
TEAM LRN

Analog and Digital Circuits for
Electronic Control System Applications

TEAM LRN

This page intentionally left blank

TEAM LRN

Analog and Digital Circuits for
Electronic Control System Applications

Using the TI MSP430 Microcontroller

by

Jerry Luecke

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

TEAM LRN

Newnes is an imprint of Elsevier
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints
its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

 Luecke, Gerald.
 Analog and digital circuits for electronic control system applications : using the TI
 MSP430 microcontroller / by Gerald Luecke.
 p. cm.
 ISBN 0-7506-7810-0
 1. Electronic circuit design. 2. Electronic control. 3. Programmable controllers. I. Title.

TK7867.L84 2004
629.8'9--dc22 2004054669

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

 04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

TEAM LRN

The book is dedicated to my wife Velma and our grandchildren:

From the Luecke side:

Cameron, Graham, Andy, Alex, Alyssa,

Brent, Jacob, Harper, Arielle, Emery.

From the Hubbard side:

 Jared, Garrett, Matthew, Ashton, Audrey.

TEAM LRN

This page intentionally left blank

TEAM LRN

vii

Contents

Foreword .. xi
Preface ...xii
Acknowledgments ...xiii
What’s on the CD-ROM? .. xiv
Chapter 1: Signal Paths from Analog to Digital ..1

Introduction ..1
A Refresher ..1
Accuracy vs. Speed—Analog and Digital ...5
Interface Electronics ..6
The Basic Functions for Analog-to-Digital Conversion ..6
Summary ..8
Chapter 1 Quiz ...9

Chapter 2: Signal Paths from Digital to Analog ..11
Introduction ..11
The Digital-to-Analog Portion ...11
Filtering ..13
Conditioning the Signal ...13
Transducing the Signal ...13
Summary ..15
Chapter 2 Quiz ...16

Chapter 3: Sensors ...18
Introduction ..18
Temperature Sensors ..18
Angular and Linear Position ..21
Rotation ..24
Magnetoresistor Sensor ..24
Pressure ..25
Light Sensors ...27
Other Sensors ...32
Summary ..32
Chapter 3 Quiz ...32

Chapter 4: Signal Conditioning ...35
Introduction ..35
Amplification ...35
Bipolar NPN Amplifier ..36
Amplifier Frequency Response ..39
Coupling ...40
Small-Signal vs. Large Signal ..41
Classes of Amplifiers ...42
Field-Effect Transistor Amplifiers ...42
A N-Channel JFET Amplifier Design ..43
An NPN MOSFET Amplifier ..45

TEAM LRN

viii

Contents

Operational Amplifiers ...47
Conditioning the Output of a Pressure Sensor ...50
A More Sophisticated Pressure Sensor Amplifier ..51
Current Mirror ..52
Applications of Op Amps ...53
Oscillators ..53
Power Amplifiers ...54
Class B Audio Power Amplifier ...56
Special Signals ...56
RC Time Constants ..58
Frequency Selection ...59
Typical Application of Filters ..61
Summary ..62
Chapter 4 Quiz ...62

Chapter 5: Analog-to-Digital and Digital-to-Analog Conversions ..66
Introduction ..66
Decimal Equivalent of a Binary Number ...67
Digital Codes of ADC ..67
A Resistor Network DAC ..68
A Simple Resistor-String DAC ..71
A Simple Current-Steering DAC ...72
Analog-to-Digital Converters (ADC) ..73
Successive Approximation Register (SAR) ADC ..74
Capacitor Charge-Redistribution ADC ..75
Highest Speed Conversions ..78
Sample and Hold and Filters ..78
Summary ..79
Chapter 5 Quiz ...80

Chapter 6: Digital System Processing ..82
Introduction ..82
Digital Processor or Digital Computer ..82
What is a Microprocessor? ...86
What is a Microcomputer? ...86
System Clarifications ...86
Digital Signal Representations ...90
Clock, Timing and Control Signals ..90
Interrupts ..92
Status Bits ..92
More About Software ...93
Sophisticated Programming Languages ...95
How Parts of a Processor Perform Their Functions ...95
Memory and Input/Output ...97
Addressing Modes ...97
Summary ..99
Chapter 6 Quiz ...100

Chapter 7: Examples of Assembly-Language Programming ..103
Introduction ..103
A Processor for the Examples ..103
About the MSP430 Family ..103
The CPU ...104

TEAM LRN

ix

Contents

Program Memory and Data Memory ...105
Peripherals ..106
Operation Control and Operating Modes ...106
Watchdog Timer ...106
System Reset ...107
Interrupts ..107
Oscillators and Clock Generators ..107
Timers ...109
Addressing Modes ...109
More on MSP430 Control ..110
Further Thoughts ..114
Labels ...117
Instructions ...117
Operands ..117
Hexadecimal Numbers ...117
Comments ..118
Programming Examples ...118
Subprogram No. 1 ..118
Subprogram No. 2 ..127
Subprogram No. 3 ..131
Variation of Threshold ...137
Summary ..137
Chapter 7 Quiz ..138

Chapter 8: Data Communications ...142
Introduction ..142
The Data Transmission System ..142
Parallel and Serial Transmission ..142
Protocols ..144
High-Speed Data Transmissions ..145
Serial Data Communications Advances ...145
A Return to the Format ..145
Shift Registers ..147
USART Serial Communications ..148
The UART Function with Software. ..150
Technology Advances ..150
I2C Protocol ..150
USB ..152
Summary ..156
Chapter 8 Quiz ...157

Chapter 9: System Power and Control ...160
Introduction ..160
Voltage Regulators ...161
Load Variations ..162
Actual Linear Voltage Regulator Circuit ..163
Voltage Regulation ...163
Power Dissipation ..164
Switching Voltage Regulators ..165
Summary of Regulators ...167
Power Supply Distribution ...168
Power System Supervisors ...170

TEAM LRN

x

Contents

Summary ..171
Chapter 9 Quiz ...171

Chapter 10: A Microcontroller Application ..174
Introduction ..174
Application Block Diagram ...174
System Schematic ..177
The Display ..177
The Microcontroller ...179
The Analog Circuitry ...180
JTAG ..181
Summary of Schematic ..182
System Development ...182
Breadboard Construction—Powered by the PC ..185
The Display Board ...189
The Analog Board ..190
The Application Program ...191
Creating a Project in IAR Workbench© ..192
Compiling the Program ..193
Loading the Program ..194
Troubleshooting ...194
The Stand-Alone Breadboard ..194
The PCB Circuit ...195
Summary ..197
Chapter 10 Quiz ...197

Appendix A: The MSP430 Instruction Set ...200
Appendix B: Standard Register and Bit Definitions for the MSP430 Microcontrollers260
Appendix C: Application Program for Use in Chapter 10 ...273
Appendix D: A Refresher ...290

Ohm’s Law ...290
Decibel—A Quantity to Describe Gain ...291
Passive Devices ..292
The Diode—A One-Way Valve for Current ...294
Active Devices ...294
Four Common Types ..297

About the Author ...299
Index ...300

TEAM LRN

xi

Foreword

February 2004

The concept of a programmable system-on-chip (SoC) started in 1972 with the advent of the unassuming
4-bit TMS1000 microcomputer—the perfect fit for applications such as calculators and microwave ovens
that required a device with everything needed to embed electronic intelligence. Microcomputers changed
the way engineers approached equipment design; for the first time they could reuse proven electronics
hardware, needing only to create software specific to the application. The result of microcomputer-based
designs has been a reduction in both system cost and time-to-market.

More than thirty years later many things have changed, but many things remain the same. The term
microcomputer has been replaced with microcontroller unit (MCU)—a name more descriptive of a typi-
cal application. Today’s MCU, just like yesterday’s microcomputer, remains the heart and soul of many
systems. But over time the MCU has placed more emphasis on providing a higher level of integration and
control processing and less on sheer computing power. The race for embedded computing power has been
won by the dedicated digital signal processor (DSP), a widely used invention of the ‘80s that now domi-
nates high-volume, computing-intensive embedded applications such as the cellular telephone. But the
design engineer’s most used tool, when it comes to implementing cost effective system integration, remains
the MCU. The MCU allows just the right amount of intelligent control for a wide variety of applications.

Today there are hundreds of MCUs readily available, from low-end 4-bit devices like those found in a
simple wristwatch, to high-end 64-bit devices. But the workhorses of the industry are still the versatile
8/16-bit architectures. Choices are available with 8 to 100+ pins and program memory ranging from <1 KB
to >64 KB. The MCU’s adoption of mixed-signal peripherals is an area that has greatly expanded, recently
enabling many new SoC solutions. It is common today to find MCUs with 12-bit analog-to-digital and digi-
tal-to-analog converters combined with amplifiers and power management, all on the same chip in the same
device. This class of device offers a complete signal-chain on a chip for applications ranging from energy
meters to personal medical devices.

Modern MCUs combine mixed-signal integration with instantly programmable Flash memory and embed-
ded emulation. In the hands of a savvy engineer, a unique MCU solution can be developed in just days or
weeks compared to what used to take months or years. You can find MCUs everywhere you look from the
watch on your wrist to the cooking appliances in your home to the car you drive. An estimated 20 million
MCUs ship every day, with growth forecast for at least a decade to come. The march of increasing silicon
integration will continue offering an even greater variety of available solutions—but it is the engineer’s
creativity that will continue to set apart particular system solutions.

Mark E. Buccini
Director of Marketing
MSP430
Texas Instruments Incorporated

TEAM LRN

xii

Preface

Analog system designers many times in the past avoided the use of electronics for their system functions
because electronic circuits could not provide the dynamic range of the signal without severe nonlinearity, or
because the circuits drifted or became unstable with temperature, or because the computations using analog
signals were quite inaccurate. As a result, the design shifted to other disciplines, for example, mechanical.

Today, young engineers requested by their superiors to design an analog control system, have an entirely
new technique available to them to help them design the system and overcome the “old” problems. The de-
sign technique is this: sense the analog signals and convert them to electrical signals; condition the signals
so they are in a range of inputs to assure accurate processing; convert the analog signals to digital; make the
necessary computations using the very high-speed IC digital processors available with their high accuracy;
convert the digital signals back to analog signals; and output the analog signals to perform the task at hand.

Analog and Digital Circuits for Control System Applications: Using the TI MSP430 Microcontroller explains
the functions that are in the signal chain, and explains how to design electronic circuits to perform the func-
tions. Included in this book is a chapter on the different types of sensors and their outputs. There is a chapter
on the different techniques of conditioning the sensor signals, especially amplifiers and op amps. There are
techniques and circuits for analog-to-digital and digital-to-analog conversions, and an explanation of what a
digital processor is and how it works. There is a chapter on data transmissions and one on power control.

And to solidify the learning and applications, there is a chapter that explains assembly-language program-
ming, and also a chapter where the reader actually builds a working project. These two chapters required
choosing a digital processor. The TI MSP430 microcontroller was chosen because of its design, and
because it is readily available, it is well supported with design and applications documentation, and it has
relatively inexpensive evaluation tools.

The goal of the book is to provide understanding and learning of the new design technique available to
analog system designers and the tools available to provide system solutions.

TEAM LRN

xiii

Acknowledgments

Mark Buccini, Product Line Marketing Manager for the MSP430 in the Semiconductor Group for Texas
Instruments Incorporated and his staff deserve much credit for the project in Chapter 10, and for the
thoroughness and accuracy of the MSP430 information. Special thanks go to Neal Frager, an applications
expert, for writing the program for the Chapter 10 project, for designing the PCB breadboard, arranging
meetings and for researching many inquiries as the book developed. Others that deserve mention for their
assistance: Cornelia Huellstrunk, Byron Alsberg who helped develop the initial schematic, Dale Wellborn,
Dan Harmon, Rajen Shah, Zack Albus, Modupe Ajibola, Mike Mitchell for his excellent reviews, and Neal
Brenner and for helping clean up the last details. A hearty “Thank You” to all!

TEAM LRN

xiv

What’s on the CD-ROM?

■ A fully searchable eBook version of the text in Adobe PDF format. It includes:

 Full text of ten chapters.

 Appendix A — The MSP430 Instruction Set.

 Appendix B — Standard Register and Bit Definitions for the MSP430 Microcontrollers.

 Appendix C — Application Program for Use in Chapter 10.

 Appendix D — A Refresher.

■ A user’s guide to the MSP430x1xx family of microcontrollers.

■ Layout wiring of PCB interconnection layers.

TEAM LRN

1

Introduction
Designers of analog electronic control systems have continually faced the following obstacles in arriving at
a satisfactory design:

 1. Instability and drift due to temperature variations.
 2. Dynamic range of signals and nonlinearity when pressing the limits of the range.
 3. Inaccuracies of computation when using analog quantities.
 4. Adequate signal frequency range.

Today’s designers, however, have a significant alternative offered to them by the advances in integrated
circuit technology, especially low-power analog and digital circuits. The alternative new design technique
for analog systems is to sense the analog signal, convert it to digital signals, use the speed and accuracy of
digital circuits to do the computations, and convert the resultant digital output back to analog signals.

The new design technique requires that the electronic system designer interface between two distinct design
worlds. First, between analog and digital systems, and second, between the external human world and the
internal electronics world. Various functions are required to make the interface. First, from the human world
to the electronics world and back again and, in a similar fashion, from the analog systems to digital systems
and back again. Analog and Digital Circuits for Control System Applications identifies the electronic func-
tions needed, and describes how electronic circuits are designed and applied to implement the functions,
and gives examples of the use of the functions in systems.

A Refresher
Since the book deals with the electronic functions and circuits that interface or couple analog-to-digital
circuits and systems, or vice versa, a short review is provided so it is clearly understood what analog means
and what digital means.

Analog

Analog quantities vary continuously, and analog systems represent the analog information using electrical
signals that vary smoothly and continuously over a range. A good example of an analog system is the record-
ing thermometer shown in Figure 1-1. The actual equipment is shown in Figure 1-1a. An ink pen records the

CHAPTER 1

Signal Paths from Analog to Digital

Figure 1-1: A recording thermometer is an example of an analog system

a. Recording thermometer
 Photo courtesy of Taylor Precision Products

b. Plot of daily temperature variations
 Courtesy of Master Publishing, Inc.

TEAM LRN

2

Chapter One

temperature in degrees Fahrenheit (ºF)
and plots it continuously against time on
a special graph paper attached to a drum
as the drum rotates. The record of the
temperature changes is shown in Figure
1-1b. Note that the temperature changes
smoothly and continuously. There are no
abrupt steps or breaks in the data.

Another example is the automobile fuel
gauge system shown in Figure 1-2. The
electrical circuit consists of a potenti-
ometer, basically a resistor connected
across a car battery from the positive
terminal to the negative terminal, which
is grounded. The resistor has a variable
tap that is rotated by a float riding on the
surface of the liquid inside the gas tank.
A voltmeter reads the voltage from the variable tap to the negative side of the battery (ground). The voltme-
ter indicates the information about the amount of fuel in the gas tank. It represents the fuel level in the tank.
The greater the fuel level in the tank the greater the voltage reading on the voltmeter. The voltage is said to
be an analog of the fuel level. An analog
of the fuel level is said to be a copy of the
fuel level in another form—it is analogous
to the original fuel level. The voltage (fuel
level) changes smoothly and continuously
so the system is an analog system, but is
also an analog system because the system
output voltage is a copy of the actual out-
put parameter (fuel level) in another form.

Digital

Digital quantities vary in discrete levels.
In most cases, the discrete levels are just
two values—ON and OFF. Digital systems
carry information using combinations of
ON-OFF electrical signals that are usually
in the form of codes that represent the
information. The telegraph system is an
example of a digital system.

The system shown in Figure 1-3 is a
simplified version of the original telegraph
system, but it will demonstrate the prin-
ciple and help to define a digital system.
The electrical circuit (Figure 1-3a) is a
battery with a switch in the line at one end
and a light bulb at the other. The person

Figure 1-2: The simple circuit for an automobile fuel gauge
demonstrates how an electrical quantity, a voltage, is an analog
of the fuel level. Courtesy of Master Publishing, Inc.

Separated by a
considerable distance

Light bulb

Original
was a
clicker

or
buzzer

ReceiverTransmitter

Key

a. Electrical circuit

b. International Morse code

c. Digital information

Figure 1-3: The telegraph is a digital system that sends
information as patterns of switched signals

TEAM LRN

3

Signal Paths from Analog to Digital

at the switch position is remotely located from the person at the light bulb. The information is transmitted
from the person at the switch position to the person at the light bulb by coding the information to be sent
using the International Morse telegraph code.

Morse code uses short pulses (dots) and long pulses (dashes) of current to form the code for letters or
numbers as shown in Figure 1-3b. As shown in Figure 1-3c, combining the codes of dots and dashes for
the letters and numbers into words sends the information. The sender keeps the same shorter time interval
between letters but a longer time interval between words. This allows the receiver to identify that the code
sent is a character in a word or the end of a word itself. The T is one dash (one long current pulse). The H is
four short dots (four short current pulses). The R is a dot-dash-dot. And the two Es are a dot each. The two
states are ON and OFF—current or no current. The person at the light bulb position identifies the code by
watching the glow of the light bulb. In the original telegraph, this person listened to a buzzer or “sounder”
to identify the code.

Coded patterns of changes from one state to another as time passes carry the information. At any instant of
time the signal is either one of two levels. The variations in the signal are always between set discrete levels,
but, in addition, a very important component of digital systems is the timing of signals. In many cases, digi-
tal signals, either at discrete levels, or changing between discrete levels, must occur precisely at the proper
time or the digital system will not work. Timing is maintained in digital systems by circuits called system
clocks. This is what identifies a digital signal and the information being processed in a digital system.

Binary

The two levels—ON and OFF—are most commonly identified
as 1(one) and zero (0) in modern binary digital systems, and
the 1 and 0 are called binary digits or bits for short. Since the
system is binary (two levels), the maximum code combina-
tions 2n depends on the number of bits, n, used to represent the
information. For example, if numbers were the only quantities
represented, then the codes would look like Figure 1-4, when
using a 4-bit code to represent 16 quantities. To represent larger
quantities more bits are added. For example, a 16-bit code can
represent 65,536 quantities. The first bit at the right edge of the
code is called the least significant bit (LSB). The left-most bit
is called the most significant bit (MSB).

Binary Numerical Quantities

Our normal numbering system is a decimal system. Figure 1-5
is a summary showing the characteristics of a decimal and a bi-
nary numbering system. Note that each system in Figure 1-5 has
specific digit positions with specific assigned values to each position. Only eight digits are shown for each
system in Figure 1-5. Note that in each system, the LSB is either 100 in the decimal system or 20 in the binary
system. Each of these has a value of one since any number to the zero power is equal to one. The following
examples will help to solidify the characteristics of the two systems and the conversion between them.

 Decimal Binary
 (XX10) (XXXX2)

 0 0000
 1 0001
 2 0010
 3 0011
 4 0100
 5 0101
 6 0110
 7 0111
 8 1000
 9 1001
 10 1010
 11 1011
 12 1100
 13 1101
 14 1110
 15 1111

Most significant bit
(MSB)

Least significant bit
(LSB)

Figure 1-4: 4-bit codes to represent 16 quantities. Figure 1-4: 4-bit codes to represent
16 quantities

TEAM LRN

4

Chapter One

Example 1. Identifying the Weighted Digit Positions of a Decimal Number
Separate out the weighted digit positions of 6524.

Solution:
6524 = 6 × 103 + 5 × 102 + 2 × 101 + 4 × 100

6524 = 6 × 1000 + 5 × 100 + 2 X 10 + 4 × 1
6524 = 6000 + 500 + 20 + 4

a. Decimal

b. Binary

Figure 1-5: Decimal and binary numbering systems
Courtesy of Master Publishing, Inc.

Can be identified as 652410 since decimal is a
base 10 system. Normally 10 is omitted since
it is understood.

TEAM LRN

5

Signal Paths from Analog to Digital

Example 2. Converting a Decimal Number to a Binary Number
Convert 103 to a binary number.

Solution:
 10310/2 = 51 with a remainder of 1
 51/2 = 25 with a remainder of 1
 25/2 = 12 with a remainder of 1
 12/2 = 6 with a remainder of 0
 6/2 = 3 with a remainder of 0
 3/2 = 1 with a remainder of 1
 1/2 = 0 with a remainder of 1 (MSB)
 10310 = 1100111

Example 3. Determining the Decimal Value of a Binary Number
What decimal value is the binary number 1010111?

Solution:
Solve this the same as Example 1, but use the binary digit weighted position values.
Since this is a 7-bit number:
And since the MSB is a 1, then MSB = 1 × 26 = 64
and (next digit) 0 × 25 = 0
and (next digit) 1 × 24 = 16
and (next digit) 0 × 23 = 0
and (next digit) 1 × 22 = 4
and (next digit) 1 × 21 = 2
and (next digit, LSB) 1 × 20 = 1

 87

Binary Alphanumeric Quantities

If alphanumeric characters are to
be represented, then Figure 1-6, the
ASCII table defines the codes that
are used. For example, it is a 7-bit
code, and capital M is represented
by 1001101. Bit #1 is the LSB
and bit #7 is the MSB. As shown,
upper and lower case alphabet,
numbers, symbols, and communi-
cation codes are represented.

Accuracy vs. Speed—
Analog and Digital
Quantities in nature and in the
human world are typically ana-
log. The temperature, pressure,
humidity and wind velocity in our

...

...

...

...

..

..

..

..

..

..

..

..

0 1 0 1 1 0 0 1

0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 01 2 3 4 5 6 7

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0

0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 1

.............

......

 @ P ‘ p 0 sp NUL DLE

 A Q a q 1 ! SOH DC1

 B R b r 2 " STX DC2

 C S c s 3 # ETX DC3

 D T d t 4 $ EOT DC4

 E U e u 5 % ENQ NAK

 F V f v 6 & ACK SYN

 G W g w 7 ’ BEL ETB

 H X h x 8 (BS CAN

 I Y i y 9) HT EM

 J Z j z : * LF SUB

 K [k { ; + VT ESC

 L \ l | < , FF FS

 M] m } = - CR GS

 N ^ n ~ > . SO RS

 O _ 0 DEL ? / SI US

Bit Position

Figure 1-6: American Standard Code for Information Interchange—ASCII code.Figure 1-6: American Standard Code for
Information Interchange—ASCII code
TEAM LRN

6

Chapter One

environment all change smoothly and continuously, and in many cases, slowly. Instruments that measure
analog quantities usually have slow response and less than high accuracy. To maintain an accuracy of 0.1%
or 1 part in 1000 is difficult with an analog instrument.

Digital quantities, on the other hand, can be maintained at very high accuracy and measured and manipulat-
ed at very high speed. The accuracy of the digital signal is in direct relationship to the number of bits used
to represent the digital quantity. For example, using 10 bits, an accuracy of 1 part in 1024 is assured. Using
12 bits gives four times the accuracy (1 part in 4096), and using 16 bits gives an accuracy of 0.0015%, or
1 part in 65,536. And this accuracy can be maintained as digital quantities are manipulated and processed
very rapidly, millions of times faster than analog signals.

The advent of the integrated circuit has propelled the use of digital systems and digital processing. The
small space required to handle a large number of bits at high speed and high accuracy, at a reasonable price,
promotes their use for high-speed calculations.

As a result, if analog quantities are required to be processed and manipulated, the new design technique is
to first convert the analog quantities to digital quantities, process them in digital form, reconvert the result
to analog signals and output them to their destination to accomplish a required task. The complete proce-
dure is indicated in Figure 1-7, and the need for analog circuits, digital circuits and the conversion circuits
between them is immediately apparent.

DIGITAL-TO-ANALOG

This signal will
be an electrical
signal — either
a voltage or a current.

ANALOG-TO-DIGITAL

This signal will
be an electrical
signal — either
a voltage or a current.

Sensing
the

signal

Conditioning
the

signal

Converting
the

signal —
Analog-to-Digital

Digital
System

Processing

Converting
the

signal —
Digital-to-Analog

Conditioning
the

signal

Transducing
the

signal to
useful output

OUTPUTINPUT

Digital Signals

Input could be a temperature,
pressure, air flow, linear
motion, rotation, etc.

Output could be a solenoid,
heater, motor, cooler, etc.

Figure 1-7: A typical system describing the functions in
the analog-to-digital and digital-to-analog chain

Interface Electronics
The system shown in Figure 1-7 shows the major functions needed to couple analog signals to digital
systems that perform calculations, manipulate, and process the digital signals and then return the signals to
analog form. This chapter deals with the analog-to-digital portion of Figure 1-7, and Chapter 2 will deal
with the digital-to-analog portion.

The Basic Functions for Analog-to-Digital Conversion
Sensing the Input Signal

Figure 1-8 separates out the analog-to-digital portion of the Figure 1-7 chain to expand the basic functions
in the chain. Most of nature’s inputs such as temperature, pressure, humidity, wind velocity, speed, flow
rate, linear motion or position are not in a form to input them directly to electronic systems. They must be
changed to an electrical quantity—a voltage or a current—in order to interface to electronic circuits.

TEAM LRN

7

Signal Paths from Analog to Digital

Sensing

the

Signal

Conditioning

the

Signal

Analog-to-

Digital

Conversion

Sample-

and-Hold

Circuits

In this case, converts
analog voltage into
a 4-bit code

Samples input analog voltage at set
intervals of time

Timing Times the sample-
and-hold and the
A to D conversion

 Sample Value Digital Code

 0 0.8V 1000

 1 1.1V 1011

 2 0.9V 1001

 3 0.65V 0110

 4 1.05V 1010

 5 1.25V 1100

In this
case, amplifies
signal amplitude
by 1,000

Takes a physical
pressure and
converts it to
a millivolt signal

INPUT
(Physical quantity)
Example: Pressure

Sensing

Output Signal

0 1 2 3 4

M
ill

iv
ol

ts

1.4
1.2
1.0
0.8
0.6
0.4
0.2

V
ol

ts

Conditioning
Output Signal

0 1 2 3 4

1.4
1.2
1.0
0.8
0.6
0.4
0.2

4 3 2 1

 1 1 1 1
 1 1 1 0
 1 1 0 1
 1 1 0 0
 1 0 1 1
 1 0 1 0
 1 0 0 1
 1 0 0 0
 0 1 1 1
 0 1 1 0
 0 1 0 1
 0 1 0 0
 0 0 1 1
 0 0 1 0
 0 0 0 1
 0 0 0 0

time time

ADC
Bits

Figure 1-8: The basic functions for analog-to-digital conversion

The basic function of the first block is called sensing. The components that sense physical quantities and
output electrical signals are called sensors.

The sensor illustrated in Figure 1-8 measures pressure. The output is in millivolts and is an analog of the
pressure sensed. An example output plotted against time is shown.

Conditioning the Signal

Conditioning the signal means that some characteristic of the signal is being changed. In Figure 1-8, the
block is an amplifier that increases the amplitude of the signal by 1,000 times so that the output signal is
now in volts rather than millivolts. The amplification is linear and the output is an exact reproduction of
the input, just changed in amplitude. Other signal conditioning circuits may reduce the signal level, or do a
frequency selection (filtering), or perform an impedance conversion. Amplification is a very common signal
conditioning function. Some electronic circuits handle only small-signal signals, while others are classified
as power amplifiers to supply the energy for outputs that require lots of joules (watts are joules/second).

Analog-to-Digital Conversion

In the basic analog-to-digital conversion function, as shown in Figure 1-7, the analog signal must be
changed to a digital code so it can be recognized by a digital system that processes the information. Since
the analog signal is changing continuously, a basic subfunction is required. It is called a sample-and-hold
function. Timing circuits (clocks) set the sample interval and the function takes a sample of the input signal
and holds on to it. The sample-and-hold value is fed to the analog-to-digital converter that generates a

TEAM LRN

8

Chapter One

digital code whose value is equivalent to the sample-and-hold value. This is illustrated in Figure 1-8 as the
conditioned output signal is sampled at intervals 0, 1, 2, 3, and 4 and converted to the 4-bit codes shown.
Because the analog signal changes continually, there maybe an error between the true input voltage and the
voltage recorded at the next sample.

Example 4. A to D Conversion

For the analog signal shown in the plot of voltage against time and the 4-bit codes given for the indi-
cated analog voltages, identify the analog voltage values at the sample points and the resultant digital
codes and fill in the following table.

Obviously, one would like to increase the sampling rate to reduce this error. However, depending on the
code conversion time, if the sample rate gets to large, there is not enough time for the conversion to be
completed and the conversion function fails. Thus, there is a compromise in the analog-to-digital converter
between the speed of the conversion process and the sampling rate. Output signal accuracy also plays a
part. If the output requires more bits to be able to represent the magnitude and the accuracy required, then
higher-speed conversion circuits and more of them are going to be required. Thus, design time, cost, and all
the design guidelines enter in. Chapter 5 is a complete chapter on the conversion techniques to explore this
function in detail. As shown in Figure 1-8, the bits of the digital code are presented all at the same time (in
parallel) at each sample point. Other converters may present the codes in a serial string. It depends on the
conversion design and the application.

Summary
This chapter reviewed analog and digital signals and systems, digital codes, the decimal and binary number
systems, and the basic functions required to convert analog signals to digital signals. The next chapter
will complete the look at the basic functions required to convert digital signals to analog signals. It will be
important to have these basic functions in mind as the electronic circuits that perform these functions are
discussed in the upcoming chapters.

0 1 2 3 4 5 6

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

V
ol

ts

ADC
Bits

 4 3 2 1

1 1 1 1

 1 1 1 0
 1 1 0 1
 1 1 0 0
 1 0 1 1
 1 0 1 0
 1 0 0 1
 1 0 0 0
 0 1 1 1
 0 1 1 0
 0 1 0 1
 0 1 0 0
 0 0 1 1
 0 0 1 0
 0 0 0 1
 0 0 0 0

Sample
Interval

0

1

2

3

4

5

6

Signal
Value

Digital Code
 4 3 2 1

For the analog signal shown and the 4-bit code for analog voltages at various
levels, identify the analog voltage values and the resultant digital codes.

Answer:

 Signal Signal Digital Code
 Interval Value 4 3 2 1
 0 0.3V 0 0 1 1
 1 0.7V 0 1 1 1
 2 1.5V 1 1 1 0
 3 1.25V 1 1 0 0
 4 0.95V 1 0 0 1
 5 0.8V 1 0 0 0
 6 1.1V 1 0 1 1

TEAM LRN

9

Signal Paths from Analog to Digital

Chapter 1 Quiz
1. A new design technique available to analog system designers is:
 a. Sense the analog, compute using analog, output analog.
 b. Sense the analog, convert to digital, compute digitally, convert to analog, output analog.
 c. Sense the analog, convert to digital, compute digitally, output digitally.
 d. Sense digitally, compute digitally, output digitally.
2. Analog quantities:
 a. vary smoothly, then change abruptly to new values.
 b. consist of codes of high-level and low-level signals.
 c. vary smoothly continuously.
 d. have periods of high-level and low-level signals, then change to continuous signals.
3. Digital signals:
 a. vary smoothly, then change abruptly to new values.
 b. consist of codes of high-level and low-level signals.
 c. vary smoothly continuously.
 d. have periods of high-level and low-level signals, then change to continuous signals.
4. Electronic system designers must interface between:
 a. the human world and the electronic world.
 b. the wholesale world and the retail world.
 c. the private business world and the government business world.
 d. the analog world and the digital world.
 e. a and d above.
 f. none of the above.
5. In analog electronic systems, analog quantities are:
 a. not analogous to the original quantity.
 b. are not a copy of the original quantity in another form.
 c. are output in digital form.
 d. are a copy of the analog physical quantity in another form.
6. Binary digital systems:
 a. have two discrete levels—1 or 0, high level or low level.
 b. have three or more discrete levels.
 c. have a level that varies continuously with time.
 d. have binary digits, or bits for short.
 e. none of the above.
 f. d and a above.
7. Decimal numbering systems have:
 a. weighted digit positions that vary randomly.
 b. weighted digit positions varying by powers of 10.
 c. weighted digit positions varying by powers of 2.
 d. weighted digit positions that remain constant at one value.
8. Decimal numbering systems have:
 a. weighted digit positions that vary randomly.
 b. weighted digit positions varying by powers of 10.
 c. weighted digit positions varying by powers of 2.
 d. weighted digit positions that remain constant at one value.

TEAM LRN

10

Chapter One

9. Physical quantities in the human world are typically:
 a. digital and analog.
 b. analog and digital.
 c. digital.
 d. analog.
10. Digital systems represent quantities:
 a. using combinations of binary digits in codes.
 b. using more bits in its binary codes as the quantity value increases.
 c. using more bits in its binary code as more accuracy is required.
 d. using binary codes with just two levels – 1 or 0, high level or low level.
 e. none of the above.
 f. all of the above.
11. Analog quantities:
 a. usually have slow response and less than high accuracy.
 b. can be maintained at very high accuracy at very high computing speeds.
 c. are impossible to compute.
 d. either have slow response or very high accuracy.
12. Digital quantities:
 a. usually have slow response and less than high accuracy.
 b. can be maintained at very high accuracy at very high computing speeds.
 c. are impossible to compute.
 d. either have slow response or very high accuracy.
13. The basic functions for A-to-D (analog-to-digital) conversions are:
 a. Sense, compute digitally, convert to analog.
 b. compute as analog, sense, convert to digital.
 c. convert to digital, sense, condition to analog.
 d. sense, condition, convert to digital.
14. Sensing:
 a. computes analog quantities in nature.
 b. separates out analog quantities into different categories.
 c. changes quantities in nature to electrical signals.
 d. detects analog quantities by their magnitude.
15. Conditioning signals:
 a. means that the signals are being exercised.
 b. means that some characteristic of the signal is being changed.
 c. means that the input signal may be increased or decreased in amplitude, filtered or its
 impedance changed.
 d. means that nothing is done to the input signal.
 e. b and c above.
 f. a and d above.

Answers: 1.b, 2.c, 3.b, 4.e, 5.d, 6.f, 7.b, 8.c, 9.d, 10.f, 11.a, 12.b, 13.d, 14.c, 15.e.

TEAM LRN

11

Introduction
Refer back to Figure 1-7. In Chapter 1, the basic functions used for the analog-to-digital portion of Figure
1-7 were discussed. In this chapter, the basic functions of the digital-to-analog portion will be discussed.

The Digital-to-Analog Portion
The digital-to-analog portion is separated out from Figure 1-7 in Figure 2-1. After the digital processing
system completes its manipulation of the signal, the output digital codes are coupled to a digital-to-analog
converter that changes the digital codes back to an equivalent analog signal. From the output of the digital-
to-analog converter, the analog signal is coupled to a signal conditioner that changes the characteristics of
the signal. Just as in Chapter 1, as the application demands, the amplitude of the signal may be increased
with amplification, or decreased with attenuation. Or maybe the power level of the signal is changed, or
there may be an impedance transformation to fit the transducer to which the output signal couples.

The output of the system is to some real-world quantity external to the electronic system. As shown in
Figure 2-1, the output might be a meter, a gauge, a motor, a lever arm to produce motion, a heater, or other
similar output.

CHAPTER 2

Signal Paths from Digital to Analog

Digital
System

Processing

Digital-to-
Analog

Conversion

Conditioning
the

Signal

Transducing
the Signal
to Useful
Output

Changes the
digital signal
back to analog.

Adapts the signal to
couple to a human
world parameter.

Changes characteristics
of analog signal, such as
amplitude, impedance or
power level.

Output may be a
meter, a gauge,
a motor, a lever,
a heater, etc.

Figure 2-1: Digital-to-Analog portion of the signal chain.Figure 2-1: Digital-to-analog portion of the signal chain

Digital-to-Analog Conversion

Figure 2-2 illustrates the basic digital-to-analog function. The digital processing system outputs digital
information in the form of digital codes, and as shown, the digital codes are usually presented to the input
of the digital-to-analog converter in one of two ways.

Parallel Transfer of Data

The first way—parallel bit transfer—means that all bits of the digital code are outputted at the same time.
In Figure 2-2, a 4-bit code is used as an example. The 4-bit codes are coupled out in sequence as they are
processed by the digital processor. They arrive at a preset data interval. In Figure 2-2, the 4-bit code 1000 is
outputted first, followed by 1011, 1001, 0110, 1010, and 1100, respectively. The digital-to-analog converter

TEAM LRN

12

Chapter Two

accepts all bits at the same time. It must have four input lines, the same number of input lines as the 4-bit
code. In most modern day digital-to-analog converters the 4-bit codes of Figure 2-2 are really 8-bit, or most
likely 16-bit codes.

Example 1. Parallel Output
Refer to Figure 2-2. If the output of the digital-to-analog converter were an 8-bit code, what would the
parallel bit codes be that are coupled out in sequence. Use the same value of analog signal.

Solution:
The analog values and the 4-bit codes are listed first. Since an 8-bit code can represent 256 segments,
its codes for the same analog value are shown with the maximum analog signal of 1.5V equal to 255.
Notice that the 8-bit code is two groups of 4-bit codes, which are also expressed in hexadecimal form.

 Analog value 4-bit code Hex 8-bit code Hex
 0 0000 0 0000 0000 00
 0.1 0001 1 0001 0001 11
 0.2 0010 2 0010 0010 22
 0.3 0011 3 0011 0011 33
 0.4 0100 4 0100 0100 44
 0.5 0101 5 0101 0101 55
 0.6 0110 6 0110 0110 66
 0.7 0111 7 0111 0111 77
 0.8 1000 8 1000 1000 88
 0.9 1001 9 1001 1001 99
 1.0 1010 A 1010 1010 AA
 1.1 1011 B 1011 1011 BB
 1.2 1100 C 1100 1100 CC
 1.3 1101 D 1101 1101 DD
 1.4 1110 E 1110 1110 EE
 1.5 1111 F 1111 1111 FF

Digital

System

Processing

Digital-

to-Analog

Conversion

Conditioning

the

Signal

F
I
L
T
E
R

For this example,
data is in 4-bit codes.

Parallel
 1 1 0 1 1 1
 1 0 1 0 0 0
 0 1 1 0 1 0
 0 0 0 1 1 0

Data
Interval

all bits at
same time

Data flowOR

Serial
1100 1010 0110 1001 1011 1000

Clock rate

Data Interval

V
ol

ts

Output of DAC

0 1 2 3 4 5

1.4
1.2
1.0
0.8
0.6
0.4
0.2

V
ol

ts

0 1 2 3 4 5

1.4
1.2
1.0
0.8
0.6
0.4
0.2

Filtered
Output of DAC

timetime

Figure 2-2: The basic function of digital-to-analog conversion

TEAM LRN

13

Signal Paths from Digital to Analog

Serial Transfer of Data

The second way is serial transfer of data. As shown in Figure 2-2, the 4-bit codes are outputted one bit at a
time, each following the other in sequence, and each group of four bits following each other in sequence. A
clock rate determines the rate at which the bits are transferred. The digital-to-analog converter accepts the
bits in sequence and reassembles them into the respective bit groups and then acts on them.

Example 2. Bit Rate
Refer to Figure 2-2. If the clock that outputs the bits in a serial output is 1 MHz, what are the serial bit
transfer rate and the parallel bit transfer rate for a 4-bit and an 8-bit code?

Solution:
 Clock (Hz) Serial Parallel
 4-bit 8-bit 4-bit 8-bit
 1 MHz 1 MHz 1 MHz 4 MHz 8 MHz

The Conversion

The digital codes received by the digital-to-analog converter are equivalent to a particular analog value. As
shown in Figure 2-2, the input code is converted to and outputted as the equivalent analog value and held
as this value until the next code equivalent value is outputted. Thus, as shown, the output of the digital-to-
analog converter is a stair-step output that stays constant at a particular level until the next input digital code
is received. The output resembles an analog signal but further processing is required in order to arrive at the
final analog signal.

Filtering
A basic function required after the digital-to-analog conversion is filtering, or in more general terms,
smoothing. As shown in Figure 2-2, such filtering produces an analog signal more equivalent to an ana-
log signal that changes smoothly and continuously. The filter physically may be in the digital-to-analog
converter or in the signal conditioner that follows it as shown in Figure 2-2. It was placed in the signal
conditioner in Figure 2-2 because it really is a signal conditioning function.

Conditioning the Signal
The function of conditioning the signal for the digital-to-analog portion can be the same as for the analog-
to-digital portion. A most common function is amplification of the signal, but in like fashion, there is often
the need to attenuate the signal; that is, to reduce the amplitude instead of increasing the amplitude. That
is the function chosen for Figure 2-3. The output signal is attenuated to one-half the value of the input. No
other characteristics of the signal are changed. The shape of the amplitude variations of the waveform with
time are not changed, so the signal appears the same except its amplitude values are reduced.

Transducing the Signal
The output of the analog systems discussed is a human world parameter external to the electronic system.
As mentioned previously several times, it may be a temperature, or a pressure, or a measure of humidity, or
a linear motion, or a rotation. Thus, the electronic output of the signal conditioning function, in many cases,
must be changed in form. It may be a voltage or a current out of the electronic system and must be changed
to another form of energy.

A device to change or convert energy from one form to another is called a transducer. In Figure 2-4, the
transducer is a meter that shows the amplitude of the output voltage on a voltage scale. The voltage output
from the electronic system is converted to the rotation of a needle in front of a scale marked on the material

TEAM LRN

14

Chapter Two

behind the needle. The scale is calibrated so particular needle deflections represent specific voltage values.
Thus, any deflection of the needle as a result of the electronic circuit output can be read as a particular
voltage value at any instant of time. The electronic system output has been converted to a meter reading,
and the meter reading can
be calibrated into the type
of parameter the system is
measuring. It could be a
fluid level, a rate of flow, a
pressure, and so forth.

Similar changes in energy
form occur in other types
of transducers. The voltage
or current output from the
electronic system gets con-
verted to all forms of human
world parameters just by the
choice of the transducer.

Examples of Transducers

Figure 2-5 shows examples
of various types of transducers. Figure 2-5a is a picture of a speaker enclosure. Inside is what is called a
driver. It is a common transducer that takes electrical audio signals and converts them into sound waves.
The driver is placed inside a box to make it into a very good sounding speaker enclosure. Many times the
driver only handles the low and mid-frequency audio signals, so another driver for the high frequencies,
called a tweeter, is inserted into the speaker enclosure to allow the speaker to reproduce a broader range of
audio frequencies.

Filtered
Output of DAC

V
ol

ts

Signal Conditioning
Output

0 1 2 3 4 5

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Transducing
the Signal
to Useful
Output

Conditioning
the

Signal

In this case, the signal conditioning function
is just a resistor divider that attenuates the
signal to one-half its original value.

Input Output

Output

timetime

OutputInput

V
ol

ts

0 1 2 3 4 5

1.4
1.2
1.0
0.8
0.6
0.4
0.2

Figure 2-3: Signal conditioning function

Figure 2-4: The transducer function

Conditioning
the

Signal
Transducer

In this case, the
transducer is a meter.

Volts The meter reading
at any instant in
time indicates the
amplitude of the
analog value.

Transducing the signal to
useful output —
Interfaces to human
world parameter
external to the
electronic system.

0 0.5 1.0

Figure 2-4: The Transducer Function.

TEAM LRN

15

Signal Paths from Digital to Analog

There is a counterpart transducer to the speaker—a microphone—that is used as an input device for sensing
the signal. It is shown in Figure 2-5b. The microphone converts sound signals into electrical signals so they
may be inputted into an electronic system.

Figure 2-5c shows a motor. Normally a motor is not classified as a transducer, but it is. A motor takes elec-
trical energy and converts it into rotational torque. Motors are used everywhere, from running machinery, to
trimming grass, to providing transportation.

Figure 2-5d shows a solenoid. A solenoid is a transducer that converts electrical energy into linear motion.
It consists of a coil of wire with a soft iron core inside of it. When current is passed through the coil, a
magnetic field is produced that pulls on the soft iron core and draws it inside the core. The movement of the
core can be used to move a lever arm, to close a door, to operate a shutter, and so forth.

There are many more examples of transducers that convert electrical energy into a pressure, a valve for con-
trolling fluid flow, a temperature gauge, and so forth. As various applications are described in subsequent
chapters many will use various types of transducers.

Summary
The discussion in this chapter covered the functions necessary to convert a digital signal into an analog
output and then into a human world parameter. It completed the signal chain from an input analog signal, to
a digital conversion, to computation in digital form, to a conversion back to an output analog signal, to an
output human world parameter. The next chapter will examine the sensing function in detail.

Tweeter

Midrange
Driver

Low Freq.
Driver

Speaker
(Driver)

Sound
Output

ear

Electrical
Signals

Sound Inputs Electrical
Signals

Rotating
shaft that
provides torqueElectrical Power

Linear
Motion

Electrical
Power

Soft
 Core

Wound Coil

a. Audio speaker b. Microphone (sensor) c. Motor d. Solenoid

Figure 2-5: Examples of transducers

TEAM LRN

16

Chapter Two

Chapter 2 Quiz
1. A digital-to-analog converter:
 a. outputs a digital signal in serial form.
 b. outputs an analog signal in stair-step form.
 c. outputs a smooth and continuous analog signal.
 d. outputs one digital code after another.
2. The output of the digital-to-analog chain is:
 a. a serial digital code string.
 b. a parallel digital code stream.
 c. a real-world quantity.
 d. always a meter reading.
3. An input to a digital-to-analog converter may be:
 a. a parallel transfer of digital codes.
 b. an analog signal of suitable amplitude.
 c. an analog signal of discrete values.
 d. a serial transfer of digital codes.
 e. a and d above.
 f. b and c above.
4. In a parallel transfer of bits:
 a. all bits of a digital code are transferred at the same time.
 b. all bits of a digital code are transferred in a sequential string.
 c. all bits are filtered into an analog signal.
 d. all bits are signal conditioned one at a time.
5. In a serial transfer of bits:
 a. all bits of a digital code are transferred at the same time.
 b. all bits of a digital code are transferred in a sequential string.
 c. all bits are filtered into an analog signal.
 d. all bits are signal conditioned one at a time.
6. The output of the digital-to-analog converter is:
 a. a stair-step output that varies until the next input digital code is received.
 b. a stair-step output that changes between 1 and 0 until the next digital code is received.
 c. a stair-step output that stays constant at a particular level until the next digital code is received.
 d. a stair-step output that changes from maximum to minimum until the next digital code is
 received.
7. The digital-to-analog output must be filtered to:
 a. clarify the digital steps in the output.
 b. keep the stair-step digital output.
 c. make the analog output change smoothly and continuously.
 d. make the analog output more like a digital output.
8. A transducer is:
 a. a device to change or convert energy from one form to another.
 b. a device that maintains the analog output in digital steps.
 c. a device that converts analog signals to digital signals.
 d. a device that converts digital signals to analog signals.

TEAM LRN

17

Signal Paths from Digital to Analog

9. A motor is:
 a. a transducer that changes digital signals into analog signals.
 b. a transducer that changes analog signals into digital signals.
 c. a transducer that raises the analog voltage output to a higher voltage.
 d. a transducer that changes electrical energy into rotational torque.
10. A meter is:
 a. a transducer that converts the analog output to the rotation of a needle in front of a scale.
 b. a transducer that changes analog signals into digital signals.
 c. a transducer that raises the analog voltage output to a higher voltage.
 d. a transducer that changes digital signals into analog signals.

Answers: 1.b, 2.c, 3.e, 4.a, 5.b, 6.c, 7.c, 8.a, 9.d, 10.a.

TEAM LRN

18

Introduction
In Chapter 1, Figure 1-8 shows the basic functions needed when going from an analog quantity to a digital
output. The first of these is sensing the analog quantity. The device used in the function to sense the input
quantity and convert it to an electrical signal is called a sensor—the main subject of this chapter.

A sensor is a device that detects and converts a natural physical quantity into outputs that humans can
interpret. Examples of outputs are meter readings, light outputs, linear motions and temperature variations.
Chapter 1 indicated that a majority of these physical quantities are analog quantities; i.e., they vary smoothly
and continuously. Sensors, in their simplest form, are devices that contain only a single element that does the
necessary transformation. Although today, more and more complicated sensors are being manufactured; they
cover more than the basic function, containing sensing, signal conditioning and converting all in one package.

In this chapter, in order to clearly communicate the sensing function, the majority of sensors will be single
element sensors that output electrical signals—voltage, current or resistance. But also, closely coupled to
sensors with electrical outputs, sensors are included that use magnetic fields for their operation.

Temperature Sensors
Oral Temperature

Everyone, sometime or another, has had the need to find out their body tempera-
ture or the body temperature of a member of their family. An oral thermometer
like the one shown in Figure 3-1 was probably used. Liquid mercury inside of a
glass tube expands and pushes up the scale on the tube as temperature increases.
The scale is calibrated in degrees (ºF—Fahrenheit in this case) of body tempera-
ture; therefore, the oral thermometer converts the physical quantity of temperature
into a scale value that humans can read. The oral thermometer is a temperature

sensor with a mechanical scale readout.

Indoor/Outdoor Thermometer

Another temperature sensor is shown in Figure 3-2. It is a
bimetal strip thermometer. Two dissimilar metals are bonded
together in a strip that is formed into a spring. The metals ex-
pand differently with temperature; therefore, a force is exerted
between them that expands the spring and rotates the needle as
the temperature increases. The thermometer scale is calibrated
to known temperatures—boiling water and freezing water. These
points establish a scale and the device is made into a commercial
thermometer with Fahrenheit (ºF) and/or Celsius (Centigrade—
ºC) scales. The one shown in Figure 3-2 is for ºF. The outdoor
thermometer is another type of temperature sensor that converts
the physical quantity of temperature into a meter reading easy for
humans to see and interpret.

CHAPTER 3

Sensors

Normal
 body
 temperature (°F)

103
102
101
100

99
98
97
96

98.6

Figure 3-1: Oral Thermometer

140

120

100

80

60 40

0

20

-20

-40

Spring
Anchor

Bimetal strip spring
expands as temperature
increases and rotates
pointer to indicate
temperature

Figure 3-2: Rear view of Bimetal Strip Thermometer

Figure 3-1: Oral
thermometer

Figure 3-2: Rear-view of bimetal strip
thermometer

TEAM LRN

19

Sensors

Thermocouples

A thermocouple is another common
temperature sensor. A place to find one
is in a natural gas furnace in a home
similar to that shown in Figure 3-3. It
controls the pilot light for the burners in
the furnace. The thermocouple is a closed
tube system that contains a gas. The gas
expands as it is heated and expands a
diaphragm at the end of the tube that is in
the gas control module.

The system works as follows: A button
on the pilot light gas control module is
pressed to open valve A to initially allow gas to flow to light the pilot light. The expanded diaphragm of
the thermocouple system controls valve A; therefore, the button for the pilot light must be held until the
thermocouple is heated by the pilot light so that the gas expands and expands the diaphragm. The expanded
diaphragm holds valve A open; therefore, the pilot light button can be released because the pilot light heat-
ing the thermocouple keeps the gas expanded. Since the pilot light is burning, any demand for heat from the
thermostat will light the burners and the house is heated until the demand by the thermostat is met.

A thermocouple that puts
out an electrical signal
as temperature varies is
shown in Figure 3-4. It
is constructed by joining
two dissimilar metals.
When the junction of the
two metals is heated, it
generates a voltage, and
the result is a temperature
sensor that generates millivolts of electrical signal directly. The total circuit really includes a cold-junction
reference, but the application uses the earth connection of the package as the cold reference junction.

There may be a need to amplify the output signal
from the sensor, as shown in Figure 3-5, because
the output voltage amplitude must be increased
to a useful level. This is the subject of Chapter 4,
signal conditioning.

Silicon-Junction Diode

Another sensor that produces a voltage directly
as temperature varies is a silicon-junction diode.
The characteristic curves for its forward and reverse voltage with current are shown in Figure 3-6. The for-
ward current versus forward voltage for positive voltages increases little until the forward voltage reaches
+0.7V, then it increases rapidly. Here the forward resistance is very small—in the order of 50 Ω to 80 Ω.

The reverse current for negative reverse voltage is 1,000 times and more smaller than the forward current. It
stays relatively flat with reverse voltage until the magnitude reaches the reverse breakdown voltage. When

Burner

Pilot light keeps thermocouple
heated. It also lights burner gas
when thermostat in house
demands heat.

Thermocouple gas expands
due to pilot light heat.

Initial button is pressed to open
Valve A to the pilot light and
heat thermocouple.

Gas
supply

Household
Furnace

Valve A

Expanded diaphragm from
expanded gas keeps Valve A
open.

Pilot Light
Gas Control Module

Figure 3-3: A residential furnace pilot light control

Cold
reference
junction

Temperature

V
 −

 V
ol

ta
ge

 in
 m

V

Sealed
joint

Metal #1

Metal #2

Hot
junction

V

Figure 3-4: A bimetal thermocouple

Voltage

Amplification

Sensor

with

Voltage

Output

Physical

Quantity

Output

Voltage

Output

Voltage

Signal Conditioning

Figure 3-5: A sensor output signal may have to be increased to a useful level by amplification.Figure 3-5: A sensor output signal may have to be
increased to a useful level by amplification

TEAM LRN

20

Chapter Three

the junction is reversed biased
below the breakdown voltage,
the reverse resistance is very
large—in the order of megohms.
The forward voltage and reverse
breakdown voltage decrease
as temperature is increased;
thus, the diode junction has a
negative temperature coeffi-
cient. The forward voltage has a
much smaller voltage variation
with temperature than does the
reverse breakdown voltage. The
reverse current below the break-
down region can also be used
for a temperature sensor. A rule
of thumb for the reverse current
is that it doubles for every 10ºC
rise in temperature. The reverse
conditions are used for tem-
perature sensors, but the most
common is to use the forward
voltage change.

Example 1. Temperature Coefficient
Using Figure 3-6, calculate the temperature coefficient of the forward voltage of the diode and show
that it is negative. The forward current IF = 5 mA.

Solution:
 T ºC VF

 25 1.02V
 50 0.70V Temp Coefficient = ∆VF/∆T = −0.32V/25ºC = −0.0128V/ºC

∆ = 25 −0.32V

Thermistor
A thermistor is a resistor whose
value varies with temperature.
Figure 3-7a shows the charac-
teristics of a thermistor readily
available at RadioShack. Two
circuits for the use of thermis-
tors are shown in Figure 3-7.
Figure 3-7b uses the thermistor
in a voltage divider to pro-
duce a varying voltage output.
Figure 3-7c uses a transistor
to amplify the current change
provided by the thermistor as

10

20

30

40

50

60

70

80

90

100

I R
 —

 R
ev

er
se

 C
ur

re
nt

 —
 µ

A

VF — Forward Voltage — V

Reverse
voltage
breakdown

25˚C

50˚C

VR — Reverse Voltage — V
30 25 20 15 10 5

50˚C 25˚C

I F
 —

 F
or

w
ar

d
C

ur
re

nt
 —

 m
A

Negative temperature
coefficient

0.5 0.7 1.0 1.5

− ∆ VF

∆ T(ºC)

10

9

8

7

6

5

4

3

2

1

Figure 3-6: Silicon P-N junction characteristics
Figure 3-6: Silicon P-N junction characteristics

−50 −25 0 +25 +50 +75 +100 +125
Temp ºC

800Ω

10 kΩ

300Ω @ −50°C

RS#271-0110

R
es

is
ta

nc
e

—
 k

Ω

300

40

30

20

10

V V

Vout

VoutIb

Thermistor

Figure 3-7: Thermistor temperature sensor

a. Characteristics b. Voltage ouput c. Current output

TEAM LRN

21

Sensors

temperature changes. In some micromachined thermistors, the resistance at 25ºC is of the order of 10 kΩ.
One of the disadvantages of using a thermistor is that its characteristics with temperature are not linear. As
a result, in order to produce linear outputs, the nonlinearity must be compensated for.

Angular and Linear Position
Position Sensor—Fuel Level

In Chapter 1, Figure 1-2, an automobile fuel gauge was used to demonstrate an analog quantity. That same
example will be used, as shown in Figure 3-8a, to demonstrate the sensing function. The complete sensor
consists of a float that rides on the surface of fuel in a fuel tank, a lever arm connected to the float at one
end, and, at the other end, connected to the shaft of a potentiometer (variable resistor). As the fuel level
changes, the float moves and rotates the variable contact on the potentiometer. The schematic of Figure
3-8b shows that the potentiometer is connected across the automobile battery from +12V to ground. The
variable contact on the potentiometer moves in a proportional manner. When the contact is at the end of the
potentiometer that is connected to ground, the output voltage will be zero volts from the variable contact
to ground. At the other end, the one connected to +12V, there will be +12V from the variable contact to
ground. For any position of the variable contact in between the end points, the voltage from the variable
contact to ground will be proportional to the amount of the shaft rotation.

Calibrating it as shown in Figure 3-8c completes the liquid-level sensor. At a full tank, the float, lever arm
and potentiometer shaft rotation are designed so that the variable contact is at the +12V end of the poten-
tiometer. When the tank is empty, the same combination of elements results in the variable contact at the
ground level (0V). Other positions of the float result in proportional output voltages between the variable
contact and ground. As Figure 3-8c shows, a three-quarter full tank gives an output of 9V, a half-full tank
will give an output of 6V, and a one-quarter full tank will give an output of 3V. Thus, adding a voltmeter to
measure the voltage from the variable contact to ground, marked in liquid level, completes the automotive
fuel gauge. Sensors that convert a physical quantity into an electrical voltage output are very common. The
output voltage can be anywhere from microvolts to tens of volts.

+ 12V
+

−

Liquid
Level

Full

3/4 Full

1/2 Full

1/4 Full

0V 3V 6V 9V 12V

 25% 50% 75% 100%
Shaft rotation

Voltage from variable
contact to ground.

Figure 3-8: Position sensor—fuel level gauge

a. Physical circuit
Courtesy of Master Publishing, Inc.

b. Schematic of circuit c. Fuel level conversion to
voltage—calibration

TEAM LRN

22

Chapter Three

Hall Effect—Position Sensor

The Hall effect is shown in Figure 3-9a. E.H. Hall discovered it. If there is current in a conductor and a
magnetic field is applied perpendicular to the direction of the current, a voltage will be generated in the
conductor that has a direction perpendicular to both the direction of the current and the direction of the
magnetic field. This property is very useful in making sensors, especially when a semiconductor chip is
used for the conductor. Not only can the semiconductor be used to generate the Hall voltage, but additional
circuitry can be built into the semiconductor to process the Hall voltage. As a result, not only are there linear
sensors that generate an output voltage that is proportional to the magnitude of the magnetic flux applied,
but, because circuitry can be added to the chip, there are sensors that have switched logic-level outputs, or
latched outputs, or outputs whose level depends on the difference between two applied magnetic fields.

Hall Effect—Switch

Figure 3-9b shows a Hall-effect
switch and its output when used as
a sensor. When the magnetic flux
exceeds βON in maxwells, the output
transistor of the switch is ON, and
when the field is less than βOFF, the
output transistor is OFF. There is a
hysteresis curve as shown. When the
output transistor is OFF, the magnet-
ic field must be greater than zero by
βON before the transistor is ON, but
will stay ON until the magnetic
field is less than zero by ΒOFF.
The zero magnetic field point
can be “biased” up to a particular
value by applying a steady field
to make βO = ΒSTEADY-STATE.

Hall Effect—Linear Position

A linear Hall-effect sensor is
shown in Figure 3-9c. Its output
voltage varies linearly as the
magnetic field varies. When
the field is zero, there is a
quiescent voltage = VOQ. If the
field is +β (north to south),
the voltage VO increases from
VOQ; if the field is –β (south to
north), the voltage VO de-
creases from VOQ. The supply
voltage is typically 3.8V to
24V for Hall-effect devices.

Current

M
agnetic

Field

The Hall Effect:
If a conductor has a current in it, and a
magnetic field is applied perpendicular
to the direction of the current, a voltage
(the Hall voltage) is generated in a
direction perpendicular to both the
current and the magnetic field.

Vo
lta

ge

Conductor

a. Hall effect

Hall-Effect
Sensor
(switch)

B
Magnetic

Field − VO

VS

+

VOH

BHYS

VOL

BOFF BON

0

Magnetic Field — B maxwells

Output Voltage

IS

b. Hall-effect sensor switch

B
Magnetic

Field

VO +−

Output
Voltage

Quiescent VO when B = 0

VOQ

Sensitivity:

∆V6

∆B

− B 0 +B

∆V6

∆B

c. Linear Hall-effect sensor

Figure 3-9: Hall-effect sensors
TEAM LRN

23

Sensors

Hall Effect—Brake Pedal Position
A brake pedal position sensor is shown in Figure 3-10a. A Hall-effect switching sensor is used. Stepping on
the brake moves a magnet away from the Hall-effect sensor and its output switches to a low voltage level
turning on the brake light. When the brake is released, the magnetic field is again strong enough to switch
the output VO to a high level, turning off the brake light.

Hall Effect—Linear Position Sensor
In Figure 3-10b, as the magnet is moved over the sensor the magnetic field produces an output VO that is
proportional to the strength of the field. The linear output voltage can be converted to a meter reading that
indicates the linear position of the assembly that moves the magnet. Amplifying VO can increase the sensi-
tivity of the measurement.

Hall Effect—Angular Position Sensor
A round magnet, half North pole and half South pole, is rotated in front of a linear Hall-effect sensor as
shown in Figure 3-10c. As the magnet turns the magnetic field varies and produces an output VO that is pro-
portional to the angular rotation. VO can be converted to a meter reading calibrated in degrees of rotation.

Hall Effect—Current Sensor
Current in a wire produces a magnetic field around the wire as shown in Figure 3-10d. If the wire is passed
through a soft-iron yoke, the soft iron collects the magnetic field and directs it to a linear Hall-effect sensor.
The magnetic field varies as the amplitude of the current varies, which produces a corresponding propor-
tional VO from the linear sensor, and, thus, a sensor that detects the amplitude of the current. An alternating
current is shown in Figure 3-10d; therefore, the voltage VO will be an alternating voltage. VO is detected in
Figure 3-10d using an oscilloscope.

Pivot

Pivot

Brake
pedal

Magnet

N S

Hall-Effect
Sensor

Brake light

Brake on

Brake off

+V

a. Hall-effect position sensor (switch)

0 10

Hall-Effect
Linear Sensor

VO Meter reads
position

N S

Linear movement

b. Linear position sensor

0° 90°

Linear
Hall-Effect Sensor

VO

N

S

Angular rotation

c. Angular position sensor

A

t
1 Linear

Hall-Effect
Sensor

VCC VO

Magnetic
field

Oscilloscope
Current

Soft iron
yoke

t

A

d. Current sensor

Figure 3-10: Hall-effect sensor applications
TEAM LRN

24

Chapter Three

Rotation
Variable Reluctance Sensor

Figure 3-11a shows the physical setup of an electromagnetic sensor that produces a continuous series of
voltage pulses as a result of time-varying changes of magnetic flux. The magnetic flux path in Figure 3-11a,
called the reluctance path, is through the iron core of the wound coil, through the cog on the rotating wheel
and back to the coil. When the cog on the wheel is aligned with the iron core, the concentration of flux is the
greatest. As the cog moves toward or away from the core of the coil, the concentration of flux is much less.
Anytime magnetic flux changes and cuts across wires, it generates a voltage in the wires. The voltage pro-
duces a current in the circuit attached to the wires. As a result of the rotation of the wheel and the cog past
the coil, a series of voltage pulses, as shown in Figure 3-11b, is generated. The time, t, between the pulses
varies as the speed of the cogged wheel varies. Counting the pulses over a set period of time, say, a second,
the speed (velocity) of the cogged wheel can be calculated. The variations of the speed can be calculated for
acceleration, and of
course, the presence
of pulses means the
wheel is in motion.
The disadvantage of
such a sensor is that
there is no signal at
zero speed, and the
air gap between the
mechanical moving
part and the coil core
must be small, usually
equal to or less than
2−3 centimeters.

Magnetic
flux lines

Rotating
cogged wheel
on shaft

These teeth could be
small magnets or have
magnetized inserts

air gap
iron core

Wound coil
N turns

V

V
ol

ta
ge

 A
m

pl
itu

de

time

t

A
Figure 3-11: Variable reluctance rotation sensor

Example 2. RPM
A variable reluctance sensor outputs 120 pulses in a time period of 3 seconds. What is the rpm (revolu-
tions per minute)?

Solution:
 rps (revolutions per sec) = 120/3 = 40 × 60 sec = 2400 rpm

Magnetoresistor Sensor
A magnetoresistor sensor changes its resistance proportional to the magnetic flux density to which it is
exposed. It is made of a nickel-iron (Permalloy) which is deposited as a thin film onto a semiconductor
surface. It requires special fabrication of conducting strips on high-carrier mobility semiconductors such as
Indium-Antimonide or Indium Arsenide. The basic principle is shown in Figure 3-12a. The thin film is de-
posited in a strong magnetic field that orients the magnitization M in a direction parallel to the length of the
resistor. A current is then made to pass through the thin film at an angle θ to the M direction. If the angle is
zero, the thin film will have the highest resistance. At an angle θ, it will have a lower resistance. When an
external magnetic field is applied perpendicular to M, then θ changes and the resistance changes. This is the
basic principle that produces a resistance change when a magnetic field is applied and allows the use of the
thin film device as a sensor.

a. Physical setup b. Voltage output

TEAM LRN

25

Sensors

Figure 3-12b shows the
change in resistance as the
angle θ of the current in
relationship to M varies.
One of the advantages of
using magnetoresistor is
that other semiconductor
circuits can be fabricated
on and in the same semi-
conductor substrate. The
resistor element is usually
placed in a Wheatstone
bridge circuit in order to
make a more sensitive
measurement.

Such a physical layout is
shown in Figure 3-12c.
There are shorting bars deposited over the film to direct the bias current at an angle equal to 45º. This is to
put the quiescent point in the center of the linear region of operation of the response curve of Figure 3-12b.
When VCC = 5V, the bridge sensitivity can be as much as 15 mV per Oersted of an applied field.

Pressure
Piezoresistive Diaphragm
The physical construction of a pressure sensor is shown in Figure 3-13a. A fluid or gas under pressure is
contained within a tube the end of which is covered with a thin, flexible diaphragm. As the pressure in-
creases the diaphragm deflects. The deflection of the diaphragm can be calibrated to the pressure applied to
complete the pressure sensor characteristics.

Modern day semiconductor technology has been applied to the design and manufacturing of pressure sen-
sors. A descriptive diagram is shown in Figure 3-13b. The thin diaphragm is micromachined from a silicon
substrate on which a high-resistivity epitaxial layer has been deposited. The position of the diaphragm and
its thickness on and in the substrate is defined using typical semiconductor techniques—form a silicon di-
oxide on the surface, coat it with photoresist, expose the photoresist with ultraviolet light through a mask to
define the diaphragm area, and etch away the oxide and silicon to the correct depth for the thin diaphragm.
The assembly is then packaged to allow pressure to deflect the diaphragm.

Magnetization M

Applied magnetic field

Linear
range

∆R
R

θ Angle
−90° −45° 0° 45° 90°

Out
+

Out
−

Shorting
bars

I

R2 R3

R1 R4

M

Gnd

VCC

Applied
field

θ

a. Basic principle

b. Change of resistance with θ angle c. Physical construction
(Wheatstone bridge)

Figure 3-12: Magnetoresistor sensor

Thin flexible
diaphragm

Diaphragm
under
pressure

Fluid or
gas under
pressure

Silicon
wafer

Thin diaphragm
deflect under
pressure and
changes resistance

RXSilicon
oxide

Silicon etched
away in this area

Metal contact

High-resistivity
epitaxial layer

Rx
R1

VOA B

R3
R2

+V

Figure 3-13: Micromachined pressure sensor

a. Sensor principle b. Micromachined silicon resistor c. Wheatstone bridge

TEAM LRN

26

Chapter Three

Using integrated circuit metallization techniques, the thin diaphragm, which changes resistance as it
deflects, is connected into a Wheatstone bridge circuit as shown in Figure 3-13c. This provides a very
sensitive, temperature compensated, measuring circuit. RX in the circuit is the thin diaphragm resistance ex-
posed to pressure. R1, R2, and R3 are similarly micromachined resistors but they are not exposed to pressure.
As temperature changes all the resistors change in like fashion because they are located very close together
on the small semiconductor surface and have the same temperature coefficient. As a result, the sensor is
temperature compensated. And since the resistors are very close together on the substrate, and are machined
at the same time, they are very uniform in value.

The Wheatstone Bridge

How does the Wheatstone bridge of Figure 3-13c work? The sensing voltage, VO, is measured across the
bridge from point A to point B. VO = 0 when the bridge is balanced and is at its most sensitive measuring
point. The circuit is analyzed as follows:

The voltage from point A to ground is:

 VA = RX/(RX + R3) × V

The voltage from point B to ground is:

 VB = R1/(R1 + R2) × V

When the bridge is balanced, VA = VB and

 RX/(RX + R3) × V = R1/(R1 + R2) × V

Cancelling V on both sides of the equation,

 RX/(RX + R3) = R1/(R1 + R2)

and transposing,

 RX(R1 + R2) = R1(RX + R3)

or

 RXR2 = R1R3 because R1RX cancels on each side of the equation.

Therefore,

 RX = R3 × R1/R2

At balance, the unknown resistance is equal to R3 times the ratio of R1 to R2.

As RX changes, the bridge will become unbalanced and a voltage, VO, other than zero results. The voltage,
VO, is calibrated to the pressure to complete the sensor characteristics. Pressures from 0–500 psi (pounds
per square inch) can be measured with such a pressure sensor. If R1, R2, and R3 all equal 10 kΩ, when RX
varies from 10 kΩ to 20 kΩ, the output voltage will be approximately from 10 mV to 20 mV per 1 kΩ of
resistance change. One of the advantages of the silicon substrate sensors is that other integrated circuits can
be in and on the silicon to provide signal conditioning to the voltage output, VO.

Example 3. Wheatstone Bridge Characteristic Curve
In the Wheatstone bridge of Figure 3-13c, R1 = R2 = R3 = 10 kΩ and RX varies with pressure from
10 kΩ to 15 kΩ. Plot the change in voltage, VO, against the change in resistance, RX. Make V = 1V.

Solution:
 VO = VA – VB = V(RX/(RX + R3) – R1/(R1 + R2)) = V(RX/(RX + 10 kΩ) – 0.5)

TEAM LRN

27

Sensors

 RX RX + 10 kΩ RX/(RX + 10 kΩ) VO

 10k 20k 0.5 0
 11k 21k 0.524 0.024
 12k 22k 0.545 0.045
 13k 23k 0.5652 0.065
 14k 24k 0.5833 0.0833
 15k 25k 0.600 0.100

Plot these numbers on an X and Y axis with X = V and Y = Ω and the characteristic curve of output
voltage against resistance is obtained. The output voltage can then be calibrated to pressure to give a
characteristic curve of voltage against pressure.

Capacitive Touch Diaphragm

The capacitive touch diaphragm sensor has the same micromachined structure as that shown in Figure 3-13b.
However, its sensor principle, shown in Figure 3-14a, is different. The thin micromachined diaphragm
is deflected as previously, but now the deflected diaphragm is designed to touch against a dielectric layer
attached to a metal elec-
trode. It forms a capacitor
and as pressure increases,
the capacitance between
the diaphragm and the
metal electrode, separated
by the dielectric, increases
linearly with pressure.
The characteristic curve is
shown in Figure 3-14b.

Both of the microma-
chined sensors fabricated
from silicon have –40º
to +135º operation. For very extreme operating
conditions of aircraft and automotive applica-
tions, there is a capacitive sensor with a ceramic
diaphragm that deflects into a cavity. Its capaci-
tance again increases with pressure.

Light Sensors
Light Basics (Review)

A brief review is presented of the principles of
light and detection by photodiodes and phototran-
sistors. For a more thorough review refer to Basic
Electronics1, Chapter 11. Figure 3-15 shows
how a reverse-biased photodiode has its reverse
leakage increased by light shining on it. Photons,

Thin diaphragm
no pressure

dielectric

C

Fluid or
gas under
pressure

Thin diaphragm
deflects under pressure

Metal electrode

pressure — psi

C
 −

 C
ap

ac
ita

nc
e

—
 p

f

As the pressure increases, the
deflection of the diaphragm
against the surface of the
dielectric increases C
in a linear fashion.

Figure 3-14: Capacitive touch pressure sensor

a. Sensor principle b. Capacitance
vs. pressure

1 Basic Electronics, G. McWhorter, A.J. Evans, © 1994, Master Publishing, Inc.

Reverse Biased

Photon
Of Light

Diode Chip

Anode

Hole

Free Electron

Ammeter

Cathode

Figure 3-15: A reversed-biased photodiode light sensor
Courtesy of Master Publishing, Inc.

TEAM LRN

28

Chapter Three

which are particles of light that are high-frequency electromagnetic waves, are absorbed in the reverse-biased
diode depletion layer. They produce free electrons and holes that increase the reverse current. The more pho-
tons, the higher the intensity of light, the more energy is absorbed, and the larger the reverse current. Thus,
the photodiode is a light sensor with a variable current output.

The Electromagnetic Spectrum

The electromagnetic spectrum is divided into radio waves and light waves by frequency. Light waves are
further divided by into infrared, visible, ultraviolet and X-rays. The spectrum is either expressed in fre-
quency or wavelength. Wavelength is the distance that an electromagnetic wave travels through space in
one cycle of its frequency. Since distance is velocity multiplied by time, wavelength can be expressed as the
velocity of electromagnetic waves multiplied by the time of one cycle of frequency f. Since the accepted
speed of light is 186,000 miles per second or 300,000,000 meters per second, this is:

 λ(in meters) = 300,000,000 meters/sec × 1/f(in seconds)

or, λ(in meters) = 300/f(in MHz)

If visible light (white light) is passed through a
prism, as shown in Figure 3-16, the visible light
separates into its color components. The frequen-
cy of visible light is from 400 million megahertz
to 750 million megahertz. The wavelength is from
750 nanometers (10−9) to 400 nanometers. Light
sensors extend into the infrared frequency range
below visible light and into the ultraviolet light
frequency range above visible light. Cadmium
sulfide sensors are most sensitive in the green
light region of visible light, while solar cells and
phototransistor sensors are most sensitive in the
infrared region.

Photoresistor Sensor

A sensor that changes resistance as light is shined
on it is made from Cadmium Sulfide (CdS), a
semiconductor that is light sensitive. The char-
acteristics of one available at RadioShack are
shown in Figure 3-17a. In the dark with no light shining on it its resistance is greater than 0.5 MΩ. With
one footcandle of light shining on it, its resistance is 1700 Ω, and the resistance is reduced to 100 Ω when
100 footcandles of light shine on it. Circuit applications are shown in Figure 3-17b. It can be used to change
resistance values, to provide a sensor with a voltage output, or as a sensor supplying current to a load.

Example 4. Photoresistor Application
Use the circuit of Figure 3-17b that provides a voltage output. The resistor R1 = 200 Ω. What is the voltage
out, VO, when the supply voltage is 10V and the light shining on the sensor is 15 Ftc and 100 Ftc?

Solution:
 Ftc RL R1 R1 + RL VO

 15 800 Ω 200 Ω 1000 Ω 200/1000 × 10 = 2V
 100 100 Ω 200 Ω 300 Ω 200/300 × 10 = 6.67V

White light is a mixture
of photons of different
wavelengths.

Shorter wavelengths and
energy toward violet end
of spectrum.

Glass Prism

Wavelength Of
Reddest Light = 70
Micrometers

INFRARED RED YELLOW
ORANGE

BLUE
GREEN PURPLE

(VIOLET)

ULTRAVIOLET

Frequency (MHZ)400 x 106

λ (meters) 750 x 10−9

750 x 106

400 x 10−9

Figure 3-16: Visible Light—Its Frequency and Wavelength.

Courtesy of Master Publishing, Inc.

Figure 3-16: Visible light—its frequency and wavelength
Courtesy of Master Publishing, Inc.

TEAM LRN

29

Sensors

Solar Cell

The solar cell is again a semiconduc-
tor PN junction that is light sensitive.
It is made up of an N-type substrate, as
shown in Figure 3-18a, with a very thin
P region over the top surface. Most of
the thin P surface is covered with nar-
row strips of metal that form the anode
of the PN diode. A whole network of
the narrow strips are interconnected
on a silicon wafer to provide increased
current output at the
PN-junction voltage. The
back of the silicon wafer
is coated with metal to
form the cathode of the
diode. Light shining on
the surface of the solar
cell generates a maximum
voltage of about 0.55V.
Under load, the average
voltage output is approxi-
mately 0.5V. A common
characteristic curve of voltage plotted
against current is shown in Figure 3-18b.

Solar cells can be applied in circuits, as
shown in Figure 3-18c, by paralleling the
cells for increased current output, or by
connecting the cells in series for increased
voltage output. Individual 2 × 4 cm solar
cells are available at RadioShack that pro-
vide 300 mA at 0.55V, or there are enclosed
modules that provide up to 6V at 50 mA.

10 20 30 40 50 60 70 80 90 100 110 120

700K

600K

500K

2000

1600

1200

800

400

Dark

Light
1700 Ω
@1 FtC

100 Ω
@100 FtC

Light-Footcandles (FtC)

R RX

RL

R Change

ACurrent
Source

I

V
Voltage output

RX

VO =
R1

R1+RL

V

=
RRL

R+RL

RL

V

R1

Figure 3-17: Photoresistor sensor

a. Characteristics

b. Circuit applications

 0.1 0.2 0.3 0.4 0.5 0.6

Voltage — Volts

300

250

200

150

100

50

Cell
rating
0.5V @
300mA

C
ur

re
nt

 −
 m

A

2V
Cells in

series for
increased V

Coils in parallel
for increased I

− V

+ V

− V

c. Circuit applications

+ V

I

Solar Cells

Solar Panel on roof

Diode prevents reverse
current when battery
voltage is higher than
solar panel output V

−
+

−V +V

Doped silicon
crystal wafer
with cathode
contact on
bottom.

Network of
narrow metal
strips on top
forms anode
contact.

Magnified
Section Of
Wafer

CATHODE

LIGHT

ANODE

Light shines
between
narrow
anode
contacts.

Very thin p region at
top surface is nearly
transparent.V

b. V-I characteristics

a. Physical structure
 Courtesy of Master Publishing, Inc.

c. Circuit applications

Figure 3-18: Solar
cell light sensors

d. Trickle charge for RV coach batteries
TEAM LRN

30

Chapter Three

A very common application for RV motorhomes is shown in Figure 3-18d. A solar panel is mounted on the
roof of a motorhome and connected as shown to trickle charge the coach batteries when the RV is parked
and under light load. Sunlight generates the voltage to supply the trickle current, which helps keep the bat-
teries from discharging. Many units are available with power ratings from 2 to 50 watts.

Phototransistors

Figure 3-19 allows a quick review of the operation of bipolar transistors, both NPN and PNP. Recall that for
an NPN grounded emitter
stage shown in Figure
3-19a the emitter is tied
to ground, and for active
operation, the base volt-
age is at +0.7V above
ground and forward-
biases the base-emitter
junction. The collector
voltage is at a positive
voltage above ground
(+5V) so the collector-
base junction is reverse
biased. When there is a
current into the base, IB, across the forward-biased base-emitter junction, a higher collector current, IC, flows
across the reverse-biased collector-base junction. There is a current gain through the transistor equal to the
collector current divided by the base current, IC/IB. As shown in Figure 3-19, the current gain is hFE. Every-
thing is the same for the operation of the PNP transistor except the voltages are all negative with the emitter
tied to ground. The hFE is the same
parameter as for the NPN.

A phototransistor, a transistor designed
to be activated by light, has the same
basic operation as the NPN and PNP
transistor described except it has no
base connection. Its wide base junction
is left exposed to light. Phototransis-
tors are most sensitive to infrared light.
The symbols and voltages are shown in
Figure 3-20a. Light rays that impact the
base-emitter junction effectively produce
base current that activates the phototran-
sistor. Through transistor action a larger
collector current is produced. As shown
by the characteristic curves of Figure
3-20b, more light intensity produces
more collector current.

A phototransistor can be coupled to the
base of a driver transistor, as shown in
Figure 3-20c, in order to make a linear

IB

IC

IE

IB

IE

IC

Collector

Emitter

Base

NPN

IE = IB + IC

IC = hFEIB

hFE =
IC

IB

Transistor
Current

Gain

C

B

E

+5V

Collector
current, controlled
by base current,
flows across reverse-
biased collector-base
junction

Forward-biased
base-emitter junction
just like diode

Normal
Symbol

Flipped

B

C

E

{
IE = IB + IC

IC = hFEIB

hFE =
IC

IB

C

B

E

IC

IB

IE

IB

IC

IE

E

B

C0.7V

−0.7V

−5V

Collector current,
controlled by base
current, flows across
reverse-biased
collector-base
junction

Forward-biased
emitter-base
junction just
like diode

PNP

N
P

N

P
N

P

Figure 3-19: Bipolar transistor operation

a. NPN operation b. PNP operation

VCE

IC

IE

C

E

Light
intensity
supplies
base
current

VC

100%

80%

60%

40%

20%

10%

Light Intensity

Resistive Load Line

VCE — Volts

I C
 —

 m
A

Q1

Q2

Rbias
RL

VCC

C

B

RAdjust

RE

E

VO

C

NC

NO

Q2

Q1

Relay
Contacts

Relay Coil

E
RAdjust

C

B

a. Symbol and operation b. Characteristic curves

c. Linear or logical output d. Relay driver

Figure 3-20: Phototransistor light sensor
TEAM LRN

31

Sensors

driver or a logic-level driver. If a logic-level driver for ON-OFF applications is needed, RBIAS and RE are
eliminated and the RADJUST used to set the desired sensitivity. RBIAS and RE set the operating point for Q2 to
obtain linear operation of the driver. Figure 3-20d shows a phototransistor sensing the presence of light to
make a logic-level driver for a relay. The presence of light closes the normally-open contact to the center
terminal to activate a connected circuit.

LED Light Source

Even though a light-emitting diode
(LED) is not a sensor, it is a very
important light source for light sen-
sors. An LED is a forward-biased
semiconductor diode as shown in
Figure 3-21a. LEDs are made from
special semiconductor materials
other than silicon, but still have
the same type of junction char-
acteristics. When a rated amount
of current is passed through the
forward-biased diode it emits light. The amount of current, I, through the diode can be adjusted by choosing
the value of R when a given voltage, V, is used. The forward-biased voltage across the diode is approxi-
mately 0.5V, positive (+) on the anode and minus (−) on the cathode.

Various LEDs, the materials used to make them, and
the color of their light output are shown in Figure
3-21b. The wavelength in this case is given
in Angstroms (Å), where an Angstrom is 10–10
meters. When LEDs are used for light sources for
phototransistors, the LED wavelength should be
matched to the phototransistor. For example, Figure
3-22 shows the relative output from a phototransis-
tor using an LED as a source. An infrared LED with
a wavelength of 898 nanometers (8980Å) provides
almost three times as much output from the photo-
transistor as an LED with an orange light output of
650 nanometers (6500Å).

Example 5. Wavelengths of LEDs

What is the wavelength in meters of the LEDs whose wavelength is given in Angstroms (Å)?

Solution: (a millionth of a meter (micron) equals 10,000Å)

 Å microns (divide by 104) meters (divide by 106) nanometers(10–9)

 9850 0.9850 0.9850 × 10–6 985
 8980 0.8980 0.8980 × 10–6 898
 6500 0.6500 0.6500 × 10–6 650
 5650 0.5650 0.5650 × 10–6 565
 4000 0.4000 0.4000 × 10–6 400

+ V

R
I

0.5V
LED

I =
V − 0.5

R
 Material λ (Å) Color

Indium Phosphide 9850 Infrared
Gallium Arsenide 8980 Infrared
Gallium Arsenide Phosphide 6500 Orange
Gallium Phosphide 5650 Green
Gallium Nitride 4000 Purple

Figure 3-21: LED light sources

a. Schematic b. Typical LEDs

R
el

at
iv

e
R

es
po

ns
e

1.2

1.0

0.8

0.6

0.4

0.2

0

9850

8980

6500

5650

4000

Visible Light

Typical
Phototransistor

− Å
− nanometers

 4000 5000 6000 7000 8000 9000 10000 11000
 400 500 600 700 800 900 1000 1100

Infrared Light

Fig. 3-22: LEDs as Light Sources
for a Phototransistor Sensor.

Figure 3-22: LEDs as light sources for a
phototransistor sensor

TEAM LRN

32

Chapter Three

Other Sensors
The expansion of the types of sensors into modern day applications is almost mind boggling. The advent of
micromachining using semiconductors and semiconductor fabrication techniques, and the ability to provide
a sensor and its associated circuitry to signal condition the signal all in one package has expanded the types
and variety of types of sensors. For example, in automotive and aircraft, there are sensors for mass air flow,
exhaust gas and its properties, engine knock, linear acceleration, just to name a few. In fact, in the modern
automobile there are over 100 sensors per car2. Such application explosions testify to the importance of the
sensor in electronic circuitry.

Summary
Sensors of all types have been described in this chapter. The devices that convert an analog physical quan-
tity into forms of energy that humans can understand and interpret. The sensors in this chapter had outputs
of electrical signals—voltage, current, resistance, capacitance. Because the output signals are going to be
used in other electronic circuitry to provide signals that can be converted to digital signals, changes must be
made to the sensor output signals to adapt them to further use. That is the subject of the next chapter—sig-
nal conditioning.

2 Sensorsysteme fur das Auto, Klaus-Dieter Linsmeier, ©1999, verlage moderne industrie.

Chapter 3 Quiz
1. A sensor:
 a. senses an output quantity and inputs an electrical signal.
 b. senses an output electrical signal and inputs a physical quantity.
 c. senses an input quantity and outputs an electrical signal.
 d. senses an output physical quantity and outputs a physical quantity.
2. Magnetic fields:
 a. are not important to the operation of sensors.
 b. play an important part in the operation of many sensors.
 c. are harmful to the operation of sensors.
 d. are generated by all sensors.
3. A thermocouple:
 a. senses temperature.
 b. senses voltage.
 c. senses current.
 d. senses impedance.
4. Silicon P-N junctions:
 a. use the reverse voltage variations to sense current.
 b. use both forward junction current variations for sensing voltage.
 c. don’t use the junction voltage variations to sense temperature.
 d. use the forward voltage variations to sense temperature.
5. A thermistor:
 a. is a sensor that varies temperature as voltage is applied.
 b. is a sensor whose resistance varies with temperature.

TEAM LRN

33

Sensors

 c. is a sensor that has a linear variation with temperature.
 d. is a sensor that varies temperature as current is applied.
6. In a Hall-effect sensor:
 a. a voltage is generated that is in the same direction as a current and a magnetic field.
 b. a voltage is generated that has no relationship to the direction of an applied current or

magnetic field.
 c. a voltage is generated perpendicular to the direction of a current and perpendicular to the direc-

tion of a magnetic field.
 d. needs only a magnetic field for its operation.
7. Semiconductors are particularly useful for Hall-effect sensors because:
 a. other circuits useful for processing the sensor signal can be built into the semiconductor.
 b. they are isolated from the sensor.
 c. they can be manufactured in one step.
 d. there is no other way to make the sensor.
8. Hall-effect sensors can be used to sense:
 a. linear position.
 b. angular position.
 c. current.
 d. all of above.
9. A variable reluctance sensor:
 a. has zero output when the magnetic field is not changing.
 b. depends on time varying changes of a magnetic field.
 c. has high output when the magnetic field is not changing.
 d. doesn’t need a magnetic field.
 e. a and b above.
 f. c and d above.
10. A magnetoresistor sensor:
 a. changes its resistance proportional to the magnetic field flux density to which it is exposed.
 b. changes its voltage output as a result of a magnetic field.
 c. changes its current output as a result of a magnetic field.
 d. doesn’t require a magnetic field.
11. Micromachined sensors:
 a. are processed with micro machines.
 b. are machined using computer-controlled machines.
 c. are processed using semiconductor manufacturing techniques.
 d. don’t need accurate machining techniques.
12. Micromachined sensors:
 a. measure pressure by applying a magnetic field.
 b. measure pressure by changing resistance.
 c. measure pressure by removing a magnetic field.
 d. measure pressure by changing capacitance.
 e. a and c above.
 f. b and d above.
13. The photo diode:
 a. is not sensitive to any light.

TEAM LRN

34

Chapter Three

 b. is a light sensor whose output does not vary with light intensity.
 c. is a light sensor with a variable current output.
 d. is a light sensor with a variable voltage output.
14. The light spectrum:
 a. is below 400 megahertz.
 b. extends from infrared on the low end to ultraviolet on the high end.
 c. is above 1,000 million megahertz.
 d. is variable, not constant.
15. Wavelength:
 a. is the distance that an electromagnetic wave travels through space in one cycle of its frequency.
 b. is not a distance but a speed.
 c. is not a speed but a velocity.
 d. is a measure of time.
16. A sensor that changes resistance when light is illuminates it is:
 a. photo current sensor.
 b. photo voltage sensor.
 c. photo impedance sensor.
 d. photo resistor sensor.
17. Solar cells:
 a. are semiconductor PN junctions that are sensitive to light.
 b. can be connected in parallel to increase current output.
 c. can be connected in series to increase voltage output.
 d. a above.
 e. all of above.
18. A phototransistor, a light sensitive transistor:
 a. has normal base, collector, emitter connections.
 b. has the base and collector connected together.
 c. has no base connection.
 d. has the base and emitter connected together.
19. Phototransistors:
 a. are most sensitive to infrared light.
 b. are most sensitive to ultraviolet light.
 c. are most sensitive to 100 MHz light.
 d. are most sensitive to 10 MHz light.
20. LEDs (light emitting diodes) when used as light sources:
 a. may be used as random light sources for phototransistors.
 b. should be matched to their phototransistor sensor.
 c. are not important to phototransistor sensor applications.
 d. are not reliable light sources.

Answers: 1.c, 2.b, 3.a, 4.d, 5.b, 6.c, 7.a, 8.d, 9.e, 10.a, 11.c, 12.f, 13.c, 14.b, 15.a, 16.d, 17.e, 18.c, 19.a,
20.b.

TEAM LRN

35

Introduction
Signal conditioning, as the
name implies, means modify-
ing the signal, changing its
characteristics, adjusting it to
the needs of the application.
This may mean an increase
or decrease in the magnitude
of the voltage signal, or an
increase (or decrease) in the
magnitude of the current
signal, or a change in the ability of the signal to provide power. As shown in Figure 4-1, the signal condi-
tioning function fits in two places in the chain from analog input to analog output. First, it is in the chain
from sensor to the analog-to-digital conversion, second, it is in the chain from the digital-to-analog conver-
sion to transducer. One of the most important electronic circuits to satisfy the signal conditioning function
is the amplifier.

Amplification
An electronic circuit
called an amplifier is
used when a voltage
or current signal needs
to be increased in
amplitude. An amplifier
can be a single circuit
with a single active
device (transistor), or
it can be a combina-
tion of circuits with
many active devices.
Recall that in Chapter
3, Figure 3-19a, the
bipolar NPN transistor
operation was dis-
cussed, and in Figure 3-19b, the operation of a bipolar PNP transistor was discussed. There are also various
types of field-effect transistors as shown in Figure 4-2a. These are called MOSFETs (metal-oxide semi-
conductor field-effect transistors). There are N-channel and P-channel devices that operate in the depletion
mode or the enhancement mode. The characteristic curve of a field-effect transistor (FET) is shown in
Figure 4-2b. A voltage from gate to source controls current from source to drain. Recall that for the bipolar
transistors of Figure 3-19, a current into the base-emitter junction controls the collector-to-emitter current,

CHAPTER 4

Signal Conditioning

IN

S
E
N
S
I
N
G

A
D
C

S
I
G
N
A
L

C
O
N
D
I
T
I
O
N
I
N
G

Digital
Processing

a. Sensor to Digital.

OUT
D
A
C

T
R
A
N
S
D
U
C
E
R
S

S
I
G
N
A
L

C
O
N
D
I
T
I
O
N
I
N
G

Digital
Processing

b. Digital to Transducer.

Figure 4-1: Signal Conditioning Function.Figure 4-1: Signal conditioning function

a. Sensor to digital b. Digital to transducer

slope is
equal to
gm

Figure 4-2: MOS (metal-oxide semiconductor) field-effect transistor
Courtesy of Master Publishing, Inc.

a. Schematic symbols of MOSFETs b. Characteristic curve of field-effect
transistor

TEAM LRN

36

Chapter Four

while for field-effect transistors, a voltage from gate to source controls the current from drain to source.
To understand the operation of an amplifier and how it might be used, an amplifier will be designed, and
its characteristics examined, using a single NPN bipolar transistor in a common-emitter circuit. Common-
emitter means the input signal is applied between base and emitter, and the output signal is taken between
collector and emitter. The emitter is a common point between the two.

Bipolar NPN Amplifier
The design begins by choos-
ing a device and looking at
its characteristics shown in
Figure 4-3a. The amplifier is
going to be a “small-signal”
linear amplifier. “Small-
signal” means that the
operating point will be set so
that amplified output signals
will be exactly the same
as the input, with minimal
distortion, but increased in
amplitude. “Small-signal”
means that the input signal
amplitude only deviates the
signal a small portion away
from the steady-state oper-
ating point. As a result the
amplification properties do
not lose their linear qualities.
The operating point—the no-
signal steady-state operating
point around which the small-signal ac signals vary—is chosen by some simple guidelines1.

 1. The operating point should be within the linear portion of the characteristic curves.

 2. VCE should be approximately 0.5VCC.

 3. Emitter-to-ground voltage should be 10% to 15% of VCC.

 4. Base-to-ground voltage will be approximately 0.7V greater than the emitter-to-ground voltage.

The amplifier is going to be used in automotive applications so the supply voltage, VCC, will be equal to
+12V. The operating point is going to be set at point A, the biased operating point shown on the characteris-
tic curves of Figure 4-3a. When there is no signal, point A says that the collector current will be 6 mA and
the VCE (voltage from collector to emitter) will be 6V.

Characteristic Curves

Look at the characteristic curves of Figure 4-3a. What do they mean? They were taken using the measuring
circuit of Figure 4-3c. In this circuit, the base current, IB, can be set to different values. The voltage VCE can
be varied, and the collector current, IC, can be measured. IB is set to 0.02 mA (20 microamperes) and VCE is

NPN Common-Emitter
Characteristic Curves

Collector-to-Emitter Voltage-VCE in Volts

C
ol

le
ct

or
 C

ur
re

nt
—

I C
 in

 m
A

14

12

10

8

6

4

2

A

B

C D Load Line

Biased Operating Point

2 4 6 8 10 12 14 16 18 20
tim

e

Input signal varies base
current from no-signal of 0.06
mA to maximum of 0.08mA
and minimum of 0.04mA

Ib = 0.1 mA

Ib = 0.08 mA

Ib = 0.06 mA

Ib = 0.04 mA

Ib = 0.02 mA

Collector current
varies from no-signal
of 6 mA to maximum
of 8 mA and minimum
of 4 mA

time

IC

4mA

6mA

8mA
A

hFE =
6mA

0.06mA
= 100

Ib

Ic
R

V

VCE

Figure 4-3: Point “A” is steady-state operating point set by bias
Courtesy of Master Publishing, Inc.

a. Characteristic curves

b. Output signal

c. Measuring circuit

1 Basic Communications Electronics, J.W. Hudson, G. Luecke, ©1999, Master Publishing, Inc., Lincolnwood, IL.
TEAM LRN

37

Signal Conditioning

varied from 0 to 20V. The heavy-line characteristic curve marked IB = 0.02 mA is traced as IC is measured
during the variation of VCE. As IB is increased in 0.02mA steps and VCE is varied, the other characteristic
curves will be plotted.

The transistor will operate across these characteristic curves as driven by a signal that varies its base current
and as regulated by the value of VCE. At the operating point chosen (A), IC = 6 mA and IB = 0.06 mA, thus,
as shown in Figure 4-3b, the steady-state common-emitter current gain (hFE) equals 100 at this point. Small
IB changes produce IC changes that are 100 times greater. The current gain, hFE, is called a large-signal or
DC current gain. There is an AC current gain, hfe, that is used for small-signal AC circuit analysis. It may
vary from the hFE value because the variation of IB is in very small increments.

Biasing

The operating point A is set at its operating characteristics by biasing
the circuit. There are a number of biasing circuits: fixed-current IB bias,
voltage-divider bias, collector-feedback bias. This design will use voltage-
divider bias. The circuit looks like the one in Figure 4-4. The resistor RE
is placed in the circuit to provide negative feedback. This feedback and its
effect on circuit performance will be discussed when op amps and oscil-
lators are discussed. For now, the presence of RE in the circuit gives the
circuit more stability against changes in temperature or parameter values.

The Actual Design
Here are the design parameters that have been set:

 VCC = 12V
 IC = 6 mA
 hFE = The NPN transistor chosen has a specified minimum of 50; its actual hFE is 100.
 VBE = 0.7V for a silicon transistor
 VE = 1.0V (about 10% of VCC)
 VCE = 6V

1. The first step is to solve for RL:

Since VCE = 6V,

 VCC – ICRL = VCE

 12 – (6 mA × RL) = 6V

therefore,

 12 – 6 = 6 mA × RL

and RL = 6V/6 mA = 6V/6 × 10–3

 RL = 1 × 103 = 1000 Ω = 1k Ω
2. The next step is to solve for RE:

Since in any transistor with reasonable gain, IB is a small fraction of IC, and since IE = IC + IB, the approxi-
mation that IE is equal to IC is reasonably accurate.

Therefore,

 VE = REIC

Therefore,

 RE = VE/IC

or RE = 1V/6 mA = 1V/6 × 10–3 = 0.166 × 103 = 166 Ω

I1

I2

L

IB

IC

RL

VCC = +12V

RE

C

B

R1

R2

E
Output

Input
IE VE

V
BE

Figure 4-4: NPN Common-Emitter Small
Signal Amplifier.Figure 4-4: NPN common-
emitter small signal amplifier

TEAM LRN

38

Chapter Four

Resistors are manufactured in standard values of 150 Ω or 180 Ω. For this design RE = 150 Ω, and the
actual VE = 0.9V that is: (6 × 10–3 × 0.15 × 10+3 = 0.9V).

3. The next step is to solve for R2:

One of the rules for voltage-divider bias is that the current, I2, through the divider should be at least 10
times the maximum base current. The maximum base current, IBmax is:

 IBmax = IC/hFE(min) = 6 mA/50 = 0.12 mA

Thus, I2 = 1.2 mA and the value or R2 can be calculated since:

 VR2 = VBE + VE = 0.7V + 0.9V = 1.6V

and

 R2 = VR2/I2 = 1.6V/1.2mA = 1.33 × 103 = 1330 Ω
A standard value is 1300 Ω, so R2 = 1.3 kΩ
4. The next step is to solve for R1:

R1 in the voltage divider bias circuit will have the following current:

 I1 = I2 + IBmax = 1.2 mA + 0.12 mA = 1.32 mA

Since VR2 = 1.6V, the voltage across R1 is:

 VR1 = 12V – VR2 = 12 – 1.6 = 10.4V

Therefore,

 R1 = VR1/I1 = 10.4V/1.32 mA = 7.88 × 103 = 7880 Ω
8,200 Ω is a standard value, so R1 = 8.2 kΩ
The designed amplifier circuit using a 2N2222A transistor is shown in Figure 4-5. Its operating points are
on the “load line” shown in Figure 4-3a.

5. The next step is to calculate the voltage gain.

The voltage gain2 of a the common-emitter amplifier circuit shown in Figure 4-5 is:

 AV = (RL × IE)/0.026

where: RL = total load resistance (RL in parallel with any load across RL)

 IE = DC emitter current in mA.

 IE = IC (approximately)

Substituting in the equation:

 AV = (1 × 103 × 6 × 10–3)/2.6 × 10–2 = (6 × 102)/2.6 = 2.3 × 102 = 230

The voltage gain in dB is:

 DB = 20log10AV = 20log10230 = 20 × 2.76 = 47.2 dB

The voltage gain is 230 or 47.2 dB.

2 Ibid.
TEAM LRN

39

Signal Conditioning

Amplifier Frequency Response
Not only must an amplifier amplify the voltage or current changes
of an input signal, but it must be able to accurately reproduce
these signals as the signal frequency changes. The capability of an
amplifier to handle the signal over different frequencies is called
its frequency response. An example of the frequency response of
a common-emitter amplifier similar to the one in Figure 4-5 is
shown in Figure 4-6. It is a graph of an amplifier’s gain, AV, plotted
against frequency with the input signal amplitude held constant
as the signal frequency is varied. With the input signal amplitude
constant, the output signal should remain constant if the gain, AV,
remains constant. The gain does remain constant in the midband as
shown in Figure 4-6. However, for frequencies greater than fH, the so called high-frequency corner frequen-
cy, the gain reduces as the signal frequency increases. This is due to circuit and device capacitance that is in
parallel with RL. AV is reduced by 3 dB from its mid-band value at frequency fH. The 3 dB point is also the
frequency at which AV has reduced to 0.707 of its midband value. For the amplifier in Figure 4-6, fH is
about 5 to 7 MHz.

When the amplifier is a DC ampli-
fier, the midband value of AV will
extend down to zero frequency;
however, if the amplifier only ampli-
fies AC signals, AV will reduce as the
signal frequency is lowered below
fL, the low-frequency corner. Like
fH, fL is the frequency where AV is
–3 dB (or 0.707) of its midband
value. This reduction in gain is due
to the coupling capacitors and ca-
pacitors across the emitter resistors
used in AC amplifiers. For Figure
4-6, fL is about 30 to 40 Hz.

Example 1. Corner Frequencies
Show that the –3 dB point on a frequency response curve with a mid-band gain of 40 dB is the same
point where the gain is 0.707 of the mid-band gain.

Solution:
Since the mid-band gain in dB is AV = 20log10 VO/VIN, then
 40 = 20log10VO/VIN

 2 = log10VO/VIN

 102 = VO/VIN

 100 = VO/VIN, the mid-band gain equals 100
If the –3 dB point is 0.707AV, then the point is at AV = 70.7
Therefore, AV = 20log1070.7
 AV = 20 × 1.85
 AV = 37 dB
37 dB is –3 dB down from the mid-band gain of 40 dB.

RL

VCC = +12V

RE

C

B

R1

R2

E

Figure 4-5: 2N2222A Common-Emitter Small-Signal
Amplifier.

1K8.2K

1.3K
150Ω CE = 200µF

2N2222A
Input

CIN

mid-band

AV

fL

Gain AV extends
to zero for
dc amplifier

fH

55dB

50dB

45dB

40dB

35dB

30dB

25dB

20dB

A
V
 in

 d
b

 1Hz 10Hz 100Hz 1.0kHz 10kHz 100kHz 1.0MHz 10MHz 100MHz

Frequency

Mid-band gain, AV

3 dB
0.707 AV

Fall off
of gain
due to
coupling
capacitor CIN

AV(db)
 = 20 log10

VO

VIN

Fall off of gain
due to parallel
capacitance across
RL to ground

The low-frequency
corner frequency where
the gain is 3 dB less than
AV at mid-band.

The high-frequency
corner frequency where
the gain is 3 dB less than
AV at mid-band.

fL —

fH —

Figure 4-6: Common-emitter amplifier
frequency response

Figure 4-5: 2N2222A common-emitter
small-signal amplifier

TEAM LRN

40

Chapter Four

For amplifier applications, it is very important to know the frequency range of the input signals that are to
be handled and to examine the mid-band frequency range from fL to fH so that the proper amplifier can be
used for an application.

Coupling
DC Coupling
When one circuit, such as the one in Figure 4-5, does not provide enough gain, circuits can be cascaded—
coupled together—to provide more gain. The means of coupling are shown in Figure 4-7. Figure 4-7a
shows a DC amplifier using two amplifier stages. The overall gain is equal to the first stage gain times the
second stage gain. That is one advantage of expressing the amplifier gain in dB. The dB values of gain of
each stage can be added to get the total gain in dB. The effect on frequency response is also shown. With
DC coupling the amplifier has constant gain down to zero frequency. Special care must be taken in the
design because the DC voltages couple from stage to stage so the proper operating voltages on the base,
collector and emitter must be incorporated in the design.

AC Coupling
Figure 4-7b is AC coupling. A capacitor, CC is used to couple the signal from the first stage to the second
stage. There also is a capacitor, CE, that is used to bypass the emitter resistor of second stage. The coupling
capacitor prevents the DC
voltages of stage 1 to couple
through to stage 2, as they
do in the DC case of Figure
4-7a. AC coupling allows
the use of identical stages,
makes the design easier, and
even provides higher AC
gain because the effect of
the negative feedback of RE
is eliminated at frequencies
above fL. Below fL, using RE
and CC coupling causes a
reduction in gain.

Figure 4-7c shows how
inductance can be used to
reduce the high-frequency
response because of the
increase in inductive reac-
tance, and yet still maintain
response at the low end down
to zero frequency. Figure
4-7d shows transformer cou-
pling. Transformer coupling
provides DC isolation, but
needs the AC time varying
signal for its operation. The
frequency response is like a
capacitor-coupled amplifier.

Figure 4-7: Types of coupling
between amplifier stages
Courtesy of Master Publishing, Inc.

a. DC coupling b. AC coupling with C

c. AC coupling with L
(also DC coupling)

d. Transformer coupling

e. Optical coupling
TEAM LRN

41

Signal Conditioning

Coupling Using Light
Figure 4-7e shows coupling using light. There is complete isolation between stage 1 and stage 2 using light
coupling. The case shown uses a transistor to modulate the current through the LED, whose light emission
is detected by a photo transistor. The light media can very easily be a fiber-optic cable.

When choosing an amplifier for an application, examine the transistor characteristic curves, know the type
frequency response required and whether operation is required down to zero frequency, and determine if
more than small-signal operation is needed.

Example 2. Cascaded Gain
Show than an amplifier with three stages each with a gain of 20dB per stage has an overall gain of 1000.
Solution:
A gain of 20 dB is
 20 dB = 20log10AV

 1 = log10AV

 AV = 10
Three stages have overall gain of 10 × 10 × 10 = 1000. It is interesting to note that the dB addition of
20 + 20 + 20 = 60 dB for the overall gain. Therefore,
 60 = 20log10AV

 3 = log10AV

 103 = AV

 1000 = AV

Small-Signal vs. Large Signal
Return to Figure 4-3a, the common-emitter characteristic curves for the NPN transistor. The straight line plot-
ted on the characteristic curves is a “load line” for the 1 kΩ load resistor used in the design of the amplifier
stage of Figure 4-5. It represents the variation in collector voltage that occurs when collector current changes
due to variations in base current. The operating point A is on the load line. If base current increases, the volt-
age drop across the 1 kΩ load resistor increases and the collector voltage is decreased. If the collector voltage
is reduced to zero, the transistor would be shorted, and the operating point would be at point C. If the collector
current is zero, the transistor is cutoff, and the operating point is at B. The operating point A is the no-signal
steady-state operating point. When an input signal is applied that varies the base current a small-signal incre-
ment of 0.010 mA each side of the operating point A, the changes in the collector current will be 100 times
(minimum of 50) greater or 1 mA. The collector voltage will swing 1V each side of the operating point A.

As shown in Figure 4-3a, an input signal is applied that varies IB from 0.04 mA to 0.08 mA. The collector
current varies from 4 mA to 8 mA as a result, and
the collector voltage varies from 4V to 8V. There is
a much larger output voltage swing, but the signal is
still linear and not distorted. As the operation of the
amplifier changes to a “large-signal” mode and more
input base current change is supplied, the operating
point on the load line runs into the nonlinear portion
of the characteristic curves, point D, and distortion of
the output waveform occurs. The distortion is shown
in Figure 4-8. It is very important to the application,
if linear operation is what is required, that the input
signal does not drive the output of the amplifier into
the distortion region.

Small-Signal Linear operation

Large-Signal Linear operation

Large-Signal Distorted output

Figure 4-8: Linear small-signal and large-signal, and
large-signal distorted operation

TEAM LRN

42

Chapter Four

The signal range from small-signal until distortion at the output occurs is called the dynamic range of the
amplifier. Unless the circuit is designed to operate outside the linear region, make certain amplifiers have
enough dynamic range for the application.

Classes of Amplifiers
Figure 4-9 is the same sort of plot of characteristic
curves as Figure 4-3a, but it defines the classes
of amplifier circuits that can be designed. The
operating points on the load line and the operating
waveforms are shown. The small-signal amplifier
of Figure 4-5 at point A is called a Class A ampli-
fier because the operation is totally linear—exact
reproduction of the input at the output.

A Class B amplifier operates at point B on the load
line. It is linear when it operates, but it operates
only for 180º of the input cycle. This is a very im-
portant class for power amplifiers—amplifiers that
must supply large amounts of current and have, at the same time, significant voltage swings.

A Class AB amplifier, as shown in Figure 4-9, has an operating point on the load line that is between Class
A and Class B. It is used to eliminate crossover distortion in linear power amplifiers and in tuned amplifiers
for communications circuits.

A Class C amplifier operates on the load line at a point where the transistor is cutoff and must be driven
into conduction by the input signal. As shown in Figure 4-9, collector current flows for only a small portion
of an input cycle. Class C amplifiers are used extensively in resonant tuned circuit amplifiers to provide
outputs over a narrow band of frequencies, usually radio frequencies and above.

Field-Effect Transistor Amplifiers
Amplifiers are also designed using field-effect transistors. The symbols for MOS transistors were shown
in Figure 4-2. There are also JFETs (junction field-effect transistors) that are made from semiconductor
junctions rather than a layer of metal over oxide over silicon. They come in P-channel or N-channel devices
operating in the depletion or enhancement mode. Depletion mode transistors have current from drain to
source without any gate-to-source voltage; while enhancement mode transistors do not have any drain-to-
source current unless a gate-to-source voltage is applied. Depletion mode JFETS are the most common type
used for individual transistor amplifier stages. Most MOS transistors are enhancement mode devices.

JFET Characteristic Curves

Figure 4-10 shows characteristic curves of a depletion mode N-channel. The changes in drain-to-source
current, ID, are plotted against drain-to-source voltage, VDS, as the gate-to-source voltage, VGS, is varied.
The curves are developed the same way as the bipolar transistor curves of Figure 4-3; however, note that for
these curves, that a change in voltage from gate to source causes the change in current from drain to source.

To design an amplifier, a load line is plotted on these characteristic curves just as for the bipolar transistor.
Before the amplifier is designed several important points are noted. There is a gate-to-source voltage that
is called the “pinch-off” voltage. It is the gate-to-source voltage that starts conduction of drain-to-source
current for enhancement mode transistors, and it is the gate-to-source voltage that causes zero drain-to-
source current in depletion mode devices. Anytime the drain-to-source voltage is above the gate-to-source
voltage by the pinch-off voltage, the transistor is operating in the pinch-off mode. The pinch-off mode

Figure 4-9: Bias points of various classes of transistorized amplifiers.

Courtesy of Master Publishing, Inc.

Figure 4-9: Bias points of various classes of
transistorized amplifiers Courtesy of Master Publishing, Inc.

TEAM LRN

43

Signal Conditioning

means the channel within the field-
effect transistor is pinched off and the
drain-to-source current, IDS, remains
essentially constant for further large
variations of drain-to-source voltage,
VDS. For depletion mode JFETs, when
VGS equals zero, the device will be
operating at point X, and the drain
current will be IDSS. The pinch-off volt-
age and IDSS are important parameters
specified by FET manufacturers.

A N-Channel JFET Amplifier
Design
The JFET amplifier design is again for
an automotive small-signal amplifier. The device is an N-channel transistor operating in the depletion mode
and the supply voltage is +12V. The design begins by plotting a load line on the characteristic curves of
Figure 4-10. The point A is chosen as the operating point because it is in a nice linear region. At point A,
ID = 4.6 mA, VGS = –1.5V and VDS = 6.5V. The load line follows the equation:

 ID = VDD/RD – (1/RD) × VDS

derived from VDS = VDD – IDRD as follows:

 IDRD = VDD – VDS

 ID = VDD/RD – VDS/RD = VDD/RD – (1/RD) × VDS

Substituting in the values for ID and VDS, RD = 1,196 ohms.

Triode
Region

I D
 D

ra
in

-S
ou

rc
e

C
ur

re
nt

 (
m

A
)

Pinch
off

voltage

12

10

8

6

4

2

 2 4 6 8 10 12 14 16 18 20

VDS Drain-to-Source Voltage (V)

VGS = −3.0V

VGS = 0

VGS = −0.5V

VGS = −1.0V

VGS = −1.5V

VGS = −2.0V

VGS = −2.5V

A

X

t

Pinch-off region

IDSS drain current
VDS

VGS
IS

ID

G
S

D

+VDD

 VGS VDS ID

 −1.75V 7.5 3.75mA

 −1.25V 5.5 5.5mA

 ∆ 0.5V 2.0 1.75mA

gm = 3500µmhos1.75mA
0.5V

Figure 4-10: An NPN JFET transistor (depleting mode)

b. Schematic symbols

c. Gain & gm

a. Characteristic curves

VDS

RD

ID
D

S

V
GS

R1

RD

R2

VDDVDD

−V

RD

ID

IS

RSRIN

VDD

RDR1

RSR2

VDD

b. Fixed bias c. Self bias d. Fixed and
self bias

Figure 4-11: An NPN JFET amplifier design

a. Choosing RD at
the operating point

TEAM LRN

44

Chapter Four

The slope of the load line is 1/RD, and the circuit corresponds to Figure 4-11a. RD is chosen as 1.2 kΩ and
the load line plotted through point A. Easy end points for the load line are determined when ID = 0 then
VDS = VDD or +12V, and when VDS = 0, ID = VDD/RD or 10 mA.

Biasing the Circuit
Figure 4-11 shows various ways of biasing the JFET at operating point A. A combination of fixed and
self-bias shown in Figure 4-11d is chosen for the design. The self-bias requires that the value of RS be
calculated. It should be noted that with self-bias, the VDS will be reduced by the amount of the voltage de-
veloped across RS. Looking at the characteristic curves of Figure 4-10, ID will not vary significantly if VDS is
reduced by several volts. The voltage across RS is chosen to be +2V. With ID = 4.6 mA, the value of RS can
be calculated as:

 RS = 2V/4.6 mA = 0.435 × 103 = 435 Ω
A standard value of 430 Ω will be used.

Because the VGS voltage must be –1.5V and the source is at the voltage across RS, which is +2V, the gate
voltage must be +0.5V. This voltage is provided by the resistor divider of R1 and R2. The input impedance
of the JFET is very high so it will not load the resistor divider; therefore, the values of R1 and R2 can be
quite high to reduce the power dissipation. The voltage across R2 = +0.5V and can be calculated as:

 0.5V = R2/(R1 + R2) × VDD = R2/(R1 + R2) × 12V
 12R2 = 0.5R1 + 0.5R2

 11.5R2 = 0.5R1

Transposing,

 R1 = 11.5R2/0.5
 R1 = 23 R2

The value of R1 is 23 times the value of R2. R2 is chosen as a standard value of 47 kΩ, and as a result, R1
equals 1.1 MΩ. The completed design is shown in Figure 4-12. As noted in Figure 4-10c, for a 0.5V change in
VGS, there is a 2.0V change in VDS and a 1.75 mA change in IDS current. The amplifier has a voltage gain of 4.

Example 3. Calculating Ratio of R2 : R1
In Figure 4-11b, if VDD = +10V and –V = –10V, what ratio of R2 : R1 should be used to obtain a VGS = –1.5V?

Solution:
Since VDD = +10V and –V = –10V and VGS = –1.5V, then the voltage across R2 is:
 8.5 = R2/(R1 + R2) × 20V
 8.5R1 + 8.5R2 = 20R2

 8.5R2 = 11.5R1

 R2/R1 = 8.5/11.5 = 0.74

Gm—Transconductance

There is a parameter, gm, for field-effect transistors called transconduc-
tance. It is defined as the change in drain-to-source current in amperes
per volt of change in the gate-to-source voltage. It is a change in current,
∆I, over a change in voltage, ∆V; or the inverse of resistance. Thus, trans-
conductance has the units of mhos, rather than ohms. For the amplifier of
Figure 4-12, as shown in Figure 4-10c, there is a 1.75 mA change in drain
current for a 0.5V change in gate-to-source voltage. This is a 3.5 mA per
volt change or 3500 micromhos for gm.

Figure 4-12: Completed NPN JFET Small-Signal Amplifier.

R1

R2

RD

RS

Input

Output

1.2kΩ

430 Ω

1.1MΩ

+12V

47K

Figure 4-12: Completed NPN
JFET small-signal amplifier

TEAM LRN

45

Signal Conditioning

The voltage gain of an amplifier can be expressed as:

 AV = –gmRL

Accordingly, the gain of the amplifier of Figure 4-12 is:

 AV = 3500 × 10–6 × 1.2 × 103 = 4200 × 10–3 = 4.2

This matches the value computed from Figure 4-10. Examining the equation AV = –gmRL, one can see that
the gain can be increased by increasing RL. To do this one would need to increase VDD. Of course, if gm is
higher the gain is higher. Thus, devices are judged for amplifiers by their gm. Figure 4-2b shows an easy
way to evaluate gm, it is the slope of a line tangent to IDS vs VGS curve.

An NPN MOSFET Amplifier
The same characteristic curves shown in Figure 4-10 apply to an enhancement mode N-channel MOSFET
with a couple of exceptions. The gate-to-source voltages are positive and equal to and greater than the thresh-
old voltage, Vt. Vt is required to start the channel current from drain to source in the enchancement mode.
The characteristic curve that plots on the VDS axis has VGS = Vt and any additional curves have VGS = Vt + V.
The characteristic curves represent the full VGS voltage, but only the V value above Vt is contributing to
enhancing the channel current.

The characteristic curves for the N-channel MOSFET are shown in Figure 4-13. The transistor will be used in
the enhancement mode to design a small-signal amplifier similar to the JFET amplifier. Again, the amplifier
will be used in an automotive application so the power supply voltage is +12V. The operating point is set as
point A, again in the linear region. At point A, VDS = 8V, IDS = 3.3 mA, VGS = 6V and Vt = 2V. The dotted para-
bolic curve is the locus of points where VDS = V, the component of VGS above Vt. The points on the VGS curves
where the VDS curve intersects are the points where the channel goes into pinch off. Operation to the right of
the dotted-line curve is in pinch off; operation to the left is in the triode region. Small-signal linear amplifiers
must operate in the pinch-off region. The load line is plotted for RL = 1.2 kΩ just like the JFET design.

Vt

20

18

16

14

12

10

8

6

4

2

 2 4 6 8 10 12 14 16 18 20 22 24

B

A

C

Triode
region

VDS = Vt + V − Vt

VDS = V

VDS = VGS − Vt

VGS = Vt + 8
Pinch off
region

Slope = gm

VDS = VGS

2 kΩ
load line

1.2 kΩ

load line

VDS Drain-to-Source Voltage (V)

Point A
VGS

Vt + 5V = 7V
Vt + 4V = 6V
Vt + 3V = 5V

 ∆ = 2V

Vt = 2V
IDS

5.5 mA
3.3 mA
2.5 mA
3 mA

RL = 1.2K
VDS

5.5V
8.0V
9.0V
3.5V

gm =
3 mA

 2V

= 1500

Point B
VGS

Vt + 4 = 6V
Vt + 5 = 7V
Vt + 6 = 8V

 ∆ = 2V

Vt = 2V
IOS

3.5 mA
5.5 mA
8 mA

4.5 mA

RL = 2K
VDS

17.0V
13V
8V

9.5V

gm =
4.5 mA

 2V

= 2250

I D
S
 D

ra
in

-t
o-

S
ou

rc
e

C
ur

re
nt

 (
m

A
)

µmhos µmhos

VGS = Vt + 6

VGS = Vt + 5

VGS = Vt + 4

VGS = Vt + 3

VGS = Vt + 2

VGS = Vt = 2V

b. Gain and gm
Figure 4-13: An N-channel enhancement-mode MOSFET

a. Characteristic curve

TEAM LRN

46

Chapter Four

Fixed and Self-Bias

The MOSFET N-channel can be biased, as shown in Figure 4-14a, just like the JFET. The VDS voltage is
somewhat larger because the steady-state VS can be much smaller due to the fact that all VGS voltages are
positive. In Figure 4-14a, RL = 1.2 kΩ and IDS = 3.3 mA; therefore, since IS = ID,

 RS = 0.5V/3.3 mA = 0.152 × 103 = 152 Ω
A standard value is 150 Ω so RS = 150 Ω.

To have VGS = 6V, the gate must be at +6.5V since the source is at +0.5V; therefore,

 R2/(R1 + R2) × 12V = 6.5V
 6.5R1 = (12 – 6.5)/6.5 × R2

 R1 = 0.846 R2

R2 is chosen as a standard value of 470 kΩ, which results in a standard value of 390 kΩ for R1. The
designed stage is shown in Figure 4-14a.

Drain-to-Gate Bias

Another biasing arrangement that also provides negative feedback is shown in Figure 4-14b. In this arrange-
ment, since gate current is zero, VDS = VGS, and a small increase in drain current causes a small reduction
in VDS. The small reduction in VDS is fed back to cause a small reduction in VGS, which compensates for the
original increase in drain current. Now, since

 VDS = VGS – Vt

It follows that adding a Vt voltage to VDS,

 VDS = VGS – Vt + Vt = VGS

As a result, a new parabolic locus of points is drawn on the characteristic curves that represents VDS = VGS,
as shown in Figure 4-13a. In other words, the curve is displaced to the right by the value of Vt = 2V. Be-
cause of this, the operating point shifts to point C on the load line, and IDS = 4.33 mA and VGS = VDS = 6.8V.

Gain and gm

Figure 4-13b provides some large-signal voltage gain and gm values for the circuit of Figure 4-14a. The volt-
age gain is 1.75V per V and gm is 1500 micromhos. Calculating the gain by using –gmRL, the voltage gain is

 AV = −1500 × 10–6 × 1.2 × 103 = −1.8

The minus sign, of course, meaning a change in phase of the signal. It was pointed out for the amplifier
of Figure 4-12 that using a larger load
resistor would increase the stage volt-
age gain. A new load line using a 2 kΩ
resistor is drawn on the characteristic
curves of Figure 4-13. The operating
point is now point B and AV = 4.25V
per V, gm = 2250 micromhos and
–gmRL = 2250 × 10–6 × 2 × 103 = 4.25.
The concern with this design is the
increased power supply voltage to +24V
and increased power dissipation when
the operating point is point B where
IDS = 5.5 mA and VDS = +13V.

Output

Input

R2

R1

RS

RL
ID

IS

1.2 kΩ

+ 8.0V

+ 0.5V

150Ω
kΩ

470

390
kΩ

+ 6.5V

D

S
G

VGS

VDD = +12V

Output

1.2 kΩ

S

G
Input

RG = 10MΩ

RL

+6.8V

VDD

D

Figure 4-14: N-channel MOSFET small-signal amplifiers

a. Self and fixed bias b. Drain-to-gate bias

TEAM LRN

47

Signal Conditioning

Operational Amplifiers
Integrated circuit manufacturers have provided an excellent product—the operational amplifier (op amp)—
to designers of electronic circuits for signal conditioning sensor signals. Many types and varieties are
available for a wide spectrum of applications. System designers that need amplification in their design need
not design an individual amplifier circuit but can use an op amp instead.

The term “op amp” refers to a direct-coupled amplifier that was used initially in analog computers to
perform mathematical computations, while solving real-time control system problems. Op amps are DC
amplifiers that have high gain, high input impedance, low output impedance, and wide bandwidth. Another
significant advantage is that the amplifier’s characteristics can be varied using external components.

Figure 4-15 describes a
general-purpose op amp.
The amplifier has two
inputs and one output.
The amplifier output is
normally a linear output
voltage, VO, that is pro-
portional to the difference
of the voltage between
the two inputs. Thus, it is
classified as a differential
amplifier. The two inputs
are identified with a minus and a plus sign. The input with the minus sign is called the inverting input; the
input with the plus sign is the noninverting input. If the noninverting input is more positive than the invert-
ing input, the output voltage, VO, is positive with respect to ground. Conversely, if the inverting input is
more positive than the noninverting input, VO will be negative with respect to ground. When both inputs are
referenced to ground, and the inverting input is more positive, VO swings negative; when the non-inverting
input is more positive, VO swings positive.

Characteristics

Return to Figure 4-15. The output, VO, can be represented by a generator, EO = AVD × VD, fed to the out-
put through the output impedance, ZO. EO is the input differential signal, VD, amplified by the open-loop
differential gain, AVD. ZIN is the input impedance, and VIO is the input offset voltage that causes the output
voltage to be displaced from zero volts when there is no differential input signal. AVD is usually a very large
number (>20,000) in most modern day op amps; therefore, even a very small input signal drives the output
into saturation. This is a distorted output as shown previously in Figure 4-8. As a result, normal operation is
with feedback from output to input to set the gain of the op amp at a particular value.

Setting Gain

Look at Figure 4-16. A
resistor, Rf, is connected
from the output back to the
inverting input to control
the gain of the op amp
with negative feedback.

AVD x VD

VO

ZO

EO

VIO

ZIN

inverting input

V2

V1

I1

I2 +

−

noninverting input

I1, I2 = Input currents

VD = Differential input voltage

ZIN = Input impedance

VIO = Input offset voltage

AVD = Open-loop differential voltage gain

ZO = Output impedance

VO = Output voltage

VD

Figure 4-15: General-purpose operational amplifier

VO

Ideal Characteristics

ZIN = Infinity

AVD = Infinity

ZO = Zero

VIO = Zero

(VO = 0 when VIN = 0)

Bandwidth = Infinity

VO

VIN
= AVF

Rf

R1
= −

Inverting Input A

Rf

If

R1

VIN

I1 A

B+

−

VD

IIN

−

+

Figure 4-16: Op amp with negative feedback and signal to inverting input
TEAM LRN

48

Chapter Four

If the output goes positive, as it would for an input signal on A going negative, a portion of the positive
output signal is fed back to the input to cancel part of the input signal. In Figure 4-16, the ideal op amp
characteristics are listed. One of these is ZIN = infinity. As a result, IIN = 0; therefore, from Figure 4-16,

 I1 + If = 0

Since

 I1 = (VIN – VD)/R1 and since VD = 0 because IIN = 0, then
 I1 = VIN/R1

and If = VO/Rf because VD = 0, then
 VIN/R1 + VO/Rf = 0

 VO/Rf = –VIN/R1

and VO/VIN = –Rf/R1

or AVf = –Rf/R1

The gain of the inverting operational amplifier with feedback, AVf, is determined by the ratio Rf/R1, both
external components to the amplifier itself.

In Figure 4-17, VIN is applied to the noninverting input; therefore,

 VR1 = VIN – VO , but because VO = 0 since IIN = 0,
 VR1 = VIN

Therefore,

 I1 = VIN/R1

Since,

 I1 + If = 0, If = I1

Now,

 VO = VR1 + VRf = VR1 + IfRf

Now, with substitution for VR1 and If,

 VO = VIN + I1Rf

Therefore, since I1 = VIN/R1

 VO = VIN + (VIN/R1) × Rf

 VO = VIN (1 + Rf/R1)

Or VO/VIN = 1 + Rf /R1

And thus, AVf = 1 + Rf/R1

The feedback gain, AVf, for an op amp with the signal on the noninverting input is one plus the feedback
gain of an op amp with the signal on the inverting input. The output is out of phase for the inverting input
and in phase for the noninverting input.

In summary,

For inverting input: AVf = –Rf/R1

For noninverting input: AVf = 1 + Rf/R1

Even though the manufactured op amps are not ideal, the parameters are such that making the ideal ampli-
fier assumptions cause very small errors (<0.5%). The above equations, when used for amplifier designs,
will provide circuit performance that is well within the accuracy of other components used.

TEAM LRN

49

Signal Conditioning

Example 4. Calculating Op Amp Gain
Calculate the op amp gain indicated using the values of Rf and R1 as shown.

Solution:
 Rf R1 Inverting Noninverting
 1 MΩ 10 kΩ 1 × 106/10 × 103 = 100 101
 870 kΩ 56 kΩ 870 × 103/56 × 103 = 15.5 16.5
 330 kΩ 4.7 kΩ 330 × 103/4.7 × 103 = 70.2 71.2
 100 kΩ 3.3 kΩ 100 × 103/3.3 × 103 = 30.3 31.3

Op-Amp Power Supplies

Notice that in Figure 4-16 and Figure
4-17 there are no power supply con-
nections. They were omitted for clarity.
Most op amps operate from plus and
minus power supplies, but many manu-
facturers now have units that operate
from a single supply. Units that oper-
ate from dual power supplies, use plus
and minus voltages of equal value. The
manufacturers recommend operating
voltages, but most operate over a range of supply voltages. Parameters are tested for guaranteed values shown
on data sheets at a particular power supply voltage.

Op-Amp Offset Correction

Many op amps in the past provided external package pins to
aid in adjusting the amplifier output voltage for any offset
voltage that might cause the output voltage to be other than
zero when the input voltage is zero. The package pins are
shown in Figure 4-18. Pin #1 and pin #5 are used to inject a
current into the input stage and adjust VO to zero when VIN
is zero. A high-value variable resistance is placed across the
pins and the variable contact is fed by a current source. The
resistance is adjusted until the output voltage is zero.

Frequency Response

Figure 4-19 shows the typical frequency response of a general-
purpose op amp like the 741. The maximum open-loop gain of
200,000 is from DC to about 20 Hz and then the gain declines on
a straight line until the gain equals 1. For this case, Rf is infin-
ity so the feedback loop is open. When feedback is added, the
gain is reduced and the gain vs. frequency curve fits under the
open-loop gain response curve. For example, if feedback is added
so the amplifier has a gain of 40—shown by the dotted line in
Figure 4-19—then the frequency response is flat out to 100 kHz
before it starts to roll off. If the gain is reduced to 4, the frequency
response stays flat until 1 MHz before it starts to roll off.

VO

VO

VIN
= AVF

Rf

R1
= 1+

Noninverting Input B

Rf

If

R1

VIN

I1
A

B+

−

VO

IIN

+

−

Figure 4-17: Op amp with negative feedback
and signal to noninverting input

+

−

Compensation

+ VCC

Output

N2 Offset Null

8

7

6

5

1

2

3

4

INV IN

Non-INV IN

− VCC

N1 Offset Null
and Compensation

Figure 4-18: Op Amp with Offset Adjustment and Frequency Compensation.Figure 4-18: Op amp with offset adjustment
and frequency compensation

VCC± = ±5V to ±15V
RL = 2 KΩ
TA = 25ºC

DIFFERENTIAL
VOLTAGE

AMPLIFICATION
(left scale)

Open
loop
gain

A
V

D
 D

IF
F

E
R

E
N

T
IA

L

V
O

LT
A

G
E

 A
M

P
LI

F
IC

AT
IO

N

106

105

104

103

102

40
101

4
1

0

45º

90º

135º

180º
1 10 100 1K 10K 100K 1M 10M

f − FREQUENCY − HZ

PHASE SHIFT
(right scale)

Figure 4-19: Frequency Response of General Purpose
Op Amp.
Figure 4-19: Frequency response of
general purpose op amp

TEAM LRN

50

Chapter Four

The phase shift of the output signal is also shown in Figure 4-19. If the amplifier gain were greater than 1
at any frequency and the phase shift were greater than 180º, the amplifier circuit would oscillate at that fre-
quency. One of the parameters where commercial op amps definitely deviate from the ideal specifications is
in the bandwidth. Available op amps are definitely limited to a finite bandwidth.

Frequency Compensation
Frequency compensation is the act of adding external components to stabilize the op amp and keep it from
oscillating. Some op amps provide pin connections to which external capacitance can be connected to
stabilize the op amp. This feature is shown for the package of Figure 4-18. Capacitance is added across the
pins marked “compensation.” When the application demands more and more frequency response and higher
frequency operation, more attention must be paid to circuit layout and lead lengths to keep the op amp from
oscillating. For this reason, op amps with external connection pins for compensation may be a necessity.

Conditioning the Output of a Pressure Sensor
It is necessary to amplify the output signal from a pressure sensor in order to have a voltage great enough to
input it to an analog-to-digital converter. In Chapter 3, the construction of a pressure sensor was shown in
Figure 3-12. Such a sensor is connected to an op amp in Figure 4-20 that is acting as a difference amplifier.
It is amplifying the difference voltage V2 − V1 identified as VIN in Figure 4-20. There are specific require-
ments for the op amp to be a difference amplifier. The ratio R3/R2 must be equal to the ratio Rf/R1. Rf/R1
determines the differential gain. With Rf/R1 equal to 20 for the circuit, R3/R2 must be 20. R2 is 2 kΩ; there-
fore, R3 is 40 kΩ. The reason that R2 is 2 kΩ is to have the input impedance to the sensing circuit, which
is R1 + R2, as high as possible to keep from loading the pressure gauge bridge and causing inaccuracies. R1
tends to be small to allow the gain to be high, but this keeps the input impedance low, which would load the
circuit. There is a compromise here.

The signal from the sensor is normally in millivolts (mV), and the input to the analog-to-digital converter
needs to be 1V or more. If the input voltage is 2 mV and the difference amplifier has a gain of 20, the output
voltage will be VO = 20 × 2 × 10–3 = 40 mV. More amplification is needed. Another op amp with the signal fed
to the noninverting input is added with a gain of 41. Its output voltage will be VO = 41 × 40 × 10–3 = 1.64V.
Op amps are manufactured with dual circuits in a package; therefore, only one IC is used. The power supply
voltages (plus and minus) are
chosen for the convenience
of the application. There are
many op amps that operate
from 3–4 volts to 20 volts.

Common-Mode
Rejection

One problem with instru-
mentation amplifier circuits
such as Figure 4-20 is that
the signal output from the
sensor is very small, but
the noise voltage picked up
on the leads connecting the
sensor to the amplifier may
be 100 to 1000 times greater.

+V

Pressure
Sensor

For Differential Amplifier:

VO

VIN
=

Rf

R1
(V2 − V1) = AVFVIN

RIN = R1 + R2

Rf

R1
=

R3

R2

Figure 4-20: Amplifying a Pressure-Sensor Output.

VO

− VCC

+ VCC

1 k Ω

1kΩ

+ VCC

− VCC

40kΩ

40kΩ

20kΩ

1kΩ

2kΩ

VO
V2 R2

R3

R1
V1

VIN

Rf

RIN

AVF = 41

AVF = 20
+

+

−

−

Figure 4-20: Amplifying a pressure-sensor output
TEAM LRN

51

Signal Conditioning

An op amp with a high common-mode rejection must be chosen for such applications. Common-mode
rejection means that any signal appearing on both inputs at the same time will not appear at the output.
Only the differential signals will be amplified. Common-mode rejection ratio is:

 CMRR = AVD/ACM

where AVD is the differential gain and ACM the common-mode gain. In decibels,

 CMRRdB = 20log10AVD/ACM

Example 5. Common-Mode Rejection
If an op amp has an AVD = 100 dB and a CMRR = 80 dB, what is the common-mode gain?

Solution:
 CMRRdB = 20log10AVD/ACM AVDdB = 20log10VO/VIN

 80 = 20log10AVD/ACM 100 = 20log10VO/VIN

 4 = log10AVD/ACM 5 = log10VO/VIN

 104 = AVD/ACM 105 = VO/VIN = AVD

 ACM = AVD/104 therefore, ACM = 105/104 = 10

A More Sophisticated Pressure Sensor Amplifier
Burr-Brown, manufacturers
of op amps, in one of their
application notes3, present
a much more sophisticated
pressure sensor circuit. It is
shown in Figure 4-21. It is
presented here to demon-
strate several other uses of
op amps that are very impor-
tant to signal conditioning
circuitry, and, in addition,
the circuit is designed using
only one power supply. The
circuit uses four op amps,
two in each package. In the
circuit, A3 and A4 constitute
a two-op-amp instrumenta-
tion amplifier whose output
voltage is:

 VOUT = VIN(2(1 + R/RT)) + VOUT1

VOUT1 is the offset voltage at the output when VIN = 0, or when there is zero pressure on the sensor. For the
circuit shown, because the design required an output from the instrumentation amplifier when the input
voltage was zero, VOUT1 was set at +0.5V.

5 kΩ
R3

0.5V

1/2OPA1013

1 kΩ
R1

5.8 kΩ

R2

100µA

1/2REF200

V+ (4.5V to 36V)

4 kΩ 4 kΩ

4 kΩ 4 kΩ

3.4V

Bridge
Sensor(1)

VREF1

1/2OPA1013

10 kΩ 1%
VREF2

R4

0.5V

RT

85 Ω

R5

10 kΩ 1%

R6

10 kΩ 1%1/2OPA1013

VIN

1/2OPA1013

+

−

R7

10kΩ 1%

VOUT

A1

+

−

A4

+

−

A3

+

−

A2

+

−

Figure 4-21: A more sophisticated Pressure-Sensor Amplifier.

Source: Burr Brown Corporation Application Note AB033A, © 1991

Figure 4-21: A more sophisticated pressure-sensor amplifier

3 Burr-Brown, AB-033A Application Note, © 1991, Burr-Brown Corporation.
TEAM LRN

52

Chapter Four

Voltage Follower

The +0.5V is set using what is called a voltage follower. The op amp A2 is a non-inverting amplifier with
Rf = 0 and R1 equal to infinity; therefore, its gain, AVD is:

 AVD = 1 + Rf/R1 = 1

and VO = VIN

It is a unity gain amplifier, and its
configuration is as shown in Figure
4-22. Its output voltage equals
its input voltage, thus, the name
voltage follower. It has a very high
input impedance and a low output
impedance so it isolates output
from input. It has +0.5V applied to
its noninverting input so it pro-
duces +0.5V at its output.

The A1 op amp is a similar stage
but has a finite gain set by Rf = 5.8 kΩ and R1 = 1 kΩ, so that its gain is:

 AVD = 1 + 5.8 = 6.8

It also has +0.5V on its noninverting input, so that it produces an output voltage of 6.8 × 0.5 = 3.4V. This
output voltage is used as a reference voltage for the bridge sensor and will remain very stable. Op amps
make excellent voltage followers and produce outputs that are isolated from the inputs because of the high
input impedance and low output impedance. They do not have to be unity gain amplifiers.

The component called REF200 in the circuit is one half of a dual constant-current source. It supplies a
constant current of 100 µA. A constant-current source can be a high resistance connected to a power supply;
however, REF200 is made up of active devices that produces a very accurate, stable source of 100 µA. The
100 µA through a precision 5 kΩ resistor produces a very accurate +0.5V required for the circuit.

The gain of the A3 and A4 op amps, as stated previously, is two times the gain of a noninverting amplifier;
therefore, with RT = 85 Ω and R = 10 kΩ
 AVD = 2 (1 + 10 × 103)/85 = 2(1 + 118) = 238

Current Mirror
One other circuit that is useful for signal conditioning is a current mirror shown in Figure 4-23. It can
be made using MOS or bipolar
transistors, and there are more
elaborate circuits than those shown
in Figure 4-23. In each of these
circuits, the output current is equal
to a constant factor times the input
current. When transistors are made
in integrated circuit form and used
for current mirrors, they are next
to each other, and, therefore, have
identical characteristics.

AV

+

−
AV = 1

+

−

R1

Rf

VIN

VO

With
 Rf = 0
 R1 = ∞

VO = VIN
VIN

Figure 4-22: Unity Gain Amplifier or Voltage Follower.
Figure 4-22: Unity gain amplifier or voltage follower

a. MOS circuit

W = Channel width
L = Channel length

IO

Q2
Q1

I1

VGS
+

−

IO = I1
(W/L)2

(W/L)1
IO = I1

IO

b. Bipolar Circuit

Figure 4-23: Current Mirrors.

I1

Figure 4-23: Current mirrors

a. MOS circuit b. Bipolar circuit

TEAM LRN

53

Signal Conditioning

As a result, the current mirrors produce very accurate outputs vs. inputs. They are used to supply accurate
currents in themselves or to establish accurate voltage references by developing a voltage across precision
resistors. The output current for the MOS transistors turns out to be the input current times the ratio of the
channel width, W, to the channel length, L, of the MOS transistors used in the design.

Example 6. W/L Ratio of Current Mirrors
In Figure 4-23a, if I1 = 50 µA and (W/L)2 = 4 and (W/L)1 = 2, what is the value of IO for the current mirror?

Solution:
IO = I1 (W/L)2/(W/L)1 where W is channel width and L channel length
IO = 50 µA × 4/2 = 100 µA for the MOS transistors used in the design.

Applications of Op Amps
Thermocouple Amplifiers

Figure 4-24a shows an amplifier for use with a thermocouple. The thermocouple is connected to the non-
inverting input. A 1 MΩ variable resistor is used for Rf so that the gain and sensitivity can be adjusted to the
requirements of the application. Short lead lengths and bypass capacitors on the power supply leads may be
required at the highest gain settings.

Solar Cell or Photodiode
Amplifier

Figure 4-24b is an amplifier
for use with a photodiode or
a solar cell. Again the gain is
adjustable to fit the applica-
tion. Short lead lengths and
component placement are
important in both of these
applications to make sure the
circuit does not oscillate.

Thermistor Amplifier

Figure 4-24c is an ampli-
fier to use with a thermistor
temperature sensor. Beside
a gain adjustment, there is
a level adjustment to set
the output at a particular
temperature. 25ºC might be
the temperature for many
applications.

Oscillators
Recall that with an op amp,
as shown in Figure 4-25b,
when a signal, vi, is applied to the noninverting input that the output, vo, is in phase with the input signal. If
now the output is fed back to the noninverting input through a feedback circuit, as shown by the dotted box,

* Adjust for gain and
 sensitivity desired.

+

−

*

Av = 1 − 1000

−VCC
VO

0.1µF

+VCC

1MΩ

Thermocouple

+

−

1kΩ

+

−

Av = 1 − 100

+VCC

VO

1kΩ

100kΩ

−VCC

+ Photodiode
or
Solar
Cell

Av = 1 − 100

+

−

*

*

+VCC

−VCC

100kΩ

1kΩ
2kΩ

10kΩ

Adjust for
output at
25°C

Thermistor

VO

a. Thermocouple b. Solar cell or photodiode

c. Thermistor amplifier

Figure 4-24: Sensor amplifiers using op amps

TEAM LRN

54

Chapter Four

the output signal reinforces the input and the
circuit is turned into an oscillator. An oscil-
lator is a circuit that outputs a continuous
signal, usually at a constant frequency, with
vi = 0. In other words, the oscillator puts out
a continuous signal without having an input.
In Figure 4-25, β is the gain of the feedback
network shown in dotted lines. It either
increases or decreases vO as it feeds back the
signal from output to input; therefore,

 vf = βvO

Since vi = 0, vf when amplified by AV produces vO, and

 vO = AvβvO

or, cancelling out vO,

 AVβ = 1

The oscillator will maintain an output signal without an input signal when the loop gain is equal to or
greater than 1 and will oscillate at a frequency where the phase from input back to input is 360º.

It so happens, when many amplifiers are built, not enough precaution is taken with component layout so
that part of the output signal is fed back to the input. The circuit oscillates at a sine-wave frequency where
the loop gain is greater than 1 and the phase shift through the feedback loop is 180º or greater. This assumes
that the phase shift through the amplifier stage is 180o. There are many types of oscillators that output
waveforms other than sine-waves—square-wave, triangular waves, pulses of constant width, or pulses that
vary in width, but the principle is the same—the phase shift from input to output to input is 360º, and the
gain is greater than 1 through the feedback loop.

Power Amplifiers
Class A Amplifiers

The small-signal amplifiers that have been discussed are Class A amplifiers—there is current in the transis-
tors, as discussed in Figure 4-9, for 360º of the signal cycle. When Class A amplifiers are used for power
amplifiers, where high current and high voltage swings are required at the same time, there is a large
amount of power dissipated in the amplifier stage itself rather than being delivered to the load. The ef-
ficiency of power transfer to the load is low. The maximum efficiency is 25%, but in practical applications
it usually is only 10% to 20%. As a result, Class AB, Class B and Class C amplifiers are used for power
amplifiers. Because current in Class C amplifiers flows only for a small portion of an input signal cycle,
current pulses are applied to a tuned circuit load resonant at a particular frequency, or over a narrow band of
frequencies. Thus, Class C amplifiers are used for frequency-selective power amplifiers, and most applica-
tions of power amplifier circuits in this book will use Class AB or Class B amplifiers.

Class B

Figure 4-26a is the circuit for a simple complementary bipolar transistor power amplifier. Q1 is a NPN
power transistor whose collector is connected to +VCC. Q2 is a PNP power transistor whose collector is con-
nected to –VCC. The bases of the two transistors are connected together to Vi, the input voltage. When
Vi = 0, both transistors are off and there is no current through RL, the load, so VO = 0. As Vi increases posi-
tively, when VBEQ1 is exceeded, Q1 conducts and becomes an emitter-follower with a voltage gain of 1.

+

−

Av

υ1

1kΩ

1kΩ

B Frequency
Selective Network

υf

υO

a. Schematic b. Signal Waveforms

υO

υ1

t

Figure 4-25: An Oscillator.

V
ol

ta
ge

 A
m

pl
itu

de

a. Schematic b. Signal waveforms

Figure 4-25: An oscillator

TEAM LRN

55

Signal Conditioning

VO = Vi – VBEQ1 results
as shown in the
transfer characteristics
of Figure 4-26b. As
Vi returns to zero and
increases negatively,
when VBEQ2 is exceed-
ed, Q2 conducts and
it becomes an emit-
ter-follower. VO = −(Vi
– VBEQ2) as shown in
the transfer character-
istics of Figure 4-26b.
Q2 is cutoff while Q1 conducts; Q1 is cutoff while Q2 conducts. There is no voltage gain but significant
current gain to provide the power amplification. Each transistor is biased Class B with conduction only over
180º of the input signal cycle. Note, however, as shown in Figure 4-26b, that there is quite a bit of distor-
tion, called crossover distortion, especially when the signal amplitude is small.

Figure 4-27 shows a Class B complementary transistor power amplifier that has the crossover distortion
eliminated. It is eliminated because the transistors are operating in Class AB where each has a small quies-
cent current through it. I1 is the current through Q1 and I2 is the current through Q2 when Vi = 0. A biasing
resistor, R1, supplies a bias current to the diodes D1 and D2 to provide a two-diode constant voltage between
the bases of Q1 and Q2. Q1 and Q2 are matched to have the same VBE. As a result, I1 = I2.

When the diode voltage drop is matched to the VBE of Q1 and Q2, point A in the circuit of Figure 4-27a will
be at VBE, point B will be at 2VBE and point C will be at the same voltage as point A, VBE. Figure 4-27b
shows the transfer characteristics. When Vi = 0, VO = VBE. The transfer characteristics are displaced by VBE
and there is no crossover distortion.

The circuit operates as follows: Vi increases positively to cause point B to increase to 2VBE + Vi and for VO

to increase by Vi. Since the base of Q2 is at Vi and its emitter is at VO = VBE + Vi, Q2 does not change in emit-
ter-base voltage so I2 remains constant, but the current from Q1 flows through RL to produce VO across RL as
long as the input voltage is positive. When Vi increases negatively it causes Q2 to conduct I2 through RL. At
the same time, point B is pulled
to 2VBE – Vi and since the out-
put is at VBE – Vi, the VBE of Q1
remains constant and I1 remains
constant. The output follows Vi
due to I2.

The output voltage cannot go
any higher than about
+VCC – 2V for the positive
swing, or –VCC + 2V for the
negative swing otherwise the
transistors will go into satura-
tion and the output signal will
be distorted. Thus, the maxi-
mum load current, IL, drawn by

+VCC

VO
Vi

−VCC

Q1

Q2

RL

I1
I2

V
BEQ

1

VBEQ2

VBEQ1

VBEQ2

VO

+Vi−Vi

Vi

V
O

Transistor
saturation

Transistor

saturation

+

− time

• • • • • • • • •

a. Schematic b. Transfer characteristics and waveforms

Figure 4-26: Simple complementary bipolar transistor Class B power amplifier

Figure 4-27: Class AB Power Amplifier.

a. Schematic

Vi

VORL

Q2

Q1

−VCC

I1

I2

IL
C

R

IBIAS − I1/hFE

2VBE

VBE

IBIAS

A
D1

D2

VO

VBE

Vi
VBE

b. Transfer Characteristic.

B

IBIAS

I1/hFE

+VCC

I2/hFE

a. Schematic b. Transfer characteristics

Figure 4-27: Class AB power amplifier
TEAM LRN

56

Chapter Four

either transistor will be (VCC – 2V)/RL, and it determines the power output of the amplifier. IL divided by hFE
determines the maximum base current that will need to be supplied to the bases when the respective transistor
is driving the output. IBIAS of Figure 4-27a must always be larger than the maximum base current required to
drive the load in order to have a proper design; therefore, using the maximum base current, R can be deter-
mined. Where the efficiency of the Class A amplifier is 10%−20%, Class B amplifiers can have efficiencies as
high as 78.5%. Usually they average about 60%.

Class B Audio Power Amplifier
A very successful Class B power
amplifier used for signals with fre-
quencies in the audio range is shown in
Figure 4-28. Q1 and Q2 are biased just
into conduction with a constant current
supplied by R1 from +VCC. This design
condition eliminates crossover distor-
tion. The circuit operates as follows: Vi
is applied to the primary of the input
transformer, T1. It has a center-tapped
secondary each side of which feeds a
base of Q1 or Q2. The positive-going
alternation of the input signal produces
a positive-going signal on the base of Q1. The resulting base current produces amplified collector current
from Q1 in the upper half of the primary of the output transformer, T2. A positive-going output signal ap-
pears across the load resistor, RL, connected across the secondary of the output transformer.

The negative-going alternation of Vi, through the secondary connection of T1, produces a positive-going
signal on the base of Q2. Amplified Q2 collector current is produced in the lower half of the primary of T2. A
negative-going output signal appears across RL. Q1 conducts the power transferring collector current on the
positive alternation of Vi, and Q2 conducts similar power transferring collector current on the negative alter-
nation of Vi. Through transformer action, a positive-going signal appears across RL when Q1 conducts, and
a negative-going signal when Q2 conducts. Both transistors operate in Class B because they only conduct
for 180º of the input signal. This power amplifier does not amplify DC. It must have time-varying signals
because of the transformer action.

Q1 and Q2 should be matched transistors so that there is the same quiescent current, IQ, through each transistor,
and so that they have the same hFE. IQ should be less than 1mA, but with IQ = 1 mA, and a minimum hFE = 40,

 IBIAS = 2IQ/hFE = 2 mA/40 = 0.5 × 10−4 = 50 µA

With IBIAS, R1 can be calculated for a given VCC. The collector-to-emitter breakdown voltage must be greater
than 2VCC, and the turns ratio, NS/NP, must be chosen to match the impedance of the load, RL, to the output
load required on the transistors, Q1 and Q2, at the power level desired.

Special Signals
Square Waves from Sine Waves
There are three other special signal-conditioning circuits that are important. The first is a circuit that produces
pulses from a time-varying input signal. As shown in Figure 4-29a, an easy way of producing square waves
from sine waves is to use diodes, either standard diodes or zener diodes. The amplitude of the square waves is
determined by the diode drop. The higher the amplitude of the input signal the squarer the output waveform.

o

t1

t2

Vi

+ −

− +

− +

+ −

o
t1

t2

R2

o

o

t1

t1 t2Q2

Q1

IO

IO

R1

+VCC

−

+
+

−

T2

+VCC

T1

IBIAS

RL

t1

t2
o

VO

 + −
− +

Figure 4-28: Class B transformer coupled audio power amplifier

TEAM LRN

57

Signal Conditioning

The use of a comparator is shown in Figure 4-29b. A comparator is essentially an op amp without any feed-
back. Since op amps have very high open-loop gain, any small signal at either input will drive the output
into saturation. A positive signal drives the output to +VCC – VSAT, and a negative signal drives the output to
–VCC + VSAT. If a reference voltage, VR is placed on one input, the switching point will move to VR. Control
of the pulse width can be provided by the variation of VR. The repetition of the square waves will be at the
frequency of the input.

VP = +4V

VP = +10V

Vi

Vi

1. Diodes

R

Vo

Vo

5V
Zener
diode

5V
Zener
diode

a. Zener Diodes b. Comparator

2. Zener Diodes

+5V

−5V

+0.7V
−0.7V

Vi

VR

−VCC

+VCC

Comparator

+

− VO

+VCC − Vsat

VR = O

−VCC + Vsal

+VCC − Vsat

+VR

−VCC + Vsat

Figure 4-29: Square Waves from Sinc Waves

b. Comparator

Figure 4-29: Square waves from sine waves

Trigger Pulses from Square Waves

In many applications there
is a real need to provide
accurate trigger pulses at
particular times. One of
the simplest circuits for
producing sharp timing
pulses is the differentiat-
ing circuit formed with
a capacitor and resistor as shown in Figure 4-30. A pulse with a fast rising leading edge passes through C
and appears across R as a sharp rising pulse. The time constant of RC is short compared to the pulse width
t. C rapidly charges and VO goes to zero while the maximum amplitude of the input pulse continues. When
the Vi pulse returns to zero, the capacitor again transmits the fast falling trailing edge of the pulse across R,
producing a negative sharp falling pulse. Out of the rectangular pulse of Vi both a positive and a negative
timing pulse is obtained. Figure 4-30 shows how the positive pulse is recovered. If the diode, D, is reversed,
the negative pulse is recovered.

In the circuit of Figure 4-31, the R and C are reversed. Now the circuit is called an integrating circuit. When
Vi is a series of pulses, an integrating circuit can produce a DC voltage from the pulses. The resistor now
is in series with the input signal and the capacitor across it. The RC time constant in this case is very large
compared to t. As the fast rising leading edge of the Vi pulse is applied, since the RC time constant is large,
C changes slowly and doesn’t reach full charge until the trailing edge of the input pulse. When the trailing
edge of the pulse appears, C tries to discharge, but because of the large RC, C discharges very little.

Differentiating Circuit

t

Vi Vo

C

R

RC Time Constant
short with respect
to t.

Vi
Vo

D

R

Figure 4-30: Producing Timing Pulses from Square PulsesFigure 4-30: Producing timing pulses from square pulses

a. Diode limiters

TEAM LRN

58

Chapter Four

The charge and discharge repeats itself and
a waveform with a ripple appears as VO.
The Vi pulses have been converted to a DC
output voltage.

Op amps can be connected as integrators
and differentiators but are much more
complicated than the simple RC circuits.
They are used in very sophisticated circuits
when needed.

RC Time Constants
The concept of a time constant used in the differentiating and integrating circuits is shown in Figure 4-32.
When a time varying voltage, in this case a pulse with a sharp rising leading and trailing edge, is applied to
a capacitor through a resistor, the charge on the capacitor can only change as rapidly as the current through
will allow. For example, for the integration schematic, the voltage across the capacitor cannot change as fast
as the input voltage pulse. It is restricted because the resistor limits the current. The charge on the capaci-
tor builds up at a predictable rate as shown by the curve A in Figure 4-32b. Curve A is the voltage, VC,
across the capacitor plotted against τ. τ is called the time constant and is equal to the ohms resistance in
the circuit times the farads of capacitance in the circuit. As shown by curve A, after one time constant, the
voltage across the capacitor has obtained a value 63.2% of its final value. It takes at least five times the time
constant for the capacitor to be
charged to full value. The value
of voltage on the capacitor in a
given time can be estimated by
knowing the relationship of the
time constant to the pulse width
t. For integration, τ should be at
least five times t. For differentia-
tion, where the capacitor must
charge rapidly with respect to t,
τ should be only one-fifth t, or
even smaller.

On the trailing edge of the pulse
applied to the integration circuit,
the capacitor is trying to dis-
charge. Its voltage can change
only as rapidly as the time
constant will allow. Its discharge
is described by curve B in Figure
4-32b. In one time constant, the
voltage has reduced to 36.8% of
its value when the trailing edge
of the input pulse changed. It
takes at least five time constants
for the capacitor to completely
discharge. Applying the curve A

Integrating Circuit

t

Vi
VoC

R

Figure 4-31: Integrating Pulses into dc signals

RC time constant
long with respect
to t

Figure 4-31: Integrating pulses into DC signals

Integration − Slow Charging of C

C

R

t

VO

IC

INPUT

R VR

IC

VC

C

Curve

Curve
B

A

Curve A

t

B

A
Charging V VS RC

Discharging V VS RC

T− Time (IN TIME CONSTANTS)

0 .5 1 1.5 2 2.5 3 4 5

63.2%

36.8%V
C

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Differentiation − Fast Charging of C

The time constant for the capacitor circuit is:

 τ = RC where: τ = RC time constant in seconds
 R = Resistance in ohms
 C = Capacitance in farads

Figure 4-32: RC time constants
Courtesy of Master Publishing, Inc.

a. Schematics b. Curves

TEAM LRN

59

Signal Conditioning

to the voltage across the capacitor when the time constant is such that the capacitor charges rapidly, the
differentiator circuit of Figure 4-30 results. Here the time constant should be such that the capacitor fully
charges in one-fifth of the pulse width. Thus, 5τ should be equal to one-fifth the pulse width to allow the
capacitor to charge fully.

By applying curve A and B to a variety of circuits, it is possible to visualize many different signal shapes de-
pendent upon the relationship of the time constant to the time of pulses or time varying signal edges applied.

Example 7. RC Time Constant
a. Using Figure 4-30, for differentiation, 5τ must be no greater than one-fifth the pulse width t so that C

charges rapidly. If t = 10 µS, what is the value of R if C = 0.001 µF? Remember τ = RC.
b. Using Figure 4-31, for integration, it should take at least 5τ to charge the capacitor in the pulse width t.

C charges very slowly. Using the same values of t, and C, what is the value of R? Remember τ = RC.

Solutions:
a. 5τ = t/5 b. 5τ = t
 25τ = t 5RC = 10 × 10–6

 25RC = t R = 10 × 10–6/5C
 R = t/25C R = 10 × 10–6/5 × 1 × 10–9

 R = 10 × 10–6/25 × 1 × 10–9 R = 2 × 103

 R = 0.4 × 103 = 400 Ω R = 2,000 Ω

Frequency Selection
There is signal conditioning that really doesn’t amplify or change the waveform of the AC signal, but
rather it is a frequency selection process. Many analog signals contain a composite of signals with differ-
ent frequencies. In fact as discussed in Basic Communications Electronics,4 signals of different frequencies
are mixed together to form a resultant signal that is the sum of the two frequencies or the difference of the
two frequencies. Each of these signals can be processed separately to communicate the information in the
original signals. As a result, there is a need to select out the desired signal by its frequency from companion
signals of different frequencies. Frequency selection signal conditioning is required for this.

Band-Pass Filters
Look at Figure 4-33a. It is the familiar frequency response curve that was discussed for amplifiers. The
mid-band gain of the curve is A, and that gain is maintained out to a frequency of fH, the high-frequency
cutoff point, and down to a frequency of fL, the low-frequency cutoff point. At fH and fL the gain is reduced
to 0.707A. Since at the cutoff points the gain is down –3 dB from the mid-band gain, they are called the
“minus 3 dB” points.

A signal with a frequency much higher than fH, as the curve shows, will be attenuated, that is, it will have
a much lower amplitude; the higher the frequency the larger the attenuation. Similarly, signal frequencies
below fL will be attenuated in amplitude; the lower the frequency the larger the attenuation. Frequencies
from fL to fH will have constant gain and not be attenuated. A circuit that has such a frequency response
curve can be considered a band-pass filter. It passes signals with frequencies in the band from fL to fH and
attenuates the others.

It can be considered as a circuit that selects signals with frequencies within the band and rejects signals
with frequencies outside the band.

4 Basic Communications Electronics, J.W. Hudson, G. Luecke, ©1999, Master Publishing, Inc., Lincolnwood, IL.
TEAM LRN

60

Chapter Four

Low-Pass Filter
Look at Figure 4-33b. Here
the frequency response curve
extends down to zero fre-
quency—DC. The frequency
response of a DC amplifier was
shown previously. Its frequency
response curve looks just like
this. As the signal frequency is
increased from zero, a fre-
quency fC, the cutoff frequency,
is reached where the signal
begins to be attenuated; further
increases in signal frequency in-
creases the attenuation. Circuits
that have such a signal frequen-
cy response are called low-pass
filters. Signal with frequencies
below fC pass without attenua-
tion; signals with frequencies
above fC are attenuated.

High-Pass Filter
Circuits with a frequency
response as shown in Figure 4-33c are called high-pass filters. Signals with frequencies below fC, the cutoff
frequency, are “not passed” (attenuated), while signals with frequencies above fC are “passed” without
attenuation.

The filters of Figure 4-33a,b,c
can have amplification built in
or they may be circuits built
with passive components that
have no amplification. When
they are used in combination
with other signal conditioning
circuits, they can select signal
frequencies that cover a band of
frequencies above fL and below
fH, or they can pass only signal
frequencies below a frequency
fC, or they can pass only signal
frequencies above a frequency
fC. The rate at which the circuits
attenuate is determined by the
design of the filter.

Frequency − Hz

S
ig

na
l A

m
pl

itu
de

−3dB
0.707 A

1.0

0.05

fL fH

50 1K 10K 100K 1M 10M

A

Frequency − Hz Frequency − Hz

S
ig

na
l A

m
pl

itu
de

−3dB
0.707 A

1.0

0.05

0 10 100 1K 10K

A

S
ig

na
l A

m
pl

itu
de

−3dB
0.707 A

1.0

0.05

 1K 10K 100K 1M 10M

A

fc fc

Figure 4-33: Filters are used for frequency selection

a. Band-pass filter

b. Low-pass filter c. High-pass filter

RP
L

C

A

B
XL = 2πfrL

XC =
1

2πfrC

When XL = XC, circuit is in

resonance at fr

∴ = =2
1

2
1

2
π

π π
frL frC

or fr
LC

Q for Series Circuit

Q for Parallel Circuit

Q
XL

RS

or
XC

RS

Q
RP

XL

or
RP

XC

=

=

 fr =

 BW =

 Q =

 ∴ BW =

Resonant
frequency in Hz

Half-power
Bandwidth (−3db)

fr

Q

fr

BW

LA RS BC

Figure 4-34: Tuned-circuit filters
Courtesy of Master Publishing, Inc.

a. Parallel circuit

b. Series circuit

c. Resonance

d. Q of resonant circuits

TEAM LRN

61

Signal Conditioning

Tuned-Circuit Filters
A special kind of band-pass filter used extensively in communications circuits is called a tuned-circuit filter.
It is used to select out a narrow band of signal frequencies. The tuned-circuit filter is formed by a combina-
tion of an inductance, L, a capacitance, C, and a resistance, R. It is designed at a particular frequency, fr ,
called the resonant frequency. The resonant frequency is special because at fr the inductive reactance
(XL = 2πfL) is equal to the capacitive reactance (XC = 1/2πfC). When these reactances are equal, as shown
in Figure 4-34, the resonant frequency is given by:

 fr = 1 2π LC where L is in henries and C is in farads

The band pass characteristics are shown in Figure 4-34d.

Bandwidth and Q
The frequency response of the band-pass filter is plotted in Figure 4-34d similar to the frequency response
of Figure 4-33, except the frequency separation between fL and fH is very small, within a 20% variation on
each side of fr. The 0.707 attenuation points for fL and fH are shown. The frequency band between fL and
fH is called the bandwidth, BW. Bandwidth is defined as the half-power bandwidth—the frequency band
between the –3 dB attenuation points on the response curve.

A means of describing the narrowness of the band-pass filter response is to use a quality factor called Q. Q
= fr /BW and is shown in Figure 4-34d. Note that in the equation, if the bandwidth is very narrow around
the resonant frequency fr, Q will be large. The wider the bandwidth, the smaller Q will be. Figure 4-34d
shows how the response curve varies as Q varies. If the Q of the band-pass filter is known, and fr is known
then the bandwidth can be calculated using BW = fr/Q.

Either Parallel or Series Resonant Circuits

A resonant circuit can be either a parallel resonant circuit or a series resonant circuit. Both are shown in
Figure 4-34. Figure 4-34a is the parallel circuit; Figure 4-34b is the series circuit. The equation for fr is the
same but calculating BW is different. Here are the equations for Q:

 Series Circuit Parallel Circuit

 Q = XL/RS or Q = XC/RS Q = RP/XL or Q = RP/XC

RS and RP are as shown in Figures 4-34a,b respectively. If the circuit values for L, C, and R are known, fr,
Q, and BW can be calculated. Or if the bandwidth that is desired is known around a frequency fr, then Q,
and the LC can be calculated. Then L or C can be can be calculated after either one is chosen. Following
L and C, RP and/or RS can be calculated.

Typical Application of Filters
The typical application of filters is shown in Figure 4-35. A broad bandwidth signal is amplified to in-
crease its amplitude. Then a selection of particular signal frequencies is accomplished by passing the signal
through a frequency selection filter. Some circuits will require a low-pass filter, others a band-pass filter,
others a high-pass filter, and yet others a tuned-circuit filter.

Signal at specific
frequency or signals over a
band of frequencies

Figure 4-35: Use of filters

FilterAmplifier
Broadband

Signal
VO

Figure 4-35: Use of filters
TEAM LRN

62

Chapter Four

Figure 4-36 is a tuned-circuit
band-pass filter amplifier.
It uses an N-channel deple-
tion mode JFET as the active
device. The tuned circuit in the
drain results in the amplifica-
tion of only a narrow band of
frequencies. The fr and Q of
the circuit can be adjusted to a
wide range of frequencies and
bandwidth limited, of course,
by the frequency response of
the JFET itself. The circuit is a
combination of a tuned circuit
to get the band pass desired
and an amplifier to increase the
amplitude of the signal.

Example 8. Bandwidth and Q
If the tuned circuit of Figure 4-36 has XL = 100 Ω, RP = 10,000 Ω and fr = 10 MHz, what is the Q of
the circuit and the bandwidth?

Solution:
 Q = RP/XL = 10000/100 = 100
 BW = fr/Q = 10 × 106/1 × 102 = 100 kHz

The resonant frequency of the circuit is 10 MHz. At resonance the load is R3 = 10 kΩ in parallel with QXL.
The Q of the circuit is 100, the bandwidth is 100 kHz and the voltage gain is 30 dB.

Summary
Signals from sensors need signal conditioning. The prime signal conditioning is amplification. In this chap-
ter, individual bipolar and MOS transistor amplifiers have been explained, followed by op amps and power
amplifiers. Several special signal-conditioning circuits conclude the chapter. In the next chapter, analog-to-
digital and digital-to-analog converters will be discussed.

a. Symbol b. Schematic

Figure 4-36: RF-tuned amplifier
Courtesy of Master Publishing, Inc.

Chapter 4 Quiz
1. Signal conditioning:
 a. leaves the signal unchanged.
 b. means to modify the signal to adjust it to the application.
 c. does not include amplification.
 d. doesn’t occur in the A-to-D or D-to-A chain of functions.
2. Amplification:
 a. is a signal conditioning function.
 b. is performed by bipolar transistor circuits.
 c. is performed by field-effect transistor circuits.
 d. a, b, c above.
 e. none of above.
 f. a only above.

TEAM LRN

63

Signal Conditioning

3. The amplifier circuit of Figure 4-4:
 a. has no linear operating range.
 b. has a linear operating range of IB from 0.02 mA to 0.1 mA.
 c. has a linear operating range of VCE from 2 to 10 volts.
 d. b and c above.
 e. none of the above.
4. In a common-emitter bipolar transistor amplifier:
 a. the base-emitter junction is forward biased and the collector-base junction is forward biased.
 b. the base-emitter junction is reverse-biased and the collector-base junction is forward-biased.
 c. the base-emitter junction is reverse-biased and the collector-base junction is reverse-biased.
 d. the base-emitter junction is forward-biased and the collector-base junction is reverse-biased.
5. In a common-emitter bipolar transistor amplifier:
 a. the forward-biased base-to-emitter voltage is approximately 0.7V.
 b. the forward-biased base-to-emitter voltage is greater than 10V.
 c. the reverse-biased collector-to-base junction is approximately 0.7V.
 d. the collector is tied to ground.
6. Common ways of biasing a bipolar transistor amplifier circuit are:
 a. fixed-current IB bias.
 b. voltage-divider bias.
 c. collector-feedback bias.
 d. a, b, c above.
 e. none of the above.
 f. b only above.
7. The voltage gain, AV, of a common-emitter bipolar transistor amplifier is, where RL = total load

resistance and IE is DC emitter current in mA, and IC is DC collector current in mA:
 a. RL × IE.
 b. RL × IE × IC.
 c. RLIE divided by 0.026.
 d. VBE + VCE.
8. The voltage gain, AV, expressed in dB is:
 a. AV = 20 dB × AV.
 b. AV = 20log10AV.
 c. AV = 20log10IC.
 d. AV = 10log10AV.
9. The capability of an amplifier to handle signals over a frequency range is:
 a. called its frequency response.
 b. called its amplitude or gain.
 c. called its single-frequency gain.
 d. called its linearity.
10. Cascaded amplifiers:
 a. are amplifiers coupled together to increase the overall gain.
 b. can use different means of coupling between stages.
 c. the dB gain can be added to arrive at overall gain.
 d. b only above.
 e. a, b, c above.
 f. none of above.

TEAM LRN

64

Chapter Four

11. With AC coupling between stages of a cascaded amplifier:
 a. the frequency response does not go down to zero frequency.
 b. the frequency response goes down to zero frequency.
 c. the capacitance coupling doubles the high-frequency response.
 d. the inductance coupling limits the low-frequency response.
12. The dynamic range of an amplifier is:
 a. the signal range that is twice where distortion begins.
 b. the signal range that extends beyond distortion.
 c. the signal range from small-signal to where distortion begins.
 d. the signal range that is 10 dB below the distortion point.
13. A class B amplifier:
 a. operates only for 30º of the input signal cycle.
 b. operates only for 180º of the input signal cycle.
 c. operates only for 10º of the input signal cycle.
 d. operates for 360º of the input signal cycle.
14. For field-effect transistor amplifiers:
 a. a change in voltage from gate to source causes a change in voltage from source to source.
 b. a change in current from gate to source causes a change in voltage from drain to source.
 c. a change in voltage from gate to source causes a change in current from drain to source.
 d. a change in current from gate to source causes a change in current from drain to source.
15. Transconductance for FETs is defined as:
 a. a change in a current as a result of a change in a voltage.
 b. a change in a voltage as a result of a change in a current.
 c. a change in a voltage as a result of a change in a voltage.
 d. none of the above.
16. Field-effect transistors operate:
 a. in the enhancement mode and depletion mode at the same time.
 b. in the enhancement mode.
 c. in the depletion mode.
 d. b and c above.
 e. a only above.
 f. none of above.
17. Ideal operational amplifiers are amplifiers with:
 a. zero ZIN, infinite gain, zero ZO, infinite bandwidth and zero offset.
 b. infinite ZIN, infinite gain, zero ZO, infinite bandwidth and zero offset.
 c. infinite ZIN, zero gain, zero ZO, infinite bandwidth and zero offset.
 d. infinite ZIN, infinite gain, infinite ZO, zero bandwidth, and zero offset.
18. The frequency response of a general-purpose op amp:
 a. increases as the overall gain is reduced to one.
 b. stays the same if overall gain is reduced.
 c. reduces as the overall gain reduces.
 d. none of the above.
19. When Rf = 0 and R1 = infinity, an op amp becomes:
 a. an amplifier with gain equal to infinity.
 b. an amplifier whose output voltage equals its input voltage.
 c. a unity-gain amplifier.

TEAM LRN

65

Signal Conditioning

 d. a only above.
 e. b and c above.
 f. none of above.
20. An oscillator maintains an output signal without an external input signal:
 a. when its internal gain is at least 1 and the phase of the output feedback to its input equals 360º.
 b. when its internal gain is 0 and the phase of the output feedback to its input equals 360º.
 c. when its internal gain is at least 1 and the phase of the output feedback to its input equals 180º.
 d. when its internal gain is at least 1 and the phase of the output feedback to its input equals 90º.
21. A Class B complementary bipolar transistor amplifier:
 a. has no crossover distortion.
 b. has crossover distortion.
 c. cannot have a circuit that eliminates crossover distortion.
 d. none of the above.
22. Diodes are very important:
 a. in forming special signal shapes or timing signals.
 b. in circuits conducting current in both directions.
 c. because they have the same characteristics in the forward and reverse direction.
 d. c only above.
 e. none of the above.
23. RC time constants are:
 a. combinations of inductance and capacitance in circuits.
 b. very important in integrating and differentiating circuits.
 c. combinations of inductance and resistance in circuits.
 d. not used extensively in electronic circuits.
24. A band-pass filter has:
 a. a low-frequency and high-frequency cutoff point.
 b. only a low-frequency cutoff point.
 c. only a high-frequency cutoff point.
 d. frequency response down to zero frequency.
25. The Q of a band-pass filter is:
 a. equal to XL/RS or XC/RS for a series resonant circuit.
 b. equal to Rp/XL or Rp/XC for a parallel resonant circuit.
 c. equal to fr/BW.
 d. all of the above.
 e. none of the above.
 f. c only above.

Answers: 1.b, 2.d, 3.d, 4.d, 5.a, 6.d, 7.c, 8.b, 9.a, 10.e, 11.a, 12.c, 13.b, 14.c, 15.a, 16.d, 17.b, 18.a, 19.e,
20.a, 21.b, 22.a, 23.b, 24.a, 25.d.

TEAM LRN

66

Introduction
As this chapter begins to develop
an understanding of converting an
input analog signal to digital codes
or converting digital codes to analog
signals, let’s look again at the binary
numbering system as illustrated
in Figure 5-1a. This same illustra-
tion was shown in Figure 1-5. It is
repeated here to emphasize again
the digit position weighted value in
a binary numbering system. Recall
that the binary number is made up
of binary digits (bits) in each digit
position of the binary number. Each
bit can only have two values, 0 or 1.
Each digit position has a weighted
value that is the binary digit value
of 1 or 0 multiplied by the weighted
value of the digit position. If the bit is
a 1 the digit position has the weighted
position value; if the bit is a 0, the
weighted position value is 0. The total
value of the binary number is the sum
of all the weighted position values.
As shown in Figure 5-1a, the binary digit weighted digit position value increases by 2 times over the digit
value to the right. This is very important to the design of digital-to-analog converters (DACs) and analog-
to-digital converters (ADCs).

For example, the most significant bit (MSB) of the 8-bit binary number shown in Figure 5-1a has a weight-
ed digit position value of 128. This is one-half the total value of 256 of the 8-bit binary number. Note also
that the weighted digit position value for the next digit to the right (the 7th bit) is 64, or one-half the MSB
value. This reduction by one-half in weighted digit position value as the bit position is moved to the right
continues down to the least significant bit (LSB). The design of DACs and ADCs is based on testing the
value of the input quantity to see if it is greater than the MSB value; if it is, is it greater than the MSB value
plus the weighted digit position value of the next bit to the right? If it is, is it greater than a total of the
previous bit values plus the weighted digit position value of the next bit to the right? The process continues
until the input is less than the sum of the weighted values. Then the last digit weighted position value is not
added but made equal to zero and a weighted position value of a next bit to the right is added and the total

CHAPTER 5

Analog-to-Digital and
Digital-to-Analog Conversions

 Digit Position Binary Decimal
 Digit Position Value 2n−1 Number Equivalent
 1 20 = 1 × 1 1
 2 21 = 2 × 1 2
 3 22 = 4 × 0 0
 4 23 = 8 × 0 0
 5 24 = 16 × 1 16
 6 25 = 32 × 1 32
 7 26 = 64 × 0 0
 8 27 = 128 × 1 128

Figure 5-1: Binary Number and Equivalent Decimal
Figure 5-1: Binary number and equivalent decimal

b. Equivalent decimal

a. Binary numbering

TEAM LRN

67

Analog-to-Digital and Digital-to-Analog Conversions

tested again. This process continues until the value is determined or the LSB’s value is included which indi-
cates that the evaluation is complete. In other words, as the input value is tested, the digit values are added
or they are set at zero as the digit positions from MSB to LSB are evaluated, and when the LSB is reached
it is the end of the evaluation.

Decimal Equivalent of a Binary Number
It is important to the A-to-D and D-to-A process to know the decimal equivalent of a binary number. Figure
5-1b summarizes the evaluation process. It shows how the binary digit weighted position value is multiplied
by the bit value at each bit position and the total of all bit values summed to arrive at the decimal value.

Example 1. Converting a Decimal Number to Binary
Convert the number 4311 to a binary number.

Solution: Binary Number: 1000011010111
 4311/2 = 2155 with a remainder of 1 Check:
 2155/2 = 1077 with a remainder of 1 1 × 4096 = 4096
 1077/2 = 538 with a remainder of 1 0 × 2048 = 0
 538/2 = 269 with a remainder of 0 0 × 1024 = 0
 269/2 = 134 with a remainder of 1 0 × 512 = 0
 134/2 = 67 with a remainder of 0 0 × 256 = 0
 67/2 = 33 with a remainder of 1 1 × 128 = 128
 33/2 = 16 with a remainder of 1 1 × 64 = 64
 16/2 = 8 with a remainder of 0 0 × 32 = 0
 8/2 = 4 with a remainder of 0 1 × 16 = 16
 4/2 = 2 with a remainder of 0 0 × 8 = 0
 2/2 = 1 with a remainder of 0 1 × 4 = 4
 ½ = 0 with a remainder of 1 1 × 2 = 2
 1 × 1 = 1
 4311

Digital Codes of ADC
The discussion of ADCs and DACs starts by examining the codes generated by an ADC as a result of an
analog input signal. Figure 5-2b shows the digital codes generated by a 4-bit analog-to-digital converter
which has 16 codes of four bits each that are generated as an analog signal increases from 0 to 15/16 of
full scale. As the signal increases 1/16 of full scale, the code changes by a digital bit. As the analog signal,
shown in Figure 5-2a, varies in amplitude with time, the digital code generated by the ADC changes to
represent the amplitude of the analog signal at the time the signal was sampled. This is demonstrated by
superimposing the analog signal of Figure 5-2a, onto the ADC transfer curve shown in Figure 5-2b. The
points of sampling are shown and numbered from 1 through 16, and correspond to the sampling points
versus time shown in Figure 5-2a.

The digital codes generated at each sampling point in Figure 5-2b are listed in Figure 5-2c. The digital code
generated at a particular sample is the code nearest the amplitude just exceeded by the signal but not large
enough to generate the next code step. These codes from the sampling points appear in sequence at the out-
put of the ADC to describe the analog signal. Depending on the ADC, the digital codes may be presented a
bit at a time in series, or all bits together in parallel at specific times determined by a timing network.

TEAM LRN

68

Chapter Five

As shown in Figure 5-3,
the digital data from the
ADC, represented in codes,
is manipulated by comput-
ing networks to alter, modify
and redefine the data, but it
emerges from the computing
networks again as a series of
digital codes, again timed by
the timing network. The codes
are presented to the DAC to be
converted back to an analog
signal. The circuit discussion
begins with a DAC.

A Resistor Network
DAC
Recall that in a digital code, the
MSB’s weighted binary digit position
value is equal to one-half the value
of the full code value, and that the
next least significant bit is one-half
the MSB’s digit position value. This
principle is used to design the DAC
shown in Figure 5-4. It is called a
R/2R ladder DAC. The circuit, shown
in Figure 5-4a, is a resistor network
with a particular combination of
resistor values. From a reference
voltage of VREF to ground, there are
resistors with 2R values for each bit
separated by resistors with R values,
and terminated in a resistor to ground
with a 2R value. The circuit is for
a 4-bit DAC. A switch at the end of
each bit resistor of 2R value either

sampling
time

Output Digital Codes

In
pu

t S
ig

na
l R

el
at

iv
e

to
 F

ul
l S

ca
le

15/16

7/8

13/16

3/4

11/16

5/8

9/16

1/2

7/16

3/8

5/16

1/4

3/16

1/8

1/16

0

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

14

15

16

12

11

2

9

8

7

6

5

4

3

10

1

13

B. AC Signal Superimposed on ADC Stops

 Signal ADC
 Sample Code

 1 0110
 2 1000
 3 1010
 4 1100
 5 1111
 6 1100
 7 1110
 8 1100
 9 1010
 10 1000
 11 0100
 12 0000
 13 0010
 14 1010
 15 1110

c. String of codes from ADCc. String of
codes from
ADC

b. AC signal superimposed on ADC steps

Figure 5-2: Converting AC signals to digital codes—A-to-D conversion

Series of Digital Codes

Figure 5-3: Computing Network Manipulates Digital Data

Input
Signals

Output
Signals

ADC DAC

Timing Network

Computing
Networks

Figure 5-3: Computing network manipulates digital data

Sampling Times
t → in mS

a. Analog Signal versus time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ig

na
l A

m
pl

itu
de

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

a. Analog signal versus time

TEAM LRN

69

Analog-to-Digital and Digital-to-Analog Conversions

connects to ground or to the input
of an operational amplifier used as a
summing amplifier. If each bit in the
code to be converted is a 0, then each
2R resistor is connected to ground and
there is zero current into the summing
amplifier.

The Equivalent Resistance of the
Network

Looking at the right end of the network
at the LSB leg, the equivalent resis-
tance of the 2R resistors in parallel
is R. This equivalent resistance R in
series with the R between the second
LSB leg equals 2R. This 2R parallels
the 2R of the second LSB leg to make
an equivalent resistance of R. This
process continues so that the equivalent
resistance of the network between VREF
and ground is R.

The Digit-Position Currents

When all bits are zero, all bit resistors
are connected to ground; with
R = 10 kΩ and VREF = 5V, the current
into the network is 500 µA. The current
into the MSB leg is 250 µA and the
current into the remaining network is
250 µA. At the next lower significant
bit, the 250 µA divides into
125 µA down the next lower significant bit leg and 125 µA to the remaining network. The 125 µA divides
into 62.5 µA down the second LSB leg and 62.5 µA to the remaining network. The 62.5 µA divides to
31.25 µA down the LSB leg and 31.25 µA to the remaining network. Therefore, each current in the bit legs
is one half of the current in the bit position to the left, just like the digit position values in a binary number.
Thus, the summing of the currents in the digit position legs results in the value of the binary number.

The Summing Amplifier

Refer again to Figure 5-4a, when the code bit is equal to 1, the bit leg current is connected to a summing
amplifier. For the summing amplifier:

 VOUT = −IFRF

Where IF is the current into the inverting input of the operational amplifier, and RF is the feedback resistor
from output to input. The minus sign means the output is 180º out of phase from the input.

b. VOUT vs. digital input (4-bit conversion)

Figure 5-4: 4-bit R/2R ladder DAC

a. 4-bit circuit

TEAM LRN

70

Chapter Five

Since,

 IF = ID3 + ID2 + ID1 + ID0

then

 VOUT = –(ID3 + ID2 + ID1 + ID0) RF

When the code is 0101, then

 VOUT = –(ID2 + ID0) RF

If ID2 = 125 µa and ID0 = 31.25 µa, then, with RF = 20 kΩ
 VOUT = –20(156.25) × 10–3

 = –3.125V

Here are two more examples:

A. the code 0001 results in:

 VOUT = –(ID0) RF = –(31.25 µa) × 20 kΩ
 = –625 × 10–3

 = –0.625V

B. the code 1111 results in:

 VOUT = –(ID3 + ID2 + ID1 + ID0) RF

 = –(250 µa + 125 µa + 62.5 µa +31.25 µa) 20 kΩ
 = –9375 × 10–3

 = –9.375V

The codes and the output voltage at each step are shown in Figure 5-4b.

No Change in Current for Bits of 1 or 0

The current in the digit position legs remains the same whether the bit is a 1 or a 0. Even when the cur-
rent leg is connected to the summing amplifier inverting input, because of the high input impedance of the
summing amplifier, there is no current from the inverting input to the noninverting input. As a result, The
inverting input is at the same potential as the noninverting input, which is ground. There is no change in the
currents because in both cases, whether a 1 or a 0, the terminating point is at ground.

Example 2. Output Voltage of R/2R Ladder DAC

The output voltage from a R/2R ladder DAC for n bits can be expressed as:

VOUT = –(decimal equivalent of binary number)

What is the output voltage of a 4-bit R/2R DAC with an input code of 1010 and a reference voltage of
10 volts?

Solution:
The decimal equivalent of 1010 is 8 + 2 = 10 and 24 = 16, therefore,
 VOUT = –(10)10/16 = 6.25V

Check your answer with code and voltage given in Figure 5-4b.

REF
n

V

2

TEAM LRN

71

Analog-to-Digital and Digital-to-Analog Conversions

A Simple Resistor-String
DAC
One of the simplest DACs, from
a circuit standpoint, is the resis-
tor-string DAC. 2n – 1 resistors of
equal value are interconnected from
a reference voltage, VREF, to ground.
The outputs from the resistor string
are fed to a decoder. The decoder
closes the appropriate switch
dictated by the input digital code.
A resistor-string for a 4-bit DAC is
shown in Figure 5-5a and given in
more detail in Figure 5-6a.

The first position of the string is for
zero volts. The next position has a
voltage

 V = (R/15R) × VREF

or

 V = VREF/15

or for any string, since it is the number 1 position

 V1 = 1 × VREF/2n – 1

where n = bits in digital code.

The next position, position 2, has a voltage

 V2 = (2R/15R) × VREF

or

 V2 = 2VREF/15

or for position 2 for any string

 V2 = 2 × VREF/2n – 1.

The position one removed from VREF has a voltage

 V14 = 14 × VREF/2n – 1.

The Decoder

Figure 5-5b,c and d shows the details of the decoder as different input codes are received to identify the
analog voltage and produce an analog voltage equivalent.

Figure 5-5b is for an input code of 0111; Figure 5-6c is for a code of 0011, and Figure 5-6d is for a code of 1101.

Accuracy and Increments

The number of increments or steps in a digital code with n bits is shown in Figure 5-6b. If n = 4, there are
16 increments; if n = 10, there are 1024 increments. The n corresponds to the resolution for the ADC and
DAC systems. If a system needs to have an accuracy of 0.5%, the measurement must be made to 1 part in

7
15

VREF
3

15
VREF

13
15

VREF

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

a. Resistor String b. 0 1 1 1 c. 0 0 1 1 d. 1 1 0 1

Decoder Decoder DecoderVREF

Figure 5-5: Decoder for resistor string

TEAM LRN

72

Chapter Five

200; therefore, an 8-bit system which has 256 increments must be used. A
10-bit system must be used for an accuracy of 0.1% (1 part in 1000). With
a full-scale range (FSR) set at a particular voltage, then the voltage value
of each increment is FSR/2n. The voltage increment for an FSR = 10V is
10/1024 or about 10 millivolts (9.77 to be exact).

General System Increments

Here are the increments for a general system. The first increment above zero
in the resistor string is equal to:

 VREF/(2n – 1)

which is equal to FSR/2n; therefore,

 VREF/(2n – 1) = FSR/2n

or VREF = (2n –1)/2n × FSR

The increment is then,

 ()n n

n
n

2 1 / 2 × FSR
Incremental Voltage FSR 2

2 1

−
= =

−
For the eighth code (the 7th increment) of a 4-bit resistor string, the voltage is:

 7th Incremental voltage = 7 × FSR/16

A Simple Current-Steering DAC
A DAC similar to the resistor-string DAC can be designed by decoding a
binary code and switching binary-weighted currents into a current summing
amplifier. Its design is based on the same principles used for the R/2R ladder
DAC of Figure 5-4. Figure 5-7 shows a very simplified version of such a
DAC. A binary input code is decoded and the appropriate binary-weighted
constant current is routed to a current summing amplifier to produce a propor-
tional output voltage. If it is a 10-bit DAC, the MSB constant-current source
is 512 times the LSB constant-current source. Summing the constant currents
from the bit positions that have a value of 1 produces the proportional analog
output voltage.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

15 ×

14 ×

13 ×

12 ×

11 ×

10 ×

9 ×

8 ×

7 ×

6 ×

5 ×

4 ×

3 ×

2 ×

1 ×

0 ×

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

n = 4 6 8 10 12

INCR 16 64 256 1024 4096

Figure 5-6: Resistor-string DAC

a. 4-bit resistor-string DAC

b. Increments in N-bit code
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

15 ×

14 ×

13 ×

12 ×

11 ×

10 ×

9 ×

8 ×

7 ×

6 ×

5 ×

4 ×

3 ×

2 ×

1 ×

0 ×

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

VREF

2n −1

n = 4 6 8 10 12

INCR 16 64 256 1024 4096

1 0 1 0 1 0 1 0 1 0

MSB 512µA 256µA 128µA 64µA IµA
LSB

RF

Summing
Amplifier

VOUT

Decoding Network

Σ

10-bit
Input
Code

10 bits

Figure 5-7: Simple switched constant-current 10-bit DAC
TEAM LRN

73

Analog-to-Digital and Digital-to-Analog Conversions

An excellent application in integrated circuits is to produce the binary-weighted currents using current
mirrors of the type shown in Figure 4-23. The currents produced are precise and uniform because of the
side-by-side processing on the IC chip and wafer or slice.

Example 3. Summing Constant-Current DAC Output
Using the constant-current DAC circuit of Figure 5-7 and a 10-bit code, what is the final summed cur-
rent for the binary input of 0110011101 when the LSB current is 20 µA?

Solution:
 MSB LSB
 0 1 1 0 0 1 1 1 0 1
 5120 2560 320 160 80 20 = 8,260 µA = 8.26 mA

Analog-to-Digital Converters (ADC)
The input portion of Figure 5-3 is an
ADC, an analog-to-digital converter.
One of the earliest ADCs was the
counting ADC shown in Figure 5-8.
It is made up of a binary counter that
counts pulses from a central clock. The
counters binary output is fed to two
units—a DAC and a latch. Each unit
has the number of input or output bit
lines to cover the number of bits re-
quired from the ADC. Notice the DAC
in the loop. This is the reason that the
discussion of the DAC came first. The
binary code input to the DAC produces
an analog voltage that feeds one input
of a comparator. The analog input volt-
age to be converted to a digital output is the other comparator input. When the input from the DAC is lower
than the analog input, the comparator will be a high voltage (a digital 1); when the input from the DAC
is equal to or greater than the analog input, the comparator output is a low voltage (a digital 0). When the
comparator output changes from a high voltage to a low voltage, it triggers the latch to latch in the binary
values from the bit lines of the counter. Thus, the output of the latch is the binary code matching the value
of the input analog voltage.

The A to D process works like this. The counter is reset to a count of zero. The DAC output is zero as a re-
sult. If the analog input voltage, Vin, is some positive value, the comparator output will be a 1. As the clock
increments the counter, the output of the DAC will increase in steps, each a small positive voltage. If the
DAC output is a lower positive voltage than Vin, the counter continues to count and increases the DAC out-
put voltage until it is greater than Vin. This triggers the comparator, its output goes to 0 to latch in the binary
code at the output to the ADC and reset the counter. Resetting the counter to zero causes the comparator
output to go to a 1 and the ADC is ready for another conversion. One of the disadvantages of the counting
ADC is the time for conversion. The conversion time can be as great as 2n – 1 clock cycles, where n is the
number of bits of the binary output of the ADC.

COMPARATOR

Input Voltage
Vin

VC A 1 when Vin >VC

A 0 when Vin ≤ VC

Latch triggering
resets counter

Clock

Reset

DAC

BINARY
COUNTER

LATCH DIGITAL
OUTPUT

When comparator output
goes from 1 to 0 it triggers
latch to latch in data and
transfer input to output

Figure 5-8: An 8-bit Counting ADCFigure 5-8: An 8-bit counting ADC

TEAM LRN

74

Chapter Five

Example 4. Maximum Conversion Time for Counting ADC
What is the maximum conversion time for an 8-bit, 12-bit and 16-bit counting ADC when the clock
frequency is 1 MHz?

Solution:
The maximum conversion time is 2n – 1 clock cycles; therefore, since the period of a 1 MHz clock
is 1 µS,
 N 2n – 1 Max. Conversion time
 8 255 255 µS = 0.255 milliseconds
 12 4095 4095 µS = 4.095 milliseconds
 16 32767 32767 µS = 32.767 milliseconds

Successive Approximation Register (SAR) ADC
An improvement in conversion time results when using a Successive Approximation Register (SAR) ADC.
As shown in Figure 5-9, the counter of Figure 5-8 is replaced with logic, register and latch circuits to make
up the SAR, one of the most popular ADCs. The SAR can have conversion times from 100 µS to 1 µS and
up to 16 bits in resolution. Semiconductor technologies of bipolar, CMOS and combinations of both have
been used to design the SAR. The SAR seems to be the design of choice for the conversion time required
because the desired performance can be obtained at a reasonable cost. In addition, system throughput
(speed) can be traded for accuracy—increasing speed decreases accuracy.

The SAR gets its name from successively comparing the input analog voltage to the output of a DAC that
has a binary-weighted code at its input. The conversion process begins by setting the MSB of the input to
the DAC from the SAR to a 1. All the other bits are set to 0. This produces an analog voltage at the DAC
output equal to one-half the full-scale range of the DAC. At the comparator, as with the counting ADC, the
DAC output is compared to the input analog voltage. If the input voltage is greater than the DAC voltage,

COMPARATOR

Input Voltage
Vin

VC

A 1 when Vin >VC

A 0 when Vin ≤ VC

Clock

DIGITAL
OUTPUT

Comparator
output going
from 1 → 0
tells logic
to reset SAR
bit to 0 and
set next bit
to 1.

Digital Code InputL
A
T
C
H

Control
Logic

Successive
Approximation

Register

DAC

1 1 1 0 1 0 1 0

D
A

C
 O

ut
pu

t

LSBMSB

FS

FS 7
8

FS 3
4

FS
2

Vin









Figure 5-9: Successive approximation ADC

a. Block diagram

b. SAR process

TEAM LRN

75

Analog-to-Digital and Digital-to-Analog Conversions

the comparator output is a 1 and the SAR MSB is left at a 1, and the next most significant bit input to the
DAC is set to a 1. With the MSB and next significant bit set to a 1, the output from the DAC will now be
one-half plus another one-quarter to equal three-quarters of the full-scale range of the DAC. The sequence
is shown in Figure 5-9b.

The sequence continues to set the next most significant bit to a 1 (all other bits are zero) as long as the
comparator output is a 1. Each time a binary-weighted voltage is added by the DAC to its output—one
eighth, one sixteenth, one thirty-secondth, and so on—the comparator output will be a 1 as long as the
input voltage is greater than the output of the DAC. When setting the next significant bit to a 1 causes the
input voltage to be less than the DAC output, the comparator output goes to 0. This results in setting the
last significant bit back to a 0 from a 1, reducing the DAC output below the input voltage. But at the same
time the next most significant bit is set to a 1 and the DAC output increased again; however, this time only
say one thirty-secondth of an increment of voltage is added instead of the one-sixteenth that was added at
the bit before. This is shown in Figure 5-9b. The successive approximation continues until all bits are tested
and the closest approximation is obtained. The result is that the SAR output bit either is set to a 1 or a 0
depending on the result of the comparison of the output of the DAC and the input voltage. The final digital
code for Figure 5-9b is 11101010.

The time to convert the input analog voltage to a digital output is n clock cycles, much less than the count-
ing ADC. Figure 5-9b shows that after n clock cycles all the bits have been tested and set and the SAR
output will be the digital output code. The output can be taken in parallel or shifted out as each comparison
is made. This is an additional advantage of the SAR ADC.

Example 5. Maximum Conversion Time for SAR DAC
Repeat the calculation of the maximum conversion time of an 8-bit, 12-bit and 16-bit SAR ADC. The
clock frequency is 1 MHz whose period is 1 µS.
Solution:
 n Max. Conversion Time (n clock cycles)
 8 8 µS
 12 12 µS
 16 16 µS

Capacitor Charge-Redistribution ADC
A block diagram of a hybrid resistor-tree, capacitor charge-
redistribution ADC is shown in Figure 5-10. It consists of
a resistor-tree conversion circuit that handles M bits of the
ADC output and a charge-redistribution capacitor bank
conversion circuit that handles K bits of the ADC output.
The control logic, under synchronization by the clock, pro-
vides the switching logic for setting the bits in the SAR, the
switch settings for the resistor tree and the switch settings
for the capacitor bank. After comparison of a bit by the
comparator, similar to the process previously described for
the SAR ADC, the bit evaluation by the comparator is fed to
the SAR to set the bit for the ADC output. The hybrid DAC
is a compromise between using an all capacitor charge-
redistribution circuit and an all resistor-tree circuit. The
capacitor-charge redistribution has slow conversion times;

SAR
Switch
Control
Logic

ADC Output
(M+K) Bits

M bits
of
R

String
Eval.

K bits of C Charge
Redistribution

Vin

Compare

Vdd

2

Start

Clock

Figure 5-10: Hybrid R-Tree
Capacitor Charge-Redistribution ADCFigure 5-10: Hybrid R-tree capacitor charge-

redistribution ADC

TEAM LRN

76

Chapter Five

the resistor-tree circuit has faster conversion times but uses large IC real estate, especially as the bits in the
ADC output increase. In integrated circuits, resistors use more area than capacitors.

The ADC Operation

In the hybrid ADC, the input analog voltage is captured as an amount of charge on a bank of capacitors. The
capacitors are binary-weighted and handle a certain number of bits (equal to K) of the digital code to be con-
verted. The remaining bits (equal to M) are converted through a resistor tree conversion. The charge on the
capacitors, which remains constant during the conversion, plays an important part, not only in the K bit con-
versions, but also in the conversion of the M bits using the resistor tree. For example, in Figure 5-11, M = 5
and K = 3 so that five bits are converted using the resistor tree and three bits are converted using the binary-
weighted capacitors. The M bits are the five most significant and the K bits are the three least significant.

VREF

Vin

C C2C4C
(K-2)
2 C

(K-1)
2 C

Y

Z

Vdd

2

Vdd

COMPARATOR

Bit
Evaluation

−

+

Visb

Sa

Coffset =
C
2

COS

Node X

Vdd

2
Sx

R
es

is
to

r
Tr

ee
 −

 M
 b

its

SC Switches

Vm

Vm + ∆V

Sb

Sd
Switches

2M
resistors
of equal

value

Capacitor charge −
redistribution bank − K bits

Additional
bits

Figure 5-11: Details of resistor tree and capacitor bank (data acquisition period)

Converting the M Bits

The conversion process starts with the data acquisition period shown in Figure 5-11. Switch Sb is connected
to the input analog voltage, Vin, switch Sx is connected to VDD/2 and Sa is connected to Vlsb. The binary-
weighted capacitor bank charges to VDD/2 – Vin because the lower end of the capacitors are connected to
Node Z. The total capacitance in the bank is 2KC. The offset capacitor COS, equal to C/2, is charged to
VDD/2 – Vlsb. Both inputs to the comparator are connected to VDD/2 at this time, thus, no comparison.

At the completion of the data acquisition period Sx opens, Sb switches from Vin and is connected to the Vm
line of the resistor tree, as shown in Figure 5-12, and Sa is connected to ground. The voltage at Node X is
the important voltage in all of the conversions for it feeds the minus input to the comparator. The plus input
of the comparator is connected to VDD/2. If the value of Node X is less than VDD/2, the comparator output
will be a 1; if it is greater than VDD/2, the output will be a 0.

With Sb connected to the resistor tree, the control logic sets the MSB of the output digital code to a 1 and se-
lects the tap from the resistor tree that represents one-half of full-scale range for Vm just as in the SAR ADC.
As a result, the voltage at Node X is evaluated against VDD/2. If the voltage of Node X is less than VDD/2, the
MSB of the output digital code from the SAR is set to 1. If the voltage at Node X is greater than VDD/2 the
output bit of the SAR is set to 0. This completes the evaluation of the MSB; it is either set to a 1 or a 0.

TEAM LRN

77

Analog-to-Digital and Digital-to-Analog Conversions

The control logic
steps to evaluate
the next significant
bit. It sets the next
significant bit to a
1. This along with
the MSB value of
a 1 or 0 will cause
the SAR to select
the corresponding
value of Vm from the resistor tree to feed the Node Z line connected to the capacitor bank. The new voltage
value on the Z line causes the constant charges on the capacitor bank to redistribute and change the voltage
at Node X. The new Node X voltage is compared to VDD/2, and the bit evaluation is completed by setting
the second most significant bit to a 1 or 0 depending on the result of the comparison. The bit evaluation
process continues until all M bits are evaluated. This results in a set SAR code output for the M bits. At
the end of the M bit evaluations, the voltage of Node X will be representative of the value of the five most
significant bits in the SAR output digital code.

Converting the K Bits

The Node X voltage value is
maintained as the evaluation
now changes to the capaci-
tor bank circuit to evaluate
the K bits, the last three
significant bits of the digital
output code. The K bit
evaluation is accomplished
by switching the ends of the
capacitors in the respective
bit position, one bit position
at a time, to the Y line. The
Y line connects to a resistor-
tree connection that is one
significant bit higher in voltage (Vm + ∆v) than the Z line voltage.

The most significant bit of the three K least significant bits is evaluated first as shown in Figure 5-13. The
end of its capacitor, in this case of value C, is connected to the Y line. The charge on the capacitors redis-
tributes and changes the voltage at Node X. If Node X is greater than VDD/2, the bit is set to a 1 and the end
of the capacitor is left connected to the Y line; if it is less than VDD/2, the bit is set to a 0 and the end of the
capacitor is switched back to the Z line. With the bit set to a 1, the voltage on capacitor C is added to the
resistor tree value to set the Node X voltage value.

The control logic switches the end of the next binary-weighted capacitance of the next least significant bit
by changing its Sd switch and connecting it to the Y line. The charge redistributes with the new capacitor,
now with a value of 2C, and the voltage at Node X changes correspondingly. The Node X voltage is com-
pared to VDD/2 and the bit evaluated as above and the output set to a 1 or a 0. As before, if the bit is set to a
0, the end of the capacitor is returned to the Z line with switch Sd. The process continues until all K bits are
evaluated and the final SAR digital code is sent out from the SAR.

Vm

Sb

Vm + ∆V

Sc

∆V = one lsb
MSB = 1

Vm =
Vref

2

Capacitor
bank

QC

QCCb

Z

X
SX

Bit
Evaluation

−

+

Node X

Vdd

2

C
2

Sa
Vdd

2

Figure 5-12: Evaluating R-tree bits

Vm

Vm + ∆V

X

Bit
Evaluation

−

+

Node X

Vdd

2

C
2

Sa

COMPARE

Capacitor bank

Sd

CC

4C 2C

Z

Y

Vdd

2

2(K−1)C

Resistor tree voltage
after all M bits have
been evaluated

Sx

Sb

Figure 5-13: Evaluating capacitor bits

TEAM LRN

78

Chapter Five

Highest Speed Conversions
The highest speed conversions are made with flash
ADCs. The high speed is made possible by the use of
simultaneous comparisons of the analog input volt-
age to references generated from a resistor string. A
block diagram of a flash ADC is shown in Figure 5-14.
For an n-bit flash converter, there are 2n – 1 reference
voltages and 2n – 1 comparators required. Thus, for
an 8-bit flash converter, 255 comparators are required,
and for a 10-bit flash converter, 1023 comparators are
required. A high price is paid for the speed advan-
tage—high power, large silicon area for the ICs, and
high cost contribute to the price that must be paid.

The conversion process is rather simple. The refer-
ence voltages are connected to the minus input of each
comparator and are separated in value by one LSB.
The analog input voltage is connected to the plus input
of each comparator. A simultaneous comparison is
made at each comparator. If the input analog voltage
on the plus input is less than the reference voltage on
the minus input, the output of the comparator is a 0.
The comparator output will be a 1 if the input analog
voltage is greater than the reference voltage. Each
comparator output is presented to the decoder at the
same time and the decoder’s output is stored as an
n-bit wide code in a latch. All the inputs of the input
analog voltage that are greater than their respective
resistor-string reference voltages will have compara-
tor outputs of a 1; all the inputs that are less than their
respective resistor-string reference voltage will have comparator outputs that are 0. The resultant digital
code into the decoder results in the equivalent binary output code, for a given n-bit code, that represents the
value of the input analog voltage.

Sample and Hold and Filters
Sample and Hold

There are two other functions that are associated with A to D con-
versions. One is sample and hold; the other is filtering. Sample and
hold, as shown in Figure 5-15, is just what it says. The input analog
signal is sampled by switch S1 closing momentarily and charging
C1. C1 then holds the value of the input voltage until the ADC can
process the data. It probably is obvious that a capacitor that leaks
its charge between samples would contribute errors to the sampling
process. Likewise, switches that have variable contact resistance
vary the times to charge the capacitors and contribute errors. Thus,
high quality capacitors and fast switches are key to sample and hold

LA
T

C
H

D
E

C
O

D
E

R

+
−

+

−

Clock

2n−1 Comparators

+
−

+
−

+

−

+

−

Analog Input Voltage

VIN

VREF

R

R

R

R

R

R

Figure 5-14: Flash Converter

Figure 5-14: Flash converter

ADC

C1

S1

Input
Analog
Signal

Figure 5-15: A simple Sample and Hold CircuitFigure 5-15: A simple sample
and hold circuit

TEAM LRN

79

Analog-to-Digital and Digital-to-Analog Conversions

circuits. At one time, sample and hold circuits were available independently; however, most sample and
hold circuits are incorporated right in the ADC. In fact, in the hybrid resistor-tree capacitor charge-distribu-
tion ADC there is no need for a sample and hold. It is built in as part of the circuit design, saving cost on
providing such a circuit.

Filtering

Filtering, as shown in Fig-
ure 5-16a, is used to limit
the bandwidth of signals.
As such, it can smooth out
the input signal, eliminate
noise spikes, limit the high
frequency response, select
particular signal frequen-
cies, and the like. Figure
5-16b shows their specific
use in DAC systems. The DAC output can be a step-like signal. Filtering is used to smooth out the step
nature of the signal and output a smooth analog signal. Most filters are tailored to the particular application.
They are selected to control a specific need of the system; therefore, general filters are usually not the solu-
tion. The filters must be chosen specifically for the application. The example for the DAC system in Figure
5-16b requires that the filter be chosen for the specific system. The output signal that emerges must be a
smooth continuous signal with time rather than a jagged jerky out. The result is that the input signal shown
in Figure 5-2 is reproduced very accurately after the ADC conversion and the DAC conversion.

Summary
In this chapter, DACs and ADCs have been discussed showing techniques used for each and circuits that
implement the functions. In the next chapter, digital processors will be discussed. They receive the digital
signals from the ADCs, modify and manipulate the digital signals, and then deliver the digital signals to the
DACs.

freq. fC

R
el

. A
m

p

a. Bandwidth Limiting

DAC

A
m

pl
.

time → time →
 t1 t2 t3 t4 t5 t6 t7 t8

Initial Output

A
m

pl
.

 t1 t2 t3 t4 t5 t6 t7 t8

Filter Output

Filter

b. Filtering DAC output

Figure 5-16: Filtering

Figure 5-16. Filtering

a. Bandwidth limiting b. Filtering DAC output

TEAM LRN

80

Chapter Five

Chapter 5 Quiz
1. In a binary number:
 a. the digit position value increases by 1 times over the digit value to the right.
 b. the digit position value increases by 2 times over the digit value to the right.
 c. the digit position value increases by 4 times over the digit value to the right.
 d. the digit position value increases by 8 times over the digit value to the right.
2. A decimal equivalent of a binary number:
 a. is the addition of all the bit position values for all the bits equal to 1.
 b. is the multiplication of all the bit position values for all the bits equal to 1.
 c. is the subtraction of all the bit position values for all the bits equal to 1.
 d. is the division by 2 of the bit position value of the LSB.
3. The principle used to design a resistor-string DAC is:
 a. the MSB is one-eighth the full value and the next bit position is one half of the MSB value.
 b. the MSB is one-fourth the full value and the next bit position is one half of the MSB value.
 c. the MSB is one-third the full value and the next bit position is one half of the MSB value.
 d. the MSB is one-half the full value and the next bit position is one half of the MSB value.
4. The equivalent resistance between VREF and ground of the R/2R ladder DAC is:
 a. 4R.
 b. 2R.
 c. R.
 d. R/2
5. The digit position current in the R/2R ladder DAC is:
 a. one half the current in the bit position to the left.
 b. one eighth the current in the bit position to the left.
 c. one fourth the current in the bit position to the left.
 d. equal to the current in the bit position to the left.
6. The voltage increment from a 10-bit resistor-string DAC with 10V applied is:
 a. about 10 volts.
 b. about one volt.
 c. about 10 millivolts.
 d. about 100 millivolts.
7. A simple current-steering DAC:
 a. combines both voltage and current to produce the analog output.
 b. adds binary-weighted voltages to produce the analog output.
 c. produces the analog voltage by sensing a resistor string.
 d. adds binary-weighted constant currents to produce the analog output.
8. The counting ADC:
 a. contains a DAC whose input is the output of a counter.
 b. contains a comparator to compare the analog input to the output of a DAC.
 c. latches the counter output code when the comparator inputs are equal.
 d. all of the above.
 e. a and b only above.
9. The SAR gets its name from a process that:
 a. successively compares the input analog voltage to the output of a DAC that has a binary-

weighted input code.

TEAM LRN

81

Analog-to-Digital and Digital-to-Analog Conversions

 b. sums a series of binary-weighted currents.
 c. sums current from a ladder resistor network.
 d. sums voltages from a resistor string.
10. The maximum conversion time for a SAR DAC is:
 a. 4n clock cycles.
 b. n clock cycles.
 c. 8n clock cycles.
 d. n/2 clock cycles.
11. In the hybrid resistor-tree capacitor charge-redistribution ADC:
 a. (M – K) bits are converted using an R tree and (M + K) bits using a C network.
 b. K bits are converted using an R tree and M bits using a C network.
 c. M bits are converted using an R tree and K bits using a C network.
 d. (M + K) bits are converted using an R tree and (M – K) using a C network.
12. In the hybrid resistor-tree capacitor charge-distribution ADC:
 a. the K bits are evaluated first and then the M bits.
 b. the M bits are evaluated first and then the K bits.
 c. the K and M bits are evaluated at the same time.
 d. only the K bits are evaluated.
13. In Flash ADCs:
 a. the high speed is made possible by simultaneous comparisons.
 b. there are as many comparators as there are bits.
 c. there are as many reference voltages as there are bits.
 d. the basic string for comparisons is a capacitor charge-redistribution network.
14. A sample-and-hold circuit:
 a. has a momentary switch that connects the input voltage to a capacitor long enough for the

capacitor to charge.
 b. has a resistor in series with a capacitor in series with a switch.
 c. has a capacitor that is charged to hold the value of the input voltage.
 d. a only above.
 e. a and c above.
 f. none of the above.
15. Filtering is important to DAC operation:
 a. because it adds noise to the output signal.
 b. because it returns the DAC output to a smooth continuous signal.
 c. because it selects one frequency to pass on from the output.
 d. because it acts as a very high-frequency high-pass filter.

Answers: 1.b, 2.a, 3.d, 4.c, 5.a, 6.c, 7.d, 8.d, 9.a, 10.b, 11.c, 12.b, 13.a, 14.e, 15.b.

TEAM LRN

82

Introduction
Previous chapters have sensed the analog signal, conditioned the signal and converted it from analog to
digital. In this chapter, the processing of the digital signal to modify, calculate, manipulate, change the form
of the signal or to route the signal to particular channels is discussed. All or any of these processing opera-
tions may be needed to accomplish a task predetermined by the application that is being fulfilled. The total
system is designed to perform a task, and the digital processor is a very important part of the system.

Digital Processor or Digital Computer
As the name implies, the digital proces-
sor inputs, stores, performs operations
and outputs digital signals. Perform-
ing logic or arithmetic computations,
modifying the format of the signal,
storing data temporarily or more per-
manently, decoding signals for display
and outputting signals are some of the
operations dictated by the instructions
in the application program.

Figure 6-1 shows the basic structure
of a digital processor, more gener-
ally called a digital computer. The
main brain of the structure is the CPU
(central processing unit) where the op-
erations that are performed are decided
upon and controlled. The digital signals
in the form of binary codes that tell the digital processor which operation to perform are called instructions.
Each digital processor is manufactured to respond to a particular set of instructions. Each instruction in the
set will cause the digital processor to do a unique operation. For example, an instruction might cause the
digital processor to input a digital signal from a particular input. Or an instruction might tell the processor
to take the input signal and store it temporarily, or to store it in memory more permanently. Another in-
struction might take a digital signal that has been operated on by the processor and output it to a particular
output. Or an instruction might tell the processor to do a logical operation (for example, AND two binary
numbers together), or to do an arithmetic operation like ADD two binary numbers, or maybe subtract them.
The instructions, presented in sequence to the processor, are called a program.

Digital Computer Program

The arrangement of the instructions, one after another, for the digital processor to perform set operations in
a particular sequence to accomplish a task is called a program. The set of instructions in a program is stored
in memory to be recalled each time that the desired task is required. If a different task is required, then a
different program is needed.

CHAPTER 6

Digital System Processing

Figure 6-1: A Digital Processor

Programs
are stored
in memory
as well as data
for the programs

MEMORY

Power
System

OUTPUTSINPUTS

CPU
Central

Processing
Unit

Timing and
Control Signals

Instruction and Data Codes
on Data Bus

Address Codes
on

Address Bus

Clock

Figure 6-1: A digital processor

TEAM LRN

83

Digital System Processing

As shown in Figure 6-1. The instructions of a program are stored in memory at specific addresses, usu-
ally in sequence, and are moved from memory to the CPU over the data bus. It is just like a home with a
particular address. The post office uses the address to deliver the mail. In like fashion, the instructions in
memory are at unique addresses. When a particular task is needed, the address of the first instruction in the
program is sent by the CPU to memory over the address bus. The address locates the instruction in memory,
the CPU instructs the memory to read the instruction and it is sent over the data bus to the CPU. The CPU
decodes the instruction and performs the directed operation. Each subsequent instruction in the program is
addressed, recovered from memory, sent to the CPU and executed.

Address and Instruction/Data Bus

Addresses, over the address bus, are not only used to locate instructions in memory but are used to identify
particular inputs or particular outputs. By addressing a particular input, the CPU has selected that input to
supply input data; or addressing a particular output, the CPU will send data to that output to be transmit-
ted to the next function. And there is another use of addresses. When an instruction calls for an arithmetic
operation, (or other operations that require unique information), such as, ADD A and B, the data A and the
data B must be supplied to the CPU before the operations can be performed. Data A and B and other data
used for the program being executed are stored in another portion of memory, separate from the program.
Data A and Data B are addressed over the address bus just like instructions and recovered and sent to the
CPU. The instructions and the data are transmitted from memory to the CPU over the data bus; thus, this
bus is usually called the instruction/data bus.

Timing and Control

All the CPU operations, all address, instruction, and data transfers, as shown in Figure 6-1, occur in a timed
sequence determined by the timing and control signals derived from the CPU’s clock. The clock is a circuit
that outputs a series of repetitive pulses occurring at a set frequency or set frequencies. The clock pulses
have fast rise and fall times so that circuits can be triggered on either edge to accurately time the operation
of the circuits. The rise time is called the leading edge and the fall time the trailing edge of the pulses.

Clock signals must be very accurate. As a result, they are generated by phase-locked loops (PLLs), or for
the greatest accuracy, by quartz crystal oscillators. Quartz crystals, of a particular cut and size, when excited
with electricity, will oscillate at a very precise frequency. The clock signals precisely control the transfers,
manipulations, and storage of information throughout the CPU and the accompanying total system.

Power Systems

Each digital processor has a complete unique power system. Sophisticated systems are required for the
distribution of the supply voltages and the required currents, regulated to keep the variation of voltages to
within tight limits, as the circuits switch rapidly from one state to another. Extensive use of bypass capaci-
tors at critical junctions help to maintain voltages within limits as significant values of current are switched
along the supply lines.

As the density of integrated circuits has increased, there is more need for heat sinks and cooling air distribu-
tion as the watts/in2 dissipation increases. IC technology has led the way as circuit density increased within
an IC to change the circuit type from bipolar to MOS (metal-oxide-semiconductor) to CMOS (complemen-
tary MOS) so that the power dissipation per circuit function has been reduced. As density further increased,
the supply voltages for circuit operation have been reduced from 5V to 3V, and now 1.8V to again reduce
the power dissipation per function. The tight regulation specifications still remain even with the reduction in
the voltage values.

TEAM LRN

84

Chapter Six

The CPU—
Program Counter

Figure 6-2 is a dia-
gram of a generalized
central processing
unit (CPU). The main
components are the
program counter, the
instruction register,
the instruction decod-
er, the data address
register, the arith-
metic and logic unit
(ALU), the timing
and control circuits,
and the permanent
and temporary stor-
age. As discussed
previously, a digital
code, called an
instruction, orga-
nized in sequence
into a program, is
sent to the CPU to
instruct it to execute a particular operation. The instruction came from a memory address contained in an
instruction address register called the program counter. The program is stored in memory one address after
another in sequence so the program counter holding the address can be incremented by one to step through
the program instructions one step after the other. Thus, the name for the address register is the program
counter. Each instruction address from the program counter addresses the next step in the program as the
task proceeds.

Example 1. Program Counter
Using 4-bit addresses, show in a simple example how the program counter is incremented to sequence
through a program to add 16 to 8.

Solution:

Timing Control

Timing and Control Circuits

Output

Input

Clock

INTERNAL
MEMORY

Registers
Read-only

Memory (ROM)

Random-Access
Memory (RAM)

Instruction
Register

Instruction
Decoder

I/O
Input/Output

Circuits

Input Address
Circuits

Output
Address
Register

Data-Address
Register

Instruction/Data
Address Register

(Program Counter)

Address BusInstruction/Data Bus

Logic
Circuits

Arithmetic
Circuits

ALU
Registers

ALU Switching
Circuits

ALU

Instruction/Data
Address/Switch

AB ABA

Figure 6-2: A generalized CPU

Chapter 4 Example 1 Illustration

Instructions
in memory
sent to
instruction
register in
CPU in sequence

MOV 16 to Register A

MOV 8 to Register B

Add Register A to Register B

Place sum in Register A









0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 0 0

Instruction Address

MemoryProgram Counter (increment by 1) Address

TEAM LRN

85

Digital System Processing

CPU—Instruction Register and Instruction Decoder

As the digital code representing the CPU instruction is retrieved from its memory location it is stored in a
temporary storage register called the instruction register. Here it is recognized and decoded by the instruc-
tion decoder and directed to the appropriate circuits to execute the operation dictated by the instruction.

CPU—The Data Address Register

If the instruction requires that additional data be fetched from memory, then the next instructions will direct
the CPU to place the address for the data in the data address register, send the address to memory to retrieve
the data and store it in a temporary storage location in the CPU, either a register, or a RAM location. Through
a multiplexing switch, the instruction and data address are sent to memory over the same bus, the data bus.

CPU—The Arithmetic Logic Unit (ALU)

The ALU provides the logical, computational, and decision-making capabilities of the CPU. Basic arithme-
tic operations, such as, addition, subtraction, multiplication, and division; basic logical decisions, as well
as, greater than, less than, equal to, positive or negative are all performed by the ALU.

Registers for temporary storage of data brought from inputs or from memory are available in the ALU. The
information in these registers is used by the CPU for completing the operation directed by the instruction
addressed by the program counter. When the operation is completed the information is erased or replaced
with new information to be used for executing the next instruction.

CPU—Internal Memory

There are internal memories contained within the CPU. They may be additional registers, read-only mem-
ory (ROM) or random-access memory (RAM). They store particular sets of instructions called subroutines,
temporary data, and data routing information. The RAM is of the type that needs to be refreshed periodical-
ly. Some CPUs do not have any ROM or RAM, but usually have the additional registers. For these CPUs,
the ROM or RAM is in the external memory shown in Figure 6-1.

Timing and Control

Each of the operations of the CPU is timed and controlled by circuits that operate at specific times. Many
operations occur at the same time; others are sequenced so they operate after data is entered, or transmitted,
or before another operation. The timing and control signals, generated from the master clock signals, not
only time the CPU, but also are distributed throughout to time and control the complete system.

CPU—Input and Output (I/O)

Not all CPUs have the input and output selection circuits in the CPU; for some, these circuits are external as
shown in Figure 6-1. Figure 6-2 shows the I/O contained in the CPU. The input address registers determine
the particular input that will receive data, and the output address registers determine the particular output
used to couple out data to external destinations. If the CPU needs data, the CPU sends the address of the
input to receive the data to the input address register and inputs the data from that input. The CPU inputs
the data at a select time so that it is synchronized to the operation that is being executed. Likewise, after
the CPU has executed an operation, the resultant data needs to be outputted to complete the task. The CPU
sends the address of the output that is to couple out the resultant data to the output address register, and,
synchronized by the clock, outputs the data.

TEAM LRN

86

Chapter Six

Example 2. I/O Selection

Show with a simple example, using a 4-bit code, how a particular input is selected by the CPU.

Solution:

What is a Microprocessor?
When all the circuitry for the functions shown in Figure 6-2 for a CPU are contained in an IC, the IC is
known as a microprocessor. Attach to it the I/O functions, memory, and power supply, and one has a digital
processor shown in Figure 6-1, or more commonly, a digital computer.

What is a Microcomputer?
When all the circuitry for a digital computer is contained on one integrated circuit, the unit is called a
microcomputer. Even though there are self-contained memory and I/O circuits contained in a microcom-
puter, external circuits of the same type may be added, especially memory. As a result, there are many
variations between microprocessors and microcomputers. Memory, I/O, signal conditioning, timing and
control many times are added to adapt the particular IC to an application, or to a market requirement.

A particular type of microcomputer, now called a microcontroller unit (MCU), has been adapted to
the industrial control market. A microcontroller unit from the MSP430 family manufactured by Texas
Instuments will be used in Chapter 7 to explain assembly-language programming and in Chapter 10 to
demonstrate the application of MCUs by providing the reader an opportunity for a hands-on project that
can be built from contained instructions.

System Clarifications
System Buses
In Figure 6-1 and Figure 6-2 there are wide signal paths connecting the functional units in the diagrams.
Each of these contains multiple wires connecting between units. Each is called a “bus” because it represents
more than one wire making the interconnections between units. For example, if the memory in Figure 6-1
has 65,536 different memory storage locations, then a binary address of 16 bits must be used to address
each location. The address bus, as a result, is really 16 wires bundled together, each wire carrying a binary
signal of 1 or 0 to make up the 16-bit word for the address.

The expansion of memory locations as bits are added to the address is shown in Figure 6-3. If the address is
expanded to 24 bits, 16,777,216 memory locations can be addressed; if the address is expanded to 32 bits,
4,294,967,296 locations can be addressed. If each memory location has an 8-bit piece of binary information
(called a byte), then 24 bits will locate 16 million bytes of information; more precisely, 16,777,216 bytes of
memory, but shortened by industry use to a 16-Megabyte memory (16 MB). In like fashion, a 32-bit address
will locate 4.2 billion bytes or is a 4.2-Gigabyte memory (4.2 GB).

Load Input
Address Register
with address of
input desired.
Address from register
is sent to decoder
that selects the proper input.

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 1 1 1

INPUT ADDRESS
REGISTER

0 0 1 1

4 bits
INPUT 0

INPUT 1

INPUT 2

INPUT 3

INPUT 15

Address

INPUT

D
E
C
O
D
E
R

TEAM LRN

87

Digital System Processing

Memory and data bus-
es are the buses that
must be the widest
(to be able to handle
the largest number of
bits at a time) in order
to carry the memory
addresses and the
instructions required
by the system. Control
buses and timing signal lines may have only a single line, but in most cases have multiple lines, but their
buses hardly need to be as wide as the address and data buses.

Digital Information Nomenclature and Transfer
Binary strings of bits are identified in a number of ways. Long strings of bits are called words. Modern
day digital computers use 16-, 32-, and 64-bit words. In Figure 6-4a a 16-bit word is shown. In any binary
representations, the most significant bit (MSB) is on the left of the string, and the least significant bit (LSB)
is on the right.

A group of 8 bits, as shown in Figure 6-4a, is called a “byte,” and is a very common grouping used to
identify memory capacity. A 1 MB (1 megabyte) memory has a storage capacity of one million locations
with a byte (8 bits) at each location. Even though a memory may be organized differently, say two million
locations with 4 bits per location, the capacity is still referred to as 1 MB. Years ago this 4-bit group was
used extensively and called a “nibble.”

A byte, or a number of bytes, is a common way of identifying other binary signals. A control signal may
contain a certain number of bytes. A code may be made up of words that are each a byte, or a code may
contain any number of bits. This will be further clarified in the section on Digital Signal Representations.

 Address Address Address Address
 Bits Locations Bits Locations Bits Locations Bits Locations
 1 2 9 512 17 131,072 25 33, 554, 432
 2 4 10 1024 18 262,144 26 67, 108, 864
 3 8 11 2048 19 524,288 27 134, 217, 728
 4 16 12 4096 20 1,048,576 28 268, 435, 456
 5 32 13 8192 21 2,097,152 29 536, 870, 912
 6 64 14 16,384 22 4,194,304 30 1, 073, 741, 824
 7 128 15 32,768 23 8,388,608 31 2, 147, 483, 684
 8 256 16 65,536 24 16,777,216 32 4, 294, 967, 296

Figure 6-3: Memory Locations vs. Address BitsFigure 6-3: Memory locations vs. address bits

MSB LSB

MSB LSB

16-bit word

Two 8-bit bytes

Byte 1 Byte 2

Four 4-bit nibbles

Nibble #1 Nibble #2 Nibble #3 Nibble #4

MSB LSB

1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1

MSB LSB

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1X Y

After 11 logical shifts to rightX − Right Shift Information Flow

 Left Shift Information Flow − Y

Figure 6-4: Digital information nomenclature and transfer

a. Words, bytes, nibbles

b. Parallel transfer

c. Serial transfer

TEAM LRN

88

Chapter Six

Data Transfers

Within a digital computer, digital processor, digital system, or digital circuit, the binary bits that carry
the information must be transferred from place to place to allow the system or circuit to perform its task.
Figures 6-4b and c show the method of transfer. Figure 6-4b is a parallel transfer and Figure 6-4c is a serial
transfer. This discussion centers on the signals within a digital processor, or within a self-contained digital
system. Further discussion of the transfer of data between digital systems is contained in Chapter 8.

In Figure 6-4b, all the bits of binary information are transferred at the same time. If it is a 16-bit word as
shown, all 16 bits are sent from one location to the other at the same time, in parallel. The highest speed
digital processors use the parallel transfer so no time is lost in processing the binary information to act on it.

The serial transfer, shown in Figure 6-4c, takes longer in time to process the information. As shown, each
bit of information is shifted in sequence to identify all the bits in the 16-bit word. Using the 16-bit word as
an example, 16 clock-shifting pulses are required to identify all 16 bits. The shifting of the bits can either be
in a right or left direction, as shown, and there are a number of different types of shifts—a logical, circulate,
or arithmetic.

Logical Shifts

A right 11-step shift is shown in Figure 6-4c. As the bits are shifted right toward the LSB position, a detec-
tion circuit receives the LSB output and identifies the bit value as 1 or 0. The bits arrive serially, one bit
after another, until all 16 bits of the word are identified. In a logical shift, bits of 0 values are inserted at the
MSB position as the shifting occurs. For a left shift, the identifying circuit is at the MSB position rather
than the LSB position, and the bits are inserted at the LSB position.

Arithmetic Shifts

Many times the instruction to the processor may only be for one shift because shifting a binary word to the
right divides the binary value by 2. Likewise, shifting a binary word one bit position to the left, multiplies
the binary value by 2. These types of shifts are particularly significant in arithmetic operations.

Example 3. Arithmetic Shift Left for Multiplication
Show an example, using an 8-bit word, to demonstrate how shifting a binary number one bit position to
the left multiplies the binary value in the number by 2.

Solution:

In a right circulate shift, the bit value in the LSB position is circulated back and inserted at the MSB posi-
tion. After 16 clock shifts, the bits of the 16-bit word are shifted out and identified, and, after the shifting
is complete, the same data is in the 16-bit word as before the shifting process began. Such shifts are very
useful in arithmetic and logical shifts without destroying the original data present before the shifts.

Binary information can identify both positive and negative numbers. To do this, the MSB of the binary word
is reserved to be a sign bit. If the bit is a 0, the binary number is positive; if the bit is a 1, the binary number

Chapter 4, Example 3 Illustration

Bit Position Value 128 64 32 16 8 4 2 1

Original No. Value 0 0 0 16 0 4 0 1 = 21

Original No. 0 0 0 1 0 1 0 1

New Value 32 0 8 0 2 0 = 42

Original number 0 0 1 0 1 0 1 0 Insert 0
shifted left
one bit

TEAM LRN

89

Digital System Processing

is negative. During an arithmetic shift, the sign bit in the MSB position is maintained. Thus, when a shift
occurs, the value in the MSB position is reinserted into the MSB position, so that it remains the same and
the arithmetic value of the binary number is not lost. Examples for a 4-bit code are shown in Figure 6-5.

Parallel vs. Serial

One can see the parallel transfer of information is fastest because it takes significant time to shift out the
bits for identification in a serial transfer. However, there is a significant tradeoff in hardware of increased
circuitry, increased interconnections, increased power dissipation, and so forth. Serial operation calls for
only one detection circuit at the LSB or MSB position to identify the bits. Parallel operation requires a
circuit for each bit so the bits can be identified all at the same time. This multiplication of circuits, intercon-
nections, more power occurs throughout the system.

Example 4. Arithmetic Shift for Recirculation

Show an example, using an 8-bit word, of how a right recirculate shift of the same number as the bits
in the word reinserts the same word in a register after use of the word.

Solution:

Recirculate

Original

After 4 shifts to right

After 8 shifts to right

 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

Recirculate

 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0

Recirculate

 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

Working Register

Chapter 4 Example 4 Illustration

 Binary Signals Decimal Numbers Characters Commands

 0 0 0 0 0 0 0 @ \ P p Power OFF
 0 0 0 1 1 +1 1 A a Q q STOP
 0 0 1 0 2 +2 2 B b R r GO
 0 0 1 1 3 +3 3 C c S s A ON
 0 1 0 0 4 +4 4 D d T t A OFF
 0 1 0 1 5 +5 5 E e U u B ON
 0 1 1 0 6 +6 6 F f V v B OFF
 0 1 1 1 7 +7 7 G g W w RIGHT
 1 0 0 0 8 0 8 H h X x LEFT
 1 0 0 1 9 -1 9 I i Y y FORWARD
 1 0 1 0 10 -2 : J j Z z BACK
 1 0 1 1 11 -3 ; K k [{ IDLE
 1 1 0 0 12 -4 < L l \ | SPEED 1
 1 1 0 1 13 -5 = M m] } SPEED 2
 1 1 1 0 14 -6 > N n ^ ~ BRAKE
 1 1 1 1 15 -7 ? O o − DEL POWER ON

 Column 1 2 3 4 5 6 7 8

ASCII bits 4321 5, 6, 7 110 001 011 101 111

Figure 6-5: Digital Signals can represent numbers,
letters, special characters, commands, and so forth.

















MSB LSB or or

When
MSB = 0
represents
8 positive
numbers

When
MSB = 1
represents
8 negative
numbers

Figure 6-5: Digital signals can represent numbers, letters,
special characters, commands, and so forth.

TEAM LRN

90

Chapter Six

The trade off then is one between speed of operation versus amount of hardware. But IC processing, device
and circuit technology is having a tremendous impact on this tradeoff, as discussed in more detail in Chap-
ter 8. The advances by ICs in density per chip, faster operating speeds and lower power operation and new
circuit protocols are reducing the separation in this tradeoff and serial operation is gaining in use.

Digital Signal Representations
Figure 6-5 details that binary bits in digital information can commonly represent numbers, letters, charac-
ters and commands. A 4-bit binary code is shown that can represent 16 different entities. The 16 different
entities can be the numbers from 0 to 15 (1st column); or they can be eight positive numbers from +0 to +7,
and eight negative numbers from –0 to –7 (2nd column). As explained, the MSB of the code is used to tell
whether the number is positive or negative. Or the 16 different codes can be used to identify the numbers
from 0 to 9 and six special punctuation characters (3rd column). Or the 16 different codes could be used to
identify 16 different commands (8th column).

In order to identify more characters and symbols, more bits must be added to the code. As an example, The
American Standard Code for Information Interchange (ASCII), mentioned briefly in Chapter 1 and con-
tained in its complete form in Chapter 8, uses a 7-bit code. It identifies 52 upper and lower case alphabetic
characters, 10 numbers from 0 to 9, 34 special data transfer and Teletype commands, and 32 other special
characters for a total of 128.

Columns 4, 5, 6 and 7 of Figure 6-5 are the 52 upper and lower case alphabetic characters and other special
symbols that are identified in the ASCII code. Column 3, mentioned previously, is also used in the ASCII
code. To fill out the 7-bit code, column 3 has bits 5, 6 and 7 at 110, and columns 4, 5, 6, and 7 have them at
001, 011, 101, and 111, respectively. As the combination of the 5, 6, and 7 bits change, the identities of the
16 codes change to new characters, numbers or symbols.

Example 5. ASCII Code

Identify what the given 7-bit codes represent using Figure 6-5.

Solution:

 Code Bit 7 6 5 4 3 2 1 Data Represented

 1. 0 1 1 0 1 0 1 5

 2. 1 0 0 1 0 1 0 J

 3. 1 1 0 0 1 1 1 g

 4. 0 1 1 1 1 1 1 ?

Chapter 4 Example 5 Illustration
What has been demonstrated is that within different digital systems, the binary information can represent
many different things—numbers, characters, symbols, commands, instructions, and so on. System designers
will define how the codes are used in particular systems.

Clock, Timing and Control Signals
As stated previously, a computer program is a series of steps that a digital processor must execute in se-
quence in order to accomplish a task dictated by the program. These steps in sequence occur at particular
set times dictated by the timing and control signals. Within each step, instructions are dictating how elec-
tronic circuits are operating to perform the functions called for by the program. The instructions occur at
specific times and the circuit operation occurs at specific times controlled by the timing and control signals.

TEAM LRN

91

Digital System Processing

Clock

The heart of the timing circuits is the clock. Its source is usually a crystal-controlled oscillator that gener-
ates signals at a very precise frequency. Its signal output is formed into rectangular pulses that have very
fast rising and falling edges. Typical pulses are shown in Figure 6-6a. The rising and falling edges of the
clock pulse provide precise times for controlling electronic circuit action. The clock may have just one
series of pulses like phase 1(Φ1), or it may have additional phases as shown in Figure 6-6a. The additional
phases provide additional timing signals for the control of circuits. As shown in Figure 6-6a, some of the
circuits controlled by the clock trigger on the rising edge of the clock pulse, while other circuits trigger on
the falling edge of the pulse. Such alternatives in the triggering of circuits provide a wide selection and flex-
ible means for timing the operation of electronic circuits.

Gated Latch

A specific example of
how electronic circuits
are timed is shown in Fig-
ure 6-6b. The electronic
circuit shown is called
a gated latch. It is used
for temporary storage of
digital data. The inputs
to the gated latch are the
binary signal D (either 1
or 0), and the clock. The
outputs are Q and Q',
which are complementary
to each other—if Q = 1,
Q' = 0 or vice versa. A
signal that appears on D
is only stored in the latch
and appears on Q after it
is “clocked in,” i.e., the
clock has appeared and
has timed in the D signal.
As shown in Figure 6-6b,
Q only changes after D
changes and a clock sig-
nal times the change into
the latch.

The latch receives its
name from the fact that
it is a temporary storage
electronic circuit that
latches on to data and
holds it. The gated latch
means that data is gated
in at a particular time.

Phase 1 (Φ1)

Phase 2 (Φ2)

Phase 3 (Φ3)

Phase 4 (Φ4)

rising
edge

falling
edge

Some circuits
are triggered (timed)
on this edge

Some circuits
are triggered (timed)
on this edge

D changes but information on D

does not appear on Q

until it is clocked

in by the trailing

edge of clock

Latch triggers
here

Clock

1
0
1
0
1
0
1
0
t = 0 time

 1 2 3 4 5 6 7 8 9 10

D

Q

Q'

D Q

Q'

Clock

Clear

Gated Latch
(clocked D Flip-Flop)

 D Q Q' Q Q'
 0 0 1 0 1
 1 0 1 1 0

Before
clock

After
clock

Truth Table

CA

B

C=AB

Output
Control

Line

Clock

A 1 on line for
Read Memory

AND Gate

Truth Table

 A B C
 0 0 0
 0 1 0
 1 0 0
 1 1 1

Read Memory Signal

Clock

Timed Control Signal
for Read Memory

1

0

1

0

1

0

 1 2 3 4 5 6 7 8 9 10

A

B

C

time
t = 0

Figure 6-6: Clock signals for timing and control

c. Timed control signal using AND gate

b. Timing of signals at gated latch

a. Clock signals

TEAM LRN

92

Chapter Six

A truth table, shown in Figure 6-6b, identifies the output Q and Q’ values for each D input value. It identi-
fies the state of the signals before and after the clock.

AND Gate Control

Another example of signal timing is shown in Figure 6-6c. Here a 2-input AND gate is used to time a
control signal. The control signal required tells a memory to read information from memory. The address
of the information has been received by the memory and decoded prior to the receipt of the control signal.
An AND gate is used to provide the memory read signal at a precise time. As the truth table shows, both
inputs to the AND gate must be a 1 for the output to be a 1. If both or one input is a 0, the output is a 0. By
placing the memory read signal on the A input to the AND gate, when it is a 1, the memory is to be read.
However, the control signal to actually tell the memory to read will not occur on the output of the AND gate
until the clock signal is a 1. As a result, the memory is read at a precise time determined by the clock. The
read signal on the input to the AND gate overlaps the clock signal in time, and can vary significantly in time
position in relationship to the clock and still be timed correctly. The AND gate output, the memory read
pulse in this case, turns out to be the same width as the clock pulse.

The fact that a clock may have different phases adds to the flexibility of the timing and control signals. For
example, the clock used in Figure 6-6b might use Phase 2, while the clock used in Figure 6-6c might be
Phase 4. This demonstrates the flexibility, mentioned previously, that a designer has to time the system circuits.

Interrupts
A signal that controls a digital processor at unexpected or random times is called an interrupt. It interrupts
the digital processor from what it is doing and directs it to do something different, as indicated by the inter-
rupt signal. A STOP signal terminates whatever the processor is doing. It usually occurs at random times
depending on the need to shut down the processor. Or maybe the processor is following a program and
input signals are required. When the inputs are available, the input circuits notify the digital processor that
the inputs are present. This initiates an interrupt to the processor, which halts what it is doing and inputs the
data. After the data is inputted, the processor continues from the place it was interrupted. The CPU keeps
track of where the processor is when the interrupt occurred.

Similar action occurs at the outputs. The processor is required by the program to output data to an external
unit. The processor addresses the I/O and selects an output. The output circuits send an interrupt to the CPU
to signify that the output is ready. The interrupted processor switches to a routine to output the data. When
the transfer to the output is complete, the processor returns to the program location directly after the loca-
tion at which it was interrupted.

The application of a digital processor may be dictated by its response to an interrupt. Some processors re-
spond very quickly to interrupts so that the overall performance to execute its program and complete a task
is not affected. While other processors may be slow to respond to interrupts, and, therefore, if an applica-
tion depends on many interrupts, the overall performance of the processor will be slowed a great deal. The
ultimate speed at which the processor can accomplish the task is severely limited. Some digital processors
only respond to an interrupt when they want to, not randomly or unexpectedly. Most modern digital proces-
sors respond quickly to interrupts that occur at random and unexpected times.

Status Bits
Digital processors operate using control signals derived from the condition of check bits called status bits.
Status bits are stored in a register. A register is a chain of latches strung together to temporarily store a set
number of bits; as an example, a 16-bit register stores 16 bits. Most registers store the number of bits in the
word being used throughout the digital system. The status register is somewhat different. It holds a variety

TEAM LRN

93

Digital System Processing

of different bits where the state of each bit is somewhat independent of the other bits in the register. Many
of the bits are set independently and their value depends on the result of a particular processor operation.
For example, what was the sign of a number as a result of an arithmetic operation—positive or negative? A
status bit is set after the operation is executed to indicate the result. Was the result of an arithmetic opera-
tion greater or less than zero? A status bit is set to indicate the result. Was there a carry or a borrow when an
arithmetic operation was performed? Is the number too large for the digital system to handle? The setting of
status or condition bits after such operations, and the checking of the bits by the processor, contribute to the
control of the operation of the digital processor as it executes its program.

Example 6. Status Register
The N bit of a status register is set when the result of an arithmetic operation is negative. Show an
example of how this occurs.

Solution:

More About Software
Refer again to Figure 6-4 for a short review. The digital information flowing through a digital processor
flows as a given combination of bits—a 32-bit address code, a 16-bit instruction code, or an 8-bit character
code. Circuits that identify and decode the digital information must identify the value of each bit (either a 1
or a 0) and act as a result of the value to decode the information. As stated previously, the program that the
processor follows is a series of instructions in sequence. Each instruction has a given number of bits and
a unique code for a particular instruction. The instructions come from memory to the processor over the
data bus. Inside the processor the instructions are stored temporarily in the instruction register so that the
instruction decoder circuits can decode them. The decoder evaluates the bits and identifies the action the
processor must take to execute the instruction.

Humans write the computer programs. The instructions to the computer must be written in a language that
humans understand; yet the instructions that the computer follows must be in digital codes that the com-
puter understands. A conversion is required from the human language to the digital codes that the machine
(processor) understands. The digital code that the machine understands is called machine code. A computer
program written in machine code is called a machine-language program.

Machine-Language Programs

Humans can write programs in machine language. To do so, the programmer writes the program directly
in the digital codes that the machine understands. No conversion is necessary. The machine can decode
the instructions directly and execute them to accomplish the task required. However, the task is extremely
difficult, tedious and time consuming, and if errors are made, and they will be regularly, it becomes an even
more difficult and tedious task to find the errors and correct them.

Assembly-Language Programs

In order to make it easier to write the programs, the manufacturers of digital processors have designed
their processor to respond to instructions that are closer to human language. These instructions are
called assembly-language instructions. They are easier to understand than machine code but require the

 1 0 1 1 0 1 1 1

Working Register

 N Z C

Status Register
Result of

an arithmetic
operation

The MSB being a 1 indicates
the value in register is negative.
If it is a 1, logic circuits test it

And sets the N bit in status
register to a 1

Chapter 4 Example 6 Illustration

TEAM LRN

94

Chapter Six

manufacturer to provide a program to convert the assembly-language instructions into machine code. Such
a program is called an assembler. A computer is much more accurate in doing the conversion, and by pro-
cessing an assembly language program for a particular processor using its assembler, all the instructions are
converted very accurately into machine code for that processor.

Mnemonics
The operation or action that the assembly-language instruction causes the processor to perform is identified
by an abbreviation called a mnemonic. The abbreviation used for the mnemonic gives a strong suggestion
to the programmer what the instruction does. Figure 6-7a shows an example of arithmetic instructions and
their directed actions, and gives the mnemonic that represents each of the instructions. The mnemonic is a
short two or three letter symbol that identifies to the programmer the processor action caused by the instruc-
tion. Figure 6-7b gives an idea of what other types of instructions may be available in digital processors.

 Arithmetic Mnemonic Action

 Add A or AD or ADD Addition of two binary codes
 Subtract S or SU or SB Subtraction of two binary codes
 Multiply MPY Multiply two binary codes
 Divide DIV Divide two binary codes
 Absolute Value ABS Take absolute value of a binary number
 Negation NEG Change sign of a binary number
 Shift ROL or ROR Shift left or shift right
 Increment INC or INR Add 1 to binary code
 Decrement DEC or DCR Subtract 1 from binary code

 Logical Data Movement Branch Comparison

 AND Move Unconditional Less than
 OR Load Conditional Greater than
 NOT Store Subroutine Equal
 XOR

Figure 6-7: Examples of digital processor instruction set

a. Example of mnemonics for arithmetic instructions

b. Examples of other processor instructions

Operands

In an assembly-language instruction, the instruction itself describes the operation to be performed, but does
not say what is to be operated on; therefore, operands (what is to be operated on) must be added to the
instructions. For example, the instruction:

 Mov A,B

The mnemonic MOV means that a move operation is to be performed and the operands are register A
and register B. The contents of register A are to be moved to register B. Suppose that register B is the program
counter; therefore, it contains the memory address of the next instruction of a program or subroutine. By load-
ing register A with the address of the first instruction of a program, moving the contents of register A to register
B a new program is started. Incrementing register B (subtracting one from its contents) with the instruction:

 Inc B,

causes the processor to step to the next instruction. After the instruction is executed, the program loops back
to the Inc B instruction and the processor steps to the next instruction. The processor steps through address-
es of the instructions in sequence to execute the program.

TEAM LRN

95

Digital System Processing

Sophisticated Programming Languages
The writing of a computer program to perform a task consists of organizing the digital processor instruc-
tions into the correct sequence. It is a paper process that doesn’t require the building of any hardware, but
just understanding the processor’s instructions and using them to manipulate existing hardware to perform
the task required. Thus, programs are called software, and people that write programs are called software
engineers or just programmers. It is the objective of programmers to write their programs in a language
as close to human language as possible. They would also like to learn a particular programming language
and not be restricted to using it only for one processor. They would like to apply their knowledge of the
language to other processors solving other application problems. To satisfy this need, sophisticated pro-
gramming languages have been developed.

Sophisticated programming languages are a step up and beyond assembly-language programming. They
are, once learned, used for writing many different programs, using different processors. Such languages are
referred to as high-level languages because they are somewhat general purpose because they are used to
program different processors.

Whatever high-level language is used one thing is certain, the program must be converted to machine-lan-
guage code. In earlier times this was a two-step process. First a program called a compiler converted the
high-level language to assembly language. Then, an assembler was used to convert the program to machine
code. Today most compilers convert the high-level language directly to machine code. In addition, many
digital processors are members of a family of processors; the compiler for a particular processor usually
handles the whole family of processors.

Software Summary

Figure 6-8 provides a summary of programming. A digital processor can be programmed directly in
machine language, but it is very tedious and difficult to find errors. Or it can be programmed in assembly
language, put through a specially designed program (an assembler) that converts the program to machine
code. Or it can be programmed
using a sophisticated high-level
general-purpose language. The
program must be put through a
specially designed program (a
compiler) that converts the high-
level language instructions into
machine code for the particular
processor used. Fortran was an
early high-level language. Today,
“C”, “C+”, UNIX, JAVA are names
of sophisticated languages for
writing programs.

How Parts of a Processor Perform Their Functions
ALU—Arithmetic Logic Unit

The discussion now switches to how various parts of a processor perform their functions. The first of these
is the arithmetic logic unit (ALU). An arithmetic function performed by the ALU is addition, shown in
Figure 6-9. The central electronic circuit used for addition is an adder, shown in Figure 6-9a. The full-adder
has three inputs—the two binary numbers to be added and a carry input. Figure 6-9a shows not only the

Figure 6-8: Programming Computers

Assembly Language
Programming

Directly in
Machine Language

Sophisticated Language
Programming

Machine CodeMachine Code Machine Code

Assembler Compiler

Figure 6-8: Programming computers

TEAM LRN

96

Chapter Six

full-adder block diagram, but also its truth table. A truth table, remember, catalogs the state of the outputs for
all the states of the inputs. If A or B or Ci is a 1, the sum bit will be a 1. When A and Ci or B and Ci or A and B
are a 1, the sum bit is a 0 and Co will be a 1. When A and B and Ci are all 1s, the sum bit is a 1 and Co is a 1.

Figure 6-9b shows an 8-bit adder and the addition of two 8-bit binary numbers A and B. Note how the Co
output of one stage of the adder becomes the Ci input to the next stage to the left. The example shows how
the carry bit is generated and propagates to determine the sum bit at the next stage. The speed of operation
of the adder is determined by how long it takes the carries to propagate through the adder. Using the adder
multiple times, plus shifting, provides the multiplication function. Subtracting is performed by adding the
one’s (1’s) complement of one of the binary numbers instead of the number itself, and multiple subtrac-
tions, plus shifting, results in a division function.

ALU—Logic Functions

Figure 6-10 shows three logic
functions that are normally avail-
able in an ALU. Using A and B
4-bit binary numbers as examples,
the logic operations are performed
bit by bit giving the result C from
LSB to MSB. A 1 appears as
the result for the AND function
only when A and B are a 1. A 1
appears as the result C when A or B or both are a 1 in the OR function. The complement of the input—a 1
if input is a 0, or a 0 if input is a 1—will appear as the result C for the NOT function. The electronic circuit
that performs the NOT function is called an inverter.

An example of using the OR function to set particular bits in a binary number to a particular value is shown
in Figure 6-10b. In the 8-bit binary number for A, 01110110, bits b0 and b3 and b7 are 0. The program

A B

Ci

carry in
Full

Adder

Co

carry out
SUM S

 INPUTS OUTPUTS
 A B Ci S Co

 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

MSB LSB

S0S1S2S3S4S5S6S7

Co

Ci

 A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

 Carry 1 1 1 1 0

 A 0 1 1 1 0 1 1 1

 Carry

1 0 1 0

 B 0 1 1 0 0 1 1 0

 S 1 1 1 0 1 1 1 1 0 1

C6 C5 C2 C1

C6 C5 C4 C3 C2 C1 C0

Figure 6-9: The addition function

a. Full adder and truth
table

b. 8-bit adder A and B

 b7 b6 b5 b4 b3 b2 b1 b0
 A 0 1 1 1 0 1 1 0

 B 0 0 0 0 1 0 0 1

 C 0 1 1 1 1 1 1 1

 AND OR NOT

 A 0110 0110 0110

 B 1100 1100

 C 0100 1110 1001

C
A

C
A
BC

A
B

Figure 6-10: Logic functions

a. AND, OR, NOT logic b. OR function to change
bit value

TEAM LRN

97

Digital System Processing

requires that bits b0 and b3 be set to a 1. By performing an OR function between A and B, where B is the
binary number 00001001, the result C will have bits b0 and b3 set to a 1. The bits that were 1s in B will be
set to a 1 in the result C.

Memory and Input/Output
Figure 6-11a shows the
typical interface between a
microprocessor and memory.
This corresponds to what
was shown in Figure 6-1, but
details it just for memory.
The address bus carries
the binary code put out by
the microprocessor for the
address of information in
memory. The memory size determines the number of bits in the code. The data bus will either have data
on it that is put there by the microprocessor to store in memory (write to memory), or it will have data or
instructions that come from the address location (reading from memory) to the microprocessor. Whether
the memory is being written to or read from is controlled by the read/write signal. In addition, whenever
memory is to be used, whether writing or reading, an enable signal is sent to memory to activate it. The
read/write and enable signals are timed control signals operating at precisely designed times.

Input/output or I/O circuits operate very similar to memory as shown in Figure 6-11b. The microprocessor
sends out an I/O address on the address bus to specify which I/O is to be used. At the same time, a control
signal tells the I/O that it wants to input data to the microprocessor over the data bus; or that it wants to out-
put data that the microprocessor is placing on the data bus. As with memory, timed control signal enables
the I/O circuits. They are not active until the enable signal arrives.

Addressing Modes
Program instructions tell a digital processor what to do, where to find the information it is to use with the
instruction, and where to put the result after the instruction is executed. Addresses or addressing is needed
to direct the processor to the correct location. Addressing modes are the means by which the instruction
indicates the address. They are the designed ways that the instruction tells the processor how to locate the
information it needs to use with the instruction. There are several common addressing modes for digital
processors. Five different ones are shown in Figures 6-12, 13, 14, 15 and 16.

Immediate Addressing
Immediate addressing is diagrammed in Figure 6-12. The program counter contains a memory address that
points to the operation code (op code) of the instruction—the operation the instruction wants the proces-
sor to perform. Following immediately after the op code, in the next memory location, is the data on which
the instruction will operate. So if the instruction is addressed with immediate addressing, the code that
describes the operation to be performed is
in the memory location addressed by the
contents of the program counter, and the
data is in the next memory location. There
is relatively little decoding. The instruction
knows immediately where the data (oper-
and) is located.

Memory

Microprocessor

Input/Output

Microprocessor

Read/Write

Address Data

Memory
Enable

Address
(selects I/O)

Data

Input Data or Output Data

I/O Enable

Figure 6-11: Data to and from memory and input/output

+
Data

OP CodeMemory Loc.

Prog. Counter
Memory

(instruction) The op code is contained in the
memory location pointed to by

the PC followed, in the next
memory location, by the data

that is to be used.

Figure 6-12: Immediate AddressingFigure 6-12: Immediate addressing
TEAM LRN

98

Chapter Six

Register Addressing
Figure 6-13 diagrams register
addressing. Here the
data is not con-
tained in memory
locations but in
registers. The in-
struction contains
the op code and
specifies in which
register the source
data is located
and, if need be,
the register for the
destination data.

Register Indirect
Addressing
Figure 6-14 diagrams reg-
ister indirect addressing. In
register indirect addressing,
instead of specific registers
containing the data to be
operated on as in Figure
6-13, now the specific reg-
isters contain the memory
address of the data. Thus,
loading different memory lo-
cations in registers causes the
processor to operate on dif-
ferent data stored in memory.

Indexed Addressing

Figure 6-15 diagrams indexed
addressing. The next memory loca-
tion after the op code contains an
index. The address of the data to
be used is the sum of a value in a
register and the value of the index.
The instruction is used separately
for the source and for the destina-
tion. Indexed addressing is used
extensively for data that is grouped
together in memory. The program
can be modified quickly to select a
different set of data by changing the
index in the instruction.

OP Code S, D Decode

Register #

Register #

Data (operand)

Data (operand)Memory Loc.

Prog. Counter
Memory

(instruction)

The source and destination data are contained in registers. The instruction
contains the op code and specifies a register as a data location. In the case
shown, data is contained in a register for both the source and destination.

Figure 6-13: Register Addressing

Destination

Source

Figure 6-13: Register addressing

OP Code S, D

Data − D

Data − S

Decode

Register #

Register #

(operand) Data

(operand) Data

Memory Loc.

Prog. Counter
Memory

(instruction)

Instead of the register containing the data as in register addressing, the register
contains the memory address of the data. Thus, by loading the register with
different memory locations, different data is operated on by the instruction.

Figure 6-14: Register Indirect Addressing

Destination

Source

Figure 6-14: Register indirect addressing

Decode Register #

(operand) Data

For index addressing, the address of the data is the sum of a value contained in
a register and the value of the index. The selection of data addresses that appear
in groups can be modified quickly by changing the index.

Figure 6-15: Indexed Addressing

+
+Index

S/D

OP CodeMemory Loc.

Prog. Counter
Memory

(instruction)

Figure 6-15: Indexed addressing

TEAM LRN

99

Digital System Processing

Example 7. Register Indirect Addressing
Show an example of register indirect addressing.

Solution:

 0 0 0 0 0 0 1 0

Program Counter

The contents of memory
location 10000001 are moved
to memory location 10001010

Address
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1

Mov @ R1, @ R2

D

E

C

O

D

E

 1 0 0 0 0 0 0 1

REGISTER R1

 1 0 0 0 1 0 1 0

REGISTER R2

Source

Destination

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 0 1 0 1 0

1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1

 0 1 1 1 0 1 1 1

The program counter points to the memory address where the instruction MOV @R1,@R2 is located.
R1 and R2 are register numbers and the @ sign indicates that the contents of the register is the address
in memory where the information on which the instruction is to operate is located. The instruction,
with MOV as the op code, says move the contents of the memory location whose address is the con-
tents of R1 (the source) to the memory location whose address is the contents of R2 (the destination).

Direct or Symbolic Addressing

Figure 6-16 diagrams direct or
symbolic addressing. In immediate
addressing of Figure 6-12, the mem-
ory location following the op code
contained the data to be operated
on. In direct or symbolic addressing,
the next location in memory after
the op code is an address in memory
that contains the data.

Instruction sets for different pro-
cessors use specific symbols and
notations for their instructions and
for their addressing modes. They
usually are specific to the particu-
lar processor. In Chapter 7, there will be further discussion of the addressing modes used for the MSP430
family of microcontrollers.

Summary
This completes the discussion about the basic operation of a digital processor, some of its specific func-
tions, and how the processor is made to do what is instructed by a program to perform a desired task. In the
next chapter, the discussion centers on the details of programming the processor.

(operand) Data

As with immediate addressing, the instruction op code is contained in the
memory location, but now the next word does not contain the data for the
instruction, but contains a memory address for the data.

Figure 6-16: Direct or Symbolic Addressing

+
Memory Loc.

S/D

OP CodeMemory Loc.

Prog. Counter

Figure 6-16: Direct or symbolic addressing

TEAM LRN

100

Chapter Six

Chapter 6 Quiz
1. A digital processor, more commonly called a digital computer, has a unit that is the brain of the

system called the:
 a. I/O—input/output.
 b. permanent memory.
 c. temporary memory.
 d. CPU (central processing unit).
2. Each digital processor is manufactured to respond to:
 a. a wide variety of different sets of instructions.
 b. a particular set of instructions.
 c. only one or two instructions.
 d. only input/output instructions.
3. A digital processor responds to a program that is:
 a. designed to randomly operate the processor in many different sequences.
 b. always changes every time it runs the processor.
 c. a set of operations in a particular sequence to accomplish a task.
 d. not needed by the processor for most tasks.
4. The instruction/data bus is used:
 a. to send addresses to locate instructions and data to be delivered to the CPU.
 b. to identify inputs and outputs to receive or output data for the CPU.
 c. to send timing information throughout the system.
 d. a and b only above.
 e. c only above.
5. Clock signals in the digital processor:
 a. precisely control the transfer, manipulation and storage of information throughout the processor.
 b. must be very accurate in time.
 c. are a series of repetitive pulses that have fast rise and fall times.
 d. all of above.
 e. a and c only above.
 6. Power systems in digital processors:
 a. must have very accurate voltage regulators and good power dissipation control.
 b. require no precise voltage or current control.
 c. require little concern for power dissipation.
 d. operate with high voltage and high current.
7. The devices that have contributed most to low power dissipation in digital processors are:
 a. power transistors.
 b. bipolar logic transistors.
 c. CMOS—complementary-metal-oxide-semiconductor—integrated circuits.
 d. a mix of bipolar and MOS devices.
8. The data bus carries to memory a digital code representing:
 a. the instruction address and the data address.
 b. only the instruction address.
 c. only the data address.
 d. none of the above.

TEAM LRN

101

Digital System Processing

9. The arithmetic logic unit (ALU) in the CPU:
 a. provides the I/O capabilities.
 b. provides the clock capabilities.
 c. provides the storage capabilities.
 d. provides the logical, computational, and decision making capabilities.
10. Read-only memory (ROM), random-access memory (RAM) and registers are:
 a. logical circuits contained in the CPU.
 b. types of memory that are or maybe contained in a CPU.
 c. data transmission circuits contained in a CPU.
 d. I/O circuits contained in a CPU.
11. A microcontroller unit (MCU):
 a. is an industrial control computer made up from individual ICs.
 b. is the smallest possible microcomputer.
 c. is a microcomputer IC that is adapted to the industrial control market.
 d. is a computer made up of individual ICs, but designed for low-power use.
12. The MSB (most significant bit) of a word is:
 a. is the second bit in the code representing the word.
 b. is the left-most bit in the code representing the word.
 c. is the right-most bit in the code representing the word.
 d. is the middle bit in the code representing the word.
13. In a parallel data transfer:
 a. all bits arrive at a point at the same time.
 b. all bits do not arrive at a point at the same time.
 c. all bits are delayed one bit at a time.
 d. all bits arrive at a point one after another.
14. In a serial data transfer:
 a. all bits arrive at a point at the same time.
 b. all bits are collected, delayed, and then arrive at the same time.
 c. all bits are delayed, then arrive at a point at the same time.
 d. all bits arrive at a point one after another in sequence.
15. The ASCII code can identify:
 a. numbers only.
 b. letters only, not special characters.
 c. numbers, letters, special characters, commands.
 d. commands only.
16. Clock signals inside a digital processor:
 a. may trigger electronic circuits only on the falling edge.
 b. may trigger electronic circuits into action on either the rising or falling edge of the clock pulse.
 c. may trigger electronic circuits only on the rising edge.
 d. don’t trigger electronic circuits on the rising or falling edges.
17. An interrupt signal to a digital processor:
 a. speeds up the operation of a digital processor.
 b. controls a digital processor at unexpected or random times.
 c. acts just like any other digital processor control signal.
 d. none of the above.

TEAM LRN

102

Chapter Six

18. A mnemonic is a:
 a. short two or three letter symbol that represents a program instruction.
 b. random set of letter symbols that varies continuously.
 c. long set of letter symbols that is an instruction in itself.
 d. symbol that has no relationship to assembly-language programming.
19. Programs written in high-level languages:
 a. can be written for different processors using the same language.
 b. must be converted to machine code to run the processor.
 c. use a compiler to convert the high-level language to machine code.
 d. all of above.
 e. c only above.
20. Addressing modes for a digital processor:
 a. are always immediate addressing.
 b. are the designed ways the instruction tells the processor what to do.
 c. are the means by which the instruction indicates the action to be taken by the processor.
 d. c only above.
 e. b and c only above.

Answers: 1.d, 2.b, 3.c, 4.d, 5.d, 6.a, 7.c, 8.a, 9.d, 10.b, 11.c, 12.b, 13.a, 14.d, 15.c, 16.b, 17.b, 18.a, 19.d,
20.e.

TEAM LRN

103

Introduction
Many times the easiest way to understand how to do something is to work with examples. That is the sub-
ject of this chapter. By looking at small subprograms that have been written to accomplish specific tasks,
the reader will be introduced to assembly-language programming. The objective is to provide a base of
understanding of how an assembly-language program is formulated so that programs can be deciphered, at
least to obtain a “feel” for what the program is trying to accomplish. In no way will this chapter be a thor-
ough coverage of assembly language, its format, its detail, its uniqueness, but, hopefully, by taking small
segments of programs and discussing them, line by line, enough information will be transmitted to accom-
plish the basic understanding desired.

A Processor for the Examples
In order to be specific about the programs discussed and the tasks, a Texas Instruments MSP430 Fam-
ily microcontroller has been chosen to use for the programming examples because it is readily available,
well-supported with documentation and applications information, and has relatively inexpensive evaluation
tools. The family of microcontrollers is designed specifically for industrial control, instrumentation, and
measurement tasks with low-power, extended battery-life applications as prime design objectives. These
specifications are not necessarily important to its choice for this chapter. Rather, the easy-to-understand
architecture, instruction set, and family structure contributed significantly to the selection.

About the MSP430 Family
In Texas Instruments’ words, “The MSP430 devices constitute a family of ultra low-power, 16-bit RISC
microcontrollers with an advanced architecture and rich peripheral set. The architecture uses advanced timing
and design features, as well as a highly orthogonal structure to deliver a processor that is both powerful and
flexible.” The architecture is called “von Neumann” since all program, data memory and peripherals share a
common bus structure. RISC means reduced instruction set computer, and defines a specific design approach
for the microcontroller. There are only 27
core instructions, which, through the tech-
nique of combining core instructions—called
emulation—is expanded into a set of 51
instructions. The core instructions are built
into hardware, while the emulated instructions
are formed by the assembler (the program that
interprets the assembly-language mnemonics
and produces machine code).

Family Block Diagram
A MSP430 Family system block diagram is
shown in Figure 7-1. Note the 16-bit memory
address bus (MAB), the 16-bit memory data

CHAPTER 7

Examples of Assembly-
Language Programming

JTAG

CPU
Incl.

16 Reg.

ACLK

SMCLK

ACLK
SMCLK

MCLK

JT
A

G
/D

eb
ug

Bus
Conv.

MAB 16-Bit

MDB 16-Bit

Flash/
ROM

(Program)

RAM
(Data)

Peripheral
(I/O Port)

Peripheral
(I/O Port)

Peripheral
(I/O Port)

Peripheral
(USART)

Peripheral
(USART)

Peripheral
(Comparator)

Peripheral
(Timer_B)

Watchdog
Timer

MDB 8-Bit

MAB 4-Bit

R/W

Figure 7-1: MSP430 Family Block Diagram
Courtesy of Texas Instruments Incorporated

Oscillator
System
Clock

Figure 7-1: MSP430 family block diagram
Courtesy of Texas Instruments Incorporated.

TEAM LRN

104

Chapter Seven

bus (MDB), and the bus conversion for the I/O, USART and comparator. In Chapter 10, the MSP430F1232,
part of a family of MSP430F12XX devices, will be used in an application. How the MSP430F12XX de-
vices vary in the family is shown in Table 7-1.

Table 7-1: Devices of the MSP430F12XX family

MSP430F12XX Devices of the Family

 Memory

 430 Device Main Flash RAM I/O(8) BOR WDT TA C USART ADC

 F122 4kB 256B 256B 3 X X X 1 slope

 F123 8kB 256B 256B 3 X X X 1 slope

 F1222 4kB 256B 256B 3 X X X 1 SAR 10

 F1232 8kB 256B 256B 3 X X X 1 SAR 10

The MSP430F12XX devices have program memory that is Flash memory. The devices are identified with
a F in the device number as shown in Table 7-1. The Flash memory, which is made up of a large main
memory and a smaller information memory, provides in-system programmability that permits flexible code
changes, and, for remote systems that are battery operated, field upgrades. Flash memory is electronically
erasable programmable ROM (EEPROM), and is programmable and erased by applying a voltage. The
MSP430F12XX devices vary in program memory size from 4 kB to 8 kB, and all have the same size RAM.
They have three 8-bit I/Os, a watchdog timer (WDT), and 16-bit PWM timer (TA), a USART communica-
tion interface, and ADCs. Some have no comparators (C), some have brownout reset (BOR), and the ADC
varies from slope to SARs. They are packaged in 28-pin packages. The brownout reset is a function that
resets the microcontroller when the power supply voltage reaches a critical low value. When the power sup-
ply voltage is re-established, the microcontroller starts again from the RESET condition.

MSP430 Family Characteristics

The MSP430F1XXX family, which extends through the F13x, F14x, F15x, and F16x devices, includes de-
vices with more USARTs and timers, hardware multipliers, 12-bit ADCs, an I2C communications bus, and
SVSs—supply voltage supervisors. These devices are in 64-pin packages.

Another family group, the MSP430F4XX devices, extends the family into 64-pin and 80-pin packages. The
devices have up to 60 kB of program memory and 2 kB of RAM, and most have 12-bit ADCs. All have
LCD drivers—from 96 to 160 segments.

A segment of the family is based on ROM programming, the MSP430C or P3XX devices. They have
similar LCD drivers to the F4XX devices, but do not have Flash memory. There are devices with 32 kB
of program memory and 1 kB of RAM, but the most exotic have 6-channel, 14-bit ADCs that are pack-
aged in 64-pin packages. Other devices are in 100-pin packages and have 32 kB of program memory, 1 kB
of RAM, an 8-bit interval timer, a 16-bit timer A, a USART, and a hardware multiply. Such a variety of
devices allow the designer of control systems a wide choice of design options.

The CPU
The CPU for the family is the same. As mentioned previously, it is a 16-bit RISC CPU. It consists of a
16-bit ALU, 16 registers and instruction control logic. The register arrangement is shown in Figure 7-2a.
Note the common memory address bus (MAB) and memory data bus (MDB). Four of the registers are
for special purposes: program counter, stack pointer, status register and constant generator. The rest are

TEAM LRN

105

Examples of Assembly-Language Programming

general-purpose registers. The
constant generator supplies
instruction constants, and is not
used for storage. The sixteen
fully-addressable, single-cycle
16-bit registers and orthogonal
architecture provides versatil-
ity and simplicity in system
applications.

Program Memory and
Data Memory
A map of memory available for
the MSP430 family is shown in
Figure 7-2b. There are 64KB
(65,536) of addressable memory
spaces divided over the address
spaces from 0 to hexadecimal
0FFFFh (1111 1111 1111 1111
in straight binary). The special-
function registers and peripheral
module addresses are from 0
to 01FFh. Recall that an h after
the address notation means it is
in hexadecimal format and that
01FFh is really a 16-bit word
with bits of 0000000111111111.
In hexadecimal notation, when
the hexadecimal address starts
with the MSB of A,B,C,D,E or
F, a zero is placed in front of the
hexadecimal value to make sure the address is identified correctly, for example, 0BE14h.

The memory addresses (memory space) from 0200h to 0FFFFh are shared by data and program code mem-
ory. The space from 0FFE0h to 0FFFFh is reserved for a table of interrupt vectors in Flash/ROM (Flash
for F devices) and more Flash/ROM is devoted to program, branch control tables and data tables below the
address 0FFDFh. The remaining addresses are used for Flash/ROM and RAM (random access memory)
and are used for program and data storage.

Words of data, which occupy 16 bits or 2 bytes, are only located at even addresses, while bytes can be
located at odd or even addresses. If a data word is located at an even address, the low byte is at the even ad-
dress and the high byte is at the next odd address. The typical arrangement is shown in Figure 7-2c. Word A
shows the actual bits of the high and low bytes, while word B is just identified by the position of the “high
byte” and the “low byte.”

Note also that if a peripheral module is a 16-bit module, its address will be between 0100h and 01FFh. If
it is an 8-bit module, its address will be between 010h and 0FFh. The addresses from 0 to 0Fh are reserved
for special-function registers, SFRs. The functions served by the various portions of memory are shown

• • •

 15 14 . . Bits . . 9 8

 7 6 . . Bits . . 1 0

Byte

Byte

Word (High Byte)

Word (Low Byte)

• • •

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Word A

Word B

















c. Bits, Bytes and Words in a Byte-Organized Memory

Courtesy of Texas Instruments Incorporated

Figure 7-2: CPU, Registers and Memory Map

a. The RISC CPU and its registers

b. Overall memory

c. Bits, bytes and words in a
byte-organized memory

Figure 7-2: CPU, registers and memory map
Courtesy of Texas Instruments Incorporated

TEAM LRN

106

Chapter Seven

in Figure 7-2b, and shows that some of the functions are only accessible with 8-bit (byte) or 16-bit (word)
instructions, while others are accessible with either 8-bit or 16-bit instructions.

Instructions are fetched from program memory with 16-bit addresses, while data memory can be addressed
either using 16-bit or 8-bit instructions. Program code can either be in Flash/ROM or RAM because the
Flash/ROM and RAM are connected via the same two buses: the memory address bus (MAB) and the
memory data bus (MDB). In addition to program code, data can be placed in the Flash/ROM section of the
memory map, a significant advantage for data tables.

Peripherals
The variation of peripherals is one of the major advantages of the MSP430 family. A general overview of
the peripheral variations were pointed out in the family discussion, but more specific variations are shown
in Figure 7-1. Shown are variations of the available I/O ports, as well as a comparator and a USART
(Universal Synchronous/Asynchronous Receiver/Transmitter). Within the family, also available are differ-
ent ADCs, different timers, and even a hardware multiplier. Most of the peripherals operate in byte format,
and modules with 8-bit data buses are connected by bus-conversion circuitry to the 16-bit CPU. Most of the
peripherals use a 5-bit memory address bus.

Operation Control and Operating Modes
The contents of the special-func-
tion registers, mentioned previously,
control the operation of the different
MSP430 functions. The bits con-
tained in the register(s) select system
operation, enable interrupts, provide
information about the status of inter-
rupt flags (caution signals that tell a
program whether it can continue or
not) and define the operating modes
of the peripherals.

Because the microcontroller that is
used for the example digital processor
has been designed to operate at low
power, and many of its applications are battery powered, there are a number of operating modes specially
directed to saving power consumption. Six operating modes, AM through LPM4, are shown in Figure 7-3.
AM is the active mode where the CPU is powered as well as all other modules that are designated to be
active by the program. Modes LPM0 to LPM4 are so-called low-power modes with successively less power
dissipated. If the operating mode is one of the LPM modes, anytime the CPU is required by the program,
it must be called into the active mode by the program. To simplify the operation for the examples in this
chapter, the only modes used will be the active mode and the LPM3 mode.

Watchdog Timer
There is another component within the MSP430 microcontroller, the watchdog timer that is particularly as-
sociated with remote low-power operation. It is shown in Figure 7-1. It is called a watchdog timer because its
primary function is to perform a controlled system restart after a software problem occurs. This is for system
protection in case an application is in a remote battery-operated location and some glitch causes a software
failure. After a set time interval, a system reset is generated and the program is restarted. What is important is

 Mode Status Register Bits CPU Clock Functions

 SCG0 SCG1 OSCOFF CPUOFF MCLK SMCLK ACLK DCO

 AM 0 0 0 0 ON ON1 ON1 ON1 ON1

 LPM0 0 0 0 1 OFF OFF ON ON ON2

 LPM1 1 0 0 1 OFF OFF ON ON OFF

 LPM2 0 1 0 1 OFF OFF OFF ON OFF

 LPM3 1 1 0 1 OFF OFF OFF ON OFF

 LPM4 1 1 1 1 OFF OFF OFF OFF OFF

Notes:
 1. Various modules are active as required.
 2. If DCO is used as clock source.

Figure 7-3: Operating modes of MSP430 family

TEAM LRN

107

Examples of Assembly-Language Programming

that if the system is operating properly and the watchdog timer is active, the program must reset the watch-
dog timer before its time interval expires, otherwise the system will be reset. If the watchdog timer function
is not necessary, the timer can be used as an interval timer. Such use is in one of the program examples.

System Reset
To make sure a system application always starts the same way, a reset of the system is initiated by the turn-
on of power, called a power-on reset (POR). There is also another reset, called power-up clear (PUC), that
is for resetting if the watchdog timer has expired, or there is some system violation. Reset is considered a
system interrupt.

Interrupts
In Chapter 6, an interrupt was
described as a signal that interrupts
the digital signal processor from
what it is doing and directs it to do
something different as indicated by
the interrupt signal. It may control
the digital processor at unexpected
or random times.

One of the most common types of
interrupts is from one of the periph-
eral modules, such as an I/O unit.
The processor has had to wait on
an input until it is available. Now it
is available and signals the proces-
sor with an interrupt signal, and the
processor accepts the input. If an-
other interrupt were to occur simultaneously, the MSP430, as shown in Figure 7-4, has an interrupt priority
scheme. The peripheral modules that are nearer the CPU in the connection chain have the higher priority in
case two signals were to appear at the processor at the same time. While the interrupt occurs, all other inter-
rupts are blocked by default. For specific devices the modules included have specific hardware positions in
the chain. Each device’s interrupts are described in an interrupt vector table in the data sheet for the device.

Oscillators and Clock Generators
Included in the microcontroller is a built-in oscillator that uses only an external crystal. The common oscil-
lator uses a watch crystal and oscillates at 32,768 Hz, but using a higher-frequency crystal, it can oscillate
at frequencies from 1MHz to 8MHz. In addition, there is a digitally-controlled oscillator that is digitally
tuned. Such flexibility makes it easy to select a particular clock operating frequency.

The MSP430 basic clock system is shown in Figure 7-5. For the MSP430F12XX microcontroller used for
this chapter, the LFXT1 oscillator is the low/high frequency crystal oscillator mentioned above. The DCO
oscillator is a RC-type oscillator and is digitally controlled to adjust the frequency. Other family devices
have a second crystal oscillator, XT2, that can oscillate at frequencies from 450kHz to 8MHz.

The main system clock, MCLK, can use either LFXT1 or DCO as its source controlled by the state of the
selection bits SELM. By software commands setting the state of the DIVM bits, the source for MCLK
can be divided by 1, 2, 4, and 8. The state of the DCOR bit, which chooses either an internal or external
resistor, defines the fundamental frequency of the DCO. Then the state of the RSEL bits selects one of

Figure 7-4: MSP430 interrupt priority scheme
Courtesy of Texas Instruments Incorporated

TEAM LRN

108

Chapter Seven

eight nominal frequency ranges defined
in the specific device data sheet. The
three DCO bits divide the DCO range
selected by the RSEL bits into eight
frequency steps approximately 10%
apart. Because the DCO is a RC-type
oscillator, its frequency varies with
temperature, voltage and from device
to device. The five MOD bits set the
conditions to adjust and stabilize the
DCO frequency.

The action of the three RSEL bits and
the three DCO bits to set the DCO
frequency after the fundamental fre-
quency is set is shown in Figure 7-5b.
The three RSEL bits, based on their
binary value, select one of eight moni-
nal frequency ranges for the DCO. The
ranges are defined for a specific device
in the device’s data sheet. The three
DCO bits, based on their binary value,
divide the DCO range selected by the
RSEL bits into eight frequency steps,
approximately 10% apart. Thus, setting
the binary value of the RSEL and DCO
bits will result in a DCOCLK frequen-
cy for the system. The typical ranges
and steps are shown in Figure 7-5b.

The auxiliary clock, ACLK, uses LFXT1 as its
source, and divides LFXT1 down by 1, 2, 4,
and 8 based on the state of the DIVA bits.

The subsystem clock, SMCLK, uses either
XT2CLK or DCO as its source, again divided
by 1, 2, 4, or 8 based on the state of the DIVS
bits. However, when XT2CLK is not present,
as is the case for the MSP430x11xx and x12xx
devices, an internal connection is made in the
MSP430 that connects LFXT1CLK in its place.

The choice of which clock system to use is
based upon the application. Systems requiring
very precise timing with little variation allowed
will use the high-frequency crystal oscillators
as sources. Systems with very nominal speed
and accuracy for the timing and require very
low power will use the DCO.

a. Clock system block diagram

Figure 7-5: MSP430 basic clock system
Courtesy of Texas Instruments Incorporated

b. Typical DCOx range and RSELx steps

TEAM LRN

109

Examples of Assembly-Language Programming

Timers
Timers are digital counters that use a clock at a set frequency as the source to establish time intervals by
counting a certain number of input pulses. Thus, specific time periods can be established either by the num-
ber of pulses counted, or by changing the frequency of the pulses.

The timers in the MSP430 family are 16-bit counters that are extremely versatile. Their sources can be
programmed to be any one of those shown in Figure 7-5. Some of the counters can be programmed to be
8-, 10-, or 12-bit counters. Each timer has capture/compare register blocks that sense when the counter has
reached a particular count (capture) and compare the count to a set target. An output signal from the cap-
ture/compare block can be used as an interrupt or as an external signal. These timers are particularly useful
to keep track of elapsed time, to set time intervals within which specific action occurs or is to occur, and to
produce resets, alerts or warnings.

Addressing Modes
Addressing modes were discussed in
general in Chapter 6. Now the specific
modes used in the MSP430 family will
be discussed—the format, the symbols
used, and a description of the modes.
The seven addressing modes are shown
in Figure 7-6; note the column As/Ad.
As are bits in an instruction that define
the addressing mode used for the source,
and Ad are bits in an instruction that
define the addressing mode used for the
destination. In Figure 7-6, addressing
modes 1, 2, 3 and 4 have bits in the As
and Ad column; therefore, they can be
used to address both the source and the
destination. Modes 5, 6 and 7 can be
used for the source only. Here is a short
discussion of each addressing mode:

1. Register Mode—The symbol is Rn

If register mode addressing is used, the content of the register is the operand. For example, the instruction
Mov R1,R2 means that register addressing is used for both the source, register R1, and the destination, reg-
ister R2. The contents of R1 are moved to R2. R2 is changed but R1 remains the same. Register mode can
be used either for the source or the destination or both.

2. Indexed Mode—The symbol is X(Rn)

The X is an index that is added to the contents of Rn to form an address that is either the source of or the
destination for the operand. For example, for the instruction Mov 2(R1),4(R2). The operand at the source
address (R1 + 2) is moved to the destination address (R2 + 4). The X index is stored in the next word after
the instruction; the source in the first word and the destination in the second word. The contents of R1 and
R2 are not affected.

Figure 7-6: Addressing Modes

 As/Ad Addressing Mode Syntax Description

 1. 00/0 Register mode Rn Register contents are operand

 2. 01/1 Indexed mode X(Rn) (Rn + X) points to the operand

 X is stored in the next word

 3. 01/1 Symbolic mode ADDR (PC + X) points to the operand

 X is stored in the next word.
 Indexed mode X(PC) is used.

 4. 01/1 Absolute mode &ADDR The word following the instruction
 contains the absolute address.

 X is stored in the next word.
 Indexed mode X(SR) is used.

 5. 10/− Indirect register @Rn Rn is used as a pointer to the
 mode operand.

 6. 11/− Indirect @Rn+ Rn is used as a pointer to the
 autoincrement operand. Rn is incremented
 afterwards by 1 for .B instructions
 and by 2 for .W instructions.

 7. 11/− Immediate mode #N The word following the instruction
 contains the immediate constant
 N. Indirect autoincrement mode
 @PC+ is used.

Figure 7-6: Addressing modes

TEAM LRN

110

Chapter Seven

3. Symbolic Mode—A symbol name such as ADDR

A symbolic name is given to the address of the operand, either the source or the destination or both. For
example, the instruction Mov ADDR,END says to move the contents at the source address ADDR to the
destination address END. The symbol ADDR and END are assigned digital words that are substituted by
the assembler to make up the proper address.

4. Absolute Mode (&ADDR)

The & symbol is added in front of the operand, &ADDR. The & symbol indicates that the absolute op-
erand address is contained in the word following the instruction. Absolute mode can be used for both the
source and the destination. For example, the instruction Mov &ADDR,&END says move the contents of
the source address ADDR to the destination address END. However, no calculations are involved as for
symbolic mode. The absolute address for both the source and destination are in the words following the
instruction, the source in the first word, the destination in the second word.

5. Indirect Register Mode (@Rn)

The @ symbol is added in front of a register number, @Rn. This is an addressing mode that is valid only
for the source. It indicates that the contents of the source are to be used as the address of the operand. For
example, the instruction Mov @R1,0(R2) says to move the contents at the source address, the contents of
R1, to the destination address. Since indirect register mode cannot be used for the destination, the substitute
for the destination operand is 0(R2), which means the destination address is the contents of R2. R1 and R2
are not modified.

6. Indirect Autoincrement (@Rn+)

Besides the @ symbol added in front of a register number a plus sign (+) is added after the register, @Rn+.
This is the same addressing mode as for the indirect register mode except the source register content is
incremented by one for a byte operation and by two for a word operation after the instruction is completed.

7. Immediate Mode (#N)

The # symbol is added in front of the operand, usually a constant number, #N. The # symbol, states that
the number indicated, which is contained in the word following the instruction, is the source operand. The
immediate mode can only be used for source addressing. For example, the instruction Mov #9, ADDR says
that the constant 9 is to be moved to the destination ADDR (symbolic addressing). When executed, the
program counter points to the word following the instruction and moves its contents (the number 9) to the
destination ADDR.

More on MSP430 Control
It will be important to the understanding of assembly-language programming to look further how the
MSP430 microcontroller is controlled. One of the principal features of its design is the use of registers to
implement the control. The state of a particular bit or particular bits in a register determines the operating
condition or action of a particular function inside the MSP430.

The Status Register

The status register, SR, shown in Figure 7-7, is a prime example. It is register R2 of the sixteen 16-bit regis-
ters in the CPU shown in Figure 7-2a. The status register, R2, has nine active bits; the remaining seven are
available for future expansion. The LSB is the zero bit; the eight bit is the MSB. Each of the nine bits has
a specific control over the CPU, or its state dictates that a particular action has occurred. For example, the
four bit is labeled “CPUOFF.” If the four bit is set (to a 1), the CPU will be off. Program execution stops,

TEAM LRN

111

Examples of Assembly-Language Programming

but the RAM, the port registers and any enabled peripherals stay active. The CPU is awakened when any
enabled interrupt occurs.

The five bit, labeled “OSCOFF,” if set (to a 1), the crystal oscillator enters the off mode. The DCO remains
ON so the CPU can be running. The RAM contents, the ports, and the registers are maintained. Wake up is
possible only through enabled external interrupts.

The three bit is the general-interrupt-enable bit, GIE. If set, all enabled maskable interrupts are handled;
if reset (to a 0), all maskable interrupts are disabled, GIE is cleared by interrupts and set by a return from
interrupt, RETI instruction, as well as other appropriate instructions. The six and seven bit, labeled SCG0
and SCG1, respectively, determine, through their bit combination, which clock is active. If SCG0 is set (to a
1), the DCO dc generator is turned off; however, this only happens if the DCO is not being used as a source
for MCLK or SMCLK. If SCG1 is set, SMCLK is turned off. It must be noted, as discussed in Figure 7-3,
that the bits OSCOFF, CPUOFF, SCG0 and SCG1 work together to define an operating mode, not indepen-
dently to provide various control. The eight bit, labeled V, is an overflow bit. It is set when the result of an
arithmetic operation overflows the signed-variable range.

The zero, one and two bits are labeled C, Z, and N, respectively. The C or carry bit is set when a byte or
word operation called for in an instruction produces a carry. It is cleared if no carry occurs. The Z or zero
bit is set if the result of a byte or word operation is zero; if the result is not zero, it is cleared (set to a 0).
The negative bit, N, is set if the result of a byte or word operation is negative, and is cleared when the result
is not negative. Instructions in the program will test the C, Z, or N bits and the CPU will respond as directed
by the program instructions. Operations as a result of an instruction, or the instruction itself, can set the bits
so that the CPU is controlled accordingly.

Basic Clock System Control Registers

The basic clock system is set up (configured) by using three control registers, the DCOCTL (the digitally-
controlled oscillator control register), and the two basic clock system control registers, BCSCTL1 and
BCSCTL2. In addition, SCG1, SCG0, OSC0FF and CPUOFF bits in the status register control the operat-
ing mode as described. The DCOCTL register and a brief description of its bits and what they control is
shown in Figure 7-8. The code represented by the state of the DCO bits defines one of eight frequency steps

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved for further expansion

Status
Register
SR

 V SCG1 SCG0 GIE N Z COSC
OFF

CPU
OFF

Overflow
Set = 1 when the result
of an arithmetic operation
overflows the signed-
variable range.

V Overflow bit
SCG1 System clock generator control bit 1
SCG0 System clock generator control bit 0
OscOff Crystal oscillator off bit
CPUOff CPU off bit
GIE General interrupt enable bit
N Negative bit
Z Zero bit
C Carry bit

If = 1
turns off
SMCLK.

If = 1
turns off
DCO dc
generator
if DCOCLK
is not used
for MCLK
or SMCLK.

If = 1 XTAL
OSC is off wake
up is possible
only through
enabled
external
interrupts when
GIE bit is set
and from NMI.

If = 1 CPUOFF
and program
execution stops.
Wake up is
possible through
all enabled
interrupts.

If = 1 all
enabled
interrupts are
handled. If = 0
all maskable
interrupts are
disabled.

Set = 1 if the
result of a
byte or word
operation is
negative and
cleared when
result is not
negative. Set = 1 if the

result of a byte
or word
operation is 0;
cleared if
result is not 0.

Set = 1 if result of
byte or word
operation produces
a carry; cleared to 0
if no carry occurs.

Figure 7-7: Status register R2

TEAM LRN

112

Chapter Seven

within the DCO frequency range set by the
RSEL bits in the BCSCTL1 control regis-
ter. This was explained previously (Figure
7-5). The state of the five MOD bits set a
modulation constant used to adjust the DCO
frequency. At power up, the power-up control
signal (PUC) loads the DCOCTL register
with 060h to set the initial DCO frequency.

The two basic clock system control registers,
BCSCTL1 and BCSCTL2, are shown in Fig-
ure 7-9, along with a brief description of the
control affected by the bits of each register.
BCSCTL1 controls basic clock system 1 and
BCSCTL2 basic clock system 2. Referring
to Figure 7-5 and BCSCTL1 in Figure 7-9,
the XTS bit determines if the LFXT1 oscillator will operate with a low-frequency or high-frequency crystal
to produce the LFXT1 clock source. The states of the DIVA bits determine if clock source LFXT1 is going
to be divided by 1, 2, 4 or 8 to produce the clock ACLK. The RSEL bits 0, 1, and 2 determine the nominal
frequency range of the DCO as previously discussed for Figure 7-5b.

Referring to Figure 7-5 and BCSCTL2 in
Figure 7-9, the SELM bit states determine
if DCO, XT2 or LFXT1 are going to be the
source for the MCLK clock. The DIVM bit
states determine if the clock source is go-
ing to be divided by 1, 2, 4 or 8 to produce
MCLK. Likewise, the 3 bit, the SELS bit,
state determines if DCOCLK, XT2CLK
or LFXT1CLK will be the source for the
SMCLK clock. The DIVS bit states deter-
mine if the source to SMCLK will be divided
by 1, 2, 4 or 8. The DCOR bit controls
whether current is going to be supplied to
the DCO from an internal or external resistor
to control oscillations. The complete clock
system for the MSP430 can be set up initially
using instructions to the CPU to set the bits
of the DCOCTL, BCSCTL1 and BCSCTL2
registers.

Watchdog Timer

The WDTCTL register controls the watch-
dog timer. It is shown in Figure 7-10, and
a description of the control that each bit
applies in a particular state is included. When
the watchdog timer function is active, the WDTTMSEL bit must be 0 to be in the watchdog mode and the
WDTHOLD bit must be 0; if WDTHOLD is set, the counting stops.

 7 6 5 4 3 2 1 0 Bit
 4 2 1 16 8 4 2 1 Bit Value

DCO2
DCOx
DCO1 DCO0 MOD4 MOD3

MODx
MOD2 MOD1 MOD0

Figure 7-8: The Digitally-Controlled Oscillator (DCO) Control Register

The 3-bit code sets
a binary value that
defines one of
eight frequency
steps in the
frequency range
selected by the
binary value of the
three RSEL bits in
the BCSCTLI
register (see
Figure 7-5b)

The 5-bit code whose binary
value defines how often the
fDCO+1 frequency is used within a
period of 32 DCOCLK cycles to
modulate and adjust the DCO
frequency. During the remaining
clock cycles (32-MODx) the
fDCO frequency is used. When
DCOx = 7, the highest frequency
has been selected and
modulation is not possible.

DCOCTL

Figure 7-8: The digitally-controlled oscillator
(DCO) control register

 7 6 5 4 3 2 1 0 Bit

XT2OFF XTS
RSELx

 RSEL2 RSEL1 RSEL0
XT5V

The 3-bit code sets a
binary value that selects
one of eight nominal
frequency ranges for the
DCO. The lowest
frequency range occurs
when the code is 000.
(see Figure 7-5b)

BCSCTL 1
057h

If it is not
used for
MLCK or
SMCLK,
controls
XT2 OSC.
If = 0
OSC ON
If = 1
OSC OFF

If = 0
LFXT1
OSC uses
Low f xtal

If = 1
LFXT1
OSC uses
hi f xtal

 Div
 0 0 1
 0 1 2
 1 0 4
 1 1 8

Code
determines

division
factor DIV
for ACLK

 7 6 5 4 3 2 1 0 Bit

SELS DCORBCSCTL 2
058h

Source for MLCK
 0 0 = DCOCLK
 0 1 = DCOCLK
 1 0 = *
 1 1 = LFXT1CLK

* This is XT2CLK if
XT2 is present.
Otherwise, it is
LFXT1CLK.

DIVAx
 DIVA1 DIVA0

Should
always

be reset
to 0

SELMx
 SELM1 SELM0

DIVMx
 DIVM1 DIVM0

DIVSx
 DIVS1 DIVS0

 Div
 0 0 1
 0 1 2
 1 0 4
 1 1 8

Code
determines

division
factor DIV
for MLCK

SMCLK
source
If = 0

source is
DCOCLK

If = 1
source is
XT2CLK

or
LFXT1CLK

DCO
operation

If = 0
DCO operates
from internal

resistor
If = 1

Internal R off.
DCO can’t

operate unless
driven by

external resistor.

 Div
 0 0 1
 0 1 2
 1 0 4
 1 1 8

Code
determines

division
factor DIV
for SMCLK

a. BCSCTL 1

b. BCSCTL 2

Figure 7-9: Basic clock system control registers

TEAM LRN

113

Examples of Assembly-Language Programming

If the watchdog timer is
active, software should
periodically reset the
watchdog timer by writing
a 1 to the WDTCNTCL
clear bit to prevent the
timer interval from expiring
and restarting the system.
Setting WDTCNTCL (to
a 1) restarts the counter,
WDTCNT, at 0000h. The
WDTSSEL bit selects the
clock source for WDTCNT,
when = 0 the source is
SMCLK; when = 1 the
source is ACLK. The state
of the WDTIS bits determines the time interval of the clock, either with SMCLK or ACLK as the source.
The code for the time interval is shown in Figure 7-10.

The five bit, WDTNMI, controls whether a pin, RST/NMI, is a reset input or a nonmaskable interrupt input
(NMI). When the state of WDTNMI is a 0, the RST/NMI input is a level-sensitive reset input, and when the
state is a 1, it is an edge-sensitive nonmaskable input. When WDTNMI is set to 1, the six bit, WDTNMIES,
controls whether the input triggers on the rising (WDTNMIES = 0) or falling edge (WDTNMIES = 1) of
the input signal.

Timer_A Control Register

There is a 16-bit, general-purpose timer in the MSP430F1232 device used for this chapter, called Timer_A.
Its control register, TACTL, is shown in Figure 7-11, with a description of the control each bit applies in a
particular state.

Figure 7-10: Watch Dog Timer Control Register

 6 5 4 3 2 1 0 Bit 15 14 13 12 11 10 9 8

WDTPW

8-bit code is a Password.
If register is to be written,
password 05Ah must be in
WDTPW. When register is
to be read, 069h is loaded
into WDTPW.

Status of WDT
If = 0

WDT is active
If = 1

WDT is off
Watchdog timer

HOLD.

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL
WDTISx

 WDTIS1 WDTIS0

When
WDTNMI = 1
Edge Select

If = 0
NMI triggers

on rising edge
If = 1

NMI triggers
on falling edge

WDTNMI
Select
Selects

function of
RST/NMI pin

If = 0
Reset function

If = 1
NMI function

WDT Mode
Select
If = 0

WDT Active
If = 1

Interval
timer

WDTCNT
Source

0 − SMCLK
1 − ACLK

Clears WDT
Counter

If = 0
No Action
Writing 1
to this bit
restarts

WDTCNT
at 0000h

WDT Timer
Interval Select
The 2-bit code
determines the
division of the
clock source
to provide a
time interval
as follows:

0 0 WDTCLK Source / 32768
0 1 WDTCLK Source / 8192
1 0 WDTCLK Source / 512
1 1 WDTClock Source / 64

WDTCTL
1120h

Figure 7-10: Watch dog timer control register

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

Clock Source
 0 0 * TACLK
 0 1 ACLK
 1 0 SMCLK
 1 1 * INCLK

*see data sheet
for particular device

Unused bits

TAIFGTAIETACLR
TACTL
160h

TASSELx
 TASSEL1 TASSEL0

IDx
 ID1 ID0

MCx
 MC1 MC0

X

 Div
 0 0 1
 0 1 2
 1 0 4
 1 1 8

Code
determines
division factor
DIV for the
input clock
source

Mode
control
of timer

 0 0 STOP
 0 1 Counts up
 to value in
 TACCRO, then
 restarts at 0
 1 0 Counts
 continuously to
 OFFFFh and
 restarts at 0
 1 1 up/down
 continuously
 counts up to
 TACCRO value
 and back down
 to 0

Unused

Timer_A
Interrupt

Flag

0 − No interrupt
 pending
1 − Interrupt
 pending

Timer_A
Interrupt Enable

If TAIE = 1, interrupt
request from timer

overflow bit is
enabled. If = 0,

disabled.

Timer Clear
If CLR bit is set,

timer is reset

Figure 7-11: Timer_A control register
TEAM LRN

114

Chapter Seven

The TASSEL bit states determines the clock source to be used for Timer_ A, either internal clocks ACLK
or SMCLK or an external source TACLK. After clock selection, the state of the ID bits control whether the
clock source is passed directly to Timer_A, or whether it is divided by 2, 4 or 8. The state of the MC bits set
the mode of the timer as shown. The modes of the timer are further clarified in Table 7-2.

 Table 7-2: Mode of Timer_A

 MC1 MC0 Mode

 0 0 Stop

 0 1 Up (from 0 to value TACCRO)

 1 0 Continuous (from 0 to 0FFFFh, then restart at 0)

 1 1 Up/Down (counts up to TACCRO value, then back to 0)

To clear the counter, the two bit, TACLR, is set to a 1. The remaining one bit and zero bit control the re-
sponse to an interrupt generated when Timer_A reaches a specific value. The interrupt sets a flag, TAIFG,
and the TAIE bit enables the interrupt if it is set to a 1 or disables the interrupt if it is reset to a 0.

Input/Output Control

Previous discussion stated that the I/O ports in the MSP430 could be programmed to be inputs or outputs. For
the family device used for this chapter there are three I/O ports, 1, 2 and 3. Figure 7-12 shows the registers
that can be programmed to configure the external pins of the MSP430. There are PxIN input registers; there
are PxOUT output registers; there are PxDIR direction registers and there are PxSEL function-select registers.

All I/O ports are initially inputs when the machine powers up. If the zero bit of P1DIR is set to a 1, then
the external Pin1.0 will be an output; if its state is a 0, the external Pin1.0 will be an input. Any input signal
from pin P1.0, when programmed as an input, will be stored in the zero bit of the P1IN register. When pin
P1.0 is programmed as an output by P1DIR, the P1OUT register zero bit is output to P1.0. Correspond-
ingly, the other bits of P1IN and P1OUT will either receive data into their register or output data from their
register based on the programming in the P1DIR register.

External pins can be used by other modules rather than I/O ports 1, 2 and 3. The PxSEL bits of the func-
tion-select register controls the selection. When the PxSEL bit for a particular pin is set to a 1, that pin will
be used by a module other than port 1 or 2 or 3. The data sheet for the particular device, with its package
pin layout, will indicate if pins have multiple function capability. When the multiple capability is available,
the PxSEL must be configured to select the proper pin function.

To summarize, the PxDIR register bits are set (= 1) to dictate if the external pins of the I/O ports are to be
outputs. The initial condition is that all I/O ports are inputs. Any input signal will be placed in the PxIN
register(s). Any output pins will receive signals from the PxOUT register(s). If a particular external pin is
not to be an I/O output or input from Port 1, 2 or 3, then the bits of the PxSEL register(s) are set to select
the function that is to be on the pin. The functions available for the pin are called out on the data sheet for a
particular device.

Further Thoughts
Some further thoughts and concepts need to be examined before an actual assembly-language program is
explained. The first of these is symbolic notation.

TEAM LRN

115

Examples of Assembly-Language Programming

Symbolic Notation

Recall that the actual
1s and 0s (machine
language) that direct
the circuits inside of
a digital processor for
a particular program
must be formulated or
coded for each instruc-
tion. This has been
mentioned previously
but it bears repeating.
The language used for
our programming is
assembly language. To
convert assembly-lan-
guage programming to
machine language an
assembler, a com-
puter program that
converts the mnemonic
instructions used in
assembly-language
programs into the 1s
and 0s of machine
code, is required. The
assembler has been
developed to recognize
symbolic represen-
tations such as the
mnemonics used for
the assembly-language
instructions; such as
symbolic names used
to identify register bits,
system commands,
system names, or
system signals. When the assembler sees the respective symbolic name it has been programmed to insert
a specific binary number that represents the symbol. Unique reference lists have been developed for the
assembler of a specific device or family of devices that assign the binary numbers to symbolic names used
for the devices. As the assembler reads the assembly-language program and encounters a symbolic name, it
inserts the respective binary number and “assembles” the machine code for the program.

Table 7-3 is an example portion taken from a “Standard Register and Bit Definitions for the Texas Instru-
ments MSP430 Microcontroller Family” reference list contained in the Appendix.

P1OUT
bit 7

P1IN
bit 7

P1SEL
bit 7

P1DIR
bit 7

O.B.

P1OUT
bit 6

P1IN
bit 6

P1SEL
bit 6

P1DIR
bit 6

O.B.

P1OUT
bit 5

P1IN
bit 5

P1SEL
bit 5

P1DIR
bit 5

O.B.

P1OUT
bit 4

P1IN
bit 4

P1SEL
bit 4

P1DIR
bit 4

O.B.

P1OUT
bit 3

P1IN
bit 3

P1SEL
bit 3

P1DIR
bit 3

O.B.

P1OUT
bit 2

P1IN
bit 2

P1SEL
bit 2

P1DIR
bit 2

O.B.

PIN 1.7OUT7
IN7

OUT6
IN6

OUT5
IN5

OUT4
IN4

OUT3
IN3

OUT2
IN2

IN1

PIN 2.0

PIN 2.7

PIN 3.0

PIN 3.7

PIN 1.6

PIN 1.5

PIN 1.4

PIN 1.3

PIN 1.2

PIN 1.1

P2DIR

P3DIR

P2SEL

P3SEL

P2IN

P3IN

O.B.

O.B.

P2OUT

P3OUT

Port 2

Port 1

Port 3

INPUT

OUTPUT

INPUT

OUTPUT

OUT1

P1IN
bit 1

P1OUT
bit 1

Output
buffer

P1SEL
bit 1

Another
Module

P1DIR
bit 1

1

OUT

IN

1

0

IN0

PIN 1.0

OUT0

P1IN
bit 0

P1OUT
bit 0

Output
buffer

P1SEL
bit 0

Another
Module

P1DIR
bit 0

1

OUT

IN

1

0

External
Pins

Buffers

Buffers

Buffers

Buffers

Buffers

Buffers

Buffers

Buffers

Buffers

Buffers

Figure 7-12: I/O Ports 1, 2 and 3

TEAM LRN

116

Chapter Seven

Notice, first of all, that the symbolic names in Table 7-3 are the same ones used to identify the bits in the
status register, and the reference list is defining a binary number associated with the symbolic name. For ex-
ample, the binary number for GIE is the 16-bit hexadecimal number 0008h, which is 0000 0000 0000 1000
in straight binary. If this number is loaded into the status register, it sets the GIE bit. Thus, if the program
wants the GIE bit set, an instruction can use GIE as the source operand and SR as the destination, and the
assembler knows, because of the reference list, to load the hexadecimal number 0008h into SR which sets
GIE. Similarly, the binary number assigned in the reference list will set the bit with the symbolic name in
one of the control registers if that symbolic name is used in the appropriate instruction.

Combining symbolic names and their associated binary numbers will set multiple bits in the control regis-
ters. This occurs in defining the bits to be set for the MSP430 low-power modes shown in Table 7-3. For
example, to place the MSP430 system in the LPM3 mode, the SR bits SCG1, SCG0 and CPUoff must be
set. One operand of (SCG1 + SCG0 + CPUoff) can be specified and the assembler will combine the binary
numbers specified in the reference list and insert them in the SR as shown in Figure 7-13. The operand calls
out the symbolic names and the respective bit corresponding to the name is set, even when multiple names
are used in the operand.

Format and Symbols

A final thought before discussing the actual programming. The format for the lines of code is as follows,
shown with an example instruction:

 Label Instruction Operands Comment

 ADCLoop bis.b #CLK,&P2OUT ;Clock high

Table 7-3: Reference list for assembler

* STATUS REGISTER BITS *

 #define C (0x0001)

 #define Z (0x0002)

 #define N (0x0004)

 #define V (0x0100)

 #define GIE (0x0008)

 #define CPUoff (0x0010)

 #define OSCoff (0x0020)

 #define SCG0 (0x0040)

 #define SCG1 (0x0080)

/*Low Power Modes coded with bits 4 – 7 in SR*/

if ndef_IAR_Systems_ICC/Begin #defines for assembler/

 #define LPM0 (CPUoff)

 #define LPM1 (SCG0 + CPUoff)

 #define LPM2 (SCG1 + CPUoff)

 #define LPM3 (SCG1 + SCG0 + CPUoff)

 #define LPM4 (SCG1 + SCG0 + OSCoff + CPUoff)

TEAM LRN

117

Examples of Assembly-Language Programming

Labels
Labels identify particular positions in the program. They are used extensively to identify the beginning of a
program subroutine. When a program needs a particular subroutine, the program can do a subroutine jump
to the particular label associated with the subroutine.

Instructions
The actual instruction appears in the instruction column. In the instruction, bis.b, “set bits in destination”,
the .b means it is a byte instruction dealing only with eight bits, the lower byte, of a 16-bit word. When the
instruction is a word instruction where all 16 bits are involved, there need be nothing or .w can be used.

Operands
An operand is the part of the instruction which will operated on by the instruction. Operands are the portion
of an instruction designated by an op code to be the quantity to be operated on by the instruction. They ap-
pear in the operand column with the source always listed first separated from the destination by a comma.
The source may have a symbol in front of it, and the same for the destination. The symbols will correspond
to the syntax column in Figure 7-6 identifying the addressing mode used. In the code line example shown
above, the source CLK has a # sign in front of it, and the destination, register P2OUT, has an & in front of
it. The # sign indicates immediate addressing for the source, and the & means absolute addressing is used
for the destination.

Hexadecimal Numbers
Hexadecimal numbers will have special identification in most cases. As discussed previously, any hexadeci-
mal number that starts with A through F will have a zero in front of it to make sure the number is identified
correctly. A small h is included in the number to identify it as hexadecimal, otherwise the assembler
assumes the number is a decimal number. Or, as in the portion of the reference list shown in Table 7-3,
the format 0x0000 may also be used for a hexadecimal number.

Figure 7-13: Substitution for Symbolic Names in Status Register

 8 7 6 5 4 3 2 1 0 Bit Before Instruction

CZNGIECPU
OFF

OSC
OFFSCG0SCG1V

CZNGIECPU
OFF

OSC
OFFSCG0SCG1V

Status
Register

Inserted from Reference List

00000 0 0100000000
SCG1
0080

00001 0 0000000000
SCG0
0040

00000 0 1000000000
CPU OFF

0010

After Instruction

Status
Register

With SCG1 set, SCG0 set and CPU OFF set the
MSP430 is in the LPM3 low-power mode.

Figure 7-13: Substitution for symbolic names in status register

TEAM LRN

118

Chapter Seven

Comments
The comments column contains hints to someone reading the program what the original programmer had
in mind when the line of code was written—what the line of code should accomplish. Many times the com-
ment column is also a refresher to the original programmer. A semicolon must precede all comments. In the
explanations that follow of assembly-language programming, no time will be spent on the comments. The
reader may use these for extra understanding of the program.

Programming Examples
Introduction

In order to explain how to develop a program using assembly language, several subprograms that perform
different tasks will be explained in detail to help grasp the concept of programming, learn some of the
programming details and get familiar with the format necessary for assembly-language programming.
Obviously, sophisticated programmers use high-level languages, but assembly-language programming is
used here because it offers an opportunity to grasp the fundamentals of programming so that higher-level
language programming can be implemented with less difficulty. It offers fundamental concepts that aid in
the understanding of programming in the higher-level languages.

Subprogram No. 1
General Description

The program that will be described is a portion of a total program using a TLV0831 ADC that interfaces
to a MSP430F12X microcontroller. The total program includes sampling an analog input voltage, convert-
ing it to a digital code, shifting the data into the MSP430, and transmitting the data to a personal computer
(PC). The subprogram that is described here is the portion of the total program that deals with initiating the
digital conversion and shifting the data into a temporary storage register in the MSP430. Essentially, this
subprogram implements a shift register using software.

The block diagram of the system and the interconnections are shown in Figure 7-14a. A timing diagram of
the events as they occur is shown in Figure 7-14b.

Here is a brief description of the application:

1. The TLV0831 is an 8-bit ADC. It samples its analog input, converts the signal to digital and stores the
8-bit digital output in an output register.

2. The TLV0831 data is then shifted out of the output register by the MSP430 into the ADCData register
in the MSP430.

3. The TLV0831 data is coupled out on output DO. DO is connected to pin P2.3 of the MSP430, which is
programmed to be an input.

4. Pins P2.0 and P2.1 are programmed to be outputs from the MSP430. P2.0 provides a chip select signal
to activate the TLV0831, while P2.1 provides clock pulses to the TVL0831.

I/O Port 2, one of the three available, is used for this application. The content of register P2DIR is set to de-
termine which I/O pins are to be inputs and which are to be outputs. The P2IN register inputs and captures
the input data from any pins that are inputs, while the P2OUT register outputs the respective data onto the
pins that are outputs. The P2.3 input is coupled to a register in the MSP430 called by the symbolic name
of ADCData. The 8 bits from the output data register of the TLV0831 are shifted out serially onto DO and
end up in this register. It takes 9 shifts to do this—one for a start bit and the remainder for the eight bits of
data. The signal on P2.1 acts as the clock for the TLV0831 to shift out the bits onto DO. The start timing is

TEAM LRN

119

Examples of Assembly-Language Programming

controlled by the signal on P2.0
of the MSP430, which is con-
nected to CS of the TLV0831.
A logic low on CS activates the
TLV0831 and initiates the
A-to-D conversion. The
MSP430 is operated in the
LPM3 low-power mode. The
watchdog timer is used as an
interval timer, set at 64 ms, and
when it times out it generates an
interrupt to wake up the system
and initiate a conversion.

The Initial Conditions

The subprogram No. 1 assem-
bly-language program is shown
in Figure 7-15. Normally, the
A, B, C, and D notations are not
present; they have been added
to aid in the discussion of the
program. The reference list that was
discussed previously for the MSP430
applies to this program. It is contained
in the Appendix. The A and B portions
of this program are the same type of
reference list, but they are specific
only to this program. The assembler
takes the “#define” and the “equ” and
substitutes the numbers defined for the
symbolic name. Software engineers
call it “syntaxic substitution”—sub-
stituting numbers for words (the
symbolic notations) in the program.

Section A and B

Section A defines the specific registers that are going to be used, R6(BitCnt) to count bits, R5(RxTxData)
to receive and transmit data to the PC, and R11(ADCData) the register to store the data received from the
ADC. Section B continues the same type definitions with the “equ” notation. Here the programmer has
assigned specific hexadecimal numbers complementing the reference list but specific to this program.
The subprogram will use ADCData, TXD, CS, CLK and DO. The remaining substitutions are used by the
portion of the total program that transmits data to the PC and that calibrates the DCO. That portion is not
included for the sake of brevity.

*MSP430F1232

Analog
Input Output

Register

TVL0831

ADC

CS

CLK

DO
GND

Chip Select

Shifting Pulses

Data

VCC

VSS

Reset

RST/NMI

I/O

P2.0

P2.1

P2.3

MSP430
*Microcontroller

P2IN

P2OUT

ADC DATA

Data to PC

32kHz
crystal

x IN

x OUT

VCCVCC

TXD
P1.1

CS

b. Timing Diagram

1 0 1 1 0 1 1 0

CLK

DO

Start
bit

H

L

a. Block diagram showing interconnections

b. Timing diagram

c. Rotate left through carry

Figure 7-14: Systems application
implemented by Subprogram No. 1
Courtesy of Texas Instruments Incorporated

TEAM LRN

120

Chapter Seven

Figure 7-15: Subprogram No. 1—an assembly-language program—a software shift register
Program courtesy of M.E. Buccini and Texas Instruments Incorporated

A. ; Dedicated CPU registers used
 (1) #define BitCnt R6
 (2) #define RXTXData R5
 (3) #define ADCData R11
 ;
B. ; User definitions, 9600 Baud HW/SW UART, MCLK = 37.5x32768 = 1228800
 (1) Bitime equ 0128 ; 104 us
 (2) Delta equ 150 ; Delta = (target DCO)/(32768/4)
 (3) TXD equ 002h ; TXD on P1.1
 (4) CS equ 001h ; P2.0 Chip Select
 (5) CLK equ 002h ; P2.1 Clock
 (6) DO equ 008h ; P2.3 Data Out
 (7) LF equ 0ah ; ASCII Line Feed
 (8) CR equ 0dh ; ASCII Carriage Return
 ;

 Label Instruction Operands Comment
 ;--
C. ORG 0F000h ; Program Start
 --
 1. Reset mov #0300h,SP ; Initialize F12x stackpointer
 2. call #Init_Sys ; Initialize system

 ;--
D. Init_Sys; Subroutine sets up Modules and Control Registers
 --
 Label Instruction Operands Comment
 16. StopWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop Watchdog Timer
 17. SetupBC mov.b #DIVA1+RSEL2+RSEL0,&BCSCTL1 ; ACLK/4 RSEL=5
 18. SetupP1_2 bis.b #TXD,&P1SEL ; P1.1/TA0 for TXD function
 19. bis.b #TXD,&P1DIR ; TXD output on P1
 20. SetupP2 bis.b #CS,&P2OUT ; CS, Set
 21. bis.b #CS+CLK,&P2DIR ; CS and Clk Output direction
 22. SetupTA mov #TASSEL1+TACLR,&TACTL ; SMCLK, clear timer
 23. SetupC0 mov #OUT,&CCTL0 ; TXD Idle as Mark
 24. call #Delay ; Time for crystal to stabilize

 25. bis #MC1,&TACTL ; Start timer in Continous Mode
 26. call #Set_DCO ; Set DCO to target frequency
 27. SetupWDT mov #WDT_ADLY_16,&WDTCTL ; WDT 16ms*4 Interval Timer
 28. bis.b #WDTIE,&IE1 ; Enable WDT Interrupt
 29. eint ; General Interrupt Enable
 30. ret ; Return from subroutine
 ;

E. Label Instruction Operands Comment
 3. Mainloop bis #LPM3,SR ; Enter LPM3
 ;
 4. Meas_ADC; Shift TVL0831 data into ADCData, R15 used as counter
 5. bic.b #CS,&P2OUT ; Chip Select low
 6. mov #09,R15 ; 9 bits *1 start* + 8 data
 7. ADC_Loop bis.b #CLK,&P2OUT ; Clock high
 8. bic.b #CLK,&P2OUT ; Clock low
 9. bit.b #DO,&P2IN ; DO -> C (carry)
 10. rlc.b ADCData ; C -> ADCData

 11. dec R15 ; All shifted in?
 12. jnz ADC_Loop ; If not --> ADC_Loop
 13. bis.b #CS,&P2OUT ; Chip Select high
 ;
 14. call #TX_ADC_2PC ; ADC result --> PC
 15. jmp Mainloop ; Repeat
 ;

TEAM LRN

121

Examples of Assembly-Language Programming

Section C

Section C begins with the following line:

 Label Instruction Operands Comment

 ORG 0F000h

The “ORG” instruction, called an assembler directive, tells the assembler where in memory to put the
start of the program. For this program, it starts at the hexadecimal location F000 (1111 0000 0000 0000 in
straight binary).

1. The first line of code is:

 Label Instruction Operands

 RESET mov #0300h,SP

RESET is a label to identify a location to which the program goes when the system power is turned on. The
instruction “move source to destination” means to move the source, the hexadecimal number 0300h, to the
destination SP, the symbolic name for the stack pointer. The assembler knows that SP means register R1 in
the CPU, as shown in Figure 7-2a, and loads 0300 into R1. Recall that the stack pointer stores the return
address from a subroutine call so that the program can proceed after it finishes a subroutine. The source is
addressed with immediate addressing and the destination with symbolic addressing.

2. The second line of code is:

 Label Instruction Operands

 call #Init_Sys

The instruction “call” is a subroutine call. It directs the program, with immediate addressing, to a subrou-
tine at a memory location identified as “Init_Sys.”

Section D

Section D is the subroutine “Init_Sys.” It is the portion of the program that sets the initial conditions of the
system by setting bits in the control registers that were discussed previously. The subroutine starts at line 16.

16. The sixteenth line of code is:

 Label Instruction Operands

 StopWDT mov #WDTPW + WDTHOLD,&WDTCTL

The line of code is labeled “StopWDT” as a clue of what is happening. The instruction “mov” means to
move the source WDTPW + WDTHOLD to the destination WDTCTL. Immediate addressing (# sign) is
used for the source and absolute addressing (& sign) for the destination. WDTCTL is the watchdog timer
control register shown in Figure 7-10. The symbolic names WDTPW and WDTHOLD load, from the
reference list in the Appendix, hexadecimal numbers that correspond to the symbolic names. 05A00h is a
password that allows the instruction to write to the WDTCTL, and WDTHOLD sets the HOLD bit to a 1.
This holds/stops the watchdog timer.

17. The seventeenth line of code is:

 Label Instruction Operands

 SetupBC mov.b #DIVA1 + RSEL2 + RSEL0,&BCSCTL1

The line of code is labeled “SetupBC” for setup basic clock. The instruction “move source to destina-
tion, byte mode” means to move the lower byte of the source into the destination, BCSCTL1, the basic
clock system control register. Immediate addressing is used for the source and absolute addressing for the

TEAM LRN

122

Chapter Seven

destination. The symbolic names in the source, DIVA1, RSEL2 AND RSEL0, when moved to the BC-
SCTL1, set the respective bits to a 1. Referring to Figure 7-9, setting DIVA1 divides the source for ACLK,
LFTX1 by 4, and setting RSEL2 (value = 4) and RSEL0 (value = 1) means RSEL=5, or the fifth resistor
combination to set the nominal frequency of the DCO.

18. The eighteenth line of code is:

 Label Instruction Operands

 SetupP1_2 bis.b #TXD,&P1SEL

The line of code sets up Port 1, thus, labeled “SetupP1_2.” The instruction “set bits in destination, byte
mode”, means that the binary number associated with the symbolic name TXD, which is 002h according
to Section B, is used to set the control register P1SEL. 002h, or 0000 0010 in binary, sets the one bit in
P1SEL. Setting the one bit in P1SEL means that I/O pin P1.1 will be used by another function other than
Port 1; in this case, for the TXD function to transmit data to the PC.

19. The nineteenth line of code is:

 Label Instruction Operands

 bis.b #TXD,&P1DIR

The instructions “set bits in destination, byte mode” again uses the hex number assigned to the symbol
TXD (002h) to set the one bit in the direction control register, P1DIR, shown in Figure 7-12. Bit one when
set means that pin P1.1 will be an output.

20. The twentieth line of code is:

 Label Instruction Operands

 SetupP2 bis.b #CS,P2OUT

The line of code is labeled “SetupP2” to indicate it is setting up Port 2. The instruction “set bits in desti-
nation, byte mode” means the hex number assigned to symbol CS (001h per Section B) is used to set the
output register P2OUT. The zero bit of P2OUT is set, and thus, in the high state.

21. The twenty-first line of code:

 Label Instruction Operands

 bis.b #CS + CLK,&P2DIR

The instruction “set bits in destination, byte mode” means now the source is CS + CLK; therefore, both hex
numbers assigned to the symbols CS and CLK will set bits in the destination, the P2DIR direction register.
This sets I/O pin P2.0 and pin P2.1 as outputs. Since the zero bit of P2OUT is in the high state, pin P2.0 will
be in the high state. P2.0 is the chip select line for the TLV0831. Since it is high, the TLV0831 is not active.

22. The twenty-second line of code is:

 Label Instruction Operands

 SetupTA mov #TASSEL1 + TACLR,&TACTL

Timer_A is being setup by the line of code labeled “SetupTA.” The instruction “move source to destina-
tion” means to move the hex numbers associated with the symbolic names TASSEL1 and TACLR to the
Timer_A control register, TACTL, shown in Figure 7-11. Setting TASSEL1 selects the SMCLK clock as
the Timer_A source and setting the CLR bit resets Timer_A.

23. The twenty-third line of code is:

 Label Instruction Operands

 SetupCO mov #OUT,&CCTL0
TEAM LRN

123

Examples of Assembly-Language Programming

The label “SetupCO” explains that the OUT bit in a capture/compare control register is being set. The
instruction “move source to destination” is setting the OUT bit of the capture/compare control register,
CCTLO. Effectively, the TXD bit state is output onto pin P1.1 with this instruction. Since the P1OUT is a
1, TXD will be a 1 or a MARK in transmit language. A 0 is defined as a SPACE.

24. The twenty-fourth line of code is:

 Label Instruction Operands

 call #Delay

The instruction “call” means the program is calling a subroutine labeled “Delay.” This subroutine, not
shown in our subprogram, provides a time delay with software. The crystal oscillator used as the source for
the clocks needs time to stabilize. The instruction calls the subroutine, which when executed, provides the
time delay needed for the oscillator to stabilize.

25. The twenty-fifth line of code is:

 Label Instruction Operands

 bis #MC1,&TACTL

The instruction “set bits in destination” sets the MC1 bit in the TACTL control register, shown in Figure
7-11, by inserting the assigned hex number. With MC1 = 1 (and MC0 = 0), Timer A is set into the continu-
ous mode and starts counting from 0 to 0FFFFh. When it gets to 0FFFFh it restarts from 0.

26. The twenty-sixth line of code is:

 Label Instruction Operands

 call #Set_DCO

The instruction “call” this time is calling the subroutine “Set_DCO” which is not shown in our subprogram.
It is a subroutine that calibrates the high-speed, digitally-controlled oscillator (DCO). For this program, the
DCO is calibrated to 1,228,800 Hz (cycles per second), and configured to be the source for the main system
clock, MCLK, and subsystem clock, SMCLK.

27. The twenty-seventh line of code is:

 Label Instruction Operands

 SetupWDT mov #WDT_ADLY_16,&WDTCTL

Labeled “SetupWDT” to explain that the watchdog timer is being set up, the instruction “move source to
destination” moves the hex number assigned to the source WDT_ADLY_16 by the reference list to the des-
tination, the watchdog timer control register, WDTCTL, shown in Figure 7-10. The assigned hex number
05A1E provides the 5A that is required when the WDTCTL is being written to, and sets bits WDTTMSEL,
WDTCNTCL, WDTSSEL and WDTIS1. Setting WDTTMSEL makes the WDT an interval timer; set-
ting CNCTL clears the WDTCNT counter and restarts it at zero; setting WDTSSEL selects ACLK for the
counter source; and setting WDTIS1 chooses a 512 division factor for the time interval which sets the time
interval between pulses to be 62.5 ms (milliseconds).

28. The twenty-eighth line of code is:

 Label Instruction Operands

 bis.b #WDTIE,&IE1

The instruction “set bits in destination, byte mode” takes the source hex number assigned to the symbolic
name WDTIE (01h) and places it in the interrupt enable register, IE1. It sets the zero bit, which enables the
watchdog timer interrupt. As a result, because this signal is active when the watchdog timer is in the inter-
val timer mode, the watchdog timer interrupt is enabled.

TEAM LRN

124

Chapter Seven

29. The twenty-ninth line of code is:

 Label Instruction Operands

 eint

The instruction “enable (general) interrupts” sets the GIE bit in the status register shown in Figure 7-7 and
says “all interrupts are enabled.” This allows the interrupt generated when the WDT interval timer times out
to interrupt the system, wake it up from the LPM3 mode and be active.

30. The thirtieth line of code is:

 Label Instruction Operands

 ret

The instruction “return from subroutine” tells the program to return to the code address following the sub-
routine call, in this program to line 3. The program has completed all initial conditions and now returns to
do its main operations.

Section E—Main Application

3. The third line of code is:

 Label Instruction Operands

 Mainloop bis #LPM3,SR

The label “Mainloop” identifies this line of code as the start of the main portion of the program. The
instruction “set bits in destination” takes the hex number assigned to the source, symbolic name LPM3, by
the reference list, and sets bits in the destination, SR. As shown in Figure 7-3, the hex number for LPM3
sets the bits SCG1, SCG0 and CPUOFF in the status register. This sets the system in the LPM3 low-power
mode. Recall that in LPM3, the CPU is inactive but peripherals and the ACLK clock are active, and, in this
application, that the WDT interval timer awakens the system.

4. The fourth line of code is:

 Label Comment

 Meas_ADC ;Shift TLV0831 data into ADCData, R15 used as counter

The comment for the label “Meas_ADC” identifies that part of the program that initiates the ADC measure-
ment, and, after the data is present, shifts the data into the register ADCData. The register R15 will be used
to count off the number of shifts. Its contents determine the number of shifts.

5. The fifth line of code is:

 Label Instruction Operands

 bic.b #CS,&P2OUT

The instruction “clear bits in destination, byte mode” means that the hex number assigned to CS (001h) in
Section B will clear bits in the destination, P2OUT, the output register. Immediate addressing is used for the
source, absolute addressing for the destination. The zero bit of P2OUT is cleared, and, as a result, pin P2.0,
is a 0, or low. P2.0 is the CS signal to the TLV0831. Since it is low, it activates the TLV0831 and starts the
ADC conversion.

6. The sixth line of code is:

 Label Instruction Operands

 mov #09,R15

The instruction “mov” means to move the source to the destination. There is immediate addressing for
the source; register addressing for the destination. As a result, the number 9 is inserted as the contents of

TEAM LRN

125

Examples of Assembly-Language Programming

(moved to) register 15 to determine how many bits are going to be shifted onto DO. As discussed earlier, a
start bit is required for outputting serial data. Since the data is eight bits, the number 9 is loaded into R15
with the “mov” instruction. If the ADC were converting to a larger number of bits than eight, then R15
would have to be loaded with a correspondingly larger number.

7. The seventh line of code is:
 Label Instruction Operands

 ADC_Loop bis.b #CLK,&P2OUT

“ADC_Loop” is a subroutine label. The program will continue to a decision point and then loop back to
this label. The instruction “set bits in destination, byte mode” means that the source hex number assigned to
“CLK” in Section B (002h) will be used to set bits in the lower byte of the destination, register P2OUT, the
output register for Port 2. Thus, the one bit of P2OUT will be set, and pin P2.1 will have a 1 or high output.
P2.1 is connected to CLK of the TLV0831; therefore, CLK is high.

8. The eighth line of code is:
 Label Instruction Operands

 bic.b #CLK,&P2OUT

The instruction “clear bits in destination, byte mode” means that the same source hex number assigned to
“CLK” (002h) will be used to clear bits in the lower byte of the destination, the output register P2OUT.
This line of code clears bits rather than set them as in line 7. As a result, the one bit of P2OUT is cleared
to a 0, and pin P2.1 will have a 0, or a low, on it. Thus, CLK for the TLV0831 is now low. A low on CLK
shifts the data onto the output DO, onto the pin P2.3 of the MSP430 and into register P2IN. The shifting of
data occurs when the CLK line of the TLV0831 goes low as shown in the timing diagram of Figure 7-14b.

9. The ninth line of code:
 Label Instruction Operands

 bit.b #DO,&P2IN

The instruction “test bits in destination, byte mode” means that the source hex number assigned to “DO” in
Section B (008h) will be used to designate that the eight bit of the destination P2IN will be tested. And the
result of the operation will affect the carry bit of the status register in the MSP430. Only the status register
bits are affected. If the eight bit of P2IN is a 0, carry will be a 0; if the eight bit is a 1, carry will be a 1.

10. The tenth line of code is:
 Label Instruction Operands

 rlc.b ADCData

The instruction “rotate left through carry” means that the contents of the ADCData register is rotated left
one position and the carry bit of the status register is shifted into the LSB and the MSB is shifted into the
carry bit. Symbolic addressing is used. Figure 7-14c illustrates the result of the rlc.b instruction. The carry
bit from the previous instruction becomes the carrier of the data. When the carry bit is a 0, the ADCData
register bit is a 0; when the carry bit is a 1, the ADCData register bit is a 1. The ADCData register becomes
the temporary storage for the output data from the TLV0831 until all data is transferred. After all the data is
collected, the ADCData register can be operated on by the MSP430 CPU.

11. The eleventh line of code is:
 Label Instruction Operands

 dec R15

The instruction “decrement destination” means to subtract one from the contents of register R15. Register
addressing is used. Register R15 has the number 9 in it. Nine minus one means the content of R15 is now 8.

TEAM LRN

126

Chapter Seven

At the same time, the register contents are tested and status bits are set in the status register. The Z bit is the
one noted in the next instruction, so it is the bit of interest. Here is the rule for the test of the Z bit:

 Status Bit Rule

 Z Set if destination register contains 1, reset otherwise

If destination register R15 is other than zero, then the Z bit is set to a 1.

12. The twelfth line of code is:

 Label Instruction Operands

 jnz ADC_Loop

The instruction “jump if not zero” tests the status register Z bit. If Z is not 0, the program jumps to the line
in the program that has the label ADC_Loop, which is line 7. Symbolic addressing is used. The program
again runs through line 7, 8, 9, 10 and 11. This is called a subroutine jump, and the subroutine loop being
lines 7, 8, 9, 10 and 11.

When the program returns to line 7, it again sets the TLV0831 CLK high. Line 8 then sets this same CLK
low to shift the second bit to the output DO and pin P2.3 of the MSP430. The result is rotated into ADC-
Data and R15 is decremented. The program again tests the Z bit and finds it is not zero and jumps back to
line 7. The program continues in the loop rotating each bit in and subtracting 1 from R15 until the content
of R15 is zero (9 counts).

When the status bit Z is zero as a result of R15 being zero, the program now does not jump but continues
to line 13.

13. The thirteenth line of code is:

 Label Instruction Operands

 bis.b #CS,&P2OUT

The instruction “set bits in destination, byte mode” means that the hex number assigned to CS (001h)
will be used to set bits in the lower byte of the output register P2OUT. Thus, the zero bit of P2OUT will
be set and pin P2.0 will have a high output. P2.0 is the chip select for the TLVO831, and with it high, the
TLV0831 is deactivated.

14. The fourteenth line of code is:

 Label Instruction Operands

 Call #TX_ADC_2PC

The instruction “call” tells the program to go to the label TX_ADC_2PC that is a subroutine in the program
that transmits data from the register ADCData to a personal computer using a UART. The program will go
through the subroutine TX_ADC_2PC, which is left out to keep the discussion brief. When it is finished, it
returns to the program step after the subroutine call, step 15.

15. The fifteenth line of code is:

 Label Instruction Operands

 jmp Mainloop

The instruction “jmp” is called an unconditional jump instruction. It is addressed with symbolic addressing.
The program jumps to Mainloop, which is the label on line 3 that is the start of Section E, the measuring
portion of subprogram No. 1. Thus, the program is ready to start another measuring cycle by initiating a
conversion by the ADC.

TEAM LRN

127

Examples of Assembly-Language Programming

Subprogram No. 2
General Description
All systems need a clock to synchronize timing of events occurring as the system operates. This subprogram
sets up the MSP430 clock MCLK to use LFXT1 as its source. LFXT1 is operated in the high-frequency
crystal oscillator mode using a crystal between 1 MHz and 8 MHz. As mentioned in Subprogram No. 1, the
crystal oscillator requires a certain time to stabilize; therefore, the program is setup to test the crystal oscil-
lator, and only after it is stable, will it use LFXT1 as the source for MCLK. MCLK drives a software loop
that takes exactly 10 clock cycles; therefore, it produces a clock signal that divides MCLK by 10.

One other feature of the
MSP430 is that there is
a “fail safe” mechanism
built into the clock system.
Since the crystal oscilla-
tor needs time to stabilize,
there is a default mode
which uses the DCO as
a clock source until the
crystal oscillator is up and
running properly. Even
though the DCO is not
as accurate as the crystal
timing, the DCO keeps the
system timed and operat-
ing properly from the start.

The block diagram for
the application is shown
in Figure 7-16a and the
timing diagram in Figure
7-16b. Pin P1.1 of I/O Port
1 is used as an output for
the MCLK divided by 10
signal, and pin P2.0 of I/O
Port 2 is used for an exter-
nal clock, ACLK. Note that
the Pin P1.1 output is an asymmetrical waveform.

Section A—Initial Conditions
The subprogram is shown in Figure 17. It is understood that for this subprogram the same reference list that
was used for Subprogram No. 1 is used again. Other very specific reference lists could be used here as in
Subprogam No.1, but are not necessary. Any reference list is to be used by the assembler to insert specific
hexadecimal numbers assigned to particular symbolic names.

Section A begins with the following line of code:
 Label Instruction Operands

 ORG 0F000h

The assembler directive “ORG” tells the assembler to put the start of the program in memory location
0F000h. The same location used for Subprogram No. 1.

Crystal
(1 MHz − 8 MHz)

X IN

X OUT

 LFXT1 OSG
 with
*MCLK = high f xtal
 (See Figure 7-5a)

VSS

RESET
RST/NMI

MSP430
*Microcontroller
(MSP430F123)

VCC

*MCLK/10

ACLK

P1.1

P2.0

MCLK

1 —

0 —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time

time

VCC

MCLK
10P1.1

Figure 7-16: Subprogram No. 2 application—outputting clocks

a. Block diagram showing pin connections

b. Timing diagram

TEAM LRN

128

Chapter Seven

 ;***
 Label Instruction Operands Comment
 ;---
A. ORG 0F000h ; Program Start
 ;---
 1. RESET mov.w #300h,SP ; Initialize stackpointer
 2. StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
 3. SetupBC bis.b #XTS,&BCSCTL1 ; LFXT1 = HF XTAL
 4. SetupOsc bic.b #OFIFG,&IFG1 ; Clear OSC fault flag
 5. mov.w #0FFh,R15 ; R15 = Delay
 6. SetupOsc1 dec.w R15 ; Additional delay to ensure start
 7. jnz SetupOsc1 ;
 8. bit.b #OFIFG,&IFG1 ; OSC fault flag set?
 9. jnz SetupOsc ; OSC Fault, clear flag again
 10. bis.b #SELM1+SELM0,&BCSCTL2 ; MCLK = LFXT1
 ;
 11. bis.b #001h,&P2DIR ; P2.0 = output direction
 12. bis.b #001h,&P2SEL ; P2.0 = ACLK function
 13. bis.b #002h,&P1DIR ; P1.1 = output direction
 ;
 14. Mainloop bis.b #002h,&P1OUT ; P1.1 = 1
 15. bic.b #002h,&P1OUT ; P1.1 = 0
 16. jmp Mainloop ; Repeat

 14. Mainloop xor.b #002h,&P1OUT ; P1.1 = Toggle
 15. jmp Mainloop ; Repeat
 ;

 ;***
 Label Instruction Operands Comment
 ;---
A. ORG 0F000h ; Program Start
 ;---
 1. RESET mov.w #300h,SP ; Initialize stackpointer
 2. StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
 3. SetupBC bis.b #XTS,&BCSCTL1 ; LFXT1 = HF XTAL
 4. SetupOsc bic.b #OFIFG,&IFG1 ; Clear OSC fault flag
 5. mov.w #0FFh,R15 ; R15 = Delay
 6. SetupOsc1 dec.w R15 ; Additional delay to ensure start
 7. jnz SetupOsc1 ;
 8. bit.b #OFIFG,&IFG1 ; OSC fault flag set?
 9. jnz SetupOsc ; OSC Fault, clear flag again
 10. bis.b #SELM1+SELM0,&BCSCTL2 ; MCLK = LFXT1
 ;
 11. bis.b #001h,&P2DIR ; P2.0 = output direction
 12. bis.b #001h,&P2SEL ; P2.0 = ACLK function
 13. bis.b #002h,&P1DIR ; P1.1 = output direction
 ;
 14. Mainloop bis.b #002h,&P1OUT ; P1.1 = 1
 15. bic.b #002h,&P1OUT ; P1.1 = 0
 16. jmp Mainloop ; Repeat

 14. Mainloop xor.b #002h,&P1OUT ; P1.1 = Toggle
 15. jmp Mainloop ; Repeat
 ;

a. Asymmetrical waveform for output clock with MCLK/10 frequency

Figure 7-17: Subprogram No. 2—assembly-language program—outputting clocks

b. Symmetrical waveform for output clock with MCLK/12 frequency

1. The first line of code is:

 Label Instruction Operands

 RESET mov.w #300h,SP

When power is turned on, the program goes to the line of code labeled RESET for its instruction “mov.w”.
The instruction “move source to destination” loads the number 0300h into the stack pointer. This initializes
the stack pointer. Note the .w notation has been used to identify the instruction as a word instruction. Imme-
diate addressing is used for the source, and symbolic addressing for the destination. The reader should now
be familiar with these notations so reference to them will be discontinued unless pertinent to the discussion.

2. The second line of code is:

 Label Instruction Operands

 StopWDT mov.w #WDTPW + WDTHOLD,&WDTCTL

The label “StopWDT” explains the instruction is stopping the watchdog timer. The instruction “mov.w”
moves the hexadecimal numbers assigned to the symbolic names of the source, WDTPW and WDTHOLD,
to the watchdog timer control register WDTCTL to set the respective bits. The password WDTPW is 5A00h
to write to the WDTCTL and set WDTHOLD. This holds or stops the watchdog timer, and thus, it will not
interrupt the system.

3. The third line of code is:
 Label Instruction Operands

 SetupBC bis.b #XTS,&BCSCTL1
TEAM LRN

129

Examples of Assembly-Language Programming

Setup basic clock is what the label ”SetupBC” means. The instruction “bis.b” means “set bits in destination,
byte mode” and the binary number associated with the symbolic name of the source, XTS, will set that bit
in the basic clock control register BCSCTL1 shown in Figure 7-9a. With XTS set, the LFTXT1 clock will
operate with a high-frequency crystal oscillator as the source.

4. The fourth line of code is:
 Label Instruction Operands

 SetupOsc bic.b #OFIFG,&IFG1

As indicated by the label “SetupOsc”, the instruction is used to setup the crystal oscillator used for the
clock. The instruction “clear bits in destination, byte mode” means that the bit in the hex number associated
with the source OFIFG will be used to clear a flag in the destination register IFG1. IFG1 is an interrupt flag
register. The bit OFIFG is an interrupt flag for the crystal oscillator. If the crystal oscillator is not “up and
running” the flag is set. Recall that the crystal oscillator needs a certain time delay before it is operating
properly. When the OFIFG flag is not set, the oscillator is running properly. This instruction clears the flag
so it is in the correct condition.

5. The fifth line of code is:
 Label Instruction Operands

 mov.w #0FFh,R15

The instruction “move source to destination, word mode” means that the hex number 0FFh will be loaded
into register R15. R15 is going to be used as a counter whose content determines the time delay that is
setup to allow the crystal oscillator to stabilize.

6. The sixth line of code is:
 Label Instruction Operands

 SetupOsc1 dec.w R15

“SetupOsc1” is a label identifying a subroutine loop that is associated with the crystal oscillator delay that
is required. The instruction “decrement destination” subtracts one from the contents of R15.

7. The seventh line of code is:
 Label Instruction Operands

 jnz SetupOsc1

The instruction “jump if not zero” tests the Z (zero) bit in the status register. If the result of the operation
in line 6 is not zero, Z will be zero, and the program will jump to the subroutine label “SetupOsc1” which
is line 6. The program will stay in this subroutine loop until Register 15 contents are decremented to zero.
This produces a time delay of the time that is required to cycle through the loop until R15 = 0. The time
delay is determined by the value loaded into R15 in line 5.

When R15 = 0, then the Z bit will be set and the program does not jump to line 6 but continues to line 8.

8. The eighth line of code is:
 Label Instruction Operands

 bit.b #OFIFG,&IFG1

The instruction “test bits in destination, byte mode” means that the source bit, the oscillator fault interrupt
flag, OFIFG, in the destination interrupt flag register IFG1, will be tested. If the crystal oscillator is not
completely stable, the flag will be set.

9. The ninth line of code is:
 Label Instruction Operands

 jnz SetupOsc
TEAM LRN

130

Chapter Seven

The instruction “jump if not zero” again tests the Z bit. If the result of the operation in line 8 is not zero, i.e.
the flag is set, Z = 0 and the program will jump to the subroutine label “SetupOsc” which is line 4. Thus,
the program returns to line 4 where it clears the oscillator fault interrupt flag bit, OFIFG, in register IFG1
and reloads R15 for an additional delay time. The loop of line 6 and 7 decrements R15 until the delay is
complete. The fault flag OFIFG is tested again to see if it is set by line 8. If the oscillator is stable, OFIFG
will not be set, the result will be zero and the program does not jump back on line 9, but continues to line
10. If the flag is set, then the oscillator is still not stable, and another pass through line 4, 5, 6, 7, 8 and 9
adds additional delay.

10. The tenth line of code is:
 Label Instruction Operands

 bis.b #SELM1 + SELM0,&BCSCTL2

The instruction “set bits in destination, byte mode” will set the bits SELM1 and SELM0 of the source, in
the destination register BCSCTL2 as a result of assigned hex numbers from the reference list. Referring to
Figure 7-9b, with SELM1 and SELM0 both equal to 1, the source LFXT1 is selected for the MCLK clock.
What has happened is the program has assured that the high-frequency crystal oscillator is up and running
and stable before it is used as a source for the main system clock, MCLK.

11. The eleventh line of code is:
 Label Instruction Operands

 bis.b #001h,&P2DIR

The instruction “set bits in destination, byte mode” loads the source 001h into the destination Port 2 direc-
tion register, P2DIR. This sets the zero bit in P2DIR and makes pin P2.0 an output.

12. The twelfth line of code is:
 Label Instruction Operands

 bis.b #001h,&P2SEL

The instruction “set bits in destination, byte mode” loads the source, again 001h into the special function
register P2SEL and sets the zero bit. This means that the pin P2.0 is an output for an external clock ACLK,
rather than the Port 2 output register P2OUT.

13. The thirteenth line of code is:
 Label Instruction Operands

 bis.b #002h,&P1DIR

The instruction “set bits in destination, byte mode” means that the source 002h is loaded into the destina-
tion, the direction register, P1DIR, to set the one bit. This sets pin P1.1 as an output.

Section B—Mainloop

14. The fourteenth line of code is:
 Label Instruction Operands

 Mainloop bis.b #002h,&P1OUT

The label “Mainloop” indicates this is the start of a subroutine. The instruction “set bits in destination, byte
mode” loads 002h into the destination, the output register P1OUT, and sets pin P1.1. This means that P1.1
is in the high state.

15. The fifteenth line of code is:
 Label Instruction Operands

 bic.b #002h,&P1OUT
TEAM LRN

131

Examples of Assembly-Language Programming

The instruction “clear bits in destination, byte mode” clears the one bit, identified by the source 002, in the
destination P1OUT output register. Thus, pin P1.1 is cleared to zero, a low state.

16. The sixteenth line of code is:

 Label Instruction Operands

 jmp Mainloop

The instruction “jump unconditionally” directs the program to jump to the line of code labeled “Mainloop”,
line 14. Thus, the program remains in the loop and cycles from line 14 to line 15 to line 16 and back to line
14 resulting in a square wave clock output on pin P1.1 as shown in Figure 7-16b. The clock driving the
CPU is MCLK. It takes four clock cycles for the program to execute line 14, four clock cycles for execut-
ing line 15, and two cycles to execute line 16; thus producing an asymmetrical square wave clock output on
P1.1 that is one-tenth the frequency of MCLK. This relationship is shown in the timing diagram of Figure
7-16b. Thus, two clocks result from the subprogram, one on P1.1 which is one-tenth the frequency of the
high-frequency crystal oscillator, LFXT1, and the other an external clock, ACLK, on P2.0.

Section B—Mainloop Modification

Because the program in Figure 7-17a produces an asymmetrical waveform it may not be as desirable as a
symmetrical wave; therefore, the main loop instructions can be modified to produce a symmetrical wave.
Steps 14 and 15 can be modified as shown in Figure 7-17b, and step 16 is ommitted.

With steps 14 and 15 modified, the program proceeds from step 14 as follows:

14. The fourteenth line of code is:

 Label Instruction Operands

 Mainloop xor.b #002,&P1OUT

The label “Mainloop” is the same as previously and indicates this is the start of a subroutine. The instruc-
tion “Exclusive OR of source with destination, byte mode” does an exclusive OR logic operation with the
source 002h and the output register P1OUT and places the result in the destination, the P1OUT register.
Since pin P1.1 is the 1 bit of the P1OUT register, the result of the exclusive OR will appear on pin P1.1. In
the first execution of line 14, if the 1 bit is 0, the XOR will toggle the state of the 1 bit—it will be a 1 and
pin 1.1 will be a 1. In the next pass, the bit will be toggled to a 0.

15. The fifteenth line of code is:

 Label Instruction Operands

 jmp Mainloop

The instruction “jump unconditionally” directs the program to jump to the line of code labeled “Main-
loop”, line 14. Thus, the program remains in the loop and cycles from step 14 to step 15 and back again.
The clock, as previously, driving the CPU is MCLK. As a result, for this modification, it takes four cycles
to execute line 14 and two cycles to execute line 15. P1.1 will now have a symmetrical square wave output
with a frequency equal to MCLK/12.

Subprogram No. 3
General Description

Here is a program that outputs a visual signal when an input voltage is at or greater than a particular value.
The block diagram is shown in Figure 7-18a. This time a TLC549 ADC is used. It is an 8-bit analog-to-digital
converter that converts the input analog voltage into an 8-bit code that is shifted into the MSP430 microcon-
troller register R11 labeled ADCData. There is an LED (light-emitting diode) on I/O output pin P1.0.

TEAM LRN

132

Chapter Seven

When the input voltage is equal or
greater than +0.5VCC, then the value
of the contents of R11 will be equal
to or greater than +0.5VCC, and the
LED will be lit. For any input volt-
age less than +0.5VCC, the LED will
not light; therefore, one can start at
VIN = 0 and adjust the input voltage
toward VCC. When the input voltage
is at +0.5VCC the LED will glow to
indicate +0.5VCC had been reached.

The assembly-language program
is shown in Figure 7-19. Again as
with Subprograms No. 1 and No. 2,
“Section A,” “Section B,” “Section
C,” “Section D” and “Section E”
have been added to aid in describing
the program.

Sections A and B

Section A and B are specific to this
subprogram. Section A again is
clarifying that register R11 is identi-
fied with a label “ADCData” and
that register R12 is identified with a
label “Counter.” They are two of the
16-bit working registers as shown in
Figure 7-2a.

Section B is again an addition to the
standard reference list in the Appen-
dix for the MSP430. In the section,
the specific hexadecimal numbers shown are assigned to symbolic names that the assembler substitutes into
the program when the symbolic names are used in the program.

Section C—Initial Conditions

The program starts in memory at address 0F000h established by the ORG instruction.
 Label Instruction Operands

 ORG 0F000h

The assembler begins this program at the same location in memory (0F000h) used for Subprograms No. 1
and No.2. Then initial conditions are setup for the program with steps 1 through 5. Bits in the control regis-
ters discussed in Figures 7-7 to 7-11 will be set to control the initial conditions.

1. The first line of code is:
 Label Instruction Operands

 RESET mov.w #0300h,SP

The type of addressing mode should now be fairly well understood so reference to the addressing modes
will be omitted to simplify the discussion. The label “RESET” identifies where the program starts when

X IN

X OUT

MSP430
Microcontroller
(MSP430F123)

VCC

P1.0

VCC

CS
CLK
DO

P2.0
P2.1
P2.3

P2OUT

ADC DATA

P2IN

R11

ADC

TLC549 RESET

VCC

VIN

AIN+

RST/NMI

% VCC

25% 50% 75% 100%

0BF

07F

03F

256

224

192

160

128

96

64

32

R
eg

is
te

r
R

11
 C

on
te

nt
s

LED

INVERTER

R

a. Block diagram showing interconnections

b. R11 content versus % VCC

Figure 7-18: System application implemented by Subprogram No. 3
energizing an output when input is greater than +0.5VCC

TEAM LRN

133

Examples of Assembly-Language Programming

power is turned on, or a reset is performed. The instruction “move source to destination” moves the source
0300h to the stack pointer, the special function register identified by the symbolic name SP. When a pro-
gram completes a subroutine it will return to the address on the stack.

2. The second line of code is:
 Label Instruction Operands

 StopWDT mov.w #WDTPW + WDTHOLD,&WDTCTL

The word instruction “move source to destination” sets bit in the destination, the watchdog timer control
register WDTCTL, so that the watchdog timer is put on hold. The symbolic name WDTPW (5A00h) allows
writing to WDTCTL and the symbolic name WDTHOLD sets that bit in WDTCTL to hold the watchdog
timer and stop it from interrupting the system.

3. The third line of code is:
 Label Instruction Operands

 SetupP2 mov.b #CS,&P2OUT

 ;
A. #define ADCData R11
 #define Counter R12
B. CS equ 001h ; P2.0 − Chip Select
 CLK equ 002h ; P2.1 − Clock
 DO equ 008h ; P2.3 − Data Out
 ;---
C. ORG 0F000h ; Program Start
 ;---
 1. RESET mov.w #300h,SP ; Initialize 'x112x stack
 2. StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop Watchdog Timer
 3. SetupP2 mov.b #CS,&P2OUT ; /CS set, − P2.x reset
 4. bis.b #CS+CLK,&P2DIR ; /CS and CLK outputs
 5. SetupP1 bis.b #001h,&P1DIR ; P1.0 output

D. 6. Mainloop call #Meas_549 ; Call subroutine
 18. bic.b #01h,&P1OUT ; P1.0 = 0
 19. cmp.w #07Fh,ADCData ; ADCData > 0.5Vcc?
 20. jlo Mainloop ; Again
 21. bis.b #01h,&P1OUT ; P1.0 = 1
 22. jmp Mainloop ; Again
 ;
 ;---
E. Meas_549; Subroutine to read TLC549, data is shifted into ADCData
 ; (R11), Counter (R12) is used as a bit counter.
 ;---
 7. mov.w #8,Counter ; 8 data bits
 8. clr.w ADCData ; Clear data buffer
 9. bic.b #CS,&P2OUT ; /CS reset, enable ADC
 10. ADC_Loop bit.b #DO,&P2IN ; (4) DO -> C (carry)
 11. rlc.w ADCData ; (1) C -> ADCData
 12. bis.b #CLK,&P2OUT ; (4) Clock high
 13. bic.b #CLK,&P2OUT ; (4) Clock low
 14. dec.w Counter ; (1) All bits shifted in?
 15. jnz ADC_Loop ; (2) If not --> ADC_Loop
 16. bis.b #CS,&P2OUT ; /CS set, disable ADC
 17. ret ; Return from subroutine
 ;

Figure 7-19: Subprogram No. 3—An assembly-language program energizing an
output when input is greater than +0.5VCC

TEAM LRN

134

Chapter Seven

The label “SetupP2” identifies the instruction as one to setup the I/O P2. The “move source to destination,
byte mode” takes 001h assigned to the source CS and moves it to the P2OUT register to set the zero bit of
P2OUT or pin P2.0 to a 1. P2.0 is the chip select line to the TLC549.

4. The fourth line of code is:
 Label Instruction Operands

 bis.b #CS + CLK,&P2DIR

The instruction “set bits in destination, byte mode” means that bits in the P2DIR control register will be set
to control whether the pins of the P2 I/O will be outputs per Figure 7-12. If the pins are not set they will be
inputs. 001h of CS sets the zero bit of P2DIR and 002h of CLK sets the one bit of P2DIR; therefore, pin
P2.0 and pin P2.1 are outputs from the MSP430. Since P2.0 is a 1, or high, and is the chip select line for the
TLC549, the TLC549 is inactive.

5. The fifth line of code is:
 Label Instruction Operands

 SetupP1 bis.b #001h,&P1DIR

This line of code is going to setup I/O P1 as indicated by the label “Setup P1”. The instruction “set bits in
destination, byte mode” with the source, 001h, sets the zero bit of the direction control register P1DIR so
that pin P1.0 is an output.

Section D—Main Application

6. The sixth line of code is:
 Label Instruction Operands

 Mainloop call #Meas_549

The label ”Mainloop” identifies the location in the program as the start of the main part of the program—the
part of the program that measures the input to the TLC549 ADC. The “call” instruction tells the program to
jump to the subroutine labeled “Meas_549.” The “Meas_549 subroutine starts with the seventh line of code.

7. The seventh line of code is:
 Label Instruction Operands

 mov.w #8,Counter

The instruction “move source to destination, word mode” means that the source, the hex number 8 will be
moved to register 12 which has been assigned the symbolic name “Counter.” It will be used to count the
eight bits of the data output of the TLC549 ADC.

8. The eighth line of code is:
 Label Instruction Operands

 clr.w ADCData

The instruction “clear destination, word mode” means that register R11 identified with the symbolic name
“ADCData” will be cleared to zero.

9. The ninth line of code is:
 Label Instruction Operands

 bic.b #CS,&P2OUT

The instruction “clear bits in destination, byte mode” means that the hex number assigned to CS (001h) will
be used to clear the zero bit of the destination, the output register P2OUT; therefore, pin P2.0 will be reset
to 0 or a low. Since P2.0 is the chip select line of the TLC549, this activates the TLC549 to measure its
input analog voltage and convert it to an 8-bit digital code representing the value of the input voltage.

TEAM LRN

135

Examples of Assembly-Language Programming

10. The tenth line of code is:

 Label Instruction Operands

 ADC_loop bit.b #DO,&P2IN

The label “ADC_loop” identifies the line of code as the start of a subroutine loop. The instruction “test bits
in destination, byte mode” means that the source hex number assigned to “DO” in section B (008h) will be
used to designate that the eight bit of the destination P2IN will be tested. The result of the operation will
affect the carry bit of the status register in the MSP430. Only the status register bits are affected. If the eight
bit of P2IN is a 0, carry will be a 0; if the eight bit is a 1, carry will be a 1.

11. The eleventh line of code is:

 Label Instruction Operands

 rlc.w ADCData

The instruction “rotate left through carry” means that the ADCData register is rotated left one position and
the carry bit of the status register is shifted into the LSB and the MSB is shifted into the carry bit. Refer to
the diagram in Figure 7-14c. The carry bit from the previous instruction becomes the carrier of the data.
When the carry bit is a 0, the ADCData register bit is a 0; when the carry bit is a 1, the ADCData register
bit is a 1. The ADCData register becomes the temporary storage for the data as the eight bits of data are
shifted into the register.

12. The twelfth line of code is:

 Label Instruction Operands

 bis.b #CLK,&P2OUT

The instruction “set bits in destination, byte mode” means the hex number assigned to the source CLK
(002h) will be used to set the one bit of the P2OUT register so that pin P2.1 will be at a high level. P2.1 is
tied to the CLK input of the TLC549.

13. The thirteenth line of code is:

 Label Instruction Operands

 bic.b #CLK,&P2OUT

The instruction “clear bits in destination” means that the same bit in the P2OUT register as in the previous
instruction is now cleared back to 0, or a low level. The pin P2.1, being the clock for the TLC549, means
that when the clock goes low the next bit from the ADC data is shifted out on the DO line of the TLC549.

14. The fourteenth line of code is:

 Label Instruction Operands

 dec.w Counter

The instruction “decrement destination” means to subtract one from the contents of register R12, the reg-
ister identified by the symbolic name “Counter.” Since this is the first pass through the loop, R12 will now
have a contents equal to seven, since the register was originally loaded with the value eight.

15. The fifteenth line of code is:

 Label Instruction Operands

 jnz ADC_loop

The instruction “jump if not zero” tests the status register Z bit which will be a 1 or 0 based on the result of
the instruction in line 14. If the result of line 14 is not zero, Z will be 0, and the program jumps to the line
in the program that has the label ADC_loop, which is line 10. When the result of line 14 is zero, Z will be
1, and the program will not jump, but continue on to the next instruction. The program will continue in the

TEAM LRN

136

Chapter Seven

loop from line 10 to line 15 until the contents of R12, the counter register, reach zero. When the contents
have the value of zero, it means that the eight data bits have been shifted out onto DO. When the contents of
R12 is zero, the program does not jump, but continues to line 16.

16. The sixteenth line of code is:
 Label Instruction Operands

 bis.b #CS,&P2OUT

The instruction “set bits in destination, byte mode” means the hex number 001h assigned to CS is used to
set the zero bit of the P2OUT register so that pin P2.0 is set to a high level. Since P2.0 is the chip select of
the TLC549, the TLC549 is disabled and its conversion ceases.

17. The seventeenth line of code is:
 Label Instruction Operands

 ret

The instruction “return from subroutine” means the program picks up the return address from the stack
pointer which is the address of the next line of code after the subroutine call. As a result, the program re-
turns to line 18, the next instruction after line 6.

18. The eighteenth line of code is:
 Label Instruction Operands

 bic.b #01h,&P1OUT

The instruction “clear bits in destination, byte mode” means that the zero bit of the P1OUT register desig-
nated by the source 01h will be cleared; therefore, pin P1.0 will be cleared to a zero, or low level.

19. The nineteenth line of code is:
 Label Instruction Operands

 cmp.w #07Fh,ADCData

The instruction “compare source and destination” means that ADCData is compared to the hex number
07Fh, and the bits in the status register are set accordingly.

20. The twentieth line of code is:
 Label Instruction Operands

 jlo Mainloop

The instruction “jump if lower” means that the result of the operation in line 19 governs what happens in
this instruction. If ADCData register contents are lower than 07Fh, then the program jumps to “Mainloop”,
another subroutine Meas_549 is called and another ADC conversion is accomplished as the program goes
through the subroutine from line 7 through line 17. This continues again if ADCData contents are still
lower than 07FH (which is 127 of a total of 256 of the full-scale content of ADCData. The value 127 is less
than 0.5VCC, where VCC is represented by the full-scale value of 256.

When the ADCData register contents are greater than 07Fh, then the program does not jump back to “Main-
loop” but continues on to line 21.

21. The twenty-first line of code is:
 Label Instruction Operands

 bis.b #01h,&P1OUT

The instruction “set bits in destination, byte mode” means that the zero bit of the P1OUT register desig-
nated by the source 01h will be set to a one, or a high level. As a result, pin P1.0 will be set to a 1. This high
level on P1.0 will light the LED that is connected to P1.0.

TEAM LRN

137

Examples of Assembly-Language Programming

22. The twenty-second line of code is:

 Label Instruction Operands

 jmp Mainloop

The instruction “jump” tells the program to jump unconditionally to the line of code labeled “Mainloop” or
line 6. Line 6 calls the subroutine “Meas_549” and the whole measuring process begins again.

Variation of Threshold
The threshold voltage at which the system turns on the LED can be adjusted based on the binary number used
for the comparison in the instruction of line 19. The relationship of the contents of R11, the register labeled
as ADCData, to the percentage of VCC is shown in Figure 7-18b. For +0.5VCC, the binary number used in the
comparison instruction was 07Fh, or one less than the binary number of 08F representing exactly +0.5VCC.
In like fashion, the binary number used for line 19 is 03Fh for +0.25VCC and 0BFh +0.75VCC. Other binary
numbers per Figure 7-18b would adjust the trigger threshold to a selected percentage level of VCC.

Summary
In this chapter the reader is exposed to the techniques used to program in assembly language. The Texas
Instruments MSP430 microcontroller was chosen as the digital processor to use to explain assembly-language
programming. Using its specific instruction set, the basics of writing an assembly-language program were
discussed. Three assembly-language programs were discussed in detail to help the reader understand the
concepts of assembly-language programming. With an assembly-language program, an assembler—a specific
software program written to convert the assembly-language program into machine code—must be used before
the program can be applied in a system. The next chapter will deal with the techniques of data transmission.

TEAM LRN

138

Chapter Seven

Chapter 7 Quiz
1. A RISC microcontroller is:
 a. a reduced, minimized component CPU.
 b. a much more complicated CPU design.
 c. based on a reduced-instruction-set CPU.
 d. a CPU with reduced peripherals around it.
2. A von Neumann architecture:
 a. is rectangular and triangular in nature.
 b. has a separate bus for program memory and data memory.
 c. has a separate bus just for peripherals.
 d. has program, data memory and peripherals all sharing a common bus structure.
3. A peripheral module in the MSP430 family can be:
 a. either a 16-bit or an 8-bit module.
 b. can only be a 16-bit module.
 c. can only be an 8-bit module.
 d. a module with only 5-bits.
4. The peripherals in the MSP430 family:
 a. use 16-bits exclusively for addressing.
 b. use both 8-bit and 16-bit addresses.
 c. use 8-bits exclusively for addressing.
 d. use 12-bits exclusively for addressing.
5. The operating mode of the MSP430 microcontroller is:
 a. determined by the I/O input number one.
 b. determined by the state of the CPU.
 c. determined by four control bits in the status register.
 d. all of above.
6. Interrupts control the digital processor:
 a. at specific well defined times.
 b. at unexpected or random times.
 c. at the same time every time.
 d. at regular predetermined repeating times.
7. Timers are used in a MSP430 system:
 a. to keep track of elapsed time.
 b. to set time intervals within which specific actions occur or are to occur.
 c. to produce resets, alerts or warnings.
 d. none of above.
 e. all of above.
8. When a source or destination in a MSP430 instruction have the form &ADDR, the addressing mode is:
 a. symbolic mode.
 b. register mode.
 c. absolute mode.
 d. indexed mode.
9. The MSP430 status register, R2:
 a. has nine active bits.
 b. has bits whose state dictates that a particular action has occurred.

TEAM LRN

139

Examples of Assembly-Language Programming

 c. is one of sixteen 16-bit registers in the CPU.
 d. all of above.
 c. none of above.
10. The MSP430 status register bit:
 a. N is set when the result of a byte or word operation is negative.
 b. Z is set when the result of a byte or word operation is zero.
 c. C is set when the result of a byte or word operation produces a carry.
 d. all of the above.
 e. none of the above.
11. The MSP430 clock system control registers are:
 a. registers R4, R5 and R6.
 b. BCSCTL1, BCSCTL2 and DCOCTL.
 c. registers R7, R8 and R9.
 d. registers R13, R14 and R15.
12. If the XTS bit in the BCSCTL1 control register is set to a 1:
 a. The LFXT1 oscillator in the clock system can operate with a high-frequency crystal.
 b. the LFXT1 oscillator is OFF.
 c. the LFXT1 oscillator in the clock system can operate with a low-frequency crystal.
 d. it is a “don’t care” condition for the LFXT1 oscillator.
13. When the SELS bit in the BCSCTL2 control register is reset to 0:
 a. the DCOCLK is OFF.
 b. the SMCLK is divided by 8.
 c. the source for the SMCLK clock is LFXT1 oscillator.
 d. the source for the SMCLK clock is DCOCLK.
14. In the MSP430, the watchdog timer control bit WDTTMSEL:
 a. is set to 1 so that the watchdog timer is an interval timer.
 b. is reset to 0 to have the watchdog timer inactive.
 c. is not a factor in the operation of the watchdog timer.
 d. is the bit that restarts the watchdog timer.
15. The WDTCTL control register must have:
 a. all its high-byte bits at 0.
 b. a 069h password automatically inserted in the high byte when WDTCTL is read.
 c. a password of 05Ah in the high byte if the instruction is to write to WDTCL.
 d. all its high-byte bits at 1.
 e. only b and c above.
 f. only a above.
16. In the MSP430 system all I/O ports:
 a. are initially outputs when the system powers up.
 b. remain constant as the applications program proceeds.
 c. vary with each step of the program.
 d. are initially inputs when the system powers up.
17. To set an external pin of an I/O port to be an output:
 a. the associated bit of PxDIR direction register must be set to 1.
 b. the associated bit of PxSEL function-select register must be set to a 1.
 c. the associated bit of the PxIN register must be set to a 1.

TEAM LRN

140

Chapter Seven

 d. the associated bit of the PxOUT register must be set to a 1.
18. When an external pin on the MSP430 I/O port is programmed to be an input:
 a. the direction register bit associated with the pin is reset to a 0.
 b. the PxIN register bit associated with the pin is set to whatever the input data dictates.
 c. the PxOUT register bit associated with the pin is inactive.
 d. all of above.
 e. a and c only above.
 f. none of above.
19. When an assembler program for the MSP430 sees a symbolic name:
 a. it has been programmed to interrupt the processor.
 b. it has been programmed to reset the system.
 c. it has been programmed to insert a specific binary number that represents the symbol.
 d. it has been programmed to disregard the symbolic name.
20. Symbolic name reference lists prepared for the MSP430 family:
 a. are used exclusively for the I/O bits.
 b. are used extensively for setting up initial conditions for the system.
 c. are used sparingly in assembly-language programming.
 d. are used to develop special symbols unrelated to actual register bits.
21. Labels:
 a. identify particular positions in a program.
 b. bear no relationship to the program.
 c. are only used at the end of a program.
 d. are not very useful in programming microcontrollers.
22. The .b in an instruction means:
 a. it is dealing with a 16-bit word.
 b. the instruction is part of a subroutine.
 c. the instruction is to be used later in the program.
 d. it is a byte instruction dealing only with the 8 bits in the lower byte of a word.
23. Operands are:
 a. special types of AND logic circuits.
 b. the portion of the instruction that identifies what quantities will be operated on using the

instruction.
 c. special amplifiers used in signal conditioning a signal.
 d. the first component in an instruction line.
24. Hexadecimal numbers:
 a. use bit positions that are entirely different than binary codes.
 b. cannot be manipulated easily in binary systems.
 c. use numbers from 0 to 9 and letters from A to F to identify the 16 possible codes when using a

4-bit code.
 d. use no special notations to identify them in programs.
25. Assembly-language programming:
 a. helps to grasp the concept of programming.
 b. helps to learn programming details.
 c. helps to get familiar with programming format.
 d. all of above.

TEAM LRN

141

Examples of Assembly-Language Programming

 e. b and c only above.
26. In assembly-language programming for the MSP430:
 a. “syntaxic substitution” is the technique of substituting numbers for words in a program.
 b. the program instructions are converted to machine code by an assembler.
 c. specific registers used for given tasks may be defined in a reference list.
 d. the numbers used in the “syntaxic substitution” are defined in a reference list.
 e. all of above.
 f. c and d only above.
27. In assembly-language programming for the MSP430, a label:
 a. has many uses but one important one is to identify a subroutine.
 b. only provides reference to a particular action in a program.
 c. has little meaning in a program.
 d. is the most prominent way to set initial conditions.
28. In an assembly-language program for the MSP430:
 a. a .w after an instruction means a decimal instruction.
 b. a .w after an instruction means a hexadecimal instruction.
 c. a .w after an instruction means to branch to another location.
 d. a .w after an instruction means it is an operation using a word (two bytes).
29. In assembly-language programming for the MSP430:
 a. a # sign before an operand means it is register-mode addressing.
 b. a # sign before an operand means it is immediate addressing.
 c. a # sign before an operand means it is absolute-mode addressing.
 d. a # sign before an operand means it is symbolic-mode addressing.
30. In MSP430 programming using assembly language:
 a. a reference list is very important to syntaxic substitution.
 b. the programming depends totally on syntaxic substitution.
 c. a reference list is not important to syntaxic substitution.
 d. all syntaxic substitution reference lists are constant for any application.

Answers: 1.c, 2.d, 3.a, 4.b, 5.c, 6.b, 7.e, 8.c, 9.d, 10.d, 11.b, 12.a, 13.d, 14.a, 15.e, 16.d, 17.a, 18.d, 19.c,
20.b, 21.a, 22.d, 23.b, 24.c, 25.d, 26.e, 27.a, 28.d, 29.b, 30.a.

TEAM LRN

142

Introduction
A typical requirement of systems described in this book is that digital information must be transported
from one location to another, from one piece of digital equipment to another. The two locations may be
very close to each other, or they may be separated by a great distance. In this chapter, data communication
systems will be discussed and several techniques used to transmit and receive digital data will be examined.

The Data Transmission System
Figure 8-1 shows a typical
digital data communications
system. Any digital communi-
cation must have a transmitter,
receiver and a transmission
medium. The transmitter pre-
pares the digital information
for transmission, the receiver
detects and presents the digital
information in original form,
and the transmission medium
transports the information,
hopefully without modifying it
or producing errors. The trans-
mission medium may be twisted pair wire, wires in cables, fiber optic cable or wireless transmissions.

DTE and DCE

In Figure 8-1, a data terminal equipment, DTE, is coupled to a piece of data communications equipment, a
DCE. The most common DCE is a modem that converts the digital data into signals that match the require-
ments of the transmission medium. A very common arrangement is a modem that couples to a telephone
line. The DTE in this common case is a computer. In fact, the DCE (modem) is contained right in the com-
puter, and the DTE and DCE combination becomes the transmitter for this data communications system.

At the receiving end, another DCE (again, another modem) receives the data from the transmission me-
dium, decodes it and presents it to a DTE for transformation, manipulation, modification and/or display. As
shown in Figure 8-1, each combination of DTE and DCE can either be a transmitter or a receiver depending
on the direction of transfer of data.

Also shown in Figure 8-1 is the fact that a DTE can be a computer, a printer, or a video monitor, and that
beside the DTE to DCE and DCE to DTE data communication, there is and can be data transfers from a
DTE to a DTE.

Parallel and Serial Transmission
There are two main methods of communicating digital data from one place to another, either parallel trans-
fer or serial transfer. Figure 8-2 shows the difference between the two. Parallel transfer is shown in Figure

CHAPTER 8

Data Communications

Transmitter Receiver

Receiver Transmitter

Transmission

Link
(wire or wireless)

DTE DCE DCE DTE Main Frame
Computer

Computer

Modem Modem

DTE
Printer

DTE
Scanner

DTE
Video

Monitor

DTE
Printer

DTE
Copier

DTE
Video

Monitor

Figure 8-1: Data communication system

TEAM LRN

143

Data Communications

8-2a. Here there are as many
separate signal lines as there are
bits of data in the digital signal.
If the bits in the data change,
all bits change at the same
time. In other words, there is
an information front that moves
together on the lines, and when
a change in the data is made all
lines change at the same time.

Contrast this to serial transfer of
data shown in Figure 8-2b. Here
there is only one line, and if one
would sit on the line, the digital
bits representing the information
would pass by one bit after the
other—in series, thus, the name
serial data. Additional data must
be added to the digital data to
make sure it is recognized. A
start bit must be added to tell
when the data starts, and a stop
bit is added to tell when the data
stops. A parity bit, which will be
discussed later, is added to aid in correcting errors.

Major Differences

The major differences between
parallel and serial transfer are
shown in Figure 8-3. As noted,
serial transfers require only one
line, while parallel transfers
require a line for each bit of
the multiple-bit character being
transferred. If a moment of time
is picked, tx in Figure 8-2a, each
line will have a bit value corresponding to the digital code for the character being transferred, 1110101 for
Figure 8-2a. While in a serial transfer, as shown in Figure 8-2b, the bit values will come one after another
at t = tx. First, the start bit, then the character bits, a parity bit and then the stop bit. Thus, the speed of trans-
ferring of data for serial communications is slower than for parallel. In parallel communications, all the bits
arrive at the same time, while in serial communications, one must wait until all bits arrive.

It is very difficult in parallel communications to keep the time relation between bits the same for each line as
the distance of the transmission increases; therefore, the connecting cables are usually short—a computer to
a printer, or one computer to another, or a computer to a video monitor. There are parallel communications
that occur over long distances that use what is called a packet technique and over special transmission lines
or on microwave links. These are discussed briefly, and then explained a bit further for the USB protocol,

Info flow

ReceiverTransmitter

Wire 8
Wire 7
Wire 6
Wire 5
Wire 4
Wire 3
Wire 2
Wire 1

t = tx

Bit 8 = 0 (odd parity)
Bit 7 = 1 MSB
Bit 6 = 0
Bit 5 = 1
Bit 4 = 0
Bit 3 = 1
Bit 2 = 1
Bit 1 = 1 LSB

Start
bit

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Parity
bit

Stop Stop

7 character bits

t = tx

8 data bits

11 bits per character

LSB MSB

Mark

Space

(1)

(0)

Figure 8-2: Parallel and serial data transmission

b. Serial transfer of information for ASCII “W” (odd parity)

a. Parallel transfer of information for ASCII “W” (odd parity)

Figure 8-3: Comparison of Parallel and Serial Communications

 PARALLEL SERIAL

Lines Required One line/bit Single line

Bit Sequence On all lines at same time One bit following another

Speed Faster Slower

Transmission line length Usually a short distance Both long and short distances

Cost More expensive Less expensive

Critical Characteristic Time relationship of bits Needs start, stop bit

Figure 8-3: Comparison of parallel and serial communications

TEAM LRN

144

Chapter Eight

but are really beyond the scope of this book. More detailed texts are required to explain it fully. Serial com-
munications, on the other hand, using the latest technology, normally occurs over very long distances.

The equipment required for serial communications is less expensive since only one line is of concern
rather than multiple lines in parallel communications. If 10-bit characters are being transmitted in paral-
lel, the equipment multiplies by at least 10 times over what it is for serial communications. In parallel
communications, one of the critical characteristics is the time relationship of signals on the line. In serial
communications, additional information—a start and stop bit—must be added to be able to recognize and
detect the information.

Example 1. Shift Right from Register

Show the bit storage in the lower byte of Register R5 for an ASCII capital N and the waveform gener-
ated as the ASCII code is shifted right out of the register. Odd parity is to be used. The ASCII code is
shown in Figure 8-5.

Solution:

Protocols
“Protocol is the name given to hardware and software rules and procedures for making sure that any
transmission errors are detected.” 1 Data communications must follow certain rules and procedures as noted
by the above quote whether it be the hardware used, the electrical signal levels, the signal timing, or the
software used. Figure 8-4 shows one of the earliest protocols, the RS-232 interface. It was used, and is still
used today, to connect together all types of data communications equipment.

Register 5 lower byte
 8 7 6 5 4 3 2 1

 0 1 0 0 1 1 1 0

MSB LSB time

Clock

Chapter 8 Example 1 Illustration

 stop 1 1 0 0 1 1 1 0 start
Parity

This bit inserted for error
correction (odd parity)

PROTECTIVE GROUND

TRANSMITTED DATA

RECEIVED DATA

REQUEST TO SEND

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

DATA CARRIER DETECT

RESERVED

RESERVED

UNASSIGNED

SECONDARY DATA CARRIER DETECT

SECONDARY CLEAR TO SEND

SECONDARY TRANSMITTED DATA

TRANSMIT CLOCK

SECONDARY RECEIVED DATA

RECEIVER CLOCK

UNASSIGNED

SECONDARY REQUEST TO SEND

DATA TERMINAL READY

SIGNAL QUALITY DETECTOR

RING INDICATOR

DATA RATE SELECT

TRANSMIT CLOCK

UNASSIGNED

+25 V

+3 V**
0 V

+5 V*

− 3 V**

−25 V**

−5 V*

* Transmitter
** Receiver

MARK

SPACE

1 Understanding Data Communications, G.E. Friend, et al. ©1984, Texas Instruments Incorporated.

Figure 8-4: RS-232 protocol

a. Signal levels

b. Physical connections (female)

TEAM LRN

145

Data Communications

In Figure 8-4a, the electrical characteristics of an RS-232 signal are shown. The two binary levels are iden-
tified as “Mark” and “Space.” In the RS-232 protocol, the receiver recognizes any positive signal from +3V
to +25V as a space, and any negative signal from –3V to –25V as a mark. The transmitter, on the other hand,
by specification, produces a space signal level between +5V and +25V, and a mark signal level between –5V
and –25V. The mechanical connector and its associated pin connections are shown in Figure 8-4b.

Now look again at Figure 8-2b. Here the mark is identified as the 1 level and the space the 0 level. In mod-
ern day electronics, due to the influence of integrated circuits, and due to T2L and CMOS logic circuitry, the
1 or mark is a high level from +2.4V to +5V, and the 0 or space level is a low level of +0.4V to 0V. When
the RS-232 protocol was set, the maximum transfer speed was 20,000 bits per second, and the modem
speeds were no higher than 9600 baud per second. USB, which will be discussed later, is a much more
recent protocol for serial data communications and can transfer data at 4 million bits per second.

High-Speed Data Transmissions
As indicated, parallel data communications are limited by the length of the parallel wire cables; therefore,
different techniques are used for such communications. Microwave, fiber optics, satellites are used for the
transmission medium. The digital data is grouped into frames and packets to allow the data to be transmit-
ted at millions of bits per second. Error detection and correction bits are added to the format so that the
data can be communicated efficiently and without error at great speeds. This is possible because of the very
wide bandwidth provided by microwave, fiber optic and satellite transmission links. Even though digital
data communications require more bandwidth than analog signals, the very wide bandwidth is sufficient
and available to allow high-speed digital data transmissions at ever increasing speeds.

Serial Data Communications Advances
The most common data communications today are serial communications. Even though the bits of a charac-
ter flow in series one after another, the advances in technology, especially in the speed at which digital ICs
can process digital information, have advanced so that the transfer speeds have kept up with the industry.
As a result, the emphasis for the rest of this chapter will be on serial data communications. The discussion
starts with a return to Figure 8-2b.

A Return to the Format
The two levels, Mark and Space, will be examined further. These terms come from the telegraph era. A
pen attached to the armature of the sounder in a telegraph system would make a mark on paper moving
under the pen as the armature was activated with the incoming signal. With no activation of the armature,
the paper would just space. As the names for the two levels continued to be used, the mark was the state, of
two available, in which there was a current. Space was identified as the state of no current. Still further use
gave the idling state the name of “Mark” even though current was flowing. In this book, corresponding to
accepted IC logic level, a “Mark” is the high level or a 1, and a “Space” is the low level or a 0. The RS-232
levels discussed before are really negative logic levels with a “Mark” being the most negative voltage level
or a 1, and the least negative voltage level (the most positive level) a “Space” or a 0.

Start, Data and Stop Bits

As shown in Figure 8-2b, a start bit identifies the start of the data transfer. It is generated by changing the
level from a 1 to a 0. Following the start bit are the bits used to determine the data. Seven bits are used in this
example because a common binary code used for text data transfer is the ASCII (American Standard Code
for Information Interchange) code shown in Figure 8-5. The ASCII code for “W” was used in Figure 8-2.

TEAM LRN

146

Chapter Eight

Following the seven bits of data, there is a parity bit and one or two stop bits. In case the data is eight bits,
there would be a parity bit and only one stop bit. The stop bit is a continuous 1 level or idle condition.

Parity Bit

The parity bit is a bit of information added to the original data
to allow for error detection. The bit is added by the transmitter
to make the sum of all 1 bits in the character transmission either
odd or even. The error detection method is called odd parity if the
sum of the 1 bits is made odd; it is called even parity if the sum
of the 1 bits is made even. Figure 8-6 shows examples of how the
transmitter adds the bits to make odd and even parity.

At the receiver, circuits count the number of 1 bits in the character
that is transferred. The system has been set up previously to oper-
ate either with odd or even parity. Suppose the system is operating
using odd parity. If the counters always count odd numbers of 1s as the characters are transmitted, the
receiver processes the data as correct. If, however, the 1 count turns up even, the receiver flags the informa-
tion as incorrect and probably asks for it to be retransmitted. Even parity calls for the receiver to count an
even number of 1s, and the data will be processed as correct as long as the count remains even. The receiver
only flags the data as incorrect when the count is odd.

Example 2. Odd and Even Parity
What will the odd and even parity bit be for the digital codes given?

Solution:

Figure 8-6: Odd and Even Parity

 7-bit ASCII Code Parity Parity
 Bit Bit
 Bit 1 2 3 4 5 6 7 (odd) (even)

 B 0 1 0 0 0 0 1 1 0
 Q 1 0 0 0 1 0 1 0 1
 3 1 1 0 0 1 1 0 1 0
 z 0 1 0 1 1 1 1 0 1

These bits added
by transmitter

Figure 8-6: Odd and even parity

 Codes
 8 7 6 5 4 3 2 1 bit

 0 0 0 0 1 0 1 0
 0 0 1 0 1 0 1 0
 0 1 0 0 1 1 1 1
 0 0 1 1 1 0 1 0
 0 1 1 1 1 1 1 0
 0 0 1 1 1 0 1 1

Chapter 8 Example 2 Illustration

Parity Bit for

 Odd Even
 Parity Parity
 1 0
 0 1
 0 1
 1 0
 1 0
 0 1

 0 0 0 0 NUL DLE SP 0 @ P ’ p

 0 0 0 1 SOH DC1 ! 1 A Q a q

 0 0 1 0 STX DC2 ” 2 B R b r

 0 0 1 1 ETX DC3 # 3 C S c s

 0 1 0 0 EOT DC4 $ 4 D T d t

 0 1 0 1 ENQ NAK % 5 E U e u

 0 1 1 0 ACK SYN & 6 F V f v

 0 1 1 1 BEL ETB ‘ 7 G W g w

 1 0 0 0 BS CAN (8 H X h x

 1 0 0 1 HT EM) 9 I Y i y

 1 0 1 0 LF SUB * : J Z j z

 1 0 1 1 VT ESC + ; K [k {

 1 1 0 0 FF FS , < L l |

 1 1 0 1 CR GS − = M] m }

 1 1 1 0 SO RS . > N ^ n ~

 1 1 1 1 SI US / ? O — o DEL

 0 0 0 0 1 1 1 1
 0 0 1 1 0 0 1 1
 0 1 0 1 0 1 0 1

Bit Positions:
 7
 6

5
4

3 2
 1

Figure 8-5: ASCII Code

Examples:

 7 6 5 4 3 2 1 bit

 A 1 0 0 0 0 0 1
 a 1 1 0 0 0 0 1
 j 1 1 0 1 0 1 0
 k 1 1 0 1 0 1 1
 zero 0 1 1 0 0 0 0
 space (SP) 0 1 0 0 0 0 0
 CR 0 0 0 1 1 0 1 (carriage return)
 EOT 0 0 0 0 1 0 0 (end of transmission)

Figure 8-5: ASCII code

TEAM LRN

147

Data Communications

Baud Rate

In Figure 8-2b seven bits are used for the ASCII character and four bits are added—a start, parity and two
stop bits. The total bits per character is eleven; therefore, the number of baud is 11. Suppose the rate of
transmission is 10 characters per second. The baud rate will be characters per second × total bits per char-
acter, or, in this example, 10 × 11 = 110 baud per second. Modern telephone modems operate commonly at
56,000 baud per second.

Example 3. Baud Rate
What is the baud rate of an 8-bit data word with a start, parity and one stop bit when the transmission
rate is 500 characters per second?

Solution:
 No. of bits in serial word = 8 + 1 + 1 + 1 = 11 characters
 Transmission rate = 500/sec
 Baud rate = 500 × 11 = 5500 baud/sec

Shift Registers
The shift register was discussed
previously in Chapter 6. It is a main
component of a serial communication
system, and data can be manipulated
in a number of ways, as shown in
Figure 8-7, in order to arrive as serial
data. In Chapter 7, the method shown
in Figure 8-7f, rotate data left, was
used to transfer data to the data reg-
ister in the microcontroller, and is the
same as the circulate example, in this
case, left, discussed previously
in Chapter 6.

SERIAL
DATA OUT

SERIAL
DATA IN

SERIAL
DATA IN

SERIAL
DATA OUT

PARALLEL DATA OUT

SERIAL
DATA OUT

PARALLEL DATA IN PARALLEL DATA IN

PARALLEL DATA OUT

Also, usually
has serial
data input.

a. Serial shift right b. Serial shift left—serial in,
serial or parallel out

c. Parallel-in, serial-out

d. Parallel-in, parallel-out

e. Rotate data right f. Rotate data left

Figure 8-7: Various types of shift registers

Courtesy of Master Publishing, Inc.

Example 4. Parallel In—Serial Out Shifting
Show the contents of register R10 for each
clock cycle as a 4-bit word is transferred
in a parallel transfer and stored in R10. A
logical shift right is then made to examine
the bits, one by one. The 4-bit code loaded
in R10 is 0110.

0

10

110

0110

 0 1 1 0

 0 1 1 0

 0 0 1 1

 0 0 0 1

 0 0 0 0

 0 0 0 0

RI0

Insert 0

Insert 0

Insert 0

Insert 0

 Clock 1 Parallel In

 2

 3

 4

 5

Chapter 8 Example 4 Illustration

Solution:

TEAM LRN

148

Chapter Eight

USART Serial Communications
A universal synchronous/asynchronous receiver/transmitter called a USART is a DCE used extensively for
serial communications. There are two protocols used—one for synchronous transmit/receive and the other
for asynchronous. In the asynchronous mode, the serial bit stream is at a programmed transmission rate de-
termined by an internal clock in the transmitter. In the synchronous mode, the transmission rate is provided
by a common clock, either in the transmitter or the receiver.

A simplified block diagram of a USART is shown in Figure 8-8a, and the format for the data, a typical
serial format, is shown in Figure 8-8b. The block diagram shows an output, TXD, for the transmitted data,
and an input, RXD, for the received data. Most USARTs can transmit and receive at the same time. If
they cannot do
the dual func-
tion, there is a
R/W (read/write)
control line that
determines the
mode of opera-
tion. The USART
has a sync signal
to set whether the
operating mode
is synchronous
or asynchronous,
and some ad-
ditional control
signals. The
USART is in
the synchronous
mode when the
sync signal is a 1.

Synchronous Serial Communications
For synchronous serial communications there is a master unit and a slave unit. Since there is a common
clock, the
master gener-
ates the clock
and the slave
depends on
this clock for
its timing. The
data format is
still as shown in
Figure 8-8b.

Figure 8-9 is a
block diagram
of two USARTs
communicating

Figure 8-8: Simplified USART

a. Block Diagram b. Signal format

Receive Buffer

Receive
Shift Register

Transmit
Shift Register

Transmit
Buffer

Baud
Rate

Generator
CLK

TXD
(Transmit)

Control

RXD (Receive)

Sync = 0 Asynchronous Mode
Sync = 1 Synchronous Mode

sync

R/W (Read, write)

D0 D1 D2 D3 D4 D5 D6 D7 AD PA S S

Parity

Address
bit

Data Bits

Mark

Space

Stop
bits

Start
bit

Figure 8-8: Simplified USART

a. Block diagram b. Signal format

SIMO SLAVEMASTER SIMO

SYNC SYNC

STE

STE

Transmit Buffer Receive Buffer

Transmit Shift Register Receive Shift Register

MSB LSB MSB LSB

CLK
USART

Receive Buffer Transmit Buffer

Receive Shift Register Transmit Shift Register

Clock
Generator

MSB LSBMSB LSB

CLK

SOMI SOMI

USART

SYNC = 1 for synchronous operation

Courtesy of Texas Instruments Incorporated

Figure 8-9: Two USARTs Communicating in Synchronous Mode

Figure 8-9: Two USARTs communicating in synchronous mode
Courtesy of Texas Instruments Incorporated

TEAM LRN

149

Data Communications

with each other in the synchronous mode.
The left unit is the master, which supplies
the clock, and the right unit is the slave. The
master transmits data at the clock rate. The
slave uses the clock to shift information in
and out. The STE signal, controlled by the
master, enables the slave to transmit data as
well as receive data. The master and slave
send and receive data at the same time. Data
is shifted out of the transmit shift register on
one clock edge and shifted in to the receive
shift register on the opposite edge. The tim-
ing is shown in Figure 8-10.

The master output of the transmit shift
register is coupled through the slave-in, master-out (SIMO) line to the slave receive shift register, while the
slave out of the transmit shift register is coupled through the slave-out, master-in (SOMI) line to the master
receive shift register. The data moves at a synchronized rate determined by the clock supplied by the master.
The right unit could just as well be the master and the left the slave, and the operation is the same. The baud
rate is programmed into and controlled by a baud-rate generator that is derived from the clock in the master.

Asynchronous Serial Communications

Asynchronous
serial com-
munications
between two
USARTs is
shown in
Figure 8-11.
There again is
a master and a
slave, and the
data format is
the same as
Figure 8-8b,
but the frames
of data do not
always arrive in regular periods. There may be significant random idle periods between frames (greater than
10 bit times) as shown in Figure 8-12. There is no physical interconnection of clock signals from master to
slave. The programmed master clock sets the transmission asynchronous serial communications rate.

As shown in Figure 8-11, the master is the transmitter and the slave is the receiver. When the first signals
are received, the receiver adjusts its clock to match the clock rate of the received signal and uses this clock

Tx Data

Rx Data

Clock

Shift in
Rx Data

Shift out
Tx Data

Figure 8-10: Shifting Out Tx Data and Shifting In Rx DataFigure 8-10: Shifting out Tx data and shifting in Rx data

SIMO SLAVEMASTER SIMO

SYNC SYNC

STE

STE

Receive Buffer

Transmit Shift Register Receive Shift Register

MSB LSB MSB LSB

USART

Receive Buffer Transmit Buffer

Receive Shift Register Transmit Shift Register

Clock
Generator

Clock
Generator

MSB LSBMSB LSB

CLK

SOMI SOMI

USART

SYNC = 0 for asynchronous operation

Transmit Buffer

CLK

Figure 8-11: Two USARTs communicating in asynchronous mode

Courtesy of Texas Instruments Incorporated

Figure 8-12: Asynchronous Serial Communication

Frame Frame Frame Frame Frame

idle time > 10t1 idle time > 10t1 idle time > 10t1

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X
t1

Figure 8-12: Asynchronous serial communication
TEAM LRN

150

Chapter Eight

to shift in the received data. Transmission in the asynchronous mode is only one way. In order for the slave
to transmit to the master, the roles of the slave and master must be reversed. The slave becomes the master,
that originates the clock, and the master becomes the slave. No interconnections need change, but control
signals must change. Depending on the direction that the data is to flow, the roles of the master and slave
reverse as the flow of data reverses.

The UART Function with Software.
Subprogram No. 1 of Chapter 7 essentially implemented a shift register using software. Expanding on the
technique used there, the UART function can be implemented with software. It is not covered here, but this
would be a challenging project for a team of students that come in contact with this book.

Technology Advances
Two advances in technology will be cited to demonstrate new techniques that have been developed to in-
crease the transfer rate of digital information using serial communications. The first is the Inter-IC serial bus.

I2C Bus

A serial communications proprietary protocol that was developed by Philips Semiconductor2, is the I2C bus.
It was developed principally for inter-IC control, thus the name I2C. All ICs that are I2C-bus compatible
have on-chip interfaces that communicate directly with other I2C-bus compatible devices. Serial, 8-bit, bi-
directional data transfers can be made in three modes:

 1. Standard—100 kbits/sec
 2. Fast—400 kbits/sec
 3. High-Speed—3.4 Mbits/sec

The two-line bus has a serial data line (SDA) and a serial
clock line (SCL). It is a synchronous system and requires a
clock. The unit that initiates the data transfer is the master.
It also is the unit that generates the clock, and initiates,
permits, and terminates the transfer. If the master wants to
communicate with another unit, it sends the address of that
unit on the data line. The unit that is addressed is called the
slave. The master and the slave can be either a transmitter
or a receiver. Examples are shown in Figure 8-13. Figure
8-13a shows a master transmitting to a slave receiver; and Figure 8-13b shows the slave transmitting back
to the master, now used as a receiver. The bus design allows multiple masters and slaves on the bus.

I2C Protocol
Electrical Connections

Figure 8-14a shows the interconnection of devices inside units connected to the bus. Essentially, the SDA
line and the SCL line are held in the high level by pull-up resistors until control transistors are activated
to pull the line low. It is a large wired AND connection with open collector (bipolar) or open drain (MOS)
connections from the devices to the lines. As SDA is activated by data and SCL by clock pulses, the lines
are pulled low by the active devices. A low level is defined as a maximum of 0.3 Vdd, and a high level as a
minimum of 0.7 Vdd. Vdd is typically the T2L logic level of 5V.

2 I2C-Bus Specification, V2.1, Philips Semiconductor.

Master addresses slave

Transmits data to receiver

Slave
UNIT B

(receiver)

Master
UNIT A

(transmitter)

Master addresses slave

Slave transmits to master receiver

Slave
UNIT B

(transmitter)

Master
UNIT A

(receiver)

Figure 8-13: I2C master and slave
can be transmitter or receiver

a. Unit A sends information to Unit B

b. Unit A receives information from Unit B

TEAM LRN

151

Data Communications

Signal Timing

Figure 8-14b shows the necessary timing of information on the bus. To generate the necessary start bit,
SDA must be pulled from high to low while the SCL line is high. Data on SDA is valid only while SCL
is high, and data cannot change (without error) unless SCL is low. A stop bit is generated when SDA goes
from low to high when SCL is high. Thus, the start bit, data bit and stop bit requirement of the serial format
is satisfied.

Example 5. I2C Data

Determine the data bits in
the I2C waveform shown.
See Figure 8-14b for signal
protocol.

Open Drain AND

+ VDD

Pull-up
resistorsRP RP

Data
In

Clock
In

sense

sense

S PAAA Data DataSlave
Address

R

W

tS − Start

R/W − Read/write

A − Acknowledge

A − Not Acknowledge

P − Stop

L − Write
H − Read

0.7VDD

0.3VDD

0.7VDD

0.3VDD

Stop
SDA = L to H
SCL = H

Data Transition
SDA = H to L
 L to H
SCL = L

Start
SDA = H to L
SCL = H

Clock Line SCL

Data Line SDA

SDA

SCL

Valid Data
SCL = H
SDA = L or H

a. I2C bus schematic c. Example of format for master-
transmitter slave-receiver

b. Start, stop, valid data and data transition timing

Figure 8-14: I2C protocol

Solution:

SDA: H to L L to H H H H H to L L L L L to H H H H H to L L to H

SCL: H L H L H L H L H L H L H L H

Bit: Start * 1 * 1 * 0 * 0 * 1 * 1 * Stop

* Transition

time

H

SDA

L

H

SCL

L

Data Waveform

TEAM LRN

152

Chapter Eight

Format

An example of the serial format for a master-transmitter to a slave-receiver is shown in Figure 8-14c. The
format starts with a start bit, then the address from the master to identify the slave, then a low on the R/W
bit, and finally the data. Data continues to be sent by the transmitter as acknowledgement bits (A) are placed
on the bus by the receiver. When no acknowledgement is received, the master-transmitter sends a stop bit.

USB
Another still more advanced serial data communications protocol is the universal serial bus (USB). It is
being used extensively to communicate data from DTE to DTE, from DTE to DCE and from DCE to DTE.
Using USB, serial data can be transferred at three different rates. Using USB low speed, the transfer rate is
1.5 million bits/sec; using USB full speed, the transfer rate increases up to 12 million bits/sec; and using
USB high speed, the transfer rate is up to 480 million bits/sec. The discussions in this chapter center on
USB low speed and full speed. The reader is left to investigate the specifications for USB high speed.

The connecting cable used is shown in Figure 8-15. It
is a 4-wire system, using a twisted pair for D+ and
D– data lines, and power lines of VBUS and GND. It uses
a unique feature of differential detection of data on the
D+ and D– lines.

USB Network

A typical USB network is shown in Figure 8-16. It
consists of a host, which contains a host controller, and
separate USB devices. These devices, as shown, can either be a function or a hub. A function is a USB
device that is able to transmit or receive data or control information over the bus. It contains information
about its capabilities and the resources that it needs. Examples of functions are mouse controllers, light
pens, keyboards, printers, scanners, and so forth.

Hubs are USB devices that expand the USB bus interconnections. They allow the attachment of multiple
USB devices. The host, as shown in Figure 8-16, can be connected to a function or a hub, and that hub can
be connected to other hubs or other functions. In addition, there is overriding software that manages the
bus. USB permits the host to configure a hub and monitor and control its ports.

The host is responsible for knowing when devices are connected or disconnected from the bus, for manag-
ing the data flow between USB
devices, and for the status of the
bus. The host assigns a unique
address to a device attached to it.
It determines if the new device is a
hub or a function. If the device is
a function, the host recognizes this
and configures it. If the device is
a hub, the host’s software estab-
lishes the unique addresses and end
points for all devices attached to
the hub. All USB devices support
a common means for accessing in-
formation to control the end points.

Figure 8-15: 4-Wire USB Cable

GND

VBUS

D+
D−

GND

VBUS

D+
D−

+5V

Twisted pair

Figure 8-15: 4-wire USB cable

Figure 8-16: USB Network

Upstream

Downstream

Host
(Host

Controller)

USB Device
(Function)

USB Device
(HUB)

USB Device
(Function)

USB Device
(HUB)

USB Device
(Function)

USB Device
(Function)

Figure 8-16: USB network

TEAM LRN

153

Data Communications

USB Electrical Connections
Figure 8-17 shows the USB
electrical interconnections
of the bus. The host control-
ler is required to have a root
hub that contains a trans-
ceiver. All hubs, including
the root hub, are required to
support both full-speed and
low-speed data transfers.
Functions may just support
low speed.

Transmission from the
host is called downstream;
transmission to the host is called upstream. At the host, root hub, and any external hub, the D+ and D– lines
at downstream ports each have a 15 kΩ pull-down resistor to ground. On a port feeding upstream from a
device or hub, a 1.5 kΩ pull-up resistor is connected between the D+ line and a voltage supply from +3.0V
to +3.6V. If it is a low-speed device, the 1.5 kΩ resistor is connected from the D– line to the voltage source.
An external hub is a special case that has both 1.5 kΩ resistors on up-stream ports and 15 kΩ pull-down
resistors on the downstream ports. The impedance of the USB cable is 90 Ω. VBUS is nominally +5V at the
source. The host supplies power to USB devices directly connected to it. A hub supplies power to its con-
nected devices; however, some connected devices have internal power sources.

Bus Transceivers
The details of the trans-
ceivers are shown in
Figure 8-18. Note that
there are differential re-
ceivers for the data lines,
and also single-ended
receivers, one for each
data line. The single-end-
ed receivers are used for
control purposes. There
are output buffers that
drive the data lines when
transmitting data. Each
of the output buffers have
an enable input because
the buffers must have a
3-state high-impedance
output when not enabled.
This means the buffers,
when not enabled, are
no load on the bus. The output buffer for the function transceiver has another input to control whether it is
operating at low speed or full speed.

Function or Hub

 * Full-Speed
 ** Low-Speed
 Transceiver

D−

D+

+3.0 − 3.6V

*
1.5K

**
1.5K

GND

+5V

Upstream

Root Hub
with

Transceiver

Host
Controller

15K

15K

GND

Downstream

D−

D+

VBUS

+5V

ZO = 90 Ω

Figure 8-17: USB InterconnectionsFigure 8-17: USB interconnections

15K 15K

Output Buffers

Single-ended Receivers

Differential Receiver

RxD

RxD+

RxD−

TxD+

OE
Speed

TxD−

Additional logic is required
to invert signal polarity on
data in/out when low-speed
devices are attached.

**

Full-Speed
Low-Speed

*
**

D−D−
D+

3.0V<V<3.6V

*
1.5K**

1.5K

HOST FUNCTION

Differential Receiver

Single-ended Receivers

Output Buffers

RxD

RxD+

RxD−

TxD+

OE

TxD−

Downstream

Upstream

Figure 8-18: A possible USB system
showing receivers at host and function

TEAM LRN

154

Chapter Eight

When the host is transmitting, its output buffers are enabled and drive the data lines differentially; the func-
tion output buffers are disabled. When the function is transmitting, its output buffers are enabled and drive
the data lines differentially; the host output buffers are disabled. When not transmitting the output buffers
are disabled. At low speed, two changes occur—the 1.5 kΩ resistor’s termination is to the D– line instead of
the D+ line, and the logic levels are reversed.

Data Line Waveforms

The differential signals
plotted against time are
shown in Figure 8-19.
The data signals swing
between 2.8V (VOH(min))
and 0.3V (VOL(max)). When
D+ is greater than 2.8V
and D– is less than 0.3V,
the differential logic
state is a 1; when D+ is
less than 0.3V and D– is
greater than 2.8V, the
differential logic state is
a 0. The point where the
waveforms cross is called
VCRS, the voltage crossover point. It must be between 1.3V and 2.0V. The amplitude A should be approxi-
mately the same for each transition. The logic states are also called the J and K states. The J and K states
are inverted, as shown in Figure 8-19, for low speed and full speed operation. This is the reason for the
extra logic inverters in the function called for in Figure 8-18. The rise and fall times of the waveforms must
be 75–300 nS for low-speed operation and 4–20 nS for full-speed operation.

USB Signal Protocol

The USB is a polled bus. The host controller initiates all data transfers. All bus transactions involve the
transmission of three packets diagramed in Figure 8-20. Each transmission begins when the host control-
ler, on a scheduled basis, sends a “token packet” describing the type and direction of the transmissions, the
USB device address, and an end-point number. The USB device that is addressed selects itself by decoding
the appropriate address fields.

Example 6. USB Host-to-Function Addressing

A USB network has the host transmitting downstream to four functions with addresses as shown. The
host transmits an address 0010. What happens?

Host transmits
address 0010

Host

Root Hub
w/Transceiver

This function recognizes
its address 0010 and
activates itself to receive
the data.

Function
(Address 0000)

Function
(Address 0001)

Function
(Address 0010)

Function
(Address 0011)

Chapter 8 Example 6 Illustration

 Low Speed High Speed

J state 0 1

K state 1 0

Figure 8-19: Data Line Switching Waveforms

 Data Speeds tr, tf

Low Speed 1.5 Mbits/sec 75−300 ns

Full Speed 12 Mbits/sec 4−20 ns

VOL (max)
0.3V 10%

90%

D− tr D+ tf D−
“1” state “0” state A should equal B

2.0V

1.3V

2.8V
VOH (min)

VCRS
B

A

D+ D− D+
one bit time

Figure 8-19: Data line switching waveforms

TEAM LRN

155

Data Communications

In a given transaction,
data is transferred either
from the host to a device,
or from a device to a host.
The direction of transfer
is specified in the token
packet. After the direction
is set, the source sends data
packets, or else indicates
it has no data to transfer.
When a transfer is re-
ceived, the destination, in
general, responds with a
“handshake” packet that indicates the transfer was successful. Each packet is preceded by sync signals,
called a sync field, and includes a control portion, a data portion and an error-correction field. The error
correction is for single and double bit errors. The sync field, which is really a clock signal, is transmitted
and encoded along with the differential data, and allows the receiver(s) to synchronize their bit recovery
clocks. After the last bit of the packet, as shown in Figure 8-20, both D+ and D–, as single-ended signals,
are driven to 0.

The data line is then driven to the high level to indicate an end to the packet. The output buffers are then
driven to their high-impedance state so that the data bus floats. There are limitations on the capacitance
loading and propagation delays so that signal reflections can be controlled.

Data Transfers

There are three types of information transfers: sync, control and data. The sync, control and data transfers
between the host and a USB device can be one-way or two-way. The sync transfers synchronize the receiv-
ers. The control transfers configure devices when they are first connected or when there is any change in
the device status. Data transfers are of three types: bulk, interrupt and real time. Bulk data transfers are for
large amounts of data between a host and a printer or scanner that requires data accuracy. Interrupt trans-
fers, as from a mouse for a computer, is for data that may be presented at random times. Real-time data
transfers, such as voice transmissions, that need to occur in real time and have no error correction, but must
continue to be transmitted, are called isochronous transfers.

Data Encoding

The transfers are encoded
using a “nonreturn-to-zero”
encoding as detailed in
Figure 8-21. If the data is 0,
the encoding changes; if it is
a 1, it does not change. This
encoding, as shown in Figure
8-22, produces a clock type
sync field at the beginning of
a packet. This is the signal
that synchronizes the receiver
of the packet. The rules for

D+ and D− both 0

Last Bit
of Packet

Bus Driven to
high level at end

of EOP
Bus

FloatsSEO
portion
of EOP Bus Idle

Received
Packet

First Bit
of Packet

SOP

Bus IdleVSS

2.8V VOH(min)
2.0V VIH(min)

0.8V VIL(max)
0.3V VOL(max)

Notation:
SOP − start of packet
EOP − End of packet
SEO − Single ended zero
X − 3-state open Z on line

X

Figure 8-20: Example of a possible packet and data format

Data

Encoded

Idle 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1

Data is 0
so encoding
changes

Data is 1 so encoding
doesn’t change

Idle

Figure 8-21: Nonreturn-to-zero encoding

TEAM LRN

156

Chapter Eight

the sync pulse preceding the
packet are that seven 0s and
a 1 are to be transferred as the
sync field. When encoded it
produces the sync field shown
in Figure 8-22.

Data

NRZI
Encode

 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

Idle

Idle

Packet

SYNC DATA

Figure 8-22: Sync signals prefixed to packet

Example 7. NRZ Encoding

For the data waveform shown, what would the encoded waveform be when using nonreturn-to-zero
(NRZ) encoding? The rules for encoding are: if data = 0, encoding waveform changes; if data = 1
encoded waveform does not change.

Summary
Data communications using parallel and serial techniques has been the subject of this chapter. The proto-
cols, data format and techniques showed that parallel communications are the fastest but most expensive.
Advances in technology have caused the less expensive serial communications to keep pace with the
requirements of the hardware. New transmissions using I2C and USB show how these protocols are keeping
pace. In the next chapter, power systems and their control will be discussed.

 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1

Idle

Data Waveform

Data

Solution:

Encoded
Waveform

D = 1

No change

D = 0

Change

Chapter 8 Example 7 Illustration

TEAM LRN

157

Data Communications

Chapter 8 Quiz
1. A digital data communication system is:
 a. made up of a transmitter and a transmission medium.
 b. made up of a transmitter, receiver and a transmission medium.
 c. made up of a receiver and a transmission medium.
 d. made up of just the transmission medium.
2. In digital communications, a parallel transfer means that:
 a. digital data is transferred at a faster speed.
 b. if bits in digital data change, they all change at the same time.
 c. it is the most economical way of transferring data.
 d. each bit of the digital data has a separate data line.
 e. c only above is correct.
 f. a, b and d above are correct.
3. In digital communications, a serial transfer means that:
 a. it is the fastest way of transferring data.
 b. the transfer of data is just on one line.
 c. the digital data arrives one bit after another in sequence.
 d. it cost less to transfer data than using parallel transfers.
 e. a only above is correct.
 f. b, c and d above are correct.
4. A communications protocol is:
 a. a set of communication system schematics.
 b. a set of rules that applies only to digital data communications hardware.
 c. the hardware and software rules and procedures for making sure that transmission errors are

detected.
 d. a set of rules that applies only to digital data communications software.
5. Serial data communications is the prime digital data transfer method because:
 a. advances in IC technology have kept up with the bit transfer rates required by industry.
 b. it needs more equipment (hardware) than parallel transfers.
 c. it is much more expensive than parallel transfers.
 d. it is faster than parallel transfers.
6. In serial digital data communications, what must be added to the data?
 a. Only start and stop bits.
 b. Just parity bit.
 c. Start, stop and parity bit for error detection and correction.
 d. Some error-detection and error-correction scheme.
7. Odd parity:
 a. is when an additional bit is added to the data to make the sum of the 1 bits odd.
 b. means it is a strange set of rules.
 c. is when an additional bit is added to the data to make the sum of the 1 bits even.
 d. improves the baud rate.
8. A USART is:
 a. a universal synchronous/asynchronous receiver/transmitter DCE.
 b. a DCE used extensively for serial data communications.
 c. a DCE that can only be used for synchronous transmissions.

TEAM LRN

158

Chapter Eight

 d. a DCE that can only be used for asynchronous transmissions.
 e. only c above.
 f. only a and b above.
9. When two USARTs communicate synchronously:
 a. there is no common clock.
 b. the clock is generated externally.
 c. there are two independent clocks, one in transmitter and one in the receiver.
 d. there is a common clock either in the transmitter or the receiver.
10. When two USARTs communicate asynchronously:
 a. there is a common clock either in the transmitter or the receiver.
 b. there is no physical interconnection of clock signals.
 c. the clock is generated externally.
 d. the frames of data arrive in regular periods.
11. I2C-Bus means:
 a. a combination of amplifier integrated circuits.
 b. a current squared times a capacitor value.
 c. a serial communications bus protocol developed for inter-IC control.
 d. a bus used for parallel data transfers.
12. I2C is:
 a. a 2-line bus synchronous system that requires a clock.
 b. a 2-line bus that has a master and a slave.
 c. a 2-line bus where the transmitter or receiver can be the master or slave.
 d. a 2-line bus where the master initiates the data transfer and generates a clock.
 e. a 2-line bus where the unit that is addressed is the slave.
 f. b, c and d only above.
 g. all of a, b, c, d and e above.
13. The universal serial bus (USB) is:
 a. a 2-wire system with a twisted pair for the data lines.
 b. a system that has all hubs in its network.
 c. a 4-wire system with differential signal detection of data on the D+ and D– data lines.
 d. a system that operates using +2.5V.
14. The four wires of the USB system are:
 a. D+, D–, VBUS and GND.
 b. GND, VDD, VOH and VOL.
 c. GND, VCC, VOH(min) and VOL(max)

 d. D+, D–, VOH(min) and VOL(max)
15. USB networks have:
 a. a host controller with a root hub and transceiver.
 b. hubs or functions connected to the root hub.
 c. a 90Ω transmission cable.
 d. an upstream and downstream transmission direction.
 e. all of the above.
 f. only a and b above.
16. A USB transceiver has:
 a. three op amps and a power amplifier.

TEAM LRN

159

Data Communications

 b. two power amplifiers and three tuned-stage amplifiers.
 c. a class C, a class A, a Class AB and a class B amplifier.
 d. differential receivers, single-ended receivers, and output buffers.
17. A USB network:
 a. identifies a 1 or 0 of data using single-ended signals.
 b. identifies a 1 or 0 of data using differential signals.
 c. identifies a 1 or 0 of data using class AB amplifiers.
 d. none of the above.
18. In the USB network:
 a. the transmitter sends a sync signal to synchronize the receiver.
 b. the receiver runs freely at its own clock rate.
 c. the receiver has a physical wire connection with the transmitter.
 d. the USB device that is addressed selects itself.
 e. a and b above.
 f. a and d above.
19. At the end of a USB packet transmission:
 a. the transceivers buffers are still actively connected to the bus.
 b. the D+ and D– lines are both at a 1 level.
 c. the output buffers in the transceivers are put into their high-impedance state.
 d. the sync signal is inserted.
20. In a USB packet transmission:
 a. there is no error-correction information.
 b. there only is data in the packets.
 c. the single-ended transmission is susceptible to noise.
 d. seven 0s and a 1 are transmitted to develop sync pulses.

Answers: 1.b, 2.f, 3.f, 4.c, 5.a, 6.c, 7.a, 8.f, 9.d, 10.b, 11.c, 12.g, 13.c, 14.a, 15.e, 16.d, 17.b, 18.f, 19.c,
20.d.

TEAM LRN

160

Introduction
All electronic systems require a source of power. In almost all cases the voltage and current values are
specified. The current value is in amperes as a load on the supply, and the voltage value is to be held within
a specified tolerance (usually a percentage of the nominal value) as the current value varies within speci-
fied limits as the load changes. The nominal value of voltage times the nominal value of current determines
the watts of power required of the supply. In this chapter, not only will the source of the voltages and their
regulation be discussed, but the way the supply voltages are distributed throughout a system. In addition,
the sophisticated circuits that are now available to monitor, detect and protect systems from damage, errors
and failure will be discussed.

AC to DC Power Supplies

Figure 9-1a shows a general AC to DC power supply. Its source is the alternating current voltage of
120VAC or 250VAC, 60 Hz that is distributed commercially by the local power company. The alternat-
ing voltage varying plus and minus around zero is rectified into voltages that vary only above zero. The

CHAPTER 9

System Power and Control

Rectifier Filter
*Voltage

RegulatorVDC Regulated VO

DC VoltageLoad I

Load

* Could be current

*Voltage
Regulator

DC VoltageLoad I

Load

* Could be current

AC
Source

ISOLATED

AC
Source

Regulated VO

LC
Filter

Full-wave
Rectifier

L

C C
VDC

*Voltage
Regulator

DC VoltageLoad I

Load

* Could be current
** Ripple Voltage

Regulated VO

LC
Filter

L

C

VDC

Bridge
Rectifier

**

**

**

a. AC to DC power system

b. AC to DC power system isolated from AC line

c. AC to DC power system not isolated from AC line

Figure 9-1: Examples of AC to DC power supplies
TEAM LRN

161

System Power and Control

half-alterations are passed through a filter that produces a DC voltage of designed amplitude. A small ripple
voltage results from the amount of filtering compared to the input voltage variations. The ripple is super-
imposed on the DC voltage and represents a so-called noise. Because the output voltage must be controlled
accurately within tight tolerances, a voltage regulator (or it could be a current regulator) is required. The
voltage is held to within 1% to 10% of VOUT over the specified load current and its changes depending on
the application and type of regulator.

Many AC to DC power supplies must be isolated from the incoming AC line. Figure 9-1b shows such a
design using a full-wave rectifier and transformer isolation. If the power supply need not be isolated, Figure
9-1c shows a design using a bridge rectifier supplied directly from the AC line.

Voltage Regulators
Zener Regulator

Figure 9-2 shows different versions of linear voltage regulators. The simplest of these is shown in Figure
9-2a. It consists of a zener diode and a resistor connected to a voltage VIN. A zener diode is a semiconductor
diode designed to operate in the reverse-biased avalanche region (similar to breakdown) that has the charac-
teristic of maintaining a constant voltage across it as the current through it varies. It must have a minimum
current, IZ(min), through it to operate properly, and because of a power dissipation temperature limit, it can

IL

VOLoad
Zener
Diode

VIN

IZ

R

a. A simple zener diode.

b. A shunt regulator

IL
R

IS
Shunt

Regulator
Load VO

b. A shunt regulator c. A simplified voltage regulator

IL

+

−

Sampling
Circuit

VOUT
Error
 voltage

{

Error
Amplifier

Series
Control
Element

Approx
equal to

Vref

Sample of
output V

Vref

Reference
Voltage

Vreg

RS

VDC

VIN Load

c. A simplified voltage regulator

VS

IL

+

−

VOUTVIN

IL

Load

R3

R4Sampled
output
voltage

Error
voltage

Vbe

Series Control
Element

C
B

E

Q2R2R1

Z1

+

−

d. Series Voltage Regulator Schematic

E

C

B

Q1

VZ

Reference
voltage

Error
amplifier

d. Series voltage regulator schematic

C

External Transistor

VOUT

Q3

Q2VIN

R

Remove

Standard
error amplifier

output

C E

B

B

E

e. Added transistor for higher current

Figure 9-2: Linear voltage regulators
TEAM LRN

162

Chapter Nine

handle only up to a maximum current, IZ(max). Here is how it works as a regulator. IZ can be any value from
IZ(min) to IZ(max), and VO will remain within a specified percentage of VO. Initially with no-load, IL = 0, the se-
ries resistor is set so that the current is IZ(max). When IL is increased, IZ decreases, but VO will remain within
specified limits until IZ = IZ(min). Thus, IL varies over its range but VO remains within specified limits. The
zener diode is not a regulator for wide variations in current; it is more a regulator for a constant load with
little variations. Currents that it can handle are usually less than 100 milliamperes (100 mA).

Example 1. Zener Voltage Regulator

A Zener diode has the characteristics shown for points 1 and 2. What is the percent load regulation
when the load changes between point 1 and point 2?

 VZ IZ

 Point 1 6.0V 1 mA (maximum current drawn by load)
 Point 2 6.42V 100 mA (minimum current drawn by load)

Solution:
 % Load Regulation = VNO LOAD – VLOAD/VLOAD × 100
 % Load Regulation = 6.42 – 6.0/6.0 × 100 = 0.42/6 × 100 = 0.07 × 100
 % Load Regulation = 7%

Shunt Regulator

The shunt regulator shown in Figure 9-2b also shunts current from the load but is designed to handle much
larger currents. It duplicates the zener diode regulator. Initially, IS is a maximum through the shunt. As IL
increases to a maximum, IS will decrease to a minimum. It is packaged to handle much greater power dis-
sipation, since the device power dissipation is VO times IS.

Linear Series Voltage Regulators

A true feedback-type linear voltage regulator is shown in Figure 9-2c. All components operate in their
linear mode. It is a simplified block diagram that does not have all the bells and whistles that are designed
into IC regulators today, but the modern IC regulators are based on the same principles. The input voltage,
a DC voltage, is separated from the load by a control element in series between VIN and VOUT. There is a
voltage drop across the control element of VREG. The series control element is controlled by an error ampli-
fier. The error amplifier amplifies a voltage difference, called the error voltage, between a reference voltage
and a sampled portion of the output voltage approximately equal to the reference voltage. Changes in the
load current cause VOUT to vary and the error voltage to change such that the series drop across the control
element compensates for the change in VOUT.

Load Variations
The regulation works as follows: If IL increases it will tend to reduce VOUT. The reduction in VOUT is fed
through the sampling circuit to an input of the error amplifier. The reference voltage is on the other input.
Since the reference voltage is constant, the error voltage decreases and causes the voltage across the control
element to decrease. As a result, VOUT increases to compensate for the initial decrease.

Likewise, if IL decreases, it tends to increase VOUT. Increasing VOUT increases the error voltage, which in-
creases the control element voltage, VREG and reduces VOUT to compensate for the initial increase. The stable
operating point of the system is such that with VIN a particular value and VOUT a specified value, the error
voltage is tending toward zero.

TEAM LRN

163

System Power and Control

Actual Linear Voltage Regulator Circuit
Figure 9-2d is a schematic of the interconnection of components for a linear series voltage regulator. The
active devices shown are bipolar transistors, but MOS devices can (and are) used for the same design. NPN
transistors and a positive output voltage are used in the design because the circuit is a bit easier to understand.

Note first that the series control element is just a NPN transistor. Note also that the reference voltage is
really the zener voltage regulator that was discussed in Figure 9-2a. The only variations in the zener diode
current will be those caused by variations in the input voltage, VIN. Q1 and R2 form an inverting amplifier
whose output drives the base of Q2, the series control element. The input to the amplifier is the error volt-
age, Vbe of Q1. The sampled output voltage under the quiescent state is equal to a Vbe voltage above VZ, the
reference voltage.

Load Variations

The regulation proceeds as follows: When IL increases and VOUT tends to reduce due to the increased drop
across Q2, the Vbe error voltage on Q1 reduces, reducing current through Q1 and R2. The rise in the collector
voltage of Q1 and base voltage of Q2 raises the emitter voltage of Q2, increasing VOUT to compensate for the
initial reduction.

Likewise, for a decrease in IL, VOUT tends to increase because of the decreased drop across Q2. The Vbe error
voltage increases, which reduces the Q1 collector voltage and base voltage of Q2, which reduces the emitter
voltage to compensate for the initial rise in VOUT.

Line Variations

Similar regulation occurs for VIN variations. If VIN increases, VOUT tends to increase, but the reference volt-
age, VZ, changes very little. The error voltage increases because of an increase in VOUT, which reduces the
Q1 collector voltage and base voltage of Q2, which reduces the emitter voltage, VOUT, to compensate for the
increase. Similar to load variations, a decrease in VIN will be met with a compensating increase in VOUT to
complete the regulation.

Higher-Current Regulators

In order to handle larger currents and, thus, more power dissipation for the regulator, external devices can
be connected as shown in Figure 9-2e. Many IC regulators have the connections for the external devices
provided in the design. Again, bipolar devices are used in the example, but MOS devices can be used just
as well. Power devices with external heat sinks are usually required in order to satisfy the power dissipation
requirements and keep the operating temperatures of the devices within specifications.

Voltage Regulation
Return now to Figure 9-2c. The input voltage VDC is the voltage out of the rectifier and filter of Figure 9-1.
There is an impedance associated with the rectifier and filter. It is RS shown in Figure 9-2c. As a result, the
output voltage, VOUT, is equal to:

 VOUT = VDC – ILRS – VREG

 = VDC – VS – VREG

 = VDC – (VS + VREG)

Using this information, the regulation can be explained as follows: VDC is always considered constant. The
regulator varies VREG to keep VOUT constant as IL and VS change. With an increase in IL and thus VS, VOUT
would tend to decrease; however, VREG is reduced to compensate and VOUT remains constant.

TEAM LRN

164

Chapter Nine

A decrease in IL causes a decrease in VS, but regulation compensates by increasing VREG so that VOUT re-
mains constant. VDC was considered constant but if VDC changes, either up or down, regulation follows to
compensate by increasing or decreasing VREG to keep VOUT constant.

Percent Regulation

The load regulation of a voltage regulator can be expressed as follows (where the load is some specified
current value):

 % Load Regulation = VNO LOAD – VLOAD × 100

 VLOAD

If VNO LOAD = 11V and, at a specified current, VLOAD = 10V then

 % Load Regulation = 11 –10 × 100
 10

 % Load Regulation = 10%

Common percent load regulation for IC voltage regulators is from 1% to 5%.

Example 2. Voltage Regulation

To have 1% load regulation for the above supply where VNO LOAD = 11V, at the specified load, what does
the VLOAD have to be?

 1% = 11 – VLOAD × 100
 VLOAD

 0.01 = 11 – VLOAD

 VLOAD

 VLOAD (1 + 0.01) = 11

 VLOAD = 11 = 10.89V
 1.01

Power Dissipation
The power dissipation within an IC is a very important parameter because excessive temperature rise within
a semiconductor junction can ruin the device. In linear series voltage regulators, the device that handles the
most current is the series control element. The power dissipated in the control element is the product of the
voltage across the unit times the current through the unit. The load is the current, ILOAD, through the unit as
shown in Figure 9-2c and d. The voltage across the series element is VREG; therefore, the power dissipation
in the series element is:

 PD = VREG × ILOAD

VREG is:

 VREG = VDC – VS – VOUT

VS is usually very small compared to VOUT, therefore, the series element power dissipation can be expressed as:

 PD = (VDC – VOUT) ILOAD

TEAM LRN

165

System Power and Control

Example 3. Power Dissipation
A voltage regulator has an input voltage of +12V and is regulating a +5V supply line. The load current
is 100 mA. What is the power dissipation in the control element?

Solution:
 PD = (VDC – VOUT)ILOAD

 PD = (+12 – +5)V × 0.1A
 PD = 7 × 0.1 = 0.7 watts

In many IC voltage regulators, especially the low-drop-out regulators, the VDC is restricted to specified
values so that the VREG is not too great across the series element at the rated load current. This prevents
exceeding the rated power dissipation of the device.

Switching Voltage Regulators
A regulator that has gained prominence as the requirements for load current increased is the switching
voltage regulator. Standard linear regulators only have conversion efficiencies of less than 50%. Switching
regulators can have efficiencies of up to 85%. This results in lower power dissipation, much smaller size
components for a given power output, and operation over a wide range of voltage and current.

Figure 9-3 details
a switching voltage
regulator. One notes
that there are simi-
larities to a linear
voltage regulator.
There is the sam-
pling of the output,
the error amplifier,
and the error volt-
age resulting from
a comparison of a
sample of the output
voltage and the
reference voltage.

Here are the differences between the two regulators:

 1. The error amplifier output controls a switch whose ratio of open to closed is varied.

 2. Since the control element is a switch rather than a linear element, there is considerable difference
in the regulator action.

The Control Element

Instead of a series element operating in the linear mode, the control element is a switch that is in series with
a temporary energy storage element, an inductor. The switch is opened and closed at a very rapid rate, and
the ratio of the time it is closed to the time it is opened is varied to accomplish the regulation. There is no lin-
ear control element operation; it is all digital, either open or closed. When the switch is closed, it charges the
inductor with energy by creating a field of magnetic flux around the inductor. When the switch is opened, the
magnetic flux collapses across the inductor and returns the energy to the circuit. As the energy is returned,
the inductor uses D1, shown in Figure 9-3, to complete the circuit and keep current, IL, through the load.

VOUT

(Regulated)
VIN

DC Voltage

+

−

IL

Sampling
Element

Output
Filter

C1

Error
Amp

Reference
Voltage

} Error
Voltage

Voltage
determines
width of
pulse

Temporary

L1
Storage

D1

Pulse
Width

Modulator

Control

(Switch)
Element

Oscillator

Timing pulses
to start output pulse

+

−

Figure 9-3: Switching voltage regulator (step-down)

TEAM LRN

166

Chapter Nine

Actual Regulation

Producing more or less voltage across the
load is based upon modulating the time
that the control element is closed. This is
accomplished by the pulse-width modula-
tor (PWM) driven by the error amplifier.
An oscillator produces the start of pulses
at a constant rate, but the end of the pulse
is determined by the voltage supplied by
the error amplifier. The relationship of the
control voltage from the error amplifier
to the pulse width that turns on the switch
is shown in Figure 9-4. Note the center
of the figure has a line that represents a
constant level of the control voltage B that
is the nominal voltage level at the rated
current output. The pulse width for this
control voltage is shown as width C.

When the demand for current increases, the pulse width increases because the ON time of the pulse is in-
creased. More energy is stored in the inductor so that the increased current can be supplied and the voltage
maintained. The integration of the current pulses by the output filter establishes the output voltage level.
More ON time in the pulses produces a higher voltage, less ON time in the pulses produces a lower voltage.
As shown in Figure 9-4, when minimum current is required the pulse width is narrow with a short ON time.
Likewise, when maximum current is required the pulse width is wide with a long ON time.

Here is a description of the regulation in simple terms. When the load demands more current the output
voltage tends to decrease. This voltage decrease is sampled and converted to an error voltage that increases
the control voltage B and increases the ON time of the pulses. The increase in ON time supplies the in-
creased current and raises the output voltage to its required value.

A load that demands less current would tend to increase the output voltage. The voltage increase is sampled
and converted to an error voltage that decreases the control voltage B and decreases the ON time of the
pulse. The decrease in ON time of the pulses lowers the voltage and satisfies the demand for less current.

Switching regulators operate at frequencies from 100 kHz to several million cycles/sec. Because of the
range of frequencies and the switching action, there is some concern about RFI energy; and attention must
be paid to the shielding of sensitive circuits.

Step-Up and Inverting Switching Regulators

The switching regulator shown in Figure 9-3 is a step-down regulator—VO is smaller in value than VIN.
Figure 9-5 shows two other types of regulators, a step-up and an inverting regulator. The step-up regulator
produces a regulated voltage VO that is greater in value than VIN, while the inverting regulator produces a VO
that is inverted in polarity from VIN. A positive VIN produces a negative VO.

Switching Regulator Design

The design of switching regulators can be accomplished in a number of ways, but they all include the in-
ductor as the temporary energy storage element and large storage capacitors. The inductor and capacitor(s)
cannot be integrated into ICs; therefore they are external to any ICs used. Any of the other components,

Figure 9-4: Switching regulator waveforms

Courtesy of Master Publishing, Inc.

TEAM LRN

167

System Power and Control

depending on the current and voltage requirements, can at least be partially integrated circuits. For example,
if the current handling is within the range of 1–2 amperes, all of the error amplifier, PWM circuit, oscillator,
and the control element can be one IC. With higher current requirements, external heat-sinked driver pack-
ages can be used for the control element. Resistor dividers are always used to sample the output voltage to
feed back to the error amplifier.

Transformed PWM Regulators

In a different design than that shown in Figure 9-3, the PWM circuit, which contains the error amplifier,
oscillator, voltage reference and some protection circuits, is used as an AC source. This AC source is trans-
formed to the desired voltage, filtered, and fed back to the error amplifier to close the regulation loop. Such
a regulator is similar to the ones described because it uses PWM pulses for regulation control, but it does not
utilize the inductor as a temporary storage element. An increased pulse width (larger ON time) will increase
the voltage out from the transformed source; while a decreased pulse width decreases the voltage output.

Summary of Regulators
Nothing has been said in the discussion on regulators about all of the protection techniques that can be used
in the regulator circuit. For example, protection for maximum current, for short-circuits, for exceeding tem-
perature limits, for over voltage, for under voltage, controlling the power-up or power-down sequence are
all protection features that regulators may contain. Some of the features may be built into the IC regulator
itself, while others may be separate ICs designed specifically to provide the protection function.

Many IC voltage regulators that handle low power requirements may have two separate individual regula-
tors in a package, or the regulator may be one that has been designed to regulate two different voltages at
the same time. As mentioned previously, many regulators have external connections provided so that higher
current control elements can be driven as was shown in Figure 9-2e.

Switching regulators normally handle larger currents and voltage than fully-integrated regulators. Great
care must be taken to keep regulators within temperature limits by the use of heat sinks and proper venti-
lation. The switching elements of switching regulators can be subjected to rather extreme current spikes
and/or voltage spikes because of the nature of the operation; therefore, careful design is required to manage
these concerns.

As mentioned previously, because switching is occurring at relatively high frequencies, and because the
magnitude of currents switched are high, there is significant RF energy generated. Thus, a major concern is
the circuit layouts and shielding of sensitive circuits due to the RF energy present.

Sampling,
Error Amplifier,
PWM, Oscillator

VO

+

−+

−

Load

R2

R1

C

L

D1

VIN
DC
Voltage

Sampling,
Error Amplifier,
PWM, Oscillator R2

R1

VIN

DC
Voltage

+

−

Load

L D1 VO +

−

C

Figure 9-5: Different kinds of switching regulators

a. Step-up regulator b. Inverting regulator

TEAM LRN

168

Chapter Nine

Power Supply Distribution
Figure 9-6a shows an electronic system that needs regulated voltages of +5V, +3.3V, +3V, and +1.8V. The
source for the system is a filtered DC of VDC obtained from one of the rectifier and filter systems of Figure
9-1. One of the simplest ways to provide the system voltages is shown in Figure 9-6b. A regulated +5V line is
used as the source, and resistor dividers with bypass capacitors are used to provide the required voltage sup-
ply lines. However, such a system is not satisfactory for many systems because the load current changes cause
voltage variations that are not acceptable for proper operation of the system. The supply lines must be regu-
lated voltages held to tight tolerances, much tighter tolerances than the resistor divider and capacitor by-pass
can provide. In addition, the +5V regulator must be able to handle the total current required of the system.

A very acceptable system is shown in Figure 9-6c. Here
individual linear regulators designed to operate with low
VREG voltages for low power dissipation (called LDO
regulators) are used to provide the regulated voltages in
steps. Regulator A provides a +5V rail from which regula-
tor B and C provide +3.3V and +3.0V rails, respectively.
Instead of regulator D deriving its source voltage from the
+5V rail, it uses the +3.0
rail to provide the +1.8V
rail. This keeps the power
dissipation in each regula-
tor at a low level, and also
doubles the regulation for
the stepped down rails.
Regulator A must be able
to supply the current used
by the +3.3V, the +3.0V

+5V Rail

+3.3V Rail

+3.0V Rail

+1.8V Rail

VIN AC to DC Filtered

Power Supply Voltages Required
Power

Supply

a. Overall system requirements

+5V
Regulator

VIN

b. RC Filtered System

R3

R4 C

+3V

R5

R6
C

+1.8V
R1

R2 C

+5V

+3.3V

b. RC filtered system

Linear
or

Switching
Regulator

Linear
or

Switching
Regulator

Linear
Regulator

LDO

+3.3V
Circuits

Linear
Regulator

LDO

+3.0V
Circuits

+1.8V
1.8V

+3.0V

+3.3V

3.0V

C

+5V

+5V

B

+5V

+5V

3.3V

A'

VIN AC to DC Filtered

+1.8V
Circuits

Linear
Regulator

LDO

A

C

C

C

C

D

*

*Connections when Regulator
A' can supply all the load
currents

*

C

c. Complete regulated system

Figure 9-6: Power distribution system
TEAM LRN

169

System Power and Control

and the +1.8V rails. This is the reason regulator A'
is included. It supplies all the remaining current
for the main +5V rail. If it is determined that the
current supplied by regulator A is small enough that
regulator A' would be able to handle the load and
still hold the regulation percentage, then regulator A
can be eliminated. Of course, on all rails, capacitor
bypass should be provided where the circuits tap off
for power.

Dual-Output Regulators

Many times circuits inside microprocessors operate
at different voltage levels to save power dissipation. Figure 9-7 shows the use of a regulator that can sup-
ply two different voltages from the same input voltage. Obviously, two separate regulator packages could
be used, but with the one-chip package, variations with temperature will track better and “loss-of-power”
protection for circuits will be better.

DC/DC Converters

Figure 9-8 shows a
power distribution
system that requires,
beside the +5V for
logic circuits and other
computing circuits,
+12V, +24V and +3V.
DC/DC converters
are used for the +12V,
+24V and +3V rails.
The A and B convert-
ers are stepping up
the voltage from +5V,
while the C converter
steps down the volt-
age. The schematic of
the DC/DC converter is shown in Figure 9-9. The basic circuit of oscillator, pulse-width modulator, error
amplifier and reference voltage are used to provide a varying ON-time pulse to the control element, in this
case a power MOS. The varying pulse width pulses, transformed, rectified and filtered, provide the output
voltage VO. The ratio of the secondary turns to the primary turns on the output transformer determine if the
voltage steps up or steps
down. The sensing of VO
in this case is out at the
load, and current sensing
circuits provide protec-
tion if the current output
exceeds a set limit.

Microprocessor

+1.8V
Circuits

+3.3V
Circuits

Dual
Linear

Regulator

+5V+

−

Regulated Voltage

+3.3V

+1.8VC

C

Figure 9-7: Dual regulator for microprocessors

DC/DC
Converter

DC/DC
Converter

DC/DC
Converter

+3V Regulated (High Current)

V03V024V012

C
BA

VIN

+5V Regulated (switching regulator)

+12V Regulated

+24V Regulated

Figure 9-8: DC/DC converters for higher or lower voltages

VREG
Protection
Circuits

Error
Voltage
Amplifier

OSC

VS+

VS−

VCC

PWM

+VDC XFMR

1
2
Current
Sense

Control
Element

1 2

CS C

VS−

L

+

−

Load

VS+

+

−
VO

Figure 9-9: DC/DC converter schematic
TEAM LRN

170

Chapter Nine

Example 4. Power Distribution
Given the system specifications for the power supply rails required, design the power distribution for
the system.
 Voltage Current W Comment
 +12V 7 A 84 2% regulation, small current variations
 +5V 2 A 10 1% regulation, moderate current changes
 +3.3V 0.5 A 1.65 1% regulation, large % current changes
 +3V 10 mA 0.03 2% regulation, no current variations
Solution:

A VDC of +8V from a filtered DC output of a full-wave rectifier is chosen as the main source. The +5V
and +3.3V rails, because of the 1% regulation needed with moderate current changes, linear voltage
regulators are selected. The +3.3V rail, since it has current changes that are a large % of the total
current of 0.5A nominal value, uses the regulated +5V as its supply rail. The +5V LDO regulator must
be able to supply the 2.5A requirements of the +5V and +3.3V rails. The high-current +12V rail needs
only 2% regulation with small current variations; therefore, a DC/DC converter is used to supply the
+12V. As a result, another source besides the +8V is not required. The +3V rail with 2% regulation
and no current variations from the low current of 10 mA is regulated with a zener diode.

Power System Supervisors
Power system supervisors are circuits that watch over the power distribution system to detect variations in
system power that may cause failure, faulty operation, or damaged circuitry. Figure 9-10 shows a supervisor
that is watching over three power rails. A is a main system processor. It is the heart of a system. If it were
to lose its operating point, data and memory, it would be a catastrophe. The supervisor watches the supply
voltage and anticipates power failure. By doing so, it allows the processor to terminate main operations,
save data and enter a proper shut-down procedure.

At B are circuits that need time to stabilize—like a clock generator in a processor. The supervisor provides
a time delay before the circuits operate which allows the power to be at it stabilized value and the circuits
up and running properly.

Filtered
DC from
Full-wave
Rectifier

+ 8V + 12V
7A

DC/DC
Converter

+ 5V
Linear
Series

Voltage
Regulator

LDO
Low V
Drop

Regulator

+ 5V

2A

+ 3.3V

0.5A

+ 3V

10 mA

R 100 Ω

TEAM LRN

171

System Power and Control

The supervisor for the circuits of C provides a gated chip enable. If the power supply voltage were to go
below a critical value, sensitive circuits of C would not operate properly. The supervisor senses the power
supply voltage, and if it goes below a critical set threshold, the supervisor disables the circuit with the chip
enable line.

Summary
The basics of power supply regulation and some techniques used for distribution have been covered. A sub-
ject that is somewhat beyond the scope of this book is called “power management.” It covers many exciting
innovations such as, loadsharing, swapping boards in computers while power is ON, and many other pro-
tection techniques—for example, current limiting power switches, and watchdog timers. To equalize current
in parallel power supplies, to have a technician replacing boards while the system runs, to turn ON or OFF
a power supply at a current limit, and to reset a system if it doesn’t respond after a given time should be
subjects that wet one’s interest to investigate further power management techniques.

Power

System

Supervisor

Figure 9-10: Power System Supervisor

Main

Processor

Circuits That

Need Time

to Stabilize
Sensitive

Circuitry

A

B

C

+V3

+V1

Chip Enable
Gating

Sensing for
Low Voltage

Prewarning of Power Failure

Providing Time Delay +V2

Figure 9-10: Power system supervisor

Chapter 9 Quiz
1. An AC to DC regulated power supply for electronic systems consists of:
 a. a transformer, a rectifier and a filter.
 b. a rectifier, a filter and a voltage or current regulator.
 c. a transformer, a full-wave rectifier and a load.
 d. a bridge rectifier and a voltage or current regulator.
2. Common solid-state rectifiers for AC to DC power supplies are:
 a. single vacuum tube rectifiers.
 b. bridge rectifiers.
 c. full-wave rectifiers.
 d. all of above.
 e. b and c above.
 f. a above.
3. A zener diode is a semiconductor diode that:
 a. is forward biased in normal operation.
 b. can handle tens of amperes of current.
 c. doesn’t have to be concerned about power dissipation.
 d. is designed to maintain a constant voltage across it as the current through it varies.

TEAM LRN

172

Chapter Nine

4. In linear series voltage regulators:
 a. all components operate within their linear range.
 b. the series control element operates in a switching mode.
 c. the error voltage is quite large at the stable operating point.
 d. the reference voltage source handles large currents.
5. The efficiency of linear series voltage regulators is:
 a. less than 50%.
 b. less than 75%.
 c. less than 35%
 d. less than 10%.
6. In a quiescent linear series voltage regulator using a zener diode reference voltage:
 a. the sampled output voltage is equal to the zener reference voltage.
 b. with VIN constant, there will be large changes in the zener reference voltage.
 c. the sampled output voltage is a Vbe voltage above the zener reference voltage.
 d. there is no limit on the current through the series control element.
7. A linear series voltage regulator can regulate output voltage:
 a. when load current changes occur.
 b. when input line variations occur.
 c. when the input voltage source is removed.
 d. when there is a short-circuit load.
 e. a and b only.
 f. none of the above.
8. To obtain higher current regulation from a linear series voltage regulator:
 a. more zener diodes are added.
 b. another higher-current transistor is added in parallel with the series control element.
 c. more heat sinks are added to the series control element.
 d. larger resistors are added to the sampled voltage resistor chain.
9. The component(s) in a linear series voltage regulator that must be protected from excessive tem-

perature rise is(are):
 a. the zener diode.
 b. the error amplifier transistor(s).
 c. the series control element transistor(s).
 d. the sampled output voltage resistor string.
10. A switching voltage regulator is used instead of a linear series voltage regulator because:
 a. it has efficiencies up to 85%.
 b. it has lower power dissipation.
 c. it has smaller sized components for the output power required.
 d. all of the above.
 e. a only above.
 f. b and c only above.
11. What components, along with a switch, provide the basic circuit for a switching voltage regulator?
 a. an inductor, diode and capacitor.
 b. two inductors.
 c. an inductor and a capacitor.
 d. two capacitors.

TEAM LRN

173

System Power and Control

12. The control element in a switching voltage regulator is:
 a. an inductor.
 b. a capacitor.
 c. a switch.
 d. a resistor.
13. An inverting switching voltage regulator:
 a. uses inverting logic circuits for its control.
 b. produces an output voltage that is inverted in polarity to that of the input voltage.
 c. uses a bridge rectifier in its control circuit.
 d. operates at 10 Hz.
14. Power distribution systems can:
 a. use linear series voltage regulators operating from a regulated rail to provide the desired output

voltages.
 b. use switching voltage regulators operating from a regulated rail to provide the desired output

voltages.
 c. use a combination of linear series and switching regulators to provide the desired output voltages.
 d. use DC to DC converters operating from a regulated rail to provide step-up and/or step-down

regulated output voltages.
 e. all of the above.
 f. a only.
 g. a and c only.
15. Power system supervisors:
 a. contain circuits that watch over the power distribution system so variations do not occur that

cause system failures.
 b. contain circuits that can detect low voltages, provide time delays, and provide signals that en-

able or disable system circuits.
 c. shuts down everything in the system without notice.
 d. all of the above.
 e. a and b only.
 f. a only.

Answers: 1.b, 2.e, 3.d, 4.a, 5.a, 6.c, 7.e, 8.b, 9.c, 10.d, 11.a, 12.c, 13.b, 14.e, 15.e.

TEAM LRN

174

CHAPTER 10

A Microcontroller Application

Introduction
The thrust of this chapter is to provide the reader with the opportunity to actually build and implement
an application using a microcontroller. The microcontroller that will be used is the same one that was
chosen to describe assembly-language programming in Chapter 7. This should provide continuity from
what was learned in Chapter 7 to applying it to a working application. The microcontroller used is the
MSP430F1232. The application is explained, and then the reader is given the opportunity to gather the
parts, interconnect them, and with the help of a development kit for the microcontroller used, to program
the microcontroller with the program provided to complete the application.

Application Block Diagram
The block diagram of the application is shown in Figure 10-1. It consists of a PT-100 resistive sensor whose
resistance change with temperature is quite linear. The signal from the sensor is conditioned (amplified)
by the TLV2451 operational amplifier. The output of the op amp is fed to the TLV1549, a 10-bit ADC, to
convert the analog voltage into a digital code. The digital code representing the temperature sensed by the
PT-100 is inputted to the MSP430F1232, the microcontroller. The microcontroller decodes the temperature
code, and converts it to signals that drive the display to indicate the temperature in either ºF and ºC. In ad-
dition, the microcontroller uses its clock and counters to produce the timing pulses that produce the time,
date, and year outputs that are then decoded for display. In sequence, the time, the date, the year, and the

Batt

OP AMP

TLV2451 TLV1549

Analog VCC

P
T-

10
0

Temperature

+

−

Sense Condition Convert MANIPULATE DISPLAY

Red
Toggle

Black
Mode

100 kΩ100 kΩ

MSP430F1232

VSS

Microcontroller

VCC

2

7

25
24

26

18

4

RST/NMI

P1.4
P1.3

P1.5

P3.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P1.0
P1.1
P1.2

P1.6 P1.7

8 C Dig 1
9 C Dig 2
10 C Dig 3
19 C Dig 4
20 C Colon
3 C AM/PM

11
12
13
14
15
16
17
21
22
23

P
M

Lo
w

er
 C

ol
on

U
pp

er
 C

ol
on

a b c d e f g

2827

* R1
* R2
* R3

R4 *
* R5

R6 *
* R7

R8 * anode
* R9 anode

R10 * anode

REF+ ADC VCC

ANALOG CS

REF+ I/O CLOCK

GND DATA OUT

BLK R
E

S
E

T

Figure 10-1: Block Diagram

*All resistors 33 Ω.

Figure 10-1: Block diagram
TEAM LRN

175

A Microcontroller Application

temperature in ºF and then ºC is displayed. The display is
four digits with each digit having seven segments. Each
segment is an LED diode that has an anode and a cathode
and must be connected between VCC and ground to pass
current through the forward-biased diode. The microcon-
troller connects the cathode of the diodes to ground and
the grounding is timed by the microcontroller to energize
the correct digit as the selected anodes of the segments, a
through g, are timed and energized by the microcontroller
to produce the correct number or letter. Also included in
the display are small LEDs that represent colons, decimal
points, and AM and PM indicators. Their cathodes must
be connected to ground and their anodes energized to
produce their outputs at the correct time.

The Auto-Toggling State Diagram

A diagram that shows the sequence of what is to be
displayed is shown in Figure 10-2. It is called a state
diagram. The sequence begins at Clock where the digits
for the hour(s) and minute(s) are displayed with a colon between them. If the time is after 12:00 noon, the
PM LED is energized. After two seconds, the Date is displayed. The month digits and the day digits are
energized with a period between them. Two seconds pass and the Year digits are energized. Two seconds
pass and the temperature in ºF, Temp ºF, is displayed, and two seconds later the temperature in ºC, Temp
ºC, is displayed. If the temperature is negative, the g-segment LED is energized to produce a minus sign to
indicate the negative value. Two seconds later the display
is back at the start, Clock, displaying the time.

The Manual-Toggling State Diagram

In the block diagram of Figure 10-1 there are three
push-button switches. One is a black reset button; the
other two—one red and the other black—are used in
Figure 10-3 while manually toggling through the same
states as in Figure 10-2. The diagram shown in Figure
10-3 is called the manual-toggling state diagram. The red
button is used to move manually through the states shown
in Figure 10-2. At each state, the black button is used to
manually move to a quantity displayed in different modes
in the particular state. Pushing the red button then incre-
ments the quantity. As a result, using these two buttons,
the correct time, date, and year are set and the temperature
checked for calibration at know points—freezing water
and boiling water. They are also used to switch between
the manual toggling of the states and the sequencing or
auto-toggling of the states.

At startup, the system will be in the Clock state with
the time 12:00 midnight. This is the start of the

68.0

12.31

11:59PM

Temp ºC

Temp ºF

2000Year

Date

Clock

20.0

2 sec.
2 sec.

2 sec.

2 sec.

2 sec.

Auto-Toggling State Diagram

Temp

Date

Red

Manual-Toggling State Diagram

Black

Black

Red
Inc Min

Red
Inc Year

Red

Red Black
Black

Black

Black

Black

Black
Toggle C/F

Red
Inc Month

Red
Inc Day

Red

Black

startup

Set Min

Year
Set Day

Set Month

Set Year

Clock

Set Hour Red
Inc Hour

Holding Red Button for 2 seconds from a
display mode (clock, date, year, temp)
the system goes to Auto Toggling.

Figure 10-3: Manual toggling through states

Figure 10-2: Auto toggling through states

TEAM LRN

176

Chapter Ten

manual-toggling. Pressing the black button will put the system in the “set hour” mode. Pressing the red but-
ton will increase the hour display from midnight to one o’clock. Further pressing advances the hour digits
from one o’clock to 12 o’clock, and then the numbers start over for the PM hours. After the hour digits are
set, pressing the black button puts the system in the “set minute” mode, and pressing the red button advanc-
es the minute digits from 1 to 59 and back to 1. Setting the minutes digits completes manually setting the
modes in the clock state. Pressing the black button returns the system to the Clock state.

Pressing the red button will move the system to the Date state. Pressing the black button puts the system in
the “set month” mode. Pressing the red button increases the month digits from 1 to 12 and back to 1. When
the month digits are correct, pressing the black button puts the system in the “set day” mode. Here pressing
the red button increases the day digits from 1 to 31 and back to 1 again until the day digits are set correctly.
Now pressing the black button returns the system to the Date state.

Pressing the red button will move the system to the Year state. Pressing the black button puts the system in
the “set year” mode, and pressing the red button advances the year. It starts at the initial year of 2000. After
setting the year, pressing the black button returns the system to the Year state.

Pressing the red button moves the system to the Temp state, either Temp ºF or Temp ºC, and pressing the
black button toggles the display from ºF to ºC. Temperature can be checked at the points of boiling water
(212ºF) and at freezing water (32ºF). Pressing the red button returns the system to the Clock state. Thus, all
the modes in each state that are to be manually set have been stepped through.

Switching Modes

Holding the red button for two seconds will put the system into auto-toggling. Manual toggling can be
entered from any of the states that the system is in. If in the auto toggling sequence, which holds each state
for two seconds before advancing to the next state, and in the Date state, pressing the red button will put the
system in the Year state and manual setting mode so that the year can be set. If in the Temp state, pressing
the red button will put the system in the Clock state and manual setting mode for the clock. Pressing the red
button and holding the button for two seconds again puts the system into auto-toggling.

The Sleep Mode

There is a sleep mode used to conserve power and extend the life of the batteries. This is one of the signifi-
cant advantages of using the MSP430 microcontroller. It operates at very low power and can be put into a
sleep mode to significantly reduce the average power consumed. If the system is left on continuously, the
battery drain is 25−30 mA, and the batteries would last only 2–3 days. Being able to put the system into a
sleep mode and waking it to update the one second count, or waking it to sequence through time, date, year
and temperatures reduces the current drain. This procedure can extend the battery life to around a year. The
sleep mode is entered if none of the buttons have been pressed for 15 seconds.

The system is awakened by pressing the red or black button, or by a timer signal that is initiated every 20
minutes, on the 20-minute, 40-minute and 60-minute mark of the hour. The system goes through one cycle
of the auto-toggle sequence and then goes back to sleep. When the system awakens, it returns to the state
that it was in before it went to sleep. If it was sequencing, then it returns to sequencing; if it was in manual,
then it returns to manual. When in the sleep mode, the 32,786 Hz crystal oscillator and the Timer_A used as
a counter are the only circuits operating in the microcontroller.

In summary, starting with the system in the sleep mode, assuming it was in the auto-toggling mode when
it went to sleep, pressing the red or black button awakens the system in the auto-toggling mode. Pressing
the red button will put the system into manual toggling. Pressing the black button will put the system in a
manual set mode; if in the Clock state, then the black button will move the system to be able to set the hour

TEAM LRN

177

A Microcontroller Application

and minutes with the red button. Correspondingly for Date and Year states, setting month and day, and the
year, respectively. Pressing the red button in any of these modes and holding it for two seconds puts the
system in the auto-toggling mode. Pressing no buttons for 15 seconds puts the system in the sleep mode.

In the sleep mode, an internal timer is keeping track of time from the top of the hour. At the 20-minute after
the hour point, or at the 40-minute point, or at the 60-minute point, a signal awakens the system, it cycles
through one cycle of the auto-toggling mode, and returns to the sleep mode. The system will ignore the 20,
40, or 60-minute mark signal if the system is already awake.

System Schematic
A schematic is a diagram that shows all the package pins of the devices that are used in the system and all
the electrical connections between the devices, resistors, capacitors, transistors, diodes and display elements
that make up the system. It is shown in Figure 10-4. It represents the components with the respective ac-
cepted symbols, and all of the respective package connections are included, even the open or unconnected
pins. It uses the block diagram of Figure 10-1 as a base, but includes all the detail electrical connections
including the components and connections needed to supply power to the system.

The Display
The Seven Segments

The system requires that four digits be displayed. The display shown in Figure 10-1, Figure 10-4 and Fig-
ure 10-5 is made up of digits that have seven segments and some additional small LEDs in between.

Figure 10-4: System schematic

GND

RTD
PT100

R15
1K (R1)

R13A
4.7kΩ

R13B
10kΩ

R13
15kΩ

Op Amp

IN+

IN−

100K

R14 (RF)
GND

TLV2451CP
U3

3

2

4

6

7

Analog VCC

GND

*CD for PCB Version

TLV1549CP/CD*
U2

REF+ VCC

ANALOG IN I/OCLOCK

ADC
REF− DATA OUT

GND CS

GND

1

2

3

4

8

7

6

5

I/O Clock

Data Out

Chip Select

For Printed Circuit Board Only

OUT

U3 VCC

GND

5

4

3

2

IN+

IN−

TLV2451DBVT

C1
0.1µF

GND

4.5V
BATTERY

−

+

PWR
JUMPER

GND

U4

U4

43

2

1
NC OUT

GND

NC IN

LDO

5

GND

VCC

C2
0.47µF

3.3V (50mA)

GND
Black C3

0.1µF

TPS71533DCKR

RESET

SW-PB

RST/NMI

R16
68kΩ

R16A
47kΩ
R16B
22kΩ

X

XIN

XOUTW
at

ch
 C

ry
st

al

+

3V(2AA)

VCC

J1 J2

Power
Jumper

GND

P1

TOGGLE

SW-PB
Red GND

GND

MODE

SW-PB
Black1 2

14 13
12 11
10 GND
TESTTCK
6 TMS
4 TDI
VCC TDO

×
×
×
×
×

×

×

×

TEST P1.7/TA2/TD0/TD1
VCC P1.6/TA1/TD1
P2.5/ROSC P1.5/TA0/TMS
VSS P1.4/SMCLK/TCK
XOUT P1.3/TA2
XIN P1.2/TA1
RST/NMI P1.1/TA0
P2.0/ACLK P1.0/TACLK
P2.1/INCLK P2.4/CA1/TA2
P2.2/CAOUT/TAD P2.3/CA0/TA1
P3.0/STE0 P3.7
P3.1/SIMO0 P3.6
P3.2/SOM10 P3.5/URXD0
P3.3/CLK0 P3.4/UTXD0

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Anode a
Anode b
Anode c
Anode d

R1 33
R2 33
R3 33
R4 33

Cathode AM/PM
GND

RST/NMI
Cathode Dig1
Cathode Dig2
Cathode Dig3

28
27
26
25
24
23
22
21
20
19
18
17
16
15

Anode PM
Anode Lower Colon
Anode Upper Colon

I/O Clock
Analog VCC
Chip Select

Anode g
Anode f
Anode e

R10 33
R9 33
R8 33

R7 33
R6 33
R5 33

1

Cathode Colon
Cathode Dig4
Data Out

MSP430F1232 DW/PW* * for PCB Version

U1 Microcontroller

Stand Alone Breadboard

MSP-TS430DW28
Evaluation
Board

R12
470kΩ

R11
470kΩ

MSP430F1232

JTAG

24 13

1 12
Display − 4 Digits, 7 Segments,

(see Figure 10-5) 24 pins.

GND(3AAA)

GND

TEAM LRN

178

Chapter Ten

The unit, which has four digits packaged together, has 24
pins, and Figure 10-5 shows the 4-digit display connec-
tions. As shown in Figure 10-6a, each digit is made up of
seven LED segments that each have an anode and a cath-
ode. The segments are identified with the letter a through
g, and will be energized when a positive voltage is applied
to the anode and the cathode is grounded. The anodes of
the segments are connected in parallel across the digits (a
to a, b to b, and so on), while the cathodes for each digit
are all tied together and identified with CDig1, CDig2,
CDig3 and CDig4 for the four digit connections. This al-
lows only one digit to be excited at a time.

As shown in Figure 10-6b, codes determine which seg-
ments are energized with a positive voltage. For example,
the code for digit 1 segments a through g is 1101101
which means that segments a, b, d, e and g are energized
when CDig1 is grounded. This displays 2 as digit 1. Since
all the segments of all the digits are energized in parallel,
the only digit that will be displayed is the one that has its
cathode line grounded. The microcontroller controls the
time that the cathodes of the desired digit to be displayed
are grounded. Just to give a
small example of the circuit
connections to the display,
Figure 10-7 details a portion
of the connections from the
microcontroller to CDig1 and
CDig2 to ground the cathodes
for digit 1 and digit 2 and ex-
cite the anodes of segments a,
b, c, d. Similar connections are
made to CDig3, CDig4 and the
segments e, f and g as shown
in Figure 10-4.

Referring back to Figure 10-
6b, the code for digit 2 changes
to 1011011, which means that
segments a, c, d, f and g are
energized and digit 2 displays
a 5 when its cathodes are
grounded. Correspondingly,

Figure 10-5: Connections to 7-segment display

b. Segment codes

Figure 10-6: 7-segment LED detail

Code
 Digit a b c d e f g
 1 1 1 0 1 1 0 1
 2 1 0 1 1 0 1 1
 3 0 1 1 0 0 0 0
 4 0 1 1 0 0 1 1

b. Segment Codes

Digit 1 Digit 2 Digit 3 Digit 4

f

e

b

c

a

d

g

a. Diode interconnections

121110987654321

131415161718192021222324
A

no
de

P
M

C
at

ho
de

 D
ig

1

A
no

de
 d

C
at

ho
de

 D
ig

2

A
no

de
 L

ow
er

 C
ol

on

A
no

de
 U

pp
er

 C
ol

on

C
at

ho
de

 D
ig

3

C
at

ho
de

 D
ig

4

A
no

de
 e

C
at

ho
de

 A
M

/P
M

A
no

de
 g

A
no

de
 c

A
no

de
 b

A
no

de
 f

C
at

ho
de

 C
ol

on

A
no

de
 a

C
af

m

A
A

M A
g

C
dp

1

A
c

jA
b A
f

C
lu

e

C
dp

2

A
n

A
F

M

C
fm

a

A
P

M

C
di

g1

A
d

A
dp

1

C
di

g2

A
LC

A
U

C

C
di

g3

A
dp

2

C
di

g4

A
e

A
al

rm

LED

LN
M

24
3K

T
01

×××× ×

×××

a

b

c

d

e

f

a

b

c

d

e

f

g g

anode e
anode c
anode d

C Colon

anode g
anode a
anode b
anode f

anode upper colon

anode dp
anode PM

 C Dig1 Cdp C Dig2 C Dig3 C Dig 4

other
digits

other
digits

D
ig

it
3

D
ig

it
4

anode AM

C AM/PM anode lower colon

TEAM LRN

179

A Microcontroller Application

digit 3 displays a 1 when
the code 0110000 energizes
the segments; and digit 4
displays a 4 when the code
0110011 energizes the seg-
ments. The microcontroller
grounds the cathode connec-
tion and excites the anodes
at the proper time to display
the respective digit.

The Additional Small
LEDs

There are several other
small LEDs included in the
display. When the system is
in the Clock state, the hour
digits are separated from the
minutes digits by a colon
(Figure 10-2). The colon is
displayed by energizing the
anodes of the LEDs identi-
fied as the upper colon and lower colon and grounding their cathodes. The cathodes are tied together at the
connection “cathode colon.” In similar fashion, when the system is in the Date state or the Temp state, a
decimal point separates the month and day digits, or identifies tenths of a degree for temperature. The deci-
mal point is displayed by energizing the anode of the lower colon, depending on the position required, at
the same time grounding the cathodes through cathode colon. One other small LED that is used is the PM
LED. The PM LED is energized when the hours exceed 12 noon, to indicate the hours displayed are in the
PM. A positive voltage is placed on the PM anode while the cathodes of both the AM and PM LEDs, which
are tied together, are grounded by the microcontroller. As noted previously, the segment g LED is energized
when the temperature values are negative. The cathode, CDig1, is grounded by the microcontroller. Pins
4(Adp1), 9(Adp2), 12(Aalrm), 13(Cfma), 14(AFM), 16(Cdp2), 21(Ddp1) and 23(AAM) are not used.

The Microcontroller
Return to the system schematic in Figure 10-4. The microcontroller used is the MSP430F1232 out of the
MSP430 family of microcontrollers, the same family used for Chapter 7 to explain assembly-language
programming. The MSP430F1232 has three I/Os, 8 kB + 256B of Flash memory, 256 bytes of SRAM, a
watchdog timer, a Timer_A, and the brownout feature. It is packaged in a 28-pin package. It uses the same
assembly-language instruction set used in Chapter 7, which is included in the Appendix.

The I/O Ports

The port 3 I/O pins P3.0, P3.1, P3.2, P3.3, P3.4, P3.5, P3.6, are configured as outputs and drive the anodes
of display segments a through g through 33 Ω resistors between the output pin and the pin to the anode.
The P3.0, P3.1, P3.2 and P3.3 connections were shown in Figure 10-7. Port 1 I/O pins P1.0, P1.1 and P1.2
are also configured as outputs to drive the anodes, through 33 Ω resistors, of display segments upper colon,
lower colon and PM, respectively. The port 1 I/O pins P1.6 and P1.7 are configured as inputs and receive
the signals from the red and black push buttons, respectively. A 470 kΩ resistor from VCC connected to P1.6

Figure 10-7: LED segment driver

Test
VCC

P2.5
VSS (GND)
XOUT

XIN

RST/NMI
P2.0 (input)
P2.1 (input)
P2.2 (input)
P3.0
P3.1
P3.2
P3.3

1
2
3
4
5
6
7
8
9

10
11
12
13
14

MSP430F1232

C Dig3

33 Ω

33 Ω
33 Ω

33 Ω

15

19

20

3

a

b

c

d

e

f

g

2 C Dig1 5 C Dig2 8 C Dig3 10 C Dig4

a

b

c

d

e

f

g

Anode a

Anode b

Anode c

Anode d

TEAM LRN

180

Chapter Ten

or P1.7 is pulled to ground when
the black or red button, respec-
tively, is pushed. The ground
signal on P1.6 or P 1.7 initiates
microcontroller action as previ-
ously described in the discussion
on the state diagrams. In addition,
a black push button grounds pin
7, RST/NMI, through a 68 kΩ
resistor to VCC to reset the system.
A detail of the push button con-
nections is shown in Figure 10-8.

The port 2 I/O pins P2.0, P2.1,
P2.2, P2.3, P2.4, P2.5 are config-
ured as inputs and ground the cathodes CDig1, CDig2, CDig3, CDig4, Ccolon, and CAM/PM, respectively.
The remaining port 1 and port 3 I/O pins are configured as follows:

 Pin Configured as: Connected to:
 P1.3 output CS of TLV1549
 P1.4 output Analog VCC

 P1.5 output I/O CLOCK of TLV1549
 P3.7 input DATA OUT of TLV1549

P1.3 outputs the low-level chip select to the TLV1549 to initiate the analog-to-digital conversion. P1.5
outputs a clock to the TLV1549. P3.7 inputs to the microcontroller the digital code data output from the
TLV1549. P1.4 is configured as an output that provides the power to the analog portion of the system—the
sensor, op amp and the ADC. When the system is awake, VCC for these circuits is provided on P1.4 by the
microcontroller; when the system is asleep, there is no power provided on P1.4. Thus, with this power
control, as well as disconnecting power from circuits inside the microcontroller, the system consumes very
little power in the sleep mode.

Here are the remaining connections to the microcontroller. Pin 1 is a TEST pin, pin 2 connects to the
main VCC, pin 4 is VSS or main system GND, and pin 5 and pin 6 are the connections to the watch crystal
(32,768 kHz) which provides the precision clocks generated in the microcontroller for the system.

The Analog Circuitry
The Sensor and Op Amp
The analog portion of the system schematic, as mentioned previously, consists of the PT-100 sensor, the
TLV2451 op amp, the TLV1549 ADC. There is another separate analog circuit, U4, a low-voltage drop
voltage regulator used for power control that will be discussed later. Pin 2 (inverting input) of the op amp
has a 1 kΩ resistor to ground and a 100 kΩ feedback resistor from the output pin 6 to set the op amp gain.
The noninverting input, pin 3, is connected to the intersection of the PT-100 sensor and a 15 kΩ resistor that
connects to the power line Analog VCC. The other end of the PT-100 sensor is connected to ground. The op
amp power is supplied through pin 7, which is connected to Analog VCC, and completed through pin 4 that
is connected to ground.

ADC
The output of the op amp (pin 6) is connected to pin 2 (the analog input) of the TLV1549 ADC. The output
digital data from the ADC is coupled to the microcontroller from output pin 6. The data is shifted out on

Figure 10-8: Push Buttons

R16
68kΩ

VCC

7

Black Reset MSP430F1232

RST/NMI

P1.7
P1.6

28
27

Red
Toggle

Black
Mode

R11
470kΩ

VCC

R12
470kΩ

Figure 10-8: Push buttons

TEAM LRN

181

A Microcontroller Application

the data line using the clock on pin 7, I/O Clock from Port 1 pin P1.5 of the microcontroller. The conver-
sion process begins when the chip select input (pin 5) coupled from the microcontroller Port 1 pin P1.3 is
brought low. Pin 1, REF+, and pin 8, VCC, are connected to Analog VCC. Pin 3, REF-, and pin 4, GND, are
connected to GND.

Power and Power Control
The schematic of Figure 10-4 shows several variations for supplying the main system VCC. The first of these
is when the complete system is assembled on a printed-circuit board (PCB). The VCC of +3.3V is supplied
from pin 5 of a TPS71533 low-voltage drop (LDO) voltage regulator, the U4 analog circuit mentioned pre-
viously. The input to the LDO on pin 4 is +4.5V supplied by three AAA batteries in series. The LDO keeps
the +3.3V output constant as the batteries lose voltage, and thus, extends the battery life of the system. Pin
2 of the LDO is connected to GND, and pin 4 and pin 5 are bypassed by capacitors C1 (0.1 µF) and C2
(0.47 µF). There is a series jumper to disconnect the +4.5V battery source.

In the second variation, the system is in breadboard form and has the main system VCC of +3V supplied by
two AA batteries in series. There is no LDO. There is a series jumper to disconnect the battery source. The
system stands alone operating from +3V battery power.

In the third variation, the main system VCC is supplied from a PC (personal computer) through the JTAG
connector on the evaluation board. There are no batteries and no voltage regulator. The system operates
from the PC’s VCC. This is the usual connection used when programming the system.

Brown Out
The MSP430F1232 microcontroller has a system power protection circuit built in. This feature means that
if the VCC supply goes below a voltage level between 1.1V and 1.7V the system is reset. The actual trig-
ger voltage varies with the device. When the VCC voltage is restored above the trigger level, it will start at
ground zero (time of 12:00) and run properly. Without brown out, if VCC falls below the trigger level, the
system would not operate properly and would be unpredictable when VCC is restored. This feature requires
the MSP430F1232, which has no comparator. If a comparator is required, the MSP430F123 is used without
the brownout feature.

JTAG
There is a connector on the schematic that is on the evaluation board that sockets the microcontroller. It is
a 14-pin connector called out as JTAG. It is used to connect the evaluation board to the PC development
system, and supply VCC to the breadboard. The development system is used to load the program software
into the microcontroller and for debugging the system. Here are the connections from the JTAG connector
to the microcontroller:

 JTAG Pin Microcontroller Pin
 1 (TDO) 28 – TDO
 2 (VCC) 2 – VCC

 3 (TDI) 27 – TDI
 4 NC
 5 (TMS) 26 – TMS
 6 NC
 7 (TCK) 25 – TCK
 8 (TEST) 1 – TEST
 9 (GND) GND – VSS

 10 NC
 11 (RST) 7 – RST/NMI
 12 – 14 NC

TEAM LRN

182

Chapter Ten

Summary of Schematic
The sensor, PT-100, changes resistance linearly with temperature as discussed in Chapter 3, Sensors. At
the junction of the sensor to ground and a resistor to VCC, a voltage that varies with temperature is coupled
to the noninverting input of the op amp. A positive input voltage produces a positive-going output voltage.
The gain of the op amp, as discussed in Chapter 4, is set by the ratio of Rf/Ri (R14/R15), the ratio of the
feedback resistor from the output to the inverting input, and the resistor from the inverting input to ground.
The op amp output voltage is fed to the input of the ADC. The ADC, a switched capacitor, successive
approximation ADC, produces a 10-bit digital code from its analog input. The 10-bit code is shifted out of
the ADC into a data register in the microcontroller by a clock signal to the ADC from the microcontroller.
The switched capacitor, successive approximation (SAR) ADC was discussed in Chapter 5. The shifting
out of the data from the ADC to the microcontroller was discussed as one of the subprograms of Chapter 7.

The clocks are produced from a watch crystal oscillator with a frequency of 32,786 Hz. Counters in the
microcontroller count the crystal oscillator clocks and produce a one-second pulse that then is counted to pro-
duce the time in minutes and hours, days, months and years. The counter initial conditions are set manually
to adjust the system to present-day time. The program is installed in the microcontroller using a development
system, and after all interconnections on the schematic are made, the system should operate properly.

System Development
There are three stages of system development—two breadboard stages and a final PCB stage.

1. The first stage is shown in Figure 10-9. The MSP430F1232 microcontroller is connected in a socket
on the evaluation board (Texas Instruments MSP-TS430DW28) that is connected through the JTAG
connector by cable to the Flash Emulator Tool. The Flash Emulator Tool is connected by cable to
the parallel 25-pin input connector on a PC. This configuration, which uses the development system
software in the PC to load the program software into the microcontroller and to debug the system, has
the circuit interconnected in breadboard form. As shown in Figure 10-9, the breadboard consists of an
analog board on one side of the evaluation board and a display board on the other side. Recall that the
system is powered from the PC.

2. The second stage is shown in Figure 10-10. In this configuration, the breadboard stands alone pow-
ered by two AA batteries. The microcontroller is still plugged into the evaluation board, but the JTAG
connector is disconnected. There is no longer any need for the PC development system; the system
runs stand-alone.

3. The third stage is
shown in Figure
10-11. This stage
has the system
assembled com-
pletely on a PCB.
The parts used
are now parts
that are capable
of being mounted
on a PCB. There
is an op amp in
a smaller pack-
age, there is

Display

Display Board

Buttons

 BLK RD

BLK
Button

Analog Board

M
S
P
4
3
0

J1 J2

JTAG

Evaluation Board

PC

Parallel
25-pin

Connector

Flash
Emulation

Tool

IC
Breadboard

Socket

IC
Breadboard

Socket

Figure 10-9: Breadboard powered by PC

TEAM LRN

183

A Microcontroller Application

the LDO voltage regulator, and there is a
MSP430F1232 in a smaller package. The
majority of the parts are assembled to the
board using surface-mount technology.
Power is supplied by three AAA batteries
in a holder on the back of the PCB. It is a
self-contained system. Such a system could
be mounted in a separate case, or included
as part of other equipment.

The Breadboard Circuit

The breadboard circuit shown in Figure 10-9
and Figure 10-10 is built using readily available
parts. The main components of the breadboard are the
MSP430 evaluation board, which contains a socket
for the MSP430 microcontroller, and two IC bread-
board sockets. One IC breadboard socket, called the
display board, contains the 7-segment display, the red
and black toggling and mode push button switches,
and the associated resistors and connecting wires.
The other IC breadboard, called the analog board,
contains the analog devices and associated circuitry,
the op amp, the ADC, the black RESET push button,
and connecting wires. The evaluation board is in the
development system from Texas Instruments (MSP-
FET430P120), which contains the following:

 1. The evaluation board (MSP-TS430DW28).

 2. The microcontroller (MSP430F1232).

 3. A MSP430 Flash Emulation Tool (MSP-FETP430IF).

 4. Cable from JTAG to Flash Emulation Tool.

 5. Cable from Flash Emulation Tool to parallel LPT (printer port) on PC.

 6. Two 14-pin cable connectors for wiring to J1 and J2 on evaluation board.

 7. PC software and instructions.

Here are the main sources for the parts:

 a. Samples of the op amp and the ADC can be obtained online from Texas Instruments.

 b. The 4-digit LED display and the 32-kHz crystal can be ordered online from Digi-Key.

 c. The PT-100 sensor can be obtained online from Omega Engineering.

 d. The IC breadboard sockets, the jumper wire kit, the push-button switches, and the resistors are all
available from RadioShack or other electronic parts distributors. The resistors and capacitors can be
ordered from Digi-Key Corporation at the same time as the display and the crystal if one wants to
order online.

Display

Display Board

Buttons

 BLK RD

M
S
P
4
3
0

Evaluation Board

BLK
Button

Analog Board

J1 J2

Jumper

3V
(2 AA)

+

−

Figure 10-11: PCB Powered from Three AAA Batteries

Display

3 AAA
Batteries

Underside

Buttons

MSP430

JTAG

Figure 10-11: PCB powered by
three AAA batteries (+4.5V)

Figure 10-10: Stand-alone breadboard
powered by +3V battery (two AA cells)

TEAM LRN

184

Chapter Ten

It is assumed that the reader will have available:

 1. Long-nose pliers

 2. Diagonal cutter

 3. Wire stripper

 4. Small soldering iron

 5. Solder

If these are not available, they are easily purchased at RadioShack or any other electronic parts distributor.

Parts List for the Breadboard

Here are the parts required of the breadboard:

Part Part No. Quantity

MSP430 Development System MSP-FET430P120 1

Sensor (PT100 – RD) 1PT100KN815 1

Op Amp (VCC = +3V) TLV2451CP 1

ADC (Analog-to-Digital Converter) TLV1549CP 1

4-Digit 7-segment LED Display LN543RKN8 1

32 kHz Watch Crystal X802 – ND 1

IC Breadboard Socket RS 276-175 2

Pair (Red and Black) SPST Momentary Push-button Sw. RS 275-1556 2

Jumper Wire Kit RS 276-173 1

Battery Clip for two AA Batteries RS 270-0414 1

DIP Shunt Shorting Jumpers for AA battery connection RS 276-1512 1

AA Battery (1.5V) RS 23-872 2

R1 – R10 33 Ω 1/2W 5% resistor RS 271-1104 10

R11, R12 470 kΩ 1/2W 5% resistor RS 271-1133 2

R13A 4.7 kΩ 1/4W 5% resistor RS 271-1330 1

R13B 10 kΩ 1/4W 5% resistor RS 271-1335 1

R14 100 kΩ 1/4W 5% resistor RS 271-1347 1

R15 1 kΩ 1/4W 5% resistor RS 271-1321 1

R16A 47 kΩ 1/2W 5% resistor RS 271-1130 1

R16B 22 kΩ 1/2W 5% resistor RS 271-1128 1

C3 0.1 µF 50V capacitor RS 272-135 1

*The 15 kΩ R13 is made up of a 4.7 kΩ and a 10 kΩ, standard values readily available.
**The 68 kΩ R16 is made up of a 47 kΩ and a 22 kΩ, standard values readily available.

Obtaining the Parts

The details that follow were current at the time of publication. Obviously, Web sites change, and so does the
information presented and the procedures to be followed. However, as the reader becomes familiar with the
Web sites and by checking Readme.txt files, they will be able to arrive at the desired outcome even though
the Web site has changed.

TEAM LRN

185

A Microcontroller Application

MSP430 Development System—It may be purchased from Texas Instruments ($99.00) by calling the Amer-
ican Products Information Center at 972-644-5580. The board will be shipped directly to a home or business.

Op Amp and ADC—Samples of the Texas Instruments TLV2451CP and TLV1549CP can be obtained on-
line via TI’s Web site: http://www.ti.com. If this is the first time visiting the TI Web site, nonmembers of my.ti
may have to register by using an e-mail address and choosing a password. On the Web site page there is a
part number search window. Enter the part number—TLV2451CP—and click on “Go.” A window displaying
the results of the search shows a description of the TLV2451CP. Click on TLV2451 and a listing of TLV2451
products appears. On the left side of the product list there is a link that reads “samples.” Click on it and a
sample list of the TLV2451 products is displayed. Select the TLV2451CP and follow the prompts to register
and fill out the shipping information. Repeat for the TLV1549CP. The parts should be received in a few days.
When the TLV2451 or TLVR1549CP product list is displayed, if a complete data sheet is required, clicking
on the “Data Sheet” box will print out the data sheet if an Acrobat Reader is available on your computer.

Watch Crystal and Display—The watch crystal and the 4-digit LED display can be purchased online from
Digi-Key at the Web site http://www.digikey.com. Digi-Key Corporation is an online distributor of electron-
ic parts. Enter the part number (LN543RKN8 for the display; X802-ND for the crystal) in the part number
search window and click on “Go.” Enter the quantity on the “Add to Order” line, then follow the prompts to
supply shipping and payment information. The watch crystal is about $0.30 and the display is about $10.00,
plus shipping.

Sensor—The sensor, PT100-RD, is purchased online from Omega Engineering at its Web site http://www.
omega.com. Omega fulfills all their small purchases online. Enter the part number, 1PT100KN815, in the part
number search window and click “Go.” A part description window appears. Enter quantity and click “Add to
Cart.” Follow the prompts to supply shipping and payment information. The sensor should be under $20.00.

Remaining Parts—All the remaining parts are available from RadioShack or other electronic parts distrib-
utors. The part numbers given are RadioShack part numbers. Note that for R13 and R16 two resistors are
placed in series to make up the total resistance because the values for the two-resistor combination are more
readily available. The push-button switches come two in a pack—one black and one red. Two of the IC
breadboard sockets are required for the system breadboard. As mentioned previously, resistors, capacitor(s)
and push button switches may be obtained online from Digi-Key. RadioShack was chosen as the source
because of the nationwide outlets, and immediate access to the parts.

Breadboard Construction—Powered by the PC
Cables for J1 and J2, the connections on the evaluation module, are constructed first. There are two con-
nectors supplied in the development system for each of the J1 and J2 connections. One is a male, and the
other a female. The female is attached to the PCB; the male is used as a jumper cable connector. Use the
jumper wire kit to construct the cables. Use the solid-color red, green, yellow and orange wires and solder
them to the male connectors provided as shown in Figure 10-12. The wire colors refer to the ones that are
in the RadioShack kit. The reader may choose to use another wire supply with different colors. Use the
text as a guide to assign the wire colors. If the RadioShack kit is used, the wires marked with an asterisk in
Figure 10-12 need to be extended by soldering a like color wire to them and insulating the solder joint with
electrical tape. Solder the female connectors, also provided, to the evaluation module PCB in the J1 and J2
positions shown on the PCB. There are Rd/Blk and Or/Blk wires required. Take three red wires and two
orange wires and mark across them with a marker to make the dual-colored wires. Make sure all connec-
tions are physically and electrically sound. When the cables are completed, plug the male connector into the
female to connect the cables to the evaluation module.

TEAM LRN

186

Chapter Ten

1
2

3
4

5
6

7
8

9
10

11
12

13
14

28 27
26

25
24

23
22

21
20

19
18

17
16

15

VCC (Display Board)

Cathode AM/PM

GND (Analog Board)

RST/NMI

Cathode Dig 1

Cathode Dig 2

Cathode Dig 3

Anode a

Anode b

Anode c

Anode d

RD/BLK

OR/BLK

GR

OR/BLK

YL

YL

YL

GR

GR

GR

YL

Black Push Button TDI

Red Push Button TDO

I/O Clock

Analog VCC

Anode Lower Colon

Anode Upper Colon

Cathode Colon

Cathode Dig 4

Data Out

Anode g

Anode f

Anode e

YL

YL

OR

OR

OR

RD

RD

YL

GR

YL

OR

GR

GR

YL

Chip Select

Anode PM

J1 J2

*

*

*

**
*
*

*
*
*
*

* Extend the length
 of these wires

Figure 10-12: Cables for J1 and J2

Display Board

The display board is constructed using one of the IC breadboard sockets (RS 276-175). Plug the 4-digit
LED display (LN543RKN8) into the breadboard socket in the position shown in Figure 10-13. The pins 13
through 24 plug into the bottom horizontal row of the upper portion of the IC breadboard, and the pins 1
through 12 plug into the second horizontal row of the lower portion of the breadboard. Pin 1 of the display
is in vertical row 1 of the lower portion; pin 24 of the display is in vertical row 1 of the upper portion. The
upper and lower portions of the breadboard are configured the same. There are 23 vertical rows with five
connection points in each row. All five connection points, A, B, C, D, and E, in the upper portion vertical
rows are connected together; all the connection points, F, G, H, I, and J, in the lower portion vertical rows
are connected together. Each vertical row is electrically isolated from any of the other vertical rows. At the
top of the upper portion is a horizontal row, X, of 20 connections all connected together. This row of con-
nections will be used for VCC. A similar horizontal row, Y, of 20 connections is at the bottom of the lower
portion. This row of connections will be used for the ground (GND) of the circuit.

Note that in the block diagram of Figure 10-1 and the schematic of Figure 10-4 there are 10 33 Ω resistors
that are connected from the microcontroller drive pin to the anode of the LED segments of the four digits
of the display. Connect these resistors by pushing the wires of the resistors into the connection points as
shown in Figure 10-13. For example, one end of R1 is connected to pin 15 of the display (vertical row 10
of upper portion), and the other end to vertical row 19. A green wire from pin 11 of the microcontroller
connector J1, to be connected later, will connect to vertical row 19 to drive anode a. Plugging in R2 through
R10 in a similar fashion will provide the drive for anodes b through g, PM, lower and upper colon.

To connect the push buttons, solder a short piece of wire to each push button terminal. Insert one terminal
wire of the black push button into vertical row 20 of the lower portion of the socket and the other terminal
wire into Y, the GND row of connections. Insert one end of R12 (470 kΩ) into the same vertical row 20 and
the other end into the top row X of VCC connections. Refer to Figure 10-13 to check the connections. Later
a red wire from pin 27 of J2, TD1, will also be connected to vertical row 20.

TEAM LRN

187

A Microcontroller Application

A similar connection pattern is followed for the red push button; one terminal wire is connected to vertical
row 23 of the lower portion and the other terminal wire to GND. One end of R11 (470 kΩ) is inserted into
vertical row 23 and the other end into the VCC connections. Later a red wire from pin 28 of J2, TD0, will
also be connected to vertical row 23. The grounding of TD0 and TD1 by the push buttons sends signals to
the microcontroller to toggle, change modes, or to set a parameter.

The Analog Board

The analog board is constructed on the second IC breadboard socket as shown in Figure 10-14. Both the
TLV2451CP op amp and the TLV1549CP ADC are packaged in 8-pin DIP packages. The are both plugged
into horizontal connection rows, as shown in Figure 10-14, that span the upper and lower portions of the
breadboard. For the TLV2451, vertical rows 1 through 4 of the lower portion are used for pin connections
1, 2, 3 and 4, respectively, and vertical rows 1 through 4 of the upper portion are used for pin connections
8, 7, 6, and 5, respectively. Pin 7 is connected to the top row, X, of connections, which are now identified as
“Analog VCC” because this VCC is being switched on and off by the microcontroller.

The noninverting input, IN+, pin 3, (vertical row 3) has one end of the PT-100 sensor connected to it, as
well as one end of R13B. The other end of R13B is connected in series with R13A to Analog VCC. To make
sure that the connections from the PT-100 sensor are good electrically, solder short pieces of wire to the
very fine wire of the sensor before inserting the connections into the breadboard. It is even best to put a
blob of silicone or plastic sealer (one that solidifies) around the wires to hold them in place, otherwise the

Figure 10-13: Display board

 ×

 ×
 ×
 ×
 ×
 ×

 ×
 ×
 ×
 ×
 ×

 ×

4-Digit LED Display

 24 23 22 21 20 19 18 17 16 15 14 13

 1 2 3 4 5 6 7 8 9 10 11 12
LN543RKNB

Resistors

 R1 33Ω
 R2 33Ω
 R3 33Ω
 R4 33Ω
 R5 33Ω
 R6 33Ω
 R7 33Ω
 R8 33Ω
 R9 33Ω
 R10 33Ω
 R11 470Ω
 R12 470Ω

Notes:
X and Y − The complete line of
horizontal connections are connected
together.
A, B, C, D, E − These connections are all
connected together in each vertical row.
F, G, H, I, J − These connections are all
connected together in each vertical row.

X

Y

X

Y

 1 5 10 15 20

 1 5 10 15 20

C
at

ho
de

A

M
/P

M

C Dig1 YL
R10

C Dig2 YL

C Dig3 YL

A
no

de
 P

M

Y
L

A
no

de
 d

Y

L
A

no
de

 L
C

Y

L
A

no
de

 U
C

Y

L
A

no
de

 e

Y
L

GND

C Dig4 YL

A
B
C
D
E

F
G
H
I
J

GNDGRN/BLK GND to Analog Breadboard

G
R

 A
no

de
 g

G
R

 A
no

de
 c

G
R

 A
no

de
 b

G

R
 A

no
de

 f
G

R
 A

no
de

 a

RD TDI

RD TDO

RD/BLK

 VCC
 to Analog Board

 for RESET

OR/BLK

 VCC

R12

R11

R8

R5

R7

G
R

 C
at

ho
de

 C
ol

on

R3 R2
R6 R1

Red
Push Button

Black
Push Button

G
R

R9

R4

IC Breadboard
Socket
RS 276-175

TEAM LRN

188

Chapter Ten

wires will break and ruin the PT100. One connection of the sensor is to vertical row 3 of the lower portion,
and the other connection is to Y, the GND row of connections at the bottom of the breadboard.

Resistor R14 (100 kΩ) is connected from the output, pin 6, vertical row 3 of the upper portion, back to the
inverting input, IN-, pin 2, vertical row 2 of the lower portion. Vertical row 2 also has one end of R15 (1 kΩ)
connecting from it to the GND line of connections. The ratio of the 100 kΩ R14 to the 1 kΩ R15 sets the
gain of the op amp at 100. The output of the op amp, pin 6, is coupled to the input of the ADC, pin 2.

The ADC’s pin 1, 2, 3 and 4 are connected to vertical rows 20, 21, 22 and 23, respectively, of the lower por-
tion of the breadboard. Vertical rows 20, 21, 22 and 23 of the upper portion are connected to pins 8, 7, 6 and
5, respectively. Pin 1 and pin 8 are connected to X the VCC line “Analog VCC.” Pin 3 and pin 4 are connected
to Y the GND line. I/O Clock, Data Out, and Chip Select will be connected from the microcontroller to
complete the ADC connections.

The RESET circuit from the black RESET push-button switch is connected as follows: One end of resistor
R16A (47 kΩ) is connected to vertical row 17 of the upper portion of the breadboard, and the other end is
connected to vertical row 17 of the lower portion. One end of R16B (22 kΩ) is also connected to vertical
row 17, lower portion. The other end of R16B is connected to vertical row 13, lower portion. Again, short
wires are soldered to the terminals of the black RESET push button to make it easy to connect them to the
breadboard. Insert one terminal wire into vertical row 13, lower portion and the other end into the bottom
horizontal row GND line Y. A RST/NMI wire from the microcontroller will connect to vertical row 13,
lower portion, to input the RESET signal to the microcontroller when the black button is pushed. To assure

Figure 10-14: Analog breadboard

 ×

 ×
 ×
 ×
 ×
 ×

 ×
 ×
 ×
 ×
 ×

 ×

TLV2451CP

Resistors

 R13A 4.7 kΩ
 R13B 10 kΩ
 R14 100 kΩ
 R15 1 kΩ
 R16A 47 kΩ
 R16B 22 kΩ

Notes:
X and Y − The complete line of
horizontal connections are connected
together.
A, B, C, D, E − These connections are all
connected together in each vertical row.
F, G, H, I, J − These connections are all
connected together in each vertical row.

X

Y

X

Y

 1 5 10 15 20

 1 5 10 15 20

R13B

R
D

/B
LK

R
S

T
/N

M
I

A
B
C
D
E

F
G
H
I
J

GND

OR/BLK
GND

R16A

Figure 10-14: Analog Breadboard

 8 7 6 5
OP AMP

 1 2 3 4

 8 7 6 5
 ADC

 1 2 3 4

R15
PT-100

Black

RESET

GRN/BLK

TLV1549CP

To
 V

CC
 o

n

Disp
lay

 B
re

ad
bo

ar
d

R
D

/B
LK

OR

OR

OR Analog VCC

Chip Select

Data Out

Analog VCC

OR
I/O Clock

R13AR14

R16B

C3

GND to
Display

Breadboard

IC Breadboard
Socket
RS 276-175

TEAM LRN

189

A Microcontroller Application

the RESET signal input is clear of noise, capacitor C3 is added from vertical row 13, lower portion to END
at line Y.

Completing the System Connections

The system power connections come from the J1 connector on the evaluation board. VCC is connected to the
display board by inserting the OR/BLK wire from pin 2 of J1, shown in Figure 10-12, to the VCC line X of
the display board. GND is connected by inserting the OR/BLK wire from pin 4 of J1 into the Y GND line
of the analog board. A GRN/BLK wire is connected from the Y GND line connections of the analog board
to the Y GND line connections of the display board to complete the system GND.

Return to Figure 10-12 and note that most of the remaining wires from J1 and J2 are either yellow or green
wires. The green wires will be connected to the upper portion of the display board, and the yellow wires to
the lower portion of the display board.

The Display Board
The green wires from J1 are connected first:

 1. Pin 3 (Cathode AM/PM) is connected to pin 24 (vertical row 1) of the LED display.

 2. Pin 11 (Anode a) is connected to vertical row 19, upper portion, one end of R1.

 3. Pin 12 (Anode b) is connected to vertical row 17, upper portion, one end of R2.

 4. Pin 13 (Anode c) is connected to vertical row 16, upper portion, one end of R3.

The green wires from J2 are connected next (also to upper portion):

 1. Pin 16 (Anode f) is connected to vertical row 18, one end of R6.

 2. Pin 17 (Anode g) is connected to vertical row 15, one end of R7.

 3. Pin 20 (Cathode colon) is connected to vertical row 8, pin 17 of display.

The yellow wires from J1 are connected next (they all go to the lower portion of the breadboard):

 1. Pin 8 (Cathode Dig1) is connected to vertical row 2, pin 2 of display.

 2. Pin 9 (Cathode Dig2) is connected to vertical row 5, pin 5 of display.

 3. Pin 10 (Cathode Dig3) is connected to vertical row 8, pin 8 of display.

 4. Pin 14 (Anode d) is connected to vertical row 16, one end of R4.

The yellow wires from J2 are connected next (also to lower portion):

 1. Pin 15 (Anode e) is connected to vertical row 19, one end of R5.

 2. Pin 19 (Cathode Dig4) is connected to vertical row 10, pin 10 of display.

 3. Pin 21 (Anode UC) is connected to vertical row 18, one end of R8.

 4. Pin 22 (Anode LC) is connected to vertical row 17, one end of R9.

 5. Pin 23 (Anode PM) is connected to vertical row 15, one end of R10.

The red-wire push-button inputs TD1 and TD0 from J2 are connected next:

 1. Pin 27 (TD1) is connected to vertical row 20, one end of R12.

 2. Pin 28 (TD0) is connected to vertical row 23, one end of R11.

All connections to the display board should be complete.

TEAM LRN

190

Chapter Ten

The Analog Board
The connections to the analog board start with connecting a RD/BLK wire from vertical row 17, upper por-
tion, one end of R16A, to the VCC line on the display board; and an orange wire (Analog VCC) from pin 25
of J2 to the “Analog VCC” line.

The remaining orange lines from J2 to the upper portion are connected next:

 1. Pin 26 (I/O Clock) is connected to vertical row 21, pin 7 of TLV1549.

 2. Pin 24 (Chip Select) is connected to vertical row 23, pin 5 of TLV1549.

 3. Pin 18 (Data Out) is connected to vertical row 22, pin 6 of TLV1549.

 4. One remaining wire—a RD/BLK wire from pin 7 of J1 (RST/NMI)—is connected to vertical row
13, lower portion to input the RESET push-button signal to the microcontroller. This completes the
connections to the analog board.

Breadboard Construction Completion

The breadboard construc-
tion is essentially complete;
however, several items need
clarification. First is the con-
nection of the watch crystal.
The connections to the watch
crystal, XOUT and XIN, are
made on the evaluation board,
as shown in Figure 10-15,
rather than with wires from
pin 5 and 6 of J1. The con-
nections for the crystal on
the evaluation board PCB are
connected to pin 5 and pin 6
of J1. Carefully (the wires are
very delicate) insert the wires
into the holes in the evalua-
tion board PCB, as shown in
Figure 10-15a, and solder the
wires to the PCB; then solder
the case of the crystal to the
PCB pad provided. Before
soldering to the pad, tin the
case of the crystal with a small dab of solder. Do this quickly so the crystal will not overheat.

Second, when the breadboard is to stand alone—disconnected from the PC—+3V power is provided by two
AA batteries. The batteries are connected in series in a battery clip which is wired through shorting jumpers
to VCC and GND on the evaluation board as shown in Figure 10-15b. This power connection is normal-
lyl used only when the JTAG connector from the development system is disconnected from the evaluation
board. Shorting jumpers are used so that the batteries can be disconnected if the application is not being
used. However, some computer power supplies cannot handle the load, especially when the red and black
buttons are pushed. In these cases, connect the battery.

Figure 10-15: Evaluation board connections for watch
crystal and battery clip for stand-alone breadboard

Solder crystal
wires here

Solder watch crystal
to substrate and the
leads in the holes
connected to pin 5
and pin 6 of J1.

Evaluation Module

Socket for
Microcontroller

Te
xa

s
In

st
ru

m
en

ts

Battery
Clip

Shorting Jumper
Connector

− +

+ −

28 15

Pin 13 Pin 14

GND
GND
VCC

Pin 1

JT
A

G

Pin 2

M430F1232

J2

−
+

GND

VCC

VCC

1 1

b. Battery supply for stand-alone
breadboard

a. Watch crystal connections

TEAM LRN

191

A Microcontroller Application

The Application Program
With the construction of the breadboard complete, the application program—a listing of the program in C
language is included in the Appendix—must be loaded into the microcontroller. The most recent version
is contained online; it may vary from what is printed in the Appendix. The development system is used
for this purpose, and the connections for the system are shown in Figure 10-9. The first step is to load the
software that comes with the development system, MSP-FET430P120.

Installing the Development System Software

Following are the steps to install the development system software:

1. Insert the CD-ROM that is contained in the MSP-430P120 development system in the CD-ROM drive
of a computer. It should start automatically. If it does not, use a browser to open a file “index.htm” that
is located in the root directory of the CD-ROM. The MSP430 start page will be displayed.

2. Click on “Tool Software.”

3. Select the MSP430PI20 Flash Evaluation Tool.

4. Click “Save” to download the file “FET_RXXX.exe”. The file gets updated as time progresses.

5. A “Save As” window appears. Select a directory path to store the download. For example: C:/My
Computer/MSP430 Rel X.X (D:). Click “Save.” Note: The hard drive in this directory path is identi-
fied with the letter C. If another letter is used for the hard drive designation, substitute that letter in
the directory path.

6. Use Windows Explorer to follow the directory path to the window that contains and displays “FET_
RXXX.exe”. Click on it to execute the program.

7. The IAR Embedded Workbench window appears which has a welcome message to IAR Systems
Product Setup. IAR Systems are the developers of the software.

8. Follow the prompts to install the FET software. The IAR Systems software licensing agreement must
be accepted.

9. Turn off computer and reboot.

10. There should be an icon on your desktop that says “IAR Embedded Workbench.”

Downloading the Application Software

The software program for the application can be downloaded from the Internet as follows. It is a file pro-
grammed in C:

1. Go to http://www.ti.com/MSP430university.

2. Click on “MSP430 Textbooks.”

3. Click on Analog and Digital Circuits for Control System Applications: Using the TI MSP430 Micro-
controller by Jerry Luecke. A web page for the book appears.

4. Select “TimeDateTemp Application” and a window opens that has “Save” or “Cancel” across the bot-
tom. Click on “Save.”

5. Choose a directory path to store the download. For example: C:/My Documents/MSP430Applications.

6. The file is a Zip file that contains the application program written in the C language. Name the file
“TimeDateTemp.zip.”

7. Click on “Save.”

TEAM LRN

192

Chapter Ten

Unzipping the Application Software

1. Open Windows Explorer.

2. Navigate through the directory C:/MyDocuments/MSP430Applications to the MSP430Applications
folder.

3. Select “Time,Date,Temp.zip.”

4. Double clicking on “Time,Date,Temp.zip” will unzip the file if a WinZip program is installed on the
computer used. If no WinZip program is installed, go to www.winzip.com on the Web and download
the software to unzip the file.

5. In the WinZip window go to “Extract.”

6. Select “all files” and extract to the “MSP430Applications” folder at C:/MyDocuments/
MSP430Applications.

7. In the “MSP430 Applications” folder there will be the “Time,Date,Temp.c” file and a “Readme.txt”
file. The “Readme.txt” file will have the latest information on revisions or changes.

Loading Application Program in Microcontroller

Follow these steps to load the application program (TimeDateTemp.c) into the microcontroller: (Note:
These instructions are based on the latest version of the IAR Workbench at the time of publication. Varia-
tions may occur in these instructions as the software is updated. See the “Readme.txt” for the latest
information.)

Creating a Project in IAR Workbench©
1. On the PC desktop, click the IAR Embedded Workbench icon. A IAR Systems window appears.

2. Click File menu and then “New.”

3. In the “New” window highlight “Workspace” and click “OK.”

4. Choose directory C:/My Documents/430Applications and click “Open.”

5. Enter TimeDateTemp.eww in the file window and click “Save.”

6. A TimeDateTemp workspace window appears on the IAR workbench.

7. Click Project menu and then “Create New Project.”

8. Choose directory C:/My Documents/430Applications and click “Open.”

9. Enter TimeDateTemp.ewp in the file window and click “Create.”

10. TimeDateTemp will appear in your workspace window.

11. Click on “TimeDateTemp _ Debug” in the workspace window then click the Project menu and then
click “Add Files.”

12. Choose directory C:/My Documents/430Applications and click “Open.”

13. Select “TimeDateTemp.c” that you unzipped and click “Open.”

14. “TimeDateTemp.c” will appear in the workspace window under the TimeDateTemp Project.

15. Click on “TimeDateTemp _ Debug” in the workspace window once again, then click the Project menu
and now click “Options.”

16. An “Options for node - TimeDateTemp _ Debug” window appears. Highlight the “General” category,
then select msp430F1232 in the Target, Device box.

17. Click “OK” to set the options for the project.

18. Click on “TimeDateTemp _ Debug” in the workspace window once again, then click the Project menu
and click “Options” again.

TEAM LRN

193

A Microcontroller Application

19. Highlight the “C-Spy” category, then select “Flash Emulation Tool” in the driver box and click on
“OK” to set the options for the project.

Compiling the Program
20. Select Project menu and highlight “Build All.” Click on it. The “Rebuild All” command executes com-

piling the C code file into assembly-language and links it with the specific MSP430 descriptor files
which were defined by the project options.

21. A message window appears that gives the status of the programming. If it is successful, here is an
example of a window that appears:
Messages

Rebuilding configuration: TimeDateTemp - Debug

0 file(s) deleted.

TimeDateTemp.c
icc430.exe -I C:\Program Files\IAR Systems\Embedded Workbench
3.2\430\INC\ -I C:\Program Files\IAR Systems\Embedded Workbench
3.2\430\INC\CLIB\ -o C:\
Documents and Settings\a0193378\My Documents\430Applications\Debug\Obj\
-z2 --no_cse --no_unroll --no_inline --no_code_motion --debug -e
--double=32 C:\
Documents and Settings\a0193378\My
Documents\430Applications\TimeDateTemp.c

 IAR MSP430 C Compiler V2.21A/W32 [Kickstart]
 Copyright 1996-2003 IAR Systems. All rights reserved.

3 258 bytes of CODE memory
 116 bytes of CONST memory
 168 bytes of DATA memory (+ 19 bytes shared)

Errors: none
Warnings: none

Linking
xlink.exe C:\Documents and Settings\a0193378\My
Documents\430Applications\Debug\Obj\TimeDateTemp.r43 -o C:\Documents and
Settings\a0193378\My
Documents\430Applications\Debug\Exe\TimeDateTemp.d43 -rt -IC:\Program
Files\IAR Systems\Embedded Workbench 3.2\430\LIB\ -f C:\Program
Files\IAR Systems\
Embedded Workbench 3.2\430\config\lnk430F123.xcl C:\Program Files\IAR
Systems\Embedded Workbench 3.2\430\lib\cl430f.r43
-e_small_write=_formatted_write
-e_medium_read=_formatted_read -f C:\Program Files\IAR Systems\Embedded
Workbench 3.2\430\config\compactmath.xcl

 IAR Universal Linker V4.56D/386
 Copyright 1987-2003 IAR Systems. All rights reserved.

3 412 bytes of CODE memory

TEAM LRN

194

Chapter Ten

 248 bytes of DATA memory (+ 19 absolute)
 144 bytes of CONST memory

Errors: none
Warnings: none

Total number of errors: 0
Total number of warnings: 0

Loading the Program
22. Select the Project menu, then click on “Debug.” The program will be loaded through the JTAG con-

nector onto the MSP430, and the Debugging interface will be shown.

23. Click “Debug,” then “Go” and the program will begin to run on your breadboard.

The system comes up in the Clock state at 12:00. It can be set to the present hour and minutes by pushing
the black button and adjusting the quantity with the red button. Pressing the black button after adjustments
are finished returns to the Clock state. Pushing the red button toggles to the next state. Then the date and
the year can be set in the same manner. Calibration can then occur for the temperature. Refer to the manual-
toggling state diagram shown in Figure 10-3 for guidance. Sometimes pushing the buttons causes current
surges that take the system out of its sequence or shuts it down. If this persists, connect the battery shown
in Figure 10-15.

Troubleshooting
If the breadboard does not function, look first at the construction. Most problems will occur because of
a wrong connection or a connection that is not electrically sound—shorts, opens, broken wires, intermit-
tent connections. One of the first considerations is that the MSP430 microcontroller is not securely in its
socket. Check it carefully. It may require a magnifying glass to see it clearly. The second consideration is
the interconnection of the wires. Be sure they are inserted properly and are making correct connection. It
is less likely that the software is to blame, especially if the loading sequence has been followed and the
windows and clicking followed religiously. The software has been and will be continually checked by the
users to verify its authenticity. It may change but any changes should be in the “Readme.txt” file. However,
if after following Steps 20 through 23, a “Failed to get target information” message is received, it indicates
that the communication to the devise has failed. Do the following procedure after checking again the wiring
connections and the socket connections.

1. Disconnect the J-TAG connector to the evaluator board.
2. Disconnect the battery if connected.
3. Short out the two power connections, “VCC” and “GND.” This discharges all capacitors and resets the

microcontroller.
4. Reconnect the J-TAG connector and the battery, and redo Steps 1 through 23.

The Stand-Alone Breadboard
To make the breadboard stand alone, the separate battery supply shown in Figure 10-15b is added. Connect
the shorting jumpers to the GND terminals and the VCC terminal on the evaluation module. Disconnect the
JTAG connector from the evaluation module before connecting the shorting jumpers. Disconnecting the
JTAG connector removes the VCC power that has been supplied by the PC. The program remains stored in
the microcontroller and will not be destroyed while the stand-alone VCC and GND are established.

To return to the JTAG connection and supplying power from the PC, remove the shorting jumpers from the
AA batteries to the VCC and GND terminals on the evaluation module. Reconnect the JTAG connector.

TEAM LRN

195

A Microcontroller Application

The PCB Circuit
For those readers that prefer to have a very compact, portable unit, the layers for a printed circuit layout are
shown in Figure 10-16. There is a different parts list for the PCB because the circuit is laid out for surface-
mount components. For example, the package notations change for the ICs to identify them for surface
mounting. And recall that a different power supply for VCC is added, so there are additional components.
The same MSP430 Development System, MSP-FET430P120, is needed. Here is the parts list:

Part Part No. Quantity

Available from www.ti.com:
Microcontroller MSP430F1232PW 1
ADC Data converter (A – D) TLV1549CD 1
Op Amp TLV2451CDBVT 1
LDO (Voltage Regulator) TPS71533DCKR 1
Available from www.omega.com:
Sensor (PT-100 RTD) 1PT100KN815 1
Available from www.digikey.com:
4-digit LED Display LN543RKN8 1
32 kHz watch crystal X802-ND 1
14-pin JTAG connector H2902-ND 1
Push buttons 401-1096-2-ND 3
Jumper 99911-21011000000-ND 1
3-cell AAA battery holder 2479K-ND 1
C1, C3 0.1uF capacitor C1206C104J5RACTU 2
C2 0.47uF capacitor ECJ-3VB1C474K 1
R1 – R10 33-Ω resistor 9C12063A33R0FKHFT 10
R11, R12 470 KΩ resistor 9C12063A4703FKHFT 2
R13 15KΩ resistor 9C12063A1502FKHFT 1
R14 100KΩ resistor 9C12063A1003FKHF 1
R15 1KΩ resistor 9C12063A1001FKHFT 1
R16 68KΩ resistor 9C12063A6802FKHFT 1
Any Local Supply
AAA battery 3

PCB

3 AAA
Cells

d. Side View

Figure 10-16: PCB

Figure 10-16: PCB layout and interconnections

a. Layer 1 a. Layer 2 c. Layers 1 and 2 d. Side view

TEAM LRN

196

Chapter Ten

The parts may be obtained from the sources listed, or any other electronic parts distributor, and, especially,
one that handles surface-mount components.

Refer back to the schematic, Figure 10-4, and note, again, that there are part changes and additions
for the PCB circuit. The first is the op amp package. It is changed to a 5-pin surface-mount package
TLV2451CDBVT. The pin connections are shown on Figure 10-4. The second is the addition of an
LDO voltage regulator, TPS71533, so that the circuit has an extended battery life by operating from three
AAA batteries. The regulator supplies +3.3V. In addition to the regulator, three capacitors—C1(0.1 µF),
C2(0.47 µF) and C3(0.1 µF) are added to the circuit.

One must have dexterity, patience, and skill to mount the components on the PCB. Search out a person who
has experience with such surface-mount circuits to help in the construction. When completed, it results in
a neat, self-contained unit that resides easily on the desk, in a briefcase, or on a shelf. Figure 10-17a is a
photograph of a completed breadboard, and Figure 10-17b is the PCB circuit.

An additional word on programming the microcontroller when it is on the PCB. Make sure the power
jumper shown on the Figure 10-4 schematic that is in the LDO circuit block is disconnected while the
microcontroller is being programmed. Let the PC power the circuit until the programming is complete, then
reconnect the power jumper so the circuit can be powered from the AAA batteries through the LDO.

a. Breadboard circuit

b. PCB circuit

Figure 10-17: System in breadboard and PCB form
TEAM LRN

197

A Microcontroller Application

Summary
This completes the discussion of the functions and the electronic circuits that make up a system that inputs
analog signals, converts them to digital, manipulates them digitally, converts them back from digital to
analog and outputs them to productive tasks in the human world. Providing understanding and learning has
been the major goal; it is hoped that this goal has been achieved.

Chapter 10 Quiz
1. The application that is implemented in this chapter:
 a. really doesn’t do anything but provide exercises in programming.
 b. can’t be built. It is just a paper exercise.
 c. requires no hardware, just software.
 d. displays the time, date, year and temperature in ºF and ºC in sequence.
2. For the application, a diagram that shows the sequence of what is displayed is called:
 a. a state diagram.
 b. a schematic.
 c. a logic diagram.
 d. a memory map.
3. In the application, the three modes of operation are:
 a. the running mode, the setting mode, and quiet mode.
 b. auto toggling, manual toggling and sleep modes.
 c. the ON, OFF and toggling modes.
 d. the logic, the arithmetic and the memory modes.
4. When the system is in the sleep mode:
 a. everything in the system is inactive.
 b. all circuits are active except the display.
 c. the crystal oscillator and Timer_A are the only circuits active.
 d. the microcontroller is fully active.
5. When in the sleep mode, a signal awakens the system:
 a. every 10-minute point in the hour.
 b. at the 20-minute, 40-minute and 60-minute point in the hour.
 c. every half hour.
 d. every hour.
6. What segments of the 7-segment LED display need to be energized to make the number 9?
 a. a, b, d, f and g.
 b. b, c, d, e and g.
 c. a, b, c, f and g.
 d. a, b, e, f and g.
7. Of the 24 pins on the 7-segment display, which ones are not used in the chapter application?
 a. 4, 9, 13, 14, 16, 21 and 23.
 b. 9, 12, 13, 14, 16, 21 and 23.
 c. 12, 13, 14, 16, 21, 23 and 24.
 d. 4, 9, 12, 13, 14, 16, 21 and 23.

TEAM LRN

198

Chapter Ten

8. On the schematic of Figure 10-4, what are the three push button switches used for?
 a. Red turns on power, black turns on power, and black resets the system.
 b. Red starts the microcontroller and black shuts it down.
 c. Red is for toggling, black is for changing modes, and black is for reset.
 d. Red selects the I/O, black selects the frequency of the clock, and black resets the system.
9. Which control register configures the Port 3 I/O pins as outputs?
 a. P3DIR.
 b. P3SEL.
 c. P3IN.
 d. P3OUT.
10. Which control register configures the Port 2 I/O pins as inputs?
 a. P2SEL.
 b. P2DIR.
 c. P2IN.
 d. P2OUT.
11. Which MSP430F1232 pin is configured as an output to provide the chip select –CS, to the

TLV1549 ADC?
 a. P1.4.
 b. P2.6.
 c. P2.7.
 d. P1.3.
12. Which MSP430F1232 pin is configured as an input to receive the output data from the TLV1549

ADC?
 a. P2.6.
 b. P2.7.
 c. P3.7.
 d. P1.4.
13. MSP430F1232 pin 1.4 is configured as an output to supply VCC to the analog circuits so that:
 a. the VCC supplies are isolated.
 b. the system will consume very little power in the sleep mode.
 c. the VCC to the analog circuits can be bypassed.
 d. noise is reduced on the analog VCC line.
14. The breadboard system is made up of:
 a. the display board, the JTAG connector and a PC.
 b. the evaluation board and a PC.
 c. the evaluation board, the display board and the analog board.
 d. the analog board and the evaluation board.
15. In the breadboard system, the connector used to connect the system to a PC is:
 a. the MSP430F1232 socket.
 b. the LED display socket.
 c. the JTAG connector.
 d. the battery connector.
16. What are the three stages of developing the MSP430F1232 system?
 a. Breadboard powered by a PC, stand-alone breadboard powered by batteries, a PCB circuit

powered by batteries.

TEAM LRN

199

A Microcontroller Application

 b. Evaluation board powered by batteries, an analog VCC breadboard, and a PCB circuit powered
by batteries.

 c. a stand-alone breadboard powered from a PC, a JTAG breadboard, and a PCB circuit powered
by batteries.

 d. a stand-alone breadboard powered by batteries, and two PCB circuits powered by batteries.
17. The analog board contains:
 a. the display, the sensor, and the ADC.
 b. the sensor, the signal-conditioning amplifier and the ADC.
 c. the signal conditioning amplifier and the display.
 d. Only the sensor and the display.
18. The display board contains:
 a. the display and the resistors to energize the LED anodes.
 b. the sensor, the signal-conditioning amplifier and the ADC.
 c. the resistors to set the gain of the signal-conditioning amplifier.
 d. none of the above.
19. The stand-alone breadboard:
 a. operates by itself on battery power.
 b. is made up of a display board, an evaluation board, and an analog board.
 c. operates stand alone after being programmed from a PC.
 d. all of the above.
 e. only a above.
20. The PCB system:
 a. is a complete system assembled on a printed-circuit board.
 b. must be programmed by a PC after assembly on a PCB.
 c. must operate from a PC at all times.
 d. only c above.
 e. only a and b above.
 f. none of the above.

Answers: 1.d, 2.a, 3.b, 4.c, 5.b, 6.c, 7.d, 8.c, 9.a, 10.b, 11.d, 12.c, 13.b, 14.c, 15.c, 16.a, 17.b, 18.a, 19.d,
20.e.

TEAM LRN

200

APPENDIX A

The MSP430 Instruction Set

This list of the 51 instructions—27 core instructions and 24 emulated instructions is included to help in
understanding and clarifying assembly-language programs for the MSP430 family of microcontrollers.
They are printed here by permission and courtesy of Texas Instruments Incorporated and are part of a
MSP430x1xx Family User’s Guide.

TEAM LRN

201

The MSP430 Instruction Set

Instruction Set

3-17RISC 16-Bit CPU

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:

� Dual-operand

� Single-operand

� Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used

for the source (src)
S-reg The working register used for the source (src)
Ad The addressing bits responsible for the addressing mode used

for the destination (dst)
D-reg The working register used for the destination (dst)
B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

TEAM LRN

202

Appendix A

Instruction Set

3-18 RISC 16-Bit CPU

3.4.1 Double-Operand (Format I) Instructions

Figure 3–9 illustrates the double-operand instruction format.

Figure 3–9. Double Operand Instruction Format

B/W D-Reg

15 0

Op-code AdS-Reg

8 714 13 12 11 10 9 6 5 4 3 2 1

As

Table 3–11 lists and describes the double operand instructions.

Table 3–11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N Z C

MOV(.B) src,dst src → dst – – – –

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst – src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * *

BIC(.B) src,dst .not.src .and. dst → dst – – – –

BIS(.B) src,dst src .or. dst → dst – – – –

XOR(.B) src,dst src .xor. dst → dst * * * *

AND(.B) src,dst src .and. dst → dst 0 * * *

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

TEAM LRN

203

The MSP430 Instruction Set

Instruction Set

3-19RISC 16-Bit CPU

3.4.2 Single-Operand (Format II) Instructions

Figure 3–10 illustrates the single-operand instruction format.

Figure 3–10. Single Operand Instruction Format

B/W D/S-Reg

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Ad

Table 3–12 lists and describes the single operand instructions.

Table 3–12.Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP – 2 → SP, src → @SP – – – –

SWPB dst Swap bytes – – – –

CALL dst SP – 2 → SP, PC+2 → @SP – – – –

dst → PC

RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Bit 7 → Bit 8........Bit 15 0 * * *

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.

TEAM LRN

204

Appendix A

Instruction Set

3-20 RISC 16-Bit CPU

3.4.3 Jumps

Figure 3–11 shows the conditional-jump instruction format.

Figure 3–11. Jump Instruction Format

C 10-Bit PC Offset

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Table 3–13 lists and describes the jump instructions.

Table 3–13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation
JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from –511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCold + 2 + PCoffset × 2

TEAM LRN

205

The MSP430 Instruction Set

 Instruction Set

3-21 RISC 16–Bit CPU

ADC[.W] Add carry to destination
ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C –> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

TEAM LRN

206

Appendix A

Instruction Set

3-22 RISC 16–Bit CPU

ADD[.W] Add source to destination
ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst –> dst

Description The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

TEAM LRN

207

The MSP430 Instruction Set

 Instruction Set

3-23 RISC 16–Bit CPU

ADDC[.W] Add source and carry to destination
ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C –> dst

Description The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

TEAM LRN

208

Appendix A

Instruction Set

3-24 RISC 16–Bit CPU

AND[.W] Source AND destination
AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst –> dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero

TEAM LRN

209

The MSP430 Instruction Set

 Instruction Set

3-25 RISC 16–Bit CPU

BIC[.W] Clear bits in destination
BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst –> dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.

BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

TEAM LRN

210

Appendix A

Instruction Set

3-26 RISC 16–Bit CPU

BIS[.W] Set bits in destination
BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst –> dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.

BIS #003Fh,TOM; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

TEAM LRN

211

The MSP430 Instruction Set

 Instruction Set

3-27 RISC 16–Bit CPU

BIT[.W] Test bits in destination
BIT.B Test bits in destination
Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry –> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry –> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; | LSB
; MSB

TEAM LRN

212

Appendix A

Instruction Set

3-28 RISC 16–Bit CPU

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst –> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

TEAM LRN

213

The MSP430 Instruction Set

 Instruction Set

3-29 RISC 16–Bit CPU

CALL Subroutine

Syntax CALL dst

Operation dst –> tmp dst is evaluated and stored
SP – 2 –> SP
PC –> @SP PC updated to TOS
tmp –> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP–2 → SP, PC+2 → @SP, @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP–2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP–2 → SP, PC+2 → @SP, X(0) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP–2 → SP, PC+2 → @SP, R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP–2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP–2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP–2 → SP, PC+2 → @SP, X(R5) → PC
; Indirect, indirect R5 + X

TEAM LRN

214

Appendix A

Instruction Set

3-30 RISC 16–Bit CPU

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 –> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 –> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 –> TONI

TEAM LRN

215

The MSP430 Instruction Set

 Instruction Set

3-31 RISC 16–Bit CPU

* CLRC Clear carry bit

Syntax CLRC

Operation 0 –> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

TEAM LRN

216

Appendix A

Instruction Set

3-32 RISC 16–Bit CPU

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst –> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

TEAM LRN

217

The MSP430 Instruction Set

 Instruction Set

3-33 RISC 16–Bit CPU

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst –> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

TEAM LRN

218

Appendix A

Instruction Set

3-34 RISC 16–Bit CPU

CMP[.W] Compare source and destination
CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst – src)

Description The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

TEAM LRN

219

The MSP430 Instruction Set

 Instruction Set

3-35 RISC 16–Bit CPU

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C –> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

TEAM LRN

220

Appendix A

Instruction Set

3-36 RISC 16–Bit CPU

DADD[.W] Source and carry added decimally to destination
DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C –> dst (decimally)

Description The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B CNT

TEAM LRN

221

The MSP430 Instruction Set

 Instruction Set

3-37 RISC 16–Bit CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst – 1 –> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI–EDE–1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3–12.

Figure 3–12. Decrement Overlap
EDE

EDE+254

TONI

TONI+254

TEAM LRN

222

Appendix A

Instruction Set

3-38 RISC 16–Bit CPU

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst – 2 –> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI–EDE–2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

TEAM LRN

223

The MSP430 Instruction Set

 Instruction Set

3-39 RISC 16–Bit CPU

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst –> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

TEAM LRN

224

Appendix A

Instruction Set

3-40 RISC 16–Bit CPU

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR –> SR / .src .OR. dst –> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 0 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

TEAM LRN

225

The MSP430 Instruction Set

 Instruction Set

3-41 RISC 16–Bit CPU

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 –> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

TEAM LRN

226

Appendix A

Instruction Set

3-42 RISC 16–Bit CPU

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 –> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

TEAM LRN

227

The MSP430 Instruction Set

 Instruction Set

3-43 RISC 16–Bit CPU

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst –> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

TEAM LRN

228

Appendix A

Instruction Set

3-44 RISC 16–Bit CPU

JC Jump if carry set
JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 × offset –> PC
If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal –> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15

TEAM LRN

229

The MSP430 Instruction Set

 Instruction Set

3-45 RISC 16–Bit CPU

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label, JZ label

Operation If Z = 1: PC + 2 × offset –> PC
If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......

TEAM LRN

230

Appendix A

Instruction Set

3-46 RISC 16–Bit CPU

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 × offset –> PC
If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......

TEAM LRN

231

The MSP430 Instruction Set

 Instruction Set

3-47 RISC 16–Bit CPU

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 × offset –> PC
If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

TEAM LRN

232

Appendix A

Instruction Set

3-48 RISC 16–Bit CPU

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset –> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
–511 to +512 words relative to the current program counter.

TEAM LRN

233

The MSP430 Instruction Set

 Instruction Set

3-49 RISC 16–Bit CPU

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 × offset –> PC
if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT – R5 –> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......

TEAM LRN

234

Appendix A

Instruction Set

3-50 RISC 16–Bit CPU

JNC Jump if carry not set
JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 × offset –> PC
if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 –> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here

TEAM LRN

235

The MSP430 Instruction Set

 Instruction Set

3-51 RISC 16–Bit CPU

JNE Jump if not equal
JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 × offset –> PC
If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

TEAM LRN

236

Appendix A

Instruction Set

3-52 RISC 16–Bit CPU

MOV[.W] Move source to destination
MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src –> dst

Description The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM–EDE–2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM–EDE–1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......

TEAM LRN

237

The MSP430 Instruction Set

 Instruction Set

3-53 RISC 16–Bit CPU

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

� To fill one, two, or three memory words
� To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

TEAM LRN

238

Appendix A

Instruction Set

3-54 RISC 16–Bit CPU

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP –> temp
SP + 2 –> SP
temp –> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

TEAM LRN

239

The MSP430 Instruction Set

 Instruction Set

3-55 RISC 16–Bit CPU

PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP – 2 → SP
src → @SP

Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

TEAM LRN

240

Appendix A

Instruction Set

3-56 RISC 16–Bit CPU

* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

TEAM LRN

241

The MSP430 Instruction Set

 Instruction Set

3-57 RISC 16–Bit CPU

RETI Return from interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3–13 illustrates the main program interrupt.

Figure 3–13. Main Program Interrupt

PC –6

PC –4

PC –2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n–4

PCi +n–2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored
Onto Stack

RETI

TEAM LRN

242

Appendix A

Instruction Set

3-58 RISC 16–Bit CPU

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <– MSB <– MSB–1 LSB+1 <– LSB <– 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3–14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3–14. Destination Operand—Arithmetic Shift Left
15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2)
RLA.B R7 ; Shift left low byte of R7 (× 4)

Note: RLA Substitution
The assembler does not recognize the instruction:
 RLA @R5+ nor RLA.B @R5+.
It must be substituted by:
 ADD @R5+,–2(R5) or ADD.B @R5+,–1(R5).

TEAM LRN

243

The MSP430 Instruction Set

 Instruction Set

3-59 RISC 16–Bit CPU

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <– MSB <– MSB–1 LSB+1 <– LSB <– C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3–15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3–15. Destination Operand—Carry Left Shift
15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C –> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information –> Carry
RLC R5 ; Carry=P0in.1 –> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C –> Mem(LEO)

Note: RLC and RLC.B Substitution
The assembler does not recognize the instruction:

RLC @R5+.
It must be substituted by:

ADDC @R5+,–2(R5).

TEAM LRN

244

Appendix A

Instruction Set

3-60 RISC 16–Bit CPU

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB –> MSB, MSB –> MSB–1, ... LSB+1 –> LSB, LSB –> C

Description The destination operand is shifted right one position as shown in Figure 3–16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB–1, and the
LSB+1 is shifted into the LSB.

Figure 3–16. Destination Operand—Arithmetic Right Shift
15 0

15 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 –> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 × 0.5 –> R5
ADD @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5 –> R5
RRA R5 ; (1.5 × R5) × 0.5 = 0.75 × R5 –> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 –> R5: operation is on low byte only
; High byte of R5 is reset

PUSH.B R5 ; R5 × 0.5 –> TOS
RRA.B @SP ; TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5 –> TOS
ADD.B @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5 –> R5
......

TEAM LRN

245

The MSP430 Instruction Set

 Instruction Set

3-61 RISC 16–Bit CPU

RRC[.W] Rotate right through carry
RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C –> MSB –> MSB–1 LSB+1 –> LSB –> C

Description The destination operand is shifted right one position as shown in Figure 3–17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3–17. Destination Operand—Carry Right Shift
15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Set if initial destination is positive and initial carry is set, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h –> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h –> R5; low byte of R5 is used

TEAM LRN

246

Appendix A

Instruction Set

3-62 RISC 16–Bit CPU

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C –> dst
dst + 0FFh + C –> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

TEAM LRN

247

The MSP430 Instruction Set

 Instruction Set

3-63 RISC 16–Bit CPU

* SETC Set carry bit

Syntax SETC

Operation 1 –> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0–9 to 6–0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0–9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h – R5 – 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

TEAM LRN

248

Appendix A

Instruction Set

3-64 RISC 16–Bit CPU

* SETN Set negative bit

Syntax SETN

Operation 1 –> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

TEAM LRN

249

The MSP430 Instruction Set

 Instruction Set

3-65 RISC 16–Bit CPU

* SETZ Set zero bit

Syntax SETZ

Operation 1 –> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

TEAM LRN

250

Appendix A

Instruction Set

3-66 RISC 16–Bit CPU

SUB[.W] Subtract source from destination
SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 –> dst
or
[(dst – src –> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

TEAM LRN

251

The MSP430 Instruction Set

 Instruction Set

3-67 RISC 16–Bit CPU

SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination
SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C –> dst
or
(dst – src – 1 + C –> dst)

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

TEAM LRN

252

Appendix A

Instruction Set

3-68 RISC 16–Bit CPU

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <–> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3–18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3–18. Destination Operand Byte Swap
15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 –> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result

TEAM LRN

253

The MSP430 Instruction Set

 Instruction Set

3-69 RISC 16–Bit CPU

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 –> Bit 8 Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure 3–19.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3–19. Destination Operand Sign Extension
15 8 7 0

Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000

TEAM LRN

254

Appendix A

Instruction Set

3-70 RISC 16–Bit CPU

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

TEAM LRN

255

The MSP430 Instruction Set

 Instruction Set

3-71 RISC 16–Bit CPU

XOR[.W] Exclusive OR of source with destination
XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst –> dst

Description The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

TEAM LRN

256

Appendix A

Instruction Set

3-72 RISC 16–Bit CPU

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3–14 lists the CPU cycles for interrupt overhead and reset.

Table 3–14.Interrupt and Reset Cycles

No. of
Action

No. of
Cycles

Length of
Instruction

Return from interrupt (RETI) 5 1
Interrupt accepted 6 –
WDT reset 4 –
Reset (RST/NMI) 4 –

Format-II (Single Operand) Instruction Cycles and Lengths

Table 3–15 lists the length and CPU cycles for all addressing modes of
format-II instructions.

Table 3–15.Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 4 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #81H

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

TEAM LRN

257

The MSP430 Instruction Set

 Instruction Set

3-73 RISC 16–Bit CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Table 3–16 lists the length and CPU cycles for all addressing modes of format-I
instructions.

Table 3–16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example

Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,3(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 3 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 3(R4),6(R9)

&TONI 6 3 MOV 3(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BRA &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI

TEAM LRN

258

Appendix A

Instruction Set

3-74 RISC 16–Bit CPU

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3–20 and the complete instruction set
is summarized in Table 3–17.

Figure 3–20. Core Instruction Map

0xxx
4xxx
8xxx
Cxxx
1xxx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

TEAM LRN

259

The MSP430 Instruction Set

 Instruction Set

3-75 RISC 16–Bit CPU

Table 3–17.MSP430 Instruction Set
Mnemonic Description V N Z C
ADC(.B)† dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst – – – –

BIS(.B) src,dst Set bits in destination src .or. dst → dst – – – –

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR† dst Branch to destination dst → PC – – – –

CALL dst Call destination PC+2 → stack, dst → PC – – – –

CLR(.B)† dst Clear destination 0 → dst – – – –

CLRC† Clear C 0 → C – – – 0

CLRN† Clear N 0 → N – 0 – –

CLRZ† Clear Z 0 → Z – – 0 –

CMP(.B) src,dst Compare source and destination dst – src * * * *

DADC(.B)† dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B)† dst Decrement destination dst – 1 → dst * * * *

DECD(.B)† dst Double-decrement destination dst – 2 → dst * * * *

DINT† Disable interrupts 0 → GIE – – – –

EINT† Enable interrupts 1 → GIE – – – –

INC(.B)† dst Increment destination dst +1 → dst * * * *

INCD(.B)† dst Double-increment destination dst+2 → dst * * * *

INV(.B)† dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same – – – –

JEQ/JZ label Jump if equal/Jump if Z set – – – –

JGE label Jump if greater or equal – – – –

JL label Jump if less – – – –

JMP label Jump PC + 2 x offset → PC – – – –

JN label Jump if N set – – – –

JNC/JLO label Jump if C not set/Jump if lower – – – –

JNE/JNZ label Jump if not equal/Jump if Z not set – – – –

MOV(.B) src,dst Move source to destination src → dst – – – –

NOP† No operation – – – –

POP(.B)† dst Pop item from stack to destination @SP → dst, SP+2 → SP – – – –

PUSH(.B) src Push source onto stack SP – 2 → SP, src → @SP – – – –

RET† Return from subroutine @SP → PC, SP + 2 → SP – – – –

RETI Return from interrupt * * * *

RLA(.B)† dst Rotate left arithmetically * * * *

RLC(.B)† dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B)† dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC† Set C 1 → C – – – 1

SET† Set N 1 → N – 1 – –

SETZ† Set Z 1 → C – – 1 –

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes – – – –

SXT dst Extend sign 0 * * *

TST(.B)† dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

† Emulated Instruction

TEAM LRN

/**
*
* Standard register and bit definitions for the Texas Instruments
* MSP430 microcontroller.
*
* This file supports assembler and C development for
* MSP430x12x devices.
*
* Texas Instruments, Version 2.1
*
* Rev. 1.1, Corrected LPMx_EXIT to reference new intrinsic _BIC_SR_IRQ
* Changed TAIV to be read-only
*
* Rev. 1.2, Enclose all #define statements with parentheses
*
* Rev. 1.3, Defined vectors for USART (in addition to UART)
*
* Rev. 1.4, Added USART special function labels (UxME, UxIE, UxIFG)
*
* Rev. 2.1, Alignment of defintions in Users Guide and of version numbers
*
**/

#ifndef __msp430x12x
#define __msp430x12x

#if (((__TID__ >> 8) & 0x7F) != 0x2b) /* 0x2b = 43 dec */
#error MSP430X44X.H file for use with ICC430/A430 only
#endif

#ifdef __IAR_SYSTEMS_ICC__
#include <in430.h>
#pragma language=extended

#define DEFC(name, address) __no_init volatile unsigned char name @ address;
#define DEFW(name, address) __no_init volatile unsigned short name @ address;

260

APPENDIX B

Standard Register and Bit Definitions
for the MSP430 Microcontrollers

This reference list of standard register and bit definitions for the MSP430 microcontrollers is the basis of
much of the syntaxic substitution by the assembler when assembling and compiling an assembly-language
program. It is also very useful when developing programs for the MSP430 family of microcontrollers using
the C language.

TEAM LRN

261

Standard Register and Bit Definitions for the MSP430 Microcontrollers

#endif /* __IAR_SYSTEMS_ICC__ */

#ifdef __IAR_SYSTEMS_ASM__
#define DEFC(name, address) sfrb name = address;
#define DEFW(name, address) sfrw name = address;

#endif /* __IAR_SYSTEMS_ASM__*/

#ifdef __cplusplus
#define READ_ONLY
#else
#define READ_ONLY const
#endif

/**
* STANDARD BITS
**/

#define BIT0 (0x0001)
#define BIT1 (0x0002)
#define BIT2 (0x0004)
#define BIT3 (0x0008)
#define BIT4 (0x0010)
#define BIT5 (0x0020)
#define BIT6 (0x0040)
#define BIT7 (0x0080)
#define BIT8 (0x0100)
#define BIT9 (0x0200)
#define BITA (0x0400)
#define BITB (0x0800)
#define BITC (0x1000)
#define BITD (0x2000)
#define BITE (0x4000)
#define BITF (0x8000)

/**
* STATUS REGISTER BITS
**/

#define C (0x0001)
#define Z (0x0002)
#define N (0x0004)
#define V (0x0100)
#define GIE (0x0008)
#define CPUOFF (0x0010)
#define OSCOFF (0x0020)
#define SCG0 (0x0040)
#define SCG1 (0x0080)

/* Low Power Modes coded with Bits 4-7 in SR */

TEAM LRN

262

Appendix B

#ifndef __IAR_SYSTEMS_ICC /* Begin #defines for assembler */
#define LPM0 (CPUOFF)
#define LPM1 (SCG0+CPUOFF)
#define LPM2 (SCG1+CPUOFF)
#define LPM3 (SCG1+SCG0+CPUOFF)
#define LPM4 (SCG1+SCG0+OSCOFF+CPUOFF)
/* End #defines for assembler */

#else /* Begin #defines for C */
#define LPM0_bits (CPUOFF)
#define LPM1_bits (SCG0+CPUOFF)
#define LPM2_bits (SCG1+CPUOFF)
#define LPM3_bits (SCG1+SCG0+CPUOFF)
#define LPM4_bits (SCG1+SCG0+OSCOFF+CPUOFF)

#include <In430.h>

#define LPM0 _BIS_SR(LPM0_bits) /* Enter Low Power Mode 0 */
#define LPM0_EXIT _BIC_SR_IRQ(LPM0_bits) /* Exit Low Power Mode 0 */
#define LPM1 _BIS_SR(LPM1_bits) /* Enter Low Power Mode 1 */
#define LPM1_EXIT _BIC_SR_IRQ(LPM1_bits) /* Exit Low Power Mode 1 */
#define LPM2 _BIS_SR(LPM2_bits) /* Enter Low Power Mode 2 */
#define LPM2_EXIT _BIC_SR_IRQ(LPM2_bits) /* Exit Low Power Mode 2 */
#define LPM3 _BIS_SR(LPM3_bits) /* Enter Low Power Mode 3 */
#define LPM3_EXIT _BIC_SR_IRQ(LPM3_bits) /* Exit Low Power Mode 3 */
#define LPM4 _BIS_SR(LPM4_bits) /* Enter Low Power Mode 4 */
#define LPM4_EXIT _BIC_SR_IRQ(LPM4_bits) /* Exit Low Power Mode 4 */
#endif /* End #defines for C */

/**
* PERIPHERAL FILE MAP
**/

/**
* SPECIAL FUNCTION REGISTER ADDRESSES + CONTROL BITS
**/

#define IE1_ (0x0000) /* Interrupt Enable 1 */
DEFC(IE1 , IE1_)
#define WDTIE (0x01)
#define OFIE (0x02)
#define NMIIE (0x10)
#define ACCVIE (0x20)

#define IFG1_ (0x0002) /* Interrupt Flag 1 */
DEFC(IFG1 , IFG1_)
#define WDTIFG (0x01)
#define OFIFG (0x02)
#define NMIIFG (0x10)

#define IE2_ (0x0001) /* Interrupt Enable 2 */
DEFC(IE2 , IE2_)

TEAM LRN

263

Standard Register and Bit Definitions for the MSP430 Microcontrollers

#define U0IE IE2 /* UART0 Interrupt Enable Register */
#define URXIE0 (0x01)
#define UTXIE0 (0x02)

#define IFG2_ (0x0003) /* Interrupt Flag 2 */
DEFC(IFG2 , IFG2_)
#define U0IFG IFG2 /* UART0 Interrupt Flag Register */
#define URXIFG0 (0x01)
#define UTXIFG0 (0x02)

#define ME2_ (0x0005) /* Module Enable 2 */
DEFC(ME2 , ME2_)
#define U0ME ME2 /* UART0 Module Enable Register */
#define URXE0 (0x01)
#define USPIE0 (0x01)
#define UTXE0 (0x02)

/**
* WATCHDOG TIMER
**/

#define WDTCTL_ (0x0120) /* Watchdog Timer Control */
DEFW(WDTCTL , WDTCTL_)
/* The bit names have been prefixed with “WDT” */
#define WDTIS0 (0x0001)
#define WDTIS1 (0x0002)
#define WDTSSEL (0x0004)
#define WDTCNTCL (0x0008)
#define WDTTMSEL (0x0010)
#define WDTNMI (0x0020)
#define WDTNMIES (0x0040)
#define WDTHOLD (0x0080)

#define WDTPW (0x5A00)

/* WDT-interval times [1ms] coded with Bits 0-2 */
/* WDT is clocked by fMCLK (assumed 1MHz) */
#define WDT_MDLY_32 (WDTPW+WDTTMSEL+WDTCNTCL) /*
32ms interval (default) */
#define WDT_MDLY_8 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS0) /*
8ms “ */
#define WDT_MDLY_0_5 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1) /*
0.5ms “ */
#define WDT_MDLY_0_064 (WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1+WDTIS0) /*
0.064ms “ */
/* WDT is clocked by fACLK (assumed 32KHz) */
#define WDT_ADLY_1000 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL) /*
1000ms “ */
#define WDT_ADLY_250 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0) /*
250ms “ */
#define WDT_ADLY_16 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1) /*
16ms “ */

TEAM LRN

264

Appendix B

#define WDT_ADLY_1_9 (WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0) /*
1.9ms “ */
/* Watchdog mode -> reset after expired time */
/* WDT is clocked by fMCLK (assumed 1MHz) */
#define WDT_MRST_32 (WDTPW+WDTCNTCL) /*
32ms interval (default) */
#define WDT_MRST_8 (WDTPW+WDTCNTCL+WDTIS0) /*
8ms “ */
#define WDT_MRST_0_5 (WDTPW+WDTCNTCL+WDTIS1) /*
0.5ms “ */
#define WDT_MRST_0_064 (WDTPW+WDTCNTCL+WDTIS1+WDTIS0) /*
0.064ms “ */
/* WDT is clocked by fACLK (assumed 32KHz) */
#define WDT_ARST_1000 (WDTPW+WDTCNTCL+WDTSSEL) /*
1000ms “ */
#define WDT_ARST_250 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS0) /*
250ms “ */
#define WDT_ARST_16 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS1) /*
16ms “ */
#define WDT_ARST_1_9 (WDTPW+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0) /*
1.9ms “ */

/* INTERRUPT CONTROL */
/* These two bits are defined in the Special Function Registers */
/* #define WDTIE 0x01 */
/* #define WDTIFG 0x01 */

/**
* DIGITAL I/O Port1/2
**/

#define P1IN_ (0x0020) /* Port 1 Input */
READ_ONLY DEFC(P1IN , P1IN_)
#define P1OUT_ (0x0021) /* Port 1 Output */
DEFC(P1OUT , P1OUT_)
#define P1DIR_ (0x0022) /* Port 1 Direction */
DEFC(P1DIR , P1DIR_)
#define P1IFG_ (0x0023) /* Port 1 Interrupt Flag */
DEFC(P1IFG , P1IFG_)
#define P1IES_ (0x0024) /* Port 1 Interrupt Edge Select */
DEFC(P1IES , P1IES_)
#define P1IE_ (0x0025) /* Port 1 Interrupt Enable */
DEFC(P1IE , P1IE_)
#define P1SEL_ (0x0026) /* Port 1 Selection */
DEFC(P1SEL , P1SEL_)

#define P2IN_ (0x0028) /* Port 2 Input */
READ_ONLY DEFC(P2IN , P2IN_)
#define P2OUT_ (0x0029) /* Port 2 Output */
DEFC(P2OUT , P2OUT_)
#define P2DIR_ (0x002A) /* Port 2 Direction */
DEFC(P2DIR , P2DIR_)

TEAM LRN

265

Standard Register and Bit Definitions for the MSP430 Microcontrollers

#define P2IFG_ (0x002B) /* Port 2 Interrupt Flag */
DEFC(P2IFG , P2IFG_)
#define P2IES_ (0x002C) /* Port 2 Interrupt Edge Select */
DEFC(P2IES , P2IES_)
#define P2IE_ (0x002D) /* Port 2 Interrupt Enable */
DEFC(P2IE , P2IE_)
#define P2SEL_ (0x002E) /* Port 2 Selection */
DEFC(P2SEL , P2SEL_)

/**
* DIGITAL I/O Port3
**/

#define P3IN_ (0x0018) /* Port 3 Input */
READ_ONLY DEFC(P3IN , P3IN_)
#define P3OUT_ (0x0019) /* Port 3 Output */
DEFC(P3OUT , P3OUT_)
#define P3DIR_ (0x001A) /* Port 3 Direction */
DEFC(P3DIR , P3DIR_)
#define P3SEL_ (0x001B) /* Port 3 Selection */
DEFC(P3SEL , P3SEL_)

/**
* USART
**/

/* UxCTL */
#define PENA (0x80) /* Parity enable */
#define PEV (0x40) /* Parity 0:odd / 1:even */
#define SPB (0x20) /* Stop Bits 0:one / 1: two */
#define CHAR (0x10) /* Data 0:7-bits / 1:8-bits */
#define LISTEN (0x08) /* Listen mode */
#define SYNC (0x04) /* UART / SPI mode */
#define MM (0x02) /* Master Mode off/on */
#define SWRST (0x01) /* USART Software Reset */

/* UxTCTL */
#define CKPH (0x80) /* SPI: Clock Phase */
#define CKPL (0x40) /* Clock Polarity */
#define SSEL1 (0x20) /* Clock Source Select 1 */
#define SSEL0 (0x10) /* Clock Source Select 0 */
#define URXSE (0x08) /* Receive Start edge select */
#define TXWAKE (0x04) /* TX Wake up mode */
#define STC (0x02) /* SPI: STC enable 0:on / 1:off */
#define TXEPT (0x01) /* TX Buffer empty */

/* UxRCTL */
#define FE (0x80) /* Frame Error */
#define PE (0x40) /* Parity Error */
#define OE (0x20) /* Overrun Error */
#define BRK (0x10) /* Break detected */
#define URXEIE (0x08) /* RX Error interrupt enable */

TEAM LRN

266

Appendix B

#define URXWIE (0x04) /* RX Wake up interrupt enable */
#define RXWAKE (0x02) /* RX Wake up detect */
#define RXERR (0x01) /* RX Error Error */

/**
* USART 0
**/

#define U0CTL_ (0x0070) /* USART 0 Control */
DEFC(U0CTL , U0CTL_)
#define U0TCTL_ (0x0071) /* USART 0 Transmit Control */
DEFC(U0TCTL , U0TCTL_)
#define U0RCTL_ (0x0072) /* USART 0 Receive Control */
DEFC(U0RCTL , U0RCTL_)
#define U0MCTL_ (0x0073) /* USART 0 Modulation Control */
DEFC(U0MCTL , U0MCTL_)
#define U0BR0_ (0x0074) /* USART 0 Baud Rate 0 */
DEFC(U0BR0 , U0BR0_)
#define U0BR1_ (0x0075) /* USART 0 Baud Rate 1 */
DEFC(U0BR1 , U0BR1_)
#define U0RXBUF_ (0x0076) /* USART 0 Receive Buffer */
READ_ONLY DEFC(U0RXBUF , U0RXBUF_)
#define U0TXBUF_ (0x0077) /* USART 0 Transmit Buffer */
DEFC(U0TXBUF , U0TXBUF_)

/* Alternate register names */

#define UCTL0 U0CTL /* USART 0 Control */
#define UTCTL0 U0TCTL /* USART 0 Transmit Control */
#define URCTL0 U0RCTL /* USART 0 Receive Control */
#define UMCTL0 U0MCTL /* USART 0 Modulation Control */
#define UBR00 U0BR0 /* USART 0 Baud Rate 0 */
#define UBR10 U0BR1 /* USART 0 Baud Rate 1 */
#define RXBUF0 U0RXBUF /* USART 0 Receive Buffer */
#define TXBUF0 U0TXBUF /* USART 0 Transmit Buffer */
#define UCTL0_ U0CTL_ /* USART 0 Control */
#define UTCTL0_ U0TCTL_ /* USART 0 Transmit Control */
#define URCTL0_ U0RCTL_ /* USART 0 Receive Control */
#define UMCTL0_ U0MCTL_ /* USART 0 Modulation Control */
#define UBR00_ U0BR0_ /* USART 0 Baud Rate 0 */
#define UBR10_ U0BR1_ /* USART 0 Baud Rate 1 */
#define RXBUF0_ U0RXBUF_ /* USART 0 Receive Buffer */
#define TXBUF0_ U0TXBUF_ /* USART 0 Transmit Buffer */
#define UCTL_0 U0CTL /* USART 0 Control */
#define UTCTL_0 U0TCTL /* USART 0 Transmit Control */
#define URCTL_0 U0RCTL /* USART 0 Receive Control */
#define UMCTL_0 U0MCTL /* USART 0 Modulation Control */
#define UBR0_0 U0BR0 /* USART 0 Baud Rate 0 */
#define UBR1_0 U0BR1 /* USART 0 Baud Rate 1 */
#define RXBUF_0 U0RXBUF /* USART 0 Receive Buffer */
#define TXBUF_0 U0TXBUF /* USART 0 Transmit Buffer */
#define UCTL_0_ U0CTL_ /* USART 0 Control */

TEAM LRN

267

Standard Register and Bit Definitions for the MSP430 Microcontrollers

#define UTCTL_0_ U0TCTL_ /* USART 0 Transmit Control */
#define URCTL_0_ U0RCTL_ /* USART 0 Receive Control */
#define UMCTL_0_ U0MCTL_ /* USART 0 Modulation Control */
#define UBR0_0_ U0BR0_ /* USART 0 Baud Rate 0 */
#define UBR1_0_ U0BR1_ /* USART 0 Baud Rate 1 */
#define RXBUF_0_ U0RXBUF_ /* USART 0 Receive Buffer */
#define TXBUF_0_ U0TXBUF_ /* USART 0 Transmit Buffer */
/**
* Timer A3
**/

#define TAIV_ (0x012E) /* Timer A Interrupt Vector Word */
READ_ONLY DEFW(TAIV , TAIV_)
#define TACTL_ (0x0160) /* Timer A Control */
DEFW(TACTL , TACTL_)
#define TACCTL0_ (0x0162) /* Timer A Capture/Compare Control 0 */
DEFW(TACCTL0 , TACCTL0_)
#define TACCTL1_ (0x0164) /* Timer A Capture/Compare Control 1 */
DEFW(TACCTL1 , TACCTL1_)
#define TACCTL2_ (0x0166) /* Timer A Capture/Compare Control 2 */
DEFW(TACCTL2 , TACCTL2_)
#define TAR_ (0x0170) /* Timer A */
DEFW(TAR , TAR_)
#define TACCR0_ (0x0172) /* Timer A Capture/Compare 0 */
DEFW(TACCR0 , TACCR0_)
#define TACCR1_ (0x0174) /* Timer A Capture/Compare 1 */
DEFW(TACCR1 , TACCR1_)
#define TACCR2_ (0x0176) /* Timer A Capture/Compare 2 */
DEFW(TACCR2 , TACCR2_)

/* Alternate register names */
#define CCTL0 TACCTL0 /* Timer A Capture/Compare Control 0 */
#define CCTL1 TACCTL1 /* Timer A Capture/Compare Control 1 */
#define CCTL2 TACCTL2 /* Timer A Capture/Compare Control 2 */
#define CCR0 TACCR0 /* Timer A Capture/Compare 0 */
#define CCR1 TACCR1 /* Timer A Capture/Compare 1 */
#define CCR2 TACCR2 /* Timer A Capture/Compare 2 */
#define CCTL0_ TACCTL0_ /* Timer A Capture/Compare Control 0 */
#define CCTL1_ TACCTL1_ /* Timer A Capture/Compare Control 1 */
#define CCTL2_ TACCTL2_ /* Timer A Capture/Compare Control 2 */
#define CCR0_ TACCR0_ /* Timer A Capture/Compare 0 */
#define CCR1_ TACCR1_ /* Timer A Capture/Compare 1 */
#define CCR2_ TACCR2_ /* Timer A Capture/Compare 2 */

#define TASSEL2 (0x0400) /* unused */ /* to distinguish from
USART SSELx */
#define TASSEL1 (0x0200) /* Timer A clock source select 0 */
#define TASSEL0 (0x0100) /* Timer A clock source select 1 */
#define ID1 (0x0080) /* Timer A clock input devider 1 */
#define ID0 (0x0040) /* Timer A clock input devider 0 */
#define MC1 (0x0020) /* Timer A mode control 1 */
#define MC0 (0x0010) /* Timer A mode control 0 */

TEAM LRN

268

Appendix B

#define TACLR (0x0004) /* Timer A counter clear */
#define TAIE (0x0002) /* Timer A counter interrupt enable */
#define TAIFG (0x0001) /* Timer A counter interrupt flag */

#define MC_0 (0*0x10u) /* Timer A mode control: 0 - Stop */
#define MC_1 (1*0x10u) /* Timer A mode control: 1 - Up to CCR0 */
#define MC_2 (2*0x10u) /* Timer A mode control: 2 - Continous up */
#define MC_3 (3*0x10u) /* Timer A mode control: 3 - Up/Down */
#define ID_0 (0*0x40u) /* Timer A input divider: 0 - /1 */
#define ID_1 (1*0x40u) /* Timer A input divider: 1 - /2 */
#define ID_2 (2*0x40u) /* Timer A input divider: 2 - /4 */
#define ID_3 (3*0x40u) /* Timer A input divider: 3 - /8 */
#define TASSEL_0 (0*0x100u) /* Timer A clock source select: 0 - TACLK */
#define TASSEL_1 (1*0x100u) /* Timer A clock source select: 1 - ACLK */
#define TASSEL_2 (2*0x100u) /* Timer A clock source select: 2 - SMCLK */
#define TASSEL_3 (3*0x100u) /* Timer A clock source select: 3 - INCLK */

#define CM1 (0x8000) /* Capture mode 1 */
#define CM0 (0x4000) /* Capture mode 0 */
#define CCIS1 (0x2000) /* Capture input select 1 */
#define CCIS0 (0x1000) /* Capture input select 0 */
#define SCS (0x0800) /* Capture sychronize */
#define SCCI (0x0400) /* Latched capture signal (read) */
#define CAP (0x0100) /* Capture mode: 1 /Compare mode : 0 */
#define OUTMOD2 (0x0080) /* Output mode 2 */
#define OUTMOD1 (0x0040) /* Output mode 1 */
#define OUTMOD0 (0x0020) /* Output mode 0 */
#define CCIE (0x0010) /* Capture/compare interrupt enable */
#define CCI (0x0008) /* Capture input signal (read) */
#define OUT (0x0004) /* PWM Output signal if output mode 0 */
#define COV (0x0002) /* Capture/compare overflow flag */
#define CCIFG (0x0001) /* Capture/compare interrupt flag */

#define OUTMOD_0 (0*0x20u) /* PWM output mode: 0 - output only */
#define OUTMOD_1 (1*0x20u) /* PWM output mode: 1 - set */
#define OUTMOD_2 (2*0x20u) /* PWM output mode: 2 - PWM toggle/reset */
#define OUTMOD_3 (3*0x20u /* PWM output mode: 3 - PWM set/reset */
#define OUTMOD_4 (4*0x20u) /* PWM output mode: 4 - toggle */
#define OUTMOD_5 (5*0x20u) /* PWM output mode: 5 - Reset */
#define OUTMOD_6 (6*0x20u) /* PWM output mode: 6 - PWM toggle/set */
#define OUTMOD_7 (7*0x20u) /* PWM output mode: 7 - PWM reset/set */
#define CCIS_0 (0*0x1000u) /* Capture input select: 0 - CCIxA */
#define CCIS_1 (1*0x1000u) /* Capture input select: 1 - CCIxB */
#define CCIS_2 (2*0x1000u) /* Capture input select: 2 - GND */
#define CCIS_3 (3*0x1000u) /* Capture input select: 3 - Vcc */
#define CM_0 (0*0x4000u) /* Capture mode: 0 - disabled */
#define CM_1 (1*0x4000u) /* Capture mode: 1 - pos. edge */
#define CM_2 (2*0x4000u) /* Capture mode: 1 - neg. edge */
#define CM_3 (3*0x4000u) /* Capture mode: 1 - both edges */

TEAM LRN

269

Standard Register and Bit Definitions for the MSP430 Microcontrollers

/**
* Basic Clock Module
**/

#define DCOCTL_ (0x0056) /* DCO Clock Frequency Control */
DEFC(DCOCTL , DCOCTL_)
#define BCSCTL1_ (0x0057) /* Basic Clock System Control 1 */
DEFC(BCSCTL1 , BCSCTL1_)
#define BCSCTL2_ (0x0058) /* Basic Clock System Control 2 */
DEFC(BCSCTL2 , BCSCTL2_)

#define MOD0 (0x01) /* Modulation Bit 0 */
#define MOD1 (0x02) /* Modulation Bit 1 */
#define MOD2 (0x04) /* Modulation Bit 2 */
#define MOD3 (0x08) /* Modulation Bit 3 */
#define MOD4 (0x10) /* Modulation Bit 4 */
#define DCO0 (0x20) /* DCO Select Bit 0 */
#define DCO1 (0x40) /* DCO Select Bit 1 */
#define DCO2 (0x80) /* DCO Select Bit 2 */

#define RSEL0 (0x01) /* Resistor Select Bit 0 */
#define RSEL1 (0x02) /* Resistor Select Bit 1 */
#define RSEL2 (0x04) /* Resistor Select Bit 2 */
#define XT5V (0x08) /* XT5V should always be reset */
#define DIVA0 (0x10) /* ACLK Divider 0 */
#define DIVA1 (0x20) /* ACLK Divider 1 */
#define XTS (0x40) /* LFXTCLK 0:Low Freq. / 1: High Freq. */
#define XT2OFF (0x80) /* Enable XT2CLK */

#define DIVA_0 (0x00) /* ACLK Divider 0: /1 */
#define DIVA_1 (0x10) /* ACLK Divider 1: /2 */
#define DIVA_2 (0x20) /* ACLK Divider 2: /4 */
#define DIVA_3 (0x30) /* ACLK Divider 3: /8 */

#define DCOR (0x01) /* Enable External Resistor : 1 */
#define DIVS0 (0x02) /* SMCLK Divider 0 */
#define DIVS1 (0x04) /* SMCLK Divider 1 */
#define SELS (0x08) /* SMCLK Source Select 0:DCOCLK / 1:XT2CLK/
LFXTCLK */
#define DIVM0 (0x10) /* MCLK Divider 0 */
#define DIVM1 (0x20) /* MCLK Divider 1 */
#define SELM0 (0x40) /* MCLK Source Select 0 */
#define SELM1 (0x80) /* MCLK Source Select 1 */

#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */
#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */
#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */
#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */

#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */
#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */
#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */

TEAM LRN

270

Appendix B

#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */

#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */
#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */
#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */
#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */

/***
* Flash Memory
***/

#define FCTL1_ (0x0128) /* FLASH Control 1 */
DEFW(FCTL1 , FCTL1_)
#define FCTL2_ (0x012A) /* FLASH Control 2 */
DEFW(FCTL2 , FCTL2_)
#define FCTL3_ (0x012C) /* FLASH Control 3 */
DEFW(FCTL3 , FCTL3_)

#define FRKEY (0x9600) /* Flash key returned by read */
#define FWKEY (0xA500) /* Flash key for write */
#define FXKEY (0x3300) /* for use with XOR instruction */

#define ERASE (0x0002) /* Enable bit for Flash segment erase */
#define MERAS (0x0004) /* Enable bit for Flash mass erase */
#define WRT (0x0040) /* Enable bit for Flash write */
#define BLKWRT (0x0080) /* Enable bit for Flash segment write */
#define SEGWRT (0x0080) /* old definition */ /* Enable bit for Flash
segment write */

#define FN0 (0x0001) /* Devide Flash clock by 1 to 64 using FN0
to FN5 according to: */
#define FN1 (0x0002 /* 32*FN5 + 16*FN4 + 8*FN3 + 4*FN2 + 2*FN1
+ FN0 + 1 */
#ifndef FN2
#define FN2 (0x0004)
#endif
#ifndef FN3
#define FN3 (0x0008)
#endif
#ifndef FN4
#define FN4 (0x0010)
#endif
#define FN5 (0x0020)
#define FSSEL0 (0x0040) /* Flash clock select 0 */ /* to
distinguish from USART SSELx */
#define FSSEL1 (0x0080) /* Flash clock select 1 */

#define FSSEL_0 (0x0000) /* Flash clock select: 0 - ACLK */
#define FSSEL_1 (0x0040) /* Flash clock select: 1 - MCLK */
#define FSSEL_2 (0x0080) /* Flash clock select: 2 - SMCLK */
#define FSSEL_3 (0x00C0) /* Flash clock select: 3 - SMCLK */

TEAM LRN

271

Standard Register and Bit Definitions for the MSP430 Microcontrollers

#define BUSY (0x0001) /* Flash busy: 1 */
#define KEYV (0x0002) /* Flash Key violation flag */
#define ACCVIFG (0x0004) /* Flash Access violation flag */
#define WAIT (0x0008) /* Wait flag for segment write */
#define LOCK (0x0010) /* Lock bit: 1 - Flash is locked (read
only) */
#define EMEX (0x0020) /* Flash Emergency Exit */

/**
* Comparator A
**/

#define CACTL1_ (0x0059) /* Comparator A Control 1 */
DEFC(CACTL1 , CACTL1_)
#define CACTL2_ (0x005A) /* Comparator A Control 2 */
DEFC(CACTL2 , CACTL2_)
#define CAPD_ (0x005B) /* Comparator A Port Disable */
DEFC(CAPD , CAPD_)

#define CAIFG (0x01) /* Comp. A Interrupt Flag */
#define CAIE (0x02) /* Comp. A Interrupt Enable */
#define CAIES (0x04) /* Comp. A Int. Edge Select: 0:rising / 1:
falling */
#define CAON (0x08) /* Comp. A enable */
#define CAREF0 (0x10) /* Comp. A Internal Reference Select 0 */
#define CAREF1 (0x20) /* Comp. A Internal Reference Select 1 */
#define CARSEL (0x40) /* Comp. A Internal Reference Enable */
#define CAEX (0x80) /* Comp. A Exchange Inputs */

#define CAREF_0 (0x00) /* Comp. A Int. Ref. Select 0 : Off */
#define CAREF_1 (0x10) /* Comp. A Int. Ref. Select 1 : 0.25*Vcc */
#define CAREF_2 (0x20) /* Comp. A Int. Ref. Select 2 : 0.5*Vcc */
#define CAREF_3 (0x30) /* Comp. A Int. Ref. Select 3 : Vt*/

#define CAOUT (0x01) /* Comp. A Output */
#define CAF (0x02) /* Comp. A Enable Output Filter */
#define P2CA0 (0x04) /* Comp. A Connect External Signal to CA0 :
1 */
#define P2CA1 (0x08) /* Comp. A Connect External Signal to CA1 :
1 */
#define CACTL24 (0x10)
#define CACTL25 (0x20)
#define CACTL26 (0x40)
#define CACTL27 (0x80)

#define CAPD0 (0x01) /* Comp. A Disable Input Buffer of Port
Register .0 */
#define CAPD1 (0x02) /* Comp. A Disable Input Buffer of Port
Register .1 */
#define CAPD2 (0x04) /* Comp. A Disable Input Buffer of Port
Register .2 */
#define CAPD3 (0x08) /* Comp. A Disable Input Buffer of Port

TEAM LRN

272

Appendix B

Register .3 */
#define CAPD4 (0x10) /* Comp. A Disable Input Buffer of Port
Register .4 */
#define CAPD5 (0x20) /* Comp. A Disable Input Buffer of Port
Register .5 */
#define CAPD6 (0x40) /* Comp. A Disable Input Buffer of Port
Register .6 */
#define CAPD7 (0x80) /* Comp. A Disable Input Buffer of Port
Register .7 */

/**
* Interrupt Vectors (offset from 0xFFE0)
**/

#define PORT1_VECTOR (2 * 2u) /* 0xFFE4 Port 1 */
#define PORT2_VECTOR (3 * 2u) /* 0xFFE6 Port 2 */
#define USART0TX_VECTOR (6 * 2u) /* 0xFFEC USART 0 Transmit */
#define USART0RX_VECTOR (7 * 2u) /* 0xFFEE USART 0 Receive */
#define TIMERA1_VECTOR (8 * 2u) /* 0xFFF0 Timer A CC1-2, TA */
#define TIMERA0_VECTOR (9 * 2u) /* 0xFFF2 Timer A CC0 */
#define WDT_VECTOR (10 * 2u) /* 0xFFF4 Watchdog Timer */
#define COMPARATORA_VECTOR (11 * 2u) /* 0xFFF6 Comparator A */
#define NMI_VECTOR (14 * 2u) /* 0xFFFC Non-maskable */
#define RESET_VECTOR (15 * 2u) /* 0xFFFE Reset [Highest Priority] */

#define UART0TX_VECTOR USART0TX_VECTOR
#define UART0RX_VECTOR USART0RX_VECTOR

/**
* End of Modules
**/
#pragma language=default

#endif /* #ifndef __msp430x12x */

TEAM LRN

273

APPENDIX C

Application Program
for Use in Chapter 10

The following is a copy of the application program written in the C language for use in the project of Chap-
ter 10. The latest version of this program should be downloaded from Texas Instruments Incorporated Web
site at http://www.ti.com. The instructions for doing this are contained in Chapter 10.

The program was written by Neal Frager of Texas Instruments Incorporated, and is used by permission and
courtesy of Texas Instruments Incorporated.

TimeDateTemp.c

//***

**

// MSP-FET430P120 - Temp Sensor + Clock

//

// N. Frager

// Texas Instruments, Inc

// February 2003

// Built with IAR Embedded Workbench Version: 1.26A

// Version for MSP-FET430P120

//**

#include <msp430x12x.h>

// Define segments on LED display

#define a 0x01

#define b 0x02

#define c 0x04

#define d 0x08

#define e 0x10

#define f 0x20

#define g 0x40

// Define numbers on LED display

#define zero a+b+c+d+e+f

#define one b+c

#define two a+b+d+e+g

#define three a+b+c+d+g

#define four b+c+f+g

#define five a+c+d+f+g

#define six a+c+d+e+f+g

#define seven a+b+c

#define eight a+b+c+d+e+f+g
TEAM LRN

274

Appendix C

#define nine a+b+c+f+g

#define celcius d+e+g

#define fahrenheit a+e+f+g

#define blank 0x00

// Define button press numbers

#define NOPUSH 0

#define MODE 1

#define TOGGLE 2

// Define state values

#define SHOW_TIME 0

#define SHOW_DATE 1

#define SHOW_YEAR 2

#define SHOW_TEMP 3

#define SET_HOUR 4

#define SET_MIN 5

#define SET_MONTH 6

#define SET_DAY 7

#define SET_YEAR 8

#define AUTO_TOGGLE 9

// Define Extra Auto Toggle States

#define SHOW_TEMP_F 3

#define SHOW_TEMP_C 4

// Define Clock and Date values

#define JAN 1

#define FEB 2

#define MAR 3

#define APR 4

#define MAY 5

#define JUN 6

#define JUL 7

#define AUG 8

#define SEP 9

#define OCT 10

#define NOV 11

#define DEC 12

#define CLK_PER_TEMP 512

#define CLK_PER_SEC 512

#define SEC_PER_MIN 60

#define MIN_PER_HR 60

#define MIN_YEAR 2000

#define MAX_YEAR 2100
TEAM LRN

275

Application Program for Use in Chapter 10

#define TRUE 1

#define FALSE 0

// System Routines

void initialize(void); // initialize ports and variables

void clocktick(void); // run the system clock

void display(void); // display driver

void displaydigit(int); // digit display routine

void fillbuffer(void); // fill 4-digit buffer

// Global variables

unsigned int digcount, dig1, dig2, dig3, dig4; // digit buffer

unsigned int clock_count, sec, min, hour, ampm; // clock values

unsigned int month, day, year; // date values

unsigned int mainstate; // main state machine

unsigned int buttonpress, buttonpush; // button press signal

unsigned int toggle_count; // allow for faster clock update

unsigned int blink, timer; // control blinking functionality

unsigned int data, temp, temp_type, temp_count, temp_done; // temperature display

unsigned int togglestate; // auto toggle state machine

unsigned int toggletimer; // 2 second auto toggle timer

unsigned int awake; // sleep mode (FALSE = sleep, TRUE = awake)

unsigned int sleepcount; // counts 15 seconds until sleep

unsigned int autowakecount; // counts 20 minutes until auto wake up

// temperature table

unsigned int temp_array[28][2] = { {0, 320}, {14, 345}, {28, 370}, {42, 395},

 {56, 420}, {69, 445}, {83, 470}, {97, 495},

 {111, 520}, {125, 545}, {139, 570}, {153, 595},

 {167, 620}, {181, 645}, {194, 670}, {208, 695},

 {222, 720}, {236, 745}, {250, 770}, {264, 795},

 {278, 820}, {292, 845}, {306, 870}, {319, 895},

 {333, 920}, {347, 945}, {361, 970}, {375, 995}};

// Main Function

void main(void)

{

 initialize(); // initialize ports, timerA and variables

 for (;;) // main state machine - run continuously

 {

 switch(mainstate) {

 case SHOW_TIME: // display time

 if(buttonpress & (buttonpush == TOGGLE)) {

 mainstate = SHOW_DATE;

TEAM LRN

276

Appendix C

 buttonpress = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SET_HOUR;

 buttonpress = 0;

 }

 break;

 case SHOW_DATE: // display date

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SHOW_YEAR;

 buttonpress = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SET_MONTH;

 buttonpress = 0;

 }

 break;

 case SHOW_YEAR: // display year

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SHOW_TEMP;

 buttonpress = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SET_YEAR;

 buttonpress = 0;

 }

 break;

 case SHOW_TEMP: // display temperature

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SHOW_TIME;

 buttonpress = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SHOW_TEMP;

 buttonpress = 0;

 temp_type ^= 0x01;

 }

 break;

 case SET_HOUR: // set the hour

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SET_HOUR;

 buttonpress = 0;

 hour++;

 if(hour == 12)

 ampm ^= 0x01;

 if(hour > 12)

 hour = 1;
TEAM LRN

277

Application Program for Use in Chapter 10

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SET_MIN;

 buttonpress = 0;

 }

 break;

 case SET_MIN: // set the minute

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SET_MIN;

 buttonpress = 0;

 min++;

 if(min == MIN_PER_HR)

 min = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SHOW_TIME;

 buttonpress = 0;

 }

 break;

 case SET_MONTH: // set the month

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SET_MONTH;

 buttonpress = 0;

 month++;

 if(month > DEC)

 month = JAN;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SET_DAY;

 buttonpress = 0;

 }

 break;

 case SET_DAY: // set the day

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SET_DAY;

 buttonpress = 0;

 day++;

 // February calculation

 if((year % 4) == 0) { // leap year

 if((month == FEB) && (day > 29))

 day = 1;

 }

 else {

 if((month == FEB) && (day > 28))

 day = 1;

 }

TEAM LRN

278

Appendix C

 // 30 day months

 if(((month == APR) || (month == JUN) || (month == SEP) || (month

== NOV)) && (day > 30))

 day = 1;

 // 31 day months

 if(day > 31)

 day = 1;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SHOW_DATE;

 buttonpress = 0;

 }

 break;

 case SET_YEAR: // set the year

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = SET_YEAR;

 buttonpress = 0;

 year++;

 if(year >= MAX_YEAR)

 year = MIN_YEAR;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 mainstate = SHOW_YEAR;

 buttonpress = 0;

 }

 break;

 case AUTO_TOGGLE: // auto toggle state

 if(buttonpress && (buttonpush == TOGGLE)) {

 mainstate = togglestate;

 if(mainstate == SET_HOUR) // Celcius exception case

 mainstate = SHOW_TEMP;

 buttonpress = 0;

 }

 else if(buttonpress && (buttonpush == MODE)) {

 awake = 0; // system sleeps with MODE push

 P1OUT = 0x00; // turn off analog system

 P2OUT = 0x00;

 P3OUT = blank;

 CCR0 = 32767; // slow to 1 Hz interrupt speed

 buttonpress = 0;

 }

 break;

 }

 if(awake) fillbuffer(); // fill the 4-digit buffer

 LPM3;

TEAM LRN

279

Application Program for Use in Chapter 10

 }

}

// PORT1 Push Button interrupt service routine - run on button press

#if __VER__ < 200

interrupt[PORT1_VECTOR] void PORT_1 (void)

#else

#pragma vector=PORT1_VECTOR

__interrupt void PORT_1(void)

#endif

{

 int i;

 // Clear Interrupt Flag

 P1IFG = 0x00;

 // Software Debounce Delay

 for(i=0;i<64;i++);

 // Save button press

 if(awake) {

 if((P1IN & 0xC0) == 0x40) { // P1.7 = TOGGLE

 buttonpush = TOGGLE;

 toggle_count = 0;

 sleepcount = 0;

 buttonpress = 1;

 }

 else if((P1IN & 0xC0) == 0x80) { // P1.6 = MODE

 buttonpush = MODE;

 toggle_count = 0;

 sleepcount = 0;

 buttonpress = 1;

 }

 else {

 buttonpush = NOPUSH;

 buttonpress = 0;

 }

 }

 else { // wake system up

 if((P1IN & 0xC0) != 0xC0) {

 toggle_count = 0;

 sleepcount = 0;

 awake = TRUE; // system wakes up - button press

TEAM LRN

280

Appendix C

 P1OUT = 0x18; // turn on analog system

 CCR0 = 63; // return to 512 Hz interrupt speed

 }

 }

}

// Timer A0 interrupt service routine - run at 512 Hz if awake, 1 Hz if asleep

#if __VER__ < 200

interrupt[TIMERA0_VECTOR] void Timer_A (void)

#else

#pragma vector=TIMERA0_VECTOR

__interrupt void Timer_A(void)

#endif

{

 // Clock Logic - run at 1 Hz

 // always runs

 if(awake) { // running at 512 Hz

 clock_count++;

 if(clock_count >= CLK_PER_SEC) {

 clock_count = 0;

 clocktick();

 }

 }

 else clocktick(); // running at 1 Hz

 // Temperature Controller - run at 1 Hz

 if(awake) { // runs only when system is awake

 if(temp_done) {

 temp_count++;

 if(temp_count >= CLK_PER_TEMP) {

 temp_count = 0;

 temp_done = 0;

 }

 }

 }

 // 2 second Auto Toggler - run at 0.5 Hz

 if(awake) { // runs only when system is awake

 if(mainstate == AUTO_TOGGLE) {

 toggletimer++;

 if(toggletimer >= 1024) { // 2 second auto toggle

 togglestate++;

 togglestate %= 5;

TEAM LRN

281

Application Program for Use in Chapter 10

 toggletimer = 0;

 }

 if(togglestate == SHOW_TEMP_F)

 temp_type = 1;

 if(togglestate == SHOW_TEMP_C)

 temp_type = 0;

 }

 else toggletimer = 0;

 }

 // System Sleep Controller

 if(awake) {

 if((P1IN & 0xC0)== 0xC0) {

 sleepcount++;

 if(sleepcount >= 15360) { // 512 Hz * 30 seconds = 15360 cycles

 awake = FALSE; // system sleeps after 15 seconds

 autowakecount = 0; //reset auto wake clock

 P1OUT = 0x00; // turn off analog system

 P2OUT = 0x00;

 P3OUT = blank;

 CCR0 = 32767; // slow to 1 Hz interrupt speed

 }

 }

 else sleepcount = 0;

 }

 // Push Button Debounce - run at 32 Hz

 if(awake) {

 if((P1IN & 0xC0) == 0x40) { // P1.7 = TOGGLE

 sleepcount = 0;

 if((mainstate == SET_HOUR) | (mainstate == SET_MIN) |

 (mainstate == SET_MONTH) | (mainstate == SET_DAY) |

 (mainstate == SET_YEAR)) {

 toggle_count++;

 if(toggle_count >= 80) { // update button held for 80/512 seconds

 toggle_count = 0;

 buttonpress = 1; // send another button press signal

 }

 }

 if((mainstate == SHOW_TIME) | (mainstate == SHOW_DATE) |

 (mainstate == SHOW_YEAR) | (mainstate == SHOW_TEMP)) {

 toggle_count++;

 if(toggle_count >= 1024) { // 2 second hold

 toggle_count = 0;

 togglestate = mainstate;

 mainstate = AUTO_TOGGLE;

TEAM LRN

282

Appendix C

 if(togglestate == SHOW_TEMP) {

 if(temp_type)

 togglestate = SHOW_TEMP_F;

 else togglestate = SHOW_TEMP_C;

 }

 }

 }

 }

 else if((P1IN & 0xC0) == 0x80) { // P1.6 = MODE

 sleepcount = 0;

 }

 else P1IFG = 0x00; // Button Released

 }

 // Display a digit - run at 512 Hz

 if(awake) { // runs only if system is awake

 display();

 LPM3_EXIT;

 }

 else { // clear LEDs and shut down analog since system is sleeping

 P1OUT = 0x00;

 P2OUT = 0x00;

 P3OUT = blank;

 }

}

// System Clock - runs at 1 Hz

void clocktick(void)

{

 sec++;

 // update minutes

 if(sec >= SEC_PER_MIN) {

 sec = 0;

 min++;

 if ((min == 20) || (min == 40) || (min == 60)) {

 autowakecount = 0;

 toggle_count = 0;

 sleepcount = 0;

 awake = TRUE; // system wakes up - auto wake

 P1OUT = 0x18; // turn on analog system

 CCR0 = 63; // return to 512 Hz interrupt speed

 }

 }

 // update hours

TEAM LRN

283

Application Program for Use in Chapter 10

 if(min >= MIN_PER_HR) {

 min = 0;

 hour++;

 if(hour == 12) {

 ampm ^= 0x01;

 if(!ampm) {

 day++;

 }

 }

 }

 if(hour > 12) {

 hour = 1;

 }

 // update days

 // February update

 if((year % 4) == 0) { // leap year

 if((month == FEB) && (day > 29)) {

 day = 1;

 month++;

 }

 }

 else { // non leap year

 if((month == FEB) && (day > 28)) {

 day = 1;

 month++;

 }

 }

 // 30 day month update

 if(((month == APR) || (month == JUN) || (month == SEP) || (month == NOV)) &&

(day > 30)) {

 day = 1;

 month++;

 }

 // 31 day month update

 if(day > 31) {

 day = 1;

 month++;

 }

 // update year

 if(month > DEC) {

 month = 1;

 year++;

 }

 // reset year when max is reached

 if(year >= MAX_YEAR) {

 year = MIN_YEAR;

TEAM LRN

284

Appendix C

 }

}

// initialize ports, Timer A0 and variables - run once at start

void initialize(void)

{

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 TACTL = TASSEL_1 + TACLR; // ACLK, clear TAR

 CCTL0 = CCIE; // CCR0 interrupt enabled

 CCR0 = 63; // TimerA interupts at 512 Hz

 digcount = 0; // reset digit buffer

 dig1 = 0;

 dig2 = 0;

 dig3 = 0;

 dig4 = 0;

 clock_count = 0; // reset clock vars

 sec = 0;

 min = 0;

 hour = 12;

 ampm = 0;

 month = JAN; // reset date vars

 day = 1;

 year = MIN_YEAR;

 mainstate = SHOW_TIME; // reset state machines

 togglestate = SHOW_TIME;

 buttonpush = NOPUSH;

 buttonpress = 0;

 toggle_count = 0;

 toggletimer = 0;

 awake = TRUE; // system is awake

 sleepcount = 0;

 autowakecount = 0;

 timer = 0; // initialize blinking functionality

 blink = 0;

 temp = 0; // set temp output

 data = 0;

 temp_type = 1;

 temp_count = 0;

 temp_done = 0;

TEAM LRN

285

Application Program for Use in Chapter 10

 P1DIR = 0x3F; // Set I/O ports

 P2DIR = 0xFF;

 P3DIR = 0x7F;

 P1IES = 0xC0;

 P1IFG = 0x00;

 P1IE = 0xC0;

 P1OUT = 0x18; // Turn A/D off

 TACTL |= ID_0;

 TACTL |= MC_1; // Start Timer_a in upmode

 _EINT(); // Enable interrupts

}

// Fill 4-digit buffer - runs continuously

void fillbuffer(void)

{

 unsigned int counter;

 // determine clock digits

 if((mainstate == SHOW_TIME) || (mainstate == SET_HOUR) || (mainstate == SET_

MIN) ||

 ((mainstate == AUTO_TOGGLE) && (togglestate == SHOW_TIME))) {

 dig1 = hour / 10;

 dig2 = hour % 10;

 dig3 = min / 10;

 dig4 = min % 10;

 if(ampm) // AM/PM lights

 P1OUT = 0x1F;

 else P1OUT = 0x1B;

 }

 // determine date digits

 else if ((mainstate == SHOW_DATE) || (mainstate == SET_MONTH) || (mainstate

== SET_DAY) ||

 ((mainstate == AUTO_TOGGLE) && (togglestate == SHOW_DATE))) {

 dig1 = month / 10;

 dig2 = month % 10;

 dig3 = day / 10;

 dig4 = day % 10;

 P1OUT = 0x1A;

 }

 // determine year digits

 else if ((mainstate == SHOW_YEAR) || (mainstate == SET_YEAR) ||

TEAM LRN

286

Appendix C

 ((mainstate == AUTO_TOGGLE) && (togglestate == SHOW_YEAR))) {

 dig1 = year / 1000;

 dig2 = (year / 100) % 10;

 dig3 = (year / 10) % 10;

 dig4 = year % 10;

 P1OUT = 0x18;

 }

 // determine temp digits

 else if ((mainstate == SHOW_TEMP) || ((mainstate == AUTO_TOGGLE) && (tog-

glestate >= SHOW_TEMP))) {

 if(!temp_done) { // update temp once per second

 data = 0;

 P1OUT &= 0x17; // Turn A/D on

 for(counter = 10; counter > 0;)

 {

 data = data << 1;

 if((P3IN & 0x80) == 0x80) // P3.7 = A/D temp input

 {

 data |= 0x01;

 }

 counter--;

 P1OUT |= 0x20; // send a clock tick to A/D converter

 P1OUT &= 0x17;

 }

 P1OUT &= 0x1F; // Turn A/D off

 if(data <= 712)

 temp = temp_array[0][temp_type];

 else if (data <= 820) {

 temp = temp_array[(data-712)/4][temp_type];

 if(temp_type)

 temp += ((data-2)%4) * 6;

 else temp += ((data-2)%4) * 3;

 }

 else if (data != 1023) {

 temp = temp_array[27][temp_type];

 }

 temp_done = 1; // temp recorded

 }

 // Fill Temperature Buffer

 dig1 = temp / 100;

 dig2 = (temp / 10) % 10;

 dig3 = temp % 10;

TEAM LRN

287

Application Program for Use in Chapter 10

 if(temp_type)

 dig4 = 10; // display Fahrenheit

 else dig4 = 11; // display Celcius

 P1OUT = 0x1A;

 }

 else { // system has gone into invalid state

 dig1 = 0;

 dig2 = 0;

 dig3 = 0;

 dig4 = 0;

 P1OUT = 0x18;

 }

}

// System Display Routine - runs at 512 Hz

void display(void)

{

 P2OUT = 0xFF; // clear digit

 displaydigit(-1);

 // update digit counter

 digcount++;

 digcount %= 4;

 // update blink controller

 if((clock_count % 256) == 0)

 blink ^= 0x01;

 switch(digcount) {

 case 0: // display digit 1

 if(blink || (mainstate == SHOW_TIME) || (mainstate == SET_MIN) ||

(mainstate == SHOW_DATE) || (mainstate == SET_DAY) ||

 (mainstate == SHOW_YEAR) || (mainstate == SHOW_TEMP) || (main-

state == AUTO_TOGGLE)) {

 if(dig1 || (mainstate == SHOW_DATE) || (mainstate == SET_DAY) ||

(mainstate == SET_MONTH) || (mainstate == SHOW_YEAR) ||

 (mainstate == SET_YEAR) || ((mainstate == AUTO_TOGGLE) && (tog-

glestate != SHOW_TIME)))

 displaydigit(dig1);

 else displaydigit(-1);

 if(blink && ((mainstate == SHOW_TIME) || ((mainstate == AUTO_TOGGLE)

&& (togglestate == SHOW_TIME))))

 P2OUT = 0xDE; // Display Digit 1 without clock colon

 else

 P2OUT = 0xCE; // Display Digit 1 with clock colon
TEAM LRN

288

Appendix C

 }

 else P2OUT = 0xCF; // Digit off for blinking

 break;

 case 1: // display digit 2

 if(blink || (mainstate == SHOW_TIME) || (mainstate == SET_MIN) ||

(mainstate == SHOW_DATE) || (mainstate == SET_DAY) ||

 (mainstate == SHOW_YEAR) || (mainstate == SHOW_TEMP) || (mainstate

== AUTO_TOGGLE)) {

 displaydigit(dig2);

 P2OUT = 0xFD; // Display Digit 2

 }

 else P2OUT = 0xFF; // Digit off for blinking

 break;

 case 2: // display digit 3

 if(blink || (mainstate == SHOW_TIME) || (mainstate == SET_HOUR) ||

(mainstate == SHOW_DATE) || (mainstate == SET_MONTH) ||

 (mainstate == SHOW_YEAR) || (mainstate == SHOW_TEMP) || (mainstate

== AUTO_TOGGLE)) {

 displaydigit(dig3);

 P2OUT = 0xFB; // Display Digit 3

 }

 else P2OUT = 0xFF; // Digit off for blinking

 break;

 case 3: // display digit 4

 if(blink || (mainstate == SHOW_TIME) || (mainstate == SET_HOUR) ||

(mainstate == SHOW_DATE) || (mainstate == SET_MONTH) ||

 (mainstate == SHOW_YEAR) || (mainstate == SHOW_TEMP) || (mainstate

== AUTO_TOGGLE)) {

 displaydigit(dig4);

 P2OUT = 0xF7; // Display Digit 4

 }

 else P2OUT = 0xFF; // Digit off for blinking

 break;

 }

}

// Routine for converting integer number into display value

// Runs when called

void displaydigit(int number)

{

 switch(number) {

 case 0: P3OUT = (P3OUT & 0x80) | zero;

 break;

 case 1: P3OUT = (P3OUT & 0x80) | one;

 break;

TEAM LRN

289

Application Program for Use in Chapter 10

 case 2: P3OUT = (P3OUT & 0x80) | two;

 break;

 case 3: P3OUT = (P3OUT & 0x80) | three;

 break;

 case 4: P3OUT = (P3OUT & 0x80) | four;

 break;

 case 5: P3OUT = (P3OUT & 0x80) | five;

 break;

 case 6: P3OUT = (P3OUT & 0x80) | six;

 break;

 case 7: P3OUT = (P3OUT & 0x80) | seven;

 break;

 case 8: P3OUT = (P3OUT & 0x80) | eight;

 break;

 case 9: P3OUT = (P3OUT & 0x80) | nine;

 break;

 case 10: P3OUT = (P3OUT & 0x80) | fahrenheit;

 break;

 case 11: P3OUT = (P3OUT & 0x80) | celcius;

 break;

 default: P3OUT = (P3OUT & 0x80) | blank;

 break;

 }

}

TEAM LRN

290

APPENDIX D

A Refresher

The purpose of this appendix is to provide basic information for the reader who needs some help with the
fundamental concepts contained in this book. It is a “refresher” on some of the concepts to make sure that
the readers’ level of understanding is improved to be able to absorb more of the discussion in the text.

The source of this material is in Chapter 3 of Basic Communications Electronics, J. Hudson, J. Luecke,
©1999 Master Publishing, Inc., used by permission of and courtesy of Master Publishing, Inc.

Ohm’s Law
The law of electricity most used in electronic circuit design is Ohm’s Law. It is named in honor of Georg
Simon Ohm, who formulated the relationship between voltage, current and resistance in the 19th Century.
Ohm’s Law states:

“The current in an electrical circuit is directly proportional to the voltage applied to the circuit, and in-
versely proportional to the resistance.” In equation form, Ohm’s Law is:

 I = E

R

where: I is current in amperes

E = I × R E is voltage in volts

 R = E

I

 R is resistance in ohms

Simple Aid for Using Ohm’s Law

A simple aid for remembering Ohm’s law is shown
in Figure D-1a. Just cover the letter in the circle that
you want to find and read the equation formed by
the remaining letters. When the current is unknown,
but the voltage and resistance are known, the basic
equation to be solved for I is found by using the aid
of Figure D-1b. The result is:

 I = E

 R

Similarly, knowing the current and resistance, the
voltage can be calculated by using the equation
shown in Figure D-1c:

 E = IR

Figure D-1d shows the aids when the current and
resistance are in values other than amperes and
ohms, respectively.

Figure D-1: Ohm’s law circle

Source: Basic Electronics, G. McWhorter and A.J. Evans, ©1996,
Master Publishing, Inc., Lincolnwood, IL.

A M

Volt

I R

E

RI

mA

R

E

Volts
Microamperes
Megohms

V –
mA –

MW –

Volts
Milliamperes
kilohms

V –
mA –
kW –k

Volt

 a. Basic b. Finding current

 c. Finding voltage d. Special cases for
 mA, kΩ and µa, mΩ

TEAM LRN

291

A Refresher

Decibel—A Quantity to Describe Gain
Almost all technicians and engineers, as well as marketing personnel in communications systems, use the
term “decibel.” The decibel (abbreviated dB) is one-tenth of a bel. It is a standard unit for expressing the
ratio between output power and input power or, in special cases, output voltage and input voltage. (It also is
used to express differences in sound levels (power levels) in audio systems). The decibel is expressed as:

 Power Voltage

 out
10

in

P
dB 10 log

P
= out

10 in out
in

V
dB 20 log when R R

V
= =

To review its use, what power ratio is represented by 20 dB?

Remember: The logarithm of a number is the exponent to which the base of the logarithm must be raised in
order to arrive at the number, for example, 10x = Y, therefore, × = log10Y. Also recall that ∴ means “Therefore.”

out
10

in

P
2 log

P
=

out
10

in

P
20 10 log

P
=

 ∴ POUT is 100 times Pin

What voltage ratio is represented by 60 dB?

 ∴ Vout is 1000 times Vin

There is a caution in using dB = 20 log10 Vout / Vin. It is assumed
that Vout and Vin are across the same value of resistance. If this
condition is not met, dB = 10 log10 Pout / Pin must be used. The
following reference table shows the equivalent power and voltage
ratios to various decibels.

The advantage of using dB units is that they can be added and
subtracted directly to obtain the final result. For example, if two
amplifier stages each have 10 dB of power gain, the total power
gain is 20 dB. 10 dB of power gain is a ratio of 10. The gains of
two amplifiers cascaded multiply; therefore, 10 × 10 = 100 power
gain for the two stages. 20 dB of power gain is a ratio of 100.

out
10

in

V
dB 20 log

V
=

out
10

in

V
60 20 log

V
=

out
10

in

V
3 log

V
=

3 out

in

V
10

V
∴ =

 dB Pout/Pin Vout/Vin

 3 2 1001.4
 6 4 2.1
 10 10 3.4
 20 100 10.4
 30 1000 31.6
 40 10,000 100.6
 50 10 5 316.2
 60 10 6 1000.2

Table D-1

∴ =102 P

P
out

in

TEAM LRN

292

Appendix D

Passive Devices
All resistors, inductors and capacitors have impedance (symbol Z) because they “impede” (resist) current
in electronic circuits. Impedance is measured or expressed in ohms (symbol Ω). The schematic symbols for
these passive devices are shown in Figure D-2.

1. Resistors impede (resist) current equally well in DC or AC circuits. Unless a resistor has inductance or
capacitance, its impedance is Z = R / 0°, just the resistance with a zero phase angle. Because the phase
angle is zero, it is left off and Z is just equal to R (Z = R).

2. Inductors are coils of wire that have inductance (symbol L), a capability to store energy in a magnetic
field surrounding the coil when there is current through the coil. The stored energy opposes changes
in the existing current through the coil. The opposition to the changing current is called inductive
reactance (symbol XL). The impedance of an inductor is made up of the coil’s resistance and induc-

tive reactance added as vectors at right angles to each other. Its value is 2 2
L LZ R X= + with a

phase angle, θ, whose tan θ = XL / R. When R = 0, ZL = XL / 90°. Inductors with zero or very small
resistance are a short circuit (zero impedance) to DC current, but increase their inductive reactance as
frequency increases according to the expression XL = 2πfL, where f is frequency in Hz and L is induc-
tance in henries. As frequency increases, the inductive reactance of an inductor increases. At 10 MHz
(10,000,000 cycles), even a small inductance (0.1 millihenry) with little or no resistance has
6,280 ohms (Ω) of impedance.

3. Capacitors are made from two metal plates separated by an insulator that have capacitance (symbol
C), a capability to store a charge in an electrostatic field. The stored energy opposes changes to the
existing voltage across the capacitor. The opposition to the changing voltage is called capacitive reac-
tance (symbol XC). The impedance of a capacitor is made up of the capacitor’s resistance and
capacitive reactance added as vectors at right angles to one another. Its value is

2 2
C CZ R X= + with a phase angle (θ) whose tan θ = −XC / R. The minus sign on XC means that the

right triangle leg is in the opposite direction from XL. The R for capacitors is the DC resistance of the
leads and the metal plates, which is very small. Therefore, Z = XC / –90°. Capacitors are open circuits
(infinite impedance) to DC current, but decrease their capacitive reactance as frequency increases ac-
cording to the expression XC = 1 /2πfC, where f is frequency in Hz and C is capacitance in farads. As
frequency increases, the capacitive reactance of a capacitor decreases. At 10 MHz, even a fairly large
capacitor (0.1 microfarad) has only about 0.2 ohms (Ω) impedance.

Figure D-2: Schematic symbols for
resistors, capacitors, and inductors

RESISTORS

FIXED

ADJUSTABLE

CAPACITORS

FIXED FIXED

VARIABLE

INDUCTORS

ADJUSTABLE

TEAM LRN

293

A Refresher

Example 1. Impedances of R, L and C

A. What is the impedance of a 10,000-ohm resistor that has no inductance or capacitance, first to
current in a DC circuit and second to current in a circuit powered by 60 VAC?

B. What is the impedance of a 1 millihenry inductor with zero resistance at 1000 Hz, 1 MHz, and
1000 MHz?

C. What is the impedance of a 1 microfarad capacitor with zero resistance at 1000 Hz, 1 MHz, and
1000 MHz?

Solution:

A. The impedance of a resistor is the same for a DC or an AC circuit—10,000 Ω. Since it has no
inductance or capacitance, resistance is the only component and there is no phase angle.

 Z = 10,000 Ω / 0° = 10,000Ω
B. With R = 0, Z = XL / 90°.

 Use the equation XL = 2πfL. Remember that π is a constant of 3.14.

 1. For 1000 Hz: XL = 6.28 × 1 × 103 × 1 × 10–3 = 6.28 ohms / 90°

 2. For 1 MHz: XL = 6.28 × 1 × 106 × 1 × 10–3 = 6.28 × 103 = 6280 ohms = 6.28 kilohms / 90°

 3. For 1000 MHz: XL = 6.28 × 1 × 109 × 1 × 10–3 = 6.28 × 106 ohms = 6.28 Megohms / 90°

C. With R = 0, Z = XC / –90°

 Use the equation XC =

. Remember that π is a constant of 3.14.

 1. For 1000 Hz: XC = =

 = 0.159 × 103 = 159 ohms / –90º

 2. For 1 MHz: XC = =

 = 0.159 ohms / –90º

 3. For 1000 MHz: XC = =

 = 0.159 × 10–3 = 0.159 milliohms / –90°

1
2πfC

1
6.28 × (1 × 103) × (1 × 10–6)

1
(6.28 × 10–3)

1
6.28 × (1 × 106) × (1 × 10–6)

1
6.28

1
6.28 × (1 × 106) × (1 × 10–6)

1
(6.28 × 103)

TEAM LRN

294

Appendix D

The Diode—A One-Way Valve for Current
A diode is a semiconductor chip (usually silicon) with a PN junction. The P material is the anode; the N
material is the cathode. For a silicon diode, as shown in Figure D-3, conventional current will flow easily
from the anode to the cathode when the voltage at the anode is 0.7V more positive than the cathode. If the
anode is less than 0.7V more positive
than the cathode, no current will flow.
Therefore, the diode is a one-way valve
for current. This characteristic is used
extensively in electronic circuits, includ-
ing rectifiers in power supplies, as well
as in detection and mixing circuits. The
0.7V differential in a silicon junction is
used extensively as a relatively constant
voltage in amplifier circuits.

Active Devices
Electronic devices that provide gain are
called active devices. The most important active device for electronic circuits is a transistor. There are two
types of transistors—bipolar and field-effect transistors.

Bipolar Transistors

A bipolar transistor is a combination of two junctions of semiconductor material built into a semiconductor
chip (usually silicon). There are two types of bipolar transistors—PNP and NPN—and their junction struc-
tures are shown in Figure D-4a and D-4d. For a transistor that is producing gain, the emitter-base junction
is a forward-biased diode and the collector-base junction is a reverse-biased diode. The diode equivalents

Figure D-3: A diode conducts
current only in one direction

Easy direction of
conventional current

when anode is 0.7V positive to cathode

No current (except small
leakage current) when cathode
is positive with respect to anode

Anode Cathode

When the voltage available to apply to the
anode is more than 0.7V more positive than

the cathode, there will be conventional current
from the anode to the cathode and the voltage

drop across the PN junction will be 0.7V.

P-N Junction
in Silicon

Chip

Anode Cathode

P N −+

+

+ −

−

PNP

Emitter Collector

Base

Base

Emitter Collector

E C

Forward-
Biased
Diode

Reverse-
Biased
Diode

B

E

C

B

P P

N
P N P

NPN

Emitter Collector

Base

Base

Emitter Collector

E C

Forward-
Biased
Diode

Reverse-
Biased
Diode

B

E

C

B

N N

P
N P N

P N P

N P N

Figure D-4: Bipolar transistors—their construction and symbols

 a. Junction structure b. Diode junction equivalent c. PNP symbol

 d. Junction structure e. Diode junction equivalent f. NPN symbol

TEAM LRN

295

A Refresher

of a PNP and an NPN transistor are shown in Figure D-4b and e, respectively. The collector-base junction
of a bipolar transistor is distinctly different from a reverse-biased diode. Normally, a reverse-biased diode
conducts no current, except for a very small leakage current. The reverse-biased collector-base junction of a
bipolar transistor conducts collector current that is controlled by the current into the base at the base-emitter
junction. The ratio of the collector current to the base current is hFE. Under normal operation, the collector
current is greater than the base current; so there is a current gain and hFE is a number greater than one—
typically 50 to 200. However, there are special cases of operation or manufacture where hFE is less than one.

NPN

The normal active device operation is shown in Figure D-5. An NPN silicon transistor P base is 0.7V more
positive than its N emitter, and the N collector is several more volts more positive than the emitter, as shown
in Figure D-5a. The emitter current, IE, is the sum of the base current, IB, and the collector current, IC. The
current gain of the transistor under any DC operating condition is hFE, the ratio of IC to IB. hFE current gains
of 50 to 200 are common in modern day silicon transistors. hFE is actually called “the common-emitter”
current gain because the emitter is common in the circuit.

PNP

A silicon PNP transistor base is 0.7V negative with respect to its emitter in order to have the P emitter more
positive than the N base. The P collector is several volts negative from the emitter to keep the collector-base
junction reverse biased. As shown in Figure D-5b, the same current equations apply and the current gain,
hFE, is the same. The major difference is in the polarity of the voltages for operation. For the NPN common-
emitter operation the base and collector voltages are positive with respect to the emitter; while for the PNP
the voltages are negative.

Figure D-5: Bipolar transistor operation

C

E

NPN IC

IB

IE

B

E

C

PNP
IE

IB

IC

B

B

IC
+5V C

0.7V

IB

E
IE

Collector
current, controlled
by base current,
flows across reverse-
biased collector-base
junction

Forward-biased
base-emitter junction
just like diode

C

E

B

Flipped

IE = IB + IC

B

IE

E

-5V

IB

C

IC

Collector current,
controlled by base
current, flows across
reverse-biased
collector-base
junction

Forward-Biased
emitter-base
junction just
like diode

IC = hFEIB IE = IB + IC
IC = hFEIB

-0.7V

Normal
Symbol

IC
IB

P

N

P

N
P
N

IC
IB

{Transistor
Current

Gain
hFE =

hFE =

a. NPN operation a. PNP operation

TEAM LRN

296

Appendix D

Field-Effect Transistors (FETs)

Unlike bipolar transistors, which depend on current into the base to control collector current, field-effect
transistor current between source and drain is controlled by a voltage on a gate. Look at the basic structure
of an N-channel MOSFET (metal-oxide semiconductor field-effect transistor), as shown in Figure D-6a.
Heavily-doped N semiconductor material forms source and drain regions in a P semiconductor material
substrate. The region between the source and drain is the gate region, where a thin layer of oxide insulates
the P semiconductor substrate underneath from a metal plate that is deposited over the thin oxide. A thick
oxide layer over the source and drain
regions insulates metal connection
pads from the substrate. Holes in this
thick oxide layer allow the metal
pads to contact the source and drain.

N-Channel Operation

Symbol D of the schematic symbol
diagrams of Figure D-6b represents
an N-channel enhancement-mode
MOSFET. It indicates that a positive
voltage is applied to the drain
of an N-channel MOSFET with re-
spect to the source. When no voltage
is applied to the gate with respect
to the source, no current flows from
drain to source. However, applying
a positive voltage to the gate with
respect to the source produces a
channel underneath the gate in the
P-semiconductor substrate. This

Figure D-6: MOS (metal-oxide semiconductor) field-effect transistor

SOURCE

BOND
WIRE

BOND
WIRES

N+ N+

P DRAIN

ALUMINUM
METAL PAD

ALUMINUM
METAL PAD

ALUMINUM METAL OVER VERY
THIN OXIDE FORMS GATE

ALUMINUM
METAL SOURCE
CONTACT

ALUMINUM
METAL DRAIN
CONTACT

THICK-OXIDE
INSULATOR

THICK-OXIDE
INSULATOR

HEAVILY-DOPED
N SEMICONDUCTORP SEMICONDUCTOR THIN-OXIDE

INSULATOR CHANNEL (IN THIS CASE AN N-CHANNEL)
IS FORMED BY APPLYING A VOLTAGE (IN THIS
CASE A POSITIVE VOLTAGE) BETWEEN GATE
AND SOURCE. THE CHANNEL CONDUCTS
CURRENT BETWEEN DRAIN AND SOURCE.

GATE VOLTAGE
CONTROLS
CURRENT IN
A CURVED
NONLINEAR WAY

GATE-SOURCE VOLTAGE (+ OR −)

S
O

U
R

C
E

-D
R

A
IN

 C
U

R
R

E
N

T

S D

G–
OFF

S D

G+
OFF

P-CHANNEL N-CHANNEL

S – SOURCE
G – GATE
D – DRAIN

ENHANCEMENT
MODE – GATE BIAS
TURNS ON

DEPLETION
MODE – GATE
BIAS TURNS OFF

A. B.

C. D.

S D

G+
ON

S D

G–

+

+

–

–

–

–

+

+

ON

a. Pictorial of construction (N-channel enhancement)

b. Schematic symbols of MOSFETs

c. Characteristic curve of field-effect transistor

TEAM LRN

297

A Refresher

channel conducts current between drain and source. The characteristic curve that shows drain-to-source
current plotted against gate-to-source control voltage is shown in Figure D-6c. Therefore, in field-effect
transistors we have a voltage (between gate and source) controlling current between drain and source. The
ratio of the drain-to-source current change to the gate-to-source voltage change that caused it is called the
transconductance (abbreviated gm) of the field-effect transistor.

Four Common Types
Figure D-6b shows that there are four common types of MOSFETs: P-channel depletion and enhance-
ment mode devices, and N-channel depletion and enhancement mode devices. P-channel devices have the
semiconductor materials just reversed from the N-channel materials shown in Figure D-6a. The drain and
source are P semiconductor material and the substrate is N semiconductor material. In an enhancement-
mode MOSFET, current is produced and increased as an increasing voltage is applied between the gate and
source. In a depletion-mode MOSFET, there already is current from drain to source when there is no gate
to source voltage. Applying a gate voltage reduces (depletes) the current. Voltage polarities are reversed
when using P-channel field-effect transistors from those used for N-channel. The source is positive with
respect to the drain and the gate voltage is negative with respect to the source. Since the gate is insulated
from the substrate, there is a very high impedance from gate to source for field-effect transistors. The drain
to substrate and source to substrate junctions are just the same as any other semiconductor diode junction,
and for proper operation they must be kept reverse biased.

TEAM LRN

This page intentionally left blank

TEAM LRN

299

About the Author

Jerry (Gerald) Luecke has almost 50 years experience in the design of semiconductor discrete-component
and integrated circuits—32 of which were spent at Texas Instruments. At TI, he was an applications
engineer, design engineering manager and development engineer for digital integrated circuits. He worked
under Jack Kilby in the design of the first Minuteman integrated circuits and the initial TI integrated circuit
families. He was instrumental in the initial development of the TI Series 54 T2L integrated circuit family,
and in the design of the first ECL integrated circuits. He ended his career at TI in 1989 as manager of TI’s
University Program.

One of the founders of Master Publishing, Inc., he has spent the last 25 years writing, editing, and publish-
ing books about the fundamental concepts of electricity and electronics, integrated circuits, and digital
electronics. In addition, he is the author of several electronics reference books and an amateur radio
operator, call sign KB5TZY. He earned a BSEE at the University of Iowa and an MSEE at Northwestern
University. He is a member of Eta Kappa Nu, Tau Beta Pi, Sigma Xi and is a Life Member of IEEE.

Here are books he has authored:

1. Semiconductor Memory Design and Application, Gerald Luecke, Jack P. Mize, William N. Carr,
©1973 Texas Instruments, McGraw Hill Book Company.

 Published in Hungary ISBN: 963 10 3178 0. Published in Polish Informaatyka Series. Published as
International Student Edition ISBN 0-07-038975-6

2. Understanding Microprocessors, Don L. Cannon, Gerald Luecke, ©1979, 1984, Texas Instruments
Incorporated.

3. Understanding Communication Systems, Don L. Cannon, Gerald Luecke, ©1981, Texas Instruments
Incorporated.

4. Installing Your Own Telephones, Gerald Luecke, James B. Allen, ©1986, 1987 Prentice-Hall, ©1987,
1989, 1992, 1997, Master Publishing, Inc.

5. Basic Communications Electronics, Jack Hudson, Jerry Luecke, ©1999 Master Publishing, Inc.

6. Analog and Digital Circuits for Electronic Control System Applications: Using the TI MSP430 Micro-
controller, Jerry Luecke, ©2004 Butterworth-Heinemann, Div. of Reed Elsevier Inc.

TEAM LRN

300

Index

Symbols
#define, 119
&ADDR, 110
16-bit (word), 106
2N2222A common-emitter small-signal amplifier, 39
4-bit DAC, 68
8-bit (byte), 106
8-pin DIP packages, 187

A
absolute mode, 110
accuracy, 6, 71, 74
AC coupling, 40
AC current gain, hfe, 37
AC to DC power supply, 160

half-alterations, 161
isolated, 161
noise, 161
rectified, 160
ripple, 161

Ad, 109
ADC, 180

data line, 181
microcontroller, 180

ADCData, 118
adder, 95
addition, 95
addresses, 83, 97, 105
addressing, 97
addressing modes, 97, 109

data, 97
address bus, 83
address code, 93
address spaces, 105
alphanumeric characters, 5
American Standard Code for Information

Interchange—ASCII code, 5
amperes, 160
amplification, 35
amplifiers, xii

amplifier frequency response, 39
DC amplifier, 39
fH, the so called high-frequency corner

frequency, 39
fL, the low-frequency corner, 39
frequency response, 39
midband frequency range, 40
midband, 39
signal frequency, 39

amplitude, 35
analog, 1
analog-to-digital conversion, 6,7
analog board, 182, 187, 190

8-pin DIP packages, 187
analog VCC, 187
IC breadboard socket, 187
inverting input, 188
RESET push-button, 188
RESET signal, 188
RST/NMI wire, 188
system power connections, 189

analog circuitry, 180
op amp, 180
sensor, 180
system schematic, 180

analog portion, 180
voltage regulator, 180

analog input voltage, 73
analog quantities, 1
analog signals, xii
analog systems, 1
analog VCC, 187
analog voltage equivalent, 71
AND gate, 92
AND gate control, 92
angular position sensor, 23
applications information, 103
application program, 82, 191

loading in microcontroller, 192
TEAM LRN

301

Index

online, 191
application software, 191

downloading, 191
unzipping, 192

WinZip window, 192
architecture, 103
arithmetic and logic unit (ALU), 84
arithmetic function, 95
arithmetic shift, 88
arithmetic value, 89
as, 109
ASCII, 90
ASCII table, 5
assembler, 94
assembler directive, 121, 127
assembly-language instructions, 93
assembly-language programming, xii
assembly language, 95
asymmetrical waveform, 127, 131
asynchronous serial communications, 149

frames of data, 149
idle periods, 149

auto-toggling state diagram, 175
display, 175
PM LED, 175

automobile fuel gauge, 21
auxiliary clock, ACLK, 108
A to D conversion, 8

B
bandwidth, 61

bandwidth, BW, 61
half-power bandwidth, 61

base-emitter junction, 30
battery-operated, 106
battery clip, 184
baud, 147
baud per second, 147
baud rate, 147
BCSCTL1, 111, 112
BCSCTL2, 111, 112
biased operating point, 36
biasing, 37

collector-feedback bias, 37
fixed-current IB bias, 37
negative feedback, 37
voltage-divider bias, 37

biasing resistor, 55
bias current, 55
bimetal strip thermometer, 18
binary, 3
binary-weighted capacitance, 77
binary-weighted currents, 72
binary address, 86
binary alphanumeric quantities, 5
binary counter, 73
binary digital systems, 3
binary digits or bits, 3
binary digit weighted position, 5
binary levels, 145

mark, 145
high level, 145
idling state, 145
in which there was a current, 145

space, 145
low level, 145
no current, 145

binary numbering system, 3
binary output, 73
binary strings of bits, 87
bipolar, 74
bipolar NPN amplifier, 36

design parameters, 37
common-emitter amplifier, 38
load line, 38
standard values, 38
voltage gain, 38
voltage gain in dB, 38

bipolar NPN transistor, 35
bipolar PNP transistor, 35
bit evaluation, 75
branch control tables, 105
breadboard circuit, 183

online, 183
breadboard construction, 185, 190

female connectors, 185
jumper cable connector, 185
male connector, 185
shorting jumpers, 190

breadboard form, 182
breakdown voltage, 56
bridge rectifier, 161
brownout reset, 104

TEAM LRN

302

Index

bulk data transfers, 155
bus, 86
bus transceivers, 153

3-state high-impedance output, 153
data lines, 153
differential receivers, 153
enable input, 153
output buffers, 153
single-ended receivers, 153

byte, 87
byte format, 106

C
capacitive reactance, 61
capacitive touch diaphragm, 27

characteristic curve, 27
dielectric layer, 27

capacitor bank, 75
capacitor charge-redistribution ADC, 75
capture, 109
capture/compare register, 109
carry bit, 111, 125
cascaded gain, 41
central clock, 73
characteristic curves, 36
characters, 90
character bits, 143
character code, 93
charge, 58
check bits, 92
chip select line, 134
class AB amplifier, 42
class A amplifier, 42

maximum efficiency, 54
class B amplifier, 42, 54

complementary bipolar transistor power
amplifier, 54

class B power amplifier, 56
center-tapped secondary, 56
crossover distortion, 56
negative-going alternation, 56
positive-going alternation, 56
primary, 56
secondary, 56
time-varying signals, 56
transformer, 56
transformer action, 56

class C amplifier, 42
clear, 134
clear bit, 113
clock, 83
clock frequency, 74
clock system, 107
CMOS, 74
code, 3
coded patterns, 3
code step, 67
collector-base junction, 30
collector-feedback bias, 37
commands, 90
comments, 118
comments column, 118
common-emitter amplifier, 38
common-emitter current gain (hFE), 37
common-mode rejection, 50, 51
common-mode rejection ratio, 51
comparator, 74,181
compare, 109
comparison, 75
compiler, 95
compiling the program, 193

status of the programming, 193
complementary bipolar transistor power

amplifier, 54
composite of signals, 59
constant-current source, 52
constant generator, 104
contents of R11, 137
control, 90
control buses, 87
control logic, 75
control registers, 132
conversion time, 74
convert, 75
cooling air, 83
core instructions, 103
correction bits, 145
counter register, 136
coupling capacitor, 40
coupling using light, 41
CPUOFF, 110
CPU (central processing unit), 82
creating a project, 192

TEAM LRN

303

Index

crossover distortion, 55, 56
crystal-controlled oscillator, 91
crystal oscillator, 107, 111, 127, 182
current-steering DAC, 72
current mirror, 52

channel length, L, 53
channel width, W, 53
W/L ratio, 53

current sensor, 23
current summing amplifier, 72
current value, 160
cutoff frequency, 60
cycle, 129

D
data address register, 84
data bus, 83
data communications equipment, 142
data encoding, 155

“nonreturn-to-zero” encoding, 155
sync field, 156
sync pulse, 156
sync signals, 156

data line waveforms, 154
differential logic state, 154
differential signals, 154
fall times, 154
J and K states, 154
rise times, 154
voltage crossover point, 154

data memory, 103
data register, 182
data tables, 105
data terminal equipment, DTE, 142
data transfers, 155

bulk, 155
interrupt, 155
real time, 155

data transmissions, xii
data transmission system, 142

data transfers, 142
direction of transfer, 142

DC/DC converters, 169
current sensing circuits, 169
output transformer, 169

DCE, 142
DCOCLK frequency, 108

DCOCTL, 111
DCOR bit, 107
DCO bit, 108
DCO oscillator, 107
DC amplifier, 39, 40
DC coupling, 40
debug, 182
debugging, 181
decimal, 3
decimal system, 3
deciphered, 103
decision point, 125
decoder, 71
dedicated digital signal processor (DSP), xi
delay time, 130
depletion mode, 35, 42
design technique, xii
destination data, 98
development system, 182, 183, 191
development system software, 182, 191
dielectric layer, 27
differential amplifier, 47
differentiating, 58
differentiating circuit, 57
differentiation, 58
digit-position currents, 69
digital, 2
digital-to-analog conversion, 11

attenuate, 13
digital code, 13
filter, 13
meter, 13
parallel output, 12

hexadecimal, 12
parallel transfer, 11
serial transfer, 13

bit rate, 13
transducer, 13

digital-to-analog converter, 11, 12
digital computer, 82, 86
digital data communications system, 142
digital processing, 6
digital processor, xii, 82, 86
digital systems, 2,6
digit position legs, 70
direct-coupled amplifier, 47

TEAM LRN

304

Index

direction control register, 134
discrete levels, 2
display, 177

anode, 178
cathode, 178
code, 178
colon, 179
hour digits, 179
lower colon, 179
microcontroller, 178
minutes digits, 179
PM LED, 179
seven LED segments, 178
seven segments, 177
upper colon, 179

display board, 186
dissipation, 83
DIVA bit, 108
DIVS bit, 108
documentation, 103
downloading the application aoftware, 191
drain-to-gate bias, 46
drain-to-source voltage, VDS, 42
drift, 1
dual-output regulators, 169

E
EEPROM, 104
electromagnetic spectrum, 28

infrared, 28
light waves, 28
radio waves, 28
ultraviolet, 28
visible light (white light), 28
wavelength, 28
X-rays, 28

electronic circuits, xii, 1
electronic functions, 1
embedded computing power, xi
emulated instructions, 103
emulation, 103
enhancement mode, 35, 42
equ, 119
equivalent resistance, 69
error detection, 146
evaluation board, 181, 182, 183, 190

crystal, 190

evaluation tools, 103
even addresses, 105
even parity, 146
expanded diaphragm, 19
external clock, ACLK, 127
external crystal, 107
external source TACLK, 114

F
“fail safe” mechanism, 127
falling edge, 91
feedback network, 54
feedback resistor, 182
female connectors, 185
fiber optic cable, 142
field-effect transistors, 35, 42
field-effect transistor amplifiers, 42

channel, 43
field-effect transistors, 42

filtering, 79
filters, 61
fixed-current IB bias, 37
fixed and self-bias, 46
flags, 130, 146
Flash ADCs, 78
Flash emulation tool, 183
Flash emulator tool, 182
Flash memory, 104
frequency compensation, 50
frequency response, 39, 49

feedback, 49
open-loop gain, 49
phase shift, 50

frequency selection, 59
fuel gauge, 2
full-adder, 95
full-scale range, 72
functions, 90

G
gate-to-source voltage, VGS, 42
gated latch, 91
general-purpose registers, 105
gm, 44
gm—transconductance, 44
greater than, 131
grounded emitter stage, 30

TEAM LRN

305

Index

H
Hall effect, 22

linear position, 22
position sensor, 22
switch, 22

heat sinks, 83
hexadecimal, 117
high-carrier mobility semiconductors, 24

Indium-Antimonide, 24
Indium Arsenide, 24

high-frequency crystal oscillator, 129
high-level languages, 95
High-Pass Filter, 60
high-speed data transmissions, 145

correction bits, 145
error detection, 145
frames, 145
packets, 145

higher-current regulators, 163
power dissipation, 163

high byte, 105
high level, 136
high state, 122, 130
hybrid, 75
hybrid ADC, 76

I
I/O ports, 179

analog portion, 180
chip select, 180
clock, 180
port 1 I/O pins, 179
port 2 I/O pins, 180
port 3 I/O pins, 179
watch crystal, 180

I2C Bus, 150
data transfer, 150
serial clock line (SCL), 150
serial data line (SDA), 150

I2C Protocol, 150
acknowledgement, 152
large wired AND, 150
master-transmitter, 152
pull-up resistors, 150
SCL by clock pulses, 150
SDA, 150
slave-receiver, 152

stop bit, 152
IC breadboard sockets, 183, 187
ID bit, 114
immediate addressing, 97
immediate mode (#N), 110
in-system programmability, 104
increments, 71
Inc B, 94
index, 98
indexed addressing, 98
indexed mode—X(Rn), 109
indirect autoincrement (@Rn+), 110
indirect register mode (@Rn), 110
inductive reactance, 61
inductor, 165

energy, 165
information front, 143
information transfers, 155

control, 155
data, 155
sync, 155

infrared, 28
initial conditions, 124, 132
initial DCO frequency, 112
input address register, 85
instability, 1
instructions, 82, 117
instruction code, 93
instruction column, 117
instruction control logic, 104
instruction decoder, 84
instruction register, 84
integrated circuit, 6, 47
integrating, 58
integrating circuit, 57
integration, 58
interface electronics, 6
international Morse telegraph code, 3
interrupt, 92
interrupt flags, 106
interrupt priority scheme, 107
interrupt transfers, 155
interrupt vector table, 107
interval timer, 124
inverter, 96
inverting input, 47, 188

TEAM LRN

306

Index

isochronous transfers, 155

J
JFETs (junction field-effect transistors), 42

N-channel, 42
P-channel, 42

JTAG, 181, 182
JTAG connector, 181, 194
jump, 135
jumper cable connector, 185
jumper wire kit, 184

K
K bits, 76

L
labels, 117, 124, 125
large-signal voltage gain, 46
latch, 73
LCD drivers, 104
LDO regulators, 168

capacitor bypass, 169
power dissipation, 168
rails, 169
regulation percentage, 169
stepped down rails, 168

leading edge, 57
least significant bit (LSB), 3, 66
LED (light-emitting diode), 131
left shift, 88
LFXT1 oscillator, 107
light-emitting diode (LED), 31
light waves, 28
linear mode, 165
linear series voltage regulators, 162

control element, 162
error amplifier, 162
feedback-type linear voltage regulator, 162
IC regulators, 162
linear mode, 162
reference voltage, 162

line variations, 163
liquid-level sensor, 21
loading application program in microcontroller, 192
loading the program, 194

manual-toggling state diagram, 194
load variations, 163
logic, 74
logical shift, 88

logic functions, 96
low-drop-out regulators, 165
low-pass filter, 60
low-power modes, 106
low-power operation, 106
low byte, 105
low state, 131
LPM3 mode, 116

M
machine-language program, 93
machine code, 93
machine language, 93
magnetic flux, 165
magnetic flux density, 24
magnetoresistor sensor, 24

high-carrier mobility semiconductors, 24
indium-antimonide, 24
indium arsenide, 24
magnetic flux density, 24
nickel-iron (permalloy), 24
thin film, 24

main system clock, MCLK, 107
male connector, 185
manipulations, 83
manual-toggling state diagram, 175

“set day” mode, 176
“set hour” mode, 176
“set minute” mode, 176
“set month” mode, 176
“set year” mode, 176
black button, 175
clock state, 175
date state, 176
hour display, 176
manual setting mode, 176
PM hours, 176
red button, 175
reset button, 175
sleep mode, 176

average power, 176
temp state, 176
year state, 176

MARK, 123
master clock signals, 85
maximum transfer speed, 145
MC bit, 114

TEAM LRN

307

Index

memory, 83
memory address, 84, 98
memory address bus (MAB), 103
memory data bus (MDB), 103
memory location, 97
mhos, 44
microcomputers, xi, 86
microcontroller, 174, 179, 182

build, 174
clock, 174
counters, 174, 182
decodes, 174
digit, 175
display, 174

AM and PM indicators, 175
colons, 175
decimal points, 175

implement, 174
seven segments, 175
timing pulses, 174

date, 174
time, 174
year, 174

working application, 174
microcontroller unit (MCU), xi
micromachined resistors, 26
micromachined thermistors, 21
microwave links, 143
midband, 39
mixed-signal integration, xi
mixed-signal peripherals, xi
mnemonics, 94
modem, 142
modulating, 166
MOD bit, 108
Morse code, 3

character, 3
dashes, 3
dots, 3
word, 3

MOSFETs (metal-oxide semiconductor field-effect
transistors), 35

most significant bit (MSB), 3, 66
MOV, 94
MSP430 development system, 185
M bits, 76

N
n-bit flash converter, 78
N-channel, 35, 42
negative bit, 111
negative feedback, 37
new design technique, 1
next significant bit, 75
nibble, 87
no-signal steady-state operating point, 36
node X, 77
node Z, 77
noninverting input, 47, 182
nonlinearity, 1
nonmaskable interrupt input (NMI), 113
NPN MOSFET Amplifier, 45

small-signal linear amplifiers, 45
threshold voltage, 45
triode region, 45

numbers, 90

O
odd addresses, 105
odd parity, 146
offset correction, 49
one-second pulse, 182
ON time, 166
open-loop gain, 49
operands, 94, 117
operating mode, 106
operational amplifiers (op amp), 47

differential amplifier, 47
direct-coupled amplifier, 47
input differential signal, VD, 47
integrated circuit, 47
inverting input, 47
noninverting input, 47
open-loop differential gain, AVD, 47
output impedance, ZO, 47
VIO is the input offset voltage, 47
ZIN is the input impedance, 47

operation code (op code), 97
op amps, xii, 47
oral thermometer, 18
orthogonal architecture, 105
orthogonal structure, 103
oscillator, 54

loop gain, 54

TEAM LRN

308

Index

phase, 54
oscillator fault interrupt flag, 129
OSCOFF, 111
output address register, 85
overflow bit, 111

P
P-channel, 35, 42
packet technique, 143
parallel transfer, 88, 142
parity bit, 143
PCB circuit, 195
PC development system, 181
percent regulation, 164

load regulation, 164
peripherals, 103
peripheral module, 105
peripheral set, 103
personal computer, 118
phase-locked loops (PLLs), 83
photodiodes, 27
photodiode amplifier, 53
photons, 27
photoresistor sensor, 28
phototransistors, 27, 30

current gain is hFE, 30
piezoresistive diaphragm, 25

flexible diaphragm, 25
micromachined, 25
micromachined resistors, 26
pressure sensor, 25
sensing voltage, 26
temperature compensated, 26
Wheatstone bridge, 26

pilot light, 19
pinch-off mode, 42
pinch-off voltage, 42
port registers, 111
potentiometer, 2
power-on reset (POR), 107
power-up clear (PUC), 107
power amplifiers, 54

Class A, 54
Class B, 54

complementary bipolar transistor power
amplifier, 54

power and power control, xii, 181

power consumption, 106
power dissipation, 164

semiconductor junction, 164
temperature rise, 164

power level, 56
power system supervisors, 170
pressure sensor amplifier, 51
prime design objectives, 103
program, 82
programmers, 95
program counter, 84, 104
program memory, 104
program software, 181, 182
program subroutine, 117
protocol, 144
PT-100 resistive sensor, 174

temperature sensed, 174
pulse-width modulator (PWM), 166
PWM circuit, 167
PWM timer, 104
PxDIR direction registers, 114
PxDIR register, 114
PxIN input registers, 114
PxIN register(s), 114
PxOUT output registers, 114
PxOUT register(s), 114
PxSEL function-select registers, 114
PxSEL register(s), 114

Q
Q, 61
quartz crystal oscillators, 83

R
R/2R ladder DAC, 68
radio waves, 28
RC-type oscillator, 107
RC circuits, 58
real-time data transfers, 155
real-world quantity, 11
receiver, 142
receiver flags, 146
reference list, 130
register, 74, 92
register addressing, 98
regulation, 162
repetitive pulses, 83
reset, 133, 134

TEAM LRN

309

Index

reset input, 113
RESET push button, 188
RESET signal, 188
resistor-string DAC, 71
resistor tree conversion, 76
resolution, 74
resonant frequency, 61
resonant tuned circuit amplifiers, 42
revolutions per minute, 24
RFI energy, 166
right circulate shift, 88
rising edge, 91
routine, 92
RPM, 24
RS-232 protocol, 145
RSEL bit, 107
RST/NMI, 113
RST/NMI wire, 188

S
sample, 67
sampled output voltage, 163
sample and hold, 7, 78
sample and hold and filters, 78
sampling points, 67
SCG0, 111
SCG1, 111
self-contained system, 183
semiconductor diode, 161
semiconductor PN junction, 29
sensing voltage, 26
sensitive circuits, 166

shielding, 166
sensors, xii, 18

types of, 32
sequence, 67, 83, 93
serial clock line (SCL), 150
serial communications, 145
serial data, 143
serial data line (SDA), 150
serial transfer, 88, 142
sharp falling pulse, 57
sharp rising pulse, 57
shifted out, 75, 136
shift register, 147

parallel-in, parallel-out, 147
parallel-in, serial-out, 147

rotate data left, 147
rotate data right, 147
serial shift left—serial in, 147
serial shift right, 147

shift register using software, 118
shift right from register, 144
shorting jumpers, 190, 194
shunt regulator, 162

power dissipation, 162
shunt shorting jumpers, 184
signals, xii
signal conditioning, 7, 35

amplification, 7
signal frequency range, 1
signal frequency, 39
silicon-junction diode, 19

characteristic curves, 19
forward resistance, 19
forward voltage, 19
reverse breakdown voltage, 19, 20
reverse current, 20
reverse voltage, 19

silicon integration, xi
single-cycle 16-bit registers, 105
slope, 104
small-signal, 36
small-signal linear amplifiers, 45
small-signal signals, 7
SMCLK, 108, 111
software, 93, 95
software engineers, 95
software loop, 127
software rules, 144
solar cell, 29
solar panel, 30
source data, 98
SP, 121
SPACE, 123
special function register, 133
stabilize, 127, 129
stable, 129
stack pointer, 104, 121, 128
stand-alone, 182
stand-alone breadboard, 194

JTAG connector, 194
shorting jumpers, 194

TEAM LRN

310

Index

start bit, 143, 144
state, 93
state diagram, 175
status bits, 92
status register, 93, 104, 110

C, 111
CPUOFF, 110
crystal oscillator, 111
DCO, 111
eight bit, 111
enabled interrupt, 111
general-interrupt-enable bit, GIE, 111
maskable interrupts, 111
MCLK, 111
N, 111
negative bit, N, 111
OSCOFF, 111
overflow bit, 111
port registers, 111
return from interrupt, RETI, 111
SCG0, 111
SCG1, 111
SMCLK, 111
V, 111
Z, 111
zero bit, 111

steady-state operating point, 36
step-down regulator, 166
step-like signal, 79
stop bit, 143, 144
storage, 83, 84
subprogram, 118
subroutine call, 121
subroutine jump, 117
subroutine loop, 129
successive approximation register (SAR), 74
summing amplifier, 69
SVSs—supply voltage supervisors, 104
switching logic, 75
switching regulators, 165
switching voltage regulators, 165

conversion efficiencies, 165
error amplifier, 165
error voltage, 165

symbolic addressing, 99
symbolic mode, 110

symbolic name, 115, 119
symbolic notation, 115
symbols, 90
symmetrical wave, 131
synchronize, 127
synchronous serial communications, 148

clock edge, 149
slave receive shift register, 149
master receive shift register, 149
master unit, 148
slave unit, 148
transmit shift register, 149

syntaxic substitution, 119
system-on-chip (SoC), xi
system buses, 86
system commands, 115
system development, 182

breadboard stages, 182
PCB stage, 182

system functions, xii
system names, 115
system power connections, 189
system power protection, 181
system schematic, 177

diagram, 177
symbols, 177

system signals, 115
system throughput, 74

T
TACLR, 114
TAIE, 114
TAIFG, 114
task, 82
TASSEL bit, 114
temperature coefficient, 20
temperature sensor, 18
temporary energy storage element, 165
temporary storage, 91
thermistor, 20

micromachined, 21
thermistor amplifier, 53
thermocouple, 19
thermocouple amplifiers, 53
threshold voltage, 45
time-varying signals, 56
Timer_A control register, 113

TEAM LRN

311

Index

time constant, 58
time interval, 106
timing, 90
timing and control circuits, 84
timing circuits, 91
timing circuits (clocks), 7
TLV1549, a 10-bit ADC, 174
TLV2451 operational amplifier, 174
toggled, 131
trailing edge, 57
transconductance, 44
transfers, 83
transformed PWM regulators, 167
transformer coupling, 40
transmission medium, 142
transmitter, 142
transmit language, 123
trigger level, 181
triode region, 45
troubleshooting, 194

construction, 194
truth table, 96
tuned-circuit filter, 61
tuned circuit, 62
twisted pair wire, 142
TXD function, 122

U
ultraviolet, 28
unity gain amplifier, 52
unzipping the application software, 192
USART, 148

asynchronous transmit/receive, 148
internal clock, 148

block diagram, 148
communication, 104
dual function, 148
R/W (read/write), 148
synchronous transmit/receive, 148

common clock, 148
USB, 152

4-wire system, 152
differential detection of data, 152
downstream, 153
external hub, 153
impedance, 153
transfer rate, 152

twisted pair, 152
upstream, 153
USB full speed, 152
USB high speed, 152
USB low speed, 152
USB network, 152

end points, 152
function, 152
host controller, 152
hub, 152
unique addresses, 152

USB signal protocol, 154
“handshake” packet, 155
address fields, 154
control portion, 155
data portion, 155
data transfers, 154
direction of transfer, 155
encoded, 155
end-point number, 154
error-correction field, 155
packets, 154
polled bus, 154
sync field, 155
sync signals, 155
token packet, 154, 155

V
variable reluctance sensor, 24

air gap, 24
magnetic flux, 24
reluctance path, 24

visible light (white light), 28
visual signal, 131
voltage-divider bias, 37
voltage follower, 52
voltage regulation, 163

impedance, 163
protection techniques, 167

voltage value, 160
von Neumann, 103

W
watchdog timer, 104, 106, 112
watch crystal, 107
watts of power, 160
wavelength, 28
WDTCNTCL, 113

TEAM LRN

312

Index

WDTCTL, 112
WDTHOLD, 112
WDTNMI, 113
WDTSSEL, 113
WDTTMSEL, 112
web sites, 184
weighted digit positions, 4
Wheatstone bridge circuit, 26
WinZip window, 192
wireless transmissions, 142
wires in cables, 142
words, 87
working registers, 132

X
X-rays, 28

Z
zener diode, 161

avalanche region, 161
power dissipation, 161
regulator, 162

zener regulator, 161
linear voltage regulators, 161

zero, or low level, 136
zero bit, 111

TEAM LRN

ELSEVIER SCIENCE CD-ROM LICENSE AGREEMENT

PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING THIS CD-ROM PRODUCT. THIS CD-ROM
PRODUCT IS LICENSED UNDER THE TERMS CONTAINED IN THIS CD-ROM LICENSE AGREEMENT (“Agreement”). BY USING
THIS CD-ROM PRODUCT, YOU, AN INDIVIDUAL OR ENTITY INCLUDING EMPLOYEES, AGENTS AND REPRESENTATIVES
(“You” or “Your”), ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, THAT YOU UNDERSTAND IT, AND THAT
YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT. ELSEVIER SCIENCE INC. (“Elsevier
Science”) EXPRESSLY DOES NOT AGREE TO LICENSE THIS CD-ROM PRODUCT TO YOU UNLESS YOU ASSENT TO THIS
AGREEMENT. IF YOU DO NOT AGREE WITH ANY OF THE FOLLOWING TERMS, YOU MAY, WITHIN THIRTY (30) DAYS
AFTER YOUR RECEIPT OF THIS CD-ROM PRODUCT RETURN THE UNUSED CD-ROM PRODUCT AND ALL ACCOMPANY-
ING DOCUMENTATION TO ELSEVIER SCIENCE FOR A FULL REFUND.

DEFINITIONS

As used in this Agreement, these terms shall have the following meanings:

“Proprietary Material” means the valuable and proprietary information content of this CD-ROM Product including all indexes and
graphic materials and software used to access, index, search and retrieve the information content from this CD-ROM Product developed
or licensed by Elsevier Science and/or its affiliates, suppliers and licensors.

“CD-ROM Product” means the copy of the Proprietary Material and any other material delivered on CD-ROM and any other human-read-
able or machine-readable materials enclosed with this Agreement, including without limitation documentation relating to the same.

OWNERSHIP

This CD-ROM Product has been supplied by and is proprietary to Elsevier Science and/or its affiliates, suppliers and licensors. The
copyright in the CD-ROM Product belongs to Elsevier Science and/or its affiliates, suppliers and licensors and is protected by the national
and state copyright, trademark, trade secret and other intellectual property laws of the United States and international treaty provisions,
including without limitation the Universal Copyright Convention and the Berne Copyright Convention. You have no ownership rights in
this CD-ROM Product. Except as expressly set forth herein, no part of this CD-ROM Product, including without limitation the Propri-
etary Material, may be modified, copied or distributed in hardcopy or machine-readable form without prior written consent from Elsevier
Science. All rights not expressly granted to You herein are expressly reserved. Any other use of this CD-ROM Product by any person or
entity is strictly prohibited and a violation of this Agreement.

SCOPE OF RIGHTS LICENSED (PERMITTED USES)

Elsevier Science is granting to You a limited, non-exclusive, non-transferable license to use this CD-ROM Product in accordance with the
terms of this Agreement. You may use or provide access to this CD-ROM Product on a single computer or terminal physically located at
Your premises and in a secure network or move this CD-ROM Product to and use it on another single computer or terminal at the same
location for personal use only, but under no circumstances may You use or provide access to any part or parts of this CD-ROM Product
on more than one computer or terminal simultaneously.

You shall not (a) copy, download, or otherwise reproduce the CD-ROM Product in any medium, including, without limitation, online
transmissions, local area networks, wide area networks, intranets, extranets and the Internet, or in any way, in whole or in part, except
that You may print or download limited portions of the Proprietary Material that are the results of discrete searches; (b) alter, modify, or
adapt the CD-ROM Product, including but not limited to decompiling, disassembling, reverse engineering, or creating derivative works,
without the prior written approval of Elsevier Science; (c) sell, license or otherwise distribute to third parties the CD-ROM Product or
any part or parts thereof; or (d) alter, remove, obscure or obstruct the display of any copyright, trademark or other proprietary notice on
or in the CD-ROM Product or on any printout or download of portions of the Proprietary Materials.

RESTRICTIONS ON TRANSFER

This License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this CD-ROM Product, including
without limitation the Proprietary Material, may be sold, assigned, transferred or sub-licensed to any other person, including without
limitation by operation of law, without the prior written consent of Elsevier Science. Any purported sale, assignment, transfer or sublicense
without the prior written consent of Elsevier Science will be void and will automatically terminate the License granted hereunder.

TERM

This Agreement will remain in effect until terminated pursuant to the terms of this Agreement. You may terminate this Agreement at any
time by removing from Your system and destroying the CD-ROM Product. Unauthorized copying of the CD-ROM Product, including
without limitation, the Proprietary Material and documentation, or otherwise failing to comply with the terms and conditions of this Agree-
ment shall result in automatic termination of this license and will make available to Elsevier Science legal remedies. Upon termination

TEAM LRN

of this Agreement, the license granted herein will terminate and You must immediately destroy the CD-ROM Product and accompanying
documentation. All provisions relating to proprietary rights shall survive termination of this Agreement.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE INFORMATION CONTAINED IN
THE PROPRIETARY MATERIALS IS COMPLETE OR FREE FROM ERROR, AND NEITHER ASSUMES, AND BOTH EXPRESSLY
DISCLAIM, ANY LIABILITY TO ANY PERSON FOR ANY LOSS OR DAMAGE CAUSED BY ERRORS OR OMISSIONS IN THE
PROPRIETARY MATERIAL, WHETHER SUCH ERRORS OR OMISSIONS RESULT FROM NEGLIGENCE, ACCIDENT, OR ANY
OTHER CAUSE. IN ADDITION, NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS MAKE ANY REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE PERFORMANCE OF YOUR NETWORK OR COMPUTER
SYSTEM WHEN USED IN CONJUNCTION WITH THE CD-ROM PRODUCT.

If this CD-ROM Product is defective, Elsevier Science will replace it at no charge if the defective CD-ROM Product is returned to Elsevier
Science within sixty (60) days (or the greatest period allowable by applicable law) from the date of shipment.

Elsevier Science warrants that the software embodied in this CD-ROM Product will perform in substantial compliance with the docu-
mentation supplied in this CD-ROM Product. If You report significant defect in performance in writing to Elsevier Science, and Elsevier
Science is not able to correct same within sixty (60) days after its receipt of Your notification, You may return this CD-ROM Product,
including all copies and documentation, to Elsevier Science and Elsevier Science will refund Your money.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE, ELSEVIER SCIENCE, ITS
AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT
TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE PROPRIETARY MATERIAL, AN SPECIFICALLY
DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

If the information provided on this CD-ROM contains medical or health sciences information, it is intended for professional use within
the medical field. Information about medical treatment or drug dosages is intended strictly for professional use, and because of rapid
advances in the medical sciences, independent verification f diagnosis and drug dosages should be made.

IN NO EVENT WILL ELSEVIER SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE TO YOU FOR
ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY TO USE THE CD-ROM PRODUCT REGARDLESS
OF WHETHER SUCH DAMAGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE DEEMED TO RESULT FROM
THE FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR OTHER REMEDY.

U.S. GOVERNMENT RESTRICTED RIGHTS

The CD-ROM Product and documentation are provided with restricted rights. Use, duplication or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted Rights clause at FAR 52.22719
or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.2277013, or at 252.2117015,
as applicable. Contractor/Manufacturer is Elsevier Science Inc., 655 Avenue of the Americas, New York, NY 10010-5107 USA.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New York, USA. In any dispute arising out of this Agreement, you and
Elsevier Science each consent to the exclusive personal jurisdiction and venue in the state and federal courts within New York County,
New York, USA.

TEAM LRN

	nlReader.dll.BookID=117162&FileName=Cover.pdf
	analog and digital circuits for electronic control system applications.pdf
	nlReader.dll.BookID=117162&FileName=Page_i.pdf
	nlReader.dll.BookID=117162&FileName=Page_ii.pdf
	nlReader.dll.BookID=117162&FileName=Page_iii.pdf
	nlReader.dll.BookID=117162&FileName=Page_iv.pdf
	nlReader.dll.BookID=117162&FileName=Page_v.pdf
	nlReader.dll.BookID=117162&FileName=Page_vi.pdf
	nlReader.dll.BookID=117162&FileName=Page_vii.pdf
	nlReader.dll.BookID=117162&FileName=Page_viii.pdf
	nlReader.dll.BookID=117162&FileName=Page_ix.pdf
	nlReader.dll.BookID=117162&FileName=Page_x.pdf
	nlReader.dll.BookID=117162&FileName=Page_xi.pdf
	nlReader.dll.BookID=117162&FileName=Page_xii.pdf
	nlReader.dll.BookID=117162&FileName=Page_xiii.pdf
	nlReader.dll.BookID=117162&FileName=Page_xiv.pdf

	nlReader.dll.BookID=117162&FileName=Page_1.pdf
	nlReader.dll.BookID=117162&FileName=Page_2.pdf
	nlReader.dll.BookID=117162&FileName=Page_3.pdf
	nlReader.dll.BookID=117162&FileName=Page_4.pdf
	nlReader.dll.BookID=117162&FileName=Page_5.pdf
	nlReader.dll.BookID=117162&FileName=Page_6.pdf
	nlReader.dll.BookID=117162&FileName=Page_7.pdf
	nlReader.dll.BookID=117162&FileName=Page_8.pdf
	nlReader.dll.BookID=117162&FileName=Page_9.pdf
	nlReader.dll.BookID=117162&FileName=Page_10.pdf
	nlReader.dll.BookID=117162&FileName=Page_11.pdf
	nlReader.dll.BookID=117162&FileName=Page_12.pdf
	nlReader.dll.BookID=117162&FileName=Page_13.pdf
	nlReader.dll.BookID=117162&FileName=Page_14.pdf
	nlReader.dll.BookID=117162&FileName=Page_15.pdf
	nlReader.dll.BookID=117162&FileName=Page_16.pdf
	nlReader.dll.BookID=117162&FileName=Page_17.pdf
	nlReader.dll.BookID=117162&FileName=Page_18.pdf
	nlReader.dll.BookID=117162&FileName=Page_19.pdf
	nlReader.dll.BookID=117162&FileName=Page_20.pdf
	nlReader.dll.BookID=117162&FileName=Page_21.pdf
	nlReader.dll.BookID=117162&FileName=Page_22.pdf
	nlReader.dll.BookID=117162&FileName=Page_23.pdf
	nlReader.dll.BookID=117162&FileName=Page_24.pdf
	nlReader.dll.BookID=117162&FileName=Page_25.pdf
	nlReader.dll.BookID=117162&FileName=Page_26.pdf
	nlReader.dll.BookID=117162&FileName=Page_27.pdf
	nlReader.dll.BookID=117162&FileName=Page_28.pdf
	nlReader.dll.BookID=117162&FileName=Page_29.pdf
	nlReader.dll.BookID=117162&FileName=Page_30.pdf
	nlReader.dll.BookID=117162&FileName=Page_31.pdf
	nlReader.dll.BookID=117162&FileName=Page_32.pdf
	nlReader.dll.BookID=117162&FileName=Page_33.pdf
	nlReader.dll.BookID=117162&FileName=Page_34.pdf
	nlReader.dll.BookID=117162&FileName=Page_35.pdf
	nlReader.dll.BookID=117162&FileName=Page_36.pdf
	nlReader.dll.BookID=117162&FileName=Page_37.pdf
	nlReader.dll.BookID=117162&FileName=Page_38.pdf
	nlReader.dll.BookID=117162&FileName=Page_39.pdf
	nlReader.dll.BookID=117162&FileName=Page_40.pdf
	nlReader.dll.BookID=117162&FileName=Page_41.pdf
	nlReader.dll.BookID=117162&FileName=Page_42.pdf
	nlReader.dll.BookID=117162&FileName=Page_43.pdf
	nlReader.dll.BookID=117162&FileName=Page_44.pdf
	nlReader.dll.BookID=117162&FileName=Page_45.pdf
	nlReader.dll.BookID=117162&FileName=Page_46.pdf
	nlReader.dll.BookID=117162&FileName=Page_47.pdf
	nlReader.dll.BookID=117162&FileName=Page_48.pdf
	nlReader.dll.BookID=117162&FileName=Page_49.pdf
	nlReader.dll.BookID=117162&FileName=Page_50.pdf
	nlReader.dll.BookID=117162&FileName=Page_51.pdf
	nlReader.dll.BookID=117162&FileName=Page_52.pdf
	nlReader.dll.BookID=117162&FileName=Page_53.pdf
	nlReader.dll.BookID=117162&FileName=Page_54.pdf
	nlReader.dll.BookID=117162&FileName=Page_55.pdf
	nlReader.dll.BookID=117162&FileName=Page_56.pdf
	nlReader.dll.BookID=117162&FileName=Page_57.pdf
	nlReader.dll.BookID=117162&FileName=Page_58.pdf
	nlReader.dll.BookID=117162&FileName=Page_59.pdf
	nlReader.dll.BookID=117162&FileName=Page_60.pdf
	nlReader.dll.BookID=117162&FileName=Page_61.pdf
	nlReader.dll.BookID=117162&FileName=Page_62.pdf
	nlReader.dll.BookID=117162&FileName=Page_63.pdf
	nlReader.dll.BookID=117162&FileName=Page_64.pdf
	nlReader.dll.BookID=117162&FileName=Page_65.pdf
	nlReader.dll.BookID=117162&FileName=Page_66.pdf
	nlReader.dll.BookID=117162&FileName=Page_67.pdf
	nlReader.dll.BookID=117162&FileName=Page_68.pdf
	nlReader.dll.BookID=117162&FileName=Page_69.pdf
	nlReader.dll.BookID=117162&FileName=Page_70.pdf
	nlReader.dll.BookID=117162&FileName=Page_71.pdf
	nlReader.dll.BookID=117162&FileName=Page_72.pdf
	nlReader.dll.BookID=117162&FileName=Page_73.pdf
	nlReader.dll.BookID=117162&FileName=Page_74.pdf
	nlReader.dll.BookID=117162&FileName=Page_75.pdf
	nlReader.dll.BookID=117162&FileName=Page_76.pdf
	nlReader.dll.BookID=117162&FileName=Page_77.pdf
	nlReader.dll.BookID=117162&FileName=Page_78.pdf
	nlReader.dll.BookID=117162&FileName=Page_79.pdf
	nlReader.dll.BookID=117162&FileName=Page_80.pdf
	nlReader.dll.BookID=117162&FileName=Page_81.pdf
	nlReader.dll.BookID=117162&FileName=Page_82.pdf
	nlReader.dll.BookID=117162&FileName=Page_83.pdf
	nlReader.dll.BookID=117162&FileName=Page_84.pdf
	nlReader.dll.BookID=117162&FileName=Page_85.pdf
	nlReader.dll.BookID=117162&FileName=Page_86.pdf
	nlReader.dll.BookID=117162&FileName=Page_87.pdf
	nlReader.dll.BookID=117162&FileName=Page_88.pdf
	nlReader.dll.BookID=117162&FileName=Page_89.pdf
	nlReader.dll.BookID=117162&FileName=Page_90.pdf
	nlReader.dll.BookID=117162&FileName=Page_91.pdf
	nlReader.dll.BookID=117162&FileName=Page_92.pdf
	nlReader.dll.BookID=117162&FileName=Page_93.pdf
	nlReader.dll.BookID=117162&FileName=Page_94.pdf
	nlReader.dll.BookID=117162&FileName=Page_95.pdf
	nlReader.dll.BookID=117162&FileName=Page_96.pdf
	nlReader.dll.BookID=117162&FileName=Page_97.pdf
	nlReader.dll.BookID=117162&FileName=Page_98.pdf
	nlReader.dll.BookID=117162&FileName=Page_99.pdf
	Binder3.pdf
	nlReader.dll.BookID=117162&FileName=Page_100.pdf
	nlReader.dll.BookID=117162&FileName=Page_101.pdf
	nlReader.dll.BookID=117162&FileName=Page_102.pdf
	nlReader.dll.BookID=117162&FileName=Page_103.pdf
	nlReader.dll.BookID=117162&FileName=Page_104.pdf
	nlReader.dll.BookID=117162&FileName=Page_105.pdf
	nlReader.dll.BookID=117162&FileName=Page_106.pdf
	nlReader.dll.BookID=117162&FileName=Page_107.pdf
	nlReader.dll.BookID=117162&FileName=Page_108.pdf
	nlReader.dll.BookID=117162&FileName=Page_109.pdf
	nlReader.dll.BookID=117162&FileName=Page_110.pdf
	nlReader.dll.BookID=117162&FileName=Page_111.pdf
	nlReader.dll.BookID=117162&FileName=Page_112.pdf
	nlReader.dll.BookID=117162&FileName=Page_113.pdf
	nlReader.dll.BookID=117162&FileName=Page_114.pdf
	nlReader.dll.BookID=117162&FileName=Page_115.pdf
	nlReader.dll.BookID=117162&FileName=Page_116.pdf
	nlReader.dll.BookID=117162&FileName=Page_117.pdf
	nlReader.dll.BookID=117162&FileName=Page_118.pdf
	nlReader.dll.BookID=117162&FileName=Page_119.pdf
	nlReader.dll.BookID=117162&FileName=Page_120.pdf
	nlReader.dll.BookID=117162&FileName=Page_121.pdf
	nlReader.dll.BookID=117162&FileName=Page_122.pdf
	nlReader.dll.BookID=117162&FileName=Page_123.pdf
	nlReader.dll.BookID=117162&FileName=Page_124.pdf
	nlReader.dll.BookID=117162&FileName=Page_125.pdf
	nlReader.dll.BookID=117162&FileName=Page_126.pdf
	nlReader.dll.BookID=117162&FileName=Page_127.pdf
	nlReader.dll.BookID=117162&FileName=Page_128.pdf
	nlReader.dll.BookID=117162&FileName=Page_129.pdf
	nlReader.dll.BookID=117162&FileName=Page_130.pdf
	nlReader.dll.BookID=117162&FileName=Page_131.pdf
	nlReader.dll.BookID=117162&FileName=Page_132.pdf
	nlReader.dll.BookID=117162&FileName=Page_133.pdf
	nlReader.dll.BookID=117162&FileName=Page_134.pdf
	nlReader.dll.BookID=117162&FileName=Page_135.pdf
	nlReader.dll.BookID=117162&FileName=Page_136.pdf
	nlReader.dll.BookID=117162&FileName=Page_137.pdf
	nlReader.dll.BookID=117162&FileName=Page_138.pdf
	nlReader.dll.BookID=117162&FileName=Page_139.pdf
	nlReader.dll.BookID=117162&FileName=Page_140.pdf
	nlReader.dll.BookID=117162&FileName=Page_141.pdf
	nlReader.dll.BookID=117162&FileName=Page_142.pdf
	nlReader.dll.BookID=117162&FileName=Page_143.pdf
	nlReader.dll.BookID=117162&FileName=Page_144.pdf
	nlReader.dll.BookID=117162&FileName=Page_145.pdf
	nlReader.dll.BookID=117162&FileName=Page_146.pdf
	nlReader.dll.BookID=117162&FileName=Page_147.pdf
	nlReader.dll.BookID=117162&FileName=Page_148.pdf
	nlReader.dll.BookID=117162&FileName=Page_149.pdf
	nlReader.dll.BookID=117162&FileName=Page_150.pdf
	nlReader.dll.BookID=117162&FileName=Page_151.pdf
	nlReader.dll.BookID=117162&FileName=Page_152.pdf
	nlReader.dll.BookID=117162&FileName=Page_153.pdf
	nlReader.dll.BookID=117162&FileName=Page_154.pdf
	nlReader.dll.BookID=117162&FileName=Page_155.pdf
	nlReader.dll.BookID=117162&FileName=Page_156.pdf
	nlReader.dll.BookID=117162&FileName=Page_157.pdf
	nlReader.dll.BookID=117162&FileName=Page_158.pdf
	nlReader.dll.BookID=117162&FileName=Page_159.pdf
	nlReader.dll.BookID=117162&FileName=Page_160.pdf
	nlReader.dll.BookID=117162&FileName=Page_161.pdf
	nlReader.dll.BookID=117162&FileName=Page_162.pdf
	nlReader.dll.BookID=117162&FileName=Page_163.pdf
	nlReader.dll.BookID=117162&FileName=Page_164.pdf
	nlReader.dll.BookID=117162&FileName=Page_165.pdf
	nlReader.dll.BookID=117162&FileName=Page_166.pdf
	nlReader.dll.BookID=117162&FileName=Page_167.pdf
	nlReader.dll.BookID=117162&FileName=Page_168.pdf
	nlReader.dll.BookID=117162&FileName=Page_169.pdf
	nlReader.dll.BookID=117162&FileName=Page_170.pdf
	nlReader.dll.BookID=117162&FileName=Page_171.pdf
	nlReader.dll.BookID=117162&FileName=Page_172.pdf
	nlReader.dll.BookID=117162&FileName=Page_173.pdf
	nlReader.dll.BookID=117162&FileName=Page_174.pdf
	nlReader.dll.BookID=117162&FileName=Page_175.pdf
	nlReader.dll.BookID=117162&FileName=Page_176.pdf
	nlReader.dll.BookID=117162&FileName=Page_177.pdf
	nlReader.dll.BookID=117162&FileName=Page_178.pdf
	nlReader.dll.BookID=117162&FileName=Page_179.pdf
	nlReader.dll.BookID=117162&FileName=Page_180.pdf
	nlReader.dll.BookID=117162&FileName=Page_181.pdf
	nlReader.dll.BookID=117162&FileName=Page_182.pdf
	nlReader.dll.BookID=117162&FileName=Page_183.pdf
	nlReader.dll.BookID=117162&FileName=Page_184.pdf
	nlReader.dll.BookID=117162&FileName=Page_185.pdf
	nlReader.dll.BookID=117162&FileName=Page_186.pdf
	nlReader.dll.BookID=117162&FileName=Page_187.pdf
	nlReader.dll.BookID=117162&FileName=Page_188.pdf
	nlReader.dll.BookID=117162&FileName=Page_189.pdf
	nlReader.dll.BookID=117162&FileName=Page_190.pdf
	nlReader.dll.BookID=117162&FileName=Page_191.pdf
	nlReader.dll.BookID=117162&FileName=Page_192.pdf
	nlReader.dll.BookID=117162&FileName=Page_193.pdf
	nlReader.dll.BookID=117162&FileName=Page_194.pdf
	nlReader.dll.BookID=117162&FileName=Page_195.pdf
	nlReader.dll.BookID=117162&FileName=Page_196.pdf
	nlReader.dll.BookID=117162&FileName=Page_197.pdf
	nlReader.dll.BookID=117162&FileName=Page_198.pdf
	nlReader.dll.BookID=117162&FileName=Page_199.pdf
	nlReader.dll.BookID=117162&FileName=Page_200.pdf
	nlReader.dll.BookID=117162&FileName=Page_201.pdf
	nlReader.dll.BookID=117162&FileName=Page_202.pdf
	nlReader.dll.BookID=117162&FileName=Page_203.pdf
	nlReader.dll.BookID=117162&FileName=Page_204.pdf
	nlReader.dll.BookID=117162&FileName=Page_205.pdf
	nlReader.dll.BookID=117162&FileName=Page_206.pdf
	nlReader.dll.BookID=117162&FileName=Page_207.pdf
	nlReader.dll.BookID=117162&FileName=Page_208.pdf
	nlReader.dll.BookID=117162&FileName=Page_209.pdf
	nlReader.dll.BookID=117162&FileName=Page_210.pdf
	nlReader.dll.BookID=117162&FileName=Page_211.pdf
	nlReader.dll.BookID=117162&FileName=Page_212.pdf
	nlReader.dll.BookID=117162&FileName=Page_213.pdf
	nlReader.dll.BookID=117162&FileName=Page_214.pdf
	nlReader.dll.BookID=117162&FileName=Page_215.pdf
	nlReader.dll.BookID=117162&FileName=Page_216.pdf
	nlReader.dll.BookID=117162&FileName=Page_217.pdf
	nlReader.dll.BookID=117162&FileName=Page_218.pdf
	nlReader.dll.BookID=117162&FileName=Page_219.pdf
	nlReader.dll.BookID=117162&FileName=Page_220.pdf
	nlReader.dll.BookID=117162&FileName=Page_221.pdf
	nlReader.dll.BookID=117162&FileName=Page_222.pdf
	nlReader.dll.BookID=117162&FileName=Page_223.pdf
	nlReader.dll.BookID=117162&FileName=Page_224.pdf
	nlReader.dll.BookID=117162&FileName=Page_225.pdf
	nlReader.dll.BookID=117162&FileName=Page_226.pdf
	nlReader.dll.BookID=117162&FileName=Page_227.pdf
	nlReader.dll.BookID=117162&FileName=Page_228.pdf
	nlReader.dll.BookID=117162&FileName=Page_229.pdf
	nlReader.dll.BookID=117162&FileName=Page_230.pdf
	nlReader.dll.BookID=117162&FileName=Page_231.pdf
	nlReader.dll.BookID=117162&FileName=Page_232.pdf
	nlReader.dll.BookID=117162&FileName=Page_233.pdf
	nlReader.dll.BookID=117162&FileName=Page_234.pdf
	nlReader.dll.BookID=117162&FileName=Page_235.pdf
	nlReader.dll.BookID=117162&FileName=Page_236.pdf
	nlReader.dll.BookID=117162&FileName=Page_237.pdf
	nlReader.dll.BookID=117162&FileName=Page_238.pdf
	nlReader.dll.BookID=117162&FileName=Page_239.pdf
	nlReader.dll.BookID=117162&FileName=Page_240.pdf
	nlReader.dll.BookID=117162&FileName=Page_241.pdf
	nlReader.dll.BookID=117162&FileName=Page_242.pdf
	nlReader.dll.BookID=117162&FileName=Page_243.pdf
	nlReader.dll.BookID=117162&FileName=Page_244.pdf
	nlReader.dll.BookID=117162&FileName=Page_245.pdf
	nlReader.dll.BookID=117162&FileName=Page_246.pdf
	nlReader.dll.BookID=117162&FileName=Page_247.pdf
	nlReader.dll.BookID=117162&FileName=Page_248.pdf
	nlReader.dll.BookID=117162&FileName=Page_249.pdf
	nlReader.dll.BookID=117162&FileName=Page_250.pdf
	nlReader.dll.BookID=117162&FileName=Page_251.pdf
	nlReader.dll.BookID=117162&FileName=Page_252.pdf
	nlReader.dll.BookID=117162&FileName=Page_253.pdf
	nlReader.dll.BookID=117162&FileName=Page_254.pdf
	nlReader.dll.BookID=117162&FileName=Page_255.pdf
	nlReader.dll.BookID=117162&FileName=Page_256.pdf
	nlReader.dll.BookID=117162&FileName=Page_257.pdf
	nlReader.dll.BookID=117162&FileName=Page_258.pdf
	nlReader.dll.BookID=117162&FileName=Page_259.pdf
	nlReader.dll.BookID=117162&FileName=Page_260.pdf
	nlReader.dll.BookID=117162&FileName=Page_261.pdf
	nlReader.dll.BookID=117162&FileName=Page_262.pdf
	nlReader.dll.BookID=117162&FileName=Page_263.pdf
	nlReader.dll.BookID=117162&FileName=Page_264.pdf
	nlReader.dll.BookID=117162&FileName=Page_265.pdf
	nlReader.dll.BookID=117162&FileName=Page_266.pdf
	nlReader.dll.BookID=117162&FileName=Page_267.pdf
	nlReader.dll.BookID=117162&FileName=Page_268.pdf
	nlReader.dll.BookID=117162&FileName=Page_269.pdf
	nlReader.dll.BookID=117162&FileName=Page_270.pdf
	nlReader.dll.BookID=117162&FileName=Page_271.pdf
	nlReader.dll.BookID=117162&FileName=Page_272.pdf
	nlReader.dll.BookID=117162&FileName=Page_273.pdf
	nlReader.dll.BookID=117162&FileName=Page_274.pdf
	nlReader.dll.BookID=117162&FileName=Page_275.pdf
	nlReader.dll.BookID=117162&FileName=Page_276.pdf
	nlReader.dll.BookID=117162&FileName=Page_277.pdf
	nlReader.dll.BookID=117162&FileName=Page_278.pdf
	nlReader.dll.BookID=117162&FileName=Page_279.pdf
	nlReader.dll.BookID=117162&FileName=Page_280.pdf
	nlReader.dll.BookID=117162&FileName=Page_281.pdf
	nlReader.dll.BookID=117162&FileName=Page_282.pdf
	nlReader.dll.BookID=117162&FileName=Page_283.pdf
	nlReader.dll.BookID=117162&FileName=Page_284.pdf
	nlReader.dll.BookID=117162&FileName=Page_285.pdf
	nlReader.dll.BookID=117162&FileName=Page_286.pdf
	nlReader.dll.BookID=117162&FileName=Page_287.pdf
	nlReader.dll.BookID=117162&FileName=Page_288.pdf
	nlReader.dll.BookID=117162&FileName=Page_289.pdf
	nlReader.dll.BookID=117162&FileName=Page_290.pdf
	nlReader.dll.BookID=117162&FileName=Page_291.pdf
	nlReader.dll.BookID=117162&FileName=Page_292.pdf
	nlReader.dll.BookID=117162&FileName=Page_293.pdf
	nlReader.dll.BookID=117162&FileName=Page_294.pdf
	nlReader.dll.BookID=117162&FileName=Page_295.pdf
	nlReader.dll.BookID=117162&FileName=Page_296.pdf
	nlReader.dll.BookID=117162&FileName=Page_297.pdf
	nlReader.dll.BookID=117162&FileName=Page_298.pdf
	nlReader.dll.BookID=117162&FileName=Page_299.pdf
	nlReader.dll.BookID=117162&FileName=Page_300.pdf
	nlReader.dll.BookID=117162&FileName=Page_301.pdf
	nlReader.dll.BookID=117162&FileName=Page_302.pdf
	nlReader.dll.BookID=117162&FileName=Page_303.pdf
	nlReader.dll.BookID=117162&FileName=Page_304.pdf
	nlReader.dll.BookID=117162&FileName=Page_305.pdf
	nlReader.dll.BookID=117162&FileName=Page_306.pdf
	nlReader.dll.BookID=117162&FileName=Page_307.pdf
	nlReader.dll.BookID=117162&FileName=Page_308.pdf
	nlReader.dll.BookID=117162&FileName=Page_309.pdf
	nlReader.dll.BookID=117162&FileName=Page_310.pdf
	nlReader.dll.BookID=117162&FileName=Page_311.pdf
	nlReader.dll.BookID=117162&FileName=Page_312.pdf
	nlReader.dll.BookID=117162&FileName=Page_EM1.pdf
	nlReader.dll.BookID=117162&FileName=Page_EM2.pdf

