxaa H Zab = jxab £ be = ijb

where X, and X,, are both symmetrical with respect to the main diagonal,
and X, = (X,,)..- In terms of these real matrices, (7.13) becomes

Z’ = Xba (Z +jxaa)_1 xab + ijb (766)

An inspection of (7.66) shows that the impedance transformation can be
decomposed into three different types of transformation:

(i) Z’ = Z+jX, where X, =X;
(i) Z'=XZX,,
(iii) Z’=2Z"".

where X represents an arbitrary real matrix;

If a certain quantity is invariant to these three transformations, it is also
invariant to the transformation given by (7.66). For the proof of the in-
variance of U, therefore, we have only to show the invariance during these
transformations. For transformation (i), we have

-2/ =Z+jX—(Z,+jX)=Z-Z,
2+ 2L =Z+jX+(Z*~jX)=Z+ Z*
and hence U is invariant. For transformation (ii), we have
' -7/ =X7X, - (XZX), = X(Z - 2)X,,
L+ 2% =XZX, + (XZX)* = X(Z + Z%) X,
Using these relations, U’ is calculated to be

|det(Z' = Z,)| _ |detX| det(Z — Z,)|
T det(Z +Z'*)  (detX)* det(Z +Z%)

t

and hence U is again invariant. Finally, for transformation (iii) we have

z -1 =2""(Z-Z)(-Z)"
Z: + Zf* — Z—I(Z + Z*) (Z*)-—l

T R
R i
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and hence
,_|det(Z' = Z/) _[detZ'[* |det(Z - Z,)| U
S det(Z' 4+ Z%)  |detZ Y2 det(Z + Z7)

This completes the proof that U/ is invariant to nonsingular, lossless, recip-
rocal transformations.

Let us next consider how to express U in terms of the scattering matrix S.
Using (5.79), Z — Z, can be rewritten in terms of S as follows:

Z—-Z,=F'I-8)""{SG+G")F(I1-8,)
—(I-8S)F{GS,+G*)}(I-8) ' F!
=F 'I-S) ' {SF*(G+G")-F*(G+G")S}(I-8)'F!
=1F '1-8)'(SP-PS)(I1-S) 'F! (7.67)
Similat:ly, Z + Z* becomes
Z+Z2*=F '{I-S)'(SG-G+G+G")
+(I-SH1(S*GT -G +G* +G)} ¥
=F ' {-1+(I-8)""+(1-8*""}{(G+G")F
=3F'd-8)"'{-(1-S8)(I-8%
+(I-S+A-S)a-s"""'pPF!

=IF '(I-S)" ' I-8SSH{IT-S*"'PF! (7.68)

Substituting (7.67) and (7.68) into (7.64), we obtain the desired expression,
det(SP - PS

dot(SP - PS)) )

" detP det(I - SS*)

Suppose that a two-port network with unilateral gain U/ is imbedded in a
nonsingular, lossless, reciprocal circuit and that 5, of the resultant circuit
becomes zero; i.e., the circuit is unilateralized. The U of the unilateralized
circuit should remain the same as before because of the invariant prop.rty.
With §); =0, the generator and load impedances do not affect the output
and input impedances, respectively, thereby permitting the input and output
ports to be matched independently of each other. This means that it is
always possible to assume that S;;, =0 and §,, = 0 for the unilateralized
circuit by using proper reference impedances. Equation (7.69) then becomes

U=pp, |521i2

When p; =p, =1, U represents the maximum fransducer gain of the uni-
lateral circuit which explains why U is called the unilateral gain.
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A method for unilateralizing a two-port network is illustrated in Fig. 7.11.
The box between ports I and II represents the given two-port network to be
unilateralized. First, a reactance jX is connected in series with port Il to
bring V,’ into phase with ¥, when I; =0. Next the ideal transformer is
adjusted to cancel V; so that V}’ becomes zero. Zj, of the transformed

i Y l Vs l Vo

Fig. 7.11. Unilateralization of a two-port network.

circuit then becomes zero by definition, and the corresponding S, vanishes
from (5.78), i.e., the circuit is unilateralized.

7.5 Tunnel Diode Amplifiers

If we measure the terminal characteristic of a tunnel diode, we shall find
a certain range of bias voltage in which the current decreases as we increase
the voltage as shown in Fig. 7.12. Let us fix the bias voltage V; somewhere

I4

O< T
.-
<¥

Fig. 7.12. I-V characteristic of a tunnel diode.
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in this range and superpose a small microwave signal. Then, when the alter-
nating voltage swings in the positive direction, the corresponding alternating
current swings in the negative direction and the device exhibits a negative
resistance characteristic. The magnitude of the negative resistance is given
by the inverse of the slope of the I-V characteristic at the bias point; i.e.,
cotf = — R. Once a negative resistance becomes available, an amplifier can
be built as we discussed at the end of Section 5.8. Before we discuss the
amplifier, let us study the origin of the negative resistance characteristic and
then construct a simple equivalent circuit for a tunnel diode. To do so, we
must first give an elementary discussion of semiconductors.

As is well known, light is one form of electromagnetic energy that prop-
agates as a wave. However, when it strikes a photoelectric surface, it behaves
as though it were a particle. To express this corpuscular nature of light,
the name photon is ordinarily used. The photon is considered to be asse-
ciated with the light wave. The probability that a photon is found at a
certain place is proportional to the square of the wave amplitude at that
point. In much the same way, an electron is also associated with a wave.
Inside an atom, a standing wave is formed for each electron around the
nucleus, and the probability of finding an electron at a certain point is
proportional to the square of the amplitude of the corresponding standing
wave at that point. Only certain functions are acceptable for representing
such standing waves since each has to be a single-valued continuous function
of position while its integral over the whole space must be finite. The electron
associated with a certain standing wave has a certain energy determined by
the corresponding wave function. Therefore, in a steady state, electrons
inside an atom can have only discrete energies. This situation is similar to
that of a resonant cavity in which only certain field patterns are allowed to
exist, and each has its own resonant frequency.

If we consider the electron as a particle, it has a certain potential energy
due to the attractive force from the positive charge of the nucleus, and
kinetic energy due to its motion inside the atom. The graph of potential
energy as a function of the distance from the nucleus should look similar to a
morning-glory flower whose cross section is shown in Fig. 7.13. Suppose
that the electron has total energy E, and that a horizontal line is drawn at
£=E,. The region between the two intersections with the potential curve
represents the space within which the electron can exist as a classical particle.
At each intersection, all the kinetic energy is replaced by potential energy,
and hence the particle with energy £, is not permitted to move beyond this
point. It could be imagined that there is a fictitious “potential wall” along
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Fig. 7.13. Potential energy as a function of distance in an atom.

the potential curve, However, the standing wave associated with the electron
does not necessarily vanish beyond the potential wall since around the atoms
there is nothing which behaves like a perfect conductor to reflect the wave
completely. This means that there is a finite probability of finding the
electron beyond the potential wall; therefore, the horizontal solid line
representing the space within which the electron is allowed to exist should
be considered to extend beyond the potential wall, tapering off quickly with
increasing distance.

There is a limitation to the number of electrons which can belong to each
wave function, i.e., which are associated with the same standing wave
pattern. No more than two electrons can belong to one wave function, and
they must have the opposite spin orientations if they belong to one wave
function. When two electrons belong to one wave function, an additional
electron has to belong to another wave function, generally with different
energy. Furthermore, the first two electrons usually belong to the wave
function with the lowest energy, and the next two electrons to the wave
function with the next lowest energy, and so forth, until all the electrons in
the atom belong to certain funcitions with the lowest possible energy.

So far we have discussed electrons in a single atom. Next, we discuss many
atoms which come close together to form a crystal. As atoms approach one
another, the electron wave functions of different atoms start to interfere
with each other, and each energy level splits into many different levels. This
is similar to the split of the propagation constant of two identical waveguides
coupled together. When the crystal is formed, some of the wave functions
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extending over large distances from the nuclei interfere with each other
so strongly that they lose their identity. In other words, it is no longer clear
to which atom they belong, and they spread over the entire crystal. Their
energy levels are crowded together and occupy some form of band as shown in
Fig. 7.14. Each horizontal line roughly shows the range where the electron
belonging to the corresponding wave function can exist. Each wave function

ENERGY

DISTANCE

Fig. 7.14. Energy bands in crystal.

can accommodate no more than two electrons as before; and, under this
condition, electrons try to belong to the wave function with the lowest
possible energy, or equivalently, to be in the lowest possible energy state.
Therefore, all the wave {unctions up to a certain level are filled with electrons,
and wave functions above that level are left empty. However, if the atoms
vibrate strongly due to heat, some of the electrons obtain energy from the
vibration and jump up to the higher energy states which were originally
empty. The probability f(£) that electrons occupy a certain energy state
therefore appears as shown in Fig. 7.15. At absolute zero temperature, the
probability is unity up to a certain level and zero above that level as shown
in Fig. 7.15(a). As the temperature increases, the probability that electrons
take high energy states increases, and the probability for low energy states
correspondingly decreases as shown in Fig. 7.15(b). This is the Fermi-Dirac
distribution law. The horizontal dotted line in Fig. 7.15(b) shows the Fermi
levels where the probability becomes one half.

Various phenomena of electric conduction can be explained using the
energy bands described above and the Fermi-Dirac distribution law. Ordinary
metals have an energy band which is only half filled by electrons with the
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Fig. 7.15. Probability f{E) of electron cccupancy of available states: (a) T = 0°K;
(b) At a higher temperature.

upper part left empty. When an electric field is applied, the electrons in this
band move in the opposite direction associated with the wave packets made
up of several empty wave functions just above the original states. A large
field is not necessary to start net electron motion or conduction; hence,
metals are good conductors. The half-filled energy band is called the con-
duction band.

For insulators, one energy band called the valence band is completely
filled with electrons and the conduction band above it is empty. The energy
gap between them is so large that the electrons in the valence band can
hardly be excited into the conduction band. Since there is no room for
electrons to move in the valence band and no electrons existin the conduction
band, electric current cannot be induced by an ordinary electric field, which
is the basic property of insulators.

For intrinsic semiconductors, the energy gap between the valence and
conduction band is small, and some electrons from the valence band can be
excited into the conduction band by heat leaving behind some room for
electrons in the valence band to move. The vacancy each electron leaves
behind in the valence band, when it is excited into an upper level, is called a
hole. When electrons in the valence band move about using these vacancies,
the holes may be considered to move in the opposite direction. Holes,
therefore, behave like particles each with a positive electric charge e, where
— e is the electron charge. When an electric field is applied, electrons and
holes move in the conduction band and valence band, respectively, and
contribute to the conduction current. However, the number of electrons
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and holes available for this net motion is small, and the conductivity is
small compared to metals, which is the reason for the name semiconductor.

For impurity semiconductors, Fig. 7.14 is modified by the presence of
impurity atoms as shown in Fig. 7.16. When the energy level of an empty
wave function of the impurity atom is located just above the valence band as
shown in Fig. 7.16(a), the semiconductor is said to be a p-type. On the other
hand, when the energy level of a filled wave function of the impurity atom
is located just below the conduction band as shown in Fig. 7.16(b), the
semiconductor is said to be an n-type. Electrons in the valence band in a
p-type semiconductor can be excited by heat to jump into the empty level
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Fig. 7.16. Energy bands and impurity levels in impurity semiconductors: (a) p-type
semiconductor; (b) #-type semiconductor.
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of the impurity atoms creating holes in the valence band. Similarly, the
electrons of the impurity atoms in an r-type semiconductor can jump into
the conduction band ready to participate in electric conduction. In either
case, conduction current takes place when an electric field is applied. If we
indicate the band edges and the energy levels of the impurity atoms, neglecting
the potential walls of atoms as well as the detailed structure in the atoms,
Figs. 7.16(a} and (b) become Figs. 7.17(a) and (b), respectively. The Fermi
level of each case is indicated by the dotted line. At room temperature,
some of the impurity atoms in the p-type semiconductor receive electrons
from the valence band and are negatively charged or ionized. On the other
hand, some of the impurity atoms in the n-type semiconductor give up elec-
trons to the conduction band and are positively ionized, as illustrated in
Fig. 7.17. Although the impurity atoms are charged, the total number of
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Fig. 7.17, Energy band structures of impurity semiconductors: (a) p-type semi-
conductor; (b) #-type semiconductor.

electrons in the crystal remains the same, and hence the crystal as a whole
is neutral.

Now, suppose that the p-type and n-type semiconductors come into con-
tact. If the Fermi level of the n-side is higher than that of the p-side, electrons
move from the #-side into the p-side where more empty states are available at
the same energy level; the p-side then becomes negatively charged and the
n-side positively charged. Since the vertical axis of our diagram indicates the
energy of electrons, the potential is lower towards the top. Thus, the nega-
tively charged p-side risés as a whole and the n-side goes down, as shown

%
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in Fig. 7.18, until the Fermi levels on both sides coincide. Under this coin-
dition, the probabilities that available states are occupied by electrons are
the same on both sides at each energy level, and no further transfer of
electrons takes place. Electrons near the junction in the s-region are trans-
ferred into the p-region where they recombine with holes and disappear.

p-TYPE | n-TYPE

ENERGY

DISTANC—E

Fig. 7.18. Energy band structure at the p-» junction.

Thus, free charge carriers near the junction are depleted, and the charged
impurity atoms build up a strong field which provides the necessary potential
difference to make the Fermi levels on both sides coincide,

If we connect a battery to make the p-side negative and the r-side positive,
the p-region rises in Fig. 7.18, the n-region goes down, and at the same time
the depeleted region becomes thicker to accommodate the externally applied
potential difference. Both positive and negative charges in the depleted region
increase as the region becomes thicker, and since the charges increase as we
increase the applied voltage, the junction behaves like a capacitance. This
capacitance is called the depletion layer capacitance.

If we connect the battery in the opposite direction, the p-region goes down
and the n-region rises, in Fig. 7.18, Electrons then move from the s-region
into the p-region where empty states are available abundantly at the same
energy level. Since electrons move from the n- to p-sides, net current
flows from the p- to m-sides. This is called the forward direction of the
junction, and the forward current increases as we increase the applied
voltage. When the current flows, excess electrons (holes) in the p-region
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(n-region) build up a net negative (positive) charge which increases with
increasing current, and hence with increasing voltage applied to the junction.
This stored charge introduces another capacitance effect called the diffusion
capacitance. The depletion layer and diffusion capacitances combined are
called the junction capacitance.

Suppose that the number of impurity atoms increases so that one out of
every 1000 atoms in the crystal, or equivalently, one out of every ten atoms
in one direction is an impurity, then the wave functions of the impurity
atoms begin to interfere with each other, and their energy level splits thus
forming a band structure, as before. This energy band is connected to the
bottom of the conduction band in the case of n-type semiconductors and
to the top of the valence band in the case of p-type semiconductors. The
resultant conduction or valence band is now only partially occupied by
clectrons and behaves like the conduction band in metals. The conductivity
of such semiconductors is therefore high. Furthermore, the depletion layer
at the junction between two such semiconductors becomes very thin since,
with the high density of ionized impurity atoms, only a thin layer is required
to build up the potential necessary for the Fermi levels on both sides to
coincide. Under this condition, the wave functions on the opposite sides of
the depletion layer interfere with each other, The interference may be weak;
nevertheless, just as we saw in the discussion of coupled modes, the amplitude
of one wave is transferred to the other through the interference, which means
the particle in one region is transferred to the other through the interference.
Even when no voltage is applied to the junction, electrons are constantly
moving from the p- to n-region and back due to the wave interference.
However, since the number of electrons moving in one direction is equal
to the number moving in the opposite direction, no net current is obser-
ved.

Let us calculate the number of such electrons moving back and forth
through the junction. To do so, let g (E) be the number of wave functions
in a unit energy interval, counting twice each function for electrons with
opposite spin orientations. Let f(E) be the probability of available wave func-
tions being occupied by electrons at energy level E. Subscripts # and p will
be used to express the quantities in the #- and p-regions. We first consider
the transfer from the n- to the p-region. The number of electrons in the
n-region in a small energy interval AE is given by ¢,(E) AEf,(F), the
number of available states times the probability of occupancy. The number
of available empty states in the p-region is given by ¢,(E) AE{l — f,(E)}.
Let a be the probability that an electron on one side is transferred to an
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empty state on the other side. Then the number of electrons moving from
the n- to p-region in AFE is given by

ag,(E) AE f,(E) a,(E) AE{1 — f,(E)}
The transfer with a large energy change is unlikely since it corresponds to
the interference between two waves with quite different propagation con-
stants. If we neglect the effect of such a transfer, the total number of ¢lectrons
moving from the #- to the p-region is given by

2. (a AE) ¢,(E) f,(E) ¢, (E) {1 — f,(E)} AE

E

Similarly, the total number of electrons moving from the p- to the p-region
is given b
BN T (0 48) 0, (B) 1, () 0u(E) (1 ~ fo(E)} AE

Therefore, remembering that the electron charge is negative, the net current
from the p- to the n-side must be proportional to

% (a AE) 0, (E) 0,(E} {f,(E) — f,(E)} 4E

When the Fermi levels on both sides coincide, f,(E) is equal to f,(E)
for each E and the net current vanishes. If a small forward bias is applied
and the p-side potential is raised to lower the Fermi level, f,(E) — f,(E)
no longer vanishes in the vicinity of the Fermi levels and some net current
results. At the edges of the energy bands ¢ (E) and ¢,(E) generally look like
Figs. 7.19(a) and (b), respectively, in which the Fermi levels are shown by

- L -~ »

Py E) £, (E) f(E) f B A A A AT

(a) {b) (c) {d) (e) (f}

Fig. 7.19. Explanation for the origin of tunnel current.
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the dotted lines. Figures 7.19(c), (d), and (e) show the relation between
Jo(E) and [ (E), f,(E)—f,(E), and ¢,(E)g,(E), respectively. From these
figures, we see that g, (e) ¢, (e) {/,(E) — f,(E)} should look like Fig. 7.19(f).
Since this has nonzero values only over a narrow range E, the transfer
probability @ can be considered to be a constant over this range, and hence
the net current is proportional to the area inside the curve. If the applied
voltage is increased further, the range over which f,(E) — f,(E) does not
vanish increases. On the other hand, the range over which g,(E)¢,(E) has
nonzero values decreases. When the overlap of two energy bands disappears,
the area under the curve ¢,(£) ¢,(E) {f,(E) — f,(E)} vanishes and the net
current disappears, When reverse voltage is applied to the junction,
{fu(E) — f,(E)} becomes negative, and the range for nonzero g,(e) ¢,(E)
increases rapidly with increasing reverse voltage. Consequently, the net
current due to the wave interference through the junction varies with the
applied voltage as shown by the solid line in Fig. 7.20. The dotted line in
Fig. 7.20 shows the current through the junction due to the mechanism

by |
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Fig. 7.20. Tunnel current versus applied voltage at the junction.

explained in connection with Fig. 7.18. If we add these two current compo-
nents, we obtain the 7~V characteristic shown in Fig. 7.12.

Classical particles cannot exist behind a potential wall; however, due to
their wave nature, electrons can exist behind the wall where classical
particles are forbidden. This effect is called the tunnel effect since electrons
can penetrate the potential wall as if there were a tunnel through it. The

" S
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tunnel diode is named after this effect since it utilizes a similar wave nature
of electrons,

In addition to the negative resistance discussed above, the junction of a
tunnel diode has capacitance as do other types of junctions. Furthermore,
the junction current flows through the semiconductor regions which act as a
series resistor. Consequently, an equivalent circuit for the diode becomes the
paralle] connection of the negative resistance and the junction capacitance
in series with the small positive resistance . In addition, there might be a
small series inductance due to the lead wire or whisker connected to the
diode wafer inside the capsulation. However, it can beincluded in the external
lossless circuit, and hence it is not considered here.

Let us investigate the possible noise sources in the diode. The small
resistance r representing the semiconductor body is an ordinary resistance
and has an available noise power T8 when its temperature is T °K. In the
series representation, the mean square value of this noise voltage is therefore
given by

{e*> = 4kTBr (7.70)

In addition, we must consider the shot noise introduced when current flows
through the junction. Suppose electrons traverse a certain gap which is not
conductive. As each electron approaches the anode an electric charge is
induced in the anode which is neutralized by the charge of the electron when
it arrives, Hence, the current flowing into the anode consists of a large
number of short pulses as illustrated in Fig. 7.21. The average of this
current gives the dc component I, through the gap. At the same time, a
noise component is produced since the position of each pulse is entirely
random; this noise is large when I, is large. A statistical discussion, which we
shall not present here (see Problem 9.5) shows that when the pulse width is

CURRENT

t
Fig. 7.21. Explanation of shot noise.
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sufficiently narrow compared to one cycle of the frequency of interest, the
mean square value of the noise current is given by

(i,t> = 2el,B (7.71)

This is called the shot noise. The depletion layer at the junction is not
conductive, and it produces the shot noise given by (7.71). For I, we have
to add the currents due to electrons flowing from the p- to the n-region in
addition to those flowing in the reverse direction. Consequently, I, is
generally larger than the terminal current / which is given by the I-V
characteristic of the diode. For most diodes, however, I, is only 20-30%
larger than I at ordinary operating points, and, for some good diodes, the
discrepancy is considerably less. If we include these noise sources in the
equivalent circuit of the diode, we obtain Fig. 7.22.

[+]

¢+ §-R CTD <if>=:zelyd

<ed> = 4kTBr

Fig. 7.22. Eglivalent circuit of a tunnel diode.

Amplification is possible only when the real part of the impedance
looking from the terminals is negative. The impedance Z is given by

1 R wCR?
+ e = ———— L —— (7.72)
—(1/R) + joC 1 + (wCR) 1+ (wCR)
In order to make the real part negative, w must be lower than
@, =(CR)™* {(R — r)jr}'’? (7.73)

where @, is called the cutofl angular frequency beyond which the diode
becomes a passive element. If R > r, as is usually the case, (7.73) reduces to

w,~C YRy  (R>»r) (7.74)

R R € it el i
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In order to estimate the optimum noise measure M, obtainable with a
tunnel diode, let us next calculate the open-circuited noise voltage at the
terminals. Let v, represent the noise voltage due to the shot noise, then we
have
iy

" —(1/R) + joC

v,

and hence
2

2 s 2
b, =TT A .
N 1 + (wCR)? N
The noise voltage due to the series resistance » and the shot noise voltage
are independent of each other. The mean square value of the total noise

voltage (V> is, therefore, given by
2

R
WD =< + <0, =4kTBr+ — . _ 21 B
" N 1+ (wCR? ™ °
The exchangeable noise power P, is equal to ¢(V,2) divided by four times
the real part of Z in (7.72), and from the discussion given in Section 7.2,

M, becomes

_—P H
" kT.B  4ReZkTB
{ r R (w}o. ) } T R LR 1

R=r R=r 1= (o § T, R - r@kTje) 1~ (/o)
(1.75)

which reduces to
(wjo)* T N I,R 1
P —(wjo) T, (2kTje)1 — (wfn,)?

(7.76)

when R» r,

If we draw a straight line tangential to the I~V characteristic at the
operating point as shown in Fig. 7.12 and let ¥, be the intersection with the
V-axis and ¥, be the bias voltage for the operating point, then the difference
Vi —V, gives IR. Since I, is generally 20-30% larger than J, LR will be
obtained by increasing the value of IR by the same percentage. In addition,
2kT /e is approximately equal to 0.05V when T; = 290°K. If the diode is at
room temperature, we may assume that 7=~ T,. Substituting these values in
(7.76), M., can be calculated as shown in Fig. 7.23. The abscissa shows wjm,
and the ordinate M, times T,. [F, =10 log,o(M +1); T; = 290°K]. From

opt
the curve corresponding to an appropriate value of IyR, the best M,
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Fig. 7.23. Mopt X T: versus w/w. with IoR as a parameter.

obtainable with a given tunnel diode can be readily estimated. To realize
M,,, the diode impedance is transformed to an appropriate value Zry
through a lossless circuit and is then connected to the generator and load
through a lossless circulator as shown in Fig. 7.24. If the reference imped-
ance of the circulator at port 111 is Z, and Z; is connected to this port, the
gain is given by

G =(Zr - Z)(Zr + Z5*)*
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GENERATOR

Fig. 7.24. Realization of Mop:.

as we discussed in Section 5.8. If a larger gain is desired, the circuit must be
adjusted to make — Z; close to Z;* without exciting possible oscillations.

In practice, the circulator as well as the impedance transforming circuit
has some insertion loss; hence, the noise measure realizable with a given
tunnel diode is always worse than the value calculated as above. The
circulator insertion loss is usually of the order of 0.1-0.3 dB, and the noise
temperature ratio T, /T; of the amplifier in dB increases by approximately
the same amount provided the circulator temperature is close to T,. On the
other hand, the transducer gain decreases by twice this amount. Taking
these factors into account, the noise measure obtainable in practice can be
estimated from (7.37),

7.6 Manley-Rowe Relations

A circuit element which destroys the linear relationship between the
terminal voltage and current is described as being nonlinear. When a non-
linear element is lossless, it is called a nonlinear reactance. Suppose voltage
at angular frequencies o, and w, are applied to a nonlinear reactance, then
we expect that harmonics at frequencies expressible in the form [maw; + nw,)|
may appear, where m and » are positive or negative integers. Let us assume
that no other frequency components exist and that the two voltage sources
are independent. Then we have

2 & mbP,
mn__ 7.77)
mgo n=z—go mws + nwp (

m,

m=—o n=0 mws + i’lwp

=0 (7.78)
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where P, , represents the net power into the element at |maw, + nw,). These
two relations are called the Manley-Rowe relations, and we shall derive
them for a nonlinear capacitance using the relation

v=f(q) (7.79)

where v is the terminal voltage, ¢ is the stored charge, and f{g) represents a
single-valued function of g. In the derivation for a nonlinear inductance
case, we have only to replace (7.79) by i =f{¢), where i is the terminal
current and ¢ is the magnetic flux through the inductance.

By hypothesis, the voltage has nonzero components at lmo, + nw,|
only, i.e.,

g
Y. A, .cos{mw, + no,)t + B, ,sin(mo, + nw,) t

n=-

D=
m

s $098

Y (Vy alyf2) efmetrann (7.80)

m=-wn=-

where
|4 n:(Am,n_ij,n)/'\/za V*m,*l’l:(Am,n-l_ij,n)lf\/j! VO,OZ\/ZAO.O

The factor /2 in (7.80) is introduced so that ¥, , can be interpreted as the
effective value of the voltage at mw, + nw,. Note that

Ve w=V¥a

Similarly, the stored charge can be written in the form
g= Y X (Qua/J2)emerrenr (7.81)
m= - R= — o ’

where the (), ,’s are expansion coefficients and

%
Qm,u = Q—m, —n

Let us assume that the infinite series

oo o .
: f(m nop
Y Y i(ma,+new,)Q, e
m=-—mn=—uw
converges uniformly, then the current can be expressed as:

i=(gidy= 3 3

m=—0wn=—w

Im, n/\/z) e;‘(mws s

where
L, .=jlmo,+ nw,) 0, , (7.82)
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The average power flowing into the nonlinear capacitance at |mw, + He |
is given by
Pn.=Re{V, I} 1=

m.nom,n

l( m,n m n + V: nIm H) (7'83)

From the lossless condition, the total power into the capacitance must be
equal to zero;

> P,.=0 (7.84)

where the summation is taken to include the power corresponding to each
frequency only once. To facilitate the following calculation, let us rewrite
(7.83} as follows:
Bpa=WyntW_, _, (7.85)
where
W =7 (V n m n + V* I )
= 3 (mo, + nw,,)( VonaQu + V2 Q). (1.86)

Then, (7.84) can be rewritten in the form

or equivalently,

o L et ], Ll om
M, +mo M, +ncu

Since (7.79) holds regardless of the values of w, and w,, we see from (7.80)
and (7.81) that each V,, , can be considered as a function of the O,.,,'s only.
Then, (7.86) shows that W nllmoy + nw,) is a function of the Q,, ,’s only
and 1s independent of w, and @,. Suppose we vary w, and @, independently
while keeping the @, ,’s the same (the external circuit condition will have to
be changed as w; and w, change in order to accomplish this), then from

(7.87) we see that
X X =0 (7.88)
mam, + Rw,

m=—o n=—uw

Z Z o, +nw _ =0 (7.89)

Otherwise, (7.87) is not satisfied during the variation. Equation (7.88) is
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equivalent to

Z Z Z Z =0 (7.90)
maw; + nm ma, + HO)

m=0n=—ow m=—o) = — W

Changing the signs of m, n and using the relation W, ,= W_, _, which
can casily be derived from (7.86), the second term on the left-hand side

becomes
Zme+nw Z me+nw

m=w n=cwo m=0n=—-w®

Substituting this into (7.90), we obtain (7.77). Similarly, from (7.89) we
obtain (7.78). This completes the derivation of the Manley-Rowe relations.

Let us consider some simple applications of the Manley-Rowe relations.
Suppose that a large voltage at w, is applied to a nonlinear reactance, for
example, to the junction capacitance of a diode, and a small signal voltage
al w, is superimposed. The large voltage is called the pump voltage, and w,
the pump (angular) frequency. If the nonlinear reactance is reactively
terminated at all frequencies except o, @, and @, = @, + @,, no net power
flow takes place except at these three frequencies. Rewriting Py ;, Py,

and P, , as P,, P,, and P,, respectively, the Manley-Rowe relations become
(Pfe,) + (Pujw,) =0 (7.91)
(Pyjw,) + (Pjw,) =0 (7.92)

From (7.91), we have
= Ps (Q)u],ﬂ')s)

This equation shows that P, is negative when P, is positive, where P, is the
power flowing into the nonlinear reactance at «,. This means that the
external circuit receives a net power at w, when the signal power is flowing
into the nonlinear reactance. If w,> ,, the output power at w, can be
made large compared to the available input power at «,, thus providing
power amplification. Because of the frequency shift, amplifiers of this type
are called up-converters. The discussion in Sections 7.1, 7.2 and 7.4 does
not apply to up-converters since input and output frequencies are different
in the latter. Combining (7.91) and (7.92), we have

P,+ P, =— P, {(w,fo,) + (w,/o,)} = —

where w, =, + w, is used. The above equation shows that the output
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power is made up of the signal and pump powers as expected from the
lossless assumption.

Next, suppose that the nonlinear reactance is reactively terminated at all
frequencies except m,, o, and w; = w, — o, then the Manley-Rowe relations
become

(Pjoo,) ~ (Pja) =0 (7.93)
(P,jo2,) + (Bfo) = 0 (7.94)

where P_; ; is indicated by P. If the external circuit is passive at w;, P,
must be negative, and hence P; becomes negative also from (7.93). In other
words, a net power is flowing out from the nonlinear reactance at w,,
which is given by

— P.=— Po,/v,)

If we adjust the external circuit properly so that |P| becomes large, then |P,]
will also be large. Therefore, as far as the circuit at e, is concerned, the
nonlinear reactance is behaving as a negative resistance, and an ampli-
fier can be built utilizing this property. Such an amplifier is called
a negative resistance parametric amplifier. For negative resistance para-
metric amplifiers, the output and input frequencies are identical, and
all the discussions given in the previous sections are directly applicable,
The circuit absorbing power at w,, which is an essential part of the amplifi-
cation process, is called the idler circuit, and o, the idler frequency. This
name is appropriate since the power at , is not directly utilized. Combining
(7.93) and (7.94), we have

— (P + P} = — {(wjw) + 1} P, = {(w,/w)+ 1} P, (wj0,) = P,

which indicates that the total power flowing out from the nonlinear reactance
at w; and e, is supplied by the pump, as expected.

7.7 Negative Resistance Parametric Amplifiers

In this section, we shall study negative resistance parametric amplifiers
which utilize the variable junction capacitance of a diode. Let » be the
voltage across the junction capacitance and g be the stored charge. The
relation between v and g is given by (7.79). Suppose a large voltage v,
having a fundamental frequency w, is applied to the junction and the
corresponding charge is given by g,. Then

by, = f(qp)
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The charge g, is a periodic function of tir_ne havir‘lg a fundamlental frequen}ciy

w,. Suppose a small signal voltage at w, is superimposed which changes the
P A

junction voltage v, and charge g, to v, + év and g, + dg, respectively. Then

v, + v = f(q, + dq) (7.95)
from which we obtain
Sv = 6[_((;_,,) dg (7.96)
éq,

Since g, is a periodic function of time and f is a single-valued function,
8f/dq, is also a periodic function of time having the same fundan.lental
frequency @,. Choosing the time origin properly, we can write ¢f/Cq, in the
form

1
01(4,) b T L cos w,t + - cos 20,8 4 (7.97)

8qp KO K] 2

which is simply the Fourier series expansion of the periodic function. Note
that Ky, K,. K, ... have the dimension of capacitance.
The functions dv and dq can be expressed as follows:

Sp = ZI (Um, "/\/2) ej(mws+nmp)f (798)
5 = 3" (ap,nly/3) 17700 (7.99)
where o= Gon =G = (7.100)

and Z’ indicates the summation with respect to m and » from — oo to + o0,
excluding those terms for which m=0. The junction current &/ corre-
sponding to dv is given by

3i =Y (ip,olnf2) €/ 000 (7.101)
where
i, n = J (M0 + 10p) 4o, (7.102)

Suppose that the external impedance is properly adjusted so that the
current can be neglected at all frequencies expressible in the form |me; + nwf,l
except @, and @, = w, — o, Then only four of the g, ,’s (m+# 0) remaimn
nonvanishing: ¢, o, 4-1,0» 41,1 and ¢,, ;. Because of (7.100), only t“_ro
of them are independent co let us try to write the voltages at w, and w; In
terms of these independent variables. If we substitute (7.97), (7.28), and
(7.99) into (7.96) and compare the terms with exp {jw,t} on both sides, we

¥
#
%
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obtain
v1.0 =(1/Kp) gy o + (1/2K,) qd1, -1

Similarly, comparing the terms with exp {j(w,— w,)t}, we have
vy, -1 =(1/Ky) g4, - + (112K)) 91,0

Using (7.102), the above result can be rewritten as follows:

1 1
bg=— — i — — i (7.103)
jo K, jon (2K,)
1 1
* . % .
pF=— 4+ — 7.104
! Jo K, E jws(zKl) s ( )

where v; o and iy ¢ are indicated by v, and i, since they are the voltage and
current at . Similarly, v, ; andi_, , are indicated by v;and i, respectively.
In addition, there may be nonzero voltages at other frequencies. However,
since the corresponding currents are zero by hypothesis, no net power
transfer takes place, and hence we do not bother with them.

From (7.103) and (7.104), we see that an equivalent circuit of the junction
is given by Fig. 7.25, in which the w; and w, circuits are drawn separately

| W K jw, K |
5 JwgKy 1Ky £
p— Il
1T
L K T
=i

Fig. 7.25. Equivalent circuit of a parametric Junction,

and 1/jo Ky and 1/jew,K, are the impedances due to the series capacitance
K, which play no essential role in the parametric amplification. The terms
containing 2K, which are drawn in the form of voltage sources are respon-
sible for the amplification. Figure 7.25 represents the diode junction only,
but in practice the junction current flows through the semiconductor part

which acts as a small, but finite, series resistance r. To take its effect into
account let us define 3, and 0, by

0, = (1w 2K r), @; = (1w,2K,7) (7.105)
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respectively. Remember that the @ of an ordinary cap.acitance C is defined
by I/wCr, and that the Q’s defined above ha\{e 2K,_ in .pIace. o'f C, where
2K, represents a capacitance component changing stxth time, 1t'1s therefore
logical to call §, and J, the dynamic Q of the varlabl‘e capacitance at w,
and o, respectively. Suppose that a load impedance is con.nected to the
w, circuit and let Z, represent the total impedance due to .] [jen Ky an.d the
load impedance in series, then the w;, circuit becomes the series connection of
r, Z,, a voltage source

Fig. 7.26. Equivalent idler circuit.

r and R, = Re{Z} are at temperature T and that v, represents the thermal
noise from these resistances, {v,”) is given by

{v,>> =4kT B(r + R) (7.106)
From Fig. 7.26, i, is calculated to be
== (r+2Z) " o, —jr(r+2) " i
The equivalent voltage source in the o, circuit shown in Fig. 7.25 is, therefore,
given by

I
Jo2K,

*

o~ 1.
= lerit* == jQ,r (" + Zl*)_l Un* - Qrerz (r + Zr*) Is
(7.107)

The second term on the right-hand side of (7.107) expresses the vogage
~ - i ]
developed across the impedance — 0, 0.r%(r + Z*)~" when J; flows. Con
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sequently, the equivalent circuit looking into the diode at w, becomes as
shown in Fig. 7.27, where <e,?) is given by

{e,>> = 4kT Br (7.108)

In order to obtain amplification, the real part of the impedance must be
negative:

Re{r— Q0,0 (r+2" "} <0 (7.109)
1
Jugky
|
e 2
~QQ.r
r+z;
f —jazr vp
r+Z;
——

r

Fig. 7.27. Equivalent circuit of the diode at w;.

The second term in the bracket becomes maximum when Z* is equal to zero.
Setting Z;* =0, (7.109) reduces to

r(it-=3g0)<o (7.110)

If w, and o, become large and §,0, becomes less than unity, (7.110), and
hence (7.109), cannot be satisfied and no amplification is expected.

Let us next calculate M,,. Since ¢, and v, are independent, the mean square
value of the open-circuit noise voltage V¥, is given by

2y = e?> + 0,25 10 Ir + 2,2

Substituting (7.107) and (7.108) and writing Z, in the form R, +jX, we
have

Va?> = 4KTBr + 4kTB(r + R) 027 {(r + RY? + X2}~1  (L.111)

The exchangeable noise power P, is given by (V,?> divided by four times
the real part of the equivalent impedance of the diode shown in Fig. 7.27.
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Since the real part is given by

r— 00, (r +R) {(r + R)* + X’}
we have
- P, T QFr(r+R)+(r+R) +X*
kT.B ™~ T, 00 (r + R) — {(r + R)* + X7}

This is the M,,, for fixed R, and X,. If X, is allowed to change, the M,,
reaches a minimum when X,?> =0, since the numerator increases and the
denominator decreases as X,;? increases from zero. This minimum value of
M, is given by

M, = (7.112)

T 0’r +(r+R)
T, 00— (r +R)

Furthermore, if R, is allowed to change, the best value of M, is attained
when R, =0 since the numerator increases and the denominator decreases

as R, increases from zero. The best M, is given by
T @7 +1
oot = = LN (7.113)
T,00: -1
which is obtainable when, and only when,
R, =0, X =0 (7.114)

or equivalently, when the external idler circuit is an inductance which just
cancels 1/jw,Ky. As in the case of tunnel diode amplifiers, M,, can be
realized by connecting the generator and load to the diode through a circu-
lator. The gain can be adjusted to a desired value, by inserting a proper
lossless circuit between the circulator and the diode.

If =T, Eq. (7.113) is a function of {, and §, only. Since §, is deter-
mined from J, and w/o,, M, x T; can be plotted as a function of J, with
w,/o, as a parameter. Figure 7.28 shows such a plot. From this, we see that,
for fixed {, there is an optimum value of w,/w, which gives the minimum
M.

Note that T is the diode temperature, and that a further improvement of
M, is expected if the diode is cooled. For example, the value of My % T
becomes 77.2/290 times the value shown in Fig. 7.28 when the diode is
cooled to the temperature of liquid nitrogen, and 4.2/290 times when
cooled to the temperature of liquid helium. It should be pointed out that
0, of a diode is a function of temperature, and hence the room temperature
value must not be used in the refrigerated cases. Furthermore, it should be
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Fig. 7.28.  Mopt X T versus Qs with oifess as a parameter.

pointed out that noise originating in the circulator may predominate in
such a low noise application unless the circulator is also cooled.

PROBLEMS

7.1 Obtain the canonical form of a triode assuming the equivalent circuit as shown in
Fig. 7.29.

7.2 Obtain the condition under which the triode can provide a positive resistance with
the noise temperature below 7,

<e2> = 4kTBR,

%

<v§>4kTBIj IO

Fig. 7.29. Equivalent circuit of a triode.
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7.3 Calculate the available and transducer gains of the amplifier shown in Fig. 7.30,
assuming Ry = R = 50 Q2 and R = 52 . Note: A tunnel diode with negligible
series resistance # can be represented by the circuit inside the dotted line.

7.4 Suppose that an amplifier 4 has 50 Q input and output impedances, and let G be the
transducer gain when the generator and load impedances are (50 4 70) Q. Inserting
the amplifier inside the dotted line in Fig. 7.30 in front of amplifier 4, calculate the
overall available and transducer gains of the cascaded amplifier. Also, calculate the
available and transducer gains of each component amplifier in the cascade connection,

e h|
| |
o— :
: !
R ! !
I
2.1
! C = §—R <'n>: § RT
I |
E | |
H i
] |
! ——
M )
L e 4

Fig. 7.30. An amplifier for which M. = Myt but M is poor.

7.5 The exchangeable gain G. of an amplifier is defined by the ratio of the exchangeable
signal power at the output port to the available signal power from the generator,
provided that the generator impedance has a positive real part. The exchangeable
noise figure Fe is the ratio of the exchangeable noise power at the output port to
kT;BG,, when the noise temperature T; of the generator is specified to be 200°K.
The exchangeable noise measure M, is defined by

_ Fe—1

1 — (/G2
Calculate the possible range of M. following the discussion for M given in Section
7.2, and show that the smallest positive value of M. is equal to Mop:. Also show that

M = M, whenever M is positive. This means that the evaluation of amplifier noise
performance by M is generally more critical than that obtained from Me..

e

7.6 Calculate M, and M for the amplifier shown in Fig. 7.30, and show that M. of this
amplifier is always equal to Mopt, regardless of the values of Ry, Ry, R, and C.
Although this type of amplifier can give a large available gain over a wide bandwith
and the noise performance expressed by M. is optimum, it is generally not considered
to be a good practical amplifier because of its low transducer gain and poor M,

7.7 Calculate the operating noise temperature of a parametric amplifier assuming the
output power is taken at the idler frequency.

7.8 Prove that é is invariant to nonsingular, lossless transformations.

§
4
i
#
3
§
:
!
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7.9 Let y1 and y2 be the eigenvalues of Z -+ Z+ of a two-port network, and prove that
= (n/inl) + e/ |72} (7.115)

is invariant to nonsingular, lossless, reciprocal transformations.

7.10 Prove that the two circuits shown in Fig. 7.31 have the same unilateral gain U/ but
that no lossless reciprocal network can transform one to the other. Note: For these

4

Fig. 7.31. Two circuits which have the same unilaterai gain but cannot be transformed
from one to the other by any lossless reciprocal network,

two circuits, the values of (7.115) are different. Consequently, the unilateral gain U is
not a unique invariant to nonsingular lossless reciprocal transformations,

7.11 Prove that the condition under which both input and output ports of a two-port
network {|S12812| # 0) can be matched simultaneously keeping the real parts of the
source and load impedances positive is given by

[S11]2 + [S22l? + 2|S12S22) < 1 + | 81082, — S11.522|2
When |$12812| = 0, the same condition is given by
|Slll <1, |Szz| <1



CHAPTER 8
ELECTRON BEAMS

A stream of electrons in free space is called an electron beam. It plays an
essential role in most microwave electron tubes such as k!)./strons and
traveling wave tubes. In this chapter we shall develop a sma'lll sngnzjtl tht?ory
for a simplified electron beam model in order to gain physical insight into
the behavior of the actual beam. It must be pointed out, hovf'e\fer, that the
small signal assumption imposes a rather stringent restrlctlon' on _the
applicability of the theory. For example, we cannot u§e the present discussion
to estimate some of the important parameters of microwave tubes, such as
efficiency and maximum output power.

We shall first construct the small signal model of electron beams and
study the properties of possible waves propagating along the model. Next,
the interaction between the electron beam and electrode gaps, as ‘we]l as tl_le
continuous interaction with a slow wave structure, w'ill be_: discussed ?n
detail together with an explanation of the signal amphﬁcgtmn process in
microwave tubes. The last section is devoted to a discussion of amplifier
noise performance that can be expected with a given electron beam.

8.1 An Electron Beam Model

To construct a simple yet useful electron beam model let us assume that -

the electrons in the beam move in the z direction only. The. transvel;ﬁz
motion can be restricted, for instance, by applying a high static magnetl

field in the z direction. o .
Corresponding to the electron motion in the z direction, there is current
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i.(r, 1), where r represents position (x, y, z). Maxwell’s equations then
become

VxE(r,t)=—,u£—H(r,t) (8.1)

V x H(r, () = ki (r, 1) + 6(% E(r, 1) (8.2)

Electrons in the beam are accelerated by the electric field E,(r, ). The
equation of motion is given by

C o) =~ e 8.3)

where m is the clectron mass 9.108 x 1073 kg, e is the magnitude of electron
charge 1.602 x 107'° coulomb, o(r, ¢} is the electron velocity, and d/dt
indicates the total derivative with respect to time. Let d/dt indicate the partial
derivative with respect to time; i.e., the derivative taken at a fixed point r
as usual, then we have

d i) dz @

—v(nt)=—o(m, )+ - —ofr, ¢t

0= o0 o o)
Substituting the above equation into (8.3) gives

¢ 0
5 VD o0 ) =0 ) = r%E (r, 1) (8.4)

where dz/dt = o(r, 1) is used.
The equation of continuity, expressing the conservation of charge, is given
by

o 0
5 D=~ o) (8.5)

The current density is equal to the product of charge density and electron
velocity, i.e.,

(5 1) = o(r, ) o(r. 1) (8.6)

All the quantities introduced above may have two distinct components,
the stationary and alternating components, Since the'alternating components
are sufficiently small under the small signal assumption, the product of two
alternating components can be neglected compared to the product of
corresponding stationary and alternating components. A consistent model
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can be obtained by taking into account the stationary and fundamental
frequency components only while neglecting all the possible higher harmonics.
This reasoning enables us to assume the following relations:

E(r, f) = Eo(r) + Re {/ZE(r) eff‘}
H(r, 1) = Hy (r) + Re {{/ZH(r) """}

i, (r, 1} = i, (r) + Re {{/2i, (r) &) (8.7
v(r, 1} = vy (r) + Re {{/2v(r) &'}
e(r, ) = go(r) + Re {20 (r) ¢}
Substituting (8.7) into (8.1) and (8.2), we obtain
VxEyr)=0 (8.8)
V x Ho () = ki o (r) (8.9)
V x E(r) = — jopH(r) (8.10)
V x H(r) = ki, (1) + jweE(r) (8.11)
Similarly from (8.4), we have
00220 p ) (8.12)
0z m
jeov(r) + 1 (r) a‘;(;) +o(r) a”gz(r) - % E.(r) (8.13)

where the product term of two alternating components, »(r) {dv (r)/dz},
has been neglected. We obtain from (8.5)

6i20 (r) =0

. (8.14)
aig—f) = — jog(r) (8.15)
and from (8.6)
i20(r) = v (r) o (r) (8.16)
i.(r)=vo(r) o(r) + v(r) 0o (x) {8.17)

in which another product term of two alternating components, o(r) g(r),
has been neglected. Equations (8.8)~(8.17) specify the behavior of our
electron beam model.

Let us now study the transmission power along the model. To do so, we
calculate V.E(r)x H*(r) following the discussion of Section 2.2. From
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(8.10) and (8.11), we have

V E(r) x H*(r) = — jouH (1) - H* (1) + josE(r) - E*(r) — E, (1) i,*(r)
(8.18)

Using (8.13) and (8.17), the last term on the right-hand side can be written
in the form

E (r)i*(r)=— ? {ngo (r) e (r) o*(r)

il
+ jou (r) ve (r) ¢* (r) + i,* (r) P (t)o (r)} (8.19)
The second term in the bracket is equal to
ai* (r)
oz

0o (r) 0(r)

as is easily seen from (8.15). This can be combined with the last term in the
bracket of (8.19) to give

0 -
oz vo(r) v{r) i.* (r)

Substituting (8.19) and this result into (8.18), and remembering that k-V
is the partial derivative with respect to z, we obtain

V{E(r) x H* (r) ~ (mfe) keo (1) v (t) 1. (1)}
= jeo (e (1)« E* (r) — fHL() - H* (£) + (m/e) 0o (1) v(x) v* (1)}

Let us integrate this equation over a volume ¥ containing the electron beam
as shown in Fig. 8.1. The left-hand side can be converted to a surface
integral over § resulting in

J 0 x B0 ~ (mioy ke () o) 1 ) - as

—jo [ GE@) B ()~ B H () + (/) 00 6) o6) o* (0} o
(8.20)

Since the right-hand side is pure imaginary, the real part of (8.20) gives

Re f E(r) x H*(r)-ndS + Re f (—1D(m/e) kg (r) v(r) i,*(r)-n dS =0
: (8.21)
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ELECTRON
BEAM

Fig. 8.1. Region of integration.

The first term on the left-hand side is the electromagnetic power P flowing
out from the volume V through the surface ;

P=Re J‘ E(r) x H*(r)-ndS (8.22)

The second term on the left-hand side of (8.21) is related to the motion of
electrons, Since (8.21) shows that the sum of these two terms is always
equal to zero, let us interpret the second term as the kinetic power P,
carried out by the electrons through 5. With this interpretation, (8.21)
indicates the conservation of energy: The electromagnetic power flowing
out from a volume V is equal to the kinetic power flowing into the same
volume. Power is expressed ordinarily as the product of voltage and current.
If we define the kinetic voltage of the electron beam at r by

Vi(r) = — (mfe) vy () v(r) (8.23)

then the kinetic power is given by
P.=Re f Ve(r)i,*(r)k-ndS (8.249)

Just as we interpret E(r) x H*(r) as the electromagnetic power density,
the kinetic voltage times electron current density Vi(r) i, *(r} can be con-
sidered as the kinetic power density of the electron beam at r.

The first two terms on the right-hand side of (8.20),

[eaer@w,  [men@an

represent twice the average stored electric and magnetic energies, respec-
tively. The third term

f (mfe) g0 (x) o(r) o* (r) dv
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can be intepreted as twice the average stored kinetic energy. Since e is
positive and g, (r) is negative, expressing the electron charge density, this
term has the same sign as the stored magnetic energy in (8.20).

8.2 Space Charge Waves

Following the discussion of waveguides in Chapter 3, let us assume that
the microwave components of various quantities vary with distance
exponentially; i.e.,

E(r)=(E, +kE)e 7, H(r) = (H, + kH,) e **
i(f)=ie™ ™, o)=ve ", o(r)=ge *

where E,, E_, I, H,, i, v, and g are independent of z but may be functions
of transverse position. We further assume that the stationary component
of electron velocity has the same value everywhere over the cross section of
the electron beam. This assumption is approximately satisfied after the
electrons have been accelerated by a high static voltage. Furthermore, let
us assume that the stationary component of the electron velocity does not
depend on z; i.e., no static electric field is applied in the region of interest.
Then, (8.13) becomes

(8.25)

jov — yoov = — (e/m) E, (8.26)
Similarly, from (8.15) and {8.17) we have

— Vi, = — jwg (8.27)
I, = 050 + U0y (8.28)
From (8.26), v is given by

v =~ (¢/m) (jo — yvo) " E, (8.29)

By solving (8.27) and (8.28) ¢ can be expressed in terms of o. Substituting
this result into (8.29), we obtain

¢ =700 (jo = y00)"" v =—yg0 (e/m) (jo —y00) > E,  (8.30)
Finally, by substituting (8.30) into (8.27), we obtain i, in terms of E,:
i, = - jogo (ef/m) (oo — ?Uo)_z E, (8.31)

If £, is equal to zero, i, is also zero from (8.31), and Maxwell’s equations
{8.10) and (8.11) assume the same forms as in the case in which there is no
electron beam. This means that TE waves propagate independently of the
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electron beam, To study the effect of the electron beam, however, we
concentrate on the case in which E, is not equal to zero.

Beginning with (8.10) and (8.11) in place of (3.52) and (3.53), and pro-
ceeding as we did in Section 3.4, we find that (3.58), (3.59), (3.60), and
(3.62) are also valid for the present discussion without modification. On
the other hand, (3.57) and (3.61) are replaced by

V x H, = joe {1 + 0, (jo — yvy)~*} kE, (8.32)
and »
V-E = {1 + 0, (jo —yv) '} vE, (8.33)

respectively, where use is made of (8.31) and
w,” = — (2o/¢) (e/m) (8.34)
Taking V x (3.60) and rearranging the left-hand side, we have
yYkV:E, +kV.-VE, =jouV x H,
Substituting (8.32) and (8.33) into this expression gives
V-VE, + (0’eu + y)) {1 + o, (joo — yvo) *} E, =0 (8.35)

A perfect conductor wall gives the boundary condition £, =0 independer}t
of H,. In a similar manner, suppose that a boundary condition for E; is
givenz independent of H,, then E, can be obtained which satisfies (8.35)
under the boundary condition while assuming H, = 0. Once E, is obtained,
H, and E, are given by

H, = — jos(o’en +7*) " k x VE, (8.36)
E, =—y(w’eu + 7)) "' VE, (8.37)

where (3.58) and (3.60) have been used. Furthermore, v, ¢, and i, can be
calculated from (8.29), (8.30), and (8.31), respectively. The problem is t.hus
reduced to the solution of (8.35) under the appropriate boundary condition.
It is difficult to give a general discussion of the eigenvalue problem repre-
sented by (8.35). Hence, we shall discuss a few particularly simple examples
and imply what kinds of solutions may exist in more general cases. o
First, let us consider a one-dimensional model. There are no field variations
in the x and y directions, and the first term on the left-hand side of (8.35)
becomes zero thereby making the second term vanish. If we assume thi?t
vy 18 equal to zero, the nontrivial solution E, can exist when @ = w,. This
solution represents a free-running oscillation due to the repulsion force
between electronic charge and the inertia of electrons. Since free clectrons
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n a plasma can oscillate in this way, ®, is called the plasma angular fre-
quency,

For the electron beam, v, is not equal to zero. In order to obtain non-
trivial solutions from (8.35), either

olep +92 =0 (8.38)
Qr

{1+, (jo—yw,) % =0 (8.39)

has to be satisfied. From (8.32) and the one-dimensional assumption, E, is
equal to zero unless (8.39) is satisfied. Therefore, we have only to investigate
(8.39). There are two different values of y which satisfy (8.39):

Ve = J{o — )/, (8.40)
V- =Jlw+ ay)fv (8.41)

This means that there are two different waves, one slightly faster and the
other slightly slower than v,, corresponding to y, and y_, respectively;
they are called the fast and slow waves.

Since V£, =0 for the one-dimensional model, both E, and H, are equal
to zero, and no electromagnetic power is transmitted. Substituting (8.40)
and (8.41) into (8.31), we have

i, =— jweE, (8.42)

for both fast and slow waves. This indicates that the electronic and dis-
placement currents cancel each other and explains why H, becomes zero.

When (8.38) is satisfied, even if E, is equal to zero, E, and H, may have
nonzero magnitudes, corresponding to the plane wave in free space.

Let us next consider an electron beam moving in the axial direction,
which fills the inside of a wavegnide, We assume that @, is constant over the
waveguide cross section and solve (8.35) under the boundary condition £, = 0.
From the discussion of waveguides, the eigenvalue problem

V’E,+ kK’E,=0 (inS)

E,=0 (onl)
has an infinite number of solutions, where S indicates the waveguide cross
section and L the boundary. Let E,, be the nth solution and k,? the corre-

sponding eigenvalue. Then £, itself serves as a solution for (8.35) and the
corresponding y is obtained from

ket = (@1t + ¥?) {1 + @,? (joo — yup) ™2} (8.43)
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This is a fourth-order algebraic equation which gives four values of y. Of
these four values, we are interested in those which have a strong interaction
with the electron beam. Since their velocities must be approximately equal
to that of the electrons, we assume

7+ 2 j(0 F o)fve (8.44)
where w » w,. Substituting into (8.43), we then have
kP o — (@fue) {1 ~ (@ylo,)"}

where w?en is neglected compared to y* =~ — (w/v,)” since w’ey is equal to
w? divided by the square of the velocity of light, and the electron velocity o,
is far smaller than the velocity of light in ordinary cases. From the above
approximate equation, w,? is given by

w, = w,? BB + k7)) (8.45)

where
B = {(wfvo) (8.46)

The phase constant ff, corresponds to the phase velocity v.
Since k,Z is positive, from (8.45), we have

o, > o} (8.47)

A comparison of (8.44) with (8.40) and (8.41) shows that w, plays the same
role as @, did in the one-dimensional model. For these reasons, w, Is called
the reduced plasma angular frequency.

We assumed @ > w, in order to derive (8.45). This assumption does not
contradict (8.47) since g, is usually small and w » w,.

It is worth noting that since E, has the same functional form both for
the fast and the slow waves, their E, and H, also have the same functional
forms. However, since their y’s are different, the coefficients in (8.36) and
(8.37) have different magnitudes for the two cases. On the other hand, i,

is given by
i, = — joe(w, jo,’) E, (8.48)

for both cases, Because of (8.47), the electronic current is larger than the -

displacement current and their difference produces nonzero H, in contrast
to the one-dimensional model,

Finally, fet us consider a more general case in which the e]ectron_bcam
partially fills the waveguide cross section. Since w,? is now a function of
transverse position in the waveguide, it is difficult to solve (8.35) unless some
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symmetric configuration is assumed. If the waveguide and the electron
beam have concentric circular cross sections and w,’ is constant over the
electron beam cross section, then the equation can be solved independently
for the regions inside and outside of the electron beam using Bessel functions.
These solutions can then be connected to give eigenfunctions which satisfy the
continuity of E, and VE_ at the interface, The continuity of VE, is necessary
to ensure the continuity of E,. This analysis (Problem 8.4) shows that there
is a pair of propagation constants similar to (8.44) which implies fast and
slow waves for each eigenfunction.

Judging from these examples, the fast and slow waves appear to exist in
general, and in the remainder of this section we shall assume their existance.
They are called space charge waves since the charge of electrons in space is
responsible for the wave phenomena.

Let us investigate the relationship between the electromagnetic power P
and kinetic power P, of space charge waves. When the electronic and dis-
placement currents cancel each other, as in the one-dimensional model, P
must be zero since no magnitec field exists. In this extreme case, we have

(PiP)=10 (8.49)

In the other extreme case in which the displacement current is negligibly
small compared to the electronic current, (8.1 1) gives

V x H, ~ ki, (8.50)
Neglecting w’ep compared to y2, (8.37) becomes
E,~—y ' VE, (8.51)

Integrating E(r) x H*(r) over the waveguide cross section, we have
fE(r) x H*(r) -k dS = fE, x H* kdS ~— y“f(VEZ x H*)-k dS

=~ v‘lfV x EH* kdS + y_lezV x H* .kdS
(8.52)

where use is made of (8.51). The first term on the right-hand side of (8.52)
becomes a line integral around the inside surface of the waveguide wall by
Stokes’s theorem and vanishes because E, = 0, The integrand in the second
integral on the right-hand side becomes the product of E, and i,* from
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(8.50). Thus, the electromagnetic power P is given by

P~ Re {y“ f E,i* ds}

which is independent of z. The kinetic power is calculated from (8.23) and
(8.24). In the present case, v(r) in the kinetic voltage is given by (8.29) times
exp(— yz), i,*(r) by i,* exp(yz), while v, (r) is independent of z. Substituting
these into (8.24), we have

Pk = Re {UO (jﬂ) - .on)'*l j Eziz* ds}

(8.53)

(8.54)

which is also independent of z. The integrals in (8.53) and (8.54) are both
pure imaginary as is easily seen from (8.31), and the insides of the brackets
in both equations become real. The notation Re in {8.53) and (8.54) can
therefore be climinated which makes the ratio between P and P, equal to

(PIR) =y vy (joo — yvo)
Substituting (8.44), this becomes

(PIP) = {£ w,f(w F a,)} (8.55)

where the upper and lower signs apply to the fast and slow waves, respectively.
Since @ is much greater than w,, (8.55) shows that power is mostly trans-
mitted in the form of kinetic power, even in this extreme case with negligible
displacement current.

In more general cases in which the electronic current is partially canceled
by the displacement current, H, becomes correspondingly smaller and the
ratio of P to P, will take some value between (8.49) and (8.55). We conclude
from this that electromagnetic power is always small compared to the
kinetic power if w » w,> w,, or equivalently, if g, is small. When this is
the case, the effect of the waveguide walls on the space charge waves is
expected to be small, whether or not the walls are close to the electron beam.
The majority of the transmission power is confined in the electron beam in
the form of the kinetic power, and the electromagnetic field, which receives
the constraint from the walls, only carries a small portion of the total power.

As we discussed earlier, there are a number of solutions for (8,35); and for
each eigenfunction E,, there are a pair of waves having propagation con-
stants in the form of (8.44). Since E, is different for different pairs, some
pairs are strongly excited through external circuits while the others are not.
In the case of a thin electron beam, the excitation of only one pair can be
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made strong, and these generally have almost constant E, over the beam
cross section. For simplicity, let us concentrate on such a pair and neglect
the effects of all other pairs. Since the current density of each wave is also
almost constant over the beam cross section, the electronic current is given by
the current density times the cross sectional area So. Let J, and J_ be the
electronic currents of the fast and slow waves at z=0. Then the total
current at arbitrary z is given by

J(Z)=Jie "+ J e < (e 4 g e ) e (g 56)

where

By = (0,/1,) (8.57)
On the other hand, from (8.23), (8.29), (8.31), and (8.44), the Kinetic voltage
is calculated to be

Vi(z) = Zo (S, &P — J_g™bor) g Ber (8.58)
where
muv,w, 1 ¥,
ZO=———0J—— J% (8.59)
e 0y w8, Jo ﬁe

The stationary component of the electron beam current s expressed by
Jo. and V; is the voltage applied to the electrons before they enter the
region under consideration; hence, 1mp,? = eV,.

The factor exp(~ jB,z) in (8.56) and (8.58) shows that the wave pattern
as a whole moves in the positive z direction with the electron velocity v,.
Except for this factor, V,(z) and J(z) have functional forms similar to the
voltage and current along a conventional transmission line having a character-
istic impedance Z, and phase constant B, If we define the reflection
coefficient r by

r=—(J_{J,) e 2= (8.60)

the impedance at z is given by
_Wlz) L+ "
J(zy %1 -y (8.61)

and the relation between r and Z can be studied using the Smith chart.
Since

|Vk(2)| =Zg|Jy| 1 + 7]
I (2)] = 1,0 11— 7|

(8.62)
(8.63)

we can easily see on the Smith chart how the magnitudes of ¥,(z) and
J(z) vary with z.
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Let us consider the velocity of energy carried by each wave at angular
frequency w. Since the system is lossless, the velocity of energy is equal to
the group velocity

do (dp\™' f1( _do\ ' _ dwq)
e e

The upper and lower signs apply to the fast and slow waves, respectively,
Usually, w, is a slowly varying function of w, and the energy propagates
with a velocity close to v, and in the same direction as the electron motion.
The small discrepancy between the electron and energy velocities exists
because a small portion of energy is transmitted in the form of electro-
magnetic power, as discussed previously. Note that v, is equal to v, for the
one-dimensional model in which the electromagnetic power disappears.

The kinetic powers of the fast and slow waves are calculated from
appropriate terms in (8.56) and (8.58) to be

Po=Zoll P and  Bi=—ZolJ_[?

respectively. In the conventional transmission line, a negative power appears
when the wave propagates in the negative z direction. The slow wave has,
however, a negative power while propagating in the positive z direction.
The following interpretation is usually given to explain the origin of the
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Fig.8.2. The relation between electron velocity v and charge density |g¢|: (a) Fast
wave; (b) Slow wave. (Note that g is negative.)
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negative power. We obtain from (8.29), (8.30), and (8.44),
(v/e} = (volen) {  w,/(0 T w,)} (8.65)

where the upper signs apply to the fast wave and the lower signs to the slow
wave. Equation (8.65) shows that if we observe the electron beam at a fixed
point z, the electron velocity and the charge density vary with time, as
illustrated in Fig. 8.2. For the fast wave, the velocity increases when the
magnitude of the charge density, and hence the electron density, increases,
Since most of the electrons increase their kinetic energy in this way, the kinetic
energy of the electrons on the average increases when the fast wave is excited.
For the slow wave, the lectron density and the velocity are out of phase and
consequently the average kinetic energy decreases when the slow wave is
excited. This decrease of kinetic energy compared to the unexcited state
propagates with the electrons in the positive z direction and is referred to
as the negative kinetic power of the slow wave.

8.3 Gap Interactions

Let us consider two closely spaced planer grids which are capable of
exciting a pair of space-charge waves for which E, is almost constant over
the electron beam cross section as discussed in the previous section. The
planes of the grids are perpendicular to the beam axis, and the gap between
them is narrow compared to 2n/f,. Furthermore, it is assumed that the
grid wires are sufficiently thin and the meshes sufficiently large that no
electrons are intercepted, and yet a perfect electro-static shield is provided
by the grids. Under these assumptions, let us calculate the electronic current
and kinetic voltage at the exit from the gap, assuming their values at the
entrance are given. Let z=—/ and z =0 be the locations of the first and
second grids and 7 be the microwave voltage applied to the gap, as shown
in Fig. 8.3. Since all the equations are linearized under the small signal
assumption and the principle of superposition holds, the following two cases
can be discussed separately:

(i) The alternating voltage V is applied to the gap while keeping the
current density i,(—/) and alternating electron velocity v(—/) at
the entrance equal to zero;

(ii) ¥ is equal to zero, but i,(— /) and v(— /) have given values.

The superposition of these two cases gives the desired solution.
In case (i), the applied gap voltage V either accelerates or decelerates the
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i }

Fig. 8.3. The relation between ¥, I, and i; at the electrode gap.
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electrons depending on the phase of the voltage. The accelerated electrons
tend to catch up the decelerated ones resulting in a modulation of charge
density which in turn produces some E, in addition to the original gap field.
If the gap is narrow, as assumed here, the variation of charge density within
the gap is negligible since the decelerated electrons leave the gap before the
accelerated ones catch up. Under this assumption, the field E, is equal to the
applied voltage divided by the gap length /. The equation of motion for each
electron is given by

d e[V

g v{z, 1) = - ( ) )\/2 cos wt (8.66)
Since the electron velocity is approximately equal to v, the electron velocity
at z =0 is obtained by adding the initial velocity v, at z = — I to the integral
of the above quantity with respect to ¢ from ¢ — [y to t:

t

| .
(0, t)zuo+J E47\/2(:08(1)1?&

t=1fve M
3 e V sin(0/2) 3 8.67
=00+ o 6 V2 cos{wt — 46) (8.67)
Where 0 = (fog) I = Bl (8.68)

The term 0 is called the transit angle of the gap. If we replace Jf V cosat
by the corresponding complex expression Ve, the alternating component
of the velocity can be expressed in the form

_ e Vsin 012} _ o)
0= @) ¢

g it
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From this, the kinetic voltage V, defined by (8.23) is given by

Ve(0)= MV {8.69)
where
- wﬁ_) e IO
(6/2)

The term M is called the beam-coupling factor. When / is sufficiently small,
M is equal to — 1 which means that the kinetic voltage at the exit of a narrow
gap is equal to the applied gap voltage, except for the opposite sign, The
corresponding 7,(0) can be calculated by integrating (8.15). Since the alter-
nating component ¢ of charge density is equal to zero from the discussion
preceding (8.66), and i,{(— /) =0 by hypothesis, we have

i,(0)=0 (8.71)

(8.70)

hence the electronic current J at z =0 is equal to zero. This completes the
discussion of case (i).

In case (i1), the gap exerts no force on the motion of electrons. Because
of the phase difference due to the transit time, we multiply ¢{(—/) and
i.(—1) by ¢/ to obtain v(0) and i,(0), respectively:

v(0)=v(—1)}e (8.72)
L) =i (=D e (8.73)

Note that B,/ is neglected compared to /=4, as comparison with (8.56)
or (8.58) may indicate.

In general, v(0) and 7,(0) are given by the superposition of the above
two cases; in terms of the kinetic voltage and electronic current, their values
are

V@)=V, (= De ™ + MV (8.74)
JOy=J(-Ne " (8.75)

So far, we have described how the electron beam is modulated by the gap
voltage. Let us next consider the effect of the electron beam on the current
flowing into the gap through the external circuit. To do so, we use the power
relation (8.20) with the surface S enclosing the gap space. The first term on
the left-hand side is the electromagnetic power flowing out through the
surface S. Since E, is equal to zero over the grid surfaces, no contribution
to the integral results from these surfaces. The power flowing in from the
side surface is given by V7*, where V is the gap voltage and [ the current.
The second term on the left-hand side expresses the net kinetic power.
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Since V,(—[) J*(— I} enters through the first grid and V,(0) J*(0) leaves
through the second, the left-hand side of (8.20) becomes

—{VI* + V(= DI (= ) =V (0) J*(0)} = — {VI* — MVJ* (= ) &%}
(8.76)

where the negative sign appears in front of the bracket because of the
direction of n.

The first and second terms on the right-hand side of (8.20) express the
stored electric and magnetic energies, respectively. We neglect the second
term because the inductance of the gap eclectrodes are usually small. The
stored electric energy is calculated as follows, first, we note that the trans-
verse component of the electric field is negligible since the gap is narrow
and the tangential components of the field at the grid surfaces are zero.
Second, the stored electric energy multiplied by jw is given by

joe[VIN? IS, = joCVV* (8.77)

where IS, is the volume of the gap space, C is the gap capacitance given by
&S,/l, and the z-component of the electric field is approximated by Vil

Finally, the third term on the right-hand side of (8.20) will be shown to be
negligible. The integrand is

V@) Vi (z) 1 o

o> (m/e) T2 |
where V, is the static voltage required to accelerate electrons to the velocity
vy, and iy = gov,. Integrating the right-hand side over the volume occupied
by the electron beam in the gap and multiplying the result by jw, we have

2 oo0(2) 0¥ (2) = V(2 )I — (878)

1J, wl ( 2y
- — —=j =Bl (8.79)
J 2V, 47 % v
where (V,*> is the average value of |I/k(z)|2 from z=—1to 0 and Z, is

defined by (8.59). Usually (V,*>/Z, is of the order of V,J and B/ <1,
therefore the contribution from this term is negligibly small compared to
the terms appearing in (8.76).

Summarizing the above discussion, (8.20) becomes

—VI*=— MVJ*(~ ) e’ + joCVV*
Dividing by — ¥ and taking the complex conjugate, we have

I=M*J(=De "+ joCV = MJ(— ) + joCV (8.80)

B
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The first term on the right-hand side represents the current induced by the
electron beam while the second term expresses the current into the gap
capacitance. The sum of these two currents make up the net current flowing
into the gap through the external circuit.

The above discussion applies to an ideal gap with two parallel grids, in
practice however, a gridless gap is often utilized to avoid the interception of
electrons as shown in Fig. 8.4. In such a case, the electric field at the electron

L;J
X

Fig. 8.4. Gridless electrode gap.

beam is weaker than the gap voltage divided by the gap distance, and the

beam coupling factor M becomes smaller than that given by (8.70). To take

this effect into account, M given by (8.70) is reduced by the factor n<l.
Let us assume that the transit angle of the gap is very small so that

sin(0/2) N
62

e % ~

(8.81)

E]

then (8.74), (8.75), and (8.80) reduce to

W@ =V(=0-nV, JO=J(-1), I=—ni(-]+joCV

(8.82)

An equivalent circuit representing (8.82) is shown in Fig. 8.5. Note that the
purpose of this equivalent circuit is simply to represent the relations (8.82),
and it is not to be used for connecting impedances which fix the ratio between
V. and J at the ports corresponding to the electron beam.

In the remainder of this section, we shall discuss the principle of the
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Fig, 8.5. Equivalent circuit of an electrode gap.

klystron as an example of utilizing (8.82). In its simplest form the klystron
has two gaps placed one quarter of a plasma wavelength 4, = 2x/#, apart.
The first gap excites the space-charge waves while the second one receives
power from the electron beam. Since the gap capacitance C is usually too
large to apply the gap voltage or Lo extract power effectively, the capacitance
effect is canceled by the inductance of a resonant cavity. Taking a proper
reference plane, the equivalent circuit of the cavity including the gap should
look like the one shown in Fig. 8.6, where ( is the conductance representing
the cavity losses. The parallel resonant circuit is dual to the series resonant
circuit discussed in Section 4.3. In the following discussion, subscripts I and
2 will be used to express the quantities related to the first and second gaps,
respectively.

In order to apply a voltage V; to the first gap, a net power G,|V;|? is

Fig. 8.6. FElectrode gap with a resonant cavity and its equivalent circuit.
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necessary. Since the available power P, from the generator times the power
transmission coefficient gives the net power, we have
G, |Vy|? V12
P, = = — (G, + G, 8.83
{4G,G (G, + G,)*} 4G, G, +G,) (8.83)
where the cavity is assumed to resonate at the signal frequency, and G, is
the generator conductance as seen from the gap. If the electronic current J
and kinetic voltage V), are both equal to zero at the entrance to the first gap,
Vi becomes —#, ¥V, and J remains zero when leaving the gap. Taking the
origin of the z-axis at the exit of the first gap, we have from (8.56) and
(8.58)

Jp +J-=0, Zo(Jy =) =—-mV,
from which J, and J_ are obtained:
Jo=—41Z; vy,

Thus, fast and slow waves having the same magnitude but opposite signs
are excited by the first gap. As we move along the electron beam toward the
second gap, from (8.62) and (8.63) the magnitudes of V,(z) and J(z) change
as shown in Fig. 8,7, At the entrance into the second gap z, = A,/4, r=—1,
and

J_=4Z5" n,V, (8.84)

[Vi(z ) =0, | (z2)] = 2|J,] (8.85)
f |
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Fig. 8.7. Kinetic voltage and electronic current versus distance z.
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Applying (8.82) to the second gap, we obtain
J(ZZ +12) =J(22), I2=—n2J(Zz)+ijV2

(8.86)

Vk(zz + 12) =—1;V;,

Let us assume that the capacitive current jwCV, is canceled by the
inductive current in the cavity, then the total current flowing through the
external load G| plus the cavity loss conductance &, becomes n,J(z,), and
the gap voltage V, is given by

Ve =(Gy + GL) ' nad (z,) (8.87)

Using (8.84), (8.85), and (8.87), the actual power to the load is calculated

to be
PL=G V" = G.(G, + GL)_2 n2°Zg i IV (8.88)

The transducer gain is given by
(PoiP) =1n,"n,"2574G,G. (G, + G,) 2 (G, + G;)7? (8.89)
When G, = G, and G, = G, the maximum gain is obtained:
(P/R,) = '712'1222(;2 (4G,G,)” '

The kinetic power at the entrance to the second gap is equal to zero since
the kinetic voltage is zero. From (8.86) and (8.87), the outgoing kinetic
power from the exit is given by

— 0, Vod ™ (z2) = — (G, + G) ™' iy |J(f’-'2)|2

which indicates that the electron beam receives this amount of negative
kinetic power from the gap. On the other hand, from (8.87) the total power
into the load G, and G, is given by

(G2 + Gu) V2] = (Gy + Go) ™" 27 U (z2)1°

As expected, the power the electron beam receives plus the power to Gy,
and G, is equal to zero. In other words, the gap receives power from the
electron beam and delivers it to G, and G,.

In order to increase the maximum gain, G, and G, must be decreased
which is obvious since G, and G, express the cavity losses. On the other
hand, some explanation may be necessary as to why G, and G, have to be
decreased in order to increase the transducer gain when G; and {; can be
neglected. Since the electronic current J is equal to zero at the exit from th.c
first gap, no kinetic power is added to the electron beam by the gap. This

.93_-;‘;;3"’%’?4%‘@‘
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means that no power is required to excite the space-charge waves in the
first gap aithough a large gap voltage is necessary for a large gain. To
increase the gap voltage V,, keeping P, constant, G, has to be decreased.
For the second gap, the active component of the current I, is solely deter-
mined by the electronic current J(z,). In order to increase the output power
under the constant current condition, the voltage V, has to be increased by
decreasing G,. Hence, G, and G, must be small for a large gain.
Summarizing the above discussion, a klystron amplifies a signal because
a negligible amount of power is required to excite space-charge waves in a
narrow gap while a second gap one quarter of a plasma wavelength away
provides a constant current source from which useful power can be extracted.

8.4 Continuous Interaction with a Slow Wave Structure

It is possible to achieve amplification utilizing the continuous interaction
between an electron beam and an electromagnetic wave on a slow wave
structure when their velocities are nearly equal. An electron tube based on
this principle is called a traveling wave tube. The slow wave structure for a
traveling wave tube is often realized by winding a thin wire into a helix with
its diameter sufficiently small compared to a wavelength in free space. The
electromagnetic wave propagating along the helix tends to follow the wound
wire, and its axial phase velocity can be made approximately equal to the
electron velocity when the pitch of the helix is properly chosen. In addition
to helices, many periodic structures of the type discussed in Sec. 6.4 can
be utilized as slow wave structures in traveling wave tubes.

Let a, (z) represent the electromagnetic wave propagating along the slow
wave structure in the positive z direction. By suitable normalization, e, (2))?
is made to express the transmission power. The interaction between the
electron beam and the slow wave structure takes place through the
z-component of the electric field with a proper phase constant. Since E, is
90” out of phase from E,, as (3.61) indicates, if the phase of g, (z) is chosen
to be in phase with the corresponding E,, the z-component of the electric
field at the electron beam in the slow wave structure becomes

Ee " = jBZ{"%a, (z) (8.90)
where f; represents the phase constant of the proper field component (i.e.,

B:~B.) and Z;? is a proportional constant. Note that Z, has the dimen-
sion of impedance.
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Let us next express the space-charge waves, along the electron beam by
a;(z) = ZA2 T, B hem | ay(z) = ZY2J_e~ 1Pt (8.91)

then the transmission powers in the positive z direction due to the space-
charge waves are given by |a2 (z)|* and - |a;(z)|?, respectively, since the
clectromagnetic power of each wave is negligible compared to its kinetic
power,

Assuming a small coupling between the electron beam and the slow wave
structure, we now apply the theory of coupled modes described in Section
6.1. To do so, however, we must obtain the coupling coefficients C,, and
C;,. Suppose that a,(z) and a,(z) are zero at z =0; let us investigate their
values at z = Az for a given &,(0). From (8.90), E, is approximately given
by jB, Zi* a,(0) over the narrow region from z =0 to dz. If we set I = Az
and V=—E_Az=—jB, Z}'* ,(0) Az, then the problem reduces to that
of the gap interaction discussed in Section 8.3. In the present case, 4z =1
is an infinitesimal, and the beam coupling factor M becomes —1. Thus,
the kinetic voltage at z = Az is given by

V. (4z)=—V =jB,Z\*a, (0) 4z (8.92)
The electronic current remains the same:
J(4z)=0 (8.93)
Combining (8.91), (8.92), and (8.93), we have
ay(4z) — a3 (4z) = jBAZ/Zo)' * a1 (0) Az, a,(4z) +a;(4z)=0  (8.99)
from which a,(A4z) and a,(dz) are calculated to be

a,(4z) = 1iB(Z/Zo)' " a, (0) Az (8.95)
a3(42) = — 1jB,(Z,/Z)"'* a,(0) 4z (8.96)

Comparing these equations with (6.4) and remembering that a,(0) = a;(0)
=0, €y and C;, are found to be

Coh=- sz = —1jB; (Zk/‘Zo)”zs Gy = Crs = %jﬁs(zkfzo)uz (8'97)

The coupling coeflicient C,; between the fast and slow space-charge waves
will be neglected since it becomes a higher order infinitesimal when we
impose the condtion of small coupling between the electron beam and the
slow wave structure.

For simplicity, let us first consider the interaction between two waves.
When g, (z) interacts with a, (2), the two waves exchange transmission power
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back and forth as we discussed in connection with Fig. 6.3. On the other
hand, if a,(z) and a,(z) have similar phase velocities and interact with each
other strongly, growing waves will result as we discussed in connection with
Fig. 6.4. Let

Bo + 4B, = B;, Bo— 4B =B, + . (8.98)

and assume that a,(z) = 4, and a5 (z) = 0 at z = 0, the input of the coupling
region, then

lay (2)I* = 4g* {1 + (|C,3)/2)? sinh® &z} (8.99)
~las(@)I* = — 44> (IC 5)/2)? sinh?az (8.100)

where
@ = {|Cy3l” — (4Bo)*}"/? (8.101)

and |Cy4|% > (48,)? is assumed. If the two waves are separated at z= L
and the electromagnetic wave along the slow wave structure is fed into a
matched load, the transducer gain is given by

la, (L))*/la (0)* = 1 + (IC5//a)* sinh? oL (8.102)

provided that the input is also matched. This explains the amplification
mechanism of traveling wave tubes.

In practice, f, and |C, ;| often have the same order of magnitude, in such
a case the interactions among three waves, a,(z), @,(z), and a,(z) must be
considered. The eigenvalue problem for the system is given by

jﬁs - CT?& CIS
Cis j(B.—8) 0 X =X (8.103)
Cls 0 J(B.+8)

The eigenvalues are obtained from the solutions of the third order algebraic
equation

iBs—v - Cra Ci3
Cis  jB—B)—v 0 =0 (8.104)
TS 0 j(ﬂe + ﬁq) - ?
If we set
y=jf.+ 0 (8.105)

Eq. (8.104) becomes
(3" + B (= 8+ (B — B} + 2B,1C15 = 0 (8.106)
Let a and y be the real and imaginary parts of §:

S=o+jy (8.107)
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then (8.106) can be decomposed into real and imaginary parts as follows:

_a[aZ _yZ +Bq2 “2y{yf(ﬁsmﬁe)}] _0
(= v+ Bm B = y2 + B2) = 247y + 28,1C =0 &10®)

By inspection, there are solutions satisfying
a=0, B— B =281C10" -6+ (8.109)

The waves corresponding to these solutions do not grow or decay with z
since the real part of y is equal to zero. If we assume nonzero « (8.108) gives

a=4[2y{y — (B, — B} + ¥ — 8] (8.110)
B, — B.=2y + {B,2+ B, ICrsl? y~ '} (8.111)

Suppose that the value of 8,/|C, ;]| is fixed, then one value of §, — 8, can be
calculated from (8.109) for each value of y. Similarly, (8.111) gives the other
values of f, — B,., and (8.110) gives the corresponding «, provided that o
and f, — B,, thus obtained, are all real. In this way, we can obtain all the
possible values of o and 8, — f, for each y from which we can reconstruct
the propagation constant y as a multivalued function of fi;, —f,.. As an
example, the result of the calculation for a particular case in which g, =
J2|Cy;lis shown in Fig. 8.8, To facilitate a direct comparison with Fig. 6.2,
the real and imaginary components of y/|C;5| are shown as functions of
AB,/|Cy5l. The interaction between a;{z)} and a,(z) gives Fig. 6.2(a), and
that between a, (z) and a;(z) gives Fig. 6.2(b), however, when g, (z) inter-
acts with a,(z) and a,(z), as in the present case, the two patterns are inter-
mingled and distorted as illustrated in Fig. 8.8,

Once the eigenvalues are obtained, the corresponding eigenvectors can

easily be calculated from (8.103):

1
X; = [— Ciai(— 6, —jﬁq)] (i=1,2,3) (8.112)
- CTS/(_ ‘5i +jﬁq)

Note that three eigenvectors are obtained corresponding to three different
eigenvalues. Suppose that Rey,=«; <0 and that x, represents the corre-
sponding growing wave, then the amplitude of x, increases with z while the
other waves either decay or propagate unchanged, hence the x; component
outweighs the others at the output port provided that the coupling region
is sufficiently long.

Under the conditions of the previous paragraph the transducer gain can
be calculated as follows: We assume that @, (z) = 4, at the input z=0,
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Fig. 8.8. # — Buand a versus 48 = (B — B — o).
then the x, component at z =0 is given by

Aqg
5Pl O | x,
0

- " + 8, [1 - Ch - Cy;
30,° + B," ~ 25, (B, — B.) & +if, 0, —JB,

where

X,

At the output where z =L, the magnitude of the x, component becomes
exp(— «, L) times as large, and hence the transducer gain becomes

;al (L)‘2 ~ | 512 + ﬁqz :2 e—2a1L (8 113)
0 @) 138,74 5,2 20,8 — 5) |
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8.5 Electron Beam Noise

Let us assume that the fast and slow waves are given by 41 a1.1cl A,,
respectively, at a cross section a of the electron beam shoYvn in Fig. 8.9,
and that they become B, and B, at another cross section b situated beyond
a lossless circuit. Let a and b be defined by

ae [j;] b= [ﬁj (8.114)

1
|

! ELECTRON
LOSSLESS CIRCUIT I BEAM

|
- b
POSITIVE Z DIRECTION

Fig. 8.9. Lossless transformation of space charge waves.

Under the small signal assumption, the system is linear and b must be express-
ible as a square matrix K of order 2 times a:

b=Ka (8.115)
The total transmission power in the positive z direction at g is given by
|4,]* —|4,)> =a*Pa (8.116)

where
P =diag[l -1] (8.117)

The negative sign in front of |4,|* comes from the fact that the. slo-w wave
carries a negative power. The total transmission power at & is given by
b*Ph, and since the system is lossless, these two powers must be equal, i.e.,

a*Pa—b*Pb=0

or equivalently,
! a+ (P _ K+PK) a=20 (8118)

Since a is arbitrary, we have K'PK — P (8.119)

which expresses the lossless condition for K. Taking the determinant of

s
i
A
¥
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(8.119), we sec that det K is not equal to zero, and hence K~! exists,

In order to discuss electron beam noise, let us consider the noise power
matrix {aa*> where { ) indicates the ensemble average. For example,
{A;A;*>, which is the 1 1 component of (aa*), expresses the noise power
in the fast wave in a narrow bandwidth B while the I 2 component {4, 4,*>
cxpresses the correlation between the noise components in the fast and
slow waves. At the cross section b, the noise power matrix becomes {bb* ),
and because of (8.115), it can be written in the form

<bb*> =K{aa*>K* (8.120)
Multiplying (8.120) by P from the right and using (8.119), we have
¢bb*>P=K<(aa") K'P=K(aa* S PK~! (8.121)

Note that {aa*) P undergoes the similarity transformation by K when the
clectron beam passes through the lossless circuit. Since the trace and deter-

minant of a matrix are invariant to a similarity transformation, n, and n,
defined through

tr(<aa”™} P) = (J4,)* — (451> =n, (8.122)
det(<aa™) P) = (|4,4,%%) — U417 (A% = - n? (8123
are invariant,

We shall now discuss the measurement of the noise parameters e and n,.
In terms of 4, and 4,, the electron beam current is given by

J(2) = (Zo) 172 {4,679 1 g, 002} o= it02 (8.124)

from which we have

SMEND = 25 {417 + AP + 2 14,45%]) cos (28,2 + @)}

(8.125)
where ¢ is defined through

tang = {Im ({4, 4,*)/Re (4,4,>) (8.126)

If we move a gap coupled resonant cavity along the electron beam, as shown
in Fig. 8.10(a), the noise output from the cavity is proportional to | J(z)|®>.
Suppose that the electron beam direct current J, is reduced to a very small
value, then the cavity output corresponds to the full shot noise 2eBJ, =
(D)%, Calibrating the cavity output using this shot noise, the absolute

value of <} J(2)|*> under the operating condition can be obtained from the
above measurement.
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Fig. 8.10. Measurement of noise parameters #; and nyp,

The product of the maximum and minimum values of {|J{z}|?) is cal-
culated from (8.125) to be

I Yimax AT min = Zo 2 (ALY + ALY — 44,457}
(8.127)

From (8.122) and (8.123) the terms inside the brackets on the right-hand
side are equal to n?, so that

nsz = 202 <IJ|2>max <|J|2>min (8‘128)

The tmpedance Z, can be calculated from V,, J,, f,, and ., and the value
of (1% max <IJ)*Dmins is Obtainable from the measurement of {|J(z)|*>.
Thus, #, can be determined from (8.128).

To obtain #,, let us next take the ratio of the maximum and minimum
values of ([ J(z)|*>:

s 2 P A 4 QA 1 2044°D g

O e A A = 2444,
If there is no correlation between A; and A4,, ¢® =1, and the cavity output
remains the same regardless of its position along the beam. Only when 4,
and A4, are correlated, <]J(z)|*) changes as shown in Fig. 8.10(b). From
(8.122) and (8.123), n,jn, can be expressed in terms of g, {|4,}*) and
¢14,|* as follows:

ny 20 AN+ AP

n, 0+ 1AL — (Aol (8.130)

This shows that n, can be calculated from the previously measured #, and
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¢ if the relative magnitudes of (|4,|*> and (j4,|*) are obtained. The terms
{|4;1*> and — {|A4,]*> express the fast and slow wave noise powers,
respectively. Suppose that two cavities with each gap coupled to the electron
beam are separated by a certain distance and that their outputs are combined
through appropriate phase shifters, then the resultant output can be made
to couple either with the fast wave only or with the slow wave; in this way
the relative magnitudes of |4;|* and |4,|* can be obtained. Thus, both n,
and 7, are measurable with movable cavities coupled to the electron beam.

Let us finally consider the best amplifier noise performance obtainable
from an electron beam with given n, and n,. To do so, we first try to obtain
a canonical form of the noisy electron beam. The matrix (aa®) is self-
adjoint and can be either positive-definite or positive-semidefinite; we shall
restrict ourselves to the case in which (aa™) is positive-definite, then we
have two self-adjoint matrices P and {aa™) one of which is positive-definite.
From the discussion leading to (5.60) and (5.61), they can be simultancously
diagonalized by a matrix H as follows.

H* (aa*>H =1 (8.131)

iouw [ O :
H PH_[O N (8.132)

where both 4, and 4 are real. Taking the determinant of the Jeft-hand side
in (8.132), we obtain

det H* detP det H = det P [det H|®

which is negative. Consequently, the determinant of the right-hand side,
A14,, must be negative, in other words, 4, and A, have opposite signs. If the
first diagonal component of (8.132) happens to be negative for a certain H,
use HL in place of H, where L is given by

L— 0 1]
then we have -
LH" (aa" > HL = LIL =1

vomy v |2 0], A O
LHPHL=L | L=

and the first component becomes positive. Without loss of generality, we
can therefore assume that 2, is positive in (8.132) and that 1, is negative.
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Let T be defined by

A2 0
r= [( 1)0 (- Az)'”z] (8.133)
then (8.132) can be written in the form
H'PH=T"'Pr!
which is equivalent to
TH'PHT = P (8.134)
On the other hand, from (8.131) we have
+opaot a0
ITH” {aa™ > HI' = 0 —at (8.135)
2
If we set
K=TH" (8.136)
then (8.134) and (8.135) become
KPK* =P (8.137)
-1
K¢aa'>K*' = [16 _ 2_ 1] (8.138)
2

Following the derivation of (7.31), (8.119) shows that K satisfying (8.137)
represents a lossless transformation. Multiplying (8.138) by P from the
right and comparing the result with (8.121), we have

-1
N CEAL
-1
det([l(l) _2;1] P) =7 3 =%(n,2 —n?)

where use is made of the fact that the trace and determinant of ¢aa*} P
are invariant to lossless transformations. From (8.139) and (8.140), we

(8.139)

(8.140)

obtain

/11_1=%(n5+ n,), -—/12—1=}(n5—n1,)

Let {a'a’*) be the noise power matrix of the electron beam after the
lossless transformation by K, then we have

The matrix K transforms a to a” and K~ transforms a’ back to a. Note that
K™! also represents a lossless transformation since (K™!)*PK~! =P from

(8.141)
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(8.119). We conclude from the above discussion that an electron beam
with (aa™) can be considered as the result of the lossless transforamtion
K™ applied to a similar electron beam with <a’a’*). The electron beam
with (a'a’*} corresponds to the canonical form of linear noisy networks
discussed in Section 7.1, and K corresponds to the canonical transformation.

We are now in a position to calculate the optimum noise measure of the
amplifier shown in Fig. 8.11. The power waves at the input are given by a,

2
vl ol lagl®
+ |b1|2 4 |l7'2|2
Ve N
— —— LOSSLESS CIRCUIT —- —
~
|as?  |a3|? THE
2 2 2
“Joal -log | -Iba]

Fig. 8.11. An electron beam amplifier.

and b, and at the output by a, and b,. The generator and load are assumed
to have impedances with positive real parts. Let a; and a, be the noise
components in the fast and slow waves at the entrance to the coupling
region, and let b, and b, be those at the exit. Since a; and a, can be trans-
formed by a lossless circuit to uncorrelated waves @;’ and a,’, as we dis-
cussed above, we can use ¢,” and a,’ instead of @, and a, to investigate the
effect of the most general lossless network.
Let us define a scattering matrix S through

b, a,

b, _ a,

by | T S 2y (8.142)
b, a,
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then the gain and noise measure of the amplifier are given by

G=1S,,1 (8.143)
A8, agl? + 185517 1ay'|? + 18,417 ay)?

M
(ISZI|2 - 1) |"-11|2

(8.144)

where

la,|> = kT,B, las|* = kT B, lay|> =4{n,+n,), fay'i®=%(n,—n,)
(8.145)
Since S represents a lossless network, it satisfies

S*PS=P

where P =diag[l 1 1 —1]. From this, following the derivation of (7.32),

we obtain
182117 + [S221% + 185,517 — ISz4|2 =1

Substituting this relation into (8.144), we have

2 2 2 2
_l:?zﬂz |a2|2 A+ 82517 lay'|” + 82417 lag']

M
(— [S2al% ~ |823|2 + |Sz4|2) la,|’

(8.146)

from which the optimum value of M is calculated to be |a,’|*/iq|?, or

equivalently
M, = {(ns - np)/sziB} (8.147)

where use is made of (8.145). An argument similar to the one given in Section
7.2 shows that it is impossible to achieve a positive M smaller than M,
with any passive network.

In the above discussion, we used a small signal assumption and considered
only one pair of space-charge waves. In practice, the small signal assumption
will not hold in the vicinity of the cathode where v, is small, hence there is a
possibility of improving the optimum noise measure of an electron beam
by modifying the potential profile near the cathode, Consequently, a major
effort has been concentrated on the study of cathodes and their vicinity in
order to obtain low noise electron beam amplifiers.

PROBLEMS

8.1 Calculate the plasma frequency of an electron beam with diameter 1 mm, direct
current Jo = 10 mA, and accelerating voltage Vo = 1000V,

8.2 Prove that the ratio between the electromagnetic and kinetic powers of a uniform

EE N
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8.4

8.5

electron beam filling the inside of a waveguide is given by
P + wy wp? — @g?
P 0F 00wt
where the upper signs apply to the fast wave and the lower signs to the slow wave.

Suppose that one additional cavity is gap-coupled to the electron beam midway
between the input and output cavities of a klystron; calculate the gain as a function
of the distance between adjacent cavities.

Solve the eigenvalue problem (8.35) for a uniform electron beam with radius a
located coaxially inside a circular waveguide with radius & (b > a). Assume rotational
symmetry of the modes to simplify the calculation.

(Hinr: The propagation constant y of each mode can be obtained from (8.43)
with k. satisfying

kndo' {(kna) _ Pello’(Bea) Ko(Beb) — Ko'(Bea) ’n(ﬁeb)j
Jo (kna) Io(ﬁea) Ko(ﬁeb) - K()(‘Bea) Iﬂ(ﬂeb)
where Io{fer) and Ku{Ber} are hyperbolic Bessel functions and use has been made of

wieu + y* = — B2 The hyperbolic Bessel functions are two independent solutions
of the differential equation (d2u/dr2} + (1/r) (dujdr) — Belu = 0.)

Calculate the gain of a traveling wave tube without assuming the predominance of
the growing wave at the output end of the coupling region.



CHAPTER9

OSCILLATORS

Oscillators convert dc energy into rf. They differ from amplifiers in that
the presence of an input signal is not essential for their operation while
their output frequency and amplitude are primarily determined by their
circuit characteristics. On the other hand, an amplifier produces its output
signal only when the input signal is present.

Oscillators are inherently nonlinear and the simplest model has to take
this effect into account; otherwise, the model will not reach a stable operating
point. Keeping this in mind, we shall first construct a simple oscillator
model and study its behavior, including the synchronization by a small
signal injection. Then, we shall discuss the noise of free-running as well as
synchronized oscillators. Since the concept of generalized functions and
their Fourier analysis will be used extensively in the noise discussion, it is
recommended for those who are not familiar with generalized functions
that they read Appendix II before beginning Section 9.3.

9.1 A Simplified Oscillator Model

Let us consider a solid state oscillator which consists of a cavity containing
an active device and a waveguide connecting the cavity and the load, as
shown in Fig. 9.1. Since the active part of the device is generally very small
compared to a wavelength in free space, the conventional voltage and current
will be well defined at the terminals of the active part at the fundamental
frequency of oscillation.

At each harmonic frequency, the device sees a certain environment, say

as0

R
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CAVITY WAVEGUIDE LOAD

ACTIVE
DEVIC

- ).

QUTPUT PORT
REFERENCE PLANE

Fig. 9.1, A solid state oscillator.

impedance, which is not affected by the load condition if the harmonic
content in the waveguide at the output port is small. Under this condition,
the active part of the device at the fundamental frequency exhibits a certain
nonlinear admittance which, in general, varies slowly with frequency
(although this may not be true if anyone of the harmonics is in a strong
resonance). Let us consider a two-port resonant cavity consisting of the
region between an appropriate reference plane in the output waveguide of
the oscillator and the terminals of the active part of the device. Suppose
that only one resonant mode predominates, then the equivalent circuit of
the cavity must be similar to that shown in Fig. 4.10. A certain length of
transmission line may have to be inserted in the equivalent circuit before
connecting it to the nonlinear device admittance since a shift of reference
plane is not allowed on the device side of the equivalent circuit. This means
that the nonlinear device admittance undergoes a transformation by the
same transmission line before it is connected to the equivalent circuit in
Fig. 4.10. Let us express the transformed nonlinear admittance in the form
of a nonlinear impedance. Notice that the nonlinear impedance also varies
slowly with frequency. The equivalent circuit of the oscillator, including
the load resistance R,, then becomes a series connection of an inductance,
a capacitance, a small positive resistance R; representing the cavity loss,
the nonlinear device impedance — R +jX, and R, as shown in Fig. 9.2,
A small voltage source e(t) represents the noise in the device and the circuit
andfor the effect of a synchronizing signal, which we shall study later.
The equation governing the behavior of the oscillator is given by

di R
LEHR"JFR“)HE idt+v=ce(l) (9.1)

where v is the voltage developed across the device impedance — R + jX.
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Fig. 9.2. Equivalent circuit of an oscillator.

When e(?) is equal to zero, the current is expected to be approximately
sinusoidal;

i(t)= A cos(wt + o) (9.2)
where harmonic currents are neglected. The voltage drop across the device
impedance can be expressed as

v =— R4 cos(wt + ¢) — XA sin{wt + ) (9.3)

provided that the frequency dependences of R and X are ne‘glig‘ible. (A
lingar part of the device reactance can be included in the LC circuit of the
cavity, thereby relaxing this restriction to a certain extent.) Now suppose
that a small perturbation is given to the system by applying a small e(t?,
then #(¢) may no longer be sinusoidal. In many cases, however, i(t) is
similar te the original waveform. We shall restrict ourselves to these cases
only, and assume that /(¢) can be represented by

i(1) = A(f) cos{ot + (1)} (9.4)

where A(t)and @{t) do not change appreciably over one cycle of the oscil-
lation (= 2njw). Under this condition, di/dt and j i df are given by

1i dA
di =—-Alw+ de sin{fwt + @) + . cos(w! + @) (9.5)

dt dt dt
. A A dey 1 ‘_"f 9.6
J1d1=(w_GfM)51n(wr+¢)+c?dt cos(wt +¢) (9.6

where use is made of integration by parts neglecting the higher order terms

Lty ey e h A e
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of (1/w). Equation (9.3) is still valid provided that 4 and ¢ are now interpreted
as functions of time. Substituting Equations (9.3) through (9.6) into (9.1),
multiplying by cos{wt + ¢) or sin(w? + @), and integrating with respect to
time from £ —T, to ¢, where T, is a period of the oscillation (= 2n/w), we
obtain approximate differential equations in A and ¢:

1 \d4 2
(L+ )—+(Ri+Ro—ﬁ)A=_J e(t) cos(wt 4 @) dt
dt TO t~To

w’C
(9.7)
1 1 Ndop 2
—oL+ —~X|-|{L+- | Z=_°_ Y sin{owt dt
( @ET oc ) ( +w2c)dr ATOI,_TU"()S‘“(‘”*‘P)
(9.8)

where the orthogonality relation between since and cosine functions has
been used,

Even though higher harmonics at the output port are assumed to be
small, since e(r} is also small, their effect may be of the same order of
magnitude in the original Eq. (9.1). However, the above integrations with
respect to time, eliminate from our discussion the possible effect of higher
harmonies because of the orthogonality relations between the fundamental
and harmonic components,

Having obtained the differential equations which govern the behavior of
A and ¢, let us examine the free-running oscillation in these terms. For
steady state free-running oscillation, dAjdt =0 and e{r) = 0. Consequently,
(9.7) gives

R,+R,=R (9.9)

In general, R is a function of A and may appear similar to Fig. 9.3(a).
From (9.9), the amplitude of the current is determined as the intersection of
Rand R; + R, Let the amplitude be 4 o- If sRyrepresents A, times ~ @R/34
at 4,, as shown in Fig. 9.3(a), then, for a small variation A4 from A,, we
have

R+ Ry~ R=3sRy(AA]A,) (9.10)

In the vicinity of 4, Eq. (9.7) becomes

L+1 dAA+RAA—0
w'C) ar TAAT

Suppose 44 is not equal to zero at t=0. If >0, then |AA4| decreases
exponentially with time, and A, represents a stable operating point. On the
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Fig.9.3. {(a) K as a function of A; (b) X as a function of 4.

other hand, if Rintersects R, + Ry suchthats < 0,then |44] grows indeﬁni_tely
with time. This means that such a point does not provide stable operation.
The steady state oscillation frequency is determined from (9.8) together

with do/dt =0 and e($) = 0;
oL + X = (1/wC)

Assuming that X is small, the oscillation frequency is calculated to be
w0 = oo {1 ~ 1051 (X/Ro)} ©.11)

where w, and @,,, are given by
wo = (JLC) ', Qi =(@oL/Ro) 9.12)
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When X depends on A, as illustrated in Fig. 9.3(b), the value of X at 4 = 4,
must be used in (9.11) to obtain w,’.

In the above discussion, a small parallel conductance G has been neglected
which represents the losses of other resonant modes and remains uncanceled
after a proper shift of the reference plane at the output port. A similar
conductance on the device side of the equivalent circuit can be considered
to be included in the device impedance.

A plot of constant power and constant frequency contours on a Smith
chart of the load impedance of an oscillator is called a Rieke diagram.
When the load impedance has a reactive part Xg, in (9.11) X has to be

NO OSCILLATION

(a)

CONSTANT FREQUENCY ONSTANT POWER
CONTOURS CONTOURS

NO OSCILLATION

{b}

Fig.9.4. Rieke diagram of an ideal oscillator (8} G = 0; (b) G # 0. The usual
Smith chart constant resistance and reactance contours have been omitted,
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replaced by X+ X,. From this modified equation and F9.9), the‘Rie‘ke
diagram of our oscillator model has the appearance that is shown in Fig.
9.4(a). As the magnitude of the load impedance increases, the effect of the
conductance G mentioned above is no longer negligible, and the constant
power contours with nonzero G will be modified, as illustrated in Fig. 3.4(b).
Although the constant power and constant frequency contours .mtersect
each other perpendicularly in Fig. 9.4(a), their intersectionf:. will make
oblique angles if X is nonlinear (Problem 9.2). Furthermore, if more tha.n
one resonant mode is strongly excited in the cavity, the Rieke diagram.wﬂl
not resemble the one in Fig. 9.4(2). How well our model represents a given
oscillator in the vicinity of the operating point can easily be checked by
measuring the power and frequency as functions of load impedance and
drawing an appropriate Ricke diagram for the oscillator,

9.2 Synchronization by Injection Locking

In this section, we shall study the injection locking mechanism of oscil-
lators. For simplicity, let us assume that R, is equal to the waveguiclle
characteristic impedance Z, of the output port. Furthermore, let e(r) 1.n
(9.7) and (9.8) represent the injection signal voltage a, cos wy, wher-e @ is
assumed to be small. When the oscillator is synchronized, the oscillating
frequency must be the same as @, The right-hand side of (9.7) is given by

t
27, " J-
t—To

Thus, (9.7) becomes

a, cos m,t cos{wd + @) dt = ag cos @

A
2L % +sR, dA =agcoso (9.13)
t

where A4 = A — A, and use is made of L + (1/w,2C) = L + (1/wo*C) ='2L.
When the oscillation is in the steady state, d 44/dt =0, and (9.13) gives

AAgy = {ay cos @o/sR,) (9.14)

On the other hand, the right-hand side of (9.8) is given by

t .
a, cos ot sin(wt + @) dt = (ag/A) sing
t—To

2AT,) ! f

Strictly speaking, 4 may not be the same as A,; however, since @, ic small,
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the difference between A and 4, can be neglected. Thus, {9.8) becomes

1 _ dq) dg .
—wl+—--X-2L-" = "sing (9.15)
w,C dt A
For the steady state, dp/dt = 0 and ¢ must be a constant. Let this constant
be ¢, and let o, be w,’ + dw,, where 4w, is the difference between the
synchronizing and free-running frequencies. To a first order approximation,
(9.15) now becomes

— dwo2L = (ao/d) sin @y + 1R, (44,/4,)
where rR, is A, times 0X/3A4 at A,, as shown in Fig, 9.3(b). Substituting
(9.14) we have

oo = — 1L (ao/Ao) {1 + (ris)*} P sin(po + 0)  (9.16)
where

0 = tan (r/s) (9.17)

Since sin (¢, + ) must be less than 1, the maximum value of ldw,| for syn-
chronization is given by

[Awqax = 3L " (a0/A,) {1 + (r/s)?} /2 (9.18)
Using this value of |4wg| . Eq. (9.16) becomes
Sin (@ + 0) = — (4wo/| 40 gy (9.19)

In the vicinity of 4, and ¢, writing 4 = 4, + 445+ A4 and ¢ = @, + Ao,
Egs.(9.13) and (9.15) reduce to

dAAd .
2L~ +sRy 44 = — ag g sing, (9.20)
2 140 p A4 ao (9.21)
—_ —_—F _ = COSs .
dt 0 Ao AO ¢ o

Eliminating 44 from these equations, we obtain

P Ap 1 ag d Aoy
— - — [ sR = -
at "L (S °* 4, COS“"’") dt

SRy ag r\2) 12
+ T2 ZO 1+ S cos(py +0) dp =0 (9.22)

For stable operation, |A¢p| must decrease with time if A is not equal to
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zero at £ = 0. Thus, we have two conditions

SRy + (ao/Ag) cos o >0,  sRo(agfAe) {1 + (r/s)*}** cos(gy + 6) > 0

The first condition is usually satisfied when a;, is small and sR, is positive as
required for stable free-running oscillation. The second condition is then

equivalent to cos (g + 6) > 0 (9.23)

For a given Adw, =, — w,’, ¢, is uniquely determined from (9.19) and

9.23).
( Th)e above discussions were in terms of voltage and current. In the micro-
wave circuit, power is a more meaningful quantity; therefore, let us express
the synchronizing range in terms of power. The available power from the
synchronizing source is given by

P = (00/\/2)2/4R0 = ao*/8R,
while the output power of the free-running oscillator is given by
Py =R, (AO/\/E)Z = lRvo2

Substituting these into (9.18), we have

2y 1/2 1/2
[0} r P,
| A0¢) i = o 0 {1 + (E) } (}T) (9.24)
ext

where the external Q is defined by (9.12).

The injection of a synchronizing signal and the extraction of output
power from an oscillator are generally done through a circulator matched
to the waveguide characteristic impedance. In this case, the output power
is not given by R,4,%/2 but is given by the power emerging from t.he OS.Cll-
lator through the circulator, i.e., the actual power to R,. From the discussion
in Section 1.4, the output power becomes

P=1R5'|V = Ryl
where V is the voltage across the terminals of R, (including e(?)) given by
V =E — Rol = (ag/\J2) — Ro{(do + 44,)/\/2} £

Thus, to a first order approximation, we have

t_1 1+2 PV (2 l)cosqp}
P=P0+Agaocosrp0(;—:—z)=Po + }; p 0

(9.25)

%
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When combined with (9.19) this equation tells us how P changes with
dwy =w, —wy'. If the circuit is adjusted so that the maximum output is
obtained under the free-running condition, one of the constant output power
contours (%R0A2=const) plotted on the plane of Fig. 9.3(a) should be
tangent to the curve R at A4,. Since the constant output power contours are
represented by

IRoA* = 1 (R — R,)) A% = const
the maximum power condition is given by

(OR/6A) A* + 2A(R—R) =0
or equivalently
(2Rj24) = — (2R,/4)

Remembering that s is defined as — Ao/ Ry times R/2A at the operating point,
the above result shows that when the circuit is adjusted for maximum power,
5 is equal to two, and that the variation in the output power of our model
due to the injection of synchronizing signal becomes zero to a first order
approximation.

9.3 Noise in Oscillators

For the discussion of noise, it is necessary to evaluate the integrals on
the right-hand sides of (9.7) and (9.8) for the noise voltage e(t). As a simple
noise model, let us assume that e(t) consists of a large number of elementary
pulses each of which is represented by ed(f — 1,), where ¢ gives the strength
of the pulse and ¢, the time of its occurrence, Both ¢ and 1, are independent
random variables from one pulse to the next. Using (I1.20) in Appendix II,
the autocorrelation function of e(t) is given by

R.(t)=n<e? d(1) (9.26)

where n is the average number of pulses in a unit time, and (&%) is the
ensemble average of the square of the puise strength & From (9.26), the
power spectral density of e(z) is calculated to be

le(f)* = n¢e? = e (9.27)

which is independent of frequency. When the spectral density is independent
of frequency, the noise is said to be white. The thermal noise in resistors and
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the shot-noise in vacuum tubes and p-» junctions are both considered to be

white for most practical applications. N
Since Egs. (9.7) and (9.8) are linear, the principle of superposition holds,
Let us first consider the effect of just one pulse represented by eé(r — t,);

the integral
t
2Tyt f e(t) cos(wt + @) dt (5.28)

r—To

becomes a rectangular pulse with constant height (2¢/T,) cos(wty + @) and
the length T, as shown in Fig. 9.5. Since T; is considered short for any

e(l]“

€3 (t-1,)

2 t
= f e(t}COS (wtdg) dt
To Jyog,

VA

1o to*To

L N
Tof COS{w tot iy

—8- 1

-1t ingle
Fig.9.5. The relation between 2T 1J!—To e(t) cos(wt + @) dr and e(t) for a sing

pulse in e(t).

variation in A, this pulse can be considered as another pulse having the
form of a é-function with strength 2e cos{wty + @) located at t‘= .to for the
practical purpose of calculating the effect using (9.7). If n, (1) mdlcates' the
total effect of the integral (9.28), n, () consists of many such puIsesz. Since
the autocorrelation function of #, (1) is easily calculated to be 2n{e*) 6(th
we have

|n1(f)|2=2|e|2 (9.29)
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5
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Similarly, indicating the effect of

t
P Pl f e(r) sin(wt + ) dt
I=Tg
by #,(#), we obtain

lna (N =2]e)? (9.30)

Furthermore, because of the orthogonality between sine and cosine func-
tions, the cross-correlation between n,(t) and n, (1) is calculated to be zero.
We are now in a position to investigate noise in free-running oscillators,
In the following discussion it wiil be assumed that » = 0 in order to simplify
some calculations which otherwise become very lengthy.
For the amplitude fluctuation we write A4 = A4 — Ay, and from (9.7)

2L {d AA[d1) + sRy A4 = n, (1)

Calculating the power spectral densities of both sides and dividing by 4?12
+ S?R? we obtain

aagyr= mOL 2 ©31)
40°L + 5°Ry* 40’12 + 7R,
If the output of the oscillator is detected by an envelope detector, we expect
to observe the output spectrum given by {9.31). Strictly speaking, part of e(t)
comes from the noise source in R, which introduces a slight modification in
the discussion of the output power measurement as was done in Section 9.2,
However, for most cases the difference may be negligible.
For the phase fluctuation, setting r = 0 and o = @y, (9.8) becomes

= 2L (de/dt) = n,(1)/A,
which gives
o) = P 2le? ©.32)
PN = 20224, T 40 A '
If the output of the oscillator is detected by an FM discriminator following
an ideal limiter, the output should be proportional to do/dr which has a
white spectrum in this ideal case of r = 0.

An ordinary spectrum analyzer shows the spectral density of the output
power directly. The best way to calculate it may be to calculate the auto-
correlation function of the current waveform and transform the result to
the spectral density by a Fourier transformation. Since ny (t) and n,(r) have
no correlation, A(f) and () are uncorrelated, and the autocorrelation
function of R,(1) becomes
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Ri(t) = A(D) A(t + 1) cos{wot + @ ()} cos (wot + woT + @ (t + 7))
= 3(Ao? + R,4(7)) coswot {cos (i (t + 1) — @ (1)) (9.33)

where { ) indicates the ensemble average and use is made of (sin(@(? + 1)
-} =0. . _ _

Onog the power spectral density of AA is available, the calculation of
R, , (1) is straightforward. From (9.31), we have

- . el” sR
Raa)= [ 1aA() o =5 exp(— L m) 934)

Since the calculation of {cos(@(t + 7) — @(¢))) is involved, let us first con-

sider {(p(t + 7) — @(#))*>. If u(2) is unity from z=—zto z="0 and is zero
elsewhere, then referring to Fig, 9.6, x (1) = ¢ (¢ + 1) — ¢(¢) can be expressed

is(z) - J. rj d(’;—? u(t—0)do = r (—_-1—) n, (8) u(t — 6) do (9.35)

—w \2LA4,
ulz)
A
1
- Z
-7 o}
uit-8)
1 -
L)
¢] 1 t+7

Fig. 9.6. The relation between x{z} and u(t — 8).

The Fourier transform X,(f) of x;(f) (see Appendix II for the definition of
X7(f) and x7(¢t)) is therefore given by the product of the Fourier transf"orm.;
of m,7(f) and u(t) multiplied by —1/2LA4,. The power spectral density o
x(t) is given by
(P = lim 5 X = s s (D 10 O)P
_ le|* 2(1 — coswr) (9.36)
T 21247 w®

EPRETY
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From (9.36), R.(0) = ((@(r+ 1) — @(1))*> can be calculated as follows:

(" 2 . le? [ 1 _coser _lel?
Rx(O) _f—m IX(f)! df_— LZAOZJ\—Q:\ B 527_ df B 1]-'427(403 —5 (937)

where we have used

¥ 1-coswr * rHlginwf
o || ]

f f f cos wé d& di df
— a0 0 —@

= %f:[ f: J‘: coswf df dE do

It] po
= %J. j 5(2)de do =11
0 -@

2

I
[T

Noting that 9t +1)—@(t) has the Gaussian distribution and that

o’ ={p(t+1)— @(1))*>, we can now calculate {cos(p(t+ 1)~ @ (1)) as
follows:

2

eos{o(t + 1) ~ o (1)) =f (2ra?)~112 exp(— 552—) cosg do
—w a
e o* el® I (9.38)
= X —_—— = X _—— .
p 2 exp a%4,? T
Substituting (9.34) and (9.38) into (9.33), we obtain
1 lef? sR Jef*
Ri (T) = 5 {AOZ + QTSR—O exp(— ?Zf |T|')} exp(— 4—L§0§ |T| COSs Wyt

The power spectral density of i(r) can now be obtained by the Fousier trans-

formation of the autocorrelation function. Noting that sRo/2L > |e|* /417 4,2,
we have

() = f:, Ri(z) e gy
e ) o ()T
Alfr ) feenr- G
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Neglecting the contribution from the noise source in Ry, 2R, [/(f )]% gives
the output power spectral density function P(f) (/> 0) for the oscﬂla.tf)r.
The factor 2 in front of Ry [i(f)j* comes from the fact that both the p051.t1ve
and negative parts of the frequency spectrum contribute to P(f). Since
@ — @y <€ w + g, we have

2

P(f)=;)Q—°2tN

1 1 }

- 3 + e p— 5
g {(m — wp)? + (wo°/4Q0) (NIP)* (o — wo)? + (0o/Qen)? (*21;2;9)
where N is given by N = 2R R) 040

Tt is interesting to note that if an amplifier were built using the same negati.ve
resistance (R — R;) with the same noise voltage e(¢), the optimum noise
measure obtainable would be given by

Moo = (N/KT)

is the Boltzmann constant. .
w};:e(:?;;)fhP( 1) consists of tow terms, the first is ca,lleq the FM nms;
since a spectrum analyzer essentially shows this spec‘trum if the o.utput o
the oscillator is displayed after eliminating the amplitude ﬂuc'Fuatlon by a
limiter. The second term is called the AM noise. Since the relation

%wOQe_x: (N/P) <5

usually holds, the first term predominates over t.he second whe'n w'ls close
to w,. Fer large @ — w,, however, both terms give equal (I:ontrlbut‘lo‘ns.. i
Let us next consider the noise in oscillators synchronized by mjecu?1
locking. Tn the case of free-running oscillators, ¢ co.uld takf.: .alfnostfa y
value; when synchronized, however, ¢ should stay in the .v1cm1ty o_ﬁq:o
because of the restoring force due to the synchronizing signal. Wri a]g]
A=Ay + A4y + 44, ¢ = @y + Ap, and assuming A4, A4,, and Ag are :
small and r =0, Egs. (9.7) and (9.8) become

— 2L (d A@/dt) — (ao/Ao) Ap cos @o = {n; (1){ Ao}

o RS T
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respectively. From these equations, we obtain

Ay = mF L alsinte,  my(n
4071 +57R, 4o’ + 5°Ry’ 40’4, + ay? cos” @,
2lel® 40’ 4,2 + a,?
= lthLa $IR.2 3:(;21,?4 3‘_}_*2_ 5 (9.41)
0 o do” COS™ @

|n2 (f)) 2]e)?
dp(f)p=-, 20 2t 9.42
4o ()] 40’ L’40% + ag’ cos’ g, 40?247 1 aq? cos? i, 42

It can be seen by noting the presence of a, that the phase fluctuation is

considerably reduced, but the envelope fluctuation becomes slightly larger
with synchronization,

In order to calculate the output power spectral density function P(f),
let us first calculate R;(7). Noting that both 44 and A¢ are small, we have

Ri(t) = 3 (4o + 44,)* (1 ~ (dg?)) cos w1
+34,°R,, (1) cosw + IR, (t) coswt
+ 3o sina,t (CAA(z) Ap (0)) — <A4(0) Ag (2)))
From this, we can obtain the power spectral density of i(¢) by a standard

procedure. If we neglect the contribution from the noise source in R, and

calculate the power emerging from the oscillator following the method
described in the end of Section 9.2, we obtain

N wy 1 Neay,
e e e A

N w,* N 1
ZQezxt (CI) - ws)z + IAwO'rl;ax COSZ Do

1 (“’ - ws)z + Mwoﬁmx
T (@ @) + @0/0u (527 (@ @ + a2, oo
o eTes Aol singy }
(@~ ) + (0/Qur)? (52) (w — w ) + | ey |2,y cos® @,

(9.43)

where P is given by (9.25). The first term is a pure spectrum. The second
term represents the noise component which in turn consists of three terms.
The first term gives the FM noise, the second term corresponds to the AM
noise, and the last term represents the interaction between the FM and AM
noise. As can be seen by comparison of (9.39) and (9.43), the TM noise is
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of the same order of magnitude as in the free-running case when (o — ¢,)?
is large. However, as w approaches w,, a considerable }mprovement is
obtained by synchronization compared to the free-running case (9.39),
On the other hand, the AM noise is not improved by synchronization. As a
matter of fact, since cos® ¢, is smaller than unity, the AM noise increases
slightly. Tf cos?¢, becomes small, i.e., if the synchronizing frequency-is
near the edge of the synchronizing range, both the FM and the AM noise
become extremely large. In the limit of cos® ¢, approaching zero, however,
the assumption of A4 and Ag being small is no longer valid, and the above
result should not be applied.

The interaction term shifts the noise from one side of w; to the other if e,
and w, do not coincide, and as a result, the noise spc.:ctrum b&.:comes un-
symmetrical with respect to w,. The sign of the interaction term is such that
the w, side of @, always becomes noisier.

So far the contribution from I/f noise has been completely neglected.
In practice, the circuit parameters of the active device are expe.cted to fluc-
tuate slowly with time, and the spectra of the fluctuations will be. nearly
proportional to 1/f, according to many experiments. This type of nmse_ does
not play a significant role in the case of ordinary high frequency amphﬁcr-s.
However, in the case of oscillators, the situation is different. As shown' in
Section 9.1., the behavior of the amplitude and phase of an oscillating
current is governed by (9.7) and (9.8). In these equations, R and X are
expected to fluctuate with time. Concentrating on (9.7), if R ﬂuctuz‘ites due
to the fluctuation of the device resistance, then transfer the fluctuating part
ARto the right-hand side. If we write AR(f) = ng(t)/ A, ng{t)yhas the dimension
of voltage, and the equation becomes

(4 i)+ Rer Ro=Ra =2 [ etiycos(o+ o)+ nal)
(DC dI 0Jt—To (9'44)

Similarly, (9.8) becomes

L_2)_(L+ )%
(_“’L“La_,é_ )_ T &*c)

= EET—O -[:_ . e(t) sin(wt + @) dt + ":‘4(‘) (9:45)

where n,(2) = 4 AX(?). . )
Equations (9.44) and (9.45) are the fundamental equations for 4 and ¢

Problems 397

when 1/f noise is taken into account. The terms I (f))* and {n (f)|? are
both proportional to 1//, In general, ng(¢) and #,(¢) are independent of
m{f) and n,(r), the white noise we previously introduced. However, ng(6)
and n.(¢) may be cross-correlated with each other, and this makes the
calculation of |i(f)]? complicated even when r=0, On the other hand,
the spectrum calculation of phase and amplitude fluctuations remains
straightforward. For instance, in the case of free-running oscillators the
results for |[44(f)|? and |@(f)|? remain valid if 2le|* is simply replaced by
2le|? + |ng (f)I? and 2|ef? + |7, (f)]?, respectively. It is worth noting that the
spectrum of frequency fluctuation [do(/ )/dt|? is no longer white. Depending
on the relative magnitudes of 2|ej? and |n.(#)I?, the spectrum exhibits a
certain slope, with the steepest region being about 3 dB per octave.

The calculated result of the phase fluctuation for synchronized oscillators
also remains valid if 2]e|? is replaced by 2|e|? +[n.(f)|%. Phase fluctuations
can therefore be greatly reduced by synchronization, even if | [f noise is
taken into account. The amplitude fluctuation contains a new interaction
term between rg(f) and #,(¢), and whether or not this fluctuation is reduced
by injection locking depends on the correlation between the two. If they are
uncorrelated, the amplitude fluctuation will be increased by injection
locking as before.

PROBLEMS

9.1 Assuming that the reactive part of the device impedance is a function of the current
amplitude, draw a Ricke diagram corresponding to Fig, 9.4(a).

9.2 Calculate the angle with which the constant power and constant frequency contours
intersect each other at the operating point in the previous problem.

9.3 Prove that generalized functions carresponding to two different continuous functions
are not equal. Use wap(z) defined by (I1.16) in Appendix II to test the equality.

9.4 Calculate the autocorrelation function of Acos(wt + @) and its power spectral
density.

9.5 Show that the power spectral density of shot noise current is given by
[H()2 = elo

where In is the average current and e is the magnitude of electronic charge. Note
that this gives (7.71) when the contribution from the negative frequency part of the
spectrum is taken into account; i.e., <in?> = 2li(N2 B.

9.6 Suppose that the synchronizing signal is noisy and represented by
(a0 + Aa) cos(wst + ), where da and w indicate the amplitude and phase fluc-
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tuations, respectively. Show that the power spectral densities of the amplitude and

phase fluctuations of the synchronized oscillator are given by

AN = R {(orfwo? @4, + (/2% {0 + |den|’,, cos? pa}t

2
% {| dwo|%,, c0s? @o2Ps sin® po |y (|2 + (@? + |denl},, ) N}

@ N
i@ — o) (N2 = {w? + |Aw01:mx cos? go}1 gldwoi‘fnax cos® golw (f)]* + 202 fTog

ext

where it is assumed that Ps > Ps, g0 3 da, and r = 0.
9.7 Show that |44(f)]2 and |g(f)|2 of a free-running oscillator become
|4ACHI: = NR," {(ojoo)? @, + (52021
2 " —_—
[0 ()2 = (N/Po) {Zsz (/)1 {1 + (12 {(w/we)* &, + (/2)}71]

when the nonlinearity of the device reactance is taken into account, i.e., » # 0.

APPENDIXT

PROOF OF lim k-«

In this appendix we shall prove the infinite growth of the eigenvalues
which we used in the discussion concerning the completeness of eigen-
functions.

1. One-Dimensional Case
The proof will be presented in several steps.

Lemma 1. Let fand g be single-valued real functions of X, then
2
ffz dxfgzdxa( fq dx) (I.1)

where the integrals are from x = g to b (> a).

Proof.  Noting that the square of a real function is positive, we have

Osf(ffgzdx—gffgdx)zdx
=ff2dx(fgzdx)2—2(ffgdx)zjgzdx+fg2dx(ffgdx)z
=fgzdx{ff2dxfg2dx—(ffgdx)z}

Since the integral of g2 is positive, the terms inside the brackets on the right-
hand side must be positive and the proof of (I.1) is complete.

399
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YemMA 2. Let f'and g be single-valued real functions of x, then

j(fig)zdeZ(J‘fzdx+fgzdx) (1.2)

where the integrals are from x =a to b(b > a)

Proof. From

osf(fig)zdx=ff2dxi2ffgdx+fgzdx
we have

‘ZJfgdx sffzdx+fgzdx (1.3)

Substituting (I.3) into

f(fig)deSffzdx+2’ffgdx +fgzdx

we obtain (1.2).

Lemma 3. Let f be a single-valued function of x whose derivative is

square-integrable over L. o . _
Let us divide L into N sections and indicate the ith section by L, Let

S(i) be the average of f over L,, then

f(f)=L.T‘f f dx

L

A staircase function can be defined over L such that iEs value in each L; is
equal to f(¥). If this staircase function is indicated by 7, then

f (f —fYdx<K f (df jdx)* dx a4
L L
where K is a constant which approaches zero as N — o0 and max L;— 0.

Proof. Since f is continuous, its value becomes equal to f(i) somewhere
in L. Let x, be such a point, then we have

f-fi)= f (df fdx) dx

in L, Squaring both sides and applying (I.1) with f being replaced by

1. One-Dimensional Case 401
dffdx, and g by 1, we obtain

0107 = [ wias dx}z
fx dx fx (df ldx)? dx

It follows from this that

<

<L f (df Jdx)* dx
Ly

f (f — f)*dx < LmaxL, f (dfjdx)? dx
L L

If maxL;—0 as N—co, then L maxL; approaches zero. Writing L maxF,
as K, (L.4) is proved.

LEMMA 4. An infinite sequence a,, a, ..., a,, ... satisfying
la,l <C  (n=1,2,.)

contains at least one subsequence which converges to a finite constant. The
constant C in the above inequality is fixed and independent of ».

Proof.  Bisect the section from — C to + C at its center and classify the
a,’s into two groups, one satisfying — C < a, <0, and the other satisfying
0<a, < C. Atleast one of the two groups should contain an infinite number
of a,’s. Again let us bisect the section containing this group at its center,
then at least one of these two sections contains an infinite number of a,’s,
as before. Continuing this brocess indefinitely, we see that there is a constant
® somewhere between — C and + C such that « + ¢ contains an infinite
number of @,’s no matter how small ¢ is. Let a(m) be the first g, to appear
within the range « + (1/m) where m is a positive integer. By increasing m
sequentially, an infinite sequence ..., a(m), a(m+1),... will be obtained.
If a particular a(m) happens to be the same a, as previously used for g(m — ),
this a() will be omitted. The sequence thus obtained is a subsequence of
the a,’s, and it converges to «. This completes the proof.

RELLICH’S THEOREM, A sequence of functions f, (n=1, 2,...,00), each
satisfying

f fldx<C, f (df.fdx} ¥ dx < C (L5)
L L

contains a subsequence such that

im | (7, £ ax =0
L

m, 5o
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Proof. The proof will be carried out in two steps. Divide L into N
sections as we did in Lemma 3, and let / be the staircase function whose
value within L; is equal to f(i). In the first step, we shall prove that

lim -0 (1.6}

N—w

f (fy — o) = o= T} dx

where max L; — (¢ is assumed as N — 0.
For simplicity, we write

q):fn_fm’ ¢=.f:_f-m

then we obtain

U(mz-az)dx sflqaz——qﬁlldxsfkwm o — @l dx
1/2
s{ f (¢ + @) dx f (o — @) dx} &)

where use is made of (I.1) for the last inequality. For the first term in the
square root, Lemma 2 gives

f(¢+¢)2dxs2(J¢2dx+f¢2dx) (1.8)

To evaluate the upper bound of the right-hand side, each term is calculated
using (1.2) and (L.5) as follows:

j(pz dx=f(fn—fm)2dxszf(f”2+fm2)dx£4c (19)
[ 77 ax= [ o dr = SLALG - 7u ) S2TLAEZO+0)
1 (L10)

For the last inequality, we used the relation (A4 + B)f < 2(4? + B?) which
is equivalent to 0 < (4 £ B)’. From the definition of f,(i), we have

2
- 2
SLEO=SL (L [ fds) <TL@Y L] 5
- j frdx<C (L11)
L
where (1.1) and (I.5) are used. Combining (1.10) and (I.11), we have

f P2 dx <4C (1.12)

1. One-Dimensional Case 403
From (1.8), (1.9), and (1.12), we obtain
f(qa + @) dx < 16C (L.13)
Similarly, using (1.4), we have
f (@ - P dx< K f (dojdx)? dx
<2K f {(dfufdxy® + (df,fdx)*} dx <4KC (114}

Substituting the right-hand sides of (I.13) and (I.14) in the square root of
(1.7), we obtain

f(@z - 7% dx <8,/KC

If max L; -0 as N— oo, then X —0 and (6) is proved.
In the second step, we prove the existence of a subsequence of the fs
such that

lim (fo—Fw) de—0 (L.15)
m,on—ot L
A combination of ([.15) with (1.6) then gives Rellich’s theorem.
We first note that

[ =12 ax= 3 170~ £,

= .Zl (L2100 - L 5.0 (L16)
and from (L.11)
L f,G) <€

By Lemma 4, there is a subsequence of the /s for which L}/ £, (1) converges.
Again by Lemma 4, using the members of this subsequence only, we can
make another subsequence for which L3/ £,(2) converges. Repeating this
process, we obtain a subsequence of the £,’s for which L!/? 7, (i) converges
for every 7. For this subsequence, the right-hand side of (I.16) approaches
Zero as m, n—~, i.e., (I.15) is satisfied. The proof of Rellich’s theorem is
thus completed.

Proof for lim, . k> =c0. Let E,, be the nth cigenfunction which is
normalized then the corresponding eigenvalue k,? can be expressed in the
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form

k= f (dE,,/dx)* dx

If k, remains finite, then the E,’s satisfy the condition for Rellich’s
theorem, and there must be E,, and £, satisfying

f (B, — E,w)’ dx <
no matter how small ¢ is, However, the left-hand side is equal to
f Eim dx -2 f E.E, dx + J. El, dx

in which the first and third terms are both equal to 1, and the second term is
equal to zero from the orthogonality condition. This means that
j (Eyn— E),,,,)2 dx cannot be less than 2 leading to a contradiction. We
conclude from this that the assumption of k,? remaining finite is wrong, or
equivalently, that lim__, k2= co.

2. Two-Dimensional Case

Lemma 1. Let fand g be single-valued real functions of x and y, then

ffzdsfgzds>(ffgdS)z

where the integrals are over a certain area S.

LemMa 2. Let fand g be single-valued real functions of x and y, then

f(fig)zdssz(ffzds+fgzds)

where the integrals are over a certain area S,
The proofs of the above two lemmas are similar to those for the one-
dimensional case, and hence will not be presented.

Lemma 3. Let f be a single-valued real function of x and y having &
square-integrable derivative Vf over S=Y S;. Let f(i) be the average of f
over §,,

f0=si* [ sas

£35S

N B g R
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and define the staircase function f whose value is equal to f(i) in S; for
every i We then have

[u-rypas<x| @nras

where K is a constant, and it is possible to choose the S;’s so that K—0
when every §;— 0.

Proof. Suppose that S; is an area enclosed byx=0, x=q,y=0
y = g(x) such that the maximum value of g(x) is smaller than k, and the
minimum value is larger than ¢ as shown in Fig. A.1. Let R be the shaded
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Fig. A.1. Domain S; and the integral path PoP.

X

area below ¢, then there is a straight line M parallel to the x-axis and located
in R such that

rfM (V)P dx = f f . (Vf ) dx dy (L.17)

Such a line M exists since the right-hand side can be written in the form

[ s

where the integral with respect to x gives a continuous function of y which
can be integrated from y =0 to ¢, There should be at least one point some-
where between y =0 and ¢ at which the value of the continuous function of
¥y becomes equal to the average value for this range of y. Let us draw a
straight line M parallel to the x-axis through this point, then the left-hand
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406
side of (I.17) becomes the average value times ¢, which is equal to the

right-hand side.
Let ! be a unit vector, then the value of

Vf 1= dfjél

becomes maximum when the directions of I and V£ coincide. 0therwi§e, the
value becomes smaller than the magnitude of Vf. Tt follows from this that

(@ 181> < Vf -Nf = (af 10x) + (&f [ay)? (1.18)
Let P, be a point where f takes the value of /(i) in S,, then the value of fat P

in S; is given by .,

710+ | @iena
Pq

from which we have

{f - fi)y = f: (af jan) di f ’ (affolydl < L f N (of o1 di

Po

<L r {(@f 1ox)* + (of joy)*} dl = L le0 (Vf)* dl

where L is the path length from F, to P and the relations (F.l) and (L.18)
are used, If we choose the path as shown in Fig. A.l, and integrate both

sides over S, the following inequality results.

f {f - f()Y? dssL_szu(v'f)zdyds+LELJZ(Vf)Zdyds
) +LiLJ‘M (Vf) dx dS

Using the inequalities

J‘st f: (V)" dy ds < f: L ﬂm (Vf)Y dydxdy<h L (Vf)? dS

- (1.19)

and

f f (Vf) dx dS < L flf (Vf)* dS dS < aht™! Li (Vf)* dS
S M ; 5

Eq. (1.19) becomes

where L < 2h +a 15 used.

[ u-s0pis<@nsaeiean [ i 020
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2. Two-Dimensional Case 407
Let us divide the given area § into a large number of small areas, each of
which satisfies the condition explained in connection with Fig. A.1; any

rotation or translation of the coordinates will be allowed. Suppose that ¢
of each area is kept equal to or larger than a constant « times hyie., t = ah,

then

fu-rras=s| - jopas
sZ(2h+a)(2h+aa")f (%) dSst (V/)? ds

and K approaches zero as we decrease the maximum size of §,. This com-

pletes the proof.

RELLICH’S THEOREM. A sequence of functions fo(n=1,2,... ), each

satisfying
f rtas<ec, f (Vf,)ds< ¢
5 5

contains a subsequence for which

m,R=oc

The proof for the one-dimensional case will serve here almost word for
word and hence we shall not repeat it.
wemks,.=0w. Let E, be a normalized eigenfunction, then

Proof for lim
the corresponding eigenvalue k2 can be expressed in the form

K2 =f(V x E) +(V.E) dS

which is equivalent to
k= f {E,-V x V x E +V.(E xVx E)+ V-(EV-E)

- (Er * V) (V - Ex)} as
The integrals of the second and third terms in the brackets can be converted
mto line integrals, both of which disappear because of the boundary con-
ditions for E,. The first term can be decomposed into two terms using the

universal equality
YVxVxE, = V(V-E,) — V2E,
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the first of these, when multiplied by E,, is equal to the last term in the
integrand. Thus, we are left with

k2=—-fE,-V2E,dS
&’E &’E d’E, &°E,
* . ~ 24+ E -7)ds L.21
=_J(Ex axz +E¥ ayz +EY 6x2 + ¥y ayz ( )

FE,_ 0 OF, (au‘z,:)2
*ox?  ox Y ox ox

Using

and similar equations, (I.21) can be rewritten in the form

2

1 a 2 2 62 2 2
k* = j {(VE,Y" + (VE,}'} dS — 5“@ (E2+E)+ 5 (E.* +E, )} ds
= J. {(VE.Y* +(VE,}*} dS — %J. V.V(E-E}dS (£.22)

The second integral on the right-hand side can be converted into a line
integral which disappears for the following reason. On the boundary
V:E, =0, and in terms of the n and I components this becomes

(3E,fon) + (OE,/o1) = 0

Since E; is equal to zero on the boundary, we have (8E; /) =0 and hence
(0E,/0n)y = 0. The integrand of the line integral is given by

n.V(E,-E) = {3(E,* + E?)/on} = 2{E,(3E,[on} + E,(OE,/On)}

which is equal to zero since 9E,/dn and E, both vanish on the boundary.
Equation (1.22) now reduces to

€= [ (VB + (VE)} ds

Let E,, and E,, be the x and y components of the nth eigenfunction lt"i.h..,
xn n . s
then from the above expression of the eigenvalue, both the £,,’s and the

.1 . 2 H .
E.. s satisfy the conditions stated in Rellich’s theorem if the k,“’s remain
yn

finite. Consequently, we can choose a subsequence of the Em.'s for »?'hlch ;l::
integral of (E,, — E.,)* converges to zero as n and m grow 1fldeﬁmt?ly. o
us choose from this subsequence another subsequence for which the integr

iz
&
2
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of (E,, — E,,)* converges to zero, then for such a subsequence, we have

tim | (E,-E,)dS= lim | {(E,, —E,) + (Eyp — E,)*} dS =0
My, N oo m, n—+ oo
However, this contradicts the orthogonality and normalization conditions

for the E,’s, which means that the assumption of the &,%’s remaining finite
is wrong. This completes the proof of lim,, k% =o0.

3. Three-Dimensional Case

Lemmas 1, 2, 3, and Rellich’s theorem in the three-dimensional case are
all identical to those in the two-dimensional case except that ¥ replaces §
everywhere. However, we have to use Fig. A.2 instead of Fig. A.1 to prove
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Fig. A.2. Domain ¥; and the integral path PP,

Lemma 3. Here, the maximum value of g(x, y) is less than 4 and the mini-

mum value is larger than ¢> 0, Also, Vi expresses the volume under ¢, and
the plane S, is such that

f N (VP ds=11 f y (V)2 dv
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The line M on S, is parallel to the x-axis and satisfies

fM (VI dx = b Lt (V/)? dS

If the integral path from P, to P is taken along the bold line shown in
Fig. A.2, corresponding to (1.19) and (1.20) we have

L‘_ {f - f(in dvsL{fV‘ f:o(Vf)z dz dv
+fv,- f:(Vf)z dz du+fv,- fZ(Vf)z dy dv

+fV_ ﬁ:(\?f)2 dydv-l—fyl fM(Vf)2 dx dv}

<(2h +2b +a) {2k + 2bht ™" + abhb "'t} fv_ (Vf)? dv

If we divide the given volume ¥V into a large number of smaller volumes
similar to Fig. A.2 while keeping t = «h, then

[ v-swasx| opra

and K — 0 as the maximum size of the small volumes approaches zere. :The
proof of lim,, k,> =00 is now obvious from the previous discussions
n— oo

for the one- and two-dimensional cases.

4. Resonant Cavities with Inhomogeneous Media

As we discussed in Section 4.5, the eigenfunctions for a resonant cavﬂ:Iy
with an inhomogencous medium can be classified into three groups., I, 1 ,
and III. We shall first show that the number of ir‘ldcpendent functions 11;
group 1 is equal to that of independent functions in group I for .the sa;’::e
cavity with a homogeneous medium, We shall then show that the elgenl:fahh
of the /th eigenfunction in group I cannot be .smaller than that of t de'um
eigenfunction in group II for the same cavity with a homogeneous medi

whose relative dielectric constant and permeability are given by £,; and g -

respectively, where g, and s ate the maximum values of & and p, 11} :::
inhomogeneous medium. Finally, we shall show that the eigenvalue o‘
/th eigenfunction in group III cannot be smaller than that of the /th eigen

4. Resonant Cavities with Inhomogeneous Media 411

function in group III for the same cavity with a homogeneous medium whose
relative dielectric constant and permeability are given by &, and u,, respec-
tively, where ¢, and g, are the minimum values of ¢, and g, Since the
eigenvalue k,? for a cavity with a homogeneous medium grows indefinitely,
k,? for the cavity with an inhomogeneous medium must also grow indef-
initely with », which completes the proof.

Now suppose that E represents an eigenfunction in group I, then it
satisfies VX E=0in ¥ and nx E=0 on S, where V indicates the volume
in the cavity, and S the wall surface. By Helmholtz’s theorem, E is expressible
as Vo. Substituting this into Ve, E=0and nx E =0, we have

VeeVo=0  (inV), nxVp=0 (on S)

This boundary condition requires that ¢ is constant on each independent
wall, and the problem is reduced to that of finding static potential functions
in the closed region. Let N be the number of independent walls, then there
are exactly ¥ —1 independent solutions for ¢ since there are only N —]
independent ways of assigning the potential to N —1 walls with respect to
the remaining one, whether or not the medium is homogeneous. This
completes the discussion of group I,

Let us next consider E in group 1. We shall discuss the problem in two
steps. In the first step, we shall show a maximum-minimum property of
cigenvalues. In the second step, we shall compare the magnitudes of the
Ith eigenvalues for the homogeneous and inhomogeneous cases.

For the functions in group 1L, V+¢,E =0 and we have

Vxp 'V E—k*%E=0 (in¥}), nxE=0 (onS5) (1.23)

If we restrict ourselves to the class of functions which satisfynx E=0 on §
and do not contain a term expressible as the gradient of a scalar function,
the variational expression for the eigenvalue of (I.23) is given by

fu:‘(V x E)? dv
k*(E) =

f e, E2 dv

The eigenfunctions in group III can all be expressed as the gradient of some
scalar function, and hence they are excluded from the present E’s. Let
F,F,,...,F,_, be piecewise~-continuous, but otherwise arbitrary functions,
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and assume that E satisfies
fa,E-F,-du=0 (1<igI-1) (I.249)

f eE dv=1 (1.25)
Let us define D(E) by

then the value of D(E) varies with E. Let D be the minimum value of D(E)
when E varies over all possible functions satisfying (I1.24) and (1.25) with
the F;’s being fixed, If the F;’s change, D of course changes. Let us try to
find the largest value of D when the F;’s are allowed to vary over all possible
functions. We first consider a function in the form

1
E= Y cE, (1.26)
i=1

where E, E,,..., E; are the first / eigenfunctions in group II. From the
conditions (1.24) and (I.25), all the ¢;’s are determined. If i # j, the expression

fp:l(vXE‘-)-(VXEJ)dv=fEi-VXy,._1V x E, do
+fEixp:1VxEj-ndS

is equal to zero, since the first term on the right-hand side is equal to
[ k;?¢,E;+E; dv which vanishes because of the orthogonality condition; the
second term vanishes because nx E; =0 on 5. Using the above relation, the
value of D(E) for (I.26) can easily be calculated as

D(E) = Z cizkiz
However, since k,* > k? (1 <i</—1)and } ¢ =1 from (I.25) and (1.26),
we have

DE)< K’

This inequality holds for at least one E given by (1.26) regardless of the
F;’s used, which means D <k Now suppose that F, =E,,F,=E,,...,

F,_, =E,_,, then (1.24) gives the conditions under which the variational
expression k%(E) is minimized to obtain E,. Because of (1.25), the minimum

&
2
W F
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"
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value of D(E) under these conditons is given by &%, Combining with D < kz2,
we conclude from the above discussion that the largest value of D is k2,
and that the function which gives this value is the /th eigenfunction E,.
This completes the discussion of the maximum-minimum property of the
eigenvalues.

In the second step, we first change g, to My With the Fs (1 <igi—1)
and E being fixed,

D'(E)= f ' (V x E)* dS

cannot be larger than D(E). The minimum value D’ of I’ (E) cannot
therefore be larger than D. Tt follows from this that the /th eigenvalue k;>
in group II for the same cavity with ¢, and py, is smaller tnan k%, thus

k;z -.<._. klz

because the largest value of D' gives k;%. Next, we change ¢, to ¢, The
conditions necessary to obtain the /th eigenvalue k;? for the cavity with
ey and g;, become

feME-F;du=o (t<igi-1) 127

f eyE? dv =1 (1.28)

If we set F,' =F,(¢,/e31), (1.27) reduces to (1.24), in order to satisfy (I.28),
however, E must be multiplied by a constant ¢ smaller than unity. The
corresponding D(E), which we shall indicate by D"(E), must be equal to
c2DY (E), and hence

D"(E)< D' (E)

Let D" be the minimum value of D"(E) when E varies over all possible
functions, then D" < D' If we change F; over all possible functions, the corre-
sponding F,” also varies over all possible functions. However, the largest
value of D" cannot exceed the largest value of D' because of the relation
D"< D', which means k)* <kj* <k? We conclude from this that the
eigenvalue of the /th eigenfunction in group II, for a cavity with £, and p,,
cannot be smaller than that of the /th eigenfunction in groupII for the
same cavity with ¢, and pu,,. Since the latter grows indefinitely with /, so
does the former.

We finally consider E in group IIL Since Vx E =0 in V, the eigenvalue
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problem for E is given by

VW-eE+KE=0 (in¥), nanxE=0, V.¢E=0 (onS)
Writing V¢ E as kg, we obtain
Ve Vo + k=0 (inV), =0 (onS) (1.29)
For each ¢ satisfying (1.29), a corresponding E can be cbtained from
kE =—-Vop

Note that nx E=0 on § is automatically satisfied. If we restrict ourselves
to the functions which satisfy ¢ =0 on §, the variational expression for the
eigenvalues of (1.29) is given by

f e, (Vo) dv

f @* dv

Let ¥, s,..., ¥;_y be piecewise-continuous, but otherwise arbitrary,
functions and assume that ¢ satisfies

k(@) =

fcpgbidv:O (IgigI—1) (1.30)
fqoz dv=1 (1.31)

Let us define D(p) by

D(p) - f & (Vo) do

and let I be the minimum value of D{p) when ¢ varies over all possible
functions, then an argument similar to the one employed for group II
shows that the eigenvalue of the /th eigenfunction in group Il for a cavity
with g, cannot be smaller than that for the same cavity with ¢,,. This com-
pletes the proof for E.

For H, the number of independent eigenfunctions in group I is equal
to the number of independent loops formed by the wall surfaces. Apart
from this, all the arguments are similar to those for E.

APPENDIX IT
GENERALIZED FUNCTIONS
AND FOURIER ANALYSIS

In this appendix, we shall introduce the concept of generalized functions
in order to simplify our discussion of oscillator noise in Section 9,3, This
concept was developed from Dirac’s “delta function’ &(x) which satisfies

J‘: 5(x) K (x) dx = K{0)

for any “reasonable” function K(x). No ordinary function can satisfy the
above equation. However, we can consider the limit of a sequence of func-
tions such as (n/n)'/? exp(~—nx?)(n=1,2,3,...). The value of these func-
tions tends to be zero with increasing » at almost every point except x=0
while the area under the curves described by the functions remains equal
to unity. The following discussion will give this intuitive approach a mathe-
matical foundation, and not only justify the use of d(x) but also greatly
reduce the complications in Fourier analysis such as the determination of
conditions for convergence, term by term differentiability, and uniqueness.

We start with terminology. A function is said to be good if it is every-
where differentiable any number of times; also, its values and those of all its
derivatives reach the order of x|~V at most as |x| increases, i.e., (x| ™),
for all N. A sequence £,(x) of good functions defines a generalized function
S(x), if

©

lim f 7. (x) K (x) dx

H= oo

exists for any good function K(x). The integral of the product of a generalized

415
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function f(x) and a good function K(x) is defined by

o0

f(x) K(x) dx = lim J-aj Su(x) K(x) dx (L)

R0

If two sequences of good functions, £, (x) and g,(x), satisfy

lim £ (%) K(x) dx = lim g, (%) K (x) dx (11.2)
for any good function K(x), then the sequences are said to be equivalent,
and the corresponding generalized functions f{x) and g(x) are said to be
cqual. The equality is indicated by

J(x)=g(x) (1L.3)

Thus, each generalized function is really the class of sequences all equivalent
to each other. The above definition of equality is, of course, consistent
with the definition of integral (II.1) since the limit on the right-hand side is
the same for all equivalent sequences (see p. 425 for the physical meaning).
If two generalized functions f(x) and g(x) are defined by two sequences
fo.(x) and g,(x), then the sum f(x)+ g(x) is defined by the sequence
Jo(x)+ g.(x). Also, a generalized function f(ax + b) is defined by the
sequence f,{ax + b), where g and b are constants. The derivative f'{x) of a
generalized function is defined by the sequence f,’(x). Since K'(x) is a good
function for any good function K(x), the limit
lim £ (x) K(x) dx = — lim fHEOK (X)dx (1LY
exists and is the same for all the sequences equivalent to f,(x). From (I1.4),
we have

f:) S (x) Kix) dx = — fl f(x) K’ (x) dx (IL5)

which is consistent with the definition of the equality between generalized
functions, If two generalized functions g (x) and f(x) are equal, £’ (x) = g’ (x).
Let us next consider Fourier transformations. The Fourier transform of a

good function f£,(x),
E(y)= J.w fa(x) e7 7™ dx (1L.6)

is also a good function. This can be shown by differentiating (IL.6) m times

i
:
|
-

R T q‘ig‘:.ﬁi,,f.;*:,ii,_-: \.V-'-,:;:‘
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and integrating by parts N times as follows:

dm |_ 1 « dN . " —JFZnxy
B0 = s [t e )
2 m—N Mo dN
<O [ e o e axm o™

The inverse transform of (IL.6) is given by
K= [~ R i aL7)
To prove this, let us investigate the magnitude of
10— [ RO exn(= 5 e ay

Substituting (IL.6) into this expression and noting that both f,(x) and
F,(y) are good functions, we have

@[ [T s@ep s ay
fa(x) — ?fm Sa(2) em{ - (g)z (1~ x)’} d:#

= ‘\:/IRJ‘iJw fn(x) exp(— ZZ) dz — %J‘fm fn (X + g Z) exp(— Zz) dz
< ﬁjﬂn max|f, (x)] exp(— z%) dz (IL.8)

<

&
—z
n

which leads to (IL.7) in the limit of § — 0, In the above calculation, we have
used the relation

f ) exp(— 22 dz = /= (IL.9)

which can be derived using a transformation to a polar coordinate as
follows:

(fmm exp(— z*%) dz)2 = fwm exp(— x%) dx fw exp(— y?) dy

-~ - —@

=f exp(— r2)2m‘ dr=m
0

Notice that the limits of the integral on the right-hand side of (I1.9) can be
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replaced by — o 4 j4 and <o + jA without changing the value of the integral
where A is a real constant.

Let us now define the Fourier transform F(y) of a generalized function
f(x) by the sequence F,(y), where F,(y) is the Fourier transform of £, (x),
then

F(y)= f fx) e ¥ dx (11.10)
while the inverse transform of F(y) becomes f(x) from (IL7):

1= PGy L.11)

Notice that the Fourier transformsof f{ax + b) and f"(x) are given by
lal~" ef*™™¥4F(y/a) and j2ryF(y), respectively. Furthermore, since

Jw; fu(x) K (x)dx = 'r; f:c E,(v) K(x) ¢*™ dx dy

= f i F,(y) k(y)dy (11.12)

we have

o

f:f(x)K(x) dx=f _FO kG dy (IL.13)

where k(y) is the inverse transform of K(x).

We are now in a position to define a generalized function §(x). Let us
consider a sequence (n/m)'/* exp(— nx?). First, we note that each member
of the sequence is a good function. Next, since

[= 4]

. (n/m)'? exp(~ nx®) {K(x)} — K(0)} dx

< max |K'(x)| (njn)'? exp(— nx?) |x| dx

= (nn)”""? max |K'(x)| - 0

as n— o0, we have

lim ﬂ_o (nin)'"* exp(— nn*) K(x) dx = K(0)

n—w,m

for any good function K(x). Thus, sequences equivalent to (n/r)"/2 exp(— nx?)
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define a generalized function. If we indicate this generalized function by
J(x), we have

f " 50 K(9) dx = K(0) (I1.14)

Since the Fourier transform of (n/n)'? exp(—nx?) is exp(— n?y?*/n), the
Fourier transform of d(x) is one.

An ordinary function f;(x) can be considered as a generalized function if
(1 4+ x*)7¥ fo(x) is absolutely integrable from — oo to oo. To show this, let
us consider a sequence defined by

falx) = J‘Gj fo(t) o (nt — nx) nexp(— *jn*) dt (I1.15)

where o(z) is any good function which is zero for |z| =1 and positive for
[z] <1 while {1, o(z) dz=1. Such a function is obtained, for example, by
settingx=—1 and =1 in ¥ 4(2) given by

o -1 -1
Yap(z)=A "exp {(z Za)? +(z—-ﬁ)z
=0 for_ zsa or zzf  (IL16)

where
A—jﬁex { ~1 +—_1 }dz
I P (O ey

Note that all the derivatives of ,,(z) exist and are equal to zero if z < «
or z > B. In order to show that f,(x) is a good function, we differentiate
Su(x) m times. Since 6™ (nz — nx) is nonzero only when |x| —1 < |f| < |x| +1,
we have

} for a<z<§p

L1 =" o=y (ot = ms) mexp (- ) a

)

<n"" ! max o™ (2)] exp { - (x| — 1)*/n’}

x {1 +(Ix] + 1)2}Nf (1 + 37 £, (9] di = 0(x| ™)

[+a)

as x| - oo for all M. This shows that £,(x) is, indeed, a good function,
Next, let us consider

f:g Fu(x) K (x) dx — f: Fo(x) K(x) dx
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where K(x) is an arbitrary good function. Substituting (I1.15) into this
expression, we have

J‘il a(y)dy r fo(2) exp(— I—Z)K(t _X) dt — : fo(x) K(x) de

J. fo(t)CXp(—){ (t-—f)-K(t)}dt
—J._mfo(t)K(r){l —exp(—F)} dtl

<r o) {1 max |K'(x)|}dt+r Ifo(i)K(I)Int—idt

- [x—f]<1

= max
Iyl<1

1 A 1 [
<[ o tsac [ nog

nJ-o - (1 +12)"'

o]

as n—o0, where A and B are constants. The above calculation shows that

n=w

lim f: S(x)K(x)dx = J“:D fo(x) K(x) dx

for any good function K(x). Consequently, the sequence f,(x) defines a
generalized function f(x) and f(x) can be considered equal to Jo(x) from
the definition of equality between two generalized functions. Furthermore,
the derivative and Fourier transform of f(x) can be considered equal to
those of fo(x) under certain conditions. Let us assume that (1 + |x{2) ™Y £, (x)
is also absolutely integrable from — o0 to + oo for some N, then we have

| # @K@=~ |- rerkwax
A comparison of this relation with (I1.5) shows that
Frx)=5o(x)

in the sense of equality between two generalized functions. To show that
the Fourier transform F(y)} of f(x) is equal to the Fourier transform Fy(y)
of fo(x) when Fy(y) exists, we have only to prove that

r F(y)k(y)dy=fm Fo(») k(y) dy

Appendix II. Generalized Functions and Fourier Analysis 421

holds for any good function k(y). This is obvious from the following
calculation:

fw F(y)k(y)dy = lim i F..(y)k(y)dy

— a0 [ Iasdlec3 -

=tim [ LK@= [ SR

[ [ meeaor@a= [T ROk
where K(x) is the Fourier transform of k(y) and use is made of (I1.12) for
the second equality.

The above discussion shows for most calculations of interest that it is
not necessary to distinguish between an ordinary function and the corre-
sponding generalized function defined by (IL.15). We shall henceforth omit
the subscript 0 for distinguishing ordinary functions from generalized ones,

Let f(x) and g(x) be generalized functions defined by sequences of good
functions f,(x) and g¢,(x), respectively, such that

@)= [ fOg6-a

exists for all », and that the sequence 4,(x) defines a generalized function
#(x). This A(x) is called the convolution of f(x) and g(x) and indicated by

h(x) = f f F(g(x — 1) dt (IL.17)

The integrand is the product of two generalized functions. It is worth
noting that if we arbitrarily select two generalized functions, their product
may not necessarily be defined. This is because there is no guarantee that
the limit

o

fim | fu(x)ga(x) K(x) dx

n=oo -

exists for every good function K(x) even though f,(x) g,(x) is a good
function,

The Fourier transform H(y) of A(x) is given by the product of the Fourier
transforms of f{x) and g(x). This can be seen as follows:

H(y) = lim ij ij F() gn(x — 1) dt e 2™ dx

n-*an
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= lim fm f ) F () g, (&) e 2497 qr de

H=r o

= lim fw f(t)e_jz’"ydtfm g.(E)e™ ™t = F(»)G(y) (1L18)

n— o

If f(x) = 6(x) and the sequence g, (x) defines a generalized function g(x),
then the sequence

m)= [ 60 0.0~ 1)t = g,

defines the same generalized function g(x), and we have

g(x)=f:a(z)g(x—r)dr (IL19)

. Since the Fourier transform of &(x) is 1, Eq. (IL.18) gives a trivial result
G(¥) = G(y) in this case.
If we set g(x)=20(x) in (II.19) and use d(x) = 5(— x), we have

5(1) = f " s+ (IL20)

Similarly, if we set g(x) equal to 1 from — @ to € and zero otherwise, we

have
2]

g(0)=1= f RIOED (11.21)

where 0 is a nonzero positive quantity.
If f,(x) is a generalized function for each value of the parameter ¢ and
f(x) is another generalized function such that for any good function K(x)

aa

tim | £, K(x) dx = f : F(x) K(x) dx (I1.22)

t—=c -

then we say
lim f,(x) = f(x) (11.23)
i—c
Here ¢ may be finite or infinite. Let F,(¥) and F() be the Fourier transforms
of f,(x) and f(x), then

|- o= rwx@a

=)

= lim ch Ji(x) K(x) dx = lim

t=c

F(y) k(y)dy

o
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or equivalently
lim F, (y) = F(y) (11.24)
t—e

In other words, the Fourier transform of the limit of generalized functions
is equal to the limit of the Fourier transforms of the generalized functions,

Let x(¢) be a function of time such that a generalized function x;(¢) can
be defined by

xr(t) = x(1), —-T<t<T
_o0, {3 |T] (11.25)
then the autocorrelation function of x(¢) is given by
1 o0
R.(t)=lim — xp(D) xp (1 + 1) dt (11.26)
T—w 2T -

Note that R (1) is an even function of 1 since a change in the sign of 1 does
not change the value of the integral on the right-hand side, The Fourier
transform of x;(x) is given by

Xr(f)= f : xp()ye P dr (I1.27)

from which we have

Xo(1) X" ()= |

o

xr(0) e 7?1?40 f xp(8) €7 dt

Multiplying both sides by ¢/>*/* and integrating from —o to o0 with
respect to f, we obtain

fww X (f)I* 7 df = f: f:o fo_om xr (£) %7 (8) P HO gy 4 df

“ =f: Fm x2(8) x7(0) 5(0 — t — 7) d6 di

j_ xp(t) xp(t + 7) dt

Dividing by 2T and taking the limit of T—o0, a comparison with (I11.26)
shows that

RO= [ () e ar (11.28)

where

1
Ix(N)I* = :jm T X ()1 (11.29)
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The function [x(f)|? is called the power spectral density of x(¢). The inverse
transform of (I1.28) gives

]

x{(A)? = j R, (1) e ¥ dr (11.30)
Since R (7) is an even function of 7, (I1.30) can be rewritten as
x(f)? =2 f R, (7) cos 2nfr dt
0

Similarly, since |x(f)|? is an even function of f from the above equation,
(IL.28) can be written in the form

R,(7)=2 J'w Ix(f)I? cos 2xfz df

If x(f) represents a stationary random process which is ergodic (time
averages and ensemble averages are equal), then R (1) can also be written
in the form

R = [ [ st ptulxinand, @

where x; and x, indicate the values of x(2) at times t apart, p(x,) is the
probability density function that x(¢) is in the vicinity of x,, and p(x,|x; 1)
is the conditional probability density function that x(¢) is in the vicinity of
X, at a time 7 after it was in the vicinity of x;.

In much the same way, the cross-correlation function between two
functions x(¢) and y(¢) is defined by

1 T
R, (1) = lim — xp() yo(t + 1) dt (11.32)
T 2T ~T
and its Fourier transform is called the cross-power spectral density. .V\.f'hen
x(¢) and yp(¢) represent stationary random processes which are jointly
ergodic, R, (r) can be written in the form

R, ()= f f xip(e) Pl % D dxy dy,  (IL33)

where p(y;] x;;7) is the conditional probability density function that y(#)
is in the vicinity y, at a time 7 after x(¢) was in the vicinity of x;.

One of the most important concepts introduced in this appendix is t!lat
of equality between generalized functions. Whenever we have a function
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representing an impulse such as a hammer blow or a surge of electric current,
we are not interested in the detailed shape of the function but rather the con-
sequence of such a blow applied to some physical system, i.e., the con-
sequence which can generaily be expressed as the integral of the impulse
function with a proper weighting function. As a result, if two impulse
functions give identical results for all possible weighting functions, they
can be considered equal. This is exactly the concept used to define the
equality between generalized functions.

Our mathematical equations are always idealizations for describing
physical processes. The equality is examined by measurements which will
never be able to test the values of functions at every point of space or at
every instant of time. Instead, the examination will be made between the
weighted averages over a small area in the vicinity of the point or over a small
time or frequency interval. Thus, the equality we defined for generalized
functions is more natural and more appropriate in the discussion of physical
processes than the usval equality which demands the same values at each
point of space or time. Looking again at Section 9.3, we can see how natural
the noise discussion can be made with the help of generalized functions.
The application of generalized functions is not restricted to the discussion
of noise; there are numerous fields in which generalized functions prove
to be useful although we did not discuss them in this book.
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