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PREFACE

This book is intended to serve as an introduction to pressure vessel
design for the student by presenting the fundamental theory, and asa
design basis for the practicing engineer by demonstrating the applica-
tion of this theory with illustrations and examples of the solution of
practical problems. In each chapter, design methods are illustrated by
numerical problems in which the arithmetical work has been made
simple in order to focus attention upon the theory involved, thereby
avoiding the danger of it becoming merely a mechanical operation
with an incomplete understanding of the theory and its significance.
A considerable amount of new material and references have been
added in a manner so as to preserve an orderly presentation. The result
has been a complete revision and substantial increase in the size of
original text, including a new chapter on buckling collapse. The latter
has been prompted by the rapid growth in undersea exploration and
mineral mining potential. Deep diving submersibles, offshore plat-
forms, and deep drilling casings have made a priority of light weight,
high strength materials in order to save weight and costs. The result is
that elastic and plastic buckling instability have become increasingly
important as failure modes.

Chapter 1 introduces the basic design considerations, analytical
and experimental stress analysis methods, and the interaction of
material properties and fabrication methods. The significance and
consequences of applied and residual stresses under service loading
and operating environment are emphasized. Pressure vessel terminol-
ogy is presented, and basic membrane ligament theory developed.

Chapter 2 covers the basic theory of membrane stress and deflec
tion analysis of axisymmetric vessels and its application to commonly
encountered cylinders, spheres, ellipsoids, cones, and tori. An analy-
sis of intersecting spheres and diaphragm vessels, upon which many
deep diving oceanographic submersibles are based, is presented. Corre-
spondingly, instability in the knuckle region of large, shallow, dished
heads is investigated because of their extensive use. Also, an analysis
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of vessels for ultra-high pressure, employing thick-wall, multilayer,
cascade, segmented, yoke, and wedge principles of design is presented.
An introduction to steady-state and transient thermal stresses and
their evaluation in terms of the full restraint thermal stress by analyt-
ical and graphical methods is given.

Chapter 3 covers the bending of flat, solid, circular plates under
uniform and concentrated loading, and the effect of local flexibility
at clamped-edge supports. Likewise, the design of stacked and built-up
plates is developed and the design of orthogonal and concentric rein-
forced and perforated plates is analyzed together with expanded and
welded tube-to-tubesheet joints. Expanded tube joints, wherein union
is achieved through residual stress, are treated in depth. Not only is
this the oldest and most widely used joining method, but it is the
only one available for many pressure components employing unweld-
able dissimilar materials.

Chapter 4 presents the determination by the elastic foundation
method of secondary bending and direct stresses encountered in ves-
sels as a result of differential dilation of their parts. An analysis of
bimetallic joints, frequently used in the chemical, petroleum and
power industry, and their optimum location is developed. Likewise, an
introduction to flange design is presented, together with a discussion
of elastic foundation attenuation factors and their part in appraising
the extent of secondary stresses and opening reinforcement limits in
vessels.

Chapter 5 discusses the failure analysis and failure prevention of
materials in their environment, for example, irradiation damage,
hydrogen embrittlement, elevated and cryogenic temperatures, the
multitudinous effects on fatigue life, etc. The economic trend to high
strength materials, with their associated susceptibility to brittle frac-
ture, has focused considerable attention to this subject. Applicable
theories of failure and fracture mechanics analysis methods are pre-
sented to predict their behavior. This involves a basic understanding
of the structure of metals and their elastic and plastic behavior. Fa-
tigue is a prime cause of vessel failure, but it is completely amenable

to prevention; accordingly, low and high cycle fatigue behavior, life
prediction and damage accumulation are given together with a fatigue
theory to account for multidirectional applied and residual stress
conditions. High temperatures in the petroleum, chemical, and power
industries have accentuated the problem of creep and rupture. Hence,
life and strain fraction concepts for predicting service life, methods
of estimating the relaxation of bolted joints, and the effect of the
thermal stress relief of residual stresses in welded vessels to enhance
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safety are developed. Ways of establishing optimum metal forming
temperatures for fabrication are presented, as are methods of evaluat-
ing material degradation at elevated temperatures. High temperatures
can also produce opposite environmental effects; for instance, they
increase the hydrogen embrittlement of petroleum processing vessels,
while mitigating the neutron embrittlement of nuclear reactor vessels.
All products have flaws which originate with the parent material, re-
sult from the fabrication method, or are designed-in by construction
dcta:ils. Hence it is important to appreciate this reality and appraise its
significance for the intended service. In this respect, crack acceptance
criteria, defect size evaluation, and design methods for attaining the
required vessel life are discussed. \

Chapter 6 covers design-construction features and their effect on
geometric and thermally induced stress concentrations, Particular
attention is given to those encountered under static and dynamic
conditions at vessel openings, nozzles and structural supports and the
means of coping with them to insure maximum integrity. The theory
and practice of reinforced openings for radial, nonradial, and multipl;:-
nozzle arrangements are covered, as is designing their thermal sleeves
which are vital to vessel thermal-shock protection. Stresses in bolts
and the design of bolted and nonbolted closures receive extensive
treatment as do the use of crack arrest features to negate brittle frac-
ture potential. Vessel support skirts, saddles, and attachments impose
both structural and thermal loadings that must be reconciled with
the vessel pressure stresses. Gaskets are essential to removable clo-
sures and their type, design, and control parameters are presented.
Thin cladd‘ings are widely used to prevent corrosion of the base metal
or contamination of the media, and their life is appraised.

Chapter 7 introduces fabrication-construction methods and their
econ.nmic potential. This includes novel innovations to satisfy a unique
requirement, such as filament-wound, multilayer, wire-wrapped, link-
belt, coiled, prestressed steel and concrete, and other vessels. Material
sel‘cction 1s by basic cost per unit of stress and optimum safety factors
utilizing advanced composites, high strength materials, or those with
enhanced properties such as that obtained from directional solidifica-
tion for use in a creep rupture environment. Fabrication methods
h.kr: r_m_)dular construction, cryogenic and high energy forming, adhe-
sive joints, metallurgical bonding and healing of internal defects by
hot isostatic pressing, ete.—all to achieve the economic goal of low
cost and long service life—are presented.

Chapter 8 introduces the stability theory of plain and stiffened
vessels, and its application to the design of thin, intermediate and
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thick walled ones. The overall stabilizing effect of structural stiffen-
ers, as well as their effect in regions of high local compressive stress,
is covered from initial design, failure analysis, and repair viewpoints.
This forms the basis for the development of regulatory codes and
compliance standards. The fabrication tolerances and construction
details of noncircularity, local thinning, unreinforced openings, and

stress concentrators are not self-limiting or self-compensating in a

buckling phenomenon, and these critical effects are evaluated.
author has drawn from his

In the preparation of this book, the
previous publications, lecture notes used in teaching at the University

of Akron, engineering experience with The Babcock & Wilcox Com-
pany, and as a member of numerous committees of the American
Society of Mechanical Engineers, and as chairman of the Pressure

Vessel Research Committee.
Joun F. HARVEY
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NOTATION

Cross-sectional area

Distance

Distances

Flexural rigidity

Diameter

Modulus of elasticity

Unit strain

U_nit strains in x, y and z directions
Yield point strain

Force

Height, thickness

Thickness

Moment of inertia

Polar moment of inertia

Stress concentration factor

Fatigue strength reduction factor
Modulus of foundation, stress
Distance, span

Length, span

Bending moment

Resisting bending moment
Ultin_‘latc bending moment

Bcn‘dl‘ng moment at which yielding begins
Twisting moment

Concentrated forces

Pressure

Load per unit length, sensitivity factor
Radius

Radius, radius of curvature

Length

Twisting moment, temperature
Rate of strain, displacement in x direction
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Shearing force, velocity
Weight '
Displacement in £ direction
Rectangular coordinates
tion modulus
?(E:i‘;)s per square inch (I kip = 1,000 pounds)
Pounds per square inch

Angle, coefficient of thermal expansion,
numerical coefficient
Angle, numerical cocfficient
Shearing strain
Distance, deflection, difference .
Total elongation, total deflection, distance
Angle
Poisson’s ratio
Distance, radius
Unit normal stress
Principal stresses ‘
Unit normal stresses on planes perpendicular
to the x, y, and z axes
Unit stress at endurance limit
Ultimate stress
Yield point stress
Unit shear stress _
Unit shear stresses on planes perpendicular to

the x, 7, and z axes and parallel to the », .

z, and x axes
Yield point stress in shear
Angle
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1

Pressure Vessels

1.1. Introduction

Pressure vessels are leakproof containers. They may be of any shape
and range from beverage bottles to the sophisticated ones encountered
in engineering construction, Fig. 1.1. In the latter, high pressures,
extremes of temperature, and severity of functional performance
requirements pose exacting design problems. The word “design,” as
used here, does not mean only the calulation of the detail dimen-
sions of a member, but rather is an all-inclusive term incorporating:
(1) the reasoning that established the most likely mode of damage or
failure, (2) the method of stress analysis employed and significance of
results, and (3) the selection of material type and its environmental
behavior. New concepts in design and new materials available for
construction are challenging the ingenuity of engineers, and the re-
sulting complexity of problems arising from every area affect both
safety and cost effectiveness.

The ever-increasing use of vessels for storage, industrial processing,
and power generation under unusual conditions of pressure, tempera-
ture, and environment has given special emphasis to analytical and
experimental methods for determining their operating stresses. Ol
equal importance is appraising the meaning or significance ol these
stresses. This appraisal entails means of determining the value and
extent of the stresses and strains, establishing the behavior of the ma-
terial involved, and evaluating the compatibility of these two factors
in the media or environment to which they are subjected. A knowledge
of material behavior is required not only to avoid failures, but equally
to permit maximum economy of material choice and amount used.
For instance, if the stresses or strains in a structure are unduly low, its
size becomes larger than necessary and the economic potential of the
material is not reached. Developments in the space, nuclear, and
chemical industries have placed new demands on materials suitable [or
extremes in temperature, impact, and fatigue. Sometimes these appli
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Fig. 1.1. (o) Oil Refinery (Lourtesy Standard Oil of Indiana. (&) Steam Genera-
tor for a Nuclear Power Plant, (¢) Boiler Drum in Fabrication, (d) Extended

Surface U-Bend Heater Section (Courtesy The Babcock & Wilcox Company)

cations also require consideration of other environmental effects, such

a8 COrIrt ston, neulron :r\ig'lJI.".'."'l-{i'ﬂ_'il|, hy L]L}'Uj-_-lu".- c?!':':]'}t‘ii.Liﬁll‘l(:nt, etc.
The characteristics of matenals when subjected to the action of stresses

LI_II(_l SETEllLs ol alled mechanical E:II'-:Itlilfiiif‘n.
Ihe stresses. i [Hrees actine on vessels, produce changes in their

| e deterinination

dunensions | ML as stratns [ the relationship
betweern i il forees applied to a vessel and the stresses and
ctrains within the vessel form the basis of this field ol stress analysis,
Lon Ob slresses and strads | well illustrated by the
Qe test specimen, Fig. 1.2, from which come the

stress analysis. In Fig. 1.2a the axial

internal forces

(d)

(Continued)
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In Equation 1.1.1 the force Pis measured in pounds and the area 4o in
square inches, so the stress o is in units of pounds per square inch, psi.
Stress may be defined as the internal force, pounds, per unit of area,
square inch, induced by an externally applied load.

The force P also produces a stretching or elongation of the specimen,
Fig. 1.2b. Since the stress is uniform throughout the gage length Lo,
and on the basis that the material is perfectly homogeneous, it is as-
sumed that this uniform stress will produce uniform total elongation 8.
The elongation per unit of length ¢ is called strain and is expressed as

g = SJ{L_U (112)

The elongation 6 and gage length L, are measured in inches; hence,
the strain e is measured in inches per inch. Strain may be defined as
the change in unit length resulting from stress.

Basic analytical stress solutions involve the stress-strain relationship
of the material. The relationship differs for various materials and is
deterrnined by a simple tension or compression test of the material
from which a stress-strain diagram is plotted (see paragraph 5.2).
Figure 1.3 shows several typical types of diagrams. Figure 1.3 is that
for a ductile steel as commonly used in structural and pressure vessel
design in which a large deformation is produced prior to rupture.

]

lal

Stressed gage J Gect X-K
| lengthn ! '
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length, Lg

i
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Fig. 1.2, Tension Specimen
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Fig. 1.3 Some Typical Types of Stress-Strain Diagrams

I*:igurc 1.34 is that for a more brittle material as would be characteris-
tic of a highly tempered steel, in which a small deformation occurs be-
for:e rupture, This type diagram is also typical for some nonmetallic
br.ltﬂe materials such as certain types of plastics and plaster of Paris
Still D'ChClj materials, such as concrete and malleable cast iron, have é
stress-strain diagram typical of Fig. 1.3¢c. Rubber, a very ela;tic ma-
terial, has still another type of stress-strain curve as shown in Fig. 1.34
However, the engineering materials commonly used in the desigr; olf
structures and pressure vessels have an initial stress-strain relation
;ﬁggh?' fo;.pracltical purposes, may be assurned linear, indicating that
s is direct i i i
o y proportional to strain and is represented by the

E =ofe

Thls. is known as Hooke’s law. The value E is called the modulus ou
eiaﬁt‘icity, or Young's modulus, and is the slope of this straight line
portion of the diagram. The modulus E is measured in the same units
asstress; i.e., pounds per square inch, as may be concluded from Equa-
tlor} 1.1’.3, since it is the ratio of unit stress, psi, and unit strain, in./in

which is a pure number. This value varies with the type of 1;1att;.-riai:

(1.1.3)
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and with its environment, such as temperature, which is covered more
fully in Chapter 3. Approximate room temperature values of this
modulus for some engineering materials are: steel and steel alloys,
30 X 10° psi: aluminum alloys, 10 X 10° psi; magnesium  alloys,
6.5 X 10° psi; and copper, 16 X 10% psi.

Modulus of elasticity is also a measure of material stiffness. A ma-
terial has high stiffness when its deformation in the elastic range is
relatively small. Referring to Equation 1.1.3, it is seen that for a given
stress, the accompanying strain will be less for a material with a high £
value than for one with a low E value. For instance, the deformation of
a steel member would be less than that of an identical member of
aluminum alloy subjected to the same stress, being in the ratio of their
respective modulli of elasticity; or (10X 10%) : (30 X 10%) = 1:3.
This property of stiffness is very important in designs where deforma-
tion must be kept small, as, for example, in machine tools, turbine
rotors, gasket joints, and the control rod portions of nuclear reactor
vessels.

Examining of the stress-strain diagrams in Fig. 1.3 shows that they
are made up of two general parts—an initial elastic range for which
Hooke’s law generally applies and a following plastic range where the
strains become large and this law no longer applies. The elastic and
plastic ranges for a ductile steel commonly used in engineering con-
structions are given in Fig. 1.4.

Elasticity is the property of a material to return to its original shape
after removal of the load. The elastic range is the first stage of loading
wherein the material returns to its original shape after unloading.
Most engineering designs require that permanent deformations be
avoided in order to assure proper functional performance and con-
tinuous reliable service; hence, it is desirable to define the more im-
portant mechanical properties covering the elastic range.

Figure 1.5a is an enlargement of the elastic range of the stress-strain
diagram of Fig. 1.4. The following mechanical properties are descrip-
tive of this range.

Proportional limit is the greatest stress, as represented by point a in
Fig. 1.5a, that a material can withstand without deviating from the
direct proportionality of stress to strain.

Elastic limit is the maximum Stress, as represented by point b in
Fig. 1.5a, which a material is capable of withstanding without perma-
nent deformation upon complete release of the stress. Determining
the elastic limit is very difficult and requires the use of sensitive strain
measuring instruments. However, it closely approximates the more
readily determined value of the proportional limit.

——— o ———
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Strain, &, in, per in.

Fig. 1.4. Elastic and Plastic Strain Range

Yield point is the stress, represented by point ¢ in Fig. 1.5a, at which
the.re occurs a marked increase in strain without an increas;: in stress
This [iyhcncmenon of yielding is due to a sudden plastic flow {3!‘ l}‘ll?
mfitt:l:‘la} and is associated with the slippage along planes of weakness
of unfavorably located individual crystals of the material disc11cqc;(!b
sutjs:ec]u}:ntly in Chapter 5. This value is determined from‘the ‘s{r;:'%s-
strain diagram. Some materials have a diagram as shown. in FIQ, ] ")a
with an upper yield point, ¢, and a lower yield point, 4. It is 1I‘cl-3dli.!\-'
e\fldenc.ed during testing by a drop in the beam or h’a.lt in tl;e d'iﬂ of
Lhe‘ testing n}auhinc Other materials do not have such definite ;;'o ::
erties, and for these it is the customary practice to define ll'a_P-E\-'ielld
strength as that stress where a permanent set or del'orn.:alic;n' has

o |

&
e —— A v —
, . AL Y.P
BN (| W : A Crel point) (Yield point)
|| ]
i
__ |
i /l | |
[ g
J'I |
{ ‘ | |
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(a) (5) el

Stress, o, psi

—]
Stress, o, psi

—
Stress, o, psi

Strain, €, in. per in

Fig. 1.5. Determination of Elastic Strength
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his is known as the offset method 01'.(:5—
tablishing yield point, and the American Somet.y' of Fe;tmg l}f[iate]n;}}s?
specifies an offset strain, &, of 0-2 per cent for this proEe ur ,Sitfgo.n i
For practical purposes the yield point represents t f traln ! limi.t
tween the elastic and plastic range. Further, since the e efs u:l nci
proportional limit, and vyield point of the steels usec_l 13_ \e:;(:ns jmv
structures are very close to each otlhz:r,‘the stres.s-straun1 mg % e
be approximated by two straight _lmcs }ntersecnnﬁ ﬁt t’m yl'e.ls [tJO mé
Fig. 1.5¢. This simplified vcrsion,v in which Hogkc s law Pre\-laistic e
yield point, is a basic assumption cu.stomarlly 1_1sed 1}11 cat 2
elastic-plastic analytical stress analysis embodying these Lypes
materials. .

The plastic mechanical properties
measure its ability to resist rupture, un

reached an arbitrary value. T

of a material are those which
dergo deformation, and absorb

Stress, o, psl.
Ultimate stress, o

Stress, o, P5i.
Ultimate or
rupture stress

bt

Strain, &, in. per in.
(4

Fig. 1.6. Determination of Plastic Strength
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energy. These are obtained from the same stress-strain diagrain of the
material as are the elastic mechanical properties. The three prime
properties that describe the plastic range of a material are defined and
described in the following.

Ultimate strength is the maximum stress, as represented by point g,
Fig. 1.6a, that the material will withstand. This stress equals the maxi-
mum load divided by the original cross-sectional area of the specimen.
Occasionally, the rupture stress, as represented by point /, Fig. |.6a, is
used to measure plastic strength. The rupture stress is equal to the
rupture load divided by the original cross-sectional area of the speci-
men. For many ductile materials these two values are close; for brittle
materials they are identical, Fig. 1.64. Ultimate strength is an im-
portant property in all engineering designs. This is particularly so in
pressure vessels where the material is under tension, much as it isin a
tensile test specimen, and under conditions of static loading it es-
tablishes the bursting pressure of the vessel.

Ductility is the property of a material to undergo deformation. It is
usually measured in two ways. One way is by the percentage elonga-
tion of the gage length at time of rupture, which is also the correspond-
ing percentage strain. If, in Fig. 1.2, L, is the final gage length at
rupture and Ly is the original gage length of the specimen, then the
percentage elongation is

afa:E"__L.fl[)U (1.1.4)
Ly

The second way of measuring ductility is by the percentage reduc-
tion in area, given by
AU = fir

dg = - 100 (1.1.5)
As

where A, is the original cross-sectional area and 4, is the cross-sectional
area of the specimen at rupture. These properties are somewhat in-
fluenced by the size of the specimen and are discussed more [ully in
paragraph 3.2,

Ductility is an important material property from both a design and
fabrication viewpoint. It acts as a built-in excessive stress adjuster
for localized stresses that were not considered or not contemplated in
the design. For example, in the riveted joints of bridges and buildings,
normal and overloads may produce local yielding of the member in the
vicinity of rivets. This does not result in rupture, however, since struc-
tural steel has a high ductility which results in a redistribution and re-
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duction in the local stresses occurring at points of stress conecentration
(Chapter 6). Similarly, in pressure vessels at joints, nozzles, openings,
etc., high stresses develop locally which are subsequen tly reduced by
plastic flow of the material. Ductility is also an important material
property in fabrication and processing, such as rolling, forging, draw-
ing, and extruding. If the ductility is not adequate, the large deflorma-
tions produced in these operations result in rupture of the material.
For instance, the steel plates used 10 fabricate the shells and heads of
the vessels shown in Figs. 1.1 and 1.16 must have sufficient ductility
to permit them to be bent from a flat plate to their final curvatures
without cracking. Frequently it is necessary 10 heat the material to
high temperatures to increase its ductility during the [orniing opera-
tion, paragraph 5.20.

Toughness is the ability of a material to absorb energy during plastic
deformation. It is often measured by the energy absorbed per unit of
volume in stressing to rupture and is called the modulus of toughness.
Since total energy is equal to force times distance, the energy per unit
of volume is equal to stress times strain and is in units of inch-pounds
per cubic inch. Accordingly, the modulus of toughness, or total energy
to rupture, is

T
T(,:f’ade (1.1.6)

0

which is the total area under the stress-strain diagram, Fig 1.6, This
area can be determined by a planimeter, or by approximate methods.
One convenient method that is employed for many ductile materials
is to use the product of the ultimate stress times the strain at rupture,
0, €, as an approximate measure of the area under the stress-strain
diagram. Materials of high toughness have high strength, as well as
large ductility. Brittle materials have low toughness, since they have
only small plastic deformations before ripture. Toughness is a most
desirable property in parts, structures, or vessels subject to mechan-
ical or thermal shock.

A particular type of toughness is that measured in the presence of
a notch, and is called “notch toughness.” When the notch is a very

sharp one, a crack, this material property becomes the basis for

determining the stresses in the region of a crack called Fracture
Mechanics, Par. 5.22,
1.2 Methods for Determining Stresses

Stress analyses can be performed by analytical or experimental
means. The analytical method involves a rigorous ma thematical solu-
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tion ?Da&sed on an applicable theory of elasticity, plasticity, creep, etc

and it is the most direct and inexpensive approach when the prdblcl;;
adapts 1jtself to such a solution. It requires a general solution to the
eqt..lﬂlbrll_ll'ﬂ equation equating internal resisting stresses of the ma-
terial and that imposed by the gradually applied static external forces.
When the member is a simple one such that the mathematical equa-
tion can be readily written to describe the continuous strain behavior
of the rnat'erial throughout, the ordinary equations for direct stress,
P/A, bending stress, M¢/I, and torsional shear stress, 7¢/7, can be
clew?lopcd (where P is the load applied at the centroid of the cross
section of area A4 which is under consideration; M is the bending m:.u-\-
ment a}pplied to the cross section which has a moment of inertia /
ab‘ou‘t its neutral axis and c is the distance from this axis, and 7 1s the
twisting moment acting on the cross section which has a polar moment
of inertia 7). However, when the member has geometric shape dis-
continuities, such as internal holes or external abrupt cross-section
ck'lan.g&s, it becomes difficult to express the continuous internal strain
dlstrﬂ:_nltiOn mathematically and obtain a particular solution to the
equations. When the problem is too complex and beyond analytical
sohf.tion, or when a check or evaluation of an analytical solution is
desired, recourse must be made to experimental means.'** Three of
the more commonly used methods follow. -

L. Strain Gage

This method consists of measuring the surface strains on an actual
v.cssel or structure, or scale model, with mechanical or electrical re-
sistance strain gages. Two of the more commonly used mechanical
gages are the Berry and Huggenberger strain gages, Fig. 1.7. Each works
on the prilnciple of multiplying strains by mechanical leverage. The
Berry strain gage, Fig. 1.7a, consists of a frame to which is attached a
stationary contact point, and a second movable contact point on the
short leg of a bell-crank lever. The long leg of the lever is in contact
w1t.h a dial indicator which is used to measure the strain. The lever
ratio is usually one to five; and the gage length is 2 or 8 in. A more
sensitive mechanical strain gage is the Huggenberger, Fig. 1.7/, which
erln_br:)dies a more elaborate multiplying lever s;rstél'n to give scale
dl}uslon readings® to 0.0001 in. The gages are available in -in. and
l-in. gage lengths, In recent years mechanical gages have been largely
supplanted by electric resistance gages. These have the advantage of
ease of application and adaptability to difficult locations, such as sh;u:u
corners or the inside wall of a pressure vessel. The SR gage, Fig. 1.8,
is the most commonly used electric strain gage. It consists of a short
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Cial indicator [ s
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- Goage Iengfh——vl —»{ Gage length fe—
(@] Berry (&) Huggenberger

Fig. 1.7. Mechanical Type Strain Gages

length of fine wire held to the material by an adhesive so that any
strain on the material is transmitted to the wire strain gage. The
change in length and cross-sectional dimensions of the wire produced
by the stress cause a change in the electrical resistance. This changein
electrical resistance is calibrated and used as a measure of the strain.
These gages are available in gage lengths of 4 in. to | in. Figure 1.9
shows a group of electrical strain gages mounted on the bolted flanged
head of a large reactor vessel,

If strain gages are placed in pairs opposite each other across the
thickness of a member, the magnitude of the direct and bending stress
can be determined. This is useful, for instance, in evaluating the pri-
mary membrane stress and the secondary bending stress in vessels. The
material of test models can be the same as that of the prototype,or it

Gage length Specimen
\/\/
AN, ~

J/\;/\* 4 \\\.. \\\.\

Adhesive mounting

Lead wires paper

Fig. 1.8. Schematic Arrangement of SR-4 Type Electric Strain Gage
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Fig. 1.9. Electrical Strain Ga ; v
g “al S rage Test of the Bolted Flanged Head of a Nuclear
Reactor Vessel (Courtesy The Babcock & Wilcox C'mnfmrxt;} o ntien

1g. 1.10 Brittle € ‘oating Stress Indications Near a Beam Lug (Court
Babcock & Wilcox Cu.???ﬁ.fﬁ.*_}'} -
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r following the same type elastic behavior as [h? con-
ol material. Of course, a full-scale model constructed w1tl‘1. lh'C'
-ial and by the contemplated fabrication process elimi-
vations of small-scale model similituFie. ‘materl.al be-
havior, and fabrication tolerances. This |_nethod, whu‘.‘.h is achmt}tecill)-'
expensive and time consuming, can be ald_ed by quuhta'n.\.rc methods,
+s brittle or other applied surface coaungs that crack in the region
by allowing strain gages to be more strategically
1.10 shows such a coating that has the character-
istics of cracking perpendicular to the direction [."’1- principal"stress ap-
. avy lug welded to a beam. The coating cracks first, S’[-ﬁlt-
of the lug, showing that the lug strengthened the beam

‘dth. but moved the point of maximum stress to the edge

can be any othe

ternplate
actual material

nates all
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within its w
of the lug.

2 Plinito lasti

This consists of optically measuring the principal stress differences in

L Illa i3 v L M bloeldly 2 = ) . s .
isotropic transparent naterial models which become doubly refractive
LSO LLOLIIL dllaptgli b [s - 4‘23 - > ‘
when polarized light is passed through the model. In two-dimen

3 rmres BFTERE o - hﬂ
sional models this method gives the average stress throughout t
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thickness, whereas in three-dimensional models, using newly devel-
oped freeze techniques, the stress throughout the thickness can be de-
termined. Normally, these models are relatively small and inexpensive.
Recent extensions of this method have also been made to permit anal-
yses of actual structures. It consists of bonding thin sheets of photo-
elastic plastic to the part to be analyzed. The surface strains of the
part are transferred to the plastic coating, and measurements made by
reflected light.>® Figure 1.11 shows a photoelastic model of a rectan-
gular beam loaded by equal loads placed equal distances [rom cach end

support so as to place the center portion of the beam in pure bendi
The parallel dark lines or fringes indicate that at a short dista

the points of application of the loads the stress distribution i

and the same in all vertical cross sections. This is a region in which the

basic bending stress formula, Me¢/I, holds true. In the region of the
loads and supports it is seen that these fringes are not uniform, and
hence the simple bending stress formula would not be completely
applicable. The local disturbances are called siress concentrations. They
occur in regions of concentrated loads or abrupt changes in

geometry

Fig. 1.12. Photoelastic Model of a Thick Ring Dianwetically

(Courtesy The Babcock & Wilcox Company)
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and are discussed in Chapter 6. The photoelastic method is par-
ticularly useful in analyzing complicated shapes, such as the thick ring
shown in Fig. 1.12. [t also gives an overall picture of the stress distribu-
tion and indicates regions of both high stress, where changes in contour
can be made to reduce the concentration, and regions of low stress,
where material can be removed without detriment to the general
strength of the structure.*®*

3. Moiré Method
89.13 s one of the most adaptable

The moiré fringe Lechniqnc*'?'
, as well as

experimental stress analysis methods for evaluating thermal
pressure, stresses. It can be applied directly to metals in models or ac-
tual structures: hence, restrictions imposed by similitude conditions
when materials other than metals are used to simulate the behaviorof
metals in thermal stress analysis can be eliminated. When grids with?’
periodic rulings are made to overlap, interference patterns called
moiré fringes are produced. The simplest form of moiré pattern arises
from the parallel superposition of two sets of parallel lines when the
spacing of one set differs from that of the other. A beat occurs when a
line of one figure falls exactly between two lines of the other figure, or
when the lines are not wide enough to fill a space completely by an
apparent broadening of the lines as the two figures move out of phase.
The more closely the two sets of rulings match each other, the farther
apart the beats are. Thus, if the rulings are a millimeter apart but one
set is in error by 0.001 millimeter, the beat will occur every meter
Hence, the moiré pattern represeénts an cnormous magnification (in
this case a million times = 1000/0.001) in the difference in length of
the spacings. This is similar to the principle of the vernier used on the
machinist's caliper and surveyor’s transit. The application of this
principle to stress analysis consists of placing fine, regularly spaced
lines on the undeformed test specimen and also on a transparent screen
and then deforming the test specimen. Moiré fringes are formed when
the transparent master grid is superpositioned upon the deformed grid
from which displacements and strains can be determined. For in-
stance, a specimen strained uniformly in tension in a direction per-
pendicular to its screen lines, with the master screen superpositioned
onto it without rotation is shown in Fig. 1.13. Interference fringes will

-ard in the

itly b

he reflections on

#Moire is the French word for “wi
term “moiré silk," a fabric that has
the surface of a pool of water

ish it is most fre
I sembling
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occur every nth line of the undeformed master sereen where there is the
maximum mismatch with the (n — 1)th line of the elos
grid or at every (n 4 1)th line of the compressed specimen grid
is the distance between two neighboring screen lines, and “¢”
tance between two neighboring interference fringes

~ D 2l Thg Wy

‘ated speclmen

a

strain “‘e¢”" is then expressed by
d = na (1.2.1)

d=(n— 1)a(l + ¢)

-
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Undeformed Interference Oeformed
‘ state pattern 'Lq;rn:-_ '
(Transparent screen) (Tes! ."-‘r\. cimen!
I_: 1 2 ol oy ~ et 1
g. 1.13. Interference Fringes Due to Elongation Perpendicular to Screen
Lines?
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from which
g = —— |]x.jl"?"
... A (1.2.4)

: . i Tor oo e R s B, 12,3
For small strians, “a’ is extremely small compared to “d", so Eqs. 1.2.9
and 1.2.4 can be written

(1.2.5)

(

* e Gl reepec he
If the master screen is slightly rotated by an angle « with respect to the
undeformed screen on the specimen, interference lines appear as
shown in Fig. 1.14. Referring to Fig. 1.13, the distance “# between
! B Lot - =] =
neighboring interference lines is

h = X1 + X» (1.2.6)
where
il 97
Xy = — '1.__4’}
tan o
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Fig. 1.14. Interference Fringes Due to Rigid-Body Rotation of Une Screen
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C. i » 47
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Fig. 1.15. Rotation Effect on Interference Fringe:
and
- — - - o
X a tarn =

Substituting Eqs. 1.2.7 and 1.2.8 in Eg. 1.2.6

gives
a O
h= + a tan =
tan « 2z
and introducing the trigonometric identities
o — COS @ SIn o
tah 5 = . ,and tan a =
A sin o« COS o

gives

. a
SN ¢ = —

|"l
then for small rotations (small angles)

i

h

When deformation of the specimen causes the fringe rotatiol i
the shear strain. From the basic moiré technique for measuring
placements, # and v in the OX and OV axis direction, res
the principal strains can be determined.'®'"'*?! This is done by
viding two orthogonal sets of screen lines on the surface of the
men and viewing the loaded specimen first with the screen lin
master grid parallel to the OX axis. The interference fringes
contour lines of the displacement v(x,y), so that for small s

8= -

dy a

ay
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where d, is the y-distance between two interference fringes, and

ay a
y = — =

= — (1.2,14)
dx i

where h, is the x-distance between two interference fringes. o

Similarly, the interference fringes of a grid parallel with the O‘) axis
are the contour lines of the displacement u(x,y), from which it follows
that

0 18 (1.2.15)

where 4. is the x-distance between two interference fringes, and

au a

ay (1.2.16)
dy hy

with 4, being the y-distance between two interference fringes. From the
three strain components, é;, ¢, and ¥ = a: — ay, the principal strains
and their direction can be determined. Figure 1.16 shows the moire

i - T

3
Ld

x|

b Lines parallel to Joad direction

X
a Lines perpendicular to load direction

Fig. 1.16. Moiré Paitern in the Region of a Hole in a Tensile Specimen

e e ——— 4 e
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pattern on a plate with a small, central circular hole subject to tension
in the vertical, or 07 direction. The regular spacing of horizontal
fringes in Figure I.16a, and vertical fringes in Figure .16/ at rela-
tively short distances away from the hole indicates that the effect of
the hole is very local. In contrast, the closeness of these fringes adja-
cent to the hole edge of its horizontal axis indicates high strains in
this local area. The steep angle of these fringes in a cross-shaped region
45° to the axis denotes an area of high shear, Art. 5.5.

This method of experimental stress analysis is adaptable to models
as well as prototypes, to mechanically and thermally produced stresses,
and is particularly valuable in high temperature stress analysis in which
case the grid pattern is etched directly on the metal structure.?®*’

Although these are the three most widely used experimental
methods, others which employ optical and acoustical holography,
ultrasonics, X-ray diffraction, brittle models, plastic models, soap filim,
electric analogy, fluid flow analogy, repeated stress, plastic flow, etc.,
are frequently used for particular applications.

1.3 Stress Significance

Analytical formulas for the evaluation of stresses are usually based
on elastic theory and elastic behavior of the material, i.e., material
which conforms to Hooke’s law, and it may at first be thought that
materials which follow this behavior right up to the breaking point
would be the most desirable for use. This is not the case, however;tor
instance, plaster of Paris has a perfectly straight stress-strain curve up
to the breaking point but, of course, is not a suitable material lor
structural member or pressure vessel, strictly because it is totally
elastic and not partially plastic in its behavior. It is this plastic proper-
ty of the material, with its ability to give or yield under high peak ol
local stress and so accommodate the applied loading by a more lavor
able distribution of internal stress, that is the most important property
of a pressure vessel material. The elastically computed or actual
strength of most members, considering the structure as a whole, would
be considerably reduced if it were not accompanied by plastic de-
formation at various relatively small portions of the member where
high local stresses occur.

Itis important not only to determine the value of a stress, but also
to interpret its meaning or significance—the two go “‘hand-in-glove ™
Determination of stress significance requires a knowledge of:

1. The type and nature of the applied loading and the resulting
stress distribution or pattern within the member. For instance, 1s the



22 THEORY AND DESIGN OF PRESSURE VESSELS

applied loading mechanical or thermal, of a stead.y (static) or un-
steady (variable or cyclic) nature, and is the resulting stress pattern
uniform, or does it have high peak values? .

2. The ductile and plastic properties of the material. .For‘ instance,
are the properties of the material such that internal yielding or re-
adjustment of strain can reduce the effects of local stress concentra-
tions? ‘

3. The toughness or adaptability of the material under adverse
working conditions or environments.'S For instance, are the properties
of the material sufficient to absorb applied impact or shock loadings?

The strength of a member does not depend only on the value of the
maximum stress or strain in the member, but also on the external
shape readjustment that the member itself can make to one more
favorable than that assumed in the design, and on the plastic property
of the material to perinit internal stress adjustment.

|. Types of Loading and The Stress Pattern

Structures are subjected to two basic types of loading: namely,
steady or static and unsteady (variable, cyclic or impact)..Although
practically all structures encounter variable or cyclic loading, those
on most building structures, marny machine members, and an appre-
ciable number of pressure vessels, such as boiler steam drums, may be
assumed to be statically loaded without introducing serious €rror.
Such structures made of ductile materials and subject to stati.c lc?ads
fail by gross yielding, The duetility of the material allows a redistribu-
tion of stresses by plastic How to attenuate points of high local values
toward a pattern more favorable to maximum resistance. Hf:nce, the
stresses in a large portion or volume are involved in the behavior of the
member, and the basic primary stress analysis equations are signifi-
cant in determining their strength and stiffness. ‘

However, when the loading is such that the member is subjectecll toa
considerable number of stress cycles, even though the material is
ductile, appreciable error can be introduced by consideri.ng a static
loading condition to exist in appraising integrity on the basis of simple
elastic formulas. Under such conditions failure occurs due to a condi-
tion known as fatigue. This failure does not involve a sufficient amount
of metal to make these formulas representative of the action prevailing;
since in [atigue, failure is due primarily to a highly localized stress
which catses a minute fracture that gradually spreads until the mem-
ber is ruptured. This type of failure is of particular importance in
pressure vessels for hydraulic or pneumatic accumulators.
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[rnpact or shock loading can be imposed on structures, including
nuclear vessels, by earthquake, explosions, or collision of mobile
equipment. This requires design considerations to accomplish transfer
of the kinetic energy throughout the vessel, absorption of this energy
within the vessel and associated structure, and use of materials of
adequate toughness.

The stress distribution near the point of load applications, such as
the point of contact of the beam load in Fig. 1.11, or the support
bracket on a vessel, may vary greatly from the assumed pattern on
which the ordinary equations are based, and these local stress values
may be relatively high. Even though the material is ductile and a
measure of stress redistribution can occur, these local stresses can be
significant ones and are frequently responsible for failures. In rela-
tively brittle materials, or in ductile material subjected to cyclic
loading, stresses at the points of load application may control the
strength of the member rather than the stresses given by the ordinary
equations. This is particularly important in vessels which are designed
as membrane or tension members and cannot resist large bending mo-
ments perpendicular to their surface and yet for practical purposes
must have support brackets, lifting lugs, nozzles, etc., attached to them.

9. Initial or Residual Stress

The basic equations for determining stresses are based on the as-
sumption that the stresses in a member are caused only by external
loads, and residual stresses set up in the fabrication or construction
processes, such as weld shrinkage, casting cooling, metal heat treat-
ment, ete., are not considered. Although these stresses are secondary,
since their value is self-limiting (they are not produced by unrelenting
external loads), they may be of great importance in brittle materials,
and even in ductile material when the material is subject to fatigue
loading, Fqually important is the danger of creating, in conjunction
with the applied loading stresses, a three-dimensional stress pattern in
thick sections that is restrictive to the redistribution of high localized
peak stresses through yielding. It is for this reason that stress relieving
of thick vessels, usually required by construction codes, is much more
important than thin ones in which the state of stress is essentially two
dimensional.

3. Shape of Member

The basic assurption for continuity of action in a member on which
ordinary formulas for direct stress and bending stress are based, re-
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quiring that a plane section remain plane after bending, cannot hold
near points of abrupt changes in section due to the restraining in-
fluence of this stiffer portion on adjacent sections. Figure 1.10 illus-
trates this condition. The stresses in the region influenced by these
geometrical shape discontinuities are higher than predicted by the
assumed mathematical law of distribution on which the ordinary stress
formulas are based, and are known as localized or concentration
stresses. The errors introduced by the use of the ordinary formulas for
the design of members with abrupt changes of section are generally not
serious if the load is static and the material ductile so as to permit a
slight measure of plastic flow ; hence, the member acts more nearly as
assumed.

The practicality of this is attested by the satisfactory behavior of
most buildings, vessels, and machines. These localized stresses are,
however, most important in brittle materials, even under static loads,
since under such conditions a redistribution or transfer of stress from
the highly overstressed material to adjacent lower stressed material
does not take place and rupture of the member results. They are
equally significant when cyclic loading is involved, even when the
material is ductile, since the region of high stress acts as a focal point
from which fatigue failure can stem.

The problem of evaluating localized stresses in vessels has assumed
major importance in the last decade as engineering advancements
have placed unusual pressure, temperature, and environment de-
mands on pressure vessels. The petroleum and chemical processes
require operating pressure in the 5,000 to 200,000 psi range. The
rapidly expanding cryogenics industry has introduced low tempera-
ture conditions to minus 425°F. The nuclear power plant has given
rise to high pressure, high temperature, and special cyclic and material
irradiation operating conditions. All these requirements have focused
considerable attention on the stress analysis, materials of construction,
and economics of design of vessels for these services.

1.4 Design Approach

The design of most structures is based on forinulas that are known to
be approximate. The unknown items, such asextent of yielding and
the omitted factors in design and material behavior, are considered to
be provided for by the use of working stresses that are admittedly be-
low those at which the member will fail. This “factor of safety” or
“factor of ignorance” approach,'® although possessing virtue o f having

worked well in the past for ductile materials under static loading and
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Full utilization
of material
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Fig. 1.17. Triangle of Knowledge

providing the designer with preliminary sizing data, is yielding to more
refined analytical and experimental methods. Thi; improvement will
continue as knowledge and cognizance of influencing design and ma-
terial parameters increase and are put to engineering and ecormn;ic
use. Thlzs r{light be illustrated by the triangle of knowledge, Fig. | I.?
which Iu'ldlcates that as our ignorance decreases with d;scof(;r , 01"
recognition of more of the factors affecting behavior and propei' ac-
count is taken in design analysis, the latitude for error decreases:
accordingly, the potential properties of the material can be more f ii
utilized with confidence. o
The safe?ty demands of nuclear reactors, deep-diving submersibles
space ‘veluclcs and chemical retorts have accelerated pressure l
material behavior and stress analysis knowledge. For in‘;tancewﬁi-
nuclear reactor, Fig. 1.18, with its extremely large, heavy section ;ov'c;‘
ﬂangfzs an_d nozzle reinforcement, operating under severe thermal
transients in a neutron irradiation environment, has focused consider
able attention on research in this area which has been directl rc:
spon‘mbie for improved materials, knowledge of their behavigr i
specx_ﬁc environments, and new stress analysis methods. -
~ High strength materials, created by alloying elements, manufactur-
ing processes or heat treatments, are developed to satisfy economil--l )
engineering demands, such as reduced vessel thickness. They Liii'
continually being tested to establish design limits consistent with their
hlgh'er s‘ftrength, and adapted to vessel design as experimental and
fabrication knowledge justifies their use. There is no one perfect ';rr:—
sure vessel material suitable for all environments, but material s}clct'-
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(a)

Head During Fabrication

Fig. 1.18. Vessel and Closure :
\ & Wilcox Company)
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tion must match application and environment. This has become
especially important in chemical reactors because of the embrittlernent
effects of gaseous absorption, and in nuclear reactors bhecause of the
irradiation damage from neutron bombardment.

Major improvements, extensions and developments in analytical
and experimental stress analysis are permitting fuller utilization of
material properties with confidence and justification. Many formerly

insoluble equations of elasticity are now yielding to computer adapt-
able solutions, such as the finite element method,*® Fig, 1.19; and
these together with new experimental techniques'®*** have made pos-
sible the stress analysis of structural discontinuities at nozzle open-
ings, attachments, etc. This is significant because 80 per cent of all
pressure vessel failures are caused by the high localized stresses asso-
ciated with these “weak link” construction details. Hence, stress con-
centrations at vessel nozzle openings, attachments and weldments are
of prime importance, and methods for minimizing them through better
designs and analyses are the keys to long pressure vessel life. Control
of proper construction details assures a vessel of balanced desig
maximum integrity.

alid

Fig. 1.19, Mesh for Finite Element St_;’ﬁ::s Analysis
1
ture
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1.5. Terminology and Ligament Efficiency

widely in shape and complexity accord-
st perform. However, they generally
linders, rings, and various shaped
Metal pressure components arc fabricated by a welding
omponents by onsite placement in forms, and
by winding on mandrels and the use

Pressure components vary
ing to the functions that they
consist of a few basic parts, such ascy
closure heads.
process, concrete ¢
composite material components
of adhesives. Figures 1.20a shows the construction features and termi-
nology of a simple metal vessel fabricated by a welding process. When
the vessel diameter isin thesize range of procurable tubular products,
the cylindrical part is normally so selected; however, when diameters
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Fig. 1.20. (a) Vessel Terminology. (b) Vessel Ligament.
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exceed these, rolled plate, partial forgings, or castings welded into
cylinders are employed.

Vessels must have openings for functional purposes. Boiler drums
and heat exchangers are examples of these which employ
holes, diameter d, spaced at a pitch p', Fig. 1.20(b). The
remaining between these holes are called ligaments, and the cross-
sectional area of the ligament compare d to the area
memlad cross section of mdthp is called the ligament

rows |_;l
material

in a normal

efficiency:
; .. Area in net section 2 o
Ligament efficiency = : — =t (],5,1
Area in normal section

Ligament efficiency is a convenient way to compare the membranc
or average stress in various ligaments, ¢, throughout a vessel with the
normal stress occuring at an unpierced lm,.muu g. Referring to Fig,
1.206, from the continuity of force equilibrum of that in a normal

section of width equal to pitch, p', and that on a ligament, p'

pho=( /)" - d\ho' (1.5.2)
f :D’ -
T -—-(};ﬁ (8 B% 7
' g .
a :m (1.5.4)

Figure 1.21a shows longitudinal and circumferential ligaments i
cylindrical vessel, while Fig. 1.215 shows ligaments in a spherical v
sel during fabrication.
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Stresses in
Pressure Vessels

2.1 Introduction

.Pres'sure vessels commonly have the form of spheres, cylinders
.eIllpsmds, or some composite of these, Such composites are ilIusrratecf
in the vessel shapes of Figs. 2.1 and 2.2, In practice, vessels are usually
(:famposed of a complete pressure-containing shell tbgether with ilang:‘e
rings and fastening devices for connecting and securing mating parts.
As the name implies, their main purpose is to contain a media under
pressure and temperature; however, in doing so they are alsc sub-
_]ectec.i to the action of steady and dynamic support loadings, piping
reactions, and thermal shocks which require an overall knowledge of
the stresses imposed by these conditions on various vessel shapeé and
appropriate design means to ensuresafe and long life.

Wh.en vessels or shells are considered to be formed of plate in which
the thickness is small in comparison with the other dimensions, and as
such offer little resistence to bending perpendicular to their sucface
they are called “‘membranes,” and the stresses calculated by neqh‘:ctiné
hr:ndmg. are called “membrane stresses.”” A piece of writing Eapcr is
very resistant to forces in its plane, but can offer little resistance to
bend}r‘:g perpendicular to its plane. In one sense, this is a desirable
condition for it permits the vessel to deform readily without incurring
large bending stresses at points of discontinuity, Chapter 4. Mem-
br_ane stresses are average tension or compression stresses over the
thickness of the vessel wall and are considered to act tangent to its sur-
face. Most vessels for boiler drums, accumulators, or chemical and nu-
clear vessels fall in this category.

2.2 Stresses in a Circular Ring, Cylinder, and Sphere

Ifa thin gircular ring is subjected to the action of radial [orces uni-
formly distributed along its circumference, hoop forces will be pro-
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duced throughout its thickness which act in a tangential direction. A
uniform enlargement of the ring will take place if the acting forces are
radial outward, or contraction will occur if the acting forces are radial
inward. The magnitude of the force F in the ring can be found by
cutting the ring at a horizontal diametrical section giving the free
body shown in Fig. 2.5, If the force per unit length of cirunference is
¢» and r is the radius of the ring, the force acting on an element of the
ring is grd¢. Taking the sum of the vertical components of all the forces Fig. 2.3. Radial and Hoop Stresses in a Thin Ring
|
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acting on the semicircular ring gives the equilibrium equation:

OF =2 ' “grsin ¢dd = 2
hd U

F=q

The unit stress in the ring can be obtained by dividing the force /by
the cross-sectional area A of the ring.
qr

A

In Eq. 2.2.1, r sin ¢d¢ is the projection of a circumferential element
on a diameter; hence the right side of Eq. 2.2.1. is merely the unit force
times the projected length of the contact surface.

If the ring is considered a section of unit length of a cylindrical
vessel of thickness # subjected to internal pressure p, so that in Eq.
2.2.3, ¢ = p and A = h, the hoop stress in a cylindrical vessel becomes

_ P
Tk

(2.2.1)

(2.2.2)

o2

(2.2.3)

a2

The longitudinal stress can be calculated by equating the total pres-
sure against the end of the cylinder to the longitudinal [orces acting on
a transverse section of the cylinder, as indicated in Fig. 2.4, giving

o1h2mr = prt (2.2.5)
28 ; 4
o] = E’—— (2.2.6)
2h
In similar manner, the hoop and longitudinal stresses in a thin sphere
subject to internal pressure may be found to be equal to, and the same
as, the longitudinal stress in a cylinder.

pr (2.2.7)
2h

gy = Ga =

This is of particular significance in the design of pressure vessels be-
cause the minimum absolute stress value oy = o2 = @i, 1S given by a
sphere; hence, it is the ideal form stress-wise. Since its required thick-
ness for a given set of conditions is one half that necessary for a cylinder
and is the same thickness as that required for the longitudinal stress in
a cylinder, forms of wire-wrapped, coil-layer, banded or multiple-
layer cylindrical vessel construction can be utilized,!*? Fig. 2.5. Such
constructions have been widely used in the chemical and petroleum
industry where they permit a material selection compatible with the
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contained media for the inner layer, and economical strength ma-
terial for the media non-contact portion (see Fig, 6.306). They also
provide a means of instituting a prestress within the vessel wall, and

act as arrestors to fast running cracks in environments conducive to
brittle fracture.’

2.3 Poisson’s Ratio

}l‘ a bar is subjected to axial tension, it is elongated not only in the
axial direction, but experiments have shown that it undergoes lateral
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contraction at the same time, and that the ratio of the unit lateral con-
traction to the unit axial elongation is constant within the elastic limit
for a given material. This constant is called Poisson’s ratio and is de-
noted by the symbol p. Experimental investigations of the lateral con-
traction of isotropic materials (Chapter 5), such as structural and
pressure vessel steels, have shown that its value may be taken as 0.3 for
these materials, This phenomenon also applies in the case of com-
pression. Axial compression will be accompanied by lateral expansion,
and the same value of g is used for calculating this expansion.

If a rectangular block of material is subjected to tensile stresses in
two perpendicular directions, Fig. 2.6, the elongation in one direction
is dependent not only on the stress in this direction but also on the
stress in the perpendicular direction. The unit elongation or strain in
the direction of the tensile stress o is o/ E. The tensile stress o will
produce lateral contraction in the direction of o, equal to poy/ E, s0 that
if both stresses act simultaneously the unit elongation in the direction
of o1 will be

1= £ £ (2.3.1)

In the direction of s,
eg = e 3.2
2= E (2.3.2)

If one or both of the stresses are compressive it is necessary only to
consider these as negatives when determining the corresponding
strains from Eqs. 2.3.1 and 2.3.2.

Similarly, if three tensile stresses, oy, 2, o3 exist on a cube of iso-

Fig. 2.6. Strain Due to Two Principal Stresses

ne—
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tropic material, the strain in the direction of o; is
(2.3.3)

I'he stresses ex.lsting in a vessel may be determined experimentally
from actual strain measurements made on the vessel by employing
Lp (9 IS B 5 2 d. i - ) )
Eqs. _,3',1 and 2.3.2, which gives the stresses oy and o; as functions of
the strains ¢; and ¢, as

6] = (£1+#62)E [y 2 .
——l—,uz (2.5.4)

63 = —-—-——QH_NH)E (2.3.5
]_Ha rAp I 1)

2.4 Dilation of Pressure Vessels

. I)1laUpn. or 1jaclial growth, of a pressure vessel can be obtained by
integrating the hoop strain in the vessel wall from an axis through the

center of rotation and parallel to a radius. Thus in Fig. 2.7 the dila-
tion 1s ' t

ni2
3 = j ear cos pdp = eor
0

and substituting the value of ¢; from Eq. 2.3.2 gives

(2.4.1)

5 = r(ﬁ B #Ul)
E 7 (24.2)

I'ig. 2.7, Dilation of Vessel Due to Internal Pressure
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The dilation of a cylindrical vessel is found from Eq. 2.4.2, by substi-
tuting the value o, from Eq. 2.2.6 and ¢, from Eq. 2.2.4, to be

pre p
T 2hE
The dilation of a spherical vessel is also found from Eq. 2.4.2, by sub-
stituting the value of ¢y and o» from Eq. 2,2.7, 1o be

b

2-p) (2.4.3)

pr
5 e _2_h_E.(1 — ) (2.4.4)
Likewise the growth of a conical vessel can be found to be (see para-
graph 2.6.3)
_ pr2-p)
"~ 2hEcoso
The equatorial dilation of an ellipsoidal vessel is dependent upon the

major-to-minor axis ratio a/b, and is found by substituting the value of
o from Eq. 2.6.28 and ¢y from Eq. 2.6.29 in Eq. 2.4.2, noting @ = 1,

(2.4.5)

to give
_rfpafy _ 2\ _ua 9
§= E{W(l Qiﬂ) ?Jz] (2:4.6)
Pl _Z _¥ 2.4.7
g sz( % 2 47)

The equatorial dilation is not always positive or outward from the
center, as with a cylinder or sphere, but may be inward depending
upon the a/b ratio. For instance, if the vessel material is steel which has
a Poisson’s Ratio ¢ = 0.3, Eq. 2.4.7 shows that the equatorial dilation
will be negative, or inward, for a/6 > 1.3. Itis this behavior that causes
an increase in the discontinuity stresses when ellipsoidal heads are used
instead of hemispherical ones for end closures on eylindrical shells of
equal thickness, Par. 4.7.1.

2.5 Intersecting Spheres

The sphere is an ideal pressure vessel because (1) stresswise it gives
the lowest possible value, (2) storagewise it contains the largest volume
with minimum surface area, and (3) costwise it has both minimum
thickness and surface area, hence, lowest material weight and cost.
When requirements exceed those possible or practicable for a single
sphere, multiple intersecting spheres can be used. The basic mem-
brane stresses can be found from Eq. 2.2.7, and the stresses on the
intersection reinforcement member for equal size spheres, Fig. 2.8, by
noting that the unit pull of the sphere wall is pr /2 which gives an out-
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Fig. 2.8, Forces acting at the Juncture of Intersecting Spheres

ward radial component at the intersection of (pr cos ¢)/2 for each
sphere, or a total of pr cos ¢. The stress in a sphere is prfilh', and corr;x.-
sponding unit elongation is pr(l — p)/2Eh. A reinforcement dia-
Phragm,' Fig. 2.8a, must dilate the same as the spheres at the
intersection in order to eliminate bending in the shell. This is a:‘.:‘ul'l‘l-
plished by designing the diaphragm so that under a radial p-uﬂ of
pr cos ¢ per unit of intersection circumference it will grow the same
amount as the natural radial growth of the sphcricall vessel at the

rfadius nf_ the inFcrsecting circle. The radial growth of the intersecting
circle, with radius r sin ¢, is ..

pr2(l—p) sin é
=T 9mh (2.5.1)

The radial growth of a solid continuous diaphragm of thickness /7
neglecting the effect of pressure on the diaphragm, is ’

= preos ¢(1—p)rsin ¢
) EH

and equating Eqs. 2.5.1 and 2.5.2 gives a diaphragm thickness of

&1

(2.5.2)

H = 2hcos é

g lllf a rei:‘;forcing ring is used, Fig. 2.86, the same procedure can be

}:J owed by letting 4 equal the cross-sectional area of the ring: the
oop stress on the ring of Eq. 2.2.3 then becomes
pr?cos ¢ sin ¢

- A

2]

(2.5:3)
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The radial growth of the ring from Eq. 2.4.2, neglecting the second
term of this equation as nil and with a radius of ring equal to r sin @, 18

pr3 cos ¢ sin® ¢
AE
Equating this to Eq. 2.5.1 gives

\ . Zircosiing 259

1—p

Intersecting spheres have a practical application in the economical
design of vessels for extremely high pressures. An example of this
approach is discussed in paragraph 7.9 and is shown subsequently in
Figs. 7.33 and 7.34. They are likewise the basic construction used for
deep-diving submersibles which must embody both minimum weight
for buoyancy and maximum strength for pressure.’

The effect of non-circularity and residual stress on the collapse of
spheres is discussed in paragraph 8.6.

Ba = (2.5.4)

2.6 General Theory of Membrane Stresses in Vessels Under
Internal Pressure

The membrane stresses in vessels of revolution, including those of
complicated geometry, can be evaluated from the equations of statics
provided they are loaded in a rotationally symmetrical manner—the
pressure loading need not be the same throughout the entire vessel but
only on any plane perpendicular to the axis of rotation 0-0, Fig. 2.9.

In the vessel of Fig. 2.9a if an element abef is cut by two meridional
sections, ab and ¢f, and by two sections ae and b7 normal to these
meridians, it is seen that a condition of symmetry exists and only
normal stresses act on the sides of this element. Let:

s, = longitudinal or meridional stress (stress in the meridional
direction)

o2 = hoop stress (stress along a parallel circle)

i = thickness of vessel

ds; = element dimension in the meridional direction (face af and ef )

ds, = element dimension in the hoop direction (face e and &f)

ry = longitudinal or meridional radius of curvature

v, = radius of curvature of the element in the hoop dircction (per-
pendicular to the meridian)

p = pressure

Referring to Fig. 2.9a, the total forces acting on the sides ol the element
are oihds, and ashds;. The force ouhds; has a component in a direction
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normal to the element, Fig. 2.95, of

(2.6.1)

2F, = 2069hds, sin (d—zi)

and similarly Ll‘le force oidhs, has a component in a direction norimal o
the element, Fig. 2.9¢, of

(il
2F; = 201hdss sin (f_x_) (2.6.2)
2
The normal pressure force on the element is

P - [omsin (4)] oo ()]

(2.6.3)
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which is in equilibrium with the sum of the normal membrane com-
ponent forces, Eq. 2.6.1 and Eq. 2.6.2; hence,

Soohdsy sin () + 201hdse i s
63!51511‘1(—2—')-]" ay 525”1(‘2)

do d
=p [2?’1 sin (.?1.)} [2,2 i ( 22 )] (2.6.4)
or noting that

i de, dsy . dbs dss
sin (—-) = ——and sin (——) = :

2 I 2 ) " 2’
q, %2
kial el (2.6.5)

This can be determined more directly by appreciating in Eqs. 2.6.1,
2.6.2 and 2.6.3 that for small angles the sine, tangent, and angle in
radians are equal, and also that the chord is equal to the arc.

The sign of the radii of curvature in the derivation above are both
positive since they point in the same direction toward the center of the
vessel, If the radius points away from the center of the vessel, it i8
negative; for instance, in location A of Fig. 2.9a, the meridional radius
is positive in the lower part of the vessel, passes through an inflection
point where it becomes infinite, and then becomes negative in region
A Tt is also well to mention again that the pressure and thickness need
not be constant over the entire vessel in applying Eq. 2.6.5, but are
the local values. This permits the use of this equation for compart-
mented vessels which operate at different pressures, or those subject to
varying pressures due to a head of fluid, and likewise embody corre-
sponding thickness adjustments.

Some applications of this equation for commonly used geometric
shapes are discussed below.® 789,52,58

1. Cylindrical Vessel Under Internal Pressure

In the case of the cylinder portion of a vessel under internal pressure
p, the hoop radius 7. = r, the longitudinal radius r; = =, and each is
constant throughout the entire cylinder. Substituting these values
into Eq. 2.6.5 gives

L I (2.6.6)
e rh
pr X
o = — (hoop stress) (2.6.7)
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The longituc_linal stress can be found, as in paragraph 2.2, by equating
the lqngltudlnal _forccs producing extension to the total preésure force
on this cross section of the vessel

o12nrh = prr® (268)

pr .
—_ — l LA oue
o= (longitudinal stress) (26.9)

2. Spherical Vessel Under Internal Pressure

In the case of a sphere, the longitudinal and hoop radii are equal,
n=r.=1# and from symmetry it follows that ¢ = 5:= o Thus,
Eq. 2.6.5 becomes ,

pr
¢ =717 (2.6.10)
3. Contcal Vessel Under Internal Pressure

I‘n this case, Fig. 2.10, it is seen that »; = o, just as in the case of a
cylinder, since its generatrix is a straight line, and r, = r/cos «. Thus
from Eq. 2.6.5,

pr

gy = (2.6.11)

f cos o

Fig, 2.10 Stresses in a Conical Vessel
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from which it is seen that (1) the hoop stress approaches that in a cyl-
inder as « approaches zero, and (2) the stress becomes infinitely large
as a approaches 90° and the cone flattens out into a plate. The latter
merely verifies the assumption that a flat membrane cannot take loads
perpendicular to its plane.

The longitudinal stress can be found by equating the axial com-
ponent of this force in the vessel wall to the total pressure force on a
plane perpendicular to the axis of revolution:

o1h2mr cos & = pwr? (2.6.12)
.
= 9k cos « (#6135

and comparable deductions to those above from the hoop stress can
be made.

4. Ellipsoidal Vessel Under Internal Pressure

Ellipsoidal shaped heads are frequently used for the end closure of
cylindrical shells for steam boilers, reactors, and storage vessels 1n
order to accommodate special space or volume requirements. !t In
such constructions a half of an ellipsoid is used, Fig. 2.11. Since the
radius of curvature varies from point to point, the solution of Eq. 2.6.5
becomes somewhat more complicated than for those geometric shapes
of constant radii. An ellipse of semi-major axis a and semi-minor axis b
is described in orthogonal coordinates v and y by the equation

b + aty? = a*h? (2.6.14)

PRS- e (2.6.15)
e

The radius of curvature at any point* is given by

= o
[+ (@]
—— (2.6.16)
Differentiating Eq. 2.6.15 gives
dy _ _—bx b dy _ _ —ba — b

b ——— and -2 = ————= =
dx a‘\fa’- — x? a‘y ! dx? a\f(a! == _,_-2):5

(2.6.17)

ay?

#See any text on calculus. This equation gives the radius of curvature of any point on a
continuous curve with the sign merely mathematically indicating the direction of concavity.
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Fig. 2.11. Stress in an Ellipsoid

Substituting these values in Eq. 2.6.16 gives

b\ )3
1 s
% o o] = [ i (“*.P)J [ahy? + bixh
Fi = fof e A 3 AEF T

bt ath?

a’y?

(2.6.18)

The radius of curvature 7, in the hoop direction is the length of the
normal fr'ﬂm the ellipse to the axis of rotation. The slope of the tangent
to the ellipse at coordinates x and y is given by -
a’)l B ha

x  aya® — x*

N_otlng tan # = x/I and substituting the value of tan # from Eq, 2.6.19
gives

tan # = (2.6.19)

[ = —AJa? — &2 (2.6.20)
Also

ro= V2 + a2 (2.6.21)
and substituting the value of { from Eq. 2.6.20 gives

(a* + bix)h

[a*a* — x7) -

?‘Zz‘\l f)g +‘\"".—

or
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The longitudinal, or meridional, stress can be four.ld as ir‘1 Pa'ragraph
2.2 by considering the equilibrium of the portion of the ellipsoid above
the parallel circle of radius x; that is, the circle subtended by the angle

926. The equation of equilibrium is
wx%p — 2mxhay sin @ = 0

(2.6.24)
(2.6.25)

The hoop stress o3 can be found from Eq. 2.6.5 using the values of r,
and 7 from Eqs. 2.6.22 and 2.6.23, respectively, and ¢, from Eq. 2.6.25

_pro_rm _pf, 7 (2.6.26)
=T rn i " 2n

At the crown r, = rs = a*/b and from Egs. 2.6.25 and 2.6.26

I (2.6.27)
gy = g = 22}}2
At the equator r; = b*/a and 7, = @, 50 from Eq. 2.6.25
vE = g; (2,6‘28}
2h

which is the same as the longitudinal stress in a eylinder, while from

Eq. 2.6.26
_pafy _ &
TR 262
and it is seen that the hoop stress becomes compressive if a/b = 1.42.
As the a/b ratio increases above 1.42, the location of the maximum
shearing stress, to which the failure of ductile materials subscribe,
Par. 5.15, shifts from the center of the crown where the maximum
shearing stress is, noting the average radial stress o, through the thick-
ness is f/2,

(2.6.29)

pat _ (_f_’)
o — o _ 26 A SBIE 1.4 9.6.30
Tomax = T 7 =7 ( )
to a maximum at the equator where
E-50-5)
oy — g 2h h 2h? (2.6.31)
Tomux — 9 £ 9 ¥ ’
(2.6.32)

_ pafa
4h\ b*
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Fig. 2.12. Ratio of Stress in an Ellipsoid to Stress in a Cylinder with Variation
in Ratio of Major-to-Minor Axis

The variation in stress throughout an ellipsoid for increasing a/b ratios
is shown in Fig. 2.12. The meridional stress remains tensile throughout
the ellipsoid for all ¢/ ratios, being a maximum at the crown and
diminishing in value to a minimum at the equator. The hoop stress is
also tensile in the crown region but this decreases as the equator is
approached where it becomes compressive for a/b ratios greater than
1.42. A ratio a/b = 1, a sphere, gives the lowest stress. If ¢/b = 2 a
maximum tensile stress of pa/h, which is the same as the hoop stress in a
cylinder, occurs at the center of the crown and a hoop compressive
stress of equal magnitude occurs at the equator. Many construction
codes and specifications restrict the use of elliptical heads to those with
a maximum major-to-minor axis ratio of 2.0. As the ratio a/4 is further
increased the greatest stress in the crown is still tension and lies at the
center, but is far exceeded in magnitude by the compressive hoop
stress in the knuckle region and at the equator. It is this compressive
s{ress that can cause:

1. Local buckling of thin heads due to the high hoop compressive

stress, 1213 14,15.38,39,5 i 9 13, |
2. Local failure due to the high shear stress developed,'®" Fig,
2.14,

Likewise, torospherical or dished heads,™ which simulate ellipsoidal
ones by a compound curve composed of a crown radius and a knuckle
radius, Fig. 2.15, should have a large knuckle radius in order to mini-
mize the hoop stresses in this region.!”!%? Many pressurc vessel con-
struction codes recognize this fact and specify a minimum permissible
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0y

Fig. 2.13. Initial Buckle in the Knuckle Region of an Ellipsoidal Model Test
Head Subject to Internal Pressure!®

knuckle radius. For instance, the ASME unfired Pressure Vessel Code
specifies the minimum value of the knuckle radius as 6 percent of the
crown radius.

The local buckling of thin elliptical or torospherical heads in the
knuckle?!#2%% region is akin to that in the thin webs of beams and
girders at the high shear stress region of their supports. In these thin
vessel heads, this phenomenon can be prevented by providing:

1. An entire head of adequate thickness, or
2, An annular knuckle region of adequate thickness,* or
3. Annular structural stiffeners in the knuckle region.

The first two methods are generally more economical for initial con-
struction; whereas, the third method is more economical and more
readily adaptable to repairs and alterations.

The buckling pressure is not sensitive to geometric imperfections,
and initial wrinkles less than the head thickness do not increase during
pressurization,®® This is attributed to the stable post buckling behav-
jor under internal pressure, and is in great contrast to the situation
where the head is under external pressure and an unstable condition

s
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Fig. 2.14. Luedt‘rs’\ Lil}f:s on the Outside Surface of the Knuckle of a shallow
Ellipsoidal Head Subject to Internal Pressure Indicating Yielding of the
Metal in This Highly Stressed Regian'®

- Diameter

v

Knuckle

/e |Crown rodius)

Fig. 2.15. Torospherical Head
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prevails wherein imperfections are of paramount importance, Par. 8.8.
As with most buckling phenomena, predictions based on the tangent
or reduced modulus are conservative while those employing Young’s
modulus are unconservative, and combination of the two seem to be
in closer agreement with experiment, Par. 8.2.4 and 8.6.2.

This local instability under internal pressure does not represent
total failure as compared to buckling of vessels under external pres-
sure which leads to total collapse, Chapter 8. While the design ap-
proaches described above to prevent this local buckling require in-
creasing the bending stiffness by local reinforcement (increase in
thickness or stiffeners), another approach is to “correct” the shape
of the pressure vessel in the region of impending instability by mini-
mizing or eliminating the initating harmful compressive stresses; i.e.,
create a “buckle-free” shape in which only a tension stress state exists,
whereby the possibility of buckling is excluded. This approach is well
adapted to very large thin vessels, such as fluid storage tanks. In the
frequently used cylindrical pressure vessel with dished end closures
subjected to internal constant pressure, the “buckle-free’” shape is in
close agreement with the 2:1 ellipsoidal closure.®?

The buckling of ellipsoidal and torospherical heads under external
pressure, and the stabilizing effect of ring stiffenersis given in Chapter

8.

2.7 Torus Under Internal Pressure

A torus or doughnut shape, or part thereof, is one of the most useful
and widely used shapes in vessel construction. Figure 2.161s a photo-
graph of a steam generator during fabrication showing the 180° torus
section connecting the two parallel legs of a U-shaped vessel, as well as
the numerous tube bends. The longitudinal stress ¢y and hoop stress a2
in the wall of a torus subjected to internal pressure p, Fig. 2.17, can be
calculated from a condition of equilibrium with respt__’ct to vertical
forces on the portion aba;b; cut from the vessel by a vertical eylinder of
radius B, and conical surface aoa,. Since the stress o acting on the
circle R, has no vertical component, nor does the internal préssure on
the cylindrical surface ¢, the balance occurs between the internal

pressure on the annular plane ac and the vertical component of the
stress g at point a; thus,

mp(R2— Re?) — ozh2nR sin 8 = 0 2.7.1)
R R oy
"2 = "OhR sin 6 (@d-2)
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Fig. 2.16. Steam Generator During Fabrication Showing the Use of Torus
Sections (Courtesy The Babcock & Wilcox Company)
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Fig. 2.17. Stresses in a Torus
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where R is the radius at any point, and R, is the radius of the center-
line. Since B = Ry + r sin 6,

pl(Ro+r sin 6)%— Ro?]
% = Qh(Ro+rsin 8) sin 8

(2.7.3)

pr 2Rg+rsin @
"~ 2h Ro+rsiné
On the centerline of the torus, § = 0 and Eq. 2.7.4 reduces to

pr
Tk
which is the hoop stress in a straight cylinder of radius 7. The minimum

hoop stress occurs at the outside of the torus on an axial plane of sym-
metry through the point ¢, 8 = »/2, Fig. 2.18, of

(2.7.4)

a2

(2.7.5)

G2

pr2Ro+r (276
o= 2h Ro+r Y )
and is a maximum at the crotch point f, § = 3x/2, of
pr2Re—r
= 2.7.7
= 2k Ry-r 2.7.7)

The longitudinal stress ¢, can be calculated from Eq. 2.6.5, noting
that r, = R/sin 8, so that

LT (2.7.8)

Tin

centerline

ap Max.

Fig, 2.18. Variation in Hoop Stress in a Bend

[ e A I
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which gives, when substituting R = Ry + 7 sin 8, a value of

pr
9

o]

(2.7.9)

and is the same as for a straight cylinder. Its value is independent of
location on the torus.

Hence, in a torus of uniform thickness, both the principal stresses are
tensile, with the hoop stress the greater and reaching a maximum at
the crotch where failure would be expected to occur first. Figure 2.18
shows the variation in this stress around a cross section through the
torus, whereas Fig. 2.19 shows the variation in this stress at the crotch
point of maximum intensity with the radius of bend centerline, from
which it is seen that this stress becomes large for small bend radii
(doughnut with a small hole). Conventional pipe or tube bends*® are
made by pushing or pulling them around a former, of the required ra-
dius. The operation is usually performed cold when the size is small
and/or the bend radius generous; when the size is large and/or the
bend radius sharp, hot forming is done. The natural redistribution of
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Fig, 2.19. Variation in Hoop Stress with Bend Radii
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metal which occurs during bending, thinning at the outside and thick-
ening at the inside, is a compensating factor of the same order as the
acting stress; hence, the requirement that conventional pipe bends be
made of thicker material to adjust for thinning during bending is sel-
dom warranted for the ratios of Ry/r customarily used. In fact, this and
other associated factors, such as strain hardening, usually result in pres-
sure failures occurring in the straight portion of pipes or tubes. This is
illustrated in the internal and external pressure tests of the tube bend
of Fig. 2.20, showing the rupture to occur in the straight cylindrical
portion under internal pressure. When failure was forced to occur in
the torus portion, Fig. 2.204, the rupture took place on the centerline
of the bend where the stress is the same as thatin a straight eylinder
and, incidentally, where the material tensile strength had been in-
creased the least by strain hardening (paragraph 5.7) from the fabri-
cating process, but which nevertheless accounted for a 20 per cent
increase in bursting pressure, Collapse under external pressure also
occurred first in the straight portion, Fig. 2.20¢, due to the stabilizing
effect of the double curvature in the torus region. For this particular
size torus, the collapse pressure was 93 per cent higher, Fig. 2.20e, than
that for a cylinder of the same size and thickness.

2.8 Thick Cylinder and Thick Sphere

When the thickness of the cylindrical vessel is relatively large, as in
the case of gun barrels, high-pressure hydraulic ram cylinders, etc.,
the variation in the stress from the inner surface to the outer surface
becomes appreciable, and the ordinary membrane or average stress
formulas are not a satisfactory indication of the significant stress. If a
cylinder of constant wall thickness is subjected to an internal pressure
pi and external pressure py, the deformation will be symmetrical about
its axis and will not change along its length, Fig. 2.21. It may be
thought of as being composed of a series of concentric cylinders. If a
ring is cut by two planes perpendicular to the axis at unit distance
apart, it is seen that a condition of symmetry exists and hence no
shearing stresses exist on the sides of the element mnmym, Fig. 2.21a.
This is the reason, for instance, that it is possible to construct heavy
gun barrels or pressure cylinders by a multitude of concentric thin
cylinders or multiple layers of bands, and no provision need be made
for the transfer of shearing forces from one band to the next. Consider-
ing the element mnmyn,, the hoop stress acting on the sides mm, and nn,
is a,. The radial stress normal to the side mn is o, and this stress varies
with the radius r in the amount of (do,/dr)dr over a distance dr. There-
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" . —
_ Fig. 2.20. Failure of Cylindrical and Torus Sections
(Ry = 1.3125 in., r = 0.311 in,, A = 0.058 in., T.S. = 87,000 psi

(2) Unpressurized Vessel, (§) Failure at Internal Pressure, P, = 17,500 psi,
Showing Gross Deformation and Rupture in the Cylindrical Section, (¢)
Failure at External Pressure, fo = 6,800 psi, Showing Collapse of the

C‘.ylindricz_i! Semim;, (d) Rupture of Torus Section at Intern
pi = 21,000 psi, (¢) Collapse of Torus Section at Extern:
o = 12,200 psi
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Fig. 2.21. Stresses in a Thick-Walled Cylinder

fore, the normal radial stress on the side mn, i8

+ dO’f P
G; — Y
" dr

(2.8.1)

The equation of equilibrium for the element is obtained by summing
up the forces in the direction of the bisector of the angle d¢, noting that
for small angles the sine and angle in radians are substantially equal.
Then

d
srrdd + oydrdg — (cr+%r— a’r) (r+dr)dp =0 (2.8.2)
r
and if small quantities of high order are neglected,
d
. (2.8.3)
dr

The equation gives one relation between the stresses o, and o, A
second relation can be obtained from the deformation of the cylinder
and from the assumption that the longitudinal strain of all fibers is
equal. The deformation of the cylinder is then symmetrical with re-
spect to the axis and consists of a radial displacement of all points in
the wall of the cylinder. Hence, this displacement is constant in the
circumferential direction but varies with distance along a radius. If u
denotes the radial displacement of a cylindrical surface of radius r, the

[reees
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radial displacement of a surface of radius r + dr is

du 4
u+—dr
dr
"Iiherc_forc, an element mmmn, undergoes a total elongation in a radial
direction of (du/dr)dr, or a unit elongation of

(du) dr  du

"-’r = —_— ] — = —

dr/ dr  dr
_In a c1rcumferent‘ial direction the unit elongation of the same element
:zs iqual to the unit elongation of the corresponding radius, paragraph
4, or ' '

(2.8.4)

(2.8.5)

& =
r (2.0.b)

s g "
I'hen fr‘om Egs. 2.3.4 and 2.3.5 a second set of expressions for the
stresses in terms of the strains becomes

E du i
Gy = ( -+- P‘ _..) (f

1 —u? \dr r

]

E i du
g = ——— (— -+ e —) 00 0
I—p2 \r dr \£esed
These stresses are interdependent since they are expressed in terims of
one function u. By substituting the values for ¢, and # from Eqs. 2.8.7
) l) : ; : : W I, PRI © B8
and 2.8.8 into Eq. 2.8.3, the following equation for determining u 1s
obtained: :
d*u ldu u

+_"__'—‘=[ {5 ¥
drt rdr 12 ; W2 82)

The general solution of this equation is

s
= Litt— (2.8.10)

Substituting from Eq. 2.8.10, noting du/dr = C; — Cy/r*, into Eqs. 2.8.7
and 2.8.8 gi\;eg 2 K (|S. £.9./

t=

i
Gy = [Cl(] +p)—C’2 Ep]
T

(&)

by

1—
o= |G+ e =1

2

(2.8.12)

(-]
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The constants (1 and C; can be determined from the conditions at the
inner and outer surfaces of the cylinder where the pressure, i.e., the
normal stresses o,, are known. For instance, if p; denotes the internal
pressure and p, denotes the external pressure, the conditions at the
inner and outer surfaces of the cylinder are

ass pi
The negative sign on the right-hand side of these equations indicates
that the stress is compressive, because the normal stress is considered
positive for tension, Substituting the expressions for ¢, from Eq. 2.8.11
into Eq. 2.8.13 gives equations for determining the constants €, and Cs
from which

and (2.8.13)

Gru = Urb = _PU

S,

l+ Ebﬁ i—
Cjrm o C, o e g~ to)
f’, b2 — t'IZ

' ° E b —

Placing the values of these into Egs. 2.8.11 and 2.8.12 gives the general
expressions for the normal stresses:

(2.8.14)

< 5—23 — B, 252 .
o=t o (2.8.15)
b?‘ — rﬂl:bz e a‘j)
a2pp—62ps  (pi—po)ab?
= — A i bt 9 R
o b — g2 r2(b? — a2) (2.8.16)

Inspection of Egs. 2.8.15 and 9 8.16 indicates that the maximum value
of ¢, oceurs at the inner surface, and maximum o will always be the
larger of the two pressures, 0 and p,. These equations are known as the
Lame solution, or thick-cylinder formulas. It is noted that the sum of
these two stresses remaing constant; hence the deformation of all ele-
ments in the axial direction is the samme, and cross sections of the cyl-
inder remain plane after deformation, thereby fulfilling the original
assumption.

The maximum shearing stress at any point in the cylinder is equal
to one half the algebraic difference of the maximum and minimum
principal stresses at that point. Since the longitudinal (axial) stress is
an intermediate value between o, and oy,

Of—Or

o Sr _ (pi—po) a*b*
T2 pear 1

|. Cylinder Under Internal Pressure Only

(2.8.17)

In this particular case which covers most of the practical vessel
applications p, = 0, Eqs. 2.8.15 and 2.8.16 reduce to:
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a’ps b -

o = s (1—}?) (2.8.18)
Gaﬁi bt

0= e =) (2:8.19)

These equations show that both stresses are maximum at the inner
surface where r has the minimum value; o, is always a compressive
stress, and smaller than o,; and s, a tensile stress which is maximum
at the inner surface of the cylinder equal to

pua®+0%)

TR (2.8.20)
—a

a‘tl‘ﬂl!. =

From Eq. 2.8.20 it is seen that oy,,, is always numerically greater than
the internal pressure, but approaches this value as b increases. The
minimum value of ¢, is at the outer surface of the cylinder and is always
less than that at the inner surface by the value of the internal pressu;'e
pi. Figure 2.22 illustrates this variation through the wall of a thick cyl-

outside radius

inder of ratio K = — :
inside radius

= 2.0. In designing for very high

pressure, these observations point out the necessity of using com-
parably high yield point materials, or using design-construction fea-
tures that will create an initial residual compressive stress on the inner
surface to help counterbalance the high applied stress at this location,
such as hoops shrunk on the barrels of guns, or cylinders strained be-

. ~ I
Y }
i o
b
—4 &
g _E
A *yo

Fig. 2.22, Variation in Tangential Stress Through the Wall
Cylinder, K = b/a = 2

of a Thick
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TABLE 2.1. RATIO OF MAXIMUM TO AVERAGE STRESS ON A CYLINDER
FOR VARIOUS VALUES OF K (RATIO OF OUTSIDE TO INSIDE RADIUS)

E=b/a=1+h/a

1.1 1.2 1.4 1.6 1.8 2.0

Fussnl Osvs. 1.05 1.10 1.23 1.37 1.51 1.67

yond the yield point by hydraulic pressure so that upon release of the
pressure the metal at the bore remains in a state of residual compres-
sion and the outer layers in moderate tension.

A comparison between the maximum stress obtained by the thick-
cylinder formula, Eq. 2.8.20, and that obtained by the thin cylinder or
average stress formula, Eq. 2.2.4, is shown in Table 2.1 for various
values of K, and indicates that for small wall thicknesses there is little
difference: for instance, with a wall thickness of 20 per cent of the
inside radius, the maximum stress is only 10 per cent higher than the
average stress.

The shearing stress is a maximum on the inner surface and from
Eq. 2.8.17 for r = a gives

b?
I (2.8.21)

JE

This equation for the shearing stress* is particularly significant from
a design viewpoint as a criteria of failure, since it correlates very well
with actual rupture tests of thick cylinders, paragraph 5.15. Figure
7.16b shows the typical shear failure in a thick-walled cylinder made
from a ductile material, The fracture occurs at 45° to the maximum
principal stress.

2, Cylinder {nder External Pressure Oaly

When the internal pressure is zero and the cylinder is subject 1o only

the action of the external pressure p,, Eqs. 2.8.15 and 2.8, 16 reduce to

ol® a* :
e e i) (2.8.92)
B - @\ 1%
pob® . & .
Gy 5 2 (Lk_) (2.8.23)
52— a? 72

Py T
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These equations show that both ¢, and ¢, are compressive stresses with
7. always being numerically greater than o, just as it was in the case of
internal pressure only. The maximum tangential compressive stress o
occurs on the inside surface of value

2pob
of =

« = T p_g2

(2.8.24)

whereas the maximum radial stress ¢, is at the outer surface and equal
10 po; i.€., the maximum values of o and ¢, do not occur at the same
point in the cylinder in this case.*” When the external pressure is re-
versed in direction, as could result from a vacuum surrounding the
cylinder or a series of outwardly directed uniformly applied lnerl;«.;:,l pois
replaced by —p,. When the ratio 6/a becomes very large, it is :'u'_)t;*tzl
that the maximum stress approaches twice the value of the external
pressure which agrees with that foundin paragraph 6.3 forasmall hole
in a large plate subject to uniformly distributed radial forces. The
buckling collapse of thick-walled cylinders is given in Par. 8.4.

3. Deformation of a Thick Cylinder

The radial displacement of any point in the wall of the cylinder can
be found fll‘OlTl Eq. 2.8.10 by substituting the values of the constants
() and C. from Eq. 2.8.14, which gives

!‘21-1;ﬁﬁ—bwur+1+#E?%m~ﬁu
E b2 — a? E (B2—a¥)r

(2.8.25)

[n the case of a cylinder subjected to internal pressure p, ouly, the
radial displacement at the inner surface r = a from Eq. 2.8.25 is:

pea [ @+ 0% .
e = (bZ—aﬂ + #) (2.8.26)
and at the outer surface is:
2pi a*b
e = (2.8.27)
E(h? —a?)
When the q{linder is subjected to external pressure f, only, the dis-
placerment of the inner surface, r = a, is:
2p,ab>
U= — —— (2.8.28)
E(b*—a®)
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and at the outer surface is:

(2.8.29)

N =

bp, (@48
—%(EIL—;L)

b2 — a?
The minus sign indicates that the displacement is toward the axis of

the cylinder.***

4. Stresses in a Thick Sphere

In a manner similar to that used to establish the stresses in a thick
walled cylinder, those in a thick sphere can be found to be

b b3 a?
) nbl

(2.8.30)

Al 2
a; = b3 fed ;3 (2.8.31)
2}
(aa a®
The maximum stress is always the tangential stress, o4, and occurs at

the inside surface, »=a. In the case of a sphere subject to internal
pressure only p, = 05 this is, per Eq.2.8.31,

P; 2(53 + b3 c .
9 -4t (2.8.32)

2.9 Shrink-Fit Stresses in Builtup Cylinders

Cylindrical vessels can be reinforced by shrinking on an outer cy-
lindrical liner so that a contact pressure is produced between the two.
This is usually done by making the inside radius of the outer cylinder
smaller than the outside radius of the inner one and assembling the
two after first heating the outer one. (The reverse procedure of cooling
the inner cylinder with Dry Ice or liquid gases has also been used.) A
contact pressure is developed after cooling dependent upon the initial
interference of the two cylinders. Its magnitude and the stresses it pro-
duces are calculable by the equations of paragraph 2.8.3. As an ex-
ample, prior to assembly the outside radius b of the inner cylinder in
Fig. 2.23 was larger than the inside radius of the outer cylinder by an
amount 5, creating a pressure p between the cylinders after assembly.

[OF
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8410 6.560
0
o -6.590

(@) Shrink-fit stress

42,500
\aa,sao

22,500

0

(&) Pressure stress

37240

34060 \
29,060

22,240

{¢) Total stress

Fig. 2.23 Shrink-Fit Tangential Stresses in a Cylinder

}ts value can be determined from the condition that the increase in the
inner radius of the outer cylinder plus the decrease in the outer radius
of the inner eylinder must equal 8. Thus, from Eqgs. 2.8.26 and 2.8.29

b_p(b‘i+c2+) bp [ a®+ b2 _
E \a—p * E(!ﬂ—a?—'u):a =
or
s -
LN x5 Gl ) (2.9.2)

b 20%(c2—a?)

If such a builtup cylinder is now subjected to internal pressure, the
stresses produced by this pressure are the same as those in a solid-wall
f:ylinder of thickness equal to the sum of those of the individual cyl-
inders ¢—a. These stresses are superposed on the shrink-fit stresses dis-
cus:sed previously. The latter are compressive at the inner surface of the
Cylu.‘:der which reduces the maximum tangential tensile stress due to
the internal pressure at this point, thereby creating a more favorable
stress di_stribution than in the case of a solid-wall cylinder (see the
lllusta;atlve problem below). This procedure of building up cylinders is
used in the construction of gun barrels and of vessels for extremely high
Internal pressures. This favorable stress pattern does not exist unless
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the parts have undergone a shrink or interference fit. Vessels are often
constructed by applying one cylinder on another, without a shrink or
interference fit, as a fabrication means to obtain thick walls.

Tllustrative Problem. Determine the tangential stresses at the inner, outer
and mating surfaces of the builtup steel cylinder of Fig. 2.23 _subjected to an
internal pressure p; = 20,000 psi when a = 6 in, & = 8 in,, ¢ = 10 in,
E = 30 X 10%, and the shrinkage § = 0.004 in.

Solution: The pressure created at the mating surface b = 8 in. due to 8 i3
from Eq. 2.9.2:

30 x 106 x 0,004(82 —62)(102—82)
P = T2 x 3108 —6Y)

The stress caused by this pressure on the inner cylinder is from Eq. 2.8.23:

= 1846 psi.

2pb® 2 x 1846 x 82 .
Oty = — = — = — 8,440 psi
L b2 — g2 a2 _ g2
p(b2+ a?) (B24+62) .
a‘r-*s — R —b?az— = — 1846 _EE__—Z- £ = 6.590 pst

The stress caused by this pressure on the outer cylinder is from Eq, 2.8.19

b2+ ¢? 824 102 )
Gt o = (624 ) = E—-——) = 8,410 psi
e 2—p2 102 —82
262 1846 x 2 x §2
Oty = £ = = 6,560 psi
e 2 — b2 102 — 82

These initial stresses produced by the shrink-fit are shown in Fig. 2.23a,
The stresses caused by the internal pressure are the same as for a solid-wall
cylinder of thickness 10 in. — 6 in, = % in. and are shown in Fig, 2.23b as
determined by Eq. 2.8.19.

pila2+¢®)  20,000(62+ 102)

Ty = e [P—6? = 42 500 psi
pia® 2 20,000 x 62 ( 103) . )
=3 == ) = e ame] = 28,830
s = 2 g2 (l+52) i—et \ |82 B
pi2a® 20,000 x 2 x 62 ‘
Otp,, = = = 22,500 psi
" 2 —a2 102 —62

Superposition of these two stress patterns gives the final total stress distribu-
tion, Fig. 2.23¢, from which it is seen that the initial assembly stresses reduce
the maximum stress in the cylinder when it is subjected to internal pressure

from 42,500 psi to 37,240 psi,
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Shrink-fit stresses do not influence the bursting pressure of such
builtup cylinders which is equal to that of a simple solid wall cylinder
of the same overall diameter ratio, Par, 2.10.3.

2.10 Autofrettage of Thick Cylinders

L. Theory

1t is also possible to obtain a favorable initial stress pattern, analo-
gous to that mentioned in paragraph 2.9 for builtup shrink-fit cylin-
ders, by applying a sufficiently high internal pressure to produce
plastic flow in the inner part of the cylinder. After removing this in-
ternal pressure, residual stress persists due to the plastic flow or defor-
mation that has taken place, with the inner part in compression and
the outer part in tension. This is called “autofrettage.”

Yielding of inner surface due to internal pressure will occur when
the maximum shearing stress, Eq. 2.8.21, at this point becomes equal
to the yield point stress in shear of the material rv p *. Substituting
this value in Eq. 2.8.21 gives the pressure at which yielding begins as:

2_ g2

b2

py.p. = Y. P (2.10.1)
As the pressure is further increased, the plastic deformation penetrates
farther into the vessel wall until it reaches the outside surface at a
pressure p, when the entire wall of the cylinder has yielded. The stress
distribution under these conditions can be determined by assuming the
material to be perfectly plastic and to yield under the action of con-
stant shearing stress 7y p.. Then for every point in the plastic region

ay— Gy
— = TR
2

A second equation involving the principal stresses o, and o, can.be
obtained from the equilibrium of an element of the wall as shown in
Fig. 2.16, which gave the equation (Eq. 2.8.3).

(2, 10.2)

doy 0 ;
G— Gy — T = (2.10.3)
dr
and substituting the value of ¢, — 7. from Eq. 2.10.2 into Eq. 2.10.3

gives
dor  2ry.p.

1 1)
dr r (2.10.4)

*See Chapter 5 for a discussion on the yielding and failure of materials under stress
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Upon integration this gives

oy = 27y.p loge r4C (2.10.5)

and the constant of integration C can be determined from the condi-
tion that at the outer surface of the cylinder, r = b, the radial stress
becomes zero, o, = (), as

C = =27y p log b (2,10.8)
Placing this constant of integration in Eq. 2.10.5 gives
& = Ve loge:: (2.10.7)
or at the inner surface,
e (2.10.8)

Ty,

"

= 2ry.p. log, p
)

The pressure that is required to bring the entire wall of the cylinder
into a state of plastic flow is then
[#d

—27y.p. loge L'

pu= —or, = (2‘10.9)
The tangential stress can be found by substituting the value of «, from
Eq. 2.10.7 into Eq. 2.10.2, which gives
. A
& = zfy_ﬁ(lﬂngt. !;) (2.10.10)
If the internal pressure is removed after the cylinder material has been
brought to a plastic condition, a residual stress will remain in the wall.
This can be calculated by assuming that during unloading the ma-
terial follows Hooke's law, and the stresses which are to be subtracted
while unloading are those given by Eqs. 2.8.18 and 2.8. 19 when —p, is
substituted for p; in these expressions. This is an effect superposing a
radial tension, or negative pressure, on the inside to cancel that pres-
sure causing the initial plastic flow condition. This is best illustrated by
a particular case, say, h = 2.24, for which the stresses are shown in
Fig. 2.24. These were determined as follows:

(1) The distribution of radial stress o, through the wall is shown in
Fig. 2.24¢ as calculated from Eq. 2.10.7
Gp., — QTY‘P. ll}gp (—‘) ‘}_) = — {].?gr.IQTY.P‘_:I f(‘f)

VAN

ay, = 27ry.p.logs 1 = 0 (h)
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anicé likewise the tangential stress ¢ distribution calculated by Eq
9.10.10: -

oy, = 27v.p. l:l +10ge (

?f” = 0.21Q2rv.r) (c)

Tt = QTY_‘QI (l +IOHE ].] = 271‘" P. {d)

(2) The distribution of radial stress ¢, resulting from release of the

internal pressure is shown in Fig. 2.244 as calculated from Eqs. 2.10.9
and 2.8.18,

pu= = Pry.z logs (ﬁ) = 0.79(2ry.2.) (a)
azp“ 52

o= = (1 - a—z) — 0.79(2ry.p) ()

Gr, = 0 I_r}
and the tangential stress g distribution by Eq. 2.8.19:

azp_u 62 ’
o, = — bz_aﬂ(l—l_(;;) = - I.52Pu = - ]..52)(0.?9[21‘}'.[—")

= — 1.20(27v.p.) (d)
232}51.-.

Oy = = o = = 052 = —052x0.79(2rv.p) = = 041(2rv.2.)

(e)
. (3) The final residual stress distribution is obtained by superposi-
tion to give that shown in Fig. 2.24¢. It is very favorable to the re-
appl'icatlon of internal pressure since the accompanying tangential
tenm'ic stress must now first overcome the residual compressive stress.
For instance, if an internal pressure equal to p. is again applied, the
tan.gential stresses produced by this pressure must be superposed 0:1 the
residual stresses, solid curve of Fig. 2.24¢, with a resultant maximum
stress of 2 ryp. now occurring at the outside wall of the vessel; no
yielding will occur during the second application of this internal plrtts—
sure. Comparing this to the pressure at which yielding will begin at the
inside wall of a stress-free cylinder which is ;given by Eq. E.l!}.i for
b= 22a as pyr. = 0.79 7vp, it is seen that the pressure can be in-
creased two and a half times while maintaining elastic behavior of
the cylinder.
I}n this manner it is possible to increase considerably the pressure
Wh.lch. a cylinder can contain elastically, and the method is frequently
used in the design of accumulators, hydraulic ram cylinders, gun
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Fig. 2.24. Residual Stresses in an Autofrettaged Thick Cylinder

barrels, etc. Not only does it increase the elastic static strength, but it
also has a favorable effect in increasing fatigue life, paragraph 5. 18'.4-.
This process is applicable only to thick-walled cylinders where a varia-
tion in pressure stress exists across the wall thickness. It is not appli-
cable to those with thin walls since it is impossible to build up a
favorable residual stress pattern. ) .

The foregoing analysis considered plastic flow of the entire cylinder
wall, but a similar analysis can be made when only a portion qf the
wall is made to yield while the rest remains elastic.?” The residual
stresses discussed above were induced by pressure, or so-called me-
chanical means. They can also be created by temperature changes,”
such as the upsetting accompanying quenching or t‘he \’OllJI.]lE change
occurring during metallurgical phase changes during coolmg..These
stresses can become particularly important in large heavy forgings or
castings where their values, not being selectively controlled as in the
case above, can become large and influence the life of the part, para-
graph 5.17.3.

9. Potential of The Autofrettaged Pressure Vessel

Equation 2.8.21 gives the maximum shearing stress occurring at tl'_le
inside wall of a cylindrical vessel. This equation may be written in

the form
b\?
Prlunic . (E) - ll

)

=1

2.10.11
- (2.10.11)
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Fig. 2.25. Influence of Autofrettage on a Cylinder

and is plotted as the lower curve in Fig. 2.25. If 7 is the shearing yield
strength of the material, the ordinates of this lower curve represent
values of the pressure, according to the maximum shear stress theory,
which are the maximum that can be sustained elastically. Beyond this
pressure the inside surface of the wall is strained plastically. The effect
of further straining to the point where the outside surface just becomes
plastic is given by Eq. 2.10.9. This equation can be written in the form

(2.10.12)
P .
and is plotted as the upper curve in Fig. 2.25. These equations apply to
either open-end or closed-end cylinders. This is due to the fact that
they are based on the maximum shearing stress which is one-half the
largest algebraic difference between any two of the three principal
stresses or 1/2(e; — o.), and are therefore not influenced by the longi-
tudinal stress which is a value intermediate between o; and 4,. A con-
parison of these two curves indicates:

. The limited merit of using extremely thick wall cylinders ol
K = #/a ratios in excess of about 3.0 when an elastic stress condi-
tion must be maintained throughout the cylinder wall. This is
shown by the flatness of the lower curve, Fig. 2.25, with A ratios
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beyond this value. In order to satisly elastic conditions for pres-
sures recuiring extremely thick walls, constructions enbodying
residual stress induced by shrink-fits, autofrettage or other novel
ultra-high pressure design principles, Par. 2.13, must be used.

—

The large increase in pressure required to cause plastic strains to
spread across the entire cylinder wall after they have started at
the inside wall surface. This is shown by comparing the ordinates
for the upper and lower curves for a given K value. This increase
in pressure is obtained without increasing the shearing stress
within the wall above the shearing yield stress. Subsequent appli-
cations ol pressure up to or eqqual to the fully plastic autofrettage
pressure do not cause additional plastic straining.

3. The importance of high strength material, whet her designing for
elastic or plastic conditions, when extremely high pressures are
involved. This is the prime avenue of approach that is presently
being taken to cope with the rising pressure requirements of in-
dustry, deep diving cubmarines, and space exploration vehicles.

3. The Bursting Strength of Thick- Wall Cylindrical Vessels

Predicting the maximum or bursting pressure that a thick-wall cy-
lindrical vessel can withstand is an important consideration in its
design. There have been a multitude of formulas used or proposed for
establishing bursting strength.** These have ranged from entirely em-
perical ones 10 completely theoretical ones based on theories of
plasticity and the true strain behavior of the material.

A simple formula for determining bursting pressure can be derived
from Eq. 2.10.9. This eq uation gives the pressure in the cylinder when
the shearing stress across the entire thickness has reached the shearing
yield stress. 1f the agsumption is made that upon reaching the bursting
pressure the shearing stresses are uniform over the entire thickness and
equal to the ultimate shearing strength of the material, the bursting
pressure is given by

fJI.\uraL = QTUIL. log,‘ fl.‘ (Q.I{J.IBJ

If the value 27u, 18 assumed equal (o and replaced by the ultimate
tensile strength of the miaterial, i, since the former value is difficult
to ascertain, this becomes

ﬁhurﬂ = Gul loga Ft (21‘_‘;‘.14‘)
A more accurate value of the bursting pressure has been developed by

Svensson®?°? as

|
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;:[( 025 VeV e &
«= | Girom\g) [ 108"

Th};{ for:;ml_a embodies the strain hardening exponent, =, of the ma-
terial and gives predictions in excellent agree ith experi
. ment with exper
e gr h experimental
'Iéihg term in bra'ckets on the right hand side of Eq. 2.10.15 is a
modifier O;F}ge l?jasxc Eq. 2.10.14 to account for this specific material
p;op?rty. a le 2.2 shows how this modifier varies with n. This shows
t atvlor a given vessel ma.de from materials having the same ultimate
tenscll e §trcngth, the bu.rstmg pressure decreases as the material strain
gar ening exponent n increases. This decrease in bursting pressure is
ue to tf}e greater reduction in the vessel wall thickness and accor
p}zlmgmg increase in VF:ESSCI diameter over which the pressure acts before
tf e tvlrstmfg pressure is reached. An indication of the variation of  as a
1unctlog of the ﬁzlt‘w of yield strength to ultimate tensile strength for
ow and intermediate tensile strength carbon ¥
d int and low al
shown in Fig. 2.26. el
g : 3
li?l?atéon 2.10.16 by Faupel,5* which directly incorporates the
yield and ultimate tensile strength, also gives good agreement with
Oy,

experiment.
P g
= = 10 ¥ K (2 o Y. P_) q -
B e —‘—Uuk‘ (2.10.16)

Equatlon_s 2.10.14, 2.10.15, and 2.10.16 give a basis for establishing
t?ie bursting lstrcngth of cylindrical vessels ilsing the material spccil'irf
tion properties, or those readily obtainable from simple tension .Lr"sdlls
Matcpal imperfections such as flaws, weld defects, etc., can Irr:
bursting pressures. Accordingly, it is customary to subiect,vcssel: 11;.1'
thc nuclear and other high pressure critical services to a complete
nondestructive ex_amination to assure soundness of material and \L‘cld-
ments. Vessel designs based on burst pressure should use a minimum
factolr 'of safety of 1.5-2.0 because of the difficulty of ;Lccuratél\’
predicting burst pressures. Just as shrink-fit stresses do not influence

-1
L4

(2.10.15)

Phurst

TABLE 2.2. EFFECT OF STRAIN HARDENING E
ON BURSTING STRENGTH OF CYLINDRICAL VXEZ%QEET

n 0 0.10 0.20 0.30 0.40 0.50
Modifier (Bracketed _ _
Term, Eq. (2.10.15) 1.10 1.06 0.99 0.92 0.86 0,80
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the bursting pressure of builtup cylinders, Par. 2.9, neither does the
prestress autofrettage residual stress.>” The bursting pressure remains
equal to that of asolid wall cylinder of the same overall diameter ratio.

2.11 Thermal Stresses and Their Significance

Stresses which result from restricting the natural growth or contrac-
tion of a material due to a temperature change are called thermal
stresses. If the bar in Fig. 2.27a is uniformly heated from an initial
temperature 7, to a new temperature T, the unit change in dimension
is o T» — Th), where a is the coefficient of thermal expansion, and no
thermal stresses are produced since it is free to expand. If, however, the
bar is restricted from expanding in the y direction, Fig. 2.27b, but free
to expand laterally due to the Poisson effect, the resulting uniaxial
thermal stress becomes:

%= el Ty~ T3) (2.11.1)
¢ = —Ex(Tz—Th) (2.11.2)

If the bar is further restricted in the x direction also, Fig. 2.27¢, the

principal strains are equal, & = & = o To— Th) = «bT, and the

i
|
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Fig. 2.27. Thermal Strains
principal stresses from Eqgs. 2.3.4 and 2.3.5 are:

wE(Ty — Ty) aEAT

0‘1:0’2:—--—:__ [:'_’llll
l — u 1 —n

V\‘f he‘n a third restraint is imposed, perpendicular to the x—y plane o
Fig. 2.27¢, the stress becomes: " |

2E(Ty—Th)

g= — ———— " = —

1-2u

aEAT
1— 2}.1-

(2.11.4)

Theﬁe values of thermal stress are for full restraint and hence are the
maximum that can be created. Fig. 2.28 gives the value of l!.'lL“?r? {'lnt::--
mal stresses for carbon steel per degree Fahrenheit 1‘@::113.(-1.‘:;.1;1:-3
change, A7 = 1°F, at elevated temperatures for one, two ;111(.| :.]'u'ee
ngrees‘ of restraint. Most pressure vessel conditions in,\-’oh-f- two-
dimensional restraint, Eq. 2.11.3 and it is noted that these are higher
than those for simple uniaxial restraint in the ratio of 1/{ I — u), or 43
per cent for steel with p = 0.3, | R

l"h‘e minus isign in the above equations indicates the bar is in comn-
pression since its expansion has been restricted. If the bar is prevented
from‘contlracting, a tensile stress is produced. Figure 2.27 l'm\: depicted
lhfa situation of uniform change in temperature with (‘Oi'lS'[l‘?lu;l]- fromr
without so that the sign and magnitude of the stress remains r-u|-«-=.-‘u‘|
thl‘gugimoul. Thermal stresses can also be induced by a !1"'1:1|J¢‘I'I.ti.lt.t:'='
variation within the member creating a differential e:-;pami:.;:l. such

5
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Fig. 2.28, Thermal Stress Values, Carbon Steel

that the natural growth of one fiber is influenced by the different
growth requirements of adjacent fibers. The result is that fibers at
high temperatures are compressed and those at lesser temperatures
stretched, and herein lies the fundamental difference between thermal
and mechanical stresses. The differential expansion requires only that
a prescribed strain pattern be satisfied, and the accompanying stress
pattern need only satisfy the requirements for equilibrium of the in-
ternal forces: hence, yielding produces relaxation of the thermal
stress.2t On the other hand, if the member is loaded mechanically, such
as by pressure, (0 a Siress beyond its yield strength, yielding will con-
tinue until it breaks, unless the deflection is limited by strain hardening
or stress redistribution, Chapter 5. The internal stress must be in
equilibrium with the external load which remains constant, hence the
internal stresses cannot relax. Accordingly, thermal stresses are
secondary stresses because they are sgell-limiting.” They will not cause
failure by rupture in ductile materials upon their first application
irrespective of their magnitude, but they will cause failure by repeated
cycling, i.e., fatigue, paragraph 5.19. They may also produce essential
failure by rendering the structure inoperative due (o large deflections
or distortions as would occur in the case of rotating devices such as
turbines. It is most important to recognize this distinction in apprais-
ing the significance of thermal stresses.

The above equations are basic ones for determining the maximum
thermal stress, and all others for the thermal stress in various shape
members and with various shape thermal gradients throyghout the
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m::llln.bei.r are ll'lU![lPllCI‘S of these basic equations. The value of these
multipliers range from 1 for a totally restrained condition, to  for a

ciondllmn in wh.n:h the restraining material is of the same rigidity as
the material being restrained as discussed in the following par‘agra;ph

2.12 Thermal Stresses in Long Hollow Cylinders

. I ti}ﬂ wall of a long hollow cylinder is heated nonuniformly through
its thickness, its elements do not expand uniformly and l]teni"::al
stresses are set up due to this mutual interference. When the tempera

ture d!stribution is symmetrical with respect to the axis md co Iik;_ll
along s length, a solution similar to that developed .l-Il‘P:'iI'a‘-"I‘aiJ“Il .""’“‘3'
for sections a short distance from the ends* gives the follow;ng]e‘( y
tions for the principal stresses.?:26:% . o

oy = e I:rz—az ijrdr— ¥ Trd (2.12.1)

(L—p)r Lb2—a® Ja Ja r r} (2.12,

i oE [r3+a2 ‘bTm'r_i_ .,Td_:rg .
ak 2 b

o Tm[m LT’“”_T} (2.12.3)

If the thermal gradient over the thickness of the wall is known, the

lntegrals in _these equations can be evaluated and the thermal stresses
for the particular case determined. -

|, Steady-State Thermal Stresses, Logarithmic Thermal Gradient

F)ne of the most prevalent cases of thermal stress occurs in the cylin-
drical vessel when heat is flowing through the sides in a steady qiate
causing the equilibrium temperature difference between the inrie; am;
ou;?rlsu;faccs to remain constant. Under these conditions the ﬂow is
r?v ;;1 t rough a ﬂm:v cross section proportional to the radius which
g rise to a logarithmic temperature distribution throughout the
wrall thickness,* paragraph 7.3.2. The temperature at any puirﬂ is [h."
given as a function of the temperature of the inner wall 7, by o

b

logs (_)
T,
b

loge (;;)

"
See footnote 25 for a discussion of the stresses at the ends of a eylinder.

T="T,
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ution is dependent only upon the ratio of the
d, although it is independent of the thickness,
rmally greater total temperature differ-
d thickness. Hence, thick wall vessels
ue to thermal stresses than are thin
ones. It is the temperature drop through the vessel thickness that gives
rise to the thermal stress, and it is convenient to call the temperature at
the outer surface zero, realizing that any other surface temperature
conditions may be obtained by superposing on this condition a uni-
form heating or cooling which produces no stresses, Fig. 2.29. Sub-
stituting Eq. 2.12.4 into Egs. 2.12.1,2.12.2 and 2.12.3 gives

The temperature distrib
outer and inner radii, an
it must be mentioned that no
ences are associated with increase
are more susceptible to failure d

U.ETa [ b (12 bﬁ b
el e
2(1 - ) loge <)
(2.12.5)
ET, - b 2 i
G = e 1 — log|-) — ‘ lA.-—I-::.g‘E
b "y b2 — a? e s\
201 - wloe 5) | | |
(2.12.6)
oET, b 242 b
Oz = 1 — 2log, (—) - -loge. (—) (2.12.7)
b T bt — a® a
21 — ) loge °)

When T, is positive, the radial stress o, is compressive throughout the
thickness and becomes zero at the inner and outer surfaces. The
tangential stress ¢; and longitudinal stress ¢: have their largest numeri-
cal values at the inner and outer surfaces of the cylinder which can be

found by substituting r = a and r = b into Egs. 2.12.6 and 2.12.7

to obtain
aET, d 202 (b .
- - mhe | ———loge ~) (2.12.8)
O = O b b2 — a? % (d
2(1 - ) loge(~) L
aET, 2a* /b o
Gfb = sz -— —————a—_ l_ £ I'?.Lr.r' (_) |E]'EI’}
i b — a® a
2(1 — p) lo!—’.a(;)
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The thermal stress distribution for the case b/a = 2.0 and T, is positive
is shown in Fig. 2.30. The stresses a. and ¢. are compressive at the inner
surface: i.e., the material in this region “wants to grow” but is re-
stricted by adjacent material at a lower temperature, and gradually
changes to tensile stresses at the outer surface as the reverse situation
takes place. When materials which are weak in tension, such as re-
fractories, concrete, cast iron, etc., are used under this condition,
cracks are likely to start at the outer surface; likewise failure from
fatigue will be more prone at this location when the vessel is subjected
to internal pressure and the resulting tensile stresses become additive,
paragraph 5.19.

Equations 2.12.8 and 2.12.9 can be simplified when the thickness of
the wall is small in comparison with the inner radius of the cylinder
by writing #/a = 1 + m, and expressing log. (b/a) as the series

m mdomd

b.
s () <ot # o m- B 4 =
0e 3 og, ( m) = m 5 3 1

(2.12.10)

Considering m as a small quantity and dropping terms of higher order

gives
2ETq i .
T Gz, = — - =4 [l -+ '—] (21211)
' 2(1 = u) 3
aFETq m
th == GZD = 2(1 __‘u)[]' - _3-] {21212)

A further simplification for the case of very thin walls can be made by
neglecting the term m/3 in comparison with unity in Eqs. 2.12.11 and
2.12.12, giving

o = o = BTy (2.12.13)
. 3 2(1 — ) '

T
.. (2.12.14)
AR TR

from which it is seen that the maximum stress is one half that for full
restraint of the material; i.e., the multiplier of the basic full restraint
thermal stress equation, Eq. 2.11.3 is } for this case.

|
|
i
|
1_
1

£
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2. Steady-State Thermal Stresses, Linear Thermal Gradient

If. the thfckness of the vessel wall is small in comparison with the
outside radius, the logarithmic temperature gradient, Eq. 2.12.4, can
be replaced by a linear one,

b—r
b —a

and substituting the value of 7 from Eq. 2.12.15 into Egs. 2.12.1
2.12.2, and 2.12.3 gives ! e

e aET, [(r2 — a?)(b + 2a)

T=Z (2.12.15)

2(r3 — a3) — 3b(r2 — a?)
]@mjm

(1=wrel 6(b+a 6(b — a)

o = — [(’2 + a0+ 2 - 2(r3 —a%) - 3b(r—a?) (b—1)r®
(I—wrzl  6(b + a) 6(b — a) O —a ]
(2.12.17)

L T [5+2a_b_,] -
(1—-pl3b+a) b-a (2.12.18)

The 'tangcntial stress ¢; and longitudinal stress o, again, as for a
loga_rlthmic thermal gradient, have their greatest numerical value at
ti‘{c inner and outer surfaces of the cylinder which can be found by sub-
stituting 7 = a and r = 4 into Eqs. 2.12.17 and 2.12.18 to give

cr;=c=—mETa[2b+a] )

s = Oz . L3 1 a) (2.12.19)
P aET¢[6+2a (2.12.20
v l—p3@+aJ L

For a thin wall vessel, @ = 4 and the equations can be further simpli-
fied to

aET,

o, = gy = — (2.12.21)
2(1 - ) |
GETQ

Ufb = Uzb = 2—(1—_7) r»‘!‘..’..f:]:'

and the thermal stress is the sam.e as for a logarithmic thermal gradient,
Ec;ls. 2.12.13 and 2.. 12.14. The thermal stress distribution over the
thickness of the wall is also the same as that of a flat plate with clamped
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edges, so that bending of this plate is prevented when it is subjected to
a linear thermal gradient through its thickness.

When the vessel wall is not thin, the exact shape of the thermal
gradient becomes more influencing. Figure 2.31 is a plot of the loga-
rithmic, Eq. 2.12.4, and linear, Eqg. 2.12.15, temperature gradients
which shows that, for a value of b/a = 1.2, the linear assumption is
within 7 percent of the logarithmic gradient; whereas for an appre-
ciably thicker wall vessel of b/a = 9.0, the difference is as high as 23
percent. The shape of the temperature gradient is correspondingly re-
flected in the magnitude of the thermal stresses it causes, although to a
lesser extent, with the steeper gradient giving rise to the higher stresses.
This can be verified by comparing the values of a maximum stress ob-
tained from Eq. 2.12.8 for a logarithmic gradient to that obtained from
Eq. 2.12.19 for a linear one. For a value of b/a = 2.0, the steeper loga-
rithmic gradient gives a 10 percent higher stress than the linear varia-
tion with its constant minimum slope throughout the entire wall; i.e.,
the mutual interference of one fiber on the natural expansion of an
adjacent one has been minimized by distributing the total temperature
drop AT equally over the entire wall thickness. This is a major pressure
vessel design consideration emphasizing the importance of avoiding
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Fig. 2.31. Steady-State Thermal Gradient in Cylindrical Vessel Wall
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ct.)llSl:sgliCtifJ]] shapes or contours which introduce steep thermal gradi-
ents,> Chapter 6. -

2.13 Graphic Determination of Thermal Stress in a Cylindrical
Vessel for Any Thermal Gradient

Frequently the thermal gradient throughout the cylindrical vessel
wall cannot be simply expressed, and an analytical solution of Eqgs.
2.12.1, 2.12.2, and 2.12.3 is not readily obtainable. Under these cir-
cumstances the integration can be done graphically by observing, for
instance, that the tangential stress o, given by Eq. 2.12.2 may be

written:
ok [ 24 a2 b'}'a’ 1 pr
Gt = —= = =, . 5
T (1—p) Ler-ay) J.a L LTM’” T] (2.13.1)

The first integral can be expressed as

a® b
1+;-2— " QxTrdr _
_?__j Trdr = °2 (2.13.2)
b2—a?Ja m(b2 — a?)

since | + a%/r = 2 (it is noted that a< r €< b and b — a 1s small in
comparison to r) and is the mean value of the temperature throughout
the entire wall thickness. The second integral can be written:

’

| pr ju 2n Trdr
—,J. Trdr = ————
r= a '21'1"?'3

:cmcl is one halt of the miean value of the temperature distribution with-
in the cylinder of radius r, where the integral is zero over most of the

range of integration. The tangential stress at any point can then be
written:

(2:13.3)

(if 7 =0for0 < r < a

Mean temperature } the mean tem-"

_ ok of the entire perature within
1—p cylindrical wall the cylinder of
thickness radius 7
Temperature
of desired

- 5 (2. 13.4)
stress location '

‘I his may be further simplified by noting that, when the wall thicknes
is small compared with the inside radius of the cylinder, the mean
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value integral of Eq. 2.13.3 is considerably smaller than that of Eq.
2.13.2 and for an approximate solution may be dropped giving the
approximation:

Mean temperature Temperature of

oE of the entire desired stress
ot = l—‘u_ cylindrical wall location
thickness

(2.13.5)

The significance of Eq. 2.13.5 is that it is an algebraic expression show-
ing that the thermal stress o, at any radius r is the value of this stress for
full restraint, «E/(1 — w), multiplied by a factor proportional to the
difference between the mean temperature of the whole cylinder and
that of location r. This factor ranges from } to | which is in agreement
with the discussion of paragraphs 2.11 and 2.12. For instance, when
the temperature distribution is linear, Eq. 2.13.5 gives a value of § for
this factor, whereas if the temperature distribution is a sharp one
affecting the mean temperature of the entire cylindrical wall very
little, a value of 1.0 for this factor is given by Eq. 2.13.5. Expressed in
practical working terms, Eq. 2.13.5 states that, in order to find the
thermal stress o in a cylinder for a given thermal gradient, Fig. 2.32,
the following should be done:

A. Plot the temperature distribution as a function of the square of
the radius and determine the mean value of the plot.

B. Translate the abscissa axis to the mean temperature value deter-
mined in A,

C. Invert the ordinate scale and multiply the ordinate scale by
aE/(1 — u). Inverting the scale gives the correct sign to the in-
duced stress. That temperature below the minimum tempera-
ture occurring throughout the wall produces no stress since 1t is
uniform throughout the entire wall thickness.

This curve is the approximate stress distribution in the new co-
ordinate system. The cooler material will be in tension, and at least
one surface will be in tension. A similar procedure can be followed to
determine graphically the radial and longitudinal stresses.

Nuclear reactor vessels are subject to internal heat generation within
their walls caused by the absorption of gamma radiation from the nu-
clear core. The conversion of such energy to heat behaves as a decay-
ing exponential function through the wall of the cylindrical vessel.**%

D—
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Fig. 2.32. Nature of the Thermal Gradient in a Cylindrical Vessel Due to
Internal Heat Generation, and the Graphical Stress Evaluation Procedure

When the outside of the cylindrical reactor vessel is insulated, the
temperature gradient is much like that shown in Fig. 2.32 which
adapts itself well to the graphic integration solution above. A tabula-
tion of many thermal gradients and resulting stress distribution equa-
tions for various heat generating geometries is given by Hankel.”

2.14 Thermal Stresses Due to Thermal Transients

In the preceding cases the thermal gradient was that which existed
under steady-state conditions; i.e., it was independent of time. Of
course, in order to reach this equilibrium thermal condition from an
initial uniform temperature, a transient thermal gradient, or one
changing with time, first occurs.” For instance, if the cylinder had an
initial uniform temperature of zero, and beginning with time ¢ = 0
the inside surface is maintained at a temperature 7, the transient
thermal gradients throughout the wall after various time intervals ¢,
are represented by the dotted curves of Fig. 2.33 as they approach the
steady-state condition. From such curves the mean temperature of the
whole cylindrical wall and also that of an inner portion of radius 7 can
be determined. Then from Eq. 2.13.5, having these temperatures, the
thermal stresses can be found for any time interval. For a very small
time interval t = 0, the mean temperature approaches zero, and at
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the surface

aET,

l—p

This is the numerical maximum thermal stress produced in heating a
cylinder. It is equal to the stress necessary to restrict completely the
thermal expansion of the surface. The stress is compressive during
heating. If it is subjected to a cooling cycle, it is necessary only to sub-
stitute — T, for 7. in the above equations and the resultant stress
is tensile.

As an example, consider a hollow cylinder which is surrounded on
the outside by a cooling media, and is suddenly contacted by a con-
stant temperature heat source on the inside such as to raise its inside
metal temperature by an amount A7 = 50°F. It is required to deter-
mine the thermal stress at the inside and outside surfaces when the
material is steel with E = 30,000,000 psi, « = 0.000007 in. per in. per
°F, and u = 0.3. A “skin effect” is created on the inside surface at time
zero when this transient is just started, because there has been insuffi-
cient time for heat conduction to take place, and a simple essentially
vertical thermal gradient is assumed, Fig. 2.33 (¢t = 0). Using Eq.
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Fig. 2.33. Transient Thermal Gradients in Cylindrical Vessel Wall
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2.13.5, and noting that the mean temperature of the entire cylindrical
wall thickness is substantially unchanged, the thermal stress at the
inside wall surface is

o= L T = = B (2.14.2)
— p | —
and at the outside surface is
= “_Eﬁ[o —0]=0 (2.14.3)

substituting the values of «, u, E and T, gives

000007 X 30,000,000 X 50 _
=3 -

15,000 psi
ay, = 0

The shape of the thermal gradient progresses from one having a very
steep slope to a logarithmic one after sufficient time elapses for a steady
state condition of heat flow to prevail, Fig. 2.33. Approximating this
logarithmic gradient by a linear one, the thermal stress at the inside
wall surface is again found from Eq. 2.13.5, noting that the mean
temperature of the entire cylindrical wall thickness is T./2

af [T, ; aET,
s e _l —_ I—” — —.._.7':' (Z. ]
ai, 1_-#[2 :l 2(1_#) (2.14.4

and at the outside surface is

oF [;r_u B 0] _ T,

oy =

Tl —u 2 201 — w)

Substituting the values of «, x, £ and T, gives

~.000007 X 30,000,000 X 50 _

g = — 7500 3
r,, o0 — 3) 7.500 psi

000007 X 30,000,000 X 50 ,
ay = 50 = 3) = 7,500 psi

Maximum thermal stresses are associated with the maximuin slope of
the thermal gradient; hence, a linear thermal gradient will give mini-
mum thermal stresses throughout since it has the minimumn possible
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thermal gradient. When the transient thermal gradient can be ex-
pressed by simple analytical equations, the transient thermal stresses
can be readily evaluated from Egs. 2.12.1, 2.12.2, and 2.12.3; how-
ever, when they cannot be so expressed it is more convenient to solve
for them by Eq. 2.13.4 and Eq. 2.13.5:

In order to reduce these maximum stresses in boiler drums, turbine
rotors, process equipment, and nuclear vessels, it is customary practice
to heat or cool them gradually to reduce the thermal gradient by be-
ginning with a temperature much lower than the final temperature,
and very slowly increasing the temperature when starting up, and re-
versing the procedure when shutting down.

2,15 Ultra-High Pressure Vessel Design Principles

Hydraulic and extrusion presses utilize very high fluid pressures to
produce large forces, which in turn require extremely thick-walled
cylinders. In such cylinders the hoop stress at the outside of the wall
thickness is appreciably less than that at the inside surface; hence, the
wall material is not used uniformly to its fullest stress and economic
potential, Fig. 2.22 and Eq. 2.8. 19. Several design principles that have
been successfully used to overcome this situation follow.

. Wedge Principle

Cylinders to withstand in the order of 200,000 psi are required in the
synthetic gem and powder metallurgy industries.® One method that is
used in the construction of these cylinders employs the wedge prin-
ciple. This is shown in Fig. 2.3¢ and consists of placing a multitude of
radial wedges inside a thick cylinder. The wedge surfaces are ground
or fitted with membrane gaskets so as to preclude leakage along their
mating surfaces; hence, the contained media is in contact with only
the inside surface. Since the number of wedges is large the tangential
strain in each one can be neglected and a contact pressure p' is created
between each wedge and the unsplit integral cylinder equal to

P = - (2.15.1)
a

This principle is based on these observations. In a cylinder under
internal pressure both the tangential and radial stresses are a maxi-
mum at the inside surface, and fall off rapidly with distance into the
wall of the cylinder, Eqs. 2.8.18 and 2.8.19. Since the shearing stress, to
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Fig. 2.34. Cross-scction of a Thick-Walled Cylind i of
g cctio ‘ylinder Showing Method of
Sub-Dividing Wall for Wedge Construction Princip%c o

which the failure of ductile material subscribes, Par. 5.15, is propor-
tiom}l to the difference of these two stresses, it can be ’rcductd by
moving the point where the highest tangential stress occurs away from
that wht?rc the highest radial stress occurs. Hence, in this constr;ucti‘un
the maximum tangential stress occurs at radius ‘@’ whereas the maxi-
mum radial stress occurs at radius “¢”’. ‘
) }"he maximum shca}'ing stress occurs at the inside surface, radius
a”, of the integral cylinder and is found by substituting the value of
the contact pressure p' from Eq. 2.15.1 in Eq. 2.8.2] as
b? c b
T = plm = p;(m (2.15.2)
The opFimum dimensions of the cylinder of constant outside radius *5"
to obtain minimum shear stress can be found by setting the derivative
of this stress relative to the inside radius “a” of the cylinder equal
to zero ‘ |

dr _ _ (b2 — 3a?) )
= Py (%129
b _

2=V3=17 (2.15.4)
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Thus, with this construction, a maximum strength cylinder is obtained
with a ratio of outside to inside radius of 1.7.

The “wedge” principle can also be used in conjunction with the
““cascade” principle, Par. 2.15.3, wherein the outer thick-walled cyl-
inder is replaced by a thin membrane and liquid pressure.

2. Segment Principle

This principle of design is based on eliminating the thick-wall hoop
_ stress, per se, and substituting for it a design giving an uniform tensile
stress throughout its thickness. Such a construction is shown in Fig.
2.35 and consists of dividing the cylinder circumferentially into a series
of short links. It is much like a brick wall, with the overlapping bricks
fastened together by link pins. The link pins run the length of the
cylinder through holes in the pins. The effect is a multi-sided polygon
with an even distribution of stress throughout the thickness of the poly-
gon link members. A thin inner liner or seal membrane Fig. 2.35a can
be employed to prevent fluid leakage. The width of the segments and
diameter of hinge pins are based on the shearing, tensile, and bearing
strength properties of the materials used just as with the design of
bolted or riveted joints. When closure heads are required the hinge
pins are used to fasten the head to the cylinder under this condition
they also take longitudinal stress.

Neglecting the effect of the seal membrane liner, and equating the
applied load on the elemental area abed due to the internal pressure p
to the resisting force in a segment uniformly spaced on a longitudinal
pitch of twice the segment width, Fig. 2.354, gives

0
Ewpf 2 2 cos ¢ dp = 2F, = 2F tan (%) (2.15.5)

4wpr sin (g) = 2F tan (g-) (2.15.6)

but since for small angles the sine, tangent and angle in radians are
approximately equal, Eq. 2.15.6 gives

F = 2wpr (2.15.7)

Dividing this force, Eq. 2.15.7, by the cross-sectional area of the seg-
ment, Sect. A-A. Fig. 2.35¢, gives the segment tensile stress

o= 200 _ 2P (2.15.8)
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Fig. 2.35. Segmental Cylinder Construction

(&)

This .is twice the hoop membrane stress in a cylinder of the same di-
mensions, Eq. 2.2.4, but since the stress is uniform across the segine ..-.;-
large thicknesses of material can be used to their maximum 1‘;:.-;£:'alli.s;i.

The segment principle permits the construction of single large di;-un-l

eter pressure cylinders to accomplish the task usually done by a multi-
tude of small diameter cylinders acting in parallel. This wlf_'ne of con-
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struction also permits the field erection of el:étrgfxcly tlirg: fzfirli
i - e mate

i , and the use of high strength non-welda :

::h;:lcéiz and link pins. Single cylinder hyldrauh_c presses lcxcrtmg a

fo%cc of 220,000 tons have been built#:# using this principie.

3. Cascade Principle

The cascade principle of design consists of introiucmgbafre%;eiss
' 1 ehavi
ithi thickness to obtain membrané
within the total vessel wall e el
i his by the use of a series of coaxial p
the vessel. It accomplishes t : i
i intained under pressure by
vessels separated by a fAluid mai e
i ressures between success
oreign source. The control p \ _
fart: cghosen so that when subjected to the mternal'actmg prcz“lurgﬁt.?fg?
are pressures in the fluid diminishing or cascadmg.outw:?r dy. o
Figure 2.36a shows a vessel consisting of two coz;xml cylin crbsrzncs
. i i em ;
i 1 v adii so that they behave as m
iently thin relative to their r : they ' :
?E.q QYQ 4. The space between them is maintained at pressure f1 by a

p‘ll[Controlied fluid-fill pressure)
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Fig. 2.36. Coaxial Cylindrical Vessel
Pressure

with Cascade Controlled Fluid-Fill
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separate source so that the inner cylinder is placed in compression with
a hoop stress of

_ b

T = I
1

(2.15.9)

and the outer cylinder is placed under a hoop tension stress of

"o

5 (2.15.10)

Application of the acting internal pressure only on the inner cylinder
produces a hoop tension stress of

Ty = (213'. lJ

hy

The total hoop stress in the inner cylinder is obtained by adding Eq.
2.15.9 and Eq. 2.15.11 to give
(p — por:

_ﬁlr" .E'E_ (915 19
Oy = 7 + T e __-fi,- (2.15.12)

The total hoop stress in the outer cylinder remains the same as given
by Eq. 2.15.10. It is not influenced by the application of the internal
pressure on the inner cylinder since the pressure acting on it is con-
trolled to a value p;.

If the radii of the inner and outer cylinders are substantially equal,
Fig. 2.364, it is seen that the sum of the thickness of the two cylinders
is the same as that for a single thickness cylinder assumed to act as a
membrane with uniform stress throughout the entire wall thickness. The
most efficient vessel in terms of economic material utilization is one in
which all the material acts as a membrane and resists the pressure by
means of a uniform stress through its thickness. It is important to con-
trol the pressure relationship p/p; with constructions of this type in
order to avoid subjecting the inner vessel to a collapse condition as
would occur if the internal pressure p was reduced below p, during
operation.

This principle of a controlled fluid-fill pressure between vessels is
also helpful even when the wall thickness is large, Fig. 2.36¢, and a
variation in stress occurs across the thickness in accordance with the
Lame’ formula, Par. 2.8. It helps through reducing the variation of
maximum to minimum radial and tangential stress throughout the
thickness, Equations 2.8.15 and 2.8.16, and is particularly advanta-
geous in lowering the shear stress, Eq. 2.8.17, by reducing the value
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of the radial compressive stress occurring at the point of maximum
tangential stress.

4. Yoke Principle

A version of the cylindrical monobloc, shrink-fit, or segmented
vessel is one in which the axial force is not transmitted to the cylin-
drical vessel but instead is imposed on an external yoke via a floating
cylindrical closure head. Tightness is accomplished by a deflection
compensating seal, Fig. 6.50b, in which the internal pressure forces
the seal carrier to dilate and follow the ID of the vessel. Hence, the
O-ring gaskets do not see a clearance and cannot extrude. Therefore,
they remain leakproof under pressure. The separate external structural
yoke may consist of:

1. A series of needle beams supported by pinned ties, Fig. 2.37a,
or
9. A series of continuous wire or strap wrappings, Fig. 2.370.

The advantages claimed for this type of construction are its use of
inexpensive structural material for the yoke, and a minimum amount
of machining, After depressurizing, quick opening of the vessel is
facilitated by sliding it out of the yoke for access and removal of
end closures. In the case of beam tie-pins, removal of one set permits
hinging the support beams. Alternatively, the yoke may be slid away
from the vessel.®!

This principle has been used for the construction of high pressure
vessels in metallurgical sintering and bonding processes. It is well
adapted to high pressures and large diameters, and there are no size
limitations on the use of this type of end closure.

The strap wrappings, Fig. 92.37b, are in membrane tension and must
sustain the total end load, so the force in the wrapping on one side of
the cylinder is

2,
paEEB (2.15.13)

(5]

in

and the average membrane stress in the wrapping is

_F_m'z,f?;
=0 Bd (2.15.14)

Oave.

where A is the cross-sectional area of the wrapping on one side of the
cylinder (Fig. 2.37b). The stress in the wrapping will vary dependent

(s -
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Fig. 2.37. Pressure Vessel with External Yoke. (4¢) Beam and Ties (b) Contin-
uous Strap Wrapping.

upon the assumptioln made concerning friction between the individual
wrappings. If no friction is present for @ <y and the wrappings arc

if;ee to move relative to each other, the length of the inside wrapping
(20)

=0+ == 2.15.15

; 180 " (2.15.15)
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and the length of the outside wrapping is

20 g
Lo =!E+~(1—8—017rra (2.15.16)

Further, assuming a linear stress distribution across the wrapping

ES  Eb

RN
Oavg, =—'—2—£ (2.15.17)
where § is the increase in the length of the wrapping. The maximum
stress will occur in the inside wrapping because it has the shortest
length.

Eb

Omax. ='ET (2.15.18)

Substituting the value of & from Eq. 9.15.17 into Eq. 2.15.18 gives

2%

Omax. = Ua\rg.m (21519)

Combining Egs. 2.15.15 and 2.15.16

20
;=9 - %ﬂ(ra -7 (2.15.20)

Substituting Eq. 2.15.20 in Eq. 2.15.19 gives
2%,
Omax. = Tavg. (29) (21521)
29, - —lgo“'rr(rn =#)

The maximum stress condition occurs on the inside wrapping for
9 = 90°; that is, no friction exists between the wrappings, and from

Eq. 2.15.21

2%,

_— 2.15.22
ave. 2% = TT(?‘G B ?'i) ( 2 )

Omax. = @

The maximum stress possible on the outer wrapping occurs when
friction prevents sliding throughout the circular portion, 8 = 0; and
from Eq. 2.15.21 is equal to the average stress.

i
|
|
|
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PROBLEMS

1. What is the required thickness of a 6 ft. inside diameter cylinder, considering it as
2 thin wall vessel, to withstand an internal pressure of 1000 psi if the allowable tangen-
tial stress is 20,000 psi?

Ans.: 1.8 in.

9. What is the thickness of a spherical head for the eylinder of Problem | if the
dilation of the head and cylinder is to be equal?

Ans.: 1.8 (1 — )/ (2 — )

3. What are the numerically maximum and minimum thermal stresses occurring in
a carbon steel cylinder of 4 = 3a for steady-state heat flow condition in which the
temperature of the inside wall is |0°F higher than the outside wall (E/(1 — 1) =
300 psi per °F) (hint, use Eqs. 2.12.8 and 2.12.9)7

Ans.: Max. gj, = 0., = — 2,010 psi
Min. gy, = g, = + 990 psi

4. A point in a body is acted upon by three normal tensile stresses, gy, o2 and o3, on
mutually perpendicular planes so as to form a triaxial stress condition. What are the
strains in the direction of these stresses?

Ansr ey = 1/Eloy — poy — poa)
es = |/E{gy — poy — poy)
e3 = 1/Elgy— poy — o)

5. A cylinder with a 48 in. inside diameter, and a 60 in, outside diameter is sub-
jected to an internal pressure of 5,000 psi. Determine the value and place of occurrence
of: (a) the maximum tangential stress, () the maximum radial stress; and (¢} the
maximum shear stress.

Ans.: (@) 22,778 psi, tangent to inside surface.
(h) —5,000 psi, normal to inside surface.
(¢) 13,889 psi, 45° plane at inside surface.

6. In the cylinder of Problem 5, («) what is the average tangential stress; and (4)
what per cent is this of the maximum tangential stress?

Ans.c (a) 20,000 psi
(b) B7.8 per cent

7. A 100 psi air accumulator consists of two 60 in. inside diameter spheres con-
structed to intersect at an angle of 30° with their common axis. (a) How thick must
their wall be for an allowable design stress of 20,000 psi? () If a ring is used to rein
force this intersection, what is its required cross-sectional area to maintain the natural
radial growth of these spheres at their intersection?

Ans.: (a) 0.075 in.
(b) 2.798 sq. in.
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8. An8in. inside diameter § in. thick tube is bent into a 10 ft. diameter torus which
is to be subjected (o an internal pressure of 2,000 psi. What is the tangential stress at:
(a) the centerline of the torus bend, (&) the outside of the bend cross section, (c) the
crotch or inside of the bend cross section: and (d) by what per cent does the tangential
crotch stress exceed the average tangential stress in 4 straight cylinder of the same
cross-sectional dimension and subjected to the same internal pressure?

Ans.: (a) 16,000 pst
(b) 15,500 psi
(&) 16,571 psi
(d) 3.6 per cent

9, If a long sleeve of inside radius & and outside radius ¢ is shrunk on 2 solid shaft,
the external radius, of which in the unstressed condition is larger than the internal
radius of the sleeve by an amount §, establish an expression for the uniform contact

pressure b
Ans.: p= SE( — b%) /267

10, In the sleeve given in Problem 9, (a) establish an expression for the maximum
shearing stress in sleeve; and (#) if the shrink-fit is obtained by heating the sleeve to a
uniform temperature 7 above the solid shaft, how hot must the sleeve be heated to
produce a maximum shear stress in the sleeve of 20,000 psi if the diameter of the shaft
is 6 in. (assume the materials to be steel with £ = 30,000,000 psi, and @ = 0.000007

in, per in. per °F)?

Ans.: (@) Tows, = £8/20
(b) 190°F

11. A thick cylinder is subjected to only an external pressure directed inward.
Derive an expression and reduce it (o its simplest form for the hoop stress, radial
stress, and shear stress at the inside and outside surface.

o ~ Pl b% +a%)
Ansi: oy =g, O = 31
L3 bh® = a” 2 b*—a
. =0 iy =
Oy ) Uy, Po
~pob” poi”
ta _1‘}2 _ a2 Th = b: = [12

12. The ASME Nuclear Power Code uses the maximum shear stress theory of
failure and requires the minimum thickness, &, of a thin cylindrical vessel ol in-
side radius, », which is closed on each end and subject to an internal pressure, p,

to be:
.

Cor- 0.5p

Develop this formula. (7 is the allowable maximum shear stress.)
[Hint: See Par. 5.15.1 (b).]

|
|
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13(.‘ Ir‘1' a thin vessel o_f revolution of thickness **h,” subject to an internal pres-
sure “p, ic two principal stresses are equal (0, = 03 ). Prove that this vessel is a
sphere. (Hint: start with Eq. 2.6.5.)

) 14. ) A banded cylindrical vessel, 30" inside radius, has hemispherical heads and
1s’5u_b_}cctcd to an internal pressure of 1,000 psi, Fig. 2.38. Assume there is no
fnctwp between the band and the inner shell and also no prestress exists. (a)
What is the required thickness of the hemispherical heads for a maximum mem-
brane stress of 20,000 psi? (b) If the inner shell of the cylindrical portionis made
the same thickness as the hemispherical head, what is the required thickness of
the wrapper (or band) to maintain a maximum membrane hoop stress of 20,000

Wrapper or Band Hayd
s [ / § T Piner shel
11
1
it 'l
p = 1,000 psi
r=30"

[ I
Fig. 2.38, Cross Section through the Banded Vessel of Problem 14.

Es;lérlo;h:nigr;cr St‘l:lhjjé:;sume i =0.3) (Hint: The inner shell is subjected 1o both
d longitu stress, whereas the out i i y a ho
D i g er band is subject to only a hoop

Ans.: (a) .75 in,
(b) 1.07 in.

. 15. Tf}e cylindrical porl:'iun of the vessel of Problem 14 is constructed of a
single sohcil_ wall. (@) What is .thc required thickness to maintain a hoop stress of
20',00(.1 psi? (k) How does this compare to the combined thickness of the cylin-
drical inner shell and band of Problem 147 h

Ans.: (a) 1.5in.
(b) 17% thinner

16. In pract.ict it is frequently difficult to form perfectly circular vessels, but
_due to the fabricating process they may have a very small noncircularity us shown
in Fig. 2.39. Under the action of internal pressure it tends to deform ml 1 L]I‘ul\-
circular shape, thereby introducing a small local bending stress in the wall of the
vessel.

‘ Stress measurements on a thin wall cylinder showed a tangential stress of
20,0‘0{} psi on the inside surface and a tangential stress of 16,000 psi on the
outside surface adjacent to the inside stress measurement. What is () the value
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True Circle
Location & \L{/ g
|
A% J——MNoncircularity
(Exaggerated)
Location F

Fig. 2.39. Noncircular Vessel

of the direct or hoop stress, (&) the value of the bending stress and (¢) were these
stress measurements taken at locatin E or I in Fig. 2.39?7

Ans.: (a) 18,000 psi
(6) £2,000 psi
(c) Location E
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3

Stresses in
Flat Plates

3.1 Behavior of Flat Plates

Flat plates may be thought of as two-dimensional beams. When a
plate, such as a cylinder head or manway COVET, bends under loads
normal to its surface, the plate bends in two perpendicular planes
rather than in only one plane as does a beam.

The behavior and failure of a plate may be depicted by Fig. 3. L.
From 0 to A the deflection is proportional to the load and the deflec-
tion is due to bending only. This is the region that will be discussed in
the succeeding paragraphs. In the region A4 to B, yielding has occurred
over the entire plate thickness and direct tension carries a major part
of the load as in a thin wall or membrane vessel, Chapter 2. The
purely elastic strength of a plate is small compared to its total, and
when its flatness must be maintained, such as for steam generator
tube-sheets, the thickness must be adequate for the loading or supple-
mental stay-bolts, ties, or strong-backs employed.

Plates may be arbitrarily classified into three groups: (1) thick
plates in which the shearing stress is important, much as with a short

Load

0
Deflection

Fig. 3.1. General Behavior of a Flat Plate
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deep bcan?; (2) medium thickness plates in which bending stresses are
the most important and on which the major strength ni the plate
Sgl:a)clsds,. corresponding to the usual beam, and about whicf‘1pthi;
mailgr)ll:roli ([:E:c;ir;‘;ecil;tcir:i:io (3) thin plat}cs whose strength depends
o sion accompanying stretching of its middle
conilti-iul?r flat plates are widely used irj. all pressure vessel design and

ction, s:uch as at the ends of cylinders or hemispheres, and for
access and maintenance closures, as well as for the structurz;f su g
pf internal loads from catalysis beds in process vessels or 1 ; P‘P(ff_l
in nuclear vessels. | e

3.2 Bending of a Plate in One Direction

o hc,; a simple be.am is subjected to bending, not only are the fibers
strained in the longitudinal direction, Fig. 3.2, equal to

but they are i
(tcmile}ys?;: dlsg ?ccon";pamed by lateral contraction on the conves
, and lateral expansion on the c : ive) sidte
: . oncave (c =ssive) side
due to the Poisson effect of rompEm

Fig. 3.2. Bending of a Beamn
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Due to this distortion all straight lines that are parallel to the z direc-
tion in a cross section curve so as to remain normal to the sides of the
section, Fig. 3.2. Their radius of curvature R will be larger than 7 in
the same proportion as ¢ is larger than ¢., and equal to

B (3.2.3)

o

If a long rectangular plate of uniform thickness, #, is bent to a cylin-
drical surface by moments along its long sides or loads normal to its
surface, Fig. 3.3a, it is sufficient to consider only a strip of unit width as
a rectangular cross-section beam of length a. Since it can be concluded
from the condition of continuity that there is no distortion of the strip
cross section during bending, as shown in Fig. 3.3b, a longitudinal
fiber in the strip ss is subjected to both a longitudinal tensile stress o+
and a tensile stress o, in the lateral direction sufficient to prevent con-
traction of the fiber. Assuming that cross sections of the strip remain

(SN, s s s SETTTEE TR

(&) ¥

Fig. 3.3. Bending of Plate in One Plane
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plane during bending, the unit elongation in the x anc irecti

. ; £ ; dire

B 525, s g the x and 2 directions,
J?

by = — and
r

g-=:0 (3.2.4)

"Ihhe correspond.mg stresses are obtained from Eqs. 2.3.4 and 2.3.5 for
the case of tension in two perpendicular directions as:

o ezl Ey
z = = = (3.2.5
L—p (1 —pYr S
S }.H?ZE ‘LLE)'
Y = = i Sy Bl
1 e 0 — ) (3.2.6)
The bending moment at any cross section of the strip is then
~+hi2 f
E +h/2 "y
AI=J G;}dy=——-j )'zdv=ij——
—hs2 (L=p¥rdope” —  12(1 = @)1
(3.2.7)
from which
1 M )
; = _5 (3.2.8)
where
ER3 EI

D = o — = (3.2.9)
(1 —p%) 1-—p B

The quantity D is called the “flexural rigidity” of the plate and takes
the place of EI in the conventional beam formulas. Thus d‘ue m‘l':-”
lateral restriction and correspondingly induced lateral bl-ezixdi.np,- 'T].:?—.
rbtzegt, a plalt)c ben’t l\1lt:e a bean'l in one planc only is stiffer than it \:w::uld
cem‘y pure beam action only in the ratio of 1/(1 — w*), or about 10 per
Along the ux.lsupportcd edges, length a, of the plate there are no
;::tt:r‘nlally. gpplled moments and none are induced by restricting the
; ll;d strain at tl]{?sc edg':":s. Here t.he plate edge also curls downward
s shown in Fig. 3.3a Section A-4, in addition to deflecting in the nor-
zanal mémfer The rad}us of curvature of this unsupportedaedgc (:url 18
i;;pr:};linately that given by Eq. 3.2.3. The remainder of the plate,
= de_l part removed from these unsupported edges, is bent into a
ylindrical shape and Eq. 3.2.8 can be used for calculating deflections.
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As with a beam, for small deflections the curvature 1/7 can be replaced
by d%/dx* and the differential equation for the deflection curve is

9 _ (3.2.10)

= - M
dx?

3.3 Bending of a Plate in Two Perpendicular Directions

D

When the rectangular plate of Fig. 3.4a is bent by uniform moments
M, per unit of length along the edges parallel to the y axis and M, per
unit of length along the edges parallel to the x axis, the middle plane
does not undergo a deformation when the plate is slightly curved to
give a small deflection w, and this surface is called the neutral surface.
Since w is a function of both x and y, its derivatives which give the
slopes when proceeding in the x and y directions are written dw/dx and
dw/ay, respectively. These correspond to the single plane slope dw/dx
of a beam. Likewise, d%uv/dx* and a%u/ay* ar
tures, with their reciprocals giving the approximate radii of curvature:

1 2w

{3.3.1)

1 i*w

= - — and
r ox? )
rvature of the neutral surface in sections parall
that in sections parallel to the yz plane.

é j,E

ry is the radius of cu
the xz plane, and 72

M,

7 CCCC

(a)

(&)

Fig. 3.4. Bending of Plate in Two Perpendicular Planes

e the corresponding curva-
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The dlrgction of the moments in Fig. 3.4« are considered positi
anf:i the:‘ 1}11ddlc plane of the plate is taken as the xy pllanf witph ‘-‘;IUVC
axis positive downward. An element is cut out of thc:platf* by two “’-‘ .
of plalnes _paraliel to the ¥z and yz planes, and itis assumc;l that dfélm
bending 1t§ lateral sides remain plane and rotate about the netrtmgl
axes n-n, Fig. 3.46. The applied moments shown in Fig 3.4a utl trk?
upper part gnder compression and the lower part in tel.{S.i(.i_;[;l :FI|)1C u 1'?
el.ongatlons in the x and y directions of an elemental sheet-r! d “
distance z from the neutral surface are s

o f Z
2= and ey = - (3.3.2)
From Eqgs. 2.3.4 and 2.3.5 the stresses are
zE 41 1
or = = HE(TI_ “LE) (3.3.3)
Gy = 2 (i —!—ru,-l—. (3.3
1 — p2hrg Tl) S

Ei{]uatmg thf: moments of the internal forces acting on the sides of the
f}:t:;entt, n;)tmgf that the stresses are proportional to the distance from
eutral surface, to the external applied e 3
! 1 s ; >d moments, : ) W=
desiapiremn pp , gives the follow

o412
crzdydz = Mydy i3 G
J—n_a O2L 0) My dy (3.3.5)

+hi2
JA Gyl dx d.—f = .1'{3 dx N—
—h;2 (3.2.0)

substituting for ¢, and T 2 q
. : . and ¢, from Eqgs. 3.3.3 and 3.3.4 int o
tions gives 1 3.3.4 into these equa-

1 1

D(— —) = 19,3.7
5 +,u?‘2) M, (3.3.7)
1 1

D= i) =M, -
A -I-[.Ln) "—Ir_ (3.3.8)

gcvlua;:)mr.ls 3..3.? and 3.3.8 may be written in terms of the deflection w
y substituting the values of r; and r, from Eq. 3.3.1 to become:
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& o
_D(_E4._Eg:=ﬂﬁ (3.3.9)
ax? éy*
A2
_D(‘L“” i @) = M (3.3.10)
) ax?

These equations correspond to the deflection curve for a straight beam.

In the special case of M, = M, = M, the curvatures of the surface in
two perpendicular directions are equal and the deflection surface is
spherical with the curvature given by Eq. 3.3.7 as

1 M

T D(l +p
As long as the bending moment M is uniformly distributed along the
plate edges, a spherical surface is obtained for any shape plate; i.e., it
is independent of whether the plate is square, rectangular, or round.

(3.3.11)

3.4 Thermal Stresses in Plates

If a simply supported plate s heated uniformly throughout its entire
thickness, no stresses are set up since its thermal expansion is not re-
stricted externally or internally. If the plate is heated nonuniformly so
that a linear thermal gradient exists through the plate thickness for a
temperature difference between plate surfaces of AT, the thermal ex-
pansion corresponds to the moment elongations above, and, since the
edges are free, the deflection surface produced by these expansions will
be spherical. The difference between the maximum or minimum ex-
pansion, and the expansion at the middle surface is aA7/2, where a is
the linear coefficient of thermal expansion, and the curvature resulting
from this thermal gradient is:

oAT R (3.4.1)
2 2r
1 _oa? (3.4.2)
7 h

The curving of the plate creates no stresses because the edges are [ree
to rotate and the deflection is small compared to the thickness.
However, if the edges of the plate are clamped so that they cannot
rotate freely, bending moments will be induced along the edges of 2
magnitude sufficient to eliminate the curvature produced by the linear
thermal gradient as given by Eq. 3.4.2: and accordingly, satisfy the

!
i
|
i
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condition of clamped edges. Substitutin ;i

3 g the value of the radius of
curvature from Eq. 3.4.2 in Eq. 3.3.11 gives the bending mc :
unit length of the clamped edge: grres e Tmdig momeit per

aAT(1 + p)D
M= ———— (3.4.3)
Sinc; M acts on a rectangular area of unit width and depth 4, the
maximum bending stress occurring on the outside surface Iiheri*- is

6M B 6a2AT(1 + p)D wBEAT

o B2l = p) i)
This is the same as that for the thermal stress in a cylinder, Eq. 2.12.22;
and Eq. 3.4.4 developed for flat plates can also be used »;ith S:lﬂ'l:l;l-}':
accuracy for cylindrical and spherical vessels. As with a cylinder. the
stress is proportional to the coefficient of thermal expansion . the
therlln'f]l drop AT across the plate thickness, and the 5'nodublfxs of
'eiastlmty. Also, although Eq. 3.4.4 shows that this thermal stress is
mde‘pef}dent of the plate thickness, in practice the total thermal Ci;‘(J :
AT is likely to be higher for thick plates than for thin ones. ’

Omax, —

3.5 Bending of Circular Plates of Constant Thickness

Tht? deflection surface of a circular-symmetrically loaded circular
plate is symmetrical about its central axis perpendic;ular 0 the Jld[t’:!l
ar.1d hen.ce depends on only one variable x. Figure 3.5 represgnt-a ‘
di‘ﬁll'l(*'(l'l(::?t section with the axis of symmetry O,:: and w the ldrﬁéf‘zio;i
gf any point 4 at a distance x from the axis. The slope at this IOiI t
for SI'I'.lElll values of w is ¢ = —dw/dx, and the curvature of the h] IJ . '.-
the diametrical section xz is: premme

1 dw  dp

=3 T R (3.5.1)

Th.P radi.us of curva ture 75 in a direction perpendicular to the xz plane
:?r:i;-)ﬁliﬁt-l,:da-f?:‘[:_?lmgi that the origin.al .strzfight line mn remains a
% H_I_ . an. o r; ‘1: platﬁ ;-s be!lt. but is inclined to the central axis
St;‘ec‘-: d .2 ._gr . !‘,.1,-.. a cy md}ru‘.{il surface (mn \.'t:rtic:aIJ in' the un-
gurfhb? p'adr_-k having the lu.ut (7 for its geometric axis becomes a conical
.[_H;Tsu.;i;..at;;tisapcx at point B. Then 4B represents the radius r., and

¢
X

-
) —
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Neglecting the effect of shear on bending, and substituting the values
of 1 /ryand 1/r: from Eqs. 3.5.1 and 3.5.2 into Eqs. 3.3.7 and 3.3.8 give:

M = D(‘% +,J§) (3.5.3)
My = D(% +,%') (3.5.4)

M, and M, are the bending moments per unit of length, with M, acting
along cylindrical sections such as mn, Fig. 3.5, and M, acting along
diametrical sections xZ, Fig. 3.6.

Equations 3.5.3 and 3.5.4 contain only one variable, ¢, which can
be determined from the equilibrium equation for the forces on an ele-
ment cut from the circular plate by two cylindrical sections, mmnn and
mymymny, and two diametrical sections mnnmi and mnmny, Fig. 3.6. For
the direction of forces shown, the upper portion of the element is in
compression both in the radial and circumferential direction, and the
lower portion in tension i each of these directions. The middle plane
is the neutral plane; Le., it ls in an unstrained state.'? The total mo-
ment acting on the side mmnn 18

Myx do (3.5.5)

Fig. 3.5. Symmetrical Bending of Circular Plate
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Fig. 3.6. Element of Circular Plate in Bending

and the total moment acting on the side mymnn, is

dM,
M
( L a’x) (x + dx)db (3.5.6)
or neglecting terms of higher order,
dM,
M 1
\xdf + T xdxdf + M, dxdb (3.5.7)

Ihe 1 q aWL Qb
tOtal moments on tllc Sldes N are CdLI’l e ula.l to M ald X d“(.l
]

these hav i i
e cba resultant in the xz plane, noting that for small angle the
> may be taken as the angle in radians, of l

. (df
2Mz dx sm(—Q—) = M, dxdf (3.5.8)

Due to ; '

g tsg;n:;mtry there are no shearing forces on the sides mmnn; ; but
kol ql‘; hearing force per unit of length acting on the side —
el i earing .force acting on this side of the element is ['xdd T}--c;
: ing force acting on the side mymmny is -

dav
V + Ed.t)(x + dx)dl
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and these two forces give a couple in the xz plane equal to:

dx v dx
Vi a‘&(-—) + (V * -——a'x)(x + dxja*e(—) (3.5.9)
2 dx 2
or neglecting terms of higher order equal to:
Vxdbdx (3.5.10)

Equating the sum of the moments, Eqgs. 3.5.5, 3.5.7, 3.5.8 and 3.5.10
to zero gives the equilibrium equation for the element.

dM;

My + Tx - Ms + Vx =0 (3511)
X

Upon substituting the values for M, and M, from Eqs. 3.5.3 and 3.5.4,

respectively, Eq. 3.5.11 becomes

d2¢+1d¢a :#_ V
dx? xdx X D

A second equilibrium equation stating that the algebraic sum of all
the forces in a given direction is equal to zero can be written. From this
V can be found and Eq. 3.5.12 used to determine the slope ¢ and de-
flection w of the plate. For instance, if a circular plate is subjected to a
uniform load of intensity g and a centrally applied concentrated load
P, the shear per unit of circumferential length on 2 circular section of
radius x must be equal to the load within this radius divided by its

circumference or

(3.5.12)

axlq + P g% P
V= =— 4+ — 3.5.13
2mrx 2 Qmx ( )
Placing the value of V' in Eq. 3.5.12 gives
2y ldp ¢ 1 /gx P .
LS AW SR SR 3.5.14
dxt  xdx AP D ( 2 Qﬂx) ( )
or
d[l d(:f:)] 1 gx P)
—_——_——X e — = c
dx|x dx D(2 2mx (3.5.15)
The first integration of Eq. 3.5.15 gives
L8 1(‘-”‘2 L )+ C (3.5.16)
e (xd) = — —|— + 7 logex :
x dx plg Tam ‘ |
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vhere () is st i i
where C) is a constant of integration, and a second integration gives

i = = gxt B P (.r2 logex &% %2
16D 27D\ 2 ?) Crg + G G2A0)
or
B g3 Px , Cix (s
¢) IGD — g;j—)(z 10%33‘ — U + T + T !%.GIB)
where C: is the second constant of integrati ? :
, : _ on. For small deflections
¢ = —dw/dx and the equation 1:)15:(:011;11‘:9.fjr or sl et
dw gxd Px Cix 0
R il . A1X C2 5 g
- %D - 811-D{'2 logex — 1) — e 3.5.19)
and by integrating again gives
gt Px? Cix2
= 1X
64D + Bwﬂ(loge-’f -1) - — Cylogex + Cs
(3.5.20)

']‘hIS lis th? gleneral deflection equation for a symmetrically loaded flat
cn.*cudar p att;.. The constants of integration C;, €y, and C; are deter-
mined in each particular cas i : onditions of 1

ry P r case of loading by the edge conditions ol the

3.6 Bending of Uniformly Loaded Plates of Constant Thickness
1. Clamped Edges

Whe.n the edges of a plate are prevented from rotating but are not
otherwise restrained, i.e., there is no strain in the neutral pla.lw; o ;l
p%ate_, the edge condition is called a “clamped™ one. Equariu;-; ‘i‘ 5 I]:’
gives the slope and Eq. 3.5.20 gives the deflection for this case \\Lt:l
P=01is put into these equations. The value of the constaﬁ (s _:"m. i;;r-
fﬂ!:llld by introducing the physical conditions that satisfy i_}';t‘ >l1i [f
ais the edge radius of the plate, then ¢ = O at x = 0 .-and X =l ; ' ;1 l
from th.e:s.c two conditions Eq. 3.5.18 gives the following cc.|.1..1::tirlnhuh .i'ui:r
determining the constants Cy and C: o '

( gx3 Clx C‘Z
16D *2_‘7)m= 0
( ?"CE Cl-“-‘ Cz'

16D 2 ‘;)x_u =0 (3.
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from which

_9® d G =0 (3.6.3)
¢ =3%p '

Substituting these values into Eq. 3.5.18 gives

% a0 2
= a® — x*
$ = 16D\ )

(3.6.4)

The deflection is established from Eq. 3'5'20. by setting 'P =0 and
introducing the values of C and G, from Eq. 3.6.3 obtaining
2
w = il ot + Cs (3.6.5)
64D 32D
The constant C; can be found from the condition that at the edge of
the plate the deflection is zero, SO

TR N oy (36.6)
64D 32D
from which
0 (3.6.7)
C3 = %
YY)
Substituting the value of Cs in Eq. 3.6.5 gives the deflection
! 2)2 (3.6.8)
= a® — x2%)2
W= D' )

The maximum deflection is at the center of the plate equal to

_ (3.6.9)
64D

The bending moments can be found from Egs. 3“)% r1nd 3.5.4 llax
substituting the expression for the slope ¢ from Eq. 3.6.4, thereby
giving

M, (3.6.10)

Lia(1 + ) = #( + 4]

=
I

Lia(1 + ) = 21+ 3] (36.1)
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The moments at the edge of the plate, x= a, are

M i3 (3.6.12)
1= — (3.0.12
8
a® o
M = =2 (3.6.13)
8
and at the center, x = 0, these moments are
1+ =
M =M, = jugaz (3.6.14)
16
The maximum stress is at the edge of the plate and equal to
6 ga? 3 ga* L
= 12,0,12)

o = ———=——

T T R 8 4R

This stress is 3/8 that of the bending stress of a like thickness beamn

clamped at the ends and length equal to the diameter of the plate.
2. Simply Supported Edges

In the case of a clamped-edge plate there are negative edge bending
moments, Fig. 3.7a, of magnitude M, = —¢a*/8 from Eq. 3.6.12,
Using the method of superposition, this can be combined with the case
of pure bending, Fig. 3.75, thereby eliminating the edge bending mo-

jf.

r=8

e

Fig. 3.7. Circular Plate (a) Clamped Edge, () Simply Supported Edge
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ment and obtaining the bending of a plate simply supported at the
edge. The deflection due to pure bending can be found from Eq. 3.3.11

by substituting in this equation M = ga* |8 to give
1 qa®
7 8D(1 +p)
The corresponding deflection at the center for a spherical surface can
be found by noting in Fig. 3 7p that r is the hypotenuse of right triangle

and a is one leg, 5O
g =12 — (r — &) =2r81 — 8,2

(3.6.16)

(3.6.17)

and since &, is small compared to 7, the quantity §* can be neglected
to give

a?
=5 (3.6.18)
or
5 /it
1= 16D(L + 1) (3.6.19)

This deflection is added to that for a clamped edge plate as given by
Eq. 3.6.9 to obtain the deflection of a plate simply supported at the
edge and gives
ga* . ga® S+

= %4D " 16D(1 + p) 64(1 + D
By comparing Eq. 3.6.9 and Eq. 3.6.20 it is seen that, for steel with
= 0.3, the deflection of a simply supported uniformly loaded circular
plate is approximately four times greater than that for the same plate

when the edges are clamped.

The maximum slope occurs at the edge of the plate. From Eq.3.5.18
for the condition P = 0, and ¢ = 0atx =0itis found that C; = 0.
Also from the condition that at the edge of the plate the radial mo-
ment M, = 0 at x = a, Eq. 3.5.3 gives

8 at (3.6.20)

d
D(—q—& % ﬁ) -0 (3.6.21)
dx %/ 2=a
From Eq. 3.5.18
qx3 Clx Cz ’
_ e A, 3.6.22
¢=-Tp ' 2 (3.6:22)

=
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and

i _ 3w GG
dx 16D 2

(3.6.23)

Substituting Egs. G s _ _
s ng Egs. 3.6.22 and 3.6.23 into Eq. 3.6.21, recalling C; = 0,

o 1B+ w

8D(1 + u) (3.6.24)
from which
3
br=a = L [ * ] = 3¢a®(1 — p) P
16D [1 + & QER (3.6.25)

The bending moments can likewi

ise be found by superposi 1 the
nﬁoments from Eqsi. 3.6.10 and 3.6.11 for the case ofg cf:aur:;égdnédﬂr
the constant bending moment gat/8 (Eq. 3.6.12) to satisfy the edbm.:
condition that the radial moment be zero, M,__, = 0; hence .'

q
Ml = 1—6'(3 -+ P,)(a? — 3-2)

(3.6.26)
and
My = L1123 + u) — 2(1 +3
T p + 3p)] (3.6.27)
The maximum bending moment occurs at the center where
3+
M, = My = qa® (3.6.28)
16 B
and corresponding maximum stress 1s
O — Uy — _6_3—-f-__.('f a — 3(3 + PJ '}'a?‘
X TARX. hz 16 q - 8 TE.; ‘I j-.:-'-‘-zta i

Figure 3.8 gives a graphic comparison of the bending stresses o d
oy gt‘.thc lower surface of the plate for a condition of -:Ilau:}"n:-d rluxt[rli
i:r;“ 5131;:{1) SL;PPOF['Cd cc%ge?, It is seen that the stress varies [).JI'.'ti_;Hl:
oo y 1‘ radial c.hsta.me from the center of the plate and the maxi-
th;xlnoit;s:;ﬁccﬁrrmg in lti'le clamped edge plate is much lower than
Chst e g in a simply supported plate by approximately 40 per

also noted that while at the edge of a simply supported plate
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b:: b L
: sfs  Bl%
‘;- ';' o [
S % Sl vz 3=
&l B "
3. NN L 1
) " !
o ~NL ¥
~J 5
T RN
k M|
|
0o 2 4 6 B 10 o 2 4 & 8 1.0
xfa x/a
Clamped edge

Simply supported edge

ison of Bending Stresses in Simply Supported and Clamped

Fig. 3.8. Compar
Edge Uniformly Loaded Circular Plates

the radial stress . is zero, the circumferential stress ¢, at this location

has a value of 3(1 — u)ga?/4h* Eq. 3.6.27.
The effect of shearing strain on the deflection is usually negligible

in the size and thicknesses generally encountered in pressure vessel
construction and has been neglected in the above discussion. When the

thickness of the plate is not small in comparison with its radius, the
additional deflection due to shear may be found by the same method

as used for beams. 1,2

3.7 Bending of Centrally Loaded Circular Plate of Constant
Thickness

1. Clamped Edges
In this case of a load placed at the center of the plate, its slope is

given by Eq. 3.5.18 when substituting g = 0 as
Clx Co

- Px 91 1 +
B 8n.D ogex — 1) + 2 x

The constants of integration C; and C; can be found from the physical
conditions that ¢ = 0 at x = 0 and x = a; i.e,

Px Cix (2
[— — T logexi— 1} + —="F ——] =0
8D 2 X Jz=0

(3.7:1)

(3.7.2)

Px Cix Cz]
oz =] -+ —+— =0 3.7.3
[ 811'D£ 0¥ } 2 Xlz=a ( )
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From these expressions it is found that

P
Ci = —n-D(2 logea — 1) and Co =0 3.7.4)
and Eq. 3.7.1 becomes
Px a

bYTs:E;Fiua.tion‘ fo.r the deflection surface is obtained from Eq. 3.5.20
ituting in it g = : ~q. 3.9,
o give g in it ¢ = 0 and the values of C; and C; from Eq. 3.7.4

w

Pxﬁ( |

- gop o8 —3) * G

(3.7.8)
'I;Ihe ct;nstant C? is QCtermincd from the condition that at the clamped
edge the deflection is zero, thereby giving Cy'= Pa?/16xD. Substi uiin
this into Eq. 3.7.6 gives . e
Px* X P
w = —loge_. + —-—(&2 = .\'2) (3.7,

87D a 167D

Th ; .
e maximum deflection occurs at the center of the plate and is

B Pa?
167D

&Sé:ga;mg this equation with Eq. 3.6.9 shows that the deflection pro-
distribuzgg g;r:jce?tl}?ted central load is four times that of a uniformly

of the same magnitude. The bendi .
e Juenem ) nding moments can be
R qs. 3.5.3 and 3.5.4 through the use of Eq, 3.7.5

-
/)

(3.7.8)

P a
M, = 4—[(1 + p) loge— — 1]
X

v

(3.7.9)
P a
sm 21 8 2 =]

The moments at the edge, x = a, become

My = e -
4” Ca. . b4)
F
M= = &% i
“4-# et &)
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and give the corresponding maximum bending stresses

_GMI__GP_SP (3.7.13)
Ofmx = “pz | R 4m  2mh

Oums = Tpr | fRdm 27h
It is seen that these stresses for a concentrated central load on a
clamped-edge circular plate are twice as great as the stresses produced
in the same plate by the same total load uniformly distributed over the
entire plate.

Equations 3.7.9 and 3.7.10 give infinitely large bending moments
and stresses at the center of the plate, but this is a result of the assump-
tion that the load is concentrated at a point.! If the load is distributed
over a small area, the stresses become finite as discussed in paragraph
3.8. In practice, infinite stresses are not produced for two reasons: first,
loads are physically applied by lugs, brackets, skirts, piping, €tC., OVer
a relatively large area; and second, load or stress redistribution via
Jocal plastic flow of the material takes place 0 alleviate this condition,
Chapter 5. These facts point out, however, the importance of mitigat-
ing the effects of concentrated loads by spreading or applying the load
over the largest possible area.

9. Simply Supported Edge

The deflection of 2 circular plate simply supported at the edge can
be obtained by the method of superposition. Thus, if to the deflection
for a clamped-edge plate, Eq. 3.7.7, is superposed on that produced by
the uniformly distributed radial edge moments My = P/4x, the case of

asimply supported plate is obtained. The curvature produced by these
edge moments s found from Eq. 3.3.11 to be

: 4 (3.7.15)
r 4n(l + D o
and the corresponding deflection at the middle is (Eq. 3.6.18)
a Pa?
8y = — B (3.7.16)

2r  8n(l +p)D
Adding this to the deflection of Eq. 3.7.8 gives the deflection at the
middle of a simply supported circular plate with a central concen-
trated load as

2 2 2
Pa Pa 34+pu Pa (3.7.17)

§me—— o & T
16D 8m(l + w)D 1+p 167D
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This deflection is approxi i
s mately '
e p;jpl;am nately 2.5 times as great as that for the case
ar;l";tl‘lgzllgulg moments for this case of a simply supported edge pl
ae y;dt.:hng the moment P/4r to the moments of ngq }’;?[g
.7.10 obtained for the case of a clamped edge Likf'w'gc* ‘t};
. Likewise, the

maximum stress is obtained b i /h?
tained for a clamped-edge Pla?e.addmg (G/RUE )it the steess plp-

3.8 Bending of a Circular Pl
ate Concentricall
1. Clamped Edge ically Loaded

I : ; . .

r rzcit:;s ;:as;i in %v;lckg the lqad is distributed along a concentric circle

o racie; ,ara%éi‘ .f, the portion F}f the plate inside this circle b is con-

= equaﬁon E y 3rg:1210that portion outside. Using the general deflec-

o eauates q. 3.5.20, letting ¢ = O for both portions, P = O for th
p n, and P be the total load for the outer portion, the s;ii

arbitrary constants can be ound from the following edee conditio

: fi from t i g g iti

and contmuity at the Cil"ClC X = ('J ol 1 o ’ R
’

[ dw
(a) _'11|1ner =10

| dx =)

[ dw
(6) E’]outer =0

B T=g
[ dw duw
(f) T ]m‘nor = [— outer
| dx Jg-p dx 1 z-p
rd2w d%w
(d) ‘E‘—z]inner = Ii_u' oute
L ax=lz=p dx? $=E-'r
(e) [IU]inner = [w]outer
z=b z=b
(f) [w]outer = 0
z=0a

a d_ + H -
n th(: dEﬂCCtIOD EOI tht' nner pOI‘thl’! ( < b) hah b(“: n lULlI‘ldt o l]
X Lol ¥

P

W = — _ K a 1 2 )

81‘?D[ (12 + {52) l(}geg T (_{2 =2 &2) + ‘2—(1 -+ _b,)l:'r.r';' o \-'_'.'
a2, -

J

and for the outer portion (x > &), (3.8.1)

8nD Ogg; i §(l i 'a—z)(ﬂg - =.-",J (3.8.2)
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9. Simply Supported Edge
In a like manner the deflection for a simply supported
tion is found for the inner portion (x < b) to be
P
8D

edge condi-

a 2
w [ - e+ ey togg + (2 = 8

M(Qz _ x?)] (3.8.3)
2(1 + p)a®

and for the outer portion (x > b)
2 — (1 - p)b?

P p a (34 wa 2 — )
R = "'[ i * B loter 21 + pa (

R (3.8.4)

3. Clamped Edge Concentrically Loaded
of bending of sym-

i eful in solving other cases ‘
These equations are us e o

ically loaded circular plates. For instance, ¢ rrin
;nlf;:t(i; i?‘l practice is that in which the load is uniformly distributed

i f radius ¢, Fig.
! ¢ of the plate bounded by a circle o .
;Vfé‘ tt{?sif; el;qp.ag.&l andplctting P = 2xbqdb, the center deflection

produced by this elemental ring load, db, is
1
g L TR OF S ]bdb (3.8.5)
dibyss ZF)[” b loge - Bt + 5 )

The center deflection of the plate produced by the entire load is

1
T . [ B2 loger — b% + =(a + bz)]bdb
= = - e
5= j dw=3D .[D b 2

0

P 1

d e
4 [N N

Fig. 3.10, Concentrically Loaded

Fig. 3.9. Concentrically Loaded g o

Circular Plate

]
1
1
l
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When ¢ = a, this equation coincides with Eq. 3.6.9 for a uniformly
loaded plate. Also, when substituting ¢ = 0 and =c%¢ = P into Eq.
3.8.6, the deflection for a concentrated central load is obtained which
coincides with Eq. 3.7.8,

The bending moment at the center of the plate can be found by first
determining the curvature at this location. This can be calculated
from Eq. 3.8.1 by taking the second derivative with respect to x, and
setting ¥ = 0 and P = 2rbgdb into this derivative, which gives

ot

ﬂ!“!u' q

Trﬂz=ﬂ N E_- 0

2

gee a ¢
= (Iogc— + )
c

a b2
— 2 log,— ] — —
( oge, + ag)m

B (3.8.7)
4D 42

The corresponding bending moment at the center is found from Egs,
3.3.9 and 3.3.10 to be

dzw 1 -+ 7 2
My = My m D] o= #qﬁ(logﬁ- + L—) (3.8.8)
dx2 ¢ 4&2,

The maximum bending stresses at the center are

2

1

3 gc a 2\
=5+ u (1 oy s
o(L + u)oo-loge + %2)

O mne, = ‘39‘,,,“ LSSQ}

This equation can also be written as follows, letting P equal the entire
load wc?q,

3(1 } P (l a 2 ]

Ozmay. = O Wi, T o + ——| 1OEe— 4+ —

’ * QL a3 wh? ¢ 4a?)

(3.8.10)
From this it is seen that as the radius ¢ of the circle over which the load
is distributed diminishes, the condition of a single concentrated load is
approached, and the stresses increase as ¢ diminishes but remain finite
as long as ¢ is finite. Investigations by Timoshenko!? for the case of a
single central concentrated load indicate that the proper formula for
calculating the tensile stress is

P a " -n') %
OZmax = Tlhmax, = E(l + W) (0-485 105e; + U'U—.) (3.8.11)

The compressive stress at the top of the plate may be several times the
value of the tensile stress at the bottom of the plate but does not neces-
sarily represent a direct failure potential because of its highly localized
nature, paragraph 3.7.1.
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3.9 Deflection of a Symmetrically Loaded Circular Plate of
Uniform Thickness with a Circular Central Hole

Circular holes are frequently used in pressure vessel construction,
such as for an access opening; consequently, their effect is important
in all pressure vessel shapes. It is particularly so when these openings
are placed in flat plates which derive their major strength from bend-

jon, and hence cannot readily be reinforced in the same manner

ing act
depending on membrane

as openings in curved pressure vessel shapes
tensile action for their strength, Chapter 6.

la. Bending by Couples, Edge

In Fig. 3.11a, if M, and M, represent the bending moments per

unit length on the outer and inner edges, respectively, Egs. 3.5.18 and

3.5.20 give for the case P=q=0,

_Gx G (3.9.1)
2 X
Crs?
i o Galog® * G (3.9.2)

The constants Ci, Ci, and Gy can be determined from the physical
conditions at the edge of the plate. Substituting from Eq. 3.9.1 into

Eq. 3.5.3 gives
(3.9.3)

Fig. 3.11. Circular Plate with a Central Circular Hole
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and for the conditionsx = aand x = 6, Eq. 3
. = . 3.9.3 presents the fi ;
expressions for finding the constants (3'1 a(ild Cs presents the following

C Co

M, = D[El(l +p) - —(1 - p)] (3.9.4)
2
Cl. Cs

My = D[?f\l +u) - f;_l’—“ = p,)] (3.9.5)

from which

& s E(ﬁlea - bngb)
1 = - and C»
(I + p)D(a* — 67 ®

azbE(M'm — ;1-'{111)
(1 = p)D(a® — b2)

(3.9.6)

’Fl:lf;: Co?ﬁtTF Cy is ?etermined by considering the deflection of the
e which is zero for a condition of a simpl
x = a, so from Eq. 3.9.2, Bl Sppopieg: o= S3ge

Cra?

—Cylogea + C3 =0 (3.9.7)

or

C a? (a®Myq — 6*Mip)

R
2 (1 + u)D(a® — 6?)

@252(Myq — M)
(1= wD(a — 5

logea (3.9.8)

The rad.ial bending moment is then found by placing into Eq. 3.9.3 the
value of the constants of integration C; and C, from Eq. 3.9.6, to be

1 2
My = 2 2 -
L= =5 [a Mg — BPMyp — ————— |  (3.9.9)
In like manner the slope of the '
‘ plate can be determined by substituting
the values of C; and C. into Eq. 3.9.1, and the deflection surface of tht

glgt;: determined by substituting the value of Cy, Cs, and C; into Eq.

Ib. Bending by Couples, Inner Edge Restrained From Rotation

thFlgure 3.11b, illustrates the case of bending by a couple M,, along
ca:eotl.;;ccr edge when the inner edge is restrained from rotating. In this
e constants C; and C; in Eq. 3.9.1 are determined from ‘the edge
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= i Egs.
conditions ¢ = 0 at x= b, and My = My atx =4 which from Eqgs

3.9.1 and 3.9.3 gives

G o (3.9.10)
0= "%
and
Gl + ) @u—pq o
My = D|— - 22 (3.9.11)
2
Therefore,
M. (3.9.12)
Cr = Dla + w + &1 - )]
e iMys (3.9.13)
Gy = = —

_erMe
DLl + p) + b(1 = w)]

Substituting these values of C; and C; into Eq. 3.9.3 gives

#____?_2‘_'”113_#——[1 +p+ (- pﬁz—] (3.9.14)
20+ p) + 02— x

Again in a similar manner, the slope _of the plateqcan be;l d;l:zrgélfileei igi
substituting the values of C; and C‘:;_mto Eq. 3.9.1, Sn g
surface determined by substituting into Eq. 392t f \;Ja o g
C,, and C; found from the condition that w = 0atx = b,

— Mjad®

D@0 + p) + bl — w)]

M, =

w=

b (3.9.15)
[x‘-’- _ b2 4 282 lngeﬂ

9. Bending by a Load Uniformly Distributed Along the Inner and Quter
Edges
When bending is produced

the inner and outer edges as‘s.h | .
and P equals the total load in Egs. 3.5.18 and 3.5.20.

slope from Eq. 3.5.18 as

by a load uniformly distributed along

own in Fig. 3.12a, the value of g=0
This gives the

Px ) Clx (:2 (3.9‘ \6)
X
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/’/l //. &

(&)

Fig. 3.12. Circular Plate with Uniform Edge Loading

In the case of a simply supported edge, Fig. 3.1la, the constants of
integration C, and C; are obtained from Eq. 3.5.3 for the conditions
that M, = 0 at x = @ and x = b; thus,

dp ¢
Bl w ity = s 1
(\dx = 'u_r_)_z =ﬂ 0 (3.9.17)
D(j + #‘é) -0 (36.18)
dx X/ z=b : _

The slope ¢ is determined by placing the constants so found in Eq.
3.9.16, and the bending moments from Eqs. 3.5.3 and 3.5.4.

If the plate is clamped at both inner and outer edges, Fig. 3.124, the
constants of integration are found from the condition that ¢ = 0 at
x =aand x = b; thus

Pa Cla (3
0= - 8—-er (2 logea — 1) + —2 + : (3.9.19)
Pb Cyb Cs -
0= — ——(2log.h — 1 =22 o 2 (3.9.20)
gD 8 ~ N+ 5t

and the slope and moments determined as described above.

When the load consists of an uniform pressure over the plate, Fig.
3.13, instead of a load distribution over the edges of the plate, the
shearing force V' at a point x distant from the center is

7w qu{xf = 5,2‘) =2 _ ﬂ ).9.41)
2mx 2 2x
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When this expression for V is placed into Eq. 3.5.12, Eq. 3.5.18 be-
comes
q.\IB (}'!53 X Cl X (_v .
_ o T oegex - )+ (3.9.22)
4= -1t VT TG
and Eq. 3.5.20 becomes
gx b2gx? C1x® ‘ _
S NN A ,#l-ﬂ—-———Cloex+C 3.9
W= BD(%J ) 7 2 log 3 (3.9.23)

The constants of integration are found from the physical conditions at

the edges of the plate.
(onstructions involving
encountered in pressure vessels.
with central access opening on the
bines the cases of edge loading and
4,5,7,17,18 of practical importance

the solution of such problems are frequently
For instance, the flat circular head
end of a cylinder, Fig. 3.14, com-
uniform pressure loading. Several
are shown in Fig. 3.15,in which

cases™ "
the maximum stress can be 1'eprcsentcd by an expression of the type
qa® P o
Omax. — k e or Smax. = }—n— (3.9.24)
i h2

rmly applied over the surface or
al values of the factor £,
and Poisson’s ratio

depending on whether the load is unifo
concentrated along the edges. The numeric
calculated for several values of the ratio a/b
p = 0.3, are given in Table 3.1. The maximum deflection for the same

cases are given by expressions of the type

- _ gat ) _Pa3 o
Winax, = 1@; and Wmax, = Alﬁ [5..).2,}}

Fig. 3.14. Flat Head with Central
Access Opening that Closes the End
of a Cylindrical Pressure Vessel

Fig. 3.13. Circular Plate with
Uniformly Distributed Load

TABLE 3.1. COEFFIC
IENTS k AND k, FOR USE IN EQS. 3.9.24 AND 3.9.25 FOR THE BENDING CASES SHOWN IN FIG. 3.15
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Cose 1

r—lﬂ__——+b—1
l
5 fo ) m\\_\ﬁ\ EESTEFERTITRESY

Mﬁ s N | 1 : \\r
Wmax? | |
A\\ NN RN 9

e . paunl

5\ - NN Frb

|
| g Plote  foo] LRib
: / . (o) X M - .:\j .

< (e) — - RN— - —R- - x
Cose 2 ; == —3 T e ey
i 8
! A Fig, 3.16. Orthogonally Reinforced Circular Plates
[
e stiffening ribs are not symmetrical with the middle plane of the plate,
Cose 3

Fig. 3.16b, the circular flat plate formulas give an approximation of
the deflection and stresses if D is taken as the average moment of
inertia of the Tee-section of width & about its centroid, D = Ei/d. In
the case of both a top and bottom cover plate construction, [ is the
average moment of inertia of the composite structure about its cen-
troid, Fig. 3.16¢. The orthogonal rib reinforcing system is extensively
used to support internal loads within pressure vessels, such as the nu-
: clear core in reactor vessels, Fig. 3.17. The loading and size of these
" EZZZZZZQJ support plates are frequently such that they cannot be procured as a
A solid plate and hence must be built up by welding together a web-plate
Wmax, system with a top and/or bottom cover plate. [t has been found in such
: T . Vg of Circular Plates with Central Holes grillage plates that there is a tendency for the vertical boundary edge
Fig. 3.15. Cases of Bending of reaction to concentrate in the region 4 and to be less in region B, Fig.
3.16, with the variation in average load per unit of boundary circum-

Wmax.

Case B

3.10 Reinforced Circular Plates

\. Orthogonal Grillage Reinforcemert ‘

Plates may be reinforced by an equidistant orthoﬂgon.al sysfe'mfof r_1bs
to form a grillage type of reinlorcement, Fig. 3.16. I Fhe rein ?31-':11(?5
ribs are symmetrical about the middle plane of the plate, F1g..‘t; h,
the composite structure may be treated as a circular p#ate with t :1
beam stiffening effect of the ribs averaged over the entire plate an
added to the plate rigidity to give®™” T

o ER I_:—I (3.10.1) | ~— sups-;:'liugfon

12(1 —p?)  d 7

D=

where d is the spacing between ribs ancEI Ihis tk;e tlnonlilt~2£tiir;irt1&Otili : e 517 Nt Core Supmen
ib wi i (] ate Cross s ; : ‘
rib with respect to the middle axis of the p :
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this can be corrected by.the
ns of practical fabrication,
sed and the supports
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ference as high as 50 per cent. Although
use of beams of varying depth,’ for reaso
constant depth reinforcing ribs are generally u

designed accordingly.”**

9. Concentric Ring Reinforcement

A second way of reinforcing circular plates is by. the use oit;cor?ccntrtz
reinforcing rings, Fig. 3.18. In this case the maximum dF cctlolrll an
stresses in the plate are reduced by the resistance of thc:.mtegrcéL yla:-
tached ring to ‘‘turning inside out.” In effect suchla rem&?r?lc p abz

i Can i i nd an outer plate which can

consists of an inner plate, a ring, a ‘ _ '
solved by equating the slope of the short remforc_mg ring, pz.traggrelxgh
-49 to that of a flat plate, paragraph 3.8, at the juncture, Fig. 3.18¢.

L

(@)

]
|

R |
:/,] - \\ S \‘m“‘ (- x
e i ,

{b)

Fig. 3.18. Circular Plate Reinforced
L by Concentric Ring
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The effect of such a reinforcing ring for various locations and reinfore-
ing amounts® on the maximum deflection, and the maximum radial
stress for a circular clamped-edge plate subject to uniform normal load
¢ are shown in Figs. 3.19 and 3.20, respectively. These show that rein-
forcing rings located in the region of greatest slope of the plate are the
most advantageous in reducing both deflection and stress.

The exact location for minimizing the deflection can be found from
the curves of Fig. 3.19, in which the vertical deflection of any point, a,
is expressed as the product of the maximum (central) deflection of an
unreinforced clamped-edge plate of the same size, and a coefficient
which is the function of the position of the ring and a dimensionless
ratio EI/aD, where [ is the moment of inertia of the ring cross section
about the middle axis of the plate. As in the unreinforced plate, the
maximum vertical deflection of any reinforced plate is at the center,
k = 0. When the location of the reinforcing ring approaches the center
or edge of the plate, its restoring moment vanishes and Eq. 3.6.9 for a
circular clamped-edge plate holds. Also the effectiveness of the ring re-
inforcing is not directly proportional to the size of the ring but has a
diminishing effect as the amount of reinforcing is increased. For in-
stance, from Fig. 3.19 it is seen that a “‘moderately stiff”* reinforcing
ring of El/aD = 10 will reduce the maximum deflection to about 38
per cent of its central value in an unreinforced plate when the ring is
most effectively placed. It is only reduced further to 30 per cent when
the rigidity of the ring is increased two and a half times to EI/aD = 25.

The radial stress at any point in the plate can also be expressed as a
product of the maximum value of that stress in the same size unrein-
forced clamped-edge plate and a coefficient which is a function of the

10

ErfoD=1
10 : 08 NG £1/a0=104
5!/0'0-1 y o _ \( i
28 = 3902]%€ SRl
\\____...« // - =42 ﬂ{oﬂ-e's
4h
— W _ dp4 ! |
[_ qa4] 0.6 ET/a0=10 / ‘
i 04 i |Y, // 0.2 !
Elf/00=25 o | ,
o2 [ I o} 02 04 06 0B 10
&
o] | ' J —max, oceurs in outer plate, x/c=1
v} 1.0 = =max, occurs in inner plate, x/o=k

02 0.4*0.6 08

Fig. 3.19. Effect of Reinforcing Ring
on Maximum Deflection of Rein-
forced Plate?

Fig. 3.20. Effect of a Reinforcing
Ring on Maximum Radial Stress in
Reinforced Plate?
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i i i / ig. 3.20. From
location of the ring, and a dimensionless ratio EI/ aD, kl:'lg.l(i’).Q(J o
i iti i i i ould occ
; / tion a ring of given size s
these figures the relative position 3 0 e s ot
fective C determined. This position 18
be most effective can be _ st n
1 : it i the deflection; hence, m ‘
the radial stress as it is for g
the basis of primary concern; however, a gen;:ral;ﬁ‘r:p;lc:;;d iy
ith satisfactory results. 1Dis 1
k = 0.6 may be taken wit . e s
i flat plates which form an integ
forcement lends itself well to : : i : o
pressure vessel, such as the end closure of a cylinder, since 1t§ edge
¢ D 1
readily welded to the remainder of the vessel.

3. Flat Perforated Plates

Tube-sheets, or tube-plates, are flat plates which Ea;c‘ be’:::r; ;l:lfl:ed
1 i i hich tubes are “‘rolled-1n, -
with a multitude of holes into w \ e it
side to ensure tightness. Such per
L s oy i f boiler feed-water heaters, heat
ates are used in the construction ol DOUET : :
If.'):lm:hangel:s, and in nuclear steam gencratqrsl,”bFltgﬁ gﬁiiﬁzﬁesgiﬂgig
‘< uniform and is resisted mainly by the
pressure load is unt _ i s
] ts original condl y ‘
f a circular plate, weakened from 1 ! y the :
:ct?uired to reE::eivé the tubes. These tubes are in the form of ‘“hairpins

4

l s ___p'-0.0.=Plate ligament
. }t%p'—l )

———]———Tune plate TK

T W W T

I,

L L e L T T

Ligoment=(g' —hole dia.}

4
ﬁ
L=

be- _p’F-i
tprtehl

Fig. 3.21. Arrangement of a Typical Nuclear Steam Generator with 2

Perforated Tube Plate

|
]
|
{
)
i
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and so offer no direct ties between tube-plates. The formulas for like
size unperforated flat circular plates can be satisfactorily used if:

A. A virtual modulus of elasticity E! is used in place of E, and also a
virtual Poisson’s ratio u! is used in place of p to compensate for the loss
of rigidity and bi-axial effect due to the perforations.

B. The effect of the rolled-in tubes on the deflection and ligament
stress of the tube-sheet is considered.

Figure 3.22 shows the manner in which E! and u! vary with the tube
hole ligament efficiency for an equilateral triangular pattern of tube
holes.' Similar values for square and rectangular tube hole patterns
have also been established. The stiffening and strengthening effect of
rolled-in-tubes on a tube-sheet is appreciable, especially when the
tubes are very closely spaced. For instance, the results of tests on the
tube-sheets of nuclear steam generators have shown that when this
effect of rolled-in-tubes is neglected, the tube-plate calculated deflec-
tion and strains were 75 percent higher than those measured. How-
ever, when the entire thickness of the rolled-in-tubes was assumed

1.0 "a.r l |
!
0.9 ek =
N | OOOO
o8 ~N A Virfual 1
55 N o lI:'n:;cu'nen'( !
.'é’ 5 H =Thickness of '
k= perforated plate
L) — ’
g e ! \ Hp'z 2 / i
Q2 | | ||
= 085 i — i T
=} 1
: |
| DAL
0.3 - ~— p———
71 T
0.2 l /
/é | l
0 1T | ‘ || !
0.04 0.06 0.080.1 0.2 0.4 06 08B 1O

, {Acfuol + Part of tube wall |
2 : =y fi- Vligoment ' ossumed effective
Virtual ligament efficiency, — =

(Tube hote pitch)

Fig. 3.22. Virtual Elastic Constants for Perforated Plates
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effective in stiffening the tube-plate and reducing ligament strains,
agreement within 5 percent of the actual was obtained.*® Similar tests
on thinner heat exchanger tubesheets also confirm this stiffening
effect,’® This stiffening effect may be accounted for in the calcula-
tion by including part or all of the tube wall and establishing a virtual
ligament efficiency, (actual ligament plus portion of tube wall as-
sumed effective)/(tube hole pitch), used to obtain the virtual elastic
constants of the plate. The amount of tube wall thickness that may
be credited toward the ligament efficiency is:

A. A minimum of 50 percent to a maximum of 95 percent for tube
joints expanded the full depth of the tubesheet.

B. No credit for joints attached by welding only, Fig. 3.27a, b,
and ¢, with no tube expanding.

Ligament stress is higher than that calculated for an unperforated
plate inversely proportional to the actual ligament efficiency, (p' — dia.
hole)/(p"), so that savs. = s/ (actual ligament efficiency). This is the
average stress across the ligament. Peak stresses higher than the aver-
age occur immediately adjacent to the tube hole, but these are of a
localized nature'® (Chapter 6). An extensive list of references for per-
forated tube plates is given at the end of this chapter.

3.11 Tube to Tube-Sheet Joints

Heat exchangers are constructed by attaching a mulititude of small
diameter tubes to larger pressure vessels or parts thereof called tube-
sheets. Tube to tube-sheet joint designs vary widely and are chosen to
be compatible with the severity of the service conditions. The simplest
is an expanded joint in which a tube is inserted in the tube hole and
plastically deformed by mechanical rollers, drift pins or balls, or hy-
draulic expanders.'®?5?” The strength and tightness of the joint is
obtained by the residual stress created in the tube wall and the tube
seat material by the expanding process which deforms the tube to fill
up the tube hole.28293%:33 In practice, in order to make sure the tube
is deformed to fill up the tube hole, the tube is usually slightly over-
expanded thereby inducing a compressive residual stress in the tube
seat material immediately adjacent to the tube, Fig. 3.23a. The yield
strength of the tube material is chosen to be equal to or less than
that of the tube seat material because if the reverse prevailed the
tube would merely act as a spacer for the expander and spring back
upon withdrawal of it. This type of joint is widely used in boilers,
condensers, heaters, etc., when it is not subject to thermal transients
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Fig. 3.23. Expanded Tube to Tube-sheet Joint

:?:fh wmllld tend to shri'nk the tube away from the seat, or other-
fO: sticlzssﬂ}i altsr ‘tl;‘e residual stress pattern upon which it depends
gth and tightness. The minimum [i ' :
re ‘ gament for an expanded
;ESZjacilzzrs:n- bihest];lbhshed by the following analysis. Thepdirccl
s in the ligament varies from yield poi i

: point compression at

gh;gzdgTehof the ho!e to tension at the center of the ligalljnem. Fig.
.236b. 4 e summation of the residual forces must equal zero; which
n;leans that the areaunder the tension curve must equal the area under
the compression curve plus that of the tube wall. | |

Representing the stress curve by a parabola and letting—

o = stress at any point

o1 stress at ligament mid point

owv.p. = yield strength of tube material
o,v.p, = yield strength of tube seat material
h = thickness of tube

b = width of tube seat

H = thickness of tube seat

F = total force

2
s=0— (a+ ﬂ'pY.P.)‘i‘—i (3.11.1)

bl2
SF, = H[ﬂ odx — ory.p hH = 0 (3.11.2)

Substituting the val ;
o ives g the value of o from Eq. 3.11.1 in Eq. 3.11.2 and integrat-
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4 %3 b2
H[rnx - '3(0“1 + o‘p&'.P.)E—?] — oxrhH = 0 (3113)
0
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o = "”;-"' + 3_-——““;"‘h (3.11.4)

d seat material, and allow-

For the case of equal yield strength tube an
ch this yield point value,

ing the stress at the ligament midpoint to rea

Eq. 3.11.4 gives the minimum ligament as
b = 6h (3.11.5)

ded tube joint can be obtained with a
he tube thickness. When the yield
er than that of the tube material,
by Eq. 3.11.5 and can
| yield strength values

This means that a fully expan
minimum ligament of six times t
strength of the seat material is high
the minimum ligament b is less than that given
be found by substituting the respective materia
in'BEq.:3.11.4.

Expanded tube joints are m

circumferentially grooved to increase
The total design axial allowable mechanical-frictional holding force,

P, of an expanded tube joint is established by experimental testing and
applying a suitable factor of safety, Fig. 3.25. Bending and torque
may also be applied to these tube joints, in which case it is necessary
to compute equivalent loads to analyze the joint. Referring to Fig.

3.96 and using the following nomenclature:

F = mechanical-frictional force
My = resisting moment of expanded tube joint
P = total axial allowable tube joint holding force
P! = P[2nr = axial allowable tube joint holding force per unit of

circumference
T = resisting torque of expanded tube

ade with a plain interface (seat) or are
their holding ability, Fig. 3.24.

joint

2m ~mf2
Mg = f Fy =4J Ply? sin® ¢ do (3.11.6)
(4 0

Substituting the value of P! gives

opr [™*
Mg =—if sin? ¢ d¢ (3.11.7)

T o

M R =

Pr
2 (3.11.8)

STRESSES IN FLAT PLATES 141

Fig. 3.24. P

Grg,;.maes, T(;:g ngzogEraghhof Expanded Tube Joint With Two Circumferential

e e, 1) Eh nR as also Been Flared to Further Increase the Pull-Ou
e Removed From Tube-Seat to Show Grooving and F?-u‘i.ugl
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Fig. 3.26 Typic: i
2 ypical Design Allowable ing Force of
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Pt

THICKNESS

Fig. 3.26. Expanded Tube Joint

Similarly, i)

T =P (2nr)r =Pr

The safety of the joint requires that the totaj]equiralznt{axw.ilefli:’({;:rfé

i i ‘ 2 plus equivalent load tor ¢

ding the pressure load pnr™, p . : ’
lrfri((:)lrl:lclnntg plus pequiva,lcnt load for torque, shalllmt Ef;‘“(‘dl the Esdfe
design a,{lowable axial tube seat holding force, Elg. 3..,_5i Atsl?),as;lu;;:
i i the equivalen
s do not contribute to torque resistance, :

%:;(::::2 shall not exceed the holding force of a plain seat of the same

width as the seat used.

joi isti £ a 2 inch OD by 0.10 inch thick
3 . An expanded tube joint consisting © :
fxftt::iir:ea 1 inch vfr)idc plain seat is subjected to a pressure of 100bp51 an;‘fleact1 t{(;r?}?;
of 200 in. 1b. What is the maximum bcndmgk:nomfent thaft 7m;'.810 ﬁjag)::; 11:ig i
: i le holding force ot 7, . 3,257
d not exceed the design allowab ‘ : iy
seaé a:atirrllz the sum of the pressure load, equivalent moment lfoad, E?7 ?;,{:)lg'lb g
a.nd(:.quiva.lcnt torque load, Eq. 3.1 1.9: to the allowable holding force ot 7, , |

Fig. .25, gives:
oM 200\
100 X 3.14 X 17 + (—r—) + (r) = 7,600

,
M = $,493 in. b
Welded tube to tube-sheet jointg, 111333203 instead of expanded
ones, are used when: )
I. The tube pitch required for functional purposes does not provide

an adequate ligament for an expancl_ed joint. .
9. The joint is subject to thermal transients that will loosen 1t.
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LI
Ry

|
(d) le) (F)

Fig. 3.27. Typical Welded Tube to Tube-Sheet Joints. (a) Projected Tube Fillet
Weld, (b) Recessed Tube Fillet Weld, (c¢) Trepanned Seat Weld, (d) Butt Weld,
(¢) Explosive or High Energy Weld, (f) Brazed or Adhesive Joint

3. The potential crevice between a portion of the tube and tube
sheet can become a place of hideout and concentration of in-
jurious chemicals from the contacting media.

4. Maintenance accessibility is limited or not available. This occurs
with some nuclear and chemical vessels.

Welded joints vary widely in construction details, Fig. 3.27. They may
consist of simple fillet welds, @ and &, or trepanned junctures, ¢, to
those butt welded, d, explosively welded, ¢, brazed or adhesively
bonded, f, etc. The choice is based upon the service and environment.

3.12 Local Flexibility at the Supports of Clamped-edge Beams
and Plates

Beams and plates are frequently considered as being rigidly built-in
and hence undergo no edge rotation, Fig. 3.28a. However, because of
the elasticity in the support, a local distortion occurs which allows
them to rotate at their built-in ends even if there is no deflection in the
support, Fig. 3.28b. This rotation produces a deflection in addition to
that caused by bending and shear stresses in the beam or plate itself,
and in the case of statically indeterminate ones the bending stress is
also affected. This additional deflection can be accounted for by using
an effective length equal to the actual span length plus a distance L
from the face of the support in the applicable beam and plate equa-

tions,'*:15:1¢ Fig, 3.29. This local flexibility effect is nil for long thin
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Fig. 3.28. (a) Geometry of Built-in Support. (b) Local Distortion of Built-in
Edge Supports Depicted by the Strain Distribution in a Flat Rubber Model
Showing the Slope at the Elastic Deflection Curve is not Zero at the Face of
the Support but Extends Slightly Within the Support. (See Chapter 7 for a
Discussion of this Method of Experimental Stress Analysis).

members of span/thickness ratios over 10; that is, it is only a major
contributor to deflection for short thick beams or plates. Fillets and
haunches are effective means of reducing the local flexibility of
S‘.ll)p{)l“[ﬁ.

In the construction of many heat exchangers, including nuclear
steam generators, extremely thick tubesheets are welded at their pe-
riphery to comparatively thin cylindrical shells, Fig. $.30. In this case
the thin cylindrical shell has little influence on the thick tubesheet and

Vit——T
r;.aL  E—
|

05 \: I I )

.~ —
=
S |
= o3 — _ |

0.2 = “

bt

Fig. 3.29. Location of L ffective Built-in Support
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Nuclc.ar Steam .Gcncrator, The Small Diameter Closely Spaced Hol el it.
ted with Heat Exchanger Tubes as Shown in Fig. 3.27 (Courtesy The p
Wilcox Company)

it approaches free-edge behavior. However, thick tubesheets are olten
cnlst_]y and difficult material procurement items in which case opti-
mizing their thickness by introducing adjacent short thick cylir ders
or heads whose interactions®®33? : :
requirements, Chapter 4.

can result in reduced thickness

3.13 Stacked Plates and Built-up Plates
1. Stacked Plates

Flat plates stacked one on top of the other are frequentl
support loads. This may be done because the const uct
ment does not permit a single plate of equivalent thickness t .
01‘_136(‘;111:;6 a single plate of sufficient thickness 1s not ybtainable. Fig.
3.31a shows three stacked circular plates of different thickness simply
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bbb e Voo l _ supported at the edge and subject to a uniform load. No friction is
b assumed between the plates and bending of each is independent of
, i that of the other. The load is transmitted from the top to successive
lower plates by deflection. Each plate has essentially the same deflec-
tion curve and curvature; hence, the percentage of the total applied
| bending moment, M, each plate takes is proportional to the ratio of
l..__p‘:——\ : its flexural rigidity D,, Eq. 3.2.9, to the sum of the flexural rigidities
of all the plates:

(&) 4
G Pins Pe MD .
| A{dL_ M, = 2 (8.18.1)

n
- D,
|
‘1L _ l h' ' which reduces to
| 3
| L M Pl (3.18.2)

Net section A-4 n 3
" Neutral Z hn
2" ,H,/_./——'IED < 1

Axis {e}

/

L

ax The section modulus of each plate varies as the square of its thickness

ga W W=y h?%; hence, the maximum stresses in each plate are in direct ratio to
z == ) . their relative thicknesses:
| ——t—q e

6M hy 6Mh v .
(c) Shear Diagram T_: N N | Op =~ sz = . (3.13.3)
" \ > A" > h;

1

A 4
Neutral 1
Axis
b ‘ ; Example 1, Three stacked 160-in.-diameter flat circular plates are simply
Shear in solid \——-( supported around the edge of the lower plate, and a total load of 40,000 1b is
rectangular section 3 v uniformly applied to the top plate. The thickness of the top plate is 0.5 in., the
() Tman = 2 A middle plate is 1.0 in., and the bottom plate is 1.5 in. Assuming no sliding fric-
tion between plates, what is the maximum bending stress in each of the plates?
From Eq. 3.6.28
+ ;
M=(3 P) ga®, P=mndq, :12c,(=i‘{-)"(i’—(:“Q
16 bl
» 3 +.3\ 40,000
M= ( ) ——— = 2626 in. 1b. (Total)
| see pr—] \ . 16 / 3.1416
2" £ == This total moment applied to the three stacked plates is proportional to cach
80" —— — ] plate per Eq. 3.13.2, and the stress in each plate determined as shown in Table 3.2,
82" When one plate is extremely thin relative to the others, it is customary Lo sand
il wich the thin plate between the thicker ones in order to forestall buckling of the

551, Seuaea Py Bt Up Plates thin plate between attachment pins, Chapter 8.
Fig. 3.51. Stacke a "

146
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coo 2. Built-Up Plates
~ o0

Ten a0 . If the differential sliding of one stacked plate on another is pre-
i vented through the use of pins, rivets, bolts, or keys to take inplane
shear at the plate interfaces; the result is a built-up plate which is
S stiffer and stronger than the same stacked plates, Fig. 3.31b. The
X stresses in a built-up plate are calculated on the assumption that its
2 individual plates are rigidly connected; that is, (1) it is a solid plate,
=3} . . . %

= and (2) the size, shape, and spacing of the uniting elements (pins,
rivets, bolts, and keys) fulfill this requirement.

A. Bending Stresses. The formulas for the bending stresses in solid
plates are applicable but allowance must be made for the pin holes,
etc. by the use of reduced sections, Fig. 3.31. When the reduced sec-
| tions occur at regular intervals, the resulting efficiency, similar to

ligament efficiency, Par. 1.15, is employed; i.e., the value of / and Z
n::ust be multiplied by the circumferential plate efficiency (pe — d)]
pe s0

Stress 0, psi

2,626

Mom. to each
Plate, in. Ib.

028 X 2626 =74
222 X 2626 = 583
750 X 2626 = 1,969

!
| __ Osolid = B Pe
\ \ solid 4

- - 3.13.3
%= Etficiency s (3.18.3)

("

B. Shearing Stresses. The shearing stresses in the shear restraints,
here assumed to be pins, can be approximated by comparing them to
nouon those at the same location in a solid rectangular beam whose height is

a0 0 the sum of the individual plate thicknesses, &', and width is the cir-
Txs cumferential pitch, p;, of the pins, Fig. 8.316 and d. Here the shear
stress at any location in a cross section is perpendicular to the plane

of the plate and numerically equal to the inplane shearing stress at
the same location, and is given by*

% Mom. to
Each Plate

VA5 VO

TABLE 3.2. STRESS IN STACKED PLATES OF EXAMPLE 1
028
222
750
1.000

where V is the shearing force acting on the cross section A'p., Q is
the statical moment about the composite neurtal axis of that portion
of the whole area, A', between the horizontal plane at which the
shearing stress is desired and the outside surface, and I is the moment
of inertia of the cross section about its neutral axis, Fig. 3.31f. The
shearing stresses are not uniformly distributed from top to bottom.
From Eq. 3.13.4 for a rectangular cross section, they vary parabol-
aom | W ically from zero at the top and bottom surfaces to a maximum at the

D -

h, in.

Thickness,

*See any text on strength of materials.
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neutral axis which is 50 percent larger than the average:

V V
= R—=
Trnak I.JA 1.5 ipr

(3.13.5)

where A is the area of the cross section, h'p,, Fig. 3.31f.

The weakening effect of the pin holes can be accounted for in the
same manner as that used for calculating the bending stress, namely,
through the use of the plate efficiency of these holes. The cross-sec-
tional area is reduced by the pin holes in the ratio of (pe - d)/pe,
which is the plate efficiency, Fig. 3.31e. Hence, the shearing stress is
increased by the presence of these pin holes and its value is found by
dividing the right side of Egs. 3.13.4 and 3.13.5 by the efficiency.
This gives

v b __V Q

=T ' T 3.1%.4a
Pe I b= d p.- d 1 ( )
and
1.5V P 1.5V
= = ] T 3. 3.5
Tmax. =it pr-d  W'(pe - d) (5:18:54)
The shearing force, Fy, acting on each pin is
F, = 1(p} - d)p} (3.13.6)
and substituting Eq. 3.13.4a in Eq. 3.13.6 gives
V f t V ]
F J_(1!’4:‘ -d)py = _Q'p?' (3.13.7)

“I(pL - d) I

If a plate interface coincides with the neutral axis, Fig. 3.51b, the
shear force on the pins is a maximum at this interface, and when sub-
stituting Eq. 3.13.5a in Eq. 3.13.6, becomes
V .

F,=1.5 W br (3.13.8)
If the neutral axis of the built-up plate does not coincide with a plate
interface, the shearing force at the interface will be less than that
when it does, and its value is found from Eq. 3.13.7.

Equations 3.13.7 and 3.13.8 for the shearing force, Fy, acting on
each pin can also be developed by assuming it to be equal to the
shearing force distributed in a solid plate over an arca pLpy, where p;
is the circumferential pitch and p; is the radial pitch of the pins. Then
by using Eq. 3.13.4 and 3.13.5 for the average shearing stress over
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the same area (d = 0) Egs. 3.13.7 and 3.13.8 are obtained. This as-
sumes the shearing force on a pin acts over a rectangular area Debrs
whereas the area is actually a trapezoidal one. The difference in area
is nil and is usually not considered in practice.

The dimensions of the shear pins and their pitch or spacing must
be chosfen so as to insure strength against shearing through the pin,
and against crushing of the material on the lateral sides of the pin.
Here the assumption is made that the shearing stresses are uniformly
distributed over the cross sectional area of the pin of diameter d: ‘

e = Fs
P nd? 4

(8.18.9)

The ‘further s%mplifying assumption is made that the compressive
bearing area of the pin on the plate is 4'd, so the bearing stress on the
plate is

F
":h_’f? (3.13.10)

where &'’ is the thinner of the two interfacing plates.

The shear pins, rivets, bolts or keys used in built-up plates should
have a _tlght fit in order to prevent high local deformation and initial
deflection,

. E:‘mmple 2. The stacked plates of the example given in Par. 3.13.1 and shown
in Fig. 3.31a are fastened together with 1-in.-diameter pins. For calculation pur-
poses, the pin diameter and hole diameter are assumed to be the same d. These
are located on radii spaced at 15 degree intervals and the circumferential pitch of
the 24 pins in the outer 160-in.-diameter pitch circle is pe = 20.94 inches. (Note:
Fm:. small angles, the arc may be taken as equal to the chord.) What is the required
radial pitch of the pins if the allowable shearing stress on the pins is 16,000 psi,
and the_ allowable bearing stress on the plate is 36,000 psi? (The maximum shear
occurs just prior to the support edge at an assumed diameter of 160 inches.)

A ;&ll({wable shear and bearing forces on pins. The allowable shear lorce per
pin from Eq. 3.13.9 is

d?
Fg g = 16,000 Tr: =12,6001b

and the allowable bearing force on the thinner of the two adjacent plates (1 inch)
from Eq. 3.13.10 is
Firal = 36,000 X 1 X 1=36,0001b

s0 the shearing of the pin governs in establishing the radial pitch or spacing.
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i ; at the neutral axis,
i ins. The maximum shear stress occurs a .
E B.S Slkécz;; ﬂ-:t:glg?] DlrEl’: Ig"n;ence the pin size and spacing that vall{defhfoil; :::-
e Jis locati i dequate to take the
shearing force at this location will a..lso be more t_hanla eq ot i e
shear at the interface between the middle 1-in.-thick plate an 5

e i loaded simply edge-supported circular

diagram for a uniformly loa : i
pl;l:l;eis S;ifa:; b;agETq. 9.5.13 and shown in Fig. 3.91¢. The shear force per circum
ferential pin spacing pe is

L 9%
V= -2— Pe
The maximum shear force occurs in the edge row of pins and for
40,000 .
P e e 2 psi
3.1416 X 80

is equal to

2 X 80 , .
V= 9 pe =80 pe

The shearing force on one pin per Eq. 5.13 8 is
i 1.5 X 80
! 3
i i i i lowable shearing force
i ial pitch of pins. Equating this to thc_ al e shearing
of (1:2 Egglll-{)r;irr;‘ii:: a,?lt:l for pf= 90.98 inches the maximum radial pitch is

pepr =40 pepr

12,600
T 40 X 20.98

i i lue of zero at the center of the plates,

i he shear force is decreasing to a va ¢ ‘ o

St:l:c:af:ljzl spi':tch of the pins can be increased and/for the cucumle;?nihai plit:h

}ncreased. If the radial pin pitch is continued along _thc same ;]a hl,ar fmg;e "
may be increased. The new pitch can be found by taking t.ht: total s 5 e

theylast circumferential pitch circle, X, =80~ 15=65 inches, an q-

3.13.8 for

'

Pr

= 15 inches

65 65 B
! 5! X — = — = 17.01 inches
Per = Pe XK 50 20.94 X 50 1

X 65 f
V=2 9 pﬂ=65palb

5 () '
i pLaprs = 32.5 Pt

Fy=
12,600

(o277 - 998 inches (say 22 inches)
Pr1 =395 X 17.01
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In this manner, the pin spacing throughout the built-up plate is established. As
the center is approached, both the circumferential and radial pitches are increased,
Fig. 3.51. Though not required by calculations, it is good engineering practice to
add pins in the central region to position the plates with respect to each other
and the center of the stack. Likewise, in practice the outer row of pins is usually
placed beyond the edge and over the support. The example was chosen to sim-
plify the calculations and procedure.
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PROBLEMS

|. Inaclamped-edge circular plate that s uniformly loaded, determine the location
along a radius at which (&) the radial bending stress 7z = 0, and (b) the circumferen-
tial stress o, = 0. (Take u = 0.3)
Ans.: (@) = 0.628a
Ans.e () = 0.827a
9. In the plate of Fig. 3.11a, establish the equation for (1) the radial moment, and
(2) the circumferential moment when My = 0. (Hint: Follow the procedure of para-
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graph 3.9.1a, and utilize Eq. 3.5.4 for the circumferential stress.

)
Ans.: (1) My = M5 (1 - 9«)
-\‘2

a:._.b3

2M 6'.'.
2) My = — z
@ M, a,_bg(wx,)

. 3 s

. nucﬁ:lra‘t:;;rcv.ila}' steel plate 160 in. in diameter is located inside a reactor to support

amusiees 1[,3; . ft 415 s(,]lmply supported a_round its edge and is loaded uniformly wi[::hra
of 40,000 Ib. (&) How thick must the plate be for a design stress limit of

8,000 psi; and (b) what is th i i i
b (b) what is the maximum deflection of this plate if £ = 26,000,000 psi

Ans.: (a) 1.4 1n.
(6) 0.795 in.

p :-m :{el : {E:):nc;mlei nlccessary to pierce the core support plate in Problem 3 with a 40 in
D do:g dtl) e, (a) to whi.xt value c‘iocs the maximum stress increase; and (/) to
oo Yo i - e correspcmc!mg maximum deflection increase? (Hint: Use Egs

19 .9.25.) (Assume unit uniform load is the same as in Problem 3.) e

Ans.: (a) 13,512 psi
) . (5) 0,948 in.
. So.li ?[flgtf:r;l;iﬂtt:iil r;uclela'r c}:lorc sup};:ort plate for a nuclear reactor is composed of
| . ; o which an orthogonal grillage consisti i
2 in. thick webs on 10 in. centers is inte i i o sl W
n 10 in. s integrally welded to one side of the flat ¢ ate
;t:l“:fﬁ;!rfzgmlnohthlc structure as shown in Fig. 3.32, It supports uniforrl:'l\"esr I;I'dt;
G ; :;Ecn]ts of 5_‘2}[1],00(3 Ib total weight. Assuming the structure tnyac}z ::.ea.
: rted plate with uniform edge reactions, determine: rigid
: s : the flexural rigid-
zttﬁ;?acofdt‘he structure, (#) the bending stress at the top of the ﬁat(ﬂwc: pfz:izlzlnlégf
nding stress at the bottom of the grillage web at the center of the Supp::u't pla:c)

Ans.: (a) 333 E
(b) — 1,576 psi
(¢) 3,153 psi

Uniform nuclear core load

R R R RN

A _LHHHHH
) 2
TR
| | 10" \
| ! ! ! l | [ : Catnr:ma_ '
A-‘J “ —LL 2_n L v neutrol axis)
10 10" 10" 10"

i, G . Sect. A-A
g 2. Cross Section through the Nuclear Core Support Grillage of Problem 5

6. Relatively low values of bending stress, as found in Problem 5, are frequently

associated wi i
with nuclear core support plates which are often designed to minimize
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deflections in order to obviate misalignment, possible binding of nuclear fuel elements,
control rods, or other moving parts within the reactor. What is the maximum deflec-
tion of the core support in Problem 57 (Assume £ = 28,000,000 and p = 0.3.)

Ans,:  0.0626 in.

late in Problem 3 is replaced by two equal thickness
other and supported in the
in the same

7. The single flat circular p
plates of the same diameter placed one on top of the
same manner, What is the required thickness of these plates to mainta
stress limit?

Ans.: 099 in.

REFERENCES FOR PERFORATED TUBE PLATES

(a) K. A. Gardner, “Heat-Exchanger Tube-Sheet Design,” ASME Journal of
Applied Mechanics, Vol, 15, p. 377, 1948; “Heat-Bxchanger Tube-Sheet-2, Tixed
Tube-Sheets,” ibid., Vol. 19, p. 573, 1952,

() G. Horvay, “Bending of Honeycombs and of Perforated Plates,” ASM E Journal
of Applied Mechanics, Vol. 19, p. 1292, 1952; “The Plane-Stress Problem of Perforated
Plates,” ibid., Vol. 19, p. 35, 1952.

(¢) L. Malkin, “Notes on a Theoretical Basis for Design of Tube-Sheets of Tri-
angular Layout,” ASME Transactions, Vol. 74, p. 387, 1952.

(d) K.A. G. Miller, “The Design of Tube-Plates in Heat-Exchangers,” Proc. of the
Inst. of Mech. Engrs., Vol. 1B, p. 215, 1952.

(¢) J. P. Duncan, “The Structural Efficiency of Tube-Plates of Heat Exchangers,”
Proc. of the Inst. of Mech Engrs., Vol. 169, No. 39, p. 789, 1955; “Heat Exchanger
Tube Sheet Design-3, U-Tube and Bayonet Tube Sheets,” ASME Journal of Applied
Mechanics, Vol. 27, p. 25, 1960.

(f) J. N. Goodier, and G. J. Schoessow, “The Holding Power and Hydraulic
Tightness of Expanded Tube Joints,” ASME Transactions, Vol. 65, p. 489, 1943.

(g) G.Sachs, “Notes on the Tightness of Expanded Tube Joints,” ASM E Journal of
Applied Mechanics, Vol. 69, p. A285, 1947.

(k) A. Nadai, “Theory of the Expanding of Boiler and Condenser Tube Joints
Through Rolling,” ASME Transactions, Vol. 63, p. 865, 1943.

(i) G.D. Galletly and D. R. Snow, “Some Results on Continuously Drilled Fixed
Tube Plates,” ASME Transactions, Paper 60-PET-16, 1960.

(j) V.L.Salerno and J. B. Mahoney, “A Review, Comparison and Modification of
Present Deflection Theory for Flat Perforated Plates,” Welding Research Council Bulletin
No. 52, July 1959.

(k) R. C. Sampson, “Photoelastic Frozen Stress Study of the Effective Elastic
Constants of Perforated Materi als,” May, 1959, Office of Technical Services, Dept. of
Commerce, Washington, D. C.; “Photoelastic Analysis of Stresses in Perforated Ma-
terials Subject to Tension or Bending,” Office of Technical Services, Dept. of Com-
merce, Washington, D. C., April, 1960.

(/) M. M. Leven, “Preliminary Report on Deflection of Tube Sheets,” May, 1959,
and “Photoelastic Determination of stresses in Tube Sheets and Comparison with
Calculated Values,” Office of Technical Services, Dept. of Commerce, Washington,

D. C., April, 1960.

STRESSES IN FLAT PLATES 157

(m) W. J. O'Donnell, “The Effect of th
i e Tube on Stresses and Deflections i
Tube Stc'am ‘Gcncrator Tube Sheets,” Office of Technical Scr\?ices Q‘]_')::-: m? 1(“ o
mn:rcae,OWashmgton, D. C., November, 1960 RS
(r) O. Tamate, “Transverse Flexure of z;. Thin P ini '
= ! l ’ Tw ik
Hc(les},' ASME Publication Paper No. 58-A-35 ]1353 RGIGRTIRG TR
o) W. A. Bassali and M. Nagsif, *Stresses ; ; i
c j L , and Deflections in an Elastically =
stran.lcd‘Cucuiar Plate Under Uniform Normal Loading ov;rla ;:31‘ n ?m'?“a:’s 3
Pul(:tllcatlcm Paper No. 58-A-27, 1958, GRENE AR
p) W.]J. O'Donnell and B. F. L “Desi
Pul(’)Iicatign bt B B, I:tjnegfr. Design of Perforated Plates,” ASME
q) H. Kraus, “Flexure of a Circul . i i ¥
e o s GO WAD, 19521TCLI ar Plate with a Ring of Holes,"” ASME Pub-
Retgaﬂ.gi;:ﬂ:g?;ezf ;ﬁi V;,I&Slgl_crn?{, “Analysis of a Circular Plate Containing a
es,”’ Welding Research Council Bulletin No. 1 7 196
(+) H. M. S. Abdul-Wahab and |. H " igidi i b v B
: . Harrup, “The Rigidity of Perf i
Reinforced Holes,” Nuclear Engineert 7 e
S e iy igineering and Destgn, Vol. 5, No. 2, 1967, North-Holland
(t) W. J. O’'Donnell, “Effective Elasti
: 1, stic Constants for the Bending of Thi
Srated E’]atcs with Triangular and Square Penetration Patterns,” AISI\EI]S P h{ﬂ P_'—‘r‘
aper No, 72-PVP-9, 1972 ’ e
(u) W.]J. O'Donnell, “A Stud i
WeJ.C : y of Perforated Plat h i
ter(ns), T\N;lldmg Research Council Bulletin No. 124 €;9\;;t i,
v) T. Slot, “Stress Analysis of Thi j e i
il B wcstport, Comis hick Perforated Plates,” 1972, Technomic Pub-
(w) M. D. Bernstein and A.I. Soler, *
! L , “The Tubesheet Analysis M d i p
e, Bt . Tub alysis Method in the
Ty nser Standards,” ASME Publication Paper No. 77-JPGC-NE-18,
(x) K. P. Singh, “Analysi i
i ML ysis of Vertically Mounted Th T C
cha;n,ige;z, ‘}A?ME Publication Paper No. 77-‘}PGC-\JEC-19 lg%l;gh Begit e
y . J. Tong, “Inelastic Stress Distribution in T : Li
s o d OGS & tress. on in ‘ubeshcct Liagments Under
iy echanical Loading,”” ASME Publication Paper No. 77-JPGU-NE-
(z) J. S. Porowski and W. J. O'D
P ! . Js onnell, “Elastic Desi ; ‘or Perfe
ratE:d }Pl:;tc?. SASM}; Publication Paper No. T’'?’—_]13'G(I;ENE‘is';grl lft;;t?hOds o et
ae) A. L Solar, “Analysis of Closely Spaced Double Tubeshe
R lysls of y Spaced ouble Tubesheets Under Me-
oy ermal Loading,”” ASME Publication Paper No. 77-HPGC-NE-21,
(b6) L.E. Hulbert and F. A. Simonen, * i
_ ‘ A en, ““Analysis of Stresses in Shallow Sphe
ical Shells with Periodi o feation S
e eriodically Spaced Holes,” ASME Publication Paper No. 70-
rattg{\{iltcl;?arl?":sﬁi andt W. J. O'Donnell, “Effective Plastic Constants for Perfo-
bt ; port to the Pressure Vessel Research Committee, April 1971,
(dd) W. J. O'Donnell, J. S. P i
Aae] J , J. S. Porowski, and R. D. Ki “Plastic Desi i
ng(arn)ents, ASME Publication Paper No. 79-PVP-37 I;;:;l‘:']im, o L
¢¢) D, P, Jones, “Axisymmetric Fini : :
5 : i i ¢ Finite Element Analysis of Plates Containing
Aesrg‘;tira;un? A_rrangecl in a Square Pattern with Experimental :)tb'k'f':-'”'l-mh’h'
ublication Paper No. 79-PVP-79, 1979. R

(ff) T Terakawa, A. Imai, K. Yagi, Y. Fukada, and K. Okada, “Stiffening Ef-



e

158 THEORY AND DESIGN OF PRES

icati -PVP-3
fects of Tubes in Heat Exchanger Tubesheet,” ASME Publication Paper 83 P s

19835.

(gg) B. Kasraie, J. S. Porowski, W. ]

Analysis 0
1983.

fTube Expansion in Tubesheets,

. O'Donnell, and A, Sel

" ASME Publication

SURE VESSELS

z, ‘‘Elastic-Plastic
Paper 83-PVP-71,

4

Discontinuity Stresses in
Pressure Vessels

4.1 Introduction

In Chapter 2 it was shown that the principal membrane stresses in a
vessel subjected to internal or external pressure are produced by this
pressure and remain as long as it is applied. Likewise, in Chapter 3 the
bending stresses in plates subjected to pressure or structural loads are
produced by these loads and remain as long as they are applied. These
are called primary stresses. Primary stresses may be defined as those
stresses developed by the imposed loading which are necessary to satis-
fy the laws of equilibrium of external and internal forces and moments.
The basic characteristic of primary stresses is that they are not self-
limiting ; hence, when they exceed the yield point of the material they
can result in failure or gross distortion. Another example of primary
stress is that produced by wind, snow, or other specified live loads
‘These may produce either tension, compression, or bending, and must
be combined with those produced by pressure in determining the total
primary stress.

Secondary stresses, on the other hand, are those stresses developed
by the constraint of adjacent parts or by self-constraint of a structure,
The basic characteristic of secondary stresses is that they are self-
limiting. Local yielding or minor distortion can satisfy the conditions
causing the stress to occur and failure is not expected in one applica-
tion. For example, all thermal stresses produced by thermal gradients
within the structure are secondary. Another source of secondary
stresses occurring in vessels is that occurring at the juncture of a cylin-
drical vessel and its closure head resulting from the differential growth
or dilation of these parts under pressure. This effect is not uniform over
the entire vessel, nor is it unrelenting in the sense that the primary
membrane stresses are, since these remain as long as the pressure is
applied. In fact, these stresses are relatively local in extent and self-
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|
i
limiting in magnitude since once the differential deflection is satisfied | P
by plastic flow of the material a more favorable stress distribution

results. This behavior is much like that of a beam on an elastic founda- o

+x
tion, and this concept is used to evaluate the extent and magnitude of l/////% _77777'777// 7
<uch disturbances occurring at shell-to-head junctures, support skirt, ' ioicond Zis //:_"; 2L EL BT~
ete. Although these stresses are secondary ones and do not effect the .
static or bursting strength of the vessel, they are none the less im- '
portant when: (1) clearances for moving parts, such as control rod | 7] e i
drives for the cores of nuclear reactors, will not permit any gross local ‘ y . Mo( ,777777777777777/ 77
deflection, and (2) the vessel is subject to repetitive loading such that [ (4] Loading ‘
high local stresses can seriously limit its fatigue life, Chapters 5 and 6. 4
7m
4.2 Beam on an Elastic Foundation -I 3 E_’i a8
When a straight prismatic beam rests on a continuous supporting ' - il -

—
elastic foundation, Fig. 4.1, and is subjected to a concentrated load P (¢} Deflection \+ L
in the principal plane of the symmetrical cross section, the beam will
deflect producing a continuous distributed reaction force ¢ in the
foundation proportional to the deflection v of the beam at that point; 2r
i.e., ¢ = ky per unit length. This force opposes the deflection of the v A
beam; hence, when the deflection is downward (positive) the founda-
tion is in compression, whereas the reverse is true when the deflection is e - T
negative and the foundation is placed in tension. In some problems the ©(d) Slops ga- PB
supporting foundation is not actually continuous but consists of a series K ox
of closely spaced individual supports such as a railroad rail resting on
closely spaced cross-ties. This may be considered continuous for prac-
tical purposes; in fact, the development and application of this theory a8 '
was first concerned with rails,' and it is strongly recommended that in
order to “‘get a feel” of the elastic foundation behavior, the nature of — = r—

[p*]
o

/_\\ 48

the deflection of a rail as a railroad car passes over it be observed. Here = - ko
the deflection is relatively large and can be seen with the naked eye, (61 Mmoo ¥ el
whereas this analogous action in pressure vessels is not so visible. ag "o

The force with which the foundation resists the deflection of the
beam is proportional to its deflection, and its “spring constant” or
foundation modulus, as it is called, is equal to the force required per 3w .

. : . ; R
unit area to cause unit deflection, k pounds per square inch; hence — 28

28
{ — rJluj‘l' [_‘I}-Q'l) | . \ o

s . . g —_— -
Cutting a small Iﬂen?em of 1r:;-,‘gt|-1 dx from the bee.ml, l*llg. 4.2, E.!.I'ld " . e \ i Bt
applying the equilibritin equation that the summation of the vertical 2 Ar
forces equal zero (EF, = 0) to this element gives A
: . . (4.2.9) Fig. 4.1. Loading, Deflection, Slope, Moment, and Shear in a Beam on an
V—(V +dV)+ kydx =0 kel - Elastic Foundation
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J
v

H<
dx

kydx

j>M+dM

V+dV
'

Fig. 4.2. Forces on Foundation Element

or
v
vy
dx
Also, since V = dM/dx, its derivatives can be substituted in Eq. 4.2.3
giving

(4.2.3)

dav M
= = ky
dx dx?

(4.2.4)

The familiar equation for the elastic curve o_f a beam in bending is
EI(d%/dx*) = —M and differentiating this twice gives

d4 M
EI-2 = — —

dxd dx?

(4.2.5)

and substituting the value of d*M /dx* from Eq. 4.2.4 gives th’c equa-
tion for the deflection curve of a beam supported on an elastic foun-

dation,

% 4.2.6)
El-—— = — k (4.2.
dxt =
The general solution of this equation,®?® using the notation
e B (4.2.7)
4EI
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is
y= ¢#%(Cycosfx + CasinBx) + e #%(C3cosBx + Cysinfx) (4.2.8)

The constants of integration Cj, Cy, Cj, and C; must be determined
from the known physical conditions at locations throughout the beam.

4.3 Infinitely Long Beam

L. Single Concentrated Load

If an infinitely long beam is subjected to a concentrated load 7 at
point 0, the origin of the coordinate system, Fig. 4.1a, the deflection
curve is symmetrical about the origin and only that part of the curve
to the right need be considered, Fig. 4.14. It is reasonable to assume
that at a point infinite distance from the load the deflection ig zero;
hence, in Eq. 4.2.8 those terms involving ¢** must vanish, which re-
quires that C; = C; = 0. Therefore, the deflection curve for the right

portion of the beam becomes
y = ¢ #2(CycosBx + (4 sinBx) (4.3.1)

Another physical condition of the beam is that at the origin, x = 0, its
slope is zero, so

dy
= =—B(C3-Cy) =0 (4.3.2)
dxz—g
or
Ch =Cy=C ii_ﬂfﬂ
and Eq. 4.3.1 becomes
y = Ce#*(cosBx + sinfx) (4.3.4)

The value of C may be determined by noting that the summation of
the foundation reaction forces must equal the applied force (ZF, = 0),
or

QJ qdx = QJ kydx = P (4.3.5)
0

0
When the value of y from Eq. 4.3.4 is substituted into Eq. 4.3.5 and the
integration performed, C is found to be
PB

C=5¢

(4.3.6)
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4.1¢c, d, ¢, and f, respectively. The maximum values of the deflection,
moment, and shear occur at the point of application of the load, x = 0,
and are found from Eqs. 4.3.74, 4.3.9q, and 4.3.10a to be

P
P ; (4.3.76)
P
M ax., = M e Tt 4‘.3.9
. o= 1 (4.3.96)
Vaiz = = i; (4.3.100)

The effect of multiple concentrated loads may be handled by the
principle of superposition and the theorem of reciprocity. The prin-
ciple of superposition merely means that the effect of each load may be
determined independent of all others, and the overall result arrived at
by adding together the individual effects. The theorem of reciprocity
states that a reflex (such as deflection) at point 1 due to an action (such
as load) at point 2, is the same as 2 reflex at point 2 produced by the
action at point 1. As an exa mple, if two equal loads, P, and P, spaced
60 in. apart rest on a beam on an elastic foundation of 8 = 1/40, and
the origin of coordinates s taken at the first load, Table 4.2 gives the
value of the functions Ag, and Cjs, as taken from Table 4.1.

The total deflection under the load P, is from Eq. 4.3.7a,

PB PB
- 2P0 + 0.2384) = 12384~
7= ggtt +0:2884) = 123845

TABLE 4.2
Load
Function
P Py
B’: 0 1.5
Aigi 1 0.2384
Cis 1 —~0.2068
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or 24 percent more than that i
produced by a single load. The
moment under the load P, is from Eq. 4.3.92 gl Lol e b

P
M = —(1 — 0.2068) = 0.7932£
4 48
or 20 percent less than that produced by a single load 7.

2. Uniform Load

The principal of superpositi
: superposition can also be used to solve the probl
;{ anq-l.;mformly c'hstr}buted load over a portion of the beamp;em;{:]
ig. .f, lby considering that the distributed load is equivalent to a.
s(;:neig c c:ise;y spalt]:ed concentrated loads gdx. The deflection at point
produced by such an element is obtai ituti or P
S et is obtained by substituting ¢dx for P in

qdxB
2%

where x is the distance from the

_ element gdx to the point of origin O
'tl;ihel.tot‘al deflection can be found by integrating E(I;. 4.3.11 i;;gtiiflm,n
he limits 0 —aon the left side of the origin and O — & on the ri :
side of the origin giving g

@ gdxB
J= J.o ——¢#%(cos Bx + sinBx)

2k
b qdxB
+ J. —Q—k—e—ﬁx(cosﬁx + sinfx)

8y = e~#%(cos Bx + sinBx) (4.3.11)

0 (4.3.12)

The valu 7 i . .

i ic?f a in E..qA 4.3.12 is negative, but since the basic equation

aaed with up to give tf}e deflection for positive values of v only, it is

flection ofa P};OS“WE sign in Eq. 4.3.12. This is in order becausc the de-
: a beam under a single concentrated load has the same value

i

llllll,él/lbl/l/l)/yll‘:

L F%)

AIIEL 7, | SIS A
a
r~ a b
v
Fi Teid ; Distri
ig. 4.3. Uniformly Distributed Load Over a Portion of a Beam on an
Elastic Foundation -
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at equal distances in the positive and negative directions due to sym-
metry. This integration gives

§= 2_9;.:[(1 _ eFacosBa) + (1 — efcosph)]  (4.3.13)

or

5 %c(z — Dia = D) (4.3.14)

The maximum deflection occurs at the mid-point of the loaded portion
of the beam. If O — a and O — b are large, the values ¢~ and e#" will
be small and the deflection from Eq. 4.3.14 becomes q/k; i.e., the
bending of the bar can be neglected and it can be assumed that the
uniform load ¢ is transmiitted directly to the elastic foundation. In a
pressure vessel in which the uniformly distributed load is the pressure,
g = p; then the deflection is proportional to the membrane stress
which is uniform throughout the entire vessel.

In a similar manner, by substituting gdx for P in Egs. 4.3.8a, 4.3.9a
and 4.3.10a and integrating between the assigned limits, the values of
the slope moment and shear are found to be, respectively,

98

g = ﬂ(Ada = Aﬁb) (4.3.15)
q
l‘; -1 U

When the point of origin occurs at one end of the distributed load,
or beyond the distributed load, these expressions can be found by the
same procedure.

3. Single Moment, or Couple

The case of a single moment applied at the point O on an infinitely
long beam, Fig. 4.4a, can be analyzed by using the solution for a single
load, Eq. 4.3.7. The single moment can be considered as equivalent to
two forces P, Fig. 4.4h, a distance a apart if it is assumed that Pa

DISCONTINUITY STRESSES IN PRESSURE VESSELS 169

Mo
,—"-‘
T AT AT 7 TR P
0

>

(@)

P P

g

F >~

L
Pt lltiisdddid
o

(&)

Fig. 4.4, Single Moment Acting on a Beam on an Elastic Foundation

approaches M, as a approaches zero. The deflection at a distance »
from the origin is from Eq. 4.3.7a,

Pp

e s o (4.3.18)
¥y 2% ( 8z ,g{x+a.)) )
_ MDB(AM = Aﬁ(:ﬁ—a!) {\431[’”
2k a
but from Eq. 4.3.8,
.A‘g(z-i-a) - Aﬁz d
_ == o — B.. (4.2 OF
[ a :|a40 dx ¥ed 23 .21 {“I‘J._l“
hence the deflection curve produced by the moment M, is
; My
& — Bys (4.3.21)
The successive derivatives of this equation give
dy M3 S
e b (4.3.22)
dx PR
dzy My i
—EIE;E =M = _Q_Dﬁ“ (4.3.23)
a3y MyB .
_EIE:E = F= - 5 Ay (4.3.24)

'I}‘lhe deﬂect}on, slc?pc, bending moment and shear can be found from
these equations, with the aid of Table 4.1 for any location on the heam.
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Fig. 4.5. Semi-infinite Beam on an Elastic Foundation
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4.4 Semi-infinite Beam

A semi-infinite beam refers to one that has unlimited extension in
one direction, but also has a fnite end at point O. Figure 4.5 shows
such a beam bent by a force P and moment Mo applied at the finite
end. The general solution, Eq. 4.2.8, for the case of an infinite beam
can also be used for that of the semi-infinite one. Since the deflection
and bending moment approach zero as distance x from the loaded end
increases, the constants C and C, must equal zero giving the same de-
flection curve as that for an infinite beam; namely,

y = e?3(C3 cosBx + Ca sin Bx) (4.4.1)

The constants of integration Cs and C; are found from the conditions at
the origin, taken at the point of application of the load and moment,

d*y

EIl—= = - M 4.
(dxz)z-o 4 (4.4.2)
d3y

EI ——) _ _Vy="P 443
(,dxa s (443)

Substituting from Eq. 4.4.1 into Eqs. 4.4.2and 4.4.3 and performing
the differentiation permits determining the constants as

Mo

1
Cs = ——(P — BM d Geee (@44
s = JREL (M) 20 T 9pEI
Introducing these constants into Eq. 4.4.1 gives the deflection curve as
g—ﬁx =
y= §§3—E—I-[P cosBx — BMo(cospx — sin )] (4.4.5)
or, using the foregoing notation,
2P 2 Mop?
X = —'—kﬁ Bz = —'——_“kUB Cpz (4'4'6)
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ike\ﬂ' i‘iC, taking th succ SS i at‘ f "'1' ‘-l- VES 1C S
1 | Eq . 5 gl i, tl C _lOpC,

2Pg? 4Mop?
g = i k.
P

M= - -B—B,,z + Moz (4.4.8)

V = PC:ﬁl;; = 21MOBBﬁx {‘{24(:”

The deflection and slope are a maximum at the end, ¥ = 0, where
3 _2PB 2MypB?

max, = —k = 3 (4.4.10)

2PR* 4MB3
Omax. = — — + of (4.4.11)

k k

These i i i i i
e icz:gt}or:lsl, in lcc:)nl‘]unctlon with the principle of superposition
sed in the solution of problems involvi i i :
‘ S ving discontinuity :
e ; 1t) stresses
t the juncture of heads and shells in vessels, etc., paragraph 4.7
. s 5 108

4.5 Cylindrical Vessel Under Axially Symmetrical Loading

da?t?:f‘;i:;eag:)om important applications of the theory of beams on
i B nz:ss to t}l’fm-\e\:'allcd pressure vessels. Considering the
cytingter B g l:.'la w 1ch. is subject to rotationally symmetrical

g, variable along its length, sections through the cylinder

Fig. 4.6. Cylindrical Vessel Under Axially Symmetrical Loading
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normal to the axis will remain circular because of symmetry, and the
radius will undergo a displacement ar = which will be different for
each cross section, Fig. 4.6h. This radial displacement can be con-
sidered as deflection of a longitudinal element of unit width of the
cylinder setting up bending so that the element actsasa “heam’’ on an
«elastic foundation” created by the remainder of the supporting cylin-
der. The radial displacement y at any cross section of the longitudinal
element results in a corresponding shortening of the radius of the cylin-
der at this location giving rise to a compressive strain in the hoop
direction of y/r (Eq. 2.4.1). The accompanying hoop stress is Ey/r,or a
hoop force per unitlength of the longitudinal element of (Fig. 4.6¢)

Eh ;
fpe (4.5.1)
2

The angle ¢ subtended by this unit width longitudinal element is 1/r,
so the radial resultant of these forces is

Bt =y (4.5.2)

This reactive force P opposes the deflection and is distributed along the
length of the longitudinal element in proportion to the deflection,
where Eh/r? is the proportionality factor. Hence, a longitudinal ele-
ment of a cylindrical vessel loaded symmetrically with respect to
the axis behaves as a beam on an elastic foundation, the modulus of

which is

g o, (4.5.3)

Since the sides of each longitudinal element are not able to rotate to
accommodate the lateral extension and compression resulting from the
Poisson effect, i.e., any change in the shape of the cross section of the
longitudinal element is prevented by the adjacent elements of the
cylinder, a bending moment in the circumferential direction is created
equal to

M, = pMy (4.5.4)

where M. is the longitudinal bending moment and u is Poisson’s ratio.
This is similar to the condition occurring in flat plates and is taken
into account by using D = EI = ER3/12(1 — p?) for its flexural
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rigidity, paragraph 3.2. Introducing this value for EI, ar
. %1, and that for &
from Eq. 4.5.3 in Eq. 4.2.7 gives the factor g as .

JE VIO =D

ol b i (4.5.5)
For steel with x = 0.3 this becomes
1.285
= o (4.5.6)

4.6 Extent and Significance of Load Deformations on Pressure
Vessels

. Aitenuation Factors

. It is seen from Fig. 4.1 that the value of the deflection, slope, bend-
ing moment, a‘nc’l shear all have the characteristic damped wau"c form
of rapxc!ly diminishing amplitude. The length of this wave is given by
the period of the functions cos 8x and sin 8x which is equal to ;

2n 5 4 [4E]
PR LIRS N e 4 £

3 ¥ (4.6.1)
and the factor § is called the ‘““‘damping factor.” It is noted that these
values are al! very small at about a distance x = #/8 on either side of
the loa:d. This means tf_lat a beam of length 27/8 (x/8 on each side of
the point of loading) will have essentially the same deflection curve as
an infinitely lo.ng beam, and Eqs. 4.3.7a, 4.3.8a, 4.3.9a, and 4.3.10a
may be used without appreciable error. A cylindrical steel vessel then
i)f length'gr.eater t'han 2 -\/n’z/l.285 =49 \/Hacts asif it were infinitely
ong. This is paruc_ularly helpful since the solution of finite beams be-
comes rr':.orc.compllcated and time consuming because the constants of
integration in Eq. 4.2.8 are not so readily determined.?

2. Eguivalent Elastic Foundation—Cantilever Beam Length

A{lothcr -.observation that can be made from the nature of the curves
of F1lg. 4.1 is an appraisal of the extent to which the influence of Lhdcl
elastic foundation characteristics may be considered of prim;u'y con-
cern; as for example, the distance beyond the application of the loaa at
which structural reinforcing of a pressure vessel may be assumed to
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%(}AF@WT M, Cl\:/tj.l%

Fig. 4.7. Elastic Foundation—Cantilever Beam Comparison

bviously, it is not at a distance x = /8
where all effects are nil as discussed above, but is somewhat closer to
the point of load application. One simple approach is to approximate
the elastic foundation deflection and slope characteristics with those of
a similarly loaded equivalent length cantilever beam, which has
similar deflection and slope curves, 10 give the same maximum values
of these characteristics. The equivalent length cantilever beam is taken
as the farthest distance from the point of application of the load at
which a significant effect is registered. It is found, referring to Fig. 4.7,
by equating the end deflections and slopes of a beam on an elastic
foundation loaded by a force P and moment M, with those for a

similarly loaded cantilever; hence,

have no significant effect. O

A. Deflection Clonsideration:

(a) Load P only
FElastic beam from Eqs. 4.4.6 and 4.2.7

P

(Cantilever beam

PI3?
| o= ———— 4’6.3
I = 3ET (4.6.3)
and substituting the value of y at x = 0 from Eq. 4.6.2 into
Eq. 4.6.3 gives
1.11 .
= — (4.6.4)
B
when it is noted that the  of the elastic beam is equal to the of
the cantilever beam divided by 1 — 4% paragraph 3.2, and a
value g = 0.3 for steel is used.
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(b)) Moment M, only
Elastic beam from Eqs. 4.4.6 and 4.2.7

Gl
2EIg °F (4.6.5)
Cantilever beam
_ MyL®
Y = 9FET (4.6.6)

and substituting the val
Eq. 4.6.6 givesg value of y at x = 0 from Eq. 4.6.5 into

L™ _
B (4.6.7)

B. Slope Consideration:
(a) Load P only
Elastic beam from Eqs. 4.4.7 and 4.2.7

6 - P
= ﬁ-EEAﬁx (4.6.8)
Cantilever beam
2
8 = i o
2E1 (4.6.9)

and substituting the val
Eq. 4.6.9 gives alue of 6 at x = 0 from Eq. 4.6.8 into

I 0.95
= _,-H_ (4.6.10)
() Moment M, only
Elastic beam from Eqs. 4.4.7 and 4.2.7
My
0 = —
Cantilever beam
9. MyL
= —E_ (4.6, 1.f|
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and substituting the value of 8 at x = 0 from Eq. 4.6.11 into
Eq. 4.6.12 gives
Fagats (4.6.13)
B

It is seen from Eqs. 4.6.4, 4.6.7, 4.6.10, and 4.6.13 that the average
value is approximately L = 1/8. This factor is useful in two ways:

I. It gives a good “feel” of the elastic foundation beam behavior via
a comparison with familiar simple cantilever beam action. ‘

9. It can be used conveniently for determining the end dcﬂc'ctlon
and slope of elastic foundation beams when the cq}li\Talent‘ cant}lcver
length is taken as 1/8, and it establishes a practical limit for its primary
effect, such as the reinforcing limits around vessel openings, para-
graph 6.6,

4.7 Discontinuity Stresses in Vessels

In Chapter 2, when a vessel was subjected to internal pressure only
the direct tensile stresses, called membrane stresses, occurring over the
entire wall thickness were considered. Differential displacements due
to membrane stresses of varying magnitudes throughout the vessel can
also occur causing bending of the wall, and, even though these bending
stresses are local in extent, they may become very high in magnitude.
One such location would be at the juncture of the cylindrical shell with
its closure head, Fig. 4.8 and Fig. 4.10 (given subsequently) where the
radial growth of the cylindrical portion of the vessel is not the same as
that of the head when the vessel is pressurized; hence, at the juncture
of these parts local bending takes place to preserve the continuity of the
vessel wall, The additional stresses set up at these locations are called
“discontinuity stresses.” _ ‘

In problems of this type the deformation and stress in the long}-
tudinal or meridian elements can be determined from the elastic

Fig. 4.8. Discontinuity at Hemispherical Head and Cylindrical Shell Juncture
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foundation beam formulas, and then adding the longitudinal pressure
stress ;. The stress in the circumferential direction is obtained by add-
ing to the normal hoop pressure stress g, that due to direct com-
pression (shortening) or tension (extension) of the radius «., and that
caused by circumferential bending, o;. Thus the total circumferential
stress in a cylindrical vessel is

pr K 6 .
o = oa(t)oe + op = —(&)—yr £ —puM; (4.7.1)
h r ht
When £ is small in comparison with r, as it is in thin-walled vessels
the deflection and bending becomes very local in extent and affects the
stresses only in the immediate vicinity of the juncture. This narrow
zone at the edge of the head can be considered as nearly cylindrical
in shape; hence, the equations developed for the cylindrical portion of
the vessel can be used for approximate calculations of the deflections
in spherical, elliptical, or conical shape heads®* %' at the juncture.
In fact, these local effects can be determined for any shell of revolution
by approximating the actual shell with an “equivalent cylinder” that
has a radius equal to the radius of curvature r, in the hoop direction
of the actual shell.

1. Cylindrical Vessel with Hemispherical Heads

This method of evaluating local bending stresses can be used for the
case of a cylindrical vessel with hemispherical heads subjected to in-
ternal pressure, Fig. 4.84. The hoop and longitudinal stresses in the
cylindrical portion are from Eqs. 2.2.4 and 2.2.6, respectively.

Hoop
"
QB % (4.7.2)
Longitudinal
pr .
== (4.7.3)
2h

where r is the radius and % the thickness of the wall. These stresses 11
the spherical portion are from Eq. 2.2.7

Hoop

_ P
9

o2 (4.7.4)
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Longitudinal
br
= 4.7.5
o =gy (4.7.5)
The radial growth under internal pressure of the cylindrical portion
from Eq. 2.4.3 is
pr

B = ——
7 RE

@ - ) (4.7.6)

and for the spherical portion from Eq. 244 1s

o 4.7.7
by = QﬁE(l 1) ( )

If the cylindrical and spherical portions are disjointed, Fig. 4.8, the
difference in radial growth produced by the membrane stresses in the
two portions would be

b

¢ $ T 9hE

(4.7.8)

However, in the actual vessel the head and cylinder are kept together
at this juncture by shearing forces P, and bending moments M, per
unit length of the circumference. These discontinuity forces produce
local bending stresses in the adjacent parts of the vessel. One of the
simplest cases which frequently occurs in practice is that in which the
cylindrical wall and spherical head are of the same thickness. In this
case the deflections and slopes induced at the edges of the cylindrical
and spherical parts by the forces Py are equal; hence, the conditions of
continuity at the juncture are satisfied if M, = 0 and P, is of 2 magni-
tude to create a deflection at the edge of the cylinder equal to 8/2. Sub-
stituting M, = 0 at x = 0 in Eq. 4.4.6 gives an equation from which
the value of P, can be found,

5 2PB
2= Tk

or using the value of k from 4.5.3, 8 from Eq. 4.7.8 and noting Dj: = 1
at x = 0 gives

Py w2 (4.7.10)
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Thc deflection and bending moment at any distance from the point of
juncture can be found from Eqs. 4.4.6 and 4.4.8, respectively \Ehe 1 P,
is l.cnown‘; hence, the total longitudinal stress at any point. :«'!from[thu
point of juncture of the cylinder and hemisphere is, in Lhé cylindc:‘e

_tr 6 p
b Y e (4.7.11)

and the total hoop stress from Eq. 4.7.1 is, in the cylinder

=pr E p 28 +6 b

substituting £ = Eh/r* from Eq. 4.5.3, gives

_ b pr 3pp

[+

LAgsﬁz;r;f:&mp#;, thesg(ijscontinuity stresses in the vessel of Fig. 4.8 for the
; ions of p = si, 7 =50 in, A =11 = 0.
Pt KO = p in, A=11in, and g = 0.3 can be

A. From Eq. 4.5.6,

1.285  1.285

A= ViE /50 x 1

=0.182, B = 0.033

B. Fro ‘ — ; e
) rom Eq. 4.7.11 the longitudinal stress in the cylindrical portion

pr 6
— + P B N T
¢ 2h — h2 8)933‘8#
_ 300 x 50 6 x 300

+
2 x 1 12 x 8 x 0.033 **
= 7,500 + 6,820B;,

';i;igi,’lrts}tleqlia;?t:;y ;r; l;l;lls cqix'ation, mefnbrane stress, remains constant
- A thegbendi e cylinder, .Whllc the second quantity in this
reaChing,a = ng stress, varies along the length of the vessel
- : um numerical v.athc at Bx = w/4 as observed from

nspection of Table 4.1. The variation in stress is plotted in Fig. 4.9
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Fig. 4.9. Stress in Cylindrical Portion of Vessel of Fig. 4.8

C. From Eq. 4.7.13 the total hoop stress in the cylindrical portion is
3
pr_tr pb

c =

4z WB“

R

300 x 50 300 x 50 3 x 0.3 x 300,
== " ax1 FTaxnx003’
—~ 15,000 — 3,750D 4z + 2,040B3

The first quantity in t

along the length of the cylinder, while the direct

his equation, membrane stress, remains constant
compression stress due
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to shortening of a radii and the bending stress varies along the length
of the vessel. This variation is shown in the plot of these stresses in
Fig. 4.9.

The stresses in the hemispherical head are correspondingly deter-
mined by recalling that the edge of force P, produces an extension of
the radii and therefore induces tension over the entire thickness of the
head; accordingly, the second term in Eq. 4.7.1 is taken as positive.

The previous discussion and example considered the case in which
both the thickness and modulus of elasticity of the head and cylindrical
portions were equal. When the head is thinner than the cylindrical
portion, as may occur in order to take advantage of the more favorable
membrane stress condition in a spherical shape as compared to a cylin-
drical one, or when the modulus of elasticity, E, is not the same for the
parts jointed, as may occur at elevated temperatures when special de-
sign conditions require different materials for these parts, there will
be both a shearing force P, and a moment M, at the juncture.'®!*

2. Cylindrical Vessel with Ellipsoidal Heads

The same method of calculating discontinuity stresses can also be
used when the end closure to a cylindrical shell is an ellipsoidal shaped

head. The radial growth under internal pressure of the cylindrical
portion from Eq. 2.4.3 is

- (4.7.14
de 2}1E(2 ) (4.7.14)

and for the ellipsoidal portion from Eq. 2.4.7 is

5,=%(1_§‘3§5_i2‘) (4.7.15)

The difference in radial growth produced by the membrane stresses in
the two portions of equal thickness is

_s g = (® 4.7 16
5= b, 5,—m(ﬁ) (4.7.16)
Comparing this to Eq. 4.7.8 for a spherical closure head shows that this
difference indilation at the juncture, which is what causes the dis-
continuity stresses, is greater than that for a spherical head in the ratio
of a*/4*. The shearing force P, and discontinuity stresses are also in-
creased in the same proportion. The membrane stresses in the ellip-
soidal head are obtained from Egs. 2.6.25 and 2.6.26, and those in the
cylindrical shell from Egs. 2.2.4 and 2.2.6. As in the case of the spheri-
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cal head the membrane and discontinuity stresses are added to give the
total acting stress. These quantities can be computed from the con-
tinuity conditions that: (1) the sum of the edge deflections of head and
cylindrical portions must equal 8, Fig. 4.8b, and; (2) the angle of rota-
tion, or slope, of the two edges must be equal.

3. Cylindrical Vessel with a Flat Head

Flat plates are often used for the heads of cylindrical pressure
vessels,” Fig. 4.10a. In this case the head may be considered as a flat
circular plate uniformly loaded by the internal pressure, p, and hence
bends to a spherical surface with a corresponding change in slope at its
juncture with the cylinder. This change in slope sets up a bending mo-
ment M, which makes the cylindrical shell slope agree with the slope
of the head. The other continuity condition requires that the radial
growth of the cylindrical shell under pressure be restricted at the head
juncture by a force Py and moment M,. Referring to Fig. 4.10b and
using the subscripts H for the head and C for the cylinder, the slope
continuity equation at the juncture is

Or,p — Ou, e, = O, M, — e, Py (4.7.17)

The head edge slope due to the uniform pressure p is from Eq. 3.6.25

o ol 4.7.18)
Hp = R 1) (2
and that due to the edge moment M, is from Eqs. 3.3.11 and 3.5.1
?’M;)
0 -=— 4.7.19
M= DA+ p) ol

(a) L

Fig. 4.10. Discontinuity at Flat Head and Cylindrical Shell Juncture

i b
e

__;‘;"L"_-.‘_ Y
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The _SIOpe of cylindrical portion at the juncture due to Py and M, is
obtained from Eq. 4.4.7 giving for the right side of Eq. 4.7.14
bc,m, — bc,p, = WD z = sie
EP k
The second continuity equation for the radial displacement can be
written

A (47.20)

8§ =38u,p, + dc, PM, (4.7.21)

?vhcrc 5 is the unrestrained growth of the cylindrical portion due to
internal pressure and is from Eq. 2.4.3

-
= QhE( - p) (4.7.22)
The radial deflection of the flat head due to P; is
?'Pu
8 = ——1 — )
H, P, hHE(l m) (4.7.23)

;r:;ln tk]g:ql.'aﬁflﬁdcﬂcction of the cylindrical portion due to Py and M, is

2PB D 2Mop?

T k
By substituting thc;c vqlucs of the individual terms into Eqs. 4.7.17
and 4.7.21 and solv'mg simultaneously, Py and M, can be found. As an
exarr{p‘lc, the magmt_udc of P, and M, for the vessel of Fig. 4.10 for the
conditions of r = 5 in., Ay = h, = h = 3/8 in,, p = 100 psi, u» = 0.3
E = 25,000,000 psi is found as follows: ’ o

8c, PM, =

o (4.7.24)

A. From Eq. 4.7.18 noting a = 1,

o 31— p) 3 x 100 x 53(0.7) 13,125
H‘? = = — :
2ER QER3 ERS

B. From Egs. 4.7.19 and 3.2.9,

1211 — )My 12 x 5 x (0T)Mo  42My
ER(1 + p) ER3 - ER
C. From Eqs. 4.7.20 and 4.5.3, at x = 0,
4r2ﬁ3Mo Qr%BEPo
Eh Eh

On, M, =

bc.m, — Oc.py, =
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D. From Eq. 4.7.17,

13,125 42Mo  4r°8*Mo 2r2B2Py
“E® Ew _ Eh  Eh
E. The growth of the cylindrical portion is from Eq. 4.7.22,
£ 100 x 58 x (L7) 2,125
=aE- M T T 2xiE hE
F. From Eq. 4.7.23,
rPy 3.5P

o, 2y = (1 ~# = E

G. From Egs. 4.7.24 and 4.5.3,

2fzﬁPo 2fzﬂzMo
So.pMs = —pr T T Eh
H. From Eq. 4.7.21.
2,125 3.5P i 2r28Po B 2r282 Mo

hE hE Eh Eh
2,125 = (3.5 + 2r°B) Po — 2r2B2Mo
I. Solving simultaneously the equations from D and H after intro-
ducing the value A= 0.375! = 0.1406, § = 1.285/ y/rh = 1.285/
J0.375 X 5 = 0.938, 82 = 0.881, 5 = 0.826 gives
P, = 284 1b per in. of circumference
M, = 277 in. 1b per in. of circumference
J. Total radial stress in the flat head at juncture due to P, and M,
is:
1. Stress due to Py = 284 Ib per inch circumference:

P, 284 . ;

=% - == = 759 psi (tension)

0= by 875 pei

2. Stress due to My = 277 in. 1b per in circumference:
6 6 X277

U=i;‘:2_ 0= 3752 =+11,844 psi
H -

3. Total stress inside surface:
og=75h9 + 11,844 = 12,603 psi
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4. Total stress outside surface:
g=1759- 11,844 =- 11,085 psi
K. Total radial stress at the center of the flat head:

1. Bending stress at center of free edge circular plate uniformly
loaded by pressure p, Eq. 3.6.29:

3(3+u r?
o=1% : }P 77
8 h
£ 3823) 1005 _ 4 99,000 psi
o=t =4 si
8 3752 s
Stress Inside Surface Outside Surface
Due to P, 759 759 (same as J.1)
Due to M, 11,844 -11,844 (same as ].2)
Due to p -22,000 22,000
Total -9,397 10,915

4.8 Stresses in a Bimetallic Joint

Special conditions often require that a pressure vessel be constructed
of several materials of different metallurgical and physical properties
whose incompatibility induces stresses when the vessel is subjected to
its operating environment. This occurs in the piping of boilers and
turbines where austenitic steels, such as 18 chrome-8 nickel, are re-
quired in the high-temperature zone; whereas in the cooler zones the
more economical ferritic steels are used. It also occurs in nuclear re-
actor vessels where cleanliness requirements of the fluid necessitates the
use of stainless steel clad vessels and stainless steel piping. In either case
local discontinuity stresses are produced in the region where these dis-
similar materials are welded together due to the fact that the coeffi-
cient of thermal expansion of the austenitic steel is about 50 per cent
greater than that of the ferritic steel; hence, the free growth of each
portion under a temperature change is restricted, Fig. 4.11a. These
stresses can be evaluated in the same manner as those at the juncture of
a cylindrical vessel with hemispherical heads, paragraph 4.7.1, but in
this case the differential dilation of the two parts is due to their differ-
ent thermal expansion and is

8 = rAT(xs — =) (4.8.1)
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Vessal woll Welded joint
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Fig. 4.11. Bimetallic Joints in Nozzles

where AT is the temperature change, 7 is the radius, and a, and ay are
the linear coefficient of thermal expansion of the austenitic and ferritic
steels, respectively. The stresses produced by a bimetallic joint can be
minimized by the choice of its location in the vessel. Consider the
attachment of a stainless steel nozzle to a heavy wall ferritic steel vessel
by (1) locating the joint at relatively large distance from the vessel
wall, and (2) locating the joint at the vessel wall.

|. Location of a Bimetallic Welded Joint in a Nozzle of Uniform Thickness
in a Region Away from the Vessel Wall
In this case, Fig. 4.11b, the shearing force P, and bending M, per unit
length of circumference at the joint necessary to preserve continuity o
deflection and slope in the two portions is obtained by equating the
sum of the deflection of the stainless steel portion and the ferritic steel
portion resulting from P, and M,, Eq. 4.4.6, to that created by the
differential thermal expansion, Eq. 4.8.1,

e Y R Tl
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rAT(os — o) = 85, p, — 85, M, + O, p, + 8, m, (4.8.2)
2 PoBs 2MoBs2 2P, 2
_ 2foPs MaoBs 2M
g, o= Lt OB!DM .., z
, % ke ke 2
(4.8.3)
= QPQ[B_“?'T_I + @EJ + oM, [&zjﬁ _ B
ks ;Ef kf ;C,g
‘ (4.8.4)
and by equating the edge rotations for the two parts from Eq. 4.4.7
O =ty (4.8.5)
_ 2PoBs . 4MoBs® 2Py 4 Moy
4‘;:& Vi k gz = = AR P T T {“}86‘}
] ke ky !
B 2
_zpo[ﬁsk Lo 1’”] = - 4,410[5‘:2@ + _*@J'E'Dﬁ_"] (4.8.7)
s .&'f ks kf .

When the temperature of the metal is sufficiently high so that their
moduli of elaspctty, E, and E;, are not the same, both Eqs. 4.8.4 and
4.8.7lare required to solve for P, and M. When these two values are
(ejc.lua., then 8, = 8, k; = k;, and the left side of Eq. 4.8.7 vanishes, in-
icating that M, ec_]uals zero and the condition of slope contlnuiiy is

provided by the action of the forces P, only. This is equivalent to saying
riatfthe sl;pe and deflection induced at the edges of the two p'dl'[';i h:
the forces P, are equal; hence, the conditions of sty are met By
o e e s of continuity are met by

AT (0 — %) 2P

Y T

t‘:This tggre’esa;vzitl}lEq. 4.7.9 when it is noted that the left side of this
quation is §/2. The stresses can then be co ted i jarr ;

ok e s ) mputed in the same manner

(4.8.8)

2. Location of a Bimetallic Welded Joint i ' ;
J na ;'Vﬂng Uniform ' chness
at Its Juncture with the Vessel Wall A itglorm izt

i{n tbis case the wall of the ferritic steel vessel is assumed to be rigid
zgsox}ﬂtlhnot deflect or twist, so that the austc?nitic steel nozzle must
: e complete deflection, é, due to the difference in thermal ex-
})l:'i;lstlon cuf the two Earts, .?lnd it must be prevented from rotating at the
ure; 1.e., .0 = 0, Fig. 4.11¢. The deflection continuity condition



e

188 THEORY AND DESIGN OF PRESSURE VESSELS

then becomes from Egs. 4.8.1 and 4.4.6

P 2 MopB?
AT (s — of) = —};E gr = -—'EIB— Cpz (4.8.9)
and equating the edge slope from Eq. 4.4.7 to zero gives
2 PpB? 4 Mo3?
o O 2 b, (4.8.10)

Substituting the values of Ags, Cs= and Dy, from Table 4.1 atx = 0 into
Eqs. 4.8.9 and 4.8.10 gives

2P, 2 MoB?
AT (a5 — ) = __u§ - (L (4.8.11)
k k
and
2PB  AMP?
_ e oMy (4.8.12)
k k
from which the simultaneous solution gives
= K[rAT(os — o)) (4.8.13)
2p
and
k[rAT(as — o
Py = —[-—-(—Ii—_—f)']‘ (4.8.14)

B

With these values of M, and P, the bending moment at any distance x
from the juncture can be found from Eq. 4.4.8, and the deflection
from Eq. 4.4.6.

It can be deduced from a comparison of the forces Py and M, at the
juncture for these two cases that the optimum location for a bimetallic
welded joint is away from points of rigidity so that both portions can
bend to absorb the differential thermal growth of the two joined parts.
For instance, comparing Eq. 4.8.14 with Eq. 4.8.8 shows the shearing
force P, at a juncture so located is 1/4 of that when the juncture is lo-
cated at a point of fixity; and the accompanying juncture moment M,
is zero as compared with that given by Eq. 4.8.13, Table 4.3.

These are local discontinuity effects which attenuate rapidly, and a

distance x = 7/8 = 2.451/-r—h s sufficient to remove the joint from the

effects of a point of rigidity or fixity. The stress variation in the region
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TABLE 4.3
Location of Bimetallic Welded
Jomnt Py My
k[rAT (a5 —
1. Away from Point of Fixity M 0
48 '

k[rAT (ag — )] K[rAT (ag — )]

2. At Point of Fixity

B 242

of a bimetallic welded joint for the two locati :
: . tions discuss :
is shown in the following examples. iscussed previously

Example 1. Determine the longitudi
_ gitudinal stress (pressure and bendi i
ta}:lztglqilicot;ntl';e p(:;z?lilof Flg.l 4.116 in the regiol:r)l of the weld E:inlir;lgg) 2::
aterial (alloy stee 18 cr-8 ni) to a ferriti i
stecl) for the conditions of r = 5in., h = 3/)8 in. j‘; :r?;:g I:Iiatzr%?l~(§%16lj°o;
E for both materials = 25,000,000 psi, ’ phan ’

g = 0,000010 in./in.-°F, and ay = 0.000008 in,/in.-°F

A. Longitudinal pressure stress, Eq. 2.2.6,

pr 750 x 5
— = ———— = 5,000 psi

gy = =
2h 2 x 0.375

B. Differential radial growth, Eq. 4.8.1,
8 = rAT(as — wy) = 5 x 500(0.00001 — 0.000008) = 0.005 in.
C. Damping factor, Eq. 4.5.6.

1285 1.285
Vrh  4/5 x 0.375

=0.938, g = 0.88]

D. Shearing force Py, Eq. 4.8.8 and Eq. 4.2.7,
8 Py

2 " 2EIf
Py = 0.005EI8?
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E. The longitudinal bending moment, Eq. 4.4.8,
Py
A’.{ = —'Bﬁz
B

— 0.005EIf*Bjz
noting [ = #3/12 (1 — u?) per Eq.

Il

F. Longitudinal bending stress,
3.2.8,

. 6.M
o=t M| = pE
0.0025ERB2B 4
= 4+ —
- p2

G. The total longitudinal stress ¢ is the sum of the pressure stress, 4, and the

bending stress, F, and is plotted in Fig. 4.12.

mine the longitudinal stress (pressure and bending) in
le of Fig. 4.11¢ if the dissimilar metal weld joint connects
e ferritic steel vessel, all other condi-

Example 2. Deter

the wall of the nozz
the austenitic steel nozzle directly to th

tions remaining the same as in Example 1,
A. Longitudinal pressure stress, Eq. 2.2.6,
pr 750 x 5

L o = 5,000 psi
25 2 x 0.375

o1

B. Differential radial growth, Eq. 4.8.1,
$ = rAT oy — 27) = 3 X 500(0.00001 — 0.000008) = 0.005 in.

C. Damping factor, Eq. 4.5.6,
1.285 1.285

Vrh N v/5 x 0.375
Eq. 4.8.13 and Eq. 4.2.7,

— 0938, B =088l

D. Juncture bending moment My,

K rAT(2s — o)
. o T 2 _ golEmp
282
E. Juncture shearing force Py, Eq. 4.8.14 and Eq. 4.2.7,
KrAT (xs — o)
Pyt '“:; N _ 002188

F. Longitudinal bending moment, Eq. 4.4.8,
Po
Af = - EB‘?; + ."lqu.-‘I;“:

— 0.02EIB:Byz + 0.01EIB? Ayz

ll

| R
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Fig. 4.12. Stress in Bimetallic Joint of Examples | and 2, Paragraph 4.8

G. Longitudinal bending stress, noting 7 = #/12(1 — u?) per Eq. 3.2.9

I+

Tp =

6
7 (—O.02EIf Bz + 0.01EI2 )

- hEB?
+ 1__:2(_0'018!” + 0.0054,2)
H. The total longitudi i
gitudinal stress ¢ is the sum of the pressure stress

. 1 ; L ess, A a d the
&cr?c‘hnﬁ'stress, G, ?md is plotted in Fig. 4.12. It i.sF;ccn th::L l}‘?: n::wlilsmtultl':
2 ﬁg}:gtt; il:l:l Strr::?ag} E}:;(_ar}?pic 2 with the bimetallic weld located at a point
s Examgli x y higher than when it is located away from such a point
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4.9 Deformation and Stresses in Flanges

When pressure vessel closure heads or parts gf vcsse_ls must be readily
removable for maintenance, or for the insertion of internals, such.as
the nuclear core of a reactor vessel, they may be constructt::d with
flanges for bolting purposes, Figs. 1.18and 2.2. The deformation and
stresses in these flanges may be calculated by:

A. Considering the flange to be made up‘of a flat plate with a
central hole, paragraph 3.9, attached to a cylinder as in the manner
employed in paragraph 4.7.2; or . _ .

B. Considering the flange to be made up of a ClI’Ct.llal' ring of uni-
form cross section twisted by couples uniformly distributed along its
centerline,! and attached to a cylinder behaving as a beam on an
elastic foundation. .

In the later consideration, referring to Fig. 4.13 sh.owmg half the
ring as a free body, the condition of equilibrium relative to moments
about the diameter Ox gives the bending moment acting on each
section m and n as

m
M = j * M, sin padp = Mia (4.9.1)
0

where a is the radius of the centerline and A is the twisting couple per
unit length of the centerline.

The deformation of the ring can be determined by noting that dur-

ing twisting, due to symmetry, each cross section rotates in its own
plane through the same angle 8, which is assumed to be small. In Fig.

4.13, B is taken as a point in the cross section at a distance p from the

m 0 ¢ x
1 e
~
: P /‘3'9 74
| /‘y 4
8 | o7
A ¥
8,—B, |
Hodiusal lncreos_e in radius
a .|

Fig. 4.13. Rotation of a Circular Ring by Uniformly Applied Couples
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center of rotation C. During rotation of the cross section the point B
describes an arc BB, = p8. Due to this deformation, the annular fiber
of the ring (which is perpendicular to the section at point B) increases
its radius by B:B;. Triangles BB\B; and BDC are similar, so

s — /D
BBy = 831(2) 62 =

= pb= = 4.9,
BC PP (4.9.2)

by

1. Case I, Ring Dimensions Small Compared with Centerline Radius

When cross-sectional dimensions are small in comparison with the
radius a of the centerline of the ring, the radius of any fiber may be
taken equal to a without appreciable error, so that the unit elongation
of the fiber B, due to the total displacement given in Eq. 4.9.2, is

9y
i= 2 (4.9.3)
a
and the corresponding fiber stress is
Efy ;
. i

Just as in a simple beam, the sum of all the normal forces acting on the
cross section of the ring must equal zero, and the moment of these
forces about the x axis must equal the externally applied moment M,
Eq. 4.9.1. If an elemental area of the cross section is denoted by 44, the
first of these equilibrium equations becomes

Efy

la5

dA =0 (4.9.5)

and the second becomes

Eﬂluz
[ Fraa-n
A4 g

where the integration is extended over the entire cross-sectional area 4.
Equation 4.9.5 shows that the centroid of the cross section must be on
the x axis. If it is noted that [ y*d4 about the x axis is the morment of
inertia of the cross section [, Eq. 4.9.6 gives

Ma  Ma
EI, El,

(4.9.6)

(4.9.7)
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and substituting this value of 8 in Eq. 4.9.4 gives the stress
M;a_y

6 =—"

Iz

(4.9.8)

It is seen that the distribution of the normal stresses over the cross
section of the ring is the same as in the bending of a straight bar; i.e.,
the stress is proportional to the distance from the neutral axis x, and
the maximum stress occurs at the point farthest from this axis. It is well
to emphasize that the twisting of a ring by uniform couples is not the
same problem as the torsion of a straight bar. In this case there is no
shearing stress on a diametrical section and the moment of inertia in-
volved is the rectangular moment of inertia about the x axis and not
the polar moment of inertia as used in problems of torsion.

9. Case II, Ring Dimensions Not Small Compared to Centerline Radius

When the cross-sectional dimensions of the ring are not small com-
pared to the centerline radius, the simplifying assumptions of Case |
cannot be made,®!'+'®!? For instance, if we consider the rectangular
cross-sectional ring of Fig. 4.14 whose width b is not small compared
to the radius a of the centerline, and assume as before that the defor-
mation of the ring consists of a rotation of its cross section through
an angle 8, the clongation of a fiber at radius 7 is

8y
= (4.9.9)
and the corresponding stress is
Eby
o (4.9.10)
T
fr—b—

: a7
%%

b
%

74

e c——

"

a

o =

Fig. 4.14. Rectangular Flange
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The moment equilibri i :
quilibrium equation comparable to Eq. 4.9.6 becomes

T2 rd EQy2dr dy
f HIRE) 4 (4.9.11)
-h2J e r
which upon integration yields
Eoh®  d
Replacing M with its value from Eq. 4.9.1 gives the angle of rotation as
12Mpa
= e (4.9.13)
d
ER3 log,—
c

Substituting the value of ¢ from Eq. 4.9.13 in E SR
bending stress q. 4.9.13 in Eq. 4.9.10 gives the

l?.Mgﬂ)’
gy (4.9.14)
h3r loge—
¢
The maximum stress i
S occurs at the inner corners of | vhere
e he ring where

Gﬁa‘fgﬂ
4 (4.9.15)
h2c loge-

;

Omax. =

3. Flange Stresses

These equations are readily adaptable to calculating the stresses
p}l;oduced ina plpc_ﬂangc or the closure flange of a vessel. Figure 4. ll5¢.9
5 m-,fr.s a flange subjected to a force F per unit length of the inner cir-
?um erence of the vessel. The force per unit length of the outer circum-
rv:l"tt‘:lr\.ce is then F(¢/d). Under the action of these forces the flange
ac:nz?:stthrough an angle 6, and the wall of the vessel rotates a like
4 1-1?1 at thCJunctl:.lre and behaves as a beam on an elastic founda-
inogn,fori:gé 4;,_.1 56. I._.elttmg M, and {30 be th.c bending moment and shear-
e pt;;;mt cng‘th of the inner circumference of the flange re-
e a:«',the‘ T magnﬁ;xde can be found by the conditions of con-
- the juncture o the ﬁangf.: and vessel. Since generally flanges

very rigid in a plane perpendicular to the axis of the vessel, the
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b = —_’ﬁ\(—|

>

NN
-
N
™ |-4—:.-—-l

’ ]
la) 2

Fig. 4.15. Vessel Flange Rotation

N

radial displacement produced in the flange by Py is ‘r&cghglifoar}[(‘jhiie
radial deflection at the edge of the vessel (:afn be consi e?re ar.a e ;l
from Eq. 4.4.6 and letting D = EI = ER*/12(1 — u?) rom paragrap
4.5, equating the end deflection of the vessel to zero gives

—I-(Pu — BMo) = 0 (4.9.16)

28D

and equating the angle of rotation of thevedge of the vessel to the angle
of rotation of the flange cross section, 8, gives

9.7
Py~ 28Me) = 6 (4.9.17)
282D

From Eq. 4.9.16,

Py = BMy (4.9.18)
and from Eq. 4.9.17,

M, = 28D6 (4.9.19)
e Py = 282D8 (4.9.20)

The value of 8 is obtained from Eq. 4.5.6, “.rhl_:rein ¢ is the ;;dius oi::ilz -_._;_? :
vessel and A is its wall thickness. The twisting couple, M,, per e 8

length of the centerline of the flange is

=
- P

e O s
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¢ Foh
M, = ;[F(a’ <) — My - —;—} (4.9.21)

and substituting the value of P, from Eq. 4.9.18 into 4.9.21 gives

M, = f[F(d — ) = My - Mof;]

a

(4.9.22)

The angle of rotation 4 is found by substituting the value of M, from
Eq. 4.9.22 into Eq. 4.9.13, and then from Eq. 4.9.19,

12 h
My = 28D—<° d[F(d —¢) — My — Mo??] (4.9.23)
ER3 log,—-
¢
Further, replacing D by its value E£,3/12(1 — u2) gives
1
M, = F(d - C}l Bh 1 — p2 },)31 d (4.9.24)
AN —1 lo
T2 B (al "

When the dimensions of the flange and vessel, and the values of
Poisson’s ratio and the force F are given, the quantities P, and M, can
be determined from Eqs. 4.9.18 and 4.9.24. The bending stresses in the
vessel can be found as in paragraph 4.7, and in the flange from Eq.
4.9.14. The force F is established from the total pressure load over a
cross section equal to the inside diameter of the sealing gasket plus the
gasket precompression load. In practice this is obtained by measuring
the stress in the bolts or studs and establishing an equivalent force per

inch of circumference. As an example, the maximum bending stress in

the vessel of Fig. 4.15 whend = 6in.,¢ = 3in., 4 = 1.25 in., ;y = 0.75

in., and g = 0.3 can be found as follows:

A. The damping factor g is from Eq. 4.5.6,

g o 1.285 1.285
TVl V3 x 075

B. Substituting the above values in Eq. 4.9.24 gives

= 0.86in.~!

My = F(6 - 3) :
‘T | L 086 X135 T 0% (1353 6
2 2 % 0.86 x 3(0.?5’ &y

My = 1.43F
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C. From Eq. 4.9.18,
Py = BMp = 0.86 x 1.43F = 1.23F

D. The maximum bending stress in the vessel is

6Mp 6 x 1.43F
o= = = 15.25F

? 0.75%

PROBLEMS

I. In the long thin tube of Fig. 4.16 subjected to a circumferential ring loading of
P Ib. per in. of circumference, determine the radial deflection directly under the load.

Assume the tube is steel, u = 0.3.

3 4£ ,\3/2
Ans. § = 0.64—( -
. E(h)

At what distance from the point of application of the load does the deflection

first become zero?
Ans. 1.83+/rh

———
——

Fig. 4.16. Deflection of Thin Tube Under Circumferential Ring Loading

2. A flat circular head on a cylindrical pressure vessel, similar to Fig. 4.10, is
subject to an internalp = 100 psi. A discontinuity analysis of the head-to-cylinder
juncture gives a value Py =2001b and My = 100 in. 1b per inch of circumference.
What is the total maximum stress occurring at the center of the flat head on the
outside surface and inside surface of this head if it is 5 in. thick and its radius is
6 inches?

Ans, +15,800 psi (outside at center)
- 15,000 psi (inside at center)

3. In the example given in paragraph 4.9.3, determine the maximum bending
stress in this vessel wall if the flange is assernbled with eight 3/4 in, diameter bolts

stressed to 10,000 psi in the shank.

Ans. + 28,600 psi
4. In order to prevent contamination of the coolant fluid by rust particles in nuclear
reactor vessels fabricated of carbon steel, the inside of th

e vessel is frequently clad with :_ '
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avery thin la.yer of stainless steel (which does not affect its strength or deflection), and
sO]lld wa'll_ stainless steel nozzles are welded into the vessel wall because -nf Ll_‘-r' difzﬁs ailt 4
or inability to. clad relatively small-diameter nozzles internally. 1f 1 v.t:;i_nlc:ssm: \l
nozzle (coefficient of thermal expansion & = 0,000009) of r = 20 I:; shiam II -’f'sieL
p=03and £ = “26,000,000 pst is welded into a thick carbon steel vcsécl [cocfﬁ;i;;
of thermal expansion & = 0.000007) so as to simulate a built-in edge, what is: (a) t.hc
va!uc.of the nozzle characteristic 8, and (b) the fexural rigidity D?,WI'-HL is: (¢) the
shearing force and bending moment per inch length of circumference at the .built—i

edge, and (a’)‘ what are the maximum thermal stresses at this location when thg
reactar vessel is operating to give a uniform increase in metal temperature of 300°F?
The nozzle is free to expand in its axial direction. o .

Ans. (a) B = 0.4063 in.~!

(6) D = 297,600 Ib in.

() Py=9601b
M, = 1,181 in. Ib

(d) o1 = 228,349 psi (longitudinal)
gi = —24,105 psi (circumferential)

5. Solve Problem 4 assuming that the edge at the j
olv T, . S R
B e iiiiod g juncture of the nozzle and reactor

Ans. (a) B = 0.4063 in.~}
(#) D = 297,600 Ib in.
(¢) P,=4801b

My =0in.lb
(d) o =0 psi (longitudinal)
ay = —15,600 psi (circumferential)

6. As part of an external support system for a cylindrical nuclear reactor vessel, a
narrow ring of cross-sectional area A is fastened snugly around the outside of T|'i€'t:~|r|
a.ta d{stance well removed from the ends. Assuming zero clearance between the s.a-‘u-
side diameter of the vessel and the inside diameter of the ring, establish a;1_e'-& 1‘;ﬂ%£u[1
for (a) the lqad Py per inch of circumference of the vessel, (Z;J the maximum' Eﬂ%c‘linq
moment M, in the vessel wall, and (¢) the maximum bending stress produced ’in the
vessel \vau, due to the radial dilation of the vessel of radius r and thickness 2 rf'%ulLEnlL;
from an‘mtcrnal pressure p, all material being steel, and g = 0.3 [Hint: T'I;:_- total
;Tgstramcd O:J.tward dilation of the vessel due to internal pressure is given by Eq.
b. 3asd = pri(2 - w)/2hE. ‘j"t the ring location this total amount must be absorbed

y a local decr‘ea.sc in the radius of the vessel equal to (Py8/2%) (Eq. 4.3.7a and Eq
4.5.3), and an increase in the radius of the ring equal to (Py?/4E) (Eq. 2.2.3 and Ec ‘
2.4.1). The maximum bending moment can be found from (Eq. 4.3.9b)]. _ o

T . 0.854p\rh
BA+ 2k 064254 + \rA

(b) Mmaxy = 0.1945+/rh Py

0.64254 + Vri®
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1.167PF,
(5) chimazy = \rh—: V;

_ 0.99194pr
0.64254k + h*\rh
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5

Fracture Control

5.1 Materials and Their Environment

IThc previous chapters dealt with the methods for analyzing the
primary and secondary stresses in pressure vessels. Thcse.z;nzﬁvs 3
usually assume that the material follows Hooke’s law, so that ?%
enough to know the modulus of elasticity of the material !for solvin ”thl;
problutm based on elastic behavior. This is a good start for selecting th;
material and establishing the dimensions of the structulre butg m:L
enoug‘h to guarantee safety. The environmental limits under :avhich the
materlal_rcmams elastic for various stress conditions is im o;~t' "la
ll?;ql.lally 1mp0rtant.is the behavior of the material beyond thesi e:lai;lt*icl‘
[:;1;51’ or thchplastlc range, which represents a stress range approxi-.
s ly on;: alf t_he u.ltlma_tc for annealed structural and pressure
espei ! ajt;e ‘jk.mﬁ,rz;gl;neenngw}sﬁ:, the structural merit of a material,
wssocssli'y o e:écm erisa compiex’Onc afld stress concentrations
e Plasgtic ]rJD (‘;I.lt n;)t .only upon its L}ltlmate strength but also
Spa) Prescncepor E?rges‘ ;:{15 the latter V\.:hich permits local yielding
b e e 0 gh peak stresses to give a more favorable stress
mor,b 'c:Je y eliminating the danger of failure that would occur in
s pic;::r: mateirlals w!:uch lack tl:lis property. Material specifications
iy, Orvslsas:ti::naltgrlztli recognize this factt?r and require minimum
e properties, as well as elastic and ultimate strength

5.2 Ductile Material Tensile Tests

. Mechanical Properties

thf;aﬁycl?gjl te:(t} p;r;c:f:cdufr;s aqd size sp_ecimcns are used to determine
ot stt}:)elspOf“:E}‘lO uc;::lc .matcrlals, such as pressure vessel and
it 1. ot . hese, the ?anlest. and‘ most widely used is the
o anci ! Lll..S consists of_pullxng a é-u.m dlam_cter‘ 2-in. gage length

oting proportional limit, yield point, ultimate strength,
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cross-sectional

-1 th, and reduction in '
O ey rve for a mild

elongation in :
; e. Figure 5.1 shows such a stress-strain cu

area at failur

carbon steel. ‘ .
The proportional limit is the point at which the greatest stress value

varies lineally with the corresponding strain. Senfiti\: i}_cte_r:sg:r;ifé:
i is poi dingly this limit de
cessary to establish this point and accor his 1
a:-::;fy on t}{is sensitivity, Fig. 5.1. The modulus of eilasuc:ty is the slop;: cif
%his curve in this region and, for instance, for this steel is E = o/e=
0.001 = 30,000,000 psi. o _
Solgggl;iefd point is a most important characteristic since it .reprIcsevits
the point at which elastic action ceases and plastic flow beglr'xsa 1;1 the
usual vessel and structural steels this is frequently accompame'd y S}n
abrupt decrease in the stress, point b, Fig. 5.1, fol‘lo'wcd'by consic era dc:
elongation, in the order of 2 per cent, with negligible increase 1n load,

Curve I, Strain, in. per in.

o
s 2 28888%8¢%8%8
d ©o © ©o ©o © o © =] l
70 ]_
t Curve I £ Ultimate strength
60 |
= d Severe necking
50
y /! f failure
4 Y 7
5 40
a ba’ ‘,bygeqdﬂmlm — Curve >
P AR
- 11 ] a Proportional limit
i
&
20
|
e ]

D006
0.007

00041
0.005

Strain, in. per in. o .
curve 1L, Yield point region, Sfrain, in. per in

Fig. 5.1. Stress-Strain Curve for Mild Steel (0.25 carbon). Curve I is an : ;

enlargement of Curve I'in Region of Yield Point
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¢ to d. This justifies the simplified straight-line stress-strain diagram
assumption of Fig. 1.5¢. This point is readily recognized by a drop in
beain or halt of the gage of the testing machine, or observing the gross
stretching period. The upper stress limit in this region, point &, is called
the upper yield point and the lower one, point ¢, the lower yield point. In
the United States, reference to yield point implies the upper value.

The ultimate strength is the maximum stress obtained, point ¢, Fig. 5.1,
computed on the basis of load and original cross-sectional area as is the
premise for all standard physical test data evaluation. The entire area

.under the stress-strain curve eabcdef represents the amount of work re-

quired to produce failure—hence, is in great measure a characteristic
of the material, since it depends both on its strength and ductility.

Ductility is measured by the elongation of the gage length, and reduc-
tion of area of the cross section at time of failure. Uniform elongation
and reduction in area occur up to the ultimate strength, point ¢, Fig.
5.1, at which time necking begins and further elongation becomes lo-
calized (see Figs. 5.24 and 5.25 given subsequently). The increase in
the gage length attributable to necking is appreciable, and since this is
the same for all gage lengths, the percentage elongation (ratio of the
total elongation of the gage length to its original length) will increase
with decreasing gage lengths. The reduction in area is defined as a ratio
of the cross-sectional area at time of failure, point f, Fig. 5.1, to the
original cross-sectional area. Both of these properties obtained in this
manner are dependent upon the proportions of the test coupon; hence
for comparable results identical size coupons must be used. These
properties are a measure of the ductility of the material, and in a sense
represent an inherent material abuse safety factor. They are incor-
porated, along with yield point and ultimate strength, in all material
specification requirements for vessel and structural steels.

2. “True” and *Engineering” Values of Stress and Strain
g 4 ),

In a typical tension member as shown in Fig. 1.2, subjected 0 a
force P, the force is assumed to act uniformly over the cross section 5o
the stress is

q
Il
|

This is the “true” stress and is defined as the force divided by the in-
stantaneous cross-sectional area 4. When it is further assumed that the
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Fig. 5.2. True and Engineering Strain

cross-sectional area remains substantially constant and equal to the
original area A, the stress becoines

- £ (5.2.2)

This is called “engineering’” stress and is the force divided by the
original cross-sectional area.

The stress causes an elongation &; that is, an original length L, has
grown to L as shown in Fig. 5.2, which results in a strain

LdLt L :
b= — = log. — 5.2.
e fLu Ii 0g. (5.2.3)

This is called “true” strain and is defined as the integral of the ratio of
the incremental change in length to the instantaneous length. Per-
forming the integration over the limits of length from the original
length L, to the final length L results in an alternate but equivalent
definition of true strain as the natural logarithm of L/L,. When de-
formations are large, such as occur in the plastic range, the quantity 6
becomes large compared with L and it is necessary to consider the
change in length during stressing and base the strain on the actual
length at any particular instant rather than the original length. In the
elastic range the original length L, can be considered to remain con-
stant regardless of the imposed stress; hence, Eq. 5.2.3 can be written

Lg T; Ly Ly

This is called “engineering” strain. It is the ratio of the change in

length to the original length.
Engineering stress, Eq. 5.2.2, and strain, Eq. 5.2.4, are used in de-
sign since most engineering structures are constructed to keep the

f =

FRACTURE CONTROL 205

ﬁpph.ed stress within the elastic limit in which case the “true” and
engineering” values are very close.! However, in the plastic raln e the
twq values are no longer close, but they may be correlated by usii the
basic assumption of plasticity that the volume remains constant sogthat

Aol = AL (3.2.5)
- Lﬂ
A= T (5.2.6)
But from Eq. 5.2.4
Y
T + e (527
and substituting this value of L/L, in Eq. 5.2.6 gives
- AU ¥
A= g (5.2.8)

Further placing the value of 4 f E G s B [ _
t7iie §Eross as rom Eq. 5.2.8 in Eq. 5.2.1 gives the

P
7= ?1}“ + ¢) (5.2.9)

and replacing the value of P/A4, from Eq. 5.2.2
o' = o(l +¢) (5.2.10)
E.l::ch.gwcs the *“true” stress in terms of the “‘engineering’ stress
“1 cv:f’lsc, cpmbmmg Egs. 5.2.3 and 5.2.7 results in a correlation for
true’’ strain in terms of “engineering’ strain.
¢! = log, (1 +¢) (5.2.11)
Dcformat.ion may also be measured in terms of the unit reduction in
area, a,, instead of a change in length

_ 4 dA A
v #L. = =g (5.2.12)

but substituting the value of 4 from Eq. 5.2.8 in Eq. 5.2.12 gives

a, = log, (1 +¢) (5.2.13)

and since the right side of Eq. 5.2.13 is equal to the true strain, Eq
5.2.11 becomes - o

a, =¢ (5.2.14)



X5

206 THEORY AND DESIGN OF PRESSURE VESSELS

140

! i
]
120

100

.J_' _]_ — _'—

g 80 =t
g J | _f—Rupture stress I
@ ! | - | o
Z 60 S i—| St T I
-1 | |
[ |
a0 —n —-l— —-l— == "—— I——J——‘ -—

“— Norma! stress-sfrain curve ' |

T

9] .2 4 6 B 1.0 1.2 1.4 1.6 18

20

Strain, in./in.
Fig. 5.3. True and Engineering Stress-Strain Curves for a (.05, Carbon
Steel’
Figure 5.3 1is a comparison of the true and engineering stress-strain
curve for a mild carbon steel. It shows an increasing discrepancy in the
two values with extension into the plastic deformation process. For in-
stance, the engineering stress-strain curve indicates that beyond the
ultimate strength, the stress decreases with increase in strain. This is a
false indication of material behavior since the true stress-strain curve
shows that as straining progresses more stress develops.

3. Shape of the Stress-Strain Curve

The shape of the true stress-strain curve is of particular significance
for large deformations encountered in metal forming, and also in
appraising the behavior and properties of metals in the plastic range.
[t has been found experimentally that the true stress-Strain curve in
the plastic range for many metals plots as a straight line on log-log co-
ordinates, Fig. 5.4, of which the equation is

log ¢/ = log C + n log ¢ (5.2.15)
In this equation ¢ is the true stress in the plastic range st
yield point oy p. and ¢’

arting at the =
s the true strain. In Eq. 5.2.15, nis called the
“strain hardening exponent” and is the slope of the plotted straight =
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Fig. 5.4. Plot of True Stress-Strain Curv
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line, ;nd C is the “st.rcngth coeflicient” which is the true stress corre-
sgon ing to true strain at 1.0 on this plot, Fig. 5.4. Equation 5.2.15 is
the equation of a parabola which can also be written as -

o = Cle)" (5.2.16)

A hypothetical stress-strain curve can be drawn as shown in Fig. 5.5

The elastic range is covered by Hooke’s law, Eq. 1.1.3, and terminates
at the yield point stress, oy p, = sy.p.. Beyond the yi,e}d point *trc:‘
and up to the ultimate stress o', is a range of “uniform elon ation “in
?vhlch tbc cross section of the member is under uniform elon gau;io “' '3
is des.crlbed by Eq. 5.2.16. Equation 5.2.16 is valid only ingrhc r!;. 0o
of umfom} elongation. At the stress ¢', the load-carrying caps 1210”
i;he ma.terzal rea(.:hes‘its ultimate; that is, the increase inhstr’cgiiihzﬁg
r:dsltlia:ilg;lh?;d:g;gju;t balances the de.crease in strength due 10 the
i, B s I—s;cglonal area. At [hlS‘ stress the material “necks”
- St;ess a.r A :;101m ecomes unstable with fracture occurring at the
b Shm,;n 000 pa,r“lion of a true gnd an engineering stress-strain
o increaseg. .:)}..l Z In. the region of Ll'{stabilily the true stress
s wit ;st.ram but the rate of load-carrying capacity
» which is the Eroduct o'A, decreases; accordingly, o', is the xi-
mum limit of design stress. The point at which this ir;stabilil\«' u;-m:sl ila'

defined as

dlf = 0 (5.2.17)
where B

F=d4 (5.2.18)
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Fig. 5.5. Hypothetical True Stress-Strain Curve

From Egs. 5.2.11, 5.2.12, 5.2.13 and 5.2.14

.’4 o
¢ = Iog,T;’ (5.2.19)

and the instantaneous area A is then

A = Agle)™ (5.2.20)

i " ne arithms.
where (¢) is the base of natural logarithms. | -
Substituting the value of 4 from Eq. 5.2.20 in Eq. 5.2.18 gives

F = o' Aye)™ (5.2.21)

Since the load F is a function of both tle true stress and the true strain

(OF) ;1 OF) (5.2.22)
(.I‘F= —(—a?)'do' + (ag’)fi
From Eq. 5.2.21
aF _ Ae)- (5.2.23)
do’
OF _ _ Aw'(e) (5.2.24)
de’

Sqs- 5.2.23 2.24 in Eq. 5.2.22°8
Substituting the values given by Eqs. 5.2.23 and 5.2.24 in Eq. 5.2.22 8

and then equating Eq. 5.2.22 to Eq. 5.2.1

0 = Ayle)""(da’ — a'de')

(5.2.25)
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In Eq. 5.2.25 the term Ay(e)~' can not equal zero, therefore
de' — o'de’ = 0
or instability is defined by the relation
o = g—; (5.2.26)
The value of the true stress is given by Eq. 5.2.16 as
o =:Cfe')? (5.2.27)
and the first derivative of this is
g = nC(e’)t (5.2.28)
Substituting Eqs. 5.2.27 and 5.2.28 in Eq. 5.2.26 gives
Cle")» = nCle")™? (5.2.29)
dividing both sides of Eq. 5.2.29 by C(¢’)"!
% =n (5.2.50)
¢ =n (5.2.31)

Thus, from Eq. 5.2.31, the moment of instability of flow in uniaxial
tension occurs when the true strain ¢’ is numerically equal to the strain-
hardening exponent. When the loading is the 2:1 biaxiality of the
cylindrical vessel under internal pressure the instability occurs at a
circumferential strain of n/2 or half of the strain to necking in the
tensile test,*? and for the 1:1 biaxiality of the sphere it occurs at a
circumferential strain of n/3. Accordingly, in the instability (ductile

failure) types of bursting the strain hardening exponent is a most
significant property.

5.3 Structure and Strength of Steel

In approaching the study of the plastic flow of metals, it is well to
consider first the structure and properties of a single crystal. Metals are
composed of a random assembly of crystals or grains, which in turn
are composed of atoms in a three-dimensional geometric lattice ar-
rangement.®s For instance, iron and steel consist of body-centered
cubic cells, Fig. 5.6a, in an interlocking structure, Fig. 566 The
lattice dimensions, such as distance ““a” in Fig. 5.6a, are constant for
each material and are on the order of 2.5 X 10~% em. The atoms can
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dy-Centered Cubic Cells ()
d Structure (b)

(al

al of Iron Consisting of Unit Bo

Fig. 5.6. Cryst .
L in an Interlocking Body-Centere

s or atomic planes, and external forces are
ponents acting perpendicular to these

planes (normal stress) and parallel to them (shear st;csssg, f‘;géf;ii
Stress normal to the atomic plane tends to pl.ﬂl apart the‘ p i
results in a cohesion or brittle type fracture, Fig. ::_.'Fb‘ Shear st:;ts g
to slide some of the planes relative to the others in the same dire ;

Fig. 5.7¢. When a series of sliding planes occurs,

cf> ) ////\(
7 7 s

be considered to lie in sheet;
resisted by internal stress com

Fig. 5.7, Stresses Acting on a Crystal

{4 259

Fig. 5.74, a slip band
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is formed which is called a Lueders’ Line. This may be visualized
much as a stack of coins that is pushed sideways so as to expose part of
the face of each coin. Metals contain dislocations or linear defects that
move easily when small shear stresses are applied, and it is the move-
ments of these dislocations that result in a shear deformation. The
most common form of dislocation occurs when a plane of atoms is
missing from a crystal lattice, and is represented by the black 7-shape
in Fig. 5.8a. Movement of dislocations accounts for the weakness of
metals. When a small shearing stress is applied a simple slip in atomic
bonding allows the dislocation to jump one cell to the right, Fig. 5.85.
Ultimately the dislocation reaches the edge of the crystal producing a
unit slip, Fig. 5.8¢. Figure 5.9 is a photograph of grain boundaries
and dislocations. Many such slips will lead to a visible change in the

Fig. 5.8. Movement of Dislocation, Represented by the Black T-Shape,
Under a Shear Stress to Produce Unit Slip ?
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oundaries and Dislocations ( Magnification

Fig. 5.9. Photograph of Grain B
= 40,000)

1is dislocation theory explains why real
efect free crystals. It also explains why
1gths approaching the

shape of the metal, Par. 5. Tt
metals are weaker than ideal d
«whiskers® or single crystal fibers have strer
theoretically calculated values. This is due to the fact that there are
few dislocations in whiskers or those present are completely im-
mobilized, Conversely, the weakest form of a metal is one containing
dislocations that are not immobilized. A large single bulk crystal con-
taining neither grain boundaries nor impurity atoms 1o impede the
movement of dislocations is such an example. Thus, a pure bulk single
crystal represents the minimum strength and whiskers approach the
maximum strength of a given metal.

Critical values of the shear stress and norinal stress must be exceeded
before shear deformation or cohesion failures occur. These are ma-
terial properties. Each crystal contains many differently oriented
atomic planes. When a stress is applied it can be resolved into a shear
component and a normal component occurring on every plane.

T

(Tt AT

, feali  Lb R

-
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Hence, shear deformation will occur when the acting shearing stress
component exceeds the critical shear stress value. Likewiw‘:? cfhesio

failure will take place when the acting normal stress mn‘1 .?uncnt e .
ccefﬂs the critical normal stress. The mode of failure is cicpf-fdcnt u ::-
which of these conditions is first reached. Failure seldom c-)crurs Wl;)thrf
out some shear deformation. As shear takes place on one pl:-mc it has
the t::ffect f)f increasing the stress on other planes. The sam‘e CHCI'ZI
cpns:derations apply to a polycrystalline metal, with further n‘;gdiﬁcek
tions due to the many differently oriented graiﬁs. The rr:laﬁve magni-
tude of the applied shearing stress and normal stress is determinf-dgb 7
the type an.d direction of the loading. Hence, the behavior of ['L;etal";
under load is governed by two conditions: (1) the material pl‘opr’rtie*s‘
and (2) the applied loading. High applied shear stresses and low eriti-
cal shea.r material properties favor deformation and vice versa
Change in behavior from shear deformation to cohesion failure lmdet:
a given loading condition results in a reduction in f}rcfract.m."c de-
formation and a decrease in the energy absorbed in the fl‘acl;urin.
process. This behavior has been borne out by experiment%‘ with sin lg
large crystals which show these to respond élastically S0 i(mg as thgee
are lo_adf:d.to produce a stress within the proportional limit; but wlwy
this hmlt. is exceeded, sliding occurs along crystallogra 111(‘ :}" ne-i1
Tes‘ts r:)f Slr]gle crystal specimens in the elastic 1"¢11(1ge show Eongi(li—)e:‘lablkf:
variation in the elastic properties, depending upon the orientation of

| _;“lenit slip
Z—

Siltge. (?f ;Ol._)'(‘_l-arboln btreggthcmng of Iron. (¢) Carbon Atoms Dissolve at the
islocation to Create, (b) Stressed Region which Impedes the I‘;-.:risugn;
of Other Dislocations 8 :
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the crystal. Hence, the crystallographic plane_ on which the maximulm
shearing stress acts may not be a 45° plane wu_h the aPphed load axis.
Metal properties depend basically upon their atomic structure, a‘n'd
the manner in which this structure is altered is the means by which
their strengths are established.® For instance, steels can be Strenghter}ed
to the extent that the movement of atomic dislocations can be im-
mobilized. Five effective methods of accomplishing this are:

1. Addition of Carbon

The carbon-strengthening of iron takes place in two steps. First,
carbon atoms dissolve at the site of the dislocation, Fig. 5. IDa.. Sec01.1d,
after a unit slip occurs, the carbon atoms create a stressed region which
interferes with the passage of other dislocations, Fig. 5.10b. The result
is an increase in the applied stress required to move them. Increasing
the amount of carbon dissolved in pure iron from .0001 to .005 per
cent increases the strength of the metal four-fold.

9. Reduction of Grain Size

Decreasing the size of the crystal grains in the metal limits the move-
ment of dislocations because, although a dislocation can move through
a crystal in which it originates, it cannot easily jump across a grain
boundary and propagate itself in adjacent crystals. By .decreas:pg the
grain size ten-fold, thereby presenting many more bar'l“l..CljS to dm}oca-
tion movement, the strength of iron can be tripled. Grain size is es-
tablished by the combination of thermal and mechanical processing
that the base metal has originally undergone.

3. Mechanical Working

Deforming metal by hammering, rolling, forging, gxtruding, etc,,
breaks up grains and produces complex tangles of dislocations that
impede the movement of other dislocations. When the def.ormmg is
done at a temperature at which the metal is not in the plastic state, 1t
is called “cold-working” or ‘‘strain hardening.” Severe deformation of
iron at room temperature doubles its strength.

4. Inclusion of Hard Pariicles or Precipilates

The dispersal of hard particles or precipitates in alloy steels blocks
the movement of dislocations. Steel normally consists of hard iron
carbides dispersed in a relatively soft matrix of pure iron ferrite. The
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closer the spacing of these carbides, the stronger the steel. T'hese steels
have useable tensile strengths of 30,000 to 150,000 psi.

5. Quenching or Quick Cooling

Strengths greater than those obtainable by Method 4 can be ob-
tained by quenching from a high temperature. The rapid cooling pre-
vents the formation of a carbide-ferrite microstructure of the type
obtained in Method 4, and yields a metallurgical structure called
martensite. This type of structure can contain many times more carbon
in solution than ferrite. The strength of martensitic steels is directly
proportional to the dissolved carbon. Their strength will be as high as
300,000 psi when the carbon is 0.4 to 0.6 percent. It is well to men-
tion, however, that this strength is obtained at a sacrifice of ductility
and efforts to rectify this loss by heat treatments and alloying are the
source of many patented forming processes.

5.4 Lueders’ Lines

Structural and pressure vessel steels are conglomerates of randomly
located crystals such that the physical properties, as given by the or-
dinary tensile test specimen, represent the average of the physical
properties in various directions of the crystals. Due to the small size
and large number of crystals, these average values, provided the ma-
terial has not undergone strain hardening, are independent of the
direction in which the specimen is cut from the material: conse-
quently, such a material may be considered isotropic in such analysis
as it is involved. When the material has a pronounced yield point and
the tensile stress in the specimen reaches this value, a large plastic fow
takes place which is the sliding of a portion of the specimen along
planes on which the shearing resistance has been overcome. In an in-
dividual crystal these slip bands are evidenced by the shadows of the
ridges they form. If the surface has been given a mirror-like polish,
these regions of sliding are visible to the eye as a dark band: or the
wavy surface can be felt with the finger tips, since now the slip bands
occur not only over a microscopic individual crystal but over the entire

portion of the specimen subjected to this yield point stress?* These
lines are known as Lueders’ lines, Fig. 5.11.
Lueders’ lines generally begin at points of stress concentration, since

here the yield point stresses are first reached and their propagation
direction is influenced by the direction and intensity of these localized
high-stress zones. If that portion of a tensile test specimen unalffected
by the location of fillets and changes of cross section were ol perlect
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(@) (&)

arbon Steel Vessel Plate in Tension.
| Second Stage in ()

Fig. 5.11. Lueders’ Lines on Polish
First Stage Shown in (u

would be rea

fiedh 1 all portions at

homogeneity, a yield point siress
the entire portion in

the same time. Leuders’ lines would appear over
the same direction—namely, along the hne ol ax irnum shear which is

45° to the principal stress. This is not the case, however, but there is a
tendency for them to start norial (o the edee, Tl 5.1 1a and b, due to
the minute scratches and crack left here by machining, which in turn

give rise 10 high local str s a1 these edees. e first l[ines occur at no

regular interval, but once removed fone the edg spread like the

branches of a tree, first seeking those lirections which offer the least
resistance to the shearing component of liat plane. This first ir-
regular stage Ufpl'i.lpcl}__{.‘lllﬂ‘!l isedue to the lack ol aterial lmn‘u)gt?.rleity.

and it is this action that causes the lirst deviation rom Hooke's law.
On the stress-strain curve this is knowi s th proportional Hmit, point
a, Fig. 5.1. As these planes ol weakness arc us d up. the specimen be-

comes uniformly resistant and Lucders: lines. taking the direction of

maximum shear stress, occur over the entire section, point &, Fig. 5.1.
This point is known as the upper ield point on the siress-strain curve
and is characterized by a drop in the apphed load ol the testing ma-
chine. The extension and widening of the How ines the lirst stage
are checked by the strain hardening effecty whereas at the upper yield
point or second stage, the extension 5 1o rapid for the strain harden-
ing effect, and one can casily warch the line wend over the entire

member as the stress drops lrom the upper vicid p it b to the lower

yield point ¢, Fig. 5.1. During this stige nely Joring portions seein to
become unstable when deprived ol suppart by th Lreakdown of the
first, and an orthogonal systeny ol lines wiieh i il general direc-

tion of 45° with the load axis occurs. Fie. 501 With further strain to

Lo bl ..,
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- e 10 e T b 2l ‘ :
Fig. 5.12. Lueders’ Lines on Polished Carbon Steel Plate in Compression

point d the line systeimn becomes indistinguishable, indicating all
crystals have undergone plastic delormation, -
Lth‘cleltﬂ lines also oceur in the same manner and pattern under
‘EOIHPI ession, as shown on the polished short mild steel column of Fig
L S AG O csea = T . i % _' i =
D.L_. lhm{‘ surface observations are indicative only of the stress at the
Tul.{dce. I it can be cancluded from the shape and loading of the mem-
) r- - = e =g Th i . " i 1 = . ‘
er that the stress 1_.\ not unilorim throughout the cross section. such as
Of_fg.lllh under bending or torsion. the internal flow lines mayv be made
visible by cutting a section through the body and etching with Fry’s
reagent, a solution containing 110 ec of hydrochloric acid, 90 grams of
C‘-?Ijri‘;' chloride. and 100 ce of water. The L'Jlé‘ﬁl'li_‘.glil\' deformed lavers
‘\' =% J & arks - i .-'ai "y | = 3 h I
ill eteh darker and deeper than those elastically deformed.
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5.5 Failure Analysis and Determination of Stress Patterns from
Plastic Flow Observations.

The preparation for observing Lueders’ lines on polished surfaces of
large vessels or structures is difficult, and so such pbservations are re-
stricted to predetermined locations of small extent. Consequently, it is
often more practical to make the flow lines visible on rough and large
surfaces by a coating of brittle paint; or the mill scale, if still intact,
may be used to advantage.’'® In the region where the metal undergoes
plastic deformation, the mill scale or paint will flake off, thereby indi-
cating the extent and direction of the flow region. There will be a lag
between the first actual yielding of the metal and the yielding as first
evidenced by flaking of the coatings which can be evaluated by test
coupons.

The nature of plastic flow markings that appear on structural mems-
bers is a valuable means of determining stress patierns, and after
failure offers a means of investigating the cause of failure. Since these
flow lines follow the direction of maximum shearing stress, which bi-
sects the angle between the principal stress planes, they form an
orthogonal shear trajectory systein oriented at 45° to each of the
principal stresses. From such a shear stress trajectory systeim, the lines
of principal stress can be drawn so that they intersect the shear lines at
45° and also form an orthogonal principal stress pattern. If the lines
are equally spaced in regions of known stress uniformity, a qualitative
picture is presented, with the orientation of the lines indicating the
direction of principal stress and their closeness the relative stress mag-

Fig. 5.13. Flow Lines in Mill Scale in Carbon Steel Under Uniform Tension
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Fig. 5.16. Flow Lines in a Large Riveted Joint. (@) First Appearance, and
(#) Characteristic Spread Showing 45% Cross Pattern About Holes

flow regions. The first region is a small one at the edge of the hole and
on an axis perpendicular to the direction of the load which is caused
by the high tangential stress and is evidenced by the bright spots which
extend only a short distance from the edge at these locations, Eq. 5.5.2,
The second region is a result of the shearing stress and takes the form
of a cross oriented at 45 with the direction of the principal stress,
where it is a maximum, Eq. 5.5.3, and it extends much further into the
surrounding plate. These patterns show up in riveted joints, Fig, 5.16,
and around openings in pressure vessels that have been plastically
deformed.

3. Thick-walled Cylinder, or Plate with a Circular Hole, Subjected o
Internal Pressure

Figure 5.17 shows the flow lines in a thick-walled cylinder, or plate
with a circular hole, that has been subjected to internal pressure suffi-
cient to develop a plastic state. The principal stresses? for such a con-
dition vary logarithmically with distance from the edge of the hole,
and, since flow or slip lines make an angle of 45° to these, they too form
an orthogonal system of logarithmic spirals. Similar markings may be
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Figure 5.17. Logarithmic Spiral Lueders’ Lines in a Thick Cylinder Subject
to Internal Pressure

observed around rivets that have been headed under high pressure,
Fig. 5.18, or in the region of parts that have a press or shrink fit.

v - Fig. 5.19. Lueders’ Lines Under cassiipe Zone 5hu Narrow ik
4. Uniform Pressure Along a Narrow Strip ; st I Free Edge: Palshed Mild Gatbon Steel

Loads are frequently applied to pressure vessels and structures in
relatively local areas, such as by lifting lugs or support brackets. The
principal stress trajectories’ for such a condition are a system of con-
focal ellipses and hyperbolas. When the loading is near the free edge

Fig. 5.18. Logarithmic Spiral Flow Lines About a Rivet
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of the member, such as would give visible external flow markings, the
material is free to flow in the unrestrained direction and a flow pattern
similar to that shown in Fig. 5.19 occurs. ‘ o

Figures 5.16 and 5.20 show some of these flow lmes_occurrmg in
combination in a large riveted joint. From such observations the com-
plete stress pattern in riveted and welded structures can be ascertained
and used as a means of determining cause of failure, or securing de-
sign information.

5.6 Dynamic Loading

The shape of the stress-strain diagram at and beyond the yiel—d‘poim
depends not only on the size of the specimen tested, paraglrapll 5.2, but
also on the characteristics of the testing machine, of which the most
important is the speed of testing.'*!? Experiments show that not only is
the yield point particularly affected, but also that the ultimate tensile
strength and total elongation are greatly dependent upon the rateiof
strain. The curves of Fig. 5.21 show the stress-strain diagrams for mild
steel for a wide range of strain rates (u = de/dt = 9.5 X !D" per sec to
u = 300 per sec). In general these properties increase v'vmth the rate of
strain; and accordingly, to ensure uniformity of material comparison
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Fig. 5.21. Effect of Strain Rate on
' Mild Steel®
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and acceptance tests, a standard testing strain rate is a part of all
material specifications.

In the case of dynamic loading this is a very favorable attribute and
explains the ability of materials to withstand impact or rapidly applied
loading with less distress than would be anticipated from the magni-
tude of the resulting stresses. For instance, if a load which is just
touching a structure is suddenly released, the stress and deflection are
double those that would occur if the load were gradually applied. This
may be illustrated by Fig. 5.22 in which 04 is the tensile test diagram
for the material. Then for any displacement OC, the area OAC under
the diagram gives the corresponding internal strain energy. When an
external load W is suddenly applied, its magnitude remains constant
throughout the entire deformation and the work done by W is repre-
sented by the area of the rectangle ODBC (W35); whereas the corre-
sponding internal force increases from zero to a value such thatits total
energy represented by the triangle 0AC (Ps/2) is equal to the applied
work. Figure 521 indicates that for very high rates of loading,
u = 300/sec, the yield point more than doubles, which is helpful in
preventing permanent structural distortion and malalignment. Most
important, however, is the increase in ultimate strength and elonga-
tion which give maximum toughness or ability to absorb energy, since
this ability is measured by the area under the stress-strain curve.
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Fig. 5.22. Load-Deflection Diagram
Under Impact
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Hence, materials which show both an increase in strength and ductility
are most useful for structures and vessels subject to dynamic loading,

5.7 Effect of Cold Work or Strain Hardening on the Physical
Properties of Pressure Vessel Steels

In the manufacture of pressure vessels, initially flat plate material is
frequently shaped into desired vessel contours by a cold-forming oper-
ation, and the resulting plastic deformation plays an important role in
establishing the mechanical properties of the completed vessel. During
this stretching of the material beyond its yield point it hardens and the
stress required to continue the stretching increases as shown by the
portion de of the stress-strain diagram, Fig. 5.1. This phenomena is
called *‘strain or work hardening”, and it is seen that the rate of strain
hardening, as measured by the slope of the stress-strain curve, is high
at low strains and decreases as the magnitude of strain increases. It is
a result of redefinition of the crystalline structure proper to a stronger
one, as mentioned in paragraph 5.3. During this elongation the work
of stretching is not entirely transformed into heat, but part of it is re-
tained in the form of strain energy.

L. Effect on Yield Point and Ultimate Strength

Due to the random orientation of the crystals, stresses are not uni-
form over the cross section and, after unloading, residual stress and
strain energy remain in the material. Upon unloading from point H,
Fig. 5.23a4, the material follows approximately a straight line HI, as
shown on the diagram. When the load is reapplied, the yield point is
raised to the value H and exhibits a gradual yielding rather than a
well-defined yield point characteristic of the annealed steel. This rep-
resents a raising of the yield point due to strain hardening by pre-
stretching of the material. If considerable time elapses after the first
unloading, the yield point will be further raised to the point F’. This is
due to the phenomenon of strain aging,'"** and can be accelerated by
soaking at moderate temperatures for a short interval of time. In prac-
tice these two effects are difficult to separate and the combined result
is used. On mild carbon steel (ASTM A-201 and 285) a prestrain of 5
percent increased the yield point about 27,000 psi, whereag a prestrain
of 10 percent produced an increase of about 37,000 psi.!”

So far the prestraining has been considered to have been in the same
direction as the applied loading; if, however, the prestraining has been
in the opposite or right-angle direction to the direction of the applied
loading, it does not raise the property in this direction but tends to
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Jower the yield point. This phenomenon, wherein a p.rior strain in one
direction lowers the stress required to produce yielding under sgbse-
quent loading in the opposite direction, is known as t.he Ba.uschmger
effect.’® This is of special concern when the material is subject to re-
versal of stresses, paragraph 5.11. The ultimate tensile strength is

affected by prior strain in the same manner as yield point.*

2. Effect on Ductility

Material that has undergone prestrain suffers a loss of ductility
essentially equal to that consumed by the prestrain, Fig. ?.23. W h'en
the prestrain is done at a temperature higher than the final service
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temperature, the percentage of remaining ductility is that which
would have been observed if there had been no prior strain at the firsg
temperature.® For example, if a strain is applied at temperature | cor-
responding to 75 percent of the fracture strain at that temperature
then the additional strain at temperature 2 before fracture will be 25
per cent of the total ductility at that temperature without regard to the
prior strain at temperature |, Fig. 5.235.
This ductility exhaustion can be expressed by

= (5.7.1)
en
where ¢; is the strain for a given stress and temperature and ey is
the strain at rupture under the same stress and temperature. Equa-
tion 5.7.1 is also used in making creep rupture life expectancey pre-
dictions, Par. 5.20.2. Linear summation equations of this type are
also used to evaluate cummulative fatigue damage, Par. 5.14.

3. Effect on Toughness

Strain hardening lowers the toughness and impairs the ability of
ferritic steels to resist the initiation of brittle fracture, as evidenced by
an increase in the transition temperature, paragraph 5.9. The effect
varies with each type steel and the amount of prestrain. Mild carbon
steels, 0,15 to 0.30 percent carbon and 0.40 to 0.90 percent Mn, show
an increase in transition temperature of 507 to 70°F for a 10 percent
prestrain. The effect also prevails when the amount of prestrain is not
uniform throughout the material, such as the pressing of spherical
vessel heads. Comparative tests of heads hot pressed at 1600°F, so as to
eliminate strain hardening, and cold pressed at room temperature
showed that cold pressing raises the transition temperature and lowers
the ability of the material to absorb energy at any particular tem-
perature,®!:#

4. Effect of Heat

Cold-strained metals are not stable. Their properties tend to change
with time, the rate of change being faster the higher the temperature.
This strain aging tends to increase further the strength and transition
temperature, and to decrease ductility. It is difficult to separate the
two phenomena of cold strain and strain aging and their combined
result is usually noted. Heat, whether it be from a welding operation or
total heat treatment, has the effect of increasing the transition temper-
ature with metal temperatures up to approximately 800°F. Beyond
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this temperature recovery begins to take place with relaxation of
residual stresses, and acceleration of the recrystallization process of the
metal.®® Although complete removal of all strain hardening and strain
aging effects can be guaranteed only at annealing or normalizing tem-
peratures, many steels show a major recovery at stress relieving
temperatures, 1050° to 1150°F .#

The properties of steel plate prior to fabrication into pressure vessels
give no assurance of corresponding properties in the completed vessel
because of the above effects, nor can the fabricated properties be relied
upon, since these too are subject to modification by temperature
whether it be from the welding process, thermal stress relieving, or
service operating temperatures. Accordingly, it must be recognized
that although in general strain hardening increases yield point, de-
creases ductility, and decreases toughness, they are unstable properties
that depend upon the type of steel involved and its specific thermal
history.

The use of strain hardened materials in vessels has both advantages
and disadvantages, depending upon their application and service re-
quirements. Probably the first criterion for determining the material
suitability is the accuracy with which the amount and uniformity of
the strain hardening is known. For instance, the cylinders of hydraulic
presses are sometimes subjected to an initial internal pressure sufficient
to produce permanent distortion in the walls, after they have first been
annealed or heat treated to restore the desired uniform properties,
The strain hardening and residual stresses that are produced help to
prevent permanent set in service. Any pressure vessel subject to ex-
ternal shock loads or internal pressure surges must retain sufficient
material ductility to absorb this energy, and have a material transition
temperature below its service temperature to preclude brittle failure.
It must also be mentioned that material which has been stretched be-
yond the yield point is more sensitive to corrosion in that region. This
phenomenon is broadly termed “stress corrosion” and is of importance
in boilers and other vessels subjected simultaneously to stress and
chemical action. The preferential rusting readily observed adjacent to
weld seams, punched holes, etc., illustrates this type of action.

5.8 Fracture Types in Tension

It has been mentioned in paragraph 5.3 that two kinds of fractures

‘can be observed in a single crystal. A brittle fracture takes place with-

out substantial plastic flow and occurs when the normal stress on one

of the principal planes of the crystal reaches the critical value. This
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‘s called a “cohesive fracture”—rock salt at room temperature is an
example. When large plastic deformation occurs, consisting of sliding
along crystallographic planes, prior to fracture, the failure is called a
“‘shear fracture’’—copper, iron and most metals are examples.

The relationship of the resistance to these two types of failure does
not remain constant for a given material, but is dependent upon the
temperature and the speed at which the test is performed. There is
evidence that sliding resistance increases with decrease in temperature,
and increase in velocity of deformation; hence, the design of structures
subject to low temperatures and impact loading is of particular con-
cern, paragraphs 5.9 and 5.22, These two types of fracture are also
characteristic of polycrystalline materials. The “brittle type” exhibits
little deformation and has a flat fracture surface essentially per-
pendicular to the direction of maximum stress; whereas, the “shear
type” exhibits gross deformation and the fracture surface has the
familiar cup-and-cone or jagged pyramid form with shear-lips, Figs.
5.24 and 5.25.*%

The ultimate strength of ductile metals is determined by a simple 3
tension test. Here the specimen undergoes large plastic deformation
and reduction in cross section during the necking stage just prior to
rupture. Due to this necking effect, a three-dimensional stress condi-
tion exists? and the material near the center of the minimum cross
section has its ductility so reduced that, during stretching, the crack
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Fig. 5.25. F1‘a_rtr.11rt- of Rectangular Specimen of Mild Carbon Steel
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Fig. 5.24. Typical Cup-and-cone Fracture of a Half-Inch Round Test Spec-
imen of Mild Carbon Steel
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starts in this region while the material near the surface continues to
stretch plastically. Thus, the central portion of a cup-and-cone frac-
ture exhibits a brittle likeness, while near the surface this is a shear type
of failure. This same or like condition holds for the case of a wide thin
plate wherein a two-dimensional stress condition is created in the
center portion of the cross section and the material near the edges con-
tinues to stretch plastically. The curved boundary in the center part of
the fractured rectangular bar of Fig. 5.25) is a result of this stress con-
dition, as is the crack starting in the center of the broad face of this bar,
Fig. 5.25a. The same condition prevails in large flat welded members;
consequently, failure starts at the center of the member and works out-
ward, Fig. 5.26.

a shear fracture, a sharp change in the amount of energy absorbed at
the trar!siticm temperature occurs, Fig. 5.27.2° The transition temper-
ature of pressure vessel and structural steels becomes less sharply de-
fined as their ultimate tensile strengths increase, but it remains a.qood
guide in appraising their use in fracture-safe design,* Par. 5.22.2. The
use of brittle materials in structures is dangerous, as is also the use
of ductile materials which are subjected to service temperatures below
the transition temperature for the material. The numerous [ailures of
welded World War II cargo ships,” and pressure vessels attest to
this‘ﬂﬁ.zg

It is important to determine the transition temperature of the ma-
terial that is truly representative of that which is in the completed
vessel or structure, and assure that it does not coincide with any
portion of the service temperature cycle. In the case of a pressure vessel
this means performing a series of impact tests on material that is
representative of that in the completed vessel. This is done by using
specimens cut from the actual material taken from the vessel via access
opening cut-outs, etc., or from specimens that have undergone a
simulated fabrication and heat treatment cycle duplicating that of the
actual vessel. The result is then compared to the intended operating
service temperature cycle, including not only the normal condition,
but also that which the vessel will encounter from other sources, such
as the hydrostatic test in cold weather. The latter may be overlooked
in the case of vessels designed for operation at temperatures obviously
above t'he transition temperature; however, they must undergo a hy-
drostatic or pneumatic acceptance proof pressure test prior to going

5.9 Toughness of Materials

The “toughness” of a material is its ability to absorb energy during
plastic deformation. In a static tensile test this is measured by the area
under the tensile test diagram. Thus it is reasoned that in order for a
material to have high toughness, it must possess both high tensile
strength and large ductility. Impact tests are used to study and evalu-
ate the toughness of materials. In practice, such tests consist of strik-
ing a standard notched specimen with a falling weight or pendulum
and observing the energy absorbed in fracturing the specimen, or per-
centage of the fracture surface having a brittle appearance. Brittle
materials have low toughness because they undergo negligible defor-
mation before fracture. They are unsuitable for pressure vessel con-
struction, since the material has no ability to redistribute high local
stresses or distort under impact, and fracture may occur suddenly
without noticeable deformation,

In discussing kinds of fracture in paragraphs 5.3 and 5.8, it was indi- eq
cated that the same material may behave as a brittle or ductile ma- ”
terial, depending upon the applied external stress conditions. The 5
temperature of testing also has a similar effect. For instance, at room £ &6 . .
temperature a single crystal of salt will exhibit a brittle fracture, = i g
whereas the same crystal will deform plastically if tested in hot water. % 30
Pressure vessel and structural steels behave similarly; those which ® %
show a large plastic deformation in an ordinary tensile test may frac- ‘§ 20
ture in a brittle manner if tested at a lower temperature. The tempera- - j!.
ture at which the material changes from ductile to brittle type frac- 2 19 i
turing is called the *‘transition temperature.” It can readily be

0
-200 -100 O 100 200 300 400

determined from impact tests conducted over a wide range of tempera- =
3 Test temperature, °F

tures, noting that since the amount of work required to produce

failure in the case of a brittle fracture is considerably less than that for 5 Fig. 5.27. Typical Impact Energy Transition Curve for Carbon Steel

ASTM A-212B%*
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and stresses, has focused considerable attention on designing to pre-
vent brittle fracture, par. 5.22.

5.10 Effect of Neutron Irradiation of Steel

Nuclear reactor vessels are subject to material irradiation induced
damage by neutron bombardment from the core. Neutrons are classed
as fast (energy greater than one million electron volts, mev) and ther-
mal (energy less than one million electron volts, mev), and these pro-
duce two different effects. Fast neutrons cause damage by dislocation
or displacement of the atomic structure of the metal, whereas the effect
of thermal neutrons is one of transmutation of trace impurities that can
materially change the properties of the reactor vessel structural ma-
terial. The amount of neutron bombardment is measured by the inte-
grated fast neutron flux, nvt (number of neutrons per cuem X velocity
in cm per sec X time in seconds), and is the accepted base parameter
for correlating and measuring radiation damage effects.

The main concern with vessel material subjected to thermal neutron
absorption is that of a gas-producing reaction that can lead to swelling
or gross distortion in ductile materials, or to stress concentration induc-
ing points that lead to embrittlement and fracture. Burst tests of
thin-walled inconel tubing have shown that the in-pile life was re-
duced by as much as a factor of two compared to unirradiated tubing,
this change being attributable to transmutation of trace boron to form
lithium and helium. In time, helium collects at the grain boundaries,
the most likely vacancy source, to weaken the metal. This emphasizes
the importance of specifying reactor vessel materials by strict chemical
composition to eliminate impurities, and grain size to help reduce the
available supply of vacancies, as well as the usual physical per-
formance requirements.

I, Embrittlement Damage

Fast neutron irradiation causes damage through dislocations ol the
atoms of the metal and speeding the resulting vacancy diffusion reac-
tion because it adds vacancies above the equilibrium number. The
physical properties of vessel steels are altered by exposure to these
high-energy neutrons. Typical changes are a marked increase in yield
point, a smaller increase in tensile strength, increase in notch-impact
transition temperature and decrease in ductility, and fracture energy.
The magnitude of these changes is a function of the material, the total
absorbed neutron irradiation, and the irradiation temperature. There

_ is presently no suitable theory of brittle fracture in the presence of
- radiation, and reliance must be placed on empirical data for design.
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TABLE 5.1. PHYSICAL PROPERTIES OF IRRADIATED CARBON
STEEL PLATE AND WELD METAL®

Fast
Neutron Yield Tensile Total Uniform*
Material Absorption, | Strength, Strength, | Elongation | Elongation
nvt pst pst per cent per cent
ASTM-A- 0 41,300 75,400 36.0 27.0
212B (0.35 | 1.7x101¢ 91,600 98,000 11.6 5.8
C. Steel) 1.0 % 1020 | 108,500 115,800 7.0 4.0
E-7016 Weld 0 57,900 73,200 25.5 15.5
Metal 5.0 x 1018 69,300 77,500 18.5 10.5
(C. Steel) 1.7 %1019 | 108,700 olb 5 8.0 —
1.0 % 1020 | 115,000 — 7.5 —

*Uniform elongation is that prior to onset of necking.
+Load decreased continuously after yielding.

The effect of irradiation on the usual physical properties of a com-
monly used carbon steel reactor vessel material, ASTM-A-212B and
weld metal, is shown in Table 5.1.#* The trend is typical of carbon and
low alloy steels,?®"'*** and in many respects resembles like properties
created by mechanical strain hardening, whereby strength is obtained
at a sacrifice of ductility and can be reversed in the same manner,
namely, by annealing. Of particular note is the approach of the yield
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Fig. 5.29. Stress-strain Curves of Irradiated Carbon Steel, ASTM A-212B.
Irradiation Temperature 200°F®
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Fig. 5.30. Effect of Annealing Temperature on Irradiated ASTM A-212B
Carbon Steel. (Annealing time = 1.5 Hr, Irradiation Temperature
= 140°F)

poin!: to the ultimate tensile strength with accompanying gross loss of
duc.tllity resulting in a material condition prone to brittle fracture be-
havior, and of low fracture energy, as measured by the area under the
s:tres'%~strain curve, Fig. 5.29.%° Obviously, material in a brittle condi-
tion is unsuitable for pressure vessels subject to high alternating stresses
.Of both pressure and thermal origin. A corrective restoration measure
is annealing. Figure 5.30%° shows this effect on annealing out the radi-
ation-induced hardness, along with data for the same steel cold worked
5 percent before annealing. The greater effect of the higher neutron
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Fig. 5.31. Effect of Annealing Temperature and Time on the Harduess ol
Type 347 Stamless Steel Caused by Neutron Absorption of 2 X 10%! nvt
(Solid Symbols Represent Unirradiated Control Samples)# #
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TABLE 5.2. PHYSICAL PROPERTIES OF IRRADIATED
AUSTENITIC STAINLESS STEELS!

Fast . ‘
Neutron Yield Tenstle Uniform | Reduction
Alloy Absorption, | Strength Strength, | Elongation | in Area,
Type nvt pst Pt per cent per cent
304 0 24,350 86,300 63 74
8 x 1019 | 75,000 103,800 58 73
347 0 37,000 97,000 49 71
4 % 1019 | 96,500 114,800 25 62
500
400
. F
g 300F
i -
= = |
= =
2 =
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100 //,
ot Cor il ol vl
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Neutron fluence, nvt

Fig. 5.32. Maximum Effect of Irradiation Embrittlement on thg Transition
Temperature Increase for Steels Irradiated below 450°F
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absorption is apparent, and that recovery or decrease of hardness
begins between 500° and 600°F with the recovery more rapid than
that for 5 percent cold-worked material. These effects vary with in-
dividual materials. The irradiation effect on Type 347 austenitic
stainless steel is shown in Table 5.24' and the annealing effect in Fig.
5.31.4042 These steels exhibit the usual increase in yield point and
tensile strength, but retain a high degree of ductility.** The physical
properties may be recovered by annealing at a temperature higher
than that for carbon and low alloy steels, but as low as 930°F.
Characteristic brittleness of carbon and low alloy steels at low tem-
perature has always been of concern in pressure vessels. Under irradia-
tion these steels not only become brittle, but the temperature at which
they remain brittle increases appreciably. This increase in material
transition temperature is primarily a function of the fast neutron ab-
sorption and to a lesser extent the irradiation temperature, and is
independent of whether the material is stressed or unstressed during
the irradiation.®#+ The effect of neutron absorption on ASTM
A-212B and A-302B, two commonly used reactor vessel steels, is shown

in Fig. 5.32 and is seen to raise the transition temperature®* for
300
440°F 175°F
o
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— f/, soc]J F
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Fig. 5.33. Transition Temperature of Irradiated ASTM A-212B
Steel Plate?
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fluences above a threshold value normally _Laken as 1_ % 10% not, This
value is based on observations that changes in properties arc small air[;?a
variations difficult to detect below a neutron absorption of 4.6 X 20
not; hence, 1 X 10' nol represents an af:,ccptable Val}le below whic
irradiation embrittlement is considerc.d 1‘nconsequent1a1. . ;
The temperature at which the ir.radlatl?n takes Plgce also ad gc.ts;.lc
transition temperature of a material. This effect is 1ll.ustra‘tc‘ in Fig.
5.33% for an ASTM-A-212B carbon steel, and sbows 1rradxat.1on term-
peratures below the order of 450°F to have littlf: uﬂ_%uelnce? while aboEe
this a mitigation countereffect takes place wuh.. indications that tle
effective recovery of the transition temperature 15 dependent not only
on the irradiation temperature but also on the neutron absorption,
nvt. This is of practical importance since power reactors and gssoc.lated
vessels operate at elevated temperatures, anc.l this would SE?CII:ldt.O sup-
port the belief that elevated temperatures will anneal out irradiation-
induced changes in physical properties.
m(ill?h:deffect gof an[;ezling ?emperature”‘ on ASTM A—‘Zl‘_2B ft;il
following irradiation of 1.5 X 10! npt at 100°F is shown in Fig. 5.54.
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iz, 5.34. Effect of Postirradiation Annealing on the Stress
B2 ‘ of ASTM A-212B Steel®®
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Recovery of ductility and yield strength is substantial above 550-
600°F and essentially complete recovery occurs at 750°F. While
prediction of the combined effects of neurtron irradiation and in-
service temperature poses a complex problem somewhat dependent
upon each material composition, there are encouraging observations
that for the commonly used carbon and manganese-molybdenum
steels and temperatures in boiling water reactors (BWR) and pressur-
ized water reactors (PWR) the neutron irradiation embrittlement ef-
fect may be largely self annealing.*® 2% Although this trend is well
established, evidence also indicates that irradiation effects for a given
specification material are very susceptible to the residual elements of
copper and phosphorous, which should be considered in appraising
like specification material data, par. 5.10.2.

The effect of irradiation on fatigue life is discussed in Par. 5.18.5, on
creep in Par. 5.20.4, and on hydrogen embrittlement in 5.21

2. Embrittiement Control

The control of irradiation embrittlement damage of pressure vessel
steels has focused on three basic methods:

1. Annealing of the vessel to restore the material to its original or
intermediate material properties.

2. Providing initial ferritic grain size and metallurgical microstruc-
ture to give maximum high initial material toughness; hence, a
greater leeway for increases in transition temperature.

3. Restricting residual chemical element content, which largely
establishes the sensitivity of steels to irradiation embrittlement.

The most successful of these methods is that of control of the chemis-
try of residual elements. Studies of the irradiation embrittlernent
sensitivity, as measured by an increase in transition temperature, of
steels has shown the prime importance of maintaining extremely low
residual element content,®* especially copper and phosphorus. The
steels most widely used in nuclear reactor vessels, where this phe-
nomenon occurs, are the carbon and manganese-molybdenum types.
Figure 5.35 shows the effect of residual copper, while Fig. 5.36 shows
that of phosphorus, on the ductile-brittle transition temperature of
these steels.

The practical and economic significance of employing steels with
initial low transition temperatures is that by so doing it is possible to
compensate for operational restrictions in later vessel life and thereby
avoid the expensive and time-consuming task of annealing the vessel
to restore material toughness.
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5.11 Fatigue of Metals

A century ago structural and pressure vessel design was based en-
tirely on concepts of static strength of materials. This proved adequate
since there were few sources of repetitive stressing, in comparison to
those which exist today, and many parts were designed with large
factors of safety. With the development and use of power machinery,
unexplainable failures of ductile materials well below the tensile
strength, but exhibiting no gross plastic deformation, arose which were
ascribed to “fatigue” since they usually occurred after a length of
service. Later experiments showed the important factor is stress
repetition, rather than duration of time, and that “fatigue failures”
are “‘repeated stress failures.”” Improvements in design efficiency and
economy require components to operate at high levels of both static
and repeated stress; and accordingly, designing to resist fatigue failure
is a major engineering concern, because it is the commonest cause of
service failure.?*

Fatigue failures are characterized by a fracture which involves little
plastic flow, and is transgranular in nature as compared to intergran-
ular which is characteristic of stress rupture failures. The fatigue pro-
cess may be divided into three main stages: crack initiation, crack prop-
agation to critical size, and unstable rupture of the remaining section.
Figure 5.37 gives an example of a fatigue fracture showing the second
and third stages. The crack initiated at a surface law and spread from
this location during cycling until the section was sufficiently reduced
for a final tensile fracture to occur. The second stage region has a
“ground” or “rubbed’ surface and frequently has “oyster shell” mark-
ings which focus on the origin or nucleus of failure, while the third
stage region has a more jagged texture representing a tensile fracture.
The presence of “‘oyster shell” markings is typical of a fatigue fracture.
Many fatigue tests of metals have provided the following general ob-
servations of the behavior of metal structures that are useful in coping
with the problem of design, construction and research to improve their
fatigue resistance. These are elaborated upon in subsequent para-
graphs.

1. Failure at much lower than the ultimate tensile stress occurs in
most metals that exhibit some ductility in static tests, and the
magnitude of the applied alternating stress range is the con-
trolling fatigue life parameter.

2. Failure depends upon the number of repetitions of a given range
of stress rather than the total time under load. The speed of load-
ing is a factor of secondary importance except at elevated
temperatures.
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I

|

Fig. 5.37. Fatigue Fracture of a Shaft Showing Typical Oyster-Shell Marking
Concentric with the Origin of Failure

3. Most metals have a safe range of stress, called the “endurance or
fatigue limit,”” below which failure does not occur irrespective of
the number of stress cycles.

4, Notches, grooves, or other discontinuities of section, including
those associated with surface finishes, greatly decrease the stress
range that can be substained for a given number of cycles.

5. The range of stress necessary to produce failure in a fixed number
of cycles usually decreases as the mean tension stress of the load-
ing cycle is increased.

5.12 Fatigue Crack Growth

It is now recognized that fatigue is a result of plastic deformation, .6
crack initiation and growth; and the principles of fracture mechanics,
Par. 5.22, may be used to predict fatigue behavior. Stress produces slip
lines in the crystals of metals®® that develop into small cracks which

subsequently grow, join others, and result in a fracture exhibiting no
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gross plastic deformation. Accordingly, they start at points of high
stress concentration where sharp notches, material defects, etc., serve
as points of nucleation. Once a crack has been initiated, it advances a
finite amount with each loading cycle. At the start of the loading cycle
the crack tip is sharp, but during extension and creation of an advanc-
ing plastic zone, it becomes blunted. The effect is a balance between
the applied stress and amount of plastic extension at the crack tip
which establishes the crack growth rate. Crack growth continues until
the crack becomes large enough to trigger final instability. In brittle
materials this means a fast running crack, Par. 5.22; while in ductile
materials it means the remaining cross-sectional area can no longer
support the applied load and a slow ductile shear type rupture occurs,
Par. 5.8.

Applications of stress to a material containing a very sharp crack
results in plastic deformation of the material about the crack tip. As
the applied stress increases, the zone of plastically deformed material
expands and the crack tip radius increases until a characteristic radius
associated with the K, material fracture toughness value for the ma-
terial is reached, Par. 5.22.3. Once a plastic zone of critical size for the
fracture has been developed at the crack tip, each succeeding applica-
tion of stress in the crack-opening direction will cause extension of the
crack and simultaneous motion of the plastic zone boundary in the
direction of crack extension as evidenced by striations on the fracture
surface. The distance the crack front advances each cycle is a function
of the stress intensity factor range, AK.

The fatigue crack growth phenomenon is localized in the small
volume of material about the advancing crack tip, and it is the local
stress field range which determines crack growth rate. The local stress
is defined in terms of the applied stress and the crack length, or the
corresponding stress intensity factor, K. Hence, crack growth relates
to the stress intensity factor range and because experimental data cor-
relating these parameters plotted as straight lines on log-log coordi-
nates, Paris® has suggested the simple power law

da o
= = m (5,12,
v C(AK) (5.12.1)
where
a = cracksize, in. (depth of surface crack, one-half length of

internal cracks, one-half the length of a through thick-
ness crack).

initial crack size, in.

critical crack size, in.

a;
ae

[
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N = fatigue life (number of cycles) -

AK = range of stress intensity factor, ksi y/in.

da ;

e crack growth rate, in. per cycle

C = material intercept constant relating crack growth rate
to stress-intensity range and crack size, and to be deter-
mined by tests. (The ordinate value of da/dN at AK =1
on a log-log plot, Fig. 5.38.)

material constant equal to the slope of the log da/dN
versus logA K curve determined by tests. (See Fig. 5.38.)
crack shape factor

I

m

Q

Since m was observed to be approximately 4 for all the ferrous and
nonferrous metals commonly used in pressure vessel construction, Eq,
5.12.1 can be written

da

N C(AK)! (5.12.2)
| T
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Fig. 5.38. Sigmoidal Fatigue Crack Propagation Curve®

FRACTURE CONTROL 247

and this equation is known as the fourth power law. The value of €
varies with each material and its environment. The average value for
all steels in air and room temperature is 4.0 X 10-%, More recent re-
search®~® has shown that the entire fatigue crack growth rate curve for
most materials is of a sigmoidal form when plotted on log-log co-
ordinates, as shown in Fig. 5.38. Pressure vessel steels are examples of
this, Fig. 5.39. The power-law portion of the curve is limited by upper
and lower inflection points. The lower inflection point indicates non-
propagating cracks and occurs under very low stress intensities where
the crack growth rates are of the magnitude of the atomic spacing of
the crystal lattice (1 X 10~7to 10~*in./cycle). This threshold is approxi-
mately K = 25 ksi -\/1? for ASTM-A533 steel which is widely used in
pressure vessel construction. This is the endurance limit of the ma-
terial. The upper inflection point is caused by the onset of rapid un-
stable crack extension prior to terminal fracture and places a critical
limit on the fatigue resistance of the material.

Since pressure vessel service usually involves a limited number of
pressure cycles, it is not necessary that the stress and crack size be kept
below the threshold for propagation.?'®*'¢ Accordingly, crack prop-
agation®'7318:21% data can be used to determine the AK value that can
be tolerated; or conversely, the number of cycles required to extend
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Fig. 5.39. Crack Growth Rate for Various Materials®
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an initial crack size, a;, to a critical size, a,., can be established. Sub-
stituting Eq. 5.22.13 in Eq. 5.12.2 gives:

[ *da _ cQitse f AN (5.12.3)
ag {@r 1]
Lo/ |
- L1 5.12.4
Ne CQEW?M(&, ) (5.12.4)

In applying this equation it is interesting to note that the typical flaws
that occur in pressure vessels, such as surface flaws, are usually of
similar proportions; hence, the constant () is always approximately the
same. However, the constant C that depends on the material and its
environment varies widely. For instance, the presence of boiler
water??® will increase the crack growth rate of mild steel by a factor
of 2.5; and with salt water this factor is 3.0.

5.13 Fatigue Life Prediction

Since fatigue failure involves the cumulative effect of numerous
small-scale events taking place over many cycles of stress and strain
and under various service environments, it is difficult to make predic-
tions of the fatigue lifetime. However, certain aspects of fatigue can be
treated quantitatively on a semiempirical basis. In presenting or or-
ganizing fatigue data for design use the following nomenclature, de-
picted in Fig. 5.40, is used:

The smallest section of the stress-time func-
tion which is repeated periodically and
identically.

Stress Cycle

Alternating
stress amplitude, o
y

|
Mean Stress
stress,op ronge, o,

Stress

Minimum Maximum
stress stress, omax.

Time

Fig. 5.40. Fatigue Cycle Nomenclature
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Nominal Stress ¢ The stress calculated by simple theory with-

out taking into account variations in stress

caused by geometrical discontinuities, such

as holes, grooves, fillets, etc.

Maximum Stress, ¢,,x. The highest algebraic value of stress in the
cycle.

Minimum Stress, o5, The lowest algebraic value of stress in the

cycle.

The algebraic difference between the maxi-

mum and minimum stress in one cycle,

Stress Range, o,

Or = Omax. — Tmin,
Alternating Stress Amplitude, o,
One half the stress range, ¢, = «,/2.
The algebraic mean of the maximum and
minimum stress in one cycle,
Om = (Gmnx. '+" Umin.)/2<
The algebraic ratio of the minimum stress to
the maximum stress in one cycle,
R = 6min./”l=\nx.
The algebraic ratio of the stress amplitude
to the mean stress, 4 = o,/0n.
Stress Cycles Endured, n The number of cycles endured at any stage
of life.
The number of stress cycles which can be
sustained for a given condition.
A plot of Stress against number of cycles to
failure.
Endurance Limit, op The value of stress below which a material
can presumably endure an infinite number
of cycles. This is the stress at which the o—n
diagram becomes horizontal or asymtotic
thereto.

Mean Stress, o,

Stress Ratio, R

Stress Ratio, A

Fatigue Life,

o—n Diagram

There are several methods of applying the load in endurance testing.
The specimen may be subjected to direct tension and compression, to
bending, to torsion or a combination of these. The simplest, and most
frequently used method, is the rotating reversed bending test.® This
consists of applying a load at the end of a standard cantilever fatigue
test specimen which is rotated at constant speed, thereby creating full
reversed bending stresses with each revolution. Data from such tests
are usually reported as ¢—n curves, and it is usual practice to plot ...
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Fig. 5.41. Typical g-n Diagram

against log n. In this manner the endurance limit is disclosed by a
definite break in the curve. Figure 5.41 shows a typical ¢—n diagram
for mild steel. At the beginning o...x. decreases rapidly with increase
in n, then the curve approaches asymptotically a stress value which
shows no further decrease with increase in number of cycles; i.e., a
value at which an unlimited number of cycles can be endured without
failure. This is called the endurance limit of the material, sz. The en-
durance limit of ferritic steels tested in air at room temperature is
reached at 108-107 cycles; whereas, for some other metals, and also for
ferritic steels at elevated temperatures, Par. 5.18.1, the fracture stress
continues to drop-off although the rate is small. Here, for most practi-
cal purposes, the fracture stress at 10* cycles can be used as the endur-
ance limit. Investigations of steels™ with tensile strengths to 350,000
psi have shown that endurance limit, Fig. 5.42, is best related to the
product of tensile strength ¢, and reduction in area 4,, Eq. 1.1.5, as

(5.13.1)

ap = .01 duoun,

For low and moderate strength steels this amounts to 40 to 55 percent
of the ultimate tensile strength.” Fatigue tests show that in the region
of the knee and to its right, Fig. 5.41 fatigue fracture correlates well
with stress as the controlled variable. This is called high-cycle fatigue.
But to the left of this region there is considerable scatter which is
attributable to the fact that in this region the applied stress exceeds the
yield strength of the material, thereby producing plastic instability in
the test specimen. However, when strain is used as the controlled
variable the test results in this region are consistently reliable and re-
producible. Accordingly, in preparing fatigue curves the strains are
multiplied by one-half the elastic modulus to give a pseudo stress

FRACTURE CONTROL 25
120 ’
100 “g =
. NS

Z 80 ' Aé@\}: N
3 60 \ s
5
a SR
& 40— AN

20 —é - -

0 30 80 120 160 200 240 280

Ultimate tensile strength, ksi

Fig. 5.42. Relationship Between Fatigue Endurance Limit and Tensile
Strength™

amplitude. This is called low-cycle fatigue and is usually considered to
encompass the region below 10° cycles.

Figure 543 gives typical results of three types of carbon and alloy
steels, and shows that the comparative fatigue resistance of two ma-
terials in the low-cycle region can be the opposite in the high-cycle
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region.”” The cross-over point occurs at 10°-10* cycles. At the high-
cycle end the fatigue strength is stress-governed, while at the low-cycle
end it is strain-governed. Hence, springs, rotating parts and pulsating
components which must endure an infinite number of cycles are made
of high strength low ductility steel; whereas, pressure vessels which are
normally not required to withstand more than approximately 10° load
cycles but which are subject to local plastic flow at locations of stress
concentration associated with the construction features of nozzles and
attachments, are usually made of lower strength higher ductility
material.**!

Low cycle fatigue material design data is not as abundant as that for
high cycle applications, however, an analysis of available data has
shown that for temperatures below the creep range material fatigue
life is dependent upon two readily determined mechanical properties;
namely, reduction in area, and endurance limit. Studies by Coffin.7¢.7¢
and Manson 7% have shown that for a wide variety of materials at
temperatures below the creep range the relationship

e N = ¢ (5.13.2)

holds, where ¢, is the plastic strain, and the constant ¢ can be taken as
one-half the fracture ductility (true strain at fracture).

Substituting the value of 4 from Eq. 1.1.5 in Eq. 5.2.19, the fracture
ductility ¢ and material constant ¢ are determined in terms of the per-
centage reduction in area d, as

100
r‘l _ —_— 5- 5 bl
¢ log, 00 — 4. (5:13.3)
and
. 100
c= % log,, mﬁ_——d: (5.13.4‘)

Langer™ has pursued an analytical and statistical study of fatigue data
to develop an equation giving fatigue life V' in terms of & which is the
product of strain amplitude and the modulus of elasticity £

g ‘;;E (5.13.5)

Strain amplitude is used rather than strain range in order that ¢ will
correspond in magnitude to the endurance limit o5 for complete stress
reversal at the high cycle end of the curve. Endurance limits are given
in this form. Designers work in terms of total strain ¢, which is the sum
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of the elastic strain ¢, and plastic strain ¢,, Fig. 5.44,
e =¢e.+ ¢ (5.13.6)
but
Ty -
by = L1 5.13.7
E (5.13.7)

and substituting the value of ¢, from Eq. 5.13.5 and ¢, from Eq. 5.13.7
in Eq. 5.13.6 gives

2 20, .
=t (5.13.8)
i o ’{_;E (5.13.9)

Substituting the value of ¢, from Eq. 5.13.2 and the value of ¢ from
Eq. 5.13.4 in Eq. 5.13.9 gives

E 100
o = log.

Wy B T00-4

Since fatigue data shows that o, is a function of N, Eq. 5.13.10 cannot
be used per se to establish a fatigue curve. However, if ¢, is replaced by
the endurance limit sz a necessary requirement is satisfied; namely,
that ¢ approaches oz as N approaches infinity. This is the high cycle
end of the curve and Eq. 5.13.10 becomes

(5.13.10)
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E 100
00 =2, "

(5.13.11)

At low values of N this equation also gives a very satisfactory conserva-
tive correlation since ¢, = ¢r and when N is very small, less than 100,
7. is a very small part of the total value o. This is the low cycle end of
the curve where material ductility governs. Further, substituting the
value of ¢z from Eq. 5.13.1 in Eq. 5.13.11 give a fatigue life prediction
equation in terms of the standard mechanical material test properties
of ultimate tensile strength and reduction in area; namely

100

E
= e 01 u .dn'
W T

(5.13.12)

a

Equations 5.13.11 and 5.13.12 permit fatigue life s—n curve prediction
from readily obtainable material properties, and are in good agree-
ment with low-cycle fatigue data. For design purposes, safety factors
must be applied to give a design fatigue curve. These are custornarily
taken as a factor of safety of either 2.0 on stress amplitude, or 20 on
cycles whichever is more conservative at each point, Fig. 5.45. The
factor of 20 on cycles is to account for data scatter, size effect, surface
finish, etc., and is made up of the product of the following subfactors:

Scatter of data (minimum to mean) = 2.0
Size effect = 2.5
Surface finish, environment, etc. = 4.0

Endurance tests are usually carried out for completely reversed
Stresses, duax, = —owin, Whereas in many structures the stress variation
is not a complete reversal. Such a cycle of fluctuating stress can be

107
‘B 106 \ R
;ll: ‘--.\<crigue life curve
‘f-'..;_ F 5220~ [
T 10° [n;\zk\___‘
W \Futfque T
& design curve I
104 I
10 102 103 104 10% 108

Cycles to foilure

Fig. 5.45. Fatigue Life Curve and Fatigue Design Curve for Austenitic
Stainless Steel
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described by superposing a cycle of reversed stress, o, and a steady
mean stress, om, 5o that:

omax. = Om + % p—— (5.13.13)
Or
Omin, = Om — o = Om — Oa (5,13.14)

Very early studies and attempts to establish endurance limits under
varying stresses showed the stress range ¢, necessary to produce frac-
ture decreases as the mean stress #,, increases and Gerber®® proposed a
parabolic law relating these, Fig. 5.46. Here the mean stress and stress
range are expressed as a fraction of the ultimate tensile strength. The
stress range is a maximum when the mean stress is zero (complete
reversal of stress), and approaches zero when the mean stress ap-
proaches the ultimate strength (a static tensile test is equivalent to a
quarter of a full reversed cycle). Presumakly if the endurance limit for
complete reversed stress and ultimate strength are known, the fatigue
life for any fluctuating stress can be obtained from such curves. Further
experiments showed that there is no general rule correlating mean
stress and stress range, and that for many materials Goodman® has
suggested their relation is best represented by a straight line, Fig. 5.46.
Most schemes used for representing design data are modifications of
this latter relationship.®2 For instance, one such method of represent-
ing the effect of steady and alternating stress on fatigue sirength in
design®# analysis is shown in Fig. 5.47. Curves representing fatigue
behavior are not always straight lines; however the expedient and con-
servative practice is to construct them in this manner. For instance, the
design curves for 10° cycles would be represented as the broken line
AB; hence, the use of this line is conservative and tells the designer im-
mediately that all combinations of stress below this line are sale, and
those above it will result in failure for this number of cycles.

1.0

Py S
0.8 ’/‘ﬁ_/_ :\\
S 06 /’,f.{: - ‘w\
¥ oa| A" TSN
- ~ \

/
ol SN

o]
=1 7558 =25 O 25 .50 J& X
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Fig. 5.46. Fatigue Diagram
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Fig. 5.47. Method of Representing the Combined Effect of Steady and
Fluctuating Stress on Fatigue

Experiments have also shown that the stress range cannot be repre-
sented by summetrical curves as in Fig. 5.46 for both plus and minus
values of mean stress, but that when this stress is compressive the ma-
terial can withstand an appreciably higher stress range than when the
stress is tension. This means, then, that curves endeavoring to depict
the entire fatigue life pattern become nonsymmetrical; in fact, be-
cause the endurance limit in compression is so much higher than the
limit in tension, for practical purposes, fatigue failures in compression
need not be considered.

5.14 Cumulative Fatigue Damage

Practical service conditions often subject many structures to a num-
ber of cycles of stress of different magnitudes. One method of apprais-
ing the damage from repetitive stress to a structure suggested by
Miner® is that the cumulative damage from fatigue will occur when
the summation of the increments of damage equals unity; i.e.,

n ;
=1 (5.14.1)
N
where n = number of cycles at stress o, and N = number of cycles to
failure at same stress o. The ratio n/N is called the cycle ratio since it
represents this fraction of the total life which each stress value uses up.
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Fig. 5.48. Fatigue Evaluation

The value of N is determined from o—n curves for the material. If the
sum of these cycle ratios is less than unity, the structure is presumed
safe. This is particularly important in designing an economic and safe
structure which experiences only a relatively few cycles at a high stress
level and the major number at a relatively low stress level. As an ex-
ample, a vessel subjected to 500 cycles at a stress of 55,000 psi, 2000
cycles at 42,000 psi, and 10,000 cycles at 31,000 psi, and fabricated of
material with allowable fatigue strength properties given by the o
curve of Fig. 5.48, would be considered safe fatigue-wise because the
sum of the cycle ratios is less than 1.0.

Zn - 500 +2,000 +IU,OOO
N 2,600 9,000 50,000

Again, like most attempts to generalize fatigue behavior there are ex-
ceptions to this linear cumulative damage rule, Eq. 5.14.1. For in-
stance, it does not take into account the order in which the stress cycles
are encountered,”* and it has been demonstrated that if the higher
stresses are applied early in life, the cumulative usage factor at failure
will be greater than unity.?"*»28 However, for random time distribu-
tion of stress levels (and seldom is any other sequence known at the
time of design of the structure) test results are in agreement with this
linear cumulative damage rule and it is a recommended design method.
When stress cycles of various magnitudes and frequencies occur it is
important to correctly identify the range and repetition of each type
of cycle because a small increase in stress range causes a large decrease
in fatigue life, and this relationship varies for different portions of

= 0.61 (5.14.2)



258 THEORY AND DESIGN OF PRESSURE VESSELS

the fatigue curve. Therefore, the stresses must be added before calcu-
lating the usage factors. As an example, consider a point in a vessel
which has a pressure stress of 20,000 psi tension and is subjected to a
70,000 psi tension thermal transient. If the thermal transient occurs
10,000 times during the design life and the vessel is pressurized 1,000
times; then the usage factor is based on 1,000 cycles with a stress
range of zero to 90,000 psi and 9,000 cycles with a range of 20,000
t0 90,000 psi.

At temperatures in the creep range, cumulative damage occurs at
a faster rate than indicated by the linear summation of Eq. 5.14.1 be-
cause of the additional damage resulting from creep, Par. 5.20.2 and
Eq. 5.20.10.

5.15 Stress Theory of Failure of VesselsSubject to Steady State
and Fatigue Conditions

The mechanical properties of structural and pressure vessel ma-
terials are determined by simple uniaxial tension tests. When actual
structural shapes are subject to simple tension or compression, the
allowable stress upon which to base the design is taken as some fraction
of the yield or ultimate stress obtained from these simple tension tests.
However, in order to determine allowable design stresses for multi-
axial stress conditions which occur in practice, several theories of
failure have been developed. Their purpose is to predict when failure
will occur under the action of combined stresses on the basis of data
obtained from simple uniaxial tension or compression tests. Failure
refers to either yielding or actual rupture of the material, whichever
occurs first. In the case of ductile material, yielding occurs first and
this is the basis of failure theories for these materials.

1. Steady State Stress Condition

The state of stress which can exist in a body can be determined by
three principal stresses, o3, o; and o5 acting on it as shown in Fig. 5.49.
Tension is considered positive and compression negative, and in Fig.
5.49 the relation between the algebraic values of the principal stresses
is @1 > 02 > 3. There are. three stress theories of failure that are used
for converting the uniaxial to combined stress data, and these have been
widely used in pressure vessel design.

(a) “Maximum Stress,” or Rankine theory. This is the oldest theory
of failure and is based on the maximum or minimum principal stress
as a criteria of failure and postulates that failure occurs in a stressed
body when one of the principal stresses reaches the yield point value in
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2

72
Fig. 5.49. Principal Stresses

simple tension gy p, Or compression ¢’y p.. The conditions of yielding
of materials whose tension and compression properties are the same,
such as mild steel, become as follows:

For o1 > o3 Or oy, failure occurs when oy = +ov p,
For ¢, > o, Or o3, failure occurs when oy = oy p.
For o3 > o, or o, failure occurs when a;

I

+ov.p

This theory is represented graphically in two dimensions in Fig. 5.50
for a material which has the same yield point in tension and com-
pression. This plot is made by dividing the above expressions by ov ¢,

3 (5.15.1)
oY, P

X$ =

it (5.1°

o
o
-~

oY, P,

and shows the locus of failure points is a square ABCD. According to
this theory there is no yielding at stresses represented by points inside
this square. While the maximum stress theory does best predict co-
hesive or brittle failure of materials, it does not always cover ductile
material in which failure is a sliding or shearing action along planes in-
clined at 45° to the axis of the specimen, Par. 5.3. On these 45° planes
neither the tensile or compressive stresses are a maximum but failure
is caused by shearing.
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Fig. 5.50. Failure Theories

(b) **Maximum Shear Stress” or Tresca theory. This theory postulates
that yielding in a body subject to combined stresses will occur when
the maximum shear stress becomes equal to the maximum shear
stress at yield point in a simple tension test. This theory is in better
agreement with experimental results' for ductile materials whose ten-
sion and compression properties are the same than is the “maximum
stress”” theory, Fig. 5.51. The maximum shear stress is equal to half the
difference of the maximum and minimum principal stresses; thus, for a
member under combined stresses the shear stresses are:

r=2 E i (5.15.3)
r=2 E “ (5.15.4)
r=2 g L (5.15.5)

Likewise, the maximum shear stress in a tension test is equal to half the
normal stress at yielding of the test specimen

P gx.E; (5.15.6)
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Fig. 5.51. Comparison of Biaxial Stress Test Data with Theories of Failure

Equating Eq. 5.15.6 successively to Egs. 5.15.3, 5.15.4 and 5.15.5 gives
the condition of yielding under combined stresses as:

or — 02 = *ovp, (5.15.7)
gy — 03 = toy.p, (5.15.8)
g3 — g1 = oy p (8:15.9)

The quantity on the left side of Eqgs. 5.15.7, 5.15.8 and 5.15.9 is twice
the shear stress and is called the shear stress intensity. In using these
equations it is noted that o; is the algebraically minimum principal
stress.

A plot of this theory in two dimensions is also shown in Fig. 5.50. It
was made by dividing Egs. 5.15.7, 5.15.8 and 5.15.9 by oy ¢, to give

x—y==l,x==x],y= %I
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where
x = ay/oyp. and y = as/ovp

It shows the locus of failure of pointsis an irregular hexagon EAFGCH.
This is the theory generally used in pressure vessel design, par.
5.15.2(a). It is in good agreement with experiments, Fig. 5.51, and is
simple to apply.

(c) “Distortion Energy” or von Mises Theory. This theory is based
on test observations that materials do not become inelastic under a
triaxial state of stress produced by high hydrostatic pressure, but that
inelastic action at any point in a body under any combination of
stresses begins only when the strain energy of distortion (change of
shape due to shearing stresses) absorbed per unit of volume at the point
is equal to the strain of distortion absorbed per unit volume at any
point in a bar stressed to the elastic limit under a state of uniaxial
stress as occurs in a simple tension test.

This theory proposes that the total strain be resolved into two parts:

(1) the strain energy of uniform tension or compression. (This is
associated with the change in volume of the unit volume and
has no effect in causing failure by yielding.)

(2) the strain energy of distortion or change in shape of the unit
volume. (This change in shape involves shearing stresses; con-
sequently, the distortion energy theory is sometimes called the
shear energy theory).

and that only the part attributable to the strain energy of distortion be
used to determine yielding or fracture of the material. This can be
written as

U=U,+ U (5.15.10)

where U, is the energy of volume change per unit of volume, and Uy is
the energy of distortion per unit of volume.

The total strain energy [/ produced in an element depends upon both
the stress and strain on the element. If the stress ¢ gradually increases
from zero and causes a strain ¢, the work done is U = 1/2q¢. For the
three-dimensional case shown by the element in Fig. 5.49, and using
the relation between stress and strain given by Eq. 2.3.3, the total
energy is

-+

T T8 O O35 15.11
¢ 2 7 T3 @10

- ﬁ(gf . 522 e 9'32) —_ %(01(}'2 - o0 + O‘—zﬂ's) (5151‘2)
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s (@)

Fig. 5.52. General Representation of Distortion Energy Theory

in which tensile stress is taken as positive and compressive stress as
negative,

This total strain can be divided into two parts by resolving the prin-
cipal stresses Fig. 5.52a into two components states of stress as shown in
Figs. 5.52b and ¢. The first component, Fig. 5.524, is chosen as the
average of the three principal stresses ouve. = (01 + 2 + 03)/3 which
produces an average strain e,.,, = (e, + ¢2 + ¢3)/3 in each direction
equal to the average of the three principal strains. The strained unit
volume is (1 4 e)(1 4+ e)(1 4 ¢3), and if ¢, represents the change in
unit volume due to straining

l+ea=U+e)(l+e)(l+ea)=1+a+ea+te

(5.15.13)

w

ey = €+ 2+ e (5.15.14)

in which the products of strains are considered small and neglected.

Equation 5.15,14 states that the volume change is equal to the alge-
braic sum of the three principal strains. Likewise, the relation between
the volume change and the principal stresses can be found by substitut-
ing in Eq. 5.15.14 the value of the principal strains from Eq. 2.3.3 as

1 — 2u

en =8 + e+ ey = B (o1 + a2 + a3) (5:15.15)
or in terms of the average stress gave. = (01 + 02 + 03)/3
ey = é(l_‘g‘_zu)gnvu_ {_..'—]. ] r} Ilj]

The second component state as shown in Fig. 5.52¢ consists of the re-
mainder of each of the three principal stresses, and also each of the
three principal strains. The average principal stress, Fig. 5.525, pro-
duces the entire volume change, Eqgs. 5.15.15 and 5.15.16. The re-
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maining components of the three principal stresses, Fig. 5.52¢, do not
produce a volume change since the sum of the three strains is equal
to zero.

(31 — f:wa.) + (i’a = t’swz,) + (f—'S == "-’:ws:_) =0 (51517)
where

Cuve, = (51 + e+ 83)/3

but these three stresses distort or change the shape of the unit cube.
The work done per unit of volume change, U,, is determined from
the stresses and strains shown in Fig. 5.52 as

U, = 1/2 gavg v+ 1/20 vk bove. + 1/2000gave. = 1/20vs.2, (5.15.18)
and substituting the value of ¢, from Eq. 5.15.16 in Eq. 5.15.18 gives

3
T = ==(1 — 2i)aave? 5.15.19
U, = ol = 2. (5.15.19)

The energy of distortion [/, is then obtained by subtracting the energy
of the volume change, Eq. 5.15.19, from the total strain energy U given
in Eq. 5.15.12

l T
Us = @(012 + o + o?) — Llowge +-a105+ cpes) — 23_15(1 — 2u)Tuve

E
(5.15.20)
Substituting the value of o4v.. = (01 + 02 4 03)/3 in Eq. 5.15.20 gives

| . _ _

6—;:.“[(0'1 == crr_:)"' + (a’z = 03)2 —I— (a‘s == 0'1)2] (51321)
The foregoing is well illustrated by the uniaxial stress condition shown
in Fig. 5.53a. It is seen that it is equivalent to a cube subjected to three
equal principal stresses, each of which is equal to the average of the
given set of principal stresses, Fig. 5.53b; and in Fig. 5.53¢ a set of

{_er =

,,1 0y/3 (2/3)e

!
I

_’a-‘/3+ -.---—D'|/3
! ’4]!3

/71/3
b

(@) (&) le)

Fig. 5.53. Uniaxial Stress Representation of Distortion Energy Theory

FRACTURE CONTROL 265

principal stresses which when superimposed on those of Fig. 5.536
gives the original state of stress in Fig. 5.53a. The first condition, Fig.
5.53b, is one of uniform tension, and the second condition, Fig. 5.53¢, is
one of pure shear.

Equation 5.15.21 is the basis for determining the failure of ductile
materials according to the distortion energy theory. According to this
theory, yielding begins when the distortion energy, Eq. 5.15.21,
reaches the value of the distortion energy at the yield point in a simple
tension test. The latter is obtained by substituting oy = oy p, and
oy = o3 = 0 in Eq. 5.15.21 which gives

. 1

Equating Eqgs. 5.15.21 and 5.15.22 gives the general condition of
yielding based on the distortion energy theory as

(0'1 —_ 02)2 + (62 = t;";)2 —P— (d‘; - 03)"! = (Zcry_p,"} (:—J 1525‘

0, and Eq. 5.15.23 gives the

(5.15.22)

In the case of two-dimensional stress, o3 =
condition of yielding as

]

01 — mog + o2t = oy pt (5.15.24)

Dividing Eq. 5.15.24 by oy »? gives

o’ 4 7o* 0102 =1
eyr? oyer?! oyp’

(5.15.25)

This is the equation of an ellipse and is shown plotted in Fig. 5.50.

In the case of pure shear, as occurs in a cylinder subject to torsion,
the shearing stress is equal in magnitude to each of the two principal
stresses occurring at 45° to the shear stress. Thus in Eq. 5.15.21,

71 = ¢, 0z = —¢ and ¢; = 0 and further ¢ = r, which gives
Us = L2 H o = (=) + (o) + (=0
_ ] g“:e - g“rﬂ (5.15.26)

Equating Eq. 5.15.22 to Eq. 5.15.26 gives the maximum shearing

stress at a point when yielding starts in terms of the yield strength al
the same point.

1+ u — Bop?

3E '

0.5770v p.

.1
>
o

l
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2. Fatigue Stress Theory, and Uniaxial and Biaxial Material Fatigue
Strength

(a) Fatigue Stress Theory. Internal pressure fatigue tests of cylinders
conducted by Morrison, Crossland and Parry,* Fig. 5.54, dlso show
that these failures subscribe to the “maximum shear stress theory.”
When these results are plotted against hoop stress, Fig. 5.54a, ex-
tremely wide deviations occur; hence, the maximum principal stress
is not a criterion of failure. On the other hand, if these fatigue results
are plotted against maximum shear stress, Fig. 5.540, the spread is
entirely reduced to one attributable only to experimental scatter, and
is evidence that the “maximum shear stress theory” of failure is
applicable to pressure vessels made of ductile materials and subject to
fatigue. Accordingly, the good agreement of this theory of failure,
under both steady state and fatigue stress conditions with experiments,
have led to its adoption in the design of vessels,??%223,224,225,287 [ j¢
the basis of many pressure vessel codes such as the American Society
of Mechanical Engineers Boiler and Pressure Code for Nuclear Power
Plant Components,®® and Pressure Vessels, Division 2 and 3, Par. 7.4.

(b) Uniaxial and Biaxial Material Fatigue Strength. The study of
elastic and plastic behavior of metals under uniaxial static and fatigue
loading has been the path by which material properties are evaluated,
specifications written and designs established. Most practical problems
involve a biaxial stress field in which the stress is applied at a point in
two orthogonal directions. These generally occur at free surfaces where
the third stress is zero; however, this third stress component can be
significant at the inner surface of a very high pressure vessel (where the
pressure becomes the third component).

Just as with static theories of failure, Par. 5.15.1(b), the maximum
shear stress theory has been found to predict the fatigue failure of a
material under the action of multiaxial stress with good accuracy,®-%
This makes it possible to correlate the calculated values of the three
principal stresses into a single number, called the “‘stress intensity,”
which can be compared directly to the results of uniaxial tests. If a1, o2,
and o3 are the three principal stresses at a point, and o; > o0 > oy alge-
braically, the stress intensity .S, is equal to twice the maximum shear
stress and is

S=2r=0,— (5.15.29)
Fatigue curves used in the low cycle range are based on strain-cycling
data. However, for ready comparison with elastically computed
stresses, it is convenient to multiply the strains by the elastic modulus
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to give a quantity which has the dimensions of stress, but only repre-
sents a real stress when no plastic strain occurs, When plastic strain
occurs, this quantity is a pseudo-stress, but is nonetheless a measure of
the damage produced by the total elastic plus plastic strain. When only
uniaxial stresses and strains are present, the calculated values in the
component can be compared with the strains measured in fatigue
tests. When multiaxial strains are present their combined effect can be
evaluated through the Hooke’s Law relations between stresses and
strains (Eq. 1.1.3, Par. 2.3 and Prob. 4, Chap. 2) which gives the prin-
cipal stresses a1, 02, and o3 in terms of principal strains e, e: and ¢; as

i l_i_#[ﬁ(ﬁ + ot o) + e,] (5.15.30)
I N (e,+eg+ea)+ez] (5.15.31)
14+l — 2
g3 = —I-?—— —“—(814"824—&’3) + €3 (5.15.32)
L+ ul 1l — 2 '
The stress differences (twice the shearing stress) are
L fp(g. — o) (5.15.33)
g — O3 — 1 i “(t’z = t’a) (51534)
oo =1 f (- ) (5.15.35)

Equations 5.15.33, 5.15.34 and 5.15.35 can be used to correlate the
results of uniaxial and biaxial fatigue tests in the plastic range on a
common basis. Assuming that the elastic strains are small relative to
the plastic strains so that the total strain can be considered as occurring
under constant volume consideration used in plastic analysis (4 = 0.5
and e, + ¢ + ¢; = 0), this is illustrated in the following for three types
of fatigue tests: uniaxial, 1 : | biaxial, and 2 : | biaxial, Fig. 5.55. The
measured strain in each case is ¢ and the required pseudo stress (which
is the number which represents the damage to the material) is the
stress intensity, S, which is the largest of the three stress differences.
(a) Uniaxial push-pull fatigue test.

0’2=!73=0

& = g = —
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Fig. 5.55. Equivalent Strain Calculations for Uniaxial and Biaxial Fatigue
Correlations
The stress intensity is from Eq. 5.15.33
S=a—n=1r 05(: e %) = o (5.15.36)
(b) 1 : 1 Biaxial fatigue test
oy = 0
g1 = 0Oy
€1 = & = ¢
€3 = —23
The stress intensity is from Eq. 5.15.34
§=o1—op = TEo.s(* + %) = UE (5.15.37)
(c) 2 :1 Biaxial fatigue test
T3 = O
ag = 61/2
€ = €
_ T2 01_1__0.501____
“~E"E"IE E '
63 = —e— = —¢
The stress intensity from Eq. 5.15.35 is
S=03 — 01 = T f_ H(t’a — 81) = %FE (5.15.38)
Figure 5.56 shows the correlation of uniaxial and biaxial fatigue data
using this type of analysis.” The B&W tests of 1:1 biaxiality and the

Lehigh tests of 2 : 1 biaxiality show large discrepancies when plotted
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Fig. 5.56. Biaxial Fatigue Test Data for Manganese-Molybdenum, SA-302B,
Steel

in terms of measured nominal strain, but when reduced to the com-
mon basis of stress intensity their agreement becomes excellent.

If only elastic strains are involved, such as occurs at the high cycle
region of fatigue, say at the endurance limit, Eqs. 5.15.33, 34 and 35
may be used with a value of x = 0.3 instead of 0.5,

3. Significance of Theories of Failure

Figure 5.50 is a comparison of these three main stress theories of
failure drawn for a material which has the same yield point in tension
and compression, and subject to a two-dimensional stress pattern
(¢35 = 0). The maximum principal stress theory coincides with the
maximum shear stress theory when both the principal stresses have the
same sign, i.e., they are in the I and III quadrants, and the maximum
deviation from the distortion energy theory is approximately 15 per
cent. In an equal biaxial tension stress condition all three theories
coincide, point 4 in Fig. 5.50. However, when the principal stresses
have opposite signs, I1 and I'V quadrants, there is considerable differ-
ence between the maximum stress theory and either the maximum
shear stress or the distortion energy theory and only the latter two
theories should be used because experimental results have shown them
to be closer to actual failure tests. In fact, Fig. 5.51 giving a plot of
tests of ductile material failures shows these to lie between the maxi-
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mum shear stress and distortion energy theories with the former repre-
senting the lower boundary. Accordingly, the maximum shear stress
theory is the more conservative. This, together with its simplicity, has
led to its general adoption in pressure vessel stress analysis.

Example: The ASME Nuclear Power Code uses the maximum shear stress the-
ory of failure and requires the minimum thickness, &, of a thin spherical vessel
of inside radius, r, and subject to an internal pressure, p, to be:

__#r
47 - p

Develop this formula. (7 is the allowable maximum shear stress.)
The maximum principal stress in a sphere is the hoop or longitudinal one as
given by Eq. 2.2.7

2 (5.15.39)
(e} e e .
T 2h
and the minimum stress is the average radial stress occurring over the wall thick-
ness, or

- + 0 =
o = P2 - ?p (5.15.40)
Substituting Eqgs. 5.15.39 and 5.15.40 in Eq. 5.15.4 gives
pr ( a)
_ Omax = Omin _ 2h 2 (5.15.41)
2 2
jet (5.15.42)
47 -p

In the practical design of pressure vessels this means that even the
maximum stress theory is adequate as long as the state of stress is in the
first and third quadrants, Fig. 5.50. In a thin cylindrical vessel under
internal pressure the radial stress, even though it is negative, is small
compared to the hoop and longitudinal stress and can be assumed
equal to zero; hence, either the maximum principal stress theory or
the maximum shear stress theory give approximately the same results.
In a corresponding thick walled cylindrical vessel, however, the radial
stress is not small in comparison with the hoop and longitudinal stress.
Since this radial stress is compressive, and cannot be assumed equal to
zero in Eqgs. 5.15.4 and 5.15.5, these two theories no longer give ap-
proximately the same results. Accordingly, the maximum shear stress
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theory should be used. This same condition also applies to spherical
or other vessel shapes.

5.16 Stress Concentrations

The magnitude of the applied stress is the predominate factor that
determines fatigue crack growth and establishes fatigue life. Hence,
anything that is done to a vessel or structure to create a ‘“‘stress raiser
or concentrator” directly influences its life since these are direct mulu-
pliers of the normal stress. Geometric discontinuities such as holes,
grooves, notches, abrupt changes in cross section, etc., as well as
thermal discontinuities, cause a local increase in stress, and proper
allowance for the effects of these stress concentrations is the single most
important factor in designing to resist failure by fatigue.®' In view of
this, Chapter 6 is devoted entirely to this item—its cause, effect and
remedy.

5.17 Influence of Surface Effects on Fatigue

Most fatigue failures start at the surface of a material-—hence the
importance of choosing a surface finish compatible with the intended
life of the structure. There are three ways by which fatigue life is in-
fluenced by surface effects: (1) the creation of stress risers due to sur-
face roughness; (2) the establishment of actual strength differences
between the outer shell and core of the material; and (3) the difference
in stress levels obtained by the presence of residual stress.

. Surface Finish

Critical changes in surface geometry may result from certain types
of finishes, or even the direction in which the finish is applied.’** For
instance, scratches give rise to stress concentration effects, making it
desirable to have the mechanical finishing performed in a direction
parallel with the principal stress rather than normal to it. Table 5.3,
based on the work of Horger and Neifert!%? shows the fatigue life of
polished specimens to be some 10 percent higher than that of rough
turned ones. This potential surface finish improvement varies some-
what with the material, being as high as 25 per cent for steel and 40
percent for aluminum alloys. It must be remembered that, although
surface finishes are critical in obtaining the full endurance limit of a
material, their effect is not so pronounced when a relatively few
cycles™® are involved and this transition is of most practical im-
portance. For instance, in the design of vessels subjected to relatively
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TABLE 5.3. EFFECT OF SURFACE ROUGHNESS ON ENDURANCE
LMt
(SAE 1045 STEEL, 69,700 UTS, 39,300 Y.P.)1

Specimen Type of Max. depth of Endurance
Diameter Surface Finish Finish Marks, Limit, psi
. Microinches
1.5 Rough turn 3,900 28,000
1.5 Smooth turn 140 28,000
1.5 0.000 Emery 80 31,000
1.5 Superfinish 35 31,000

few cycles, surface finishes beyond those inherent in the fabrication of
the base metal, such as rolled plate, are not warranted. However, in
the design of hydraulic eylinders for repeated ram operations, fine
finishing is applicable and experiments have shown that honing® of
the inside diameter (I.D.) has given an increase in fatigue life of 11 per
cent with K = 1.4 where K = ratio of O.D./LD,, to 41 percent with
K = 1.8. Although honing is a “smearing” finishing process which
gives a combination of polish, cold work, and residual stress, the
results are significant for this type of service.

Noll and Lipson'* have demonstrated that the surface sensitivity of
material increases with tensile strength, Fig. 5.57, which becomes par-
ticularly important when high tensile materials are used in design.
The stronger the material the greater the influence of surface condi-
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Fig. 5.57. Relation of Endurance Limit to Tensile Strength of Unnotched
Specimens in Reverse Bending'®
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tioning because the sensitivity of a material to surface flaws and
notches generally increases with tensile strength. The low fatigue life
of as-received high-strength alloys is due to the presence of millscale
which is easily cracked, thereby, creating stress concentrators.

2. Surface Coatings

It has been mentioned that the endurance limit of steels increase
with their ultimate tensile strength; hence, a material which has a shell
of tensile strength greater than its core shows a greater endurance limit
than the base core material. Materials which have been processed to
harden the surface (provided no deleterious metallurgical effects are
embodied), such as by carburizing, nitriding, flame-hardening, and
other surface hardening effects, exhibit this increase.!%:1% This effect
is particularly pronounced and useful in members subjected to high
stress gradients, such as shafts in bending and torsion where the high
strength material can be located in the region of maximum stress.

Claddings for non strength purposes are frequently used in vessels to
protect the vessel material proper from a corrosive media such as oc-
curs in the chemical industry, or to protect the media from the corro-
sion contamination of the vessel material such as occurs in the
food-processing industry, or with some nuclear reactor vessels. One of
the commonest methods of metallic cladding is that of electroplating
with a compatible corrosion resistant material (nickel, chromium,
cadmium, zinc, copper, etc.). However, the effect of such coatings is to
severely reduce the endurance limit'” due to hydrogen embrittlement
of the base metal by the electroplating process, Par. 5.21. Another
method of accomplishing this is to clad the exposed surfaces with a
corrosion resistant material, such as stainless steel, by deposited weld
metal or by bonded sheets. This type of cladding has a negligible effect
on the endurance limit'® of the base metal and is widely used in the
nuclear and chemical industries,

3. Residual Stress

(a) Selective Stress Pattern

Fatigue life can also be improved by the selective use of residual
stress. This can be illustrated by the simple beam being subjected to
an external bending moment which has the stress gradient shown in
Fig. 5.58a, and under reverse loading the maximum stress will vary
from equal values of tension and compression, g. If, however, a thin
outer layer is subjected to a residual compressive stress o,, Fig. 5.585,
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Fig. 5.58. Stress Gradient in a Simple Beam, (a) Bending Only, (b) Residual
Stress Only, (c) Bending Plus Residual Stress

the net maximum stress on the surface will be ¢, — o, on the tension
side, and o3 + o, on the compression side, Fig. 5.58¢. Under full re-
versed loading, the surface will be subjected to a maximum tension
stress of @, — o, which, for the surface, means longer life because a
lower mean stress is applied. One of the most popular mechanical
ways of obtaining this effect is by shot peening.’ Peening is the
mechanical working of metals by means of impact blows, Fig. 5.59a.
This increases fatigue life by (1) increasing the tensile strength of
the skin, and (2) reducing the applied tensile stress by the amount of
compressive stress set up by the process. If peening is perform P'd. after
the application of a preload, fatigue life is further increased. This is
caused by a significant stress redistribution resulting from the greater
depth over which the desirable compressive near-surface stresses can
be developed,?*® o
Likewise, coining or cold-rolling of the internal surface of cylinders
can be used to obtain a comparable favorable residual stress distribu-
tion which is similar to that for a thick-walled cylinder with an inter-
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ference fit.!!° Roller burnishing is such a process that is used on shafts

and axles, as well as pressure components such as oil well pipe. Much
as with peening, the roller burnishing process cold works the metal
surface by applying forces that cause the yield strength of the contact
surface metal to be exceeded and deformed plastically, Fig. 5.59b,
At a certain depth, plastic deformation is replaced by elastic defor-
mation. Metal at this depth attempts to spring back but is resisted by
the permanently deformed surface material. This creates a residual
stress pattern which is compressive at the surface and tensile below,
and which helps to prevent fatigue failure. Bumnishing improves the
surface finish to a 2-10 microinch range, and increases fatigue life by
a factor of three for steel and aluminum,?®

In a stabilized condition, residual stresses behave in the same man-
ner as static inservice stresses and are superimposed on applied ones
to create favorable total stress conditions. However, residual stresses
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Fig. 5.59. (a) Peening. (&) Burnishing
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can change during the service life of the component, particularly in an
clevated temperature creep environment. Accordingly, it is difficult
to take them into account when calculating fatigue life and o-n tests
remain the only firm evaluation method.

Cyclic stressing produces changes in the stress-strain properties of
metals dependent upon the initial state of the metal and testing condi-
tions. Metals that have had their strength increased by cold-working
can be unstable under cyclic loading in the plastic range, and the
result is a softening process rather than a hardening one."! Hence, a
beneficial residual stress system in cold-worked metal may be rendered
ineffective by such plastic cyclic loading. Accordingly, while the en-
durance limit is increased by peening, coining and cold-working, the
low cycle large plastic strain fatigue strength may be little improved
over that of the comparable annealed state.'

Grinding is a cutting operation that also produces very light peening
which induces a highly localized compressive stress in a thin surt'aqe
layer or skin, Fig. 5.60a. This condition prevails when the surface is
cooled so as to prevent a significant temperature rise due to the fric-
tion of the grinding process.?”® When abusive grinding is done without
a coolant, a rise in the surface metal temperature creates a compres-
sive thermal stress which causes local yielding when a sufficiently
high temperature is reached. When the locally heated yielded meFaJ
cools, it shrinks, thereby resulting in tensile thermal stresses, Fig.
5.60b. The residual stress distribution is reversed, and the beneficial
peening residual compressive stress created by grinding is nullified.
An approximation of the maximum value of the surface temperature

Grinding Grinding
Wheel Wheel

(+) Tension
Compression {—) :
Compression {—)
(+) Tension

(a) i®)

Fig. 5.60. Residual Stress Resulting from Grinding. (a) Cooled Surface. (b)
Uncooled Surface
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rise that can be tolerated without inducing a tensile residual surface
skin stress can be found by assuming a condition of full two-dimen-
sional thermal restraint, Eq. 2.11.3. For instance, with a carbon steel
material at a temperature of 100°F, a yield strength of 30,000 psi,
and aEa/(1 - ) value of 280 psi/°F from Fig. 2.28;Eq. 2.11.3 gives:

. .k 5.17.1
v, = 2] (517.1)
30,000 .
R e — . 5
AT= S S 10TF (5.17.2)

At a temperature rise above this, the surface metal is “‘upset” and
upon cooling goes into a residual tensile stress state which is a condi-
tion more susceptible to stress corrosion, fatigue, or brittle failure.
Peening creates a favorable initial surface compressive prestress which
enhances the fatigue limit of the component to which it is applied. If
this residual stress is removed by a grinding, polishing, or machining
operation the fatigue life is accordingly reduced to essentially that of
the original unpeened material,**! Fig. 5.61. This means that peening
or other forms of mechanically prestressingshould be performed after
finish grinding or machining to obtain geometric shape in order to
assure the presence of the desirable prestress.

Peened &
ground
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Fig. 5.61. Effect of Peening and Subsequent Grinding on Fatigue Life™®!
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(6) Nenselective Stress Paltern

Fatigue life can be reduced by nonselective location and orientation
of residual stresses by the same reason that the selective use of them
improves it. Fabrication processes, such as welding, which indis-
criminately introduce residual tensile stresses in nonselective loca-
tions,*® magnitude and orientation can have an adverse effect. Pres-
sure vessels, wherein the prime applied stress is a tensile stress acting
over the full thickness of the metal, may well fall in this category.
Hence, one of the reasons that vessel construction codes® require stress-
relief of completed vessels prior to service operation is to minimize the
potential adverse affect of randomly oriented residual stresses re-
maining from the fabrication process. Soviet investigations !¢ have
found that fatigue strength is impaired by residual tensile stresses,
and an increase in the endurance limit of 10 per cent has been ob-
tained by the elimination of these residual stresses through thermal
stress relieving ; while British investigations have shown improvements
up to 40 per cent,!t:1

Residual stresses associated with welding or weld repairs reach yield
strength stresses in low strength materials, but do not reach this value
in high strength materials which obtain their strength by quench and
temper or mechanical working methods. This is due to the lower yield

strength property of the deposited weld in its nonstrength enhanced
state, 29% 293,294

5.18 Effect of the Environment and Other Factors on Fatigue Life

|. Elevated Temperature Effect

Many structures, such as vessels or piping for high-temperature
steam, gases or liquids, as well as the rotating parts of turbines,
etc,, must also operate under cyclic conditions; hence, it is neces-
sary-to consider failure by fatigue as well as excessive distortion by
creep.?26:227,228,229,230 Epdurance limit tests on a variety of steels
have shown no loss of fatigue strength for temperatures of from 0” to
650°F.”™ In fact, there is a slight improvement in these values for
temperatures in the upper portion of this range. This may be attrib-
utable to the increase in tensile strength also noticed in this same tem-
perature range, Par. 5.20, and the unimportance of creep, even for
carbon steel, at these temperatures. Below?"?*? the creep range, tem-
perature has little effect on the relationship between strain-range and
fatigue life. Accordingly, within this temperature limitation, the ef-
fect of elevated temperature may be accounted for by multiplying
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the calculated stress by the ratio of the elastic modulus at the tem-
perature for which the available fatigue curve was established to the
elastic modulus at the operating service temperature. This modified
value of stress is then used to enter the fatigue curve to find the cor-
responding number of cycles. At higher temperatures,®? typical
completely reversed stress (mean stress equal zero) o-n curves indi-
cate fatigue strength uncomplicated by creep, and exhibit the same
general shape as room temperature curves with the possible exception
that they do not approach their asymptotes as rapidly but +vith (1), a
decrease in fatigue strength with increase in temperature and (2), a
less rapid approach to their asymptotes, Fig. 5.62.

Fatigue is a cycle-dependent phenomenon, whereas creep is a time-
dependent phenomenon; thus, the time to fracture by fatigue, or to
failure by excessive creep may vary for the same combination of al-
ternating and steady stress,''7:** depending upon the frequency of the
alternating stress. In the absence of actual data a method of combining
fatigue and creep data for design purposes suggested by Tapsell*® is
shown in Fig. 5.63. The static creep strength at the design temperature
is plotted on the abscissa. This may have several values depending
upon the degree of distortion considered permissible. Its value for
vessels or structures which can undergo some { rowth without interfer-
ing with their operation will be higher than that for rotating turbine
parts which must maintain clearances. The fatigue strength for com-
pletely reversed stress at temperature is plotted on the ordinate and
the two points connected by a straight line. Any combination of static
and alternating stresses within the triangle so formed is considered
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Fig. 5.62. Fatigue Design Curves at Elevated Temperatures
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safe. Actually, indications are that the straight-line approximation is
somewhat conservative, and an elliptical or power function curve is
closer to the actual,!20:121:298

2. Corrosion Effect

Corrosion can reduce fatigue life through the surface damage effect
of roughening, and also by pitting which reduces the cross-sectional
area, thereby increasing the magnitude of the applied stress. A more
serious type of damage occurs when the corrosive and fatigue effects
act simultaneously,'? this is called “corrosion fatigue.” Here, corro-
sion occurs both on the surface and in the crack after its formation with
the corrosive media acting on the walls and base of the crack, and
corroded particles, which separate and lodge in the crack, forming
a wedge which forces the crack to deepen.® Tests with dry steam
have showed no reduction in the endurance limit of carbon steels,
whereas with wet steam or water an appreciable lowering of the
endurance limit in the order of 20 per cent occurred.'*® This may
be even higher with more corrosive media such as salt water, etc.;
and many cases of failure in service of boiler and heat exchanger
tubes, turbine blades, marine propeller shafts, etc., are attributed
to corrosion fatigue, >3 29 297,298,329

Means of combatting this are through the use of alloying elements,
such as chromium in steel, to increase the ordinary corrosion resistance
which also enhances corrosion-fatigue resistance. Likewise, the non-
ferrous metals, such as phosphor bronze and aluminum bronze, show

excellent corrosion-fatigue resistance at low temperature, and the
stainless steels at high temperatures. [t must be remembered that there
is no one material that is a cure-all, but it must be selected for the

particular corrosive media and service environment. Another coimn-
batting method is through the use of corrosion protective coatings,
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such as rubber and plastics,” or metallic coatings obtained by nitrid-
ing, or other metal cladding'*® processes.

Paragraph 5.17.3 discussed the selective use of residual stress to
increase fatigue life. This procedure canalso be used to forestall stress
corrosion. For instance: shot peening of 18-8 stainless steel protects
it from intergranular corrosion by breaking up the grains and impos-
ing a compressive residual stress on the surface.

Studies by Frost'** of the affect of chemical corrosive environments
on fatigue have led to the conclusion that:

1. No definite fatigue endurance limit exists when a corrosive en-
vironment is present.

2. The lowest fatigue strength for a given material and environment
occurs when air, or oxygen, has contact with the material.

The effect of air or oxygen has been demonstrated by comparing
fatigue tests conducted in air to those made in an air free environment
such as in vacuum, dry inert atmospheres, air-tight protective coatings,
or immersion in oil, The fatigue endurance limit of several materials
tested in vacuum relative to that in air is shown in Table 5.4, and it has
been deduced that any improvement in endurance limit is due to the
absence or barrier to oxygen.?*®

Table 5.4 illustrates the large potential increase in the endurance limit
of aluminum parts by machining these in vacuum and protecting them
by air-tight coatings prior to their contact with air. This is of practical
significance in the design of many instruments which must have ex-
tremely high fatigue endurance life. On the other hand, it also indi-
cates the endurance limit of steel is not affected by an oxygen environ-
ment. At stresses higher than the endurance limit, however, fatigue

TABLE 5.4. EFFECT ON AIR OR OXYGEN ENVIRONMENT ON THE
ENDURANCE LIMIT OF MATERIALS!

Approximate Ratio, Fatigue
Material Endurance Limit in Vacuum
to Endurance Limit in Air

Mild Steel 1.0
Gold 1.0
Copper 1.2
Brass 1.9
Lead 2:5
Aluminum 5.0
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Fig. 5.64. Effect of an Air and an Air-Free Environment on the Endurance
Limit of Mild Steel'**

strength is affected. This is apparent in Fig. 5.64 showing the fatigue
strength of mild steel in air, as compared to that submerged in oil.
When specimens of the same steel are notched with varying radii
grooves and fatigue tested in air, and in an air-free media; no differ-
ence in endurance limit due to the environment is noted unitl the
notch assumes the sharpness of a crack. For instance, Fig. 5.65 shows
the results of a fatigue test of a mild steel specimen with an 0.05 inch
root radius notch and indicates no difference in endurance limit when
tested in air or in an air-free media. However, when the notch is made
as sharp as possible, root radius of 0.0001 inch, the endurance limit
of the same material is considerably reduced in an air environment as
compared to an air-free one, Fig. 5.66. Protecting mild steel from an
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Fig. 5.65. Effect of an Air and an Air-Free Environment on a Mild Steel Speci-
men with a 0,05 inch Root Radius Notch®

Fig. 5.66. Effect of an Air and an Air-Free Environment on a Mild Steel Speci-
men with a 0.0001 inch Root Radius Notch'**
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oxygen containing environment significantly retards the propagation
of fatigue cracks. This emphasizes the importance of avoiding con-
struction features, manufacturing processes, or materials which present
crack-like notches in pressure vessels containing a corrosive media and
subject to fatigue service.

3. Cycle Frequency Effect

The rate of cycling influences fatigue life. In the range 12,000 to
420,000 cycles per hour, there is no effect caused by the varying rate.
Atrates less than this, recent tests reported on carbon and manganese-
molybdenum steels commonly used in pressure vessels have shown that
a change in cycling rate from 12,000 to 7 cycles per hour reduced the
life about 15 percent.”’ Higher rates of cycling show some increase in
endurance limits.?%

Extremely high rates of 1,800,000 cycles per hour have shown an
8 percent increase in the endurance limit of aluminum and brass,
Such variations are not regarded as of practical significance and need
not be considered in normal vessel design practice at temperatures
below the creep range. At elevated temperatures where the time-
dependent?3%:236:237 creep phenomenon occurs, a reduction in cycling
rate allows more time for creep damage to accumulate and fatigue
life is correspondingly reduced, par. 5.20.2.

4. Autofrettage Effect

Pressure vessels are often in an autofrettaged state, i.e., a condition
resulting from applying to the vessel a pressure sufficiently high to
cause plastic flow, permanent set, in the inner or bore layers. This is
frequently done deliberately to hydraulic cylinders or gun barrels to
induce a favorable residual compressive stress'® to compensate for the
high tensile stresses applied by the contained pressure; or, it may occur
accidentally as a consequence of pressure overload. Autofrettage has a
favorable effect on the fatigue life of a vessel since it selectively induces
a residual stress which opposes the pressure applied stress. This effect
is siall in thin vessels, and increases with wall thickness. The radius
ratio #/a = R at which this effect reaches a maximum can be found by
determining the ratio at which the residual shear stress at the inside
wall reaches the shear yield stress, rv p. The shear stress at the inside
wall is given by:

et (5.18.1)

T
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The residual stress remaining upon release of an autofrettage pressure
is the difference between the stress created by the autofretiage pressure
and that given by the elastic stress equations using the same auto-
frettage pressure, paragraph 2.10. In the case of a fully plastic auto-
frettaged cylinder, the residual tangential stress at the inside wall is
found from Eqgs. 2.10.10 and 2.8.20, letting the outside-to-inside radius
ratio K = b/a and log, (1/K) = —log.K, to be:

1+ K= _
gy = Zrym. (1 = logeK) = 2rys. logK (__) (5.18.2)
reaidunl & 2 l
Similarly, the residual radial stress at the inside wall is found from Eqs.
2.10.8 and 2.8.18 to be:

G'ra =0 {5 LB..%J
Substituting the value of the residual tangential stress from Eq. 5.18.2,
and the residual radial stress from Eq. 5.18.3 into Eq. 5.18.1 gives the
residual shear stress at the inside wall of the cylinder:

2
Ta = -ry.p.[l — log. K — logsK(i)] (5.18.4)
residusl KZ - l

This reaches a value —ry . at a diameter ratio K = 2.2, and at this
value a fully autofrettaged cylinder offers maximum resistance to the
applied pressure stress. The major effect of autofrettage is to reduce the
mean stress in the inner part of the vessel wall thickness; hence, to in-
crease fatigue life.

Fatigue tests on a variety of steels by Morrison, Crossland, and
Parry®® have shown an increase in endurance limit of 10 percent fora
cylinder of radius ratio K = 1.6 to 26 percent for a very thick cylinder
of ratio K = 2.0. The results of fatigue tests by Davidson, Eisenstadt
and Reiner'®® on thick-wall fully autofrettaged cylinders subject to
internal pressure also bear out this effect on fatigue life. These tests
show an improvement in fatigue strength with increase in radius ratio
K, reaching a maximum effect at a A" value of approximately 2.0.

5. Irradiation Damage Effect

Since the basic effect of irradiation on steels is to increase the tensile
and vyield strength, and decrease the ductility mechanical properties,
Par. 5.10, the fatigue properties are likewise affected and show an
increase in the endurance limit and high cycle fatigue strength and
a decrease in the low cycle fatigue strength as predicted Eqs. 5.13.11
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Fig. 5.67. Effect of Irradiation on the Fatigue Strength of ASTM AZ212-B
Carbon Steel?

and 5.13.12. Figure 5.67 illustrates this effect for a carbon steel pres-
sure vessel material, ASTM-A212-B, and shows this effect of reducing
the low-cycle fatigue life and increasing the high-cycle fatigue life
with increasing radiation damage.'®! It also shows a cross-over at
approximately 10 cycles of the irradiated and non-irradiated material
much as for non-irradiated materials of varying tensile strengths,
Fig. 5.67. Neutron irradiation has a significant effect on fatigue
properties and this affect varies with the type material, 3% 133

The effect of increased temperature on fatigue properties of irradi-
ated material is much the same as that on unirradiated material and
is to reduce the fatigue strength particularly in the low-cycle region.*!

5.19 Thermal Stress Fatigue

Thermal stresses are produced by restricting the natural growth of a
material induced by temperature. The restriction can be an external
constraint that prevents free expansion of the entire body, such as by
the action of several materials which make up the structure having
different coefficients of expansion. The more common case, however,
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is that of varying temperatures throughout the structure wherein the
free thermal growth of each fiber is influenced by that of those sur-
rounding it. Thus thermal stresses are dependent upon temperature
distribution, with steep gradients giving rise to high stresses and point-
ing out the major way of increasing thermal fatigue life, especially
when brittle materials or operation in the material brittle transition
temperature range is involved. Failure under repetitive cycling is
known as thermal stress fatigue. It is analogous to mechanical
fatigue,'* but because of continuously changing temperature during a
thermal stress fatigue test, strain concentration, and other local effects,
it is often difficult to predict thermal fatigue life from life in mechani-
cal fatigue at constant temperature. It is fair to say, however, that of
the several factors influencing fatigue, ductility 1s the predominate one
in thermal fatigue. Metals deform under excessive stress and it is this
plastic flow which prevents sudden failure and results in a more favor-
able stress redisiribution, but this deformation also introduces the
problem of thermal stress fatigue. Thermal stresses are basically self-
limiting, and Coffin's!*.1% experiments have shown that while thermal
stress cycling caused cracks to appear early in the life of the speci-
men, progress of the crack was quite slow in subsequent cycles. Under
thermal shock the high induced thermal stress is confined to the re-
gion near the contact surface, Pars. 2.14 and 5.22.3, Hence, the high
stress intensity, K, causing rapid crack growth is confined to this sur-
face region and relatively slow growth prevails with distance into the
thickness.?®®* Figure 5.68 shows thermal fatigue or “alligator”
cracking on the outside surface of a spherical pressure component
subject to severe thermal cooling shocks. The approximately square
or equi-distant crack pattern is indicative of an equal bi-axial thermal
stress field such as occurs in cylinders, spheres and plates, Pars. 2.11,
2.12, and 3.4. This indicates the importance not only of thermal
stress fatigue, per se, but also of the crack formed as a prime nucleus
for the start of mechanical fatigue. The fracture path is predominately
transgranular at low values of the maximum temperature, and inter-
granular at high values where creep is pronounced.

There is no one index, applicable to both steady-state and transient
temperature conditions, for estimating the relative resistance ol ma-
terials to thermal stress, but since these are directly proportional to the
modulus £ and the coefficient of expansion «, and the thermal gradient
diminishes with the thermal conductivity 4, a useful parameter is Lo /4
The greater its value, the more susceptible the material is to high
thermal stresses. A plot of these thermal shock parameters is shown in
Fig. 5.69 for several pressure vessel steels, and while they vary with
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Fig. 5.68. Thermal Faigue, or Alligator, Crack Pattern on the Outside Surface
of a Spherical Component.
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Fig. 5.69. Effect of Temperature on the Thermal Shock Parameter of Several
Pressure Vessel Steels

FRACTURE CONTROL 289

temperature it is seen that the austenitic materials of the 18 Cr—8 Ni
type give the highest values. As with mechanically induced fatigue,
high thermal stresses can be substained if the number of cycles is
limited. Thermal fatigue life can be expressed as a function of the total
plastic strain amplitude per cycle by the same Coffin-Manson relation-
ship!3713% applicable to low-cycle ambient temperature, Eq. 5.13.2;
that 1s,

Ntde, = ¢ (5.19.1)

The constant ¢ varies with the material, and Table 5.5 lists these for
several structural and vessel materials. As an example of the use of
this equation, determine the allowable number of cycles for the flange
of a nuclear reactor vessel built of Type 347 stainless steel in which a
stress analysis shows a maximum elastic stress o, = 120,000 psi is de-
veloped on its face during a temperature change from 600° to 200°F.
Constructing the simplified stress-strain diagram for this point in the
flange Fig. 5.70, the stress range A ¢ is the ordinate and the strain range
Ae is the abscissa. The total strain range Ae is the sum of the elastic
strain range Ae¢, and the plastic strain range Ae,, from which the plastic
strain range A¢, can be found and the number of cycles, N, computed
as follows:

(1) Elastic thermal stress: ¢. = 120,000 psi (from elastic analysis
assuming the material does not yield even though the stress so
calculated exceeds the yield point).

(2) Equivalent total strain range: Ae = ¢,/FE = 120,000/27 x 10
= 0.0044 in./in.

TABLE 5.5. MATERIAL CONSTANT VS. MEAN TEMPERATURE!

Mean Temperature (°F)
Material S
70 400 570 660 930 1110

18 Cr—8 Ni, Type 347 . . | 096 | 0.78 0.68 | 0.59 | 0.44
Carbon Steel, Type 1020 . . | 0.46
1.7 Mn Steel ... .| 048
2% Cr—Mo Steel . . . . . | 0.42 [
3 Cr—0.4 Mo Steel . . . . | 0.60 0.56 0.43
13CrSteel . . . . ... .| 062 0.60 ‘ 0.57
2011 Aluminum . . . . . . | 0.88
2024 Aluminum . . . . . . | 0.35
5.0 Mg Aluminum . . . . . | 0.30 ‘
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Fig. 5.70. Stress-Strain Diagram

(3) Assuming yield point (30,000 psi) is not exceeded, elastic strain
range: Ae, = 2(30,000/27 X 10%) = 0.0022 in./in.

(4) Plastic strain range: Ae, = 8¢ — Ae, = 0.0044 — 0.0022 =
0.0022 in./in.

(5) Number of cycles to failure from Eq. 5.19.1: N a¢, = ¢ = 0.78

600 + 200

2
400°F), N = 0.78/0.0022 = 355, N = 126,000 cycles.

Although tests show that mean stresses decrease and shake-down
under cyclic straining, they do have a pronounced effect on the total
creep strain.'® As the mean stress level rises, the combined effects of
creep and thermal cycling considerably increase the plastic strain per
cycle; hence, comparably shorten the total lifetime, 14® 141,239,302

Thermal fatigue and mechanical fatigue frequently occur together
in pressure vessels since each is generally a function of the operating
service or power demand with time. Just as with mechanical and pres-
sure loadings, cumulative thermal fatigue loadings must also be
grouped so as to produce the greatest effect. For instance, consider a
vessel subject to the following variations, Fig. 5.71

(see Table 5.4 for value of ¢ at mean temp. =

20 variations: AT, = 250 heating (Oabc)
10 variations: AT, = 150 cooling (Odef)
100 variations: AT; = 100 cooling (dghi)

T
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Fig. 5.71. Method of Grouping Thermal Loadings to Produce the Maximum
Cumnulative Fatigue Effect

In order to establish fatigue life, these ranges must be lumped so as
to produce the greatest effects as follows:

I, 10 cycles, AT; = 250 + 150 = 400
I1, 10 cycles, AT, = 250 + 100 = 350
III, 90 cycles, AT3 = 100

5.20 Creep and Rupture of Metals at Elevated Temperatures

Many pressure vessels and other engineering structures are sulb-
jected simultaneously to the action of stress and high temperature.
This is the case for vessels and piping used in nuclear power plants,
boilers, and the chemical and other process industries. The continual
increase in the temperatures of operation has placed great practical
importance on the strength of material at elevated temperatures, and
the development of materials to cope with this trend.?**3%

In general, the strength properties (yield point and ultimate
strength) decrease with high temperature while the ductile properties
(elongation and reduction in area) increase.*®" The tensile test dia-
grams for a medium carbon vessel steel for several very high tempera-
tures are shown in Fig. 5.72. At these temperatures the ultimate
strength falls rapidly, the yield point becomes less pronounced and
above 1100°F loses its characteristics, and the modulus of elasticity
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Fig. 5.72. Effect of Temperature on the Stress-Strain Relationship of Mild
Carbon Steel

represented by the slope of the straight portion of the curve likewise
decreases. The strength properties of this material are not suitable for
vessel design at these temperatures, but are important in the vessel
forming and forging fabrication process. At these elevated tempera-
tures the ultimate elongation does not always continue to increase
with a rise in temperature, but reaches a peak and falls rapidly there-
after to final rupture. Figure 5.73 shows the nature of this loss of
ductility. Optimum metal forming temperature can be established by
determining this peak, Fig. 5.77. A summary of test results of mild
carbon steel properties are contained in Fig. 5.74. These show some
increase in ultimate tensile strength, and decrease in the elongation
and reduction of area for temperatures up to about 500°F, but rever-
sal of this trend with further increase in temperature.

In hot metal forming, the elapsed time required to complete the
operation within the optimum temperature range is critical. Fig-
ure 5.75 shows the drop in temperature of various thickness plates
upon removal from the heating furnace. The rapid drop in tempera-
ture within the first few minutes applies to all thicknesses, but is par-
ticularly pronounced for the thinner ones because of their limited
heat storage. In actual practice, the available elapsed forming opera-
tion time is further reduced by the accelerated cooling effect from
cold dies, lubricants and air currents.

Example: It is desirable to hot form flat plate of mild carbon steel having the
characteristics given in Fig. 5.72 into a spherical shape in a press, Fig. 5.76.
What is the approximate optimum metal forming temperature to minimize
cracking of the metal during the forming operation?
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(a) 1650°F (b) 1800°F

Fig. 5.73. Nature of Ductility Loss at High Elevated Temperatures, Mild Carbon
Steel. Specimens Were of the Same Material and Initially the Same Length,

Solution: Using elongation as a measure of the forming property of the metal,
and replotting the data of Fig. 5.72 to show the ultimate elongation, ¢,, versus
temperature, T, and establishing de,/dT = 0 gives an optimum forming temper-
ature of approximately 1600°F, Fig. 5.77. It is significant to note that merely
increasing the metal temperature does not always improve the hot forming op-
eration. Also, by similarly plotting the utlimate tensile strength versus tempera-
ture, the variation in the pressing force required can be estimated. For instance,
the ratio of the press forming force required at the optimum forming temperature
of 1600°F to that at another metal forming temperature, say 1100°F, is approx-
imately 7/30 = 23 percent. In the hot metal forming practice, it is frequently
necessary to compromise the optimum metal temperature with that for the
forming press force capability. Hence, the ordinary standard tensile test me-
chanical properties can be used as a practical means of determining the optimum
metal forming temperature and press capacity.



294 THEORY AND DESIGN OF PRESSURE VESSELS : FRACTURE CONTROL

100 | ‘ T T 100 E

_ |

0 1 T{Tensite strengt [ o & !

i o ]

2 70 | \),A”—-J?oﬁ ,

W ot i
£ 60 ==y 7 \\ 60 ¢
- = Red in area ’ =
3 50 \““:‘.--‘_\_ | /[ N 50 &
= ™. ,/ - )< 3
D 40 Tt -+ 4 140 &
g NH"-—.._"/ r o
§ 30 "--.n-..._“'_‘. = : — 30 g
% \\ // TH\ é
20 /r.._’ \ 20 g‘
Elongation= Yield point X2

10 4 | 0 w 5

| | |

o] 200 400 800 800 1000

Temperature, °F

Fig. 5.74. Effect of Temperature on the Strength and Ductility of a Mild
Carbon Steel, ASTM A-212B

Fig. 5.76. Heated Circular Steel Plate Being Positioned in Press to Form
Spherical Head (Courtesy The Babcock & Wilcox Co.)
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. Creep

At elevated temperatures the deformation of metals continue with
no increase in stress, This is called “creep” and is defined as the time-
dependent inelastic deformation of materials. Creep properties are ob-
tained by subjecting tensile specimens to a constant load at a con-
stant temperature and observing the axial strains at selected time in-
tervals.?**33 From this data a series of constant stress creep-strain
curves may be plotted, Fig. 5.78a or alternatively constant time creep-
stress curves, called isochronous creep curves, may be plotted, Fig,
578b.

Creep curves for metals exhibit three characteristic behavior re-
gions. In Fig. 5.79a OA is the instantaneous deformation that occurs
immediately upon application of the load and may contain both
elastic and plastic deformation. The portion AB is the primary stage in
which the creep is changing at a decreasing rate as a result of strain
hardening. The deformation is mainly plastic. The portion BC is the
secandary steady state stage in which the deformation is plastic. In
this stage the creep rate reaches a minimum and remains constant as
the effect of strain-hardening is counterbalanced by an annealing in-
fluence. Here the creep rate is a function of stress level and tempera-
ture. The portion €D is the tertiary stage in which the creep continues
to increase and is also accompanied by a reduction in cross-sectional
area and the onset of necking, hence increase in acting stress; thereby,
resulting in fracture, 3% 30530

In order to use creep data in design and provide a means of extrap-
olating creep-stress-time-temperature information from relatively short
periods to that of the required life of a structure, a multitude of ana-
lytical expressions have evolved.#!% The most commonly used one is

0y > 0p >03 > 0

Strain, €
Stress, o

Strain,

(&)

Fig. 5.78. Creep Curves. (a) Constant Stress Creep-time Curves, (&) Isochronous
Stress-Strain Curves
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Fig. 5.79. (a) Typical Creep Curve, (b) Creep Rate from Secondary Stage

the log-log method which considers the total creep strain, ¢, 1o be
composed of an initial intercept strain ¢, and a time dependent creep
strain, ¢,,

€ = &1 €y (5.20.1)
That is, in Fig. 5.79b the creep-time curve OBF is replaced by the two
straight lines OF and EF. Tests of metals show that ¢q is related to
stress by the relation,

e = Ao™ (5.20.2)

where A and m are temperature dependent material constants. Like-
wise, tests show that the time dependent creep strain, ¢,, may also be
expressed by the power function,

¢, = (Bo" (5.20.3)
where B and n are material constants which are dependent upon the
material and temperature. Substituting Egs. 5.20.2 and 5.20.5 in Eq.
5.20.1 gives an expression for the creep strain in terms of stress and
time that can be used in selecting a design stress for an estimated life.

e = Ae™ + tBg™ (5.20.4)

For applications involving long time periods, such as steam and gas
turbines, boiler superheater tubes, etc., the initial strain ¢, becomes
negligible compared to ¢,, so Eq. 5.20.4 reduces to,

¢ =¢ep = lBo" (5.20.5)
C="5 = B (5.20.6)
: .
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where C = de/dt = e,/1 is the minimum creep rate or slope of the line
EF in Fig. 5.79b. Log-log plots of long time creep data show good
agreement with Eq. 5.20.6, and are used to establish the constants for
this equation as:

B = creep rate intercept at log stress 1.0, a material constant for
a given temperature.

C = creep rate in tension, de/d!.

n = slope ofstraight line on log-log coordinates, a material
constant for a given temperature,

This log-log straight-line relationship is shown in Fig. 5.80 for a 23}
percent chromium 1 percent molybdenum steel,?**

Equation 5.20.5 is the usual design basis for structures that must
undergo longtime use and /or retain prescribed deformations. One de-
sign method frequently used is based on that stress to give a maximum
permissible arbitrary amount of creep, usually 0.01 or 0.10 per cent
per 1000 hours, corresponding by extrapoclation to | per cent extension
in 10,000 and 100,000 hours. Such typical creep stress curves are
shown in Fig. 5.81 for several carbon, low alloy, and austenitic pres-
sure vessel materials.’® Chromium, molybdenum, and nickel are
major alloying elements for high-temperature service metals. In using
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Fig, 5.80. Creep Rate Curve for 2%% chromium 1% Molybdenum Steel (Data
Courtesy The Babcock & Wilcox Company)
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creep data, the designer must establish the expected service life and
corresponding amount of permissible permanent deformation; and
accordingly, choose the stress that satisties these conditions. """ As an
example, structures that involve closely fitting moving parts, such as
turbines, are designed for a low value of permissible creep; whereas,
vessels, heat exchanger tubes, etc., are designed for a higher creep
since small deformations do not influence their operation. 'V

The creep behavior of materials is not only sensitive to stress and
time, but also to their environment (atmosphere, neutron irradiation
etc.,) physical properties, past strain history, etc. For instance, car-
burizing, oxidizing and nitriding atmospheres increase creep life,
while neutron irradiation exposure may reduce it. Accordingly, while
it is necessary to have laws that aid the extrapolation of creep data
because industrial progress cannot wait for the results of lifespan tests
of the structure; it is essential to use creep data obtained from maxi-
mum available time tests, conducted in environments simulating the
actual service one. Extrapolation of short time data to long times are
not always reliable and must be used with caution.

Equation 5.20.5 describes only the creep strain during a constant
stress and does not cover the case of a variable stress. Since pressure
components are subject to varying stresses, methods are required for
using the constant stress creep response to predict their behavior
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under variable conditions. This has given rise to a number of applica-
ble creep theories of which many have been directed to fitting the
experimental data of a specific material. Two theories in common
use are “time-hardening” and “strain-hardening” and these are repre-
sented schematically in Fig. 5.82. The curves labeled 0, and 0, are
constant stress creep curves. Assuming that creep occurs at the 0,
stress level until time at point 1 is reached when the stress changes
for 0, to 0,; “the time-hardening” theory indicates that the creep
response follows the 0, curve beginning at point 1'. The “'strain-
hardening” theory indicates that the response follows the g, curve
beginning at point 1"’. The two predicted responses are shown begin-
ning at point 1. The simple “strain-hardening” theory is in good
agreement with observations on pressure component material. A third
theory called “total-time” is also shown in Fig. 5.82. It predicts
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Fig. 5.82. Schematic Representation of Time-Hardening, Strain-Hardening and
Total-Time Theories of Creep Response Under a Stepwise Varying Load
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creep behavior greatly different from observations and is not advo-
cated as a method of predicting creep behavior. However, it is useful
in the approximate analysis of pressure components, and together
with “time-hardening” theory forms the bounds for all other theories
for predicting creep response to variable stress. This is a useful tool
when the actual creep law is unknown.

When creep strengths at time and temperature are not covered by
existing data, the Larson-Miller parameter determination method
may be used for estimating this information. This is

P= T(C+ logio t)
where

t = time at T, hours

C = a constant, 20 for steel
P = a parameter

T = absolute temperature, °R

This equation is based on a parametric study of creep strengths devel-
oped at different times and temperatures; and hence, it is a method
of determining an equivalent time at some temperature from a known
time at another temperature. This is useful not only in estimating
temperature material properties, but also in appraising the qualifica-
tion acceptability of uncontemplated temperatures. The following
examples are illustrative:

Example 1: A design established on a creep rupture basis of 1000°F at 100,000
hours is now required to operate at 1100°F. What is the estimated service life?
Putting T =460 + 1000, and ¢ = 100,000 in this parameter equation gives
P = (460 + 1000) (20 + log 100,000)
P=36,500
Now using this equation with P = 36,500, T'=460 + 1100 and solving for ¢
gives
36,500 = 1560(20 + log ¢)
logt=34
t = 2,500 hours

or the estimated service life has been reduced by 97.5 percent.
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Example 2: The properties of a material have been qualified at a stress-relieving
temperature of 1150°F for 50 hours. A vessel made from this material undergoes
a two-hour temperature excursion to 1180°F during the stress-relieving opera.
tion. What is the equivalent of this excursion in terms of hours at the materia]
qualification temperature of 1150°F?

Putting 7= 460 + 1180 and ¢ = 2 in the parameter equation gives

P = (460 + 1180) (20 + 0.303) = 33,300

Now placing P= 33,300 and T =460 + 1150 in this equation and solving for
t gives

35,300=1610 (20 + log t)
logt = .683
t =4.8 hours

or 4.8 hours must be added to the normal time at 1150°F to obtain the total
time, If this does not exceed the material qualification time, the material is
acceptable,

2. Creep Rupture

Failure due to creep rupture is an important design considera-
tion.?#%:246.297.298 Under constant stress and temperature conditions
expected service life can be established from standard creep rupture
data.'*®'%* However, since most members are not subject to either
constant stress or constant temperature, creep-rupture damage criteria
which will predict time to rupture in such members having multi-axial
states of stress using time to rupture data obtained from tension tests
have evolved.'®®?*® Two of these are the “life-fraction” rule and the
“strain-fraction” rule.

The “life-fraction™ rule is based on the premise that the expenditure
of each individual rupture life-fraction of the total life at elevated
temperature is independent of all other fractions of the life to rupture,
and that when the fractional life used up at different stress levels and
temperatures is added up, it will equal unity; namely,

N .

o= | (5.20.7)
tri

where ¢, is the time at temperature ¢ and {y; is the creep rupture time at

temperature 7. As an example, a cylindrical tube made of 24 percen’

chromium material with the creep-rupture properties shown in Fig.
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5.83 is initially designed for a life of 100,000 hours at 1000°F with a
stress of 12,000 psi. After 10,000 hours (1/10 of the design life), a mal-
function subjects the tube to a stress of 15,000 psi at 1100°F, The pre-
dicted remaining life would then be 0.9 of 500 hours, or about three
weeks. If the malfunction is corrected after two weeks and operation is
returned to the 12,000 psi, 1000°F condition the life remaining in the
tube is 100,000 (1-1/10-2/3) = 23,000 hours. Thus, the malfunction
lowered the original life expectancy from 100,000 to 33,000 hours or a
reduction of 67 percent.

The “‘strain-fraction” rule is expressed by the relation

L (5.20.8)

er
where ¢; is the strain for a given stress and temperature and ¢y, is the
strain at rupture under the same stress and temperature. The methods
of Egs. 5.20.7 and 5.20.8 are simple, give results in good agreement
with experiment, and are well adapted to design analysis. The strain-
fraction rule best fits those materials which exhibit appreciable crack-
ing throughout their life while the life-fraction rule is in better agree-
ment with those materials which show little cracking until final rupture
is approached.!®1%¢ Some studies have shown that a geometric mean of
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Fig. 5.83. Creep Rupture Curve for 2%% Chromium 1% Molybdenum Sicel
(Data Courtesy The Babcock & Wilcox Company)'™
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these two approaches represents a good over-all data fit; that is,

(f‘_.e" + 1
Z lri e_h)

Creep-rupture and fatigue subscribe to the same linear cummulative
damage concept, and these effects may be combined by

n ¢
—_ o= 1
f\"—i_ Etn

It is recognized that this simple rule cannot fully account for large
amounts of strain hardening, metallurgical changes and order of
loading; accordingly, a damage factor less than unity (0.6—1.0) is fre-
quently employed,33330

Figure 5.84 shows the nature of the creep-rupture strain at con-
stant temperature. Curve A is the typical one based on nominal or
“engineering” stress, Eq. 5.2.2. If this strain based on constant “true”
stress, Eq. 5.2.1, curve B would describe its behavior, i.e., it would be
linear until rupture. In practice, however, rupture is described by
curve C, which indicates that geometric instability (necking, Par. 5.2)
is not the principal cause of rupture, but rather it is deterioration or
damage of the material itself.

The phenomenon of creep rupture is one of formation of voids by
sliding or shearing forces at grain boundaries, and the enlargement
and coalescence of these under tensile forces. These voids concentrate
primarily on grain boundaries normal to the maximum applied stress,
and final fracture is predominantly a brittle intergranular one obeying
the maximum principal stress theory of failure, Par. 5.15.1(a). Mate-
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Fig. 5.84. Variation of Strain with Time,

FRACTURE CONTROL 506

rial damage accumulates with time with the result that the proportion
of the material available to carry load is reduced, thereby increasing
the applied stress until fracture occurs. This damage (voids, fissures,
cracks, etc.) occurs essentially uniformly over a relatively large cross-
sectional area, or volume, of the material and the resulting stress is an
average one. Accordingly, in describing this stress condition the liga-
ment efficiency analogy, Par. 1.5, is applicable. 