
 
Khurmi, R. et al.; 
Theory of Machines, 14th ed.; 
S. Chand & Co. Ltd., New Dehli 2005; 
ISBN 9788121925242 



(v)

��������	
����� ����
�
���������	�
�������
��������
���
�����
���
�����������
����
������	������	�����������������	��� �����	���

�� ���	��� !�� "�#���� ���	��� $�� ��%���� ���	��
&����'�������	��(��)�	����	�
�������	���
�����	��*��)�
���	�+�� �,�� ��	���� ���� '��
-����� ���� ���
���
���� %�����	�	�
�� 
�� ���	�� ���� 	����� .��
���
����/
���� �
�� ��)�����	��� � �� �
����� �!��/��
�	��	
�
������$��������������.��	
�����&��/�0�����	�	�
�

�� .��	
�� 1
��	�	����� �(�� 2���	�
�� 
�� .��	
���
�,���
�	���	�
��
��.��	
���

�� �������������������� ����
��
��� )�	�
�
�	�
��� ��� %����� �
	�
��� ��� /��	�������
�
	�
������"
�����������
	�
��� ��3���������0�������	�
!��3������.��
��	���$��3������2�������	�
���&��45
�	�
��

��3�������
	�
���(��#��0������/�0�����	�	�
��
�
���0�������	�6�	�����0��	�	
��������,��#��0�����
/�0�����	�	�
��
��.��
��	��6�	�� ���0��	� 	
� �����
����#��0������/�0�����	�	�
��
��2�������	�
��6�	�
���0��	� 	
� ������ ���� 2�-
���� ���0�������	�
����/�0�����	�	�
��
��2�-
�������0�������	�����
.��	
�������2�-
����.��
��	���� ��2�-
����2�������	�
�
�!��45
�	�
���
��2�-
�����
	�
����$��/���	�
����	6���
3�������
	�
�� ����2�-
�����
	�
��� �&��/���	�
�
��	6����3����������2�-
���7�1
��	�	����
���
	�
��
�(��2�������	�
��
����%��	�������
�-���"���
����%�	��

�� ������������������ �����
��
��� )�	�
�
�	�
��� ��� 8�6	
�9�� 3�6�� 
�� �
	�
��
��� ����� ���� :��-�	�� ��� �
���	
���  �� �
����
!�� 2��
�
	�� ���� #����	�	�
���� ���	�� 
�� �
����
$���
���	�
�����
�����&��"

0����(��"��	��0�	������
"��	���
-��� �
����� �,�� ����� �
���	� 
�� )���	���
����2�-
�����
���	
��
���
���	�
���
���	
��
���� �
�5
��� ���� :
�;�� ���� %
6���� � �� 4���-��
�!��%�����0���
��"
������	�
��
��4���-����$��)�0
���
����)�0
�������
������&��%�����0���
��"
������	�
�

���
���	
����(��4���-��3
�	��������	�
��"�
	��
�
���-�4�-�-����	���,���
�5
��/�5
�����	
�2�������	�
�� #������ ���	���� ���� "
�����
�� 
�� �6
� <
�����
����"
�����
��
�� )�����	���<
����������"
�����
��
�
4���	���<
����������3
���
��'���	���4���-���
���-
4���	���)�0��	�

����������������



(vi)

�� ���������������������� ������
��
���)�	�
�
�	�
������.��
��	������2�������	�
��
���
%��	����� �
���-� 6�	�� ���0��� =���
���� �
	�
��
�����������	����45
�	�
��
�����0���=���
�����
	�
��
��� ������ ����� ��� ���0��� =���
���� �
	�
��
 �����0���%���
�
���!��3�6��
�����0���%���
�
��
$�� "�
������
����� =������� �0���-�� &�� "
�0

��
%���
�
��� (�� "��	��� 
�� %���
���
��� �,�� <������
�
�0����
��� ���� ��������� �
�0����
�� *�
���
���
%���
�
�+�

�� ���������� ������ �����
���
��� )�	�
�
�	�
��� ��� '�����	��� 3��;� 
�� 4�����	�
�����0���
��3��;�������	�
�	
���� �������������<�	6���
�� �������� ���� �� �	�
�	
���� !�� '�����	��� %����
$����0���
��"
��	��������
	�
����&��"���������	�
�

��'�����	���%������(��'�����	���"�������,����0���
�
>
��	�������"�������������������������8
�����
�
��-����� 
�� �����
�� �
�� %����� �����������
���� 200����	�
�� 
�� '
	?����� "��	���
�� 	
� %����
������������ ���� #�
����9�� "��	���
�� �
�� %����
������������� ��)������
��
��������������!����0��

��'�����	���"��������$���

��<���"�����
��1
�����
"����� "������ �&�� )������
��� 
�� �

�� <��� "�����
�(�� ���-��� ������� "���;� "������ �,�� )������
��� 
�
���-����������"���;�"�����������

�����������"���;
"����������)������
���
���

�����������"���;�"�����

!� "������#������� ������ ������
���
$�����������
��%��������� �	&
��� )�	�
�
�	�
��� ��� �0���� ���� <
��� "��	�
����
�����	�
����
����	�������-�	���.��
��	��
����%
��	

�� �� 3��;�� ��� .��
��	�� 
�� �� %
��	� 
�� �� 3��;� ��
)��	��	���

��"��	�����	�
��� ��%�
0��	����
��	��
)��	��	���

��"��	����!��8
�����
��)��	��	���

�
"��	��������������������$����0���
��)��	��	���

�
"��	����� &�� 3
��	�
�� 
�� )��	��	���

�� "��	����
(�� 2�
��
��� '������� *
�� ������ "��	�������3���+
���
����� �,�� ��	�
�� 
�� 3
��	��-� )��	��	���

�
"��	�������������������

�� "������#������� ������ ������
���
$'�����(��"������#���� �	&
���)�	�
�
�	�
������/���	����.��
��	��
����6
�<
����
�
���-� ��� �	���-�	� 3������ ��� �
	�
�� 
�� �� 3��;�
���.��
��	��
����%
��	�
����3��;����/���	����.��
��	�
��	�
��� ��.��
��	����������������"���;�����������
!��/
����-�.��
��	���	���%���>
��	��$���
�����2�	��-
����������������&�������������2����	�-��



(vii)

�� )������������������ ������ ������
���
���)�	�
�
�	�
������2�������	�
�����-�����
����3��;�
��� 2�������	�
�� 
�� �� %
��	� 
�� �� 3��;�
��� 2�������	�
�� ��� 	��� ������� "���;� ����������
 ��"
��
����"
�0
���	�
��2�������	�
��

�� ��� �������*�� �+�*���,���� ������
���
��� )�	�
�
�	�
�� ��� %��	
-��0�� ��� �	���-�	� 3���
��������������4@��	��	���-�	�3�����
	�
������������
����� 
0� 
�� �
����-� %������  �� 4@��	� �	���-�	� 3���
�
	�
��"
����	��-�
��A���������-�%����*��
		�/
����7�
���������+��!��200�
@���	���	���-�	�3�����
	�
�
������������$�� �	���-�	� 3�����
	�
��� �
�� 4�-���
)�����	
����&���	�����-�#���������������(�������
�	�����-� #����� �,�� 2�;������ �	�����-� #����
���� ���������� 
�� =

;�7�� >
��	�� ���� /�	�
� 
�� 	��
����	��.��
��	�����������@��
�����������
���0����

��	��������������	������"
���	�
���
��45
����0����

�� 	��� ������-� ���� ������� ����	��� � �� 2�-
���
2�������	�
�� 
�� 	��� ������� ����	�� �!�� ��@��
�
��
�	
�	�
��
���0������$���

����=

;�7��>
��	�

�-� .������� ������
���
��� )�	�
�
�	�
��� ��� ��0��� 
�� ����	�
��� ��� ����	�
�
<�	6�������
�����	����
���������������	�
��<�	6���
3
�����	����
�������� ��3���	��-�����	�
���!��3�6��
�
�	�	�������	�
���$��3�6��
��'���	���
��������������	�
��
&��3�6��
���
��������	�
���(��3�6��
����
�������	�
��
�,��"
��������	�
������	�
�������3���	��-�2�-���
�
����	�
�������2�-���
��/�0
�������������
���
���
/�5
����� 	
���������<
���
����/

-��=
��?
�	��
%������ ���� ����	�
�� 
�� �� <
��� 3���-� 
�� �� /

-�
)�������� %������ � �� 4���������� 
�� )�������� %�����
�!�� ����6� ����	�
��� �$�� ����6� >��;�� �&�� �
�5
�
/�5
����� 	
� 3��	� 	��� 3
��� ��� �� ����6� >��;�
�(���
�5
��/�5
�����	
�3
6���	���3
������������6
>��;���,��4����������
��������6�>��;��������@��
�
4����������
��������6�>��;������A����=�
���-����
�����3
�;��-�����6�������4����������
�������3
�;��-
����6�����������	�
��
����.�	�������� ������	�
����
>

�����<�����-�����	�
��"��������!������	�
��
��%��
	
���� "
����� <�����-�� �$�� ���	� %��
	� <�����-�
�&��"
������%��
	�<�����-���(�����0�?
�����
����
���	��
"
������ %��
	� <�����-�� �,�� ���	� "
����� <�����-
��������	�
��"�
	�������������-��������
��%��	��"�
	���
���� �
�	�0��� ����� "�
	���� ���� "
��� "�
	���
� ��"��	���
-���"�
	�����

��� /���0�'������	�% ����1��(�� ������
���
��� )�	�
�
�	�
��� ��� �����	�
�� 
�� �� <��	� ������
��� ��0��� 
�� <��	� �������� ��� ��0��� 
�� <��	��
 �� ��	������ 
���� �
�� <��	��� !�� ��0��� 
�� ���	� <��	



(viii)

��������$��.��
��	��/�	�
�
��<��	��������&��.��
��	�
/�	�
�
�� ��"
�0

���<��	��������(�� ���0�
��<��	�
�,��"���0�
��<��	������3��-	��
�����A0���<��	�������
����3��-	��
����"�
���<��	������������%
6����������		��
�����<��	������/�	�
�
��������-������
����
�����	�<��	
������� � �� ��	������	�
�� 
�� 2�-��� 
�� "
�	��	�
�!��"��	���
-��������
����$����@��
�������
����
	��� <��	�� �&�� "
���	�
�� �
�� 	��� ����������
�� 
�
��@��
��%
6�����(�� )��	���������
�� ��� 	���<��	�
�,��.����	������������2����	�-���������������	�-��

��.����	�������A�������	�<��	������������/�	�
�
�
������-� �����
��� �
�� .����	�� ���� /
0�� ������
���� ������ /
0���� � �� 2����	�-��� 
�� ������ /
0�
���������!����������
��������/
0�����$��:����/
0���
�&��/�	�
�
��������-������
����
��/
0����������(�
"��������������,��2����	�-���������������	�-���
�
"�����������A����<��	�
��/
0������������������
��������"����������������/���	�
��<�	6����%�	��
����%�	���"�����������	��������/���	�
��<�	6���
"����� �0���� ���� 2�-
���� .��
��	�� 
�� �0�
�;�	�
����'�����	���
��"������������� ��"���������	�
��
�
"��������!��=
��	��-�����=�
���-�"��������$��"
����
�
"��������&��%
6����������		��-�"��������(��3��-	�

��"������

��� 2��� �	�3�����4 ������
���
���)�	�
�
�	�
����������	�
��:����������2����	�-��
������������	�-���
��#��������������"���������	�
�

�� �

	���� :�������  �� ������ ����� ��� #�����
!��#������	��������$��"
���	�
���
��"
��	��	�.��
��	�
/�	�
�
���

	����:������3�6�
��#�����-��&��.��
��	�

��������-�
�����	���(���
����
�����	����,��"���
����
���	�������)��
�
	�����	�������4����	�
��2�	����-�	��
"��	������	�����
��	���.��
��	��/�	�
��
��)��
�
	�
���	��#����������"
�0����
��<�	6����)��
�
	�����
"���
����� #������ ���� ���	���� 
�� #���� ���	��
� ���	�������%�
0
�	�
���
��#�������	������!��3��-	�

��%�	��
��"
�	��	���$��3��-	��
��2���
��"
�	��	�
�&��"
�	��	�/�	�
�*
��8
�����
��%�����
�����	����
"
�	��	+�� �(�� )�	���������� ��� )��
�
	�� #�����
�,�������
��8
�����
�����	��
�� 	���%���
�� ��
A�����	
�2�
���)�	��������������������
��8
����

�����	��
��	���:��������A�����	
�2�
���)�	����������
���� �����
��8
����� 
�� ���	�� 
�� �� %���
�� �
�
)��
�
	�� /��;� ��� A����� 	
� 2�
��� )�	����������
���� =������� #������ ���� �0����� #������ � �� "��	��
���	������
����%����
���0�����#�������!��4����������
�
�0�����#�����

��� 3����2����� ������
���
��� )�	�
�
�	�
��� ��� ��0��� 
�� #���� �������
��� ���0���#���� ������� ���"
�0

���#���� ������



(ix)

 ������-��
���0
��#������!��/����	���#����������
$��40��������#�����������&��.��
��	��/�	�
�
��40�������
#�����������(��"
�0

���40��������#����������*�
�
����%����	�:����+���,��40��������#����������:�	�
<�����#�����������
�5
������40��������#�����������

��� 3#���������%�
������	�,������������������ �����-
���
��� )�	�
�
�	�
��� ��� %�������
���� 2�-
�����
	�
��
���#��
��
0���"

0�������4����	�
��#��
��
0���"

0��

�����2��
0������ ������������������8��������0�
!�� 4����	� 
�� #��
��
0��� "

0��� 
�� ��8����� ���0
�
���-��	�����-��$��4����	�
��#��
��
0���"

0���
�
��8���������0��
���-�%�	����-���&��4����	�
��#��
��
0��
"

0���
����8������
���-�/
����-��(���	�����	��
����
�

�� :����� ������ �
���-� ��� �� "
����� %�	��
�,���	�����	��
�����6
�:�����.���������;��-����
���
����4����	�
��#��
��
0���"

0���
�����������@��
/�-������	���"��	����2�-���	
���/
	�	��-�����	�

��� ��������.���������'�����������4�,���� ������
�!�
���)�	�
�
�	�
������/��
�	��	�4����	�
�������	���
�
�
�����2�	��-�
����/�-���<
���� ������2������	7�
%�����0���� ��� .��
��	�� ���� 2�������	�
�� 
�� 	��
/���0�
��	��-�%��	�����4�-������ ��'����7��"
��	�
�	�
��
!��/�		����
�7��"
��	�
�	�
���$��<����		7��"
��	�
�	�
��
&��200�
@���	��2����	�������	�
���
��.��
��	�����
2�������	�
��
��	���%��	
���(��2�-
����.��
��	�����
2�������	�
��
��	���"
����	��-�/
����,���
�����
�
	��� /���0�
��	��-� %��	�� 
�� ��� 4�-���� 8�-���	��-
:��-�	� 
�� 	��� "
����	��-� /
��� ���� 45
������	
�������������	����������	������	�
��
��45
������	
���������� ���	��� 
�� �6
� ������� ��� #��0�����
��	�
�������"
����	�
��"

0��� 	
����200����� 	

��;��	����6
���������	����������������45
������	�
����)���	����
����������/���0�
��	��-�4�-����"
��������-
	���:��-�	�
��"
����	��-�/
���� ��2����	�������	�
�
�
��)���	����
�5
��

�!� 2
����4��������1��4�������	�.�#* ��� �����!�
!��
���)�	�
�
�	�
�������
����-��
���	����-�����
���
���-��� "�������� �

���� 2�	��-� �	���� 4�-����
����
����-��
���	����-�����
�����

���	�
;��"����
)�	������"
��
�	�
�� 4�-����� ��� �
����-��
���	
���-�����
�����
�	����������4�-����� ����
�	
�	�
�

��4���-���!����	������	�
��
����@��
����
�	
�	�
�

��4���-���$��"
��������	�
����
�	
�	�
���
��4���-��
&�����6������(��"
��������	�
����
�	
�	�
��
���0����
�,��4���-���	
������������6�����������������
���
�
	������6�����/�����������6��������%
�����-�%�����



(x)

��� ������5�4����"��(�����	�'�(�����4�3���� ���!��
!��
��� )�	�
�
�	�
��� �����������.������ ��� %��	
�� �����
.���������/���	����%
��	�
���
��"���;�����4����	���
"��	���3������ ��"���;�%
��	�
����
��2������
�B�"
	

��B� /������� ���� "
�0�����
��� !�� 200�
@���	�
2����	�������	�
���
��"���;�%
��	�
����	�2������
�B
"
	�
��B�/�����������"
�0�����
���$��.��������-����
&��C�
����.��������-�����(��/�
���
@�.��������-����
�,��<��-����.��������-���������4����	�
��	���4����
%
��	� 
�� "
	�
��� 6�	�� �� ���0��� ������ .�����
���������7��4@0����
��.����������.��	
���
��45
������	
4����	���� �
�� 	��� �����7�� 4@0����
�� .�����
���������
��:��	������<��	���		��-�
��	���4@0����
�
%��	���
�������7��4@0����
��.������� ��/�������-
#�������!��%�����0���
��3��;��
	�
���.��	
���4����	���
�
�� �� .����� 6�	�� ��� A�����	� 3���� 
�� �	�
;��
�$���	�0����
��3��;��
	�
����&��.��	
���
��45
������	
4����	�����
���	�0����
��3��;��
	�
����(��/�����
.�����#�������,��=��;6
�	��.�����#���������:��������	
.�����#����

��� 3�(������ ���!��
���
���)�	�
�
�	�
��������0���
��#
����
�������"��	���
-��
#
����
���������������������#
����
���� ��:�		
#
����
���!��%
�	���#
����
���$��%�
����#
����
��
&�� =��	����� #
����
��� (�� =��	
�-� #
����
��
�,��:���
��=��	�����#
����
�������%��;����-�#
����
��
���� �����	�������� 
�� #
����
���� ���� �	�����	�� 
�
#
����
��������)�
���
�

��#
����
���� ��=
�	��-�
�!��4��
�	�����%
6���
����#
����
����$��4��
�	����
%
6���
����%
�	���#
����
����&��"
�	�
����-��
����
�(��"
�	�
����-��
�������-�����
����%
�	���#
����
��
�,��"
�	�
����-��
�������-�����
�����0���-��
�	�
����
#
����
�������"
��������	�
��)������	��������

��� /��6�����	�1#���������� ������
���
��� )�	�
�
�	�
��� ��� ��	������� �
�� <��;�� 3����-�
�����0���
��<��;����������-���<�
�;�
����
��<��;��
 ��%��
	���<�
�;�
����
��<��;���!���

����<�
�;�
�
��
��<��;���$�����0���<����<��;���&����������	���
<����<��;���(��<��������<�
�;�<��;����,��)�	�����
4@0�����-� <��;��� ���� <��;��-� 
�� �� .�������
���������
��	���� ���� ��0��� 
�������
��	����
���� "���������	�
�� 
�� 2��
�0	�
�� �����
��	����
� �� %�
��� <��;�� �����
��	���� �!�� /
0�� <��;�
�����
��	������$��"���������	�
��
������������
�
�����
��	������&��40��������	����������
��	����
�(�� <��	� ����������
�� �����
��	�����

��� 
�
���
�������	�����������
�������
��	�����,���
���
�
�����
��	��������<�����#���
��������3�-�	��
���
�
�����
��	���



(xi)

�-� %��� ������
���
��� )�	�
�
�	�
��� ��� "���������	�
�� 
�� �
��
6����
���"���������	�
��
��"��������������
�������/�����
������ ���
	�
��
��	����
��
6����!�����0�������	B
.��
��	������2�������	�
�����-�����6����	����
��
6��
�
���� 6�	�� ����
��� .��
��	��� $�� ���0�������	B
.��
��	������2�������	�
�����-�����6����	����
��
6��
�
����6�	�����0���=���
�����
	�
���&�����0�������	B
.��
��	������2�������	�
�����-�����6����	����
��
6��
�
����6�	������
���2�������	�
������/�	����	�
��
(�����0�������	B�.��
��	������2�������	�
�����-����
6����	����
��
6����
����6�	��"���
������
	�
��
�,�"
��	�
�	�
�� 
�� "��� %�
������� ���� "����6�	�
�0��������"
�	

�����������-��	�"���6�	��/���0�
��	��-
/
����� �
��
6���� ����"���
����2���"���6�	�� ���	�
�������
��
6���

��� /�������4����'������4������� ������
���
��� )�	�
�
�	�
������<�������-�
��/
	�	��-��������
���<�������-�
�������-���/
	�	��-������<�������-��
�����/
	�	��-����	��������%���������<�������-�
���
���-���/
	�	��-������<���6
��������/
	�	��-� ��
��������	� %�������  �� <�������-� 
�� ��������������
/
	�	��-����	��������%������!��<�������-�
���������
�������/
	�	��-������������	�%������

��� /�������4����'�����������4������� ������
�-�
���)�	�
�
�	�
������%��������������
����������������
�
�����
��/���0�
��	��-������������%��	����<�������-

������������� %������� �
���� ��� �� /���0�
��	��-
4�-����� ��� %��	���� <�������-� 
�� 3
�
�
	�����
 ��4����	�
��%��	����<�������-�
��/���0�
��	��-�%��	�

���6
�"��������3
�
�
	������!��.����	�
��
������	���
�
����� $�� �6����-� "

0���� &�� =������ <�
6�
(��<�������-�
��"

0����3
�
�
	�������,��<�������-

��%��������
�����
���
�	�����������)�������4�-�����
����<�������-�
�����
�������
�����
���
�	����������
)������� 4�-������ ���� <�������-� 
�� /������ 4�-����
*�����	�����/�������"���;���	�
�+������<�������-

��.���-�����

��� +��4��
	�������	�2����(�����"�7������� ����-�
���
���)�	�
�
�	�
��������������������.����	
����
	�
��
��� ��0��� 
�� .����	
��� �
	�
��� ��� ��0��� 
�� ����
.����	�
���� ��8�	
�������5
�����
�������3
�-�	
�����
.����	�
����!��8�	
�������5
�����
�����������������
.����	�
����$��4����	�
��)���	���
��	���"
��	����	���
3
�-�	
���������������������.����	�
����&��8�	
���
���5
�����
������������������.����	�
����
��	
��
%
��	�3
���2�	��-�A���������0����
00
�	�������	�
(��8�	
�������5
�����
������������������.����	�
��
�
��	
�����
��������	���
	���3
���A���������0��



(xii)

�
00
�	��� ����	�� �,�� 8�	
���� ���5
����� 
�� ����
�����������.����	�
���
��������	���@����	�<
	��4���
���� "������-� �� ����
����� ���	���
	��� 3
���
����8�	
�������5
�����
������������������.����	�
��
�
��������	��
�D��	���	
���8
�����
��%
��	�3
����
����"��	�����
��:������-��0����
��������	���������5
����

�� ����� ���0��� .����	�
��� *.���

�� ���0��-+�
�������0��-����	
��
�����0��-�/�	�
��� ��3
-���	����
��������	���!�����5
�����
����������0����
����
.����	�
���� �$����-������	�
�� ���	
�� 
���������
��-���������&��.����	�
��)�
��	�
��������������������	��

��� 2���������"�7������� ������
�--�
���)�	�
�
�	�
������8�	
�������5
�����
��������
���
���
.����	�
������4����	�
��)���	���
��	���"
��	����	�
�
�
���
����.����	�
�������������
���
����.����	�
��

�������-���/
	
�����	���� ��������
���
����.����	�
��

�����6
�/
	
�����	����!��������
���
����.����	�
��

����������/
	
�����	����$���
���
������45
������	
����	�� &�� ����� �
���
���� .����	�
��� 
�� �� #�����
���	���

��� %���
����)�	�	�)���#������	��#�� �������
��� ������ ����--�
�-��
��� )�	�
�
�	�
��� ��� "
�0
	��� 2����� 2�������� �
�
�

�� <��� ���������� *���
����	���7�� 45
�	�
�+�
���%�
-�������
���

��<�����������������"
�0
	��
2����� 2�������� �
�� ������� "���;� ����������
!�� "

0���� "
������ $�� ���	������ 
�� �����������
&��"���������	�
���
�����	������%�
������(��%������
�
%
��	���
���
��	�
��#�����	�
����,��2�-���/���	�
����0
�
���
��	�
��#�����	�
�������#��0���������	������
�
�

�� <�������������� ����#��0������ ���	������ 
�
������� "���;� ����������� ���� "
�0
	��� 2����
*2����	����+� ���	������ 
�� �

�� <��� ����������
��� %�
-������ 	
� "
�
�����	�� 	��� 2�-
���
���0�������	��
��	���)�0
	�����A
	0
	�3��;���� � 3���	
�5
����������5
����!��%�
-������
���-�3���	��5
���
������5
����$��"
�0
	���2��������	������
���

�
<�������������:�	��"

0����%
��	���&�����	�����

�� �

�� <��� ���������� �
�� <
��� #
�������
�(��2����	��������	�������
���������"���;�����������

�!� )
��������%������ ����-�-
�-!�
���)�	�
�
�	�
��������������������2
	
��	���"
�	�
�

�����	����������0���
��2
	
��	���"
�	�
�����	���
���<�
�;����-������ ��3�-����/��0
�����!����������
�
��	�
���$��A�����������������
��	�
���&���������
�
��	�
���
�������	���6�	��.���

�����0���A
	0
	�
(�� ��������� �
��	�
�� 
�� �� =��	����� #
����
��
�,��A0���3

0�����������
��	�
�������"�
����3

0
����������
��	�
��
��	�8 ����-!�
�-��

GO To FIRST



Chapter 1 : Introduction   �  1

1

Introduction

1
Features

1. Definition.

2. Sub-divisions of Theory of

Machines.

3. Fundamental Units.

4. Derived Units.

5. Systems of Units.

6. C.G.S. Units.

7. F.P.S. Units.

8. M.K.S. Units.

9. International System of

Units (S.I. Units).

10. Metre.

11. Kilogram.

12. Second.

13. Presentation of Units and

their Values.

14. Rules for S.I. Units.

15. Force.

16. Resultant Force.

17. Scalars and Vectors.

18. Representation of Vector

Quantities.

19. Addition of Vectors.

20. Subtraction of Vectors.

1.1. Definition

The subject Theory of Machines may be defined as

that branch of Engineering-science, which deals with the study

of relative motion between the various parts of a machine,

and forces which act on them. The knowledge of this subject

is very essential for an engineer in designing the various parts

of a machine.

Note:A machine is a device which receives energy in some

available form and utilises it to do some particular type of work.

1.2. Sub-divisions of Theory of Machines

The Theory of Machines may be sub-divided into

the following four branches :

1. Kinematics. It is that branch of Theory of

Machines which deals with the relative motion between the

various parts of the machines.

2. Dynamics. It is that branch of Theory of Machines

which deals with the forces and their effects, while acting

upon the machine parts in motion.

3. Kinetics. It is that branch of Theory of Machines

which deals with the inertia forces which arise from the com-

bined effect of the mass and motion of the machine parts.

4. Statics. It is that branch of Theory of Machines

which deals with the forces and their effects while the ma-

chine parts are at rest. The mass of the parts is assumed to be

negligible.

CONTENTS

CONTENTS
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1.3.1.3.1.3.1.3.1.3. Fundamental UnitsFundamental UnitsFundamental UnitsFundamental UnitsFundamental Units

The measurement of

physical quantities is one of the

most important operations in

engineering. Every quantity is

measured in terms of some

arbitrary, but internationally

accepted units, called

fundamental units. All

physical quantities, met within

this subject, are expressed in

terms of the following three

fundamental quantities :

1.  Length (L or l ),

2.  Mass (M or m), and

3. Time (t).

1.4.1.4.1.4.1.4.1.4. Derived UnitsDerived UnitsDerived UnitsDerived UnitsDerived Units

Some units are expressed in terms of fundamental units known as derived units, e.g., the units

of area, velocity, acceleration, pressure, etc.

1.5.1.5.1.5.1.5.1.5. Systems of UnitsSystems of UnitsSystems of UnitsSystems of UnitsSystems of Units

There are only four systems of units, which are commonly used and universally recognised.

These are known as :

1. C.G.S. units, 2. F.P.S. units, 3. M.K.S. units, and 4. S.I. units.

1.6.1.6.1.6.1.6.1.6. C.G.S. UnitsC.G.S. UnitsC.G.S. UnitsC.G.S. UnitsC.G.S. Units

In this system, the fundamental units of length, mass and time are centimetre, gram and

second respectively. The C.G.S. units are known as absolute units or physicist's units.

1.7.1.7.1.7.1.7.1.7. FFFFF.P.P.P.P.P.S..S..S..S..S. Units Units Units Units Units

In this system, the fundamental units of length, mass and time are foot, pound and second

respectively.

1.8.1.8.1.8.1.8.1.8. M.K.S. UnitsM.K.S. UnitsM.K.S. UnitsM.K.S. UnitsM.K.S. Units

In this system, the fundamental units of length, mass and time are metre, kilogram and second

respectively. The M.K.S. units are known as gravitational units or engineer's units.

1.9.1.9.1.9.1.9.1.9. InterInterInterInterInternananananational System of Units (S.I.tional System of Units (S.I.tional System of Units (S.I.tional System of Units (S.I.tional System of Units (S.I. Units) Units) Units) Units) Units)

The 11th general conference* of weights and measures have recommended a unified and

systematically constituted system of fundamental and derived units for international use. This system

is now being used in many countries. In India, the standards of Weights and Measures Act, 1956 (vide

which we switched over to M.K.S. units) has been revised to recognise all the S.I. units in industry

and commerce.

* It is known as General Conference of Weights and Measures (G.C.W.M.). It is an international organisation,

of which most of the advanced and developing countries (including India) are members. The conference

has been entrusted with the task of prescribing definitions for various units of weights and measures, which

are the very basic of science and technology today.

Stopwatch Simple balance
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In this system of units, the fundamental units are metre (m), kilogram (kg) and second (s)

respectively. But there is a slight variation in their derived units. The derived units, which will be

used in this book are given below :

Density (mass density) kg/m3

Force N (Newton)

Pressure Pa (Pascal) or N/m2 ( 1 Pa = 1 N/m2)

Work, energy (in Joules) 1 J = 1 N-m

Power (in watts) 1 W = 1 J/s

Absolute viscosity kg/m-s

Kinematic viscosity m2/s

Velocity m/s

Acceleration m/s2

Angular acceleration rad/s2

Frequency (in Hertz) Hz

The international metre, kilogram and second are discussed below :

1.10. Metre

The international metre may be defined as the shortest distance (at 0°C) between the two

parallel lines, engraved upon the polished surface of a platinum-iridium bar, kept at the International

Bureau of Weights and Measures at Sevres near Paris.

1.11. Kilogram

The international kilogram may be defined as the mass of the platinum-iridium cylinder,

which is also kept at the International Bureau of Weights and Measures at Sevres near Paris.

1.12. Second

The fundamental unit of time for all the three systems, is second, which is 1/24 × 60 × 60

= 1/86 400th of the mean solar day. A solar day may be defined as the interval of time, between the

A man whose mass is 60 kg weighs 588.6 N (60 × 9.81 m/s2) on earth, approximately

96 N (60 × 1.6 m/s2) on moon and zero in space. But mass remains the same everywhere.
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instants, at which the sun crosses a meridian on two consecutive days. This value varies slightly

throughout the year. The average of all the solar days, during one year, is called the mean solar day.

1.13. Presentation of Units and their Values

The frequent changes in the present day life are facilitated by an international body known as

International Standard Organisation (ISO) which makes recommendations regarding international

standard procedures. The implementation of ISO recommendations, in a country, is assisted by its

organisation appointed for the purpose. In India, Bureau of Indian Standards (BIS) previously known

as Indian Standards Institution (ISI) has been created for this purpose. We have already discussed that

the fundamental units in

M.K.S. and S.I. units for

length, mass and time is metre,

kilogram and second respec-

tively. But in actual practice, it

is not necessary to express all

lengths in metres, all masses in

kilograms and all times in sec-

onds. We shall, sometimes, use

the convenient units, which are

multiples or divisions of our

basic units in tens. As a typical

example, although the metre is

the unit of length, yet a smaller

length of one-thousandth of a

metre proves to be more con-

venient unit, especially in the

dimensioning of drawings. Such convenient units are formed by using a prefix in front of the basic

units to indicate the multiplier. The full list of these prefixes is given in the following table.

Table 1.1. Prefixes used in basic units

Factor by which the unit Standard form Prefix Abbreviation

is multiplied

1 000 000 000 000 1012 tera T

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

100 102 hecto* h

10 101 deca* da

0.1 10–1 deci* d

0.01 10–2 centi* c

0.001 10–3 milli m

0. 000 001 10–6 micro µ

0. 000 000 001 10–9 nano n

0. 000 000 000 001 10–12 pico p

 With rapid development of Information Technology, computers are

playing a major role in analysis, synthesis and design of machines.

* These prefixes are generally becoming obsolete probably due to possible confusion. Moreover, it is becoming

a conventional practice to use only those powers of ten which conform to 103x, where x is a positive or

negative whole number.
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1.14. Rules for S.I. Units

The eleventh General Conference of Weights and Measures recommended only the funda-

mental and derived units of S.I. units. But it did not elaborate the rules for the usage of the units. Later

on many scientists and engineers held a number of meetings for the style and usage of S.I. units. Some

of the decisions of the meetings are as follows :

1. For numbers having five or more digits, the digits should be placed in groups of three sepa-

rated by spaces* (instead of commas) counting both to the left and right to the decimal point.

2. In a four digit number,** the space is not required unless the four digit number is used in a

column of numbers with five or more digits.

3. A dash is to be used to separate units that are multiplied together. For example, newton

metre is written as N-m. It should not be confused with mN, which stands for millinewton.

4. Plurals are never used with symbols. For example, metre or metres are written as m.

5. All symbols are written in small letters except the symbols derived from the proper names.

For example, N for newton and W for watt.

6. The units with names of scientists should not start with capital letter when written in full. For

example, 90 newton and not 90 Newton.

At the time of writing this book, the authors sought the advice of various international

authorities, regarding the use of units and their values. Keeping in view the international reputation of

the authors, as well as international popularity of their books, it was decided to present units*** and

their values as per recommendations of ISO and BIS. It was decided to use :

4500 not 4 500 or 4,500

75 890 000 not 75890000 or 7,58,90,000

0.012 55 not 0.01255 or .01255

30 × 106 not 3,00,00,000 or 3 × 107

The above mentioned figures are meant for numerical values only. Now let us discuss about

the units. We know that the fundamental units in S.I. system of units for length, mass and time are

metre, kilogram and second respectively. While expressing these quantities we find it time consum-

ing to write the units such as metres, kilograms and seconds, in full, every time we use them. As a

result of this, we find it quite convenient to use some standard abbreviations.

We shall use :

m for metre or metres

km for kilometre or kilometres

kg for kilogram or kilograms

t for tonne or tonnes

s for second or seconds

min for minute or minutes

N-m for newton × metres (e.g. work done )

kN-m for kilonewton × metres

rev for revolution or revolutions

rad for radian or radians

* In certain countries, comma is still used as the decimal mark.

** In certain countries, a space is used even in a four digit number.

*** In some of the question papers of the universities and other examining bodies, standard values are not used.

The authors have tried to avoid such questions in the text of the book. However, at certain places, the

questions with sub-standard values have to be included, keeping in view the merits of the question from the

reader’s angle.
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1.15. Force

It is an important factor in the field of Engineering science, which may be defined as an agent,

which produces or tends to produce, destroy or tends to destroy motion.

1.16. Resultant Force

If a number of forces P,Q,R etc. are acting simultaneously on a particle, then a single force,

which will produce the same effect as that of all the given forces, is known as a resultant force. The

forces P,Q,R etc. are called component forces. The process of finding out the resultant force of the

given component forces, is known as composition of forces.

A resultant force may be found out analytically, graphically or by the following three laws:

1. Parallelogram law of forces. It states, “If two forces acting simultaneously on a particle

be represented in magnitude and direction by the two adjacent sides of a parallelogram taken in order,

their resultant may be represented in magnitude and direction by the diagonal of the parallelogram

passing through the point.”

2. Triangle law of forces. It states, “If two forces acting simultaneously on a particle be

represented in magnitude and direction by the two sides of a triangle taken in order, their resultant

may be represented in magnitude and direction by the third side of the triangle taken in opposite

order.”

3. Polygon law of forces. It states, “If a number of forces acting simultaneously on a particle

be represented in magnitude and direction by the sides of a polygon taken in order, their resultant may

be represented in magnitude and direction by the closing side of the polygon taken in opposite order.”

1.17. Scalars and Vectors

1. Scalar quantities are those quantities, which have magnitude only, e.g. mass, time, volume,

density etc.

2. Vector quantities are those quantities which have magnitude as well as direction e.g. velocity,

acceleration, force etc.

3.  Since the vector quantities have both magnitude and direction, therefore, while adding or

subtracting vector quantities, their directions are also taken into account.

1.18. Representation of Vector Quantities

The vector quantities are represented by vectors. A vector is a straight line of a certain length
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possessing a starting point and a terminal point at which it carries an arrow head. This vector is cut off

along the vector quantity or drawn parallel to the line of action of the vector quantity, so that the

length of the vector represents the magnitude to some scale. The arrow head of the vector represents

the direction of the vector quantity.

1.19. Addition of Vectors

(a) (b)

Fig. 1.1. Addition of vectors.

Consider two vector quantities P and Q, which are required to be added, as shown in Fig.1.1(a).

Take a point A  and draw a line AB parallel and equal in magnitude to the vector P. Through B,

draw BC parallel and equal in magnitude to the vector Q. Join AC, which will give the required sum

of the two vectors P and Q, as shown in Fig. 1.1 (b).

1.20. Subtraction of Vector Quantities

Consider two vector quantities P and Q whose difference is required to be found out as

shown in Fig. 1.2 (a).

    (a)      (b)

Fig. 1.2. Subtraction of vectors.

Take a point A and draw a line AB parallel and equal in magnitude to the vector P. Through B,

draw BC parallel and equal in magnitude to the vector Q, but in opposite direction. Join AC, which

gives the required difference of the vectors P and Q, as shown in Fig. 1.2 (b).

GO To FIRST
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2.1. Introduction

We have discussed in the previous Chapter, that the

subject of Theory of Machines deals with the motion and

forces acting on the parts (or links) of a machine. In this chap-

ter, we shall first discuss the kinematics of motion i.e. the

relative motion of bodies without consideration of the forces

causing the motion. In other words, kinematics deal with the

geometry of motion and concepts like displacement, velocity

and acceleration considered as functions of time.

2.2. Plane Motion

When the motion of a body is confined to only one

plane, the motion is said to be plane motion. The plane mo-

tion may be either rectilinear or curvilinear.

2.3. Rectilinear Motion

It is the simplest type of motion and is along a straight

line path. Such a motion is also known as translatory motion.

2.4. Curvilinear Motion

It is the motion along a curved path. Such a motion,

when confined to one plane, is called plane curvilinear

motion.

When all the particles of a body travel in concentric

circular paths of constant radii (about the axis of rotation

perpendicular to the plane of motion) such as a pulley rotating

8
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about a fixed shaft or a shaft rotating about its

own axis, then the motion is said to be a plane

rotational motion.

Note: The motion of a body, confined to one plane,

may not be either completely rectilinear nor completely

rotational. Such a type of motion is called combined

rectilinear and rotational motion. This motion is dis-

cussed in Chapter 6, Art. 6.1.

2.5. Linear Displacement

It may be defined as the distance moved

by a body with respect to a certain fixed point.

The displacement may be along a straight or a

curved path. In a reciprocating steam engine, all

the particles on the piston, piston rod and cross-

head trace a straight path, whereas all particles

on the crank and crank pin trace circular paths,

whose centre lies on the axis of the crank shaft. It will be interesting to know, that all the particles on

the connecting rod neither trace a straight path nor a circular one; but trace an oval path, whose radius

of curvature changes from time to time.

The displacement of a body is a vector quantity, as it has both magnitude and direction.

Linear displacement may, therefore, be represented graphically by a straight line.

2.6. Linear Velocity

It may be defined as the rate of

change of linear displacement of a body with

respect to the time. Since velocity is always

expressed in a particular direction, therefore

it is a vector quantity. Mathematically, lin-

ear velocity,

v = ds/dt

Notes:  1. If the displacement is along a circular

path, then the direction of linear velocity at any

instant is along the tangent at that point.

2. The speed is the rate of change of linear displacement of a body with respect to the time. Since the

speed is irrespective of its direction, therefore, it is a scalar quantity.

2.7. Linear Acceleration

It may be defined as the rate of change of linear velocity of a body with respect to the time. It

is also a vector quantity. Mathematically, linear acceleration,

2

2

dv d ds d s
a

dt dt dt dt

 
= = = 

 

...
ds

v
dt

 
= 

 
�

Notes:  1. The linear acceleration may also be expressed as follows:

dv ds dv dv
a v

dt dt ds ds

= = × = ×

2. The negative acceleration is also known as deceleration or retardation.

Spindle

(axis of rotation)

Axis of rotation

Reference

line

θ

∆θ

θο

r
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2.8.2.8.2.8.2.8.2.8. Equations of Linear MotionEquations of Linear MotionEquations of Linear MotionEquations of Linear MotionEquations of Linear Motion

The following equations of linear motion are

important from the subject point of view:

1. v = u + a.t 2.  s = u.t + 
1

2
 a.t

2

3. v
2 = u2 + 2a.s

4.
( )

2
av

u v
s t v t

+
= × = ×

where u = Initial velocity of the body,

v = Final velocity of the body,

a = Acceleration of the body,

s = Displacement of the body in time t seconds, and

v
av

 = Average velocity of the body during the motion.

Notes:  1. The above equations apply for uniform

acceleration. If, however, the acceleration is variable,

then it must be expressed as a function of either t, s

or v and then integrated.

2. In case of vertical motion, the body is

subjected to gravity. Thus g (acceleration due to grav-

ity) should be substituted for ‘a’ in the above equa-

tions.

3. The value of g is taken as + 9.81 m/s2 for

downward motion, and – 9.81 m/s2 for upward mo-

tion of a body.

4. When a body falls freely from a height h,

then its velocity v, with which it will hit the ground is

given by

2 .v g h=

2.9.2.9.2.9.2.9.2.9. GraGraGraGraGraphical Reprphical Reprphical Reprphical Reprphical Representaesentaesentaesentaesentation oftion oftion oftion oftion of
Displacement with RespectDisplacement with RespectDisplacement with RespectDisplacement with RespectDisplacement with Respect
to to to to to TimeTimeTimeTimeTime

The displacement of a moving body in a given time may be found by means of a graph. Such

a graph is drawn by plotting the displacement as ordinate and the corresponding time as abscissa. We

shall discuss the following two cases :

1. When the body moves with uniform velocity. When the body moves with uniform velocity,

equal distances are covered in equal intervals of time. By plotting the distances on Y-axis and time on

X-axis, a displacement-time curve (i.e. s-t curve) is drawn which is a straight line, as shown in Fig. 2.1

(a). The motion of the body is governed by the equation s = u.t, such that

Velocity at instant   1 = s
1

/ t
1

Velocity at instant   2 = s
2

/ t
2

Since the velocity is uniform, therefore

31 2

1 2 3

tan
ss s

t t t
= = = θ

where tan θ is called the slope of s-t curve. In other words, the slope of the s-t curve at any instant

gives the velocity.

t = 0 s

v = 0 m/s

t = 2 s

v = 19.62 m/s

t = time

v = velocity (downward)

g = 9.81 m/s2 = acceleration

due to gravity

t  = 1 s

v = 9.81 m/s
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2. When the body moves with variable velocity. When the body moves with variable velocity,

unequal distances are covered in equal intervals of time or equal distances are covered in unequal intervals

of time. Thus the displacement-time graph, for such a case, will be a curve, as shown in Fig. 2.1 (b).

(a) Uniform velocity. (b) Variable velocity.

Fig. 2.1. Graphical representation of displacement with respect to time.

Consider a point P on the s-t curve and let this point travels to Q by a small distance δs in a

small interval of time δt. Let the chord joining the points P and Q makes an angle θ with the horizontal.

The average velocity of the moving point during the interval PQ is given by

tan θ = δs / δt . . . (From triangle PQR )

In the limit, when δt approaches to zero, the point Q will tend to approach P and the chord PQ

becomes tangent to the curve at point P. Thus the velocity at P,

v
p
 = tan θ = ds /dt

where tan θ is the slope of the tangent at P. Thus the slope of the tangent at any instant on the s-t curve

gives the velocity at that instant.

2.10. Graphical Representation of Velocity with Respect to Time

We shall consider the following two cases :

1. When the body moves with uniform velocity. When the body moves with zero acceleration,

then the body is said to move with a uniform

velocity and the velocity-time curve (v-t

curve) is represented by a straight line as

shown by A B in Fig. 2.2 (a).

We know that distance covered by a

body in time t second

= Area under the v-t curve A B

= Area of rectangle OABC

Thus, the distance covered by a

body at any interval of time is given by the

area under the v-t curve.

2. When the body moves with

variable velocity. When the body moves with

constant acceleration, the body is said to move with variable velocity. In such a case, there is equal

variation of velocity in equal intervals of time and the velocity-time curve will be a straight

line AB inclined at an angle θ, as shown in Fig. 2.2 (b). The equations of motion i.e. v = u + a.t, and

s = u.t +  1

2
a.t

2  may be verified from this v-t curve.
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Let u = Initial velocity of a moving body, and

v = Final velocity of a moving body after time t.

Then,
Changein velocity

tan Acceleration ( )
Time

BC v u
a

AC t

−
θ = = = =

(a) Uniform velocity. (b) Variable velocity.

Fig. 2.2. Graphical representation of velocity with respect to time.

Thus, the slope of the v-t curve represents the acceleration of a moving body.

Now tan
−

= θ = =
BC v u

a
AC t

or v = u + a.t

Since the distance moved by a body is given by the area under the v-t curve, therefore

distance moved in time (t),

s = Area OABD = Area OACD + Area ABC

21 1

2 2
. ( ) . .u t v u t u t a t= + − = + ... (�  v – u = a.t)

2.11. Graphical Representation of Acceleration with Respect to Time

(a) Uniform velocity.         (b) Variable velocity.

Fig. 2.3. Graphical representation of acceleration with respect to time.

We shall consider the following two cases :

1. When the body moves with uniform acceleration. When the body moves with uniform

acceleration, the acceleration-time curve (a-t curve) is a straight line, as shown in Fig. 2.3(a). Since

the change in velocity is the product of the acceleration and the time, therefore the area under the

a-t curve (i.e. OABC) represents the change in velocity.

2. When the body moves with variable acceleration. When the body moves with variable

acceleration, the a-t curve may have any shape depending upon the values of acceleration at various

instances, as shown in Fig. 2.3(b). Let at any instant of time t, the acceleration of moving body is a.

Mathematically, a = dv / dt or dv = a.dt
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Integrating both sides,

2 2

1 1

.
v t

v t
dv a dt=∫ ∫ or

2

1
2 1 .− = ∫

t

t
v v a dt

where v
1
 and v

2
 are the velocities of the moving body at time intervals t

1
 and t

2
 respectively.

The right hand side of the above expression represents the area (PQQ
1
P

1
) under the a-t curve

between the time intervals t
1
 and t

2
 . Thus the area under the a-t curve between any two ordinates

represents the change in velocity of the moving body. If the initial and final velocities of the body are

u and v, then the above expression may be written as

0
.

t

v u a d t− = =∫ Area under a-t curve A B = Area OABC

Example 2.1. A car starts from rest and

accelerates uniformly to a speed of 72 km. p.h. over

a distance of 500 m. Calculate the acceleration and

the time taken to attain the speed.

If a further acceleration raises the speed to

90 km. p.h. in 10 seconds, find this acceleration and

the further distance moved. The brakes are now

applied to bring the car to rest under uniform

retardation in 5 seconds. Find the distance travelled

during braking.

Solution. Given : u = 0 ; v = 72 km. p.h. = 20 m/s ; s = 500 m

First of all, let us consider the motion of the car from rest.

Acceleration of the car

Let a = Acceleration of the car.

We know that v
2 = u2 + 2 a.s

∴ (20)2 = 0 + 2a × 500 = 1000 a or a = (20)2/ 1000 = 0.4 m/s2  Ans.

Time taken by the car to attain the speed

Let t = Time taken by the car to attain the speed.

We know that v = u + a.t

∴ 20 = 0 + 0.4 × t or t = 20/0.4 = 50 s  Ans.

Now consider the motion of the car from 72 km.p.h. to 90 km.p.h. in 10 seconds.

Given : * u = 72 km.p.h. = 20 m/s ; v = 96 km.p.h. = 25 m/s ; t = 10 s

Acceleration of the car

Let a = Acceleration of the car.

We know that v = u + a.t

25 = 20 + a × 10 or a = (25 – 20)/10 = 0.5 m/s2  Ans.

Distance moved by the car

We know that distance moved by the car,

2 21 1

2 2
. . 20 10 0.5(10) 225ms u t a t= + = × + × =  Ans.

* It is the final velocity in the first case.
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Now consider the motion of the car during the application of brakes for brining it to rest in

5 seconds.

Given : *u = 25 m/s ; v = 0 ; t = 5 s

We know that the distance travelled by the car during braking,

25 0
5 62.5 m

2 2

u v
s t

+ +
= × = × =  Ans.

Example 2.2. The motion of a particle is given by  a = t
3 

– 3t
2 
+ 5, where a is the acceleration

in m/s
2
 and t is the time in seconds. The velocity of the particle at t = 1 second is 6.25 m/s, and the

displacement is 8.30 metres. Calculate the displacement and the velocity at t = 2 seconds.

Solution. Given : a = t3 – 3t
2 + 5

We know that the acceleration, a = dv/dt. Therefore the above equation may be written as

3 2
3 5= − +

dv
t t

dt

or 3 2
( 3 5)= − +dv t t dt

Integrating both sides

4 3 4
3

1 1

3
5 5

4 3 4
= − + + = − + +

t t t
v t C t t C ...(i)

where C
1
 is the first constant of integration. We know that when t = 1 s, v = 6.25 m/s. Therefore

substituting these values of t and v in equation (i),

6.25 = 0.25 – 1 + 5 + C
1 

= 4.25 + C
1

or C
1
 = 2

Now substituting the value of C
1
 in equation (i),

34 5 2
4

= − + +
t

v t t ...(ii)

Velocity at t = 2 seconds

Substituting the value of t = 2 s in the above equation,

4
32

2 5 2 2 8 m/s
4

v = − + × + =  Ans.

Displacement at t = 2 seconds

We know that the velocity, v = ds/dt, therefore equation (ii) may be written as

4 4
3 3

5 2 or 5 2
4 4

ds t t
t t ds t t dt

dt

 
= − + + = − + + 

 
 

Integrating both sides,

5 4 2

2

5
2

20 4 2

t t t
s t C= − + + + ...(iii)

where C
2
 is the second constant of integration. We know that when t = 1 s, s = 8.30 m. Therefore

substituting these values of  t and s in equation (iii),

2 2

1 1 5
8.30 2 4.3

20 4 2
C C= − + + + = + or C

2
 = 4

* It is the final velocity in the second case.
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Substituting the value of C
2
 in equation (iii),

5 4 2
5

2 4
20 4 2

= − + + +
t t t

s t

Substituting the value of t = 2 s, in this equation,

5 4 2
2 2 5 2

2 2 4 15.6 m
20 4 2

×
= − + + × + =s Ans.

Example 2.3. The velocity of a

train travelling at 100 km/h decreases by

10 per cent in the first 40 s after applica-

tion of the brakes. Calculate the velocity

at the end of a further 80 s assuming that,

during the whole period of 120 s,  the re-

tardation is proportional to the velocity.

Solution. Given : Velocity in the

beginning (i.e. when t = 0), v
0
 = 100 km/h

Since the velocity decreases by 10

per cent in the first 40 seconds after the

application of brakes, therefore velocity at the end of 40 s,

v
40

 = 100 × 0.9 = 90 km/h

Let v
120

 = Velocity at the end of 120 s (or further 80s).

Since the retardation is proportional to the velocity, therefore,

.= − =
dv

a k v
dt

or .= −
dv

k dt
v

where k is a constant of proportionality, whose value may be determined from the given conditions.

Integrating the above expression,

log
e
 v = – k.t + C ... (i)

where C is the constant of integration. We know that when t = 0, v = 100 km/h. Substituting these

values in equation (i),

log
e
100 = C or C = 2.3 log 100 = 2.3 × 2 = 4.6

We also know that when t = 40 s, v = 90 km/h. Substituting these values in equation (i),

log
e 
90 = – k × 40 + 4.6 ...( �  C = 4.6 )

2.3 log 90 = – 40k + 4.6

or
4.6 2.3log 90 4.6 2.3 1.9542

0.0026
40 40

− − ×
= = =k

Substituting the values of k and C in equation (i),

log
e
 v = – 0.0026 × t + 4.6

or 2.3 log v = – 0.0026 × t + 4.6 ... (ii)

Now substituting the value of t equal to 120 s, in the above equation,

2.3 log v
120

 = – 0.0026 × 120 + 4.6 = 4.288

or log v
120

 = 4.288 / 2.3 = 1.864

∴ v
120 

= 73.1 km/h  Ans. ... (Taking antilog of 1.864)
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Example 2.4. The acceleration (a) of a slider block and its displacement (s) are related by

the expression, =a k s , where k is a constant. The velocity v is in the direction of the displacement

and the velocity and displacement are both zero when time t is zero. Calculate the displacement,

velocity and acceleration as functions of time.

Solution. Given : =a k s

We know that acceleration,

dv
a v

ds
= ×     or  

dv
k s v

ds
= × ...

dv ds dv dv
v

dt dt ds ds

 
= × = ×

 
 
�

∴ v × dv = k.s
1/2 ds

Integrating both sides,

1/ 2

0
. =∫ ∫

v

v dv k s ds or

2 3 / 2

1

.

2 3/ 2
= +

v k s
C ... (i)

where C
1
 is the first constant of integration whose value is to be determined from the given conditions

of motion. We know that s = 0, when v = 0. Therefore, substituting the values of s and v in equation (i),

we get C
1
 = 0.

∴

2
3 / 22

.
2 3

=
v

k s or
3 / 44

3
= ×

k
v s ... (ii)

Displacement, velocity and acceleration as functions of time

We know that
3 / 44

3
= = ×

ds k
v s

dt
... [From equation (ii)]

∴  
3/ 4

4

3

ds k
dt

s

= or
3 / 4 4

3

−
=

k
s ds dt

Integrating both sides,

3 / 4

0 0

4

3

− =∫ ∫
s tk
s ds dt

1/ 4

2

4

1/ 4 3
= × +

s k
t C ...(iii)

where C
2
 is the second constant of integration. We know that displacement, s = 0 when t = 0. There-

fore, substituting the values of s and t in equation (iii), we get C
2
 = 0.

∴

1/ 4
4

1/ 4 3
= ×

s k
t  or 

2 4
.

144
=

k t
s  Ans.

We know that velocity,

2 2 3
3 .

4
144 36

= = × =
ds k k t

v t
dt

 Ans.

2 4
.

... Differentiating
144

k t 

 
 

and acceleration,

2 2 2
2 .

3
36 12

= = × =
dv k k t

a t
dt

 Ans.

2 3
.

... Differentiating
36

k t 

 
 
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Example 2.5. The cutting stroke of a planing

machine is 500 mm and it is completed in 1 second.

The planing table accelerates uniformly during the first

125 mm of the stroke, the speed remains constant during

the next 250 mm of the stroke and retards uniformly during

the last 125 mm of the stroke. Find the maximum cutting

speed.

Solution. Given : s = 500 mm ; t = 1 s ;

s
1
 = 125 mm ; s

2
 = 250 mm ; s

3
 = 125 mm

Fig. 2.4 shows the acceleration-time and veloc-

ity-time graph for the planing table of a planing machine.

Let

v = Maximum cutting speed in mm/s.

Average velocity of the table during acceleration

and retardation,

(0 ) / 2 / 2= + =
av

v v v

Time of uniform acceleration 1
1

125 250
s

/ 2
av

s
t

v v v
= = =

Time of constant speed,
2

2

250
s

s
t

v v
= =

and time of uniform retardation,
3

3

125 250
s

/ 2
av

s
t

v v v
= = =

Fig. 2.4

Since the time taken to complete the stroke is 1 s, therefore

1 2 3+ + =t t t t

250 250 250
1+ + =

v v v
 or v = 750 mm/s Ans.

2.12. Angular Displacement

It may be defined as the angle described by a particle from one point to another, with respect

to the time. For example, let a line OB has its inclination θ radians to the fixed line OA, as shown in

Planing Machine.
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Fig. 2.5. If this line moves from OB to OC, through an angle δθ during

a short interval of time δt, then δθ is known as the angular

displacement of the line OB.

Since the angular displacement has both magnitude and

direction, therefore it is also a vector quantity.

2.13. Representation of Angular Displacement by
a Vector

In order to completely represent an angular displacement, by a vector, it must fix the follow-

ing three conditions :

1. Direction of the axis of rotation. It is fixed by drawing a line perpendicular to the plane

of rotation, in which the angular displacement takes place. In other words, it is fixed along the axis

of rotation.

2. Magnitude of angular displacement. It is fixed by the length of the vector drawn along

the axis of rotation, to some suitable scale.

3. Sense of the angular displacement. It is fixed by a right hand screw rule. This rule

states that if a screw rotates in a fixed nut in a clockwise direction, i.e. if the angular displacement

is clockwise and an observer is looking along the axis of rotation, then the arrow head will point

away from the observer. Similarly, if the angular displacement is anti-clockwise, then the arrow

head will point towards the observer.

2.14. Angular Velocity
It may be defined as the rate of change of angular displacement with respect to time. It is

usually expressed by a Greek letter ω (omega). Mathematically, angular velocity,

/ω = θd dt

Since it has magnitude and direction, therefore, it is a vector quantity. It may be represented

by a vector following the same rule as described in the previous article.

Note : If the direction of the angular displacement is constant, then the rate of change of magnitude of the

angular displacement with respect to time is termed as angular speed.

2.15. Angular Acceleration
It may be defined as the rate of change of angular velocity with respect to time. It is usually

expressed by a Greek letter α (alpha). Mathematically, angular acceleration,

2

2

ω θ θ 
α = = = 

 

d d d d

dt dt dt dt

...
d

dt

θ 
ω = 

 

�

It is also a vector quantity, but its direction may not be same as that of angular displacement

and angular velocity.

2.16. Equations of Angular Motion

The following equations of angular motion corresponding to linear motion are important

from the subject point of view :

1. 0 .ω = ω + α t 2. 
2

0

1
. .

2
θ = ω + αt t

3. ( )
22

0 2 .ω = ω + α θ 4. 
( )0

2

ω + ω
θ =

t

where ω
0 

= Initial angular velocity in rad/s,

ω
 
= Final angular velocity in rad/s,

Fig. 2.5. Angular

displacement.
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Fig. 2.6. Motion of a body

along a circular path.

t = Time in seconds,

θ = Angular displacement in time t seconds, and

α = Angular acceleration in rad / s2.

Note : If a body is rotating at the rate of N r.p.m. (revolutions per minute), then its angular velocity,

ω
 
= 2πΝ / 60 rad/s

2.17. Relation between Linear Motion and Angular Motion

Following are the relations between the linear motion and the angular motion :

Particulars Linear motion Angular motion

Initial velocity u ω
0

Final velocity v ω

Constant acceleration a α

Total distance traversed s θ

Formula for final velocity v = u + a.t ω = ω
0
 + α.t

Formula for distance traversed s = u.t + 
1

2
a.t2 θ = ω

0
.
 
t + 

1

2
 α.t2

Formula for final velocity v
2 = u2 + 2 a.s ω = (ω

0
)
 

2
  + 2 α.θ

2.18. Relation between Linear and Angular Quantities of Motion

Consider a body moving along a circular path from A  to B as shown in Fig. 2.6.

Let r = Radius of the circular path,

θ = Angular displacement in radians,

s = Linear displacement,

v = Linear velocity,

ω = Angular velocity,

a = Linear acceleration, and

α = Angular acceleration.

From the geometry of the figure, we know that

 s = r . θ

We also know that the linear velocity,

( . )
.

θ θ
= = = × = ω

ds d r d
v r r

dt dt dt

... (i)

and linear acceleration,
( . )

.
ω ω

= = = × = α
dv d r d

a r r
dt dt dt

... (ii)

Example 2.6.  A wheel accelerates uniformly from rest to 2000 r.p.m. in 20 seconds. What is its

angular acceleration? How many revolutions does the wheel make in attaining the speed of 2000 r.p.m.?

Solution. Given : N
0
 = 0  or  ω = 0 ; N = 2000 r.p.m. or ω = 2π × 2000/60 = 209.5 rad/s ; t = 20s

Angular acceleration

Let α = Angular acceleration in rad/s2.

We know that

ω = ω
0 

+  α.t or 209.5 = 0 + α × 20

∴ α = 209.5 / 20 = 10.475 rad/s2  Ans.
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Number of revolutions made by the wheel

We know that the angular distance moved by the wheel during 2000 r.p.m. (i.e. when

ω = 209.5 rad/s),

( ) ( )0 0 209.5 20
2095

2 2

ω + ω +
θ = = =

t
rad

Since the angular distance moved by the wheel during one revolution is 2π radians, therefore

number of revolutions made by the wheel,

n = θ /2π = 2095/2π = 333.4  Ans.

2.19. Acceleration of a Particle along a Circular Path

Consider A  and B, the two positions of a particle displaced through an angle δθ in time δt as

shown in Fig. 2.7 (a).

Let r = Radius of curvature of the circular path,

v = Velocity of the particle at A , and

v + dv = Velocity of the particle at B.

The change of velocity, as the particle moves from A  to B may be obtained by drawing the

vector triangle oab, as shown in Fig. 2.7 (b). In this triangle, oa represents the velocity v and ob

represents the velocity v + dv. The change of velocity in time δt is represented by ab.

Fig. 2.7. Acceleration of a particle along a circular path.

Now, resolving ab into two components i.e. parallel and perpendicular to oa. Let ac and cb

be the components parallel and  perpendicular to oa respectively.

∴ ac = oc – oa = ob cos δθ  – oa = (v + δv) cos δθ – v

and cb = ob sin δθ = (v + δv) sin δθ

Since the change of velocity of a particle (represented by vector ab) has two mutually

perpendicular components, therefore the acceleration of a particle moving along a circular path has

the following two components of the acceleration which are perpendicular to each other.

1. Tangential component of the acceleration. The acceleration of a particle at any instant

moving along a circular path in a direction tangential to that instant, is known as tangential component

of acceleration or tangential acceleration.

∴  Tangential component of the acceleration of particle at A  or tangential acceleration at A,

( )cos+ δ δθ −
= =

δ δ
t

ac v v v
a

t t

In the limit, when δt  approaches to zero, then

/ .= = α
t

a dv dt r ... (i)

2. Normal component of the acceleration. The acceleration of a particle at any instant mov-

ing along a circular path in a direction normal to the tangent at that instant and directed towards the

centre of the circular path (i.e. in the direction from A  to O) is known  as normal component of the
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acceleration or normal acceleration. It is also called radial or centripetal acceleration.

∴ Normal component of the acceleration of the particle at A  or normal (or radial or centrip-

etal) acceleration at A ,

( )sin+ δ θ
= =

δ δ
n

v vcb
a

t t

In the limit, when δt approaches to zero, then

2
2

. .
θ

= × = ω = × = = ω
n

d v v
a v v v r

dt r r
... (ii)

                        [ ]... / , and /d dt v rθ = ω ω =�

Since the tangential acceleration (a
t
) and the normal accelera-

tion (a
n
) of the particle at any instant A  are perpendicular to each other,

as shown in Fig. 2.8, therefore total acceleration of the particle (a) is

equal to the resultant acceleration of a
t
 and a

n
.

∴ Total acceleration or resultant acceleration,

( ) ( )
2 2

= +
t n

a a a

and its angle of inclination with the tangential acceleration is given by

tan θ = a
n
/a

t
 or  θ = tan–1 (a

n
/a

t
)

The total acceleration or resultant acceleration may also be obtained by the vector sum of a
t

and a
n
.

Notes : 1. From equations (i) and (ii) we see that the tangential acceleration (a
t 
) is equal to the rate of change of

the magnitude of the velocity whereas the normal or radial or centripetal acceleration (a
n
) depends upon its

instantaneous velocity and the radius of curvature of its path.

2. When a particle moves along a straight path, then the radius of curvature is infinitely great. This

means that v2/r is zero. In other words, there will be no normal or radial or centripetal acceleration. Therefore,

the particle has only tangential acceleration  (in the same direction as its velocity and displacement) whose value

is given by

a
t
 = dv/dt = α.r

3. When a particle moves with a uniform velocity, then dv/dt will be zero. In other words, there will be

no tangential acceleration; but the particle will have only normal or radial or centripetal acceleration, whose

value is given by

a
n
 = v2/r  = v.ω = ω2 r

Example 2.7. A horizontal bar 1.5 metres long and of small cross-section rotates about

vertical axis through one end. It accelerates uniformly from 1200 r.p.m. to 1500 r.p.m. in an interval

of 5 seconds. What is the linear velocity at the beginning and end of the interval ? What are the

normal and tangential components of the acceleration of the mid-point of the bar after 5 seconds

after the acceleration begins ?

Solution. Given : r = 1.5 m ; N
0
 = 1200 r.p.m. or ω

0
 = 2 π × 1200/60 = 125.7 rad/s ;

N = 1500 r.p.m. or ω = 2 π × 1500/60 = 157 rad/s ;  t = 5 s

Linear velocity at the beginning

We know that linear velocity at the beginning,

v
0
 = r . ω

0
 = 1.5 × 125.7 = 188.6  m/s Ans.

Linear velocity at the end of 5 seconds

We also know that linear velocity after 5 seconds,

v
5
 = r . ω

 
= 1.5 × 157 = 235.5 m/s Ans.

Fig. 2.8. Total acceleration

      of a particle.
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Tangential acceleration after 5 seconds

Let α = Constant angular acceleration.

We know that ω = ω
0
+ α.t

 157 = 125.7 + α × 5 or α = (157 – 125.7) /5 = 6.26 rad/s2

Radius corresponding to the middle point,

r = 1.5 /2 = 0.75 m

∴ Tangential acceleration  = α. r = 6.26 × 0.75 = 4.7 m/s2  Ans.

Radial acceleration after 5 seconds

     Radial acceleration  = ω2 . r = (157)2  0.75 = 18 487 m/s2 Ans.

EXERCISES

1. A winding drum raises a cage through a height of 120 m. The cage has, at first, an acceleration

of 1.5 m/s2 until the velocity of 9 m/s is reached, after which the velocity is constant until the

cage nears the top, when the final retardation is 6 m/s2. Find the time taken for the cage to reach

the top. [ Ans. 17.1s ]

2. The displacement of a point is given by s = 2t
3 + t2 + 6, where s is in metres and t in seconds.

Determine the displacement of the point when the velocity changes from 8.4 m/s to 18 m/s. Find also

the acceleration at the instant when the velocity of the particle is 30 m/s. [ Ans. 6.95 m ; 27 m/s2 ]

3. A rotating cam operates a follower which moves in a straight line. The stroke of the follower is 20

mm and takes place in 0.01 second from rest to rest. The motion is made up of uniform acceleration

for 1/4 of the time, uniform velocity for 1
2  of the time followed by uniform retardation. Find the

maximum velocity reached and the value of acceleration and retardation.

[ Ans. 2.67 m/s ; 1068 m/s2 ; 1068 m/s2 ]

4. A cage descends a mine shaft with an acceleration of 0.5 m/s2. After the cage has travelled 25 metres,

a stone is dropped from the top of the shaft. Determine : 1. the time taken by the stone to hit the cage,

and 2. distance travelled by the cage before impact. [ Ans. 2.92 s ; 41.73 m ]

5. The angular displacement of a body is a function of time and is given by equation :

θ = 10 + 3 t + 6 t2, where t is in seconds.

Determine the angular velocity, displacement and acceleration when t = 5 seconds. State whether or

not it is a case of uniform angular acceleration. [Ans. 63 rad/s ; 175 rad ; 12 rad/s2]

6. A flywheel is making 180 r.p.m. and after 20 seconds it is running at 140 r.p.m. How many revolu-

tions will it make, and what time will elapse before it stops, if the retardation is uniform ?

[ Ans. 135 rev. ; 90 s ]

7. A locomotive is running at a constant speed of 100 km / h. The diameter of driving wheels is 1.8 m. The

stroke of the piston of the steam engine cylinder of the locomotive is 600 mm. Find the centrip-

etal acceleration of the crank pin relative to the engine frame. [ Ans. 288 m/s2 ]

DO YOU KNOW ?

1. Distinguish clearly between speed and velocity. Give examples.

2. What do you understand by the term ‘acceleration’ ? Define positive acceleration and negative accel-

eration.

3. Define ‘angular velocity’ and ‘angular acceleration’. Do they have any relation between them ?

4. How would you find out the linear velocity of a rotating body ?

5. Why the centripetal acceleration is zero, when a particle moves along a straight path ?

6.  A particle moving with a uniform velocity has no tangential acceleration. Explain clearly.
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OBJECTIVE TYPE QUESTIONS

1. The unit of linear acceleration is

(a) kg-m (b) m/s (c) m/s2 (d) rad/s2

2. The angular velocity (in rad/s) of a body rotating at N r.p.m. is

(a) π N/60 (b) 2 π N/60 (c) π N/120 (d) π N/180

3. The linear velocity of a body rotating at ω rad/s along a circular path of radius r is given by

(a) ω.r (b) ω/r (c)  ω2.r (d) ω2/r

4. When a particle moves along a straight path, then the particle has

(a) tangential acceleration only (b) centripetal acceleration only

(c) both tangential and centripetal acceleration

5. When a particle moves with a uniform velocity along a circular path, then the particle has

(a) tangential acceleration only (b) centripetal acceleration only

(c) both tangential and centripetal acceleration

ANSWERS

1. (c) 2. (b) 3. (a) 4. (a) 5. (b)

GO To FIRST
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Kinetics of
Motion

3
Features

1. Introduction.

2. Newton's Laws of Motion.

3. Mass and Weight.

4. Momentum.

5. Force.

6. Absolute and Gravitational

Units of Force.

7. Moment of a Force.

8. Couple.

9. Centripetal and Centrifugal

Force.

10. Mass Moment of Inertia.

11. Angular Momentum or

Moment of Momentum.

12. Torque.

13. Work.

14. Power.

15. Energy.

16. Principle of Conservation of

Energy.

17. Impulse and Impulsive Force.

18. Principle of Conservation of

Momentum.

19. Energy Lost by Friction

Clutch During Engagement.

20. Torque Required to

Accelerate a Geared System.

21. Collision of Two Bodies.

22. Collision of Inelastic Bodies.

23. Collision of Elastic Bodies.

24. Loss of Kinetic Energy

During Elastic Impact.

3.1. Introduction

In the previous chapter we have discussed the

kinematics of motion, i.e. the motion without considering

the forces causing the motion. Here we shall discuss the

kinetics of motion, i.e. the motion which takes into

consideration the forces or other factors, e.g. mass or weight

of the bodies. The force and motion is governed by the three

laws of motion.

3.2. Newton’s Laws of Motion

Newton has formulated three laws of motion, which

are the basic postulates or assumptions on which the whole

system of kinetics is based. Like other scientific laws, these

are also justified as the results, so obtained, agree with the

actual observations. These three laws of motion are as

follows:

1. Newton’s First Law of Motion. It states, “Every

body continues in its state of rest or of uniform motion in

a straight line, unless acted upon by some external force.”

This is also known as Law of Inertia.

The inertia is that property of a matter, by virtue of

which a body cannot move of itself, nor change the motion

imparted to it.

CONTENTS

CONTENTS
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2. Newton’s Second Law of Motion. It states,

“The rate of change of momentum is directly

proportional to the impressed force and takes place in

the same direction in which the force acts.”

3. Newton’s Third Law of Motion. It states, “To

every action, there is always an equal and opposite

reaction.”

3.3. Mass and Weight

Sometimes much confu-sion and misunder-

standing is created, while using the various systems of units

in the measurements of force and mass. This happens

because of the lack of clear understanding of the

difference between the mass and the weight. The

following definitions of mass and weight should be

clearly understood :

1. Mass. It is the amount of matter contained in a

given body, and does not vary with the change in its

position on the earth's surface. The mass of a body is

measured by direct comparison with a standard mass by using a lever balance.

2. Weight. It is the amount of pull, which the earth exerts upon a given body. Since the pull

varies with distance of the body from the centre of the earth, therefore the weight of the body will

vary with its position on the earth’s surface (say latitude and elevation). It is thus obvious, that the

weight is a force.

The earth’s pull in metric units at sea

level and 45° latitude has been adopted as one

force unit and named as one kilogram of force.

Thus, it is a definite amount of force. But, unfor-

tunately, it has the same name as the unit of mass.

The weight of a body is measured by the use of a

spring balance which indicates the varying ten-

sion in the spring as the body is moved from place

to place.

Note: The confusion in the units of mass and weight

is eliminated, to a great extent, in S.I. units. In this system, the mass is taken in kg and force in newtons.

The relation between the mass (m) and the weight (W) of a body is

W = m.g or m = W/g

where W is in newtons, m is in kg and g is acceleration due to gravity.

3.4. Momentum

It is the total motion possessed by a body. Mathematically,

Momentum = Mass × Velocity

Let m = Mass of the body,

u = Initial velocity of the body,

v = Final velocity of the body,

a = Constant acceleration, and

t = Time required (in seconds) to change the velocity from u to v.

The above picture shows space shuttle.

All space vehicles move based on

Newton’s third laws.
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Now,      initial momentum = m.u

and  final momentum = m.v

∴    Change of momentum = m.v – m.u

and rate of change of momentum    =  
. . ( )

.
m v m u m v u

m a
t t

− −
= = ...

v u
a

t

− 
= 

 
∵

3.5. Force

It is an important factor in the field of Engineering-science, which may be defined as an

agent, which produces or tends to produce, destroy or tends to destroy motion.

According to Newton’s Second Law of Motion, the applied force or impressed force is

directly proportional to the rate of change of momentum. We have discussed in Art. 3.4, that the rate

of change of momentum

= m.a

where m = Mass of the body, and

a = Acceleration of the body.

∴           Force ,  F ∝ m.a   or  F = k.m.a

where k is a constant of proportionality.

For the sake of convenience, the unit of force adopted is such that it produces a unit

acceleration to a body of unit mass.

∴ F = m.a = Mass × Acceleration

In S.I. system of units, the unit of force is called newton (briefly written as N). A newton

may be defined as the force while acting upon a mass of one kg produces an acceleration of

1 m/s2 in the direction of which it acts. Thus

         1 N = 1 kg × 1 m/s2 = 1 kg-m/s2

Note: A force equal in magnitude but opposite in direction and collinear with the impressed force producing

the acceleration, is known as inertia force. Mathematically,

Inertia force = – m.a

3.6. Absolute and Gravitational Units of Force
We have already discussed, that when a body of mass 1 kg is moving with an acceleration of

1 m/s2, the force acting on the body is one newton (briefly written as N). Therefore, when the same

body is moving with an acceleration of 9.81 m/s2, the force acting on the body is 9.81 newtons. But

we denote 1 kg mass, attracted towards the earth with an acceleration of 9.81 m/s2 as 1 kilogram-

force (briefly written as kgf) or 1 kilogram-weight (briefly written as kg-wt). It is thus obvious that

 1 kgf = 1 kg × 9.81 m/s2 = 9.81 kg-m/s2 = 9.81 N  ... (∵ 1 N = 1 kg-m/s2)

The above unit of force i.e. kilogram-force (kgf ) is called gravitational or engineer's unit

applied force, F

W, weight (force)

f, friction force

N, normal force
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of force, whereas newton is the absolute or scientific or S.I. unit of force. It is thus obvious, that the

gravitational units are ‘g’  times the unit of force in the absolute or S.I. units.

It will be interesting to know that the mass of a body in absolute units is numerically equal

to the weight of the same body in gravitational units.

For example, consider a body whose mass, m = 100 kg.

∴ The force, with which it will be attracted towards the centre of the earth,

             F = m.a = m.g = 100 × 9.81 = 981 N

Now, as per definition, we know that the weight of a body is the force, by which it is attracted

towards the centre of the earth. Therefore, weight of the body,

W  = 981 N = 981 / 9.81 = 100 kgf ... (∵ 1 kgf = 9.81 N)

In brief, the weight of a body of mass m kg at a place where gravitational acceleration is ‘g’

m/s2 is m.g newtons.

3.7. Moment of a Force

It is the turning effect produced by a force, on the body, on which it acts. The moment of a

force is equal to the product of the force and the perpendicular distance of the point about which the

moment is required, and the line of action of the force. Mathematically,

   Moment of a force = F × l

where F  = Force acting on the body, and

l   = Perpendicular distance of the

point and the line of action of

the force, as shown in Fig. 3.1.

3.8. Couple

The two equal and opposite parallel forces, whose lines of

action are different, form a couple, as shown in Fig. 3.2.

The perpendicular distance (x) between the lines of action of

two equal and opposite parallel forces (F) is known as arm of the

couple. The magnitude of the couple (i.e. moment of a couple) is

the product of one of the forces and the arm of the couple.

Mathematically,

Moment of a couple  = F × x

A little consideration will show, that a couple does not produce any translatory motion (i.e.

motion in a straight line). But, a couple produces a motion of rota-

tion of the body, on which it acts.

3.9. Centripetal and Centrifugal Force

Consider a particle of mass m moving with a linear velocity

v in a circular path of radius r.

We have seen in Art. 2.19 that the centripetal acceleration,

  a
c
 = v2/r = ω2.r

and     Force = Mass × Acceleration

∴ Centripetal force = Mass × Centripetal acceleration

or                F
c
 = m.v2/r = m.ω2.r

Fig. 3.2. Couple.

Fig. 3.1. Moment of a force.
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This force acts radially inwards and is essential for circular motion.

We have discussed above that the centripetal force acts radially inwards. According to

Newton's Third Law of Motion, action and reaction are equal and opposite. Therefore, the particle

must exert a force radially outwards of equal magnitude. This force is known as centrifugal force

whose magnitude is given by

                     F
c
= m.v2/r = m.ω2r

3.10. Mass Moment of Inertia

It has been established since long that a rigid body is

composed of small particles. If the mass of every particle of a

body is multiplied by the square of its perpendicular distance

from a fixed line, then the sum of these quantities(for the whole

body) is known as mass moment of inertia of the body. It is

denoted by I.

Consider a body of total mass m. Let it is composed of

small particles of masses m
1
, m

2
, m

3
, m

4
 etc. If k

1
, k

2
, k

3
, k

4
 are

the distances of these masses from a fixed line, as shown in Fig.

3.3, then the mass moment of inertia of the whole body is given

by

I = m
1
 (k

1
)2 + m

2
(k

2
)2 + m

3
 (k

3
)2 + m

4
 (k

4
)2 +....

If the total mass of body may be assumed to concentrate at one point (known as centre of

mass or centre of gravity), at a distance k from the given axis, such that

    m.k2 = m
1
(k

1
)2 + m

2
(k

2
)2 + m

3
(k

3
)2 + m

4
 (k

4
)2 +...

then       I = m.k
2

The distance k is called the radius of gyration. It may be defined as the distance, from a

given reference, where the whole mass of body is assumed to be concentrated to give the same

value of I.

The unit of mass moment of inertia in S.I. units is kg-m2.

Notes : 1. If the moment of inertia of a body about an axis through its centre of gravity is known, then the

moment of inertia about any other parallel axis may be obtained by using a parallel axis theorem i.e. moment

of inertia about a parallel axis,

       I
p
 = I

G
 + m.h2

where        I
G

 = Moment of inertia of a body about an axis through its centre of gravity, and

        h = Distance between two parallel axes.

2. The following are the values of I for simple cases :

(a) The moment of inertia of a thin disc of radius r, about an axis through its centre of gravity and

perpendicular to the plane of the disc is

  I = m.r2/ 2

and moment of inertia about a diameter,

  I = m.r2/4

(b) The moment of inertia of a thin rod of length l, about an axis through its centre of gravity and

perpendicular to its length,

I
G
 = m.l2/12

and moment of inertia about a parallel axis through one end of a rod,

 I
p
 = m.l2/3

Fig. 3.3. Mass moment of inertia.
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3. The moment of inertia of a solid cylinder of radius r and length l, about the longitudinal axis or polar

axis

= m.r
2
/2

and moment of inertia through its centre perpendicular to longitudinal axis

2 2

4 12

r l 
= +  

 

3.11. Angular Momentum or Moment of Momentum
Consider a body of total mass m rotating with an angular velocity

of ω rad/s, about the fixed axis O as shown in Fig. 3.4. Since the body

is composed of numerous small particles, therefore let us take one of

these small particles having a mass dm and at a distance r from the axis

of rotation. Let v is its linear velocity acting tangentially at any instant.

We know that momentum is the product of mass and velocity, therefore

momentum of mass dm

 = dm × v = dm × ω × r ... (�  v = ω.r)

and moment of momentum of mass dm about O

= dm × ω × r × r = dm × r2 × ω = I
m

 × ω

where       I
m

 = Mass moment of inertia of mass dm about O = dm × r2

∴ Moment of momentum or angular momentum of the whole body about O

   . .
m

I I= ω= ω∫

where    m
I =∫  Mass moment of inertia of the

whole body about O.

Thus we see that the angular momentum or the moment of momentum is the product of mass

moment of inertia ( I ) and the angular velocity (ω) of the body.

3.12. Torque

It may be defined as the product of

force and the perpendicular distance of its line

of action from the given point or axis. A little

consideration will show that the torque is

equivalent to a couple acting upon a body.

The Newton’s Second Law of

Motion, when applied to rotating bodies,

states that the torque is directly proportional

to the rate of change of angular momentum.

Mathematically, Torque,

d �
T

dt

( .ω)
∝

Since I is constant, therefore

.
d

T I I
dt

ω
= × = α ...

d

dt

ω 
= α 

 
�

Double length

spanner

Same

force

applied

Double

torque

Torque

Fig. 3.4. Angular

momentum.
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The unit of torque (T ) in S.I. units is N-m when I is in kg-m2 and α in rad/s2.

3.13. Work

Whenever a force acts on a body and the body undergoes a displacement in the direction of the

force, then work is said to be done. For example, if a force F acting on a body causes a displacement x

of the body in the direction of the force, then

 Work done = Force × Displacement = F × x

If the force varies linearly from zero to a maximum value of F, then

Work done 
0 1

2 2

F
x F x

+
= × = × ×

When a couple or torque ( T ) acting on a body causes the angular displacement (θ) about an

axis perpendicular to the plane of the couple, then

Work done = Torque × Angular displacement = T.θ

The unit of work depends upon the unit of force and displacement.

In S.I. system of units, the practical unit of work is N-m. It is the work done by a force of 1

newton, when it displaces a body through 1 metre. The work of 1 N-m is known as joule (briefly

written as J ) such that 1 N-m = 1 J.

Note: While writing the unit of work, it is general practice to put the unit of force first followed by the unit of

displacement (e.g. N-m).

3.14. Power

It may be defined as the rate of doing work or work done per unit time. Mathematically,

 
Work done

Power = 
Time taken

In S.I. system of units, the unit of power is watt (briefly written as W) which is equal to 1 J/s

or 1 N-m/s. Thus, the power developed by a force of F (in newtons) moving with a velocity v m/s is

F.v watt. Generally a bigger unit of power called kilowatt (briefly written as kW) is used which is

equal to 1000 W.

Notes: 1. If T is the torque transmitted in N-m or J and ω is the angular speed in rad/s, then

      Power, P = T .ω = T × 2 π N/60 watts ... (∵ ω = 2 π N/60)

where N is the speed in r.p.m.

2. The ratio of power output to power input is known as efficiency of a machine. It is always less than

unity and is represented as percentage. It is denoted by a Greek letter eta (η). Mathematically,

         

Power output
Efficiency, =

Power input
η

3.15. Energy

It may be defined as the capacity to do work. The energy exists in many forms e.g. mechanical,

electrical, chemical, heat, light etc. But we are mainly concerned with mechanical energy.

The mechanical energy is equal to the work done on a body in altering either its position or

its velocity. The following three types of mechanical energies are important from the subject point

of view.
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*     We know that,   v2 – u2 = 2 a.s

Since u = 0 because the body starts from rest, therefore,

v
2 = 2 a.s   or   s = v2/2a

*

1. Potential energy. It is the energy possessed by a body for doing work, by virtue of its

position. For example, a body raised to some height above the ground level possesses potential

energy because it can do some work by falling on earth’s surface.

Let W  = Weight of the body,

m = Mass of the body, and

h = Distance through which the body falls.

Then potential energy,

P.E. = W.h = m.g.h ... (∵ W  = m.g)

It may be noted that

(a) When W  is in newtons and h in metres, then potential energy will be in N-m.

(b) When m is in kg and h in metres, then the potential energy will also be in N-m as

discussed below :

We know that potential energy,

2

m
P.E. . . kg m N m

s
m g h −= = × × =

2

1kg–m
1 N

s

 
= 

 
�

2. Strain energy. It is the potential energy

stored by an elastic body when deformed. A com-

pressed spring possesses this type of energy, be-

cause it can do some work in recovering its original

shape. Thus if a compressed spring of stiffness s

newton per unit deformation (i.e. extension or com-

pression) is deformed through a distance x by a load

W , then

      
1

2
Strain energy = Work done .W x=

                
21

2
.s x= ...(∵ W  = s × x)

In case of a torsional spring of stiffness q N-m per unit angular deformation when twisted

through as angle θ  radians, then

   Strain energy = Work done 
21

.
2

q= θ

3. Kinetic energy. It is the energy possessed by a body, for doing work, by virtue of its mass

and velocity of motion. If a body of mass m attains a velocity v from rest in time t, under the

influence of a force F and moves a distance s, then

Work done = F.s = m.a.s ... (∵ F = m.a)

∴ Kinetic energy of the body or the kinetic energy of translation,

          K.E. = m.a.s = m × a ×

2
21

.
2 2

v
m v

a
=
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It may be noted that when m is in kg and v  in m/s, then kinetic energy will be in N-m as

discussed below:

We know that kinetic energy,

2
2

2 2

1 m kg - m
K.E. = = kg × = × m = N-m

2 s s
m.v 2

1kg-m
... 1N

s

 
= 

 
�

Notes : 1. When a body of mass moment of inertia I (about a given axis) is rotated about that axis, with an

angular velocity ω, then it possesses some kinetic energy. In this case,

  Kinetic energy of rotation = 
21

.
2

I ω

2. When a body has both linear and angular motions e.g. in the locomotive driving wheels and

wheels of a moving car, then the total kinetic energy of the body is equal to the sum of kinetic energies of

translation and rotation.

∴ Total kinetic energy = 
2 21 1

. .
2 2

m v I+ ω

Example 3.1. The flywheel of a steam engine has a radius

of gyration of 1 m and mass 2500 kg. The starting torque of the

steam engine is 1500 N-m and may be assumed constant.

Determine : 1. Angular acceleration of the flywheel, and 2. Kinetic

energy of the flywheel after 10 seconds from the start.

Solution. Given : k = 1 m ; m = 2500 kg ; T = 1500 N-m

1.  Angular acceleration of the flywheel

Let α = Angular acceleration of the flywheel.

We know that mass moment of inertia of the flywheel,

2 2 2
. 2500 1 2500 kg-mI m k= = × =

We also know that torque ( T ),

1500 . 2500I= α = ×α or 2
1500 / 2500 0.6 rad/sα = =  Ans.

2.  Kinetic energy of the flywheel after 10 seconds from start

First of all, let us find the angular speed of the flywheel (ω
2
 ) after t = 10 seconds from the

start (i.e. ω
1
 = 0 ).

We know that    ω
2
 = ω

1
 + α.t = 0 + 0.6 × 10 = 6 rad/s

∴ Kinetic energy of the flywheel,

2 2
2

1 1
( ) 2500 6 45 000 J 45 kJ

2 2
E I= ω = × × = =  Ans.

Example 3.2.  A winding drum raises a cage of mass 500 kg through a height of 100 metres.

The mass of the winding drum is 250 kg and has an effective radius of 0.5 m and radius of gyration

is 0.35 m. The mass of the rope is 3 kg/m.

The cage has, at first, an acceleration of 1.5 m/s
2 until a velocity of 10 m/s is reached, after

which the velocity is constant until the cage nears the top and the final retardation is 6 m/s
2. Find

1. The time taken for the cage to reach the top, 2. The torque which must be applied to the drum at

starting; and  3. The power at the end of acceleration period.

Solution. Given : m
C
 = 500 kg ; s = 100 m ; m

D
 = 250 kg ; r = 0.5 m ; k = 0.35 m,

m = 3 kg/m

Flywheel
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Fig. 3.5

Fig. 3.5 shows the acceleration-time and velocity-time graph for the cage.

1. Time taken for the cage to reach the top

Let t = Time taken for the cage to reach the top = t
1
 + t

2 
+ t

3

where t
1 

= Time taken for the cage from initial velocity of u
1
 = 0 to final

       velocity of v
1
 = 10 m/s with an acceleration of a

1
 = 1.5 m/s2,

t
2
 = Time taken for the cage during constant velocity of v

2
 = 10 m/s until the

       cage nears the top, and

t
3
 = Time taken for the cage from initial velocity of u

3
 = 10 m/s to final velocity

         of v
3
 = 0 with a retardation of a

3
 = 6 m/s2.

We know that  v
1
 = u

1
 + a

1
.t

1

10 = 0 + 1.5 t
1   

   or    t
1
 = 10/1.5 = 6.67 s

and distance moved by the cage during time t
1
,

1 1
1 1

10 0
6.67 33.35

2 2

v u
s t

+ +
= × = × = m

Similarly, v
3
 = u

3
 + a

3
.t

3

 0 = 10 – 6 × t
3
   or   t

3
 = 10/6 = 1.67 s

and
3 3

3 3

0 10
1.67 8.35 m

2 2

v u
s t

+ +
= × = × =

Now, distance travelled during constant velocity of v
2
 = 10 m/s,

2 1 3 100 33.35 8.35 58.3ms s s s= − − = − − =

We know that s
2
 = v

2
.t

2
     or    t

2
 = s

2
/v

2
 = 58.3/10 = 5.83 s

∴ Time taken for the cage to reach the top,

  t = t
1
 + t

2
 + t

3
 = 6.67 + 5.83 + 1.67 = 14.17 s Ans.

2. Torque which must be applied to the drum at starting

Let T = Torque which must be applied to the drum at starting = T
1
 + T

2
 + T

3
,

where T
1
 = Torque to raise the cage and rope at uniform speed,

T
2
 = Torque to accelerate the cage and rope, and

T
3
 = Torque to accelerate the drum.
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Since the mass of rope, m = 3 kg/m, therefore total mass of the rope for 100 metres,

m
R
 = m.s = 3 × 100 = 300 kg

We know that the force to raise cage and rope at uniform speed,

F
1
 = (m

C
 + m

R
) g = (500 + 300) 9.81 = 7850 N

∴ Torque to raise cage and rope at uniform speed,

T
1
 = F

1
.r = 7850 × 0.5 = 3925 N-m

Force to accelerate cage and rope,

F
2
 = (m

C
 + m

R
) a

1
 = (500 + 300) 1.5 = 1200 N

∴ Torque to accelerate the cage and rope,

T
2
 = F

2
.r = 1200 × 0.5 = 600 N-m

We know that mass moment of inertia of the drum,

     I = m
D

.k2 = 250 (0.35)2 = 30.6 kg-m2

and angular acceleration of the drum,

21 1.5
3 rad/s

0.5

a

r
α = = =

∴ Torque to accelerate the drum,

T
3
 = I.α = 30.6 × 3 = 91.8 N-m

and total torque which must be applied to the drum at starting,

T = T
1
 + T

2
 + T

3
 = 3925 + 600 + 91.8 = 4616.8 N-m Ans.

3.  Power at the end of acceleration period

When the acceleration period is just finishing, the drum torque will be reduced because

there will be s
1
 = 33.35 m of rope less for lifting. Since the mass of rope is 3 kg/m, therefore mass of

33.35 m rope,

m
1
 = 3 × 33.35 = 100.05 kg

∴ Reduction of torque,

T
4
 = (m

1
.g + m

1
.a

1
) r = (100.05 × 9.81 + 100.05 × 1.5) 0.5

    = 565.8 N-m

and angular velocity of drum,

           ω = v / 2πr = 10 / 2π × 0.5 = 3.18 rad/s

We know that power = T
4
.ω = 565.8 × 3.18 = 1799 W = 1.799 kW Ans.

Example 3.3. A riveting machine is driven by a 4 kW motor. The moment of inertia of the

rotating parts of the machine is equivalent to 140 kg-m
2
 at the shaft on which the flywheel is mounted.

At the commencement of operation, the flywheel is making 240 r.p.m. If closing a rivet occupies

1 second and consumes 10 kN-m of energy, find the reduction of speed of the flywheel. What is the

maximum rate at which the rivets can be closed ?

Solution : Given : P = 4 kW = 4000 W ; I = 140 kg-m2 ; N
1
 = 240 r.p.m. or  ω

1
 = 2π ×

240/60 = 25.14 rad/s

Reduction of speed of the flywheel

Let ω
2 

= Angular speed of the flywheel immediately after closing a rivet.
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Fig. 3.6

Since the power of motor is 4000 W, therefore energy supplied by motor in 1 second,

E
1
 = 4000 N-m ... (∵ 1 W = 1 N-m/s)

We know that energy consumed in closing a rivet in 1 second,

E
2
 = 10 kN-m = 10 000 N-m

∴ Loss of kinetic energy of the flywheel during the operation,

E = E
2
 – E

1
 = 10 000 – 4000 = 6000 N-m

We know that kinetic energy of the flywheel at the commencement of operation

  = 
1

2
 I (ω

1
)2 = 

1

2
× 140 (25.14)2 = 44 240 N-m

∴ Kinetic energy of the flywheel at the end of operation

  = 44 240 – 6000 = 38 240 N-m ... (i)

We also know that kinetic energy of the flywheel at the end of operation

   = 
1

2
 I (ω

2
)2 = 

1

2
 × 140 (ω

2
)2 = 70 (ω

2
)2 ... (ii)

Equating equations (i) and (ii),

70 (ω
2
)2 = 38 240    or      (ω

2
)2 = 38 240/70 = 546.3 and ω = 23.4 rad/s

∴ Reduction of speed

  = ω
1
 – ω

2
 = 25.14 – 23.4 = 1.74 rad/s

  = 1.74 × 60/2π = 16.6 r.p.m.  Ans. ... (∵  ω = 2π N/60)

Maximum rate at which the rivets can be closed

Maximum rate at which the rivets can be closed per minute

Energy supplied by motor per min 4000 60
= 24

Energy consumed to close a rivet 10000

×
= = Ans.

Example 3.4. A wagon of mass 14 tonnes is hauled up an incline of 1 in 20 by a rope which

is parallel to the incline and is being wound round a drum of 1 m diameter. The drum, in turn, is

driven through a 40 to 1 reduction gear by an electric motor. The frictional resistance to the move-

ment of the wagon is 1.2 kN, and the efficiency of the gear drive is 85 per cent. The bearing friction

at the drum and motor shafts may be neglected. The rotating parts of the drum have a mass of 1.25

tonnes with a radius of gyration of 450 mm and the rotating parts on the armature shaft have a mass

of 110 kg with a radius of gyration of 125 mm.

At a certain instant the wagon is moving up the slope with a velocity of 1.8 m/s and an

acceleration of 0.1 m/s2. Find the torque on the motor shaft and the power being developed.

Solution. Given : m = 14 t = 14 000 kg ; Slope = 1 in 20 ;

d = 1m or r = 0.5 m ; F = 1.2 kN = 1200 N ; η = 85% = 0.85 ;

m
1
 = 1.25 t = 1250 kg ; k

1
 = 450 mm = 0.45 m ; m

2
 = 110 kg;

k
2
 = 125 mm = 0.125 m;  v = 1.8 m/s ; a = 0.1 m/s2

Torque on the motor shaft

We know that tension in the rope,

         P
1

= Forces opposing the motion as shown in

   Fig. 3.6.
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= Component of the weight down the slope

    + *Inertia force + Frictional  resistance

1
. . .

20
m g m a F= × + +

14 000 9.81
14 000 0.1 1200 9467 N

20

×
= + × + =

∴ Torque on the drum shaft to accelerate load,

T
1
 = P

1
.r = 9467 × 0.5 = 4733.5 N-m

We know that mass moment of inertia of the drum,

I
1
 = m

1
 (k

1
)2 = 1250 (0.45)2 = 253 kg-m2

and angular acceleration of the drum,

α = a/r = 0.1/0.5 = 0.2 rad/s

∴ Torque on the drum to accelerate drum shaft,

T
2
 = I

1
.α

1
 = 253 × 0.2 = 50.6 N-m

Since the drum is driven through a 40 to 1 reduction gear and the efficiency of the gear drive

is 85%, therefore

Torque on the armature to accelerate drum and load,

3 1 2

1 1 1 1
( ) (4733.5 50.6) 140.7 N-m

40 0.85 40 0.85
T T T= + × = + × =

We know that mass moment of inertia of the armature,

I
2
 = m

2 
(k

2
)2 = 110 (0.125)2 = 1.72 kg-m2

and angular acceleration of the armature,

2
2

0.1
40 40 8 rad / s

0.5

a

r
α = × = × =

... (∵ Armature rotates 40 times that of drum)

∴ Torque on the armature to accelerate armature shaft,

T
4
 = I

2
.α

2
 = 1.72 × 8 = 13.76 N-m

and torque on the motor shaft

T = T
3
 + T

4
 = 140.7 + 13.76 = 154.46 N-m   Ans.

Power developed by the motor

We know that angular speed of the motor,

1.8
40 40 144 rad/s

0.5

v

r
ω = × = × =

∴ Power developed by the motor

= T.ω = 154.46 × 144 = 22 240 W = 22.24 kW Ans.

* Inertia force is equal and opposite to the accelerating force.
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Example 3.5. A road roller has a total

mass of 12 tonnes. The front roller has a mass of

2 tonnes, a radius of gyration of 0.4 m and a

diameter of 1.2 m. The rear axle, together with its

wheels, has a mass of 2.5 tonnes, a radius of

gyration of 0.6 m and a diameter of 1.5 m.

Calculate : 1. Kinetic energy of rotation of the

wheels and axles at a speed of 9 km/h, 2. Total

kinetic energy of road roller, and 3. Braking force

required to bring the roller to rest from 9 km/h in 6

m on the level.

Solution. Given : m = 12 t = 12 000 kg ;

m
1
 = 2 t = 2000 kg ; k

1
 = 0.4 m ; d

1
 = 1.2 m or r

1
 = 0.6 m ; m

2
 = 2.5 t = 2500 kg ; k

2
 = 0.6 m ; d

2
 = 1.5

m or r
2
 = 0.75 m ; v = 9 km/h = 2.5 m/s; s = 6 m

1. Kinetic energy of rotation of the wheels and axles

We know that mass moment of inertia of the front roller,

I
1
 = m

1
(k

1
)2 = 2000 (0.4)2 = 320 kg-m2

and mass moment of inertia of the rear axle together with its wheels,

I
2
 = m

2
 (k

2
)2 = 2500 (0.6)2 = 900 kg -m2

Angular speed of the front roller,

ω
1
 = v/r

1
 = 2.5/0.6 = 4.16 rad/s

and angular speed of rear wheels,

ω
2
 = v/r

2
 = 2.5/0.75 = 3.3 rad/s

We know that kinetic energy of rotation of the front roller,

2 2
1 1 1

1 1
( ) 320(4.16) 2770 N-m

2 2
E I= ω = × =

and kinetic energy of rotation of the rear axle together with its wheels,

2 2
2 2 2

1 1
( ) 900(3.3) 4900 N-m

2 2
E I= ω = × =

∴  Total kinetic energy of rotation of the wheels,

1 2 2770 4900 7670 N-mE E E= + = + =  Ans.

2.  Total kinetic energy of road roller

We know that the kinetic energy of motion (i.e. kinetic energy of translation) of the road roller,

2 2
3

1 1

2 2
. 12 000 (2.5) 37 500N-mE m v= = × =

This energy includes the kinetic energy of translation of the wheels also, because the total

mass (m) has been considered.

∴ Total kinetic energy of road roller,

E
4
  = Kinetic energy of translation + Kinetic energy of rotation

      = E
3
 + E = 37 500 + 7670 = 45 170 N-m   Ans.
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3.  Braking force required to bring the roller to rest

Let   F  = Braking force required to bring the roller to rest, in newtons.

We know that the distance travelled by the road roller,

    s = 6 m ... (Given)

∴ Work done by the braking force

     = F × s = 6 F N-m

This work done must be equal to the total kinetic energy of road roller to bring the roller to

rest, i.e.

   6 F = 45 170    or     F = 45 170/6 = 7528.3 N  Ans.

Example 3.6. A steam engine drop-valve is closed by a spring after the operation of a trip

gear. The stiffness of the spring is such that a force of 4 N is required per mm of compression. The

valve is lifted against the spring, and when fully open the compression is 75 mm. When closed the

compression is 30 mm. The mass of the valve is 5 kg and the resistance may be taken as constant

and equal to 70 N. Find the time taken to close the valve after the operation of the trip.

Solution. Given : s = 4 N/mm = 4000 N/m ; x
1
 = 75 mm = 0.075 m ; x

2
 = 30 mm = 0.03 m;

m = 5 kg ; R = 70 N

Let x  =  Displacement of the valve (in metres) from its highest position in

time  t seconds.

When the valve is closed, then the value of x

= x
1
 – x

2
 = 0.075 – 0.03 = 0.045 m

Since the stiffness of the spring is 4000 N/m ; therefore in any position, the push of the spring

Q = 4000 (0.075 – x ) N

If P is the downward force on the valve, then

P = Q + m.g – R = 4000 (0.075 – x) + 5 × 9.81 – 70 = 279 – 4000 x

 Also             Force, P = Mass × Acceleration

279 – 4000 x = 5 × 

2

2

d x

dt

or                 

2

2

279 4000
56 800 800( 0.07)

5

d x x
x x

dt

−
= = − = − −

Let                      y = x – 0.07

∴                  

2 2

2 2
800

d y d x
y

dt dt

= = −       or     

2

2
800 0

d y
y

dt

+ =

The solution of this differential equation is

 cos 800 sin 800y a t b t= +

0.07 cos 800 sin 800x a t b t− = + ... (i)

where a and b are constants to be determined.

Now when t = 0, x = 0, therefore from equation (i), a = – 0.07

Differentiating equation (i),

800 sin 800 800 cos 800
dx

a t b t
dt

= − + ... (ii)
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Now when t = 0,
dx

dt
= 0, therefore from equation (ii), b = 0

Substituting the values of a and b in equation (i),

x  – 0.07 = – 0.07 cos 800 t   or  0.07 (1 cos 800 )x t= −

When  x = 0.045 m, then

0.045 0.07 (1 cos 800 )t= −

or 1 cos 800 0.045 / 0.07 0.642t− = =   or cos 800 1 0.642 0.358t = − =

1
800 cos (0.358) 69 69 1.2 rad

180
t

− π
= = ° = × =

∴ 1.2 / 800 1.2 / 28.3 0.0424 s= = =t  Ans.

3.16. Principle of Conservation of Energy

It states “The energy can neither be created nor destroyed, though it can be transformed

from one form into any of the forms, in which the energy can exist.”

Note : The loss of energy in any one form is always accompanied by an equivalent increase in another form.

When work is done on a rigid body, the work is converted into kinetic or potential energy or is used in overcom-

ing friction. If the body is elastic, some of the work will also be stored as strain energy. Thus we say that the total

energy possessed by a system of moving bodies is constant at every instant, provided that no energy is rejected

to or received from an external source to the system.

3.17. Impulse and Impulsive Force

The impulse is the product of force and time. Mathematically,

                 Impulse = F × t

where                             F = Force, and t = Time.

Now consider a body of mass m. Let a force F changes its velocity from an initial velocity v
1

to a final velocity v
2
.

We know that the force is equal to the rate of change of linear momentum, therefore

                              2 1( )m v v
F

t

−
=  or 2 1( )F t m v v× = −

i.e.     Impulse = Change of linear momentum

If a force acts for a very short time, it is then known as impulsive force or blow. The impulsive

force occurs in collisions, in explosions, in the striking of a nail or a pile by a hammer.

Note: When the two rotating gears with angular velocities ω
1
 and ω

2
 mesh each other, then an impulsive

torque acts on the two gears, until they are both rotating at speeds corresponding to their velocity ratio. The

impulsive torque,

             T.t = I (ω
2
 – ω

1
)

3.18. Principle of Conservation of Momentum

It states “The total momentum of a system of masses (i.e. moving bodies) in any one direc-

tion remains constant, unless acted upon by an external force in that direction.” This principle is

applied to problems on impact, i.e. collision of two bodies. In other words, if two bodies of masses

m
1
 and m

2
 with linear velocities v

1
 and v

2
 are moving in the same straight line, and they collide and

begin to move together with a common velocity v, then
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    Momentum before impact = Momentum after impact

i.e.          1 1 2 2 1 2( )m v m v m m v± = +

Notes : 1. The positive sign is used when the two bodies move in the

same direction after collision. The negative sign is used when they move

in the opposite direction after collision.

2. Consider two rotating bodies of mass moment of inertia I
1

and I
2
 are initially apart from each other and are made to engage as in

the case of a clutch. If they reach a common angular velocity ω, after

slipping has ceased, then

            I
1
.ω

1
  ±  I

2
.ω

2
 = (I

1
 + I

2
) ω

The ± sign depends upon the direction of rotation.

3.19. Energy Lost by Friction Clutch During
Engagement

Consider two collinear shafts A  and B connected by

a *friction clutch (plate or disc clutch) as shown in Fig. 3.7.

Let  I
A

 and I
B

= Mass moment of inertias of the

rotors attached to shafts A and B

respectively.

ω
A

 and ω
B

= Angular speeds of shafts A  and B

respectively before engagement  of

clutch, and

ω = Common angular speed of shafts

A  and B after engagement of clutch.

By the principle of conservation of momentum,

 I
A

.ω
A

 + I
B
.ω

B
 = (I

A
 + I

B
) ω

 ∴ A A B B

A B

. .I I

I I

ω + ω
ω =

+
 ... (i)

Total kinetic energy of the system before engagement,

2 2
2 2 A A B B

1 A A B B

( ) ( )1 1
( ) ( )

2 2 2

I I
E I I

ω + ω
= ω + ω =

Kinetic energy of the system after engagement,

2

2 A A B B
2 A B A B

A B

. .1 1
( ) ( )

2 2

I I
E I I I I

I I

 ω + ω
= + ω = +  

+ 

2
A A B B

A B

( . . )

2( )

I I

I I

ω + ω
=

+

∴  Loss of kinetic energy during engagement,

2 2 2
A A B B A A B B

1 2

A B

( ) ( ) ( . . )

2 2( )

ω + ω ω + ω
= − = −

+

I I I I
E E E

I I

* Please refer Chapter 10 (Art. 10.32) on Friction.

Fig. 3.7. Friction clutch.
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= 

2
A B A B

A B

. ( )

2( )

I I

I I

ω − ω

+
 ... (ii)

Notes: 1. If the rotor attached to shaft B is at rest, then ω
B
= 0. Therefore, common angular speed after engagement,

A A

A B

.I

I I

ω
ω =

+
... [Substituting ω

B
 = 0 in equation (i)] ... (iii)

and loss of kinetic energy,    

2
A B A

A B

. ( )

2 ( )

I I
E

I I

ω
=

+
... [Substituting ω

B
 = 0 in equation (ii)] ... (iv)

2. If I
B
 is very small as compared to I

A
 and the rotor B is at rest, then

A A
A

A B

.I

I I

ω
ω = = ω

+
... (Neglecting I

B
)

and
2

B A B

1 1
. . .

2 2
E I I= ω ω = ω ... [From equations (iii) and (iv)]

    = Energy given to rotor B

Example 3.7. A haulage rope winds on a drum of radius 500 mm, the free end being

attached to a truck. The truck has a mass of 500 kg and is initially at rest. The drum is equivalent to

a mass of 1250 kg with radius of gyration 450 mm. The rim speed of the drum is 0.75 m/s before the

rope tightens. By considering the change in linear momentum of the truck and in the angular mo-

mentum of the drum, find the speed of the truck when the motion becomes steady. Find also the

energy lost to the system.

Solution. Given : r = 500 mm = 0.5 m ; m
1
 = 500 kg ; m

2
 = 1250 kg ; k = 450 mm = 0.45 m ;

u = 0.75 m/s

We know that mass moment of inertia of drum,

 I
2
 = m

2
.k2 = 1250 (0.45)2 = 253 kg-m2

Speed of the truck

Let   v = Speed of the truck in m/s, and

 F = Impulse in rope in N-s.

We know that the impulse is equal to the change of linear momentum of the truck. Therefore

    F = m
1
.v = 500 v  N-s

and         moment of impulse = Change in angular momentum  of drum

i.e.                   
2 2 1 2

( )
− 

× = ω − ω =  
 

u v
F r I I

r
... 

2 1

u v u v

r r r

− 
ω − ω = − = 

 

�

          
0.75

500 0.5 253
0.5

v
v

− 
× =  

 
    or    250 380 506v v= −

∴          250 v + 506 v = 380      or      v = 380/756 = 0.502 m/s    Ans.

Energy lost to the system

We know that energy lost to the system

= Loss in K.E. of drum – Gain in K.E. of truck

= 
2 2 2

2 2 1 1

1 1
( ) ( ) .

2 2
I m v × ω − ω − ×

 
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2 2
2

2 12

1 1
.

2 2

u v
I m v

r

 −
= × − × 

 

2 2
2

2

1 (0.75) (0.502) 1
253 500(0.502) N-m

2 2(0.5)

 −
= × − × 

 

= 94 N-m    Ans.

Example 3.8. The two buffers at one end of a truck each require a force of 0.7 MN/m of

compression and engage with similar buffers on a truck which it overtakes on a straight horizontal

track. The truck has a mass of 10 tonnes and its initial speed is 1.8 m/s, while the second truck has

mass of 15 tonnes with initial speed 0.6 m/s, in the same direction.

Find : 1. the common velocity when moving together during impact, 2. the kinetic energy

lost to the system, 3. the compression of each buffer to store the kinetic energy lost, and 4. the

velocity of each truck on separation if only half of the energy offered in the springs is returned.

Solution. Given : s = 0.7 MN/m = 0.7 × 106 N/m ; m = 10 t = 10 × 103 kg ; v
1
 = 1.8 m/s;

m
2
 = 15 t = 15 × 103 kg ; v

2
 = 0.6 m/s

1.  Common velocity when moving together during impact

Let                         v = Common velocity.

We know that momentum before impact = Momentum after impact

i.e.          m
1
. v

1
 + m

2
.v

2 
= (m

1
 + m

2
) v

 10 × 103 × 1.8 + 15 × 103 × 0.6 = (10 × 103 + 15 + 103) v

          27 × 103 = 25 × 103 v       or      v = 27 × 103/25 × 103 = 1.08 m/s    Ans.

2.  Kinetic energy lost to the system

Since the kinetic energy lost to the system is the kinetic energy before impact minus the

kinetic energy after impact, therefore

Kinetic energy lost to the system

                          ( )
2 2 2

1 1 2 2 1 2

1 1 1

2 2 2
m v m v m m v

 
= + − + 

 

= 
3 2 3 21 1

10 10 (1.8) 15 10 (0.6)
2 2

 
× × + × ×

 
 

( )3 3 21
10 10 15 10 (1.08)

2
− × + ×

= 4.35 × 103 N-m = 4.35 kN-m    Ans.

3. Compression of each buffer spring to store kinetic energy lost

Let x = Compression of each buffer spring in metre, and

s = Force required by each buffer spring or stiffness of each spring

= 0.7 MN/m = 0.7 × 106 N/m ... (Given)

Since the strain energy stored in the springs (four in number) is equal to kinetic energy lost

in impact, therefore

        
2 31

4 . 4.35 10
2

s x× = ×
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6 2 31
4 0.7 10 4.35 10

2
x× × × = ×

or                       6 2 3
1.4 10 4.35 10x× = ×

∴        x2 = 4.35 × 103/1.4 × 106 = 3.11 × 10–3

or       x = 0.056 m = 56 mm     Ans.

4. Velocity of each truck on separation

Let       v
3
 = Velocity of separation for 10 tonnes truck, and

      v
4
 = Velocity of separation for 15 tonnes truck.

The final kinetic energy after separation is equal to the kinetic energy at the instant of com-

mon velocity plus strain energy stored in the springs. Since it is given that only half of the energy

stored in the springs is returned, therefore

Final kinetic energy after separation

               = Kinetic energy at common velocity +
1

2
 Energy stored in springs

or         
2 2 2 2

1 3 2 4 1 2

1 1 1 1 1
( ) ( ) ( ) 4 .

2 2 2 2 2
m v m v m m v s x

 
+ = + + × 

 

3 2 3 2 3 3 2 3
3 4

1 1 1 1
10 10 ( ) 15 10 ( ) (10 10 15 10 ) (1.08) (4.35 10 )

2 2 2 2
v v× × + × × = × + × + ×

2 31
... 4 . 4.35 10

2
s x

 
× = × 

 
�

          2 2
3 410( ) 15( ) 33.51v v+ = ... (i)

We know that initial momentum and final momentum must be equal, i.e.

m
1
.v

3
 + m

2
.v

4
 = (m

1
 + m

2
) v

10 × 103 × v
3
 + 15 × 103 × v

4
 = (10 × 103 + 15 × 103) 1.08

10v
3
 + 15 v

4
 = 27 ... (ii)

From equations (i) and (ii),       v
3
 = 0.6 m/s, and v

4
 = 1.4 m/s    Ans.

Example 3.9. A mass of 300 kg is allowed to fall vertically through 1 metre on to the top of

a pile of mass 500 kg. Assume that the falling mass and pile remain in contact after impact and that

the pile is moved 150 mm at each blow. Find, allowing for the action of gravity after impact 1. The

energy lost in the blow, and 2. The average resistance against the pile.

Solution. Given : m
1
 = 300 kg ; s = 1 m ; m

2
 = 500 kg ; x = 150 mm = 0.15 m

1. Energy lost in the blow

First of all, let us find the velocity of mass m
1
 with which it hits the pile.

Let v
1
 = Velocity with which mass m

1
 hits the pile.

We know that  2 2
1 2 .v u g s− =

2
1 10 2 9.81 1 19.62 or 4.43 m/sv v− = × × = =             ... (∵  u = 0 )
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Fig. 3.9

Again, let v
2
 =  Velocity of the pile before impact, and

v  =  Common velocity after impact,

We known that momentum before impact

= Momentum after impact

or m
1
.v

1
 + m

2
.v

2
 = (m

1
 + m

2
) v

300 × 4.43 + 500 × 0 = (300 + 500) v

1329 = 800 v

∴ v = 1329/800 = 1.66 m/s

Now, kinetic energy before impact

= Potential energy = m
1
.g.s

= 300 × 9.81 × 1 = 2943 N-m

and kinetic energy after impact

2 2
1 2

1 1
( ) (300 500) (1.66) 1102 N-m

2 2
m m v= + = + =

∴  Energy lost in the blow

= 2943 – 1102 = 1841 N-m    Ans.

2. Average resistance against the pile

Let R = Average resistance against the pile in N.

Since the net work done by R, m
1
 and m

2
 is equal to the kinetic energy after impact, therefore

(R – m
1
.g – m

2
.g) x = Kinetic energy after impact

(R – 300 × 9.81 – 500 × 9.81) 0.15 = 1102

∴ R – 7848 = 1102/0.15 = 7347

or R = 7347 + 7848 = 15 195 N = 15.195 kN    Ans.

Example 3.10. A hammer B suspended from pin C, and

an anvil A suspended from pin D, are just touching each other

at E, when both hang freely as shown in Fig. 3.9. The mass of B

is 0.7 kg and its centre of gravity is 250 mm below C and its

radius of gyration about C is 270 mm. The mass of A is 2.4 kg

and its centre of gravity is 175 mm below D and its radius of

gyration about D is 185 mm. The hammer B is rotated 20° to the

position shown dotted and released. Assume that the points of

contact move horizontally at the instant of impact and that their

local relative linear velocity of recoil is 0.8 times their relative

linear velocity of impact. Find the angular velocities of hammer

and of the anvil immediately after impact.

Solution. Given : m
1
 = 0.7 kg ; k

1
 = 270 mm = 0.27 m ;

m
2
 = 2.4 kg ; k

2
 = 185 mm = 0.185 m

Let ω = Angular velocity of hammer B just before impact, and

h = Distance from release to impact

= Distance of c.g. of mass B below C = 250 mm = 0.25 m ...(Given)

Fig. 3.8
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We know that K.E. of hammer B

= Loss of P.E. from relase to impact

2
1 1

1
. . .

2
ω =I m g h    or     

2 2
1 1 1

1
( ) . .

2
ω =m k m g h

     
2 21

0.7 (0.27) 0.7 9.81 0.25 (1 cos 20 )
2

× ω = × × − °

0.0255 ω2 = 0.1032

∴                      ω2 =  0.1032 / 0.0255 = 4.05   or  ω = 2.01 rad/s

Let ω
A

 and ω
B
 be the angular velocities of the anvil A  and hammer B, in the same direction,

immediately after impact.

∴ Relative linear velocity

= ω
A 

× DL – ω
A

 × CM = ω
A

 × 0.2 – ω
B
 × 0.275

... (DL and CM are taken in metres)

= 0.2 ω
A

 – 0.275 ω
B

... (i)

But, relative linear velocity

= 0.8 × Relative linear velocity of impact ... (Given)

= 0.8ω × CM = 0.8 × 2.01 × 0.275 = 0.44 ... (ii)

Equating (i) and (ii),

   0.2 ω
A

 – 0.275 ω
B
 = 0.44    or   ω

B
 = 0.727 ω

A
 – 1.6 ... (iii)

Since the linear impulse at E is equal and opposite on A  and B, then by moments about D for

A and about C for B, it follows that the ratio

 
Decrease in angular momentum of 0.275

Increase in angular momentum of 0.2

B CM

A DL
= =

i.e. B B

A B

( ) 0.275
1.375

. 0.2

I

I

ω − ω
= =

ω

           

2
1 1 B

2
2 2 A

( ) ( )
1.375

( )

m k

m k

ω − ω
=

ω
      or     

2
B

2
A

0.7 (0.27) (2.01 )
1.375

2.4 (0.185)

− ω
=

ω

∴                   2.01– ω
B
 = 2.21 ω

A
 or    ω

B
 = 2.01 – 2.21 ω

A
... (iv)

From equations (iii) and (iv), we get

        0.727 ω
A

– 1.6  = 2.01 – 2.21 ω
A

  0.727 ω
A 

+ 2.21 ω
A

= 2.01 + 1.6     or     ω
A

 = 1.23 rad/s     Ans.

Substituting ω
A

 = 1.23 rad/s in equation (iv),

ω
B
 = 2.01 – 2.21 × 1.23 = – 0.71 rad/s

                              = 0.71 rad/s, in reverse direction     Ans.
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Example 3.11. The pendulum of an Izod impact testing machine has a mass of 30 kg. The

centre of gravity of the pendulum is 1 m from the axis of suspension and the striking knife is 150 mm

below the centre of gravity. The radius of gyration about the point of suspension is 1.1 m, and about

the centre of gravity is 350 mm. In making a test, the pendulum is released from an angle of 60° to

the vertical. Determine : 1. striking velocity of the pendulum, 2. impulse on the pendulum and

sudden change of axis reaction when a specimen giving an impact value of 54 N-m is broken,

3. angle of swing of the pendulum after impact, and 4. average force exerted at the pivot and at the

knife edge if the duration of impact is assumed to be 0.005 second.

Solution. Given : m = 30 kg ;  AG = a = 1 m ; GB = b = 150 mm = 0.15 m ; k
1
 = 1.1 m;

k
2
 = 350 mm = 0.35 m ; θ = 60° ; t = 0.005 s

We know that mass moment of inertia of the pendulum about the point of suspension A ,

I
A

 = m (k
1
)2 = 30 (1.1)2 = 36.3 kg-m2

and mass moment of inertia of the pendulum about centre of

gravity G,

I
G

 = m (k
2
)2 = 30 (0.35)2

= 3.675 kg-m2

1. Striking velocity of the pendulum

Let v = Striking velocity of the

pendulum, and

ω = Angular velocity of the

pendulum.

Since the potential energy of the pendulum is converted into angular kinetic energy of the

pendulum, therefore,

2
1 A

1
. . .

2
m g h I= ω

30 × 9.81 (1 – 1 cos 60°) = 
21

36.3
2

× ω ... (�   h
1
 = a – a cos 60°)

or 147.15 = 18.15 ω2

∴ ω2 = 147.15/18.15 = 8.1   or   ω = 2.85 rad/s

and v = ω × A B = ω (a + b) = 2.85 (1 +  0.15) = 3.28 m/s    Ans.

2.  Impulse on the pendulum

Let F
1

= Impulse at the pivot A ,

F
2

= Impulse at the knife edge B,

ω = Angular velocity of the pendulum just before the breakage of the

specimen, and

ω
1

= Angular velocity of the pendulum just after the breakage of the specimen.

Since the loss in angular kinetic energy of the pendulum is equal to the energy used for

breaking the specimen (which is 54 N-m ), therefore

2 2
A 1

1
( ) 54

2
ω − ω =I or

2 2
1

1
36.3 (2.85 ) 54

2
× − ω =

Fig. 3.10
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∴ 2 2
1

54 2
(2.85) 5.125

36.3

×
ω = − =  or 1 2.26 rad/sω =

Let v
G

 and v
G
′ be the linear velocities of G just before and just after the breakage of specimen.

G 2.85 1 2.85m/sv OG= ω× = × =

and G 1 2.26 1 2.26m/sv OG′ = ω × = × =

We know that  Impulse = Change of linear momentum

F
1
 + F

2
 = m (v

G
 – v

G
′) = 30 (2.85 – 2.26) = 17.7 N ... (i)

Taking moments about G, we get

     Impulsive torque = Change of angular momentum

        F
2
 × b – F

1
 × a = I

G
 (ω – ω

1
)

  F
2
 × 0.15 – F

1
 × 1 = 3.675 (2.85 – 2.26) = 2.17 ... (ii)

From equations (i) and (ii),

F
2
 = 17.3 N ; and F

1
 = 0.4 N   Ans.

3. Angle of swing of the pendulum after impact

Let θ = Angle of swing of the pendulum after impact.

Since work done in raising the pendulum is equal to angular kinetic energy of the pendulum,

therefore

  m.g.h
1
 = 

2
A 1

1

2
( )I ω

          30 × 9.81 (1 – 1 cos θ) = 
21

2
36.3 (2.26) 92.7× =

 1 – 1 cos θ = 92.7/30 × 9.81 = 0.315 or cos θ = 1 – 0.315 = 0.685

∴   θ = 46.76°   Ans.

4.  Average force exerted at the pivot and at the knife edge

We know that average force exerted at the pivot

1 0.4
80 N

0.005

F

t
= = =  Ans.

and average force exerted at the knife edge

2 17.3
3460 N

0.005

F

t
= = =  Ans.

Example 3.12. A motor drives a machine through a friction clutch which transmits a torque

of 150 N-m, while slip occurs during engagement. The rotor, for the motor, has a mass of 60 kg, with

radius of gyration 140 mm and the inertia of the machine is equivalent to a mass of 20 kg at the

driving shaft with radius of gyration 80 mm. If the motor is running at 750 r.p.m. and the machine

is at rest, find the speed after the engagement of the clutch and the time taken. What will be the

kinetic energy lost during the operation ?
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Solution. Given : T = 150 N-m ; m
1
 = 60 kg ; k

1
 = 140 mm = 0.14 m ; m

2
 = 20 kg ;

k
2
 = 80 mm = 0.08 m ; N

1
 = 750 r.p.m.  or   ω

1 
= 2 π × 750/60 = 78.55 rad/s ; N

2
 = 0  or  ω

2
 = 0

We know that mass moment of inertia of the rotor on motor,

2 2 2
1 1 1( ) 60 (0.14) 1.176 kg-mI m k= = =

and mass moment of inertia of the parts attached to machine,

I
2
 = m

2 
(k

2
)2 = 20 (0.08)2 = 0.128 kg-m2

Speed after the engagement of the clutch and the time taken

Let     ω = Speed after the engagement of the clutch in rad/s,

     t = Time taken in seconds, and

    α = Angular acceleration during the operation in rad/s2.

We know that the impulsive torque = change of angular momentum

 ∴ T.t = I
1
 (ω

1
 – ω) or 1 1( ) 1.176 (78.55 )

s
150

I
t

T

ω − ω − ω
= =      ... (i)

Also T.t = I
2
 (ω

2
 – ω) or 2 2( ) 0.128

s
150

I
t

T

ω − ω × ω
= = ... (ii)

Equating equations (i) and (ii), ... (�  ω
2
 = 0)

1.176 (78.55 )

150

− ω
 

0.128

150

ω
= or 92.4 – 1.176 ω = 0.128 ω

1.304 ω = 92.4 or ω = 92.4/1.304 = 70.6 rad/s Ans.

 Substituting the value of ω in equation (ii),

0.128 70.6
0.06 s

150
t

×
= =  Ans.

Kinetic energy lost during the operation

We know that the kinetic energy lost during the operation,

2 2
1 2 1 2 1 2 1

1 2 1 2

. ( ) . .

2 ( ) 2 ( )

I I I I
E

I I I I

ω − ω ω
= =

+ +
... (�  ω

2
 = 0)

2
1.176 0.128 (78.55) 928.8

356 N-m
2 (1.176 0.128) 2.61

×
= = =

+
 Ans.

3.20. Torque Required to Accelerate a
Geared System

Consider that the two shafts A  and B are geared together

as shown in Fig. 3.11. Let the shaft B rotates G times the speed

of shaft A . Therefore, gear ratio,

B

A

N
G

N
=

where N
A

 and N
B
 are speeds of shafts A  and B  (in r.p.m.)

respectively.

Since the shaft B turns G times the speed of shaft A ,

therefore the rate of change of angular speed of shaft B with

Fig. 3.11. Torque to accelerate a

geared system.
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respect to time (i.e. angular acceleration of shaft B, α
B
 ) must be equal to G times the rate of change

of angular speed of shaft A  with respect to time (i.e. angular acceleration of shaft A , α
A

 ).

∴ α
B
 = G.α

A
...(i)

Let I
A

 and I
B

= Mass moment of inertia of the masses attached to shafts A  and B

respectively.

∴ Torque required on shaft A  to accelerate itself only,

T
A

 = I
A

.α
A

and torque required on shaft B to accelerate itself only,

T
B
 = I

B
.α

B
 = G.I

B
.α

A
... [From equation (i)]  ... (ii)

In order to provide a torque T
B
 on the shaft B, the torque applied to shaft A must be G × T

B
.

Therefore, torque applied to shaft A  in order to accelerate shaft B,

T
AB

 = G.T
B
 = G2.I

B
.α

A
... [From equation (ii)] ... (iii)

∴ Total torque which must be applied to shaft A  in order to accelerate the geared system,

T = T
A

 + T
AB

 = I
A

.α
A

 + G2.I
B
.α

A

= (I
A

 + G2.I
B
) α

A
 = I.α

A
... (iv)

where I = I
A

 + G2. I
B
 and may be regarded as equivalent mass moment of inertia of geared system

referred to shaft A .

Let the torque T required to accelerate the geared system, as shown in Fig. 3.11, is applied

by means of a force F which acts tangentially to a drum or pulley of radius r.

∴ T = F × r = I.α
A

... (v)

We know that the tangential acceleration of the drum,

a = α
A

.r     or     α
A

 = a/r

∴ ( )2
A B.

a a
F r I I G I

r r
× = × = +

2

A B... ( . )I I G I= +�

or          ( )2
A B2

. .
e

a
F I G I a m

r

= + = ... (vi)

where  ( )2
A B2

1
.

e
m I G I

r

= +  and may be regarded as equivalent mass of the system referred to the

line of action of the accelerating force F.

Notes : 1. If η is the efficiency of the gearing between the two shafts A  and B, then the torque applied to shaft

A  in order to accelerate shaft B,

2
B A

AB

. .G I
T

α
=

η

and the total torque applied to shaft A  in order to accelerate the geared system,

2 2
B A B

A AB A A A A A

. . .
. .

G I G I
T T T I I I

 α
= + = α + = + α = α  η η 

where
2

B
A

.
= +

η

G I
I I , and may be regarded as the equivalent mass moment of inertia of the geared system

referred to shaft A .

2. If the number of shafts (say A  to X  ) are geared together in series, then the equivalent mass moment

of inertia referred to shaft A  is given by,
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2

A
x x

x

G I
I I= +

η
∑

where G
x
 = Ratio of speed of shaft X  to the speed of shaft A ,

I
x
 = Mass moment of inertia of mass attached to shaft X, and

η
x
 = Overall efficiency of the gearing from shaft A  to shaft X .

3. If each pair of gear wheels is assumed to have the same efficiency η and there are m gear pairs

through which the power is transmitted from shaft A  to shaft X, then the overall efficiency from shaft A  to X  is

given by,

                       η
x
 = ηm

4. The total kinetic energy of the geared system,

                    
2

A

1
K.E. = ( )

2
ωI

where      I =  Equivalent mass moment of inertia of the geared system referred to shaft A , and

                        ω
A 

= Angular speed of shaft A.

Example 3.13. A mass M of 75 kg is hung from a

rope wrapped round a drum of effective radius of 0.3 metre,

which is keyed to shaft A. The shaft A is geared to shaft B

which runs at 6 times the speed of shaft A. The total mass

moment of inertia of the masses attached to shaft A is 100

kg-m
2
 and that of shaft B is 5 kg-m

2.

Find the acceleration of mass M if 1. it is al-

lowed to fall freely, and 2. when the efficiency of the

gearing system is 90%. The configuration of the system

is shown in Fig. 3.12.

Solution. Given : M = 75 kg ; r = 0.3 m ; N
B
 = 6 N

A

or G = N
B

/ N
A

 = 6 ; I
A

 = 100 kg-m2 ; I
B
 = 5 kg-m2; η = 90% = 0.9

Let  a = Acceleration of the mass M, in m/s2.

1. When it is allowed to fall freely

We know that equivalent mass of the geared system referred to the circumference of the

drum (or the line of action of the accelerating mass M  ),

( ) ( )2 2
A B2 2

1 1
. 100 6 5 3111 kg

(0.3)
e

m I G I

r

= + = + × =

and total equivalent mass to be accelerated,

 M
e
 = m

e
 + M = 3111 + 75 = 3186 kg

∴ Force required to accelerate this equivalent mass (M
e
)

= M
e
.a = 3186 a N ... (i)

and the accelerating force provided by the pull of gravity on the mass M suspended from the rope

= M.g = 75 × 9.81 = 736 N ... (ii)

From equations (i) and (ii),

3186 a = 736 or a = 736/3186 = 0.231 m/s2 Ans.

2. When the efficiency of the gearing system is 90%

We know that the equivalent mass of the geared system referred to the circumference of the

drum,

Fig. 3.12
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Fig. 3.13

( )

2 2
B

A2 2

.1 1 6 5
100 3333 kg

0.90.3
e

G I
m I

r

   ×
= + = + =    η   

and total equivalent mass to be accelerated,

M
e
 = m

e
 + M = 3333 + 75 = 3408 kg

∴ Force required to accelerate this equivalent mass (M
e
)

= M
e
.a = 3408 a N ... (iii)

and accelerating force provided by the pull of gravity on the mass M suspended from the rope

= M.g = 75 × 9.81 = 736 N ... (iv)

Now equating equations (iii) and (iv),

3408 a = 736    or    a = 736/3408 = 0.216 m/s2 Ans.

Example. 3.14. The motor shaft A exerts a con-

stant torque of 100 N-m and is geared to shaft B as

shown in Fig. 3.13. The moments of inertia of the parts

attached to the motor shaft A is 2 kg-m2 and that of the

parts attached to other shaft B is 32 kg-m2.

Find the gear ratio which gives the maximum

angular acceleration of shaft B and the corresponding

angular acceleration of each shaft.

Solution. Given : T = 100 N-m ; I
A

 = 2 kg-m2 ;

I
B
 = 32 kg-m2

Gear ratio which gives the maximum acceleration

Let G = Gear ratio which gives the maximum

      acceleration.

α
A

 = Angular acceleration of shaft A , and

α
B
 = Angular acceleration of shaft B.

 We know that α
A

 = G.α
B 

                                       ... (i)

∴ Torque required on motor shaft A  to accelerate rotating

parts on it,

T
A

 = I
A

. α
A

= I
A

.G. α
B

... [From equation (i)]

and torque required on motor shaft A  to accelerate rotating parts on shaft B,

B B
AB

.I
T

G

α
=

Assuming that there is no resisting torque and the torque exerted on the motor shaft A  is

utilised to overcome the inertia of the geared system.

∴

2
B B A B

A AB A B B

. .
. .

I I G I
T T T I G

G G

 α +
= + = α + = α  

 
 

or B 2
A B

.

.

G T

I G I

α =
+

... (ii)

Parallel shaft gear motor.
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For maximum angular acceleration of B, differentiate with respect to G and equate to zero, i.e.

2
A BB

.

.
0 or 0

G T
d

I G Id

dG dG

 
  

+α  
= =

2
A B A

2 2
A B

( . ) . ( 2 )
0

( . )

I G I T GT I G

I G I

+ − ×
=

+

or 2 2
A B A. 2 . 0I G I G I+ − =

∴ 2
B A.I G I= or B

A

32
4

2

I
G

I
= = =  Ans.

Angular acceleration of each shaft

Substituting the value of G in equation (ii),

2
B 2

4 100
6.25 rad/s

2 4 32

×
α = =

× +

Ans.

and 2
A B. 4 6.25 25 rad/sGα = α = × = Ans.

Example 3.15. A motor vehicle of total mass 1500 kg has road wheels of 600 mm effective

diameter. The effective moment of inertia of the four road wheels and of the rear axle together is

8 kg-m2 while that of the engine and flywheels is 1 kg-m2. The transmission efficiency is 85%

and a tractive resistance at a speed of 24 km/h is 300 N. The total available engine torque is

200 N-m. Determine :

1. Gear ratio, engine to back axle, to provide maximum acceleration on an upgrade whose

sine is 0.25, when travelling at 24 km/h,

2. The value of this maximum acceleration, and

3. The speed and power of the engine under these conditions.

Solution. Given : m = 1500 kg ; d = 600 mm = 0.6 m   or    r = 0.3 m ; I
A

 = 8 kg-m2 ;

I
B
 = 1 kg-m2; η  = 85% = 0.85 ; v = 24 km/h ; F = 300 N ; T

B
 = 200 N-m ; sin θ = 0.25

1. Gear ratio, engine to back axle, to provide maximum acceleration

Let G = Gear ratio, engine to back axle, to provide maximum acceleration.

∴ Torque at road wheels,

W B 0.85 200 170 N-mT G T G G= η × × = × × =

and available tangential force at road wheels,

W 170
567 N

0.3

T G
P G

r
= = =

Let the vehicle travels up the gradient a distance of s metre while its speed changes from u

to  v m/s.

We know that work done by the tangential force P

= Change of linear K.E. of vehicle + Change of angular K.E. of road

wheels and axle + Change of angular K.E. of engine and flywheel +

Work done in raising vehicle + Work done in overcoming tractive

resistance
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or
2 2 2 2 2 2 2

A 2 1 B 2 1

1 1 1

2 2 2
( ) ( ) . . ( ) . . . sin .P s m v u I I G m g s F s× = − + ω − ω + η ω − ω + θ +

or

22 2
A B

2 2

. .
( . .sin )

2

 η−
− θ − = + + 

 

I I Gv u
s P m g F m

r r

... (Substituting ω
1
 = u/r, and ω

2
 = v/r)

 

2 2 2

2 2

8 1 0.85
(567 1500 9.81 0.25 300) 1500

2 0.3 0.3

v u G
s G

 − × ×
− × × − = + +  

 

2 2
2

(567 3980) (1590 9.44 )
2

v u
s G G

−
− = + ... (i)

We know that linear acceleration,

2 2

2

567 3980

2 1590 9.44

v u G
a

s G

− −
= =

+
... [From equation (i)] ... (ii)

For maximum acceleration, differentiate equation (ii) with respect to G and equate to zero,

i.e.

0
da

dG
=

   

2

2 2

(1590 9.44 ) (567 3980) (9.44 2 )
0

(1590 9.44 )

G G G

G

+ − − ×
=

+

or   901 530 + 5352 G2 – 10 705 G2 + 75 142 G = 0

      G2 – 14 G – 168.4 = 0

∴

2
14 (14) 4 168.4 14 29.5

21.75
2 2

G
± + × ±

= = =  or 22 Ans.

... (Taking + ve sign)

2. Value of maximum acceleration

Substituting the value of G = 22 in equation (ii), maximum acceleration,

2

567 22 3980
1.38 m/s

1590 9.44 (22)
max

a
× −

= =

+

 Ans.

3. Speed and power of the engine

Let ω = Speed of the engine in rad/s.

We know that the speed of the road wheels,

v  = 24 km/h = 6.67 m/s ... (Given)

∴ Angular speed of the road wheels

6.67
22.23 rad/s

0.3

v

r
= = =
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Since the speed of the engine is G times the speed of the road wheels, therefore

22.23 22 22.23 489rad/sGω = × = × =  Ans.

We know that power of the engine

   = T
B
.ω = 200 × 489 = 97 800 W = 97.8 kW Ans.

Example 3.16. A super charged road racing automobile has an engine capable of giving

an output torque of 1 kN-m, this torque being reasonably constant over a speed range from

100 km/h to 275 km/h in top gear. The road wheels are of 0.9 m effective diameter, and the back axle

ratio is 3.3 to 1. When travelling at a steady speed of 170 km/h in top gear on a level road, the

power absorbed is 50 kW. The vehicle has a mass of 1000 kg, the four road wheels each has mass of

40 kg and a radius of gyration of 0.25 m. The moment of inertia of the engine and all parts forward

of the differential is 6 kg-m2.

Assuming that the resistance caused by windage and road drag varies as the square of the

speed, determine the time taken for the speed to rise from 100 km/h to 275 km/h in top gear at full

throttle on an upgrade of 1 in 30.

Solution. Given : T
B
 = 1 kN-m = 1000 N-m ; v

1
 = 100 km/h = 27.8 m/s ; v

2
 = 275 km/h =

76.4m/s ; d = 0.9 m or r = 0.45 m ; G = 3.3 ; v = 170 km/h = 47.2 m/s ; P = 50 kW = 50 × 103 W ;

M = 1000 kg ; m = 40 kg ; k = 0.25 m ; I
B
 = 1 kg-m2

We know that moment of inertia of four road wheels,

I
A

 = 4 × m.k
2 = 4 × 40 (0.25)2 = 10 kg -m2

Let F  = Resistance caused by windage and road drag in newtons.

∴ Power absorbed by the automobile at a steady speed (P),

50 × 103 = F.v = F × 47.2     or     F = 50 × 103/47.2 = 1060 N

Since the resistance caused by windage and road drag (F) varies as the square of the speed

(v), therefore

F = k.v2   or  k = F/v2 = 1060/(47.2)2 = 0.476

∴  F = 0.476 v2 N

We know that the torque at road wheels,

W E 3.3 1000 3300 N-mT G T= × = × =

and available tangential force at road wheels,

W
T

3300
7333 N

0.45

T
F

r
= = =

Since the gradient is 1 in 30, therefore proceeding in the same way as discussed in the

previous example, we get the linear acceleration,

( )

2

2 2
A B

2 22 2

. 1000 9.81
7333 0.476

30 30

. 10 1 3.3
1000

(0.45)0.45

T

M g
F F v

dv
a

dt I I G
M

r r

×
− − − −

= = =
×

+ ++ +

= 6.65 – 0.43 × 10–3 v2 – 0.3

∴
3 2 3 2

6.65 0.43 10 0.3 6.35 0.43 10

dv dv
dt

v v
− −

= =

− × − − ×
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Integrating the above expression,

Let
3 2

6.35 0.43 10

dv
dt

v
−

=

− ×
∫ ∫

3

2 2 2

10
2325

0.43 14 768 (121.5)

dv dv

v v

= =
− −

∫ ∫

∴
1

2325 121.5
log

2 121.5 121.5
e

v
t C

v

+
= +

× −
... (i)

2 2

1
... log

2
e

dv a v

a a va v

 +
= 

−− 
∫�

where C
1
 is the constant of integration. We know that when t = 0, v

1
 = 27.8 m/s.

∴ 1

2325 121.5 27.8
0 log

2 121.5 121.5 27.8
e C

+
= +

× −
... (Substituting v = v

1
)

1 1

149.3
9.6 log 9.6 log 1.6

93.7
e e

C C= + = +

∴ 1 9.6 log 1.6 9.6 0.47 4.5
e

C = − = − × = −

Now the expression (i) may be written as

2325 121.5
log 4.5

2 121.5 121.5
e

v
t

v

+
= −

× −

When v
2
 = 76.4 m/s, the time taken for the speed to rise

2325 121.5 76.4 197.9
log 4.5 9.6 log 4.5

2 121.5 121.5 76.4 45.1
e e

+
= − = −

× −

9.6 log 4.38 4.5 9.6 1.48 4.5 9.7s
e

= − = × − =  Ans.

Example 3.17. An electric motor drives a machine through a speed reducing gear of ratio

9:1. The motor armature, with its shaft and gear wheel, has moment of inertia 0.6 kg-m
2
. The

rotating part of the driven machine has moment of inertia 45 kg-m
2
. The driven machine has resist-

ing torque of 100 N-m and the efficiency of reduction gear is 95%. Find

1. The power which the motor must develop to drive the machine at a uniform speed of 160

r.p.m.,

2. The time required for the speed of the machine to increase from zero to 60 r.p.m., when the

torque developed on the motor armature in starting from rest is 30 N-m, and

3. If the gear ratio were altered so as to give the machine the greatest possible angular

acceleration in starting from rest, what would then be the gear ratio ? The starting torque of the

motor is 30 N-m as before.

Solution. Given : G = 9; I
A

 = 0.6 kg-m2; I
B

 = 45 kg-m2; T
B

 = 100 N-m;

η = 95% = 0.95; N = 160 r.p.m. ; N
1
 = 0 ; N

2
 = 60 r.p.m. ; T

A
 = 30 N-m

A motor driving a machine is shown in Fig. 3.14.
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1. Power which the motor must develop

We know that the power which the motor must develop,

B2 . 2 160 100
W

60 60 0.95

N T
P

π π × ×
= =

× η ×

= 1764 W = 1.764 kW Ans.

2. Time required for the speed of the machine to increase from

    zero to 60 r.p.m.

Let          t   =   Time required for the speed of  the

     machine to increase from zero to 60 r.p.m.

α
A

= Angular acceleration of motor, and

α
B

= Angular acceleration of machine.

Since the speed of motor A  is G times the speed of machine B, therefore

 α
A

= G.α
B
 = 9 α

B

We know that torque developed on motor armature,

T
A

= 30 N-m ... (Given)

Due to the torque (T
A

) and efficiency of gearing (η), the torque transmitted to machine B,

T
B1

 = G.T
A

.η = 9 × 30 × 0.95 = 256.5 N-m

We know that resisting torque on machine B,

T
B
 = 100 N-m ... (Given)

∴ Net torque on machine B

= T
B1 

– T
B
 = 256.5 – 100 = 156.5 N-m ... (i)

We know that total torque to be applied to machine B in order to accelerate the geared system

= Torque required on B to accelerate B only + Torque required on B

to accelerate A

= I
B
.α

B
 + G.T

A
.η = I

B
.α

B
 + G.I

A
.α

A
.η ... (∵ T

A 
= I

A
.α

A
)

= I
B
.α

B
 + G2. I

A
 .α

B
.η ...(∵ α

A
= G.α

B
)

= 45 α
B
 + 92 × 0.6 × α

B
 × 0.95 = 45 α

B
 + 46.2 α

B

= 91.2 α
B

... (ii)

Equating equations (i) and (ii),

α
B
 = 156.5/91.2 = 1.7 rad/s2

We are given that initial angular speed, ω
1
 = 0, and final angular speed,

2
2

2 2 60
6.28 rad/s

60 60

Nπ π ×
ω = = = ... (∵  N

2
 = 60 r.p.m.)

We know that ω
2
 = ω

1
 + α

B
.t

6.28 = 0 + 1.7 t = 1.7 t       or      t = 6.28/1.7 = 3.7 s Ans.

3. Gear ratio for maximum angular acceleration of the machine

Let G
1 

= Gear ratio for maximum angular acceleration of the machine.

Fig. 3.14
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We know that net torque on machine B

= T
B1

 – T
B
 = G

1
.T

A
.η – T

B
 = G

1
 × 30 × 0.95 – 100

= 27.5 G
1
 – 100 ...(iii)

We also know that total torque required to be applied to machine B in order to accelerate the

geared system

= I
B
.α

B
 + (G

1
)2 α

B
.I

A
.η

= 45 × α
B
 + (G

1
)2 α

B
 × 0.6 × 0.95 = α

B
 [45 + 0.57 (G

1
)2] ...(iv)

From equations (iii) and (iv),

1
B 2

1

27.5 100

45 0.57 ( )

G

G

−
α =

+

For maximum angular acceleration, differentiate the above expression and equate to zero, i.e.

B

1

0
d

d G

α
=

or

2
1 1 1

2
1

[45 0.57 ( ) ] (27.5) (27.5 100) (2 0.57 )
0

[45 0.57 ( ) ]

G G G

G

+ − − ×
=

+

1237.5 + 15.675 (G
1
)2 – 31.34 (G

1
)2 + 114 G

1
 = 0

15.675 (G
1
)2 – 114 G

1
 – 1237.5 = 0

(G
1
)2 – 7.27 G

1
 – 78.95 = 0

∴

2

1

7.27 (7.27) 4 78.95 7.27 19.2
13.235

2 2
G

± + × ±
= = =  Ans.

... (Taking + ve sign)

Example 3.18. A hoisting gear, with a 1.5 m diameter drum, operates two cages by ropes

passing from the drum over two guide pulleys of 1 m diameter. One cage (loaded) rises while the

other (empty) descends. The drum is driven by a motor through double reduction gearing. The

particulars of the various parts are as follows :

S.No. Part Maximum Mass (kg) Radius of Frictional

Speed (r.p.m.) gyration (mm) resistance

1. Motor 900 200 90 –

2. Intermediate gear 275 375 225 150 N-m

3. Drum and shaft 50 2250 600 1125 N-m

4. Guide pulley (each) – 200 450 150 N-m

5. Rising rope and cage – 1150 – 500 N

6.  Falling rope and cage – 650 – 300 N

Determine the total motor torque necessary to produce a cage an acceleration of 0.9 m/s2.

Solution. Given : d = 1.5 m or r = 0.750 m ; d
1
 = 1 m ; N

M
 = 900 r.p.m ; N

1
 = 275 r.p.m. ;

N
D

 = 50 r.p.m ; m
M

 = 200 kg; k
M

 = 90 mm = 0.09 m ; m
I
 = 375 kg ; k

I
 = 225 mm = 0.225 m ;

M
D

 = 2250 kg ; k
D

 = 600 mm = 0.6 m ; m
P
 = 200 kg ; k

P
 = 450 mm = 0.45 m ; m

1
 = 1150 kg ;

m
2
 = 650 kg ; F

I
 = 150 N-m ; F

D
 = 1125 N-m ; F

P
 = 150 N-m ; F

1
 = 500 N ; F

2
 = 350 N ; a = 0.9 m/s2
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Fig. 3.15

We know that speed of guide pulley (P),

P D

1

1.5
50 75 r.p.m.

1

d
N N

d
= × = × =

Gear ratio for the intermediate gear and motor,

 1 1 M/ 275 / 900 0.306G N N= = =

Gear ratio for the drum and motor,

2 D M/ 50 / 900 0.055G N N= = =

Gear ratio for the guide pulley and motor,

3 P M/ 75 / 900 0.083G N N= = =

Mass moment of inertia of the motor,

2 2 2
M M M( ) 200 (0.09) 1.62 kg-mI m k= = =

Mass moment of inertia of the intermediate gear,

2 2 2
I I I( ) 375 (0.225) 18.98 kg-m= = =I m k

Mass moment of inertia of the drum and shaft,

2 2 2
D D D( ) 2250 (0.6) 810 kg-mI m k= = =

Mass moment of inertia of the guide pulley,

2 2 2
P P P( ) 200 (0.45) 40.5 kg-mI m k= = =

and angular acceleration of the drum,

2
D / 0.9 / 0.75 1.2 rad/sa rα = = =
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* The bodies, which rebound after impact are called elastic bodies and the bodies which does not rebound at

all after its impact are called inelastic bodies.

Since the speed of the drum (N
D

) is 0.055 times the speed of motor (N
M

), therefore angular

acceleration of the drum (α
D

),

1.2 = 0.055 α
M

or α
M

 = 1.2 / 0.055 = 21.8 rad/s2

We know that the equivalent mass moment of inertia of the system (i.e. motor, intermediate

gear shaft and wheel,drum and two guide pulleys) referred to motor M ,

I = I
M

 + (G
1
)2 I

I
 + (G

2
)2 I

D
 + 2 (G

3
)2 I

P

  = 1.62 + (0.306)2 18.98 + (0.055)2 810 + 2 (0.083)2 40.5

  = 1.62 + 1.78 + 2.45 + 0.56 = 6.41 kg-m2

∴  Torque at motor to accelerate the system,

T
1
 = I.α

M
 = 6.41 × 21.8 = 139.7 N-m

and torque at motor to overcome friction at intermediate gear, drum and two guide pulleys,

T
2
 = G

I
.F

I
 + G

2
.F

D
 + 2 G

3
.F

P

     = 0.306 × 150 + 0.055 × 1125 + 2 × 0.83 × 150 N-m

    = 45.9 + 61.8 + 25 = 132.7 N-m

Now for the rising rope and cage as shown in Fig. 3.15, tension in the rope between the

pulley and drum,

Q
1

= Weight of rising rope and cage + Force to accelerate rising rope

and cage (inertia force) + Frictional resistance

= m
1
.g + m

1
.a + F

1
 = 1150 × 9.81 + 1150 × 0.9 + 500

= 12 816 N

Similarly for the falling rope and cage, as shown in Fig. 3.15, tension in the rope between

the pulley and drum,

Q
2

= Weight of falling rope and cage – Force to accelerate falling

rope and cage (inertia force) – Frictional resistance

= m
2
.g – m

2
.a – F

2
 = 650 × 9.81 – 650 × 0.9 – 350 = 5441 N

∴  Torque at drum, T
D

 = (Q
1
 – Q

2
) r = (12 816 – 5441) 0.75 = 5531 N-m

and torque at motor to raise and lower cages and ropes and to overcome frictional resistance

T
3
 = G

2
 × T

D
 = 0.055 × 5531 = 304 N-m

∴ Total motor torque required,

T = T
1
 + T

2
 + T

3
 = 139.7 + 132.7 + 304 = 576.4 N-m Ans.

3.21. Collision of Two Bodies

Consider the impact between two bodies which move with different velocities along the

same straight line. It is assumed that the point of the impact lies on the line joining the centers of

gravity of the two bodies. The behaviour of these colliding bodies during the complete period of

impact will depend upon the properties of the materials of which they are made. The material of the

two bodies may be *perfectly elastic or perfectly inelastic.

In either case, the first effect of impact is approximately the same. The parts of each body

adjacent to the point of impact is deformed and the deformation will continue until the centre of

gravity of the two bodies are moving with the same velocity. Assuming that there are no external

forces acting on the system, the total momentum must remain constant.
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3.22. Collision of Inelastic Bodies

When two *inelastic bodies A  and B, as shown in Fig. 3.16 (a), moving with different ve-

locities, collide with each other as shown in Fig. 3.16 (b), the two bodies will remain together after

impact and will move together with a common velocity.

Let m
1
 = Mass of first body A .

m
2
 = Mass of second body B.

u
1
 and u

2 
= Velocities of bodies A  and B respectively before impact, and

v = Common velocity of bodies A and B after impact.

(a) Before impact. (b) After impact.

Fig. 3.16. Collision of inelastic bodies.

A little consideration will show that the impact will take place only, if u
1 

is greater than u
2
.

Now according to principle of conservation of momentum,

Momentum before impact = Momentum after impact

  m
1
.u

1
 + m

2
.u

2
 = (m

1
 + m

2
) v

∴
1 1 2 2

1 2

. .m u m u
v

m m

+
=

+
... (i)

The loss of kinetic energy during impact may be obtained by finding out the kinetic energy

of the two bodies before and after impact. The difference between the two kinetic energies of the

system gives the loss of kinetic energy during impact.

We know that the kinetic energy of the first body, before impact

2
1 1

1
( )

2
= m u

and kinetic energy of the second body, before impact

2
2 2

1
( )

2
= m u

∴ Total kinetic energy of the system before impact,

2 2
1 1 1 2 2

11
( ) ( )

2 2
= +E m u m u

When the two bodies move with the same velocity v after impact, then

Kinetic energy of the system after impact,

2
2 1 2

1
( )

2
= +E m m v

∴ Loss of kinetic energy during impact,

2 2 2
L 1 2 1 1 2 2 1 2

1 1 1
. . ( )

2 2 2
E E E m u m u m m v= − = + − +

Point of impact

* The impact between two lead spheres or two clay spheres is approximately  an inelastic impact.
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2

2 2 1 1 2 2
1 1 2 1 1 2

1 2

. .1 1 1
. . ( )

2 2 2

m u m u
m u m u m m

m m

 +
= + − +  

+ 

. . . [From equation (i)]

2
2 2 1 1 2 2

1 1 2 2

1 2

( . . )1 1
. .

2 2 2 ( )

m u m u
m u m u

m m

+
= + −

+

2 2 2
1 2 1 1 2 2 1 1 2 2

1 2

1
( ) ( ) ( )

2 ( )
m m m u m u m u m u

m m

 = + + ⋅ + ⋅ − ⋅ + ⋅
 +

. . . [Multiplying the numerator and denominator by (m
1 

+ m
2
)]

2 2 2 2 2 2
1 1 1 2 2 1 2 1 2 2

1 2

1
. . . . . .

2( )
m u m m u m m u m u

m m

= + + +
+

2 2 2 2
1 1 2 2 1 2 1 2. . 2m u m u m m u u − − − 

2 2
1 2 2 1 2 1 1 2 1 2

1 2

1
. . . . 2

2( )
m m u m m u m m u u

m m

 = + −
 +

2 2 21 2 1 2
1 2 1 2 1 2

1 2 1 2

. .
2 . ( )

2( ) 2( )

m m m m
u u u u u u

m m m m

 = + − = −
 + +

This *loss of kinetic energy is used for doing the work in deforming the two bodies and is

absorbed in overcoming internal friction of the material. Since there will be no strain energy stored

up in the material due to elastic deformation, therefore the bodies cannot regain its original shape.

Hence the two bodies will adhere together and will move with reduced kinetic energy after impact.

The reduction of kinetic energy appears as heat energy because of the work done in overcoming the

internal friction during deformation.

3.23. Collision of Elastic Bodies

When two elastic bodies, as shown in Fig. 3.17 (a), collide with each other, they suffer a

change of form. When the bodies first touch, the pressure between them is zero. For a short time

thereafter, the bodies continue to approach each other and the pressure exerted by one body over the

other body increases. Thus the two bodies are compressed and deformed at the surface of contact

due to their mutual pressures.

Fig. 3.17.  Collision of elastic bodies.

If one of the bodies is fixed then the other will momentarily come to rest and then rebound.

However, if both the bodies are free to move, then each body will momentarily come to rest relative

to the other. At this instant, the pressure between the two bodies becomes maximum and the

deformation is also a maximum. At this stage the two bodies move with a **common velocity, as

shown in Fig. 3.17 (b).

** This common velocity (v) may be calculated as discussed in the previous article.

* According to principle of conservation of energy, the energy cannot be lost.
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The work done in deforming the two bodies is stored up as strain energy. Since no energy is

absorbed in overcoming internal friction, therefore there will be no conversion of kinetic energy into

heat energy. Thus immediately after the instant at which the two bodies move with same velocity, the

bodies begin to regain their original shape.This process of regaining the original shape is called

restitution.

The strain energy thus stored is reconverted into kinetic energy and the two bodies

ultimately separates as shown in Fig. 3.17 (c). In this case, the change of momentum of each body

during the second phase of impact (i.e. when the bodies are separating) is exactly equal to the

change of momentum during the first phase of impact (i.e. when the bodies are approaching or

colliding).

Let m
1 

= Mass of the first body,

 u
1 

= Velocity of the first body before impact,

 v
1 

= Velocity of the first body after impact,

             m
2
, u

2 
and v

2 
= Corresponding values for the second body, and

  v = Common velocity of the two bodies at the instant when

        compression has just ended.

∴ Change of momentum of first body during the second phase of impact

     = m
1 

(v
1 

– v)

and change of momentum of the same body during first phase of impact

     = m
1 

(v – u
1
)

∴ m
1 

(v
1 

– v) = m
1 

(v – u
1
)      or     v

1 
= 2 v – u

1
... (i)

Similarly, for the second body, change of momentum of the second body during second

phase of impact

     = m
2 

(v
2 

– v)

and change of momentum of the second body during first phase of impact

    = m
2 

(v – u
2
)

∴  m
2 

(v
2 

– v) = m
2 

(v – u
2
) or v

2 
= 2v – u

2
... (ii)

Subtracting equation (ii) from equation (i), we get

v
1 

– v
2 

= (u
2 

– u
1
) = – (u

1 
– u

2
)  ... (iii)

Therefore, we see that the relative velocity of the two bodies after impact is equal and

opposite to the relative velocity of the two bodies before impact. Due to the fact that physical bodies

are not perfectly elastic, the relative velocity of two bodies after impact is always less than the

relative velocity before impact. The ratio of the former to the latter is called coefficient of restitu-

tion and is represented by e. Mathematically, coefficient of restitution,

1 2

1 2

Relative velocityafter impact

Relative velocity beforeimpact ( )

v v
e

u u

−
= =

− −

1 2

2 1

v v

u u

−
=

−
or

2 1

1 2

v v

u u

−

−

The value of e = 0, for the perfectly inelastic bodies and e = 1 for perfectly elastic bodies. In

case the bodies are neither perfectly inelastic nor perfectly elastic, then the value of e lies between 0

and 1.
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The final velocities of the colliding bodies after impact may be calculated as discussed below:

Since the change of velocity of each body during the second phase of impact is e times the

change of velocity during first phase of impact, therefore for the first body,

v
1 

– v = e (v – u
1
)   or     v

1 
= v (1 + e) – e.u

1
...(iv)

Similarly for the second body,

v
2 

– v = e (v – u
2
) or v

2 
= v (1 + e) – e.u

2
 ...(v)

When e = 1, the above equations (iv) and (v) reduced to equations (i) and (ii).

Notes : 1. The time taken by the bodies in compression, after the instant of collision, is called the time of

compression or compression period.

2. The period of time from the end of the compression stage to the instant when the bodies separate (i.e.

the time for which the restitution takes place) is called time of restitution or restitution period.

3. The sum of compression period and the restitution period is called period of collision or period of

impact.

4. The velocities of the two bodies at the end of restitution period will be different from their common

velocity at the end of the compression period.

3.24. Loss of Kinetic Energy During Elastic Impact

Consider two bodies 1 and 2 having an elastic impact as shown in Fig. 3.17.

Let m
1 

= Mass of the first body,

u
1 

= Velocity of the first body before impact,

v
1 

= Velocity of the first body after impact,

m
2
, u

2 
and v

2 
= Corresponding values for the second body,

e = Coefficient of restitution, and

E
L
= Loss of kinetic energy during impact.

We know that the kinetic energy of the first body, before impact

   
2

1 1

1
.

2
= m u

Similarly, kinetic energy of the second body, before impact

   
2

2 2

1
.

2
= m u

∴  Total kinetic energy of the two bodies, before impact,

2 2
1 1 1 2 2

1 1
.

2 2
= + ⋅E m u m u    . . . (i)

Similarly, total kinetic energy of the two bodies, after impact

2 2
2 1 1 2 2

1 1
.

2 2
= + ⋅E m v m v               . . . (ii)

∴  Loss of kinetic energy during impact,

           
2 2 2 2

1 2 1 1 2 2 1 1 2 2

1 1 1 1
. . .

2 2 2 2
LE E E m u m u m v m v

   
= − = + − + ⋅   

   
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   ( ) ( )2 2 2 2
1 1 2 2 1 1 2 2

1
. . .

2
m u m u m v m v = + − + ⋅

 

Multiplying the numerator and denominator by (m
1 

+ m
2
),

( )
( ) ( ) ( ) ( )2 2 2 2

1 2 1 1 2 2 1 2 1 1 2 2

1 2

1
.

2
L

E m m m u m u m m m v m v
m m

 = + ⋅ + ⋅ − + + ⋅
 +

      
( )

( )
2 2 2 2 2 2
1 1 1 2 2 1 2 1 2 2

1 2

1
. . . .

2
m u m m u m m u m u

m m

= ⋅ + ⋅ + +
+

( )2 2 2 2 2 2
1 1 1 2 2 1 2 1 2 2m v m m v m m v m v − ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅



( )
{ }2 2 2 2 2 2

1 1 2 2 1 2 1 2

1 2

1
( )

2
m u m u m m u u

m m

= ⋅ + ⋅ + ⋅ +
+

{ }2 2 2 2 2 2
1 1 2 2 1 2 1 2(m v m v m m v v − ⋅ + ⋅ + ⋅ +



( )
( ) ( ) ( ) ( ){ }

2 2

1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2

1
. . 2 . 2

2

= + − + − +
+

m u m u m m u u m m u u m m u u
m m

( ) ( ) ( ) ( ){ }
2 2

1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2. . 2 . 2 − + − + − +


m v m v m m v v m m v v m m v v

( )
( ) ( ){ }

( ) ( ){ }

2 2

1 1 2 2 1 2 1 2

1 2

2 2

1 1 2 2 1 2 1 2

1
. . .

2

. . .

m u m u m m u u
m m

m v m v m m v v

= + + −
+

− + + −


We know that in an elastic impact,

Total momentum before impact = Total momentum after impact

i.e. m
1
.u

1 
+ m

2
.u

2 
= m

1
.v

1 
+ m

2
.v

2

or (m
1
.u

1 
+ m

2
.u

2 
)2 =  (m

1
.v

1 
+ m

2
.v

2 
)2   ... (Squaring both sides)

∴∴∴∴∴ Loss of kinetic energy due to impact,

( )

2 2
L 1 2 1 2 1 2 1 2

1 2

1
. ( ) . ( )

2
E m m u u m m v v

m m

 = − − −
 +

Substituting  v
1 

– v
2 

= e (u
1 

– u
2
) in the above equation,

( )

2 2 2
L 1 2 1 2 1 2 1 2

1 2

1
. ( ) . . ( )

2
E m m u u m m e u u

m m

 = − − −
 +

 
( )

2 21 2
1 2

1 2

.
( ) (1 )

2
= − −

+

m m
u u e

m m

Notes : 1. The loss of kinetic energy may be found out by calculating the kinetic energy of the system before

impact, and then by subtracting from it the kinetic energy of the system after impact.
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2.  For perfectly inelastic bodies, e = 0, therefore

21 2

L 1 2

1 2

.
( )

2( )
= −

+

m m
E u u

m m
  . . . (same as before)

3.  For perfectly elastic bodies, e = l, therefore E
L
 = 0.

4. If weights (instead of masses) of the two bodies are given, then the same may be used in all the

relations.

Example 3.19. A sphere of mass 50 kg moving at 3 m/s overtakes and collides with another

sphere of mass 25 kg moving at 1.5 m/s in the same direction. Find the velocities of the two masses

after impact and loss of kinetic energy during impact in the following cases :

1. When the impact is inelastic, 2. When the impact

is elastic, and 3. When coefficient of restitution is 0.6.

Solution. Given : m
1 

= 50 kg ; u
1 

= 3 m/s ;

m
2 

= 25 kg ; u
2 

= 1.5 m/s

1.  When the impact is inelastic

In case of inelastic impact, the two spheres adhere

after impact and move with a common velocity. We know

that common velocity after impact,

1 1 2 2

1 2

. . 50 3 25 1.5
2.5m s

50 25

+ × + ×
= = =

+ +

m u m u
v

m m
 Ans.

and loss of kinetic energy during impact,

2 21 2
L 1 2

1 2

. 50 25
( ) (3 1.5) N - m

2( ) 2 (50 25)

m m
E u u

m m

×
= − = −

+ +

=  18.75 N-m Ans.

2. When the impact is elastic

Let v
1 

= Velocity of the first sphere immediately after impact, and

v
2 

= Velocity of the second sphere immediately after impact.

We know that when the impact is elastic, the common velocity of the two spheres is the same

i.e. common velocity, v = 2.5 m/s.

∴ v
1 

= 2v – u
1 

= 2 × 2.5 – 3 = 2 m/s Ans.

and v
2 

= 2v – u
2 

= 2 × 2.5 – 1.5 = 3.5 m/s Ans.

We know that during elastic impact, there is no loss of kinetic energy, i.e.  E
L 

= 0 Ans.

3.  When the coefficient of restitution, e = 0.6

We know that    v
1 

= (1 + e) v – e.u
1 

= (1 + 0.6) 2.5 – 0.6 × 3 = 2.2 m/s Ans.

and       v
2 

= (1 + e) v – e.u
2 

= (1 + 0.6) 2.5 – 0.6 × 1.5 = 3.1 m/s Ans.

Loss of kinetic energy during impact,

2 21 2
L 1 2

1 2

.
( ) (1 )

2 ( )

m m
E u u e

m m
= − −

+

2 250 25
(3 1.5) (1 0.6 ) 12 N - m

2 (50 25)

×
= − − =

+
Ans.
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Example 3.20. A loaded railway wagon has a mass of 15 tonnes and moves along a level

track at 20 km/h. It over takes and collides with an empty wagon of mass 5 tonnes, which is moving

along the same track at 12 km/h. If the each wagon is fitted with two buffer springs of stiffness 1000

kN/m, find the maximum deflection of each spring during impact and the speeds of the wagons

immediately after impact ends.

If the coefficient of restitution for the buffer springs is 0.5, how would the final speeds be

affected and what amount of energy will be dissipated during impact ?

Solution. Given : m
1 

= 15 t = 15 000 kg ; u
1 

= 20 km/h = 5.55 m/s ; m
2 

= 5 t = 5000 kg ;

u
2 

= 12 km/h = 3.33 m/s ; s = 1000 kN/m = 1 × 106 N/m ; e = 0.5

During impact when both the wagons are moving at the same speed (v) after impact, the

magnitude of the common speed (v) is given by

1 1 2 2

1 2

. . 15 000 5.55 5000 3.33
5 m / s

15 000 5000

m u m u
v

m m

+ × + ×
= = =

+ +
 Ans.

Maximum deflection of each spring

Let x = Maximum deflection of each buffer spring during impact, and

s = Stiffness of the spring = 1000 kN/m = 1 × 106 N/m          ... (Given)

∴ Strain energy stored in one spring

2 6 2 3 21 1
. 1 10 500 10 N - m

2 2
s x x x= = × × × = ×

Since the four buffer springs (two in each wagon) are strained, therefore total strain energy

stored in the springs

= 4 × 500 × 103 
x

2 = 2 × 106 
x

2 N-m       ... (i)

Difference in kinetic energies before impact and during impact

2 21 2
1 2

1 2

. 15 000 5000
( ) (5.55 3.33) N - m

2( ) 2 (15 000 5000)

m m
u u

m m

×
= − = −

+ +

= 9240 N-m ...(ii)

The difference between the kinetic energy

before impact and kinetic energy during impact is

absorbed by the buffer springs. Thus neglecting all

losses, it must be equal to strain energy stored in the

springs.

Equating equations (i) and (ii),

2 × 106 
x

2 = 9240

or x2 = 9240 / 2 × 106 = 0.00 462

∴ x = 0.068 m = 68 mm  Ans.

Speeds of the wagons immediately after impact ends

Immediately after impact ends, let v
1 

and v
2 

be the speeds of the loaded wagon and empty

wagon respectively.

We know that        v
1 

= 2v – u
1 

= 2 × 5 – 5.55 = 4.45 m/s Ans.

and v
2 

= 2v – u
2 

= 2 × 5 – 3.33 = 6.67 m/s Ans.

When the coefficient of restitution, e = 0.5 is taken into account, then

 v
1 

= (1 + e)v – e.u
1 

= (1+ 0.5) 5 – 0.5 × 5.55 = 4.725 m/s Ans.
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and                 v
2 

= (1 + e)v – e.u
2 

= (1 + 0.5)5 – 0.5 × 3.33 = 5.635 m/s Ans.

Amount of energy dissipated during impact

We know that amount of energy dissipated during impact,

2 2 21 2
L 1 2

1 2

.
( ) (1 ) 9240 (1 0.5 ) N-m

2 ( )

m m
E u u e

m m
= − − = −

+

= 9240 × 0.75 = 6930 N-m Ans.

Example 3.21. Fig. 3.18 shows a flywheel A connected through a torsionally flexible spring

to one element C of a dog clutch. The other element D of the clutch is free to slide on the shaft but

it must revolve with the shaft to which the flywheel B is keyed.

The moment of inertia of A and B are 22.5 kg-m
2

and 67.5 kg-m
2
 and the torsional stiffness of the spring is

225 N-m per radian. When the flywheel A is revolving at 150

r.p.m. and the flywheel B is at rest, the dog clutch is suddenly

engaged. Neglecting all losses, find : 1. strain energy stored

in the spring, 2. the maximum twist of the spring, and 3. the

speed of flywheel when the spring regains its initial unstrained

condition.

Solution. Given : I
A 

= 22.5 kg-m2 ; I
B 

= 67.5 kg-m2 ; q = 225 N-m/rad ; N
A 

= 150 r.p.m. or

ω
A 

= 2π × 150/60 = 15.71 rad/s

Immediately after the clutch is engaged, the element C of the clutch comes to rest

momentarily. But the rotating flywheel A  starts to wind up the spring, thus causing equal and oppo-

site torques to act on flywheels A  and B. The magnitude of the torque increases continuously until

the speeds of flywheels A  and B are equal. During this interval, the strain energy is stored in the

spring. Beyond this, the spring starts to unwind and the strain energy stored in the spring is recon-

verted into kinetic energy of the flywheels.

Since there is no external torque acting on the system, therefore the angular momentum will

remain constant. Let ω be the angular speed of both the flywheels at the instant their speeds are equal.

∴ (I
A 

+ I
B
) ω = I

A 
. ω

A
or A A

A B

. 22.5 15.71
3.93 rad/s

22.5 67.5

I

I I

ω ×
ω = = =

+ +

Kinetic energy of the system at this instant (i.e. when speeds are equal),

2 2
2 A B

1 1
( ) (22.5 67.5) (3.93) 695 N-m

2 2
E I I= + ω = + =

and the initial kinetic energy of the flywheel A ,

2 2
1 A A

1 1
( ) 22.5 (15.71) 2776 N-m

2 2
E I= ω = × =

1.  Strain energy stored in the spring

We know that strain energy stored in the spring

= E
1 

– E
2 

= 2776 – 695 = 2081 N-m Ans.

2.  Maximum twist of the spring

Let θ = Maximum twist of the spring in radians, and

q = Torsional stiffness of spring = 225 N-m/rad           ...(Given)

Fig. 3.18
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We know that the strain energy,

        
2 2 21 1

2081 . 225 112.5
2 2

q= θ = × θ = θ

∴            θ2 = 2081/112.5 = 18.5

or θ = 4.3 rad = 4.3 × 180/π = 246.3° Ans.

3.  Speed of each flywheel when the spring regains its initial unstrained condition

Let  N
A1 

and N
B1 

be the speeds of the flywheels A and B respectively, when the spring

regains its initial unstrained condition. We know that

A1 A A

60 60 3.93
2 – 2 2 150

2 2
N N N N

ω ×   
= = − = −   

π π   

= 75 – 150 = – 75 r.p.m.

 Similarly B1 B2 75 0 75 r.p.m.N N N= − = − = B...( 0)N =�

From above we see that when the spring regains its initial unstrained condition, the flywheel

A  will revolve at 75 r.p.m. in the opposite direction to its initial motion and the flywheel B will

revolve at 75 r.p.m. in same direction as the initial motion of flywheel A . Ans.

EXERCISES

1. A flywheel fitted on the crank shaft of a steam engine has a mass of 1 tonne and a radius of gyration

0.4 m. If the starting torque of the engine is 650 J which may be assumed constant, find 1. Angular

acceleration of the flywheel, and 2. Kinetic energy of the flywheel after 10 seconds from the start.

[Ans. 4.06 rad/s2 ; 131.87 kN-m]

2. A load of mass 230 kg is lifted by means of a rope which is wound several times round a drum and

which then supports a balance mass of 140 kg. As the load rises, the balance mass falls. The drum has

a diameter of 1.2 m and a radius of gyration of 530 mm and its mass is 70 kg. The frictional resistance

to the movement of the load is 110 N, and that to the movement of the balance mass 90 N. The

frictional torque on the drum shaft is 80 N-m.

Find the torque required on the drum, and also the power required, at the instant when the load has an

upward velocity of 2.5 m/s and an upward acceleration of 1.2 m/s2.

[Ans. 916.2 N-m ; 4.32 kW]

3. A riveting machine is driven by a 3.5 kW motor. The moment of inertia of the rotating parts of the

machine is equivalent to 67.5 kg-m2 at the shaft on which the flywheel is mounted. At the commence-

ment of an operation, the flywheel is making 240 r.p.m. If closing a rivet occupies 1 second and

corresponds to an expenditure of 9 kN-m of energy, find the reduction of speed of the flywheel. What

is the maximum rate at which rivets can be closed ? [Ans. 33.2 r.p.m. ; 24 per min ]

4. The drum of a goods hoist has a mass of 900 kg. It has an effective diameter of 1.5 m and a radius of

gyration of 0.6 m. The loaded cage has a mass of 550 kg and its frictional resistance in the vertical

line of travel is 270 N. A maximum acceleration of 0.9 m/s2 is required. Determine : 1. The necessary

driving torque on the drum, 2. The tension in the rope during acceleration, and 3. The power devel-

oped at a steady speed of 3.6 m/s. [Ans. 4.64 kN-m ; 6.16 kN ; 22.3 kW]

5. A valve operating in a vertical direction is opened by a cam and closed by a spring and when fully

open the valve is in its lowest position. The mass of the valve is 4 kg and its travel is 12.5 mm and the

constant frictional resistance to the motion of the valve is 10 N. The stiffness of the spring is 9.6 N/

mm and the initial compression when the valve is closed is 35 mm. Determine 1. the time taken

to close the valve from its fully open position, and 2. the velocity of the valve at the moment of

impact. [Ans. 0.0161 s ; 1.4755 m/s]
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6. A railway truck of mass 20 tonnes, moving at 6.5 km/h is brought to rest by a buffer stop. The

buffer exerts a force of 22.5 kN initially and this force increases uniformly by 60 kN for each 1 m

compression of the buffer. Neglecting any loss of energy at impact, find the maximum compression

of the buffer and the time required for the truck to be brought to rest. [Ans. 0.73 m ; 0.707 s]

7. A cage of mass 2500 kg is raised and lowered by a winding drum of 1.5 m diameter. A brake drum

is attached to the winding drum and the combined mass of the drums is 1000 kg and their radius of

gyration is 1.2 m. The maximum speed of descent is 6 m/s and when descending at this speed, the

brake must be capable of stopping the load in 6 m. Find 1. the tension of the rope during stopping

at the above rate, 2. the friction torque necessary at the brake, neglecting the inertia of the rope, and

3. In a descent of 30 m, the load starts from rest and falls freely until its speed is 6 m/s. The brake

is then applied and the speed is kept constant at 6 m/s until the load is 10 m from the bottom. The

brake is then tightened so as to give uniform retardation, and the load is brought to rest at the

bottom. Find the total time of descent. [Ans. 32 kN ; 29.78 kN-m ; 7.27 s]

8. A mass of 275 kg is allowed to fall vertically through 0.9 m on to the top of a pile of mass 450 kg.

Assuming that the falling mass and the pile remain in contact after impact and that the pile is

moved 150 mm at each blow, find allowing for the action of gravity after impact, 1. The energy lost

in the blow, and 2. The average resistance against the pile. [Ans. 13.3 kN ; 1.5 kN-m]

9. Fig. 3.19 shows a hammer of mass 6 kg and pivoted at A . It falls against a wedge of mass 1 kg

which is driven forward 6 mm, by the impact into a heavy rigid block. The resistance to the wedge

varies uniformly with the distance through which it moves, varying zero to R newtons.

Fig. 3.19 Fig. 3.20

Neglecting the small amount by which the hammer rises after passing through the vertical through

A  and assuming that the hammer does not rebound, find the value of R . [Ans. 8.38 kN]

10. Fig. 3.20 shows a tilt hammer, hinged at O, with its head A  resting on top of the pile B. The

hammer, including the arm OA, has a mass of 25 kg. Its centre of gravity G is 400 mm horizontally

from O and its radius of gyration about an axis through G parallel to the axis of the pin O is 75 mm.

The pile has a mass of 135 kg. The hammer is raised through 45° to the position shown in dotted

lines, and released. On striking the pile, there is no rebound. Find the angular velocity of the

hammer immediately before impact and the linear velocity of the pile immediately after impact.

Neglect any impulsive resistance offered by the earth into which the pile is being driven.

[Ans. 5.8 rad/s, 0.343 m/s]

11. The tail board of a lorry is 1.5 m long and 0.75 m high. It is hinged along the bottom edge to the

floor of the lorry. Chains are attached to the top corners of the board and to the sides of the lorry

so that when the board is in a horizontal position the chains are parallel and inclined at 45° to the

horizontal. A tension spring is inserted in each chain so as to reduce the shock and these are adjusted

to prevent the board from dropping below the horizontal. Each spring exerts a force of 60 N/mm of

extension.

Find the greatest force in each spring and the resultant force at the hinges when the board falls

freely from the vertical position. Assume that the tail board is a uniform body of mass 30 kg.

[Ans. 3636 N ; 9327 N]
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12. A motor drives a machine through a friction clutch which transmits 150 N-m while slip

occurs during engagement. For the motor, the rotor has a mass of 60 kg with radius of gyration 140

mm and the inertia of the machine is equivalent to a mass of 20 kg with radius of gyration 80 mm.

If the motor is running at 750 r.p.m. and the machine is at rest, find the speed after engaging the

clutch and the time taken. [Ans. 70.87 rad/s ; 0.06 s]

13. A shaft carrying a rotor of moment of inertia 10 kg-m2 revolves at a speed of 600 r.p.m. and is

engaged by means of a friction clutch to another shaft on the same axis having a moment of inertia

of 15 kg-m2. If the second shaft is initially at rest, find 1. the final speed of rotation of the two

shafts together after slipping has ceased, 2. the time of slip if the torque is constant at 250 N-m

during slipping, and 3. the kinetic energy lost during the operation.

[Ans. 25.136 rad/s ; 1.5 s ; 11.85 kN-m]

14. A self-propelled truck of total mass 25 tonnes and wheel diameter 750 mm runs on a track for

which the resistance is 180 N per tonne. The engine develops 60 kW at its maximum speed of 2400

r.p.m. and drives the axle through a gear box. Determine : 1. the time to reach full speed from rest

on the level if the gear reduction ratio is 10 to 1. Assume the engine torque to be constant and a

gearing efficiency of 94 per cent, and 2. the gear ratio required to give an acceleration of 0.15 m/s2

on an up gradient of 1 in 70 assuming a gearing efficiency of 90 per cent. [Ans. 157 s ; 20.5]

15. A motor vehicle of mass 1000 kg has road wheels of 600 mm rolling diameter. The total moment of

inertia of all four road wheels together with the half shafts is 10 kg-m2, while that of the engine and

clutch is 1 kg-m2. The engine torque is 150 N-m, the transmission efficiency is 90 per cent and the

tractive resistance is constant at 500 N. Determine 1. Gear ratio between the engine and the road

wheels to give maximum acceleration on an upgrade of 1 in 20, and 2. The value of this maximum

acceleration. [Ans. 13 ; 1.74 m/s2]

16. In a mine hoist a loaded cage is raised and an empty cage is lowered by means of a single rope. This

rope passes from one cage, over a guide pulley of 1.2 m effective diameter, on to the winding drum

of 2.4 m effective diameter, and then over a second guide pulley, also of 1.2 m effective diameter, to

the other cage. The drum is driven by an electric motor through a double reduction gear.

Determine the motor torque required, at an instant when the loaded cage has an upward accelera-

tion of 0.6 m/s2, given the following data :

S.No. Part Maximum speed Mass Radius of Frictional

(r.p.m.) (kg) gyration (mm) resistance

1 Motor and pinion N 500 150     –

2. Intermediate gear shaft
5

N
600 225 45 N-m

and attached wheel

3. Drum and attached gear
20

N
3000 900 1500 N-m

4. Guide pulley, each – 125 450 30 N-m

5. Rising rope and cage – 10 000 – 2500 N

6. Falling rope and cage – 5000 – 1500 N

[Ans. 4003.46 N-m]

DO YOU KNOW ?
1. State Newton’s three laws of motion.

2. What do you understand by mass moment of inertia ? Explain clearly.

3. What is energy ? Explain the various forms of mechanical energies.

4. State the law of conservation of momentum.

5. Show that for a relatively small rotor being started from rest with a large rotor, the energy lost in the

clutch is approximately equal to that given to the rotor.
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6. Prove the relation for the torque required in order to accelerate a geared system.

7. Discuss the phenomenon of collision of elastic bodies.

8. Define the term ‘coefficient of restitution’.

OBJECTIVE TYPE QUESTIONS
1. The force which acts along the radius of a circle and directed ...... the centre of the circle is known

as centripetal force.

(a) away from (b) towards

2. The unit of mass moment of inertia in S.I. units is

(a) m4 (b) kgf-m-s2 (c) kg-m2 (d) N-m

3. Joule is a unit of

(a) force (b) work (c) power (d) none of these

4. The energy possessed by a body, for doing work by virtue of its position, is called

(a) potential energy (b) kinetic energy

(c) electrical energy (d) chemical energy

5. When a body of mass moment of inertia I (about a given axis) is rotated about that axis with an

angular velocity, then the kinetic energy of rotation is

(a) 0.5 I.ω (b) I.ω (c) 0.5 I.ω2 (d) I.ω2

6. The wheels of a moving car possess

(a) potential energy only

(b) kinetic energy of translation only

(c) kinetic energy of rotation only

(d) kinetic energy of translation and rotation both.

7. The bodies which rebound after impact are called

(a) inelastic bodies (b) elastic bodies

8. The coefficient of restitution for inelastic bodies is

(a)  zero (b) between zero and one

(c) one (d) more than one

9. Which of the following statement is correct ?

(a) The kinetic energy of a body during impact remains constant.

(b) The kinetic energy of a body before impact is equal to the kinetic energy of a body after impact.

(c) The kinetic energy of a body before impact is less than the kinetic energy of a body after

impact.

(d) The kinetic energy of a body before impact is more than the kinetic energy of a body after

impact.

10. A body of mass m moving with a constant velocity v strikes another body of same mass m moving

with same velocity but in opposite direction. The common velocity of both the bodies after collision

is

(a) v (b) 2 v (c) 4 v (d) 8 v

ANSWERS

1. (b) 2. (c) 3. (b) 4. (a) 5. (c)

6. (d) 7. (b) 8. (a) 9. (d) 10. (b)

GO To FIRST
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2. Velocity and Acceleration of

a Particle Moving with

Simple Harmonic Motion.

3. Differential Equation of

Simple Harmonic Motion.

4. Terms Used in Simple

Harmonic Motion.

5. Simple Pendulum.

6. Laws of Simple Pendulum.
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Spring.

8. Compound Pendulum.

9. Centre of Percussion.

10. Bifilar Suspension.

11. Trifilar Suspension

(Torsional Pendulum).

4.1. Introduction

Consider a particle

moving round the circumfer-

ence of a circle in an

anticlockwise direction, with

a constant angular velocity,

as shown in Fig. 4.1. Let P

be the position of the particle

at any instant and N be the

projection of P on the diam-

eter X X ′ of the circle.

It will be noticed that when

the point P moves round the

circumference of the circle from X  to

Y, N moves from X to O, when P

moves from Y  to X ′, N moves from O

to X ′. Similarly when P moves from

X ′ to Y  ′, N moves from X ′ to O and

finally when P moves from Y  ′ to X, N

moves from O to X . Hence, as P

completes one revolution, the point N

completes one vibration about the

Fig. 4.1. Simple harmonic

motion.

A clock pendulum

executes Simple

Harmonic Motion.
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point O. This to and fro motion of N is known as simple

harmonic motion (briefly written as S.H.M.).

4.2. Velocity and Acceleration of a
Particle Moving with Simple
Harmonic Motion

Consider a particle, moving round the circumfer-

ence of a circle of radius r, with a uniform angular velocity

ω rad/s, as shown in Fig. 4.2. Let P be any position of the

particle after t seconds and θ be the angle turned by the

particle in t seconds. We know that

θ = ω.t

If N is the projection of P on the diameter X X ′,

then displacement of N from its mean position O is

              x = r.cos θ = r.cos ω.t             ... (i)

The velocity of N is the component of the velocity

of P parallel to XX ′,  i.e.

2 2
N sin . sinv v r r x= θ = ω θ = ω −                  ... (ii)

2 2
... . , and sinv r r NP r x

 
= ω θ = = −

  
�

Fig. 4.2. Velocity and acceleration of a particle.

A little consideration will show that velocity is maximum, when x = 0, i.e. when N passes

through O i.e., its mean position.

∴ v
max

 = ω.r

We also know that the acceleration of P is the centripetal acceleration whose magnitude is

ω2.r. The acceleration of N is the component of the acceleration of P parallel to XX ′ and is directed

towards the centre O, i.e.,

2 2
N . cos .a r x= ω θ = ω ... ( cos )x r= θ�  ...(iii)

The acceleration is maximum when x = r i.e. when P is at X  or  X′.

∴ a
max

 = ω2.r

It will also be noticed from equation (iii) that when x = 0, the acceleration is zero i.e. N passes

through O. In other words, the acceleration is zero at the mean position. Thus we see from equation

(iii) that the acceleration of N is proportional to its displacement from its mean position O, and it is

Movements of a ship up and down in

a vertical plane about transverse axis

(called Pitching) and about longitude

(called rolling) are in Simple

Harmonic Motion.
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*

always directed towards the centre O; so that the motion of N is simple harmonic.

In general, a body is said to move or vibrate with simple harmonic motion, if it satisfies the

following two conditions :

1. Its acceleration is always directed towards the centre, known as point of reference or

mean position ;

2. Its acceleration is proportional to the distance from that point.

4.3. Differential Equation of Simple Harmonic Motion

We have discussed in the previous article that the displacement of N from its mean position O is

x = r.cos θ = r.cos ωt ... (i)

Differentiating equation (i), we have velocity of N,

N . sin
dx

v r t
dt

= = ω ω ... (ii)

Again differentiating equation (ii), we have acceleration of N,

2
2 2

N2
. . cos . cos .

d x
a r t r t x

dt

= = − ω ω ω = − ω ω = − ω ... (iii)

... (� r cos ωt = x)

or

2
2

2
0

d x
x

dt

+ ω =

This is the standard differential equation for simple harmonic motion of a particle. The

solution of this differential equation is

x = A cos ω t + B sin ω t ... (iv)

where A  and B are constants to be determined by the initial conditions of the motion.

In Fig. 4.2, when t = 0, x = r i.e. when points P and N lie at X , we have from equation (iv), A  = r

Differentiating equation (iv),

. .sin . cos
dx

A t B t
dt

= − ω ω + ω ω

When 0, 0,
dx

t
dt

= =  therefore, from the above equation, B = 0. Now the equation (iv) becomes

x = r cos ω t . . . [Same as equation (i)]

The equations (ii) and (iii) may be written as

N . sin . cos ( / 2)
dx

v r t r t
dt

= = − ω ω = ω ω + π

and

2
2 2

N2
. cos . cos ( )

d x
a r t r t

dt

= = − ω ω = ω ω + π

These equations show that the velocity leads the displacement by 90° and acceleration leads

the displacement by 180°.

* The negative sign shows that the direction of  acceleration is opposite to the direction in which x increases,

i.e. the acceleration is always directed towards the point O.
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4.4. Terms Used in Simple Harmonic Motion

The following terms, commonly used in simple harmonic motion, are important from the

subject point of view.

1.  Amplitude. It is the maximum displacement of a body from its mean position. In Fig. 4.2,

OX  or OX ′ is the amplitude of the particle P. The amplitude is always equal to the radius of the

circle.

2. Periodic time. It is the time taken for one complete revolution of the particle.

∴       Periodic time, t
p
 = 2 π/ω seconds

We know that the acceleration,

a = ω2.x or
2

or
a a

x x
ω = ω =

∴ p

Displacement2
2 2 seconds

Acceleration

x
t

a

π
= = π = π

ω

It is thus obvious, that the periodic time is independent of amplitude.

3. Frequency. It is the number of cycles per second and is the reciprocal of time period, t
p

.

∴ Frequency, 
1 1

Hz
2 2

p

a
n

t x

ω
= = =

π π

Notes : 1. In S.I. units, the unit of frequency is hertz (briefly written as Hz) which is equal to one cycle per

second.

2. When the particle moves with angular simple harmonic motion, then the periodic time,

p

Angular displacement
2 2 s

Angular acceleration
t

θ
= π = π

α

and frequency, 
1

Hz
2

n
α

=
π θ

Example 4.1. The piston of a steam engine moves with simple harmonic motion. The crank

rotates at 120 r.p.m. with a stroke of 2 metres. Find the velocity and acceleration of the piston, when

it is at a distance of 0.75 metre from the centre.

Solution. Given : N  = 120 r.p.m.   or    ω = 2π × 120/60 = 4π rad/s ; 2r = 2 m   or  r = 1 m;

x = 0.75 m

Velocity of the piston

We know that velocity of the piston,

2 2 2
4 1 (0.75) 8.31 m/sv r x= ω − = π − =  Ans.

Acceleration of the piston

We also know that acceleration of the piston,

a = ω2.x = (4π)2 0.75 = 118.46 m/s2 Ans.

Example 4.2. A point moves with simple harmonic motion. When this point is 0.75 metre

from the mid path, its velocity is 11 m/s and when 2 metres from the centre of its path its velocity is

3 m/s. Find its angular velocity, periodic time and its maximum acceleration.
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Solution. Given : When x = 0.75 m, v = 11 m/s ; when x = 2 m, v = 3 m/s

Angular velocity

Let ω = Angular velocity of the particle, and

r = Amplitude of the particle.

We know that velocity of the point when it is 0.75 m from the mid path (v),

2 2 2 2
11 (0.75)r x r= ω − = ω − . . . (i)

Similarly, velocity of the point when it is 2 m from the centre (v),

2 2
3 2r= ω − . . . (ii)

Dividing equation (i) by equation (ii),

2 2 2 2

2 2 2 2

(0.75) (0.75)11

3 2 2

r r

r r

ω − −
= =

ω − −

Squaring both sides,

2

2

0.5625121

9 4

r

r

−
=

−

121 r2 – 484 = 9r2 – 5.06 or 112 r2 = 478.94

∴ r2 = 478.94 / 112 = 4.276 or r = 2.07 m

Substituting the value of r in equation (i),

2 2
11 (2.07) (0.75) 1.93= ω − = ω

∴ ω = 11/1.93 = 5.7 rad/s Ans.

Periodic time

We know that periodic time,

t
p
 = 2π / ω = 2π / 5.7 = 1.1 s Ans.

Maximum acceleration

We know that maximum acceleration,

a
max

 = ω2.r = (5.7)2 2.07 = 67.25 m/s2 Ans.

4.5. Simple Pendulum

A simple pendulum, in its simplest form, consists

of heavy bob suspended at the end of a light inextensible

and flexible string. The other end of the string is fixed at

O, as shown in Fig. 4.3.

Let L = Length of the string,

m = Mass of the bob in kg,

W = Weight of the bob in newtons

= m.g, and

θ = Angle through which the string

is displaced. Fig 4.3. Simple pendulum.
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When the bob is at A , the pendulum is in equilibrium position. If the bob is brought to B or C

and released, it will start oscillating between the two positions B and C, with A  as the mean position.

It has been observed that if the angle θ is very small (less than 4° ), the bob will have simple harmonic

motion. Now, the couple tending to restore the bob to the equilibrium position or restoring torque,

T = m.g sin θ × L

Since angle θ is very small, therefore sin θ = θ radians.

∴ T = m.g.L.θ

We know that the mass moment of inertia of the bob about an axis through the point of

suspension,

I = mass × (length)2 = m.L2

∴ Angular acceleration of the string,

2

. . . .
or

.

m g L gT L

I L gm L

θ θ θ
α = = = =

α

i.e.          
Angular displacement

Angular acceleration

L

g
=

We know that the periodic time,

Displacement
2 2

Acceleration
p

L
t

g
= π = π ... (i)

and frequency of oscillation,

1 1

2p

g
n

t L
= =

π
... (ii)

From above we see that the periodic time and the frequency of oscillation of a simple

pendulum depends only upon its length and acceleration due to gravity. The mass of the bob has no

effect on it.

Notes : 1. The motion of the bob from one extremity to the other (i.e. from B to C or C to B) is known as beat

or swing. Thus one beat = 
1

2
 oscillation.

∴ Periodic time for one beat = L gπ /

2. A pendulum, which executes one beat per second (i.e. one complete oscillation in two seconds) is

known as a second’s  pendulum.

4.6. Laws of Simple Pendulum

The following laws of a simple pendulum are important from the subject point of view :

1. Law of isochronism. It states, “The time period (t
p

) of a simple pendulum does not depend

upon its amplitude of vibration and remains the same, provided the angular amplitude (θ) does not

exceed 4°.”

2. Law of mass. It states, “The time period (t
p

) of a simple pendulum does not depend upon

the mass of the body suspended at the free end of the string.”

3. Law of length. It states, “The time period (t
p

) of a simple pendulum is directly propor-

tional to L , where L is the length of the string.”

4. Law of gravity. It states, “The time period (t
p

) of a simple pendulum is inversely propor-

tional to g , where g is the acceleration due to gravity.”
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Fig. 4.4. Closely-coiled

helical spring.

* The differential equation for the motion of the spring is

2 2

2 2

.
. or –

d x d x s x
m s x

mdt dt
= − = ... ( )2

Here
s

m
ω =

The – ve sign indicates that the restoring force s.x is opposite to the direction of disturbing force.

Note: The above laws of a simple pendulum are true from the equation of the periodic time i.e.

2 /
p

t L g= π

4.7. Closely-coiled Helical Spring

Consider a closely-coiled helical spring, whose upper end is

fixed, as shown in Fig. 4.4. Let a body be attached to the lower end.

Let A A be the equilibrium position of the spring, after the mass is

attached. If the spring is stretched up to BB and then released, the

mass will move up and down with simple harmonic motion.

Let m = Mass of the body in kg,

W = Weight of the body in newtons = m.g,

x = Displacement of the load below equilib-

rium position in metres,

s = Stiffnes of the spring in N/m i.e. restoring

force per unit displacement from the equi-

librium position,

a = Acceleration of the body in m/s2.

We know that the def lection of the spring,

.m g

s
δ = ... (i)

Then disturbing force = m.a

and                   restoring force = s.x ... (ii)

Equating equations (i) and (ii),

m.a = s.x*    or   =
x m

a s
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We know that periodic time,

Displacement
2 2

Accelerationp

x
t

a
= π = π

2 2
m

s g

δ
= π = π ... 

mg

s

 
δ = 

 
�

and  frequency, 
1 1 1

2 2
p

gs
n

t m
= = =

π π δ

Note: If the mass of the spring (m
1
) is also taken into consideration, then the periodic time,

1 / 3
2

p

m m
t

s

+
= π seconds,

and                     frequency,
1

1
Hz

2 / 3

s
n

m m
=

π +

Example 4.3. A helical spring, of negligible mass, and which is found to extend 0.25 mm

under a mass of 1.5 kg, is made to support a mass of 60 kg. The spring and the mass system is

displaced vertically through 12.5 mm and released. Determine the frequency of natural vibration of

the system. Find also the velocity of the mass, when it is 5 mm below its rest position.

Solution. Given : m = 60 kg ; r = 12.5 mm = 0.0125 m ; x = 5 mm = 0.005 m

Since a mass of 1.5 kg extends the spring by 0.25 mm, therefore a mass of 60 kg will extend

the spring by an amount,

0.25
60 10 mm = 0.01 m

1.5
δ = × =

Frequency of the system

We know that frequency of the system,

1 1 9.81
4.98

2 2 0.01

g
n = = =

π δ π
Hz Ans.

Velocity of the mass

Let v = Linear velocity of the mass.

We know that angular velocity,

ω*
9.81

* 31.32
0.01

g
= = =

δ
 rad/s

and

2 2 2 2
31.32 (0.0125) (0.005)v r x=ω − = − = 0.36 m/s Ans.

4.8. Compound Pendulum

When a rigid body is suspended vertically, and it oscillates

with a small amplitude under the action of the force of gravity, the

body is known as compound pendulum, as shown in Fig. 4.5.

Let m = Mass of the pendulum in kg,

W = Weight of the pendulum in

newtons = m.g,
Fig. 4.5. Compound pendulum.

* We know that periodic time,

t
p
 = 2π / ω or ω = 2π / t

p
 = 2π × n = 2π × 4.98 = 31.3 rad/s ...(∵ n = 1/t

p
)
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k
G

= Radius of gyration

about an axis

through the centre

of gravity G and

perpendicular to

the plane of

motion, and

h = Distance of point

of suspension O

from the centre of

gravity G of the

body.

If the pendulum is given a small

angular displacement θ, then the couple

tending to restore the pendulum to the

equilibrium position OA,

T = mg sin θ × h = mgh sin θ

Since θ is very small, therefore sub-

stituting sin θ = θ radians, we get

T = mgh θ

Now, the mass moment of inertia about the axis of suspension O,

( )2 2 2
G G.I I m h m k h= + = + . . . (By parallel axis theorem)

∴ Angular acceleration of the pendulum,

2 2 2 2
G G( )

mgh ghT

I m k h k h

θ θ
α = = =

+ +
= constant × θ

We see that the angular acceleration is directly proportional to angular displacement,

therefore the pendulum executes simple harmonic motion.

∴

2 2
G

.

k h

g h

+θ
=

α

We know that the periodic time,

Displacement
2 2

Acceleration
pt

θ
= π = π

α

2 2
G2

.

k h

g h

+
= π ... (i)

and frequency of oscillation, 
2 2
G

.1 1

2
p

g h
n

t k h

= =
π +

... (ii)
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Notes : 1.  Comparing this equation with equation (ii) of simple pendulum, we see that the equivalent length of

a simple pendulum, which gives the same frequency as compound pendulum, is

2 2 2

G Gk h k
L h

h h

+
= = +

2. Since the equivalent length of simple pendulum (L) depends upon the distance between the point of

suspension and the centre of gravity (G), therefore L can be changed by changing the position of point of suspen-

sion. This will, obviously, change the periodic time of a compound pendulum. The periodic time will be minimum

if L is minimum. For L to be minimum, the differentiation of L with respect to h must be equal to zero, i.e.

2

G0 or 0
kdL d

h
dh dh h

 
= + = 

 

∴

2

G

2
1 0

k

h

−
+ =  or    k

G
 = h

Thus the periodic time of a compound pendulum is minimum when the distance between the point of

suspension and the centre of gravity is equal to the radius of gyration of the body about its centre of gravity.

∴ Minimum periodic time of a compound pendulum,

G

( )

2
2

p min

k
t

g
= π . . . [Substituting h = k

G
 in equation (i)]

4.9. Centre of Percussion

The centre of oscillation is sometimes termed as cen-

tre of percussion. It is defined as that point at which a blow

may be struck on a suspended body so that the reaction at the

support is zero.

Consider the case of a compound pendulum suspended

at O as shown in Fig. 4.6. Suppose the pendulum is at rest in

the vertical position, and a blow is struck at a distance L from

the centre of suspension. Let the magnitude of blow is F new-

tons. A little consideration will show that this blow will have

the following two effects on the body :

1. A force (F) acting at C will produce a linear motion

with an acceleration a, such that

F = m.a ... (i)

where m is the mass of the body.

2. A couple with moment equal to (F × l ) which will tend to produce a motion of rotation in

the clockwise direction about the centre of gravity G. Let this turning moment (F × l ) produce an

angular acceleration (α), such that

F × l = I
G

 × α ... (ii)

where I
G

 is the moment of inertia of the body about an axis passing through G and parallel to the axis

of rotation.

From equation (i)     a = F/m ... (iii)

and from equation (ii),
G

.F l

I
α =

Fig. 4.6. Centre of percusssion.
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Now corresponding linear acceleration of O,

       0 2
G G

. . . .

.

F l h F l h
a h

I m k

= α. = =
                              ... (iv)

    2

G G( . )I m k=�

where k
G

 is the radius of gyration of the body about the centre of

gravity G.

Since there is no reaction at the support when the body is

struck at the centre of percussion, therefore a should be equal to a
0
.

Equating equations (iii) and (iv),

2
G

. .

.

F F l h

m m k

=

or

2
2 G
G . , and

k
k l h l

h
= =      ... (v)

We know that the equivalent length of a simple pendulum,

       

2 2
G Gk h k

L h l h
h h

+
= = + = +                        ... (vi)

From equations (v) and (vi), it follows that

1. The centre of percussion is below the centre of gravity

and at a distance 2
G / .k h

2. The distance between the centre of suspension and the centre of percussion is equal to the

equivalent length of a simple pendulum.

Note: We know that mass moment of inertia of the body about O,

2 2 2 2

O G G O. or . . .I I m h m k m k m h= + = +

∴
2 2 2 2

O G . ( )k k h l h h h l h OG OC= + = + = + = × ... 2

G( . )k l h=�

It is thus obvious that the centre of suspension (O) and the centre of percussion (C) are inter-changeable.

In other words, the periodic time and frequency of oscillation will be same, whether the body is suspended at the

point of suspension or at the centre of percussion.

Example 4.4. A uniform thin rod, as shown in Fig. 4.7, has a mass of 1 kg and carries a

concentrated mass of 2.5 kg at B. The rod is hinged at A and is maintained in the horizontal position

by a spring of stiffness 1.8 kN/m at C.

Find the frequency of oscillation, neglecting the effect of the mass of the spring.

Fig. 4.7

A pendulum clock designed

by Galileo. Galileo was the

first to deisgn a  clock based

on the relationship between

gravitational force (g), length

of the pendulum (l ) and time

of oscillation (t).
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Solution. Given : m = 1 kg ; m
1
 = 2.5 kg ; s = 1.8 kN/m = 1.8 × 103 N/m

We know that total length of rod,

l = 300 + 300 = 600 mm = 0.6 m

∴ Mass moment of inertia of the system about A ,

I
A

= Mass moment of inertia of 1 kg about A  + Mass moment of interia of

2.5 kg about A

22
2 2

1

1(0.6).
. 2.5 (0.6) 1.02

3 3

m l
m l= + = + = kg-m2

If the rod is given a small angular displacement θ and then released, the extension of the spring,

δ = 0.3 sin θ = 0.3θ m

. . . ( ∵ θ is very small, therefore substituting sin θ = θ )

∴  Restoring force = s.δ = 1.8 × 103 × 0.3 θ = 540 θ N

and restoring torque about A   = 540 θ × 0.3 = 162 θ N-m ... (i)

We know that disturbing torque about A

=  I
A

 × α = 1.02α N-m ... (ii)

Equating equations (i) and (ii),

1.02 α = 162 θ or α / θ = 162 / 1.02 = 159

We know that frequency of oscillation,

1 1
159

2 2
n

α
= =

π θ π
= 2.01 Hz Ans.

Example 4.5. A small flywheel of mass 85 kg is suspended in a vertical plane as a compound

pendulum. The distance of centre of gravity from the knife edge support is 100 mm and the flywheel

makes 100 oscillations in 145 seconds. Find the moment of inertia of the flywheel through the centre

of gravity.

Solution. Given : m = 85 kg ; h = 100 mm = 0.1 m

Since the flywheel makes 100 oscillations in 145 seconds, therefore frequency of oscillation,

n = 100/145 = 0.69 Hz

Let L = Equivalent length of simple pendulum, and

k
G

 = Radius of gyration through C.G.

We know that frequency of oscillation (n),

1 1 9.81 0.5
0.69

2 2

g

L L L

= = =
π π

∴ L = 0.5/0.69 = 0.7246   or   L = 0.525 m

We also know that equivalent length of simple pendulum (L),

2 2 2 2
G G G (0.1)

0.525 0.1
0.1 0.1

k k k
h

h

+
= + = + =

2 2 2
G 0.525 0.1 (0.1) 0.0425 mk = × − =
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and moment of inertia of the flywheel through the centre of gravity,

I = 
2
G.m k = 85 × 0.0425 = 3.6 kg-m2 Ans.

Example 4.6. The connecting rod of an oil engine has a mass of 60 kg, the distance between

the bearing centres is 1 metre. The diameter of the big end bearing is 120 mm and of the small end

bearing is 75 mm. When suspended vertically with a knife-edge through the small end, it makes 100

oscillations in 190 seconds and with knife-edge through the big end it makes 100 oscillations in 165

seconds. Find the moment of inertia of the rod in kg-m2 and the distance of C.G. from the small end

centre.

Solution. Given : m = 60 kg ; h
1
 + h

2
 = 1 m ; d

2
* = 102 mm; d

1
* = 75 mm

Moment of inertia of the rod

First of all, let us find the radius of gyration of the connecting

rod about the centre of gravity (i.e. k
G

).

Let h
1
 and h

2
= Distance of centre of gravity from

the small and big end centres respec-

tively,

L
1
 and L

2
= Equivalent length of simple

perdulum when the axis of oscilla-

tion coincides with the small and big

end centres respectively

When the axis of oscillation coincides with the small end cen-

tre, then frequency of oscillation,

n
1
 = 100/190 = 0.526 Hz

When the axis of oscillation coincides with the big end centre, the frequency of oscillation,

n
2
 = 100/165 = 0.606 Hz

We know that for a simple pendulum,

1
1

1
Hz

2

g
n

L
=

π

∴ 1 2 2
1

9.81
0.9m

(2 ) (2 0.526)

g
L

n

= = =
π π ×

Similarly 2 2 2
2

9.81
0.67 m

(2 ) (2 0.606)

g
L

n

= = =
π π ×

We know that    
2 2

2 2G 1
1 G 1 1 1

1

( )
or . ( )

k h
L k L h h

h

+
= = − ... (i)

Similarly 2 2
G 2 2 2. ( )k L h h= − ... (ii)

From equations (i) and (ii), we have

L
1
.h

1
 – (h

1
)2 = L

2
.h

2
 – (h

2
)2

* Superfluous data.

Connecting rod
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0.9 × h
1
 – (h

1
)2 = 0.67 (1 – h

1
) – (1 – h

1
)2 . . . (�  h

1
 + h

2
 = 1 m)

= 0.67 – 0.67 h
1
 – 1 – (h

1
)2 + 2h

1

  0.9 h
1
 + 0.67 h

1
 – 2 h

1
 = – 0.33     or      – 0.43 h

1
 = – 0.33

∴ h
1
 = 0.33/0.43 = 0.767 m

Substituting the value of h
1
 in equation (i), we have

2 2 2
G 0.9 0.767 (0.767) 0.69 0.59 0.1 mk = × − = − =

We know that mass moment of inertia of the rod,

 
2
G.I m k= = 60 × 0.1 =  6 kg-m2 Ans.

Distance of C.G. from the small end centre

We have calculated above that the distance of C.G. from the small end centre,

h
1
 = 0.767 m Ans.

Example 4.7. A uniform slender rod 1.2 m long is fitted with a transverse pair of knife-

edges, so that it can swing in a vertical plane as a compound pendulum. The position of the knife

edges is variable. Find the time of swing of the rod, if 1. the knife edges are 50 mm from one end of

the rod, and 2. the knife edges are so placed that the time of swing is minimum.

In case (1) find also the maximum angular velocity and the maximum angular acceleration

of the rod if it swings through 3° on either side of the vertical.

Solution. Given : l = 1.2 m ; θ = 3° = 3 × π /180 = 0.052 rad

1. Time of swing of the rod when knife edges are 50 mm

Since the distance between knife edges from one end of the rod is 50 mm = 0.05 m, therefore

distance between the knife edge and C.G. of the rod,

1.2
0.05 0.55m

2
h = − =

We know that radius of gyration of the rod about C.G.,

k*
G

1.2
0.35 m

12 12

l
= = =

∴ Time of swing of the rod,

        

2 2 2 2
G (0.35) (0.55)

2 2
. 9.81 0.55p

k h
t

g h

+ +
= π = π

×

= 1.76 s Ans.

2. Minimum time of swing

We know that minimum time of swing,

G
( )

2 2 0.35
2 2 1.68 s

9.81
p min

k
t

g

×
= π = π =  Ans.

* We know that mass moment of inertia of the rod about an axis through C.G.

I = m. l 2/12

Also I = m.k2 or k
2 = I/m  = m.l 2/12 × m = l 2/12       or k = 12l
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Maximum angular velocity

In case (1), the angular velocity,

ω = 2π / t
p 

= 2π /1.76 = 3.57 rad/s

We know that maximum angular velocity,

ω
max

 = ω.θ = 3.57 × 0.052 = 0.1856 rad/s Ans.

Maximum angular acceleration

We know that maximum angular acceleration,

α
max

 = ω2.θ = (3.57)2 × 0.052 = 0.663 rad/s2 Ans.

Example 4.8. The pendulum of an Izod impact testing machine has a mass of 30 kg. Its

centre of gravity is 1.05 m from the axis of suspension and the striking knife is 150 mm below the

centre of gravity. The time for 20 small free oscillations is 43.5 seconds. In making a test the pendu-

lum is released from an angle of 60° to the vertical. Determine :

1. the position of the centre of percussion relative to the striking knife and the striking veloc-

ity of the pendulum, and 2. the impulse on the pendulum and the sudden change of axis reaction

when a specimen giving an impact value of 55 N-m is broken.

Solution. Given : m = 30 kg ; OG = h = 1.05 m ; AG = 0.15 m

Since the time for 20 small free oscillations is 43.5 s, therefore frequency of oscillation,

20
0.46 Hz

43.5
n = =

1. The position of centre of percussion relative to the striking knife and the striking velocity of the

pendulum

Let L = Equivalent length of simple pendulum,

k
G

= Radius of gyration of the pendulum about the centre of gravity, and

k
O

= Radius of gyration of the pendulum about O.

We know that the frequency of oscillation,

1

2

g
n

L
=

π

or
2 2

9.81

(2 ) (2 0.46)

g
L

n

= =
π π ×

       = 1.174 m

∴ Distance of centre of percussion (C) from

the centre of gravity (G),

CG = OC – OG = L – OG

     = 1.174 – 1.05 = 0.124 m

and distance of centre of percussion (C) from knife edge A ,

AC = AG – CG = 0.15 – 0.124 = 0.026 m Ans.

We know that 2 2
O ( ) . 1.174 1.05 1.233 mk h l h L h= + = = × =

A little consideration will show that the potential energy of the pendulum is converted into

kinetic energy of the pendulum before it strikes the test piece. Let v and ω be the linear and angular

velocity of the pendulum before it strikes the test piece.

Fig. 4.8
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∴ m.g.h
1
 = 

2 2 2
O

1 1
. . .

2 2
m v m k= ω ...  (∵ v = k

O
.ω)

30 × 9.81 × 1.05 (1 – cos 60°) = 
21

30 1.233
2

× × ω or 154.5 = 18.5 ω2

∴ ω2 = 154.5/18.5 = 8.35 or ω = 2.9 rad/s

∴  Velocity of striking = ω × OA = 2.9 (1.05 + 0.15) = 3.48 m/s Ans.

2. Impulse on the pendulum and sudden change of axis reaction

It is given that the impact value of the specimen (i.e. the energy used for breaking the specimen)

is 55 N-m. Let ω
1
 be the angular velocity of the pendulum immediately after impact. We know that

Loss of kinetic energy  = 
2 2 2 2 2

1 O 1

1 1
( ) . ( ) 55

2 2
I m kω − ω = ω − ω = N-m

∴   
2 2

1

1
30 1.233 (2.9 ) 55

2
× × − ω =

18.5 (8.41 – 2
1ω ) = 55 or 2

1ω  = 8.41 – 55/18.5 = 5.44

∴ ω
1
 = 2.33 rad/s

Let P and Q be the impulses at the knife edge A  and at the pivot O respectively as shown in

Fig. 4.8.

∴ P + Q = Change of linear momentum

= m.h (ω – ω
1
) = 30 × 1.05 (2.9 – 2.33) = 17.95 ... (i)

Taking moments about G,

0.15 P – 1.05 Q = Change of angular momentum

= 2 2 2
G 1 O 1. ( ) ( ) ( )m k m k hω − ω = − ω − ω

= 30 (1.233 – 1.052) (2.9 – 2.33) = 2.27 ... (ii)

From equations (i) and (ii),

P = 17.6 N-s; and Q = 0.35 N-s Ans.

∴ Change in axis reaction when pendulum is vertical

= Change in centrifugal force

                                    2 2 2 2
1( ) 30 (2.9 2.33 )m h= ω − ω = − 1.05 = 94 N Ans.

4.10. Bifilar Suspension

The moment of inertia of a body may be determined experimentally by an apparatus called

bifilar suspension. The body whose moment of inertia is to be determined (say A B) is suspended by

two long parallel flexible strings as shown in Fig. 4.9. When the body is twisted through a small angle

θ about a vertical axis through the centre of gravity G, it will vibrate with simple harmonic motion in

a horizontal plane.

Let m = Mass of the body,

W = Weight of the body in newtons = m.g,

k
G

= Radius of gyration about an axis through the centre of gravity,
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I = Mass moment of inertia of the

body about a vertical axis

through 2
G. ,G m k=

 l = Length of each string,

x = Distance of A  from G (i.e. AG),

y = Distance of B from G (i.e. BG),

θ = Small angular displacement of

the body from the equilibrium

position in the horizontal plane,

φ
A

 and φ
B

= Corresponding angular dis-

placements of the strings, and

α = Angular acceleration towards

the equilibrium position.

When the body is stationary, the tension in the strings are

given by

A B

. . . .
, and

m g y m g x
T T

x y x y
= =

+ +
    ...(Taking moments about B and A  respectively,)

When the body is displaced from its equilibrium position in a horizontal plane through a

small angle θ, then the angular displacements of the strings are given by

A A′ = φ
A

.l = x.θ ; and BB′ = φ
B
.l = y.θ

∴ A B

..
; and

yx

l l

θθ
φ = φ =

Component of tension T
A

 in the horizontal plane, acting normal to A ′B′ at  A ′ as shown in Fig. 4.9

              = A A

. . . . . ..
.

( )

m g y m g x yx
T

x y l l x y

θθ
φ = × =

+ +

Component of tension T
B
 in the horizontal plane, acting normal to A ′ B′ at B′ as shown in Fig. 4.9

              = B B

. . . . . . .
.

( )

m g x y m g x y
T

x y l l x y

θ θ
φ = × =

+ +

These components of tensions T
A

 and T
B
 are equal and opposite in direction, which gives rise

to a couple. The couple or torque applied to each string to restore the body to its initial equilibrium

position, i.e. restoring torque

A A B B. . . .T x T y= φ + φ

. . . . . . . .
( )

( )

m g x y m g x y
x y

l x y l

θ θ
= + =

+
... (i)

and accelerating (or disturbing) torque

2
G. . .I m k= α = α ... (ii)

Equating equations (i) and (ii),

                     
2
G

. . . .
. .

m g x y
mk

l

θ
= α    or   

2
G .

. .

k l

g x y

θ
=

α

Fig. 4.9. Bifilar suspension.
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i.e.  

2
G .Angular displacement

Angular acceleration . .

k l

g x y
=

We know that periodic time,

2
G .Angular displacement

2 2
Angular acceleration . .

p

k l
t

g x y
= π = π

G2
. .

l
k

g x y
= π

and frequency,  
G

. .1 1

2
p

g x y
n

t k l
= =

π

Note : The bifilar suspension is usually used for finding the moment of inertia of a connecting rod of an engine.

In this case, the wires are attached at equal distances from the centre of gravity of the connecting rod (i.e. x = y)

so that the tension in each wire is same.

Example 4.9. A small connecting rod of mass 1.5 kg is suspended in a horizontal plane by

two wires 1.25 m long. The wires are attached to the rod at points 120 mm on either side of the centre

of gravity. If the rod makes 20 oscillations in 40 seconds, find the radius of gyration and the mass

moment of inertia of the rod about a vertical axis through the centre of gravity.

Solution. Given : m = 1.5 kg ; l = 1.25 m ; x = y = 120 mm = 0.12 m

Since the rod makes 20 oscillations in 40 s, therefore frequency of oscillation,

n = 20/40 = 0.5 Hz

Radius of gyration of the connecting rod

Let k
G

 = Radius of gyration of the connecting rod.

We know that frequency of oscillation (n),

G G

9.81 0.12 0.12. .1 1 0.0535
0.5

2 2 1.25

g x y

k l k k

× ×
= = =

π π

∴ k
G

 = 0.0535/0.5 = 0.107 m = 107 mm Ans.

Mass moment of inertia of the connecting rod

We know that mass moment of inertia,

I = m (k
G
)2 = 1.5 (0.107)2 = 0.017 kg-m2 Ans.

4.11. Trifilar Suspension (Torsional Pendulum)

It is also used to find the moment of inertia of a body experi-

mentally. The body (say a disc or flywheel) whose moment of inertia

is to be determined is suspended by three long flexible wires A, B

and C, as shown in Fig. 4.10. When the body is twisted about its axis

through a small angle θ and then released, it will oscillate with simple

harmonic motion.

Let m = Mass of the body in kg,

W = Weight of the body in newtons = m.g,

k
G

= Radius of gyration about an axis

through c.g.,

I = Mass moment of inertia of the disc about an axis through O and per-

pendicular to it = m.k2,

Fig. 4.10. Trifilar suspension.
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l = Length of each wire,

r = Distance of each wire from the axis of the disc,

θ = Small angular displacement of the disc,

φ = Corresponding angular displacement of the wires, and

α = Angular acceleration towards the equilibrium position.

Then, for small displacements,

r. θ = l. φ or φ = r.θ/l

Since the three wires are attached symmetrically with respect to the axis, therefore the ten-

sion in each wire will be one-third of the weight of the body.

∴ Tension in each wire  = m.g/3

Component of the tension in each wire perpendicular to r

. .sin . . . . .

3 3 3

m g m g m g r

l

φ φ θ
= = = . . . ( ∵ φ is a small angle, and φ = r.θ/l)

∴ Torque applied to each wire to restore the body to its initial equilibrium position i.e.

restoring torque

           
2

. . . . . .

3 3

m g r m g r
r

l l

θ θ
= × =

Total restoring torque applied to three wires,

            

2 2
. . . . . .

3
3

m g r m g r
T

l l

θ θ
= × = ... (i)

We know that disturbing torque

            = I.α = 2
G. .m k α ... (ii)

Equating equations (i) and (ii),

            

2
2
G

. . .
. .

m g r
m k

l

θ
= α or       

2
G

2

.

.

l k

g r

θ
=

α

i.e.  

2
G

2

.Angular displacement

Angular acceleration .

l k

g r

=

We know that periodic time,

2
G G

2

. 2Angular displacement
2 2

Angular acceleration .
p

l k k l
t

r gg r

π
= π = π =

and frequency, 
G

1

2
p

gr
n

t k l
= =

π

Example 4.10. In order to find the radius of gyration of a car, it is suspended with its axis

vertical from three parallel wires 2.5 metres long. The wires are attached to the rim at points spaced

120° apart and at equal distances 250 mm from the axis.

It is found that the wheel makes 50 torsional oscillations of small amplitude about its axis in

170 seconds. Find the radius of gyration of the wheel.

Solution. Given : l = 2.5 m ; r = 250 mm = 0.25 m ;

Since the wheel makes 50 torsional oscillations in 170 seconds, therefore frequency of

oscillation,

n = 50/170 = 5/17 Hz

Let k
G
 = Radius of gyration of the wheel
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We know that frequency of oscillation (n),

G G G

5 0.25 9.81 0.079

17 2 2 2.5

r g

k l k k
= = =

π π

∴ k
G

 = 0.079 × 17/5 = 0.268 m = 268 mm Ans.

Example 4.11. A connecting rod of mass 5.5 kg is placed on a horizontal platform whose

mass is 1.5 kg. It is suspended by three equal wires, each 1.25 m long, from a rigid support. The wires

are equally spaced round the circumference of a circle of 125 mm radius. When the c.g. of the

connecting rod coincides with the axis of the circle, the platform makes 10 angular oscillations in 30

seconds. Determine the mass moment of inertia about an axis through its c.g.

Solution. Given : m
1
 = 5.5 kg ; m

2
 = 1.5 kg ; l = 1.25 m ; r = 125 mm = 0.125 m

Since the platform makes 10 angular oscillations in 30 s, therefore frequency of oscillation,

n = 10/30 = 1/3 Hz

Let k
G

 = Radius of gyration about an axis through the c.g.

We know that frequency of oscillation (n)

G G G

1 0.125 9.81 0.056

3 2 2 1.25

gr

k l k k
= = =

π π

∴ k
G

 = 0.056 × 3 = 0.168 m

and mass moment of inertia about an axis through its c.g.,

2 2 2 2
G 1 2 G. ( ) (5.5 1.5) (0.168) kg-mI m k m m k= = + = +

= 0.198 kg-m2 Ans.

EXERCISES
1. A particle, moving with simple harmonic motion, performs 10 complete oscillations per minute and

its speed, when at a distance of 80 mm from the centre of oscillation is 3/5 of the maximum speed.

Find the amplitude, the maximum acceleration and the speed of the particle, when it is 60 mm from

the centre of the oscillation. [Ans. 100 mm ; 109.6 mm/s2 ; 83.76 mm/s]

2. A piston, moving with a simple harmonic motion, has a velocity of 8 m/s, when it is 1 metre from the

centre position and a velocity of 4 m/s, when it is 2 metres from the centre. Find : 1. Amplitude, 2.

Periodic time, 3. Maximum velocity, and 4. Maximum acceleration.

[Ans. 2.236 m ; 1.571 s ; 8.94 m/s ; 35.77 m/s2]

3. The plunger of a reciprocating pump is driven by a crank of radius 250 mm rotating at 12.5 rad/s.

Assuming simple harmonic motion, determine the maximum velocity and maximum acceleration of

the plunger. [Ans. 3.125 m/s ; 39.1 m/s2]

4. A part of a machine of mass 4.54 kg has a reciprocating motion which is simple harmonic in character.

It makes 200 complete oscillations in 1 minute. Find : 1. the accelerating force upon it and its velocity

when it is 75 mm, from midstroke ; 2. the maximum accelerating force, and 3. the maximum velocity

if its total stroke is 225 mm i.e. if the amplitude of vibration is 112.5 mm.

[Ans. 149.5 N ; 1.76 m/s ; 224 N ; 2.36 m/s]

5. A helical spring of negligible mass is required to support a mass of 50 kg. The stiffness of the spring

is 60 kN/m. The spring and the mass system is displaced vertically by 20 mm below the equilibrium

position and then released. Find : 1. the frequency of natural vibration of the system ; 2. the velocity

and acceleration of the mass when it is 10 mm below the rest position.

[Ans. 5.5 Hz ; 0.6 m/s ; 11.95 m/s2]

6. A spring of stiffness 2 kN/m is suspended vertically and two equal masses of 4 kg each are attached to

the lower end. One of these masses is suddenly removed and the system oscillates. Determine : 1. the

amplitude of vibration, 2. the frequency of vibration, 3. the velocity and acceleration of the mass when
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passing through half amplitude position, and 4. kinetic energy of the vibration in joules.

 [Ans. 0.019 62 m ; 3.56 Hz ; 0.38 m/s , 4.9 m/s2 ; 0.385 J]

7. A vertical helical spring having a stiffness of 1540 N/m is clamped at its upper end and carries a mass

of 20 kg attached to the lower end. The mass is displaced vertically through a distance of 120 mm and

released. Find : 1. Frequency of oscillation ; 2. Maximum velocity reached ; 3. Maximum accelera-

tion; and 4. Maximum value of the inertia force on the mass.

[Ans. 1.396 Hz ; 1.053 m/s ; 9.24 m/s2 ; 184.8 N]

8. A small flywheel having mass 90 kg is suspended in a vertical plane as a compound pendulum. The

distance of centre of gravity from the knife edge support is 250 mm and the flywheel makes 50

oscillations in 64 seconds. Find the moment of inertia of the flywheel about an axis through the centre

of gravity. [Ans. 3.6 kg-m2]

9. The connecting rod of a petrol engine has a mass 12 kg. In order to find its moment of inertia it is

suspended from a horizontal edge, which passes through small end and coincides with the small end

centre. It is made to swing in a vertical plane, such that it makes 100 oscillations in 96 seconds. If the

point of suspension of the connecting rod is 170 mm from its c.g., find : 1.  radius of gyration about an

axis through its c.g., 2. moment of inertia about an axis through its c.g., and 3. length of the equivalent

simple pendulum. [Ans. 101 mm ; 0.1224 kg-m2 ; 0.23 m]

10. A connecting rod of mass 40 kg is suspended vertically as a compound pendulum. The distance between

the bearing centres is 800 mm. The time for 60 oscillations is found to be 92.5 seconds when the axis of

oscillation coincides with the small end centre and 88.4 seconds when it coincides with the big end

centre. Find the distance of the centre of gravity from the small end centre, and the moment of inertia of

the rod about an axis through the centre of gravity. [Ans. 0.442 m ; 2.6 kg-m2]

11. The following data were obtained from an experiment to find the moment of inertia of a pulley by

bifilar suspension :

Mass of the pulley = 12 kg ; Length of strings = 3 m ; Distance of strings on either side of centre of

gravity = 150 mm ; Time for 20 oscillations about the vertical axis through c.g. = 46.8 seconds

Calculate the moment of inertia of the pulley about the axis of rotation.

[Ans. 0.1226 kg-m2]

12. In order to find the moment of inertia of a flywheel, it is suspended in the horizontal plane by three

wires of length 1.8 m equally spaced around a circle of 185 mm diameter. The time for 25 oscillations

in a horizontal plane about a vertical axis through the centre of flywheel is 54 s. Find the radius of

gyration and the moment of inertia of the flywheel if it has a mass of 50 kg.

[Ans. 74.2 mm; 0.275 kg-m2]

DO YOU KNOW ?
1. Explain the meaning of S.H.M. and give an example of S.H.M.

2. Define the terms amplitude, periodic time, and frequency as applied to S.H.M.

3. Show that when a particle moves with simple harmonic motion, its time for a complete

oscillation is independent of the amplitude of its motion.

4. Derive an expression for the period of oscillation of a mass when attached to a helical spring.

5. What is a simple pendulum ? Under what conditions its motion is regarded as simple harmonic?

6. Prove the formula for the frequency of oscillation of a compound pendulum. What is the length of a

simple pendulum which gives the same frequency as compound pendulum ?

7. Show that the minimum periodic time of a compound pendulum is

G
( )

2
2

p min

k
t

g
= π

where k
G

 is the radius of gyration about the centre of gravity.

8. What do you understand by centre of percussion ? Prove that it lies below the centre of gravity of the

body and at a distance 2
G /k h , where k

G
 is the radius of gyration about c.g. and h is the distance

between the centre of suspension and centre of gravity.
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9. Describe the method of finding the moment of inertia of a connecting rod by means of bifilar suspen-

sion. Derive the relations for the periodic time and frequency of oscillation.

10. What is a torsional pendulum ? Show that periodic time of a torsional pendulum is

G2
p

k l
t

r g

π
=

where                   k
G

 = Radius of gyration,

l = Length of each wire, and

r = Distance of each wire from the axis of the disc.

OBJECTIVE TYPE QUESTIONS

1. The periodic time (t
p
) is given by

(a) ω / 2 π (b) 2 π / ω (c) 2 π × ω (d) π/ω

2. The velocity of a particle moving with simple harmonic motion is . . . . at the mean position.

(a) zero (b) minimum (c) maximum

3. The velocity of a particle (v) moving with simple harmonic motion, at any instant is given by

(a) 2 2
r xω − (b) 2 2

x rω − (c) 2 2 2
r xω − (d) 2 2 2

x rω −

4. The maximum acceleration of a particle moving with simple harmonic motion is

(a) ω (b) ω.r (c) ω2.r (d) ω2/r

5. The frequency of oscillation for the simple pendulum is

(a)
1

2

L

gπ
(b)

1

2

g

Lπ
(c)  2

L

g
π (d) 2

g

L
π

6. When a rigid body is suspended vertically and it oscillates with a small amplitude under the action of the

force of gravity, the body is known as

(a) simple pendulum (b) torsional pendulum

(c) compound pendulum (d) second’s pendulum

7. The frequency of oscillation of a compound pendulum is

(a) 2 2
G

.1

2

g h

k hπ +
(b)

2 2
G1

2 .

k h

g h

+

π
(c)

2 2
G

.
2

g h

k h

π

+

(d)

2 2
G2

.

k h

g h

+
π

where     k
G

  =  Radius of gyration about the centroidal axis, and

      h  =    Distance between the point of suspension and centre of gravity of the body.

8. The equivalent length of a simple pendulum which gives the same frequency as the compound pendulum

is

(a) 2 2
G

h

k h+
 (b)

2 2
Gk h

h

+
(c)

2

2 2
G

h

k h+
(d)

2 2
G

2

k h

h

+

9. The centre of percussion is below the centre of gravity of the body and is at a distance equal to

(a) h / k
G

(b) h.k
G

(c) h
2/k

G
(d)

2
G /k h

10. The frequency of oscillation of a torsional pendulum is

(a)
G2 k g

r l

π
(b)

G2

gr

k lπ
(c)

G2 k l

r g

π
(d)

G2

r l

k gπ

ANSWERS
1. (b) 2. (c) 3. (a) 4. (c) 5. (b)

6. (c) 7. (a) 8. (b) 9. (d) 10. (b)

GO To FIRST
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5.1. Introduction

We have already discussed that a machine is a de-

vice which receives energy and transforms it into some use-

ful work. A machine consists of a number of parts or bodies.

In this chapter, we shall study the mechanisms of the various

parts or bodies from which the machine is assembled. This is

done by making one of the parts as fixed, and the relative

motion of other parts is determined with respect to the fixed

part.

5.2. Kinematic Link or Element

Each part of a machine, which moves relative to some

other part, is known as a kinematic link (or simply link) or

element. A link may consist of several parts, which are rig-

idly fastened together, so that they do not move relative to

one another. For example, in a reciprocating steam engine,

as shown in Fig. 5.1, piston, piston rod and crosshead consti-

tute one link ; connecting rod with big and small end bear-

ings constitute a second link ; crank, crank shaft and flywheel

a third link and the cylinder, engine frame and main bearings

a fourth link.
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Fig. 5.1. Reciprocating steam engine.

A link or element need not to be a

rigid body, but it must be a resistant body. A

body is said to be a resistant body if it is

capable of transmitting the required forces

with negligible deformation. Thus a link

should have the following two characteristics:

1. It should have relative motion, and

2. It must be a resistant body.

5.3. Types of Links

In order to transmit motion, the driver

and the follower may be connected by the following three types of links :

1. Rigid link. A rigid link is one which does not undergo any deformation while transmitting

motion. Strictly speaking, rigid links do not exist. However, as the deformation of a connecting rod,

crank etc. of a reciprocating steam engine is not appreciable, they can be considered as rigid links.

2. Flexible link. A flexible link is one which is partly deformed in a manner not to affect the

transmission of motion. For example, belts, ropes, chains and wires are flexible links and transmit

tensile forces only.

3. Fluid link. A fluid link is one which is formed by having a fluid in a receptacle and the

motion is transmitted through the fluid by pressure or compression only, as in the case of hydraulic

presses, jacks and brakes.

5.4. Structure

It is an assemblage of a number of resistant bodies (known as members) having no relative

motion between them and meant for carrying loads having straining action. A railway bridge, a roof

truss, machine frames etc., are the examples of a structure.

5.5. Difference Between a Machine and a Structure

The following differences between a machine and a structure are important from the subject

point of view :

1. The parts of a machine move relative to one another, whereas the members of a structure

do not move relative to one another.

2. A machine transforms the available energy into some useful work, whereas in a structure

no energy is transformed into useful work.

3. The links of a machine may transmit both power and motion, while the members of a

structure transmit forces only.

Piston and piston rod of an IC engine.
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5.6. Kinematic Pair

The two links or elements of a machine, when in contact with each other, are said to form a

pair. If the relative motion between them is completely or successfully constrained (i.e. in a definite

direction), the pair is known as kinematic pair.

First of all, let us discuss the various types of constrained motions.

5.7. Types of Constrained Motions

Following are the three types of constrained motions :

1. Completely constrained motion. When the motion between a pair is limited to a definite

direction irrespective of the direction of force applied, then the motion is said to be a completely

constrained motion. For example, the piston and cylinder (in a steam engine) form a pair and the

motion of the piston is limited to a definite direction (i.e. it will only reciprocate) relative to the

cylinder irrespective of the direction of motion of the crank, as shown in Fig. 5.1.

Fig. 5.2. Square bar in a square hole. Fig. 5.3. Shaft with collars in a circular hole.

The motion of a square bar in a square hole, as shown in Fig. 5.2, and the motion of a shaft

with collars at each end in a circular hole, as shown in Fig. 5.3, are also examples of completely

constrained motion.

2. Incompletely constrained motion. When the motion between a pair can take place in more

than one direction, then the motion is called an incompletely constrained motion. The change in the

direction of impressed force may alter the direction of relative motion between the pair. A circular bar

or shaft in a circular hole, as shown in Fig. 5.4, is an example of an incompletely constrained motion

as it may either rotate or slide in a hole. These both motions have no relationship with the other.

Fig. 5.4. Shaft in a circular hole. Fig. 5.5. Shaft in a foot step bearing.

3. Successfully constrained motion. When the motion between the elements, forming a pair,is

such that the constrained motion is not completed by itself, but by some other means, then the motion

is said to be successfully constrained motion. Consider a shaft in a foot-step bearing as shown in Fig.

5.5. The shaft may rotate in a bearing or it may move upwards. This is a case of incompletely con-

strained motion. But if the load is placed on the shaft to prevent axial upward movement of the shaft,

then the motion of the pair is said to be successfully constrained motion. The motion of an I.C. engine
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valve (these are kept on their seat by a spring) and the piston reciprocating inside an engine cylinder

are also the examples of successfully constrained motion.

5.8. Classification of Kinematic Pairs

The kinematic pairs may be classified according to the following considerations :

1. According to the type of relative motion between the elements. The kinematic pairs ac-

cording to type of relative motion between the elements may be classified as discussed below:

(a) Sliding pair. When the two elements of a pair are connected in such a way that one can

only slide relative to the other, the pair is known as a sliding pair. The piston and cylinder, cross-head

and guides of a reciprocating steam engine, ram and its guides in shaper, tail stock on the lathe bed

etc. are the examples of a sliding pair. A little consideration will show, that a sliding pair has a

completely constrained motion.

(b)  Turning pair. When the two elements of a pair are connected in such a way that one can

only turn or revolve about a fixed axis of another link, the pair is known as turning pair. A shaft with

collars at both ends fitted into a circular hole, the crankshaft in a journal bearing in an engine, lathe

spindle supported in head stock, cycle wheels turning over their axles etc. are the examples of a

turning pair. A turning pair also has a completely constrained motion.

(c)  Rolling pair. When the two elements of a pair are connected in such a way that one rolls

over another fixed link, the pair is known as rolling pair. Ball and roller bearings are examples of

rolling pair.

(d) Screw pair. When the two elements of a pair are connected in such a way that one element

can turn about the other by screw threads, the pair is known as screw pair. The lead screw of a lathe

with nut, and bolt with a nut are examples of a screw pair.

(e) Spherical pair. When the two elements of a pair are connected in such a way that one

element (with spherical shape) turns or swivels about the other fixed element, the pair formed is

called a spherical pair. The ball and socket joint, attachment of a car mirror, pen stand etc., are the

examples of a spherical pair.

2.  According to the type of contact between the elements. The kinematic pairs according to

the type of contact between the elements may be classified as discussed below :

(a) Lower pair. When the two elements of a pair have a surface contact when relative motion

takes place and the surface of one element slides over the surface of the other, the pair formed is

known as lower pair. It will be seen that sliding pairs, turning pairs and screw pairs form lower pairs.

(b) Higher pair. When the two elements of a pair have a line or point contact when relative

motion takes place and the motion between the two elements is partly turning and partly sliding,then

the pair is known as higher pair. A pair of friction discs, toothed gearing, belt and rope drives, ball and

roller bearings and cam and follower are the examples of higher pairs.

3. According to the type of closure. The kinematic pairs according to the type of closure

between the elements may be classified as discussed below :

(a) Self closed pair. When the two elements of a pair are connected together mechanically in

such a way that only required kind of relative motion occurs, it is then known as self closed pair. The

lower pairs are self closed pair.

(b) Force - closed pair. When the two elements of a pair are not connected mechanically but

are kept in contact by the action of external forces, the pair is said to be a force-closed pair. The cam

and follower is an example of force closed pair, as it is kept in contact by the forces exerted by spring

and gravity.
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Fig. 5.6. Arrangement of three links.

5.9. Kinematic Chain

When the kinematic pairs are

coupled in such a way that the last link

is joined to the first link to transmit

definite motion (i.e. completely or

successfully constrained motion), it is

called a kinematic chain. In other

words, a kinematic chain may be de-

fined as a combination of kinematic

pairs, joined in such a way that each

link forms a part of two pairs and the

relative motion between the links or

elements is completely or successfully

constrained. For example, the crank-

shaft of an engine forms a kinematic

pair with the bearings which are fixed

in a pair, the connecting rod with the

crank forms a second kinematic pair,

the piston with the connecting rod forms a third pair and the piston with the cylinder forms a fourth

pair. The total combination of these links is a kinematic chain.

If each link is assumed to form two pairs with two adjacent links, then the relation between

the number of pairs ( p ) forming a kinematic chain and the number of links ( l ) may be expressed in

the form of an equation :

l = 2 p – 4 . . . (i)

Since in a kinematic chain each link forms a part of two pairs, therefore there will be as many

links as the number of pairs.

Another relation between the number of links (l) and the number of joints ( j ) which

constitute a kinematic chain is given by the expression :

3
2

2
j l= − ...(ii)

The equations (i) and (ii) are applicable only to kinematic chains, in which lower pairs are

used. These equations may also be applied to kinematic chains, in which higher pairs are used. In that

case each higher pair may be taken as equivalent to two lower pairs with an additional element or link.

Let us apply the above equations to the following cases to determine whether each of them is

a kinematic chain or not.

1. Consider the arrangement of three links A B, BC and CA with pin joints at A , B and C as

shown in Fig. 5.6. In this case,

Number of links, l = 3

Number of pairs, p = 3

and       number of joints,  j = 3

From equation (i),                l = 2p – 4

or 3 =  2 × 3 – 4 = 2

i.e. L.H.S. > R.H.S.

Now from equation (ii),

3
2

2
j l= − or

3
3 3 2 2.5

2
= × − =

Lawn-mover is a combination of kinematic links.



Chapter 5 : Simple Mechanisms   �  99

i.e. L.H.S.  > R.H.S.

Since the arrangement of three links, as shown in Fig. 5.6, does not satisfy the equations (i)

and (ii) and the left hand side is greater than the right hand side, therefore it is not a kinematic chain

and hence no relative motion is possible. Such type of chain is called locked chain and forms a rigid

frame or structure which is used in bridges and trusses.

2. Consider the arrangement of four links A B, BC, CD and DA as shown in Fig. 5.7. In this case

l = 4, p = 4, and j = 4

From equation (i), l = 2 p – 4

4 = 2 × 4 – 4 = 4

i.e. L.H.S. = R.H.S.

From equation (ii),
3

2
2

j l= −

3
4 4 2 4

2
= × − =

i.e.                       L.H.S. = R.H.S.

Since the arrangement of four links, as shown in Fig. 5.7, satisfy the equations (i) and (ii),

therefore it is a kinematic chain of one degree of freedom.

A chain in which a single link such as AD in Fig. 5.7 is sufficient to define the position of all

other links, it is then called a kinematic chain of one degree of freedom.

A little consideration will show that in Fig. 5.7, if a definite displacement (say θ) is given to

the link AD, keeping the link A B fixed, then the resulting displacements of the remaining two links BC

and CD are also perfectly definite. Thus we see that in a four bar chain, the relative motion is com-

pletely constrained. Hence it may be called as a constrained kinematic chain, and it is the basis of all

machines.

3. Consider an arrangement of five links, as shown in Fig. 5.8. In this case,

l = 5, p = 5, and j = 5

From equation (i),

l = 2 p – 4 or 5 = 2 × 5 – 4 = 6

i.e. L.H.S. < R.H.S.

From equation (ii),

3
2

2
j l= − or  

3
5 5 2 5.5

2
= × − =

i.e. L.H.S. < R.H.S.

Since the arrangement of five links, as shown in Fig. 5.8 does not satisfy the equations and

left hand side is less than right hand side, therefore it is not a kinematic chain. Such a type of chain is

called unconstrained chain i.e. the relative motion is not completely constrained. This type of chain

is of little practical importance.

4. Consider an arrangement of six links, as shown in Fig. 5.9. This chain is formed by adding

two more links in such a way that these two links form a pair with the existing links as well as form

themselves a pair. In this case

l = 6, p = 5, and   j = 7

Fig. 5.7. Arrangement of four links.

Fig. 5.8. Arrangement of five links.
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Fig. 5.11. Kinematic chain having

binary and ternary joints.

From equation (i),

l = 2 p – 4       or 6 = 2 × 5 – 4 = 6

i.e. L.H.S. = R.H.S.

From equation (ii),

3
2

2
j l= − or

3
7 6 2 7

2
= × − =

i.e. L.H.S. = R.H.S.

Since the arrangement of six links, as shown in Fig.

5.9, satisfies the equations (i.e. left hand side is equal to right

hand side), therefore it is a kinematic chain.

Note : A chain having more than four links is known as compound kinematic chain.

5.10. Types of Joints in a Chain

The following types of joints are usually found in a chain :

1. Binary joint. When two links are joined at the same connection, the joint is known as

binary joint. For example, a chain as shown in Fig. 5.10, has four links and four binary joins at A , B,

C and D.

In order to determine the nature of chain, i.e. whether

the chain is a locked chain (or structure) or kinematic chain

or unconstrained chain, the following relation between the

number of links and the number of binary joints, as given by

A.W. Klein, may be used :

3
2

2 2

h
j l+ = −                            ... (i)

where j = Number of binary joints,

h = Number of higher pairs, and

l = Number of links.

When h = 0, the equation (i), may be written as

3
2

2
j l= − . . . (ii)

Applying this equation to a chain, as shown in Fig. 5.10, where l = 4 and j = 4, we have

3
4 4 2 4

2
= × − =

Since the left hand side is equal to the right hand side, therefore the chain is a kinematic chain

or constrained chain.

2. Ternary joint.  When three links are joined at the

same connection, the joint is known as ternary joint. It is equiva-

lent to two binary joints as one of the three links joined carry

the pin for the other two links. For example, a chain, as shown

in Fig. 5.11, has six links. It has three binary joints at A , B and

D and two ternary joints at C and E. Since one ternary joint is

equivalent to two binary joints, therefore equivalent binary joints

in a chain, as shown in Fig. 5.11, are 3 + 2 × 2 = 7

Let us now determine whether this chain is a kinematic

chain or not. We know that l = 6 and j = 7, therefore from

Fig. 5.10. Kinematic chain with all

binary joints.

Fig. 5.9. Arrangement of six links.
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equation (ii),

3
2

2
j l= −

or
3

7 6 2 7
2

= × − =

Since left hand side is equal to right hand side, therefore the chain, as shown in Fig. 5.11, is

a kinematic chain or constrained chain.

3. Quaternary joint. When four links are joined at the same connection, the joint is called a

quaternary joint. It is equivalent to three binary joints. In general, when l number of links are joined

at the same connection, the joint is equivalent to (l – 1) binary joints.

For example consider a chain having eleven links, as shown in Fig. 5.12 (a). It has one binary

joint at D, four ternary joints at A, B, E and F, and two quaternary joints at C and G. Since one

quaternary joint is equivalent to three binary joints and one ternary joint is equal to two binary joints,

therefore total number of binary joints in a chain, as shown in Fig. 5.12 (a), are

(a) Looked chain having binary, ternary (b) Kinematic chain having binary

and quaternary joints. and ternary joints.

Fig. 5.12

1 + 4 × 2 + 2 × 3 = 15

Let us now determine whether the chain, as shown in Fig. 5.12 (a), is a kinematic chain or

not. We know that l = 11 and j = 15. We know that,

3
2,

2
j l= − or

3
15 11 2 14.5,

2
= × − =  i.e., L.H.S. > R.H.S.

Since the left hand side is greater than right hand side, therefore the chain, as shown in Fig.

5.12 (a) , is not a kinematic chain. We have discussed in Art 5.9 , that such a type of chain is called

locked chain and forms a rigid frame or structure.

If the link CG is removed, as shown in Fig. 5.12 (b), it has ten links and has one binary joint

at D and six ternary joints at A, B, C, E, F and G.

Therefore total number of binary joints are 1 + 2 × 6 = 13. We know that

3
2,

2
j l= − or

3
13 10 2 13

2
= × − = , i.e. L.H.S. = R.H.S.

Since left hand side is equal to right hand side, therefore the chain, as shown in Fig. 5.12 (b),

is a kinematic chain or constrained chain.

5.11. Mechanism

When one of the links of a kinematic chain is fixed, the chain is known as mechanism. It may

be used for transmitting or transforming motion e.g. engine indicators, typewriter etc.
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* The differential of an automobile requires that the angular velocity of two elements be fixed in order to

know the velocity of the remaining elements. The differential mechanism is thus said to have two degrees

of freedom. Many computing mechanisms have two or more degrees of freedom.

A mechanism with four links is known as simple mechanism, and the mechanism with more

than four links is known as compound mechanism. When a mechanism is required to transmit power

or to do some particular type of work, it then becomes a machine. In such cases, the various links or

elements have to be designed to withstand the forces (both static and kinetic) safely.

A little consideration will show that a mechanism may be regarded as a machine in which

each part is reduced to the simplest form to transmit the required motion.

5.12. Number of Degrees of Freedom for Plane Mechanisms

In the design or analysis of a mechanism, one of the most important concern is the number of

degrees of freedom (also called movability) of the mechanism. It is defined as the number of input

parameters (usually pair variables) which must be independently controlled in order to bring the

mechanism into a useful engineering purpose. It is possible to determine the number of degrees of

freedom of a mechanism directly from the number of links and the number and types of joints which

it includes.

Consider a four bar chain, as shown in Fig. 5.13 (a). A little consideration will show that only

one variable such as θ is needed to define the relative positions of all the links. In other words, we say

that the number of degrees of freedom of a four bar chain is one. Now, let us consider a five bar chain,

as shown in Fig. 5.13 (b). In this case two variables such as θ
1
 and θ

2
 are needed to define completely

the relative positions of all the links. Thus, we say that the number of degrees of freedom is * two.

In order to develop the relationship in general, consider two links A B and CD in a plane

motion as shown in Fig. 5.14 (a).

Fig. 5.14. Links in a plane motion.

The link AB with co-ordinate system OXY is taken as the reference link (or fixed link). The

position of point P on the moving link CD can be completely specified by the three variables, i.e. the

(a) Four bar chain. (b) Five bar chain.

Fig. 5.13
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co-ordinates of the point P denoted by x and y and the inclination θ of the link CD with X-axis or link

A B. In other words, we can say that each link of a mechanism has three degrees of freedom before it

is connected to any other link. But when the link CD is connected to the link A B by a turning pair at

A , as shown in Fig. 5.14 (b), the position of link CD is now determined by a single variable θ and thus

has one degree of freedom.

From above, we see that when a link is connected to a fixed link by a turning pair (i.e. lower

pair), two degrees of freedom are destroyed. This may be clearly understood from Fig. 5.15, in which

the resulting four bar mechanism has one degree of freedom (i.e. n = 1 ).

Fig. 5.15. Four bar mechanism.

Now let us consider a plane mechanism with l number of links. Since in a mechanism, one of

the links is to be fixed, therefore the number of movable links will be (l – 1) and thus the total number

of degrees of freedom will be 3 (l – 1) before they are connected to any other link. In general, a

mechanism with l number of links connected by j number of binary joints or lower pairs (i.e. single

degree of freedom pairs) and h number of higher pairs (i.e. two degree of freedom pairs), then the

number of degrees of freedom of a mechanism is given by

n = 3 (l – 1) – 2 j – h ... (i)

This equation is called Kutzbach criterion for the movability of a mechanism having plane

motion.

If there are no two degree of freedom pairs (i.e. higher pairs), then h = 0. Substituting

h = 0 in equation (i), we have

n = 3 (l – 1) – 2 j ... (ii)

5.13. Application of Kutzbach Criterion to Plane Mechanisms

We have discussed in the previous article that Kutzbach criterion for determining the number

of degrees of freedom or movability (n) of a plane mechanism is

n = 3 (l – 1) – 2 j – h

Fig. 5.16. Plane mechanisms.

The number of degrees of freedom or movability (n) for some simple mechanisms having no

higher pair (i.e. h = 0), as shown in Fig. 5.16, are determined as follows :
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1. The mechanism, as shown in Fig. 5.16 (a), has three links and three binary joints, i.e.

l = 3 and j = 3.

∴ n = 3 (3 – 1) – 2 × 3 = 0

2. The mechanism, as shown in Fig. 5.16 (b), has four links and four binary joints, i.e.

l = 4 and j = 4.

∴ n = 3 (4 – 1) – 2 × 4 = 1

3. The mechanism, as shown in Fig. 5.16 (c), has five links and five binary joints, i.e.

l = 5, and j = 5.

∴ n = 3 (5 – 1) – 2 × 5 = 2

4. The mechanism, as shown in Fig. 5.16 (d), has five links and six equivalent binary joints

(because there are two binary joints at B  and D, and two ternary joints at A  and C), i.e.

l = 5 and j = 6.

∴ n = 3 (5 – 1) – 2 × 6 = 0

5. The mechanism, as shown in Fig. 5.16 (e), has six links and eight equivalent binary joints

(because there are four ternary joints at A, B, C and D), i.e. l = 6 and j = 8.

∴ n = 3 (6 – 1) – 2 × 8 = – 1

It may be noted that

(a) When n = 0, then the mechanism forms a structure and no relative motion between the

links is possible, as shown in Fig. 5.16 (a) and (d).

(b) When n = 1, then the mechanism can be driven by a single input motion, as shown in Fig.

5.16 (b).

(c) When n = 2, then two separate input motions are necessary to produce constrained

motion for the mechanism, as shown in Fig. 5.16 (c).

(d) When n =  – 1 or less, then there are redundant constraints in the chain and it forms a

statically indeterminate structure, as shown in Fig. 5.16 (e).

The application of Kutzbach’s criterion applied to mechanisms with a higher pair or two

degree of freedom joints is shown in Fig. 5.17.

Fig. 5.17. Mechanism with a higher pair.

In Fig. 5.17 (a), there are three links, two binary joints and one higher pair, i.e. l = 3, j = 2 and h = 1.

  ∴ n = 3 (3 – 1) – 2 × 2 – 1 = 1

In Fig. 5.17 (b), there are four links, three binary joints and one higher pair, i.e. l = 4,

j = 3 and h = 1

∴ n = 3 (4 – 1) – 2 × 3 – 1 = 2

Here it has been assumed that the slipping is possible between the links (i.e. between the

wheel and the fixed link). However if the friction at the contact is high enough to prevent slipping, the

joint will be counted as one degree of freedom pair, because only one relative motion will be possible

between the links.
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5.14. Grubler’s Criterion for Plane Mechanisms

The Grubler’s criterion applies to mechanisms with only single degree of freedom joints

where the overall movability of the mechanism is unity. Substituting n = 1 and h = 0 in Kutzbach

equation, we have

1 = 3 (l – 1) – 2 j or 3l – 2j – 4 = 0

This equation is known as the Grubler's criterion for plane mechanisms with constrained

motion.

A little consideration will show that a plane mechanism with a movability of 1 and only

single degree of freedom joints can not have odd number of links. The simplest possible machanisms

of this type are a four bar mechanism and a slider-crank mechanism in which l = 4 and j = 4.

5.15. Inversion of Mechanism

We have already discussed that when one of links is fixed in a kinematic chain, it is called a

mechanism. So we can obtain as many mechanisms as the number of links in a kinematic chain by

fixing, in turn, different links in a kinematic chain. This method of obtaining different mechanisms by

fixing different links in a kinematic chain, is known as inversion of the mechanism.

It may be noted that the relative motions between the various links is not changed in any

manner through the process of inversion, but their absolute motions (those measured with respect to

the fixed link) may be changed drastically.

Note: The part of a mechanism which initially moves with respect to the frame or fixed link is called driver and

that part of the mechanism to which motion is transmitted is called follower. Most of the mechanisms are

reversible, so that same link can play the role of a driver and follower at different times. For example, in a

reciprocating steam engine, the piston is the driver and flywheel is a follower while in a reciprocating air

compressor, the flywheel is a driver.

5.16. Types of Kinematic Chains

The most important kinematic chains are those which consist of four lower pairs, each pair

being a sliding pair or a turning pair. The following three types of kinematic chains with four lower

pairs are important from the subject point of view :

1. Four bar chain or quadric cyclic chain,

2. Single slider crank chain, and

3. Double slider crank chain.

These kinematic chains are discussed, in detail, in the following articles.

5.17. Four Bar Chain or Quadric Cycle Chain

We have already discussed that the kinematic chain is a combination of four or more

kinematic pairs, such that the relative motion between the links or elements is completely constrained.

The simplest and the basic kinematic chain is a four bar chain or quad-

ric cycle chain, as shown in Fig. 5.18. It consists of four links, each of

them forms a turning pair at A, B, C and D. The four links may be of

different lengths. According to Grashof ’s law for a four bar mecha-

nism, the sum of the shortest and longest link lengths should not be

greater than the sum of the remaining two link lengths if there is to be

continuous relative motion between the two links.

A very important consideration in designing a mechanism is to

ensure that the input crank makes a complete revolution relative to the Fig. 5.18. Four bar chain.
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* Refer Chapter 9, Art. 9.6

other links. The mechanism in which no link makes a complete revolution will not be useful. In a four

bar chain, one of the links, in particular the shortest link, will make a complete revolution relative to

the other three links, if it satisfies the Grashof ’s law. Such a link is known as crank or driver. In Fig.

5.18, AD (link 4 ) is a crank. The link BC (link 2) which makes a partial rotation or oscillates is known

as lever or rocker or follower and the link CD (link 3) which connects the crank and lever is called

connecting rod or coupler. The fixed link A B (link 1) is known as frame of the mechanism.

When the crank (link 4) is the driver, the mechanism is transforming rotary motion into

oscillating motion.

5.18. Inversions of Four Bar Chain

Though there are many inversions of the four bar

chain, yet the following are important from the subject

point of view :

1. Beam engine (crank and lever mechanism).

A part of the mechanism of a beam engine (also known as

crank and lever mechanism) which consists of four links,

is shown in Fig. 5.19. In this mechanism, when the crank

rotates about the fixed centre A , the lever oscillates about

a fixed centre D. The end E of the lever CDE is

connected to a piston rod which reciprocates due to the

rotation of the crank. In other words, the purpose of this

mechanism is to convert rotary motion into reciprocating

motion.

Fig. 5.20. Coupling rod of a locomotive.Fig. 5.19. Beam engine.

2. Coupling rod of a locomotive (Double crank mechanism). The mechanism of a coupling

rod of a locomotive (also known as double crank mechanism) which consists of four links, is shown

in Fig. 5.20.

In this mechanism, the links AD and BC (having equal length) act as cranks and are con-

nected to the respective wheels. The link CD acts as a coupling rod and the link A B is fixed in order

to maintain a constant centre to centre distance between them. This mechanism is meant for transmit-

ting rotary motion from one wheel to the other wheel.

3. Watt’s indicator mechanism (Double lever mechanism). A *Watt’s indicator mechanism

(also known as Watt's straight line mechanism or double lever mechanism) which consists of four
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links, is shown in Fig. 5.21. The four links are : fixed link

at A , link AC, link CE and link BFD. It may be noted that

BF and FD form one link because these two parts have no

relative motion between them. The links CE and BFD act

as levers. The displacement of the link BFD is directly

proportional to the pressure of gas or steam which acts on

the indicator plunger. On any small displacement of the

mechanism, the tracing point E at the end of the link CE

traces out approximately a straight line.

The initial position of the mechanism is shown in

Fig. 5.21 by full lines whereas the dotted lines show the

position of the mechanism when the gas or steam pressure

acts on the indicator plunger.

5.19. Single Slider Crank Chain

A single slider crank chain is a modification of the basic four bar chain. It consist of one

sliding pair and three turning pairs. It is,usually, found in reciprocating steam engine mechanism.

This type of mechanism converts rotary motion into reciprocating motion and vice versa.

In a single slider crank chain, as shown in Fig. 5.22, the links 1 and 2, links 2 and 3, and links

3 and 4 form three turning pairs while the links 4 and 1 form a sliding pair.

Fig. 5.22. Single slider crank chain.

The link 1 corresponds to the frame of the engine, which is fixed. The link 2 corresponds to

the crank ; link 3 corresponds to the connecting rod and link 4 corresponds to cross-head. As the

crank rotates, the cross-head reciprocates in the guides and thus the piston reciprocates in the

cylinder.

5.20. Inversions of Single Slider Crank Chain

We have seen in the previous article that a single slider crank chain is a four-link mechanism.

We know that by fixing, in turn, different links in a kinematic chain, an inversion is obtained and

we can obtain as many mechanisms as the links in a kinematic chain. It is thus obvious, that four

inversions of a single slider crank chain are possible. These inversions are found in the following

mechanisms.

1. Pendulum pump or Bull engine. In this mechanism, the inversion is obtained by fixing the

cylinder or link 4 (i.e. sliding pair), as shown in Fig. 5.23. In this case, when the crank (link 2) rotates,

the connecting rod (link 3) oscillates about a pin pivoted to the fixed link 4 at A  and the piston

attached to the piston rod (link 1) reciprocates. The duplex pump which is used to supply feed water

to boilers have two pistons attached to link 1, as shown in Fig. 5.23.

Fig. 5.21. Watt’s indicator mechanism.
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Fig. 5.23. Pendulum pump. Fig. 5.24. Oscillating cylinder engine.

2. Oscillating cylinder engine. The ar-

rangement of oscillating cylinder engine mecha-

nism, as shown in Fig. 5.24, is used to convert

reciprocating motion into rotary motion. In this

mechanism, the link 3 forming the turning pair is

fixed. The link 3 corresponds to the connecting

rod of a reciprocating steam engine mechanism.

When the crank (link 2) rotates, the piston at-

tached to piston rod (link 1) reciprocates and the

cylinder (link 4) oscillates about a pin pivoted to

the fixed link at A.

3. Rotary internal combustion engine

or Gnome engine. Sometimes back, rotary in-

ternal combustion engines were used in aviation.

But now-a-days gas turbines are used in its place.

It consists of seven cylinders in one plane and

all revolves about fixed centre D, as shown in

Fig. 5.25, while the crank (link 2) is fixed. In

this mechanism, when the connecting rod (link

4) rotates, the piston (link 3) reciprocates inside

the cylinders forming link 1.

Fig. 5.25. Rotary internal combustion engine.

4. Crank and slotted lever quick return motion mechanism. This mechanism is mostly used

in shaping machines, slotting machines and in rotary internal combustion engines.

Rotary engine
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In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed, as shown in Fig.

5.26. The link 3 corresponds to the connecting rod of a reciprocating steam engine. The driving crank

CB revolves with uniform angular speed about the fixed centre C. A sliding block attached to the crank

pin at B slides along the slotted bar AP and thus causes AP to oscillate about the pivoted point A . A

short link PR transmits the motion from AP to the ram which carries the tool and reciprocates along the

line of stroke R
1
R

2
. The line of stroke of the ram (i.e. R

1
R

2
) is perpendicular to AC produced.

Fig. 5.26. Crank and slotted lever quick return motion mechanism.

In the extreme positions, AP
1
 and AP

2
 are tangential to the circle

and the cutting tool is at the end of the stroke. The forward or cutting

stroke occurs when the crank rotates from the position CB
1
 to CB

2
 (or

through an angle β) in the clockwise direction. The return stroke occurs

when the crank rotates from the position CB
2
 to CB

1
 (or through angle α)

in the clockwise direction. Since the crank has uniform angular speed,

therefore,

Time of cutting stroke 360
or

Time of return stroke 360

° − αβ β
= =

α ° − β α

Since the tool travels a distance of R
1
 R

2
 during cutting and return

stroke, therefore travel of the tool or length of stroke

 = R
1
R

2
 = P

1
P

2
  = 2P

1
Q = 2AP

1
 sin ∠ P

1
 AQ

 = ( )12 sin 90 2 cos
2 2

AP AP
α α

° − =
1..... ( )AP AP=�

  
12

CB
AP

AC
= × ... 1cos

2

CB

AC

 α
= 

 
�

  2
CB

AP
AC

= × ... 1( )CB CB=�

Note: From Fig. 5.26, we see that the angle β made by the forward or cutting stroke is greater than the angle α

described by the return stroke. Since the crank rotates with uniform angular speed, therefore the return stroke is

completed within shorter time. Thus it is called quick return motion mechanism.

The Shaping Machine
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5. Whitworth quick return motion mechanism. This mechanism is mostly used in shaping

and slotting machines. In this mechanism, the link CD (link 2) forming the turning pair is fixed, as

shown in Fig. 5.27. The link 2 corresponds to a crank in a reciprocating steam engine. The driving

crank CA (link 3) rotates at a uniform angular speed. The slider (link 4) attached to the crank pin at A

slides along the slotted bar PA  (link 1) which oscillates at a pivoted point D. The connecting rod PR

carries the ram at R to which a cutting tool is fixed. The motion of the tool is constrained along the

line RD produced, i.e. along a line passing through D and perpendicular to CD.

Fig. 5.27. Whitworth quick return motion mechanism.

When the driving crank CA moves from the position CA
1
 to CA

2
 (or the link DP from the

position DP
1
 to DP

2
) through an angle α in the clockwise direction, the tool moves from the left hand

end of its stroke to the right hand end through a distance 2 PD.

Now when the driving crank moves from the position CA
2
 to CA

1
 (or the link DP from DP

2
 to

DP
1
 ) through an angle β in the clockwise direction, the tool moves back from right hand end of its

stroke to the left hand end.

A little consideration will show that the time taken during the left to right movement of the

ram (i.e. during forward or cutting stroke) will be equal to the time taken by the driving crank to move

from CA
1
 to CA

2
. Similarly, the time taken during the right to left movement of the ram (or during the

idle or return stroke) will be equal to the time taken by the driving crank to move from CA
2
 to CA

1
.

Since the crank link CA rotates at uniform angular velocity therefore time taken during the

cutting stroke (or forward stroke) is more than the time taken during the return stroke. In other words,

the mean speed of the ram during cutting stroke is less than the mean speed during the return stroke.

The ratio between the time taken during the cutting and return strokes is given by

Time of cutting stroke 360
or

Time of return stroke 360

° − βα α
= =

β ° − α β

Note. In order to find the length of effective stroke R
1
 R

2
, mark P

1
 R

1
 = P

2
 R

2
 = PR. The length of effective

stroke is also equal to 2 PD.

Example 5.1. A crank and slotted lever mechanism used in a shaper has a centre distance of

300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank.

The radius of the crank is 120 mm. Find the ratio of the time of cutting to the time of return stroke.

Solution. Given : AC = 300 mm ; CB
1
 = 120 mm

The extreme positions of the crank are shown in Fig. 5.28. We know that
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Fig. 5.29

Fig. 5.28

    1sin sin (90 / 2)CAB∠ = ° − α

    
1 120

0.4
300

CB

AC
= = =

∴     1 90 / 2CAB∠ = ° − α

    = sin–1 0.4 = 23.6°

or   α / 2 = 90° – 23.6° = 66.4°

and    α = 2 × 66.4 = 132.8°

We know that

Time of cutting stroke 360 132.8360

Time of return stroke 132.8

°− °° − α
= =

α °
= 1.72 Ans.

Example 5.2. In a crank and slotted lever quick return motion mechanism, the distance

between the fixed centres is 240 mm and the length of the driving crank is 120 mm. Find the inclina-

tion of the slotted bar with the vertical in the extreme position and the time ratio of cutting stroke to

the return stroke.

If the length of the slotted bar is 450 mm, find the length of the stroke if the line of stroke

passes through the extreme positions of the free end of the lever.

Solution. Given : AC = 240 mm ; CB
1
 = 120 mm ; AP

1
 = 450 mm

Inclination of the slotted bar with the vertical

Let ∠CAB
1
 = Inclination of the slotted bar with the vertical.

The extreme positions of the crank are

shown in Fig. 5.29. We know that

( )1sin sin 90
2

CAB
α

∠ = ° −

                     
1 120

0.5
240

B C

AC
= = =

∴ 1 90
2

CAB
α

∠ = ° −

1sin 0.5 30−
= = °  Ans.

Time ratio of cutting stroke to the return stroke

We know that

                90° – α / 2 = 30°

∴                     α / 2 = 90° – 30° = 60°

or  α = 2 × 60° = 120°

∴
Time of cutting stroke 360 360 120

Time of return stroke 120

° − α ° − °
= =

α °
 = 2 Ans.
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Length of the stroke

We know that length of the stroke,

R
1
R

2
 = P

1
P

2
 =  2 P

1
Q = 2 AP

1
 sin (90° – α / 2)

= 2 × 450 sin (90°– 60°) = 900 × 0.5 = 450 mm Ans.

Example 5.3. Fig. 5.30 shows the lay out of a quick return mechanism of the oscillating link

type, for a special purpose machine. The driving crank BC is 30 mm long and time ratio of the

working stroke to the return stroke is to be 1.7. If the length of the working stroke of R is 120 mm,

determine the dimensions of AC and AP.

Solution.  Given : BC = 30 mm ; R
1
R

2
 = 120 mm ; Time ratio of working stroke to the return

stroke = 1.7

                            Fig. 5.30                                                               Fig. 5.31

We know that

Time of working stroke 360

Time of return stroke

− α
=

α
or

360
1.7

− α
=

α

∴ α = 133.3° or α / 2 = 66.65°

The extreme positions of the crank are shown in Fig. 5.31. From right angled triangle A B
1
C,

we find that

sin (90° – α/2) = 
1B C

AC
or 1

sin (90 / 2) cos / 2

B C BC
AC = =

° − α α

... (∵ B
1
C = BC)

∴
30 30

75.7
cos66.65 0.3963

AC = = =
°

mm Ans.

We know that length of stroke,

R
1
R

2
 = P

1
P

2
 = 2P

1
Q = 2 AP

1
 sin (90° – α / 2) = 2 AP

1
 cos α / 2

120 = 2 AP cos 66.65° = 0.7926 AP ... (∵ AP
1
 = AP)

∴ AP = 120 / 0.7926 = 151.4 mm Ans.

Example 5.4. In a Whitworth quick return motion mechanism, as shown in Fig. 5.32, the

distance between the fixed centers is 50 mm and the length of the driving crank is 75 mm. The length

of the slotted lever is 150 mm and the length of the connecting rod is 135 mm. Find the ratio of the

time of cutting stroke to the time of return stroke and also the effective stroke.
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Solution.  Given : CD = 50 mm ; CA = 75 mm ; PA  = 150 mm ; PR = 135 mm

Fig. 5.32 Fig. 5.33

The extreme positions of the driving crank are shown in Fig. 5.33. From the geometry of the

figure,

2

50
cos / 2 0.667

75

CD

CA
β = = = ... (�CA

2
 = CA)

∴ / 2 48.2β = ° or β = 96.4°

Ratio of the time of cutting stroke to the time of return stroke

We know that

Time of cutting stroke 360 360 96.4
2.735

Time of return stroke 96.4

− β −
= = =

β
 Ans.

Length of effective stroke

In order to find the length of effective stroke (i.e. R
1
R

2
), draw the space diagram of the

mechanism to some suitable scale, as shown in Fig. 5.33. Mark P
1
R

2
 = P

2
R

2
 = PR. Therefore by

measurement we find that,

Length of effective stroke = R
1
R

2
 = 87.5 mm Ans.

5.21. Double Slider Crank Chain

A kinematic chain which consists of two turning pairs and two sliding pairs is known as

double slider crank chain, as shown in Fig. 5.34. We see that the link 2 and link 1 form one turning

pair and link 2 and link 3 form the second turning pair. The link 3 and link 4 form one sliding pair and

link 1 and link 4 form the second sliding pair.

5.22.  Inversions of Double Slider Crank Chain

The following three inversions of a double slider crank chain are important from the subject

point of view :

1. Elliptical trammels. It is an instrument used for drawing ellipses. This inversion is obtained

by fixing the slotted plate (link 4), as shown in Fig. 5.34. The fixed plate or link 4 has two straight

grooves cut in it, at right angles to each other. The link 1 and link 3, are known as sliders and form sliding

pairs with link 4. The link A B (link 2) is a bar which forms turning pair with links 1 and 3.

 When the links 1 and 3 slide along their respective grooves, any point on the link 2 such as

P traces out an ellipse on the surface of link 4, as shown in Fig. 5.34 (a). A little consideration will

show that AP and BP are the semi-major axis and semi-minor axis of the ellipse respectively. This can

be proved as follows :
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(a) (b)

Fig. 5.34. Elliptical trammels.

Let us take OX and O Y as horizontal and vertical axes and let the link B A is inclined at an

angle θ with the horizontal, as shown in Fig. 5.34 (b). Now the co-ordinates of the point P on the link

B A will be

x = PQ = AP cos θ; and y = PR = BP sin θ

or cos ; and sin
yx

AP BP
= θ = θ

Squaring and adding,

     

22
2 2

2 2
cos sin 1

( ) ( )

yx

AP BP

+ = θ + θ =

This is the equation of an ellipse. Hence the path traced by point P is an ellipse whose semi-

major axis is AP and semi-minor axis is BP.

Note : If P is the mid-point of link B A, then AP = BP. The above equation can be written as

                        

2 2

2 2
1

( ) ( )

x y

AP AP
+ =           or      x2 + y2 = (AP)2

This is the equation of a circle whose radius is AP. Hence if P is the mid-point of link B A, it will trace

a circle.

2. Scotch yoke mechanism. This mechanism is used for converting rotary motion into a

reciprocating motion. The inversion is obtained by fixing either the link 1 or link 3. In Fig. 5.35, link

1 is fixed. In this mechanism, when the link 2 (which

corresponds to crank) rotates about B as centre, the link

4 (which corresponds to a frame) reciprocates. The fixed

link 1 guides the frame.

3. Oldham’s coupling. An oldham's coupling is

used for connecting two parallel shafts whose axes are

at a small distance apart. The shafts are coupled in such

a way that if one shaft rotates, the other shaft also rotates

at the same speed. This inversion is obtained by fixing

the link 2, as shown in Fig. 5.36 (a). The shafts to be

connected have two flanges (link 1 and link 3) rigidly

fastened at their ends by forging.

Fig. 5.35. Scotch yoke mechanism.
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The link 1 and link 3 form turning pairs with link 2. These flanges have diametrical slots cut

in their inner faces, as shown in Fig. 5.36 (b). The intermediate piece (link 4) which is a circular disc,

have two tongues (i.e. diametrical projections) T
1
 and T

2
 on each face at right angles to each other, as

shown in Fig. 5.36 (c). The tongues on the link 4 closely fit into the slots in the two flanges (link 1 and

link 3). The link 4 can slide or reciprocate in the slots in the flanges.

(a) (b) (c)

Fig. 5.36. Oldham’s coupling.

When the driving shaft A is rotated, the flange C (link 1) causes the intermediate piece (link

4) to rotate at the same angle through which the flange has rotated, and it further rotates the flange D

(link 3) at the same angle and thus the shaft B rotates. Hence links 1, 3 and 4 have the same angular

velocity at every instant. A little consideration will show, that there is a sliding motion between the

link 4 and each of the other links 1 and 3.

If the distance between the axes of the shafts is constant, the centre of intermediate piece will

describe a circle of radius equal to the distance between the axes of the two shafts. Therefore, the

maximum sliding speed of each tongue along its slot is equal to the peripheral velocity of the centre

of the disc along its circular path.

Let ω = Angular velocity of each shaft in rad/s, and

r = Distance between the axes of the shafts in metres.

∴ Maximum sliding speed of each tongue (in m/s),

v = ω.r

EXERCISES

1.  In a crank and slotted lever quick return mechanism, the distance between the fixed centres is 150

mm and the driving crank is 75 mm long. Determine the ratio of the time taken on the cutting and

return strokes. [Ans. 2]

2. In a crank and slotted lever quick return motion mechanism, the distance between the fixed centres O

and C is 200 mm. The driving crank CP is 75 mm long. The pin Q on the slotted lever, 360 mm from

the fulcrum O, is connected by a link QR 100 mm long, to a pin R on the ram. The line of stroke of R

is perpendicular to OC and intersects OC produced at a point 150 mm from C. Determine the ratio of

times taken on the cutting and return strokes. [Ans. 1.647]

3. In a crank and slotted lever quick return mechanism, as shown in Fig. 5.37, the driving crank length is

75 mm. The distance between the fixed centres is 200 mm and the length of the slotted lever is 500

mm. Find the ratio of the times taken on the cutting and idle strokes. Determine the effective stroke

also. [Ans. 1.67 ; 380 mm]
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All dimensions in mm

Fig. 5.37

4. The Whitworth quick return motion mechanism has the driving crank 150 mm long. The distance

between fixed centres is 100 mm. The line of stroke of the ram passes through the centre of rotation of

the slotted lever whose free end is connected to the ram by a connecting link. Find the ratio of time of

cutting to time of return. [Ans. 2.735]

5. A Whitworth quick return motion mechanism, as shown in Fig. 5.38, has the following

particulars :

Fig. 5.38

Length of stroke = 150 mm ; Driving crank length = 40 mm; 
Time of cutting stroke

= 2
Time of returnstroke

Find the lengths of CD and PD. Also determine the angles α and β.

[Hint : Length of stroke = R
1
R

2
 = P

1
P

2
 = 2PD] [Ans. 20 mm, 75 mm; 240°, 120°]

DO YOU KNOW ?
1. Explain the term kinematic link. Give the classification of kinematic link.

2. What is a machine ? Giving example, differentiate between a machine and a structure.

3. Write notes on complete and incomplete constraints in lower and higher pairs, illustrating your answer

with neat sketches.

4. Explain different kinds of kinematic pairs giving example for each one of them.

5. Explain the terms : 1. Lower pair, 2. Higher pair, 3. Kinematic chain, and 4. Inversion.

6. In what way a mechanism differ from a machine ?

7.  What is the significance of degrees of freedom of a kinematic chain when it functions as a mecha-

nism? Give examples.
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8. Determine the mobility (degrees of freedom) of the mechanism shown in Fig. 5.39 (a) and (b) using

Kutzbach mobility criterion and classify them.

Fig. 5.39

9. Explain Grubler’s criterion for determining degree of freedom for mechanisms. Using Grubler’s cri-

terion for plane mechanism, prove that the minimum number of binary links in a constrained mecha-

nism with simple hinges is four.

10. Sketch and explain the various inversions of a slider crank chain.

11. Sketch and describe the four bar chain mechanism. Why it is considered to be the basic chain?

12. Show that slider crank mechanism is a modification of the basic four bar mechanism.

13. Sketch slider crank chain and its various inversions, stating actual machines in which these are used in

practice.

14. Sketch and describe the working of two different types of quick return mechanisms. Give examples of

their applications. Derive an expression for the ratio of times taken in forward and return stroke for

one of these mechanisms.

15. Sketch and explain any two inversions of a double slider crank chain.

16. Identify the kinematic chains to which the following mechanisms belong :

1. Steam engine mechanism ; 2. Beam engine ; 3. Whitworth quick return motion mechanism;

4. Elliptical trammels.

OBJECTIVE TYPE QUESTIONS

1. In a reciprocating steam engine, which of the following forms a kinematic link ?

(a) cylinder and piston (b) piston rod and connecting rod

(c) crank shaft and flywheel (d) flywheel and engine frame

2. The motion of a piston in the cylinder of a steam engine is an example of

(a) completely constrained motion (b) incompletely constrained motion

(c) successfully constrained motion (d) none of these

3. The motion transmitted between the teeth of gears in mesh is

(a) sliding (b) rolling

(c) may be rolling or sliding depending upon the shape of teeth

(d) partly sliding and partly rolling

4. The cam and follower without a spring forms a

(a) lower pair (b) higher pair

(c) self closed pair (d) force closed pair

5. A ball and a socket joint forms a

(a) turning pair (b) rolling pair (c) sliding pair (d) spherical pair

6. The lead screw of a lathe with nut forms a

(a) sliding pair (b) rolling pair (c) screw pair (d) turning pair

7. When the elements of the pair are kept in contact by the action of external forces, the pair is said to be a

(a) lower pair (b) higher pair

(c) self closed pair (d) force closed pair
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8. Which of the following is a turning pair ?

(a) Piston and cylinder of a reciprocating steam engine

(b) Shaft with collars at both ends fitted in a circular hole

(c) Lead screw of a lathe with nut

(d) Ball and socket joint

9. A combination of kinematic pairs, joined in such a way that the relative motion between the links is

completely constrained, is called a

(a) structure (b) mechanism

(c) kinematic chain (d) inversion

10. The relation between the number of pairs ( p ) forming a kinematic chain and the number of links (l) is

(a) l = 2p – 2 (b) l = 2p – 3 (c) l = 2p – 4 (d) l = 2p – 5

11. The relation between the number of links (l) and the number of binary joints ( j) for a kinematic chain

having constrained motion is given by 
3

2.
2

j l= −  If the left hand side of this equation is greater than

right hand side, then the chain is

(a) locked chain (b) completely constrained chain

(c) successfully constrained chain (d) incompletely constrained chain

12. In a kinematic chain, a quaternary joint is equivalent to

(a) one binary joint (b) two binary joints (c) three binary joints (d)  four binary joints

13. If n links are connected at the same joint, the joint is equivalent to

(a) (n – 1) binary joints (b) (n – 2) binary joints (c) (2n – 1) binary joints (d) none of these

14. In a 4 – bar linkage, if the lengths of shortest, longest and the other two links are denoted by s, l, p and

q, then it would result in Grashof’s linkage provided that

(a) l + p < s + q (b) l + s < p + q (c) l + p = s + q (d) none of these

15. A kinematic chain is known as a mechanism when

(a) none of the links is fixed (b) one of the links is fixed

(c) two of the links are fixed (d) all of the links are fixed

16. The Grubler’s criterion for determining the degrees of freedom (n) of a mechanism having plane motion

is

(a) n = (l – 1) – j (b) n = 2 (l – 1) – 2j (c) n = 3 (l – 1) – 2j (d) n = 4 (l – 1) – 3j

where l = Number of links, and j = Number of binary joints.

17. The mechanism forms a structure, when the number of degrees of freedom (n) is equal to

(a) 0 (b) 1 (c) 2 (d) – 1

18. In a four bar chain or quadric cycle chain

(a) each of the four pairs is a turning pair (b) one is a turning pair and three are sliding pairs

(c) three are turning pairs and one is sliding pair (d) each of the four pairs is a sliding pair.

19. Which of the following is an inversion of single slider crank chain ?

(a) Beam engine (b) Watt’s indicator mechanism

(c) Elliptical trammels (d) Whitworth quick return motion mechanism

20. Which of the following is an inversion of double slider crank chain ?

(a) Coupling rod of a locomotive (b) Pendulum pump

(c) Elliptical trammels (d) Oscillating cylinder engine

ANSWERS
1. (c) 2. (a) 3. (d) 4. (c) 5. (d)

6. (c) 7. (d) 8. (b) 9. (c) 10. (c)

11. (a) 12. (c) 13. (a) 14. (b) 15. (b)

16. (c) 17. (a) 18. (a) 19. (d) 20. (c)

GO To FIRST
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Fig. 6.2. Instantaneous

centre of rotation.

A
1 
B

1
. Such a motion of link A B to A

1

B
1
 is an example of combined motion

of rotation and translation, it being

immaterial whether the motion of

rotation takes first, or the motion of

translation.

In actual practice, the motion

of link A B is so gradual that it is

difficult to see the two separate

motions. But we see the two separate

motions, though the point B moves

faster than the point A . Thus, this

combined motion of rotation and

translation of the link A B may be assumed to be a motion of pure rotation about some centre I, known

as the instantaneous centre of rotation (also called centro or virtual centre). The position of

instantaneous centre may be located as discussed below:

Since the points A  and B of the link has moved to A
1
 and B

1

respectively under the motion of rotation (as assumed above), there-

fore the position of the centre of rotation must lie on the intersection of

the right bisectors of chords A A
1
 and B B

1
. Let these bisectors intersect

at I as shown in Fig. 6.2, which is the instantaneous centre of rotation or

virtual centre of the link A B.

From above, we see that the position of the link AB goes on

changing, therefore the centre about which the motion is assumed to

take place (i.e. the instantaneous centre of rotation) also goes on chang-

ing. Thus the instantaneous centre of a moving body may be defined as

that centre which goes on changing from one instant to another. The

locus of all such instantaneous centres is known as centrode. A line

drawn through an instantaneous centre and perpendicular to the plane

of motion is called instantaneous axis. The locus of this axis is known as axode.

6.2. Space and Body Centrodes

A rigid body in plane motion relative to a second rigid body, supposed fixed in space, may be

assumed to be rotating about an instantaneous centre at

that particular moment. In other words, the instantaneous

centre is a point in the body which may be considered

fixed at any particular moment. The locus of the

instantaneous centre in space during a definite motion of

the body is called the space centrode and the locus of the

instantaneous centre relative to the body itself is called

the body centrode. These two centrodes have the

instantaneous centre as a common point at any instant and

during the motion of the body, the body centrode rolls

without slipping over the space centrode.

Let I
1
 and I

2
 be the instantaneous centres for the

two different positions A
1 

B
1
 and A

2 
B

2
 of the link A

1 
B

1

after executing a plane motion as shown in Fig. 6.3. Similarly, if the number of positions of the link

A
1 
B

1
 are considered and a curve is drawn passing through these instantaneous centres (I

1
, I

2
....), then

the curve so obtained is called the space centrode.

Mechanisms on a steam automobile engine.

Fig. 6.3. Space and body centrode.
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Now consider a point C
1
 to be attached to the body or link A

1 
B

1
 and moves with it in such

a way that C
1
 coincides with I

1
 when the body is in position A

1 
B

1
. Let C

2
 be the position of the

point C
1
 when the link A

1 
B

1
 occupies the position A

2 
B

2
. A little consideration will show that the

point C
2
 will coincide with I

2
 (when the link is in position A

2 
B

2
) only if triangles A

1 
B

1 
C

1
 and

A
2 

B
2 
C

2
 are identical.

∴                 A
1 

C
2
 = A

2
 I

2
           and                 B

1 
C

2
 = B

2
 I

2

In the similar way, the number of positions of the point C
1
 can be obtained for different

positions of the link A
1
B

1
. The curve drawn through these points (C

1
, C

2
....) is called the body

centrode.

6.3. Methods for Determining the Velocity of a Point on a Link

Though there are many methods for determining the velocity of any point on a link in a

mechanism whose direction of motion (i.e. path) and velocity of some other point on the same link

is known in magnitude and direction, yet the following two methods are important from the subject

point of view.

1.  Instantaneous centre method,  and  2.  Relative velocity method.

The instantaneous centre method is convenient and easy to apply in simple mechanisms,

whereas the relative velocity method may be used to any configuration diagram. We shall discuss the

relative velocity method in the next chapter.

6.4. Velocity of a Point on a Link by
Instantaneous Centre Method

The instantaneous centre method of analysing the motion

in a mechanism is based upon the concept (as discussed in Art.

6.1) that any displacement of a body (or a rigid link) having

motion in one plane, can be considered as a pure rotational

motion of a rigid link as a whole about some centre, known as

instantaneous centre or virtual centre of rotation.

Consider two points A  and B on a rigid link. Let v
A

 and

v
B
 be the velocities of points A  and B, whose directions are given

by angles α and β as shown in Fig. 6.4. If v
A

 is known in

magnitude and direction and v
B
 in

direction only, then the magnitude of

v
B

 may be determined by the

instantaneous centre method as

discussed below :

Draw AI and  BI perpendicu-

lars to the directions v
A

 and v
B
 respec-

tively. Let these lines intersect at I,

which is known as instantaneous cen-

tre or virtual centre of the link. The

complete rigid link is to rotate or turn

about the centre I.

Since A  and B are the points

on a rigid link, therefore there cannot

be any relative motion between them

along the line A B.

Fig. 6.4. Velocity of a point on

a link.

Robots use various mechanisms to perform jobs.
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Now resolving the velocities along A B,

 v
A

 cos α = v
B
 cos β

or
A

B

v

v
=

cos sin (90 – )

cos sin (90 – )

β ° β
=

α ° α
...(i)

Applying Lami’s theorem to triangle ABI,

                    
sin (90 – ) sin (90 – )

AI BI
=

° β ° α

or                                
sin (90 – )

sin (90 – )

AI

BI

° β
=

° α
...(ii)

From equation (i) and (ii),

                                    
A

B

v AI

v BI
=             or                

A Bv v

AI BI
= = ω ...(iii)

where                             ω = Angular velocity of the rigid link.

If C is any other point on the link, then

                                   
CA B vv v

AI BI CI
= = ...(iv)

From the above equation, we see that

1.  If v
A

 is known in magnitude and direction and v
B
 in direction only, then velocity of point

B or any other point C lying on the same link may be determined in magnitude and direction.

2.  The magnitude of velocities of the points on a rigid link is inversely proportional to the

distances from the points to the instantaneous centre and is perpendicular to the line joining the point

to the instantaneous centre.

6.5. Properties of the Instantaneous Centre

The following properties of the instantaneous centre are important from the subject point of

view :

1.  A rigid link rotates instantaneously relative to another link at the instantaneous centre for

the configuration of the mechanism considered.

2.  The two rigid links have no linear velocity relative to each other at the instantaneous

centre. At this point (i.e. instantaneous centre), the two rigid links have the same linear velocity

relative to the third rigid link. In other words, the velocity of the instantaneous centre relative to any

third rigid link will be same whether the instantaneous centre is regarded as a point on the first rigid

link or on the second rigid link.

6.6. Number of Instantaneous Centres in a
Mechanism

The number of instantaneous centres in a constrained

kinematic chain is equal to the number of possible combina-

tions of two links. The number of pairs of links or the number

of instantaneous centres is the number of combinations of n

links taken two at a time. Mathematically, number of instanta-

neous centres,

                    
( – 1)

,
2

n n
N =  where n = Number of links.

Four bar mechanisms.

Bar 2

Base
Ground 1

Revolutes
Bar 123

4

Ground 2

Bar 3
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6.7. Types of Instantaneous Centres

The instantaneous centres for a mechanism are

of the following three types :

1. Fixed instantaneous centres,  2. Permanent

instantaneous centres, and  3. Neither fixed nor per-

manent instantaneous centres.

The first two types i.e. fixed and permanent

instantaneous centres are together known as primary

instantaneous centres and the third type is known as

secondary instantaneous centres.

Consider a four bar mechanism ABCD as

shown in Fig. 6.5. The number of instantaneous cen-

tres (N) in a four bar mechanism is given by

                                      
( – 1) 4(4 – 1)

6
2 2

n n
N = = = ... (∵ n = 4)

The instantaneous centres I
12

 and I
14

 are called the fixed instantaneous centres as they re-

main in the same place for all configurations of the mechanism. The instantaneous centres I
23

 and I
34

are the permanent instantaneous centres as they move when the mechanism moves, but the joints

are of permanent nature. The instantaneous centres I
13

 and I
24

 are neither fixed nor permanent

instantaneous centres as they vary with the configuration of the mechanism.

Note:  The instantaneous centre of two links such as link 1 and link 2 is usually denoted by I
12

 and so on. It is

read as I one two and not I twelve.

6.8. Location of Instantaneous Centres

The following rules may be used in locating the instantaneous centres in a mechanism :

1.  When the two links are connected by a pin joint (or pivot joint), the instantaneous centre

Fig. 6.5. Types of instantaneous centres.

Computer disk drive mechanisms.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Track selector

mechanism

The read/write head

is guided by informa-

tion stored on the disk

itself

The hard disk is

coated with a

magnetic materials

Arm moves to a

track to retrive

information stored

there
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lies on the centre of the pin as shown in Fig. 6.6 (a). Such a instantaneous centre is of permanent

nature, but if one of the links is fixed, the instantaneous centre will be of fixed type.

2. When the two links have a pure rolling contact (i.e. link 2 rolls without slipping upon the

fixed link 1 which may be straight or curved), the instantaneous centre lies on their point of contact,

as shown in Fig. 6.6 (b). The velocity of any point A  on the link 2 relative to fixed link 1 will be

perpendicular to I
12

 A  and is proportional to I
12

 A  . In other words

A 12

B 12

v I A

v I B
=

3. When the two links have a sliding contact, the instantaneous centre lies on the common

normal at the point of contact. We shall consider the following three cases :

(a) When the link 2 (slider) moves on fixed link 1 having straight surface as shown in

Fig. 6.6 (c), the instantaneous centre lies at infinity and each point on the slider have

the same velocity.

(b) When the link 2 (slider) moves on fixed link 1 having curved surface as shown in Fig.

6.6 (d),the instantaneous centre lies on the centre of curvature of the curvilinear path

in the configuration at that instant.

(c) When the link 2 (slider) moves on fixed link 1 having constant radius of curvature as

shown in Fig. 6.6 (e), the instantaneous centre lies at the centre of curvature i.e. the

centre of the circle, for all configuration of the links.

Fig. 6.6. Location of instantaneous centres.

6.9.  Aronhold Kennedy (or Three Centres in Line) Theorem

The Aronhold Kennedy’s theorem states that if three bodies move relatively to each other,

they have three instantaneous centres and lie on a straight line.

Consider three kinematic links A , B and C having relative

plane motion. The number of instantaneous centres (N) is given by

                                      
( – 1) 3(3 – 1)

3
2 2

n n
N = = =

where                                         n = Number of links = 3

The two instantaneous centres at the pin joints of B with A ,

and C with A  (i.e. I
ab

 and I
ac

) are the permanent instantaneous centres.

According to Aronhold Kennedy’s theorem, the third instantaneous

centre I
bc

 must lie on the line joining I
ab

 and I
ac

. In order to prove this,
Fig. 6.7. Aronhold Kennedy’s

theorem.
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let us consider that the instantaneous centre I
bc

 lies outside the line joining I
ab

 and I
ac

 as shown in Fig. 6.7.

The point I
bc

 belongs to both the links B and C. Let us consider the point I
bc

 on the link B. Its velocity

v
BC 

 must be perpendicular to the line joining I
ab

 and I
bc

. Now consider the point I
bc

 on the link C. Its

velocity v
BC

 must be perpendicular to the line joining I
ac

 and I
bc

.

We have already discussed in Art. 6.5, that the velocity of the instantaneous centre is same

whether it is regarded as a point on the first link or as a point on the second link.  Therefore, the velocity

of the point I
bc

 cannot be perpendicular to both lines I
ab

 I
bc

 and I
ac

 I
bc

 unless the point I
bc

 lies on the line

joining the points I
ab

 and I
ac

. Thus the three instantaneous centres (I
ab

, I
ac

 and I
bc

) must lie on the same

straight line. The exact location of I
bc

 on line I
ab

 I
ac

 depends upon the directions and magnitudes of the

angular velocities of B and C relative to A .

The above picture shows ellipsograph which is used to draw ellipses.

Central ring

Ellipses drawn by

the ellipsograph

Winding handle to

operate the device

Drawing

Pencil

Note : This picture is given as additional information and is not a direct example of the current chapter.

6.10. Method of Locating Instantaneous Centres in a Mechanism

Consider a pin jointed four bar mechanism as shown in Fig. 6.8 (a). The following procedure

is adopted for locating instantaneous centres.

1.  First of all, determine the number of instantaneous centres (N) by using the relation

                                     
( – 1)

,
2

n n
N =  where n = Number of links.

In the present case,     
4(4 – 1)

6
2

N = = ...(∵ n = 4)

2.  Make a list of all the instantaneous centres in a mechanism. Since for a four bar mecha-

nism, there are six instantaneous centres, therefore these centres are listed as shown in the following

table (known as book-keeping table).

Links 1 2 3 4

Instantaneous 12 23 34 –

centres 13 24

(6 in number) 14
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3.  Locate the fixed and permanent instantaneous centres by inspection. In Fig. 6.8 (a), I
12

and I
14

 are fixed instantaneous centres and I
23

 and I
34

 are permanent instantaneous centres.

Note. The four bar mechanism has four turning pairs, therefore there are four primary (i.e. fixed and permanent)

instantaneous centres and are located at the centres of the pin joints.

Fig. 6.8. Method of locating instantaneous centres.

4.  Locate the remaining neither fixed nor permanent instantaneous centres (or secondary

centres) by Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.8 (b). Mark points

on a circle equal to the number of links in a mechanism. In the present case, mark 1, 2, 3, and 4 on the

circle.

5.  Join the points by solid lines to show that these centres are already found. In the circle

diagram [Fig. 6.8 (b)] these lines are 12, 23, 34 and 14 to indicate the centres I
12

, I
23

, I
34

 and I
14

.

6.  In order to find the other two instantaneous centres, join two such points that the line

joining them forms two adjacent triangles in the circle diagram. The line which is responsible for

completing two triangles, should be a common side to the two triangles. In Fig. 6.8 (b), join 1 and 3

to form the triangles 123 and 341 and the instantaneous centre* I
13

  will lie on the intersection of  I
12

I
23

  and I
14

 I
34

, produced if necessary, on the mechanism. Thus the instantaneous centre I
13

 is located.

Join 1 and 3 by a dotted line on the circle diagram and mark number 5 on it. Similarly the instanta-

neous centre I
24

 will lie on the intersection of I
12

 I
14

 and I
23

 I
34

, produced if necessary, on the mecha-

nism. Thus I
24

 is located. Join 2 and 4 by a dotted line on the circle diagram and mark 6 on it. Hence

all the six instantaneous centres are located.

Note: Since some of the neither fixed nor permanent instantaneous centres are not required in solving problems,

therefore they may be omitted.

Example 6.1.  In a pin jointed four bar mecha-

nism, as shown in Fig. 6.9, AB = 300 mm, BC = CD = 360

mm, and AD = 600 mm. The angle BAD  = 60°. The crank

AB rotates uniformly at 100 r.p.m. Locate all the instanta-

neous centres and find the angular velocity of the link BC.

Solution. Given :  N
AB

 = 100 r.p.m  or

                  ω
AB

 = 2 π × 100/60 = 10.47 rad/s

Since  the length of crank A B = 300 mm = 0.3 m,

therefore velocity of point B on link A B,

* We may also say as follows: Considering links 1, 2 and 3, the instantaneous centres will be I
12

, I
23

 and I
13

.

The centres I
12

 and I
23

 have already been located. Similarly considering links 1, 3 and 4, the instantaneous

centres will be I
13

, I
34

 and I
14

, from which I
14

  and I
34

 have already been located. Thus we see that the centre

I
13

 lies on the intersection of the lines joining the points I
12

 I
23

 and I
14

 I
34

.

Fig. 6.9
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                               v
B
 = ω

AB
 × A B = 10.47 × 0.3 = 3.141 m/s

Location of instantaneous centres

The instantaneous centres are located as discussed below:

1.  Since the mechanism consists of four links (i.e. n = 4 ), therefore number of instantaneous

centres,

                                
( – 1) 4(4 – 1)

6
2 2

n n
N = = =

2.  For a four bar mechanism, the book keeping table may be drawn as discussed in Art. 6.10.

3.  Locate the fixed and permanent instantaneous centres by inspection. These centres are I
12

,

I
23

, I
34

 and I
14

, as shown in Fig. 6.10.

4.  Locate the remaining neither fixed nor permanent instantaneous centres by Aronhold

Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.11. Mark four points (equal to

the number of links in a mechanism) 1, 2, 3, and 4 on the circle.

Fig. 6.10

5.  Join points 1 to 2, 2 to 3, 3 to 4 and 4 to 1 to indicate the instantaneous centres already

located i.e. I
12

, I
23

, I
34

 and I
14

.

6.  Join 1 to 3 to form two triangles 1 2 3 and 3 4 1. The side 13, common to both triangles,

is responsible for completing the two triangles. Therefore the instanta-

neous centre I
13

 lies on the intersection of the lines joining the points I
12

I
23

 and I
34

 I
14

 as shown in Fig. 6.10. Thus centre I
13

 is located. Mark

number 5 (because four instantaneous centres have already been located)

on the dotted line 1 3.

7.  Now join 2 to 4 to complete two triangles 2 3 4 and 1 2 4.

The side 2 4, common to both triangles, is responsible for completing

the two triangles. Therefore centre I
24

 lies on the intersection of the lines

joining the points I
23

 I
34

 and I
12

 I
14

 as shown in Fig. 6.10. Thus centre I
24

is located. Mark number 6 on the dotted line 2 4. Thus all the six instan-

taneous centres are located.

Angular velocity of the link BC

Let                           ω
BC

 = Angular velocity of the link BC.

Since B is also a point on link BC, therefore velocity of point B on link BC,

v
B

= ω
BC

 × I
13

 B

Fig. 6.11
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By measurement, we find that    I
13

 B   =   500 mm = 0.5 m

∴                              ω
BC

=
B

13

3.141
6.282 rad/s

0.5

v

I B
= =  Ans.

Example 6.2.  Locate all the instantaneous centres of the slider crank mechanism as shown

in Fig. 6.12. The lengths of crank OB and connecting rod AB are 100 mm and 400 mm respectively.

If the crank rotates clockwise with an angular velocity of 10 rad/s, find: 1. Velocity of the slider A,

and 2. Angular velocity of the connecting rod AB.

Fig. 6.12

Solution.  Given :     ω
OB 

= 10 rad/ s; OB = 100 mm = 0.1 m

We know that linear velocity of the crank OB,

v
OB

= v
B
 = ω

OB
 × OB = 10 × 0.1 = 1 m/s

Location of instantaneous centres

The instantaneous centres in a slider crank mechanism are located as discussed below:

1.  Since there are four links (i.e. n = 4), therefore the number of instantaneous centres,

                                     
( – 1) 4 (4 – 1)

6
2 2

n n
N = = =

2.  For a four link mechanism, the book keeping table may be drawn as discussed in Art. 6.10.

3.  Locate the fixed and permanent instantaneous centres by inspection. These centres are I
12

,

I
23

 and I
34

 as shown in Fig. 6.13. Since the slider (link 4) moves on a straight surface (link 1), there-

fore the instantaneous centre I
14

 will be at infinity.

Note: Since the slider crank mechanism has three turning pairs and one sliding pair, therefore there will be three

primary (i.e. fixed and permanent) instantaneous centres.

Slider crank mechanism.

Pin

Slider

Connecting

rod
Crank

Bearing block
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4.  Locate the other two remaining neither fixed nor permanent instantaneous centres, by

Aronhold Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.14. Mark four points

1, 2, 3 and 4 (equal to the number of links in a mechanism) on the circle to indicate I
12

, I
23

, I
34

 and I
14

.

Fig. 6.13 Fig. 6.14

5.  Join 1 to 3 to form two triangles 1 2 3 and 3 4 1 in the circle diagram. The side 1 3,

common to both triangles, is responsible for completing the two triangles. Therefore the centre I
13

will lie on the intersection of I
12

 I
23

 and I
14

 I
34

, produced if necessary. Thus centre I
13

 is located. Join

1 to 3 by a dotted line and mark number 5 on it.

6.  Join 2 to 4 by a dotted line to form two triangles 2 3 4 and 1 2 4. The side 2 4, common

to both triangles, is responsible for completing the two triangles. Therefore the centre I
24

 lies on the

intersection of I
23

 I
34

 and I
12

 I
14

. Join 2 to 4 by a dotted line on the circle diagram and mark number 6

on it. Thus all the six instantaneous centres are located.

By measurement, we find that

                            I
13

 A = 460 mm = 0.46 m ; and I
13

 B = 560 mm = 0.56 m

1. Velocity of the slider A

Let                              v
A

 = Velocity of the slider A .

We know that        
A B

13 13

v v

I A I B
=

or                                            13
A B

13

0.46
1 0.82 m/s

0.56

I A
v v

I B
= × = × =    Ans.

2. Angular velocity of the connecting rod AB

Let                      ω
AB

= Angular velocity of the connecting rod A B.

We know that        
A B

AB

13 13

v v

I A I B
= = ω
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∴                            
B

AB

13

1
1.78 rad/s

0.56

v

I B
ω = = =   Ans.

Note:  The velocity of the slider A  and angular velocity of the connecting rod A B may also be determined as

follows :

From similar triangles I
13

 I
23

 I
34

 and I
12

 I
23

 I
24

,

                               
12 23 23 24

13 23 23 34

I I I I

I I I I
= ...(i)

and                                     
13 34 12 24

34 23 23 24

I I I I

I I I I
= ...(ii)

We know that           
B OB

AB
13 13

v OB

I B I B

ω ×
ω = = ...(∵  v

B
 = ω

OB
 × OB)

                                          
12 23 23 24

OB OB
13 23 23 34

I I I I

I I I I
= ω × = ω ×   ...[From equation (i)] ...(iii)

Also                            
23 24

A AB 13 OB 13 34
23 34

.
I I

v I A I I
I I

= ω × = ω × × ...[From equation (iii)]

                                           = ω
OB

 × I
12

 I
24

 = ω
OB

 × OD ...[From equation (ii)]

Example 6.3.  A mechanism, as shown in Fig. 6.15, has the following dimensions:

OA = 200 mm; AB = 1.5 m; BC = 600 mm; CD = 500 mm and BE = 400 mm. Locate all the

instantaneous centres.

If crank OA rotates uniformly at 120 r.p.m. clockwise, find 1. the velocity of B, C and D,

2.  the angular velocity of the links AB, BC and CD.

The above picture shows a digging machine.

Hydraulic

rams

Load

Exhaust

waste heat

Engine

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Solution. Given : N
OA

= 120 r.p.m.   or     ω
OA

 = 2 π × 120/60 = 12.57 rad/s

Since the length of crank OA = 200 mm = 0.2 m, therefore linear velocity of crank OA,

                         v
OA

= v
A

 = ω
OA

 × OA = 12.57 × 0.2 = 2.514 m/s

Fig. 6.15

Location of instantaneous centres

The instantaneous centres are located as discussed below:

1.  Since the mechanism consists of six links (i.e. n = 6), therefore the number of instanta-

neous centres,

                                     
( – 1) 6 (6 – 1)

15
2 2

n n
N = = =

2.  Make a list of all the instantaneous centres in a mechanism. Since the mechanism has 15

instantaneous centres, therefore these centres are listed in the following book keeping table.

Links 1 2 3 4 5 6

Instantaneous 12 23 34 45 56

centres 13 24 35 46

(15 in number) 14 25 36

15 26

16

Fig. 6.16
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3.  Locate the fixed and permanent instantaneous cen-

tres by inspection. These centres are I
12

 I
23

, I
34

, I
45

, I
56

, I
16

 and

I
14

 as shown in Fig. 6.16.

4.  Locate the remaining neither fixed nor permanent

instantaneous centres by Aronhold Kennedy’s theorem. Draw a

circle and mark points equal to the number of links such as 1, 2,

3, 4, 5 and 6 as shown in Fig. 6.17. Join the points 12, 23, 34,

45, 56, 61 and 14 to indicate the centres I
12

, I
23

, I
34

, I
45

, I
56

, I
16

and I
14

 respectively.

5.  Join point 2 to 4 by a dotted line to form the triangles

1 2 4 and 2 3 4. The side 2 4, common to both triangles, is

responsible for completing the two triangles. Therefore the in-

stantaneous centre I
24

 lies on the intersection of I
12

  I
14

 and I
23

 I
34

 produced if necessary. Thus centre

I
24

 is located. Mark number 8 on the dotted line 24  (because seven centres have already been lo-

cated).

6.  Now join point 1 to 5 by a dotted line to form the triangles 1 4 5 and 1 5 6. The side 1 5,

common to both triangles, is responsible for completing the two triangles. Therefore the instantaneous

centre I
15

 lies on the intersection of I
14

 I
45

 and I
56

 I
16

 produced if necessary. Thus centre I
15

 is located.

Mark number 9 on the dotted line 1 5.

7.  Join point 1 to 3 by a dotted line to form the triangles 1 2 3 and 1 3 4. The side 1 3,

common to both triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
13

 lies on the intersection I
12

 I
23

 and I
34

 I
14

 produced if necessary. Thus centre I
13

 is

located. Mark number 10 on the dotted line 1 3.

8.  Join point 4 to 6 by a dotted line to form the triangles 4 5 6 and 1 4 6. The side 4 6,

common to both triangles, is responsible for completing the two triangles. Therefore, centre I
46

 lies

on the intersection of I
45

 I
56

 and I
14

 I
16

. Thus centre  I
46

 is located. Mark number 11 on the dotted line

4 6.

9.  Join point 2 to 6 by a dotted line to form the triangles 1 2 6 and 2 4 6. The side 2 6,

common to both triangles, is responsible for completing the two triangles. Therefore, centre I
26

 lies

on the intersection of lines joining the points I
12

 I
16

 and I
24

 I
46

. Thus centre I
26

 is located. Mark

number 12 on the dotted line 2 6.

10.  In the similar way the thirteenth, fourteenth and fifteenth instantaneous centre (i.e. I
35

, I
25

and I
36

) may be located by joining the point 3 to 5, 2 to 5 and 3 to 6 respectively.

By measurement, we find that

I
13

 A  = 840 mm = 0.84 m ; I
13

 B = 1070 mm = 1.07 m ; I
14

 B = 400 mm = 0.4 m ;

I
14

 C = 200 mm = 0.2 m ; I
15

 C = 740 mm = 0.74 m ; I
15

 D = 500 mm = 0.5 m

1. Velocity of points B, C and D

Let v
B
, v

C
 and v

D
 = Velocity of the points B, C and D respectively.

We know that        
A B

13 13

v v

I A I B
= ...(Considering centre I

13
)

∴                                 A
B 13

13

2.514
1.07 3.2 m/s

0.84

v
v I B

I A
= × = × =     Ans.

Again,                   
CB

14 14

vv

I B I C
= ...(Considering centre I

14
)

Fig. 6.17
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∴                               
B

C 14

14

3.2
0.2 1.6m/s

0.4

v
v I C

I B
= × = × =   Ans.

Similarly,              
C D

15 15

v v

I C I D
= ...(Considering centre I

15
)

∴                               
C

D 5

15

1.6
0.5 1.08 m/s

0.74

v
v I D

I C
= × = × =   Ans.

2. Angular velocity of the links AB, BC and CD

Let      ω
AB

, ω
BC

 and ω
CD

 = Angular velocity of the links A B, BC and CD respectively.

We know that         
A

AB

13

2.514
2.99 rad/s

0.84

v

I A
ω = = =   Ans.

                                  
B

BC

14

3.2
8 rad/s

0.4

v

I B
ω = = =  Ans.

and                                       
C

CD

15

1.6
2.16 rad/s

0.74

v

I C
ω = = =  Ans.

Example 6.4.  The mechanism of a wrapping machine, as shown in Fig. 6.18, has the follow-

ing dimensions :

O
1
A = 100 mm; AC = 700 mm; BC = 200 mm; O

3
C = 200 mm; O

2
E = 400 mm;

O
2
D = 200 mm and BD = 150 mm.

The crank O
1
A rotates at a uniform speed of 100 rad/s. Find the velocity of the point E of the

bell crank lever by instantaneous centre method.

Fig. 6.18

Solution.  Given : ω
O1A

= 100 rad/s ; O
1 

A  = 100 mm = 0.1 m

We know that the linear velocity of crank O
1
 A ,

v
O1A

= v
A

 = ω
O1A

 × O
1
 A  = 100 × 0.1 = 10 m/s

Now let us locate the required instantaneous centres as discussed below :

1.  Since the mechanism consists of six links (i.e. n = 6), therefore number of instantaneous

centres,

                                    
( – 1) 6 (6 – 1)

15
2 2

n n
N = = =

2.  Since the mechanism has 15 instantaneous centres, therefore these centres may be listed in

the book keeping table, as discussed in Example 6.3.
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Fig. 6.19 Fig. 6.20

3.  Locate the fixed and the permanent instantaneous centres by inspection. These centres are

I
12

, I
23

, I
34

, I
35

, I
14

, I
56

 and I
16

 as shown in Fig. 6.19.

4.  Locate the remaining neither fixed nor permanent instantaneous centres by Aronhold

Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.20. Mark six points on the

circle (i.e. equal to the number of links in a mechanism), and join 1 to 2, 2 to 3, 3 to 4, 3 to 5, 4 to

1, 5 to 6, and 6 to 1, to indicate the fixed and permanent instantaneous centres i.e. I
12

, I
23

, I
34

, I
35

,

I
14

, I
56

, and I
16

 respectively.

5.  Join 1 to 3 by a dotted line to form two triangles 1 2 3 and 1 3 4. The side 1 3, common

to both triangles, is responsible for completing the two triangles. Therefore the instantaneous cen-

tre I
13

 lies on the intersection of the lines joining the points I
12

 I
23

 and I
14

 I
34

 produced if necessary.

Thus centre I
13

 is located. Mark number 8 (because seven centres have already been located) on the

dotted line 1 3.

6.  Join 1 to 5 by a dotted line to form two triangles 1 5 6 and 1 3 5. The side 1 5, common to

both triangles, is responsible for completing the two triangles. Therefore the instantaneous centre I
15

lies on the intersection of the lines joining the points I
16

 I
56

 and I
13

 I
35

 produced if necessary. Thus

centre I
15

 is located. Mark number 9 on the dotted line 1 5.

Note:  For the given example, we do not require other instantaneous centres.

By measurement, we find that

             I
13

 A = 910 mm = 0.91 m ; I
13

 B = 820 mm = 0.82 m ; I
15

 B = 130 mm = 0.13 m ;

             I
15

 D = 50 mm = 0.05 m ; I
16

 D = 200 mm = 0.2 m ; I
16

 E = 400 mm = 0.4 m

Velocity of point E on the bell crank lever

Let                    v
E

= Velocity of point E on the bell crank lever,

                                  v
B

= Velocity of point B, and

                                 v
D

= Velocity of point D.

We know that       A B

13 13

v v

I A I B
= ...(Considering centre I

13
)
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∴                               A
B 13

13

10
0.82 9.01 m/s

0.91

v
v I B

I A
= × = × =   Ans.

and                                    
B D

15 15

v v

I B I D
= ...(Considering centre I

15
)

∴                               
B

D 15

15

9.01
0.05 3.46 m/s

0.13

v
v I D

I B
= × = × =   Ans.

Similarly,             D E

16 16

v v

I D I E
= ...(Considering centre I

16
)

∴                               D
E 16

16

3.46
0.4 6.92 m/s

0.2

v
v I E

I D
= × = × =   Ans.

Example 6.5.  Fig. 6.21 shows a sewing needle bar mechanism

O
1
ABO

2
CD wherein the different dimensions are as follows:

Crank O
1
A = 16 mm; ∠β = 45°; Vertical distance between O

1
 and

O
2
 = 40 mm; Horizontal distance between O

1
 and O

2
 = 13 mm; O

2
 B = 23

mm; AB = 35 mm; ∠ O
2
 BC = 90°; BC = 16 mm; CD = 40 mm. D lies

vertically below O
1
.

Find the velocity of needle at D for the given configuration. The crank

O
1
A rotates at 400 r.p.m.

Solution. Given : N
O1A

 = 400 r.p.m     or     ω
O1A

 = 2π × 400/60 =

41.9 rad/s ; O
1 

A  = 16 mm = 0.016 m

We know that linear velocity of the crank O
1
A ,

                       v
O1A

 = v
A

 = ω
O1A

 × O
1
A  = 41.9 × 0.016 = 0.67 m/s

Now let us locate the required instantaneous centres as discussed

below :

1.  Since the mechanism consists of six links (i.e. n = 6), therefore number of instantaneous

centres,

                                     
( – 1) 6(6 – 1)

15
2 2

n n
N = = =

2.  Since the mechanism has 15 instantaneous centres, therefore these centres may be listed in

the book keeping table, as discussed in Example 6.3.

3.  Locate the fixed and permanent instantaneous centres by inspections. These centres are

I
12

, I
23

, I
34

, I
45

, I
56

, I
16

 and I
14

, as shown in Fig. 6.22.

Fig. 6.22

Fig. 6.21
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4.  Locate the remaining neither fixed nor permanent in-

stantaneous centres by Aronhold Kennedy’s theorem. This is done

by circle diagram as shown in Fig. 6.23. Mark six points on the

circle (i.e. equal to the number of links in a mechanism) and join 1

to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 1 and 1 to 4 to indicate the

fixed and permanent instantaneous centres i.e. I
12

, I
23

, I
34

, I
45

, I
56

,

I
16

 and I
14

 respectively.

5. Join 1 to 3 by a dotted line to form two triangles 1 2

3 and 1 3 4. The side 1 3, common to both the triangles, is

responsible for completing the two triangles. Therefore the

instantaneous centre I
13

 lies on the intersection of I
12

 I
23

 and

I
14

 I
34

  produced if necessary. Thus centre I
13

 is located. Mark

number 8 (because seven centres have already been located)

on the dotted line 1 3.

6.  Join 1 to 5 by a dotted line to form two triangles 1 5 6 and 1 4 5. The side 1 5, common

to both the triangles, is responsible for completing the two triangles. Therefore the instantaneous

centre I
15

 lies on the intersection of I
16

 I
56

 and I
14

 I
45

 produced if necessary. Thus centre I
15

 is

located. Mark number 9 on the dotted line 1 5.

Note:  For the given example, we do not require other instantaneous centres.

By measurement, we find that

I
13

 A = 41 mm = 0.041 m ; I
13

 B = 50 mm = 0.05 m ; I
14

 B = 23 mm = 0.023 m ;

I
14

 C= 28 mm = 0.028 m ; I
15

 C = 65 mm = 0.065 m ; I
15

 D = 62 mm = 0.062 m

Let v
B

= Velocity of point B,

v
C

= Velocity of point C, and

v
D

= Velocity of the needle at D.

We know that       
A B

13 13

v v

I A I B
= ...(Considering centre I

13
)

∴                               
A

B 13

13

0.67
0.05 0.817 m/s

0.041

v
v I B

I A
= × = × =

and                                    
CB

14 14

vv

I B I C
= ...(Considering centre I

14
)

∴                               
B

C 14

14

0.817
0.028 0.995 m/s

0.023

v
v I C

I B
= × = × =

Similarly,                
C D

15 15

v v

I C I D
= ...(Considering centre I

15
)

∴                               
C

D 15

15

0.995
0.062 0.95 m/s

0.065

v
v I D

I C
= × = × =  Ans.

Fig. 6.23
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Example 6.6. Fig. 6.24 shows a Whitworth quick

return motion mechanism. The various dimensions in

the mechanism are as follows :

OQ = 100 mm ; OA = 200 mm ; QC = 150 mm ;

and CD = 500 mm.

The crank OA makes an angle of 60° with the

vertical and rotates at 120 r.p.m. in the clockwise

direction.

Locate all the instantaneous centres and find the

velocity of ram D.

Solution : Given. N
OA

 = 120 r.p.m.   or   ω
OA

 =

2 π × 120 / 60 = 12.57 rad/s

Location of instantaneous centres

The instantaneous centres are located as discussed below :

1.  Since the mechanism consists of six links (i.e. n = 6), therefore the number of instanta-

neous centres,

                                    
( – 1) 6 (6 – 1)

15
2 2

n n
N = = =

2.  Make a list of all the instantaneous centres in a mechanism as discussed in Example 6.3.

3.  Locate the fixed and permanent instantaneous centres by inspection. These centres are I
12

,

I
23

, I
34

, I
45

, I
56

, I
16

 and I
14

 as shown in Fig. 6.25.

Fig. 6.25

4.  Locate the remaining neither fixed nor permanent instantaneous centres by Aronhold

Kennedy’s theorem. Draw a circle and mark points equal to the number of links such as 1, 2, 3, 4, 5,

Fig. 6.24
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and 6 as shown in Fig. 6.26. Join the points 1 2, 2 3, 3 4, 4 5, 5 6,

6 1 and 1 4 to indicate the centres I
12

, I
23

, I
34

, I
45

, I
56

, I
16

 and I
14

respectively.

5.  Join point 1 to 3 by a dotted line to form two triangles

1 2 3 and 1 3 4. The side 1 3, common to both the triangles, is

responsible for completing the two triangles. Therefore the instan-

taneous centre I
13

 lies on the intersection of I
12

 I
23

, and I
14

 I
34

  pro-

duced if necessary. Thus centre I
13

 is located. Mark number 8 on the

dotted line 1 3 (because seven centres have already been located).

6.  Join point 1 to 5 by a dotted line to form two triangles

1 4 5 and 1 5 6. The side 1 5, common to both the triangles, is

responsible for completing the two triangles. Therefore the instan-

taneous centre I
15

 lies on the intersection of I
14

 I
45

 and I
56

 I
16

 produced if necessary. Thus centre I
15

 is

located. Mark number 9 on the dotted line 1 5.

7.  Join point 2 to 4 by a dotted line to form two triangles 1 2 4 and 2 3 4. The side 2 4,

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
24

 lies on the intersection of I
12

 I
14

 and I
23

 I
34

 produced if necessary. Thus centre I
24

 is

located. Mark number 10 on the dotted line 2 4.

8.  Join point 2 to 5 by a dotted line to form two triangles 1 2 5 and 2 4 5. The side 2 5,

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
25

 lies on the intersection of I
12

 I
15

 and I
24

 I
45

 produced  if necessary. Thus centre I
25

 is

located. Mark number 11 on the dotted line 2 5.

9.  Join point 2 to 6 by a dotted line to form two triangles 1 2 6 and 2 5 6. The side 2 6

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
26

 lies on the intersection of I
12

 I
16

 and I
25

 I
56

 produced if necessary. Thus centre I
26

 is

located. Mark number 12 on the dotted line 2 6.

10.  Join point 3 to 5 by a dotted line to form two triangles 2 3 5 and 3 4 5. The side 3 5,

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
35

 lies on the intersection of I
23

 I
25

 and I
34

 I
45

 produced if necessary. Thus centre I
35

is

located. Mark number 13 on the dotted line 3 5.

11.  Join point 3 to 6 by a dotted line to form two triangles 1 3 6 and 3 5 6. The side 3 6,

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
36

 lies on the intersection of I
13

 I
16

 and I
35

 I
56

 produced if necessary. Thus centre I
36

 is

located. Mark number 14 on the dotted line 3 6.

Note.  The centre I
36

 may also be obtained by considering the two triangles 2 3 6 and 3 4 6.

12.  Join point 4 to 6 by a dotted line to form two triangles 1 4 6 and 4 5 6. The side 4 6,

common to both the triangles, is responsible for completing the two triangles. Therefore the instanta-

neous centre I
46

 lies on the intersection of I
14

 I
16

 and I
45

 I
56

 produced if necessary. Thus centre I
46

 is

located. Mark number 15 on the dotted line 4 6.

Velocity of ram D

By measurement, we find that I
12

 I
26

 = 65 mm = 0.065 m

∴  Velocity of ram, v
D

 = ω
OA

 × I
12

 I
26

 = 12.57 × 0.065 = 0.817 m/s  Ans.

EXERCISES

1. Locate all the instantaneous centres for a four bar mechanism as shown in Fig. 6.27.

The lengths of various links are : AD = 125 mm ; A B = 62.5 mm ; BC = CD = 75 mm.

If the link A B rotates at a uniform speed of 10 r.p.m. in the clockwise direction, find the angular

velocity of the links BC and CD. [Ans. 0.63 rad/s ; 0.65 rad/s]

Fig. 6.26
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Fig. 6.27 Fig. 6.28

2. Locate all the instantaneous centres for the crossed four bar mechanism as shown in Fig. 6.28. The dimen-

sions of various links are : CD = 65 mm; C A = 60 mm ; DB = 80 mm ; and

A B = 55 mm.

Find the angular velocities of the links A B and DB, if the crank CA rotates at 100 r.p.m. in the

anticlockwise direction.

[Ans. 50 rad/s ; 27 rad/s]

3. Locate all the instantaneous centres

of the mechanism as shown in Fig.

6.29. The lengths of various links

are : A B = 150 mm ; BC = 300 mm

; CD = 225 mm ; and CE = 500

mm.

When the crank A B rotates in the

anticlockwise direction at a uni-

form speed of 240 r.p.m. ; find 1.

Velocity of the slider E, and 2.

Angular velocity of the links BC

and CE.

[Ans. 1.6 m/s ; 2.4 rad/s ; 6.6 rad/s]

4. The crank OA of a mechanism, as shown in Fig. 6.30, rotates clockwise at 120 r.p.m. The lengths of

various links are : OA = 100 mm ; A B = 500 mm ; AC = 100 mm and CD = 750 mm.

Fig. 6.30

Fig. 6.29
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Find, by instantaneous centre method : 1. Velocity of point C ; 2. Velocity of slider D ; and 3. Angular

velocities of the links A B and CD.  [Ans. 0.115 m/s; 0.065 m/s; 3 rad/s; 1.3 rad/s]

5. A mechanism, as shown in Fig. 6.31, has the following dimensions :

O
1
 A  = 60 mm ; A B = 180 mm ; O

2 
B = 100 mm ; O

2 
C = 180 mm and CD = 270 mm.

The crank O
1 

A  rotates clockwise at a uniform speed of 120 r.p.m. The block D moves in vertical

guides. Find, by instantaneous centre method, the velocity of D and the angular velocity of CD.

[Ans. 0.08 m/s ; 1.43 rad/s]

6. The lengths of various links of a mechanism, as shown in Fig. 6.32, are : O A = 0.3 m ;

A B = 1 m ; CD = 0.8 m ; and AC = CB.

Determine, for the given configuration, the velocity of the slider D if the crank OA rotates at 60 r.p.m.

in the clockwise direction. Also find the angular velocity of the link CD. Use instantaneous centre

method. [Ans. 480 mm/s ; 2.5 rad/s]

Fig. 6.31 Fig. 6.32

7. In the mechanism shown in Fig. 6.33, find the instantaneous centres of the links B, C and D.

Fig. 6.33

If  the link A rotates clockwise at 10 rad/s, find the angular velocity of link E. The lengths of various

links are as follows:

Link A  = 25 mm ; Link B = Link C = 100 mm ; Link D = Link E = 50 mm. The link D is hinged to link

B at 25 mm from the left hand end of  link B. [Ans. 1.94 rad/s]
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8. The dimensions of various links in a mechanism, as shown in Fig. 6.34, are as follows :

Fig. 6.34

A B = 25 mm ; BC = 175 mm ; CD = 60 mm ; AD = 150 mm ; BE = EC ; and EF = FG = 100 mm.

The crank A B rotates at 200 r.p.m. When the angle BAD is 135°, determine by instantaneous centre

method : 1. Velocity of G, 2. Angular velocity of EF, and 3. Velocity of sliding of EF in the swivel

block S.

[Ans. 120 mm/s ; 6.5 rad/s ; 400 mm/s]

DO YOU KNOW ?

1. What do you understand by the instantaneous centre of rotation (centro) in kinematic of

machines? Answer briefly.

2. Explain, with the help of a neat sketch, the space centrode and body centrode.

3. Explain with sketch the instantaneous centre method for determination of velocities of links and

mechanisms.

4. Write the relation between the number of instantaneous centres and the number of links in a mechanism.

5. Discuss the three types of instantaneous centres for a mechanism.

6. State and prove the ‘Aronhold Kennedy’s Theorem’ of three instantaneous centres.

OBJECTIVE TYPE QUESTIONS

1. The total number of instantaneous centres for a mechanism consisting of n links are

(a)
2

n
(b) n

(c)
– 1

2

n
(d)

( – 1)

2

n n

2. According to Aronhold Kennedy’s theorem, if three bodies move relatively to each other, their

instantaneous centres will lie on a

(a) straight line (b) parabolic curve

 (c) ellipse (d) none of these
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3. In a mechanism, the fixed instantaneous centres are those centres which

(a) remain in the same place for all configurations of the mechanism

(b)  vary with the configuration of the mechanism

(c) moves as the mechanism moves, but joints are of permanent nature

(d) none of the above

4. The instantaneous centres which vary with the configuration of the mechanism, are called

(a) permanent instantaneous centres

(b) fixed instantaneous centres

(c) neither fixed nor permanent instantaneous centres

(d) none of these

5. When a slider moves on a fixed link having curved surface, their instantaneous centre lies

(a) on their point of contact (b) at the centre of curvature

(c) at the centre of circle (d) at the pin joint

ANSWERS

1. (d) 2. (a) 3. (a) 4. (c) 5. (b)

GO To FIRST
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7.1. Introduction

We have discussed, in the previous chapter, the in-

stantaneous centre method for finding the velocity of various

points in the mechanisms. In this chapter, we shall discuss

the relative velocity method for determining the velocity of

different points in the mechanism. The study of velocity analy-

sis is very important for determining the acceleration of points

in the mechanisms which is discussed in the next chapter.

7.2. Relative Velocity of Two Bodies
Moving in Straight Lines

Here we shall discuss the application of vectors for

the relative velocity of two bodies moving along parallel lines

and inclined lines, as shown in Fig. 7.1 (a) and 7.2 (a)

respectively.

Consider two bodies A  and B moving along parallel

lines in the same direction with absolute velocities v
A 

and

v
B 

 such that v
A 

>
  
v

B 
, as shown in Fig. 7.1 (a). The relative

velocity of A  with respect to B,

v
AB 

= Vector difference of v
A 

and v
B
 = 

A Bv v−

...(i)

143
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From Fig. 7.1 (b), the relative velocity of A  with respect to B (i.e. v
AB

) may be written in the

vector form as follows :

                                    –ba oa ob=

Fig. 7.1. Relative velocity of two bodies moving along parallel lines.

Similarly, the relative velocity of B with respect to A ,

            v
BA

 = Vector difference of v
B
 and 

A B A–v v v= ...(ii)

or                      –ab ob oa=

Now consider the body B moving in an

inclined direction as shown in Fig. 7.2 (a). The

relative velocity of A  with respect to B may be

obtained by the law of parallelogram of veloci-

ties or triangle law of velocities. Take any fixed

point o and draw vector oa to represent v
A 

in

magnitude and direction to some suitable scale.

Similarly, draw vector ob to represent v
B 

in mag-

nitude and direction to the same scale. Then vec-

tor ba represents the relative velocity of A  with

respect to B as shown in Fig. 7.2 (b). In the simi-

lar way as discussed above, the relative velocity

of A  with respect to B,

                          v
AB

 = Vector difference of v
A 

and 
B A B–v v v=

or                                   –ba oa ob=

Fig. 7.2. Relative velocity of two bodies moving along inclined lines.

Similarly, the relative velocity of B with respect to A ,

 v
BA

= Vector difference of v
B
 and 

A B A–v v v=

or                                            ab ob oa= −
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From above, we conclude that the relative velocity of point A  with respect to B (v
AB

) and the

relative velocity of point B with respect A (v
BA

) are equal in magnitude but opposite in direction, i.e.

                                 
AB BA

orv v ba ab= − = −

Note:  It may be noted that to find v
AB

, start from point b towards a and for v
BA

, start from point a towards b.

7.3. Motion of a Link

Consider two points A  and B on a rigid link A B, as

shown in Fig. 7.3 (a). Let one of the extremities (B) of the link

move relative to A , in a clockwise direction. Since the dis-

tance from A  to B remains the same, therefore there can be no

relative motion between A  and B, along the line A B. It is thus

obvious, that the relative motion of B with respect to A  must

be perpendicular to A B.

Hence velocity of any point on a link with respect to

another point on the same link is always perpendicular to

the line joining these points on the configuration (or space)

diagram.

The relative velocity of B with respect to A  (i.e. v
BA

) is represented by the vector ab and is

perpendicular to the line A B as shown in Fig. 7.3 (b).

Let                                     ω = Angular velocity of the link A B about A .

We know that the velocity of the point B with respect to A ,

                                      
BA .v ab AB= = ω ...(i)

Similarly, the velocity of any point C on A B with respect to A ,

                                      
CA .v ac AC= = ω ...(ii)

From equations (i) and (ii),

                                     
CA

BA

.

.

v ac AC AC

v AB ABab

ω
= = =

ω
...(iii)

Thus, we see from equation (iii), that the point c on the vector ab divides it in the same ratio

as C divides the link A B.

Note:  The relative velocity of A  with respect to B is represented by ba, although A  may be a fixed point. The

motion between A  and B is only relative. Moreover, it is immaterial whether the link moves about A  in a

clockwise direction or about B in a clockwise direction.

7.4. Velocity of a Point on a Link by Relative Velocity Method

The relative velocity method is based upon the relative velocity of the various points of the

link as discussed in Art. 7.3.

Consider two points A  and B on a link as shown in Fig. 7.4 (a). Let the absolute velocity of the

point A  i.e. v
A

 is known in magnitude and direction and the absolute velocity of the point B i.e. v
B 

is

known in direction only. Then the velocity of B may be determined by drawing the velocity diagram

as shown in Fig. 7.4 (b). The velocity diagram is drawn as follows :

1. Take some convenient point o, known as the pole.

2. Through o, draw oa parallel and equal to v
A

, to some suitable scale.

3. Through a, draw a line perpendicular to A B of Fig. 7.4 (a). This line will represent the

velocity of B with respect to A , i.e. v
BA

.

4. Through o, draw a line parallel to v
B 

intersecting the line of v
BA 

at b.

Fig. 7.3. Motion of a Link.
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5. Measure ob, which gives the required velocity of point B ( v
B
), to the scale.

(a)  Motion of points on a link. (b)  Velocity diagram.

Fig. 7.4

Notes : 1.  The vector ab which represents the velocity of B with respect to A (v
BA

) is known as velocity of

image of the link A B.

2.  The absolute velocity of any point C on A B may be determined by dividing vector ab at c in the same

ratio as C divides A B in Fig. 7.4 (a).

In other words

ac AC

ab AB
=

Join oc. The *vector oc represents the absolute velocity

of point C (v
C
) and the vector ac represents the velocity of C

with respect to A  i.e. v
CA

.

3. The absolute velocity of any other point D outside

A B, as shown in Fig. 7.4 (a), may also be obtained by com-

pleting the velocity triangle abd and similar to triangle ABD,

as shown in Fig. 7.4 (b).

4. The angular velocity of the link A B may be found

by dividing the relative velocity of B with respect to A  (i.e.

v
BA

) to the length of the link A B. Mathematically, angular

velocity of the link A B,

BA
AB

v ab

AB AB
ω = =

7.5. Velocities in Slider Crank Mechanism

In the previous article, we have discused the relative velocity method for the velocity of any

point on a link, whose direction of motion and velocity of some other point on the same link is known.

The same method may also be applied for the velocities in a slider crank mechanism.

A slider crank mechanism is shown in Fig. 7.5 (a). The slider A  is attached to the connecting

rod  A B. Let the radius of crank OB be r and let it rotates in a clockwise direction, about the point O

with uniform angular velocity ω rad/s. Therefore, the velocity of B i.e. v
B 

is known in magnitude and

direction. The slider reciprocates along the line of stroke AO.

The velocity of the slider A  (i.e. v
A

) may be determined by relative velocity method as

discussed below :

1. From any point o, draw vector ob parallel to the direction of v
B  

(or perpendicular to OB)

such that ob = v
B  

= ω.r, to some suitable scale, as shown in Fig. 7.5 (b).

* The absolute velocities of the points are measured from the pole (i.e. fixed points) of the velocity diagram.



Chapter 7 : Velocity in Mechanisms   �  147

Fig. 7.6. Links connected by pin joints.

(a) Slider crank mechanism. (b) Velocity diagram.

Fig. 7.5

2. Since A B is a rigid link, therefore the velocity of A  relative to B is perpendicular to A B.

Now draw vector ba perpendicular to A B to represent the velocity of A  with respect to B i.e. v
AB

.

3. From point o, draw vector oa parallel to the path of motion of the slider A  (which is along

AO only). The vectors ba and oa intersect at a. Now oa represents the velocity of the slider A  i.e. v
A

,

to the scale.

The angular velocity of the connecting rod A B (ω
AB

) may be determined as follows:

BA
AB

v ab

AB AB
ω = = (Anticlockwise about A)

The direction of vector ab (or ba) determines the sense of ω
AB

 which shows that it is

anticlockwise.

Note :  The absolute velocity of any other point E on the connecting rod AB may also be found out by dividing

vector ba such that be/ba = BE/BA . This is done by drawing any line bA
1 
equal in length of B A. Mark bE

1 
=

 
BE.

Join a A
1
. From E

1 
draw a line E

1
e parallel to a A

1
. The vector oe now represents the velocity of E and vector ae

represents the velocity of E with respect to A .

7.6. Rubbing Velocity at a Pin Joint

The links in a mechanism are mostly connected by means of pin joints. The rubbing velocity

is defined as the algebraic sum between the angular velocities of the two links which are connected

by pin joints, multiplied by the radius of the pin.

Consider two links OA and OB connected by a pin joint at O as shown in Fig. 7.6.

Let ω
1

= Angular velocity of the link OA or

the angular velocity of the  point A

 with respect to O.

ω
2

= Angular velocity of the link OB or

the angular velocity of the point B

with respect to O, and

r = Radius of the pin.

According to the definition,

Rubbing velocity at the pin joint O

= (ω
1
 – ω

2
) r, if the links move in the same direction

= (ω
1
 + ω

2
) r, if the links move in the opposite direction

Note : When the pin connects one sliding member and the other turning member, the angular velocity of the

sliding member is zero. In such cases,

Rubbing velocity at the pin joint = ω.r

where                             ω = Angular velocity of the turning member, and

                         r = Radius of the pin.
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Example 7.1. In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40

mm long and rotates at 120 r.p.m. clockwise, while the link CD  = 80 mm oscillates about D. BC and

AD are of equal length. Find the angular velocity of link CD when angle BAD = 60°.

Solution. Given : N
BA  

= 120 r.p.m. or ω
BA  

= 2 π × 120/60 = 12.568 rad/s

Since the length of crank A B  = 40 mm = 0.04 m, therefore velocity of B with respect to A  or

velocity of B, (because A  is a fixed point),

                      v
BA 

= v
B  

= ω
BA 

× A B = 12.568 × 0.04 = 0.503 m/s

(a) Space diagram (All dimensions in mm). (b) Velocity diagram.

Fig. 7.7

First of all, draw the space diagram to some suitable scale, as shown in Fig. 7.7 (a). Now the

velocity diagram, as shown in Fig. 7.7 (b), is drawn as discussed below :

1. Since the link AD is fixed, therefore points a and d are taken as one point in the velocity

diagram. Draw vector ab perpendicular to B A, to some suitable scale, to represent the velocity of B

with respect to A  or simply velocity of B (i.e. v
BA 

or v
B
) such that

vector ab = v
BA 

= v
B 

= 0.503 m/s

2. Now from point b, draw vector bc perpendicular to CB to represent the velocity of C with

respect to B (i.e. v
CB

) and from point d, draw vector dc perpendicular to CD to represent the velocity

of C with respect to D or simply velocity of C (i.e. v
CD 

or v
C
). The vectors bc and dc intersect at c.

By measurement, we find that

v
CD 

= v
C
 = vector dc = 0.385 m/s

We know that CD = 80 mm = 0.08 m

∴ Angular velocity of link CD,

                               
CD

CD

0.385

0.08

v

CD
ω = =  = 4.8 rad/s (clockwise about D) Ans.

Example 7.2. The crank and connecting rod

of a theoretical steam engine are 0.5 m and 2 m long

respectively. The crank makes 180 r.p.m. in the

clockwise direction. When it has turned 45° from the

inner dead centre position, determine : 1. velocity of

piston, 2. angular velocity of connecting rod,

3. velocity of point E on the connecting rod 1.5 m

from the gudgeon pin, 4. velocities of rubbing at the

pins of the crank shaft, crank and crosshead when

the diameters of their pins are 50 mm, 60 mm and 30

mm respectively, 5. position and linear velocity of any

point G on the connecting rod which has the least

velocity relative to crank shaft.
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Solution. Given : N
BO

= 180 r.p.m. or ω
BO  

= 2 π × 180/60 = 18.852 rad/s

Since the crank length OB = 0.5 m, therefore linear velocity of B with respect to O or velocity

of B (because O is a fixed point),

v
BO

= v
B 

= ω
BO 

× OB = 18.852 × 0.5 = 9.426 m/s

. . . (Perpendicular to BO)

1.  Velocity of piston

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.8 (a). Now the

velocity diagram, as shown in Fig. 7.8 (b), is drawn as discussed below :

1.  Draw vector ob perpendicular to BO, to some suitable scale, to represent the velocity of B

with respect to O or velocity of B such that

vector  ob = v
BO  

= v
B 

= 9.426 m/s

2.  From point b, draw vector bp perpendicular to BP to represent velocity of P with respect

to B (i.e. v
PB

) and from point o, draw vector op parallel to PO to represent velocity of P with respect

to O (i.e. v
PO 

or simply v
P
). The vectors bp and op intersect at point p.

By measurement, we find that velocity of piston P,

v
P

= vector op = 8.15 m/s  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 7.8

2.  Angular velocity of connecting rod

From the velocity diagram, we find that the velocity of P with respect to B,

v
PB

= vector bp = 6.8 m/s

Since the length of connecting rod PB is 2 m, therefore angular velocity of the connecting rod,

                               
PB

PB

6.8

2

v

PB
ω = =  = 3.4 rad/s (Anticlockwise)  Ans.

3.  Velocity of point E on the connecting rod

The velocity of point E on the connecting rod 1.5 m from the gudgeon pin (i.e. PE = 1.5 m)

is determined by dividing the vector bp at e in the same ratio as E divides PB in Fig. 7.8 (a). This is

done in the similar way as discussed in Art 7.6. Join oe. The vector oe represents the velocity of E. By

measurement, we find that velocity of point E,

v
E

= vector oe = 8.5 m/s    Ans.

Note :  The point e on the vector bp may also be obtained as follows :

                                 
BE be

BP bp
=   or   

BE bp
be

BP

×
=

4. Velocity of rubbing

We know that diameter of crank-shaft pin at O,

d
O

= 50 mm = 0.05 m
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Diameter of crank-pin at B,

d
B

= 60 mm = 0.06 m

and diameter of cross-head pin,

d
C

= 30 mm = 0.03 m

We know that velocity of rubbing at the pin of crank-shaft

       = 
O

BO

0.05
18.85

2 2

d
× ω = ×  = 0.47 m/s   Ans.

Velocity of rubbing at the pin of crank

      =  
B

BO PB

0.06
( ) (18.85 3.4)

2 2

d
ω + ω = +  = 0.6675 m/s  Ans.

...(�  ω
BO 

is clockwise and ω
PB

 is anticlockwise.)

and velocity of rubbing at the pin of cross-head

  = 
C

PB

0.03
3.4

2 2

d
× ω = ×  = 0.051 m/s  Ans.

...(�  At the cross-head, the slider does not rotate and only the connecting rod has angular motion.)

5. Position and linear velocity of point G on the connecting rod which has the least velocity

relative to crank-shaft

The position of point G on the connecting rod which has the least velocity relative to crank-

shaft is determined by drawing perpendicular from o to vector bp. Since the length of og will be the

least, therefore the point g represents the required position of G on the connecting rod.

By measurement, we find that

   vector bg = 5  m/s

The position of point G on the connecting rod is obtained as follows:

                                
bg BG

bp BP
=   or  

5
2

6.8

bg
BG BP

bp
= × = ×  = 1.47 m   Ans.

By measurement, we find that the linear velocity of point G,

v
G

= vector og = 8 m/s   Ans.

Example 7.3. In Fig. 7.9, the angular velocity of

the crank OA is 600 r.p.m. Determine the linear velocity of

the slider D and the angular velocity of the link BD, when

the crank is inclined at an angle of 75° to the vertical. The

dimensions of various links are : OA = 28 mm ; AB  = 44 mm ;

BC  49 mm ; and BD  = 46 mm. The centre distance between

the centres of rotation O and C is 65 mm. The path of travel

of the slider is 11 mm below the fixed point C. The slider

moves along a horizontal path and OC is vertical.

Solution. Given: N
AO  

= 600 r.p.m.   or

ω
AO  

= 2 π × 600/60 = 62.84 rad/s

Since OA = 28 mm = 0.028 m, therefore velocity of

A  with respect to O or velocity of A  (because O is a fixed point),

  v
AO

= v
A

 = ω
AO

 × OA = 62.84 × 0.028 = 1.76 m/s

. . . (Perpendicular to OA)

Linear velocity of the slider D

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.10 (a). Now the

velocity diagram, as shown in Fig. 7.10 (b), is drawn as discussed below :

Fig. 7.9
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1. Since the points O and C are fixed, therefore these points are marked as one point, in the

velocity diagram. Now from point o, draw vector oa perpendicular to OA, to some suitable scale, to

represent the velocity of A  with respect to O or simply velocity of A such that

vector oa = v
AO  

= v
A  

= 1.76 m/s

(a) Space diagram. (b) Velocity diagram.

Fig. 7.10

2. From point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect A  (i.e. v
BA

) and from point c, draw vector cb perpendicular to CB to represent the velocity of

B with respect to C or simply velocity of B (i.e. v
BC 

or v
B
). The vectors ab and cb intersect at b.

3. From point b, draw vector bd perpendicular to BD to represent the velocity of D with

respect to B (i.e. v
DB

) and from point o, draw vector od parallel to the path of motion of the slider D

which is horizontal, to represent the velocity of D (i.e. v
D

). The vectors bd and od intersect at d.

By measurement, we find that velocity of the slider D,

v
D

= vector od = 1.6 m/s  Ans.

Angular velocity of the link BD

By measurement from velocity diagram, we find that velocity of D with respect to B,

v
DB

= vector bd = 1.7 m/s

Since the length of link BD = 46 mm = 0.046 m, therefore angular velocity of the link BD,

DB
BD

1.7

0.046

v

BD
ω = =  = 36.96 rad/s (Clockwise about B)  Ans.

Example 7.4. The mechanism, as shown in Fig. 7.11, has the dimensions of various links as

follows :

AB = DE = 150 mm ; BC = CD = 450 mm ; EF = 375 mm.

Fig. 7.11
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The crank AB makes an angle of 45° with the horizontal and rotates about A in the clockwise

direction at a uniform speed of 120 r.p.m. The lever DC oscillates about the fixed point D, which is

connected to AB by the coupler BC.

The block F moves in the horizontal guides, being driven by the link EF. Determine: 1. velocity of

the block F, 2. angular velocity of DC, and 3. rubbing speed at the pin C which is 50 mm in diameter.

Solution. Given : N
BA 

= 120 r.p.m. or ω
BA 

=
  
2 π × 120/60 = 4 π rad/s

Since the crank length A B = 150 mm = 0.15 m, therefore velocity of B with respect to A  or

simply velocity of B (because A  is a fixed point),

v
BA

= v
B 

= ω
BA 

× AB = 4 π × 0.15 = 1.885 m/s

. . . (Perpendicular to A B)

1.  Velocity of the block F

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.12 (a). Now the

velocity diagram, as shown in Fig. 7.12 (b), is drawn as discussed below:

(a) Space diagram. (b) Velocity diagram.

Fig. 7.12

1. Since the points A  and D are fixed, therefore these points are marked as one point* as

shown in Fig. 7.12 (b). Now from point a, draw vector ab perpendicular to A B, to some suitable scale,

to represent the velocity of B with respect to A  or simply velocity of B, such that

vector ab = v
BA 

= v
B 

= 1.885 m/s

2. The point C moves relative to B and D, therefore draw vector bc perpendicular to BC to

represent the velocity of C with respect to B (i.e. v
CB

), and from point d, draw vector dc perpendicular

to DC to represent the velocity of C with respect to D or simply velocity of C (i.e. v
CD 

or v
C
). The

vectors bc and dc intersect at c.

3. Since the point E lies on DC, therefore divide vector dc in e in the same ratio as E divides

CD in Fig. 7.12 (a). In other words

ce/cd = CE/CD

The point e on dc may be marked in the same manner as discussed in Example 7.2.

4. From point e, draw vector ef perpendicular to EF to represent the velocity of F with respect

to E (i.e. v
FE

) and from point d draw vector df parallel to the path of motion of F, which is horizontal,

to represent the velocity of F i.e. v
F
. The vectors ef and df intersect at f.

By measurement, we find that velocity of the block F,

v
F

= vector df = 0.7 m/s  Ans.

2.  Angular velocity of DC

By measurement from velocity diagram, we find that velocity of C with respect to D,

v
CD

= vector dc = 2.25 m/s

* When the fixed elements of the mechanism appear at more than one place, then all these points lie at one

place in the velocity diagram.
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Since the length of link DC = 450 mm = 0.45 m, therefore angular velocity of DC,

CD
DC

2.25

0.45

v

DC
ω = =  = 5 rad/s . . . (Anticlockwise about D)

3.  Rubbing speed at the pin C

We know that diameter of pin at C,

d
C

= 50 mm = 0.05 m   or   Radius , r
C   

= 0.025 m

From velocity diagram, we find that velocity of C with respect to B,

v
CB

= vector bc = 2.25 m/s . . . (By measurement)

Length BC = 450 mm = 0.45 m

∴ Angular velocity of BC,

CB
CB

2.25
5 rad/s

0.45

v

BC
ω = = = ... (Anticlockwise about B)

We know that rubbing speed at the pin C

= (ω
CB 

– ω
CD

) r
C
 = (5 – 5) 0.025 = 0 Ans.

Example 7.5. In a mechanism shown in Fig. 7.13, the crank OA is 100 mm long and rotates

clockwise about O at 120 r.p.m. The connceting rod AB is 400 mm long.

Fig. 7.13.

At a point C on AB, 150 mm from A, the rod CE 350 mm long is attached. This rod CE slides

in a slot in a trunnion at D. The end E is connected by a link EF, 300 mm long to the horizontally

moving slider F.

For the mechanism in the position shown, find 1. velocity of F, 2. velocity of sliding of CE in

the trunnion, and 3. angular velocity of CE.

Solution. Given : v
AO

 = 120 r.p.m.  or

ω
AO 

= 2 π × 120/60 = 4 π rad/s

Since the length of crank OA = 100 mm

= 0.1 m, therefore velocity of A  with respect to O

or velocity of A  (because O is a fixed point),

v
AO

= v
A 

= ω
AO 

× OA = 4 π × 0.1 = 1.26 m/s

. . . (Perpendicular to AO)

1.  Velocity of F

First of all draw the space diagram, to

some suitable scale, as shown in Fig. 7.14 (a).

Now the velocity diagram, as shown in Fig. 7.14

(b), is drawn as discussed below :

An aircraft uses many mechanisms in engine,

power transmission and steering.

Note : This picture is given as additional information

and is not a direct example of the current chapter.
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1. Draw vector oa perpendicular to AO, to some suitable scale, to represent the velocity of A

with respect to O or simply velocity of A (i.e. v
AO 

or v
A

), such that

vector oa = v
AO 

= v
A 

= 1.26 m/s

2. From point a, draw vector ab perpendicular to A B to represent the velocity of B with respect

to A  i.e. v
BA

, and from point o draw vector ob parallel to the motion of B (which moves along BO

only) to represent the velocity of B i.e. v
B 

. The vectors ab and ob intersect at b.

(a) Space diagram. (b) Velocity diagram.

Fig. 7.14

3. Since the point C lies on A B, therefore divide vector ab at c in the same ratio as C divides A B

in the space diagram. In other words,

ac/ab = AC/AB

4. From point c, draw vector cd perpendicular to CD to represent the velocity of D with respect

to C i.e. v
DC

, and from point o draw vector od parallel to the motion of CD, which moves along CD

only, to represent the velocity of D, i.e. v
D

.

5. Since the point E lies on CD produced, therefore divide vector cd at e in the same ratio as E

divides CD in the space diagram. In other words,

cd/ce = CD/CE

6. From point e, draw vector ef perpendicular to EF to represent the velocity of F with respect

to E i.e. v
FE

, and from point o draw vector of parallel to the motion of F, which is along FD to

represent the velocity of F i.e. v
F
.

By measurement, we find that velocity of F,

v
F

= vector of = 0.53 m/s  Ans.

2. Velocity of sliding of CE in the trunnion

Since velocity of sliding of CE in the trunnion is the velocity of D, therefore velocity of sliding

of CE in the trunnion

= vector od  = 1.08 m/s  Ans.

3.  Angular velocity of CE

By measurement, we find that linear velocity of C with respect to E,

v
CE

= vector ec = 0.44 m/s

Since the length CE = 350 mm = 0.35 m, therefore angular velocity of CE,

CE
CE

0.44

0.35

v

CE
ω = =  = 1.26 rad/s (Clockwise about E) Ans.
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Example 7.6. In a mechanism as shown in Fig. 7.15, the various dimensions are : OC = 125

mm ; CP = 500 mm ; PA = 125 mm ; AQ = 250 mm and QE = 125 mm.

Fig. 7.15. All dimensions in mm.

The slider P translates along an axis which is 25 mm vertically below point O. The crank OC

rotates uniformly at 120 r.p.m. in the anti-clockwise direction. The bell crank lever AQE rocks about

fixed centre Q.

Draw the velocity diagram and calculate the absolute velocity of point E of the lever.

Solution. Given : N
CO

= 120 r.p.m. or ω
CO 

= 2 π  × 120/60 = 12.57 rad/s ;

OC = 125 mm = 0.125 m

We know that linear velocity of C with respect to O or velocity of C, (because O is

as fixed point)

v
CO

= v
C 

= ω
CO 

× OC = 12.57 × 0.125 = 1.57 m/s

First of all, draw the space diagram, as shown in Fig. 7.16 (a), to some suitable scale. Now the

velocity diagram, as shown in Fig. 7.16 (b) is drawn as discussed below :

1. Since the points O and Q are fixed, therefore these points are taken as one point in the

velocity diagram. From point o, draw vector oc perpendicular to OC, to some suitable scale, to

represent the velocity of C with respect to O or velocity of C, such that

vector oc = v
CO 

= v
C 

= 1.57 m/s

(a) Space diagram. (b) Velocity diagram.

Fig. 7.16

2. From point c, draw vector cp perpendicular to CP to represent the velocity of P with

respect to C (i.e. v
PC

) and from point o, draw vector op parallel to the path of motion of slider P

(which is horizontal) to represent the velocity of P (i.e. v
P
). The vectors cp and op intersect at p.
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3. From point p, draw vector pa perpendicular to PA  to represent the velocity of A  with

respect to P (i.e. v
AP

) and from point q, draw vector qa perpendicular to QA to represent the velocity

of A  (i.e. v
A 

). The vectors pa and qa intersect at a.

4. Now draw vector qe perpendicular to vec-

tor qa in such a way that

QE/QA = qe/qa

By measurement, we find that the velocity of

point E,

               v
E 

 = vector oe = 0.7 m/s Ans.

Example 7.7. A quick return mechanism of

the crank and slotted lever type shaping machine is

shown in Fig. 7.17.

The dimensions of the various links are as

follows :

O
1
O

2 
= 800 mm ; O

1
B = 300 mm ;

O
2
D  = 1300 mm ; DR = 400 mm.

The crank O
1
B makes an angle of 45° with

the vertical and rotates at 40 r.p.m. in the counter

clockwise direction. Find : 1. velocity of the ram R, or

the velocity of the cutting tool, and 2. angular velocity

of link O
2
D.

Solution.  Given: N
BO1 

= 40 r.p.m. or ω
BO1 

=

2 π × 40/60 = 4.2 rad/s

Since the length of crank O
1
B = 300 mm = 0.3m, therefore velocity of B with respect to O

1
 or

simply velocity of B (because O
1
 is a fixed point),

v
BO1

= v
B 

= ω
BO1 

× O
1
B = 4.2 × 0.3 = 1.26 m/s . . . (Perpendicular to O

1
B)

1.  Velocity of the ram R

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.18 (a). Now the

velocity diagram, as shown in Fig. 7.18 (b), is drawn as discussed below :

1. Since O
1 

and O
2 

are fixed points, therefore these points are marked as one point in the

velocity diagram. Draw vector o
1
b perpendicular to O

1
B, to some suitable scale, to represent the

velocity of B with respect to O
1 

or simply velocity of B, such that

vector o
1
b = v

BO1 
= v

B 
= 1.26 m/s

2. From point o
2
, draw vector o

2
c perpendicular to O

2
C to represent the velocity of the

coincident point C with respect to O
2 

or simply velocity  of C (i.e. v
CO2 

or v
C
), and from point b, draw

vector bc parallel to the path of motion of the sliding block (which is along the link O
2
D) to represent

the velocity of C with respect to B (i.e. v
CB

). The vectors o
2
c and bc intersect at c.

3. Since the point D lies on O
2
C produced, therefore divide the vector o

2
c at d in the same

ratio as D divides O
2
C in the space diagram. In other words,

cd / o
2
d = CD/O

2
D

4. Now from point d, draw vector dr perpendicular to DR to represent the velocity of R with

respect to D (i.e. v
RD

), and from point o
1 
draw vector o

1
r parallel to the path of motion of R (which is

horizontal) to represent the velocity of R (i.e. v
R
). The vectors dr and o

1
r intersect at r.

Fig. 7.17. All dimensions in mm.
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By measurement, we find that velocity of the ram R,

v
R

= vector o
1
r = 1.44 m/s   Ans.

(a) Space diagram (b) Velocity diagram.

Fig. 7.18

2.  Angular velocity of link O
2
D

By measurement from velocity diagram, we find that velocity of D with respect to O
2 

or

velocity of D,

v
DO2

= v
D  

= vector o
2
d = 1.32 m/s

We know that length of link O
2
D = 1300 mm = 1.3 m. Therefore angular velocity of the link O

2
D,

DO2
DO2

2

1.32

1.3

v

O D
ω = = = 1.015 rad/s  (Anticlockwise about O

2
)     Ans.

The above picture shows prototype of an industrial steam engine. Before to the invention of

electricity, steam engines used to provide the power needed to turn wheels in the factories.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Example 7.8. In the mechanism, as shown in Fig. 7.19, the crank O
1
A rotates at a speed of

60 r.p.m. in a clockwise direction imparting vertical reciprocating motion to the rack R, by means of

toothed quadrant Q. O
1 

and O
2 

are fixed centres and the slotted bar BC and quadrant Q are rocking

on O
2
.

Fig. 7.19. All dimensions are in mm.

Determine : 1. the linear speed of the rack when the crank makes an angle of 30° to the

horizontal, 2. the ratio of the times of lowering and raising the rack, and 3. the length of the stroke of

the rack.

Solution. Given : N
AO1 

= 60 r.p.m. or ω
AO1 

= 2 π × 60/60 = 6.28 rad/s

Since crank length O
1 

A
 
= 85 mm, therefore velocity of A  with respect to O

1 
or velocity of A ,

(because O
1
 is a fixed point),

v
AO1

= v
A 

= ω
AO1 

× O
1
A = 6.28 × 85 = 534 mm/s

. . . (Perpendicular to O
1
A )

(a) Space diagram. (b) Velocity diagram.

Fig. 7.20
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1. Linear speed of the rack

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.20 (a). Now the

velocity diagram, as shown in Fig. 7.20 (b), is drawn as discussed below :

1. Since O
1 

and O
2 

are fixed points, therefore they are marked as one point in the velocity

diagram. From point o
1
, draw vector o

1
a perpendicular to O

1
A , to some suitable scale, to represent

the velocity of A  with respect to O
1 

or simply velocity of A , such that

vector o
1
a = v

AO1
 = v

A
 = 534 mm/s

2. From point a, draw vector ad parallel to the path of motion of D (which is along the slot in

the link BC) to represent the velocity D with respect to A  (i.e. v
DA

), and from point o
2 
draw vector o

2
d

perpendicular to the line joining the points O
2 

and D (because O
2 

and D lie on the same link) to

represent the velocity of D (i.e. 
2DOv or v

D
). The vectors ad and o

2
d intersect at d.

Note : The point A  represents the point on the crank as well as on the sliding block whereas the point D

represents the coincident point on the lever O
2
C.

By measurement, we find that

v
DO2

= v
D

 = vector o
2
d = 410 mm/s, and O

2
D = 264 mm

We know that angular velocity of the quadrant Q,

DO2
Q

2

410
1.55 rad/s

264

v

O D
ω = = =  (Clockwise about O

2
)

Radius of the quadrant Q,

r
Q

= 50 mm

Since the rack and the quadrant have a rolling contact, therefore the linear velocity at the

points of contact will be same as that of quadrant.

∴  Linear speed of the rack,

v
R

= w
Q

.r
Q 

= 1.55 × 50    = 77.5 mm/s     Ans.

2.  Ratio of the times of lowering and raising the rack

The two extreme positions of the rack (or A B) are when

the tangent to the circle with centre O
1 

is also a tangent to the

circle with centre O
2
, as shown in Fig. 7.21. The rack will be

raising when the crank moves from A
1 
to A

2 
through an angle α

and it will be lowering when the crank moves from A
2 

to A
1

through an angle β. Since the times of lowering and raising the

rack is directly proportional to their respective angles, therefore

Timeof lowering 240
2

Timeof raising 120

β °
= = =

α °
   Ans.

. . . (By measurement)

3.  Length of stroke of the rack

By measurement, we find that angle B
1
O

2
B

2
 = 60° =

60 × π / 180 = 1.047 rad

We know that length of stroke of the rack

= Radius of the quadrant × Angular rotation of the

               quadrant in radians

= r
Q 

× ∠ B
1
O

2
B

2
 in radians = 50 × 1.047 = 52.35 mm    Ans.

Fig. 7.21. All dimensions in mm.
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Example 7.9. Fig. 7.22 shows the

structure of Whitworth quick return mecha-

nism used in reciprocating machine tools. The

various dimensions of the tool are as follows :

OQ = 100 mm ; OP = 200 mm, RQ =

150 mm and RS = 500 mm.

The crank OP makes an angle of 60°

with the vertical. Determine the velocity of the

slider S (cutting tool) when the crank rotates

at 120 r.p.m. clockwise.

Find also the angular velocity of the

link RS and the velocity of the sliding block T

on the slotted lever QT.

Solution. Given : N
PO 

= 120 r.p.m. or ω
PO 

= 2 π × 120/60 = 12.57 rad/s

Since the crank OP = 200 mm = 0.2 m, therefore velocity of P with respect to O or velocity

of P (because O is a fixed point),

v
PO

= v
P 

= ω
PO 

× OP = 12.57 × 0.2 = 2.514 m/s

. . . (Perpendicular to PO)

Velocity of slider S (cutting tool )

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.23 (a). Now the

velocity diagram, as shown in Fig. 7.23 (b) is drawn as discussed below :

1.  Since O and Q are fixed points, therefore they are taken as one point in the velocity

diagram. From point o, draw vector op perpendicular to OP, to some suitable scale, to represent the

velocity of P with respect to O or simply velocity of P, such that

vector op = v
PO 

= v
P 

= 2.514 m/s

        

(a) Space diagram. (b) Velocity diagram.

Fig. 7.23

2.  From point q, draw vector qt perpendicular to QT to represent the velocity of T with

respect to Q or simply velocity of T (i.e. v
TQ 

or v
T
) and from point p draw vector pt parallel to the path

of motion of T (which is parallel to TQ) to represent the velocity of T with respect to P (i.e. v
TP

). The

vectors qt and pt intersect at t.

Note : The point T is a coincident point with P on the link QT.

Fig. 7.22
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3.  Since the point R lies on the link TQ produced, therefore divide the vector tq at r in the

same ratio as R divides TQ, in the space diagram. In other words,

                               qr/qt = QR/QT

The vector qr represents the velocity of R with respect to Q or velocity of R (i.e.v
RQ

 or v
R
).

4.  From point r, draw vector rs perpendicular to RS to represent the velocity of S with respect

to R and from point o draw vector or parallel to the path of motion of S (which is parallel to QS) to

represent the velocity of S (i.e v
S
). The vectors rs and os intersect at s.

By measurement, we find that velocity of the slider S (cutting tool),

v
S

= vector os = 0.8 m/s  Ans.

Angular velocity of link RS

From the velocity diagram, we find that the linear velocity of the link RS,

v
SR

= vector rs = 0.96 m/s

Since the length of link RS = 500 mm = 0.5 m, therefore angular velocity of link RS,

SR
RS

0.96

0.5

v

RS
ω = =  = 0.92 rad/s (Clockwise about R) Ans.

Velocity of the sliding block T on the slotted lever QT

Since the block T moves on the slotted lever with respect to P, therefore velocity of the

sliding block T on the slotted lever QT,

  v
TP

= vector pt = 0.85 m/s     Ans. . . . (By measurement)

7.7. Forces Acting in a Mechanism

Consider a mechanism of a four bar chain, as shown in

Fig. 7.24. Let force F
A 

newton is acting at the joint  A   in the

direction of the velocity of  A  (v
A 

m/s) which is perpendicular to

the link DA. Suppose a force F
B 

newton is transmitted to the

joint B  in the direction of the velocity of B

(i.e. v
B 

 m/s) which is perpendicular to the link CB. If we neglect

the effect of friction and the change of kinetic energy of the link

(i.e.), assuming the efficiency of transmission as 100%), then

by the principle of conservation of energy,

Input work per unit time

 = Output work per unit time

∴  Work supplied to the joint A

= Work transmitted by the joint B

or F
A
.v

A  
= F

B
.v

B
   or A A

B

B

.F v
F

v
= . . . (i)

If we consider the effect of friction and assuming the efficiency of transmission as η, then

B B

A A

.Output

Input .

F v

F v
η = =     or    A A

B

B

. .F v
F

v

η
= . . . (ii)

Notes : 1.  If the turning couples due to the forces F
A 

and F
B 

about D and C are denoted by T
A 

(known as driving

torque) and T
B 

(known as resisting torque) respectively, then the equations (i) and (ii) may be written as

                              T
A

.ω
A 

= T
B
.ω

B
,  and  

B B

A A

.

.

T

T

ω
η =

ω
. . . (iii)

where ω
A 

and ω
B  

are the angular velocities of the links DA and CB respectively.

Fig. 7.24. Four bar mechanism.



162  �   Theory of Machines

2. If the forces F
A 

and F
B 

do not act in the direction of the velocities of the points A  and B respectively,

then the component of the force in the direction of the velocity should be used in the above equations.

7.8. Mechanical Advantage

It is defined as the ratio of the load to the effort. In a four bar mechanism, as shown in Fig.

7.24, the link DA is called the driving link and the link CB as the driven link. The force F
A 

acting at A

is the effort and the force F
B 

at B will be the load or the resistance to overcome. We know from the

principle of conservation of energy, neglecting effect of friction,

F
A 

× v
A

= F
B 

× v
B
  or B A

A B

F v

F v
=

∴ Ideal mechanical advantage,

B A
( )

A B

M.A.
ideal

F v

F v
= =

If we consider the effect of friction, less resistance will be overcome with the given effort.

Therefore the actual mechanical advantage will be less.

Let η = Efficiency of the mechanism.

∴ Actual mechanical advantage,

B A
( )

A B

M.A.
actual

F v

F v
= η × = η ×

Note : The mechanical advantage may also be defined as the ratio of output torque to the input torque.

Let T
A

= Driving torque,

T
B

= Resisting torque,

ω
A

 and ω
B

= Angular velocity of the driving and driven links respectively.

∴  Ideal mechanical advantage,

B A
( )

A B

M.A.
ideal

T

T

ω
= =

ω
. . . (Neglecting effect of friction)

and actual mechanical advantage,

B A
( )

A B

M.A. actual

T

T

ω
= η × = η ×

ω
. . . (Considering the effect of friction)

Example 7.10. A four bar mechanism has the following dimensions :

DA = 300 mm ; CB = AB = 360 mm ; DC = 600 mm. The link DC is fixed and the angle ADC

is 60°. The driving link DA rotates uniformly at a speed of 100 r.p.m. clockwise and the constant

driving torque has the magnitude of 50 N-m. Determine the velocity of the point B and angular

velocity of the driven link CB. Also find the actual mechanical advantage and the resisting torque if

the efficiency of the mechanism is 70 per cent.

Solution. Given : N
AD 

= 100 r.p.m. or ω
AD 

= 2 π × 100/60 = 10.47 rad/s ; T
A 

= 50 N-m

Since the length of driving link, DA = 300 mm = 0.3 m, therefore velocity of A  with respect

to D or velocity of A  (because D is a fixed point),

v
AD

= v
A 

= ω
AD 

× DA = 10.47 × 0.3 = 3.14 m/s

. . . (Perpendicular to DA)

Velocity of point B

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.25 (a). Now the

velocity diagram, as shown in Fig. 7.25 (b), is drawn as discussed below :
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Fig. 7.26

1. Since the link DC is fixed, therefore points d and c are taken as one point in the velocity

diagram. Draw vector da perpendicular to DA, to some suitable scale, to represent the velocity of A

with respect to D or simply velocity of A  (i.e. v
AD 

or v
A

) such that

vector da = v
AD 

= v
A 

= 3.14 m/s

2. Now from point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A  (i.e. v
BA

), and from point c draw vector cb perpendicular to CB to represent the velocity

of B with respect to C or simply velocity of B (i.e. v
BC 

or v
B
). The vectors ab and cb intersect at b.

By measurement, we find that velocity of point B,

v
B

= v
BC 

= vector cb = 2.25 m/s  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 7.25

Angular velocity of the driven link CB

Since CB = 360 mm = 0.36 m, therefore angular velocity of the driven link CB,

BC
BC

2.25

0.36

v

BC
ω = =  = 6.25 rad/s (Clockwise about C)  Ans.

Actual mechanical advantage

We know that the efficiency of the mechanism,

η = 70% = 0.7 . . . (Given)

∴Actual mechanical advantage,

A
( )

B

10.47
M.A. 0.7 1.17

6.25
actual

ω
= η × = × =

ω
 Ans.

...(�  ω
A 

= ω
AD

; and ω
B
 = ω

BC
)

Resisting torque

Let T
B

= Resisting torque.

We know that efficiency of the mechanism (η),

    
B B B

B

A A

. 6.25
0.7 0.012

. 50 10.47

T T
T

T

ω ×
= = =

ω ×

∴ T
B
 = 58.3 N–m  Ans.

Example 7.11. The dimensions of the various links of a

pneumatic riveter, as shown in Fig. 7.26, are as follows :

OA = 175 mm ; AB = 180 mm ; AD = 500 mm ;

and BC = 325 mm.

Find the velocity ratio between C and ram D when OB

is vertical. What will be the efficiency of the machine if a load

of 2.5 kN on the piston C causes a thrust of 4 kN at the ram D ?
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Solution.   Given : W
C

= 2.5 kN = 2500 N ; W
D 

= 4 kN = 4000 N

Let N = Speed of crank OA.

∴Angular velocity of crank OA,

ω
AO

= 2 π N/60 rad/s

Since the length of crank OA = 175 mm = 0.175 m, therefore velocity of A  with respect to O

(or velocity of A ) (because O is a fixed point),

                          AO A

2
0.175 0.0183 m/s

60

N
v v N

π
= = × = . . . (Perpendicular to OA)

(a) Space diagram. (b) Velocity diagram.

Fig. 7.27

Velocity ratio between C and the ram D

First of all draw the space diagram, to some

suitable scale, as shown in Fig. 7.27 (a), Now the

velocity diagram, as shown in Fig. 7.27 (b), is drawn

as discussed below :

1. Draw vector oa perpendicular to OA to

represent the velocity of A  (i.e. v
A

) such that

        vector oa = v
A 

= 0.0183 N m/s

Since the speed of crank (N) is not given,

therefore let we take vector oa = 20 mm.

2. From point a, draw a vector ab

perpendicular to A B to represent the velocity of B

with respect to A  (i.e. v
BA

), and from point o draw

vector ob perpendicular to OB to represent the

velocity of B with respect to A  or simply velocity of

B (i.e. v
BO 

or v
B
). The vectors ab and ob intersect at

b.

3. Now from point b, draw vector bc

perpendicular to BC to represent the velocity of C

with respect to B (i.e. v
CB

) and from point o draw

vector oc parallel to the path of motion of C to

represent the velocity of C (i.e. v
C
). The vectors bc

and oc intersect at c. We see from Fig. 7.27 (b) that
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the points b and c coincide. Therefore velocity of B with respect to C is zero and velocity of B is equal

to velocity of C, i.e.

v
BC

= 0 . . . (�   b and c coincide)

and  v
B

= v
C

. . . (�  vector ob = vector oc)

4.  From point a, draw vector ad perpendicular to AD to represent velocity of D with respect

to A  i.e. v
DA

, and from point o draw vector ob parallel to the path of motion of D to represent the

velocity of D i.e. v
D

. The vectors ad and od intersect at d.

By measurement from velocity diagram, we find that velocity of C,

v
C

= vector oc = 35 mm

and velocity of D, v
D

= vector od = 21 mm

∴Velocity ratio between C and the ram D

= v
C 

/v
D

 = 35/21 = 1.66  Ans.

Efficiency of the machine

Let η = Efficiency of the machine,

We know that work done on the piston C or input,

= W
C 

×
 
v

C 
= 2500 v

C

and work done by the ram D or output,

= W
D

 × v
D

 = 4000 v
D

∴
D

C

4000Output 4000 1

Input 2500 2500 1.66

v

v
η = = = ×

C

D

.... 1.66
v

v

 
= 

 

�

= 0.96  or  96%  Ans.

Example 7.12.  In the toggle mechanism, as

shown in Fig. 7.28, the slider D is constrained to move

on a horizontal path. The crank OA is rotating in the

counter-clockwise direction at a speed of 180 r.p.m.

The dimensions of various links are as follows :

OA = 180 mm ; CB = 240 mm ; AB = 360 mm ;

and BD = 540 mm.

For the given configuration, find : 1. Velocity

of slider D, 2. Angular velocity of links AB, CB and BD;

3. Velocities of rubbing on the pins of diameter 30 mm

at A and D, and 4. Torque applied to the crank OA, for

a force of 2 kN at D.

Solution. Given : N
AO 

= 180 r.p.m. or  ω
AO 

= 2 π × 180/60 = 18.85 rad/s

Since the crank length OA = 180 mm = 0.18 m, therefore velocity of A  with respect to O or

velocity of A  (because O is a fixed point),

v
AO

= v
A 

= ω
AO 

× OA = 18.85 × 0.18 = 3.4 m/s

. . . (Perpendicular to OA)

1.  Velocity of slider D

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.29 (a). Now the

velocity diagram, as shown in Fig. 7.29 (b), is drawn as discussed below :

Fig. 7.28
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1. Draw vector oa perpendicular to OA, to some suitable scale, to represent the velocity of A

with respect to O or velocity of A  (i.e. v
AO 

or v
A

, ) such that

vector oa = v
AO

 = v
A 

= 3.4 m/s

(a) Space diagram. (b) Velocity diagram.

Fig. 7.29

2. Since point B moves with respect to A  and also with respect to C, therefore draw vector ab

perpendicular to A B to represent the velocity of B with respect to A  i.e. v
BA

, and draw vector cb

perpendicular to CB to represent the velocity of B with respect to C, i.e. v
BC

. The vectors ab and cb

intersect at b.

3. From point b, draw vector bd perpendicular to BD to represent the velocity of D with

respect to B i.e. v
DB

, and from point c draw vector cd parallel to the path of motion of the slider D

(which is along CD) to represent the velocity of D, i.e. v
D

. The vectors bd and cd intersect at d.

By measurement, we find that velocity of the slider D,

v
D

= vector cd = 2.05 m/s  Ans.

2.  Angular velocities of links AB, CB and BD

By measurement from velocity diagram, we find that

Velocity of B with respect to A ,

v
BA

= vector ab = 0.9 m/s

Velocity of B with respect to C,

v
BC

= v
B
 = vector cb = 2.8 m/s

and velocity of D with respect to B,

v
DB

= vector bd = 2.4 m/s

We know that A B = 360 mm = 0.36 m ; CB = 240 mm = 0.24 m and BD = 540 mm = 0.54 m.

∴ Angular velocity of the link A B,

BA
AB

0.9
2.5 rad/s

0.36

v

AB
ω = = =  (Anticlockwise about A )  Ans.

Similarly angular velocity of the link CB,

BC
CB

2.8
11.67 rad/s

0.24

v

CB
ω = = =  (Anticlockwise about C)  Ans.

and angular velocity of the link BD,

DB
BD

2.4
4.44 rad/s

0.54

v

BD
ω = = =  (Clockwise about B)   Ans.
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3.  Velocities of rubbing on the pins A and D

Given : Diameter of pins at A  and D,

D
A

= D
D

 = 30 mm = 0.03 m

∴ Radius,  r
A

= r
D

 = 0.015 m

We know that relative angular velocity at A

= ω
BC

 – ω
BA 

+ ω
DB 

= 11.67 – 2.5 + 4.44 = 13.61 rad/s

and relative angular velocity at D

= ω
DB

 = 4.44 rad/s

∴ Velocity of rubbing on the pin A

= 13.61 × 0.015 = 0.204 m/s = 204 mm/s  Ans.

and velocity of rubbing on the pin  D

= 4.44 × 0.015 = 0.067 m/s = 67 mm/s  Ans.

4.  Torque applied to the crank OA

Let T
A

= Torque applied to the crank OA, in N-m

∴    Power input or work supplied at A

= T
A 

× ω
AO

 = T
A

 × 18.85 = 18.85 T
A 

N-m

We know that force at D,

F
D

= 2 kN = 2000 N . . . (Given)

∴    Power output or work done by D,

= F
D

 × v
D

 = 2000 × 2.05 = 4100 N-m

Assuming 100 per cent efficiency, power input is equal to power output.

∴ 18.85 T
A

= 4100
   

or  T
A

 = 217.5 N-m   Ans.

Example 7.13. The dimensions of the mechanism, as shown in Fig. 7.30, are as follows :

AB = 0.45 m; BD = 1.5 m : BC = CE = 0.9 m.

Fig. 7.30

The crank A B turns uniformly at 180 r.p.m. in the clockwise direction and the blocks at D

and E are working in frictionless guides.

Draw the velocity diagram for the mechanism and find the velocities of the sliders D and E

in their guides. Also determine the turning moment at A if a force of 500 N acts on D in the direction

of arrow X and a force of 750 N acts on E in the direction of arrow Y.

Solution. Given : N
BA 

= 180 r.p.m.  or  ω
BA 

= 2 π × 180/60 = 18.85 rad/s
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Since A B = 0.45 m, therefore velocity of B with respect to A  or velocity of B (because A  is a

fixed point),

v
BA

= v
B
 = ω

BA 
× A B = 18.85 × 0.45 = 8.5 m/s

. . . (Perpendicular to A B)

Velocities of the sliders D and E

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.31 (a). Now the

velocity diagram, as shown in Fig. 7.31 (b), is drawn as discussed below :

(a) Space diagram. (b) Velocity diagram.

Fig. 7.31

1. Draw vector ab perpendicular to A B, to some suitable scale, to represent the velocity of B

with respect to A  or simply velocity of B (i.e. v
BA 

or v
B
), such that

vector ab = v
BA

 = v
B
 = 8.5 m/s

2. From point b, draw vector bd perpendicular to BD to represent the velocity of D with

respect to B (i.e. v
DB

) and from point a draw vector ad parallel to the motion of D to represent the

velocity of D (v
D

). The vectors bd and ad intersect at d.

3. Since the point C lies on BD, therefore divide vector bd at c in the same ratio as C divides

BD in the space diagram. In other words,

bc/bd = BC/BD

4. Now from point c, draw vector ce perpendicular to CE to represent the velocity of E with

respect to C (i.e. v
EC

) and from point a draw vector ae parallel to the path of E to represent the

velocity of E (i.e. v
E
). The vectors ce and ae intersect at e.

By measurement, we find that

Velocity of slider D, v
D

= vector ad = 9.5 m/s  Ans.

Velocity of slider E, v
E

= vector ae = 1.7 m/s  Ans.

Turning moment at A

Let T
A

= Turning moment at A  (or at the crank-shaft).

 We know that force at D, F
D

 = 500 N . . . (Given)

and                     Force at E, F
E

= 750 N . . . (Given)

∴   Power input = F
D

 × v
D

 – F
E
 × v

E

. . . (– ve sign indicates that F
E
  opposes the motion)

= 500 × 9.5 – 750 × 1.7 = 3475 N-m/s

Power output = T
A

.ω
BA

 = T
A

 × 18.85 T
A

 N-m/s

Neglecting losses, power input is equal to power output.

∴ 3475 = 18.85 T
A   

or   T
A 

= 184.3 N-m  Ans.
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EXERCISES

1. In a slider crank mechanism, the length of crank OB and connecting rod A B are 125 mm and 500 mm

respectively. The centre of gravity G of the connecting rod is 275 mm from the slider A . The crank

speed is 600 r.p.m. clockwise. When the crank has turned 45° from the inner dead centre position,

determine: 1.  velocity of the slider A , 2. velocity of the point G, and 3. angular velocity of the

connecting rod A B. [Ans. 6.45 m/s ; 6.75 m/s ; 10.8 rad/s]

2. In the mechanism, as shown in Fig. 7.32, OA and OB are two equal cranks at right angles rotating

about O at a speed of 40 r.p.m. anticlockwise. The dimensions of the various links are as follows :

Fig. 7.32

OA = OB = 50 mm ; AC = BD = 175 mm ; DE = CE = 75 mm ; FG = 115 mm and EF = FC.

Draw velocity diagram for the given configuration of the mechanism and find velocity of the slider G.

[Ans. 68 mm/s]

3. The dimensions of various links in a mechanism, as shown in Fig. 7.33, are as follows :

A B = 60 mm ; BC = 400 mm ; CD = 150 mm ; DE = 115 mm ; and EF = 225 mm.

225 mm 110
mm

150 mm

90°

30°

A

B

C

D

E

F

Fig. 7.33

Find the velocity of the slider F when the crank A B rotates uniformly in clockwise direction at a speed

of 60 r.p.m. [Ans. 250 mm/s]

4. In a link work, as shown in Fig. 7.34, the crank A B rotates about A  at a uniform speed of 150 r.p.m.

The lever DC oscillates about the fixed point D, being connected to A B by the connecting link BC.

The block F moves, in horizontal guides being driven by the link EF, when the crank A B is at 30°. The

dimensions of the various links are :

A B = 150 mm ; BC = 450 mm ; CE = 300 mm ; DE = 150 mm ; and EF = 350 mm.

Find, for the given configuration, 1. velocity of slider F, 2. angular velocity of DC, and 3. rubbing

speed at pin C which is 50 mm in diameter. [Ans. 500 mm/s ; 3.5 rad/s ; 2.4 m/s]
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Fig. 7.34

5. The oscillating link OAB of a mechanism,

as shown in Fig. 7.35, is pivoted at O and

is moving at 90 r.p.m. anticlockwise. If OA

= 150 mm ; A B  = 75 mm, and

AC = 250 mm, calculate

1. the velocity of the block C;

2. the angular velocity of the link AC;

and

3. the rubbing velocities of the pins at

O, A  and C, assuming that these pins

are of equal diameters of 20 mm.

[Ans. 1.2 m/s; 1.6 rad/s2 clockwise; 21

200 mm/s, 782 mm/s, 160 mm/s]

6. The dimensions of the various links of a

mechanism, as shown in Fig. 7.36, are as

follows :

A B = 30 mm ; BC = 80 mm ; CD = 45 mm ; and CE = 120 mm.

Fig. 7.36

The crank A B rotates uniformly in the clockwise direction at 120 r.p.m. Draw the velocity diagram for

the given configuration of the mechanism and determine the velocity of the slider E and angular

velocities of the links BC, CD and CE.

Also draw a diagram showing the extreme top and bottom positions of the crank DC and the corre-

sponding configurations of the mechanism.

Find the length of each of the strokes.

[Ans. 120 mm/s ; 2.8 rad/s ; 5.8 rad/s ; 2 rad/s ; 10 mm ; 23 mm]

Fig. 7.35



Chapter 7 : Velocity in Mechanisms   �  171

7. Fig. 7.37 shows a mechanism in which the crank OA, 100 mm long rotates clockwise about O at 130

r.p.m. The connecting rod A B is 400 mm long. The rod CE, 350 mm long, is attached to A B at C, 150

mm from A . This rod slides in a slot in a trunnion at D. The end E is connected by a link EF, 300 mm

long, to the horizontally moving slider F.

Fig. 7.37

Determine, for the given configuration : 1. velocity of F, 2. velocity of sliding of CE in the trunnion,

and 3. angular velocity of CE. [Ans. 0.54 m/s ; 1.2 m/s ; 1.4 rad/s]

8. Fig. 7.38 shows the mechanism of a quick return motion of the crank and slotted lever type shaping

machine. The dimensions of the various links are as follows :

OA = 200 mm ; A B = 100 mm ; OC = 400 mm ; and CR = 150 mm.

The driving crank A B makes 120° with the vertical and rotates at 60 r.p.m. in the clockwise direction.

Find : 1. velocity of ram R, and 2. angular velocity of the slotted link OC.

[Ans. 0.8 m/s ; 1.83 rad/s]

                      Fig. 7.38 Fig. 7.39

9. In a Whitworth quick return motion mechanism, as shown in Fig. 7.39, the dimensions of various

links are as follows :

OQ = 100 mm ; OA = 200 mm ; BQ = 150 mm and BP = 500 mm.

If the crank OA turns at 120 r.p.m. in clockwise direction and makes an angle of 120° with OQ,

Find : 1. velocity of the block P, and 2. angular velocity of the slotted link BQ.

[Ans. 0.63 m/s ; 6.3 rad/s]

10. A toggle press mechanism, as shown in Fig. 7.40, has the dimensions of various links as follows :

OP = 50 mm ; RQ = RS = 200 mm ; PR = 300 mm.
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Fig. 7.41

Fig. 7.40

Find the velocity of S when the

crank OP rotates at 60 r.p.m. in

the anticlockwise direction. If the

torque on P is 115 N-m, what

pressure will be exerted at S when

the overall efficiency is 60 per-

cent.

[Ans. 400 m/s ; 3.9 kN]

11. Fig. 7.41 shows a toggle mecha-

nism in which link D is constained

to move in horizontal direction.

For the given configuration, find

out : 1. velocities of points band

D; and 2. angular velocities of

links A B, BC, and BD.

The rank OA rotates at 60 r.p.m.

in anticlockwise direction.

[Ans. 0.9  m/s; 0.5 m/s; 0.0016 rad/s (anticlockwise)

0.0075 rad/s (anti-clockwise),0.0044 rad/s (anti-

clockwise)]

12. A riveter, as shown in Fig. 7.42, is operated by a piston

F acting through the links EB, A B and BC. The ram D

carries the tool. The piston moves in a line perpen-

dicular to the line of motion of D. The length of link

BC is twice the length of link A B. In the position

shown, A B makes an angle of 12° with AC and BE is

at  right angle to AC. Find the velocity ratio of E to D.

If, in the same position, the total load on the piston is

2.2 kN, find the thrust exerted by D when the efficiency

of the mechanism is 72 per cent,

Ans. [3.2 ; 5 kN]

DO YOU KNOW ?
1. Describe the method to find the velocity of a point on a link whose direction (or path) is known and

the velocity of some other point on the same link in magnitude and direction is given.

2. Explain how the velocities of a slider and the connecting rod are obtained in a slider crank

mechanism.

Fig. 7.42
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Fig. 7.43

3. Define rubbing velocity at a pin joint. What will be the rubbing velocity at pin joint when the two links

move in the same and opposite directions ?

4. What is the difference between ideal mechanical advantage and actual mechanical advantage ?

OBJECTIVE TYPE QUESTIONS
1. The direction of linear velocity of any point on a link with respect to another point on the same link is

(a) parallel to the link joining the points (b) perpendicular to the link joining the points

(c)  at 45° to the link joining the points (d) none of these

2. The magnitude of linear velocity of a point B on a link A B relative to point A  is

(a) ω.AB (b) ω (A B)2

(c) ω2 . A B (d) (ω . A B)2

where ω = Angular velocity of the link A B.

3. The two links OA and OB are connected by a pin joint at O. If the link OA turns with angular velocity

ω
1
 rad/s in the clockwise direction and the link OB turns with angular velocity

ω
2 

rad/s in the anti-clockwise direction, then the rubbing velocity at the pin joint O is

(a)  ω
1
.ω

2
.r (b) (ω

1 
– ω

2
) r

(c) (ω
1 

+ ω
2
) r (d) (ω

1 
– ω

2
) 2 r

where r = Radius of the pin at O.

4. In the above question, if both the links OA and OB turn in clockwise direction, then the rubbing

velocity at the pin joint O is

(a)  ω
1
.ω

2
.r (b) (ω

1 
– ω

2
) r

(c) (ω
1 

+ ω
2
) r (d) (ω

1 
– ω

2
) 2 r

5. In a four bar mechanism, as shown in Fig. 7.43, if a force F
A 

is

acting at point A  in the direction of its velocity v
A 

and a force F
B 

is

transmitted to the joint B in the direction of its velocity v
B 

, then the

ideal mechanical advantage is equal to

(a) F
B
.v

A
(b) F

A
.v

B

(c)
B

B

F

v
(d)

B

A

F

F

ANSWERS

1. (b) 2. (a) 3. (c) 4. (b) 5. (d)

GO To FIRST
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AccelerationAccelerationAccelerationAccelerationAcceleration

in Mechanismsin Mechanismsin Mechanismsin Mechanismsin Mechanisms

8
FFFFFeaeaeaeaeaturturturturtureseseseses

1. Introduction.

2. Acceleration Diagram for a

Link.

3. Acceleration of a Point on a

Link.

4. Acceleration in the Slider

Crank Mechanism.

5. Coriolis Component of

Acceleration.

8.1.8.1.8.1.8.1.8.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have discussed in the previous chapter the

velocities of various points in the mechanisms. Now we shall

discuss the acceleration of points in the mechanisms. The

acceleration analysis plays a very important role in the

development of machines and mechanisms.

8.2.8.2.8.2.8.2.8.2. Acceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a Link

Consider two points A and B on a rigid link as shown

in Fig. 8.1 (a). Let the point B moves with respect to A, with

an angular velocity of ω rad/s and let α rad/s2 be the angular

acceleration of the link AB.

(a) Link. (b) Acceleration diagram.

Fig. 8.1. Acceleration for a link.

Warping Machine

CONTENTS

CONTENTS
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We have already discussed that acceleration of a particle whose velocity changes both in

magnitude and direction at any instant has the following two components :

1.  The centripetal or radial component, which is perpendicular to the velocity of the

particle at the given instant.

2.  The tangential component, which is parallel to the velocity of the particle at the given

instant.

Thus for a link A B, the velocity of point B with respect to A  (i.e. v
BA

) is perpendicular to the

link A B as shown in Fig. 8.1 (a). Since the point B moves with respect to A  with an angular velocity

of ω rad/s, therefore centripetal or radial component of the acceleration of B with respect to A ,

               2 2 2
BA BALength of link = /
r

a AB AB v AB= ω × ω × =
BA...

v

AB

 
ω = 

 
�

This radial component of acceleration acts perpendicular to the velocity v
BA

, In other words,

it acts parallel to the link AB.

We know that tangential component of the acceleration of B with respect to A ,

BA Length of the link
t

a AB AB= α × = α ×

This tangential component of acceleration acts parallel to the velocity v
BA

. In other words,

it acts perpendicular to the link A B.

In order to draw the acceleration diagram for a link A B, as shown in Fig. 8.1 (b), from any

point b', draw vector b'x parallel to BA to represent the radial component of acceleration of B with

respect to A  i.e. 
BA
r

a and from point x draw vector xa' perpendicular to B A to represent the tangential

component of acceleration of B with respect to A  i.e. BA .
t

a Join b' a'. The vector b' a' (known as

acceleration image of the link A B) represents the total acceleration of B with respect to A (i.e. a
BA

)

and it is the vector sum of radial component 
BA( )
r

a and tangential component 
BA( )
t

a of acceleration.

8.3. Acceleration of a Point on a Link

(a) Points on a Link. (b) Acceleration diagram.

Fig. 8.2. Acceleration of a point on a link.

Consider two points A  and B on the rigid link, as shown in Fig. 8.2 (a). Let the acceleration

of the point A i.e. a
A

 is known in magnitude and direction and the direction of path of B is given. The

acceleration of the point B is determined in magnitude and direction by drawing the acceleration

diagram as discussed below.

1. From any point o', draw vector o'a' parallel to the direction of absolute acceleration at

point A i.e. a
A 

, to some suitable scale, as shown in Fig. 8.2 (b).



176  �   Theory of Machines

2. We know that the acceleration of B with

respect to A i.e. a
BA

 has the following two

components:

(i) Radial component of the acceleration

of B with respect to A  i.e. 
BA
r

a , and

(ii) Tangential component of the

acceleration B with respect to A i.e. 
BA .
t

a These two

components are mutually perpendicular.

3.  Draw vector a'x parallel to the link A B

(because radial component of the acceleration of B

with respect to A will pass through AB), such that

vector 2
BA BA /
r

a x a v AB′ = =

where BA Velocity of with respect to .v B A=

Note: The value of v
BA

 may be obtained by drawing the

velocity diagram as discussed in the previous chapter.

4. From point x , draw vector xb'

perpendicular to A B or vector a'x (because tangential

component of B  with respect to A i.e. 
BA ,
t

a is

perpendicular to radial component 
BA
r

a ) and

through o' draw a line parallel to the path of B to

represent the absolute acceleration of B i.e. a
B
. The

vectors xb' and o' b' intersect at b'. Now the values

of a
B
 and 

BA
t

a may be measured, to the scale.

5. By joining the points a' and b' we may determine the total acceleration of B with respect

to A i.e. a
BA

. The vector a' b' is known as acceleration image of the link A B.

6. For any other point C on the link, draw triangle a' b' c' similar to triangle ABC. Now

vector b' c' represents the acceleration of C with respect to B i.e. a
CB

, and vector a' c' represents the

acceleration of C with respect to A i.e. a
CA

. As discussed above, a
CB

 and a
CA

 will each have two

components as follows :

(i) a
CB

 has two components; 
CB CBand
r t

a a as shown by triangle b' zc' in Fig. 8.2 (b), in

which b' z is parallel to BC and zc' is perpendicular to b' z or BC.

(ii) a
CA

 has two components ; 
CA CAand
r t

a a as shown by triangle a' yc' in Fig. 8.2 (b), in

which a' y is parallel to AC and yc' is perpendicular to a' y or AC.

7. The angular acceleration of the link AB is obtained by dividing the tangential components

of the acceleration of B with respect to A 
BA( )
t

a to the length of the link. Mathematically, angular

acceleration of the link A B,

AB BA /
t

a ABα =

8.4. Acceleration in the Slider Crank Mechanism

A slider crank mechanism is shown in Fig. 8.3 (a). Let the crank OB makes an angle θ with

the inner dead centre (I.D.C) and rotates in a clockwise direction about the fixed point O with

uniform angular velocity ω
BO

 rad/s.

∴ Velocity of B with respect to O or velocity of B (because O is a fixed point),

 BO B BO , acting tangentially at .v v OB B= = ω ×

A refracting telescope uses mechanisms to

change directions.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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We know that centripetal or radial acceleration of B with respect to O or acceleration of B

(because O is a fixed point),
2

2 BO
BO B BO
r v

a a OB
OB

= = ω × =

Note : A point at the end of a link which moves with constant angular velocity has no tangential component

of acceleration.

(a) Slider crank mechanism. (b) Acceleration diagram.

Fig. 8.3. Acceleration in the slider crank mechanism.

The acceleration diagram, as shown in Fig. 8.3 (b), may now be drawn as discussed below:

1. Draw vector o' b' parallel to BO and set off equal in magnitude of 
BO B
r

a a= , to some

suitable scale.

2. From point b', draw vector b'x parallel to B A. The vector b'x represents the radial component

of the acceleration of A  with respect to B whose magnitude is given by :
2

AB AB /
r

a v BA=

Since the point B moves with constant angular velocity, therefore there will be no tangential

component of the acceleration.

3. From point x, draw vector xa' perpendicular to b'x (or A B). The vector xa'  represents the

tangential component of the acceleration of A  with respect to B i.e. 
AB .
t

a

Note: When a point moves along a straight line, it has no centripetal or radial component of the acceleration.

4. Since the point A  reciprocates along AO, therefore the acceleration must be parallel to

velocity. Therefore from o', draw o' a' parallel to AO, intersecting the vector xa' at a'.

Now the acceleration of the piston or the slider A  (a
A

) and 
AB
t

a may be measured to the scale.

5. The vector b' a', which is the sum of the vectors b' x and x a', represents the total acceleration

of A  with respect to B i.e. a
AB

. The vector b' a' represents the acceleration of the connecting rod A B.

6. The acceleration of any other point on A B such as E may be obtained by dividing the vector

b' a' at e' in the same ratio as E divides A B in Fig. 8.3 (a). In other words

                     a' e' / a' b'  =  AE / AB

7. The angular acceleration of the connecting rod A B may be obtained by dividing the

tangential component of the acceleration of A  with respect to B ( )AB
t

a to the length of A B. In other

words, angular acceleration of A B,

                            
AB AB / (Clockwise about )

t
a AB Bα =

Example 8.1. The crank of a slider crank mechanism rotates clockwise at a constant speed

of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine : 1. linear

velocity and acceleration of the midpoint of the connecting rod, and 2. angular velocity and angular

acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.
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Solution. Given : N
BO

 = 300 r.p.m. or ω
BO

 = 2 π × 300/60 = 31.42 rad/s; OB = 150 mm =

0.15 m ; B A = 600 mm = 0.6 m

We know that linear velocity of B with respect to O or velocity of B,

                                v
BO

 = v
B
 = ω

BO
 × OB = 31.42 × 0.15 = 4.713 m/s

...(Perpendicular to BO)

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.4

1.  Linear velocity of the midpoint of the connecting rod

First of all draw the space diagram, to some suitable scale; as shown in Fig. 8.4 (a). Now the

velocity diagram, as shown in Fig. 8.4 (b), is drawn as discussed below:

1. Draw vector ob perpendicular to BO, to some suitable scale, to represent the velocity of

B with respect to O or simply velocity of B i.e. v
BO

 or v
B
, such that

vector ob = v
BO

 = v
B
 = 4.713 m/s

2. From point b, draw vector ba perpendicular to BA to represent the velocity of A  with

respect to B i.e. v
AB 

, and from point o draw vector oa parallel to the motion of A  (which is along AO)

to represent the velocity of A i.e. v
A

. The vectors ba and oa intersect at a.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Pushing with fluids

Ram moves

outwards

Oil pressure on

lower side of

piston

Load

moves

inwards

Oil pressure on

upper side of

piston

Ram moves

inwards
Load moves

outwards
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By measurement, we find that velocity of A  with respect to B,

AB

A

vector 3.4 m / s

and Velocity of , vector 4 m / s

v ba

A v oa

= =

= =

3. In order to find the velocity of the midpoint D of the connecting rod A B, divide the vector

ba at d in the same ratio as D divides A B, in the space diagram. In other words,

bd / ba = BD/BA

Note:  Since D is the midpoint of A B, therefore d is also midpoint of vector ba.

4. Join od. Now the vector od represents the velocity of the midpoint D of the connecting

rod i.e. v
D

.

By measurement, we find that

                                         v
D

 = vector od = 4.1 m/s Ans.

Acceleration of the midpoint of the connecting rod

We know that the radial component of the acceleration of B with respect to O or the

acceleration of B,
2 2

2BO
BO B

(4.713)
148.1 m/s

0.15

r v
a a

OB
= = = =

and the radial component of the acceleraiton of A  with respect to B,

2 2
2AB

AB

(3.4)
19.3 m/s

0.6

r v
a

BA
= = =

Now the acceleration diagram, as shown in Fig. 8.4 (c) is drawn as discussed below:

1. Draw vector o' b' parallel to BO, to some suitable scale, to represent the radial component

of the acceleration of B with respect to O or simply acceleration of B i.e. 
BO Bor ,
r

a a such that

                         2
BO Bvector 148.1 m/s
r

o b a a′ ′ = = =

Note:  Since the crank OB rotates at a constant speed, therefore there will be no tangential component of the

acceleration of B  with respect to O.

2. The acceleration of A  with respect to B has the following two components:

(a) The radial component of the acceleration of A  with respect to B i.e. 
AB ,
r

a and

(b) The tangential component of the acceleration of A  with respect to B i.e. 
AB.
t

a These two

components are mutually perpendicular.

Therefore from point b', draw vector b' x parallel to A B to represent 2
AB 19.3 m/s
r

a = and

from point x draw vector xa' perpendicular to vector b' x whose magnitude is yet unknown.

3. Now from o', draw vector o' a' parallel to the path of motion of A  (which is along AO) to

represent the acceleration of A i.e. a
A 

. The vectors xa' and o' a' intersect at a'. Join a' b'.

4. In order to find the acceleration of the midpoint D of the connecting rod A B, divide the

vector a' b' at d' in the same ratio as D divides A B. In other words

                     / /b d b a BD BA′ ′ ′ ′ =

Note:  Since D is the midpoint of A B, therefore d' is also midpoint of vector b' a'.

5. Join o' d'. The vector o' d' represents the acceleration of midpoint D of the connecting rod

i.e. a
D

.

By measurement, we find that

  a
D

 = vector o' d' = 117 m/s2 Ans.
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2.  Angular velocity of the connecting rod

We know that angular velocity of the connecting rod A B,

                            
2AB

AB

3.4
5.67 rad/s (Anticlockwise about )

0.6

v
B

BA
ω = = =  Ans.

Angular acceleration of the connecting rod

From the acceleration diagram, we find that

2
AB 103 m/s
t

a = ...(By measurement)

We know that angular acceleration of the connecting rod A B,

2AB
AB

103
171.67 rad/s (Clockwise about )

0.6

t
a

B
BA

α = = = Ans.

Example 8.2.  An engine mechanism is shown in Fig. 8.5. The crank CB = 100 mm and the

connecting rod BA = 300 mm with centre of gravity G, 100 mm from B. In the position shown, the

crankshaft has a speed of 75 rad/s and an angular acceleration of 1200 rad/s
2
. Find:1. velocity of

G and angular velocity of AB, and 2. acceleration of G and angular acceleration of AB.

Fig. 8.5

Solution. Given :  ω
BC

 = 75 rad/s ; α
BC

 = 1200 rad/s2, CB = 100 mm = 0.1 m; B A = 300 mm

= 0.3 m

We know that velocity of B with respect to C or velocity of B,

                             BC B BC 75 0.1 7.5 m/sv v CB= = ω × = × = ...(Perpendicular to BC)

Since the angular acceleration of the crankshaft, α
BC

 = 1200 rad/s2, therefore tangential

component of the acceleration of B with respect to C,

                             2
BC BC 1200 0.1 120 m/s
t

a CB= α × = × =

Note:  When the angular acceleration is not given, then there will be no tangential component of the acceleration.

1.  Velocity of G and angular velocity of AB

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.6 (a). Now the

velocity diagram, as shown in Fig. 8.6 (b), is drawn as discussed below:

1. Draw vector cb  perpendicular to CB, to some suitable scale, to represent the velocity of

B with respect to C or velocity of B (i.e. v
BC

 or v
B
), such that

BC Bvector 7.5 m/scb v v= = =

2. From point b, draw vector ba perpendicular to B A to represent the velocity of A  with

respect to B i.e. v
AB 

, and from point c, draw vector ca parallel to the path of motion of A  (which is

along AC) to represent the velocity of A  i.e. v
A

.The vectors ba and ca intersect at a.

3. Since the point G lies on A B, therefore divide vector ab at g in the same ratio as G divides

A B in the space diagram. In other words,

    / /ag ab AG AB=

The vector cg represents the velocity of G.

By measurement, we find that velocity of G,

v
G

 = vector cg = 6.8 m/s  Ans.
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From velocity diagram, we find that velocity of A  with respect to B,

   v
AB

 = vector ba = 4 m/s

We know that angular velocity of A B,

AB
AB

4
13.3 rad/s (Clockwise)

0.3

v

BA
ω = = =  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 8.6

2.  Acceleration of G and angular acceleration of AB

We know that radial component of the acceleration of B with

respect to C,

                             *
2 2

2BC
BC

(7.5)
562.5 m/s

0.1

r v
a

CB
= = =

and radial component of the acceleration of A  with respect to B,

                               

2 2
2AB

AB

4
53.3 m/s

0.3

r v
a

BA
= = =

Now the acceleration diagram, as shown in Fig. 8.6 (c), is drawn

as discussed below:

1. Draw vector c' b'' parallel to CB, to some suitable scale, to

represent the radial component  of the acceleration of B with respect to C,

i.e. 
BC ,
r

a such that

                   2
BCvector 562.5 m/s
r

c b a′ ′′ = =

2. From point b'', draw vector b'' b' perpendicular to vector c' b'' or CB to represent the

tangential component of the acceleration of B with respect to C i.e. BC
t

a , such that

2
BCvector 120 m/s
t

b b a′′ ′ = = ... (Given)

3. Join c' b'. The vector c' b' represents the total acceleration of B with respect to C i.e. a
BC

.

4. From point b', draw vector b' x parallel to B A to represent radial component of the

acceleration of A  with respect to B i.e. 
AB
r

a  such that

                               2
ABvector 53.3 m/s
r

b x a′ = =

5. From point x, draw vector xa' perpendicular to vector b'x or B A to represent tangential

component of the acceleration of A  with respect to B i.e. 
AB ,
t

a whose magnitude is not yet known.

6. Now draw vector c' a' parallel to the path of motion of A  (which is along AC) to represent

the acceleration of A i.e. a
A

.The vectors xa' and c'a' intersect at a'. Join b' a'. The vector b' a'

represents the acceleration of A  with respect to B i.e. a
AB

.

(c) Acceleration diagram.

Fig. 8.6

* When angular acceleration of the crank is not given, then there is no BC
t

a . In that case, BC BC B ,
r

a a a= = as

discussed in the previous example.
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7. In order to find the acceleratio of G, divide vector a' b' in g' in the same ratio as G divides

B A in Fig. 8.6 (a). Join c' g'. The vector c' g' represents the acceleration of G.

By measurement, we find that acceleration of G,

 a
G

 = vector c' g' = 414 m/s2 Ans.

From acceleration diagram, we find that tangential component of the acceleration of A  with

respect to B,

                                          2
AB vector 546 m/s
t

a xa′= = ...(By measurement)

∴ Angular acceleration of A B,

                                         
2AB

AB

546
1820 rad/s (Clockwise)

0.3

t
a

BA
α = = = Ans.

Example 8.3. In the mechanism shown in Fig. 8.7, the slider C is

moving to the right with a velocity of 1 m/s and an acceleration of 2.5 m/s2.

The dimensions of various links are AB = 3 m inclined at 45° with the

vertical and BC = 1.5 m inclined at 45° with the horizontal. Determine: 1. the

magnitude of vertical and horizontal component of the acceleration of the

point B, and 2. the angular acceleration of the links AB and BC.

Solution. Given : v
C
 = 1 m/s ; a

C
 = 2.5 m/s2; A B = 3 m ; BC = 1.5 m

First of all, draw the space diagram, as shown in Fig. 8.8 (a), to some

suitable scale. Now the velocity diagram, as shown in Fig. 8.8 (b), is drawn as

discussed below:

1. Since the points A  and D are fixed points, therefore they lie at one place in the velocity

diagram. Draw vector dc parallel to DC, to some suitable scale, which represents the velocity of

slider C with respect to D or simply velocity of C, such that

                                  vector dc = v
CD

 = v
C
 = 1 m/s

2. Since point B has two motions, one with respect to A  and the other with respect to C,

therefore from point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A , i.e. v
BA

 and from point c draw vector cb perpendicular to CB to represent the velocity

of B with respect to C i.e. v
BC 

.The vectors ab and cb intersect at b.

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.8

By measurement, we find that velocity of B with respect to A ,

BA vector 0.72 m/sv ab= =

and velocity of B with respect to C,

BC vector 0.72 m/sv cb= =

Fig. 8.7
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We know that radial component of acceleration of B with respect to C,

                             

2 2
2BC

BC

(0.72)
0.346 m/s

1.5

r v
a

CB
= = =

and radial component of acceleration of B with respect to A ,

                            

2 2
2BA

BA

(0.72)
0.173 m/s

3

r v
a

AB
= = =

Now the acceleration diagram, as shown in Fig. 8.8 (c), is drawn as discussed below:

1. *Since the points A  and D are fixed points, therefore they lie at one place in the acceleration

diagram. Draw vector d' c' parallel to DC, to some suitable scale, to represent the acceleration of C

with respect to D or simply acceleration of C i.e. a
CD

 or a
C
 such that

                 2
CD Cvector 2.5 m/sd c a a′ ′ = = =

2. The acceleration of B with respect to C will have two components, i.e. one radial component

of B  with respect to C ( )BC
r

a and the other tangential component of B  with respect to

( )BC
.t

C a Therefore from point c', draw vector c' x parallel to CB to represent 
BC
r

a such that

                   2
BCvector 0.346 m/s
r

c x a′ = =

3. Now from point x, draw vector xb' perpendicular to vector c' x or CB to represent at

BC

whose magnitude is yet unknown.

4. The acceleration of B with respect to A  will also have two components, i.e. one radial

component of B with respect to A  (ar

BA
) and other tangential component of B with respect to A  (at 

BA
).

Therefore from point a' draw vector a' y parallel to A B to represent ar

BA
, such that

vector a' y = ar

BA
 = 0.173 m/s2

5. From point y, draw vector yb' perpendicular to vector a'y or AB to represent 
BA .
t

a The

vector yb' intersect the vector xb' at b'. Join a' b' and c' b'. The vector a' b' represents the acceleration

of point B (a
B
) and the vector c' b' represents the acceleration of B with respect to C.

1.  Magnitude of vertical and horizontal component of the acceleration of the point B

Draw b' b'' perpendicular to a' c'. The vector b' b'' is the vertical component of the acceleration

of the point B and a' b'' is the horizontal component of the acceleration of the point B. By measurement,

                          vector b' b'' = 1.13 m/s2 and vector a' b'' = 0.9 m/s2  Ans.

2.  Angular acceleration of AB and BC

By measurement from acceleration diagram, we find that tangential component of acceleration

of the point B with respect to A ,

2
BA vector 1.41 m/s
t

a yb′= =

and tangential component of acceleration of the point B with respect to C,

                                    2
BC vector 1.94 m/s
t

a xb′= =

* If the mechanism consists of more than one fixed point, then all these points lie at the same place in the

velocity and acceleration diagrams.
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We know that angular acceleration of A B,

                                   
2BA

AB

1.41
0.47 rad/s

3

t
a

AB
α = = = Ans.

and angular acceleration of BC,

                                    2BA
BC

1.94
1.3 rad/s

1.5

t
a

CB
α = = = Ans.

Example 8.4. PQRS is a four bar chain with link PS fixed. The lengths of the links are PQ

= 62.5 mm ; QR = 175 mm ; RS = 112.5 mm ; and PS = 200 mm. The crank PQ rotates at 10 rad/s

clockwise. Draw the velocity and acceleration diagram when angle QPS = 60° and Q and R lie on

the same side of PS. Find the angular velocity and angular acceleration of links QR and RS.

Solution.  Given : ω
QP

 = 10 rad/s; PQ = 62.5 mm = 0.0625 m ; QR = 175 mm = 0.175 m ;

RS = 112.5 mm = 0.1125 m ; PS = 200 mm = 0.2 m

We know that velocity of Q with respect to P or velocity of Q,

v
QP

 = v
Q

 = ω
QP

 × PQ = 10 × 0.0625 = 0.625 m/s

...(Perpendicular to PQ)

Angular velocity of links QR and RS

First of all, draw the space diagram of a four bar chain, to some suitable scale, as shown in

Fig. 8.9 (a). Now the velocity diagram as shown in Fig. 8.9 (b), is drawn as discussed below:

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.9

1. Since P and S  are fixed points, therefore these points lie at one place in velocity diagram.

Draw vector pq perpendicular to PQ, to some suitable scale, to represent the velocity of Q with

respect to P or velocity of Q i.e. v
QP

 or v
Q

 such that

             vector pq = v
QP

 = v
Q

 = 0.625 m/s

2. From point q, draw vector qr perpendicular to QR to represent the velocity of R with

respect to Q (i.e. v
RQ

) and from point s, draw vector sr perpendicular to SR to represent the velocity

of R with respect to S or velocity of R (i.e. v
RS

 or v
R
). The vectors qr and sr intersect at r. By

measurement, we find that

                       v
RQ

 = vector qr = 0.333 m/s, and v
RS

 = v
R
 = vector sr = 0.426 m/s

We know that angular velocity of link QR,

                      
RQ

QR

0.333
1.9 rad/s (Anticlockwise)

0.175

v

RQ
ω = = = Ans.
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and angular velocity of link RS,

                       
RS

RS

0.426
3.78 rad/s (Clockwise)

0.1125

v

SR
ω = = = A Ans.

Angular acceleration of links QR and RS

Since the angular acceleration of the crank PQ is not given, therefore there will be no tangential

component of the acceleration of Q with respect to P.

We know that radial component of the acceleration of Q with respect to P (or the acceleration

of Q),

                      

2 2
QP 2

QP QP Q

(0.625)
6.25 m/s

0.0625

r
v

a a a
PQ

= = = = =

Radial component of the acceleration of R with respect to Q,

                       

2 2
RQ 2

RQ

(0.333)
0.634 m/s

0.175

r
v

a
QR

= = =

and radial component of the acceleration of R with respect to S (or the acceleration of R),

                        

2 2
2RS

RS RS R

(0.426)
1.613 m/s

0.1125

r v
a a a

SR
= = = = =

The acceleration diagram, as shown in Fig. 8.9 (c) is drawn as follows :

1. Since P and S  are fixed points, therefore these points lie at one place in the acceleration

diagram. Draw vector p'q' parallel to PQ, to some suitable scale, to represent the radial component

of acceleration of Q with respect to P or acceleration of Q i.e QP Qor
r

a a such that

            
2

QP Qvector 6.25 m/s
r

p q a a′ ′ = = =

2. From point q', draw vector q' x parallel to QR to represent the radial component of

acceleration of R with respect to Q i.e. RQ
r

a such that

             
2

RQvector 0.634 m/s
r

q x a′ = =

3. From point x, draw vector xr' perpendicular to QR to represent the tangential component

of acceleration of R with respect to Q i.e RQ
t

a whose magnitude is not yet known.

4. Now from point s', draw vector s'y parallel to SR to represent the radial component of the

acceleration of R with respect to S i.e. 
RS
r

a such that

              2
RSvector 1.613 m/s
r

s y a′ = =

5. From point y, draw vector yr' perpendicular to SR to represent the tangential component

of acceleration of R with respect to S i.e. 
RS
t

a .

6. The vectors xr' and yr' intersect at r'. Join p'r and q' r'. By measurement, we find that

                       
2 2

RQ RSvector 4.1 m/s and vector 5.3 m/s
t t

a xr a yr′ ′= = = =

We know that angular acceleration of link QR,

                        
RQ 2

QR

4.1
23.43 rad/s (Anticlockwise)

QR 0.175

t
a

α = = = Ans.

and angular acceleration of link RS,

                        
2RS

RS

5.3
47.1 rad/s (Anticlockwise)

0.1125

t
a

SR
α = = = Ans.
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Example 8.5. The dimensions and

configuration of the four bar mechanism, shown in

Fig. 8.10, are as follows :

P
1
A = 300 mm; P

2
B = 360 mm; AB = 360

mm, and P
1
P

2
 = 600 mm.

The angle AP
1
P

2
 = 60°. The crank P

1
A has

an angular velocity of 10 rad/s and an angular

acceleration of  30 rad/s2,  both clockwise.

Determine the angular velocities and angular

accelerations of P
2
B, and AB and the velocity and

acceleration of the joint B.

Solution.  Given : ω
AP1

 = 10 rad/s ; α
AP1

 = 30 rad/s2; P
1
A  = 300 mm = 0.3 m ; P

2
B = A B =

360 mm = 0.36 m

We know that the velocity of A  with respect to P
1
 or velocity of A,

                        v
AP1

 = v
A

 = ω
AP1

 × P
1
A = 10 × 0.3 = 3 m/s

Velocity of B and angular velocitites of P
2
B and AB

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.11 (a). Now

the velocity diagram, as shown in Fig. 8.11 (b), is drawn as discussed below:

1. Since P
1
 and P

2
 are fixed points, therefore these points lie at one place in velocity diagram.

Draw vector p
1
 a perpendicular to P

1
A , to some suitable scale, to represent the velocity of A  with

respect to P
1
 or velocity of A i.e. v

AP1
 or v

A
, such that

               vector p
1
a = v

A P1
 = v

A
 = 3 m/s

2. From point a, draw vector ab perpendicular to AB to represent velocity of B with respect

to A  (i.e. v
BA

) and from point p
2
 draw vector p

2
b perpendicular to P

2
B to represent the velocity of B

with respect to P
2
 or velocity of B i.e. v

BP2
 or v

B
. The vectors ab and p

2
b intersect at b.

By measurement, we find that

                         v
BP2

 = v
B
 = vector p

2
b = 2.2 m/s  Ans.

and                          v
BA

 = vector ab = 2.05 m/s

We know that angular velocity of P
2
B,

                       
BP2

P2B
2

2.2
6.1 rad/s (Clockwise)

0.36

v

P B
ω = = = Ans.

and angular velocity of A B,

                        
BA

AB

2.05
5.7 rad/s (Anticlockwise)

0.36

v

AB
ω = = = Ans.

Acceleration of B and angular acceleration of P
2
B and AB

We know that tangential component of the acceleration of A  with respect to P
1
,

                   
2

A 1P P1 1
30 0.3 9 m/s

t

Aa P A= α × = × =

Radial component of the acceleration of A  with respect to P
1
,

                   

2
AP 2 2 21

AP AP 11 1
1

10 0.3 30 m/s
r

v
a P A

P A
= = ω × = × =

Fig. 8.10
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Radial component of the acceleration of B with respect to A .

                    

2 2
2BA

BA

(2.05)
11.67 m/s

0.36

r v
a

AB
= = =

and radial component of the acceleration of B with respect to P
2
,

                    

2 2
BP 22

BP2
2

(2.2)
13.44 m/s

0.36

r
v

a
P B

= = =

(a) Space diagram. (b) Velocity diagram.

Fig. 8.11

The acceleration diagram, as shown in Fig. 8.11 (c), is

drawn as follows:

1. Since P
1
 and P

2
 are fixed points, therefore these points

will lie at one place, in the acceleration diagram. Draw vector

p
1
' x parallel to P

1
A , to some suitable scale, to represent the

radial component of the acceleration of A with respect to P
1
,

such that

          2
1 AP1

vector 30 m/s
r

p x a′ = =

2. From point x, draw vector xa' perpendicular to P
1
A  to

represent the tangential component of the acceleration of A  with

respect to P
1
, such that

       
2

A P1
vector 9 m/s

t
xa a′ = =

3. Join p
1
' a'. The vector p

1
' a' represents the acceleration

of A . By measurement, we find that the acceleration of A ,

                        a
A
 = a

AP1
 = 31.6 m/s2

4. From point a', draw vector a' y parallel to A B to represent the radial component of the

acceleration of B with respect to A , such that

           2
BAvector 11.67 m/s
r

a y a′ = =

5. From point y, draw vector yb' perpendicular to A B to represent the tangential component

of the acceleration of B with respect to A  (i.e. 
BA
t

a ) whose magnitude is yet unknown.

6. Now from point 2 ,p ′ draw vector 2p z′ parallel to P
2
B to represent the radial component

of the acceleration B with respect to P
2
, such that

                          2
2 BP2

vector 13.44 m/s
r

p z a′ = =

(c) Acceleration diagram

Fig. 8.11
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7. From point z, draw vector zb' perpendicular to P
2
B to represent the tangential component

of the acceleration of B with respect to P
2
 i.e. BP2

.
t

a

8. The vectors yb' and zb' intersect at b'. Now the vector p
2
' b' represents the acceleration of

B with respect to P
2
 or the acceleration of B i.e. a

BP2
 or a

B
. By measurement, we find that

                                      a
BP2

 = a
B
 = vector p

2
' b' = 29.6 m/s2 Ans.

Also                     
2 2

BA BP2
vector 13.6 m/s , and vector 26.6 m/s

t t
yb a zb a′ ′= = = =

We know that angular acceleration of P
2
B,

                                     
BP 22

P2B
2

26.6
73.8 rad/s (Anticlockwise)

0.36

t
a

P B
α = = = Ans.

and angular acceleration of A B,
2BA

AB

13.6
37.8 rad/s (Anticlockwise)

0.36

t
a

AB
α = = = Ans.

Example 8.6. In the mechanism, as shown in Fig. 8.12, the crank OA rotates at 20 r.p.m.

anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links

are OA = 300 mm; AB = 1200 mm; BC = 450 mm and CD = 450 mm.

Fig. 8.12

For the given configuration, determine : 1. velocities of sliding at B and D, 2. angular

velocity of CD, 3. linear acceleration of D, and 4. angular acceleration of CD.

Solution. Given : N
AO

 = 20 r.p.m. or ω
AO

 = 2 π × 20/60 = 2.1 rad/s ; OA = 300 mm = 0.3 m ;

A B = 1200 mm = 1.2 m ; BC = CD = 450 mm = 0.45 m

Bicycle is a common example where simple mechanisms are used.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that linear velocity of A  with respect to O or velocity of A ,

                   v
AO

 = v
A

 = ω
AO

 × OA = 2.1 × 0.3 = 0.63 m/s ...(Perpendicular to OA)

1. Velocities of sliding at B and D

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.13 (a). Now

the velocity diagram, as shown in Fig. 8.13 (b), is drawn as discussed below:

(a) Space diagram.

(b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.13

1. Draw vector oa perpendicular to OA, to some suitable scale, to represent the velocity of

A  with respect to O (or simply velocity of A ), such that

                              vector oa = v
AO

 = v
A

 = 0.63 m/s

2. From point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A  (i.e. v
BA

) and from point o draw vector ob parallel to path of motion B (which is along

BO) to represent the velocity of B with respect to O (or simply velocity of B). The vectors ab and ob

intersect at b.

3. Divide vector ab at c in the same ratio as C divides A B in the space diagram. In other

words,

BC/CA = bc/ca

4. Now from point c, draw vector cd perpendicular to CD to represent the velocity of D with

respect to C (i.e. v
DC

) and from point o draw vector od parallel to the path of motion of D (which

along the vertical direction) to represent the velocity of D.

By measurement, we find that velocity of sliding at B,

                                            v
B
 = vector ob = 0.4 m/s  Ans.

and velocity of sliding at D, v
D

 = vector od = 0.24 m/s Ans.

2.  Angular velocity of CD

By measurement from velocity diagram, we find that velocity of D with respect to C,

                                          v
DC

 = vector cd = 0.37 m/s
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∴ Angular velocity of CD,

                                 
DC

CD

0.37
0.82 rad/s (Anticlockwise).

0.45

v

CD
ω = = = Ans.

3.  Linear acceleration of D

We know that the radial component of the acceleration of A  with respect to O or acceleration

of A ,

                                  

2
2 2 2AO

AO A AO (2.1) 0.3 1.323 m/s
r v

a a OA
OA

= = = ω × = × =

Radial component of the acceleration of B with respect to A ,

                                  

2 2
2BA

BA

(0.54)
0.243 m/s

1.2

r v
a

AB
= = =

...(By measurement, v
BA

 = 0.54 m/s)

Radial component of the acceleration of D with respect to C,

                                  

2 2
2DC

DC

(0.37)
0.304 m/s

0.45

r v
a

CD
= = =

Now the acceleration diagram, as shown in Fig. 8.13 (c), is drawn as discussed below:

1. Draw vector o' a' parallel to OA, to some suitable scale, to represent the radial component

of the acceleration of A  with respect to O or simply the acceleration of A , such that

        2
AO Avector 1.323 m/s
r

o a a a′ ′ = = =

2. From point a', draw vector a' x parallel to A B to represent the radial component of the

acceleration of B with respect to A , such that

                        2
BAvector 0.243 m/s
r

a x a′ = =

3. From point x, draw vector xb' perpendicular to A B to represent the tangential component

of the acceleration of B with respect to A  (i.e. 
BA
t

a ) whose magnitude is not yet known.

4. From point o', draw vector o' b' parallel to the path of motion of B (which is along BO) to

represent the acceleration of B (a
B
). The vectors xb' and o' b' intersect at b'. Join a' b'. The vector

a' b' represents the acceleration of B with respect to A .

5. Divide vector a' b' at c' in the same ratio as C divides A B in the space diagram. In other

words,

                             BC / B A = b' c'/b' a'

6. From point c', draw vector c'y parallel to CD to represent the radial component of the

acceleration of D with respect to C, such that

                         2
DCvector 0.304 m/s
r

c y a′ = =

7. From point y, draw yd' perpendicular to CD to represent the tangential component of

acceleration of D with respect to C 
DC( . . )
t

i e a whose magnitude is not yet known.

8. From point o', draw vector o' d' parallel to the path of motion of D (which is along the

vertical direction) to represent the acceleration of D (a
D

). The vectors yd' and o' d' intersect at d'.

By measurement, we find that linear acceleration of D,

                                     a
D

 = vector o' d' = 0.16 m/s2         Ans.

4.  Angular acceleration of CD

From the acceleration diagram, we find that the tangential component of the acceleration of

D with respect to C,

                       2
DC vector 1.28 m/s
t

a yd ′= = ...(By measurement)
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∴ Angular acceleration of CD,

          2DC
CD

1.28
2.84 rad/s (Clockwise)

0.45

t
a

CD
α = = = Ans.

Example 8.7.  Find out the acceleration of the slider D and

the angular acceleration of link CD for the engine mechanism shown

in Fig. 8.14.

The crank OA rotates uniformly at 180 r.p.m. in clockwise

direction. The various lengths are: OA = 150 mm ; AB = 450 mm;

PB = 240 mm ; BC = 210 mm ; CD = 660 mm.

Solution.  Given: N
AO

 = 180 r.p.m., or ω
AO

 = 2π × 180/60 =

18.85 rad/s ; OA = 150 mm = 0.15 m ; A B = 450 mm = 0.45 m ;

PB = 240 mm = 0.24 m ; CD = 660 mm = 0.66 m

We know that velocity of A  with respect to O or velocity

of A ,

v
AO

= v
A

 = ω
AO

 × OA

= 18.85 × 0.15 = 2.83 m/s

...(Perpendicular to OA)

First of all draw the space diagram, to some suitable scale,

as shown in Fig. 8.15 (a). Now the velocity diagram, as shown in Fig. 8.15 (b), is drawn as discussed

below:

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.15

1. Since O and P are fixed points, therefore these points lie at one place in the velocity

diagram. Draw vector oa perpendicular to OA, to some suitable scale, to represent the velocity of A

with respect to O or velocity of A  (i.e. v
AO

 or v
A

), such that

vector oa = v
AO

 = v
A

 = 2.83 m/s

2. Since the point B moves with respect to A  and also with respect to P, therefore draw

vector ab perpendicular to A B to represent the velocity of B with respect to A i.e. v
BA 

,and from point

p draw vector pb perpendicular to PB to represent the velocity of B with respect to P or velocity of

B (i.e. v
BP

 or v
B
). The vectors ab and pb intersect at b.

3. Since the point C lies on PB produced, therefore divide vector pb at c in the same ratio as

C divides PB in the space diagram. In other words, pb/pc = PB/PC.

All dimensions in mm.

Fig. 8.14
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4. From point c, draw vector cd perpendicular to CD to represent the velocity of D with

respect to C and from point o draw vector od parallel to the path of motion of the slider D (which is

vertical), to represent the velocity of D, i.e. v
D

.

By measurement, we find that velocity of the slider D,

v
D

 = vector od = 2.36 m/s

Velocity of D with respect to C,

             v
DC

 = vector cd = 1.2 m/s

Velocity of B with respect to A ,

             v
BA

 = vector ab = 1.8 m/s

and velocity of B with respect to P, v
BP

 = vector pb = 1.5 m/s

Acceleration of the slider D

We know that radial component of the acceleration of A  with respect to O or acceleration

of A ,

           2 2 2
AO A AO (18.85) 0.15 53.3 m/s
r

a a AO= = ω × = × =

Radial component of the acceleration of B with respect to A ,

           

2 2
2BA

BA

(1.8)
7.2 m/s

0.45

r v
a

AB
= = =

Radial component of the acceleration of B with respect to P,

           

2 2
2BP

BP

(1.5)
9.4 m/s

0.24

r v
a

PB
= = =

Radial component of the acceleration of D with respect to C,

           

2 2
2DC

DC

(1.2)
2.2 m/s

0.66

r v
a

CD
= = =

Now the acceleration diagram, as shown in Fig. 8.15 (c), is drawn as discussed below:

1.  Since O and P are fixed points, therefore these points lie at one place in the acceleration

diagram. Draw vector o' a' parallel to OA, to some suitable scale, to represent the radial component

of the acceleration of A with respect to O or the acceleration of A  (i.e. 
AO
r

a or a
A

), such that

2
AO Avector 53.3 m/s
r

o a a a′ ′ = = =

2. From point a', draw vector a' x parallel to A B to represent the radial component of the

acceleration of B with respect to A  (i.e. 
BA
r

a ), such that

  2
BAvector 7.2 m/s
r

a x a′ = =

3. From point x, draw vector xb' perpendicular to the vector a'x or AB to represent the

tangential component of the acceleration of B with respect to A i.e.
BA
t

a whose magnitude is yet

unknown.

4. Now from point p', draw vector p' y parallel to PB to represent the radial component of

the acceleration of B with respect to P (i.e. 
BP
r

a ), such that

 2
BPvector 9.4 m/s
r

p y a′ = =

5. From point y, draw vector yb' perpendicular to vector b'y or PB to represent the tangential

component of the acceleration of B, i.e. 
BP
t

a .  The vectors xb' and yb' intersect at b'. Join p' b'. The

vector p' b' represents the acceleration of B, i.e. a
B
.
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6. Since the point C lies on PB produced, therefore divide vector p'b' at c' in the same ratio

as C divides PB in the space diagram. In other words, p'b'/p'c' = PB/PC

7. From point c', draw vector c'z parallel to CD to represent the radial component of the

acceleration of D with respect to C i.e. 
DC ,
r

a such that

                       2
DCvector 2.2 m/s
r

c z a′ = =

8. From point z, draw vector zd' perpendicular to vector c'z or CD to represent the tangential

component of the acceleration of D with respect to C i.e. 
DC ,
t

a whose magnitude is yet unknown.

9. From point o', draw vector o' d' parallel to the path of motion of D (which is vertical) to

represent the acceleration of D, i.e. a
D

. The vectors zd' and o' d' intersect at d'. Join c' d'.

By measurement, we find that acceleration of D,

                                   a
D

 = vector o'd' = 69.6 m/s2  Ans.

Angular acceleration of CD

From acceleration diagram, we find that tangential component of the acceleration of D with

respect to C,

2
DC vector 17.4 m/s
t

a zd ′= = ...(By measurement)

We know that angular acceleration of CD,

                               2DC
CD

17.4
26.3 rad / s (Anticlockwise)

0.66

t
a

CD
α = = = Ans.

Example 8.8. In the toggle mechanism shown in Fig. 8.16, the slider D is constrained to

move on a horizontal path. The crank OA is rotating in the counter-clockwise direction at a speed

Fig. 8.16

of 180 r.p.m. increasing at the rate of 50 rad/s
2
. The dimensions of the various links are as follows:

OA = 180 mm ; CB = 240 mm ; AB = 360 mm ; and BD = 540 mm.

For the given configuration, find 1. Velocity of slider D and angular velocity of BD, and

2. Acceleration of slider D and angular acceleration of BD.

Solution. Given :  N
AO

 = 180 r.p.m. or ω
AO

 = 2 π × 180/60 = 18.85 rad/s ; OA = 180 mm

= 0.18 m ; CB = 240 mm = 0.24 m ; A B = 360 mm = 0.36 m ; BD = 540 mm = 0.54 m

We know that velocity of A  with respect to O or velocity of A ,

                               v
AO

 = v
A

 = ω
AO

 × OA = 18.85 × 0.18 = 3.4 m/s

...(Perpendicular to OA)
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1. Velocity of slider D and angular velocity of BD

First of all, draw the space diagram to some suitable scale, as shown in Fig. 8.17 (a). Now

the velocity diagram, as shown in Fig. 8.17 (b), is drawn as discussed below:

1. Since O and C are fixed points, therefore these points lie at one place in the velocity

diagram. Draw vector oa perpendicular to OA, to some suitable scale, to represent the velocity of A

with respect to O or velocity of A i.e. v
AO

 or v
A

, such that

                              vector oa = v
AO

 = v
A

 = 3.4 m/s

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.17

2. Since B moves with respect to A  and also with respect to C, therefore draw vector ab

perpendicular to A B to represent the velocity of B with respect to A i.e. v
BA

, and draw vector cb

perpendicular to CB to represent the velocity of B with respect to C ie. v
BC

. The vectors ab and cb

intersect at b.

3. From point b, draw vector bd perpendicular to BD to represent the velocity of D with

respect  to B i.e. v
DB

, and from point c draw vector cd parallel to CD (i.e., in the direction of motion

of the slider D) to represent the velocity of D i.e. v
D

.

By measurement, we find that velocity of B with respect to A ,

v
BA

 = vector ab = 0.9 m/s

Velocity of B with respect to C,

v
BC

 = vector cb = 2.8 m/s

Velocity of D with respect to B,

v
DB

 = vector bd = 2.4 m/s

and velocity of slider D,      v
D

 = vector cd = 2.05 m/s Ans.

Angular velocity of BD

We know that the angular velocity of BD,

                           DB
BD

2.4
4.5 rad/s

0.54

v

BD
ω = = = Ans.

2. Acceleration of slider D and angular acceleration of BD

Since the angular acceleration of OA increases at the rate of 50 rad/s2, i.e. α
AO

 = 50 rad/s2
,

therefore

Tangential component of the acceleration of A  with respect to O,

                            
2

AO AO 50 0.18 9 m/s
t

a OA= α × = × =
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Radial component of the acceleration of A  with respect to O,

2 2
2AO

AO

(3.4)
63.9 m/s

0.18

r v
a

OA
= = =

Radial component of the acceleration of B with respect to A,

     

2 2
2BA

BA

(0.9)
2.25 m/s

0.36

r v
a

AB
= = =

Radial component of the acceleration of B with respect to C,

                            

2 2
2BC

BC

(2.8)
32.5 m/s

0.24

r v
a

CB
= = =

and radial component of the acceleration of D with respect to B,

                             

2 2
2DB

DB

(2.4)
10.8 m/s

0.54

r v
a

BD
= = =

Now the acceleration diagram, as shown in Fig. 8.17 (c), is drawn as discussed below:

1. Since O and C are fixed points, therefore

these points lie at one place in the acceleration

diagram. Draw vector o'x parallel to OA, to some

suitable scale, to represent the radial component

of the acceleration of A  with respect to O i.e.

AO ,
r

a such that

                     2
AOvector 63.9 m/s
r

o x a′ = =

2. From point x , draw vector xa'

perpendicular to vector o'x or OA to represent the

tangential component of the acceleration of A  with

respect to O i.e. 
AO
t

a ,such that

                   2
AOvector 9 m/s
t

x a a′ = =

3. Join o'a'. The vector o'a' represents the

total acceleration of A  with respect to O or

acceleration of A i.e. a
AO

 or a
A

.

4. Now from point a', draw vector a'y parallel to A B to represent the radial component of the

acceleration of B with respect to A i.e. 
BA ,
r

a such that

                   2
BAvector 2.25 m/s
r

a y a′ = =

 5. From point y, draw vector yb' perpendicular to vector a'y or A B to represent the tangential

component of the acceleration of B with respect to A i.e.
BA
t

a whose magnitude is yet unknown.

6. Now from point c', draw vector c'z parallel to CB to represent the radial component of the

acceleration of B with respect to C i.e. 
BC ,
r

a such that

                    2
BCvector 32.5 m/s
r

c z a′ = =

7. From point z, draw vector zb' perpendicular to vector c'z or CB to represent the tangential

component of the acceleration of B with respect to C i.e. 
BC
t

a . The vectors yb' and zb' intersect at b'.

Join c' b'. The vector c' b' represents the acceleration of B with respect to C i.e. a
BC

.

8. Now from point b', draw vector b's parallel to BD to represent the radial component of the

acceleration of D with respect to B i.e. 
DB,
r

a such that

                    2
DBvector 10.8 m/s
r

b s a′ = =

An experimental IC engine with crank shaft

and cylinders.

Note : This picture is given as additional informa-

tion and is not a direct example of the current

chapter.
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9. From point s, draw vector sd' perpendicular to vector b's or BD to represent the tangential

component of the acceleration of D with respect to B i.e. 
DB
t

a whose magnitude is yet unknown.

10. From point c', draw vector c'd' parallel to the path of motion of D (which is along CD)

to represent the acceleration of D i.e. a
D

. The vectors sd' and c'd' intersect at d'.

By measurement, we find that acceleration of slider D,

                           a
D

 = vector c'd' = 13.3 m/s2 Ans.

Angular acceleration of BD

By measurement, we find that tangential component of the acceleration of D with respect

to B,

                        2
DB vector 38.5 m/s
t

a sd ′= =

We know that angular acceleration of BD,

                        2DB
BD

38.5
71.3 rad/s (Clockwise)

0.54

t
a

BD
α = = = Ans.

Example 8.9. The mechanism of a warping machine, as shown in Fig. 8.18, has the

dimensions as follows:

O
1
A = 100 mm; AC = 700 mm ; BC = 200 mm ; BD = 150 mm ; O

2
D = 200 mm ; O

2
E = 400

mm ; O
3
C = 200 mm.

Fig. 8.18

The crank O
1
A rotates at a uniform speed of 100 rad/s. For the given configuration,

determine: 1. linear velocity of the point E on the bell crank lever, 2. acceleration of the points E

and B, and 3. angular acceleration of the bell crank lever.

Solution.  Given : ω
AO1

 = 100 rad/s ; O
1
A  = 100 mm = 0.1 m

We know that linear velocity of A  with respect to O
1
, or velocity of A,

                       v
AO1

 = v
A

 = ω 
AO1

 × O
1
A  = 100 × 0.1 = 10 m/s ...(Perpendicular to O

1
A )

1.  Linear velocity of the point E on bell crank lever

First of all draw the space diagram, as shown in Fig. 8.19 (a), to some suitable scale. Now

the velocity diagram, as shown in Fig. 8.19 (b), is drawn as discussed below:

1. Since O
1
, O

2
 and O

3
 are fixed points, therefore these points are marked as one point in the

velocity diagram. From point o
1
, draw vector o

1
a perpendicular to O

1
A  to some suitable scale, to

represent the velocity of A  with respect to O or velocity of A , such that

               vector o
1
a = v

AO1
 = v

A
 = 10 m/s
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2. From point a, draw vector ac perpendicular to AC to represent the velocity of C with

respect to A  (i.e. v
CA

) and from point o
3
 draw vector o

3
c perpendicular to O

3
C to represent the

velocity of C with respect to O
3
 or simply velocity of C (i.e. v

C
). The vectors ac and o

3
c intersect at

point c.

(b) Velocity diagram.                                       (c) Acceleration diagram.

Fig. 8.19

3. Since B  lies on AC, therefore divide

vector ac at b in the same ratio as B divides AC in

the space diagram. In other words, ab/ac = AB/AC

4. From point b , draw vector bd

perpendicular to BD to represent the velocity of D

with respect to B (i.e. v
DB

), and from point o
2
 draw

vector o
2
d perpendicular to O

2
D to represent the

velocity of D with respect to O
2
 or simply velocity

of D (i.e. v
D

). The vectors bd and o
2
d intersect at d.

5. From point o
2
, draw vector o

2
e

perpendicular to vector o
2
d in such a way that

         o
2
e/o

2
d = O

2
E/O

2
D

By measurement, we find that velocity of

point C with respect to A ,

v
CA

 = vector ac = 7 m/s

Velocity of point C with respect to O
3
,

              v
CO3

 = v
C
 = vector o

3
c = 10 m/s

Velocity of point D with respect to B,

               v
DB

 = vector bd = 10.2 m/s

(a) Space diagram.

Warping machine uses many mechanisms.
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Velocity of point D with respect to O
2
,

v
DO2

 = v
D

 = vector o
2
d = 2.8 m/s

and velocity of the point E on the bell crank lever,

v
E
 = v

EO2
 = vector o

2
e = 5.8 m/s  Ans.

2.  Acceleration of the points E and B

Radial component of the acceleration of A  with respect to O
1
 (or acceleration of A ),

2 2
2AO1

AO AO1 A2
1

10
1000 m/s

0.1

r v
a a a

O A
= = = = =

Radial component of the acceleration of C with respect to A,

2 2
2CA

CA

7
70 m/s

0.7

r v
a

AC
= = =

Radial component of the acceleration of C with respect to O
3
,

2 2
CO 23

CO3
3

10
500 m/s

0.2

r
v

a
O C

= = =

Radial component of the acceleration of D with respect to B,

2 2
2DB

DB

(10.2)
693.6 m/s

0.15

r v
a

BD
= = =

Radial component of the acceleration of D with respect to O
2
,

2 2
DO 22

DO2
2

(2.8)
39.2 m/s

0.2

r
v

a
O D

= = =

Radial component of the acceleration of E with respect to O
2
,

     

2 2
EO 22

EO2
2

(5.8)
84.1 m/s

0.4

r
v

a
O E

= = =

Now the acceleration diagram, as shown in Fig. 8.19 (c), is drawn as discussed below:

1. Since O
1
, O

2
 and O

3
 are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector o
1
' a' parallel to O

1
A , to some suitable scale, to represent the

radial component of the acceleration of A  with respect to O
1
 (or simply acceleration of A ), such that

2
1 AO A1

vector 1000 m/s
r

o a a a′ ′ = = =

2. From point a', draw a'x parallel to AC to represent the radial component of the acceleration

of C with respect to A  (i.e. 
CA
r

a ), such that

2
CA mvector 70 /s
r

a x a′ = =

3. From point x, draw vector xc' perpendicular to AC to represent the tangential component

of the acceleration of C with respect to A  (i.e. 
CA
t

a ), the magnitude of which is yet unknown.

4. From point o
3
', draw vector o

3
' y parallel to O

3
C to represent the radial component of the

acceleration of C with respect to O
3
 (i.e. CO3

r
a ), such that

2
CO33

mvector 500 /sr
o y a′ = =

5. From point y, draw vector yc' perpendicular to O
3
C to represent the tangential component

of the acceleration of C with respect to O
3
 (i.e. 

CO3
t

a ). The vectors xc' and yc' intersect at c'.
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6. Join a' c'. The vector a' c' represents the acceleration of C with respect to A  (i.e. a
CA

).

7. Since B lies on AC, therefore divide vector a'c' at b' in the same ratio as B divides AC in

the space diagram. In other words, a'b'/a'c' = AB/AC. Join b' o
2
' which represents the acceleration of

point B with respect to O
2
 or simply acceleration of B. By measurement, we find that

Acceleration of point B = vector o
2
' b' = 440 m/s2 Ans.

8. Now from point b', draw vector b' z parallel to BD to represent the radial component of

the acceleration of D with respect to B (i.e. 
DB
r

a ), such that

2
DBvector 693.6 m/s
r

b z a′ = =

9. From point z, draw vector zd' perpendicular to BD to represent the tangential component

of the acceleration of D with respect to B (i.e. 
DB
t

a ), whose magnitude is yet unknown.

10. From point o
2
' , draw vector o

2
' z

1
 parallel to O

2
D to represent the radial component of

the acceleration of D with respect to O
2
 (i.e. DO2

r
a ), such that

2
2 1 DO2

vector 39.2 m/s
r

o z a′ = =

11. From point z
1
, draw vector z

1
d' perpendicular to O

2
D to represent the tangential component

of the acceleration of D with respect to O
2
 (i.e. DO2

t
a ). The vectors zd' and z

1
d'  intersect at d'.

12. Join o
2
' d'. The vector o

2
'd' represents the acceleration of D with respect to O

2
 or simply

acceleration of D (i.e. a
DO2 

or a
D

).

13. From point o
2
', draw vector o

2
' e' perpendicular to o

2
' d' in such a way that

2 2 2 2/ /o e o d O E O D′ ′′ ′ =

Note: The point e' may also be obtained drawing 
2EO

r
a and 

2EO

t
a as shown in Fig. 8.19 (c).

By measurement, we find that acceleration of point E,

a
E
 = a

EO2
 = vector o'

 2
 e' = 1200 m/s2 Ans.

3. Angular acceleration of the bell crank lever

By measurement, we find that the tangential component of the acceleration of D with respect

to O
2
,

2
D 1 1O2

vector 610 m/s
t

a z d ′= =

∴ Angular acceleration of the bell crank lever

    
2DO2

2

610
3050 rad/s (Anticlockwise)

O 0.2

t
a

D
= = = Ans.

Example 8.10. A pump is driven from an engine

crank-shaft by the mechanism as shown in Fig. 8.20. The

pump piston shown at F is 250 mm in diameter and the

crank speed is 100 r.p.m. The dimensions of various links

are as follows:

OA = 150 mm ; AB = 600 mm ; BC = 350 mm ;

CD = 150 mm; and DE = 500 mm.

Determine for the position shown : 1. The velocity of

the cross-head E, 2. The rubbing velocity of the pins A

and B which are 50 mm diameter. 3. The torque required

at the crank shaft to overcome a presure of 0.35 N/mm
2
,

and 4. The acceleration of the cross-head E.
All dimensions in mm.

Fig. 8.20
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Solution. Given : N
AO

 = 100 r.p.m. or ω
AO

 = 2 π × 100/60 = 10.47 rad/s; OA = 150 mm = 0.15 m ;

A B = 600 mm = 0.6 m ; BC = 350 mm = 0.35 m ; CD = 150 mm = 0.15 m ; DE = 500 mm = 0.5 m

We know that velocity of A  with respect to O or velocity of A ,

v
AO

 = v
A

 = ω
AO

 × OA = 10.47 × 0.15 = 1.57 m/s ...(Perpendicular to OA)

1.  Velocity of the cross-head E

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.21 (a). Now

the velocity diagram, as shown in Fig. 8.21 (b), is drawn as discussed below:

                        (a) Space diagram.           (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.21

1. Since O and C are fixed points, therefore these points are marked as one point in the

velocity diagram. Now draw vector oa perpendicular to OA, to some suitable scale, to represent the

velocity of A  with respect ot O or the velocity of A , such that

                           vector oa = v
AO

 = v
A

 = 1.57 m/s

2. From point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A  (i.e. v
BA

), and from point c draw vector cb perpendicular to CB to represent the velocity

of B with respect to C (i.e. v
BC

). The vectors ab and cb intersect at b.

By measurement, we find that

                                     v
BA

 = vector ab = 1.65 m/s

and                                            v
BC

 = v
B
 = vector cb = 0.93 m/s

3. From point c, draw vector cd perpendicular to CD or vector cb to represent the velocity of

D with respect to C or velocity of D, such that

                        vector cd : vector cb = CD: CB      or      v
DC

 : v
BC

 = CD : CB

∴                     
DC

DC BC

BC

0.15
or 0.93 0.4 m/s

0.35

v CD CD
v v

v CB CB
= = × = × =

4. From point d, draw vector de perpendicular to DE to represent the velocity of E with

respect to D (i.e. v
ED

), and from point o draw vector oe parallel to the path of motion of E (which is

vertical) to represent the velocity of E or F. The vectors oe and de intersect at e.

By measurement, we find that velocity of E with respect to D,

         v
ED

 = vector de = 0.18 m/s
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and velocity of the cross-head E,

                                 v
EO

 = v
E
 = vector oe = 0.36 m/s Ans.

2.  Rubbing velocity of the pins at A and B

We know that angular velocity of A  with respect to O,

                                ω
AO

 = 10.47 rad/s ...(Anticlockwise)

Angular velocity of B with respect to A ,

                               
BA

BA

1.65
2.75 rad/s

0.6

v

AB
ω = = = ...(Anticlockwise)

and angular velocity of B with respect to C,

     
BC

BC

0.93
2.66 rad/s

0.35

v

CB
ω = = = ...(clockwise)

We know that diameter of pins at A  and B,

                                 d
A

 = d
B
 = 50 mm = 0.05 m ...(Given)

or                               Radius, r
A

 = r
B
 = 0.025 m

∴ Rubbing velocity of pin at A

= (ω
AO

 – ω
BA

) r
A 

= (10.47 – 2.75) 0.025 = 0.193 m/s Ans.

and rubbing velocity of pin at B

                         = (ω
BA

 +  ω
BC

) r
B 

= (2.75 + 2.66) 0.025 = 0.135 m/s Ans.

3.  Torque required at the crankshaft

Given: Pressure to overcome by the crankshaft,

 p
F
 = 0.35 N/mm2

Diameter of the pump piston

  D
F
 = 250 mm

∴ Force at the pump piston at F,

  
2 2

F F FPressure Area ( ) 0.35 (250) 17 183 N
4 4

F p D
π π

= × = × = × =

Let F
A

 = Force required at the crankshaft at A .

Assuming transmission efficiency as 100 per cent,

  Work done at A  = Work done at F

               
F F

A A F F A

A

17 183 0.36
or 3940 N

1.57

F v
F v F v F

v

× ×
× = × = = =

F E...( )v v=�

∴ Torque required at the crankshaft,

T
A

 = F
A

 × OA = 3940 × 0.15  =  591  N-m  Ans.

Acceleration of the crosshead E

We know that the radial component of the acceleration of A  with respect to O or the

acceleration of A ,

                      

2 2
2AO

AO A

(1.57)
16.43 m/s

0.15

r v
a a

OA
= = = =
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Radial component of the acceleration of B with respect to A ,

        

2 2
2BA

BA

(1.65)
4.54m / s

0.6

r v
a

AB
= = =

Radial component of the acceleration of B with respect to C.

                      

2 2
2BC

BC

(0.93)
2.47 m/s

0.35

r v
a

CB
= = =

and radial component of the acceleration of E with respect to D,

                      

2 2
2ED

ED

(0.18)
0.065 m/s

0.5

r v
a

DE
= = =

Now the acceleration diagram, as shown in Fig. 8.21 (c), is drawn as discussed below:

1. Since O and C are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector o'a' parallel to OA, to some suitable scale, to represent the radial

component of the acceleration of A  with respect to O or the acceleration of A , such that

            2
AO Avector 16.43 m/s
r

o a a a′ ′ = = =

2. From point a', draw vector a'x parallel to A B to represent the radial component of the

acceleration of B with respect to A  (i.e. 
BA
r

a ), such that

             2
BAvector 4.54 m/s
r

a x a′ = =

3. From point x, draw vector xb' perpendicular to A B to represent the tangential component

of the acceleration of B with respect to A  (i.e.
BA
t

a ) whose magnitude is yet unknown.

4. Now from point c', draw vector c' y parallel to CB to represent the radial component of

the acceleration of B with respect to C (i.e. 
BC
r

a ), such that

2
BCvector 2.47 m/s
r

c y a′ = =

5. From point y, draw vector yb' perpendicular to CB to represent the tangential component

of the acceleration of B with respect to C (i.e. 
BC
t

a ). The vectors yb' and xb' intersect at b'. Join c'b'

and a'b'. The vector c'b' represents the acceleration of B with respect to C (i.e. a
BC

) or the acceleration

of B (i.e. a
B
) and vector a'b' represents the acceleration of B with respect to A  (i.e. a

BA
).

By measurement, we find that

                       a
BC

 = a
B
 = vector c'b' = 9.2 m/s2

and                              a
BA

 = vector a'b' = 9 m/s2

6. From point c', draw vector c'd' perpendicular to CD or vector c'b' to represent the

acceleration of D with respect to C or the acceleration of D (i.e. a
DC

 or a
D

), such that

vector c'd' : vector c'b' = CD : CB   or   a
D

 : a
BC

 = CD : CB

∴                  
2D

D BC

BC

0.15
or 9.2 3.94 m/s

0.35

a CD CD
a a

a CB CB
= = × = × =

7. Now from point d', draw vector d'z parallel to DE to represent the radial component of E

with respect to D (i.e. 
ED
r

a ), such that

            2
EDvector 0.065 m/s
r

d z a′ = =

Note:  Since the magnitude of ar

ED
 is very small, therefore the points d' and z coincide.

8. From point z, draw vector ze' perpendicular to DE to represent the tangential component

of the acceleration of E with respect to D (i.e. 
ED
t

a ) whose magnitude is yet unknown.

9. From point o', draw vector o'e' parallel to the path of motion of E (which is vertical) to

represent the acceleration of E. The vectors ze' and o'e' intersect at e'.
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By measurement, we find that acceleration of the crosshead E,

                                                        a
E
 = vector o'e' = 3.8 m/s2  Ans.

Example 8.11. Fig. 8.22 shows the mechanism of a radial valve gear. The crank OA turns

uniformly at 150 r.p.m and is pinned at A to rod AB. The point C in the rod is guided in the circular

path with D as centre and DC as radius. The dimensions of various links are:

OA = 150 mm ; AB = 550 mm ; AC = 450 mm ; DC = 500 mm ; BE = 350 mm.

Determine velocity and acceleration of the ram E for the given position of the mechanism.

All dimensions in mm.

Fig. 8.22

Solution. Given : N
AO

 = 150 r.p.m. or ω
AO

 = 2 π × 150/60 = 15.71 rad/s; OA = 150 mm = 0.15 m;

A B = 550 mm = 0.55 m ; AC = 450 mm = 0.45 m ; DC = 500 mm = 0.5 m ; BE = 350 mm = 0.35 m

We know that linear velocity of A  with respect to O or velocity of A ,

v
AO

 = v
A

 = ω
AO

 × OA = 15.71 × 0.15 = 2.36 m/s

...(Perpendicular to OA)

Velocity of the ram E

First of all draw the space diagram, as shown in Fig. 8.23 (a), to some suitable scale. Now

the velocity diagram, as shown in Fig. 8.23 (b), is drawn as discussed below:

1. Since O and D are fixed points, therefore these points are marked as one point in the

velocity diagram. Draw vector oa perpendicular to OA, to some suitable scale, to represent the

velocity of A  with respect to O or simply velocity of A , such that

AO Avector 2.36 m/soa v v= = =

2. From point a, draw vector ac perpendicular to AC to represent the velocity of C with

respect to A  (i.e. v
CA

), and from point d draw vector dc perpendicular to DC to represent the velocity

of C with respect to D or simply velocity of C (i.e. v
CD

 or v
C
). The vectors ac and dc intersect at c.

3. Since the point B lies on AC produced, therefore divide vector ac at b in the same ratio as

B divides AC in the space diagram. In other words ac:cb = AC:CB. Join ob. The vector ob represents

the velocity of B (i.e. v
B
)

4. From point b, draw vector be perpendicular to be to represent the velocity of E with

respect to B (i.e. v
EB

), and from point o draw vector oe parallel to the path of motion of the ram E

(which is horizontal) to represent the velocity of the ram E. The vectors be and oe intersect at e.

By measurement, we find that velocity of C with respect to A ,

v
CA

 = vector ac = 0.53 m/s

Velocity of C with respect to D,

v
CD

 = v
C 

= vector dc = 1.7 m/s
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Velocity of E with respect to B,

v
EB

 = vector be = 1.93 m/s

and velocity of the ram E,   v
E
 = vector oe = 1.05 m/s Ans.

Acceleration of the ram E
We know that the radial component of the acceleration of A  with respect to O or the

acceleration of A ,

 

2 2
2AO

AO A

(2.36)
37.13 m/s

0.15

r v
a a

OA
= = = =

Radial component of the acceleration of C with respect to A ,

 

2 2
2CA

CA

(0.53)
0.624 m/s

0.45

r v
a

OA
= = =

Radial component of the acceleration of C with respect to D,

 

2 2
2CD

CD

(1.7)
5.78 m/s

0.5

r v
a

DC
= = =

Radial component of the acceleration of E with respect to B,

2 2
2EB

EB

(1.93)
10.64 m/s

0.35

r v
a

BE
= = =

The acceleration diagram, as shown in Fig. 8.23 (c), is drawn as discussed below:

(c) Acceleration diagram.

Fig. 8.23
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1. Since O and D are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector o'a' parallel to OA, to some suitable scale, to represent the radial

component of the acceleration of A  with respect to O or simply the acceleration of A, such that

2
AO Avector 37.13 m/s
r

o a a a′ ′ = = =

2. From point d', draw vector d'x parallel to DC to represent the radial component of the

acceleration of C with respect to D, such that

2
CDvector 5.78 m/s
r

d x a′ = =

3. From point x, draw vector xc' perpendicular to DC to represent the tangential component

of the acceleration of C with respect to D (i.e. 
CD
t

a ) whose magnitude is yet unknown.

4. Now from point a', draw vector a'y parallel to AC to represent the radial component of

the acceleration of C with respect to A , such that

2
CAvector 0.624 m/s
r

a y a′ = =

5. From point y, draw vector yc' perpendicular to AC to represent the tangential component

of acceleration of C with respect to A  (i.e. 
CA
t

a ). The vectors xc' and yc' intersect at c'.

6. Join a'c'. The

vector a'c' represents the

acceleration of C  with

respect to A  (i.e. a
CA

).

7. Since the point

B  lies on A C produced,

therefore divide vector a'c'

at b' in the same ratio as B

divides A C in the space

diagram. In other words, a'

c' : c' b' = AC : CB.

8. From point b',

draw vector b' z parallel to

BE to represent the radial

component of the

acceleration of E with

respect to B, such that

2
EBvector 10.64 m/s
r

b z a′ = =

9. From point z, draw vector ze' perpendicular to BE to represent the tangential component

of the acceleration of E with respect to B (i.e. 
EB
t

a ) whose magnitude is yet unknown.

10. From point o', draw vector o'e' parallel to the path of motion of E (which is horizontal)

to represent the acceleration of the ram E. The vectors ze' and o'e' intersect at e'.

By measurement, we find that the acceleration of the ram E,

2
E vector 3.1 m/sa o e′ ′= = Ans.

Example 8.12. The dimensions of the Andreau differential stroke engine mechanism, as

shown in Fig. 8.24, are as follows:

AB = 80 mm ; CD = 40 mm ; BE = DE = 150 mm ; and EP = 200 mm.

The links AB and CD are geared together. The speed of the smaller wheel is 1140 r.p.m.

Determine the velocity and acceleration of the piston P for the given configuration.

A lathe is a machine for shaping a piece of metal, by rotating it rapidly along

its axis while pressing against a fixed cutting or abrading tool.

Note : This picture is given as additional information and is not a direct

example of the current chapter.
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Solution. Given: N
DC

 = 1140 r.p.m. or ω
DC

 = 2 π × 1140/60 = 119.4 rad/s ; A B = 80 mm

= 0.08 m ; CD = 40 mm = 0.04 m ; BE = DE = 150 mm = 0.15 m ; EP = 200 mm = 0.2 m

We know that velocity of D with respect to C or velocity of D,

                    v
DC

 = v
D

 = ω
DC

 × CD = 119.4 × 0.04 = 4.77 m/s ...(Perpendicular to CD)

Since the speeds of the gear wheels are inversely proportional to their diameters, therefore

                                
BA

DC

Angular speed of larger wheel 2

Angular speed of smaller wheel 2

CD

AB

ω
= =

ω

∴ Angular speed of larger wheel,

BA DC

0.04
119.4 59.7 rad/s

0.08

CD

AB
ω = ω × = × =

and velocity of B with respect to A  or velocity of B,

BA B BA 59.7 0.08 4.77 m/sv v AB= = ω × = × =

...(Perpendicular to A B)

Velocity of the piston P

First of all draw the space diagram, to some suitable scale, as shown in Fig. 8.25 (a). Now

the velocity diagram, as shown in Fig. 8.25 (b), is drawn as discussed below:

1. Since A  and C are fixed points, therefore these points are marked as one point in the

velocity diagram. Draw vector cd perpendicular to CD, to some suitable scale, to represent the

velocity of D with respect to C or velocity of D (i.e. v
DC

 or v
D

), such that

vector cd = v
DC

 = v
D

 = 4.77 m/s

2. Draw vector ab perpendicular to A B to represent the velocity of B with respect to A  or

velocity of B (i.e. v
BA

 or v
B
), such that

vector ab = v
BA

 = v
B
 = 4.77 m/s

3. Now from point b, draw vector be perpendicular to BE to represent the velocity of E with

respect to B (i.e. v
EB

), and from point d draw vector de perpendicular to DE to represent the velocity

of E with respect to D (i.e. v
ED

). The vectors be and de intersect at e.

4. From point e, draw vector ep perpendicular to EP to represent the velocity of P with

respect to E (i.e. v
PE

), and from point a draw vector ap parallel to the path of motion of P (which is

horizontal) to represent the velocity of P. The vectors ep and ap intersect at p.

Fig. 8.24
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By measurement, we find that velocity of E with respect to B,

 v
EB

 = vector be = 8.1 m/s

Velocity of E with respect to D,

v
ED

 = vector de = 0.15 m/s

Velocity of P with respect to E,

v
PE

 = vector ep = 4.7 m/s

and                  velocity of P, v
P
 = vector ap = 0.35 m/s Ans.

               

(a) Space diagram. (b) Velocity diagram.

Fig. 8.25

Acceleration of the piston P

We know that the radial component of the

acceleration of B with respect A   (or the acceleration

of B),

2 2
2BA

BA B

(4.77)
284.4 m/s

0.08

r v
a a

AB
= = = =

Radial component of the acceleration of D

with respect to C (or the acceleration of D),

  

2 2
2DC

DC D

(4.77)
568.8 m/s

0.04

r v
a a

CD
= = = =

Radial component of the acceleration of E with

respect to B,

2 2
2EB

EB

(8.1)
437.4 m/s

0.15

r v
a

BE
= = =

Radial component of the acceleration of E with respect  to D,
2 2

2ED
ED

(0.15)
0.15 m/s

0.15

r v
a

DE
= = =

and radial component of the acceleration of P with respect to E,

2 2
2PE

PE

(4.7)
110.45 m/s

0.2

r v
a

EP
= = =

(c) Acceleration diagram.

Fig. 8.25
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Now the acceleration diagram, as shown in Fig. 8.25 (c), is drawn as discussed below:

1. Since A  and C are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector a'b' parallel to A B, to some suitable scale, to represent the radial

component of the acceleration of B with respect to A  or the acceleration of B, such that

                 2
BA Bvector 284.4 m/s
r

a b a a′ ′ = = =

2. Draw vector c'd' parallel to CD to represent the radial component of the acceleration of D

with respect to C or the acceleration of D, such that

                2
DC Dvector 568.8 m/s
r

c d a a′ ′ = = =

3. Now from point b', draw vector b'x parallel to BE to represent the radial component of the

acceleration of E with respect to B, such that

2
EBvector 437.4 m/s
r

b x a′ ′ = =

4. From point x, draw vector xe' perpendicular to BE to represent the tangential component

of acceleration of E with respect to B (i.e. 
EB
t

a ) whose magnitude is yet unknown.

5. From point d', draw vector d'y parallel to DE to represent the radial component of the

acceleration of E with respect to D, such that

2
EDvector 0.15 m/s
r

d y a′ = =

Note:  Since the magnitude of 
ED
r

a is very small (i.e. 0.15 m/s2), therefore the points d' and y coincide.

6. From point y, draw vector ye' perpendicular to DE to represent the tangential component

of the acceleration of E with respect to D (i.e. 
ED
t

a ). The vectors xe' and ye' intersect at e'.

7. From point e', draw vector e'z parallel to EP to represent the radial component of the

acceleration of P with respect to E, such that

2
PEvector 110.45 m/s
r

e z a′ = =

8. From point z, draw vector zp' perpendicular to EP to represent the tangential component

of the acceleration of P with respect to E (i.e. 
PE
t

a ) whose magnitude is yet unknown.

9. From point a', draw vector a'p' parallel to the path of motion of P (which is horizontal) to

represent the acceleration of P. The vectors zp' and a'p' intersect at p'.

By measurement, we find that acceleration of the piston P,

a
P
 = vector a'p' = 655 m/s2 Ans.

8.5. Coriolis Component of Acceleration

When a point on one link is sliding along another rotating link, such as in quick return

motion mechanism, then the coriolis component of the acceleration must be calculated.

Consider a link OA and a slider B as shown in Fig. 8.26 (a). The slider B moves along the

link OA. The point C is the coincident point on the link OA.

Let ω = Angular velocity of the link OA at time t seconds.

v = Velocity of the slider B along the link OA at time t seconds.

ω.r = Velocity of the slider B with respect to O (perpendicular to the link OA)

at time t seconds, and
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(ω + δω), (v + δv) and (ω + δω) (r + δr)

= Corresponding values at time (t + δt) seconds.

Fig. 8.26. Coriolis component of acceleration.

Let us now find out the acceleration of the slider B

with respect to O and with respect to its coincident point C

lying on the link OA.

Fig. 8.26 (b) shows the velocity diagram when their

velocities v and (v + δv) are considered. In this diagram, the

vector bb
1
 represents the change in velocity in time δt sec ; the

vector bx represents the component of change of velocity bb
1

along OA (i.e. along radial direction) and vector xb
1
 represents

the component of change of velocity bb
1
 in a direction

perpendicular to OA (i.e. in tangential direction). Therefore

( ) cosbx ox ob v v v= − = + δ δθ − ↑

Since δθ is very small, therefore substituting

cos δθ = 1, we have

( )bx v v v v= + δ − ↑ = δ ↑

                                                         ...(Acting radially outwards)

and 1 ( ) sinxb v v= + δ δθ

Since δθ is very small, therefore substituting sin δθ =

δθ, we have

1 ( ) . .xb v v v v= + δ δθ = δθ + δ δθ

Neglecting δv.δθ being very small, therefore

1 .xb v

←

= δθ ...(Perpendicular to OA and towards left)

Fig. 8.26 (c) shows the velocity diagram when the velocities ω.r and (ω + δω) (r + δr) are

considered. In this diagram, vector bb
1
 represents the change in velocity ; vector yb

1
 represents the

component of change of velocity bb
1
 along OA (i.e. along radial direction) and vector by represents

the component of change of velocity bb
1
 in a direction perpendicular to OA (i.e. in a tangential

direction). Therefore

1 ( ) ( ) sin

( . . . . ) sin

yb r r

r r r r

= ω + δω + δ δθ ↓

= ω + ωδ + δω + δωδ δθ

A drill press has a pointed tool

which is used for boring holes in

hard materials usually by rotating

abrasion or repeated bolows.

Note : This picture is given as additional

information and is not a direct example

of the current chapter.
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Since δθ is very small, therefore substituting sin δθ = δθ in the above expression, we have

 1 . . . . . . . .yb r r r r= ω δθ + ωδ δθ + δω δθ + δω δ δθ

. . ,r= ω δθ ↓ acting radially inwards ...(Neglecting all other quantities)

and  by =  oy – ob = (ω + δω) (r + δr) cos δθ – ω.r

                       = (ω.r + ω.δr + δω.r  + δω.δr) cos δθ – ω.r

Since δθ is small, therefore substituting cos δθ = 1, we have

by = ω.r + ω.δr + δω.r + δω.δr – ω.r= ω.δr + r.δω ...(Neglecting δω.δr)

...(Perpendicular to OA and towards left)

Therefore, total component of change of velocity along radial direction

1 ( . . )bx yb v r= − = δ − ω δθ ↑ ...(Acting radially outwards from O to A )

∴ Radial component of the acceleration of the slider B with respect to O on the link OA,

acting radially outwards from O to A ,

2
BO

. .
Lt . .

r v r dv d dv
a r r

t dt dt dt

δ − ω δθ θ
= = − ω × = − ω ↑

δ

Also, the total component of change of velocity along tangential direction,

1 . ( . . )xb by v r r

← ←

= + = δ θ + ω δ + δω

...(Perpendicular to OA and towards left)

∴ Tangential component of acceleration of the slider B with respect to O on the link OA,

acting perpendicular to OA and towards left,

BO

. ( . . )
Lt

t v r r d dr d
a v r

t dt dt dt

δθ + ω δ + δω θ ω
= = + ω +

δ

. . . (2 . . )v v r v r

←

= ω + ω + α = ω + α ...(ii)

...( / , and / )dr dt v d dt= ω = α�

Now radial component of acceleration of the coincident point C with respect to O, acting in

a direction from C to O,

               
2

CO .
r

a r= ω ↑ ...(iii)

and tangential component of acceleraiton of the coincident point C with respect to O, acting in a

direction perpendicular to CO and towards left,

CO .
t

a r

←

= α ↑ ...(iv)

Radial component of the slider B with respect to the coincident point C on the link OA,

acting radially outwards,

              ( )2 2
BC BO CO . .
r r r dvdv

a a a r r
dtdt

 
= − = − = ↑− ω − ω 

 

and tangential component of the slider B with respect to the coincident point C on the link OA acting

in a direction perpendicular to OA and towards left,

( )BC BO CO . 2 .2 . .
t t t

a a a r vv r

←

= − = − α = ωω + α

...( / )d dtθ = ω�

...(i)
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This tangential component of acceleration of the slider B with respect to the coincident

point C on the link is known as coriolis component of acceleration and is always perpendicualr to

the link.

∴ Coriolis component of the acceleration of B with respect of C,

BC BC 2 .
c t

a a v= = ω

where ω = Angular velocity of the link OA, and

v = Velocity of slider B with respect to coincident point C.

In the above discussion, the anticlockwise direction for ω and the radially outward direction

for v are taken as positive. It may be noted that the direction of coriolis component of acceleration

changes sign, if either ω or v is reversed in direction. But the direction of coriolis component of

acceleration will not be changed in sign if both ω and v are reversed in direction. It is concluded that

the direction of coriolis component of acceleration is obtained by rotating v, at 90°, about its origin

in the same direction as that of ω.

Fig. 8.27. Direction of coriolis component of acceleration.

The direction of coriolis component of acceleration (2 ω.v) for all four possible cases, is

shown in Fig. 8.27. The directions of ω and v are given.

Example 8.13. A mechanism of a crank and slotted lever quick

return motion is shown in Fig. 8.28. If the crank rotates counter clockwise

at 120 r.p.m., determine for the configuration shown, the velocity and

acceleration of the ram D. Also determine the angular acceleration of

the slotted lever.

Crank, AB = 150 mm ; Slotted arm, OC = 700 mm and link

CD = 200 mm.

Solution.  Given : N
BA

 = 120 r.p.m or ω
BA

 = 2 π × 120/60

= 12.57 rad/s ; A B = 150 mm = 0.15 m; OC = 700 mm = 0.7 m;

CD = 200 mm = 0.2 m

We know that velocity of B with respect to A ,

BA BA

12.57 0.15 1.9 m/s

v AB= ω ×

= × =

...(Perpendicular to A B)

Velocity of the ram D

First of all draw the space diagram, to some suitable scale, as

shown in Fig. 8.29 (a). Now the velocity diagram, as shown in Fig. 8.29

Fig. 8.28



212  �   Theory of Machines

(b), is drawn as discussed below:

1. Since O and A  are fixed points, therefore these points are marked as one point in velocity

diagram. Now draw vector ab in a direction perpendicular to A B , to some suitable scale, to represent

the velocity of slider B with respect to A i.e.v
BA

, such that

                    vector ab = v
BA

 = 1.9 m/s

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.29

2. From point o, draw vector ob' perpendicular to OB' to represent the velocity of coincident

point B' (on the link OC) with respect to O i.e. v
B′O

 and from point b draw vector bb' parallel to the

path of motion of B' (which is along the link OC) to represent the velocity of coincident point B' with

respect to the slider B i.e. v
B'B

. The vectors ob' and bb' intersect at b'.

Note:  Since we have to find the coriolis component of acceleration of the slider B with respect to the coincident

point B', therefore we require the velocity of B with respect to B'  i.e. v
BB'

. The vector b'b will represent v
BB'

as shown in Fig. 8.29 (b).

3. Since the point C lies on OB' produced, therefore, divide vector ob' at c in the same ratio

as C divides OB' in the space diagram. In other words,

/ /ob oc OB OC′ ′=

The vector oc represents the velocity of C with respect to O i.e. v
CO

.
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4. Now from point c, draw vector cd perpendicular to CD to represent the velocity of D with

respect to C i.e. v
DC 

,and from point o draw vector od parallel to the path of motion of D (which is

along the horizontal) to represent the velocity of D i.e. v
D

.The vectors cd and od intersect at d.

By measurement, we find that velocity of the ram D,

v
D

 = vector od = 2.15 m/s  Ans.

From velocity diagram, we also find that

Velocity of B with respect to B',

v
BB'

 = vector b'b = 1.05 m/s

Velocity of D with respect to C,

v
DC

 = vector cd = 0.45 m/s

Velocity of B' with respect to O

v
B′O

 = vector ob' = 1.55 m/s

Velocity of C with respect to O,

v
CO

 = vector oc = 2.15 m/s

∴ Angular velocity of the link OC or OB',

CO
CO B O

2.15
3.07 rad/s (Anticlockwise)

0.7

v

OC
′ω = ω = = =

Acceleration of the ram D

We know that radial component of the acceleration of B with respect to A ,

2 2 2
BA BA (12.57) 0.15 23.7 m/s
r

a AB= ω × = × =

Coriolis component of the acceleration of slider B with respect to the coincident point B',

2
BB CO BB2 . 2 . 2 3.07 1.05 6.45 m/s
c

a v v ′′ = ω = ω = × × =

CO BB...( and )v vω = ω = ′�

Radial component of the acceleration of D with respect to C,
2 2

2DC
DC

(0.45)
1.01 m/s

0.2

r v
a

CD
= = =

Radial component of the acceleration of the coincident point B' with respect to O,

2 2
2B O

B O

(1.55)
4.62 m/s

0.52

r v
a

B O

′

′ = = =
′

...(By measurement B'O = 0.52 m)

Now the acceleration diagram, as shown in Fig. 8.29 (d), is drawn as discussed below:

1. Since O and A  are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector a'b' parallel to A B, to some suitable scale, to represent the radial

component of the acceleration of B with respect to A i.e. 
BA
r

a  or  a
B
, such that

2
BA Bvector 23.7 m/s
r

a b a a′ ′ = = =

2. The acceleration of the slider B with respect to the coincident point B' has the following

two components :

(i) Coriolis component of the acceleration of B with respect to B' i.e. 
BB ,
c

a ′
and

(ii) Radial component of the acceleration of B with respect to B' i.e. 
BB .
r

a ′

These two components are mutually perpendicular. Therefore from point b' draw vector b'x

perpendicular to B'O i.e. in a direction as shown in Fig. 8.29 (c) to represent 
BB
c

a ′
= 6.45 m/s2. The
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direction of 
BB
c

a ′
is obtained by rotating v

BB′
 (represented by vector b'b in velocity diagram) through

90° in the same sense as that of link OC which rotates in the counter clockwise direction. Now from

point x, draw vector xb'' perpendicular to vector b'x (or parallel to B'O) to represent 
BB
r

a ′
whose

magnitude is yet unknown.

3. The acceleration of the coincident point B' with respect to O has also the following two

components:

(i) Radial component of the acceleration of coincident point B' with respect to O i.e.

B O’
r

a ′
and

(ii) Tangential component of the acceleration of coincident point B' with respect to O,

i.e.
B O .
t

a ′

These two components are mutually perpendicular. Therefore from point o', draw vector o'y

parallel to B'O to represent 2
B O 4.62 m/s
r

a ′ = and from point y draw vector yb'' perpendicular to

vector o'y to represent 
B O .
t

a ′
The vectors xb'' and yb'' intersect at b''. Join o'b''. The vector o'b''

represents the acceleration of B' with respect to O, i.e. a
B′O

.

4. Since the point C lies on OB' produced, therefore divide vector o'b'' at c' in the same ratio

as C divides OB' in the space diagram. In other words,

o'b''/o'c' = OB'/OC

5. The acceleration of the ram D with respect to C has also the following two components:

(i) Radial component of the acceleration of D with respect to C i.e. 
DC,
r

a and

(ii) Tangential component of the acceleration of D with respect to C, i.e. 
DC.
t

a

The two components are mutually perpendicular. Therefore draw vector c'z parallel to CD

to represent 2
DC 1.01 m/s
r

a = and from z draw zd' perpendicular to vector zc' to represent 
DC ,
t

a whose

magnitude is yet unknown.

6. From point o', draw vector o'd' in the direction of motion of the ram D which is along the

horizontal. The vectors zd' and o'd' intersect at d'. The vector o'd' represents the acceleration of ram

D i.e. a
D

.

By measurement, we find that acceleration of the ram D,

a
D

 = vector o'd' = 8.4 m/s2 Ans.

Angular acceleration of the slotted lever

By measurement from acceleration diagram, we find that tangential component of the

coincident point B' with respect to O,

2
B O vector 6.4 m/s
t

a yb′
′′= =

We know that angular acceleration of the slotted lever,

2B O 6.4
12.3 rad/s (Anticlockwise)

0.52

t
a

OB

′
= = =

′
Ans.

Example 8.14. The driving crank AB of the quick-return mechanism, as shown in Fig. 8.30,

revolves at a uniform speed of 200 r.p.m. Find the velocity and acceleration of the tool-box R, in the

position shown, when the crank makes an angle of 60° with the vertical line of centres PA . What is

the acceleration of sliding of the block at B along the slotted lever PQ ?
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Solution. Given : N
BA

 = 200 r.p.m. or ω
BA

 = 2 π × 200/60 = 20.95 rad/s ; A B = 75 mm = 0.075 m

We know that velocity of B with respect to A ,

v
BA

 = ω
BA

 × A B = 20.95 × 0.075 = 1.57 m/s ...(Perpendicular to A B)

All dimensions in mm.

Fig. 8.30

Velocity of the tool-box R

First of all draw the space diagram, to some suitable scale, as shown in Fig. 8.31 (a). Now

the velocity diagram, as shown in Fig. 8.31 (b), is drawn as discussed below:

1. Since A  and P are fixed points, therefore these points are marked as one point in the

velocity diagram. Now draw vector ab in a direction perpendicular to A B, to some suitable scale, to

represent the velocity of B with respect to A  or simply velocity of B (i.e. v
BA

 or v
B
), such that

vector ab = v
BA

 = v
B
 = 1.57 m/s

2. From point p, draw vector pb' perpendicular to PB' to represent the velocity of coincident

point B' with respect to P (i.e. v
B'P

 or v
B'

) and from point b, draw vector bb' parallel to the path of

motion of B' (which is along PQ) to represent the velocity of coincident point B' with respect to the

slider B i.e. v
B'B

. The vectors pb' and bb' intersect at b'.

Note. The vector b'b will represent the velocity of the slider B with respect to the coincident point B' i.e.v
BB'

.

3. Since the point Q lies on PB' produced, therefore divide vector pb' at q in the same ratio

as Q divides PB'. In other words,

pb'/pq  = PB'/PQ

The vector pq represents the velocity of Q with respect to P i.e. v
QP

.

4. Now from point q, draw vector qr perpendicular to QR to represent the velocity of R with

respect to Q i.e. v
RQ

, and from point a draw vector ar parallel to the path of motion of the tool-box

R (which is along the horizontal), to represent the velocity of R i.e. v
R
.The vectors qr and ar intersect

at r.

By measurement, we find that velocity of the tool-box R,

v
R
 = vector ar = 1.6 m/s Ans.

We also find that velocity of B' with respect to B,

v
B'B

 = vector bb' = 1.06 m/s

Velocity of B' with respect to P,

 v
B'P

 = vector pb' = 1.13 m/s
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Velocity of R with respect to Q,

v
RQ

 = vector qr = 0.4 m/s

Velocity of Q with respect to P,

v
QP

 = vector pq = 1.7 m/s

∴ Angular velocity of the link PQ,

QP

PQ

1.7
4.53 rad/s

0.375

v

QP
ω = = = ...( 0.375 m)PQ =�

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.31

Acceleration of the tool box R

We know that the radial component of the acceleration of B with respect to A,

2 2 2
BA BA (20.95) 0.075 32.9 m/s
r

a AB= ω × = × =

Coriolis component of the acceleration of the slider B with respect to coincident point B′.

          
2

BB QP BB2 . 2 2 4.53 1.06 9.6 m / s
c

a v v′ ′= ω = ω × = × × =

( )QP BB... , and v vω = ω = ′�

Radial component of the acceleration of R with respect to Q ,
2 2
RQ 2

RQ

(0.4)
0.32 m/s

0.5

r
v

a
QR

= = =



Chapter 8 : Acceleration in Mechanisms   �  217

Radial component of the acceleration of B' with respect to P,
2 2

2B P
B P

(1.13)
5.15 m/s

0.248

r v
a

PB

′

′ = = =
′

...(By measurement, PB' = 248 mm = 0.248 m)

Now the acceleration diagram, as shown in Fig. 8.31 (d), is drawn as discussed below:

1. Since A  and P are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector a'b' parallel to A B, to some suitable scale, to represent the radial

component of the acceleration of B with respect to A i.e. 
BA ,
r

a  or a
B 

such that

2
BA Bvector 32.9 m/s
r

a b a a′ ′ = = =

2. The acceleration of the slider B with respect to the coincident point B' has the following

two components:

(i) Coriolis component of the acceleration of B with respect to B' i.e. 
BB ,
c

a ′
and

(ii) Radial component of the acceleration of B with respect to B' i.e. 
BB .
r

a ′

These two components are mutually perpendicular. Therefore from point b', draw vector b'x

perpendicular to BP [i.e. in a direction as shown in Fig. 8.31 (c)] to represent 2
BB 9.6 m/s
c

a ′ = . The

direction of 
BB
c

a ′
is obtained by rotating v

BB′
 (represented by vector b'b in the velocity diagram)

through 90° in the same sense as that of link PQ which rotates in the clockwise direction. Now from

point x, draw vector xb'' perpendicular to vector b'x (or parallel to B'P) to represent 
BB
r

a ′
whose

magnitude is yet unknown.

3. The acceleration of the coincident point B ' with respect to P has also the following two

components:

(i) Radial component of the acceleration of B' with respect to P i.e.
B P ,
r

a ′
and

(ii) Tangential component of the acceleration of B' with respect to P i.e. 
B P .
t

a ′

These two components are mutually perpendicular. Therefore from point p' draw vector p'y

parallel to B'P to represent 
B P
r

a ′
= 5.15 m/s2, and from point y draw vector yb'' perpendicular to

vector p'y to represent 
B P .
t

a ′
The vectors xb'' and yb'' intersect at b'', join p'b''. The vector p'b''

represents the acceleration of B' with respect to P i.e. a
B'P

 and the vector b''b' represents the acceleration

of B with respect to B' i.e. a
BB' 

.

4. Since the point Q lies on PB' produced, therefore divide vector p'b'' at q' in the same ratio

as Q divides PB in the space diagram. In other words,

p'b''/p'q' = PB'/PQ

5. The acceleration of the tool-box R with respect to Q has the following two components:

(i) Radial component of the acceleration of R with respect to Q i.e. RQ ,
r

a and

(ii) Tangential component of the acceleration of R with respect to Q i.e. RQ.
t

a

These two components are mutually perpendicular. Therefore from point q', draw vector a'z

parallel to QR to represent 
2

RQ 0.32 m/s .
r

a = Since the magnitude of this component is very small,

therefore the points q' and z coincide as shown in Fig. 8.31 (d). Now from point z (same as q'), draw

vector zr' perpendicular to vector q'z (or QR) to represent RQ
t

a whose magnitude is yet unknown.

6. From point a' draw vector a'r' parallel to the path of motion of the tool-box R (i.e. along

the horizontal) which  intersects the vector zr' at r'. The vector a'r' represents the acceleration of the

tool-box R i.e. a
R
.
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By measurement, we find that

a
R
 = vector a'r' = 22 m/s2 Ans.

Acceleration of sliding of the block B along the slotted lever PQ

By measurement, we find that the acceleration of sliding of the block B along the slotted

lever PQ

= a
BB'

 = vector b''x = 18 m/s2 Ans.

Example 8.15.  In a Whitworth quick return motion, as shown in Fig. 8.32. OA is a crank

rotating at 30 r.p.m. in a clockwise direction. The dimensions of various links are : OA = 150 mm;

OC = 100 mm; CD = 125 mm; and DR = 500 mm.

Determine the acceleraion of the sliding block R and the angular acceleration of the slotted

lever CA.

All dimensions in mm.

Fig. 8.32

Solution.  Given : N
AO

 = 30 r.p.m. or ω
AO

 = 2π × 30/60 = 3.142 rad/s ; OA = 150 mm

= 0.15 m; OC = 100 mm = 0.1 m ; CD = 125 mm = 0.125 m ; DR = 500 mm = 0.5 m

We know that velocity of A  with respect to O or velocity of A ,

v
AO

 = v
A

 = ω
AO

 × OA = 3.142 × 0.15 = 0.47 m/s

...(Perpendicular to OA)

First of all draw the space diagram, to some suitable scale, as shown in Fig. 8.33 (a). Now

the velocity diagram, as shown in Fig. 8.33 (b), is drawn as discussed below:

1. Since O and C are fixed points, therefore these are marked at the same place in velocity

diagram. Now draw vector ca perpendicular to OA, to some suitable scale, to represent the velocity

of A with respect to O  or simply velocity of A  i.e. v
AO

 or v
A

, such that

vector oa = v
AO

 = v
A

 = 0.47 m/s

2. From point c, draw vector cb perpendicular to BC to represent the velocity of the coincident

point B with respect to C i.e. v
BC 

or v
B
 and from point a draw vector ab parallel to the path of motion

of B (which is along BC) to represent the velocity of coincident point B with respect to A i.e.v
BA

. The

vectors cb and ab intersect at b.

Note: Since we have to find the coriolis component of acceleration of slider A  with respect to coincident point

B, therefore we require the velocity of A  with respect to B i.e. v
AB

.The vector ba will represent v
AB

 as shown

in Fig. 8.33 (b).
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3. Since D lies on BC produced, therefore divide vector bc at d in the same ratio as D divides

BC in the space diagram. In other words,

bd/bc = BD/BC

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.33

4. Now from point d, draw vector dr perpendicular to DR to represent the velocity of R with

respect to D i.e. v
RD

, and from point c draw vector cr parallel to the path of motion of R (which is

horizontal) to represent the velocity of R i.e.v
R
.

By measurement, we find that velocity of B with respect to C,

v
BC

 = vector cb = 0.46 m/s

Velocity of A  with respect to B,

v
AB

 = vector ba = 0.15 m/s

and velocity of R with respect to D,

v
RD

 = vector dr = 0.12 m/s

We know that angular velocity of the link BC,

BC
BC

0.46
1.92 rad/s (Clockwise)

0.24

v

CB
ω = = =

...(By measurement, CB = 0.24 m)
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Acceleration of the sliding block R

We know that the radial component of the acceleration of A  with respect to O,

2 2
2AO

AO

(0.47)
1.47 m/s

0.15

r v
a

OA
= = =

Coriolis component of the acceleration of slider A  with respect to coincident point B,

2
AB BC AB2 2 1.92 0.15 0.576 m/s
c

a v= ω × = × × =

Radial component of the acceleration of B with respect to C,

2 2
2BC

BC

(0.46)
0.88 m/s

0.24

r v
a

CB
= = =

Radial component of the acceleration of R with respect to D,

2 2
2RD

RD

(0.12)
0.029 m/s

0.5

r v
a

DR
= = =

Now the acceleration diagram, as shown in Fig. 8.33 (d), is drawn as discussed below:

1. Since O and C are fixed points, therefore these are marked at the same place in the

acceleration diagram. Draw vector o'a' parallel to OA, to some suitable scale, to represent the radial

component of the acceleration of A  with respect to O i.e. 
AO
r

a ,  or a
A 

such that

2
AO Avector 1.47 m/s
r

o a a a′ ′ = = =

2. The acceleration of the slider A  with respect to coincident point B has the following two

components:

(i) Coriolis component of the acceleration of A  with respect to B i.e. 
AB ,
c

a and

(ii) Radial component of the acceleration of A  with respect to B i.e. 
AB.
r

a

These two components are mutually perpendicular. Therefore from point a' draw vector a′x

perpendicular to BC to represent 
AB
c

a = 0.576 m/s2 in a direction as shown in Fig. 8.33 (c), and draw

vector xb' perpendicular to vector a'x (or parallel to BC) to represent 
AB
r

a whose magnitude is yet

unknown.

Note: The direction of 
AB
c

a is obtained by rotating v
AB

 (represented by vector ba in velocity diagram) through

90° in the same sense as that of ω
BC

 which rotates in clockwise direction.

3. The acceleration of B with respect to C has the following two components:

(i) Radial component of B with respect to C i.e. 
BC ,
r

a and

(ii) Tangential component of B with respect to C i.e. 
BC.
t

a

These two components are mutually perpendicular. Therefore, draw vector c'y parallel to

BC to represent 2
BC 0.88 m/s
r

a = and from point y draw vector yb' perpendicular to c'y to represent

BC.
t

a  The vectors xb' and yb' intersect at b'. Join b'c'.

4. Since the point D lies on BC produced, therefore divide vector b'c' at d' in the same ratio

as D divides BC in the space diagram. In other words,

b'd'/b'c' = BD/BC.

5. The acceleration of the sliding block R with respect to D has also the following two

components:

(i) Radial component of R with respect to D i.e. 
RD ,
r

a and

(ii) Tangential component of R with respect to D i.e. 
RD.
t

a
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These two components are mutually perpendicular. Therefore from point d', draw vector

d 
′
z parallel to DR to represent 2

RD 0.029 m/s
r

a = and from z draw zr' perpendicular to d'z to represent

RD
t

a whose magnitude is yet unknown.

6. From point c', draw vector c'r' parallel to the path of motion of R (which is horizontal).

The vector c'r' intersects the vector zr' at r'. The vector c'r' represents the acceleration of the sliding

block R.

By measurement, we find that acceleration of the sliding block R,

a
R
 = vector c'r' = 0.18 m/s2 Ans.

Angular acceleration of the slotted lever CA

By measurement from acceleration diagram, we find that tangential component of B with

respect to C,
2

BC vector 0.14 m/s
t

a yb′= =

We know that angular acceleration of the slotted lever CA,

                            2CB
CA BC

0.14
0.583 rad/s (Anticlockwise)

0.24

t
a

BC
α = α = = = Ans.

Example 8.16. The kinematic diagram of one of the cylinders of a

rotary engine is shown in Fig. 8.34. The crank OA which is vertical and

fixed , is 50 mm long. The length of the connecting  rod AB is 125 mm. The

line of the stroke OB is inclined at 50° to the vertical.

The cylinders are rotating at a uniform speed of 300 r.p.m., in a

clockwise direction, about the fixed centre O. Determine: 1. acceleration

of the piston inside the cylinder, and 2. angular acceleration of the

connecting rod.

Solution.  Given: A B = 125 mm = 0.125 m ; N
CO

 = 300 r.p.m.

or ω
CO

 = 2π × 300/60 = 31.4 rad/s

First of all draw the space diagram, as shown in Fig. 8.35 (a), to some suitable scale. By

measurement from the space diagram, we find that

OC = 85 mm = 0.085 m

∴ Velocity of C with respect to O,

v
CO

 = ω
CO

 × OC = 31.4 × 0.85 = 2.7 m/s

...(Perpendicular to CO)

Now the velocity diagram, as shown in Fig. 8.35 (b), is drawn as discussed below:

1. Since O and A  are fixed points, therefore these are marked at the same place in the

velocity diagram. Draw vector oc perpendicular to OC to represent the velocity of C with respect to

O i.e. v
CO

, such that

                    vector oc = v
CO

 = v
C
 = 2.7 m/s.

2. From point c, draw vector cb parallel to the path of motion of the piston B (which is along

CO) to represent the velocity of B with respect to C i.e. v
BC 

, and from point a draw vector ab

perpendicular to A B to represent the velocity of B with respect to A i.e. v
BA

 or v
B
.

By measurement, we find that velocity of piston B with respect to coincident point C,

                              v
BC

 = vector cb = 0.85 m/s

Fig. 8.34
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and velocity of piston B with respect to A ,

                             BA B vector = 2.85 m/sv v ab= =

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.35

1. Acceleration of the piston inside the cylinder

We know that the radial component of the acceleration of the coincident point C with respect

to O,

                            

2 2
2CO

CO

(2.7)
85.76 m/s

0.085

r v
a

OC
= = =

Coriolis component of acceleration of the piston B with respect to the cylinder or coincident

point C,

2
BC CO BC2 2 31.4 0.85 53.4 m/s
c

a v= ω × = × × =

Radial component of acceleration of B with respect to A ,

2 2
2BA

BA

(2.85)
65 m/s

0.125

r v
a

AB
= = =

The acceleration diagram, as shown in Fig. 8.35 (d), is drawn as discussed below:
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1. Since O and A  are fixed points, therefore these are marked as one point in the acceleration

diagram. Draw vector o'c' parallel to OC, to some suitable scale, to represent the radial component

of the acceleration of C with respect to O i.e., 
CO ,
r

a such that

2
COvector 85.76 m/s
r

o c a′ ′ = =

2. The acceleration of piston B with respect to coincident point C has the following two

components:

(i) Coriolis component of the acceleration of B with respect to C i.e. 
BC
c

a , and

(ii) Radial component of the acceleration of B with respect to C i.e. 
BC.
r

a

These two components are mutually perpendicular. Therefore from point c', draw vector c'x

perpendicular to CO to represent 2
BC 53.4 m/s
c

a = in a direction as shown in Fig. 8.35 (c). The

direction of 
BC
c

a  is obtained by rotating v
BC

 (represented by vector cb in velocity diagram) through

90° in the same sense as that of ω
CO

 which rotates in the clockwise direction. Now from point x ,

draw vector xb' perpendicular  to vector c'x (or parallel to OC) to represent 
BC
r

a whose magnitude is

yet unknown.

3. The acceleration of B with respect to A  has also the following two components:

(i) Radial component of the acceleration of B with respect to A i.e. 
BA ,
r

a and

(ii) Tangential component of the acceleration of B with respect to A  i.e. 
BA .
t

a

These two components are mutually perpendicular. Therefore from point a', draw vector a'y

parallel to A B to represent 2
BA 65 m/s ,
r

a = and from point y draw vector yb' perpendicular to vector

a'y to represent 
BA .
t

a The vectors xb' and yb' intersect at b'.

4. Join c'b' and a'b'. The vector c'b' represents the acceleration of B with respect to C (i.e.

acceleration of the piston inside the cylinder).

By measurement, we find that acceleration of the piston inside the cylinder,

                            a
BC

 = vector c'b' = 73.2 m/s2 Ans.

2.  Angular acceleration of the connecting rod

By measurement from acceleration diagram, we find that the tangential component of the

acceleration of B with respect to A ,

2
BA vector 37.6 m/s
t

a yb′= =

∴ Angular acceleration of the connecting rod A B,

              
2BA

AB

37.6
301 rad/s (Clockwise)

0.125

t
a

AB
α = = = Ans.

Example 8.17. In a swivelling joint mechanism, as shown in Fig. 8.36, the driving crank

OA is rotating clockwise at 100  r.p.m. The lengths of various links are : OA = 50 mm ; AB = 350

mm; AD = DB ; DE = EF = 250 mm and CB = 125 mm. The horizontal distance between the fixed

points O and C is 300 mm and the vertical distance between F and C is 250 mm.

For the given configuration, determine: 1. Velocity of the slider block F, 2. Angular velocity

of the link DE, 3. Velocity of sliding of the link DE in the swivel block,and 4. Acceleration of sliding

of the link DE in the trunnion.
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All dimensions in mm.

Fig. 8.36

Solution. Given: N
AO

 = 100 r.p.m. or ω
AO

 = 2π × 100/60 = 10.47 rad/s ; OA = 50 mm =

0.05 m; A B = 350 mm = 0.35 m ; CB = 125 mm = 0.125 m ; DE = EF = 250 mm = 0.25 m

We know that velocity of A  with respect to O or velocity of A ,

v
AO

 = v
A

 = ω
AO

 × OA = 10.47 × 0.05 = 0.523 m/s

...(Perpendicular to OA)

1. Velocity of slider block F

First of all draw the space diagram, to some suitable scale, as shown in Fig. 8.37 (a). Now

the velocity diagram, as shown in Fig. 8.37 (b), is drawn as discussed below:

1. Since O, C and Q are fixed points, therefore these points are marked at one place in the

velocity diagram. Draw vector oa perpendicular to OA, to some suitable scale, to represent the

velocity of A  with respect to O or simply velocity of A , i.e. v
AO

 or v
A

, such that

vector oa = v
AO

 = v
A

 = 0.523 m/s

This machine uses swivelling joint.
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2. From point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A i.e. v
BA

,and from point c draw vector cb perpendicular to CB to represent the velocity of

B with respect to C or simply velocity of B i.e. v
BC

 or v
B
. The vectors ab and cb intersect at b.

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.37

3. Since point D lies on A B, therefore divide vector ab at d in the same ratio as D divides A B

in the space diagram. In other words,

ad/ab = AD/AB

Note:  Since point D is mid-point of A B, therefore d is also mid-point of ab.

4. Now from point d, draw vector ds perpendicular to DS to represent the velocity of S  with

respect to D i.e. v
SD

, and from point q draw vector qs parallel to the path of motion of swivel block

Q (which is along DE) to represent the velocity of S  with respect to Q i.e. v
SQ

. The vectors ds and qs

intersect at s.

Note:  The vector sq will represent the velocity of swivel block Q with respect to S i.e. v
QS

.

5. Since point E lies on DS produced, therefore divide vector ds at e in the same ratio as E

divides DS in the space diagram. In other words,

   de/ds = DE/DS

6. From point e, draw vector ef perpendicular to EF to represent the velocity of F with

respect to E i.e. v
FE 

, and from point o draw vector of parallel to the path of motion of F (which is

along the horizontal direction) to represent the velocity of F i.e. v
F
..The vectors ef and of intersect

at f.

By measurement, we find that velocity of B with respect to A ,

v
BA

 = vector ab = 0.4 m/s
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Velocity of B with respect to C,

v
BC

 = v
B
 = vector cb = 0.485 m/s

Velocity of S  with respect to D,

 v
SD

 = vector ds = 0.265 m/s

Velocity of Q with respect to S,

 v
QS

 = vector sq = 0.4 m/s

Velocity of E with respect to D,

 v
ED

 = vector de = 0.73 m/s

Velocity of F with respect to E,

v
FE

 = vector ef = 0.6 m/s

and velocity of the slider block F, v
F
 = vector of = 0.27 m/s Ans.

2.  Angular velocity of the link DE

We know that angular velocity of the link DE,

ED
DE

0.73
2.92 rad/s (Anticlockwise)

0.25

v

DE
ω = = = Ans.

3.  Velocity of sliding of the link DE in the swivel block

The velocity of sliding of the link DE in the swivel block Q will be same as that of velocity

of S i.e. v
S
.

∴ Velocity of sliding of the link DE in the swivel block,

v
S
 = v

SQ
 = 0.4 m/s Ans.

4.  Acceleration of sliding of the link DE in the trunnion

We know that the radial component of the acceleration of A  with respect to O or the

acceleration of A ,

2 2
2AO

AO A

(0.523)
5.47 m/s

0.05

r v
a a

OA
= = = =

Radial component of the acceleration of B with respect to A ,

2 2
2BA

BA

(0.4)
0.457 m/s

0.35

r v
a

AB
= = =

Radial component of the acceleration of B with respect to C,

2 2
2BC

BC

(0.485)
1.88 m/s

0.125

r v
a

CB
= = =

Radial component of the acceleration of S with respect to D,

2 2
2SD

SD

(0.265)
0.826 m/s

0.085

r v
a

DS
= = =

...(By measurement DS = 85 mm = 0.085 m)

Coriolis component of the acceleration of Q with respect to S,

2
QS DE QS2 2 2.92 0.4 2.336 m/s
c

a v= ω × = × × =
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and radial component of the acceleration of F with respect to E,

2 2
2FE

FE

(0.6)
1.44 m/s

0.25

r v
a

EF
= = =

Now the acceleration diagram, as shown in Fig. 8.37 (d), is drawn as discussed below:

1. Since O, C and Q are fixed points, therefore these points are marked at one place in the

acceleration diagram. Now draw vector o'a' parallel to OA, to some suitable scale, to represent 
AO ,
r

a

or a
A

 such that

2
AO Avector 5.47 m/s
r

o a a a= = =′ ′

Note : Since O A rotates with uniform speed, therefore there will be no tangential component of the

acceleration.

2. The acceleration of B with respect to A  has the following two components:

(i) Radial component of the acceleration of B with respect to A i.e. 
BA ,
r

a and

(ii) Tangential component of the acceleration of B with respect to A i.e. 
BA .
t

a

These two components are mutually perpendicular. Therefore from point a', draw vector a'x

parallel to A B to represent 2
BA 0.457 m/s ,
r

a = and from point x  draw vector xb' perpendicular to

vector a'x to represent 
BA
t

a whose magnitude is yet unknown.

3. The acceleration of B with respect to C has the following two components:

(i) Radial component of the acceleration of B with respect to C i.e.
BC,
r

a and

(ii) Tangential component of the acceleration of B with respect to C i.e.
BC .
t

a

These two components are mutually perpendicular. Therefore from point c', draw vector c'y

parallel to CB to represent 
BC
r

a  = 1.88 m/s2 and from point y draw vector yb' perpendicular to vector

c'y to represent 
BC
t

a . The vectors xb' and yb' intersect at b'.

4. Join a'b' and c'b'. The vector a'b' represents the acceleration of B with respect to A i.e.

BAa and the vector c'b' represents the acceleration of B with respect to C or simply the acceleration

of B i.e. a
BC

 or a
B
, because C is a fixed point.

5. Since the point D lies on A B, therefore divide vector a'b' at d' in the same ratio as D

divides A B in the space diagram. In other words,

a'd'/a'b' = AD/AB

Note:  Since D is the mid-point of A B, therefore d' is also mid-point of vector a'd'.

6. The acceleration of S with respect to D has the following two components:

(i) Radial component of the acceleration of S with respect to D i.e. 
SD
r

a , and

(ii) Tangential component of the acceleration of S  with respect to D i.e.
SD .
t

a

These two components are mutually perpendicular. Therefore from point d′ , draw vector

d′z parallel to DS to represent ar

SD 
= 0.826 m/s2, and from point z draw vector zs′ perpendicular to

vector d′z to represent at

SD 
whose magnitude is yet unknown.

7. The acceleration of Q (swivel block) with respect to S  (point on link DE i.e. coincident

point) has the following two components:
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(i) Coriolis component of acceleration of Q with respect to S i.e. QS ,
c

a and

(ii) Radial component of acceleration of Q with respect to S , i.e. QS
r

a .

These two components are mutually perpendicular. Therefore from point q', draw vector

q'z
1
, perpendicular to DS to represent 

2
QS 2.336 m/s
c

a = in a direction as shown in Fig. 8.37 (c). The

direction of QS
c

a is obtained by rotating v
QS

 (represented by vector sq in velocity diagram) through

90° in the same sense as that of ω
DE

 which rotates in the anticlockwise direction. Now from z
1
, draw

vector z
1
s' perpendicular to vector q'z

1
 (or parallel to DS) to represent QS.

r
a The vectors zs' and z

1
s'

intersect at s'.

8. Join s'q' and d's'. The vector s'q' represents the acceleration of Q with respect to S i.e. a
QS

and vector d's' represents the acceleration of S with respect to D i.e. a
SD

.

By measurement, we find that the acceleration of sliding the link DE in the trunnion,

2
QS 1vector 1.55 m/s
r

a z s′= = = Ans.

EXERCISES

1. The engine mechanism shown in Fig. 8.38 has crank OB = 50 mm and length of connecting rod A B

= 225 mm. The centre of gravity of the rod is at G which is 75 mm from B. The engine speed is 200

r.p.m.

For the position shown, in which OB is turned 45° from O A, Find 1. the velocity of G and the

angular velocity of A B, and 2. the acceleration of G and angular acceleration of A B.

[Ans. 6.3 m/s ; 22.6 rad/s ; 750 m/s2 ; 6.5 rad/s2]

2. In a pin jointed four bar mechanism ABCD, the lengths of various links are as follows:

A B = 25 mm ; BC = 87.5 mm ; CD = 50 mm and AD = 80 mm.

The link AD is fixed and the angle BAD = 135°. If the velocity of B is 1.8 m/s in the clockwise

direction, find 1. velocity and acceleration of the mid point of BC, and 2. angular velocity and

angular acceleration of link CB and CD.

[Ans. 1.67 m/s, 110 m/s2 ; 8.9 rad/s, 870 rad/s2 ; 32.4 rad/s, 1040 rad/s2]

3. In a four bar chain ABCD , link AD is fixed and the crank A B rotates at 10 radians per second

clockwise. Lengths of the links are A B = 60 mm ; BC = CD = 70 mm ; DA = 120 mm. When angle

DAB = 60° and both B and C lie on the same side of AD, find 1. angular velocities (magnitude and

direction) of BC and CD ; and 2. angular acceleration of BC and CD.

[Ans.  6.43 rad/s (anticlockwise), 6.43 rad/s (clockwise) ; 10 rad/s2  105 rad/s2]

4. In a mechanism as shown in Fig. 8.39, the link AB rotates with a uniform angular velocity of

30 rad/s. The lengths of various links are :

A B = 100 mm ; BC = 300 mm ; BD = 150 mm ; DE = 250 mm ; EF = 200 mm ; DG = 165 mm.

Determine the velocity and acceleration of G for the given configuration.

[Ans. 0.6 m/s ; 66 m/s2]

Fig. 8.38
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Fig. 8.39 Fig. 8.40

5. In a mechanism as shown in Fig. 8.40, the crank

OA is 100 mm long and rotates in a clockwise

direction at a speed of 100 r.p.m. The straight

rod BCD rocks on a fixed point at C. The links

BC and CD are each 200 mm long and the link

A B is 300 mm long. The slider E, which is

driven by the rod DE is 250 mm long. Find the

velocity and acceleration of E.

                            [ Ans. 1.26 m/s; 10.5 m/s2]

6. The dimensions of the various links of a

mechanism, as shown in Fig. 8.41, are as

follows:

OA = 80 mm ; AC = CB = CD = 120 mm

If the crank OA rotates at 150 r.p.m. in the anti-

clockwise direction, find, for the given configuration: 1. velocity and acceleration of B and D ; 2.

rubbing velocity on the pin at C, if its diameter is 20 mm ; and 3. angular acceleration of the links A B

and CD.

[Ans.  1.1 m/s ; 0.37 m/s ; 20.2 m/s2, 16.3 m/s2 ; 0.15 m/s ; 34.6 rad/s2; 172.5 rad/s2]

7. In the toggle mechanism, as shown in Fig. 8.42, D is constrained to move on a horizontal path. The

dimensions of various links are : A B = 200 mm; BC = 300 mm ; OC = 150 mm; and BD = 450 mm.

Fig. 8.42 Fig. 8.43

The crank OC is rotating in a counter clockwise direction at a speed of 180 r.p.m., increasing at the

rate of 50 rad/s2. Find, for the given configuration 1. velocity and acceleration of D, and 2. angular

velocity and angular acceleration of BD.

Fig. 8.41
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8. In a quick return mechanism, as shown in Fig. 8.43, the driving crank OA is 60 mm long and rotates

at a uniform speed of 200 r.p.m. in a clockwise direction. For the position shown, find 1. velocity of

the ram R ; 2. acceleration of the ram R, and 3. acceleration of the sliding block A  along the slotted

bar CD. [Ans.  1.3 m/s ; 9 m/s2 ; 15 m/s2]

9. Fig. 8.44 shows a quick return motion mechanism in which the driving crank OA rotates at 120

r.p.m. in a clockwise direction. For the position shown, determine the magnitude and direction of

1, the acceleration of the block D ; and 2. the angular acceleration of the slotted bar QB.

[Ans.  7.7 m/s2 ; 17 rad/s2]

Fig. 8.44

10. In the oscillating cylinder mechanism as shown in Fig. 8.45, the crank OA is 50 mm long while the

piston rod A B is 150 mm long. The crank OA rotates uniformly about O at 300 r.p.m.

Fig. 8.45

Determine, for the position shown : 1. velocity of the piston B  relative to the cylinder walls, 2.

angular velocity of the piston rod A B, 3. sliding acceleration of the piston B relative to the cylinder

walls, and 4. angular acceleration of the piston rod A B.

[Ans. 1.5 m/s ; 2.2 rad/s (anticlockwise) ; 16.75 m/s2 ; 234 rad/s2]

11. The mechanism as shown in Fig 8.46 is a marine steering gear, called Rapson’s slide. O
2
B is the

tiller and AC is the actuating rod. If the velocity of AC is 25 mm/min to the left, find the angular

velocity and angular acceleration of the tiller. Either graphical or analytical technique may be used.

[Ans. 0.125 rad/s; 0.018 rad/s2]

Fig. 8.46
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DO YOU KNOW ?

1. Explain how the acceleration of a point on a link (whose direction is known) is obtained when the

acceleration of some other point on the same link is given in magnitude and direction.

2. Draw the acceleration diagram of a slider crank mechanism.

3. Explain how the coriolis component of acceleration arises when a point is rotating about some other

fixed point and at the same time its distance from the fixed point varies.

4. Derive an expression for the magnitude and direction of coriolis component of acceleration.

5. Sketch a quick return motion of the crank and slotted lever type and explain the procedure of drawing

the velocity and acceleration diagram, for any given configuration of the mechanism.

OBJECTIVE TYPE QUESTIONS

1. The component of the acceleration, parallel to the velocity of the particle, at the given instant is

called

(a) radial component (b) tangential component

(c) coriolis component (d) none of these

2. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The radial

component of the acceleration of B with respect to A ,

(a) v
BA

  × A B (b) v
2

BA
 × A B (c)

BAv

AB
(d)

2
BAv

AB

where     v
BA

 = Linear velocity of B with respect to A  = ω × A B

3. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The angular

acceleration of the link A B is

(a)
BA
r

a

AB
(b)

BA
t

a

AB
(c) v

BA
 × A B (d)

2
BAv

AB

4. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The total

acceleration of B with respect to A  will be equal to

(a) vector sum of radial component and coriolis component

(b) vector sum of tangential component and coriolis component

(c) vector sum of radial component and tangential component

(d) vector difference of radial component and tangential component

5. The coriolis component of acceleration is taken into account for

(a) slider crank mechanism (b) four bar chain mechanism

(c) quick return motion mechanism (d) none of these

ANSWERS
1. (b) 2. (d) 3. (b) 4. (c) 5. (c)

GO To FIRST
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MMMMMechanismsechanismsechanismsechanismsechanisms
with Lowerwith Lowerwith Lowerwith Lowerwith Lower

PairsPairsPairsPairsPairs

9
FFFFFeaeaeaeaeaturturturturtureseseseses

1. Introduction

2. Pantograph

3. Straight Line Mechanism.

4. Exact Straight Line Motion

Mechanisms Made up of

Turning Pairs.

5. Exact Straight Line Motion

Consisting of One Sliding

Pair (Scott Russel’s

Mechanism).

6. Approximate Straight Line

Motion Mechanisms.

7. Straight Line Motions for

Engine Indicators.

8. Steering Gear Mechanism.

9. Davis Steering Gear.

10. Ackerman Steering Gear.

11. Universal or Hooke’s Joint.

12. Ratio of the Shafts Velocities.

13. Maximum and Minimum

Speeds of the Driven Shaft.

14. Condition for Equal Speeds

of the Driving and Driven

Shafts.

15. Angular Acceleration of the

Driven Shaft.

16. Maximum Fluctuation of

Speed.

17.  Double Hooke’s Joint.

9.1.9.1.9.1.9.1.9.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have already discussed, that when the two ele-

ments of a pair have a surface contact and a relative motion

takes place, the surface of one element slides over the sur-

face of the other, the pair formed is known as lower pair. In

this chapter we shall discuss such mechanisms with lower

pairs.

9.2.9.2.9.2.9.2.9.2. PantographPantographPantographPantographPantograph

A pantograph is an

instrument used to repro-

duce to an enlarged or a re-

duced scale and as exactly

as possible the path de-

scribed by a given point.

It consists of a

jointed parallelogram

ABCD as shown in Fig. 9.1.

It is made up of bars connected by turning pairs. The bars BA

and BC are extended to O and E respectively, such that

OA/OB = AD/BE

Fig. 9.1. Pantograph.

Pantograph

CONTENTS

CONTENTS



Chapter 9 : Mechanisms with Lower Pairs   �  233

Thus, for all relative positions of the bars,

the triangles OAD and OBE are similar and the points

O, D and E are in one straight line. It may be proved

that point E traces out the same path as described by

point D.

From similar triangles OAD and OBE, we

find that

               OD/OE = AD/BE

Let point O be fixed and the points D and E

move to some new positions D′ and E′. Then

                OD/OE = OD′/OE′

A little consideration will show that the

straight line DD′ is parallel to the straight line EE′.

Hence, if O is fixed to the frame of a machine by means of a turning pair and D is attached to a point

in the machine which has rectilinear motion relative to the frame, then E will also trace out a straight

line path. Similarly, if E is constrained to move in a straight line, then D will trace out a straight line

parallel to the former.

A pantograph is mostly used for the reproduction of plane areas and figures such as maps,

plans etc., on enlarged or reduced scales. It is, sometimes, used as an indicator rig in order to repro-

duce to a small scale the displacement of the crosshead and therefore of the piston of a reciprocating

steam engine. It is also used to guide cutting tools. A modified form of pantograph is used to collect

power at the top of an electric locomotive.

9.3. Straight Line Mechanisms

One of the most common forms of the constraint mechanisms is that it permits only relative

motion of an oscillatory nature along a straight line. The mechanisms used for this purpose are called

straight line mechanisms. These mechanisms are of the following two types:

1. in which only turning pairs are used, and

2. in which one sliding pair is used.

These two types of mechanisms may produce exact straight line motion or approximate straight

line motion, as discussed in the following articles.

9.4. Exact Straight Line Motion Mechanisms Made up of Turning Pairs

The principle adopted for a mathematically correct

or exact straight line motion is described in Fig.9.2. Let O

be a point on the circumference of a circle of diameter OP.

Let OA be any chord and B is a point on OA produced, such

that

OA × OB = constant

Then the locus of a point B will be a straight line

perpendicular to the diameter OP. This may be proved as

follows:

Draw BQ perpendicular to OP produced. Join AP.

The triangles OAP and OBQ are similar.

Fig. 9.2. Exact straight line

motion mechanism.

Pantograph.
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∴
OA OQ

OP OB
=

or OP × OQ = OA × OB

or
OA OB

OQ
OP

×
=

But OP is constant as it is the diameter of a circle, there-

fore, if OA × OB is constant, then OQ will be constant. Hence

the point B moves along the straight path BQ which is perpen-

dicular to OP.

Following are the two well known types of exact straight

line motion mechanisms made up of turning pairs.

1. Peaucellier mechanism. It consists of a fixed link

OO
1
 and the other straight links O

1
A , OC, OD, AD, DB, BC and

CA are connected by turning pairs at their intersections, as shown

in Fig. 9.3. The pin at A  is constrained to move along the cir-

cumference of a circle with the fixed diameter OP, by means of

the link O
1
A . In Fig. 9.3,

 AC = CB  = BD = DA ; OC = OD ; and OO
1
 = O

1
A

It may be proved that the product OA × OB remains

constant, when the link O
1
A  rotates. Join CD to bisect A B at R.

Now from right angled triangles ORC and BRC, we have

         OC2  = OR2 + RC2 ...(i)

and                 BC
2  = RB

2 + RC
2 ...(ii)

Subtracting equation (ii) from (i), we have

OC
2 – BC

2 = OR
2 – RB

2

                 = (OR + RB) (OR – RB)

                 = OB × OA

Since OC and BC are of constant length, therefore

the product OB × OA remains constant. Hence the point B

traces a straight path perpendicular to the diameter OP.

2. Hart’s mechanism. This mechanism requires only

six links as compared with the eight links required by the

Peaucellier mechanism. It consists of a fixed link OO
1
 and other straight links O

1
A , FC, CD, DE and

EF are connected by turning pairs at their points of intersection, as shown in Fig. 9.4. The links FC

and DE are equal in length and the lengths of the links CD and EF are also equal. The points O, A  and

B divide the links FC, CD and EF in the same ratio. A little consideration will show that BOCE is a

trapezium and OA and OB are respectively parallel to * FD and CE.

Hence OAB is a straight line. It may be proved now that the product OA × OB is constant.

Fig. 9.3. Peaucellier mechanism.

* In ∆ FCE, O and B divide FC and EF in the same ratio, i.e.

                                       CO/CF = EB/EF

∴ OB is parallel to CE. Similarly, in triangle FCD, OA is parallel to FD.

A modified form of pantograph is

used to collect electricity at the

top of electric trains and buses.
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From similar triangles CFE and OFB,

                   
CE OB

FC OF
=         or        

CE OF
OB

FC

×
= ...(i)

and from similar triangles FCD and OCA

                   
FD OA

FC OC
=        or        

FD OC
OA

FC

×
= ...(ii)

Fig. 9.4. Hart’s mechanism.

Multiplying equations (i) and (ii), we have

2

FD OC CE OF OC OF
OA OB FD CE

FC FC FC

× × ×
× = × = × ×

Since the lengths of OC, OF and FC are fixed, therefore

    OA × OB = FD × CE × constant ...(iii)

2
... substituting constant

OC OF

FC

× 
= 

 

Now from point E, draw EM parallel to CF and EN perpendicular to FD. Therefore

FD × CE = FD × FM ...(∵ CE = FM )

= (FN + ND) (FN – MN) = FN2 – ND2 ...(∵ MN = ND)

= (FE
2 – NE

2) – (ED
2 – NE

2)

...(From right angled triangles FEN and EDN )

= FE
2 – ED

2 = constant ...(iv)

...(∵ Length FE and ED are fixed)

From equations (iii) and (iv),

    OA × OB = constant

It therefore follows that if the mechanism is pivoted about O as a fixed point and the point A

is constrained to move on a circle with centre O
1
, then the point B will trace a straight line perpendicu-

lar to the diameter OP produced.

Note: This mechanism has a great practical disadvantage that even when the path of B is short, a large amount

of space is taken up by the mechanism.

9.5. Exact Straight Line Motion Consisting of One Sliding Pair-Scott
Russell’s Mechanism

It consists of a fixed member and moving member P of a sliding pair as shown in Fig. 9.5.
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The straight link PAQ is connected by turning pairs to the link OA and the link P. The link OA rotates

about O. A little consideration will show that the mechanism OAP is same as that of the reciprocating

engine mechanism in which OA is the crank and PA  is the

connecting rod. In this mechanism, the straight line mo-

tion is not generated but it is merely copied.

In Fig. 9.5, A  is the middle point of PQ and

OA = AP = AQ. The instantaneous centre for the link PAQ

lies at I in OA produced and is such that IP is perpendicu-

lar to OP. Join IQ. Then Q moves along the perpendicular

to IQ. Since OPIQ is a rectangle and IQ is perpendicular

to OQ, therefore Q moves along the vertical line OQ for

all positions of QP. Hence Q traces the straight line OQ′. If

OA makes one complete revolution, then P will oscillate

along the line OP through a distance 2 OA on each side of O and Q will oscillate along OQ′ through

the same distance 2 OA above and below O. Thus, the locus of Q is a copy of the locus of P.

Note: Since the friction and wear of a sliding pair is much more than those of turning pair, therefore this

mechanism is not of much practical value.

9.6. Approximate Straight Line Motion Mechanisms

The approximate straight line motion mechanisms are the modifications of the four-bar chain

mechanisms. Following mechanisms to give approximate straight line motion, are important from the

subject point of view :

1. Watt’s mechanism. It is a crossed four bar chain mechanism and was used by Watt for his

early steam engines to guide the piston rod in a cylinder to have an approximate straight line motion.

Fig. 9.6. Watt’s mechanism.

In Fig. 9.6, OBAO
1
 is a crossed four bar chain in which O and O

1
 are fixed. In the mean

position of the mechanism, links OB and O
1
A  are parallel and the coupling rod A B is perpendicular to

O
1
A  and OB. The tracing point P traces out an approximate straight line over certain positions of its

movement, if PB/PA  = O
1
A/OB. This may be proved as follows :

A little consideration will show that in the initial mean position of the mechanism, the instan-

taneous centre of the link B A lies at infinity. Therefore the motion of the point P is along the vertical

line B A . Let OB′ A ′O
1
 be the new position of the mechanism after the links OB and O

1
A  are displaced

through an angle θ and φ respectively. The instantaneous centre now lies at I. Since the angles θ and

φ are very small, therefore

arc B B′ = arc A A′         or      OB × θ = O
1 

A  × φ ...(i)

Fig. 9.5. Scott Russell’s mechanism.
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∴ OB / O
1 
A = φ / θ

Also A ′P′ = IP′ × φ, and B′P′ = IP′ × θ

∴ A ′P′ / B′P′ = φ / θ ...(ii)

From equations (i) and (ii),

                            
1

OB A P AP

O A B P BP

′ ′
= =

′ ′
or

1O A PB

OB PA
=

Thus, the point P divides the link A B into two parts whose lengths are inversely proportional

to the lengths of the adjacent links.

2. Modified Scott-Russel mechanism. This mechanism, as shown in Fig. 9.7, is similar to

Scott-Russel mechanism (discussed in Art. 9.5), but in this case AP is not equal to AQ and the points

P and Q are constrained to move in the horizontal and vertical directions. A little consideration will

show that it forms an elliptical trammel, so that any point A

on PQ traces an ellipse with semi-major axis AQ and semi-

minor axis AP.

If the point A  moves in a circle, then for point Q to

move along an approximate straight line, the length OA must

be equal (AP)2 / A Q. This is limited to only small

displacement of P.

3. Grasshopper mechanism. This mechanism is a

modification of modified Scott-Russel’s mechanism with

the difference that the point P does not slide along a straight

line, but moves in a circular arc with centre O.

It is a four bar mechanism and all the pairs are turning pairs as shown in Fig. 9.8. In this

mechanism, the centres O and O
1
 are fixed. The link OA oscillates about O through an angle AOA

1

which causes the pin P to move along a circular arc with

O
1
 as centre and O

1
P as radius. For small angular dis-

placements of OP on each side of the horizontal, the point

Q on the extension of the link PA  traces out an approxi-

mately a straight path QQ′, if the lengths are such that OA

= (AP)2 / AQ.

Note: The Grasshopper mechanism was used in early days as

an engine mechanism which gave long stroke with a very short

crank.

4. Tchebicheff’s mechanism. It is a four bar

mechanism in which the crossed links OA and O
1
B are of

equal length, as shown in Fig. 9.9. The point P, which is

the mid-point of A B traces out an approximately straight

line parallel to OO
1
. The proportions of the links are, usually, such that point P is exactly above O or

O
1
 in the extreme positions of the mechanism i.e. when B A lies along OA or when B A lies along BO

1
.

It may be noted that the point P will lie on a straight line parallel to OO
1
, in the two extreme positions

and in the mid position, if the lengths of the links are in proportions A B : OO
1
 : OA = 1 : 2 : 2.5.

5. Roberts mechanism. It is also a four bar chain mechanism, which, in its mean position, has

the form of a trapezium. The links OA and O
1 

B are of equal length and OO
1
 is fixed. A  bar PQ is

rigidly attached to the link A B at its middle point P.

Fig. 9.7. Modified Scott-Russel

mechanism.

Fig. 9.8. Grasshopper mechanism.
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A little consideration will show that if the mechanism is displaced as shown by the dotted

lines in Fig. 9.10, the point Q will trace out an approximately straight line.

Fig. 9.9. Tchebicheff’s mechanism. Fig. 9.10. Roberts mechanism

9.7. Straight Line Motions for Engine Indicators

The application of straight

line motions is mostly found in the

engine indicators. In these

instruments, the cylinder of the

indicator is in direct

communication with the steam or

gas inside the cylinder of an

engine. The indicator piston rises

and falls in response to pressure

variation within the engine

cylinder. The piston is resisted by

a spring so that its displacement is

a direct measure of the steam or

gas pressure acting upon it. The

displacement is communicated to

the pencil which traces the

variation of pressure in the

cylinder (also known as indicator

diagram) on a sheet of paper

wrapped on the indicator drum

which oscillates with angular

motion about its axis, according to

the motion of the engine piston.

The variation in pressure is

recorded to an enlarged scale.

Following are the various engine

indicators which work on the

straight line motion mechanism.

1. Simplex indicator. It closely resembles to the pantograph copying mechanism, as shown

in Fig. 9.11. It consists of a fixed pivot O attached to the body of the indicator. The links A B, BC, CD

Airplane’s Landing Gear.

Tyres absorb some

energy

Liquid

spring

Hydraulic

cylinder folds

wheels for

storage

Internal damper

absorbs shock

Note : This picture is given as additional information and is not a direct

example of the current chapter.
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and DA form a parallelogram and are pin jointed. The link BC is extended to point P such that O, D

and P lie in one straight line. The point D is attached to the piston rod of the indicator and moves

along the line of stroke of the piston (i.e. in the vertical direction). A little consideration will show

that the displacement of D is reproduced on an enlarged scale, on the paper wrapped on the indicator

drum, by the pencil fixed at point P which describes the path similar to that of D. In other words,

when the piston moves vertically by a distance DD
1
, the path traced by P is also a vertical straight line

PP
1
, as shown in Fig. 9.11.

Fig. 9.11. Simplex indicator.

The magnification may be obtained by the following relation :

1

1

PPOP OB BP

OD OA BC DD
= = =

From the practical point of view, the following are the serious objections to this mechanism:

(a) Since the accuracy of straight line motion of P depends upon the accuracy of motion of

D, therefore any deviation of D from a straight path involves a proportionate deviation of

P from a straight path.

(b) Since the mechanism has five pin joints at O, A , B, C and D, therefore slackness due to

wear in any one of pin joints destroys the accuracy of the motion of P.

2. Cross-by indicator. It is a modified form

of the pantograph copying mechanism, as shown in

Fig. 9.12.

In order to obtain a vertical straight line

for P, it must satisfy the following two conditions:

1. The point P must lie on the line joining

the points O and A , and

2. The velocity ratio between points P and

A  must be a constant.

This can be proved by the instantaneous

centre method as discussed below :

The instantaneous centre I
1
 of the link AC

is obtained by drawing a horizontal line from A

to meet the line ED produced at I
1
. Similarly, the

instantaneous centre I
2
 of the link BP is obtained by drawing a horizontal line from P to meet the

line BO at I
2
. We see from Fig. 9.12, that the points I

1
 and I

2
 lie on the fixed pivot O. Let v

A
, v

B
,

v
C
 and v

P
 be the velocities of the points A , B , C and P respectively.

We know that   
C 1 2

A 1 2

v I C I C

v I A I A
= = ...(i)

Fig. 9.12. Cross-by indicator.
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and
P 2

C 2

v I P

v I C
= ...(ii)

Multiplying equations (i) and (ii), we get

                             
C P 2 2

A C 2 2

v v I C I P

v v I A I C
× = ×     or     

P 2

A 2

v I P OP

v I A OA
= = ...(iii)

...(∵ O and I
2
 are same points.)

Since AC is parallel to OB, therefore triangles PAC and POB are similar.

∴
OP BP

OA BC
= ...(iv)

From equations (iii) and (iv),

          
P

A

constant
v OP BP

v OA BC
= = = ...(∵ Lengths BP and BC are constant.)

3. Thompson indicator. It consists of the links OB, BD, DE and EO. The tracing point P lies

on the link BD produced. A little consideration will show that it constitutes a straight line motion of

the Grasshopper type as discussed in Art.9.6. The link BD gets the motion from the piston rod of the

indicator at C which is connected by the link AC at A  to the end of the indicator piston rod. The

condition of velocity ratio to be constant between P and A  may be proved by the instantaneous centre

method, as discussed below :

Fig. 9.13. Thompson indicator.

Draw the instantaneous centres I
1
 and I

2
 of the links BD and AC respectively. The line I

1
P

cuts the links AC at F. Let v
A

, v
C
 and v

P
 be the velocities of the points A , C and P respectively.

∴  
C 2

A 2

v I C

v I A
= ...(i)

From similar triangles I
1
CF and I

2
CA

                                  
2 1

2 1

I C I C

I A I F
=     or     

C 2 1

A 2 1

v I C I C

v I A I F
= = ...(ii)

...[From equation (i)]

Also  
P 1

C 1

v I P

v I C
= ...(iii)

Multiplying equations (ii) and (iii), we get

                            
C P 1 1

A C 1 1

v v I C I P

v v I F I C
× = ×   or  

P 1

A 1

v I P

v I F
= ...(iv)
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Now if the links AC and OB are parallel, the triangles PCF and PBI
1
 are similar.

∴
1

1

I P BP

I F BC
= ...(v)

From equations (iv) and (v),

P 1

A 1

constant
v I P BP

v I F BC
= = = ...(∵ Lengths BP and BC are constant)

Note: The links AC and OB can not be exactly parallel, nor the line I
1
P be exactly perpendicular to the line of

stroke of the piston for all positions of the mechanism. Hence the ratio BP/BC cannot be quite constant. Since

the variations are negligible for all practical purposes, therefore the above relation gives fairly good results.

4. Dobbie Mc Innes indicator. It is similar to Thompson indicator with the difference that the

motion is given to the link DE (instead of BD in Thompson indicator) by the link AC connected to the

indicator piston as shown in Fig. 9.14. Let v
A

, v
C
, v

D
 and v

P
 be the velocities of the points A , C, D and

P respectively. The condition of velocity ratio (i.e. v
P
  / v

A
) to be constant between points P and A  may

be determined by instantaneous centre method as discussed in Thompson indicator.

Fig. 9.14. Dobbie McInnes indicator.

Draw the instantaneous centres I
1
 and I

2
 of the links BD and AC respectively. The line I

1
P

cuts the link AC at F. Draw DH perpendicular to I
1
P. We know that

∴

C 2

A 2

v I C

v I A
=

...(i)

From similar triangles I
1
CF and I

2
CA,

                                  
2 1

2 1

I C I C

I A I F
=    or     

C 2 1

A 2 1

v I C I C

v I A I F
= = ...[From equation (i)]   ...(ii)

Again from similar triangles I
1
CF and I

1
DH,

                                  
1 1

1 1

I C I D

I F I H
=    or    C 1

A 1

v I D

v I H
= ...[From equation (ii)] ...(iii)

Since the link ED turns about the centre E, therefore

D

C

v ED

v EC
= ...(iv)
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Also
P 1

D 1

v I P

v I D
= ...(v)

Multiplying equations (iii), (iv) and (v), we get

                
C D P 1 1

A C D 1 1

v v v I D I PED

v v v I H EC I D
× × = × ×     or     

P 1

A 1

v I P ED

v I H EC
= ×                         ...(vi)

From similar triangles I
1
BP and PDH,

1

1

I P PB

I H BD
=

∴                                 
P

A

constant
v PB ED

v BD EC
= × = ...[From equation (vi)]

...[∵ Lengths PB, BD, ED and EC are constant.]

9.8. Steering Gear Mechanism

The steering gear mechanism is used for

changing the direction of two or more of the wheel

axles with reference to the chassis, so as to move the

automobile in any desired path. Usually the two back

wheels have a common axis, which is fixed in direc-

tion with reference to the chassis and the steering is

done by means of the front wheels.

In automobiles, the front wheels are placed

over the front axles, which are pivoted at the points

A  and B , as shown in Fig. 9.15. These points are fixed to the chassis. The back wheels are placed

over the back axle, at the two ends of the differential tube. When the vehicle takes a turn, the

front wheels along with the respective axles turn about the respective pivoted points. The back

wheels remain straight and do not turn. Therefore, the steering is done by means of front wheels

only.

Fig. 9.15. Steering gear mechanism.
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In order to avoid skidding

(i.e. slipping of the wheels side-

ways), the two front wheels must

turn about the same instantaneous

centre I which lies on the axis of

the back wheels. If the instanta-

neous centre of the two front

wheels do not coincide with the in-

stantaneous centre of the back

wheels, the skidding on the front

or back wheels will definitely take place, which will cause more wear and tear of the tyres.

Thus, the condition for correct steering is that all the four wheels must turn about the same

instantaneous centre. The axis of the inner wheel makes a larger turning angle θ than the angle φ

subtended by the axis of outer wheel.

Let                a  =  Wheel track,

                     b =  Wheel base, and

                       c =  Distance between the pivots A  and B of the front axle.

Now from triangle IBP,

                cot
BP

IP
θ =

and from triangle IAP,

                cot cot
AP AB BP AB BP c

IP IP IP IP b

+
φ = = = + = + θ ...(∵ IP = b)

∴ cot φ – cot θ = c / b

This is the fundamental equation for correct steering. If this condition is satisfied, there will

be no skidding of the wheels, when the vehicle takes a turn.

9.9. Davis Steering Gear

The Davis steering gear is shown in Fig. 9.16. It is an exact steering gear mechanism. The

slotted links A M and BH are attached to the front wheel axle, which turn on pivots A  and B respec-

tively. The rod CD is constrained to move in the direction of its length, by the sliding members at P

and Q. These constraints are connected to the slotted link A M and BH by a sliding and a turning pair

at each end. The steering is affected by moving CD to the right or left of its normal position. C ′D′

shows the position of CD for turning to the left.

Let                 a = Vertical distance between A B and CD,

                      b = Wheel base,

                      d = Horizontal distance between AC and BD,

                       c = Distance between the pivots A  and B of the front axle.

                       x = Distance moved by AC to AC ′ = CC ′ = DD′, and

                      α = Angle of inclination of the links AC and BD, to the vertical.

From triangle A A′ C′,

     tan ( )
A C d x

A A a

′ ′ +
α + φ = =

′
...(i)
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From triangle A A′C,

tan
A C d

A A a

′
α = =

′
...(ii)

From triangle BB′D′,

–
tan ( – )

B D d x

BB a

′ ′
α θ = =

′
...(iii)

Fig. 9.16. Davis steering gear.

We know that        
tan tan

tan ( )
1 – tan .tan

α + φ
α + φ =

α φ

or               
/ tan tan

1 – / tan – tan

d x d a d a

a d a a d

+ + φ + φ
= =

× φ φ

...[From equations (i) and (ii)]

             (d + x) (a – d tan φ) = a (d + a tan φ)

a. d – d 
2 tan φ + a. x – d.x tan φ = a.d + a2 tan φ

              tan φ (a2 + d2 + d.x) = ax     or    
2 2

.
tan

.

a x

a d d x

φ =

+ +

...(iv)

Similarly, from tan 
–

( – ) ,
d x

a
α θ =  we get

                                    2 2
tan

– .

ax

a d d x

θ =

+
...(v)

We know that for correct steering,

                       cot – cot
c

b
φ θ =      or    

1 1
–

tan tan

c

b
=

φ θ

             

2 2 2 2
. – .

–
. .

a d d x a d d x c

a x a x b

+ + +
= ...[From equations (iv) and (v)]
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or
2 .

.

d x c

a x b
= or

2 d c

a b
=

∴ 2 tan
c

b
α = or tan

2

c

b
α = ...(∵ d / a = tan α)

Note: Though the gear is theoretically correct, but due to the presence of more sliding members, the wear will

be increased which produces slackness between the sliding surfaces, thus eliminating the original accuracy.

Hence Davis steering gear is not in common use.

Example 9.1. In a Davis steering gear, the distance between the pivots of the front axle is 1.2

metres and the wheel base is 2.7 metres. Find the inclination of the track arm to the longitudinal axis

of the car, when it is moving along a straight path.

Solution. Given :     c = 1.2 m ; b = 2.7 m

Let                  α = Inclination of the track arm to the longitudinal axis.

We know that   
1.2

tan 0.222
2 2 2.7

c

b
α = = =

×
or α = 12.5° Ans.

9.10. Ackerman Steering Gear

The Ackerman steering gear mechanism is much simpler than Davis gear. The difference

between the Ackerman and Davis steering gears are :

1. The whole mechanism of the Ackerman steering gear is on back of the front wheels;

whereas in Davis steering gear, it is in front of the wheels.

2. The Ackerman steering gear consists of turning pairs, whereas Davis steering gear

consists of sliding members.

Fig. 9.17. Ackerman steering gear.

In Ackerman steering gear, the mechanism ABCD is a four bar crank chain, as shown in Fig.

9.17. The shorter links BC and AD are of equal length and are connected by hinge joints with front

wheel axles. The longer links A B and CD are of unequal length. The following are the only three

positions for correct steering.

1. When the vehicle moves along a straight path, the longer links A B and CD are parallel and

the shorter links BC and AD are equally inclined to the longitudinal axis of the vehicle, as shown by

firm lines in Fig. 9.17.

2. When the vehicle is steering to the left, the position of the gear is shown by dotted lines in

Fig. 9.17. In this position, the lines of the front wheel axle intersect on the back wheel axle at I, for

correct steering.



246  �   Theory of Machines

3. When the vehicle is steering to the right, the similar position may be obtained.

In order to satisfy the fundamental equation for correct steering, as discussed in Art. 9.8, the

links AD and DC are suitably proportioned. The value of  θ and φ  may be obtained either graphically

or by calculations.

9.11. Universal or Hooke’s Joint

A *Hooke’s joint is used to connect two shafts,  which are intersecting at a small angle, as

shown in  Fig. 9.18. The end of each shaft is forked to U-type and each fork provides two bearings

          Fig. 9.18. Universal or Hooke’s joint.

for the arms of a cross. The arms of the cross are perpendicular to each other. The motion is transmit-

ted from the driving shaft to driven shaft through a cross. The inclination of the two shafts may be

constant, but in actual practice it varies, when the motion is transmitted. The main application of the

Universal or Hooke’s joint is found in the transmission from the **gear box to the differential or back

axle of the automobiles. It is also used for transmission of power to different spindles of multiple

drilling machine. It is also used as a knee joint in milling machines.

* This joint was first suggested by  Da Vinci and was named after English physicist and mathematician

Robert Hooke who first applied it to connect two offset misaligned shafts.

** In case of automobiles, we use two Hooke’s joints one at each end of the propeller shaft, connecting the

gear box on one end and the differential on the other end.

Universal Joint.

Axis 2

Axis 1

Body 1

Body 2
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9.12. Ratio of the Shafts Velocities

The top and front views connecting the two shafts by

a universal joint are shown in Fig. 9.19. Let the initial posi-

tion of the cross be such that both arms lie in the plane of the

paper in front view, while the arm A B attached to the driving

shaft lies in the plane containing the axes of the two shafts.

Let the driving shaft rotates through an angle θ, so that the

arm A B moves in a circle to a new position A
1 
B

1
 as shown in

front view. A little consideration will show that the arm CD

will also move in a circle of the same size. This circle when

projected in the plane of paper appears to be an ellipse. There-

fore the arm CD takes new position C
1
D

1
 on the ellipse, at an

angle θ. But the true angle must be on the circular path. To

find the true angle, project the point C
1
 horizontally to inter-

sect the circle at C
2
. Therefore the angle COC

2
 (equal to φ) is

the true angle turned by the driven shaft. Thus when the driv-

ing shaft turns through an angle θ, the driven shaft turns

through an angle φ. It may be noted that it is not necessary

that φ  may be greater than θ or less than θ. At a particular

point, it may be equal to θ.

In triangle OC
1
M, ∠ OC

1
M = θ

∴      
1

tan
OM

MC
θ =                 ...(i)

and in triangle   OC
2 

N,  ∠ OC
2
 N = φ

∴    
2 1

tan
ON ON

NC MC
φ = =                                                 2 1...( )NC MC=� ...(ii)

Dividing equation (i) by (ii),

1

1

tan

tan

MCOM OM

MC ON ON

θ
= × =

φ

But                  OM = ON
1
 cos α = ON cos α

...(where α = Angle of inclination of the driving and driven shafts)

∴               
tan cos

cos
tan

ON

ON

θ α
= = α

φ

or tan θ =  tan φ . cos α ...(iii)

Let ω =  Angular velocity of the driving shaft = dθ / dt

ω
1

=  Angular velocity of the driven shaft = dφ / dt

Differentiating both sides of equation (iii),

sec2 θ × dθ / dt = cos α . sec2 φ × dφ / dt

sec2 θ × ω = cos α . sec2 φ × ω
1

∴

2
1

2 2 2

sec 1

cos .sec cos .cos .sec

ω θ
= =

ω α φ θ α φ
...(iv)

Fig. 9.19. Ratio of shafts

velocities.
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We know that       

2
2 2

2

tan
sec 1 tan 1

cos

θ
φ = + φ = +

α
...[From equation (iii)]

                                      

2 2 2 2

2 2 2 2

sin cos .cos sin
1

cos .cos cos .cos

θ θ α + θ
= + =

θ α θ α

                                      

2 2 2 2 2 2 2

2 2 2 2

cos (1 – sin ) sin cos – cos .sin sin

cos .cos cos .cos

θ α + θ θ θ α + θ
= =

θ α θ α

2 2

2 2

1 – cos .sin

cos .cos

θ α
=

θ α
...(∵ cos2 θ + sin2 θ = 1)

Substituting this value of sec2 φ in equation (iv), we have veloity ratio,

                                 

2 2
1

2 2 2 2 2

1 cos .cos cos

cos .cos 1 – cos .sin 1 – cos .sin

ω θ α α
= × =

ω θ α θ α θ α
...(v)

Note:   If N = Speed of the driving shaft in r.p.m., and

N
1

= Speed of the driven shaft in r.p.m.

Then the equation (v) may also be written as

                  
1

2 2

cos
.

1 – cos .sin

N

N

α
=

θ α

9.13. Maximum and Minimum Speeds of Driven Shaft

We have discussed in the previous article that velocity ratio,

                 
1

2 2

cos

1 – cos .sin

ω α
=

ω θ α
       or      1 2 2

.cos

1 – cos .sin

ω α
ω =

θ α
...(i)

The value of ω
1
 will be maximum for a given value of α, if the denominator of equation (i) is

minimum. This will happen, when

                          cos2 θ = 1,     i.e.  when θ = 0°, 180°, 360° etc.

∴   Maximum speed of the driven shaft,

                 1( ) 2 2

cos cos

cos1 – sin cos
max

ω α ω α ω
ω = = =

αα α
...(ii)

or                                     1( )
cos

max

N
N =

α
...(where N and N

1
 are in r.p.m.)

Similarly, the value of ω
1
 is minimum, if the denominator of equation (i) is maximum. This

will happen, when (cos2 θ . sin2 α) is maximum, or

                           cos2 θ = 0, i.e. when θ = 90°, 270° etc.

∴ Minimum speed of the driven shaft,

                           ω
1 (min)

 = ω cos α

or                                      N
1 (min)

 = N cos α ...(where N and N
1
 are in r.p.m.)

Fig. 9.20, shows the polar diagram depicting the salient features of the driven shaft speed.
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From above, we see that

1. For one complete revolution of the driven shaft,

there are two points i.e. at 0° and 180° as shown by points

1 and 2 in Fig. 9.20, where the speed of the driven shaft is

maximum and there are two points i.e. at 90° and 270° as

shown by point 3 and 4 where the speed of the driven shaft

is minimum.

2. Since there are two maximum and two mini-

mum speeds of the driven shaft, therefore there are four

points when the speeds of the driven and driver shaft are

same. This is shown by points, 5,6,7 and 8 in Fig. 9.20 (See

Art 9.14).

3. Since the angular velocity of the driving shaft is

usually constant, therefore it is represented by a circle of radius ω. The driven shaft has a variation in

angular velocity, the maximum value being ω/cos α and minimum value is ω cos α. Thus it is repre-

sented by an ellipse of semi-major axis ω/cos α and semi-minor axis ω cos α, as shown in Fig. 9.20.

Note:  Due to the variation in speed of the driven shaft, there will be some vibrations in it, the frequency of

which may be decreased by having a heavy mass (a sort of flywheel) on the driven shaft. This heavy mass of

flywheel does not perform the actual function of flywheel.

9.14. Condition for Equal Speeds of the Driving and Driven Shafts

We have already discussed that the ratio of the speeds of the driven and driving shafts is

1

2 2

cos

1 – cos .sin

ω α
=

ω θ α
  or

2 2
1 (1 – cos .sin )

cos

ω θ α
ω =

α

For equal speeds,  ω = ω
1
, therefore

            cos α = 1 – cos2 θ . sin2 α   or cos2 θ . sin2 α = 1 – cos α

and  
2

2

1 – cos
cos

sin

α
θ =

α
...(i)

We know that 
2 2

2 2

1 cos 1 – cos
sin 1 – cos 1 – 1 –

sin 1 – cos

− α α
θ = θ = =

α α

   
1 – cos 1 cos

1 – 1 –
(1 cos ) (1 – cos ) 1 cos 1 cos

α α
= = =

+ α α + α + α
...(ii)

Dividing equation (ii) by equation (i),
2 2

2

sin cos sin

1 cos 1 – coscos

θ α α
= ×

+ α αθ

or       

2 2
2

2 2

cos sin cos .sin
tan cos

1 – cos sin

α α α α
θ = = = α

α α

∴         tan cosθ = ± α

There are two values of θ corresponding to positive sign and two values corresponding to

negative sign. Hence, there are four values of θ, at which the speeds of the driving and driven shafts

are same. This is shown by point 5, 6, 7 and 8 in Fig. 9.20.

9.15. Angular Acceleration of the Driven Shaft

We know that
2 2 –1

1 2 2

cos
.cos (1 – cos .sin )

1 – cos .sin

ω α
ω = = ω α θ α

θ α

Fig. 9.20. Polar diagram-salient

features of driven shaft

speed.
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Differentiating the above expression, we have the angular acceleration of the driven shaft,

2 2 – 2 21 cos –1(1 – cos sin ) (2 cos sin sin )
d d

dt dt

ω θ
 = ω α θ α × θ θ α
 

2 2

2 2 2

– cos sin 2 .sin

(1 – cos sin )

ω α × θ α
=

θ α
...(i)

...( 2 cos θ sin θ = sin 2 θ, and dθ/dt = ω)

The negative sign does not show that there is always retardation. The angular acceleration

may be positive or negative depending upon the value of sin 2 θ. It means that during one complete

revolution of the driven shaft, there is an angular acceleration corresponding to increase in speed of

ω
1
 and retardation due to decrease in speed of ω

1
.

For angular acceleration to be maximum, differentiate dω
1
 / dt with respect to θ and equate to

zero. The result is * approximated as

2 2

2

sin (2 – cos 2 )
cos 2

2 – sin

α θ
θ =

α

Note:  If the value of α is less than 30°, then cos 2 θ may approximately be written as

2

2

2sin
cos 2

2 – sin

α
θ =

α

9.16. Maximum Fluctuation of Speed

We know that the maximum speed of the driven shaft,

 ω
1
 
(max)

 = ω/cos α

and minimum speed of the driven shaft,

ω
1 (min)

 = ω cos α

∴ Maximum fluctuation of speed of the driven shaft,

                                                    1( ) 1( )– – cos
cos

max minq
ω

= ω ω = ω α
α

   

2 2
1 1 – cos sin

– cos
cos cos cos

   α ω α
= ω α = ω =    α α α   

= ω tan α . sin α

Since α is a small angle, therefore substituting cos α = 1, and sin α = α radians.

∴ Maximum fluctuation of speed

= ω . α2

Hence, the maximum fluctuation of speed of the driven shaft approximately varies as the

square of the angle between the two shafts.

Note:  If the speed of the driving shaft is given in r.p.m. (i.e. N r.p.m.), then in the above relations ω may be

replaced by N.

9.17. Double Hooke’s Joint

We have seen in the previous articles, that the velocity of the driven shaft is not constant, but

varies from maximum to minimum values. In order to have a constant velocity ratio of the driving and

driven shafts, an intermediate shaft with a Hooke’s joint at each end as shown in Fig. 9.21, is used.

This type of joint is known as double Hooke’s joint.

* Since the differentiation of dω
1
/dt is very cumbersome, therefore only the result is given.
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Let the driving, intermediate and driven shafts, in the same time, rotate through angles θ, φ

and γ from the position as discussed previously in Art. 9.12.

Now for shafts A  and B, tan θ = tan φ . cos α ...(i)

and       for shafts B and C, tan γ = tan φ . cos α ...(ii)

From equations (i) and (ii), we see that θ = γ or ω
A

 = ω
C
.

Fig. 9.21. Double Hooke’s joint.

This shows that the speed of the driving and driven shaft is constant. In other words, this joint

gives a velocity ratio equal to unity, if

1. The axes of the driving and driven shafts are in the same plane, and

2. The driving and driven shafts make equal angles with the intermediate shaft.

Example. 9.2.  Two shafts with an included angle of 160° are connected by a Hooke’s joint.

The driving shaft runs at a uniform speed of 1500 r.p.m. The driven shaft carries a flywheel of mass

12 kg and 100 mm radius of gyration. Find the maximum angular acceleration of the driven shaft

and the maximum torque required.

Solution.  Given :  α = 180° – 160° = 20°; N = 1500 r.p.m.; m = 12 kg ; k = 100 mm = 0.1 m

We know that angular speed of the driving shaft,

ω = 2 π × 1500 / 60 = 157 rad/s

and mass moment of inertia of the driven shaft,

I = m.k
2 = 12 (0.1)2 = 0.12 kg - m2

Maximum angular acceleration of the driven shaft

Let dω
1
 / dt = Maximum angular acceleration of the driven shaft, and

 θ = Angle through which the driving shaft turns.

We know that, for maximum angular acceleration of the driven shaft,

2 2

2 2

2sin 2sin 20
cos 2 0.124

2 – sin 2 – sin 20

α °
θ = = =

α °

∴              2θ = 82.9°     or θ = 41.45°

and                        

2 2
1

2 2 2

cos .sin 2 .sin

(1 – cos .sin )

d

dt

ω ω α θ α
=

θ α

2 2
2

2 2 2

(157) cos 20 sin82.9 sin 20
3090 rad/s

(1 – cos 41.45 sin 20 )

°× ° × °
= =

° × °
 Ans.

Maximum torque required

We know that maximum torque required

= I × d ω
1
 / dt = 0.12 × 3090 = 371 N-m Ans.
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Example. 9.3. The angle between the axes of two shafts connected by Hooke’s joint is 18°.

Determine the angle turned through by the driving shaft when the velocity ratio is maximum and

unity.

Solution.  Given : α = 98°

Let                θ = Angle turned through by the driving shaft.

When the velocity ratio is maximum

We know that velocity ratio,

1

2 2

cos

1 – cos .sin

ω α
=

ω θ α

The velocity ratio will be maximum when cos2 θ is minimum, i.e. when

                      cos2 θ = 1 or      when θ = 0°    or 180°  Ans.

When the velocity ratio is unity

The velocity ratio (ω / ω
1
) will be unity, when

     1 – cos2 θ . sin2 α = cos α or
2

2

1 – cos
cos

sin

α
θ =

α

∴                         2 2

1 – cos 1 – cos 1
cos

1 cossin 1 – cos

α α
θ = ± = ± = ±

+ αα α

                                 
1 1

0.7159
1 cos18 1 0.9510

= ± = ± = ±
+ ° +

∴               θ = 44.3° or     135.7°  Ans.

Example. 9.4. Two shafts are connected by a Hooke’s joint. The driving shaft revolves

uniformly at 500 r.p.m. If the total permissible variation in speed of the driven shaft is not to exceed

± 6% of the mean speed, find the greatest permissible angle between the centre lines of the shafts.

Solution.  Given : N = 500 r.p.m. or ω = 2 π × 500 / 60 = 52.4 rad/s

Let α = Greatest permissible angle between the centre lines of the shafts.

Since the variation in speed of the driven shaft is ± 6% of the mean speed (i.e. speed of the

driving speed), therefore total fluctuation of speed of the driven shaft,

q = 12 % of mean speed (ω) = 0.12 ω

We know that maximum or total fluctuation of speed of the driven shaft (q),

 

21 – cos
0.12

cos

 α
ω = ω  α 

    or   cos2 α + 0.12 cos α – 1 = 0

and                                 

2
– 0.12 (0.12) 4 – 0.12 2.0036

cos 0.9418
2 2

± + ±
α = = =

...(Taking + sign)

                                                                                                                                                                                 α = 19.64° Ans.

Example. 9.5. Two shafts are connected by a universal joint. The driving shaft rotates at a

uniform speed of 1200 r.p.m. Determine the greatest permissible angle between the shaft axes so that

the total fluctuation of speed does not exceed 100 r.p.m. Also calculate the maximum and minimum

speeds of the driven shaft.
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Solution.  Given : N = 1200 r.p.m.; q = 100 r.p.m.

Greatest permissible angle between the shaft axes

Let                          α = Greatest permissible angle between the shaft axes.

We know that total fluctuation of speed (q),

                                   

2 2
1 – cos 1 – cos

100 1200
cos cos

N
   α α

= =      α α   

∴                     
2

1 – cos 100
0.083

cos 1200

α
= =

α

  cos2 α + 0.083 cos α – 1 = 0

and                                         

2
– 0.083 (0.083) 4

cos 0.9593
2

± +
α = = ...(Taking + sign)

∴                          α = 16.4° Ans.

Maximum and minimum speed of the driven shaft

We know that maximum speed of the driven shaft,

                            N
1 (max)

 = N / cos α = 1200 / 0.9593 = 1251 r.p.m.  Ans.

and minimum speed of the driven shaft,

                              N
1 (min)

 = N  cos α = 1200 × 0.9593 = 1151 r.p.m.  Ans.

Example. 9.6. The driving shaft of a Hooke’s joint runs at a uniform speed of 240 r.p.m. and

the angle α between the shafts is 20°. The driven shaft with attached masses has a mass of 55 kg at

a radius of gyration of 150 mm.

1. If a steady torque of 200 N-m resists rotation of the driven shaft, find the torque required

at the driving shaft, when θ = 45°.

2. At what value of ‘α’will the total fluctuation of speed of the driven shaft be limited to 24

r.p.m ?

Solution. Given :  N = 240 r.p.m or ω = 2 π × 240/60 = 25.14 rad/s ; α = 20° ; m = 55 kg ;

k = 150 mm = 0.15 m ; T
1
 = 200 N-m ; θ = 45° ; q = 24 r.p.m.

1.  Torque required at the driving shaft

Let T′ = Torque required at the driving shaft.

We know that mass moment inertia of the driven shaft,

I = m.k2 = 55 (0.15)2 = 1.24 kg-m2

and angular acceleration of the driven shaft,

                    

2 2 2 2
1

2 2 2 2 2 2

– cos .sin 2 .sin – (25.14) cos 20 sin90 sin 20

(1 – cos sin ) (1 – cos 45 sin 20 )

d

dt

ω ω α θ α °× °× °
= =

θ α ° °

                              = – 78.4 rad / s2

∴ Torque required to accelerate the driven shaft,

                         
1

2 1.24 – 78.4 – 97.2 N m
d

T I
dt

ω
= × = × = −
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and total torque required on the driven shaft,

                          T = T
1
 + T

2
 = 200 – 97.2 = 102.8 N– m

Since the torques on the driving and driven shafts are inversely proportional to their angular

speeds, therefore

                     T 
' . ω = T . ω

1

or                     
1

2 2

. cos

1 – cos .sin

T T
T

ω α
′= =

ω θ α

1

2

cos
...

1 – cos .sin

 ω α
= 

 ω θ α 

�

                        
2 2

102.8 cos 20
102.6 N-m

1 – cos 45 sin 20

°
= =

° °
 Ans.

2.  Value of ααααα for the total fluctuation of speed to be 24 r.p.m.

We know that the total fluctuation of speed of the driven shaft (q),

                        

2 2
1 – cos 1 – cos

24 240
cos cos

N
   α α

= =      α α   

or         

2
1 – cos 24

0.1
cos 240

α
= =

α

cos2 α + 0.1 cos α – 1 = 0

2
– 0.1 (0.1) 4

cos 0.95
2

± +
α = = ...(Taking + sign)

∴                                     α = 18.2°  Ans.

Example 9.7. A double universal joint is used to connect two shafts in the same plane. The

intermediate shaft is inclined at an angle of 20° to the driving shaft as well as the driven shaft. Find

the maximum and minimum speed of the intermediate shaft and the driven shaft if the driving shaft

has a constant speed of 500 r.p.m.

Solution. Given α = 20° ; N
A

 = 500 r.p.m.

Maximum and minimum speed of the intermediate shaft

Let  A , B  and C are the driving shaft, intermediate shaft and driven shaft respectively. We

know that for the driving shaft (A ) and intermediate shaft (B),

Maximum speed of the intermediate shaft,

A
B ( )

500
532.1 r.p.m

cos cos 20
max

N
N = = =

α °
Ans.

and minimum speed of the intermediate shaft,

N
B (min)

 = N
A

 cos α = 500 × cos 20° = 469.85 r.p.m.  Ans.

Maximum and minimum speed of the driven shaft

We know that for the intermediate shaft (B) and driven shaft (C),

Maximum speed of the driven shaft,

                                   
B( ) A

C( ) 2 2

500
566.25 r.p.m.

cos cos cos 20

max

max

N N
N = = = =

α α °
Ans.
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and minimum speed of the driven shaft,

N
C (min)

= N
B (min)

 × cos α = N
A

. cos2 α

= 500 × cos2 20° = 441.5 r.p.m. Ans.

EXERCISES

1. Fig. 9.22 shows the link GAB which oscillates on a fixed centre at A  and the link FD on a fixed

centre at F. The link A B is equal to AC and DB, BE, EC and CD are equal in length.

Fig. 9.22

(a) Find the length of AF and the position of centre F so that the point E may move in a straight line.

(b) If  the  point  E  is  required  to move in a circle passing through centre A , what will be the path

of point D ? [Ans. AF = FD]

(Hint. The mechanism is similar to Peaucellier’s mechanism)

2. Fig. 9.23 shows a part of the mechanism of a circuit breaker. A  and D are fixed centres and the lengths

of the links are : A B = 110 mm, BC = 105 mm, and CD = 150 mm.

            

All dimensions in mm.

Fig. 9.23 Fig. 9.24

Find the position of a point P on BC produced that will trace out an approximately straight vertical

path 250 mm long.

3. The mechanism, as shown in Fig. 9.24, is a four bar kinematic chain of which the centres A and B are

fixed. The lengths are : A B = 600 mm, AC = BD = CD = 300 mm. Find the point G on the centre line

of the cross arm of which the locus is an approximately straight line even for considerable displace-

ments from the position shown in the figure. [Ans. 400 mm.]

(Hint : It is a Robert’s approximate straight line mechanism. Produce AC and BD to intersect at point

E. Draw a vertical line from E to cut the centre line of cross arm at G. The distance of G from CD is

the required distance).
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4. The distance between the fixed centres O and O
1
 of a Watt’s straight line motion, as shown in Fig. 9.6,

is 250 mm. The lengths of the three moving links OB, B A and AO
1
 are 150 mm, 75 mm and 100 mm

respectively. Find the position of a point P on B A which gives the best straight line motion.

5. A Watt’s parallel motion has two bars OA and O′B pivoted at O and O′ respectively and joined by the

link A B in the form of a crossed four bar mechanism. When the mechanism is in its mean position, the

bars OA and O′B are perpendicular to the link A B. If OA = 75 mm, O′B = 25 mm and A B = 100 mm,

find the position of the tracing point P and also find how far P is from the straight line given by the

mean position of A B, when

1.  OA and OB are in one straight line, and    2.  O′B and A B are in one straight line.

[Ans. 37.5 mm, 6.5 mm,12 mm]

6. Design a pantograph for an indicator to obtain the indicator diagram of an engine. The distance from

the tracing point of the indicator is 100 mm. The indicator diagram should represent four times the gas

pressure inside the cylinder of an engine.

7. In a Davis steering gear, the distance between the pivots of the front axle is 1 metre and the wheel base

is 2.5 metres. Find the inclination of the track arm to the longitudinal axis of the car, when it is moving

along a straight path. [Ans. 11.17°]

8. A Hooke’s joint connects two shafts whose axes intersect at 150°. The driving shaft rotates uni-

formly at 120 r.p.m. The driven shaft operates against a steady torque of 150 N-m and carries a

flywheel whose mass is 45 kg and radius of gyration 150 mm. Find the maximum torque which will be

exerted by the driving shaft. [Ans. 187 N-m]

(Hint : The maximum torque exerted by the driving shaft is the sum of steady torque and the maxi-

mum accelerating torque of the driven shaft).

9. Two shafts are connected by a Hooke’s joint. The driving shaft revolves uniformly at 500 r.p.m. If the

total permissible variation in speed of a driven shaft is not to exceed  6% of the mean speed, find the

greatest permissible angle between the centre lines of the shafts. Also determine the maximum and

minimum speed of the driven shaft. [Ans. 19.6° ; 530 r.p.m. ; 470 r.p.m.]

10. Two inclined shafts are connected by means of a universal joint. The speed of the driving shaft is 1000

r.p.m. If the total fluctuation of speed of the driven shaft is not to exceed 12.5% of this, what is the

maximum possible inclination between the two shafts?

With this angle, what will be the maximum acceleration to which the driven shaft is subjected and

when this will occur ? [Ans. 20.4° ; 1570 rad/s2 ; 41.28°]

DO YOU KNOW ?
1. Sketch a pantograph, explain its working and show that it can be used to reproduce to an enlarged

scale a given figure.

2. A circle has OR as its diameter and a point Q lies on its circumference. Another point P lies on the line

OQ produced. If OQ turns about O as centre and the product OQ × OP remains constant, show that

the point P moves along a straight line perpendicular to the diameter OR.

3. What are straight line mechanisms ? Describe one type of exact straight line motion mechanism

with the help of a sketch.

4. Describe the Watt’s parallel mechanism for straight line motion and derive the condition under which

the straight line is traced.

5. Sketch an intermittent motion mechanism and explain its practical applications.

6. Give a neat sketch of the straight line motion ‘Hart mechanism.’ Prove that it produces an exact

straight line motion.

7. (a) Sketch and describe the Peaucellier straight line mechanism indicating clearly the conditions

under which the point P on the corners of the rhombus of the mechanism, generates a straight

line.

(b) Prove geometrically that the above mechanism is capable of producing straight line.
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8. Draw the sketch of a mechanism in which a point traces an exact straight line. The mechanism must be

made of only revolute pairs. Prove that the point traces an exact straight line motion.

(Hint. Peaucellier straight line mechanism)

9. Sketch the Dobbie-McInnes indicator mechanism and show that the displacement of the pencil

which traces the indicator diagram is proportional to the displacement of the indicator piston.

10. What is the condition for correct steering ? Sketch and show the two main types of steering gears

and discuss their relative advantages.

11. Explain why two Hooke’s joints are used to transmit motion from the engine to the differential of an

automobile.

12. Derive an expression for the ratio of shafts velocities for Hooke’s joint and draw the polar diagram

depicting the salient features of driven shaft speed.

OBJECTIVE TYPE QUESTIONS

1. In a pantograph, all the pairs are

(a) turning pairs (b) sliding pairs

(c) spherical pairs (d) self-closed pairs

2. Which of the following mechanism is made up of turning pairs ?

(a) Scott Russel’s mechanism (b) Peaucellier’s mechanism

(c) Hart’s mechanism (d) none of these

3. Which of the following mechanism is used to enlarge or reduce the size of a drawing ?

(a) Grasshopper mechanism (b) Watt mechanism

(c) Pantograph (d) none of these

4. The Ackerman steering gear mechanism is preferred to the Davis steering gear mechanism, because

(a)   whole of the mechanism in the Ackerman steering gear is on the back of the front wheels.

(b) the Ackerman steering gear consists of turning pairs

(c) the Ackerman steering gear is most economical

(d) both (a) and (b)

5. The driving and driven shafts connected by a Hooke’s joint will have equal speeds, if

(a) cos θ = sin α (b) sin tanθ = ± α

(c) tan cosθ = ± α (d) cot θ = cos α

     where θ =  Angle through which the driving shaft turns, and

α =  Angle of inclination of the driving and driven shafts.

ANSWERS
1. (a) 2. (b), (c) 3. (c) 4. (d) 5. (c)

GO To FIRST
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Friction

10
Features (Main)

1. Introduction.

2. Types of Friction.

4. Friction Between Lubricated

Surfaces.

 5. Limiting Friction.

8. Laws of Solid Friction.

9. Laws of Fluid Friction.

10. Coefficient of Friction.

11. Limiting Angle of Friction.

12. Angle of Repose.

14. Friction of a Body Lying on

a Rough Inclined Plane.

15.  Efficiency of Inclined Plane.

16. Screw Friction.

17. Screw Jack.

18. Torque Required to Lift the

Load by a Screw Jack.

20. Efficiency of a Screw Jack.

21. Maximum Efficiency of a

Screw Jack.

22. Over Hauling and Self

Locking Screws.

23. Efficiency of Self Locking

Screws.

24. Friction of a V-thread.

25. Friction in Journal Bearing-

Friction Circle.

26. Friction of Pivot and Collar

Bearing.

27. Flat Pivot Bearing.

28. Conical Pivot Bearing.

29. Trapezoidal or Truncated

Conical Pivot Bearing.

30. Flat Collar Bearing.

31. Friction Clutches.

32. Single Disc or Plate Clutch.

33. Multiple Disc Clutch.

34. Cone Clutch.

35. Centrifugal Clutches.

10.1. Introduction

It has been established since long, that the surfaces

of the bodies are never perfectly smooth. When, even a very

smooth surface is viewed under a microscope, it is found to

have roughness and irregularities, which may not be detected

by an ordinary touch. If a block of one substance is placed

over the level surface of the same or of different material, a

certain degree of interlocking of the minutely projecting par-

ticles takes place. This does not involve any force, so long

as the block does not move or tends to move. But whenever

one block moves or tends to move tangentially with respect

to the surface, on which it rests, the interlocking property of

the projecting particles opposes the motion. This opposing

force, which acts in the opposite direction of the movement

of the upper block, is called the force of friction or simply

friction. It thus follows, that at every joint in a machine, force

of friction arises due to the relative motion between two parts

and hence some energy is wasted in overcoming the friction.

Though the friction is considered undesirable, yet it plays an

important role both in nature and in engineering e.g. walk-

ing on a road, motion of locomotive on rails, transmission of

power by belts, gears etc. The friction between the wheels

and the road is essential for the car to move forward.

10.2. Types of Friction

In general, the friction is of the following two types :

CONTENTS

CONTENTS
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1. Static friction. It is the friction, experienced by a body, when at rest.

2. Dynamic friction. It is the friction, experienced by a body, when in motion. The dynamic

friction is also called kinetic friction and is less than the static friction. It is of the following three

types :

(a) Sliding friction. It is the friction, experienced by a body, when it slides over another

body.

(b) Rolling friction. It is the friction, experienced between the surfaces which has balls or

rollers interposed between them.

(c) Pivot friction. It is the friction, experienced by a body, due to the motion of rotation as

in case of foot step bearings.

The friction may further be classified as :

1. Friction between unlubricated surfaces, and

2. Friction between lubricated surfaces.

These are discussed in the following articles.

10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as

dry or solid friction. It is due to the surface roughness. The dry or solid friction includes the sliding

friction and rolling friction as discussed above.

10.4. Friction Between Lubricated Surfaces

When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction

may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction). It is the friction,

experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-

cant. The thickness of this very thin layer is of the molecular dimension. In this type of friction, a

thin layer of lubricant forms a bond between the two rubbing surfaces. The lubricant is absorbed on

the surfaces and forms a thin film. This thin film of the lubricant results in less friction between

them. The boundary friction follows the laws of solid friction.

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between

the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant. In this case, the actual

surfaces do not come in contact and thus do not rub against each other. It is thus obvious that fluid

friction is not due to the surfaces in contact but it is due to the viscosity and oiliness of the lubricant.

Note : The viscosity is a measure of the resistance offered to the sliding one layer of the lubricant over an

adjacent layer. The absolute viscosity of a lubricant may be defined as the force required to cause a plate of unit

area to slide with unit velocity relative to a parallel plate, when the two plates are separated by a layer of

lubricant of unit thickness.

The oiliness property of a lubricant may be clearly understood by considering two lubricants of equal

viscosities and at equal temperatures. When these lubricants are smeared on two different surfaces, it is found

that the force of friction with one lubricant is different than that of the other. This difference is due to the

property of the lubricant known as oiliness. The lubricant which gives lower force of friction is said to have

greater oiliness.

10.5. Limiting Friction

Consider that a body A  of weight W  is lying on a rough horizontal body B as shown in Fig.

10.1 (a). In this position, the body A  is in equilibrium under the action of its own weight W , and the
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normal reaction R
N

 (equal to W ) of B on A . Now if a small horizontal force P
1
 is applied to the body

A  acting through its centre of gravity as shown in Fig. 10.1 (b), it does not move because of the

frictional force which prevents the motion. This shows that the applied force P
1
 is exactly balanced

by the force of friction F
1
 acting in the opposite direction.

If we now increase the applied force to P
2
 as shown in Fig. 10.1 (c), it is still found to be in

equilibrium. This means that the force of friction has also increased to a value F
2
 = P

2
. Thus every

time the effort is increased the force of friction also increases, so as to become exactly equal to the

applied force. There is, however, a limit beyond which the force of friction cannot increase as shown

in Fig. 10.1 (d). After this, any increase in the applied effort will not lead to any further increase in the

force of friction, as shown in Fig. 10.1 (e), thus the body A  begins to move in the direction of the

applied force. This maximum value of frictional force, which comes into play, when a body just

begins to slide over the surface of the other body, is known as limiting force of friction or simply

limiting friction. It may be noted that when the applied force is less than the limiting friction, the body

remains at rest, and the friction into play is called static friction which may have any value between

zero and limiting friction.

Fig. 10.1. Limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :

1. The force of friction always acts in a direction, opposite to that in which the body tends to

move.

2. The magnitude of the force of friction is exactly equal to the force, which tends the body

to move.

3. The magnitude of the limiting friction (F ) bears a constant ratio to the normal reaction

(R
N

) between the two surfaces. Mathematically

        F/R
N

 = constant
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4. The force of friction is independent of the area of contact, between the two surfaces.

5. The force of friction depends upon the roughness of the surfaces.

10.7. Laws of Kinetic or Dynamic Friction

Following are the laws of kinetic or dynamic friction :

1. The force of friction always acts in a direction, opposite to that in which the body is

moving.

2. The magnitude of the kinetic friction bears a constant ratio to the normal reaction between

the two surfaces. But this ratio is slightly less than that in case of limiting friction.

3. For moderate speeds, the force of friction remains constant. But it decreases slightly with

the increase of speed.

10.8. Laws of Solid Friction

Following are the laws of solid friction :

1. The force of friction is directly proportional to the normal load between the surfaces.

2. The force of friction is independent of the area of the contact surface for a given normal

load.

3. The force of friction depends upon the material of which the contact surfaces are made.

4. The force of friction is independent of the velocity of sliding of one body relative to the

other body.

10.9. Laws of Fluid Friction

Following are the laws of fluid friction :

1. The force of friction is almost independent of the load.

2. The force of friction reduces with the increase of the temperature of the lubricant.

3. The force of friction is independent of the substances of the bearing surfaces.

4. The force of friction is different for different lubricants.

10.10. Coefficient of Friction

It is defined as the ratio of the limiting friction (F) to the normal reaction (R
N

) between the

two bodies. It is generally denoted by µ. Mathematically, coefficient of friction,

µ = F/R
N

10.11. Limiting Angle of Friction

Consider that a body A  of weight (W ) is resting on a horizontal plane B, as shown in Fig. 10.2.

If a horizontal force P is applied to the body, no relative motion will

take place until the applied force P is equal to the force of friction

F, acting opposite to the direction of motion. The magnitude of this

force of friction is F = µ.W  = µ.R
N

, where R
N

 is the normal reaction.

In the limiting case, when the motion just begins, the body will be

in equilibrium under the action of the following three forces :

1. Weight of the body (W ),

2. Applied horizontal force (P), and

3. Reaction (R) between the body A and the plane B.

Fig. 10.2. Limiting angle of

friction.
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The reaction R must, therefore, be equal and opposite to the resultant of W and P and will be

inclined at an angle φ to the normal reaction R
N

. This angle φ is known as the limiting angle of friction.

It may be defined as the angle which the resultant reaction R makes with the normal reaction R
N

.

From Fig. 10.2, tan φ = F/R
N

 = µ R
N

/ R
N

 = µ

10.12. Angle of Repose

Consider that a body A of weight (W ) is resting on

an inclined plane B, as shown in Fig. 10.3. If the angle of

inclination  α of the plane to the horizontal is such that the

body begins to move down the plane, then the angle α is

called the angle of repose.

A little consideration will show that the body will

begin to move down the plane when the angle of inclination

of the plane is equal to the angle of friction (i.e. α = φ). This

may be proved as follows :

The weight of the body (W ) can be re-

solved into the following two components :

1. W  sin α, parallel to the plane B.

This component tends to slide the body down

the plane.

2. W cos α, perpendicular to the plane

B. This component is balanced by the normal

reaction (R
N

) of the body A  and the plane B.

The body will only begin to move

down the plane, when

W  sin α = F = µ.R
N

 = µ.W cos α ...(∵ R
N

 = W cos α)

∴ tan α = µ = tan φ    or   α = φ ...(∵ µ = tan φ)

10.13. Minimum Force Required to Slide a Body on a Rough Horizontal
  Plane

Consider that a body A of weight (W ) is resting on a

horizontal plane B as shown in Fig. 10.4. Let an effort P is

applied at an angle θ to the horizontal such that the body A

just moves. The various forces acting on the body are shown

in Fig. 10.4. Resolving the force P into two components, i.e.

P sin θ acting upwards and P cos θ acting horizontally. Now

for the equilibrium of the body A ,

R
N

 + P sin θ = W

or R
N

= W – P sin θ            ...(i)

and P cos θ = F = µ.R
N

               ...(ii)

...(∵ F = µ.R
N

)

Substituting the value of R
N

 from equation (i), we have

P cos θ = µ (W – P sin θ) = tan φ (W – P sin θ) ...(∵ µ = tan φ)

( )
sin

sin
cos

W P
φ

= − θ
φ

Fig. 10.3. Angle of repose.

Friction is essential to provide grip between tyres

and road. This is a positive aspect of ‘friction’.

Fig. 10.4. Minimum force required

to slide a body.
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P cos θ .cos φ = W  sin φ – P sin θ.sin φ

P cos θ.cos φ + P sin θ.sin φ = W  sin φ

P cos (θ – φ) = W  sin φ ...[�cos θ. cos φ + sin θ.sin φ = cos (θ – φ)]

sin

cos ( )

W
P

φ
=

θ − φ
      ...(iii)

For P to be minimum, cos (θ – φ) should be maximum, i.e.

cos (θ – φ) = 1 or θ – φ = 0° or θ = φ

In other words, the effort P will be minimum, if its inclination with the horizontal is equal to

the angle of friction.

∴ P
min

= W sin θ ...[From equation (iii)]

Example 10.1. A body, resting on a rough horizontal plane required a pull of 180 N inclined

at 30º to the plane just to move it. It was found that a push of 220 N inclined at 30º to the plane just

moved the body. Determine the weight of the body and the coefficient of friction.

Solution. Given : θ = 30º

Let W = Weight of the body in newtons,

R
N

= Normal reaction,

µ = Coefficient of friction, and

F = Force of friction.

First of all, let us consider a pull of 180 N. The force of friction (F) acts towards left as shown

in Fig. 10.5 (a).

Resolving the forces horizontally,

F = 180 cos 30º = 180 × 0.866 = 156 N

Fig. 10.5

Now resolving the forces vertically,

R
N

= W – 180 sin 30º = W – 180 × 0.5 = (W  – 90) N

We know that F = µ.R
N

     or    156 = µ (W – 90)   ...(i)

Now let us consider a push of  220 N. The force of friction (F) acts towards right as shown in Fig.

10.5 (b).

Resolving the forces horizontally,

F = 220 cos 30º = 220 × 0.866 = 190.5 N
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Now resolving the forces vertically,

R
N

= W  + 220 sin 30º = W + 220 × 0.5 = (W + 110) N

We know that F = µ.R
N

     or    190.5 = µ (W  + 110) ...(ii)

From equations (i) and (ii),

W = 1000 N,   and   µ = 0.1714   Ans.

10.14. Friction of a Body Lying on a Rough Inclined Plane

Consider that a body of weight (W ) is lying on a plane inclined at an angle α with the horizon-

tal, as shown in Fig. 10.6 (a) and (b).

(a) Angle of inclination less than (b) Angle of inclination more than

angle of friction. angle of friction.

Fig. 10.6. Body lying on a rough inclined plane.

A little consideration will show that if the inclination of the plane, with the horizontal, is less

than the angle of friction, the body will be in equilibrium as shown in Fig. 10.6 (a). If,in this condi-

tion, the body is required to be moved upwards and downwards, a corresponding force is required for

the same. But, if the inclination of the plane is more than the angle of friction, the body will move

down and an upward force (P) will be required to resist the body from moving down the plane as

shown in Fig. 10.6 (b).

Let us now analyse the various forces which act on a body when it slides either up or down an

inclined plane.

1.  Considering the motion of the body up the plane

Let W = Weight of the body,

α = Angle of inclination of the plane to the horizontal,

φ = Limiting angle of friction for the contact surfaces,

P = Effort applied in a given direction in order to cause the body to slide with

uniform velocity parallel to the plane, considering friction,

P
0

= Effort required to move the body up the plane neglecting friction,

θ = Angle which the line of action of P makes with the weight of the body W ,

µ = Coefficient of friction between the surfaces of the plane and the body,

R
N

= Normal reaction, and

R = Resultant reaction.
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When the friction is neglected, the body is in equilibrium under the action of the three forces,

i.e. P
0
, W and R

N
, as shown in Fig. 10.7 (a). The triangle of forces is shown in Fig. 10.7 (b). Now

applying sine rule for these three concurrent forces,

                       
0 or

sin sin ( )

P W
=

α θ − α
 * 0

sin

sin ( )

W
P

α
=

θ − α

...(i)

(a) (b) (c)

Fig. 10.7. Motion of the body up the plane, neglecting friction.

When friction is taken into account, a frictional force F = µ.R
N

 acts in the direction opposite

to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and

the body is inclined at an angle φ with the normal reaction R
N

. The triangle of forces is shown in Fig.

10.8 (b). Now applying sine rule,

sin ( ) sin[ ( )]

P W
=

α + φ θ − α + φ

(a) (b) (c)

Fig. 10.8. Motion of the body up the plane, considering friction.

* 1. The effort P
0
 or (or P) may also be obtained by applying Lami’s theorem to the three forces, as

shown in Fig. 10.7 (c) and 10.8 (c). From Fig. 10.7 (c),

0

sin (180º ) sin[180º ( )]

P W
=

− α − θ − α

or                                                                        
0

sin sin ( )

P W
=

α θ − α
...[same as before]

2. The effort P
0
 (or P) may also be obtained by resolving the forces along the plane and perpendicular to

the plane and then applying ΣH = 0 and ΣV  = 0.
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∴           
sin( )

sin[ ( )]

W
P

α + φ
=

θ− α + φ
...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be

written as

 0

sin sin
tan

sin (90º ) cos

W W
P W

α α
= = = α

− α α

and                                                 
sin ( ) sin ( )

tan ( )
sin[90º ( ) cos ( )

W W
P W

α + φ α + φ
= = = α + φ

− α + φ α + φ

2.  When the effort applied is parallel to the plane, then θ = 90º + α. In that case, the equations (i) and

(ii) may be written as

                                           0

sin
sin

sin (90º )

W
P W

α
= = α

+ α − α

and                                             
sin ( ) sin ( )

sin[(90º ) ( )] cos

W W
P

α + φ α + φ
= =

+ α − α + φ φ

                                               
(sin cos cos sin )

(sin cos . tan )
cos

W
W

α φ + α φ
= = α + α φ

φ

                                                       = W (sin α + µ cos α) ...( ∵ µ = tan φ)

2.  Considering the motion of the body down the plane

Neglecting friction, the effort required for the motion down the plane will be same as for the

motion up the plane, i.e.

0

sin

sin ( )

W
P

α
=

θ − α
...(iii)

(a) (b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.

When the friction is taken into account, the force of friction F = µ.R
N

 will act up the plane and

the resultant reaction R will make an angle φ with R
N

 towards its right as shown in Fig. 10.9 (a). The

triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

sin ( ) sin[ ( )]

P W
=

α − φ θ − α − φ

or                
sin ( )

sin[ ( )]

W
P

α − φ
=

θ − α − φ
...(iv)
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Notes : 1. The value of P may also be obtained either by applying Lami’s theorem to Fig. 10.9 (c), or by

resolving the forces along the plane and perpendicular to the plane and then using ΣH = 0 and ΣV  = 0 (See Art.

10.18 and 10.19).

2. When P is applied horizontally, then θ = 90º. In that case, equation (iv) may be written as

                              
sin ( ) sin ( )

sin[90º ( )] cos ( – )

W W
P

α − φ α − φ
= =

− α − φ α φ
= W tan (α – φ))

3. When P is applied parallel to the plane, then θ = 90° + α. In that case, equation (iv) may be

written as

                              
sin ( ) sin ( )

sin[90º ) ( )] cos

W W
P

α − φ α − φ
= =

+ α − α − φ φ

                                  
(sin cos cos sin )

(sin tan cos )
cos

W
W

α φ − α φ
= = α − φ α

φ

                                   = W (sin α – µ cos α) ...(∵ tan φ = µ)

10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P
0
) to the effort required considering

friction (i.e. P) is known as efficiency of the inclined plane. Mathematically, efficiency of the inclined

plane,

                            0
/P Pη =

Let us consider the following two cases :

1. For the motion of the body up the plane

 Efficiency,        0 sin sin[ ( )]

sin ( ) sin ( )

P W

P W

α θ − α + φ
η = = ×

θ − α α + φ

                             
sin sin cos ( ) cos sin ( )

sin cos cos sin sin ( )

α θ α + φ − θ α + φ
= ×

θ α − θ α α + φ

Multiplying the numerator and denominator by sin (α + φ) sin θ, we get

                            
cot ( ) cot

cot cot

α + φ − θ
η =

α − θ

Notes : 1. When effort is applied horizontally, then θ = 90°.

∴                           
tan

tan ( )

α
η =

α + φ

2. When effort is applied parallel to the plane, then θ = 90º + α.

∴                           
cot ( ) cot (90º ) cot ( ) tan sin cos

cot cot (90º ) cot tan sin ( )

α + φ − + α α + φ + α α φ
η = = =

α − + α α + α α + φ

2.  For the motion of the body down the plane

Since the value of P will be less than P
0
, for the motion of the body down the plane, therefore

in this case,

                            
0

sin ( ) sin ( )

sin[ ( )] sin

P W

P W

α − φ θ − α
η = = ×

θ − α − φ α

               
sin ( ) sin cos cos sin

sin cos ( ) cos sin ( ) sin

α − φ θ α − θ α
= ×

θ α − φ − θ α − φ α
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Multiplying the numerator and denominator by sin (α – φ) sin θ, we get

              
cot cot

cot ( ) cot

α − θ
η =

α − φ − θ

Notes : 1. When effort is applied horizontally, then θ = 90º.

∴              
cot tan ( )

cot ( ) tan

α α − φ
η = =

α − φ α

2. When effort is applied parallel to the plane, then θ = 90º + α.

∴              
cot cot (90º ) cot tan sin ( )

cot ( ) cot (90º ) cot ( ) tan sin cos

α − + α α + α α − φ
η = = =

α − φ − + α α − φ + α α φ

Example 10.2. An effort of 1500 N is required to just move a certain body up an inclined

plane of angle 12º, force acting parallel to the plane. If the angle of inclination is increased to 15º,

then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P
1
 = 1500 N ; α

1
 = 12º ; α

2
 = 15º ; P

2
 = 1720 N

Let        W = Weight of the body in newtons, and

      µ = Coefficient of friction.

(a) (b)

Fig. 10.10

First of all, let us consider a body lying on a plane inclined at an angle of 12º with the

horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 (a).

Let        R
N1

 = Normal reaction, and

         F
1
 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to

the plane (P
1
),

                        1500 = W (sin α
1
 + µ cos α

1
) = W  (sin 12º + µ cos 12º) ...(i)

Now let us consider the body lying on a plane inclined at an angle of 15º with the horizontal

and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (b).

Let                      R
N2 

= Normal reaction, and

         F
2
 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to

the plane (P
2
),

                         1720 = W (sin α
2
 + µ cos α

2
) = W (sin 15º + µ cos 15º) ...(ii)

Coefficient of friction

Dividing equation (ii) by equation (i),

                        
1720 (sin 15º cos 15º )

1500 (sin 12º cos 12º )

W

W

+ µ
=

+ µ
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1720 sin 12º + 1720 µ cos 12º = 1500 sin 15º + 1500 µ cos 15º

µ (1720 cos 12º – 1500 cos 15º) = 1500 sin 15º – 1720 sin 12º

∴
1500 sin 15º 1720 sin 12º 1500 0.2588 1720 0.2079

1720 cos 12º 1500 cos 15º 1720 0.9781 1500 0.9659

− × − ×
µ = =

− × − ×

    
388.2 357.6 30.6

0.131
1682.3 1448.5 233.8

−
= = =

−
Ans.

Weight of the body

Substituting the value of µ in equation (i),

      1500 = W (sin 12º + 0.131 cos 12º)

         = W (0.2079 + 0.131 × 0.9781) = 0.336 W

∴       W = 1500/0.336 = 4464 N Ans.

10.16. Screw Friction

The screws, bolts, studs, nuts etc. are widely used in various machines and structures for

temporary fastenings. These fastenings have screw threads, which are made by cutting a continuous

helical groove on a cylindrical surface. If the threads are cut on the outer surface of a solid rod, these

are known as external threads. But if the threads are cut on the internal surface of a hollow rod, these

are known as internal threads. The screw threads are mainly of two types i.e. V-threads and square

threads. The V-threads are stronger and offer more frictional resistance to motion than square threads.

Moreover, the V-threads have an advantage of preventing the nut from slackening. In general, the V-

threads are used for the purpose of tightening pieces together e.g. bolts and nuts etc. But the square

threads are used in screw jacks, vice screws etc. The following terms are important for the study of

screw :

1.  Helix. It is the curve traced by a particle, while describing a circular path at a uniform

speed and advancing in the axial direction at a uniform rate. In other words, it is the curve traced by

a particle while moving along a screw thread.

Jet engine used in Jet aircraft.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread,

measured parallel to the axis of the screw.

3.  Lead. It is the distance, a screw thread advances axially in one turn.

4.  Depth of thread. It is the distance between the top and bottom surfaces of a thread (also

known as crest and root of a thread).

5.  Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single

threaded screw.

6.  Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is

known as multi-threaded screw e.g. in a double threaded screw, two threads are cut in one lead length.

In such cases, all the threads run independently along the length of the rod. Mathematically,

                          Lead = Pitch × Number of threads

7. Helix angle. It is the slope or inclination of the thread with

the horizontal. Mathematically,

                        
Lead of screw

tan
Circumference of screw

α =

                = p/πd           ...(In single-threaded screw)

                 = n.p/πd          ...(In multi-threaded screw)

where             α = Helix angle,

            p = Pitch of the screw,

                                d = Mean diameter of the screw, and

                               n  = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by apply-

ing a comparatively smaller effort at its handle. The principle, on

which a screw jack works is similar to that of an inclined plane.

(a) Screw jack. (b) Thrust collar.

Fig. 10.11

Screw Jack.
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Fig. 10.11 (a) shows a common form of a screw jack, which consists of a square threaded rod

(also called screw rod or simply screw) which fits into the inner threads of the nut. The load, to be

raised or lowered, is placed on the head of the square threaded rod which is rotated by the application

of an effort at the end of the lever for lifting or lowering the load.

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the

screw and developed, it will form an inclined plane as shown in Fig. 10.12 (a).

 (a) Development of a screw. (b) Forces acting on the screw.

Fig. 10.12

Let p = Pitch of the screw,

d = Mean diameter of the screw,

α = Helix angle,

P = Effort applied at the circumference of the screw to lift the

load,

W = Load to be lifted, and

µ = Coefficient of friction, between the screw and nut = tan φ,

where φ is the friction angle.

From the geometry of the Fig. 10.12 (a), we find that

tan α = p/π d

Since the principle on which a screw jack works is similar to that of an inclined plane, there-

fore the force applied on the lever of a screw jack may be considered to be horizontal as shown in Fig.

10.12 (b).

Since the load is being lifted, therefore the force of friction (F = µ.R
N

) will act downwards.

All the forces acting on the screw are shown in Fig. 10.12 (b).

Resolving the forces along the plane,

P cos α = W sin α + F = W sin α + µ.R
N

...(i)

and resolving the forces perpendicular to the plane,

R
N

= P sin α + W cos α ...(ii)

Substituting this value of R
N

 in equation (i),

P cos α = W sin α + µ (P sin α + W  cos α)

= W sin α + µ P sin α + µ W  cos α

or P cos α – µ P sin α = W sin α + µ W cos α

or P (cos α – µ sin α) = W (sin α + µ cos α)
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∴

sin cos

cos sin
P W

α + µ α
= ×

α − µ α

Substituting the value of µ = tan φ in the above equation, we get

sin tan cos

cos tan sin
P W

α + φ α
= ×

α − φ α

Multiplying the numerator and denominator by cos φ,

sin cos sin cos sin ( )

cos cos sin sin cos ( )
P W W

α φ + φ α α + φ
= × = ×

α φ − α φ α + φ

tan ( )W= α + φ

∴ Torque required to overcome friction between the screw and nut,

1
tan ( )

2 2

d d
T P W= × = α + φ

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 10.11 (b),

so that the load does not rotate with the screw, then the torque required to overcome friction at the

collar,

1 2
2 1 1

. . .
2

R R
T W W R

+ 
= µ = µ 

 

where R
1
 and R

2
= Outside and inside radii of the collar,

R = Mean radius of the collar, and

µ
1

= Coefficient of friction for the collar.

∴ Total torque required to overcome friction (i.e. to rotate the screw),

 1 2 1
. .

2

d
T T T P W R= + = × + µ

If an effort P
1
 is applied at the end of a lever of arm length l, then the total torque required to

overcome friction must be equal to the torque applied at the end of the lever, i.e.

1
.

2

d
T P P l= × =

Notes : 1. When the *nominal diameter (d
0
) and the **core diameter (d

c
) of the screw thread is given, then the

mean diameter of the screw,

                                               
0

0
2 2 2

c

c

d d p p
d d d

+
= = − = +

2. Since the mechanical advantage is the ratio of load lifted (W ) to the effort applied (P
1
) at the end of

the lever, therefore mechanical advantage,

                                           
1

2
. .

.

W W l
M A

P p d

×
= = ... 1

.

2

P d
P

l

 
= 

 
�

                                                    
2 2

tan ( ) .tan ( )

W l l

W d d

×
= =

α + φ α + φ

Example 10.3. An electric motor driven power screw moves a nut in a horizontal plane

against a force of 75 kN at a speed of 300 mm/min. The screw has a single square thread of 6 mm

pitch on a major diameter of 40 mm. The coefficient of friction at the screw threads is 0.1. Estimate

power of the motor.

* The nominal diameter of a screw thread is also known as outside diameter or major diameter.

** The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.
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Solution. Given : W = 75 kN = 75 × 103 N ; v = 300 mm/min ; p = 6 mm ; d
0
 = 40 mm ;

µ = tan φ = 0.1

We know that mean diameter of the screw,

d = d
0
 – p/2 = 40 – 6/2 = 37 mm = 0.037 m

and                                     
6

tan 0.0516
37

p

d
α = = =

π π ×

∴ Force required at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =  
− α φ 

                                                
3 30.0516 0.1

75 10 11.43 10 N
1 0.0516 0.1

+ 
= × = × 

− × 

and torque required to overcome friction,

T = P × d/2 = 11.43 × 103 × 0.037/2 = 211.45 N-m

We know that speed of the screw,

Speed of the nut 300
50 r.p.m.

Pitch of the screw 6
N = = =

and angular speed,        ω = 2 π × 50/60 = 5.24 rad/s

∴ Power of the motor = T.ω = 211.45 × 5.24 = 1108 W = 1.108 kW Ans.

Example 10.4. A turnbuckle, with right

and left hand single start threads, is used to couple

two wagons. Its thread pitch is 12 mm and mean

diameter 40 mm. The coefficient of friction between

the nut and screw is 0.16.

1. Determine the work done in drawing the

wagons together a distance of 240 mm, against a

steady load of 2500 N.

2. If the load increases from 2500 N to 6000

N over the distance of 240 mm, what is the work to

be done?

Solution. Given : p = 12 mm ; d = 40 mm ;

µ = tan φ = 0.16 ; W = 2500 N

1.  Work done in drawing the wagons together against a steady load of 2500 N

We know that               
12

tan 0.0955
40

p

d
α = = =

π π ×

∴ Effort required at the circumference of the screw,

  
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =
 

− α φ 

Turnbuckle.
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0.0955 0.16

2500 648.7 N
1 0.0955 0.16

+ 
= = 

− × 

and torque required to overcome friction between the screw and nut,

                                            / 2 648.7 40 / 2 12 947 N-mm 12.974 N-mT P d= × = × = =

A little consideration will show that for one complete revolution of the screwed rod, the

wagons are drawn together through a distance equal to 2 p, i.e. 2 × 12 = 24 mm. Therefore in order to

draw the wagons together through a distance of 240 mm, the number of turns required are given by

N = 240/24 = 10

∴ Work done = T × 2 π N = 12.974 × 2 π × 10 = 815.36  N-m  Ans.

2.  Work done in drawing the wagons together when load increases from 2500 N to 6000 N

For an increase in load from 2500 N to 6000 N,

                              
815.3(6000 2500)

Work done = 114.4 N-m
2500

−
= Ans.

Example 10.5. A 150 mm diameter valve, against which a steam pressure of 2 MN/m2 is

acting, is closed by means of a square threaded screw 50 mm in external diameter with 6 mm pitch.

If the coefficient of friction is 0.12 ; find the torque required to turn the handle.

Solution. Given : D = 150 mm = 0.15 mm = 0.15 m ;  Ps = 2 MN/m2 = 2 × 106 N/m2 ;

d
0
 = 50 mm ; p = 6 mm ; µ = tan φ = 0.12

We know that load on the valve,

W = Pressure × Area = 
2 6 2

S
2 10 (0.15) N

4 4
p D

π π
× = × ×

= 35 400 N

Mean diameter of the screw,

d = d
0
 – p/2 = 50 – 6/2 = 47 mm = 0.047 m

∴                                  
6

tan 0.0406
47

p

d
α = = =

π π ×

We know that force required to turn the handle,

                                            
tan tan

tan ( )
1 tan .tan

P W W
α + φ 

= α + φ =  
− α φ 

                                                
0.0406 12

35400 5713 N
1 0.0406 0.12

+ 
= = 

− × 

∴  Torque required to turn the handle,

T = P × d/2 = 5713 × 0.047/2 = 134.2 N-m  Ans.

Example 10.6. A square threaded bolt of root diameter 22.5 mm and pitch 5 mm is tightened

by screwing a nut whose mean diameter of bearing surface is 50 mm. If coefficient of friction for nut

and bolt is 0.1 and for nut and bearing surface 0.16, find the force required at the end of a spanner

500 mm long when the load on the bolt is 10 kN.

Solution. Given : d
c
 = 22.5 mm ; p = 5 mm ;  D = 50 mm or R = 25 mm ; µ = tan φ = 0.1 ;

µ
1
 = 0.16 ; l = 500 mm ; W  = 10 kN = 10 × 103 N

Let P
1

= Force required at the end of a spanner in newtons.
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We know that mean diameter of the screw,

                                            / 2 22.5 5 / 2 25 mm
c

d d p= + = + =

∴                                  
5

tan 0.0636
25

p

d
α = = =

π π ×

Force requred at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =  
− α φ 

                                                
3 0.0636 0.1

10 10 1646 N
1 0.06363 0.1

+ 
= × = 

− × 

We know that total torque required,

                                            
3

1

25
. . . 1646 0.16 10 10 25

2 2

d
T P W R= × + µ = × + × × ×

 60575 N - mm= ..(i)

We also know that torque required at the end of a spanner,

T = P
1
 × l = P

1
 × 500 = 500 P

1
 N-mm ...(ii)

Equating equations (i) and (ii),

P
1

= 60575/500 = 121.15 N  Ans.

Example 10.7. A vertical screw with single start square threads 50 mm mean diameter and

12.5 mm pitch is raised against a load of 10 kN by means of a hand wheel, the boss of which is

threaded to act as a nut. The axial load is taken up by a thrust collar which supports the wheel boss

and has a mean diameter of 60 mm. If the coefficient of friction is 0.15 for the screw and 0.18 for the

collar and the tangential force applied by each hand to the wheel is 100 N ; find suitable diameter of

the hand wheel.

Solution. Given : d = 50 mm ; p = 12.5 mm ; W = 10 kN = 10 × 103 N ; D = 60 mm or

R = 30 mm ; µ = tan φ = 0.15 ; µ
1
 = 0.18 ; P

1
 = 100 N

We know that   
12.5

tan 0.08
50

p

d
α = = =

π π ×

and the tangential force required at the circumference of the screw,

                             
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =  
− α φ 

                                    
3 0.08 0.15

10 10 2328 N
1 0.08 0.15

+ 
= × = 

− × 

Also we know that the total torque required to turn the hand wheel,

                               
3

1

50
. . 2328 0.18 10 10 30

2 2

d
T P W R= × + µ = × + × × ×

                                    112200 N-mm= ...(i)

Let D
1
 = Diameter of the hand wheel in mm.

We know that the torque applied to the hand wheel,

                                
1 1

1 1
2 2 100 100 N-mm

2 2

D D
T P D= × = × × = ...(ii)
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Equating equations (i) and (ii),

                                D
1
 = 112 200/100 = 1222 mm = 1.222 m Ans.

Example 10.8. The cutter of a broaching machine is pulled by square threaded screw of 55

mm external diameter and 10 mm pitch. The operating nut takes the axial load of 400 N on a flat

surface of 60 mm internal diameter and 90 mm external diameter. If the coefficient of firction is 0.15

for all contact surfaces on the nut, determine the power required to rotate the operating nut, when

the cutting speed is 6 m/min.

Solution. Given : d
0
 = 55 mm ; p = 10 mm = 0.01 m ; W  = 400 N ; D

2
 = 60 mm   or

R
2
 = 30 mm ; D

1
 = 90 mm or R

1
 = 45 mm ; µ = tan φ = µ

1
 = 0.15

We know that mean diameter of the screw,

                                  d = d
0
 – p/2 = 55 – 10/2 = 50 mm

∴                      
10

tan 0.0637
50

p

d
α = = =

π π ×

and force required at the circumference of the screw,

                                
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =  
− α φ 

                                    
0.0637 0.15

400 86.4 N
1 0.0637 0.15

+ 
= = 

− × 

We know that mean radius of the flat surface,

                                
1 2 45 30

37.5 mm
2 2

R R
R

+ +
= = =

∴ Total torque required,

                                            1

50
. . 86.4 0.15 400 37.5 N-mm

2 2

d
T P W R= × + µ = × + × ×

              4410 N-mm 4.41 N-m= = ...(∵ µ
1
 = µ)

Since the cutting speed is 6 m/min, therefore speed of the screw,

            
Cutting speed 6

600 r.p.m.
Pitch 0.01

N = = =

and                angular speed, ω = 2 π × 600/60 = 62.84 rad/s

We know that power required to operate the nut

            . 4.41 62.84 277 W 0.277 kWT= ω = × = = Ans.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar

to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from

the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 (a).

Let p = Pitch of the screw,

d = Mean diameter of the screw,

α = Helix angle,

P = Effort applied at the circumference of the screw to lower the

load,
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W = Weight to be lowered, and

µ = Coefficient of friction between the screw and nut = tan φ,

where φ is the friction angle.

(a) (b)

Fig. 10.13

From the geometry of the figure, we find that

tan α = p/πd

Since the load is being lowered, therefore the force of friction (F = µ.R
N

) will act upwards.

All the forces acting on the screw are shown in Fig. 10.13  (b).

Resolving the forces along the plane,

P cos α = F – W  sin α = µ.R
N

 – W  sin α ...(i)

and resolving the forces perpendicular to the plane,

R
N

= W cos α – P sin α ...(ii)

Substituting this value of R
N

 in equation (i),

P cos α = µ (W cos α – P sin α) – W sin α

= µ.W  cos α – µ.P sin α – W  sin α

or P cos α + µ.P sin α = µ.W cos α – W sin α

or P (cos α + µ sin α) = W (µ cos α – sin α)

∴                                        
( cos sin )

(cos sin )
P W

µ α − α
= ×

α + µ α

Substituting the value of µ = tan φ in the above equation, we get

                                           
(tan cos sin )

(cos tan sin )
P W

φ α − α
= ×

α + φ α

Multiplying the numerator and denominator by cos φ,

                                           
(sin cos sin cos ) sin ( )

(cos cos sin sin ) cos ( )
P W W

φ α − α φ φ − α
= × = ×

α φ + φ α φ − α

                                              tan ( )W= φ − α

∴ Torque required to overcome friction between the screw and nut,

tan ( )
2 2

d d
T P W= × = φ − α

Note : When α > φ, then P = tan (α – φ).

Example 10.9. The  mean diameter of a square threaded screw jack is 50 mm. The pitch of

the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a

0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN

and to lower it?
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Solution. Given : d = 50 mm = 0.05 m ; p = 10 mm ; µ = tan φ = 0.15 ; l = 0.7 m ; W = 20 kN

= 20 × 103 N

We know that        
10

tan 0.0637
50

p

d
α = = =

π π ×

Let P
1

= Force required at the end of the lever.

Force required to raise the load

We know that force required at the circumference of the screw,

                                           
tan tan

tan ( )
1 tan .tan

P W W
α + φ 

= α + φ =  
− α φ 

                                               
3 0.0637 0.15

20 10 4314 N
1 0.0637 0.15

+ 
= × = 

− × 

Now the force required at the end of the lever may be found out by the relation,

P
1
 × l = P × d/2

∴ 1

4314 0.05
154 N

2 2 0.7

P d
P

l

× ×
= = =

×
Ans.

Force required to lower the load

We know that the force required at the circumference of the screw,

tan tan
tan ( )

1 tan .tan
P W W

φ − α 
= φ − α =  

+ φ α 

3 0.15 0.0637
20 10 1710 N

1 0.15 0.0637

− 
= × = 

+ × 

Now the force required at the end of the lever may be found out by the relation,

                                     
1 1

1710 0.05
or 61 N

2 2 2 0.7

d P d
P l P P

l

× ×
× = × = = =

×
Ans.

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the

effort required to move the load, neglecting friction) to the actual effort (i.e. the effort required to

move the load taking friction into account).

We know that the effort required to lift the load (W ) when friction is taken into account,

P = W tan (α + φ) ...(i)

where α = Helix angle,

φ = Angle of friction, and

µ = Coefficient of friction, between the screw and nut = tan φ.

If there would have been no friction between the screw and the nut, then φ will be equal to

zero. The value of effort P
0
 necessary to raise the load, will then be given by the equation,

P
0

= W tan α (i.e. Putting φ = 0 in equation (i)]

                       
0Ideal effort tan tan

Efficiency,
Actual effort tan ( ) tan ( )

P W

P W

α α
∴ η = = = =

α + φ α + φ

which shows that the efficiency of a screw jack, is independent of the load raised.
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In the above expression for efficiency, only the screw friction is considered. However, if the

screw friction and the collar friction is taken into account, then

∴                  
Torque required to move the load, neglecting friction

Torque required to move the load, including screw and collar friction
η =

                         
0 0

1

/ 2

/ 2 . .

T P d

T P d W R

×
= =

× + µ

Note: The efficiency of the screw jack may also be defined as the ratio of mechanical advantage to the

velocity ratio.

We know that mechanical advantage,

                  
1

2 2 2
. .

tan ( ) tan ( )

W W l W l l
M A

P P d W d d

× ×
= = = =

× α + φ α + φ
...(Refer Art 10.17)

and velocity ratio,   
1

Distance moved by the effort ( ), in one revolution
. .

Distance moved by the load ( ), in one revolution

P
V R

W
=

                           
2 2 2

tan tan

l l l

p d d

π π
= = =

α × π α ×
...(� tan α = p/πd)

∴  Efficiency,  
. . 2 tan tan

. . tan ( ) 2 tan ( )

M A l d

V R d l

α × × α
η = = × =

α + φ α + φ

10.21. Maximum Efficiency of a Screw Jack

We have seen in Art. 10.20 that the efficiency of a screw jack,

sin

tan sin cos ( )cos

sin ( )tan ( ) cos sin ( )

cos ( )

α

α α × α + φα
η = = =

α + φα + θ α × α + φ

α + φ

...(i)

    
2 sin cos ( )

2 cos sin ( )

α × α + φ
=

α × α + φ

...(Multiplying the numerator and denominator by 2)

sin (2 ) sin

sin (2 ) sin

α + φ − φ
=

α + φ + φ
...(ii)

2 sin cos sin ( ) sin ( )
...

2 cos sin sin ( ) sin ( )

A B A B A B

A B A B A B

= + + − 

 
= + − − 

�

The efficiency given by equation (ii) is maximum when sin (2α + φ) is maximum, i.e. when

sin (2α + φ) = 1    or   when 2α + φ = 90°

∴ 2α = 90º – φ    or    α = 45º – φ / 2

Substituting the value of 2 α in equation (ii), we have maximum efficiency,

                                     
sin (90º ) sin sin 90º sin 1 sin

sin (90º ) sin sin 90º sin 1 sin
max

− φ + φ − φ − φ − φ
η = = =

− φ + φ + φ + φ + φ

Example 10.10. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5

mm.  The coefficient of friction between the screw and the nut is 0.13. Determine the torque required

on the screw to raise a load of 25 kN, assuming the load to rotate with the screw. Determine the ratio

of the torque required to raise the load to the torque required to lower the load and also the efficiency

of the machine.
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Solution. Given : d = 50 mm ; p = 12.5 mm ; µ = tan φ = 0.13 ; W = 25 kN = 25 × 103 N

We know that,         
12.5

tan 0.08
50

p

d
α = = =

π π ×

and force required on the screw to raise the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α 

= α + φ =  
+ φ α 

                                          
3 0.08 0.13

25 10 5305 N
1 0.08 0.13

+ 
= × = 

− × 

Torque required on the screw

We know that the torque required on the screw to raise the load,

                                   T
1
 = P × d/2 = 5305 × 50/2 = 132 625 N-mm Ans.

Ratio of the torques required to raise and lower the load

We know that the force required on the screw to lower the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α 

= φ − α =  
+ φ α 

                                          
3 0.13 0.08

25 10 1237 N
1 0.13 0.08

+ 
= × = 

+ × 

and torque required to lower the load

                                                T
2
 = P × d/2 = 1237 × 50/2 = 30 905 N-mm

∴  Ratio of the torques required,

                                        1 2
/ 132625 / 30925 4.3T T= = = Ans.

Efficiency of the machine

We know that the efficiency,

                                          
tan tan (1 tan .tan ) 0.08(1 0.08 0.13)

tan ( ) tan tan 0.08 0.13

α α − α φ − ×
η = = =

α + φ α + φ +

                                          = 0.377 = 37.7%  Ans.

Example 10.11.  The mean diameter of the screw jack having pitch of 10 mm is 50 mm. A

load of 20 kN is lifted through a distance of 170 mm. Find the work done in lifting the load and

efficiency of the screw jack when

1.  the load rotates with the screw, and

2.  the load rests on the loose head which does not rotate with the screw.

The external and internal diameter of the bearing surface of the loose head are 60 mm and

10 mm respectively. The coefficient of friction for the screw as well as the bearing surface may be

taken as 0.08.

Solution.  Given : p = 10 mm ; d = 50 mm ; W  = 20 kN = 20 × 103 N ; D
2
 = 60 mm or

R
2
 = 30 mm ; D

1
 = 10 mm or R

1
 = 5 mm ; µ = tan φ = µ

1
 = 0.08

We know that          
10

tan 0.0637
50

p

d
α = = =

π π ×
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∴  Force required at the circumference of the screw to lift the load,

tan tan
tan ( )

1 tan . tan
P W W

α + φ 
= α + φ =  

− α φ 

3 0.0637 0.08
20 10 2890 N

1 0.0637 0.08

+ 
= × = 

− × 

and torque required to overcome friction at the screw,

                              / 2 2890 50 / 2 72250 N-mm 72.25 N-mT P d= × = × = =

Since the load is lifted through a vertical distance of 170 mm and the distance moved by the

screw in one rotation is 10 mm (equal to pitch), therefore number of rotations made by the screw,

N = 170/10 = 17

1.  When the load rotates with the screw

We know that work done in lifting the load

                                    2 72.25 2 17 7718 N-mT N= × π = × π × = Ans.

and efficiency of the screw jack,

                                
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φ
η = =

α + φ α + α

                                    
0.0637(1 0.0637 0.08)

0.441 or 44.1%
0.0637 0.08

− ×
= =

+
Ans.

2.  When the load does not rotate with the screw

We know that mean radius of the bearing surface,

                              
1 2 30 5

17.5 mm
2 2

R R
R

+ +
= = =

and torque required to overcome friction at the screw and the collar,

1
3

/ 2 . .

2890 50 / 2 0.08 20 10 17.5 100 250 N-mm

= 100.25 N-m

T P d W R= × + µ

= × + × × × =

∴ Work done by the torque in lifting the load

                                   2 100.25 2 17 10 710 N-mT N= × π = × π × = Ans.

We know that the torque required to lift the load, neglecting friction,

0 0
/ 2 tan / 2T P d W d= × = α × ...(�P

0
 = W tan α)

= 20 × 103 × 0.0637 × 50/2 = 31 850 N-mm = 31.85 N-m

∴  Efficiency of the screw jack,

0
/ 31.85 /100.25 0.318 or 31.8%T Tη = = = Ans.

10.22. Over Hauling and Self Locking Screws

We have seen in Art. 10.20 that the effort required at the circumference of the screw to lower

the load is

P = W tan (φ – α)
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and the torque required to lower the load

tan ( )
2 2

d d
T P W= × = φ− α

In the above expression, if φ < α, then torque required to lower the load will be negative. In

other words, the load will start moving downward without the application of any torque. Such a

condition is known as over haulding of screws. If however, φ > α, the torque required to lower the

load will positive, indicating that an effort is applied to lower the load. Such a screw is known as self

locking screw. In other words, a screw will be self locking if the friction angle is greater than helix

angle or coefficient of friction is greater than tangent of helix angle i.e. µ or tan φ > tan α.

10.23. Efficiency of Self Locking Screws

We know that efficiency of the screw,

tan

tan ( )

α
η =

α + φ

and for self locking screws,  or .φ ≥ α α ≤ φ

∴ Efficiency of self locking screws,

                                            

2
tan tan tan (1 tan )

tan ( ) tan 2 2 tan

φ φ φ − φ
η ≤ ≤ ≤

φ + φ φ φ

 

2
1 tan

2 2

φ
≤ − 2

2 tan
tan 2...

1 tan

φ 
φ = 

− φ 

�

From this expression we see that efficiency of self locking screws is less than 
1

2
 or 50%. If

the efficiency is more than 50%, then the screw is said to be overhauling,

Note : It can also be proved as follows :

Let W = Load to be lifted, and

h = Distance through which the load is lifted.

∴ Output = W.h

and                                           Input = 
Output .W h

=
η η

∴  Work lost in over coming friction.

                                                    
1.

1Input Output . .
W h

W h W h
 

−= − = − =  
ηη  

For self locking,,  
1

1. .W h W h
 

− ≤ 
η 

∴                                       
1 1

1 1 or or 50%
2

− ≤ η ≤
η

Example 10.12. A load of 10 kN is raised by means of a screw jack, having a square threaded

screw of 12 mm pitch and of mean diameter 50 mm. If a force of 100 N is applied at the end of a lever

to raise the load, what should be the length of the lever used? Take coefficient of friction = 0.15.

What is the mechanical advantage obtained? State whether the screw is self locking.

Solution.  Given : W = 10 kN = 10 × 103 N ; p = 12 mm ; d = 50 mm ; P
1
 = 100 N ;

µ = tan φ = 0.15

Length of the lever

Let l = Length of the lever.
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We know that       
12

tan 0.0764
50

p

d
α = = =

π π ×

∴ Effort required at the circumference of the screw to raise the load,

                                 
tan tan

tan ( )
1 tan . tan

P W W
α + φ 

= α + φ =  
− α φ 

                                     
3 0.0764 0.15

10 10 2290
1 0.0764 0.15

+ 
= × = 

− × 

N

and torque required to overcome friction,

                                    T = P × d/2 = 2290 × 50/2 = 57 250 N-mm ...(i)

We know that torque applied at the end of the lever,

                                   T = P
1
 × l = 100 × l N-mm ...(ii)

Equating equations (i) and (ii)

                                     l = 57 250/100 = 572.5 mm  Ans.

Mechanical advantage

We know that mechanical advantage,

                             
3

1

10 10
. . 100

100

W
M A

P

×
= = = Ans.

Self locking of the screw

We know that efficiency of the screw jack,

                                   
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φ
η = =

α + φ α + φ

                                       
0.0764(1 0.0764 0.15) 0.0755

0.3335 or 33.35%
0.0764 0.15 0.2264

− ×
= = =

+

Since the efficiency of the screw jack is less than 50%, therefore the screw is a self locking

screw. Ans.

10.24. Friction of a V-thread

We have seen Art. 10.18 that the normal reaction in case of a square threaded screw is

                                 R
N

 = W cos α, where α = Helix angle.

But in case of  V-thread (or acme or trapezoidal threads), the normal

reaction between the screw and nut is increased because the axial component of

this normal reaction must be equal to the axial load W , as shown in Fig. 10.14.

Let                             2β = Angle of the V-thread, and

                                   β  = Semi-angle of the V-thread.

∴                             N
cos

W
R =

β

and                frictional force, N 1
. .

cos

W
F R W= µ = µ × = µ

β

where                                      1
,

cos

µ
= µ

β
 known as virtual coefficient of friction.

Fig. 10.14. V-thread.
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Notes : 1. When coefficient of friction, 1
cos

µ
µ =

β
 is considered, then the V-thread is equivalent to a square

thread.

2. All the equations of square threaded screw also hold good for V-threads. In case of V-threads, µ
1

(i.e. tan φ
1
) may be substituted in place of µ (i.e. tan φ). Thus for V-threads,

1
tan ( )P W= α ± φ

where   φ
1
 = Virtual friction angle, such that tan φ

1
 = µ

1
.

Example 10.13. Two co-axial rods are connected by a turn buckle which consists of a box

nut, the one screw being right handed and the other left handed on a pitch diameter of 22 mm, the

pitch of thread being 3 mm. The included angle of the thread is 60º. Assuming that the rods do not

turn, calculate the torque required on the nut to produce a pull of 40 kN, given that the coefficient of

friction is 0.15.

Solution. Given : d = 22 mm ; p = 3 mm ; 2 β = 60º or β = 30º, W = 40 kN = 40 × 103 N ; µ = 0.15

We know that         
3

tan 0.0434
22

p

d
α = = =

π π ×

and virtual coefficient of friction

                                           1 1

0.15
tan 0.173

cos cos 30º

µ
µ = φ = = =

β

We know that the force required at the circumference of the screw,

              
1

1

1

tan tan
tan ( )

1 tan .tan
P W W

α + φ 
= α + φ =  

− α φ 

3 0.0434 0.173
40 10 8720 N

1 0.0434 0.173

+ 
= × = 

− × 

and torque on one rod,  T = P × d/2 = 8720 × 22/2 = 95 920 N-mm = 95.92 N-m

Since the turn buckle has right and left hand threads and the torque on each rod is T = 95.92

N-m, therefore the torque required on the nut,

T
1
 = 2T = 2 × 95.92 = 191.84 N-m Ans.

Example 10.14. The mean diameter of a Whitworth bolt having V-threads is 25 mm. The

pitch of the thread is 5 mm and the angle of V is 55º. The bolt is tightened by screwing a nut whose

mean radius of the bearing surface is 25 mm. If the coefficient of friction for nut and bolt is 0.1 and

for nut and bearing surfaces 0.16 ; find the force required at the end of a spanner 0.5 m long when

the load on the bolt is 10 kN.

Solution. Given : d = 25 mm ; p = 5 mm ; 2 β = 55º   or   β = 27.5º ; R = 25 mm ; µ = tan φ

= 0.1; µ
2
 = 0.16 ; l = 0.5 m ; W  = 10 kN = 10 × 103 N

We know that virtual coefficient of friction,

             1 1

0.1 0.1
tan 0.113

cos cos 27.5º 0.887

µ
µ = φ = = =

β

and        
5

tan 0.064
25

p

d
α = = =

π π ×

∴ Force on the screw,

                                            
1

1

1

tan tan
tan ( )

1 tan .tan
P W W

α + φ 
= α + φ =  

− α φ 
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3 0.064 0.113

10 10 1783 N
1 0.064 0.113

+ 
= × = 

− × 

We know that total torque transmitted,

                          
3

2

25
. . 1783 0.16 10 10 25 N-mm

2 2

d
T P W R= × + µ = × + × × ×

 62 300 N-mm 62.3 N-m= = ...(i)

Let P
1
 = Force required at the end of a spanner.

∴  Torque required at the end of a spanner,

 T = P
1
 × l = P

1
 × 0.5 = 0.5 P

1
 N-m ...(ii)

Equating equations (i) and (ii),

P
1
 = 62.3/0.5 = 124.6 N  Ans.

10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of

a turning pair is called a bearing and that portion of the inner element (i.e. shaft) which fits in the

bearing is called a journal. The journal is slightly less in diameter than the bearing, in order to permit

the free movement of the journal in a bearing.

                    (a)         (b)

Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact

between the two elements as shown in Fig. 10.15 (a). The load W  on the journal and normal reaction

R
N

 (equal to W ) of the bearing acts through the centre. The reaction R
N

 acts vertically upwards at

point A . This point A  is known as seat or point of pressure.

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15

(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy

friction.Therefore, the reaction R does not act vertically upward, but acts at another point of pressure

B. This is due to the fact that when shaft rotates, a frictional force F = µ R
N

 acts at  the circumference

of the shaft which has a tendency to rotate the shaft in opposite direction of motion and this shifts the

point A to point B.

In order that the rotation may be maintained, there must be a couple rotating the shaft.

Let φ = Angle between R (resultant of F and R
N

) and R
N

,

µ = Coefficient of friction between the journal and bearing,

T = Frictional torque in N-m, and

r = Radius of the shaft in metres.
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For uniform motion, the resultant force acting on the shaft must be zero and the resultant

turning moment on the shaft must be zero. In other words,

R = W , and T = W × OC = W × OB sin φ = W.r sin φ

Since φ is very small, therefore substituting sin φ = tan φ

∴ T = W.r tan φ = µ.W.r ...(∵ µ = tan φ)

If the shaft rotates with angular velocity ω rad/s, then power wasted in friction,

P = T.ω = T × 2πN/60 watts

where N = Speed of the shaft in r.p.m.

Notes : 1. If a circle is drawn with centre O and radius OC = r sin φ, then this circle is called the friction circle

of a bearing.

2. The force R exerted by one element of a turning pair on the other element acts along a tangent to the

friction circle.

Example 10.15. A 60 mm diameter shaft running in a bearing carries a load of 2000 N. If

the coefficient of friction between the shaft and bearing is 0.03, find the power transmitted when it

runs at 1440 r.p.m.

Solution.  Given : d = 60 mm or r = 30 mm = 0.03 m ; W = 2000 N ; µ = 0.03 ; N = 1440 r.p.m.

or ω = 2π × 1440/60 = 150.8 rad/s

We know that torque transmitted,

T = µ.W.r = 0.03 × 2000 × 0.03 = 1.8 N-m

∴  Power transmitted, P = T.ω = 1.8 × 150.8 = 271.4 W Ans.

10.26. Friction of Pivot and Collar Bearing

The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot

and collar bearings are used to take this axial thrust of the rotating shaft. The propeller shafts of ships, the

shafts of steam turbines, and vertical machine shafts are examples of shafts which carry an axial thrust.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as

pivots. The pivot may have a flat surface or conical surface as shown in Fig. 10.16 (a) and (b)

respectively. When the cone is truncated, it is then known as truncated or trapezoidal pivot as

shown in Fig. 10.16 (c).

The collar may have flat bearing surface or conical bearing surface, but the flat surface is

most commonly used. There may be a single collar, as shown in Fig. 10.16 (d) or several collars along

the length of a shaft, as shown in Fig. 10.16 (e) in order to reduce the intensity of pressure.

(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat

collar. collar.

Fig. 10.16. Pivot and collar bearings.

In modern practice, ball and roller thrust bearings are used when power is being transmitted

and when thrusts are large as in case of propeller shafts of ships.
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Fig. 10.17. Flat pivot or footstep

bearing.

A little consideration will show that in a new bear-

ing, the contact between the shaft and bearing may be good

over the whole surface. In other words, we can say that the

pressure over the rubbing surfaces is uniformly distributed.

But when the bearing becomes old, all parts of the rubbing

surface will not move with the same velocity, because the

velocity of rubbing surface increases with the distance from

the axis of the bearing. This means that wear may be different

at different radii and this causes to alter the distribution of

pressure. Hence, in the study of friction of bearings, it is as-

sumed that

1.  The pressure is uniformly distributed throughout the bearing surface, and

2.  The wear is uniform throughout the bearing surface.

10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing

(known as foot step bearing), as shown in Fig. 10.17, the

sliding friction will be along the surface of contact between

the shaft and the bearing.

Let W = Load transmitted over the bearing surface,

R = Radius of bearing surface,

p = Intensity of pressure per unit area of bear-

ing surface between rubbing surfaces, and

µ = Coefficient of friction.

We will consider the following two cases :

1.  When there is a uniform pressure ; and

2.  When there is a uniform wear.

1.  Considering unifrom pressure

When the pressure is uniformly distributed over the bearing area, then

                                              2

W
p

R

=
π

Consider a ring of radius r and thickness dr of the bearing area.

∴  Area of bearing surface,   A = 2πr.dr

Load transmitted to the ring,

                                                       δW   = p × A =  p × 2 π r.dr ...(i)

Frictional resistance to sliding on the ring acting tangentially at radius r,

F
r 
 = µ.δW  = µ p × 2π r.dr = 2π µ.p.r.dr

∴ Frictional torque on the ring,

     T
r
 = F

r
 × r = 2π µ p r.dr × r = 2 π µ p r2 dr ...(ii)

Integrating this equation within the limits from 0 to R for the total frictional torque on the

pivot bearing.

Collar bearing.
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∴  Total frictional torque,  
2 2

0 0

2 2

R R

T p r dr p r dr= πµ = πµ∫ ∫

                                        

33
3

0

2
2 2 . .

3 33

R

Rr
p p p R

 
= πµ = πµ × = × πµ 

 

                                        
3

2

2 2
. .

3 3

W
R W R

R

= × πµ × × = × µ

π
2

...
W

p
R

 
= 

π 
�

When the shaft rotates at ω rad/s, then power lost in friction,

P = T.ω = T × 2π N/60 ...( 2 / 60)Nω = π�

where N = Speed of shaft in r.p.m.

2.  Considering uniform wear

We have already discussed that the rate of wear depends upon the intensity of pressure (p) and

the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product

of intensity of pressure and the velocity of rubbing surfaces (i.e.  p.v..). Since the velocity of rubbing

surfaces increases with the distance (i.e. radius r) from the axis of the bearing, therefore for uniform

wear

p.r = C (a constant)     or     p = C / r

and the load transmitted to the ring,

δW = p × 2πr.dr ...[From equation (i)]

    2 . 2 .
C

r dr C dr
r

= × π = π

∴ Total load transmitted to the bearing

[ ]0

0

2 . 2 2 . or
2

R

R W
W C dr C C R Cr

R
= π = π = π =

π
∫

We know that frictional torque acting on the ring,

 
2 2

2 2
r

C
T p r dr r dr

r
= πµ = πµ × × ...

C
p

r

 
= 

 
�

= 2π µ.C.r  dr ...(iii)

∴  Total frictional torque on the bearing,

2

0 0

2 . . . 2 .
2

R
R

r
T C r dr C

 
= π µ = πµ  

 
∫

2
2

2 . . .
2

R
C C R= πµ × = πµ

2 1
. .

2 2

W
R W R

R
= πµ × × = × µ

π
...

2

W
C

R

 
= 

π 
�

Example 10.16. A vertical shaft 150 mm in diameter rotating at 100 r.p.m. rests on a flat end

footstep bearing. The shaft carries a vertical load of 20 kN. Assuming uniform pressure distribution

and coefficient of friction equal to 0.05, estimate power lost in friction.

Solution. Given : D = 150 mm or R = 75 mm = 0.075 m ; N = 100 r.p.m or ω = 2 π × 100/60

= 10.47 rad/s ; W = 20 kN = 20 × 103 N ; µ = 0.05
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* The vertical load acting on the ring is also given by

                                   δW  = Vertical component of p
n
 × Area of the ring

                                         =p
n
 sin α × 2πr.dr.cosec α = p

n
 × 2πr.dr

Fig. 10.18.

Conical pivot bearing.

We know that for uniform pressure distribution, the total frictional torque,

                                  
32 2

. . 0.05 20 10 0.075 50 N-m
3 3

T W R= × µ = × × × × =

∴  Power lost in friction,

                                 . 50 10.47 523.5 WP T= ω = × = Ans.

10.28. Conical Pivot Bearing

The conical pivot bearing supporting a shaft carrying a load W  is shown in Fig. 10.18.

Let                                P
n

= Intensity of pressure normal to

the cone,

α = Semi angle of the cone,

µ = Coefficient of friction

between the shaft and the

bearing, and

R = Radius of the shaft.

Consider a small ring of radius r and thickness dr. Let dl is

the length of ring along the cone, such that

                                  dl = dr cosec α

∴  Area of the ring,

                                   A = 2πr.dl = 2πr.dr cosec α

...(∵ dl = dr cosec α)

1.  Considering uniform pressure

We know that normal load acting on the ring,

                              δW
n
 = Normal pressure × Area

                                      = p
n
 × 2πr.dr cosec α

and vertical load acting on the ring,

                              *δW  = Vertical component of δW
n
 = δW

n
.sin α

                                      =p
n
 × 2πr.dr cosec α. sin α = p

n
 × 2π r.dr

∴  Total vertical load transmitted to the bearing,

                                

22
2

0 0

2 . 2 2 .
22

R
R

n n n n

Rr
W p r dr p p R p

 
= × π = π = π × = π 

 
∫

or                                         
2

/
n

p W R= π

We know that frictional force on the ring acting tangentially at radius r,

  . . .2 . cosec 2 . .cosec . .
r n n n

F W p r dr p r dr= µ δ = µ π α = πµ α

and frictional torque acting on the ring,

  
2

2 . .cosec . . 2 . cosec . .
r r n n

T F r p r dr r p r dr= × = πµ α × = πµ α
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Integrating the expression within the limits from 0 to R for the total frictional torque on the

conical pivot bearing.

∴  Total frictional torque,

    

3
2

0 0

2 . cosec . 2 . .cosec
3

R
R

n n

r
T p r dr p

 
= π µ α = πµ α  

 
∫

3 3
2

2 . .cosec . .cosec
3 3n n

R R
p p

π
= πµ α × = × µ α ...(i)

Substituting the value of p
n
 in equation (i),

    

3

2

2 2
cosec . . . cosec

3 3

R W
T W R

R

π
= × π × × α = × µ α

π

Note : If slant length (l ) of the cone is known, then

  
2

. .
3

T W l= × µ ...( cosec )l R= α�

2.  Considering uniform wear

In Fig. 10.18, let p
r
 be the normal intensity of pressure at a distance r from the central axis.

We know that, in case of uniform wear, the intensity of pressure varies inversely with the distance.

∴           p
r
.r  = C (a constant)    or p

r
 = C/r

and the load transmitted to the ring,

         2 . 2 . 2 .
r

C
W p r dr r dr C dr

r
δ = × π = × π = π

∴  Total load transmitted to the bearing,

            [ ]0
0

2 . 2 2 . or
2

R

R W
W C dr C C R Cr

R
= π = π = π =

π
∫

We know that frictional torque acting on the ring,

            
2 2

2 . .cosec . . 2 cosec . .
r r

C
T p r dr r dr

r
= πµ α = πµ × × α

                 2 . .cosec . .C r dr= πµ α

∴  Total frictional torque acting on the bearing,

2

0 0

2 . .cosec . . 2 . .cosec
2

R
R

r
T C r dr C

 
= π µ α = πµ α  

 
∫

2
2

2 . .cosec . .cosec .
2

R
C C R= π µ α × = πµ α

Substituting the value of C, we have

        
2 1 1

cosec . . . cosec . .
2 2 2

W
T R W R W l

R
= πµ × × α = ×µ α = × µ

π

10.29. Trapezoidal or Truncated Conical Pivot Bearing

If the pivot bearing is not conical, but a frustrum of a cone with r
1
 and r

2
, the external and

internal radius respectively as shown in Fig. 10.19, then
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Fig.10.19. Trapezoidal

pivot bearing.

Area of the bearing surface,

2 2

1 2
[( ) ( ) ]A r r= π −

∴  Intensity of uniform pressure,

2 2

1 2
[( ) ( ) ]

n

W W
p

A r r

= =
π −

...(i)

1.  Considering uniform pressure

The total torque acting on the bearing is obtained by integrating the

value of T
r
 (as discussed in Art. 10.27) within the limits r

1
 and r

2
.

∴  Total torque acting on the bearing,

1

2

1

2

3
22 . cosec . . 2 . .cosec

3

r
r

n n

r
r

r
T p r dr p

 
= πµ α = πµ α  

 
∫

3 3

1 2
( ) ( )

2 . .cosec
3

n

r r
p

 −
= πµ α  

 

Substituting the value of p
n
 from equation (i),

3 3

1 2
2 2

1 2

( ) ( )
2 . cosec

[( ) ( ) ] 3

W r r
T

r r

 −
= πµ × × α  

π −  

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  

2.  Considering uniform wear

We have discussed in Art. 10.26 that the load transmitted to the ring,

δW  = 2πC.dr

∴  Total load transmitted to the ring,

1

1

2

2

1 2
2 . 2 [ ] 2 ( )

r

r

r

r

W C dr C r C r r= π = π = π −∫

or
1 2

2 ( )

W
C

r r
=

π −
      ...(ii)

We know that the torque acting on the ring, considering uniform wear, is

T
r
 = 2π µ.C cosec α.r.dr

∴   Total torque acting on the bearing,

1

2

1

2

2

2 . sec . . 2 . .cosec
2

r
r

r
r

r
T C co r dr C

 
= π µ α = π µ α  

 
∫

2 2

1 2
. .cosec ( ) ( )C r r = π µ α − 
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Substituting the value of C from equation (ii), we get

2 2

1 2

1 2

cosec [( ) ( ) ]
2 ( )

W
T r r

r r
= πµ × × α −

π −

1 2

1
. ( ) cosec . . cosec

2
W r r W R= × µ + α = µ α

where R = Mean radius of the bearing 
1 2

2

r r+
=

Example 10.17. A conical pivot supports a load of 20 kN, the cone angle is 120º and the

intensity of normal pressure is not to exceed 0.3 N/mm
2
. The external diameter is twice the internal

diameter. Find the outer and inner radii of the bearing surface. If the shaft rotates at 200 r.p.m. and

the coefficient of friction is 0.1, find the power absorbed in friction. Assume uniform pressure.

Solution.   Given : W = 20 kN = 20 × 103 N ; 2 α = 120º  or  α = 60º ; p
n
 = 0.3 N/mm2 ;

N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s ; µ = 0.1

Outer and inner radii of the bearing surface

Let r
1
 and r

2
= Outer and inner radii of the bearing surface, in mm.

Since the external diameter is twice the internal diameter, therefore

r
1

= 2 r
2

We know that intensity of normal pressure ( p
n
),

3 3

2 2 2 2 2

1 2 2 2 2

20 10 2.12 10
0.3

[( ) ( ) ] [(2 ) ( ) ] ( )

W

r r r r r

× ×
= = =

π − π −

∴              
2 3 3

2 2
( ) 2.12 10 / 0.3 7.07 10 or 84 mmr r= × = × = Ans.

and r
1
 = 2 r

2
 = 2 × 84 = 168 mm  Ans.

Power absorbed in friction

We know that total frictional torque (assuming uniform pressure),

                      

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
T W

r r

 −
= × µ α  

−  

                          

3 3
3

2 2

2 (168) (84)
0.1 20 10 cosec 60º N-mm

3 (168) (84)

 −
= × × × × =  

− 

 301760 N-mm = 301.76 N-m=

∴  Power absorbed in friction,

 P = T.ω = 301.76 × 20.95 = 6322 W = 6.322 kW  Ans.

Example 10.18. A conical pivot bearing supports a vertical shaft of 200 mm diameter. It is

subjected to a load of 30 kN. The angle of the cone is 120º and the coefficient of friction is 0.025.

Find the power lost in friction when the speed is 140 r.p.m., assuming 1. uniform pressure ; and

2. uniform wear.

Solution. Given : D = 200 mm or R = 100 mm = 0.1 m ; W = 30 kN = 30 × 103 N ; 2 α = 120º

or α = 60º ; µ = 0.025 ; N = 140 r.p.m. or ω = 2 π × 140/160 = 14.66 rad/s

1.  Power lost in friction assuming uniform pressure

We know that total frictional torque,

2
. . . cosec

3
T W R= × µ α
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32
0.025 30 10 0.1 cosec 60º 57.7 N-m

3
= × × × × × =

∴  Power lost in friction,

P = T.ω = 57.7 × 14.66 = 846 W Ans.

2.  Power lost in friction assuming uniform wear

We know that total frictional torque,

1
. . . cosec

2
T W R= × µ α

31
0.025 30 10 0.1 cosec 60º 43.3 N-m

2
= × × × × × =

∴  Power lost in friction,  P = T.ω = 43.3 × 14.66 = 634.8 W Ans.

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating

shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 (a) and (b)

respectively. The collar bearings are also known as thrust bearings. The friction in the collar bear-

ings may be found as discussed below :

(a) Single collar bearing (b) Multiple collar bearing.

Fig. 10.20. Flat collar bearings.

Consider a single flat collar bearing supporting a shaft as shown in Fig. 10.20 (a).

Let r
1

= External radius of the collar, and

r
2

= Internal radius of the collar.

∴  Area of the bearing surface,

A = π [(r
1
)2 – (r

2
)2]
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1.  Considering uniform pressure

When the pressure is uniformly distributed over the bearing surface, then the intensity of

pressure,

         2 2

1 2
[ ) ( ) ]

W W
p

A r r

= =
π −

...(i)

We have seen in Art. 10.25, that the frictional torque on the ring of radius r and thickness dr,

         
2

2 . . .
r

T p r dr= πµ

Integrating this equation within the limits from r
2
 to r

1
 for the total frictional torque on the

collar.

∴  Total frictional torque,

          

1

1

2

2

3 3
2 3 1 2

( ) ( )
2 . . . 2 . 2 .

3 3

r

r

r

r

r r r
T p r dr p p

   −
= πµ = πµ = πµ   

  
∫

Substituting the value of p from equation (i),

         

3 3

1 2
2 2

1 2

( ) ( )
2

[( ) ( ) ] 3

W r r
T

r r

 −
= πµ ×  

π −  

          

3 3

1 2

2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
W

r r

 −
= × µ  

−  

Notes: 1. In order to increase the amount of rubbing surfaces so as to reduce the intensity of pressure, it is better

to use two or more collars, as shown in Fig. 10.20 (b), rather than one larger collar.

2.  In case of a multi-collared bearings with, say n collars, the intensity of the uniform pressure,

                                                 2 2

1 2

Load

No. of collars × Bearing area of one collar [( ) ( ) ]

W
p

n r r

= =
π −

3.  The total torque transmitted in a multi collared shaft remains constant i.e.

                                  

3 3

1 2

2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  

2.  Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

        .2 . 2 . 2 .
r

C
W p r dr r dr C dr

r
δ = π = × π = π

∴  Total load transmitted to the collar,

       
1

2

1

2
1 2

2 . 2 [ ] 2 ( )
r r

rr
W C dr C r C r r= π = π = π −∫

or         
1 2

2 ( )

W
C

r r
=

π −
...(ii)



Chapter 10 : Friction           �          295

We also know that frictional torque on the ring,

. . 2 . . 2 . . .
r

T W r C dr r C r dr= µ δ = µ × π = πµ

∴  Total frictional torque on the bearing,

1
1

2
2

2 22
1 2

( ) ( )
2 . . 2 . 2 .

2 2

r
r

r
r

r rr
T C r dr C C

   −
= πµ = πµ = πµ   

   
∫

2 2

1 2
. [( ) ( ) ]C r r= πµ −

Substituting the value of C from equation (ii),

2 2

1 2 1 2

1 2

1
[( ) ( ) ] . ( )

2 ( ) 2

W
T r r W r r

r r
= πµ × − = × µ +

π −

Example 10.19. A thrust shaft of a ship has 6

collars of 600 mm external diameter and 300 mm internal

diameter. The total thrust from the propeller is 100 kN. If

the coefficient of friction is 0.12 and speed of the engine

90 r.p.m., find the power absorbed in friction at the thrust

block, assuming l. uniform pressure ; and 2. uniform

wear.

Solution. Given : n = 6 ; d
1
 = 600 mm or r

1
 = 300

mm ; d
2
 = 300 mm or r

2
 = 150 mm ; W = 100 kN

= 100 × 103 N ; µ = 0.12 ; N  = 90 r.p.m. or

ω = 2 π × 90/60 = 9.426 rad/s

1.  Power absorbed in friction, assuming uniform

      pressure

We know that total frictional torque transmitted,

                              

3 3

1 2

2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  

3 3
3 3

2 2

2 (300) (150)
0.12 100 10 2800 10 N-mm

3 (300) (150)

 −
= × × × = × 

− 

2800 N-m=

∴   Power absorbed in friction,

. 2800 9.426 26 400 W 26.4 kWP T= ω = × = = Ans.

2.  Power absorbed in friction assuming uniform wear

We know that total frictional torque transmitted,

3

1 2

1 1
. ( ) 0.12 100 10 (300 150) N-mm

2 2
T W r r= × µ + = × × × +

3
2700 10 N-mm 2700 N-m= × =

∴  Power absorbed in friction,

P = T.ω =  2700 × 9.426 = 25 450 W = 25.45 kW  Ans.

Ship propeller.
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Example 10.20. A shaft has a number of a collars integral with it. The external diameter of

the collars is 400 mm and the shaft diemater is 250 mm. If the intensity of pressure is 0.35 N/mm
2

(uniform) and the coefficient of friction is 0.05, estimate : 1. power absorbed when the shaft runs at

105 r.p.m. carrying a load of 150 kN ; and 2. number of collars required.

Solution. Given : d
1
 = 400 mm  or r

1
 = 200 mm ; d

2
 = 250 mm or r

2
 = 125 mm ; p = 0.35

N/mm2 ; µ = 0.05 ; N = 105 r.p.m or ω = 2 π × 105/60 = 11 rad/s ; W = 150 kN = 150 × 103 N

1.  Power absorbed

We know that for uniform pressure, total frictional torque transmitted,

                   

3 3 3 3
31 2

2 2 2 2

1 2

( ) ( )2 2 (200) (125)
. 0.05 150 10 N-mm

3 3( ) ( ) (200) (125)

r r
T W

r r

   − −
= × µ = × × ×   

− −    

                        3
5000 248 1240 10 N-mm 1240 N-m= × = × =

∴  Power absorbed,

      . 1240 11 13640 W 13.64 kWP T= ω = × = = Ans.

2.  Number of collars required

Let       n  = Number of collars required.

We know that the intensity of uniform pressure ( p),

              

3

2 2 2 2

1 2

150 10 1.96
0.35

. [( ) ( ) ] . [(200) (125) ]

W

nn r r n

×
= = =

π − π −

∴       1.96 / 0.35 5.6 say 6n = = Ans.

Example 10.21. The thrust of a propeller shaft in a marine engine is taken up by a number

of collars integral with the shaft which is 300 mm in diameter. The thrust on the shaft is 200 kN and

the speed is 75 r.p.m. Taking µ constant and equal to 0.05 and assuming intensity of pressure as

uniform and equal to 0.3 N/mm2, find the external diameter of the collars and the number of collars

required, if the power lost in friction is not to exceed 16 kW.

Solution. Given : d
2
 = 300 mm or r

2
 = 150 mm = 0.15 m ; W = 200 kN = 200 × 103 N ;

N = 75 r.p.m. or ω = 2 π × 75/60 = 7.86 rad/s ; µ = 0.05 ; p = 0.3 N/mm2 ; P = 16 kW = 16 × 103 W

Let       T = Total frictional torque transmitted in N-m.

We know that power lost in friction (P),

       16 × 103 = T.ω = T × 7.86  or  T = 16 × 103/7.86 = 2036 N-m

External diameter of the collar

Let        d
1
 = External diameter of the collar in metres = 2 r

1
.

We know that for uniform pressure, total frictional torque transmitted (T ),

      

3 3 2 2

1 2 1 2 1 2

2 2

1 21 2

( ) ( ) ( ) ( ) .2 2
2036 .

3 3( ) ( )

r r r r r r
W W

r rr r

   − + +
= × µ = × µ ×   

+−     

*

      

2 2
3 1 1

1

( ) (0.15) 0.152
0.05 200 10

3 0.15

r r

r

 + + ×
= × × ×  

+  

    
3 2

1 1 1
2036 3( 0.15) 20 10 [( ) 0.15 0.0225]r r r× + = × + +

*

3 3 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2

2 3
1 2 1 2 1 21 2

( ) ( ) ( ) [( ) ( ) . ] ( ) ( ) .

( ) ( )( ) ( )

r r r r r r r r r r r r

r r r r r rr r

− − + + + +
= =

+ − +−
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Dividing throughout by 20 × 103,

           0.305 (r
1
 + 0.15) = (r

1
)2 + 0.15 r

1
 + 0.0225

(r
1
)2 – 0.155 r

1
 – 0.0233 = 0

Solving this as a quadratic equation,

     

2

1

0.155 (0.155) 4 0.0233 0.155 0.342

2 2
r

± + × ±
= =

    = 0.2485 m = 248.5 mm ...(Taking + ve sign)

∴     d
1
 = 2 r

1
 = 2 × 248.5 = 497 mm  Ans.

Number of collars

Let      n = Number of collars.

We know that intensity of pressure (p),

     

3

2 2 2 2

1 2

200 10 1.62
0.3

[ ) ( ) ] [(248.5) (150) ]

W

nn r r n

×
= = =

π − π −

∴      1.62 / 0.3 5.4 or 6n = = Ans.

10.31. Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and

machines which must be started and stopped frequently. Its application is also found in cases in which

power is to be delivered to machines partially or fully loaded. The force of friction is used to start the

driven shaft from rest and gradually brings it up to the proper speed without excessive slipping of the

friction surfaces. In automobiles, friction clutch is used to connect the engine to the driven shaft. In

operating such a clutch, care should be taken so that the friction surfaces engage easily and gradually

brings the driven shaft up to proper speed. The proper alignment of the bearing must be maintained

and it should be located as close to the clutch as possible. It may be noted that

1. The contact surfaces should develop a frictional force that may pick up and hold the load

with reasonably low pressure between the contact surfaces.

2. The heat of friction should be rapidly dissipated and tendency to grab should be at a

minimum.

3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform

distribution of pressure.

The friction clutches of the following types are important from the subject point of view :

1. Disc or plate clutches (single disc or multiple disc clutch),

2. Cone clutches, and

3. Centrifugal clutches.

We shall now discuss, these clutches, in detail, in the following pages. It may be noted that

the disc and cone clutches are based on the same theory as the pivot and collar bearings.

10.32. Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both

sides are faced with a friction material (usually of Ferrodo). It is mounted on the hub which is free to

move axially along the splines of the driven shaft. The pressure plate is mounted inside the clutch

body which is bolted to the flywheel. Both the pressure plate and the flywheel rotate with the engine
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crankshaft or the driving shaft. The pressure plate

pushes the clutch plate towards the flywheel by a set

of strong springs which are arranged radially inside

the body. The three levers (also known as release

levers or fingers) are carried on pivots suspended

from the case of the body. These are arranged in such

a manner so that the pressure plate moves away from

the flywheel by the inward movement of a thrust

bearing. The bearing is mounted upon a forked shaft

and moves forward when the clutch pedal is pressed.

When the clutch pedal is pressed down, its

linkage forces the thrust release bearing to move in

towards the flywheel and pressing the longer ends of the levers inward. The levers are forced to turn

on their suspended pivot and the pressure plate moves away from the flywheel by the knife edges,

thereby compressing the clutch springs. This action removes the pressure from the clutch plate and

thus moves back from the flywheel and the driven shaft becomes stationary. On the other hand, when

the foot is taken off from the clutch pedal, the thrust bearing moves back by the levers. This allows the

springs to extend and thus the pressure plate pushes the clutch plate back towards the flywheel.

Fig. 10.21. Single disc or plate clutch.

The axial pressure exerted by the spring provides a frictional force in the circumferential

direction when the relative motion between the driving and driven members tends to take place. If the

torque due to this frictional force exceeds the torque to be transmitted, then no slipping takes place

and the power is transmitted from the driving shaft to the driven shaft.

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in

Fig. 10.22 (a).

Single disc clutch
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Let T = Torque transmitted by the clutch,

p = Intensity of axial pressure with which the contact surfaces are held

together,

r
1
 and r

2
= External and internal radii of friction faces, and

µ = Coefficient of friction.

Consider an elementary ring of radius r and thickness dr as shown in Fig. 10.22 (b).

We know that area of contact surface or friction surface,

= 2 π r.dr

∴  Normal or axial force on the ring,

δW = Pressure × Area = p × 2 π r.dr

and the frictional force on the ring acting tangentially at radius r,

F
r

= µ.δW  = µ.p × 2 π r.dr

∴  Frictional torque acting on the ring,

                          T
r
 = F

r
 × r = µ.p × 2 π r.dr × r = 2 π × µ .p.r2 dr

                                                          (a)                                            (b)

Fig. 10.22. Forces on a single disc or plate clutch.

We shall now consider the following two cases :

1.  When there is a uniform pressure, and

2.  When there is a uniform wear.

1.  Considering uniform pressure

When the pressure is uniformly distributed over the entire area of the friction face, then the

intensity of pressure,

2 2

1 2
[( ) ( ) ]

W
p

r r

=
π −

...(i)

where W = Axial thrust with which the contact or friction surfaces are held together.

We have discussed above that the frictional torque on the elementary ring of radius r and

thickness dr is

T
r

= 2 π µ.p.r2 dr

Integrating this equation within the limits from r
2
 to r

1
 for the total frictional torque.
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∴  Total frictional torque acting on the friction surface or on the clutch,

                          

1
2

1
2

3 3
2 3 1 2

( ) ( )
2 . . . 2 2

3 3

r
r

r
r

r r r
T p r dr p p

   −
= πµ = πµ = πµ   

   
∫

Substituting the value of p from equation (i),

                          

3 3

1 2

2 2

1 2

( ) ( )
2

3[( ) ( ) ]

r rW
T

r r

−
= πµ × ×

π −

3 3

1 2

2 2

1 2

( ) ( )2
. . .

3 ( ) ( )

r r
W W R

r r

 −
= × µ = µ 

−  

where                              R = Mean radius of friction surface

3 3

1 2

2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  

2.  Considering uniform wear

In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the

clutch. Since the intensity of pressure varies inversely with the distance, therefore

p.r. = C (a constant)   or   p = C/r ...(i)

and the normal force on the ring,

.2 . 2 . 2 .
C

W p r dr C dr C dr
r

δ = π = × π = π

∴  Total force acting on the friction surface,

[ ]
1

1

2

2

1 2
2 2 2 ( )

r

r

r

r

W C dr C r C r r= π = π = π −∫

or
1 2

2 ( )

W
C

r r
=

π −

We know that the frictional torque acting on the ring,

2 2
2 . . 2 . 2 . . .

r

C
T p r dr r dr C r dr

r
= πµ = πµ × × = πµ

...(∵  p = C/r)

∴  Total frictional torque on the friction surface,

1 1

22

2 22

1 2
( ) ( )

2 . . . 2 . 2 .
2 2

r r

rr

r rr
T C r dr C C

   −
= πµ = πµ = πµ   

   
∫

2 2 2 2

1 2 1 2
1 2

. [( ) ( ) ] ( ) ( )
2 ( )

W
C r r r r

r r

 = πµ − = πµ × − 
π −

1 2

1
. ( ) . .

2
W r r W R= × µ + = µ

where R = Mean radius of the friction surface 
1 2

2

r r+
=

Notes : 1. In general, total frictional torque acting on the friction surface (or on the clutch) is given by

T = n.µ.W.R
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where n = Number of pairs of friction or contact surfaces, and

R = Mean radius of friction surface

3 3

1 2

2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

2.  For a single disc or plate clutch, normally both sides of the disc are effective. Therefore, a single disc

clutch has two pairs of surfaces in contact, i.e. n = 2.

3.  Since the intensity of pressure is maximum at the inner radius (r
2
) of the friction or contact surface,

therefore equation (i) may be written as

p
max

 × r
2
 = C or p

max
 = C/r

2

4.  Since the intensity of pressure is minimum at the outer radius (r
1
) of the friction or contact surface,

therefore equation (i) may be written as

p
min

 × r
1
 = C or p

min
 = C/r

1

5.  The average pressure ( p
av

) on the friction or contact surface is given by

2 2

1 2

Total force on friction surface

Cross-sectional area of friction surface [( ) ( ) ]
av

W
p

r r
= =

π −

6.  In case of a new clutch, the intensity of pressure is approximately uniform but in an old clutch the

uniform wear theory is more approximate.

7.  The uniform pressure theory gives a higher frictional torque than the uniform wear theory. Therefore

in case of friction clutches, uniform wear should be considered, unless otherwise stated.

10.33. Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be

transmitted. The inside discs (usually of steel) are fastened to the driven shaft to permit axial motion

(except for the last disc). The outside discs (usually of bronze) are held by bolts and are fastened to

the housing which is keyed to the driving shaft. The multiple disc clutches are extensively used in

motor cars, machine tools etc.

Let n
1

= Number of discs on the driving shaft, and

n
2

= Number of discs on the driven shaft.

Dual Disc Clutches.
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∴  Number of pairs of contact surfaces,

n = n
1
 + n

2
 – 1

and total frictional torque acting on the friction surfaces or on the clutch,

T = n.µ.W.R

where R = Mean radius of the friction surfaces

   

3 3

1 2

2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

Fig. 10.23. Multiple disc clutch.

Example 10.22. Determine the maximum, minimum and average pressure in plate clutch

when the axial force is 4 kN. The inside radius of the contact surface is 50 mm and the outside radius

is 100 mm. Assume uniform wear.

Solution. Given : W  = 4 kN = 4 × 103 N ; r
2
 = 50 mm ; r

1
 = 100 mm

Maximum pressure

Let p
max

= Maximum pressure.

Since the intensity of pressure is maximum at the inner radius (r
2
), therefore

p
max

 × r
2

= C   or  C = 50 p
max

We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r
1
 – r

2
) = 2 π × 50 p

max
 (100 – 50) = 15 710 p

max

∴ p
max

= 4 × 103/15 710 = 0.2546 N/mm2  Ans.

Minimum pressure

Let p
min

= Minimum pressure.

Since the intensity of pressure is minimum at the outer radius (r
1
), therefore

p
min

 × r
1

= C    or    C = 100 p
min
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We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r
1
 – r

2
) = 2π × 100 p

min
 (100 – 50) = 31 420 p

min

∴ p
min

= 4 × 103/31 420 = 0.1273 N/mm2  Ans.

Average pressure

We know that average pressure,

Total normal force on contact surface

Cross-sectional area of contact surfaces
av

p =

3
2

2 2 2 2

1 2

4 10
0.17 N/mm

[( ) ( ) ] [(100) (50) ]

W

r r

×
= = =

π − π −
Ans.

Example 10.23. A single plate clutch, with both sides effective, has outer and inner

diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the

contact surface is not to exceed 0.1 N/mm2. If the coefficient of friction is 0.3, determine the power

transmitted by a clutch at a speed 2500 r.p.m.

Solution. Given : d
1
 = 300 mm or r

1
 = 150 mm ; d

2
 = 200 mm or r

2
 = 100 mm ; p = 0.1 N/mm2 ;

µ = 0.3 ; N = 2500 r.p.m. or ω = 2π × 2500/60 = 261.8 rad/s

Since the intensity of pressure ( p) is maximum at the inner radius (r
2
), therefore for uniform

wear,

p.r
2

= C    or   C = 0.1 × 100 = 10 N/mm

We know that the axial thrust,

W = 2 π C (r
1
 – r

2
) = 2 π × 10 (150 – 100) = 3142 N

and mean radius of the friction surfaces for uniform wear,

1 2 150 100
125 mm 0.125m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 2 × 0.3 × 3142 × 0.125 = 235.65 N-m

...( 2,for both sides of plate effective)n =�

∴ Power transmitted by a clutch,

P = T.ω = 235.65 × 261.8 = 61 693 W = 61.693 kW Ans.

Example 10.24. A single plate clutch, effective on both sides, is required to transmit 25 kW

at 3000 r.p.m. Determine the outer and inner radii of frictional surface if the coefficient of friction is

0.255, the ratio of radii is 1.25 and the maximum pressure is not to exceed 0.1 N/mm
2
. Also deter-

mine the axial thrust to be provided by springs. Ass ume the theory of uniform wear.

Solution. Given: n = 2 ; P = 25 kW = 25 × 103 W ; N = 3000 r.p.m. or ω = 2π × 3000/60

= 314.2 rad/s ; µ = 0.255 ; r
1
/r

2
 = 1.25 ; p = 0.1 N/mm2

Outer and inner radii of frictional surface

Let r
1
 and r

2
= Outer and inner radii of frictional surfaces, and

T = Torque transmitted.

Since the ratio of radii (r
1
/r

2
) is 1.25, therefore

r
1

= 1.25 r
2

We know that the power transmitted (P),

25 × 103 = T.ω = T × 314.2

∴ T = 25 × 103/314.2 = 79.6 N-m = 79.6 × 103 N-mm
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Since the intensity of pressure is maximum at the inner radius (r
2
), therefore

p.r
2

= C         or        C = 0.1 r
2
 N/mm

and the axial thrust transmitted to the frictional surface,

W = 2 π C (r
1
 – r

2
) = 2 π × 0.1 r

2
 (1.25 r

2
 – r

2
) = 0.157 (r

2
)2 ...(i)

We know that mean radius of the frictional surface for uniform wear,

1 2 2 2
2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

 We know that torque transmitted (T),

79.6 × 103 = n.µ.W.R = 2 × 0.255 × 0.157 (r
2
)2 × 1.125 r

2
 = 0.09 (r

2
)3

∴ (r
2
)3 = 79.6 × 103/0.09 = 884 × 103   or  r

2
 = 96 mm  Ans.

and r
1

= 1.25 r
2
 = 1.25 × 96 = 120 mm  Ans.

Axial thrust to be provided by springs

We know that axial thrust to be provided by springs,

W = 2 π C (r
1
 – r

2
) = 0.157 (r

2
)2 ...[From equation (i)]

= 0.157 (96)2 = 1447 N Ans.

Example 10.25. A single dry plate clutch transmits 7.5 kW at 900 r.p.m. The axial pressure

is limited to 0.07 N/mm
2
. If the coefficient of friction is 0.25, find 1. Mean radius and face width of

the friction lining assuming the ratio of the mean radius to the face width as 4, and 2. Outer and

inner radii of the clutch plate.

Solution.  Given : P = 7.5 kW = 7.5 × 103 W ; N = 900 r.p.m or ω = 2 π × 900/60 = 94.26 rad/s ;

p = 0.07 N/mm2 ; µ = 0.25

1.  Mean radius and face width of the friction lining

Let R = Mean radius of the friction lining in mm, and

w = Face width of the friction lining in mm,

Ratio of mean radius to the face width,

R/w = 4 ...(Given)

We know that the area of friction faces,

A = 2 π R.w

∴ Normal or the axial force acting on the friction faces,

W = A × p = 2 π R.w.p

We know that torque transmitted (considering uniform wear),

. . . . (2 . . )T n W R n R w p R= µ = µ π

3
. . . .2

24

R
n R n p RR p

π 
= µ = × µπ × × 

 
...(∵ w = R/4)

3 3
2 0.25 0.07 0.055 N-mm

2
R R

π
= × × × = ...(i)

...(∵  n = 2, for single plate clutch)
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We also know that power transmitted (P),

7.5 × 103 = T.ω = T × 94.26

∴ T = 7.5 × 103/94.26 = 79.56 N-m = 79.56 × 103 N-mm ...(ii)

From equations (i) and (ii),

R
3 = 79.56 × 103/0.055 = 1446.5 × 103  or  R = 113 mm Ans.

and w = R/4 = 113/4 = 28.25mm Ans.

2.  Outer and inner radii of the clutch plate

Let r
1
 and r

2
 = Outer and inner radii of the clutch plate respectively.

Since the width of the clutch plate is equal to the difference of the outer and inner radii,

therefore

w = r
1
 – r

2
 = 28.25 mm ...(iii)

Also for uniform wear, the mean radius of the clutch plate,

                              
1 2

1 2
or 2 2 113 226 mm

2

r r
R r r R

+
= + = = × = ...(iv)

From equations (iii) and (iv),

r
1
 = 127.125 mm ; and r

2
 = 98.875  Ans.

Example 10.26. A dry single plate clutch is to be designed for an automotive vehicle whose

engine is rated to give 100 kW at 2400 r.p.m. and maximum torque 500 N-m. The outer radius of

friction plate is 25% more than the inner radius. The intensity of pressure between the plate  is not to

exceed 0.07 N/mm
2
. The coefficient of friction may be assumed equal to 0.3. The helical springs

required by this clutch to provide axial force necessary to engage the clutch are eight. If each spring

has stiffness equal to 40 N /mm, determine the initial compression in the springs and dimensions of

the friction plate.

Solution. Given : P = 100 kW = 100 × 103 W ; T = 500 N-m = 500 × 103 N-mm ;

p = 0.07 N/mm2 ; µ = 0.3 ; Number of springs = 8 ; Stiffness = 40 N/mm

Dimensions of the friction plate

Let r
1
 and r

2
= Outer and inner radii of the friction plate respectively.

Since the outer radius of the friction plate is 25% more than the inner radius, therefore

r
1

= 1.25 r
2

We know that, for uniform wear,

p.r
2

= C     or    C = 0.07 r
2
 N/mm

and load transmitted to the friction plate,

W = 2 π C (r
1
 – r

2
) = 2 π × 0.07 r2 (1.125 r

2
 – r

2
) = 0.11 (r

2
)2 N

         ...(i)

We know that mean radius of the plate for uniform wear,

1 2 2 2

2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

∴  Torque transmitted (T ),

500 × 103 = n.µ.W .R = 2 × 0.3 × 0.11 (r
2
)2 × 1.125 r

2
 = 0.074 (r

2
)3

...(∵  n = 2)

             ∴ (r
2
)3 = 500 × 103/0.074 = 6757 × 103  or  r

2
 = 190 mm   Ans.
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and r
1

= 1.25 r
2
 = 1.25 × 190 = 273.5 mm Ans.

Initial compression of the springs

We know that total stiffness of the springs,

s = Stiffness per spring × No. of springs = 40 × 8 = 320 N/mm

Axial force required to engage the clutch,

W = 0.11 (r
2
)2 = 0.11 (190)2 = 3970 N ...[From equation (i)]

∴  Initial compression in the springs

= W/s = 3970/320 = 12.5 mm  Ans.

Example 10.27. A rotor is driven by a co-axial motor  through a single plate clutch, both

sides of the plate being effective. The external and internal diameters of the plate are respectively

220 mm and 160 mm and the total spring load pressing the plates together is 570 N. The motor

armature and shaft has a mass of 800 kg with an effective radius of gyration of 200 mm. The rotor

has a mass of 1300 kg with an effective radius of gyration of 180 mm. The coefficient of friction for

the clutch is 0.35.

The driving motor is brought up to a speed of 1250 r.p.m. when the current is switched off

and the clutch suddenly engaged. Determine

1. The final speed of motor and rotor, 2. The time to reach this speed, and 3. The kinetic

energy lost during the period of slipping.

How long would slipping continue if it is assumed that a constant resisting torque of 60 N-m

were present? If instead of a resisting torque, it is assumed that a constant driving torque of 60 N-m

is maintained on the armature shaft, what would then be slipping time?

Solution. Given : d
1
 = 220 mm or r

1
 = 110 mm ; d

2
 = 160 mm or r

2
 = 80 mm ; W = 570 N ;

m
1
 = 800 kg ; k

1
 = 200 mm = 0.2 m ; m

2
 = 1300 kg ; k

2
 = 180 mm = 0.18 m ; µ = 0.35 ; N

1
 = 1250 r.p.m.

or ω
1
 = π × 1250/60 = 131 rad/s

1. Final speed of the motor and rotor

Let ω
3

= Final speed of the motor and rotor in rad/s.

We know that moment of inertia for the motor armature and shaft,

I
1

= m
1
 (k

1
)2 = 800 (0.2)2 = 32 kg-m2

and moment of inertia for the rotor,

I
2

= m
2
 (k

2
)2 = 1300 (0.18)2 = 42.12 kg-m2

Since the angular momentum before slipping is equal to the angular momentum after slip-

ping, therefore

I
1
.ω

1
 + I

2
.ω

2
= (I

1
 + I

2
) ω

3

32 × 131 + I
2
 × 0 = (32 + 42.12) ω

3
 = 74.12 ω

3
...(∵ ω

2
 = 0)

∴ ω
3

= 32 × 131 / 74.12 = 56.56 rad/s Ans.

2. Time to reach this speed

Let t = Time to reach this speed i.e. 56.56 rad/s.

We know that mean radius of the friction plate,

1 2 110 80
95 mm 0.095 m

2 2

r r
R

+ +
= = = =
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and total frictional torque,

T = n.µ.W.R = 2 × 0.35 × 570 × 0.095 = 37.9 N-m ...(∵  n = 2)

Considering the rotor, let α
2
, ω

I
 and ω

F
 be the angular acceleration, initial angular speed and

the final angular speed of the rotor respectively.

We know that the torque (T ),

37.9 = I
2
.α

2
 = 42.12 α

2
    or    α

2
 = 37.9/42.12 = 0.9  rad/s2

Since the angular acceleration is the rate of change of angular speed, therefore

F I F I

2

2

56.56 0
or 62.8 s

0.9
t

t

ω − ω ω − ω −
α = = = =

α
Ans.

...(∵  ω
F
 = ω

3
 = 56.56 rad/s, and ω

1
 = 0)

3.  Kinetic energy lost during the period of slipping

We know that angular kinetic energy before impact,

2 2

1 1 2 2 1 1

1 1
( ( ) ( )

2 2
E I I I

2

1

1
= ω ) + ω = ω

2
...(∵  ω

2
 = 0)

21
32(131) 274 576 N-m

2
= × =

and angular kinetic energy after impact,

                            
2 2

2 1 2 3

1 1
( ) ( ) (32 42.12) (56.56) 118 556 N-m

2 2
E I I= + ω = + =

∴  Kinetic energy lost during the period of slipping,

 = E
1
 – E

2
 = 274 576 – 118 556 = 156 020 N-m  Ans.

Time of slipping assuming constant resisting torque

Let t
1

= Time of slipping, and

ω
2

= Common angular speed of armature and rotor shaft = 56.56 rad/s

When slipping has ceased and there is exerted a constant torque of 60 N-m on the armature

shaft, then

Torque on armature shaft,

T
1

= – 60 – 37.9 = – 97.9 N-m

Torque on rotor shaft,

T
2

= T = 37.9 N-m

Considering armature shaft,

                            1

3 1 1 1 1 1 1 1

1

97.9
. 131 131 3.06

32

T
t t t t

I
ω = ω +α = ω + × = − × = − ...(i)

Considering rotor shaft,

2

3 2 1 1 1 1

2

37.9
. 0.9

42.12

T
t t t t

I
ω = α = × = × =        ...(ii)

From equations (i) and (ii),

1 1 1
131 3.06 0.9 or 3.96 131t t t− = =

∴
1

131/ 3.96 33.1 st = = Ans.



308  �   Theory of Machines

Time of slipping assuming constant driving torque of 60 N-m

In this case, T
1

= 60 – 37.9 = 22.1 N-m

Since    
1 2

1 1 1

1 2

, therefore
T T

t t
I I

ω + × = ×

        1 1 1 1

22.1 37.9
131 or 131 0.69 0.9

32 42.12
t t t t+ × = × + =

∴ 0.9 t
1
 – 0.69 t

1
= 131      or      t

1
 = 624 s  Ans.

Example 10.28. A multiple disc clutch has five plates having four pairs of active friction

surfaces. If the intensity of pressure is not to exceed 0.127 N/mm
2
, find the power transmitted at 500

r.p.m. The outer and inner radii of friction surfaces are 125 mm and 75 mm respectively. Assume

uniform wear and take coefficient of friction = 0.3.

Solution. Given : n
1
 + n

2
 = 5 ; n = 4 ; p = 0.127 N/mm2 ; N = 500 r.p.m. or ω = 2π × 500/60

= 52.4 rad/s ; r
1
 = 125 mm ; r

2
 = 75 mm ; µ = 0.3

Since the intensity of pressure is maximum at the inner radius r
2
, therefore

p.r
2

= C      or     C = 0.127 × 75 = 9.525 N/mm

We know that axial force required to engage the clutch,

W = 2 π C (r
1
 – r

2
) = 2 π × 9.525 (125 – 75) = 2990 N

and mean radius of the friction surfaces,

1 2 125 75
100 mm 0.1 m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 4 × 0.3 × 2990 × 0.1 = 358.8 N-m

∴ Power transmitted,

P = T.ω = 358.8 × 52.4 = 18 800 W = 18.8 kW  Ans.

Example 10.29. A multi-disc clutch has three discs on the driving shaft and two on the

driven shaft. The outside diameter of the contact surfaces is 240 mm and inside diameter 120 mm.

Assuming uniform wear and coefficient of friction as 0.3, find the maximum axial intensity of pres-

sure between the discs for transmitting 25 kW at 1575 r.p.m.

Solution. Given : n
1
 = 3 ; n

2
 = 2 ; d

1
 = 240 mm or  r

1
 = 120 mm ; d

2
 = 120 mm or r

2
 = 60 mm ;

µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Let T = Torque transmitted in N-m, and

W = Axial force on each friction surface.

We know that the power transmitted (P),

25 × 103 = T.ω = T × 165    or    T = 25 × 103/165 = 151.5 N-m

Number of pairs of friction surfaces,

n = n
1
 + n

2
 – 1 = 3 + 2 – 1 = 4

and mean radius of friction surfaces for uniform wear,

1 2 120 60
90 mm 0.09 m

2 2

r r
R

+ +
= = = =
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We know that torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 × W × 0.09 = 0.108 W

∴ W = 151.5/0.108 = 1403 N

Let p = Maximum axial intensity of pressure.

Since the intensity of pressure ( p) is maximum at the inner radius (r
2

), therefore for uniform

wear

p.r
2

= C   or    C = p × 60 = 60 p N/mm

We know that the axial force on each friction surface (W ),

1403 = 2 π.C (r
1
 – r

2
) = 2 π × 60 p (120 – 60) = 22 622 p

∴ p = 1403/22 622 = 0.062 N/mm2  Ans.

Example 10.30. A plate clutch has three discs on the driving shaft and two discs on the

driven shaft, providing four pairs of contact surfaces. The outside diameter of the contact surfaces is

240 mm and inside diameter 120 mm. Assuming uniform pressure and µ = 0.3; find the total spring

load pressing the plates together to transmit 25 kW at 1575 r.p.m.

If there are 6 springs each of stiffness 13 kN/m and each of the contact surfaces has worn

away by 1.25 mm, find the maximum power that can be transmitted, assuming uniform wear.

Solution. Given : n
1
 = 3 ; n

2
 = 2 ; n = 4 ; d

1
 = 240 mm or r

1
 = 120 mm ; d

2
 = 120 mm or

r
2
 = 60 mm ; µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Total spring load

Let W = Total spring load, and

T = Torque transmitted.

We know that power transmitted (P),

25 × 103 = T.ω = T × 165  or   T = 25 × 103/165 = 151.5 N-m

Mean radius of the contact surface, for uniform pressure,

                             

3 3 3 3
1 2

2 2 2 2

1 2

( ) ( )2 2 (120) (60)
93.3 mm 0.0933 m

3 3( ) ( ) (120) (60)

r r
R

r r

   − −
= = = =   

− −    

and torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 W × 0.0933 = 0.112 W

∴ W = 151.5/0.112 = 1353 N  Ans.

Maximum power transmitted

Given : No of springs = 6

∴  Contact surfaces of the spring

= 8

Wear on each contact surface

= 1.25 mm

∴            Total wear = 8 × 1.25 = 10 mm = 0.01 m

Stiffness of each spring = 13 kN/m = 13 × 103 N/m

∴  Reduction in spring force

= Total wear × Stiffness per spring × No. of springs

= 0.01 × 13 × 103 × 6 = 780 N
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∴ New axial load, W = 1353 – 780 = 573 N

We know that mean radius of the contact surfaces for uniform wear,

                              
1 2 120 60

90 mm 0.09 m
2 2

r r
R

+ +
= = = =

∴ Torque transmitted,

T = n.µ.W.R. = 4 × 0.3 × 573 × 0.09 = 62 N-m

and maximum power transmitted,

 P = T. ω = 62 × 155 = 10 230 W = 10.23 kW  Ans.

10.34. Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it

has been replaced completely by the disc clutch.

Fig. 10.24. Cone clutch.

It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the

driving shaft by a sunk key and has an inside conical surface or face which exactly fits into the outside

conical surface of the driven. The driven member resting on the feather key in the driven shaft, may

be shifted along the shaft by a forked lever provided at B, in order to engage the clutch by bringing the

two conical surfaces in contact. Due to the frictional resistance set up at this contact surface, the

torque is transmitted from one shaft to another. In some cases, a spring is placed around the driven

shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains

the pressure between them, and the forked lever is used only for disengagement of the clutch. The

contact surfaces of the clutch may be metal to metal contact, but more often the driven member is

lined with some material like wood, leather, cork or asbestos etc. The material of the clutch faces (i.e.

contact surfaces) depends upon the allowable normal pressure and the coefficient of friction.

Consider a pair of friction surface as shown in Fig. 10.25 (a). Since the area of contact of a

pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone clutch may

be determined in the similar manner as discussed for conical pivot bearings in Art. 10.28.

Let p
n

= Intensity of pressure with which the conical friction surfaces are held

together (i.e. normal pressure between contact surfaces),

r
1
 and r

2
= Outer and inner radius of friction surfaces respectively.
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R = Mean radius of the friction surface 
1 2 ,

2

r r+
=

α = Semi angle of the cone (also called face angle of the cone) or the

angle of the friction surface with the axis of the clutch,

µ = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known as face width or clutch

face).

Fig. 10.25. Friction surfaces as a frustrum of a cone.

Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length

of ring of the friction surface, such that

dl = dr.cosec α

∴  Area of the ring,

A = 2π r.dl = 2πr.dr cosec α

We shall consider the following two cases :

1. When there is a uniform pressure, and

2. When there is a uniform wear.

1.  Considering uniform pressure

We know that normal load acting on the ring,

δW
n

= Normal pressure × Area of ring = p
n 

× 2 π r.dr.cosec α

and the axial load acting on the ring,

δW = Horizontal component of δW
n
 (i.e. in the direction of W )

= δW
n 

× sin α = p
n 

× 2π r.dr. cosec α × sin α = 2π × p
n
.r.dr

∴  Total axial load transmitted to the clutch or the axial spring force required,

                            

1
1

2
2

2 22
1 2

( ) ( )
2 . . 2 2

2 2

r
r

n n n

r
r

r rr
W p r dr p p

   −
= π = π = π   

   
∫

2 2

1 2
( ) ( )

n
p r r = π − 

∴ 2 2

1 2
[( ) ( ) ]

n

W
p

r r

=
π −

...(i)
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We know that frictional force on the ring acting tangentially at radius r,

F
r

= µ.δW
n
 = µ.p

n
 × 2 π r.dr.cosec α

∴  Frictional torque acting on the ring,

                                 T
r
 = F

r
 × r = µ.p

n
 × 2 π r.dr. cosec α.r = 2 π µ.p

n
.cosec α.r2 dr

Integrating this expression within the limits from r
2
 to r

1
 for the total frictional torque on the

clutch.

∴  Total frictional torque,

2

1
1

2

3
2

2 . .cosec . . 2 .cosec
3

r
r

n n

r
r

r
T p r dr p

 
= πµ α = πµ α  

 
∫

3 3

1 2
( ) ( )

2 .cosec
3n

r r
p

 −
= π µ α  

 

Substituting the value of p
n
 from equation (i), we get

3 3

1 2

2 2

1 2

( ) ( )
2 cosec

3[( ) ( ) ]

r rW
T

r r

 −
= π µ × × α  

 π −

 

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  
..(ii)

2.  Considering uniform wear

In Fig. 10.25, let p
r
 be the normal intensity of pressure at a distance r from the axis of the

clutch. We know that, in case of uniform wear, the intensity of pressure varies inversely with the

distance.

∴ p
r
.r = C (a constant)    or    p

r
 = C / r

We know that the normal load acting on the ring,

δW
n

= Normal pressure × Area of ring = p
r 
× 2πr.dr cosec α

and the axial load acting on the ring ,

                            δW = δW
n
 × sin α = p

r
.2 π r.dr.cosec α .sin α = p

r 
× 2 π r.dr

2 . 2 .
C

r dr C dr
r

= × π = π ...(∵  p
r
 = C / r)

∴   Total axial load transmitted to the clutch,

[ ]

1

1

2

2

1 2
2 . 2 2 ( )

r

r

r

r

W C dr C C r rr= π = π = π −∫

or                          
1 2

2 ( )

W
C

r r
=

π −
...(iii)

We know that frictional force acting on the ring,

F
r

= µ.δW
n
 = µ.p

r 
× 2 π r × dr cosec α

and frictional torque acting on the ring,

T
r

= F
r
 × r = µ.p

r 
 × 2 π r.dr.cosec α × r

2
2 . .cosec 2 . cosec

C
r dr C r dr

r
= µ × × π α = πµ α ×
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∴  Total frictional torque acting on the clutch,

 

1
1

2
2

2

2 . .cosec . 2 . .cosec
2

r
r

r
r

r
T C r dr C

 
= πµ α = πµ α  

 
∫

2 2

1 2
( ) ( )

2 . .cosec
2

r r
C

 −
= πµ α  

 

Substituting the value of C from equation (i), we have

2 2

1 2

1 2

( ) ( )
2 cosec

2 ( ) 2

W r r
T

r r

 −
= πµ × × α  

π −  

1 2. cosec . . cosec
2

r r
W W R

+ 
= µ α = µ α 

 
...(iv)

where
1 2

2

r r
R

+
= =  Mean radius of friction surface

Since the normal force acting on the friction surface, W
n
 = W /sin α, therefore the equation

(iv) may be written as

T = µ.W
n
.R ...(v)

The forces on a friction surface, for steady operation of the clutch and after the clutch is

engaged, is shown in Fig. 10.26.

Fig. 10.26. Forces on a friction surface.

From Fig. 10.26 (a), we find that

1 2

1 2 1 2
sin ; and or 2

2

r r
r r b R r r R

+
− = α = + =
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∴  From equation, (i), normal pressure acting on the friction surface,

2 2
1 2 1 21 2

( ) ( ) 2 . .sin[( ) ( ) ]
n

W W W
p

r r r r R br r

= = =
π + − π απ −

or W = p
n
 × 2 π R.b sin α = W

n
 sin α

where W
n

= Normal load acting on the friction surface = p
n
 × 2 π R.b

Now the equation (iv) may be written as,

2
( 2 . sin ) cosec 2 . .

n n
T p R b R p R b= µ × π α α = πµ

The following points may be noted for a cone clutch :

1. The above equations are valid for steady operation of the clutch and after the clutch is

engaged.

2. If the clutch is engaged when one member is stationary and the other rotating (i.e. during

engagement of the clutch) as shown in Fig. 10.26 (b), then the cone faces will tend to slide on each

other due to the presence of relative motion. Thus an additional force (of magnitude equal to µ.W
n
.cos α)

acts on the clutch which resists the engagement and the axial force required for engaging the clutch

increases.

∴   Axial force required for engaging the clutch,

W
e

= W  + µ.W
n
 cos α = W

n
 sin α + µ.W

n
 cos α

= W
n
 (sin α + µ cos α)

3. Under steady operation of the clutch, a decrease in the semi-cone angle (α) increases the

torque produced by the clutch (T ) and reduces the axial force (W ). During engaging period, the axial

force required for engaging the clutch (W
e
) increases under the influence of friction as the angle α

decreases. The value of α can not be decreased much because smaller semi-cone angle (α) requires

larger axial force for its disengagement.

For free disengagement of the clutch, the value of tan α must be greater than µ. In case the

value of tan α is less than µ, the clutch will not disengage itself and the axial force required to

disengage the clutch is given by

W
d

= W
n
 (µ cos α – sin α)

Example 10.31. A conical friction clutch is used to transmit 90 kW at 1500 r.p.m. The semi-

cone angle is 20º and the coefficient of friction is 0.2. If the mean diameter of the bearing surface is

375 mm and the intensity of normal pressure is not to exceed 0.25 N/mm2, find the dimensions of the

conical bearing surface and the axial load required.

Solution. Given : P = 90 kW = 90 × 103 W ; N = 1500 r.p.m. or ω = 2 π × 1500/60 = 156

rad/s ; α = 20º ; µ = 0.2 ; D = 375 mm or R = 187.5 mm ; p
n
 = 0.25 N/mm2

Dimensions of the conical bearing surface

Let r
1
 and r

2
= External and internal radii of the bearing surface respectively,

b = Width of the bearing surface in mm, and

T = Torque transmitted.

We know that power transmitted (P),

90 × 103 = T.ω = T × 156

∴ T = 90 × 103/156 = 577 N-m = 577 × 103 N-mm
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and the torque transmitted (T),

577 × 103 = 2 π µ p
n
.R2.b = 2π × 0.2 × 0.25 (187.5)2 b = 11 046 b

∴ b = 577 × 103/11 046 = 52.2 mm  Ans.

We know that r
1
 + r

2
= 2R = 2 × 187.5 = 375 mm ...(i)

and r
1
 – r

2
= b sin α = 52.2 sin 20º = 18 mm ...(ii)

From equations (i) and (ii),

r
1

= 196.5 mm, and r
2
 = 178.5 mm  Ans.

Axial load required

Since in case of friction clutch, uniform wear is considered and the intensity of pressure is

maximum at the minimum contact surface radius (r
2
), therefore

p
n
.r

2
= C (a constant) or C = 0.25 × 178.5 = 44.6 N/mm

We know that the axial load required,

W = 2πC (r
1
 – r

2
) = 2π × 44.6 (196.5 – 178.5) = 5045 N  Ans.

Example 10.32. An engine developing 45 kW at 1000 r.p.m. is fitted with a cone clutch built

inside the flywheel. The cone has a face angle of 12.5º and a maximum mean diameter of 500 mm.

The coefficient of friction is 0.2. The normal pressure on the clutch face is not to exceed 0.1 N/mm
2
.

Determine : 1. the axial spring force necessary to engage to clutch, and 2. the face width required.

Solution. Given : P = 45 kW = 45 × 103 W ; N = 1000 r.p.m. or ω = 2π × 1000/60 = 104.7

rad/s ; α = 12.5º ; D = 500 mm or R = 250 mm = 0.25 m ; µ = 0.2 ; p
n
 = 0.1 N/mm2

1.  Axial spring force necessary to engage the clutch

First of all, let us find the torque (T ) developed by the clutch and the normal load (W
n
) acting

on the friction surface.

We know that power developed by the clutch (P),

45 × 103 = T.ω = T × 104.7   or   T = 45 × 103/104.7 = 430 N-m

We also know that the torque developed by the clutch (T),

430 = µ.W
n
.R = 0.2 × W

n
 × 0.25 = 0.05 W

n

∴ W
n

= 430/0.05 = 8600 N

and axial spring force necessary to engage the clutch,

W
e

= W
n
 (sin α + µ cos α)

= 8600 (sin 12.5º + 0.2 cos 12.5º) = 3540 N   Ans.

2.  Face width required

Let b = Face width required.

We know that normal load acting on the friction surface (W
n
),

8600 = p
n
 × 2 π R.b = 0.1 × 2π × 250 × b = 157 b

∴ b = 8600/157 = 54.7 mm    Ans.

Example 10.33. A leather faced conical clutch has a cone angle of 30º. If the intensity of

pressure between the contact surfaces is limited to 0.35 N/mm
2
 and the breadth of the conical surface

is not to exceed one-third of the mean radius, find the dimensions of the contact surfaces to transmit

22.5 kW at 2000 r.p.m. Assume uniform rate of wear and take coefficient of friction as 0.15.

Solution. Given : 2 α = 30º  or  α = 15º  ; p
n
 = 0.35 N/mm2; b = R/3 ; P = 22.5 kW =

22.5 × 103 W ; N = 2000 r.p.m. or ω = 2 π × 2000/60 = 209.5 rad/s ; µ = 0.15

Let r
1

= Outer radius of the contact surface in mm,
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r
2

= Inner radius of the contact surface in mm,

R = Mean radius of the the contact surface in mm,

b = Face width of the contact surface in mm = R/3, and

T = Torque transmitted by the clutch in N-m.

We know that power transmitted (P),

22.5 × 103 = T.ω = T × 209.5

∴ T = 22.5 × 103/209.5 = 107.4 N-m = 107.4 × 103 N-mm

We also know that torque transmitted (T ),

107.4 × 103 = 2π µ p
n
.R2. b = 2π × 0.15 × 0.35 × R2 × R/3 = 0.11 R3

∴ R
3 = 107.4 × 103/0.11 = 976.4 × 103    or    R = 99 mm   Ans.

The dimensions of the contact surface are shown in Fig. 10.27.

Fig. 10.27

From Fig. 10.27, we find that

                     1 2

99
sin sin sin 15º 8.54 mm

3 3

R
r r b− = α = × α = × = ...(i)

and 1 2
2 2 99 198 mmr r R+ = = × = ...(ii)

From equations (i) and (ii),

r
1

= 103.27 mm,  and r
2
 = 94.73 mm  Ans.

Example 10.34. The contact surfaces in a cone clutch have an effective diameter of 75 mm.

The semi-angle of the cone is 15º. The coefficient of friction is 0.3. Find the torque required to

produce slipping of the clutch if an axial force applied is 180 N.

This clutch is employed to connect an electric motor running uniformly at 1000 r.p.m. with a

flywheel which is initially stationary. The flywheel has a mass of 13.5 kg and its radius of gyration is

150 mm. Calculate the time required for the flywheel to attain full speed and also the energy lost in

the slipping of the clutch.

Solution. Given : D = 75 mm or R = 37.5 mm = 0.0375 m ; α = 15º ; µ = 0.3 ; W  = 180 N ;

N
F
 = 1000 r.p.m. or ω

F
 = 2π × 1000/60 = 104.7 rad/s ; m = 13.5 kg ; k = 150 mm = 0.15 m

Torque required to produce slipping

We know that torque required to produce slipping,

T = µ.W.R.cosec α = 0.3 × 180 × 0.0375 × cosec 15º = 7.8 N-m  Ans.

Time required for the flywheel to attain full speed

Let t
F

= Time required for the flywheel to attain full speed in seconds, and

α
F

= Angular acceleration of the flywheel in rad/s2.

We know that the mass moment of inertia of the flywheel,

I
F

= m.k2 = 13.5 × (0.15)2 = 0.304 kg-m2
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∴  Torque required (T ),

         7.8 = I
F
.α

F
 = 0.304 α

F
   or   α

F
 = 7.8/0.304 = 25.6 rad/s2

and angular speed of the flywheel (ω
F
),

      104.7 = α
F
.t

F
 = 25.6 t

F
   or    t

F
 = 104.7/25.6 = 4.1 s   Ans.

Energy lost in slipping of the clutch

We know that the angle turned through by the motor and flywheel (i.e. clutch) in time 4.1 s

from rest,

              F F

1 1
Average angular velocity × time = 104.7 4.1 214.6 rad

2 2
W tθ = × × = × × =

∴  Energy lost in slipping of the clutch,

               =T.θ = 7.8 × 214.6 = 1674 N-m  Ans.

10.35. Centrifugal Clutch

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a

number of shoes on the inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the

shoes are covered with a friction material. These shoes, which can move radially in guides, are held

Fig. 10.28. Centrifugal clutch.

against the boss (or spider) on the driving shaft by means of

springs. The springs exert a radially inward force which is

assumed constant. The mass of the shoe, when revolving, causes

it to exert a radially outward force (i.e. centrifugal force). The

magnitude of this centrifugal force depends upon the speed at

which the shoe is revolving. A little consideration will show

that when the centrifugal force is less than the spring force, the

shoe remains in the same position as when the driving shaft

was stationary, but when the centrifugal force is equal to the

spring force, the shoe is just floating. When the centrifugal

force exceeds the spring force, the shoe moves outward and

comes into contact with the driven member and presses against

it. The force with which the shoe presses against the driven

member is the difference of the centrifugal force and the spring

force. The increase of speed causes the shoe to press harder Centrifugal clutch.
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and enables more torque to be transmitted.

In order to determine the mass and size of the shoes, the following procedure is adopted :

1.  Mass of the shoes

Consider one shoe of a centrifugal clutch as shown in Fig. 10.29.

Let m = Mass of each shoe,

n = Number of shoes,

r = Distance of centre of gravity of

the shoe from the centre of the

spider,

R = Inside radius of the pulley rim,

N = Running speed of the pulley in

r.p.m.,

ω = Angular running speed of the

pulley in rad/s = 2πN/60 rad/s,

ω
1

= Angular speed at which the

engagement begins to take place,

and

µ = Coefficient of friction between

the shoe and rim.

We know that the centrifugal force acting on each shoe at the running speed,

*P
c

= m.ω2.r

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to

take place,

P
s

= m (ω
1
)2 r

∴  The net outward radial force (i.e. centrifugal  force) with which the shoe presses against

the rim at the running speed

= P
c
 – P

s

and the frictional force acting tangentially on each shoe,

F = µ (P
c
 – P

s
)

∴  Frictional torque acting on each shoe,

= F × R = µ (P
c
 – P

s
) R

and total frictional torque transmitted,

T = µ (P
c
 – P

s
) R × n = n.F.R

From this expression, the mass of the shoes (m) may be evaluated.

2.  Size of the shoes

Let l = Contact length of the shoes,

b = Width of the shoes,

* The radial clearance between the shoe and the rim being very small as compared to r, therefore it is neglected.

If, however, the radial clearance is given, then the operating radius of the mass centre of the shoe from the axis

of the clutch,

                             r
1
 = r + c, where c = Radial clearance.

Then                              P
c 
= m.ω2.r

1
, and P

s
 = m (ω

1
)2 r

1

Fig. 10.29. Forces on a shoe of

centrifugal clutch.
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R = Contact radius of the shoes. It is same as the inside radius of the rim

of the pulley.

θ = Angle subtended by the shoes at the centre of the spider in radians.

p = Intensity of pressure exerted on the shoe. In order to ensure reason-

able life, the intensity of  pressure may be taken as 0.1 N/mm2.

We know that         θ = l/R rad     or     l = θ.R

∴  Area of contact of the shoe,

A = l.b

and the force with which the shoe presses against the rim

= A × p = l.b.p

Since the force with which the shoe presses against the rim at the running speed is (P
c 
– P

s
),

therefore

l.b.p = P
c
 – P

s

From this expression, the width of shoe (b) may be obtained.

Example 10.35. A centrifugal clutch is to transmit 15 kW at 900 r.p.m. The shoes are four in

number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius

of the pulley rim is 150 mm and the centre of gravity of the shoe lies at 120 mm from the centre of the

spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25.

Determine : 1. Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at the

centre of the spider is 60º and the pressure exerted on the shoes is 0.1 N/mm2
.

Solution. Given : P = 15 kW = 15 × 103 W ; N = 900 r.p.m. or ω = 25 × 900/60 = 94.26 rad/s ;

n = 4 ; R = 150 mm = 0.15 m ; r = 120 mm = 0.12 m ; µ = 0.25

Since the speed at which the engagement begins (i.e. ω
1
) is 3/4th of the running speed (i.e.

ω), therefore

                          1

3 3
94.26 7 0.7 rad/s

4 4
ω = ω = × =

Let T = Torque transmitted at the running speed.

We know that power transmitted (P),

15 × 103 = T.ω = T × 94.26    or    T = 15 × 103/94.26 = 159 N-m

1.  Mass of the shoes

Let m = Mass of the shoes in kg.

We know that the centrifugal force acting on each shoe,

P
c

= m.ω2.r = m (94.26)2 × 0.12 = 1066 m N

and the inward force on each shoe exerted by the spring i.e. the centrifugal force at the engagement

speed ω
1
,

P
s

= m (ω
1
)2 r = m (70.7)2 × 0.12 = 600 m N

∴  Frictional force acting tangentially on each shoe,

F = µ (P
c
 – P

s
) = 0.25 (1066 m – 600 m) = 116.5 m N

We know that the torque transmitted (T ),

159 = n.F.R = 4 × 116.5 m × 0.15 = 70 m    or   m = 2.27 kg  Ans.

2.  Size of the shoes

Let l = Contact length of shoes in mm,

b = Width of the shoes in mm,
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θ = Angle subtended by the shoes at the centre of the spider in radians

= 60º = π/3 rad, and ...(Given)

p = Pressure exerted on the shoes in N/mm2 = 0.1 N/mm2 ...(Given)

We know that         . 150 157.1 mm
3

l R
π

= θ = × =

and l.b.p = P
c
 – P

s
 = 1066 m – 600 m = 466 m

∴    157.1 × b × 0.1 = 466 × 2.27 = 1058

or b = 1058/157.1 × 0.1 = 67.3  mm  Ans.

Example 10.36. A centrifugal clutch has four shoes which slide radially in a spider keyed to

the driving shaft and make contact with the internal cylindrical surface of a rim keyed to the driven

shaft. When the clutch is at rest, each shoe is pulled against a stop by a spring so as to leave a radial

clearance of 5 mm between the shoe and the rim. The pull exerted by the spring is then 500 N. The

mass centre of the shoe is 160 mm from the axis of the clutch.

If the internal diameter of the rim is 400 mm, the mass of each shoe is 8 kg, the stiffness of

each spring is 50 N/mm and the coefficient of friction between the shoe and the rim is 0.3 ; find the

power transmitted by the clutch at 500 r.p.m.

Solution. Given : n = 4 ; c = 5 mm ; S = 500 N ; r = 160 mm ; D = 400 mm or R = 200 mm

= 0.2 m ; m = 8 kg ; s = 50 N/mm ; µ = 0.3 ; N = 500 r.p.m. or ω = 2 π × 500/60 = 52.37 rad/s

We know that the operating radius,

r
1

= r + c = 160 + 5 = 165 mm = 0.165 m

Centrifugal force on each shoe,

P
c

= m.ω2.r
1
 = 8 (52.37)2 × 0.165 = 3620 N

and the inward force exerted by the spring,

P
4

= S + c.s = 500 + 5 × 50 = 750 N

∴  Frictional force acting tangentially on each shoe,

F = µ (P
c
 – P

s
) = 0.3 (3620 – 750) = 861 N

We know that total frictional torque transmitted by the clutch,

T = n.F.R = 4 × 861 × 0.2 = 688.8 N-m

∴  Power transmitted,

P = T.ω = 688.8 × 52.37 = 36 100 W = 36.1 kW  Ans.

EXERCISES

1. Find the force required to move a load of 300 N up a rough plane, the force being applied parallel to

the plane. The inclination of the plane is such that a force of 60 N inclined at 30º to a similar smooth

plane would keep the same load in equilibrium. The coefficient of friction is 0.3. [Ans. 146 N]

2. A square threaded screw of mean diameter 25 mm and pitch of thread 6 mm is utilised to lift a weight

of 10 kN by a horizontal force applied at the circumference of the screw. Find the magnitude of the

force if the coefficient of friction between the nut and screw is 0.02. [Ans. 966 N]

3. A bolt with a square threaded screw has mean diameter of 25 mm and a pitch of 3 mm. It carries an

axial thrust of 10 kN on the bolt head of 25 mm mean radius. If µ = 0.12, find the force required at the

end of a spanner 450 mm long, in tightening up the bolt.  [Ans. 110.8 N]

4. A turn buckle, with right and left hand threads is used to couple two railway coaches. The threads

which are square have a pitch of 10 mm and a mean diameter of 30 mm and are of single start type.

Taking the coefficient of friction as 0.1, find the work to be done in drawing the coaches together a

distance of 200 mm against a steady load of 20 kN.  [Ans. 3927 N-m]
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5. A vertical two start square threaded screw of a 100 mm mean diameter and 20 mm pitch supports a

vertical load of 18 kN. The axial thrust on the screw

is taken by a collar bearing of 250 mm outside diam-

eter and 100 mm inside diameter. Find the force re-

quired at the end of a lever which is 400 mm long in

order to lift and lower the load. The coefficient of

friction for the vertical screw and nut is 0.15 and

that for collar bearing is 0.20.

                                              [Ans. 1423 N ; 838 N]

6. A sluice gate weighing 18 kN is raised and lowered

by means of square threaded screws, as shown in

Fig.10.30. The frictional resistance induced by water

pressure against the gate when it is in its lowest

position is 4000 N.

The outside diameter of the screw is 60 mm and pitch

is 10 mm. The outside and inside diameter of washer

is 150 mm and 50 mm respectively. The coefficient

of friction between the screw and nut is 0.1 and for

the washer and seat is 0.12. Find :

1. The maximum force to be exerted at the ends of the lever for raising and lowering the gate, and

2. Efficiency of the arrangement. [Ans. 114 N ; 50 N ; 15.4%]

7. The spindle of a screw jack has single start square threads with an outside diameter of 45 mm and a

pitch of 10 mm. The spindle moves in a fixed nut. The load is carried on a swivel head but is not free

to rotate. The bearing surface of the swivel head has a mean diameter of 60 mm. The coefficient of

friction between the nut and screw is 0.12 and that between the swivel head and the spindle is 0.10.

Calculate the load which can be raised by efforts of 100 N each applied at the end of two levers each

of effective length of 350 mm. Also determine the velocity ratio and the efficiency of the lifting

arrangement.  [Ans. 9943 N ; 218.7 N ; 39.6%]

8. The lead screw of a lathe has acme threads of 50 mm outside diameter and 10 mm pitch. The included

angle of the thread is 29°. It drives a tool carriage and exerts an axial pressure of 2500 N. A collar

bearing with outside diameter 100 mm and inside diameter 50 mm is provided to take up the thrust. If

the lead screw rotates at 30 r.p.m., find the efficiency and the power required to drive the screw. The

coefficient of friction for screw threads is 0.15 and for the collar is 0.12. [Ans. 16.3% ; 75.56 W]

9. A flat foot step bearing 225 mm in diameter supports a load of 7.5 kN. If the coefficient of friction is

0.09 and r.p.m is 60, find the power lost in friction, assuming 1. Uniform pressure, and 2. Uniform

wear.  [Ans. 318 W ; 239 W]

10. A conical pivot bearing 150 mm in diameter has a cone angle of 120º. If the shaft supports an axial

load of 20 kN and the coefficient of friction is 0.03, find the power lost in friction when the shaft

rotates at 200 r.p.m., assuming 1. Uniform pressure, and 2. uniform wear.

[Ans. 727.5 W ; 545.6 W]

11. A vertical shaft supports a load of 20 kN in a conical pivot bearing. The external radius of the cone is

3 times the internal radius and the cone angle is 120º. Assuming uniform intensity of pressure as 0.35

MN/m2, determine the dimensions of the bearing.

If the coefficient of friction between the shaft and bearing is 0.05 and the shaft rotates at 120 r.p.m.,

find the power absorbed in friction.  [Ans. 47.7 mm ; 143 mm ; 1.50 kW]

12. A plain collar type thrust bearing having inner and outer diameters of 200 mm and 450 mm is sub-

jected to an axial thrust of 40 kN. Assuming coefficient of friction between the thrust surfaces as

0.025, find the power absorbed in overcoming friction at a speed of 120 r.p.m. The rate of wear is

considered to be proportional to the pressure and rubbing speed.  [Ans. 4.1 kW]

13. The thrust on the propeller shaft of a marine engine is taken up by 8 collars whose external and

internal diameters are 660 mm and 420 mm respectively. The thrust pressure is 0.4 MN/m2 and may

Fig. 10.30



322  �   Theory of Machines

be assumed uniform. The coefficient of friction between the shaft and collars is 0.04. If the shaft

rotates at 90 r.p.m. ; find 1. total thrust on the collars ; and 2. power absorbed by friction at the bearing.

[Ans. 651 kN ; 68 kW]

14. A shaft has a number of collars integral with it. The external diameter of the collars is 400 mm and the

shaft diameter is 250 mm. If the uniform intensity of pressure is 0.35 N/mm2 and its coefficient of

friction is 0.05, estimate : 1. power absorbed in overcoming friction when the shaft runs at 105 r.p.m.

and carries a load of 150 kN, and 2. number of collars required. [Ans. 13.4 kW ; 6]

15. A car engine has its rated output of 12 kW. The maximum torque developed is 100 N-m. The clutch

used is of single plate type having two active surfaces. The axial pressure is not to exceed 85 kN/m2.

The external diameter of the friction plate is 1.25 times the internal diameter. Determine the dimen-

sions of the friction plate and the axial force exerted by the springs. Coefficient of friction = 0.3.

[Ans. 129.5 mm ; 103.6 mm ; 1433 N]

16. A single plate clutch (both sides effective) is required to transmit 26.5 kW at 1600 r.p.m. The outer

diameter of the plate is limited to 300 mm and intensity of pressure between the plates is not to exceed

68.5 kN/m2. Assuming uniform wear and a coefficient of friction 0.3, show that the inner diameter of

the plates is approximately 90 mm.

17. A multiplate clutch has three pairs of contact surfaces. The outer and inner radii of the contact sur-

faces are 100 mm and 50 mm respectively. The maximum axial spring force is limited to 1 kN. If the

coefficient of friction is 0.35 and assuming uniform wear, find the power transmitted by the clutch at

1500 r.p.m.  [Ans. 12.37 kW]

18. A cone clutch is to transmit 7.5 kW at 900 r.p.m. The cone has a face angle of 12º. The width of the

face is half of the mean radius and the normal pressure between the contact faces is not to exceed 0.09

N/mm2. Assuming uniform wear and the coefficient of friction between contact faces as 0.2, find the

main dimensions of the clutch and the axial force required to engage the clutch.

[Ans. R = 112 mm, b = 56 mm, r
1
 = 117.8 mm, r

2
 = 106.2 mm ; 1433 N]

19. A cone clutch with cone angle 20º is to transmit 7.5 kW at 750 r.p.m. The normal intensity of pressure

between the contact faces is not to exceed 0.12 N/mm2. The coefficient of friction is 0.2. If face width

is 1
5 th  of mean diameter, find : 1. the main dimensions of the clutch, and 2. axial force required

while running.  [Ans. R = 117 mm ; b = 46.8 mm ; r
1
 = 125 mm ; r

2
 = 109 mm ; 1395 N]

20. A centrifugal friction clutch has a driving member consisting of a spider carrying four shoes which are

kept from contact with the clutch case by means of flat springs until increase of centrifugal force

overcomes the resistance of the springs and the power is transmitted by friction between the shoes and

the case.

Determine the necessary mass of each shoe if 22.5 kW is to be transmitted at 750 r.p.m. with

engagement beginning at 75% of the running speed. The inside diameter of the drum is 300 mm and

the radial distance of the centre of gravity of each shoe from the shaft axis is 125 mm. Assume

µ = 0.25. [Ans. 5.66 kg]

DO YOU KNOW ?
1. Discuss briefly the various types of friction experienced by a body.

2. State the laws of

(i) Static friction ; (ii)  Dynamic friction ;

(iii) Solid friction ; and (iv) Fluid friction.

3. Explain the following :

(i) Limiting friction, (ii) Angle of friction, and

(iii) Coefficient of friction.

4. Derive from first principles an expression for the effort required to raise a load with a screw jack

taking friction into consideration.

5. Neglecting collar friction, derive an expression for mechanical advantage of a square threaded screw

moving in a nut, in terms of helix angle of the screw and friction angle.
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6. In a screw jack, the helix angle of thread is α and the angle of friction is φ. Show that its efficiency is

maximum, when 2α = (90º – φ).

7. For a screw jack having the nut fixed, derive the equation ( with usual notations),

                                                 

tan
.

tan ( ) . .
m

r r

α
η =

α + φ + µ

8. Neglecting collar friction, from first principles, prove that the maximum efficiency of a square threaded

screw moving in a nut is 
1 sin

,
1 sin

− φ

+ φ
 where φ is the friction angle.

9. Write a short note on journal bearing.

10. What is meant by the expression ‘friction circle’? Deduce an expression for the radius of friction

circle in terms of the radius of the journal and the angle of friction.

11. From first principles, deduce an expression for the friction moment of a collar thrust bearing, stating

clearly the assumptions made.

12. Derive an expression for the friction moment for a flat collar bearing in terms of the inner radius r
1
,

outer radius r
2
, axial thrust W and coefficient of friction µ. Assume uniform intensity of pressure.

13. Derive from first principles an expression for the friction moment of a conical pivot assuming

(i) Uniform pressure, and (ii) Uniform wear.

14. A truncated conical pivot of cone angle φ rotating at speed N supports a load W . The smallest and

largest diameter of the pivot over the contact area are ‘d’ and ‘D’ respectively. Assuming uniform

wear, derive the expression for the frictional torque.

15. Describe with a neat sketch the working of a single plate friction clutch.

16. Establish a formula for the maximum torque transmitted by a single plate clutch of external and

internal  radii r
1
 and r

2
, if the limiting coefficient of friction is µ and the axial spring load is W . Assume

that the pressure intensity on the contact faces is uniform.

17. Which of the two assumptions-uniform intensity of pressure or uniform rate of wear, would you make

use of in designing friction clutch and why ?

18. Describe with a neat sketch a centrifugal clutch and deduce an equation for the total torque transmitted.

OBJECTIVE TYPE QUESTIONS

1. The angle of inclination of the plane, at which the body begins to move down the plane, is called

(a) angle of friction (b) angle of repose (c) angle of projection

2. In a screw jack, the effort required to lift the load W is given by

(a) P = W tan (α – φ) (b) P = W tan (α + φ)

(c) P = W cos (α – φ) (d) P = W cos (α + φ)

where α = Helix angle, and

φ = Angle of friction.

3. The efficiency of a screw jack is given by

(a)
tan ( )

tan

α + φ

α
(b)

tan

tan ( )

α

α + φ

(c)

tan ( )

tan

α − φ

α
(d)

tan

tan ( )

α

α − φ

4. The radius of a friction circle for a shaft of radius r rotating inside a bearing is

(a) r sin φ (b) r cos φ (c) r tan φ (d) r cot φ
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5. The efficiency of a screw jack is maximum, when

(a) 45º
2

φ
α = + (b) 45º

2

φ
α = − (c) 90ºα = +φ (d) 90ºα = −φ

6. The maximum efficiency of a screw jack is

(a)
1 sin

1 sin

− φ

+ φ
(b)

1 sin

1 sin

+ φ

− φ
(c)

1 tan

1 tan

− φ

+ φ
(d)

1 tan

1 tan

+ φ

− φ

7. The frictional torque transmitted in a  flat pivot bearing, considering uniform pressure, is

(a)
1

. .
2

W R× µ (b)
2

. .
3

W R× µ (c)
3

. .
4

W R× µ (d)
. .W Rµ

where µ = Coefficient of friction,

W  = Load over the bearing, and

R = Radius of the bearing surface.

8. The frictional torque transmitted in a conical pivot bearing, considering uniform wear, is

(a)
1

. . cosec
2

W R× µ α (b)
2

. . cosec
3

W R× µ α

(c)
3

. . cosec
4

W R× µ α (d) µ . W.R cosec α

where R = Radius of the shaft, and

α = Semi-angle of the cone.

9. The frictional torque transmitted by a disc or plate clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

10. The frictional torque transmitted by a cone clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

ANSWERS
1. (a) 2. (b) 3. (b) 4. (a) 5. (b)

6. (a) 7. (b) 8. (a) 9. (b) 10. (d)

GO To FIRST
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11.1. Introduction

The belts or ropes are used to transmit power from

one shaft to another by means of pulleys which rotate at the

same speed or at different speeds. The amount of power trans-

mitted depends upon the following factors :

1. The velocity of the belt.

2. The tension under which the belt is placed on the

pulleys.

3. The arc of contact between the belt and the smaller

pulley.

4. The conditions under which the belt is used.

It may be noted that

(a) The shafts should be properly in line to insure

uniform tension across the belt section.

(b) The pulleys should not be too close together, in

order that the arc of contact on the smaller pul-

ley may be as large as possible.

(c) The pulleys should not be so far apart as to cause

the belt to weigh heavily on the shafts, thus in-

creasing the friction load on the bearings.
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(d) A long belt tends to swing from side to side, causing the belt to run out of the pulleys,

which in turn develops crooked spots in the belt.

(e) The tight side of the belt should be at the bottom, so that whatever sag is present on the

loose side will increase the arc of contact at the pulleys.

( f ) In order to obtain good results with flat belts, the maximum distance between the shafts

should not exceed 10 metres and the minimum should not be less than 3.5 times the

diameter of the larger pulley.

11.2. Selection of a Belt Drive

Following are the various important factors upon which the selection of a belt drive depends:

1. Speed of the driving and driven shafts, 2. Speed reduction ratio,

3. Power to be transmitted, 4. Centre distance between the shafts,

5. Positive drive requirements, 6.  Shafts layout,

7. Space available, and 8. Service conditions.

11.3. Types of Belt Drives

The belt drives are usually classified into the following three groups :

1.  Light drives. These are used to transmit small powers at belt speeds upto about 10 m/s, as

in agricultural machines and small machine tools.

2.  Medium drives. These are used to transmit medium power at belt speeds over 10 m/s but

up to 22 m/s, as in machine tools.

3.  Heavy drives. These are used to transmit large powers at belt speeds above 22 m/s, as in

compressors and generators.

11.4. Types of Belts

(a)  Flat belt. (b)  V-belt. (c)  Circular belt.

Fig. 11.1. Types of belts.

Though there are many types of belts used these days, yet the following are important from

the subject point of view :

1.  Flat belt. The flat belt, as shown in Fig. 11.1 (a), is mostly used in the factories and

workshops, where a moderate amount of power is to be transmitted, from one pulley to another when

the two pulleys are not more than 8 metres apart.

2.  V-belt. The V-belt, as shown in Fig. 11.1 (b), is mostly used in the factories and work-

shops, where a moderate amount of power is to be transmitted, from one pulley to another, when the

two pulleys are very near to each other.

3.  Circular belt or rope. The circular belt or rope, as shown in Fig. 11.1 (c), is mostly used

in the factories and workshops, where a great amount of power is to be transmitted, from one pulley

to another, when the two pulleys are more than 8 meters apart.
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If a huge amount of power is to be transmitted, then a single belt may not be sufficient. In

such a case, wide pulleys (for V-belts or circular belts) with a number of grooves are used. Then a belt

in each groove is provided to transmit the required amount of power from one pulley to another.

11.5. Material used for Belts

The material used for belts and ropes must be strong, flexible, and durable. It must have a

high coefficient of friction. The belts, according to the material used, are classified as follows :

1.  Leather belts. The most important material for the belt is leather. The best leather belts are

made from 1.2 metres to 1.5 metres long strips cut from either side of the back bone of the top grade

steer hides. The hair side of the leather is smoother and harder than the flesh side, but the flesh side is

stronger. The fibres on the hair side are perpendicular to the surface, while those on the flesh side are

interwoven and parallel to the surface. Therefore for these reasons, the hair side of a belt should be in

contact with the pulley surface, as shown in Fig. 11.2. This gives a more intimate contact between the

belt and the pulley and places the greatest tensile strength of the belt section on the outside, where the

tension is maximum as the belt passes over the pulley.

(a)  Single layer belt. (b)  Double layer belt.

Fig. 11.2.  Leather belts.

The leather may be either oak-tanned or mineral salt tanned e.g. chrome tanned. In order to

increase the thickness of belt, the strips are cemented together. The belts are specified according to

the number of layers e.g. single, double or triple ply and according to the thickness of hides used e.g.

light, medium or heavy.

The leather belts must be periodically cleaned and dressed or treated with a compound or

dressing containing neats foot or other suitable oils so that the belt will remain soft and flexible.

2.  Cotton or fabric belts. Most of the fabric belts are made by folding canvass or cotton duck

to three or more layers (depending upon the thickness desired) and stitching together. These belts are

woven also into a strip of the desired width and thickness. They are impregnated with some filler like

linseed oil in order to make the belts water proof and to prevent injury to the fibres. The cotton belts

are cheaper and suitable in warm climates, in damp atmospheres and in exposed positions. Since the

cotton belts require little attention, therefore these belts are mostly used in farm machinery, belt

conveyor etc.

3.  Rubber belt. The rubber belts are made of layers of fabric impregnated with rubber com-

position and have a thin layer of rubber on the faces. These belts are very flexible but are quickly

destroyed if allowed to come into contact with heat, oil or grease. One of the principal advantage of

these belts is that they may be easily made endless. These belts are found suitable for saw mills, paper

mills where they are exposed to moisture.

4.  Balata belts. These belts are similar to rubber belts except that balata gum is used in place

of rubber. These belts are acid proof and water proof and it is not effected by animal oils or alkalies.

The balata belts should not be at temperatures above 40° C because at this temperature the balata

begins to soften and becomes sticky. The strength of balata belts is 25 per cent higher than rubber

belts.
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11.6. Types of Flat Belt Drives

The power from one pulley to another may be transmitted by any of the following types of

belt drives:

1.  Open belt drive. The open belt drive, as shown in Fig. 11.3, is used with shafts arranged

parallel and rotating in the same direction. In this case, the driver A  pulls the belt from one side (i.e.

lower side RQ) and delivers it to the other side (i.e. upper side LM). Thus the tension in the lower side

belt will be more than that in the upper side belt. The lower side belt (because of more tension) is

known as tight side whereas the upper side belt (because of less tension) is known as slack side, as

shown in Fig. 11.3.

Fig. 11.3.  Open belt drive.

2.  Crossed or twist belt drive. The crossed or twist belt drive, as shown in Fig. 11.4, is used

with shafts arranged parallel and rotating in the opposite directions.

Fig. 11.4.  Crossed or twist belt drive.

In this case, the driver pulls the belt from one side (i.e. RQ) and delivers it to the other side

(i.e. LM). Thus the tension in the belt RQ will be more than that in the belt LM. The belt RQ (because

of more tension) is known as tight side, whereas the belt LM (because of less tension) is known as

slack side, as shown in Fig. 11.4.
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A little consideration will show that at a point where the belt crosses, it rubs against each

other and there will be excessive wear and tear. In order to avoid this, the shafts should be placed at

a maximum distance of 20 b, where b is the width of belt and the speed of the belt should be less than

15 m/s.

3.  Quarter turn belt drive. The quarter turn belt drive also known as right angle belt drive, as

shown in Fig. 11.5 (a), is used with shafts arranged at right angles and rotating in one definite direc-

tion. In order to prevent the belt from leaving the pulley, the width of the face of the pulley should be

greater or equal to 1.4 b, where b is the width of belt.

In case the pulleys cannot be arranged, as shown in Fig. 11.5 (a), or when the reversible

motion is desired, then a quarter turn belt drive with guide pulley, as shown in Fig. 11.5 (b), may be

used.

(a)  Quarter turn belt drive. (b)  Quarter turn belt drive with guide pulley.

Fig. 11.5

4.  Belt drive with idler pulleys. A belt drive with an idler pulley, as shown in Fig. 11.6 (a), is

used with shafts arranged parallel and when an open belt drive cannot be used due to small angle of

contact on the smaller pulley. This type of drive is provided to obtain high velocity ratio and when the

required belt tension cannot be obtained by other means.

(a)  Belt drive with single idler pulley. (b)  Belt drive with many idler pulleys.

Fig. 11.6

When it is desired to transmit motion from one shaft to several shafts, all arranged in parallel,

a belt drive with many idler pulleys, as shown in Fig. 11.6 (b), may be employed.
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Fig. 11.9.  Fast and loose pulley drive.

5.  Compound belt drive. A compound belt drive, as shown in Fig. 11.7, is used when power

is transmitted from one shaft to another through a number of pulleys.

Fig.  11.7.  Compound belt brive.

6.  Stepped or cone pulley drive. A stepped or cone pulley drive, as shown in Fig. 11.8, is

used for changing the speed of the driven shaft while the main or driving shaft runs at constant speed.

This is accomplished by shifting the belt from one part of the steps to the other.

7.  Fast and loose pulley drive. A fast and loose pulley drive, as shown in Fig. 11.9, is used

when the driven or machine shaft is to be started or stopped when ever desired without interfering

with the driving shaft. A pulley which is keyed to the machine shaft is called fast pulley and runs at

the same speed as that of machine shaft. A loose pulley runs freely over the machine shaft and is

incapable of transmitting any power. When the driven shaft is required to be stopped, the belt is

pushed on to the loose pulley by means of sliding bar having belt forks.

Fig. 11.8.  Stepped or cone pulley drive.

11.7. Velocity Ratio of Belt Drive

It is the ratio between the velocities of the driver and the follower or driven. It may be

expressed, mathematically, as discussed below :

Let d
1

= Diameter of the driver,

d
2

= Diameter of the follower,
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N
1

= Speed of the driver in r.p.m., and

N
2

= Speed of the follower in r.p.m.

∴  Length of the belt that passes over the driver, in one minute

= π d
1
.N

1

Similarly, length of the belt that passes over the

follower, in one minute

= π d
2 

. N
2

Since the length of belt that passes over the

driver in one minute is equal to the length of belt that

passes over the follower in one minute, therefore

π d
1 

. N
1

= π d
2
 . N

2

∴ Velocity ratio, 2 1

1 2

N d

N d
=

When the thickness of the belt (t) is considered,

then velocity ratio,

 
2 1

1 2

N d t

N d t

+
=

+

Note: The velocity ratio of a belt drive may also be obtained as discussed below :

We know that peripheral velocity of the belt on the driving pulley,

1 1
1

.
m/s

60

π
=

d N
v

and peripheral velocity of the belt on the driven or follower pulley,

 
2 2

2

.
m/s

60

d N
v

π
=

When there is no slip, then v
1
 = v

2
.

∴  
1 1 2 2. .

60 60

d N d Nπ π
= or

2 1

1 2

N d

N d
=

11.8.11.8.11.8.11.8.11.8. VVVVVelocity Raelocity Raelocity Raelocity Raelocity Ratio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Driviviviviveeeee

Sometimes the power is transmitted from one shaft to another, through a number of pulleys as

shown in Fig. 11.7. Consider a pulley 1 driving the pulley 2. Since the pulleys 2 and 3 are keyed to the

same shaft, therefore the pulley 1 also drives the pulley 3 which, in turn, drives the pulley 4.

Let d
1

= Diameter of the pulley 1,

N
1

= Speed of the pulley 1 in r.p.m.,

d
2
, d

3
, d

4
, and N

2
, N

3
, N

4
= Corresponding values for pulleys 2, 3 and 4.

We know that velocity ratio of pulleys 1 and 2,

                                
2 1

1 2

N d

N d
= ...(i)

Similarly, velocity ratio of pulleys 3 and 4,

                                
34

3 4

dN

N d
= ...(ii)

Multiplying equations (i) and (ii),

                      
32 4 1

1 3 2 4

dN N d

N N d d
× = ×
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or                         
1 34

1 2 4

d dN

N d d

×
=

×
...(∵ N

2
 = N

3
, being keyed to the same shaft)

A little consideration will show, that if there are six pulleys, then

                                
6 1 3 5

1 2 4 6

N d d d

N d d d

× ×
=

× ×

or               
Speed of last driven Product of diameters of drivers

Speed of first driver Product of diameters of drivens
=

11.9. Slip of Belt

In the previous articles, we have discussed the motion

of belts and shafts assuming a firm frictional grip between the

belts and the shafts. But sometimes, the frictional grip becomes

insufficient. This may cause some forward motion of the driver

without carrying the belt with it. This may also cause some

forward motion of the belt without carrying the driven pulley

with it. This is called slip of the belt and is generally expressed

as a percentage.

The result of the belt slipping is to reduce the velocity

ratio of the system. As the slipping of the belt is a common

phenomenon, thus the belt should never be used where a

definite velocity ratio is of importance (as in the case of hour,

minute and second arms in a watch).

Let s
1 

% = Slip between the

driver and the belt, and

s
2 

% = Slip between the belt and the follower.

∴   Velocity of the belt passing over the driver per second

                                     
1 1 1 1 1 1 1 1. . .

– 1 –
60 60 100 60 100

d N d N s d N s
v

π π π  
= × =  

 
...(i)

and velocity of the belt passing over the follower per second,

                          
2 2 2 2.

– 1 –
60 100 100

d N s s
v v v

π  
= × =  

 

Substituting the value of v from equation (i),

                          
2 2 1 1 1 21 – 1 –
60 60 100 100

d N d N s sπ π   
=   

  

                                 
2 1 1 2

1 2

1 – –
100 100

N d s s

N d

 
=  

 

1 2... Neglecting 
100 100

s s ×
 

× 

                                        
1 1 2 1

2 2

1 – 1 –
100 100

d s s d s

d d

+   
= =   

  

... (where s = s
1
 + s

2
, i.e. total percentage of slip)

If thickness of the belt (t) is considered, then

                                 
2 1

1 2

1 –
100

N d t s

N d t

+  
=  

+  
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Example 11.1. An engine, running at 150 r.p.m., drives a line shaft by means of a belt. The

engine pulley is 750 mm diameter and the pulley on the line shaft being 450 mm. A 900 mm diameter

pulley on the line shaft drives a 150 mm diameter pulley keyed to a dynamo shaft. Find the speed of

the dynamo shaft, when 1. there is no slip, and 2. there is a slip of 2% at each drive.

Solution. Given : N
1
 = 150 r.p.m. ; d

1
 = 750 mm ; d

2
 = 450 mm ; d

3
 = 900 mm ; d

4
 = 150 mm

The arrangement of belt drive is shown in Fig. 11.10.

Let N
4

= Speed of the dynamo shaft .

Fig. 11.10

1. When there is no slip

We know that 1 34

1 2 4

d dN

N d d

×
=

×
         or   4 750 900

10
150 450 150

N ×
= =

×

∴ N
4

= 150 × 10 = 1500 r.p.m.  Ans.

2. When there is a slip of 2% at each drive

We know that        
1 34 1 2

1 2 4

1 – 1 –
100 100

d dN s s

N d d

×   
=   

×   

                            
4 750 900 2 2

1 – 1 – 9.6
150 450 150 100 100

N ×   
= =  

×   

∴ N
4

= 150 × 9.6 = 1440 r.p.m.  Ans.

11.10. Creep of Belt

When the belt passes from the slack side to the tight side, a certain portion of the belt extends

and it contracts again when the belt passes from the tight side to slack side. Due to these changes of

length, there is a relative motion between the belt and the pulley surfaces. This relative motion is

termed as creep. The total effect of creep is to reduce slightly the speed of the driven pulley or

follower. Considering creep, the velocity ratio is given by

                             
22 1

1 2 1

EN d

N d E

+ σ
= ×

+ σ

where                   σ
1
 and σ

2
= Stress in the belt on the tight and slack side respectively, and

E = Young’s modulus for the material of the belt.
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Example 11.2. The power is transmitted from a pulley 1 m diameter running at 200 r.p.m. to

a pulley 2.25 m diameter by means of a belt. Find the speed lost by the driven pulley as a result of

creep, if the stress on the tight and slack side of the belt is 1.4 MPa and 0.5 MPa respectively. The

Young’s modulus for the material of the belt is 100 MPa.

Solution.  Given : d
1
 = 1 m ; N

1
 = 200 r.p.m. ; d

2
 = 2.25 m ; σ

1
 = 1.4 MPa = 1.4 × 106 N/m2;

σ
2
 = 0.5 MPa = 0.5 × 106 N/m2 ; E = 100 MPa = 100 × 106 N/m2

Let N
2

= Speed of the driven pulley.

Neglecting creep, we know that

                              2 1

1 2

N d

N d
=   or  1

2 1

2

1
200 88.9 r.p.m.

2.25

d
N N

d
= × = × =

Considering creep, we know that

                             
22 1

1 2 1

EN d

N d E

+ σ
= ×

+ σ

or                                         
6 6

2
6 6

100 10 0.5 101
200 88.7 r.p.m.

2.25 100 10 1.4 10

N
× + ×

= × × =

× + ×

∴   Speed lost by driven pulley due to creep

= 88.9 – 88.7 = 0.2 r.p.m.  Ans.

11.11. Length of an Open Belt Drive

Fig. 11.11.  Length of an open belt drive.

We have already discussed in Art. 11.6 that in an open belt drive, both the pulleys rotate in the

same direction as shown in Fig. 11.11.

Let r
1
 and r

2
= Radii of the larger and smaller pulleys,

x = Distance between the centres of two pulleys (i.e. O
1
 O

2
), and

L = Total length of the belt.

Let the belt leaves the larger pulley at E and G and the smaller pulley at F and H as shown in

Fig. 11.11. Through O
2
, draw O

2 
M parallel to FE.

From the geometry of the figure, we find that O
2 

M will be perpendicular to O
1 

E.

Let the angle MO
2
 O

1
= α radians.
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We know that the length of the belt,

L = Arc GJE + EF + Arc FKH + HG

= 2 (Arc JE + EF + Arc FK) ...(i)

From the geometry of the figure, we find that

1 1 1 2

1 2 1 2

– –
sin

O M O E EM r r

O O O O x
α = = =

Since α is very small, therefore putting

sin α = α (in radians) 1 2–r r

x
= ...(ii)

∴ Arc 1
2

JE r
π 

= + α 
 

...(iii)

Similarly Arc 2 –
2

FK r
π 

= α 
 

...(iv)

and 2 2 2 2
2 1 2 1 1 2( ) – ( ) – ( – )EF MO O O O M x r r= = =

2

1 2–
1 –

r r
x

x

 
=  

 

Expanding this equation by binomial theorem,

2 2
1 2 1 2– ( – )1

1 – .... –
2 2

r r r r
EF x x

x x

  
= + =  

   

...(v)

Substituting the values of arc JE from equation (iii), arc FK from equation (iv) and EF from

equation (v) in equation (i), we get

2
1 2

1 2

( – )
2 – –

2 2 2

r r
L r x r

x

 π π   
= + α + + α    

     

2
1 2

1 1 2 2

( – )
2 . – – .

2 2 2

r r
r r x r r

x

 π π
= × + α + + × α 

  

2
1 2

1 2 1 2

( – )
2 ( ) ( – ) –

2 2

r r
r r r r x

x

 π
= + + α + 

  

2
1 2

1 2 1 2

( – )
( ) 2 ( – ) 2 –

r r
r r r r x

x
= π + + α +

Substituting the value of 1 2–r r

x
α =  from equation (ii),

2
1 2 1 2

1 2 1 2

( – ) ( – )
( ) 2 ( – ) 2 –

r r r r
L r r r r x

x x
= π + + × × +

2 2
1 2 1 2

1 2

2( – ) ( – )
( ) 2 –

r r r r
r r x

x x
= π + + +

2
1 2

1 2

( – )
( ) 2

r r
r r x

x
= π + + + ...(In terms of pulley radii)

2
1 2

1 2

( – )
( ) 2

2 4

d d
d d x

x

π
= + + + ...(In terms of pulley diameters)
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11.12. Length of a Cross Belt Drive

We have already discussed in Art. 11.6 that in a cross belt drive, both the pulleys rotate in

opposite directions as shown in Fig. 11.12.

Fig. 11.12.  Length of a cross belt drive.

Let r
1
 and r

2
= Radii of the larger and smaller pulleys,

x = Distance between the centres of two pulleys (i.e. O
1
 O

2
), and

L = Total length of the belt.

Let the belt leaves the larger pulley at E and G and the smaller pulley at F and H, as shown in

Fig. 11.12. Through O
2
, draw O

2
M parallel to FE.

From the geometry of the figure, we find that O
2
M will be perpendicular to O

1
E.

Let the angle MO
2
 O

1
 = α radians.

We know that the length of the belt,

L = Arc GJE + EF + Arc FKH + HG

= 2 (Arc JE + EF + Arc FK) ...(i)

From the geometry of the figure, we find that

1 1 1 2

1 2 1 2

sin
O M O E EM r r

O O O O x

+ +
α = = =

Since α is very small, therefore putting

 sin α = α (in radians) 
1 2r r

x

+
= ...(ii)

∴ Arc 1
2

JE r
π 

= + α 
 

...(iii)

Similarly Arc 2
2

FK r
π 

= + α 
 

...(iv)

and 2 2 2 2
2 1 2 1 1 2( ) – ( ) – ( )EF MO O O O M x r r= = = +

2

1 21 –
r r

x
x

+ 
=  

 
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Expanding this equation by binomial theorem,

2 2
1 2 1 2( )1

1 – ... –
2 2

r r r r
EF x x

x x

 + + 
= + =  

   

...(v)

Substituting the values of arc JE from equation (iii), arc FK from equation (iv) and EF from

equation (v) in equation (i), we get

2
1 2

1 2

( )
2 –

2 2 2

r r
L r x r

x

 +π π   
= + α + + + α    

     

2
1 2

1 1 2 2

( )
2 . – .

2 2 2

r r
r r x r r

x

 +π π
= × + α + + × + α 

  

2
1 2

1 2 1 2

( )
2 ( ) ( ) –

2 2

r r
r r r r x

x

 +π
= + + α + + 

  

2
1 2

1 2 1 2

( )
( ) 2 ( ) 2 –

r r
r r r r x

x

+
= π + + α + +

Substituting the value of 1 2r r

x

+
α =  from equation (ii),

2
1 2 1 2

1 2 1 2

2( ) ( )
( ) ( ) 2 –

r r r r
L r r r r x

x x

+ +
= π + + × + +

2 2
1 2 1 2

1 2

2( ) ( )
( ) 2 –

r r r r
r r x

x x

+ +
= π + + +

2
1 2

1 2

( )
( ) 2

r r
r r x

x

+
= π + + + ...(In terms of pulley radii)

2
1 2

1 2

( )
( ) 2

2 4

d d
d d x

x

+π
= + + + ...(In terms of pulley diameters)

It may be noted that the above expression is a function of

(r
1
 + r

2
). It is thus obvious that if sum of the radii of the two pulleys

be constant, then length of the belt required will also remain con-

stant, provided the distance between centres of the pulleys remain

unchanged.

Example 11.3. A shaft which rotates at a constant speed of

160 r.p.m. is connected by belting to a parallel shaft 720 mm apart,

which has to run at 60, 80 and 100 r.p.m. The smallest pulley on the

driving shaft is 40 mm in radius. Determine the remaining radii of

the two stepped pulleys for 1. a crossed belt, and 2. an open belt.

Neglect belt thickness and slip.

Solution. Given : N
1
 = N

3
 = N

5
 = 160 r.p.m. ; x = 720 mm ;

N
2
 = 60 r.p.m.; N

4
 = 80 r.p.m.; N

6
 
 
= 100 r.p.m. ; r

1
 = 40 mm

Fig. 11.13.
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Let r
2
, r

3
, r

4
, r

5
 and r

6
 be the radii of the pulleys 2, 3, 4, 5, and 6 respectively, as shown in Fig.

11.13.

1.  For a crossed belt

We know that for pulleys 1 and 2,

             
2 1

1 2

N r

N r
=

or              1
2 1

2

160
40 106.7 mm

60

N
r r

N
= × = × =  Ans.

and for pulleys 3 and 4,

             
34

3 4

rN

N r
=   or  3

4 3 3 3

4

160
2

80

N
r r r r

N
= × = × =

We know that for a crossed belt drive,

                                           r
1
 + r

2
 = r

3
 + r

4
 = r

5
 + r

6
 = 40 + 106.7 = 146.7 mm ...(i)

∴ r
3
 + 2 r

3
= 146.7   or    r

3
 = 146.7/3 = 48.9 mm   Ans.

and      r
4
 = 2 r

3
 = 2 × 48.9 = 97.8 mm  Ans.

Now for pulleys 5 and 6,

             6 5

5 6

N r

N r
=   or 5

6 5 5 5

6

160
1.6

100

N
r r r r

N
= × = × =

From equation (i),

r
5
 + 1.6 r

5
= 146.7  or  r

5
 = 146.7/2.6 = 56.4 mm  Ans.

and r
6

= 1.6 r
5
 = 1.6 × 56.4 = 90.2 mm  Ans.

2.  For an open belt

We know that for pulleys 1 and 2,

 2 1

1 2

N r

N r
=   or  

1
2 1

2

160
40 106.7 mm

60

N
r r

N
= × = × =  Ans.

and for pulleys 3 and 4,

34

3 4

rN

N r
=   or  3

4 3 3 3

4

160
2

80

N
r r r r

N
= × = × =

We know that length of belt for an open belt drive,

2
2 1

1 2

( – )
( ) 2

r r
L r r x

x
= π + + +

2
(106.7 – 40)

(40 106.7) 2 720 1907 mm
720

= π + + + × =

Since the length of the belt in an open belt drive is constant, therefore for pulleys 3 and 4,

length of the belt (L),

2
4 3

3 4

( – )
1907 ( ) 2

r r
r r x

x
= π + + +



Chapter 11 : Belt, Rope and Chain Drives   �  339

              

2
3 3

3 3

(2 – )
( 2 ) 2 720

720

r r
r r= π + + + ×

            = 9.426 r
3
 + 0.0014 (r

3
)2 + 1440

or      0.0014 (r
3
)2 + 9.426 r

3
 – 467 = 0

∴      

2

3

– 9.426 (9.426) 4 0.0014 467

2 0.0014
r

± + × ×
=

×

             
– 9.426 9.564

= 49.3 mm
0.0028

±
=  Ans. ...(Taking +ve sign)

and               r
4
 =  2 r

3
 = 2 × 49.3 = 98.6 mm  Ans.

Now for pulleys 5 and 6,

      6 5

5 6

N r

N r
=   or

          5
6 5 5 5

6

160
1.6

100

N
r r r r

N
= × = × =

and length of the belt (L),

                 

2
6 5

5 6

( – )
1907 ( ) 2

r r
r r x

x
= π + + +

                          

2
5 5

5 5

(1.6 – )
( 1.6 ) 2 720

720

r r
r r= π + + + ×

                        = 8.17 r
5
 + 0.0005 (r

5
)2 + 1440

or       0.0005 (r
5
)2 + 8.17 r

5
 – 467 = 0

∴             

2

5

–8.17 (8.17) 4 0.0005 467

2 0.0005
r

± + × ×
=

×

                         
–8.17 8.23

= 60 mm
0.001

±
=  Ans.

...(Taking +ve sign)

and r
6

= 1.6 r
5
 = 1.6 × 60 = 96 mm Ans.

11.13. Power Transmitted by a Belt

Fig. 11.14 shows the driving pulley (or driver) A  and the driven pulley (or follower) B. We

have already discussed that the driving pulley pulls the belt from one side and delivers the same to the

other side. It is thus obvious that the tension on the former side (i.e. tight side) will be greater than the

latter side (i.e. slack side) as shown in Fig. 11.14.

Let T
1
 and T

2
= Tensions in the tight and slack side of the belt respectively in

newtons,

Milling machine is used for dressing

surfaces by rotary cutters.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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r
1
 and r

2
= Radii of the driver and follower respectively, and

v = Velocity of the belt in m/s.

Fig. 11.14.  Power transmitted by a belt.

The effective turning (driving) force at the  circumference of the follower is the difference

between the two  tensions (i.e. T
1
 – T

2
).

∴  Work done per second = (T
1
 – T

2
) v N-m/s

and power transmitted,        P = (T
1
 – T

2
) v W ...(∵ 1 N-m/s = 1 W)

A little consideration will show that the torque exerted on the driving pulley is (T
1
 – T

2
) r

1
.

Similarly, the torque exerted on the driven pulley i.e. follower is (T
1
 – T

2
) r

2
.

11.14. Ratio of Driving Tensions For Flat Belt Drive

Consider a driven pulley rotating in the clockwise direction as shown in Fig. 11.15.

Fig. 11.15.  Ratio of driving tensions for flat belt.

Let T
1

= Tension in the belt on the tight side,

T
2

= Tension in the belt on the slack side, and

θ = Angle of contact in radians (i.e. angle subtended by the arc A B, along

which the belt touches the pulley at the centre).

Now consider a small portion of the belt PQ, subtending an angle δθ at the centre of the

pulley as shown in Fig. 11.15. The belt PQ is in equilibrium under the following forces :

1. Tension T in the belt at P,

2. Tension (T + δ T) in the belt at Q,

3. Normal reaction R
N

, and

4. Frictional force, F = µ × R
N

 , where µ is the coefficient of friction between the belt and

pulley.
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Resolving all the forces horizontally and equating the same,

N ( ) sin sin
2 2

R T T T
δθ δθ

= + δ + ...(i)

Since the angle δθ is very small, therefore putting sin δ θ / 2 = δθ / 2 in equation (i),

N

. . .
( ) .

2 2 2 2 2

T T T
R T T T T

δθ δθ δθ δ δθ δθ
= + δ + × = + + = δθ ...(ii)

.
... Neglecting

2

Tδ δθ 
 
 

Now resolving the forces vertically, we have

N ( ) cos – cos
2 2

R T T T
δθ δθ

µ × = + δ ...(iii)

Since the angle δ θ is very small, therefore putting cos δ θ / 2 = 1 in equation (iii),

µ × R
N

  = T + δT – T = δT  or  
N

T
R

δ
=

µ
...(iv)

Equating the values of R
N

 from equations (ii) and (iv),

.
T

T
δ

δθ =
µ

  or  .
T

T

δ
= µ δθ

Integrating both sides between the limits T
2
 
 
and T

1
 and from 0 to θ respectively,

i.e.
1

2
0

T

T

T

T

θ
δ

= µ δ θ∫ ∫                   or       1

2

log .
e

T

T

 
= µ θ 

 

  or  .1

2

T
e

T

µ θ
=

...(v)

Equation (v) can be expressed in terms of corresponding logarithm to the base 10, i.e.

1

2

2.3log .
T

T

 
= µ θ 

 

The above expression gives the relation between the tight side and slack side tensions, in terms

of coefficient of friction and the angle of contact.

11.15. Determination of Angle of Contact

When the two pulleys of different diameters are connected by means of an open belt as

shown in Fig. 11.16 (a), then the angle of contact or lap (θ) at the smaller pulley must be taken into

consideration.

Let r
1

= Radius of larger pulley,

r
2

= Radius of smaller pulley, and

x = Distance between centres of two pulleys (i.e. O
1
 O

2
).

From Fig. 11.16 (a),

1 1 1 2

1 2 1 2

– –
sin

O M O E ME r r

O O O O x
α = = = ...(∵ ME = O

2
 F = r

2
)

∴ Angle of contact or lap,

(180 – 2 ) rad
180

π
θ = ° α
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A little consideration will show that when the two pulleys are connected by means of a crossed

belt as shown in Fig. 11.16 (b), then the angle of contact or lap (θ) on both the pulleys is same. From

Fig. 11.16 (b),

1 1 1 2

1 2 1 2

sin
O M O E ME r r

O O O O x

+ +
α = = =

∴ Angle of contact or lap, (180 2 ) rad
180

π
θ = °+ α

(a) Open belt drive.

(b)  Crossed belt drive.

Fig. 11.16

Example 11.4. Find the power transmitted by a belt running over a pulley of 600 mm

diameter at 200 r.p.m. The coefficient of friction between  the belt and the pulley is 0.25, angle of lap

160° and maximum tension in the belt is 2500 N.

Solution. Given : d = 600 mm = 0.6 m ; N = 200 r.p.m. ; µ = 0.25 ; θ = 160° = 160 × π / 180

= 2.793 rad ; T
1
 = 2500 N

We know that velocity of the belt,

. 0.6 200
6.284 m/s

60 60

d N
v

π π × ×
= = =

Let T
2

= Tension in the slack side of the belt.

We know that 1

2

2.3log . 0.25 2.793 0.6982
T

T

 
= µ θ = × = 

 
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1

2

0.6982
log 0.3036

2.3

T

T

 
= = 

 

∴
1

2

2.01
T

T
= ...(Taking antilog of 0.3036)

and
1

2

2500
1244 N

2.01 2.01

T
T = = =

We know that power transmitted by the belt,

P = (T
1
 – T

2
) v = (2500 – 1244) 6.284 = 7890 W

= 7.89 kW  Ans.

Example 11.5. A casting weighing 9 kN hangs freely from a rope which makes 2.5 turns

round a drum of 300 mm diameter revolving at 20 r.p.m. The other end of the rope is pulled by a man.

The coefficient of friction is 0.25. Determine 1. The force required by the man, and 2. The power to

raise the casting.

Solution. Given : W  = T
1
 = 9 kN = 9000 N ; d = 300 mm = 0.3 m ; N = 20 r.p.m. ; µ = 0.25

1.  Force required by the man

Let T
2

= Force required by the man.

Since the rope makes 2.5 turns round the drum, therefore angle of contact,

θ = 2.5 × 2 π = 5 π rad

Another model of milling machine.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that 1

2

2.3log . 0.25 5 3.9275
T

T

 
= µ θ = × π = 

 

1

2

3.9275
log 1.71

2.3

T

T

 
= = 

 

  or  
1

2

51
T

T
=

...(Taking antilog of 1.71)

∴ 1
2

9000
= 176.47 N

51 51

T
T = =  Ans.

2.  Power to raise the casting

We know that velocity of the rope,

. 0.3 20
0.3142 m/s

60 60

d N
v

π π × ×
= = =

∴  Power to raise the casting,

P = (T
1
 – T

2
) v = (9000 – 176.47) 0.3142 = 2772 W

= 2.772 kW   Ans.

Example 11.6. Two pulleys, one 450 mm diameter  and the other 200 mm diameter are on

parallel shafts 1.95 m apart and are connected by a crossed belt. Find the length of the belt required

and the angle of contact between the belt and each pulley.

What power can be transmitted by the belt when the larger pulley rotates at 200 rev/min, if

the maximum permissible tension in the belt is 1 kN, and the coefficient of friction between the belt

and pulley is 0.25 ?

Solution. Given : d
1
 = 450 mm = 0.45 m or r

1
 = 0.225 m ; d

2
 = 200 mm = 0.2 m or

r
2
 = 0.1 m ; x = 1.95 m ; N

1
 = 200 r.p.m. ; T

1
 = 1 kN = 1000 N ; µ = 0.25

We know that speed of the belt,

1 1. 0.45 200
4.714 m/s

60 60

d N
v

π π × ×
= = =

Length of the belt

We know that length of the crossed belt,

2
1 2

1 2

( )
( ) 2

r r
L r r x

x

+
= π + + +

2
(0.225 0.1)

(0.225 0.1) 2 1.95 4.975m
1.95

+
= π + + × + =  Ans.

Angle of contact between the belt and each pulley

Let θ = Angle of contact between the belt and each pulley.

We know that for a crossed belt drive,

1 2 0.225 0.1
sin 0.1667

1.95

r r

x

+ +
α = = =   or   α = 9.6°

∴ θ = 180° + 2 α = 180° + 2 × 9.6° = 199.2°

199.2 3.477 rad
180

π
= × = Ans.
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Power transmitted

Let T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3 log . 0.25 3.477 0.8692
T

T

 
= µ θ = × = 

 

1

2

0.8692
log 0.378

2.3

T

T

 
= = 

 

  or  1

2

2.387
T

T
= ...(Taking antilog of 0.378)

∴
1

2

1000
419 N

2.387 2.387

T
T = = =

We know that power transmitted,

P = (T
1
 – T

2
) v = (1000 – 419) 4.714 = 2740 W = 2.74 kW  Ans.

11.16. Centrifugal Tension

Since the belt continuously runs over the pulleys, there-

fore, some centrifugal force is caused, whose effect is to increase

the tension on both, tight as well as the slack sides. The tension

caused by centrifugal force is called centrifugal tension. At lower

belt  speeds (less than 10 m/s), the centrifugal tension is very

small, but at higher belt speeds (more than 10 m/s), its effect is

considerable and thus should be taken into

account.

Consider a small portion PQ of the belt

subtending an angle dθ the centre of the pulley as shown in Fig.

11.17.

Let m = Mass of the belt per unit length in kg,

v = Linear velocity of the belt in m/s,

r = Radius of the pulley over which the belt runs in metres, and

T
C

= Centrifugal tension acting tangentially at P and Q in newtons.

We know that length of the belt PQ

= r. dθ

and mass of the belt PQ                       = m. r. dθ

∴ Centrifugal force acting on the belt PQ,

2
2

C ( . . ) . .
v

F m r d m d v
r

= θ = θ

The centrifugal tension T
C
 acting tangentially at P and Q keeps the belt in equilibrium.

Now resolving the forces (i.e. centrifugal force and centrifugal tension) horizontally and

equating the same, we have

2

C C Csin sin . .
2 2

d d
T T F m d v

θ θ   
+ = = θ   

   

Since the angle dθ is very small, therefore, putting sin ,
2 2

d dθ θ 
= 

 

 in the above expression,

Fig. 11.17.  Centrifugal tension.
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2
C2 . .

2

d
T m d v

θ 
= θ 

 
  or   T

C
 = m . v

2

Notes : 1. When the centrifugal tension is taken into account, then total tension in the tight side,

T
t1

= T
1
 + T

C

and total tension in the slack side,

T
t2

= T
2
 + T

C

             2.   Power transmitted, P = (T
t1

 – T
t2

) v ...(in watts)

= [(T
1
 + T

C
) – (T

2
 + T

C
)] v = (T

1
 – T

2
) v ...(same as before)

Thus we see that centrifugal tension has no effect on the power transmitted.

            3.   The ratio of driving tensions may also be written as

1 C

2 C

–
2.3log .

–

t

t

T T

T T

 
= µ θ 

 

where T
t1

= Maximum or total tension in the belt.

11.17. Maximum Tension in the Belt

A little consideration will show that the maximum tension in the belt (T) is equal to the total

tension in the tight side of the belt (T
t1

).

Let σ = Maximum safe stress in N/mm2,

b = Width of the belt in mm, and

t = Thickness of the belt in mm.

We know that maximum tension in the belt,

T = Maximum stress × cross-sectional area of belt = σ. b. t

When centrifugal tension is neglected, then

T (or T
t1

) = T
1
, i.e. Tension in the tight side of the belt

and when centrifugal tension is considered, then

T (or T
t1

) = T
1
 + T

C

11.18. Condition For the Transmission of Maximum Power

We know that power transmitted by a belt,

P = (T
1
 – T

2
) v ...(i)

where T
1

= Tension in the tight side of the belt in newtons,

T
2

= Tension in the slack side of the belt in newtons, and

v = Velocity of the belt in m/s.

From Art. 11.14, we have also seen that the ratio of driving tensions is

.1

2

T
e

T

µ θ
=   or  1

2 .

T
T

e
µ θ

= ...(ii)

Substituting the value of T
2
 in equation (i),

1
1 1 1. .

1
– 1 – . .

T
P T v T v T v C

e e
µ θ µ θ

   
= = =  

  
...(iii)
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where
.

1
1 –C

e
µ θ

=

We know that T
1

= T – T
C

where T = Maximum tension to which the belt can be subjected in

newtons, and

T
C

= Centrifugal tension in newtons.

Substituting the value of T
1
 in equation (iii),

P = (T – T
C
) v.C

= (T – m.v2) v.C = (T.v – m v3) C ... (Substituting T
C
 = m. v

2)

For maximum power, differentiate the above expression with respect to v and equate to zero,

i.e.

0
dP

dv
=          or          3

( . – ) 0
d

T v mv C
dv

=

∴ T – 3 m . v2 = 0

or T – 3 T
C

= 0  or  T = 3 T
C

...(iv)

It shows that when the power transmitted is maximum, 1/3rd of the maximum tension is

absorbed as centrifugal tension.

Notes :  1.  We know that T
1
 = T– T

C
 and for maximum power, 

C
3

T
T = .

∴
1

2
–

3 3

T T
T T= =

              2.  From equation (iv), the velocity of the belt for the maximum power,

3

T
v

m
=

Example. 11.7. A shaft rotating at 200 r.p.m. drives another shaft at 300 r.p.m. and transmits

6 kW through a belt. The belt is 100 mm wide and 10 mm thick. The distance between the shafts is 4m.

The smaller pulley is 0.5 m in diameter. Calculate the stress in the belt, if it is 1. an open belt drive,

and 2. a cross belt drive. Take µ = 0.3.

Solution. Given : N
1
 = 200 r.p.m. ; N

2
 = 300 r.p.m. ; P = 6 kW = 6 × 103 W ; b = 100 mm ;

t = 10 mm ; x = 4 m ; d
2
 = 0.5 m ; µ = 0.3

Let σ = Stress in the belt.

1.  Stress in the belt for an open belt drive

First of all, let us find out the diameter of larger pulley (d
1
). We know that

2 1

1 2

N d

N d
=   or  2 2

1

1

. 300 0.5
0.75m

200

N d
d

N

×
= = =

and velocity of the belt,
2 2. 0.5 300

7.855 m/s
60 60

d N
v

π π × ×
= = =

Now let us find the angle of contact on the smaller pulley. We know that, for an open belt

drive,

1 2 1 2– – 0.75 – 0.5
sin 0.03125

2 2 4

r r d d

x x
α = = = =

×
  or  α = 1.8°
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∴  Angle of contact, θ = 180° – 2 α = 180 – 2 × 1.8 = 176.4°

= 176.4 × π / 180 = 3.08 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 3.08 0.924
T

T

 
= µ θ = × = 

 

∴
1

2

0.924
log 0.4017

2.3

T

T

 
= = 

 

  or  1

2

2.52
T

T
= ...(i)

...(Taking antilog of 0.4017)

We also know that power transmitted (P),

6 × 103 = (T
1 

– T
2
) v = (T

1
 – T

2
) 7.855

∴ T
1
 – T

2
= 6 × 103 / 7.855 = 764 N ...(ii)

From equations (i) and (ii),

T
1

= 1267 N, and T
2
 = 503 N

We know that maximum tension in the belt (T
1
),

1267 = σ . b. t = σ × 100 × 10 = 1000 σ

∴ σ = 1267 / 1000 = 1.267 N/mm2 = 1.267 MPa  Ans.

...[∵ 1 MPa = 1 MN/m2 = 1 N/mm2]

Stress in the belt for a cross belt drive

We know that for a cross belt drive,

1 2 1 2 0.75 0.5
sin 0.1562

2 2 4

r r d d

x x

+ + +
α = = = =

×
  or  α = 9°

∴  Angle of contact, θ = 180° + 2α = 180 + 2 × 9 = 198°

= 198 × π / 180 = 3.456 rad

We know that

1

2

2.3log . 0.3 3.456 1.0368
T

T

 
= µ θ = × = 

 

1

2

1.0368
log 0.4508

2.3

T

T

 
= = 

 

  or  1

2

2.82
T

T
= ...(iii)

...(Taking antilog of 0.4508)

From equations (ii) and (iii),

T
1

= 1184 N and T
2
 = 420 N

We know that maximum tension in the belt (T
1
),

1184 = σ. b. t = σ × 100 × 10 = 1000 σ

∴ σ = 1184 / 1000 = 1.184 N/mm2 = 1.184 MPa  Ans.

Example 11.8. A leather belt is required to transmit 7.5 kW from a pulley 1.2 m in diameter,

running at 250 r.p.m. The angle embraced is 165° and the coefficient of friction between the belt and

the pulley is 0.3. If the safe working stress for the leather belt is 1.5 MPa, density of leather 1 Mg/m3

and thickness of belt 10 mm, determine the width of the belt taking centrifugal tension into account.
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Solution. Given : P = 7.5 kW = 7500 W ; d = 1.2 m ; N = 250 r.p.m. ; θ = 165° = 165 × π / 180

= 2.88 rad ; µ = 0.3 ; σ = 1.5 MPa = 1.5 × 106 * N/m2 ; ρ = 1 Mg/m3 = 1 × 106 g/m3 = 1000 kg/m3;

t = 10 mm = 0.01 m

Let b = Width of belt in metres,

T
1

= Tension in the tight side of the belt in N, and

T
2

= Tension in the slack side of the belt in N.

We know that velocity of the belt,

v = π d . N / 60 = π × 1.2 × 250/60 = 15.71 m/s

and power transmitted (P),

7500 = (T
1
 – T

2
) v = (T

1
 – T

2
) 15.71

∴ T
1
 – T

2
= 7500 / 15.71 = 477.4 N ...(i)

We know that

1

2

2.3log . 0.3 2.88 0.864
T

T

 
= µ θ = × = 

 

1

2

0.864
log 0.3756

2.3

T

T

 
= = 

 

  or  1

2

2.375
T

T
= ...(ii)

...(Taking antilog of 0.3756)

From equations (i) and (ii),

T
1

= 824.6 N,   and   T
2
 = 347.2 N

We know that mass of the belt per metre length,

m = Area × length × density = b.t.l.ρ

= b × 0.01 × 1 × 1000 = 10 b kg

∴  Centrifugal tension,

T
C

= m. v2 = 10 b (15.71)2 = 2468 b N

and maximum tension in the belt,

T = σ. b. t = 1.5 × 106 × b × 0.01 = 15 000 b N

We know that T = T
1
 + T

C
  or  15000 b = 824.6 + 2468 b

15 000 b – 2468 b = 824.6  or  12 532 b = 824.6

∴ b = 824.6 / 12532 = 0.0658 m = 65.8 mm  Ans.

Example. 11.9. Determine the width of a 9.75 mm thick leather belt required to transmit

15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm.

The driven pulley runs at 300 r.p.m. and the distance between the centre of two pulleys is 3 metres.

The density of the leather is 1000 kg/m3. The maximum allowable stress in the leather is 2.5 MPa.

The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive and neglect

the sag and slip of the belt.

Solution. Given : t = 9.75 mm = 9.75 × 10–3 m ; P = 15 kW = 15 × 103 W ; N
1
 = 900 r.p.m. ;

d
1
 = 300 mm = 0.3 m ; N

2
 = 300 r.p.m. ; x = 3m ;  ρ = 1000 kg/m3 ; σ = 2.5 MPa = 2.5 × 106 N/m2 ;

µ = 0.3

* 1 MPa = 1 × 106 N/m2
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First of all, let us find out the diameter of the driven pulley (d
2
). We know that

2 1

1 2

N d

N d
=   or  1 1

2

2

900 0.3
0.9 m

300

N d
d

N

× ×
= = =

and velocity of the belt,
1 1 0.3 900

14.14 m/s
60 60

d N
v

π π × ×
= = =

For an open belt drive,

2 1 2 1– – 0.9 – 0.3
sin 0.1

2 2 3

r r d d

x x
α = = = =

×
...(∵ d

2
 > d

1
)

or α = 5.74°

∴   Angle of lap, θ = 180° – 2 α = 180 – 2 × 5.74 = 168.52°

= 168.52 × π / 180 = 2.94 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3 log . 0.3 2.94 0.882
T

T

 
= µ θ = × = 

 

1

2

0.882
log 0.3835

2.3

T

T

 
= = 

 

  or  1

2

2.42
T

T
= ...(i)

... (Taking antilog of 0.3835)

We also know that power transmitted (P),

15 × 103 = (T
1
 – T

2
) v = (T

1
 – T

2
) 14.14

∴ T
1
 – T

2
= 15 × 103 / 14.14 = 1060 N .... (ii)

From equations (i) and (ii),

T
1

= 1806 N

Let b = Width of the belt in metres.

We know that mass of the belt per metre length,

m = Area × length × density = b.t.l.ρ

= b × 9.75 × 10–3 × 1 × 1000 = 9.75 b kg

∴  Centrifugal tension,

T
C

= m.v2 = 9.75 b (14.14)2 = 1950  b N

Maximum tension in the belt,

T = σ. b. t = 2.5 × 106 × b × 9.75 × 10–3 = 24 400 b N

We know that T = T
1
 + T

C
  or  T – T

C
 = T

1

24 400 b – 1950 b = 1806  or  22 450 b = 1806

∴ b = 1806 / 22 450 = 0.080 m = 80 mm  Ans.

Example. 11.10. A pulley is driven by a flat belt, the angle of lap being 120°. The belt is 100

mm wide by 6 mm thick and density1000 kg/m
3
. If the coefficient of friction is 0.3 and the maximum

stress in the belt is not to exceed 2 MPa, find the greatest power which the belt can transmit and the

corresponding speed of the belt.
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Solution. Given : θ = 120° = 120 × π / 180 = 2.1 rad ; b = 100 mm = 0.1 m ; t = 6 mm

= 0.006 m ; ρ = 1000 kg / m3 ; µ = 0.3 ; σ = 2 MPa = 2 × 106 N/m2

Speed of the belt for greatest power

We know that maximum tension in the belt,

                                   T = σ. b. t = 2 × 106 × 0.1 × 0.006 = 1200 N

and mass of the belt per metre length,

                                  m = Area × length × density = b. t. l. ρ

                                   = 0.1 × 0.006 × 1 × 1000 = 0.6 kg/m

∴  Speed of the belt for greatest power,

                                  
1200

= 25.82 m/s
3 3 0.6

T
v

m
= =

×
Ans.

Greatest power which the belt can transmit

We know that for maximum power to be transmitted, centrifugal tension,

                               T
C
 = T/3 = 1200/3 = 400 N

and tension in the tight side of the belt,

                               T
1
 = T – T

C
  = 1200 – 400 = 800 N

Let                            T
2
 =Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 2.1 0.63
T

T

 
= µ θ = × = 

 

1

2

0.63
log 0.2739

2.3

T

T

 
= = 

 

  or  1

2

1.88
T

T
= ...(Taking antilog of 0.2739)

and
1

2

800
425.5 N

1.88 1.88

T
T = = =

∴ Greatest power which the belt can transmit,

P = (T
1
 – T

2
) v = (800 – 425.5) 25.82 = 9670 W = 9.67 kW  Ans.

Example 11.11. An open belt drive connects two pulleys 1.2 m and 0.5 m diameter, on

parallel shafts 4 metres apart. The mass of the belt is 0.9 kg per metre length and the maximum

tension is not to exceed 2000 N.The coefficient of friction is 0.3. The 1.2 m pulley, which is the driver,

runs at 200 r.p.m. Due to belt slip on one of the pulleys, the velocity of the driven shaft is only 450

r.p.m. Calculate the torque on each of the two shafts, the power transmitted, and power lost in

friction. What is the efficiency of the drive ?

Solution. Given : d
1
 = 1.2 m or r

1
 = 0.6 m ; d

2
 = 0.5 m or r

2
 = 0.25 m ; x = 4 m ; m = 0.9 kg/m;

T = 2000 N ; µ = 0.3 ; N
1
 = 200 r.p.m. ; N

2
 = 450 r.p.m.

We know that velocity of the belt,

1 1. 1.2 200
12.57 m/s

60 60

d N
v

π π × ×
= = =

and centrifugal tension, T
C

= m.v2 = 0.9 (12.57)2 = 142 N

∴  Tension in the tight side of the belt,

T
1

= T – T
C
 = 2000 – 142 = 1858 N
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We know that for an open belt drive,

1 2– 0.6 – 0.25
sin 0.0875

4

r r

x
α = = =   or  α = 5.02°

∴  Angle of lap on the smaller pulley,

θ = 180° – 2 α = 180° – 2 × 5.02° = 169.96°

= 169.96 × π / 180 = 2.967 rad

Let T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 2.967 0.8901
T

T

 
= µ θ = × = 

 

1

2

0.8901
log 0.387

2.3

T

T

 
= = 

 

  or  1

2

2.438
T

T
=

...(Taking antilog of 0.387)

∴
1

2

1858
762 N

2.438 2.438

T
T = = =

Torque on the shaft of larger pulley

We know that torque on the shaft of larger pulley,

T
L

= (T
1
 – T

2
) r

1
 = (1858 – 762) 0.6 = 657.6 N-m Ans.

Torque on the shaft of smaller pulley

We know that torque on the shaft of smaller pulley,

T
S

= (T
1
 – T

2
) r

2
 = (1858 – 762) 0.25 = 274 N-m Ans.

Power transmitted

We know that the power transmitted,

P = (T
1
 – T

2
) v = (1858 – 762) 12.57 = 13780 W

= 13.78 kW Ans.

Power lost in friction

We know that input power,

L 1
1

2 657.6 2 200
13 780 W 13.78kW

60 60

T N
P

× π × π ×
= = = =

and output power,
S 2

2

2 274 2 450
12 910 W 12.91kW

60 60

T N
P

× π × π ×
= = = =

∴ Power lost in friction = P
1
 – P

2
 = 13.78 – 12.91 = 0.87 kW Ans.

Efficiency of the drive

We know that efficiency of the drive,

Output power 12.91
0.937 or 93.7%

Input power 13.78
η = = =   Ans.
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11.19. Initial Tension in the Belt

When a belt is wound round the two pulleys (i.e. driver and follower), its two ends are joined

together ; so that the belt may continuously move over the pulleys, since the motion of the belt from

the driver and the follower is governed by a firm grip, due to friction between the belt and the pulleys.

In order to increase this grip, the belt is tightened up. At this stage, even when the pulleys are station-

ary, the belt is subjected to some tension, called initial tension.

When the driver starts rotating, it pulls the belt from one side (increasing tension in the belt

on this side) and delivers it to the other side (decreasing the tension in the belt on that side). The

increased tension in one side of the belt is called tension in tight side and the decreased tension in the

other side of the belt is called tension in the slack side.

Let T
0

= Initial tension in the belt,

T
1

= Tension in the tight side of the belt,

T
2

= Tension in the slack side of the belt, and

α = Coefficient of increase of the belt length per unit force.

A little consideration will show that the increase of tension in the tight side

= T
1
 – T

0

and increase in the length of the belt on the tight side

= α (T
1
 – T

0
) ...(i)

Similarly, decrease in tension in the slack side

= T
0
 – T

2

and decrease in the length of the belt on the slack side

= α (T
0
 – T

2
) ...(ii)

Assuming that the belt material is perfectly elastic such that the length of the belt remains

constant, when it is at rest or in motion, therefore increase in length on the tight side is equal to

decrease in the length on the slack side. Thus, equating equations (i) and (ii),

α (T
1
 – T

0
) = α (T

0
 – T

2
)   or   T

1
 – T

0
 = T

0
 – T

2

∴
1 2

0
2

T T
T

+
= ...(Neglecting centrifugal tension)

1 2 C2

2

T T T+ +
= ...(Considering centrifugal tension)

Example. 11.12. In a flat belt drive the initial tension is 2000 N. The coefficient of friction

between the belt and the pulley is 0.3 and the angle of lap on the smaller pulley is 150°. The smaller

pulley has a radius of 200 mm and rotates at 500 r.p.m. Find the power in kW transmitted by the belt.

Solution. Given : T
0
 = 2000 N ; µ

0
 = 0.3 ; θ = 150° = 150° × π / 180 = 2.618 rad ; r

2
 = 200 mm

or d
2
 = 400 mm = 0.4 m ; N

2
 = 500 r.p.m.

We know that velocity of the belt,

2 2. 0.4 500
10.47 m/s

60 60

d N
v

π π × ×
= = =

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.
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We know that initial tension (T
0
),

                    1 22000
2

T T+
=          or      T

1
 + T

2
 = 4000 N ...(i)

We also know that

         
1

2

2.3log . 0.3 2.618 0.7854
T

T

 
= µ θ = × = 

 

                                 1

2

0.7854
log 0.3415

2.3

T

T

 
= = 

 

or                                 1

2

2.2
T

T
=   ...(ii)

...(Taking antilog of 0.3415)

From equations (i) and (ii),

T
1

= 2750 N ;

and                           T
2
 = 1250 N

∴ Power transmitted,  P = (T
1
 – T

2
) v

                                     = (2750 – 1250) 10.47

= 15 700 W =15.7 kW  Ans.

Example 11.13. Two parallel shafts whose centre lines are 4.8 m apart, are connected by

open belt drive. The diameter of the larger pulley is 1.5 m and that of smaller pulley 1 m. The initial

tension in the belt when stationary is 3 kN. The mass of the belt is 1.5 kg / m length. The coefficient

of friction between the belt and the pulley is 0.3. Taking centrifugal tension into account, calculate

the power transmitted, when the smaller pulley rotates at 400 r.p.m.

Solution. Given : x = 4.8 m ; d
1
 = 1.5 m ; d

2
 = 1 m ; T

0
 = 3 kN = 3000 N ; m = 1.5 kg / m ;

µ = 0.3 ; N
2
 = 400 r.p.m.

We know that velocity of the belt,

2 2. 1 400
21m/s

60 60

d N
v

π π × ×
= = =

and centrifugal tension, T
C

= m.v
2 = 1.5 (21)2 = 661.5 N

Let T
1

= Tension in the tight side, and

T
2

= Tension in the slack side.

We know that initial tension (T
0
),

1 2 C 1 22 2 661.5
3000

2 2

T T T T T+ + + + ×
= =

∴ T
1
 + T

2
= 3000 × 2 – 2 × 661.5 = 4677 N ...(i)

For an open belt drive,

1 2 1 2– – 1.5 – 1
sin 0.0521

2 2 4.8

r r d d

x x
α = = = =

×
  or   α = 3°

∴ Angle of lap on the smaller pulley,

θ = 180° – 2 α = 180° – 2 × 3° = 174°

= 174° × π / 180 = 3.04 rad

A military tank uses chain, belt and gear drives

for its movement and operation.
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We know that

1

2

2.3log . 0.3 3.04 0.912
T

T

 
= µ θ = × = 

 

1

2

0.912
log 0.3965

2.3

T

T

 
= = 

 

  or   1

2

2.5
T

T
= ...(ii)

...(Taking antilog of 0.3965)

From equations (i) and (ii),

                          T
1
 =3341 N ;  and  T

2
 = 1336 N

∴ Power transmitted,

  P  = (T
1
 – T

2
) v = (3341 – 1336) 21 = 42 100 W = 42.1 kW Ans.

Example 11.14. An open flat belt drive connects two parallel shafts 1.2 metres apart. The

driving and the driven shafts rotate at 350 r.p.m. and 140 r.p.m. respectively and the driven pulley is

400 mm in diameter. The belt is 5 mm thick and 80 mm wide. The coefficient of friction between the

belt and pulley is 0.3 and the maximum permissible tension in the belting is 1.4 MN/m2. Determine:

1. diameter of the driving pulley, 2. maximum power that may be transmitted by the belting,

and 3. required initial belt tension.

Solution. Given : x = 1.2 m ; N
1
 = 350 r.p.m. ; N

2
 = 140 r.p.m. ; d

2
 = 400 mm = 0.4 m ;

t = 5 mm = 0.005 m ; b = 80 mm = 0.08 m ; µ = 0.3 ; σ = 1.4 MN/m2 = 1.4 × 106 N/m2

1.  Diameter of the driving pulley

Let d
1

= Diameter of the driving pulley.

We know that              2 1

1 2

N d

N d
=   or  

2 2
1

1

. 140 0.4
0.16m

350

N d
d

N

×
= = =  Ans.

2.  Maximum power transmitted by the belting

First of all, let us find the angle of contact of the belt on the smaller pulley (or driving

pulley).

Let                                  θ = Angle of contact of the belt on the driving pulley.

Fig. 11.18
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From Fig. 11.18, we find that

2 2 1 2 1

1 2

– – 0.4 – 0.16
sin 0.1

2 2 1.2

O M r r d d

O O x x
α = = = = =

×

or α = 5.74°

∴ θ = 180° – 2 α = 180° – 2 × 5.74° = 168.52°

= 168.52 × π / 180 = 2.94 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 2.94 0.882
T

T

 
= µ θ = × = 

 

1

2

0.882
log 0.3835

2.3

T

T

 
= = 

 

 or  1

2

2.42
T

T
= ...(i)

...(Taking antilog of 0.3835)

We know that maximum tension to which the belt can be subjected,

T
1

= σ × b × t = 1.4 × 106 × 0.08 × 0.005 = 560 N

∴
1

2

560
231.4 N

2.42 2.42

T
T = = = ...[From equation (i)]

Velocity of the belt,
1 1. 0.16 350

2.93 m/s
60 60

d N
v

π π × ×
= = =

∴ Power transmitted, P = (T
1
 – T

2
) v = (560 – 231.4) 2.93 = 963 W = 0.963 kW  Ans.

3.  Required initial belt tension

We know that the initial belt tension,

1 2
0

560 231.4
395.7 N

2 2

T T
T

+ +
= = =  Ans.

Example 11.15. An open belt running over two pulleys 240 mm and 600 mm diameter connects

two parallel shafts 3 metres apart and transmits 4 kW from the smaller pulley that rotates at 300

r.p.m. Coefficient of friction between the belt and the pulley is 0.3 and the safe working tension is

10N per mm width. Determine : 1. minimum width of the belt, 2. initial belt tension, and 3. length of

the belt required.

Solution. Given : d
2
 = 240 mm = 0.24 m ; d

1
 = 600 mm = 0.6 m ; x = 3 m ; P = 4 kW = 4000 W;

N
2
 = 300 r.p.m. ; µ = 0.3 ; T

1
 = 10 N/mm width

1.  Minimum width of belt

We know that velocity of the belt,

2 2. 0.24 300
3.77 m/s

60 60

d N
v

π π × ×
= = =

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

∴ Power transmitted (P),

4000 = (T
1
 – T

2
) v = (T

1
 – T

2
) 3.77

or T
1
 – T

2
= 4000 / 3.77 = 1061 N ...(i)
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We know that for an open belt drive,

1 2 1 2– – 0.6 – 0.24
sin 0.06

2 2 3

r r d d

x x
α = = = =

×
  or  α = 3.44°

and angle of lap on the smaller pulley,

θ = 180° – 2α = 180° – 2 × 3.44° = 173.12°

= 173.12 × π / 180 = 3.022 rad

We know that

1

2

2.3log . 0.3 3.022 0.9066
T

T

 
= µ θ = × = 

 

1

2

0.9066
log 0.3942

2.3

T

T

 
= = 

 

  or  1

2

2.478
T

T
= ...(ii)

...(Taking antilog of 0.3942)

From equations (i) and (ii),

T
1

= 1779 N,  and  T
2
 = 718 N

Since the safe working tension is 10 N per mm width, therefore minimum width of the belt,

1 1779
177.9 mm

10 10

T
b = = =   Ans.

2.  Initial belt tension

We know that initial belt tension,

1 2
0

1779 718
= 1248.5N

2 2

T T
T

+ +
= =  Ans.

3.  Length of the belt required

We know that length of the belt required,

2
1 2

1 2

( – )
( – ) 2

2 4

d d
L d d x

x

π
= + +

2
(0.6 – 0.24)

(0.6 0.24) 2 3
2 4 3

π
= + + × +

×

= 1.32 + 6 + 0.01 = 7.33 m  Ans.

Example 11.16. The following data refer to an open belt drive :

Diameter of larger pulley = 400 mm ; Diameter of smaller pulley = 250 mm ; Distance

between two pulleys = 2 m ; Coefficient of friction between smaller pulley surface and belt = 0.4 ;

Maximum tension when the belt is on the point of slipping = 1200 N.

Find the power transmitted at speed of 10 m/s. It is desired to increase the power. Which of

the following two methods you will select ?

1.  Increasing the initial tension in the belt by 10 per cent.

2.  Increasing the coefficient of friction between the smaller pulley surface and belt by 10 per

cent by the application of suitable dressing on the belt.

Find, also, the percentage increase in power possible in each case.
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Solution. Given : d
1
 = 400 mm = 0.4 m ; d

2
 = 250 mm = 0.25 m ; x = 2 m ; µ = 0.4 ;

T = 1200 N ; v = 10 m/s

Power transmitted

We know that for an open belt drive,

1 2 1 2– – 0.4 – 0.25
sin 0.0375

2 2 2

r r d d

x x
α = = = =

×
  or  α = 2.15°

∴   Angle of contact,

θ = 180° – 2α = 180° – 2 × 2.15° = 175.7°

= 175.7 × π / 180 = 3.067 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

Neglecting centrifugal tension,

T
1

= T = 1200 N ...(Given)

We know that

1

2

2.3log . 0.4 3.067 1.2268
T

T

 
= µ θ = × = 

 

1

2

1.2268
log 0.5334

2.3

T

T

 
= = 

 

  or  1

2

3.41
T

T
=

...(Taking antilog of 0.5334)

and 1
2

1200
352 N

3.41 3.41

T
T = = =

We know that power transmitted,

P = (T
1
 – T

2
) v = (1200 – 352) 10 = 8480 W = 8.48 kW  Ans.

Power transmitted when initial tension is increased by 10%

We know that initial tension,

1 2
0

1200 352
776 N

2 2

T T
T

+ +
= = =

∴  Increased initial tension,

0

776 10
776 853.6 N

100
T

×
′ = + =

Let T
1
 and T

2
 be the corresponding tensions in the tight side and slack side of  the belt

respectively.

∴
1 2

0
2

T T
T

+
′ =

or T
1
 + T

2
= 2 T'

0
 = 2 × 853.6 = 1707.2 N ...(i)

Since the ratio of tensions is constant, therefore

1

2

3.41
T

T
= ...(ii)
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From equations (i) and (ii),

T
1

= 1320.2 N ; and T
2
 = 387 N

∴ Power transmitted, P = (T
1
 – T

2
) v = (1320.2 – 387) 10 = 9332 W = 9.332 kW

Power transmitted when coefficient of friction is increased by 10%

We know that coefficient of friction,

µ = 0.4

∴ Increased coefficient of friction,

10
0.4 0.4 0.44

100
′µ = + × =

Let T
1
 and T

2
 be the corresponding tensions in the tight side and slack side respectively.

We know that

1

2

2.3log . 0.44 3.067 1.3495
T

T

 
′= µ θ = × = 

 

1

2

1.3495
log 0.5867

2.3

T

T

 
= = 

 

  or  1

2

3.86
T

T
= ...(iii)

... (Taking antilog of 0.5867)

Here the initial tension is constant, i.e.

1 2
0

2

T T
T

+
=    or   T

1
 + T

2
 = 2 T

0
 = 2 × 776 = 1552 N ...(iv)

From equations (iii) and (iv),

T = 1232.7 N and T
2
 = 319.3 N

∴ Power transmitted,

P = (T
1
 – T

2
) v = (1232.7 – 319.3) 10 = 9134 W = 9.134 kW

Since the power transmitted by increasing the initial tension is more, therefore in order to

increase the power transmitted we shall adopt the method of increasing the initial tension. Ans.

Percentage increase in power

We know that percentage increase in power when the initial tension is increased

9.332 – 8.48
100 10.05%

8.48
= × =   Ans.

and percentage increase in power when coefficient of friction is increased

9.134 – 8.48
100 7.7%

8.48
= × =   Ans.

11.20. V-belt drive

We have already discussed that a V-belt is mostly used in factories and workshops where a

great amount of power is to be transmitted from one pulley to another when the two pulleys are very

near to each other.
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* The wedging action of the V-belt in the groove of the pulley results in higher forces of friction. A little

consideration will show that the wedging action and the transmitted torque will be more if the groove angle

of the pulley is small. But a smaller groove angle will require more force to pull the belt out of the groove

which will result in loss of power and excessive belt wear due to friction and heat. Hence a selective groove

angle is a compromise between the two. Usually the groove angles of 32° to 38° are used.

The V-belts are made of fabric and cords moulded in rubber and covered with fabric and

rubber, as shown in Fig. 11.19 (a). These belts are moulded to a trapezoidal shape and are made

endless. These are particularly suitable for short drives i.e. when the shafts are at a short distance

apart. The included angle for the V-belt is usually from 30° – 40°. In case of flat belt drive, the belt

runs over the pulleys whereas in case of V-belt drive, the rim of the pulley is grooved in which the

V-belt runs. The effect of the groove is to increase the frictional grip of the V-belt on the pulley and

thus to reduce the tendency of slipping. In order to have a good grip on the pulley, the V-belt is in

contact with the side faces of the groove and not at the bottom. The power is transmitted by the

*wedging action between the belt and the V-groove in the pulley.

(a)  Cross-section of a V-belt. (b)  Cross-section of a V-grooved pulley.

Fig. 11.19. V-belt and V-grooved pulley.

A clearance must be provided at the bottom of the groove, as shown in Fig. 11.19 (b), in order

to prevent touching to the bottom as it becomes narrower from wear. The V-belt drive, may be

inclined at any angle with tight side either at top or bottom. In order to increase the power output,

several V- belts may be operated side by side. It may be noted that in multiple V-belt drive, all the

belts should stretch at the same rate so that the load is equally divided between them. When one of the

set of belts break, the entire set should be replaced at the same time. If only one belt is replaced, the

new unworn and unstressed belt will be more tightly stretched and will move with different velocity.

11.21. Advantages and Disadvantages of V-belt Drive Over Flat Belt Drive

Following are the advantages and disadvantages of the V-belt drive over flat belt drive.

Advantages

1. The V-belt drive gives compactness due to the small distance between the centres of pulleys.

2. The drive is positive, because the slip between the belt and the pulley groove is negligible.

3. Since the V-belts are made endless and there is no joint trouble, therefore the drive is

smooth.

4. It provides longer life, 3 to 5 years.
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5. It can be easily installed and removed.

6. The operation of the belt and pulley is quiet.

7. The belts have the ability to cushion the shock when machines are started.

8. The high velocity ratio (maximum 10) may be obtained.

9. The wedging action of the belt in the groove gives high value of limiting ratio of tensions.

Therefore the power transmitted by V-belts is more than flat belts for the same coefficient of friction,

arc of contact and allowable tension in the belts.

10. The V-belt may be operated in either direction with tight side of the belt at the top or

bottom. The centre line may be horizontal, vertical or inclined.

Disadvantages

1. The V-belt drive cannot be used with large centre distances.

2. The V-belts are not so durable as flat belts.

3. The construction of pulleys for V-belts is more complicated than pulleys for flat belts.

4. Since the V-belts are subjected to certain amount of creep, therefore these are not suitable

for constant speed application such as synchronous machines, and timing devices.

5. The belt life is greatly influenced with temperature changes, improper belt tension and

mismatching of belt lengths.

6. The centrifugal tension prevents the use of V-belts at speeds below 5 m/s and above 50m/s.

11.22. Ratio of Driving Tensions for V-belt

A V-belt with a grooved pulley is shown in Fig. 11.20.

Let R
1

= Normal reaction between the belt and

sides of the groove.

R = Total reaction in the plane of the groove.

2 β = Angle of the groove.

µ = Coefficient of friction between the belt

and sides of the groove.

Resolving the reactions vertically to the groove,

R = R
1
 sin β + R

1
 sin β = 2 R

1
 sin β

or 1
2sin

R
R =

β

We know that the frictional force

1

.
2 . 2 . cosec

2sin sin

R R
R R

µ
= µ = µ × = = µ β

β β

Consider a small portion of the belt, as in Art. 11.14, subtending an angle δθ at the centre.

The tension on one side will be T and on the other side T + δT. Now proceeding as in Art. 11.14, we

get the frictional resistance equal to µ. R cosec β instead of µ . R. Thus the relation between T
1
 and T

2

for the V-belt drive will be

1

2

2.3 log . cosec
T

T

 
= µ θ β 

 

Fig. 11.20.
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Example 11.17. A belt drive consists of two V-belts in parallel, on grooved pulleys of the

same size. The angle of the groove is 30°. The cross-sectional area of each belt is 750 mm2 and

µ . = 0.12. The density of the belt material is 1.2 Mg/m3 and the maximum safe stress in the material

is 7 MPa. Calculate the power that can be transmitted between pulleys 300 mm diameter rotating at

1500 r.p.m. Find also the shaft speed in r.p.m. at which the power transmitted would be maximum.

Solution. Given : 2 β = 30° or β = 15° ; α = 750 mm2 = 750 × 10–6 m2 ; µ = 0.12 ; ρ = 1.2 Mg/m3

= 1200 kg/m3 ; σ = 7 MPa = 7 × 106 N/m2 ; d = 300 mm = 0.3 m ; N = 1500 r.p.m.

Power transmitted

We know that velocity of the belt,

                
. 0.3 1500

23.56 m/s
60 60

d N
v

π π × ×
= = =

and mass of the belt per metre length,

       m = Area × length × density = 750 × 10–6 × 1 × 1200 = 0.9 kg/m

∴ Centrifugal tension,

      T
C
 = m.v2 = 0.9 (23.56)2 = 500 N

We know that maximum tension in the belt,

         T = Maximum stress × cross-sectional area of belt = σ × a

              = 7 × 106 × 750 × 10–6 = 5250 N

∴  Tension in the tight side of the belt,

   T
1
 = T – T

C
 = 5250 – 500 = 4750 N

Let         T
2
 = Tension in the slack side of the belt.

Since the pulleys are of the same size, therefore angle of contact, θ = 180° = π rad.

We know that

                
1

2

2.3log . cosec 0.12 cosec15 1.457
T

T

 
= µ θ β = × π × °= 

 

                1

2

1.457
log 0.6334

2.3

T

T

 
= = 

 

  or  1

2

4.3
T

T
=

...(Taking antilog of 0.6334)

and                                        
1

2

4750
1105 N

4.3 4.3

T
T = = =

We know that power transmitted,

                                    P = (T
1
 – T

2
) v × 2 ...(∵ No. of belts = 2)

                                       = (4750 – 1105) 23.56 × 2 = 171  752 W = 171.752 kW  Ans.

Shaft speed

Let                             N
1

= Shaft speed in r.p.m., and

                                    v
1
= Belt speed in m/s.

We know that for maximum power, centrifugal tension,

                                T
C 

=  T / 3  or  m (v
1
)2 = T / 3   or   0.9 (v

1
)2 = 5250 / 3 = 1750

∴                           (v
1
)2 = 1750 / 0.9 = 1944.4  or  v

1
 = 44.1 m/s
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We know that belt speed (v
1
),

1 1
1

. 0.3
44.1 0.0157 N

60 60

d N Nπ π × ×
= = =

∴ N
1

= 44.1 / 0.0157 = 2809 r.p.m.  Ans.

Example 11.18. Power is transmitted using a V-belt drive. The included angle of V-groove

is 30°. The belt is 20 mm deep and maximum width is 20 mm. If the mass of the belt is 0.35 kg per

metre length and maximum allowable stress is 1.4 MPa, determine the maximum power transmitted

when the angle of lap is 140°. µ  = 0.15.

Solution.  Given : 2 β = 30° or β = 15° ; t = 20 mm = 0.02 m ; b = 20 mm = 0.02 m ;

m = 0.35 kg/m ; σ = 1.4 MPa = 1.4 × 106 N/m2 ; θ = 140° = 140° × π / 180 = 2.444 rad ; µ = 0.15

We know that maximum tension in the belt,

T = σ. b. t = 1.4 × 106 × 0.02 × 0.02 = 560 N

and for maximum power to be transmitted, velocity of the belt,

560
23.1 m/s

3 3 0.35

T
v

m
= = =

×

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . cosec 0.15 2.444 cosec15 1.416
T

T

 
= µ θ β = × × °= 

 

1

2

1.416
log 0.616

2.3

T

T

 
= = 

 

  or  1

2

4.13
T

T
= ...(i)

...(Taking antilog of 0.616)

Centrifugal tension,
C

560
187 N

3 3

T
T = = =

and T
1

= T – T
C
  = 560 – 187 = 373 N

1
2

373
90.3 N

4.13 4.13

T
T = = = ...[From equation (i)]

We know that maximum power transmitted,

P = (T
1
 – T

2
) v = (373 – 90.3) 23.1 = 6530 W = 6.53 kW  Ans.

Example 11.19. A compressor, requiring 90 kW is to run at about 250 r.p.m. The drive is by

V-belts from an electric motor running at 750 r.p.m. The diameter of the pulley on the compressor

shaft must not be greater than 1 metre while the centre distance between the pulleys is limited to 1.75

metre. The belt speed should not exceed 1600 m/min.

Determine the number of V-belts required to transmit the power if each belt has a cross-

sectional area of 375 mm
2
, density 1000 kg/m

3
 and an allowable tensile stress of 2.5 MPa. The

groove angle of the pulley is 35°. The coefficient of friction between the belt and the pulley is 0.25.

Calculate also the length required of each belt.

Solution. Given : P = 90 kW ; N
2
 = 250 r.p.m. ; N

1
 = 750 r.p.m. ; d

2
 = 1 m ; x = 1.75 m ;

v = 1600 m/min = 26.67 m/s ; a = 375 mm2 = 375 × 10–6 m2 ; ρ = 1000 kg/m3 ; σ = 2.5 MPa

= 2.5 × 106 N/m2 ; 2 β = 35° or β = 17.5° ; µ = 0.25
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First of all, let us find the diameter of pulley on the motor shaft (d
1
). We know that

2 1

1 2

N d

N d
=   or  2 2

1

1

. 250 1
0.33m

750

N d
d

N

×
= = =

We know that the mass of the belt per metre length,

m = Area × length × density

= 375 × 10–6 × 1 × 1000 = 0.375 kg

∴   Centrifugal tension, T
C

= m.v
2 = 0.375 (26.67)2 = 267 N

and maximum tension in the belt,

T = σ. a = 2.5 × 106 × 375 × 10–6 = 937.5 N

∴ Tension in the tight side of the belt,

T
1

= T – T
C
 = 937.5 – 267 = 670.5 N

Let T
2

= Tension in the slack side of the belt.

For an open belt drive, as shown in Fig. 11.21,

2 2 1 2 1

1 2

– – 1 – 0.33
sin 0.1914

2 2 1.75

O M r r d d

O O x x
α = = = = =

×

∴ α = 11°

and angle of lap on smaller pulley (i.e. pulley on motor shaft),

θ = 180° – 2α = 180° – 2 × 11° = 158°

= 158 × π / 180 = 2.76 rad

Fig. 11.21

We know that

1

2

2.3log . cosec 0.25 2.76 cosec17.5 2.295
T

T

 
= µ θ β = × × ° = 

 

1

2

2.295
log 0.998

2.3

T

T

 
= = 

 

  or  
1

2

9.954
T

T
=       ...(Taking antilog of 0.998)

and 1
2

670.5
67.36 N

9.954 9.954

T
T = = =

Number of V-belts

We know that power transmitted per belt

= (T
1
 – T

2
) v = (670.5 – 67.36) 26.67 = 16  086 W

= 16.086 kW

∴
Total power transmitted 90

Number of V-belts = 5.6 or 6
Power transmitted per belt 16.086

= = Ans.
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Length of each belt

We know that length of belt for an open belt drive,

2
2 1

2 1

( – )
( ) 2

2 4

d d
L d d x

x

π
= + + +

2
(1 – 0.33)

(1 0.33) 2 1.75
2 4 1.75

π
= + + × +

×

= 2.1 + 3.5 + 0.064 = 5.664 m  Ans.

11.23. Rope Drive

The rope drives are widely used where a large amount of power is to be transmitted, from one

pulley to another, over a considerable distance. It may be noted that the use of flat belts is limited for

the transmission of moderate power from one pulley to another when the two pulleys are not more

than 8 metres apart. If large amounts of power are to be transmitted by the flat belt, then it would

result in excessive belt cross-section. It may be noted that frictional grip in case of rope drives is more

than that in V-drive. One of the main advantage of rope drives is that a number of separate drives may

be taken from the one driving pulley. For example, in many spinning mills, the line shaft on each floor

is driven by ropes passing directly from the main engine pulley on the ground floor.

The rope drives use the following two types of ropes :

1.  Fibre ropes, and 2. Wire ropes.

The fibre ropes operate successfully when the pulleys are about 60 metres apart, while the

wire ropes are used when the pulleys are upto 150 metres apart.

11.24. Fibre Ropes

The ropes for transmitting power are usually made from fibrous materials such as hemp,

manila and cotton. Since the hemp and manila fibres are rough, therefore the ropes made from these

fibres are not very flexible and possesses poor mechanical properties. The hemp ropes have less

strength as compared to manila ropes. When the hemp and manila ropes are bent over the sheave (or

pulley), there is some sliding of fibres, causing the rope to wear and chafe internally. In order to

minimise this defect, the rope fibres are lubricated with a tar, tallow or graphite. The lubrication also

makes the rope moisture proof. The hemp ropes are suitable only for hand operated hoisting machin-

ery and as tie ropes for lifting tackle, hooks etc.

The cotton ropes are very soft and smooth. The lubrication of cotton ropes is not necessary.

But if it is done, it reduces the external wear between the rope and the grooves of its sheaves. It may

be noted that manila ropes are more durable and stronger than cotton ropes. The cotton ropes are

costlier than manila ropes.

Note : The diameter of manila and cotton ropes usually ranges from 38 mm to 50 mm. The size of the rope is

usually designated by its circumference or ‘girth’.

11.25. Advantages of Fibre Rope Drives

The fibre rope drives have the following advantages :

1.  They give smooth, steady and quiet service.

2.  They are little affected by out door conditions.

3.  The shafts may be out of strict alignment.

4.  The power may be taken off in any direction and in fractional parts of the whole amount.

5.  They give high mechanical efficiency.
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11.26. Sheave for Fibre Ropes

The fibre ropes are usually circular in cross-section as shown in Fig. 11.22 (a). The sheave

for the fibre ropes is shown in Fig. 11.22 (b).  The groove angle of the pulley for rope drives is usually

45°. The grooves in the pulleys are made narrow at the bottom and the rope is pinched between the

edges of the V-groove to increase the holding power of the rope on the pulley.

(a)  Cross-section of a rope. (b)  Sheave (Grooved pulley) for ropes.

Fig.  11.22.  Rope and sheave.

11.27. Wire Ropes

When a large amount of power is to be transmitted over long distances from one pulley to

another (i.e. when the pulleys are upto 150 metres apart), then wire ropes are used. The wire ropes are

widely used in elevators, mine hoists, cranes, conveyors, hauling devices and suspension bridges.

The wire ropes run on grooved pulleys but they rest on the bottom of the *grooves and are not wedged

between the sides of the grooves. The wire ropes have the following advantage over cotton ropes.

* The fibre ropes do not rest at the bottom of the groove.

This electric hoist uses wire ropes.
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1. These are lighter in weight, 2. These offer silent operation, 3. These can withstand shock

loads, 4. These are more reliable, 5. They do not fail suddenly, 6. These are more durable, 7. The

efficiency is high, and 8. The cost is low.

11.28. Ratio of Driving Tensions for Rope Drive

The ratio of driving tensions for the rope drive may be obtained in the similar way as V-belts.

We have discussed in Art. 11.22, that the ratio of driving tensions is

1

2

2.3log . cosec
T

T

 
= µ θ β 

 

where, µ, θ and β have usual meanings.

Example 11.20. A rope drive transmits 600 kW from a pulley of effective diameter 4 m,

which runs at a speed of 90 r.p.m. The angle of lap is 160° ; the angle of groove 45° ; the coefficient

of friction 0.28 ; the mass of rope 1.5 kg / m and the allowable tension in each rope 2400 N. Find the

number of ropes required.

Solution. Given : P = 600 kW ; d = 4 m ; N = 90 r.p.m. ; θ = 160° = 160 × π / 180 = 2.8 rad;

2 β = 45° or β = 22.5° ; µ = 0.28 ; m = 1.5 kg / m ; T = 2400 N

We know that velocity of the rope,

. 4 90
18.85 m/s

60 60

d N
v

π π× ×
= = =

∴  Centrifugal tension, T
C

= m.v2 = 1.5 (18.85)2 = 533 N

and tension in the tight side of the rope,

T
1

= T – T
C
 = 2400 – 533 = 1867 N

Let T
2

= Tension in the slack side of the rope.

We know that

1

2

2.3log . cosec 0.28 2.8 cosec 22.5 2.05
T

T

 
= µ θ β = × × ° = 

 

1

2

2.05
log 0.8913

2.3

T

T

 
= = 

 

  or  1

2

7.786
T

T
=

...(Taking antilog of 0.8913)

and 1
2

1867
240 N

7.786 7.786

T
T = = =

We know that power transmitted per rope

= (T
1
 – T

2
) v = (1867 – 240) 18.85 = 30  670 W = 30.67 kW

∴
Total power transmitted 600

Number of ropes = 19.56 or 20
Power transmitted per rope 30.67

= =   Ans.

Example 11.21. A pulley used to transmit power by means of ropes has a diameter of 3.6

metres and has 15 grooves of 45° angle. The angle of contact is 170° and the coefficient of friction

between the ropes and the groove sides is 0.28. The maximum possible tension in the ropes is 960 N

and the mass of the rope is 1.5 kg per metre length. What is the speed of pulley in r.p.m. and the power

transmitted if the condition of maximum power prevail ?

Solution. Given : d = 3.6 m ; No. of grooves = 15 ; 2 β = 45° or β = 22.5° ; θ = 170°

= 170 π × 180 = 2.967 rad ; µ = 0.28 ; T = 960 N ; m = 1.5 kg/m
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Speed of the pulley

Let                          N = Speed of the pulley in r.p.m.

We know that for maximum power, velocity of the rope or pulley,

960
14.6 m/s

3 3 1.5

T
v

m
= = =

×

∴
60 14.6 60

= 77.5 r.p.m.
3.6

v
N

d

× ×
= =

π π ×
  Ans. ...

60

d N
v

π 
= 

 

�

Power transmitted

We know that for maximum power, centrifugal tension,

T
C

= T / 3 = 960 / 3 = 320 N

∴ Tension in the tight side of the rope,

T
1

= T – T
C
  = 960 – 320 = 640 N

Let T
2

= Tension in the slack side of the rope.

We know that
1

2

2.3log . cosec 0.28 2.967 cosec 22.5 2.17
T

T

 
= µ θ β = × × ° = 

 

1

2

2.17
log 0.9438

2.3

T

T

 
= = 

 

  or  1

2

8.78
T

T
=

...(Taking antilog of 0.9438)

and 1
2

640
73 N

8.78 8.78

T
T = = =

∴ Power transmitted per rope = (T
1
 – T

2
) v = (640 – 73) 14.6 = 8278 W = 8.278 kW

Since the number of grooves are 15, therefore total power transmitted

= 8.278 × 15 = 124.17 kW  Ans.

Example 11.22. Following data is given for a rope pulley transmitting 24 kW :

Diameter of pulley = 400 mm ; Speed = 110 r.p.m.; angle of groove = 45° ; Angle of lap on

smaller pulley = 160° ; Coefficient of friction = 0.28 ; Number of ropes = 10 ; Mass in kg/m length

of ropes = 53 C
2
 ; and working tension is limited to 122 C

2
 kN, where C is girth of rope in metres.

Find initial tension and diameter of each rope.

Solution. Given : P
T
 = 24 kW ; d = 400 mm = 0.4 m ; N = 110 r.p.m. ; 2 β = 45° or β = 22.5°;

θ = 160° = 160 × π / 180 = 2.8 rad ; n = 0.28 ; n = 10 ; m = 53 C2 kg/m ; T = 122 C
2 kN

= 122 × 103 C2  N

Initial tension

We know that power transmitted per rope,

TTotal power transmitted 24
2.4 kW = 2400 W

No. of ropes 10

P
P

n
= = = =

and velocity of the rope,
. 0.4 110

2.3m/s
60 60

d N
v

π π × ×
= = =

Let T = Tension in the tight side of the rope, and

T
2

= Tension in the slack side of the rope.
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We know that power transmitted per rope ( P )

2400 = (T
1
 – T

2
) v = (T

1
 – T

2
) 2.3

∴ T
1
 – T

2
= 2400 / 2.3 = 1043.5 N ...(i)

We know that

1

2

2.3log . cosec 0.28 2.8 cosec 22.5 2.05
T

T

 
= µ θ β = × × °= 

 

1

2

2.05
log 0.8913

2.3

T

T

 
= = 

 

  or  1

2

7.786
T

T
= ...(ii)

...(Taking antilog of 0.8913)

From equations (i) and (ii),

T
1

= 1197.3 N, and T
2
 = 153.8 N

We know that initial tension in each rope,

1 2
0

1197.3 153.8
675.55 N

2 2

T T
T

+ +
= = = Ans.

Diameter of each rope

Let d
1

= Diameter of each rope,

We know that centrifugal tension,

T
C

= m.v
2 = 53 C2 (2.3)2 = 280.4 C2 N

and working tension (T),

122 × 103 C2 = T
1
 + T

C
 = 1197.3 + 280.4 C2

122 × 103 C2 – 280.4 C2 = 1197.3

∴ C2 = 9.836 × 10–3  or  C = 0.0992 m = 99.2 mm

We know that girth (i.e. circumference) of rope (C),

99.2 = π d
1
  or  d

1
 = 99.2 / π = 31.57 mm  Ans.

11.29. Chain Drives

We have seen in belt and rope

drives that slipping may occur. In order

to avoid slipping, steel chains are used.

The chains are made up of rigid links

which are hinged together in order to

provide the necessary flexibility for

warping around the driving and driven

wheels. The wheels have projecting teeth

and fit into the corresponding recesses,

in the links of the chain as shown in Fig.

11.23. The wheels and the chain are thus

constrained to move together without

slipping and  ensures perfect velocity

ratio. The toothed wheels are known as

sprocket wheels or simply sprockets.

These wheels resemble to spur gears.
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The chains are mostly used to transmit mo-

tion and power from one shaft to another, when the

distance between the centres of the shafts is short such

as in bicycles, motor cycles, agricultural   machinery,

road rollers, etc.

11.30. Advantages and Disadvantages
of Chain Drive Over Belt or Rope
Drive

Following are the advantages and disadvan-

tages of chain drive over belt or rope drive :

 Advantages

1.  As no slip takes place during chain drive, hence perfect velocity ratio is obtained.

2.  Since the chains are made of metal, therefore they occupy less space in width than a belt

   or rope drive.

3.  The chain drives may be used when the distance between the shafts is less.

4.  The chain drive gives a high transmission efficiency (upto 98 per cent).

5.  The chain drive gives less load on the shafts.

6.  The chain drive has the ability of transmitting motion to several shafts by one chain only.

 Disadvantages

1.  The production cost of chains is relatively high.

2.  The chain drive needs accurate mounting and careful maintenance.

3.  The chain drive has velocity fluctuations especially when unduly stretched.

11.31. Terms Used in Chain Drive

The following terms are frequently used in chain drive.

1.  Pitch of the chain : It is the distance between the hinge centre of a link and the corre-

sponding hinge centre of the adjacent link as shown in Fig. 11.24. It is usually denoted by p.

Fig. 11.24. Pitch of the chain. Fig. 11.25. Pitch circle diameter of the chain sprocket.

2.  Pitch circle diameter of the chain sprocket. It is the diameter of the circle on which the

hinge centres of the chain lie, when the chain is wrapped round a sprocket as shown in Fig. 11.25. The

points A , B, C, and D are the hinge centres of the chain and the circle drawn through these centres is

called pitch circle and its diameter (d) is known as pitch circle diameter.

Fig. 11.23. Sprocket and chain.
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11.32. Relation Between Pitch and Pitch Circle Diameter

A chain wrapped round the sprocket is shown in Fig. 11.25. Since the links of the chain are

rigid, therefore pitch of the chain does not lie on the arc of the pitch circle. The pitch length becomes

a chord. Consider one pitch length A B of the chain subtending an angle θ at the centre of sprocket (or

pitch circle).

Let d = Diameter of the pitch circle, and

T = Number of teeth on the sprocket.

From Fig. 11.25, we find that pitch of the chain,

2 sin 2 sin sin
2 2 2 2

d
p AB AO d

θ θ θ     
= = = × =     

     

We know that
360

T

°
θ =

∴
360 180

sin sin
2

p d d
T T

° °   
= =   

   

or
180

cosecd p
T

° 
=  

 

11.33. Relation Between
 Chain Speed and
 Angular Velocity
 of  Sprocket

Since the links of the chain

are rigid, therefore they will have

different positions on the sprocket

at different instants. The relation

between the chain speed (v) and

angular velocity of the sprocket (ω)

also varies with the angular posi-

tion of the sprocket. The extreme

positions are shown in Fig. 11.26

(a) and (b).

Fig. 11.26. Relation between chain speed and angular velocity of sprocket.
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For the angular position of the sprocket as shown in Fig. 11.26 (a),

v = ω × OA

and for the angular position of the sprocket as shown in Fig. 11.26 (b),

cos cos
2 2

v OX OC OA
θ θ   

= ω × = ω × = ω ×   
   

...(∵ OC = OA)

11.34. Kinematic of Chain Drive

Fig. 11.27 shows an arrangement of a chain drive in which the smaller or driving sprocket has

6 teeth and the larger or driven sprocket has 9 teeth. Though this is an impracticable case, but this is

considered to bring out clearly the kinematic conditions of a chain drive. Let both the sprockets rotate

anticlockwise and the angle subtended by the chain pitch at the centre of the driving and driven

sprockets be α and φ respectively. The lines A B and A
1
B

1
 show the positions of chain having mini-

mum and maximum inclination respectively with the line of centres O
1
O

2
 of the sprockets. The points

A , B
2
 and B are in one straight line and the points A

1
,C and B

1
 are in one straight line. It may be noted

that the straight length of the chain between the two sprockets must be equal to exact number of

pitches.

Fig. 11.27. Kinematic of chain drive.

Let us now consider the pin centre on the driving sprocket in position A . The length of the

chain A B will remain straight as the sprockets rotate, until A  reaches A
1
 and B reaches B

1
. As the

driving sprocket continues to turn, the link A
1
C of the chain turns about the pin centre C and the

straight length of the chain between the two sprockets reduces to CB
1
. When the pin centre C moves

to the position A
1
, the pin centre A

1
 moves to the position A

2
. During this time, each of the sprockets

rotate from its original position by an angle corresponding to one chain pitch. During the first part of

the angular displacement, the radius O
1 

A  moves to O
1 

A
1
 and the radius O

2 
B moves to O

2 
B

1
. This

arrangement is kinematically equivalent to the four bar chain O
1
ABO

2
.

During the second part of the angular displacement, the radius O
1 
A

1
 moves to O

1
A

2
 and the

radius O
2 

B
1
 moves to O

2 
B

2
. This arrangement is kinematically equivalent to the four bar chain

O
1
CB

1
O

2
. The ratio of the angular velocities, under these circumstances, cannot be constant. This

may be easily shown as discussed below :

First of all, let us find the instantaneous centre for the two links O
1
 A  and O

2 
B. This lies at

point I which is the intersection of B A and O
2 
O

1
 produced as shown in Fig. 11.28. If ω

1
 is the angular

velocity of the driving sprocket and ω
2
 is the angular velocity of the driven sprocket, then

ω
1
 × O

1
 I = ω

2
 × O

2
 I

or 1 2 2 1 1 2 1

2 1 1 1

1
O I O O O I O O

O I O I O I

ω +
= = = +

ω

.
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The distance between the centres of two sprockets O
1 

O
2
 is constant for a given chain drive,

but the distance O
1 

I varies periodically as the two sprockets rotate. This period corresponds to a

rotation of the driving sprocket by an angle α. It is clear from the figure that the line A B has minimum

inclination with line O
1 

O
2
. Therefore the distance O

1 
I is maximum and thus velocity ratio (ω

1
 / ω

2
)

is minimum. When the chain occupies the position A
1 

B
1
, the inclination of line A

1 
B

1
 is maximum

with the line O
1 

O
2
. Therefore the distance O

1 
I
1
 is minimum and thus the velocity ratio (ω

1
 / ω

2
) is

maximum.

Fig. 11.28.  Angular velocities of the two sprockets.

In actual practice, the smaller sprocket have a minimum of 18 teeth and hence the actual

variation of velocity ratio (ω
1
/ω

2
) from the mean value is very small.

11.35. Classification of Chains

The chains, on the basis of their use, are classified into the following three groups :

1.  Hoisting and hauling (or crane) chains,

2.  Conveyor (or tractive) chains, and

3.  Power transmitting (or driving) chains.

These chains are discussed, in detail, in the following pages.

11.36. Hoisting and Hauling Chains

These chains are used for hoisting

and hauling purposes. The hoisting and

hauling chains are of the following two

types :

1.  Chain with oval links. The links

of this type of chain are of oval shape, as

shown in Fig. 11.29 (a). The joint of each

link is welded. The sprockets which are used

for this type of chain have receptacles to re-

ceive the links. Such type of chains are used

only at low speeds such as in chain hoists and in anchors for marine works.

(a) Chain with oval links. (b) Chain with square links.

Fig. 11.29.  Hoisting and hauling chains.

2.  Chain with square links. The links of this type of chain are of square shape, as shown in

Fig. 11.29 (b). Such type of chains are used in hoists, cranes, dredges. The manufacturing cost of this

type of chain is less than that of chain with oval links, but in these chains, the kinking occurs easily on

overloading.
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11.37. Conveyor Chains

These chains are used for elevating and conveying the materials continuously. The conveyor

chains are of the following two types :

1.  Detachable or hook joint type chain, as shown in Fig. 11.30 (a), and

2.  Closed joint type chain, as shown in Fig. 11.30 (b).

(a) Detachable or hook joint type chain. (b) Closed joint type chain.

Fig. 11.30.  Conveyor chains.

The conveyor chains are usually made of malleable cast iron. These chains do not have

smooth running qualities. The conveyor chains run at slow speeds of about 3 to 12 km.p.h.

11.38. Power Transmitting Chains

These chains are used for transmission of power, when the distance between the centres of

shafts is short. These chains have provision for efficient lubrication. The power transmitting chains

are of the following three types.

1.  Block chain. A block chain, as shown in Fig. 11.31, is also known as bush chain. This

type of chain was used in the early stages of development in the power transmission.

Fig. 11.31.  Block chain.

It produces noise when approaching or leaving the teeth of the sprocket because of rubbing

between the teeth and the links. Such type of chains are used to some extent as conveyor chain at

small speed.

2.  Bush roller chain. A bush roller chain, as shown in Fig. 11.32, consists of outer plates or

pin link plates, inner plates or roller link plates, pins, bushes and rollers. A pin passes through the

bush which is secured in the holes of the roller between the two sides of the chain. The rollers are free

to rotate on the bush which protect the sprocket wheel teeth against wear.

A bush roller chain is extremely strong and simple in construction. It gives good service

under severe conditions. There is a little noise with this chain which is due to impact of the rollers on

the sprocket wheel teeth. This chain may be used where there is a little lubrication. When one of these

chains elongates slightly due to wear and stretching of the parts, then the extended chain is of greater

pitch than the pitch of the sprocket wheel teeth. The rollers then fit unequally into the cavities of the
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wheel. The result is that the total load falls on one teeth or on a few teeth. The stretching of the parts

increase wear of the surfaces of the roller and of the sprocket wheel teeth.

Fig. 11.32.  Bush roller chain.

3.  Inverted tooth or silent chain. An inverted

tooth or silent chain is shown in Fig. 11.33. It is designed

to eliminate the evil effects caused by stretching and to

produce noiseless running. When the chain stretches and

the pitch of the chain increases, the links ride on the teeth

of the sprocket wheel at a slightly increased radius. This

automatically corrects the small change in the pitch. There

is no relative sliding between the teeth of the inverted tooth

chain and the sprocket wheel teeth. When properly

lubricated, this chain gives durable service and runs very

smoothly and quietly.

11.39. Length of Chain

An open chain drive system connecting the two sprockets is shown in Fig. 11.34. We have

already discussed in Art. 11.11 that the length of belt for an open belt drive connecting the two pulleys

of radii r
1
 and r

2
 and a centre distance x, is

2
1 2

1 2

( – )
( ) 2

r r
L r r x

x
= π + + + (i)

Fig. 11.34.  Length of chain

Fig. 11.33.  Inverted tooth or silent chain.
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If this expression is used for determining the length of chain, the result will be slightly greater

than the required length. This is due to the fact that the pitch lines A B C D E F G and P Q R S of the

sprockets are the parts of a polygon and not that of a circle. The exact length of the chain may be

determined as discussed below :

Let T
1

= Number of teeth on the larger sprocket,

T
2

= Number of teeth on the smaller sprocket, and

p = Pitch of the chain.

We have discussed in Art. 11.32, that diameter of the pitch circle,

180
cosecd p

T

° 
=  

 
  or  

180
cosec

2

p
r

T

° 
=  

 

∴  For larger sprocket,

1

1

180
cosec

2

p
r

T

 °
=  

 

and for smaller sprocket, 2

2

180
cosec

2

p
r

T

 °
=  

 

Since the term π (r
1
 + r

2
) is equal to half the sum of the circumferences of the pitch circles,

therefore the length of chain corresponding to

1 2 1 2( ) ( )
2

p
r r T Tπ + = +

Substituting the values of r
1
, r

2
 and π (r

1
 + r

2
) in equation (i), the length of chain is given by

2

1 2

1 2

180 180
cosec – cosec

2 2
( ) 2

2

p p

T Tp
L T T x

x

    ° °
    

    
= + + +

If  x = m.p, then

2

1 21 2

180 180
cosec – cosec

( )
2 .

2 4

T TT T
L p m p K

m

     ° °
     
 +     

= + + = 

 

 
  

where K = Multiplying factor
2

1 21 2

180 180
cosec – cosec

( )
2

2 4

T TT T
m

m

    ° °
    

+     
= + +

The value of multiplying factor (K) may not be a complete integer. But the length of the chain

must be equal to an integer number of times the pitch of the chain. Thus, the value of K should be

rounded off to the next higher integral number.

Example 11.23. A chain drive is used for reduction of speed from 240 r.p.m. to 120 r.p.m.

The number of teeth on the driving sprocket is 20. Find the number of teeth on the driven sprocket. If

the pitch circle diameter of the driven sprocket is 600 mm and centre to centre distance between the

two sprockets is 800 mm, determine the pitch and length of the chain.
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Solution. Given : N
1
 = 240 r.p.m ; N

2
 = 120 r.p.m ; T

1
 = 20 ; d

2
 = 600 mm or r

2
 = 300 mm

= 0.3 m ; x = 800 mm = 0.8 m

Number of teeth on the driven sprocket

Let T
2

= Number of teeth on the driven sprocket.

We know that

N
1
. T

1
= N

2
. T

2
           or          1 1

2

2

. 240 20
40

120

N T
T

N

×
= = =   Ans.

Pitch of the chain

Let p = Pitch of the chain.

We know that pitch circle radius of the driven sprocket (r
2
),

2

180 180
0.3 cosec cosec 6.37

2 2 40

p p
p

T

 ° ° 
= = =   

  

∴ p = 0.3 / 6.37 = 0.0471 m = 47.1 mm  Ans.

Length of the chain

We know that pitch circle radius of the driving sprocket,

1

1

180 47.1 180
cosec cosec 150.5mm

2 2 20

p
r

T

 ° ° 
= = =   

  

and x = m.p       or    m = x / p = 800 / 47.1 = 16.985

We know that multiplying factor,
2

1 21 2

180 180
cosec – cosec

( )
2

2 4

T TT T
K m

m

    ° °
    

+     
= + +

2
180 180

cosec – cosec
20 40(20 40)

2 16.985
2 4 16.985

 ° °    
    

+     
= + × +

×

2
(6.392 – 12.745)

30 33.97 64.56 say65
67.94

= + + =

∴  Length of the chain,

L = p.K = 47.1 × 65 = 3061.5 mm = 3.0615 m  Ans.

EXERCISES

1. An engine shaft running at 120 r.p.m. is required to drive a machine shaft by means of a belt. The

pulley on the engine shaft is of 2 m diameter and that of the machine shaft is 1 m diameter. If the belt

thickness is 5 mm ; determine the speed of the machine shaft, when 1. there is no slip ; and 2. there is

a slip of 3%. [Ans. 239.4 r.p.m. ; 232.3 r.p.m.]

2. Two parallel shafts 6 metres apart are provided with 300 mm and 400 mm diameter pulleys and are

connected by means of a cross belt. The direction of rotation of the follower pulley is to be reversed by

changing over to an open belt drive. How much length of the belt has to be reduced ?

[Ans. 203.6 mm]

3. A pulley is driven by a flat belt running at a speed of 600 m/min. The coefficient of friction

between the pulley and the belt is 0.3 and the angle of lap is 160°. If the maximum tension in the belt

is 700 N ; find the power transmitted by a belt. [Ans. 3.983 kW]
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4. Find the width of the belt, necessary to transmit 7.5 kW to a pulley 300 mm diameter, if the pulley

makes 1600 r.p.m and the coefficient of friction between the belt and the pulley is 0.22. Assume the

angle of contact as 210° and the maximum tension in the belt is not to exceed 8 N/mm width.

[Ans. 67.4 mm]

5. An open belt 100 mm wide connects two pulleys mounted on parallel shafts with their centres 2.4 m

apart. The diameter of the larger pulley is 450 mm and that of the smaller pulley 300 mm. The coeffi-

cient of friction between the belt and the pulley is 0.3 and the maximum stress in the belt is limited to

14 N/mm width. If the larger pulley rotates at 120 r.p.m., find the maximum power that can be trans-

mitted. [Ans. 2.39 kW]

6. A leather belt 125 mm wide and 6 mm thick, transmits power from a pulley 750 mm diameter which

runs at 500 r.p.m. The angle of lap is 150° and µ  = 0.3. If the mass of 1 m3 of leather is 1 Mg and the

stress in the belt is not to exceed 2.75 MPa, find the maximum power that can be transmitted.

[Ans. 19 kW]

7. A flat belt is required to transmit 35 kW from a pulley of 1.5 m effective diameter running at 300

r.p.m. The angle of contact is spread over 11/24 of the circumference and the coefficient of friction

between belt and pulley surface is 0.3. Determine, taking centrifugal tension into account, width of

the belt required. It is given that the belt thickness is 9.5 mm, density of its material is 1.1 Mg/m3 and

the related permissible working stress is 2.5 MPa. [Ans. 143 mm]

8. A blower is driven by an electric motor though a belt drive. The motor runs at 750 r.p.m. For this

power transmission, a flat belt of 8 mm thickness and 250 mm width is used. The diameter of the

motor pulley is 350 mm and that of the blower pulley 1350 mm. The centre distance between these

pulleys is 1350 mm and an open belt configuration is adopted. The pulleys are made out of cast iron.

The frictional coefficient between the belt and pulley is 0.35 and the permissible stress for the belt

material can be taken as 2.5 N/mm2 with sufficient factor of safety. The mass of a belt is 2 kg per metre

length. Find the maximum power transmitted without belt slipping in any one of the pulleys.

[Ans. 35.9 kW]

9. An open belt drive connects two pulleys 1.2 m and 0.5 m diameter on parallel shafts 3.6 m apart. The

belt has a mass of 1 kg/m length and the maximum tension in it is not to exceed 2 kN. The 1.2 m

pulley, which is the driver, runs at 200 r.p.m. Due to the belt slip on one of the pulleys, the velocity of

the driven shaft is only 450 r.p.m. If the coefficient of friction between the belt and the pulley is 0.3,

find : 1. Torque on each of the two shafts, 2. Power transmitted, 3. Power lost in friction, and 4.

Efficiency of the drive. [Ans. 648.6 N-m, 270.25 N-m ; 13.588 kW ; 0.849 kW ; 93.75%]

10. The power transmitted between two shafts 3.5 metres apart by a cross belt drive round the two pulleys

600 mm and 300 mm in diameters, is 6 kW. The speed of the larger pulley (driver) is 220 r.p.m. The

permissible load on the belt is 25 N/mm width of the belt which is 5 mm thick. The coefficient of

friction between the smaller pulley surface and the belt is 0.35. Determine : 1. necessary length of the

belt ; 2. width of the belt, and 3. necessary initial tension in the belt.

[Ans. 8.472 m ; 53 mm ; 888 N]

11. A flat belt, 8 mm thick and 100 mm wide transmits power between two pulleys, running at

1600 m/min. The mass of the belt is 0.9 kg/m length. The angle of lap in the smaller pulley is 165° and

the coefficient of friction between the belt and pulley is 0.3. If the maximum permissible stress in the

belt is 2 MN/m2, find : 1. maximum power transmitted ; and 2. initial tension in the belt

[Ans. 14.83 kW ; 1002 N]

12. An open belt connects two flat pulleys. The smaller pulley is 400 mm diameter and runs at 200 r.p.m.

The angle of lap on this pulley is 160° and the coefficient of friction between the belt and pulley face

is 0.25. The belt is on the point of slipping when 3 kW is being transmitted. Which of the following

two alternatives would be more effective in order to increase the power :

1.  Increasing the initial tension in the belt by 10 per cent, and

2.  Increasing the coefficient of friction by 10 per cent by the application of a suitable dressing to the

belt? [Ans. First method is more effective]
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13. A V-belt drive consists of three V-belts in parallel on grooved pulleys of the same size. The angle of

groove is 30° and the coefficient of friction 0.12. The cross-sectional area of each belt is 800 mm2 and

the permissible safe stress in the material is 3 MPa. Calculate the power that can be transmitted

between two pulleys 400 mm in diameter rotating at 960 r.p.m. [Ans. 111.12 kW]

14. Power is transmitted between two shafts by a V-belt whose mass is 0.9 kg/m length. The maximum

permissible tension in the belt is limited to 2.2 kN. The angle of lap is 170° and the groove angle 45°.

If the coefficient of friction between the belt and pulleys is 0.17, find : 1. velocity of the belt for

maximum power ; and 2. power transmitted at this velocity. [Ans. 28.54 m/s ; 30.7 kW]

15. Two shafts whose centres are 1 m apart are connected by a V-belt drive. The driving pulley is supplied

with 100 kW and has an effective diameter of 300 mm. It runs at 1000 r.p.m. while the driven pulley

runs at 375 r.p.m. The angle of groove on the pulleys is 40°. The permissible tension in 400 mm2

cross-sectional area belt is 2.1 MPa. The density of the belt is 1100 kg/m3. The coefficient of friction

between the belt and pulley is 0.28. Estimate the number of belts required. [Ans. 10]

16. A rope drive is required to transmit 230 kW from a pulley of 1 metre diameter running at 450 r.p.m.

The safe pull in each rope is 800 N and the mass of the rope is 0.46 kg per metre length. The angle of

lap and the groove angle is 160° and 45° respectively. If the coefficient of friction between the rope

and the pulley is 0.3, find the number of ropes required. [Ans. 21]

17. Power is transmitted between two shafts, 3 metres apart by an open wire rope passing round two

pulleys of 3 metres and 2 metres diameters respectively, the groove angle being 40°. If the rope has a

mass of 3.7 kg per metre length and the maximum working tension in rope is 20 kN, determine the

maximum power that the rope can transmit and the corresponding speed of the smaller pulley. The

coefficient of friction being 0.15. [Ans. 400 kW ; 403.5 r.p.m.]

18. A rope drive transmits 75 kW through a 1.5 m diameter, 45° grooved pulley rotating at 200 r.p.m. The

coefficient of friction between the ropes and the pulley grooves is 0.3 and the angle of lap is 160°.

Each rope has a mass of 0.6 kg/m and can safely take a pull of 800 N. Taking centrifugal tension into

account determine : 1. the number of ropes required for the drive, and 2. initial rope tension.

[Ans. 9 ; 510.2 N]

19. The reduction of speed from 360 r.p.m. to 120 r.p.m. is desired by the use of chain drive. The driving

sprocket has 10 teeth. Find the number of teeth on the driven sprocket. If the pitch radius of the driven

sprocket is 250 mm and the centre to centre distance between the two sprocket is 400 mm, find the

pitch and length of the chain. [Ans. 30 ; 52.25 mm ; 1.93 m]

DO YOU KNOW ?

1. Discuss briefly the various types of belts used for the transmission of power.

 2. How does the velocity ratio of a belt drive effect, when some slip is taking place between the belt and

the two pulleys ?

3. Obtain an expression for the length of a belt in 1. an open belt drive ; and 2. a cross belt drive.

4. Explain the phenomena of ‘slip’ and ‘creep’ in a belt drive.

5. For a flat belt, prove that 1

2

,
T

e
T

µθ
= where

T
1

= Tension in the tight side of the belt,

T
2

= Tension in the slack side of the belt,

µ = Coefficient of friction between the belt and the pulley, and

θ = Angle of contact between the belt and the pulley (in radians.)

6. What is centrifugal tension in a belt ? How does it affect the power transmitted.

7. Derive the condition for transmitting the maximum power in a flat belt drive.
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8. It is stated that the speed at which a belt or rope should be run to transmit maximum power is that at

which the maximum allowable tension is three times the centrifugal tension in the belt or rope at that

speed. Prove the statement.

9. Explain what do you understand by ‘initial tension in a belt’.

10. Derive an expression for the ratio of the driving tensions in a rope drive assuming the angle of the

groove of the pulley to be as 2 β.

11. Discuss relative merits and demerits of belt, rope and chain drive for transmission of power.

12. What are different types of chains ? Explain, with neat sketches, the power transmission chains.

13. Obtain an expression for the length of a chain.

OBJECTIVE TYPE QUESTIONS

1. The velocity ratio of two pulleys connected by an open belt or crossed belt is

(a)  directly proportional to their diameters

(b)  inversely proportional to their diameters

(c)  directly proportional to the square of their diameters

(d)  inversely proportional to the square of their diameters

2. Two pulleys of diameters d
1
 and d

2
 and at distance x apart are connected by means of an open belt

drive. The length of the belt is

2
1 2

1 2

( )
( ) ( ) 2

2 4

d d
a d d x

x

π +
+ + +

2
1 2

1 2

( – )
( ) ( – ) 2

2 4

d d
b d d x

x

π
+ +

2
1 2

1 2

( – )
( ) ( ) 2

2 4

d d
c d d x

x

π
+ + +

2
1 2

1 2

( )
( ) ( – ) 2

2 4

d d
d d d x

x

π +
+ +

3. In a cone pulley, if the sum of radii of the pulleys on the driving and driven shafts is constant, then

(a)  open belt drive is recommended

(b)  cross belt drive is recommended

(c)  both open belt drive and cross belt drive are recommended

(d)  the drive is recommended depending upon the torque transmitted

4. Due to slip of the belt, the velocity ratio of the belt drive

(a) decreases (b) increases (c) does not change

5. When two pulleys of different diameters are connected by means of an open belt drive, then the angle

of contact taken into consideration should be of the

(a) larger pulley (b) smaller pulley (c) average of two pulleys

6. The power transmitted by a belt is maximum when the maximum tension in the belt (T) is equal

to

(a) T
C

(b) 2T
C

(c) 3T
C

(d) 4T
C

where T
C
 = Centrifugal tension.

7. The velocity of the belt for maximum power is

(a)
3

T

m
(b) 

4

T

m
(c)  

5

T

m
(d) 

6

T

m

where      m = Mass of the belt in kg per metre length.
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8. The centrifugal tension in belts

(a) increases power transmitted

(b) decreases power transmitted

(c) have no effect on the power transmitted

(d) increases power transmitted upto a certain speed and then decreases

9. When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this

tension is equal to the

(a)  tension in the tight side of the belt

(b)  tension in the slack side of the belt

(c)  sum of the tensions in the tight side and slack side of the belt

(d)  average tension of the tight side and slack side of the belt

10. The relation between the pitch of the chain ( p) and pitch circle diameter of the sprocket (d) is given by

(a)  
60

sinp d
T

° 
=  

 
(b)  

90
sinp d

T

° 
=  

 

(c)  
120

sinp d
T

° 
=  

 
(d)  

180
sinp d

T

° 
=  

 

where T  = Number of teeth on the sprocket.

ANSWERS

1. (b) 2. (c) 3. (b) 4. (a) 5. (b)

6. (c) 7. (a) 8. (c) 9. (d) 10. (d)

GO To FIRST
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12.1.12.1.12.1.12.1.12.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have discussed in the previous chapter, that the

slipping of a belt or rope is a common phenomenon, in the

transmission of motion or power between two shafts. The

effect of slipping is to reduce the velocity ratio of the system.

In precision machines, in which a definite velocity ratio is of

importance (as in watch mechanism), the only positive drive

is by means of gears or toothed wheels. A gear drive is also

provided, when the distance between the driver and the fol-

lower is very small.

12.2.12.2.12.2.12.2.12.2. Friction WheelsFriction WheelsFriction WheelsFriction WheelsFriction Wheels

The motion and power transmitted by gears is kine-

matically equivalent to that transmitted by friction wheels or

discs. In order to

understand how

the motion can be

transmitted by

two toothed

wheels, consider

two plain circular

wheels A and B

mounted on

shafts, having sufficient rough surfaces and pressing against

each other as shown in Fig. 12.1 (a).

CONTENTS

CONTENTS
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Let the wheel A  be keyed to the rotating shaft and the wheel B to the shaft, to be rotated. A

little consideration will show, that when the wheel A  is rotated by a rotating shaft, it will rotate the

wheel B in the opposite direction as shown in Fig. 12.1 (a).

The wheel B will be rotated (by the wheel A ) so long as the tangential force exerted by the

wheel A  does not exceed the maximum frictional resistance between the two wheels. But when the

tangential force (P) exceeds the *frictional resistance (F), slipping will take place between the two

wheels. Thus the friction drive is not a positive drive.

        

(a) Friction wheels. (b) Toothed wheels.

Fig. 12.1

In order to avoid the slipping, a number of projections (called teeth) as shown in

Fig. 12.1 (b), are provided on the periphery of the wheel A , which will fit into the corresponding

recesses on the periphery of the wheel B. A friction wheel with the teeth cut on it is known as toothed

wheel or gear. The usual connection to show the toothed wheels is by their **pitch circles.

Note :  Kinematically, the friction wheels running without slip and toothed gearing are identical. But due to the

possibility of slipping of wheels, the friction wheels can only be used for transmission of small powers.

12.3. Advantages and Disadvantages of Gear Drive

The following are the advantages and disadvantages of the gear drive as compared to belt,

rope and chain drives :

Advantages

1. It transmits exact velocity ratio.

2. It may be used to transmit large power.

3. It has high efficiency.

4. It has reliable service.

5. It has compact layout.

Disadvantages

1. The manufacture of gears require special tools and equipment.

2. The error in cutting teeth may cause vibrations and noise during operation.

* The frictional force F is equal to µ. R
N

, where µ = Coefficient of friction between the rubbing surface of

two wheels, and R
N

 = Normal reaction between the two rubbing surfaces.

** For details, please refer to Art. 12.4.
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12.4. Classification of Toothed Wheels

The gears or toothed wheels may be classified as follows :

1.  According to the position of axes of the shafts. The axes of the two shafts between which

the motion is to be transmitted, may be

(a)  Parallel,   (b)  Intersecting, and   (c)  Non-intersecting and non-parallel.

The two parallel and co-planar shafts connected by the gears is shown in Fig. 12.1. These

gears are called spur gears and the arrangement is known as spur gearing. These gears have teeth

parallel to the axis of the wheel as shown in Fig. 12.1. Another name given to the spur gearing is

helical gearing, in which the teeth are inclined to the axis. The single and double helical gears con-

necting parallel shafts are shown in Fig. 12.2 (a) and (b) respectively. The double helical gears are

known as herringbone gears. A pair of spur gears are kinematically equivalent to a pair of cylindrical

discs, keyed to parallel shafts and having a line contact.

The two non-parallel or intersecting, but coplanar shafts connected by gears is shown in Fig.

12.2 (c). These gears are called bevel gears and the arrangement is known as bevel gearing. The

bevel gears, like spur gears, may also have their teeth inclined to the face of the bevel, in which case

they are known as helical bevel gears.

The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by gears is shown

in Fig. 12.2 (d). These gears are called skew bevel gears or spiral gears and the arrangement is

known as skew bevel gearing or spiral gearing. This type of gearing also have a line contact, the

rotation of which about the axes generates the two pitch surfaces known as hyperboloids.

Notes : (a) When equal bevel gears (having equal teeth) connect two shafts whose axes are mutually perpen-

dicular, then the bevel gears are known as mitres.

(b) A hyperboloid is the solid formed by revolving a straight line about an axis (not in the same

plane), such that every point on the line remains at a constant distance from the axis.

(c) The worm gearing is essentially a form of spiral gearing in which the shafts are usually at  right

angles.

(a) Single helical gear. (b) Double helical gear. (c) Bevel gear. (d) Spiral gear.

Fig. 12.2

2.  According to the peripheral velocity of the gears. The gears, according to the peripheral

velocity of the gears may be classified as :

(a)  Low velocity,  (b)  Medium velocity, and  (c)  High velocity.

  The gears having velocity less than 3 m/s are termed as low velocity gears and gears having

velocity between 3 and 15 m/s are known as medium velocity gears. If the velocity of gears is more

than 15 m/s, then these are called high speed gears.
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3.  According to the type of gearing. The gears, according to the type of gearing may be

classified as :

(a) External gearing,  (b) Internal gearing, and  (c) Rack and pinion.

In external gearing, the gears of the two shafts mesh externally with each other as shown in Fig.

12.3 (a). The larger of these two wheels is called spur wheel and the smaller wheel is called pinion. In

an external gearing, the motion of the two wheels is always unlike, as shown in Fig. 12.3 (a).

(a) External gearing. (b) Internal gearing.

Fig. 12.3 Fig. 12.4. Rack and pinion.

In internal gearing, the gears of the two shafts mesh internally with each other as shown in

Fig. 12.3 (b). The larger of these two wheels is called annular wheel and the smaller wheel is called

pinion. In an internal gearing, the motion of the two wheels is always like, as shown in Fig. 12.3 (b).

Spiral Gears

Helical Gears

Double helical gears
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Sometimes, the gear of a shaft meshes externally and internally with the gears in a *straight

line, as shown in Fig. 12.4. Such type of gear is called rack and pinion. The straight line gear is called

rack and the circular wheel is called pinion. A little consideration will show that with the help of a

rack and pinion, we can convert linear motion into rotary motion and vice-versa as shown in Fig.

12.4.

4.  According to position of teeth on the gear surface. The teeth on the gear surface may be

(a) straight,  (b) inclined, and  (c) curved.

We have discussed earlier that the spur gears have straight teeth where as helical gears have

their teeth inclined to the wheel rim. In case of spiral gears, the teeth are curved over the rim surface.

12.5. Terms Used in Gears

The following terms, which will be mostly used in this chapter, should be clearly understood

at this stage. These terms are illustrated in Fig. 12.5.

Fig. 12.5. Terms used in gears.

1. Pitch circle.  It is an imaginary circle which by pure rolling action, would give the same

motion as the actual gear.

Internal gears

* A straight line may also be defined as a wheel of infinite radius.

Rack and pinion
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2. Pitch circle diameter.  It is the diameter of the pitch circle. The size of the gear is usually

specified by the pitch circle diameter. It is also known as pitch diameter.

3. Pitch point.  It is a common point of contact between two pitch circles.

4. Pitch surface.  It is the surface of the rolling discs which the meshing gears have replaced

at the pitch circle.

5. Pressure angle or angle of obliquity.  It is the angle between the common normal to two

gear teeth at the point of contact and the common tangent at the pitch point. It is usually denoted by φ.

The standard pressure angles are 1

2
14 ° and 20°.

6. Addendum.  It is the radial distance of a tooth from the pitch circle to the top of the tooth.

7. Dedendum.  It is the radial distance of a tooth from the pitch circle to the bottom of the tooth.

8. Addendum circle.  It is the circle drawn through the top of the teeth and is concentric with

the pitch circle.

9. Dedendum circle.  It is the circle drawn through the bottom of the teeth. It is also called

root circle.

Note :  Root circle diameter = Pitch circle diameter × cos φ, where φ is the pressure angle.

10. Circular pitch.  It is the distance measured on the circumference of the pitch circle from

a point of one tooth to the corresponding point on the next tooth. It is usually denoted by p
c
.

Mathematically,

Circular pitch, p
c

= π D/T

where D = Diameter of the pitch circle, and

T = Number of teeth on the wheel.

A little consideration will show that the two gears will mesh together correctly, if the two

wheels have the same circular pitch.

Note :  If D
1
 and D

2
 are the diameters of the two meshing gears having the teeth T

1
 and T

2
 respectively, then for

them to mesh correctly,

1 2 1 1

1 2 2 2

or
c

D D D T
p

T T D T

π π
= = =

11. Diametral pitch.  It is the ratio of number of teeth to the pitch circle diameter in millimetres.

It is denoted by p
d
 . Mathematically,

Diametral pitch, d

c

T
p

D p

π
= = ...

c

D
p

T

π 
= 

 
�

where T = Number of teeth, and

D = Pitch circle diameter.

12. Module.  It is the ratio of the pitch circle diameter in millimeters to the number of teeth.

It is usually denoted by m. Mathematically,

Module,  m = D /T

Note : The recommended series of modules in Indian Standard are 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16,

and 20. The modules 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14 and 18 are of second choice.

13. Clearance.  It is the radial distance from the top of the tooth to the bottom of the tooth, in

a meshing gear. A circle passing through the top of the meshing gear is known as clearance circle.

14. Total depth.  It is the radial distance between the addendum and the dedendum circles of

a gear. It is equal to the sum of the addendum and dedendum.
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* For details, see Art. 12.16.

** For details, see Art. 12.17.

15. Working depth.  It is the radial distance from the addendum circle to the clearance circle.

It is equal to the sum of the addendum of the two meshing gears.

16. Tooth thickness.  It is the width of the tooth measured along the pitch circle.

17. Tooth space .  It is the width of  space between the two adjacent teeth measured along the pitch

circle.

18. Backlash.  It is the difference between the tooth space and the tooth thickness, as mea-

sured along the pitch circle. Theoretically, the backlash should be zero, but in actual practice some

backlash must be allowed to prevent jamming of the teeth due to tooth errors and thermal expansion.

19. Face of tooth.  It is the surface of the gear tooth above the pitch surface.

20. Flank of tooth.  It is the surface of the gear tooth below the pitch surface.

21. Top land.  It is the surface of the top of the tooth.

22. Face width.  It is the width of the gear tooth measured parallel to its axis.

23. Profile.  It is the curve formed by the face and flank of the tooth.

24. Fillet radius.  It is the radius that connects the root circle to the profile of the tooth.

25. Path of contact.  It is the path traced by the point of contact of two teeth from the

beginning to the end of engagement.

26. *Length of the path of contact.  It is the length of the common normal cut-off by the

addendum circles of the wheel and pinion.

27. ** Arc of contact.  It is the path traced by a point on the pitch circle from the beginning

to the end of engagement of a given pair of teeth. The arc of contact consists of two parts, i.e.

(a) Arc of approach.  It is the portion of the path of contact from the beginning of the

engagement to the pitch point.

(b) Arc of recess.  It is the portion of the path of contact from the pitch point to the end of the

engagement of a pair of teeth.

Note :   The ratio of the length of arc of contact to the circular pitch is known as contact ratio i.e. number of pairs

of teeth in contact.

12.6. Gear Materials

The material used for the manufacture of gears depends upon the strength and service condi-

tions like wear, noise etc. The gears may be manufactured from metallic or non-metallic materials.

The metallic gears with cut teeth are commercially obtainable in cast iron, steel and bronze. The non-

metallic materials like wood, raw hide, compressed paper and synthetic resins like nylon are used for

gears, especially for reducing noise.

The cast iron is widely used for the manufacture of gears due to its good wearing properties,

excellent machinability and ease of producing complicated shapes by casting method. The cast iron

gears with cut teeth may be employed, where smooth action is not important.

The steel is used for high strength gears and steel may be plain carbon steel or alloy steel. The

steel gears are usually heat treated in order to combine properly the toughness and tooth hardness.

The phosphor bronze is widely used for worm gears in order to reduce wear of the worms

which will be excessive with cast iron or steel.

12.7. Condition for Constant Velocity Ratio of Toothed Wheels–Law of
Gearing

Consider the portions of the two teeth, one on the wheel 1 (or pinion) and the other on the



Chapter 12 : Toothed Gearing   �  389

wheel 2, as shown by thick line curves in Fig. 12.6. Let the two teeth

come in contact at point Q, and the wheels rotate in the directions as

shown in the figure.

Let T T be the common tangent and M N be the

common normal to the curves at the point of contact Q. From the

centres O
1
 and O

2 
, draw O

1
M and O

2
N perpendicular to MN. A

little consideration will show that the point Q moves in the direction

QC, when considered as a point on wheel 1, and in the direction

QD when considered as a point on wheel 2.

Let v
1
 and v

2
 be the velocities of the point Q on the wheels

1 and 2 respectively. If the teeth are to remain in contact, then the

components of these velocities along the common normal MN must

be equal.

∴ 1 2cos cosv vα = β

      

1 1 2 2

1 2
1 1 2 2 1 1 2 2

1 2

( ) cos ( ) cos

( ) ( ) or

O Q O Q

O M O N
O Q O Q O M O N

O Q O Q

ω × α = ω × β

ω × = ω × ω × = ω ×

∴ 1 2

2 1

O N

O M

ω
=

ω
…(i)

Also from similar triangles O
1
MP and O

2
NP,

2 2

1 1

O N O P

O M O P
= ...(ii)

Combining equations (i) and (ii), we have

1 2 2

2 1 1

O N O P

O M O P

ω
= =

ω
...(iii)

From above, we see that the angular velocity ratio is inversely proportional to the ratio of the

distances of the point P from the centres O
1
 and O

2
, or the common normal to the two surfaces at the

point of contact Q intersects the line of centres at point P which divides the centre distance inversely

as the ratio of angular velocities.

Therefore in order to have a constant angular velocity ratio for all positions of the wheels, the

point P must be the fixed point (called pitch point) for the two wheels. In other words, the common

normal at the point of contact between a pair of teeth must always pass through the pitch point.

This is the fundamental condition which must be satisfied while designing the profiles for the teeth of

gear wheels. It is also known as law of gearing.

Notes : 1. The above condition is fulfilled by teeth of involute form, provided that the root circles from which

the profiles are generated are tangential to the common normal.

2. If the shape of one tooth profile is arbitrarily chosen and another tooth is designed to satisfy the

above condition, then the second tooth is said to be conjugate to the first. The conjugate teeth are not in common

use because of difficulty in manufacture, and cost of production.

3. If D
1
 and D

2
 are pitch circle diameters of wheels 1 and 2 having teeth T

1
 and T

2
 respectively, then

velocity ratio,

            
1 2 2 2

2 1 1 1

O P D T

O P D T

ω
= = =

ω

Fig. 12.6. Law of gearing.

or
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12.8. Velocity of Sliding of Teeth

The sliding between a pair of teeth in contact at Q occurs along the common tangent T T to

the tooth curves as shown in Fig. 12.6. The velocity of sliding is the velocity of one tooth relative to

its mating tooth along the common tangent at the point of contact.

The velocity of point Q, considered as a point on wheel 1, along the common tangent T T is

represented by EC. From similar triangles QEC and O
1
MQ,

                                   1 1

1

or .
EC v

EC MQ
MQ O Q

= = ω = ω

Similarly, the velocity of point Q, considered as a point on wheel 2, along the common tan-

gent T T is represented by ED. From similar triangles QCD and O
2
 NQ,

2
2 2

2

or .
vED

ED QN
QN O Q

= = ω = ω

Let S Velocity of sliding at .v Q=

∴ S 2 1. .v ED EC QN MQ= − = ω − ω

2 1( ) ( )QP PN MP QP= ω + − ω −

1 2 2 1( ) . .QP PN MP= ω + ω + ω − ω ...(i)

Since 1 2
1 2

2 1

or . . ,
O P PN

MP PN
O P MP

ω
= = ω = ω

ω
therefore equation (i) becomes

S 1 2( )v QP= ω + ω ...(ii)

Notes : 1. We see from equation (ii), that the velocity of sliding is proportional to the distance of the point

of contact from the pitch point.

2. Since the angular velocity of wheel 2 relative to wheel 1 is (ω
1
 + ω

2
 ) and P is the instantaneous

centre for this relative motion, therefore the value of v
s
 may directly be written as v

s
  (ω

1
 + ω

2
 ) QP, without the

above analysis.

12.9. Forms of Teeth

We have discussed in Art. 12.7 (Note 2)

that conjugate teeth are not in common use.

Therefore, in actual practice following are the two

types of teeth commonly used :

1.  Cycloidal teeth ; and 2. Involute teeth.

We shall discuss both the above mentioned

types of teeth in the following articles. Both these

forms of teeth satisfy the conditions as discussed

in Art. 12.7.

12.10. Cycloidal Teeth

A cycloid is the curve traced by a point on the circumference of a circle which rolls without

slipping on a fixed straight line. When a circle rolls without slipping on the outside of a fixed circle,

the curve traced by a point on the circumference of a circle is known as epi-cycloid. On the other

hand, if a circle rolls without slipping on the inside of a fixed circle, then the curve traced by a point

on the circumference of a circle is called hypo-cycloid.
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In Fig. 12.7 (a), the fixed line or pitch line of a rack is shown. When the circle C rolls without

slipping above the pitch line in the direction as indicated in Fig. 12.7 (a), then the point P on the circle

traces epi-cycloid PA . This represents the face of the cycloidal tooth profile. When the circle D rolls

without slipping below the pitch line, then the point P on the circle D traces hypo-cycloid PB, which

represents the flank of the cycloidal tooth. The profile BPA  is one side of the cycloidal rack tooth.

Similarly, the two curves P' A'  and  P'B' forming the opposite side of the tooth profile are traced by

the point P' when the circles C and D roll in the opposite directions.

In the similar way, the cycloidal teeth of a gear may be constructed as shown in Fig. 12.7 (b).

The circle C is rolled without slipping on the outside of the pitch circle and the point P on the circle

C traces epi-cycloid PA , which represents the face of the cycloidal tooth. The circle D is rolled on the

inside of pitch circle and the point P on the circle D traces hypo-cycloid PB, which represents the

flank of the tooth profile. The profile BPA  is one side of the cycloidal tooth. The opposite side of the

tooth is traced as explained above.

The construction of the two mating cycloidal teeth is shown in Fig. 12.8. A point on the circle

D will trace the flank of the tooth T
1
 when circle D rolls without slipping on the inside of pitch circle

of wheel 1 and face of tooth T
2
 when the circle D rolls without slipping on the outside of pitch circle

of wheel 2. Similarly, a point on the circle C will trace the face of tooth T
1
 and flank of tooth T

2
. The

rolling circles C and D may have unequal diameters, but if several wheels are to be interchangeable,

they must have rolling circles of equal diameters.

Fig. 12.8. Construction of two mating cycloidal teeth.

A little consideration will show, that the common normal X X at the point of contact between

two cycloidal teeth always passes through the pitch point, which is the fundamental condition for a

constant velocity ratio.

  (a) (b)

   Fig. 12.7. Construction of cycloidal teeth of a gear.
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12.11. Involute Teeth

An involute of a circle is a plane curve generated by a

point on a tangent, which rolls on the circle without slipping or

by a point on a taut string which in unwrapped from a reel as

shown in Fig. 12.9. In connection with toothed wheels, the circle

is known as base circle. The involute is traced as follows :

Let A  be the starting point of the involute. The base

circle is divided into equal number of parts e.g. AP
1
, P

1
P

2
,

P
2
P

3
 etc. The tangents at P

1
, P

2
, P

3
 etc. are drawn and the

length P
1
A

1
, P

2
A

2
, P

3
A

3
 equal to the arcs AP

1
, AP

2
 and AP

3
 are

set off. Joining the points A , A
1
, A

2
, A

3
 etc. we obtain the involute

curve A R. A little consideration will show that at any instant

A
3
, the tangent A

3
T to the involute is perpendicular to P

3
A

3
 and P

3
A

3
 is the normal to the involute. In

other words, normal at any point of an involute is a tangent to the circle.

Now, let O
1
 and O

2
 be the fixed centres of the two base circles as shown in Fig. 12.10 (a). Let

the corresponding involutes A B and A
1
B

1
 be in contact at point Q. MQ and NQ are normals to the

involutes at Q and are tangents to base circles. Since the normal of an involute at a given point is the

tangent drawn from that point to the base circle, therefore the common normal MN at Q is also the

common tangent to the two base circles. We see that the common normal MN intersects the line of

centres O
1
O

2
 at the fixed point P (called pitch point). Therefore the involute teeth satisfy the

fundamental condition of constant velocity ratio.

(a) (b)

Fig. 12.10. Involute teeth.

From similar triangles O
2
NP and O

1
MP,

1 1 2

2 2 1

O M O P

O N O P

ω
= =

ω
... (i)

which determines the ratio of the radii of the two base circles. The radii of the base circles is given by

1 1 2 2cos , and cosO M O P O N O P= φ = φ

Also the centre distance between the base circles,

1 2 1 2
1 2 1 2

cos cos cos

O M O N O M O N
O O O P O P

+
= + = + =

φ φ φ

Fig. 12.9. Construction of involute.
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where φ is the pressure angle or the angle of obliquity. It is the angle which the common normal to the

base circles  (i.e. MN) makes with the common tangent to the pitch circles.

When the power is being transmitted, the maximum tooth pressure (neglecting friction at the

teeth) is exerted along the common normal through the pitch point. This force may be resolved into

tangential and radial or normal components. These components act along and at right angles to the

common tangent to the pitch circles.

If F is the maximum tooth pressure as shown in Fig. 12.10 (b), then

Tangential force, F
T
 = F cos φ

and radial or normal force, F
R
 = F sin φ.

∴   Torque exerted on the gear shaft

= F
T
 × r, where r is the pitch circle radius of the gear.

Note : The tangential force provides the driving torque and the radial or normal force produces radial deflection

of the rim and bending of the shafts.

12.12.Effect of Altering the Centre Distance on the Velocity Ratio for
Involute Teeth  Gears

In the previous article, we have seen that the velocity ratio for the involute teeth gears is given by

1 1 2

2 2 1

O M O P

O N O P

ω
= =

ω
...(i)

Let, in Fig. 12.10 (a), the centre of rotation of one of the gears (say wheel 1) is shifted from

O
1
 to O

1
' . Consequently the contact point shifts from Q to Q '. The common normal to the teeth at the

point of contact Q ' is the tangent to the base circle, because it has a contact between two involute

curves and they are generated from the base circle. Let the tangent M' N'  to the base circles intersects

1O
′
O

2
 at the pitch point P' . As a result of this, the wheel continues to work* correctly.

Now from similar triangles O
2
NP and O

1
MP,

1 1

2 2

O M O P

O N O P
= ...(ii)

and from similar triangles O
2
N'P' and O

1
'M'P',

1 1

2 2

O M O P

O N O P

′ ′′′
=

′ ′
...(iii)

But O
2
N = O

2
N', and O

1
M = O

1
' M'. Therefore from equations (ii) and (iii),

1 1

2 2

O P O P

O P O P

′′
=

′
...[Same as equation (i)]

Thus we see that if the centre distance is changed within limits, the velocity ratio remains

unchanged. However, the pressure angle increases (from φ to φ′) with the increase in the centre

distance.

Example 12.1.  A single reduction gear of 120 kW with a pinion 250 mm pitch circle diameter

and speed 650 r.p.m. is supported in bearings on either side. Calculate the total load due to the

power transmitted, the pressure angle being 20°.

Solution.  Given : P = 120 kW = 120 × 103 W ; d = 250 mm or r = 125 mm = 0.125 m ;

N = 650 r.p.m. or ω = 2π × 650/60 = 68 rad/s ; φ = 20°

* It is not the case with cycloidal teeth.
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Let T = Torque transmitted in N-m.

We know that power transmitted (P),

120 × 103 = T.ω = T × 68        or     T = 120 × 103/68 = 1765 N-m

and tangential load on the pinion,

F
T
 = T /r = 1765 / 0.125 = 14 120 N

∴  Total load due to power transmitted,

F = F
T 

/ cos φ = 14 120 / cos 20° = 15 026 N = 15.026 kN Ans.

12.13. Comparison Between Involute and Cycloidal Gears

In actual practice, the involute gears are more commonly used as compared to cycloidal

gears, due to the following advantages :

 Advantages of involute gears

Following are the advantages of involute gears :

1.  The most important advantage of the involute gears is that the centre distance for a pair of

involute gears can be varied within limits without changing the velocity ratio. This is not true for

cycloidal gears which requires exact centre distance to be maintained.

2.  In involute gears, the pressure angle, from the start of the engagement of teeth to the end

of the engagement, remains constant. It is necessary for smooth running and less wear of gears. But in

cycloidal gears, the pressure angle is maximum at the beginning of engagement, reduces to zero at

pitch point, starts decreasing and again becomes maximum at the end of engagement. This results in

less smooth running of gears.

3.  The face and flank of involute teeth are generated by a single curve where as in cycloidal

gears, double curves (i.e. epi-cycloid and hypo-cycloid) are required for the face and flank respec-

tively. Thus the involute teeth are easy to manufacture than cycloidal teeth. In involute system, the

basic rack has straight teeth and the same can be cut with simple tools.

Note :  The only disadvantage of the involute teeth is that the interference occurs (Refer Art. 12.19) with pinions

having smaller number of teeth. This may be avoided by altering the heights of addendum and dedendum of the

mating teeth or the angle of obliquity of the teeth.

Advantages of cycloidal gears

Following are the advantages of cycloidal gears :

1.  Since the cycloidal teeth have wider flanks, therefore the cycloidal gears are stronger than

the involute gears, for the same pitch. Due to this reason, the cycloidal teeth are preferred specially

for cast teeth.

2.  In cycloidal gears, the contact takes place between a convex flank and concave surface,

whereas in involute gears, the convex surfaces are in contact. This condition results in less wear in

cycloidal gears as compared to involute gears. However the difference in wear is negligible.

3.  In cycloidal gears, the interference does not occur at all. Though there are advantages of

cycloidal gears but they are outweighed by the greater simplicity and flexibility of the involute

gears.

12.14. Systems of Gear Teeth

The following four systems of gear teeth are commonly used in practice :

1. 1

2
14 °  Composite system,  2. 1

2
14 °  Full depth involute system,  3. 20° Full depth involute

system, and  4. 20° Stub involute system.

The 1

2
14 ° composite system is used for general purpose gears. It is stronger but has no inter-
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changeability. The tooth profile of this system has cycloidal curves at the top and bottom and involute

curve at the middle portion. The teeth are produced by formed milling cutters or hobs. The tooth

profile of the 1

2
14 ° full depth involute system was developed for use with gear hobs for spur and

helical gears.

The tooth profile of the 20° full depth involute system may be cut by hobs. The increase of

the pressure angle from 1

2
14 ° to 20° results in a stronger tooth, because the tooth acting as a beam is

wider at the base. The 20° stub involute system has a strong tooth to take heavy loads.

12.15. Standard Proportions of Gear Systems

The following table shows the standard proportions in module (m) for the four gear systems

as discussed in the previous article.

Table 12.1. Standard proportions of gear systems.

S. No. Particulars
1

2
°14 composite or full 20° full depth 20° stub involute

depth involute system involute system system

1. Addenddm 1 m 1 m 0.8 m

2. Dedendum 1.25 m 1.25 m 1 m

3. Working depth 2 m 2 m 1.60 m

4. Minimum total depth 2.25 m 2.25 m 1.80 m

5. Tooth thickness 1.5708 m 1.5708 m 1.5708 m

6. Minimum clearance 0.25 m 0.25 m 0.2 m

7. Fillet radius at root 0.4 m 0.4 m 0.4 m

12.16. Length of Path of Contact

Consider a pinion driving the wheel as shown in Fig. 12.11. When the pinion rotates in

clockwise direction, the contact between a pair of involute teeth begins at K (on the flank near the

base circle of pinion or the outer end of the tooth face on the wheel) and* ends at L (outer end of the

tooth face on the pinion or on the flank near the base circle of wheel). MN is the common normal at

the point of contacts and the common tangent to the base circles. The point K is the intersection of the

addendum circle of wheel and the common tangent. The point  L is the intersection of the addendum

circle of pinion and common tangent.

Fig. 12.11. Length of path of contact.

* If the wheel is made to act as a driver and the directions of motion are reversed, then the contact between

a pair of teeth begins at L and ends at K .
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We have discussed in Art. 12.4 that the length

of path of contact is the length of common normal cut-

off by the addendum circles of the wheel and the pinion.

Thus the length of path of contact is KL which is the sum

of the parts of the path of contacts KP and PL. The part

of the path of contact KP is known as path of approach

and the part of the path of contact PL is known as path

of recess.

Let r
A

= O
1
L = Radius of addendum

circle of pinion,

R
A

= O
2
K = Radius of addendum

circle of wheel,

r = O
1
P = Radius of pitch circle of

pinion, and

R = O
2
P = Radius of pitch circle of

                                      wheel.

From Fig. 12.11, we find that radius of the base circle of pinion,

           O
1
M = O

1
P cos φ = r cos φ

and radius of the base circle of wheel,

           O
2
N = O

2
P cos φ = R cos φ

Now from right angled triangle O
2
KN,

( )
22 2 2 2

2 2 A( ) ( ) cosKN O K O N RR= − = − φ

and 2 sin sinPN O P R= φ = φ

∴  Length of the part of the path of contact, or the path of approach,

( )
2 2 2

A cos sinKP KN PN R RR= − = − φ − φ

Similarly from right angled triangle O
1
ML,

and 2 2 2 2 2
1 1 A( ) ( ) ( ) cosML O L O M r r= − = − φ

1 sin sinMP O P r= φ = φ

 ∴   Length of the part of the path of contact, or path of recess,

2 2 2
A( ) cos sinPL ML MP r r r= − = − φ − φ

 ∴  Length of the path of contact,

2 2 2 2 2 2
A A( ) cos ( ) cos ( )sinKL KP PL R R r r R r= + = − φ + − φ − + φ

12.17. Length of Arc of Contact

We have already defined that the arc of contact is the path traced by a point on the pitch circle

from the beginning to the end of engagement of a given pair of teeth. In Fig. 12.11, the arc of contact

is EPF or GPH. Considering the arc of contact GPH, it is divided into two parts i.e. arc GP and arc

PH. The arc GP is known as arc of approach and the arc PH is called arc of recess. The angles

subtended by these arcs at O
1
 are called angle of approach and angle of recess respectively.

Bevel  gear
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We know that the length of the arc of approach (arc GP)

Length of path of approach

cos cos

KP
= =

φ φ

and the length of the arc of recess (arc PH)

Length of path of recess

cos cos

PL
= =

φ φ

Since the length of the arc of contact GPH is equal to the sum of the length of arc of approach

and arc of recess, therefore,

Length of the arc of contact

arc arc
cos cos cos

Length of path of contact

cos

KP PL KL
GP PH= + = + =

φ φ φ

=
φ

12.18. Contact Ratio (or Number of Pairs of Teeth in Contact)

The contact ratio or the number of pairs of teeth in contact is defined as the ratio of the

length of the arc of contact to the circular pitch. Mathematically,

Contact ratio or number of pairs of teeth in contact

  
Length of the arc of contact

cp
=

where Circular pitch , and
c

p m= = π

Module.m =

Notes :  1.  The contact ratio, usually, is not a whole number. For example, if the contact ratio is 1.6, it does not

mean that there are 1.6 pairs of teeth in contact. It means that there are alternately one pair and two pairs of teeth

in contact and on a time basis the average is 1.6.

2. The theoretical minimum value for the contact ratio is one, that is there must always be at least one

pair of teeth in contact for continuous action.

3. Larger the contact ratio, more quietly the gears will operate.

Example 12.2.  The number of teeth on each of the two equal spur gears in mesh are 40. The

teeth have 20° involute profile and the module is 6 mm. If the arc of contact is 1.75 times the circular

pitch, find the addendum.

Solution.  Given : T = t = 40 ; φ = 20° ; m = 6 mm

We know that the circular pitch,

p
c
 = π m = π × 6 = 18.85 mm

∴ Length of arc of contact

= 1.75 p
c
 = 1.75 × 18.85 = 33 mm

and length of path of contact

= Length of arc of contact × cos φ = 33 cos 20° = 31 mm

Let R
A

 = r
A

 = Radius of the addendum circle of each wheel.

We know that pitch circle radii of each wheel,

R = r = m.T / 2 = 6 × 40/2 = 120 mm
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and length of path of contact

2 2 2 2 2 2
A A31 ( ) cos ( ) cos ( ) sinR R r r R r= − φ + − φ − + φ

2 2 2
A

2 ( ) cos sinR R R
 = − φ − φ 

...(∵ R = r, and R
A

 = r
A

)

2 2 2
A

31
( ) (120) cos 20 120 sin 20

2
R= − ° − °

2
15.5 ( ) 12 715 41

A
R= − −

2 2
A(15.5 41) ( ) 12 715R+ = −

2
A A3192 12 715 ( ) or 126.12 mmR R+ = =

We know that the addendum of the wheel,

               = A 126.12 120 6.12 mmR R− = − =  Ans.

Example 12.3.  A pinion having 30 teeth drives a

gear having 80 teeth. The profile of the gears is involute

with 20° pressure angle, 12 mm module and 10 mm

addendum. Find the length of path of contact, arc of contact

and the contact ratio.

Solution. Given : t = 30 ; T  = 80 ; φ  = 20° ;

m = 12 mm ; Addendum = 10 mm

Length of path of contact

We know that pitch circle radius of pinion,

r = m.t / 2 = 12 × 30 / 2 = 180 mm

and pitch circle radius of gear,

R = m.T / 2 = 12 × 80 / 2 = 480 mm

∴  Radius of addendum circle of pinion,

r
A

 = r +  Addendum = 180 + 10 = 190 mm

and radius of addendum circle of gear,

R
A

 = R + Addendum = 480 + 10 = 490 mm

We know that length of the path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig.12.11)

2 2 2
(490) (480) cos 20 480 sin 20= − ° − ° 191.5 164.2 27.3 mm= − =

and length of the path of recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(190) (180) cos 20 180 sin 20= − ° − ° 86.6 61.6 25 mm= − =

We know that length of path of contact,

KL = KP + PL = 27.3 + 25 = 52.3 mm  Ans.

Worm.
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Length of arc of contact

We know that length of arc of contact

Length of path of contact 52.3
55.66 mm

cos cos 20
= = =

φ °
 Ans.

Contact ratio

We know that circular pitch,

p
c
 = π.m = π × 12 = 37.7 mm

∴    
Length of arc of contact 55.66

Contact ratio = 1.5 say 2
37.7

cp
= =  Ans.

Example 12.4.  Two involute gears of 20° pressure angle are in mesh. The number of teeth

on pinion is 20 and the gear ratio is 2. If the pitch expressed in module is 5 mm and the pitch line

speed is 1.2 m/s, assuming addendum as standard and equal to one module, find :

1. The angle turned through by pinion when one pair of teeth is in mesh ; and

2. The maximum velocity of sliding.

Solution. Given : φ = 20° ; t = 20; G = T/t = 2; m = 5 mm ; v = 1.2 m/s ; addendum = 1 module

= 5 mm

1. Angle turned through by pinion when one pair of teeth is in mesh

We know that pitch circle radius of pinion,

r = m.t / 2 = 5 × 20 / 2 = 50 mm

and pitch circle radius of wheel,

R = m.T / 2 = m.G.t / 2 = 2 × 20 × 5 / 2 = 100 mm ... ( . )T G t=�

∴ Radius of addendum circle of pinion,

r
A

 = r + Addendum = 50 + 5 = 55 mm

and radius of addendum circle of wheel,

R
A

 = R + Addendum = 100 + 5 = 105 mm

We know that length of the path of approach (i.e. the path of contact when engagement

occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig.12.11)

2 2 2
= (105) (100) cos 20 100 sin 20− ° − °

46.85 34.2 12.65 mm= − =

and the length of path of recess (i.e. the path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(55) (50) cos 20 50 sin 20 28.6 17.1 11.5 mm= − ° − ° = − =

∴ Length of the path of contact,

KL = KP + PL = 12.65 + 11.5 = 24.15  mm
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and length of the arc of contact

Length of path of contact 24.15
25.7 mm

cos cos 20
= = =

φ °

We know that angle turned through by pinion

Length of arc of contact × 360° 25.7 360
29.45

Circumference of pinion 2 50

× °
= = = °

π ×
 Ans.

2.  Maximum velocity of sliding

Let ω
1
 = Angular speed of pinion, and

ω
2
 = Angular speed of wheel.

We know that pitch line speed,

v = ω
1
.r = ω

2
.R

∴ ω
1
 = v/r  =  120/5 = 24 rad/s

and ω
2 

= v/R = 120/10 = 12 rad/s

 ∴Maximum velocity of sliding,

v
S
 = (ω

1
 + ω

2
) KP ...( )KP PL>�

= (24 + 12) 12.65 = 455.4 mm/s  Ans.

Example 12.5.  A pair of gears, having 40 and 20 teeth respectively, are rotating in mesh,

the speed of the smaller being 2000 r.p.m. Determine the velocity of sliding between the gear teeth

faces at the point of engagement, at the pitch point, and at the point of disengagement if the smaller

gear is the driver. Assume that the gear teeth are 20° involute form, addendum length is 5 mm and the

module is 5 mm.

Also find the angle through which the pinion turns while any pairs of teeth are in contact.

Solution.  Given : T  = 40 ; t  = 20 ; N
1
  = 2000 r.p.m. ; φ = 20° ; addendum = 5 mm ; m = 5 mm

We know that angular velocity of the smaller gear,

1
1

2 2 2000
209.5 rad/s

60 60

Nπ π ×
ω = = =

and angular velocity of the larger gear,

2 1

20
209.5 104.75 rad/s

40

t

T
ω = ω × = × =

2

1

...
t

T

ω 
= 

ω 

�

Pitch circle radius of the smaller gear,

r = m.t / 2 = 5 × 20/2 = 50 mm

and pitch circle radius of the larger gear,

R = m.t / 2 = 5 × 40/2 = 100 mm

∴  Radius of addendum circle of smaller gear,

r
A

 = r + Addendum = 50 + 5 = 55 mm

and radius of addendum circle of larger gear,

R
A

 = R + Addendum = 100 + 5 = 105  mm

The engagement and disengagement of the gear teeth is shown in Fig. 12.11. The point K is

the point of engagement, P is the pitch point and L is the point of disengagement. MN is the common

tangent at the points of contact.
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We know that the distance of point of engagement K from the pitch point P or the length of

the path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ

2 2 2
(105) (100) cos 20 100 sin 20= − ° − °

46.85 34.2 12.65 mm= − =

and the distance of the pitch point P from the point of disengagement L or the length of the path of

recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(55) (50) cos 20 50 sin 20 28.6 17.1 11.5 mm= − ° − ° = − =

Velocity of sliding at the point of engagement

We know that velocity of sliding at the point of engagement K,

SK 1 2( ) (209.5 104.75) 12.65 3975 mm/sv KP= ω + ω = + =  Ans.

Velocity of sliding at the pitch point

Since the velocity of sliding is proportional to the distance of the contact point from the pitch

point, therefore the velocity of sliding at the pitch point is zero. Ans.

Velocity of sliding at the point of disengagement

We know that velocity of sliding at the point of disengagement L,

SL 1 2( ) (209.5 104.75) 11.5 3614 mm/sv PL= ω + ω = + =  Ans.

Angle through which the pinion turns

We know that length of the path of contact,

            KL  = KP + PL = 12.65 + 11.5 = 24.15 mm

and length of arc of contact 
24.15

25.7 mm
cos cos 20

KL
= = =

φ °

Circumference of the smaller gear or pinion

= 2 π r = 2π × 50 = 314.2 mm

∴  Angle through which the pinion turns

360
Length of arc of contact

Circumference of pinion

°
= ×

360
25.7 29.45

314.2

°
= × = °  Ans.

Example 12.6. The following data relate to a pair of 20° involute gears in mesh :

Module = 6 mm, Number of teeth on pinion = 17, Number of teeth on gear = 49 ; Addenda

on pinion and gear wheel = 1 module.

Find : 1. The number of pairs of teeth in contact ; 2. The angle turned through by the pinion

and the gear wheel when one pair of teeth is in contact, and 3. The ratio of sliding to rolling motion

when the tip of a tooth on the larger wheel (i) is just making contact, (ii) is just leaving contact with

its mating tooth, and (iii) is at the pitch point.
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Solution. Given : φ  = 20° ; m  = 6 mm ; t = 17 ; T = 49 ; Addenda on pinion and gear wheel

= 1 module = 6 mm

1. Number of pairs of teeth in contact

We know that pitch circle radius of pinion,

r = m.t / 2 = 6 × 17 / 2 = 51 mm

and pitch circle radius of gear,

r = m.T / 2 = 6 × 49 / 2 = 147 mm

∴ Radius of addendum circle of pinion,

r
A

 = r + Addendum = 51 + 6 = 57 mm

and radius of addendum circle of gear,

R
A

 = R + Addendum = 147 + 6 = 153 mm

We know that the length of path of approach (i.e. the path of contact when engagement

occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2
(153) (147) cos 20 147 sin 20= − ° − °

65.8 50.3 15.5 mm= − =

and length of path of recess (i.e. the path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(57) (51) cos 20 51 sin 20= − ° − °

30.85 17.44 13.41 mm= − =

∴  Length of path of contact,

15.5 13.41 28.91 mmKL KP PL= + = + =

Racks
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and length of arc of contact 
Length of path of contact 28.91

30.8 mm
cos cos 20

= = =
φ °

We know that circular pitch,

. 6 18.852 mm
c

p m= π = π × =

∴ Number of pairs of teeth in contact (or contact ratio)

Length of arc of contact 30.8
1.6 say 2

Circular pitch 18.852
= = =  Ans.

2.  Angle turned through by the pinion and gear wheel when one pair of teeth is in contact

We know that angle turned through by the pinion

Length of arc of contact 360° 30.8 360
34.6

Circumference of pinion 2 51

× ×
= = = °

π ×
 Ans.

and angle turned through by the gear wheel

Length of arc of contact 360° 30.8 360
12

Circumference of gear 2 147

× ×
= = = °

π ×
 Ans.

3.  Ratio of sliding to rolling motion

Let ω
1
 = Angular velocity of pinion, and

ω
2
 = Angular velocity of gear wheel.

We know that  1 2 2 1 1 1/ / or / 17 / 49 0.347T t t Tω ω = ω = ω × = ω × = ω

and rolling velocity, R 1 2 1 1. . 51 51 mm/sv r R= ω = ω = ω × = ω

(i) At the instant when the tip of a tooth on the larger wheel is just making contact with its

mating teeth (i.e. when the engagement commences), the sliding velocity

S 1 2 1 1 1( ) ( 0.347 ) 15.5 20.88 mm/sv KP= ω + ω = ω + ω = ω

∴ Ratio of sliding velocity to rolling velocity,

S 1

R 1

20.88
0.41

51

v

v

ω
= =

ω

 Ans.

(ii)  At the instant when the tip of a tooth on the larger wheel is just leaving contact with its

mating teeth (i.e. when engagement terminates), the sliding velocity,

S 1 2 1 1 1( ) ( 0.347 ) 13.41 18.1 mm/sv PL= ω + ω = ω + ω = ω

∴ Ratio of sliding velocity to rolling velocity

S 1

R 1

18.1
0.355

51

v

v

ω
= =

ω
 Ans.

(iii) Since at the pitch point, the sliding velocity is zero, therefore the ratio of sliding velocity

to rolling velocity is zero. Ans.

Example 12.7.  A pinion having 18 teeth engages with an internal gear having 72 teeth. If

the gears have involute profiled teeth with 20° pressure angle, module of 4 mm and the addenda on

pinion and gear are 8.5 mm and 3.5 mm respectively, find the length of path of contact.

Solution. Given : t = 18 ; T = 72 ; φ = 20° ; m = 4 mm ; Addendum on pinion = 8.5 mm ;

Addendum on gear = 3.5 mm
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Fig. 12.12 shows a pinion with centre O
1
, in mesh with internal gear of centre O

2
. It may be

noted that the internal gears have the addendum circle and the tooth faces inside the pitch circle.

We know that the length of path of contact is the length of the common tangent to the two

base circles cut by the addendum circles. From Fig. 12.12, we see that the addendum circles cut the

common tangents at points K and L. Therefore the length of path of contact is KL which is equal to the

sum of KP (i.e. path of approach) and PL (i.e. path of recess).

Fig. 12.12

We know that pitch circle radius of the pinion,

1 . / 2 4 18/ 2 36 mmr O P mt= = = × =

and pitch circle radius of the gear,

2 . / 2 4 72 / 2 144 mmR O P mT= = = × =

∴ Radius of addendum circle of the pinion,

  A 1 1r O L O P= = + Addendum on pinion = 36 + 8.5 = 44.5 mm

and radius of addendum circle of the gear,

A 2 2 Addendum on wheel = 144 – 3.5 = 140.5 mmR O K O P= = −

From Fig. 12.12, radius of the base circle of the pinion,

1 1 cos cos 36 cos 20 33.83 mmO M O P r= φ = φ = ° =

and radius of the base circle of the gear,

2 2 cos cos 144 cos 20 135.32 mmO N O P R= φ = φ = ° =

We know that length of the path of approach,

2 2
2 2 2sin 20 ( ) ( )KP PN KN O P O K O N= − = ° − −

= 144 × 0.342 – 2 2
(140.5) (135.32)−  = 49.25 – 37.8 = 11.45 mm
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and length of the path of recess,

                   2 2
1 1 1( ) ( ) sin 20PL ML MP O L O M O P= − = − − °

 2 2
(44.5) (33.83) 36 0.342 28.9 12.3 16.6 mm= − − × = − =

∴ Length of the path of contact,

                     11.45 16.6 28.05 mmKL KP PL= + = + =  Ans.

12.19. Interference in Involute Gears

Fig. 12.13 shows a pinion with centre O
1
, in mesh with wheel or gear with centre O

2
. MN is

the common tangent to the base circles and KL is the path of contact between the two mating teeth.

Fig. 12.13. Interference in involute gears.

A little consideration will show, that if the radius of the addendum circle of pinion is

increased to O
1
N, the point of contact L will move from L to N. When this radius is further increased,

the point of contact L will be on the inside of base circle of wheel and not on the involute profile of

tooth on wheel. The tip of tooth on the pinion will then undercut the tooth on the wheel at the root and

remove part of the involute profile of tooth on the wheel. This effect is known as interference, and

occurs when the teeth are being cut. In brief, the phenomenon when the tip of tooth undercuts the

root on its mating gear is known as interference.

Similarly, if the radius of the addendum circle of the wheel increases beyond O
2
M, then the

tip of tooth on wheel will cause interference with the tooth on pinion. The points M and N are called

interference points. Obviously, interference may be avoided if the path of contact does not extend

beyond interference points. The limiting value of the radius of the addendum circle of the pinion is

*O
1
N and of the wheel is O

2
M.

From the above discussion, we conclude that the interference may only be avoided, if the

point of contact between the two teeth is always on the involute profiles of both the teeth. In other

* From Fig. 12.13, we see that

2 2 2 2

1 1
( ) ( ) ( ) [ ) sin ]

b
O N O M MN r r R= + = + + φ

where r
b
 = Radius of base circle of pinion = O

1
P cos φ = r cos φ

and 2 2 2 2

2 2
( ) ( ) ( ) [ ) sin ]

b
O M O N MN R r R= + = + + φ

where R
b
 = Radius of base circle of wheel = O

2
P cos φ = R cos φ
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words, interference may only be prevented, if the addendum circles of the two mating gears cut the

common tangent to the base circles between the points of tangency.

When interference is just avoided, the maximum length of path of contact is MN when the

maximum addendum circles for pinion and wheel pass through the points of tangency N and M re-

spectively as shown in Fig. 12.13. In such a case,

Maximum length of path of approach,

        MP = r sin φ

and maximum length of path of recess,

       PN = R sin φ

∴  Maximum length of path of contact,

       MN = MP + PN = r sin φ + R sin φ = (r + R) sin φ

and maximum length of arc of contact

        
( ) sin

( ) tan
cos

r R
r R

+ φ
= = + φ

φ

Note : In case the addenda on pinion and wheel is such that the path of approach and path of recess are half of

their maximum possible values, then

   Path of approach,         
1

2
KP MP=

or         
2 2 2

A

sin
( ) cos sin

2

r
R R R

φ
− φ − φ =

and path of recess,                         
1

2
PL PN=

or             
2 2 2

A

sin
( ) cos sin

2

R
r r r

φ
− φ − φ =

∴ Length of the path of contact

           
1 1

2 2

( ) sin

2

r R
KP PL MP PN

+ φ
= + = + =

Example 12.8.  Two mating gears have 20 and 40 involute teeth of module 10 mm and 20°

pressure angle. The addendum on each wheel is to be made of such a length that the line of contact

on each side of the pitch point has half the maximum possible length. Determine the addendum

height for each gear wheel, length of the path of contact, arc of contact and contact ratio.

Solution. Given : t  = 20 ; T  = 40 ; m  = 10 mm ; φ = 20°

Addendum height for each gear wheel

We know that the pitch circle radius of the smaller gear wheel,

r = m.t / 2 = 10 × 20 / 2 = 100 mm

and pitch circle radius of the larger gear wheel,

R = m.T / 2 = 10 × 40 / 2 = 200 mm

Let R
A

 = Radius of addendum circle for the larger gear wheel, and

r
A

 = Radius of addendum circle for the smaller gear wheel.

Since the addendum on each wheel is to be made of such a length that the line of contact on

each side of the pitch point (i.e. the path of approach and the path of recess) has half the maximum

possible length, therefore
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Path of approach,           1

2
KP MP= ...(Refer Fig. 12.13)

or     
2 2 2

A

.sin
( ) cos sin

2

r
R R R

φ
− φ − φ =

or        
2 2 2

A

100 sin 20
( ) (200) cos 20 200 sin 20 50 sin 20

2
R

× °
− ° − ° = = °

   2
A( ) 35 320 50 sin 20 200 sin 20 250 0.342 85.5R − = ° + ° = × =

    
2 2

A( ) 35 320 (85.5) 7310R − = = ...(Squaring both sides)

   (R
A

)2 = 7310 + 35 320 = 42 630     or    R
A

 = 206.5 mm

∴ Addendum height for larger gear wheel

   A 206.5 200 6.5 mmR R= − = − =  Ans.

Now path of recess,    1

2
PL PN=

or
2 2 2

A

.sin
( ) cos sin

2

R
r r r

φ
− φ − φ =

or
2 2 2

A

200 sin 20
( ) (100) cos 20 100 sin 20 100 sin 20

2
r

°
− ° − ° = = °

    2 2 2
A( ) (100) cos 20 100 sin 20 100 sin 20 200 0.342 68.4r − ° = ° + ° = × =

   2 2
A( ) 8830 (68.4) 4680r − = = ...(Squaring both sides)

    
2

A A( ) 4680 8830 13 510 or 116.2 mmr r= + = =

∴  Addendum height for smaller gear wheel

    A 116.2 100 6.2 mmr r= − = − = Ans.

Length of the path of contact

We know that length of the path of contact

   
1 1 ( )sin

2 2 2

r R
KP PL MP PN

+ φ
= + = + =

   
(100 200) sin 20

51.3 mm
2

+ °
= =  Ans.

Length of the arc of contact

We know that length of the arc of contact

   
Length of the path of contact 51.3

54.6 mm
cos cos 20

= = =
φ °

Ans.

Contact ratio

We know that circular pitch,

                                       P
c
 = π m  =  π  × 10 = 31.42 mm

∴                   
Length of the path of contact 54.6

Contact ratio = 1.74 say 2
31.42

cp
= = Ans.
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12.20. Minimum Number of Teeth on the Pinion in Order to Avoid
Interference

We have already discussed in the previous article that in order to avoid interference, the

addendum circles for the two mating gears must cut the common tangent to the base circles between

the points of tangency. The limiting condition reaches, when the addendum circles of pinion and

wheel pass through points N and M (see Fig. 12.13) respectively.

Let t = Number of teeth on the pinion,,

T = Number of teeth on the wheel,

m = Module of the teeth,

r = Pitch circle radius of pinion = m.t / 2

G = Gear ratio = T / t = R / r

φ = Pressure angle or angle of obliquity.

From triangle O
1
NP,

2 2 2
1 1 1 1

2 2 2

( ) ( ) ( ) 2 cos

sin 2 . sin cos (90 )

O N O P PN O P PN O PN

r R r R

= + − × ×

= + φ − φ ° + φ

2...( sin sin )PN O P R= φ = φ�

2 2 2 2

2 2 2
2 2 2

2

sin 2 . sin

sin 2 sin
1 1 2 sin

r R r R

R R R R
r r

r r rr

= + φ + φ

 φ φ   
= + + = + + φ    

   

∴ Limiting radius of the pinion addendum circle,

2 2
1

.
1 2 sin 1 2 sin

2

R R m t T T
O N r

r r t t

   
= + + φ = + + φ   

   

   Let A
P
.m = Addendum of the pinion, where  A

P
  is a fraction by which the standard

addendum  of  one  module  for the pinion should be multiplied in order

to avoid interference.

We know that the addendum of the pinion

= O
1
N – O

1
P

∴
2

P

. .
. 1 2 sin

2 2

m t T T m t
A m

t t

 
= + + φ − 

 
1...( . / 2)O P r m t= =�

2.
1 sin 12

2

m t T T

t t

  
= + φ −+  

 
 

or
2

P 1 sin 12
2

t T T
A

t t

  
= + φ −+  

 
 

∴
P P

2
2

2 2

1 + ( + 2)sin 1
1 sin 12

A A
t

T T G G

t t

= =

  φ −
+ φ −+ 

 
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This equation gives the minimum number of teeth required on the pinion in order to avoid

interference.

Notes :  1. If the pinion and wheel have equal teeth, then G  = 1. Therefore the above equation reduces to

2

2

1 3 sin 1

p
A

t =

+ φ −

2. The minimum number of teeth on the pinion which will mesh with any gear (also rack) without

interference are given in the following table :

Table 12.2. Minimum number of teeth on the pinion

S. No. System of gear teeth Minimum number of teeth on the pinion

1.
1

2
14 ° Composite 12

2.
1

2
14 ° Full depth involute 32

3. 20° Full depth involute 18

4. 20° Stub involute 14

12.21. Minimum Number of Teeth on the Wheel in Order to Avoid
Interference

Let T = Minimum number of teeth required on the wheel in order to avoid

interference,

and A
W

.m = Addendum of the wheel, where A
W

  is a fraction by which the standard

addendum for the wheel should be multiplied.

Using the same notations as in Art. 12.20, we have from triangle O
2
MP

2 2 2
2 2 2 2

2 2 2

( ) ( ) ( ) 2 cos

sin 2 . sin cos (90 )

O M O P PM O P PM O PM

R r R r

= + − × ×

= + φ − φ ° + φ

1...( sin )PM O P r= φ =�

= R2 + r2 sin2 φ + 2R.r sin2 φ

2 2
2 2 2

2

sin 2 sin
1 1 2 sin

r r r r
R R

R R RR

2 φ φ   
= + + = + + φ    

   

∴ Limiting radius of wheel addendum circle,

2 2
2

.
1 sin 1 sin2 2

2

r mT tr t
O M R

R TR T

   
= + φ = + φ+ +   

   

We know that the addendum of the wheel

= O
2
M – O

2
P

∴
2

W

. .
1 sin2

2 2

mT t mTt
A m

T T

 
= + φ −+ 

 
2...( . / 2)O P R mT= =�

2.
1 sin 12

2

mT t t

T T

  
= + φ −+  

  

or
2

W 1 sin 12
2

T t t
A

T T

  
= + φ −+  

  
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∴
W W

2 2

2 2

1 1
1 sin 1 1 sin 12 2

A A
T

t t

T GT G

= =

   
+ φ − + φ −+ +   

   

Notes : 1. From the above equation, we may also obtain the minimum number of teeth on pinion.

Multiplying both sides by ,
t

T

W

2

2

1 1
1 sin 12

t
A

t T
T

T

G G

×

× =

 
+ φ −+ 

 

W

2

2

1 1
1 sin 12

A
t

G

G G

=
  

+ φ −+  
  

2. If wheel and pinion have equal teeth, then G  = 1, and

W

2

2

1 3 sin 1

A
T =

+ φ −

Example 12.9. Determine the minimum number of teeth required on a pinion, in order to

avoid interference which is to gear with,

1. a wheel to give a gear ratio of 3 to 1 ; and 2. an equal wheel.

The pressure angle is 20° and a standard addendum of 1 module for the wheel may be

assumed.

Solution. Given : G = T / t = 3 ; φ = 20° ; A
W

  = 1 module

1. Minimum number of teeth for a gear ratio of 3 : 1

We know that minimum number of teeth required on a pinion,

W

2

2

1 1
1 sin 12

A
t

G
G G

×
=

  
+ φ −+  

  

2

2 1 2
15.04 or 16

0.1331 1
3 1 sin 20 12

3 3

×
= = =

  
+ ° −+  

  

  Ans.

2. Minimum number of teeth for equal wheel

We know that minimum number of teeth for equal wheel,

                                  
W

2 2

2 2 1 2

0.1621 3 sin 1 1 3 sin 20 1

A
t

× ×
= = =

+ φ − + ° −

                                    12.34 or 13=  Ans.

Example 12.10.  A pair of spur gears with involute teeth is to give a gear ratio of 4 : 1. The

arc of approach is not to be less than the circular pitch and smaller wheel is the driver. The angle of

pressure is 14.5°. Find : 1. the least number of teeth that can be used on each wheel, and 2. the

addendum of the wheel in terms of the circular pitch ?
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Solution. Given : G  = T/t = R/r  =  4 ; φ = 14.5°

1. Least number of teeth on each wheel

Let t = Least number of teeth on the smaller wheel i.e. pinion,

T = Least number of teeth on the larger wheel i.e. gear, and

r = Pitch circle radius of the smaller wheel i.e. pinion.

We know that the maximum length of the arc of approach

Maximum length of the path of approach sin
tan

cos cos

r
r

φ
= = = φ

φ φ

and circular pitch,
2

c

r
p m

t

π
= π =

2
...

r
m

t

 
= 

 
�

Since the arc of approach is not to be less than the circular pitch, therefore

2 2 2
tan or 24.3 say 25

tan tan 14.5

r
r t

t

π π π
φ = = = =

φ °

Ans.

and . 4 25 100T G t= = × = Ans. ...( / )G T t=�

2. Addendum of the wheel

We know that addendum of the wheel

2.
1 sin 12

2

mT t t

T T

  
= + φ −+  

 
 

2100 25 25
1 sin 14.5 12

2 100 100

m  ×  
= + ° −+  

  

50 0.017 0.85 0.85 / 0.27
c c

m m p p= × = = × π = Ans.

...( / )cm p= π�

Example 12.11.  A pair of involute spur gears with 16° pressure angle and pitch of module

6 mm is in mesh. The number of teeth on pinion is 16 and its rotational speed is 240 r.p.m. When the

gear ratio is 1.75, find in order that the interference is just avoided ; 1. the addenda on pinion and

gear wheel ; 2. the length of path of contact ; and 3. the maximum velocity of sliding of teeth on either

side of the pitch point.

Solution. Given : φ = 16° ; m = 6 mm ; t = 16 ; N
1
 = 240 r.p.m. or ω

1
 = 2π × 240/60

= 25.136 rad/s ; G = T / t = 1.75 or T = G.t = 1.75 × 16 = 28

1. Addenda on pinion and gear wheel

We know that addendum on pinion

       

2

2

.
1 sin 12

2

6 16 28 28
1 sin 16 12

2 16 16

m t T T

t t

  
= + φ −+  

  

 ×  
= + ° −+  

  

                     48 (1.224 1) 10.76 mm= − =  Ans.

2.
and addendum on wheel 1 sin 12

2

mT t t

T T

  
= + φ −+  

  
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26 28 16 16

1 sin 16 12
2 28 28

 ×  
= + ° −+  

  

       84 (1.054 1) 4.56 mm= − =  Ans.

2. Length of path of contact

We know that the pitch circle radius of wheel,

. / 2 6 28 / 2 84 mmR m T= = × =

and pitch circle radius of pinion,

. / 2 6 16 / 2 48 mmr m t= = × =

∴  Addendum circle radius of wheel,

A Addendum of wheel 84 10.76 94.76 mmR R= + = + =

and addendum circle radius of pinion,

r
A

 = r + Addendum of pinion = 48 + 4.56 = 52.56 mm

We know that the length of path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2
(94.76) (84) cos 16 84 sin16= − ° − °

49.6 23.15 26.45 mm= − =

and the length of the path of recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(52.56) (48) cos 16 48 sin16= − ° − °

25.17 13.23 11.94 mm= − =

∴ Length of the path of contact,

26.45 11.94 38.39 mmKL KP PL= + = + = Ans.

3. Maximum velocity of sliding of teeth on either side of pitch point

Let ω
2
 = Angular speed of gear wheel.

We know that           1

2

1.75
T

t

ω
= =

ω
 or

1
2

25.136
14.28 rad/s

1.75 1.75

ω
ω = = =

∴ Maximum velocity of sliding of teeth on the left side of pitch point i.e. at point K

1 2( ) (25.136 14.28) 26.45 1043 mm/sKP= ω + ω = + = Ans.

and maximum velocity of sliding of teeth on the right side of pitch point i.e. at point L

1 2( ) (25.136 14.28) 11.94 471 mm/sPL= ω + ω = + = Ans.

Example 12.12.  A pair of 20° full depth involute spur gears having 30 and 50 teeth respec-

tively of module 4 mm are in mesh. The smaller gear rotates at 1000 r.p.m. Determine : 1. sliding

velocities at engagement and at disengagement of pair of a teeth, and 2. contact ratio.

Solution. Given: φ = 20° ; t = 30 ; T = 50 ; m = 4 ; N
1
 = 1000 r.p.m. or ω

1
 = 2π × 1000/60

= 104.7 rad/s
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1. Sliding velocities at engagement and at disengagement of pair of a teeth

First of all, let us find the radius of addendum circles of the smaller gear and the larger gear.

We know that

Addendum of the smaller gear,

2.
1 sin 12

2

m t T T

t t

  
= + φ −+  

  

24 30 50 50
1 sin 20 12

2 30 30

 ×  
= + ° −+  

  

60(1.31 1) 18.6 mm= − =

and addendum of the larger gear,

2

2

.
1 sin 12

2

4 50 30 30
1 sin 20 12

2 50 50

100(1.09 1) 9 mm

mT t t

T T

  
= + φ −+  

  

 ×  
= + ° −+  

  

= − =

Pitch circle radius of the smaller gear,

. / 2 4 30 / 2 60 mmr m t= = × =

∴ Radius of addendum circle of the smaller gear,

r
A

 = r + Addendum of the smaller gear = 60 + 18.6 = 78.6 mm

Pitch circle radius of the larger gear,

R = m.T / 2 = 4 × 50 / 2 = 100 mm

∴  Radius of addendum circle of the larger gear,

R
A

 = R + Addendum of the larger gear = 100 + 9 = 109 mm

We know that the path of approach (i.e. path of contact when engagement occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2
(109) (100) cos 20 100 sin 20 55.2 34.2 21 mm= − ° − ° = − =

and the path of recess (i.e. path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(78.6) (60) cos 20= − ° – 60 sin 20° = 54.76 – 20.52 = 34.24 mm

Let ω
2
 = Angular speed of the larger gear in rad/s.

We know that 1 1
2

2

10.47 30
or 62.82 rad/s

50

tT

t T

ω ω × ×
= ω = = =

ω

∴ Sliding velocity at engagement of a pair of teeth

1 2( ) (104.7 62.82)21 3518 mm/sKP= ω + ω = + =

= 3.518 m/s Ans.
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and sliding velocity at disengagement of a pair of teeth

1 2( ) (104.7 62.82)34.24 5736 mm/sPL= ω + ω = + =

= 5.736m/s Ans.

2. Contact ratio

We know that the length of the arc of contact

Length of thepath of contact 21 34.24

cos cos cos 20

58.78 mm

KP PL+ +
= = =

φ φ °

=

and Circular pitch = π × m = 3.142 × 4 = 12.568 mm

∴
Length of arc of contact 58.78

Contact ratio = 4.67 say5
Circular pitch 12.568

= = Ans.

Example 12.13.  Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1.

The teeth are of involute form ; module = 6 mm, addendum = one module, pressure angle = 20°. The

pinion rotates at 90 r.p.m. Determine : 1. The number of teeth on the pinion to avoid interference on

it and the corresponding number of teeth on the wheel, 2. The length of path and arc of contact,

3.The number of pairs of teeth in contact, and 4. The maximum velocity of sliding.

Solution. Given : G = T / t = 3 ; m   = 6 mm ; A
P
 = A

W
 = 1 module = 6 mm ;  φ = 20° ;

N
1
 = 90 r.p.m.  or  ω

1
 = 2π × 90 / 60 = 9.43 rad/s

1. Number of teeth on the pinion to avoid interference on it and the corresponding number of teeth

    on the wheel

We know that number of teeth on the pinion to avoid interference,

P

2 2

2 2 6

1 ( 2) sin 1 1 3 (3 2) sin 20 1

A
t

G G

×
= =

+ + φ − + + ° −

= 18.2 say 19 Ans.

and corresponding number of teeth on the wheel,

              T = G.t = 3 × 19 = 57 Ans.

2. Length of path and arc of contact

We know that pitch circle radius of pinion,

r  =  m.t / 2  =  6  × 19/2 = 57 mm

∴ Radius of addendum circle of pinion,

r
A

 = r + Addendum on pinion (A
P
) = 57 + 6 = 63 mm

and pitch circle radius of wheel,

R = m.T / 2 = 6 × 57 / 2 = 171 mm

∴  Radius of addendum circle of wheel,

A WAddendum on wheel ( ) 171 6 177 mmR R A= + = + =

We know that the path of approach (i.e. path of contact when engagement occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2
(177) (171) cos 20= − ° – 171 sin 20° = 74.2 – 58.5 = 15.7 mm
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and the path of recess (i.e. path of contact when disengagement occurs),

2 2 2
A

2 2 2

( ) cos sin

(63) (57) cos 20 57sin 20 33.17 19.5 13.67 mm

PL r r r= − φ − φ

= − ° − ° = − =

∴ Length of path of contact,

15.7 13.67 29.37 mmKL KP PL= + = + = Ans.

We know that length of arc of contact

Length of path of contact 29.37
31.25 mm

cos cos 20
= = =

φ °
Ans.

3. Number of pairs of teeth in contact

We know that circular pitch,

6 18.852 mm
c

p m= π × = π × =

∴ Number of pairs of teeth in contact

Length of arc of contact 31.25
1.66 say 2

18.852
cp

= = = Ans.

4. Maximum velocity of sliding

2

1
2 1

2

Let Angular speed of wheel in rad/s.

19
We know that or 9.43 3.14 rad/s

57

T t

t T

ω =

ω
= ω = ω × = × =

ω

∴ Maximum velocity of sliding,

S 1 2( )v KP= ω + ω ...( )KP PL>�

(9.43 3.14) 15.7 197.35 mm/s= + = Ans.

12.22. Minimum Number of Teeth on a Pinion for Involute Rack in Order to
Avoid Interference

A rack and pinion in mesh is shown in Fig. 12.14.

Fig. 12.14. Rack and pinion in mesh.

Let t = Minimum number of teeth on the pinion,
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r = Pitch circle radius of the pinion = m.t / 2, and

φ = Pressure angle or angle of obliquity, and

A
R
.m = Addendum for rack, where A

R
 is the fraction by which the standard

            addendum of one module for the rack is to be multiplied.

We know that a rack is a part of toothed wheel of infinite diameter. Therefore its base circle

diameter and the profiles of the involute teeth are straight lines. Since these straight profiles are

tangential to the pinion profiles at the point of contact, therefore they are perpendicular to the tangent

PM. The point M is the interference point.

Addendum for rack,

R . sinA m LH PL= = φ

2
( sin ) sin sinOP OP= φ φ = φ ...(∵ PL = OP sin φ)

2 2
sin

.
sin

2
r

m t
= φ = × φ

∴
R

2

2

sin
t

A
=

φ

Example 12.14.  A pinion of 20 involute teeth and 125 mm pitch circle diameter drives a

rack. The addendum of both pinion and rack is 6.25 mm. What is the least pressure angle which can

be used to avoid interference ? With this pressure angle, find the length of the arc of contact and the

minimum number of teeth in contact at a time.

Solution. Given : T = 20 ; d = 125 mm or r = OP = 62.5 mm ; LH = 6.25 mm

Least pressure angle to avoid interference

Let φ = Least pressure angle to avoid interference.

We know that for no interference, rack addendum,

2 2 6.25
sin or sin 0.1

6.25

LH
LH r

r
= φ φ = = =

∴ sin 0.3162φ=           or      18.435φ= °  Ans.

Length of the arc of contact

We know that length of the path of contact,

2 2
( ) ( )KL OK OL= − ...(Refer Fig. 12.14)

2 2

2 2

( 6.25) ( cos )

(62.5 6.25) (62.5 cos 18.435 )

4726.56 3515.62 34.8 mm

OP OP=

=

+ − φ

= + − °

− =

∴ Length of the arc of contact

Length of the path of contact 34.8
36.68 mm

cos cos18.435
= = =

φ °
Ans.

Minimum number of teeth

We know that circular pitch,

/ 125 / 20 19.64 mm
c

p d T= π = π × =
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Fig. 12.15. Helical gear.

Crossed helical gears.

and the number of pairs of teeth in contact

Length of the arc of contact 36.68
1.87

Circular pitch ( ) 19.64
cp

= = =

 ∴ Minimum number of teeth in contact

= 2 or one pair Ans.

12.23. Helical Gears

A helical gear has teeth in the form

of helix around the gear. Two such gears

may be used to connect two parallel shafts

in place of spur gear. The helixes may be

right handed on one wheel and left handed

on the other. The pitch surfaces are cylin-

drical as in spur gearing, but the teeth in-

stead of being parallel to the axis, wind

around the cylinders helically like screw

threads. The teeth of helical gears with

parallel axis have line contact, as in spur

gearing. This provides gradual engage-

ment and continuous contact of the engaging teeth. Hence helical gears give smooth drive with a

high efficiency of transmission.

We have already discussed that the helical gears may be

of single helical type or double helical type. In case of single

helical gears, there is some axial thrust between the teeth, which

is a disadvantage. In order to eliminate this axial thrust, double

helical gears are used. It is equivalent to two single helical gears,

in which equal and opposite thrusts are produced on each gear

and the resulting axial thrust is zero.

The following definitions may be clearly understood in

connection with a helical gear as shown in Fig. 12.15.

1. Normal pitch. It is the distance between similar faces of adjacent teeth, along a helix on

the pitch cylinder normal to the teeth. It is denoted by p
N

.

2. Axial pitch. It is the distance measured parallel to the axis, between similar faces of adja-

cent teeth. It is the same as circular pitch and is therefore denoted by p
c
. If α is the helix angle, then

circular pitch,

N

cos
c

p
p =

α

Note : The helix angle is also known as spiral angle of the teeth.

12.24. Spiral Gears

 We have already discussed that spiral gears (also known as skew gears or screw gears) are

used to connect and transmit motion between two non-parallel and non-intersecting shafts. The pitch

surfaces of the spiral gears are cylindrical and the teeth have point contact. These gears are only

suitable for transmitting small power. We have seen that helical gears, connected on parallel shafts,

are of opposite hand. But spiral gears may be of the same hand or of opposite hand.
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12.25. Centre Distance for a Pair of  Spiral Gears

The centre distance, for a pair of spiral gears,

is the shortest distance between the two shafts making

any angle between them. A pair of spiral gears 1 and 2,

both having left hand helixes (i.e. the gears are of the

same hand) is shown in Fig. 12.16. The shaft angle θ is

the angle through which one of the shafts must be rotated

so that it is parallel to the other shaft, also the two shafts

be rotating in opposite directions.

Let    α
1
 and α

2 
= Spiral angles of gear

  teeth for gears 1 and 2

   respectively,

           p
c1 

and p
c2

 = Circular pitches of gears 1

 and 2,

             T
1
 and T

2 
= Number of teeth on gears

1 and 2,

         d
1
 and d

2
= Pitch circle diameters of

  gears 1 and 2,

            N
1
 and N

2
 = Speed of gears 1 and 2,

                        G = Gear ratio = 
2 1

1 2

,
T N

T N
=

                       p
N

 = Normal pitch, and

             L = Least centre distance

                                                  between the axes of shafts.

Since the normal pitch is same for both the spiral gears, therefore

N N
1 2

1 2

, and
cos cos

c c

p p
p p= =

α α

Fig. 12.16. Centre distance for

a pair of spiral gears.

Helical gears
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We know that
1 11

1 1

1

, or c

c

p Td
p d

T

×π
= =

π

and
2 22

2 2

2

, or c

c

p Td
p d

T

×π
= =

π

∴ 1 2 1 1 2 2
1

2 2

c c
d d p T p T

L
+ × × 

= = + 
π π 

N N21 1
1 2

1 1 2

N 1

1 2

cos cos2 2

1

cos cos2

c c

p pTT T
p p G

T

GP T

  
+ × + ×= =   

α απ π   

×  
+=  

α απ  

Notes : 1. If the pair of spiral gears have teeth of the same hand, then

θ = α
1 

+ α
2

and for a pair of spiral gears of opposite hand,

θ = α
1 

– α
2

2.  When θ = 90°, then both the spiral gears must have teeth of the same hand.

12.26. Efficiency of Spiral Gears

A pair of spiral gears 1 and 2 in mesh is shown in Fig. 12.17. Let the gear 1 be the driver and

the gear 2 the driven. The forces acting on each of a pair of teeth in contact are shown in Fig. 12.17.

The forces are assumed to act at the centre of the width of each teeth and in the plane tangential to the

pitch cylinders.

Fig. 12.17. Efficiency of spiral gears.

Let F
1
 = Force applied tangentially on the driver,

F
2
 = Resisting force acting tangentially on the driven,

F
a1

 = Axial or end thrust on the driver,
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F
a2

 = Axial or end thrust on the driven,

R
N

 = Normal reaction at the point of contact,

φ = Angle of friction,

R = Resultant reaction at the point of contact, and

θ = Shaft angle = α
1
+ α

2

...( Both gears are of the same hand)�

From triangle OPQ, F
1
 = R cos (α

1 
– φ)

∴ Work input to the driver

= F
1
× π d

1
.N

1
 = R cos (α

1
 – φ) π d

1
.N

1

From triangle OST, F
2
 = R cos (α

2
 + φ)

∴ Work output of the driven

= F
2
 × π d

2
.N

2
 = R cos (α

2
 + φ) π d

2
.N

2

∴ Efficiency of spiral gears,

2 2 2

1 1 1

cos( ) .Work output

Work input cos( ) .

R d N

R d N

α + φ π
η = =

α − φ π

2 2 2

1 1 1

cos ( ) .

cos ( ) .

d N

d N

α + φ
=

α − φ
...(i)

We have discussed in Art. 12.25, that pitch circle diameter of gear 1,

1 1 N 1
1

1cos

c
p T P T

d
×

= = ×
π α π

and pitch circle diameter of gear 2,

2 2 N 2
2

2cos

c
p T P T

d
×

= = ×
π α π

∴
2 2 1

1 1 2

cos

cos

d T

d T

α
=

α
...(ii)

We know that 2 1

1 2

N T

N T
= ...(iii)

Multiplying equations (ii) and (iii), we get,

2 2 1

1 1 2

. cos

. cos

d N

d N

α
=

α

Substituting this value in equation (i), we have

                                   2 1

1 2

cos ( ) cos

cos ( ) cos

α + φ α
η =

α − φ α
...(iv)

                                      
1 2 1 2

2 1 2 1

cos ( ) cos ( )

cos ( ) cos ( )

α + α + φ + α − α − φ
=

α + α − φ + α − α + φ

1
... cos cos [cos( ) cos ( )]

2
A B A B A B

 
= + + − 

 
�
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1 2

2 1

cos ( ) cos ( )

cos ( ) cos ( )

θ + φ + α − α − φ
=

θ − φ + α − α + φ
...(v)

1 2...( )θ = α + α�

Since the angles θ and φ are constants, therefore the efficiency will be maximum, when

cos (α
1
 – α

2
 – φ) is maximum, i.e.

cos (α
1
 – α

2  
– φ) = 1 or α

1
 – α

2  
– φ  = 0

∴ α
1
 = α

2  
+ φ and  α

2
 = α

1 
– φ

Since  α
1
 + α

2  
= θ, therefore

1 2 1 1or
2

θ + φ
α = θ − α = θ − α + φ α =

Similarly, 2
2

θ − φ
α =

Substituting α
1
 = α

2
 + φ  and  α

2
 = α

1
 – φ, in equation (v), we get

cos ( ) 1

cos ( ) 1
max

θ + φ +
η =

θ − φ +
...(vi)

Note: From Fig. 12.17, we find that
1 2

N

1 2cos cos

F F
R = =

α α

∴  Axial thrust on the driver, F
a1

 = R
N

.sin α
1
 = F

1
.tan α

1

and axial thrust on the driven, F
a2

 = R
N

.sin α
2
 = F

2
.tan α

2

Example 12.15. A pair of spiral gears is required to connect two shafts 175 mm apart, the

shaft angle being 70°. The velocity ratio is to be 1.5 to 1, the faster wheel having 80 teeth and a pitch

circle diameter of 100 mm. Find the spiral angles for each wheel. If the torque on the faster wheel is

75 N-m ; find the axial thrust on each shaft, neglecting friction.

Solution. Given : L = 175 mm = 0.175 m ; θ = 70° ; G = 1.5 ; T
2
 = 80 ; d

2
 = 100 mm = 0.1 m

or r
2
 = 0.05 m ; Torque on faster wheel = 75 N-m

Spiral angles for each wheel

Let α
1 

= Spiral angle for slower wheel, and

α
2
 = Spiral angle for faster wheel.

We know that velocity ratio, 2 1

1 2

1.5
N T

G
N T

= = =

∴  No. of teeth on slower wheel,

T
1
 = T

2
 × 1.5 = 80 × 1.5 = 120

We also know that the centre distance between shafts (L),

1 2 1 0.1
0.175

2 2

d d d+ +
= =

∴ d
1
 = 2 × 0.175 – 0.1 = 0.25 m

and 2 2 1 1 1

1 1 2 2 2

cos 80 cos 2 cos0.1
or

cos 0.25 120 cos 3 cos

d T

d T

α α α
= = =

α α α
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∴
1

1 2

2

cos 0.1 3
0.6 or cos 0.6 cos

cos 0.25 2

α ×
= = α = α

α ×
...(i)

We know that,        α
1
 + α

2
 = θ = 70°   or    α

2
 = 70° – α

1

Substituting the value of α
2
 in equation (i),

cos α
1
 = 0.6 cos (70° – α

1
) = 0.6 (cos 70° cos α

1
 + sin 70° sin α

1
)

[ ]... cos ( ) cos cos sin sinA B A B A B− = +�

1 10.2052 cos 0.5638 sin= α + α

cos α
1
 – 0.2052 cos α

1
 = 0.5638 sin α

1

1 10.7948 cos 0.5638 sinα = α

∴
1

1 1

1

sin 0.7948
tan 1.4097 or 54.65

cos 0.5638

α
α = = = α = °

α

and 2 70 54.65 15.35α = ° − ° = ° Ans.

Axial thrust on each shaft

We know that Torque = Tangential force × Pitch circle radius

∴ Tangential force at faster wheel,

2

2

Torque on the faster wheel 75
1500 N

Pitch circle radius ( ) 0.05
F

r
= = =

and normal reaction at the point of contact,

R
N

 = F
2
 / cos α

2
 = 1500/cos 15.35° = 1556 N

We know that axial thrust on the shaft of slower wheel,

F
a1

 = R
N

. sin α
1
 = 1556 × sin 54.65° = 1269 N Ans.

and axial thrust on the shaft of faster wheel,

F
a2

 = R
N

. sin α
2
 = 1556 × sin 15.35° = 412 N Ans.

Example 12.16.  In a spiral gear drive connecting two shafts, the approximate centre

 distance is 400 mm and the speed ratio = 3. The angle between the two shafts is 50° and the normal

pitch is 18 mm. The spiral angle for the driving and driven wheels are equal. Find : 1. Number of

teeth on each wheel, 2. Exact centre distance, and 3. Efficiency of the drive, if friction angle = 6°.

Solution. Given : L  = 400 mm  = 0.4 m ; G  = T
2
 / T

1
 = 3 ; θ = 50° ; p

N
 = 18 mm ; φ = 6°

1. Number of teeth on each wheel

Let T
1
 = Number of teeth on wheel 1 (i.e. driver), and

T
2
 = Number of teeth on wheel 2 (i.e. driven).

Since the spiral angle α
1
 for the driving wheel is equal to the spiral angle α

2
 for the driven

wheel, therefore

          α
1
 = α

2
 = θ/2 = 25° 1 2...( 50 )α + α = θ = °�

We know that centre distance between two shafts (L),

           
N. 1 N 1

1 2 1

1 1.
400

cos cos cos2 2

G Gp T p T +   
+= =   

α α απ π   
1 2...( )α = α�
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1
1

1 318
12.64

cos 252

T
T

+×  
= = 

°π  

∴ T
1
 = 400/12.64  =  31.64  or  32  Ans.

and T
2
 = G.T

1
 = 3 × 32 = 96 Ans.

2. Exact centre distance

We know that exact centre distance,

N 1 N 1
1

1 2 1

1. . 1

cos cos2 2 cos

Gp T p T G
L

+   
+= =   

α απ π α   
1 2...( )α = α�

1 318 32
404.5 mm

cos 252

+×  
= = 

°π  

AAns.

3. Efficiency of the drive

We know that efficiency of the drive,

2 1 1

1 2 1

cos ( ) cos cos ( )

cos ( ) cos cos ( )

α + φ α α + φ
η = =

α − φ α α − φ 1 2...( )α = α�

cos (25 6 ) cos 31 0.8572
0.907 90.7%

cos (25 6 ) cos 19 0.9455

° + ° °
= = = = =

° − ° °
Ans.

Example 12.17. A drive on a machine tool is to be made by two spiral gear wheels, the

spirals of which are of the same hand  and has normal pitch of 12.5 mm. The wheels are of equal

diameter and the centre distance between the axes of the shafts is approximately 134 mm. The angle

between the shafts is 80° and the speed ratio 1.25. Determine : 1. the spiral angle of each wheel,

2. the number of teeth on each wheel, 3. the efficiency of the drive, if the friction angle is 6°, and

4. the maximum efficiency.

Solution.  Given : p
N

  = 12.5 mm ; L = 134 mm ; θ =  80° ; G = N
2
 / N

1
 = T

1
 / T

2
 = 1.25

1. Spiral angle of each wheel

Let α
1
 and α

2
 = Spiral angles of wheels 1 and 2 respectively, and

d
1
 and d

2
 = Pitch circle diameter of wheels 1 and 2 respectively.

We know that
2 2 1

1 2 2 1

1 1 2

cos
or cos cos

cos

d T
T T

d T

α
= α = α

α 1 2...( )d d=�

∴
1 1

1 2

2 2

cos
1.25 or cos 1.25 cos

cos

T

T

α
= = α = α

α
...(i)

We also know that

1 2 2 180 or 80α + α = θ = ° α = ° − α

Substituting the value of α
2
 in equation (i),

cos α
1
 = 1.25 cos (80° – α

1
) = 1.25 (cos 80° cos α

1
 + sin 80° sin α

1
)

= 1.25 (0.1736 cos α
1
 + 0.9848 sin α

1
)

= 0.217 cos α
1
 + 1.231 sin α

1

cos α
1
 – 0.217 cos α

1
 = 1.231 sin α

1
     or     0.783 cos α

1
 = 1.231 sin α

1

∴ tan α
1
 = sin α

1
 / cos α

1
 = 0.783 / 1.231 = 0.636    or   α

1
 = 32.46° Ans.

and α
2
 = 80° – 32.46° = 47.54°  Ans.
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2. Number of teeth on each wheel

Let T
1
 = Number of teeth on wheel 1, and

T
2
 = Number of teeth on wheel 2.

 We know that centre distance between the two shafts (L),

1 2
1 2134 or 134 mm

2

d d
d d

+
= = = 1 2...( )d d=�

We know that
1 1 1

1

1

. .

cos

c N
p T p T

d = =
π π α

∴
1 1

1

N

.cos 134 cos 32.46
28.4 or 30

12.5

d
T

p

π α π × × °
= = = Ans.

and 1
2

30
24

1.25 1.25

T
T = = = Ans.

3. Efficiency of the drive

We know that efficiency of the drive,

 
2 1

1 2

cos ( ) cos cos (47.54 6 ) cos 32.46

cos ( ) cos cos (32.46 6 ) cos 47.54

α + φ α ° + ° °
η = =

α − φ α ° − ° °

     
0.5943 0.8437

0.83 or 83%
0.8952 0.6751

×
= =

×
Ans.

4. Maximum efficiency

We know that maximum efficiency,

          
cos ( ) 1 cos (80 6 ) 1 1.0698

cos ( ) 1 cos (80 6 ) 1 1.2756
max

θ + φ + ° + ° +
η = = =

θ − φ + ° − ° +

     0.838 or 83.8%= Ans.

EXERCISES

1. The pitch circle diameter of the smaller of the two spur wheels which mesh externally and have

involute teeth is 100 mm. The number of teeth are 16 and 32. The pressure angle is 20° and the

addendum is 0.32 of the circular pitch. Find the length of the path of contact of the pair of teeth.

[Ans. 29.36 mm]

2. A pair of gears, having 40 and 30 teeth respectively are of 25° involute form. The addendum length is

5 mm and the module pitch is 2.5 mm. If the smaller wheel is the driver and rotates at 1500 r.p.m., find

the velocity of sliding at the point of engagement and at the point of disengagement.

[Ans. 2.8 m/s ; 2.66 m/s]

3. Two gears of module 4mm have 24 and 33 teeth. The pressure angle is 20° and each gear has a

standard addendum of one module. Find the length of arc of contact and the maximum velocity of

sliding if the pinion rotates at 120 r.p.m. [Ans. 20.58 mm ; 0.2147 m/s]

4. The number of teeth in gears 1 and 2 are 60 and 40 ; module = 3 mm ; pressure angle = 20° and

addendum = 0.318 of the circular pitch. Determine the velocity of sliding when the contact is at the tip

of the teeth of gear 2 and the gear 2 rotates at 800 r.p.m. [Ans. 1.06 m/s]

5. Two spur gears of 24 teeth and 36 teeth of 8 mm module and 20° pressure angle are in mesh. Adden-

dum of each gear is 7.5 mm. The teeth are of involute form. Determine : 1. the angle through which the

pinion turns while any pair of teeth are in contact, and 2. the velocity of sliding between the teeth

when the contact on the pinion is at a radius of 102 mm. The speed of the pinion is 450 r.p.m.

[Ans. 20.36°, 1.16 m/s]
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6. A pinion having 20 involute teeth of module pitch 6 mm rotates at 200 r.p.m. and transmits 1.5 kW to

a gear wheel having 50 teeth. The addendum on both the wheels is 1/4 of the circular pitch. The angle

of obliquity is 20°. Find (a) the length of the path of approach ; (b) the length of the arc of approach;

(c) the normal force between the teeth at an instant where there is only pair of teeth in contact.

[Ans. 13.27 mm ; 14.12 mm ; 1193 N]

7. Two mating involute spur gear of 20° pressure angle have a gear ratio of 2. The number of teeth on the

pinion is 20 and its speed is 250 r.p.m. The module pitch of the teeth is 12 mm.

If the addendum on each wheel is such that the path of approach and the path of recess on each side are

half the maximum possible length, find : 1. the addendum for pinion and gear wheel ; 2. the length of

the arc of contact ; and 3. the maximum velocity of sliding during approach and recess.

Assume pinion to be the driver. [Ans. 19.5 mm, 7.8 mm ; 65.5 mm ; 807.5 mm/s, 1615 mm/s]

8. Two mating gears have 20 and 40 involute teeth of module 10 mm and 20° pressure angle. If the

addendum on each wheel is such that the path of contact is maximum and interference is just avoided,

find the addendum for each gear wheel, path of contact, arc of contact and contact ratio.

[Ans. 14 mm ; 39 mm ; 102.6 mm ; 109.3 mm ; 4]

9. A 20° involute pinion with 20 teeth drives a gear having 60 teeth. Module is 8 mm and addendum of

each gear is 10 mm.

1.  State whether interference occurs or not. Give reasons.

2.  Find the length of path of approach and arc of approach if pinion is the driver.

[Ans. Interference does not occur ; 25.8 mm, 27.45 mm]

10. A pair of spur wheels with involute teeth is to give a gear ratio of 3 to 1. The arc of approach is not to

be less than the circular pitch and the smaller wheel is the driver. The pressure angle is 20°. What is

the least number of teeth that can be used on each wheel ? What is the addendum of the wheel in terms

of the circular pitch ? [Ans. 18, 54 ; 0.382 P
c
]

11. Two gear wheels mesh externally and are to give a velocity ratio of 3. The teeth are of involute form

of module 6. The standard addendum is 1 module. If the pressure angle is 18° and pinion rotates at 90

r.p.m., find : 1. the number of teeth on each wheel, so that the interference is just avoided, 2. the length

of the path of contact, and 3. the maximum velocity of sliding between the teeth.

[Ans. 19, 57 ; 31.5 mm ; 213.7 mm/s]

12. A pinion with 24 involute teeth of 150 mm of pitch circle diameter drives a rack. The addendum of the

pinion and rack is 6 mm. Find the least pressure angle which can be used if under cutting of the teeth

is to be avoided. Using this pressure angle, find the length of the arc of contact and the minimum

number of teeth in contact at one time. [Ans. 16.8° ; 40 mm ; 2 pairs of teeth]

13. Two shafts, inclined at an angle of 65° and with a least distance between them of 175 mm are to be

connected by spiral gears of normal pitch 15 mm to give a reduction ratio 3 : 1. Find suitable diam-

eters and numbers of teeth. Determine, also, the efficiency if the spiral angles are determined by the

condition of maximum efficiency. The friction angle is 7°.

 [Ans. 88.5 mm ; 245.7 mm ; 15, 45 ; 85.5 %]

14. A spiral wheel reduction gear, of ratio 3 to 2, is to be used on a machine, with the angle between the

shafts 80°. The approximate centre distance between the shafts is 125 mm. The normal pitch of the

teeth is 10 mm and the wheel diameters are equal. Find the number of teeth on each wheel, pitch circle

diameters and spiral angles. Find the efficiency of the drive if the friction angle is 5°.

[Ans. 24, 36 ; 128 mm ; 53.4°, 26.6° ; 85.5 %]

15. A right angled drive on a machine is to be made by two spiral wheels. The wheels are of equal

diameter with a normal pitch of 10 mm and the centre distance is approximately 150 mm. If the speed

ratio is 2.5 to 1, find : 1. the spiral angles of the teeth, 2. the number of teeth on each wheel, 3.the exact

centre distance, and 4. transmission efficiency, if the friction angle is 6°.

[Ans. 21.8°, 68.2° ; 18 , 45 ; 154 mm ; 75.8 %]

DO YOU KNOW ?
1. Explain the terms : (i) Module, (ii) Pressure angle, and (iii) Addendum.

2. State and prove the law of gearing. Show that involute profile satisfies the conditions for correct

gearing.

3. Derive an expression for the velocity of sliding between a pair of involute teeth. State the advantages

of involute profile as a gear tooth profile.
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4. Prove that the velocity of sliding is proportional to the distance of the point of contact from the pitch

point.

5. Prove that for two involute gear wheels in mesh, the angular velocity ratio does not change if the

centre distance is increased within limits, but the pressure angle increases.

6. Derive an expression for the length of the arc of contact in a pair of meshed spur gears.

7. What do you understand by the term ‘interference’ as applied to gears?

8. Derive an expression for the minimum number of teeth required on the pinion in order to avoid

interference in involute gear teeth when it meshes with wheel.

9. Derive an expression for minimum number of teeth required on a pinion to avoid interference when it

gears with a rack.

10. Define (i) normal pitch, and (ii) axial pitch relating to helical gears.

11. Derive an expression for the centre distance of a pair of spiral gears.

12. Show that, in a pair of spiral gears connecting inclined shafts, the efficiency is maximum when the

spiral angle of the driving wheel is half the sum of the shaft and friction angles.

OBJECTIVE TYPE QUESTIONS

1. The two parallel and coplanar shafts are connected by gears having teeth parallel to the axis of the

shaft. This arrangement is called

(a) spur gearing (b) helical gearing (c) bevel gearing (d) spiral gearing

2. The type of gears used to connect two non-parallel non-intersecting shafts are

(a) spur gears (b) helical gears (c) spiral gears (d) none of these

3. An imaginary circle which by pure rolling action, gives the same motion as the actual gear, is called

(a) addendum circle (b) dedendum circle (c) pitch circle (d) clearance circle

4. The size of a gear is usually specified by

(a) pressure angle (b) circular pitch (c) diametral pitch (d) pitch circle diameter

5. The radial distance of a tooth from the pitch circle to the bottom of the tooth, is called

(a) dedendum (b) addendum (c) clearance (d) working depth

6. The product of the diametral pitch and circular pitch is equal to

(a) 1 (b) 1/π (c) π (d) 2π

7. The module is the reciprocal of

(a) diametral pitch (b) circular pitch (c) pitch diameter (d) none of these

8. Which is the incorrect relationship of gears?

(a) Circular pitch × Diametral pitch = π (b) Module = P.C.D/No.of teeth

(c) Dedendum = 1.157 module (d) Addendum = 2.157 module

9. If the module of a gear be m, the number of teeth T and pitch circle diameter D, then

(a) m  = D/T (b) D = T/m (c) m  = D/2T (d) none of these

10. Mitre gears are used for

(a) great speed reduction (b) equal speed

(c) minimum axial thrust (d) minimum backlash

11. The condition of correct gearing is

(a) pitch line velocities of teeth be same

(b) radius of curvature of two profiles be same

(c) common normal to the pitch surface cuts the line of centres at a fixed point

(d) none of the above

12. Law of gearing is satisfied if

(a) two surfaces slide smoothly

(b) common normal at the point of contact passes through the pitch point on the line joining the

centres of rotation

(c) number of teeth = P.C.D. / module

(d) addendum is greater than dedendum
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13. Involute profile is preferred to cyloidal because

(a) the profile is easy to cut

(b) only one curve is required to cut

(c) the rack has straight line profile and hence can be cut accurately

(d) none of the above

14. The contact ratio for gears is

(a) zero (b) less than one (c) greater than one

15. The maximum length of arc of contact for two mating gears, in order to avoid interference, is

(a) (r + R) sin φ (b) (r + R) cos φ (c) (r + R) tan  φ (d) none of these

where    r = Pitch circle radius of pinion,

    R = Pitch circle radius of driver, and

φ = Pressure angle.

16. When the addenda on pinion and wheel is such that the path of approach and path of recess are half of

their maximum possible values, then the length of the path of contact is given by

(a)
( ) sin

2

r R+ φ
(b)

( ) cos

2

r R+ φ
(c)

( ) tan

2

r R+ φ
(d) none of these

17. Interference can be avoided in involute gears with 20° pressure angle by

(a) cutting involute correctly

(b) using as small number of teeth as possible

(c) using more than 20 teeth

(d) using more than 8 teeth

18. The ratio of face width to transverse pitch of a helical gear with α as the helix angle is normally

(a) more than 1.15/tan α (b) more than 1.05/tan α

(c) more than 1/tan α (d) none of these

19. The maximum efficiency for spiral gears is

(a)
sin ( ) 1

cos ( ) 1

θ + φ +

θ − φ +
(b)

cos ( ) 1

sin ( ) 1

θ − φ +

θ + φ +

 (c)
cos ( ) 1

cos ( ) 1

θ + φ +

θ − φ +
(d)

cos ( ) 1

cos ( ) 1

θ − φ +

θ + φ +

where       θ = Shaft angle, and φ = Friction angle.

20. For a speed ratio of 100, smallest gear box is obtained by using

(a) a pair of spur gears

(b) a pair of helical and a pair of spur gear compounded

(c) a pair of bevel and a pair of spur gear compounded

(d) a pair of helical and a pair of worm gear compounded

ANSWERS

1. (a)  2. (c) 3. (c) 4. (d) 5. (a)

6. (c) 7. (a) 8. (d) 9. (a) 10. (b)

11. (c) 12. (b) 13. (b) 14. (c) 15. (c)

16. (a) 17. (c) 18. (a) 19. (c) 20. (d)

GO To FIRST
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1. Introduction.

2. Types of Gear Trains.

3. Simple Gear Train.

4. Compound Gear Train.

5. Design of Spur Gears.

6. Reverted Gear Train.

7. Epicyclic Gear Train.

8. Velocity Ratio of Epicyclic

Gear Train.

9. Compound Epicyclic Gear

Train (Sun and Planet

Wheel).

10. Epicyclic Gear Train With

Bevel Gears.

11. Torques in Epicyclic Gear

Trains.

13.1.13.1.13.1.13.1.13.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

Sometimes, two or more gears are made to mesh with

each other to transmit power from one shaft to another. Such

a combination is called gear train or train of toothed wheels.

The nature of the train used depends upon the velocity ratio

required and the relative position of the axes of shafts. A

gear train may consist of spur, bevel or spiral gears.

13.2.13.2.13.2.13.2.13.2. TTTTTypes of Gear ypes of Gear ypes of Gear ypes of Gear ypes of Gear TTTTTrainsrainsrainsrainsrains

Following are the different types of gear trains, de-

pending upon the arrangement of wheels :

1. Simple gear train, 2. Compound gear train, 3. Re-

verted gear train, and 4. Epicyclic gear train.

In the first three types of gear trains, the axes of the

shafts over which the gears are mounted are fixed relative to

each other. But in case of epicyclic gear trains, the axes of

the shafts on which the gears are mounted may move relative

to a fixed axis.

13.3.13.3.13.3.13.3.13.3. Simple Gear Simple Gear Simple Gear Simple Gear Simple Gear TTTTTrainrainrainrainrain

When there is only one gear on each shaft, as shown

in Fig. 13.1, it is known as simple gear train. The gears are

represented by their pitch circles.

When the distance between the two shafts is small,

the two gears 1 and 2 are made to mesh with each other to

428
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transmit motion from one shaft to the other, as shown in Fig. 13.1 (a). Since the gear 1 drives the gear

2, therefore gear 1 is called the driver and the gear 2 is called the driven or follower. It may be noted

that the motion of the driven gear is opposite to the motion of driving gear.

 

(a) (b) (c)

  Fig. 13.1. Simple gear train.

Let N
1 

= Speed of gear 1(or driver) in r.p.m.,

N
2 

= Speed of gear 2 (or driven or follower) in r.p.m.,

T
1 
= Number of teeth on gear 1, and

T
2 

= Number of teeth on gear 2.

Since the speed ratio (or velocity ratio) of gear train is the ratio of the speed of the driver to

the speed of the driven or follower and ratio of speeds of any pair of gears in mesh is the inverse of

their number of teeth, therefore

                                   Speed ratio 
1 2

2 1

N T

N T
= =

It may be noted that ratio of the speed of the driven or follower to the speed of the driver is

known as train value of the gear train. Mathematically,

                                   Train value 2 1

1 2

N T

N T
= =

From above, we see that the train value is the reciprocal of speed ratio.

Sometimes, the distance between the two gears is large. The motion from one gear to another,

in such a case, may be transmitted by either of the following two methods :

1. By providing the large sized gear, or 2. By providing one or more intermediate gears.

A little consideration will show that the former method (i.e. providing large sized gears) is

very inconvenient and uneconomical method ; whereas the latter method (i.e. providing one or more

intermediate gear) is very convenient and economical.

It may be noted that when the number of intermediate gears are odd, the motion of both the

gears (i.e. driver and driven or follower) is like as shown in Fig. 13.1 (b).

But if the number of intermediate gears are even, the motion of the driven or follower will be

in the opposite direction of the driver as shown in Fig. 13.1 (c).

Now consider a simple train of gears with one intermediate gear as shown in Fig. 13.1 (b).

Let N
1 

= Speed of driver in r.p.m.,

N
2 

= Speed of intermediate gear in r.p.m.,
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N
3 

= Speed of driven or follower in r.p.m.,

T
1 

= Number of teeth on driver,

T
2 

= Number of teeth on intermediate gear, and

T
3 

= Number of teeth on driven or follower.

Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio for

these two gears is

1 2

2 1

=
N T

N T

...(i)

Similarly, as the intermediate gear 2 is in mesh with the driven gear 3, therefore speed ratio

for these two gears is

32

3 2

=
TN

N T

...(ii)

The speed ratio of the gear train as shown in Fig. 13.1 (b) is obtained by multiplying the

equations (i) and (ii).

∴ 31 2 2

2 3 1 2

× = ×
TN N T

N N T T

or 31

3 1

=
TN

N T

i.e.
Speed of driver No. of teeth on driven

Speed ratio = =
Speed of driven No. of teeth on driver

and
Speed of driven No. of teeth on driver

Train value = =
Speed of driver No. of teeth on driven

Similarly, it can be proved that the

above equation holds good even if there are

any number of intermediate gears. From

above, we see that the speed ratio and the

train value, in a simple train of gears, is in-

dependent of the size and number of inter-

mediate gears. These intermediate gears are

called idle gears, as they do not effect the

speed ratio or train value of the system. The

idle gears are used for the following two pur-

poses :

1. To connect gears where a large

centre distance is required, and

2. To obtain the desired direction of

motion of the driven gear (i.e. clockwise or

anticlockwise).

13.4. Compound Gear Train

When there are more than one gear on a shaft, as shown in Fig. 13.2, it is called a compound

train of gear.

We have seen in Art. 13.3 that the idle gears, in a simple train of gears do not effect the speed

ratio of the system. But these gears are useful in bridging over the space between the driver and the

driven.

Gear trains inside a mechanical watch
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But whenever the distance between the driver and the driven or follower has to be bridged

over by intermediate gears and at the same time a great ( or much less ) speed ratio is required, then

the advantage of intermediate gears is intensified by providing compound gears on intermediate shafts.

In this case, each intermediate shaft has two gears rigidly fixed to it so that they may have the same

speed. One of these two gears meshes with the driver and the other with the driven or follower

attached to the next shaft as shown in Fig.13.2.

Fig. 13.2. Compound gear train.

In a compound train of gears, as shown in Fig. 13.2, the gear 1 is the driving gear mounted on

shaft A , gears 2 and 3 are compound gears which are mounted on shaft B. The gears 4 and 5 are also

compound gears which are mounted on shaft C and the gear 6 is the driven gear mounted on shaft D.

Let N
1 

= Speed of driving gear 1,

T
1 

= Number of teeth on driving gear 1,

N
2 

,N
3 

..., N
6 

= Speed of respective gears in r.p.m., and

T
2 

,T
3
..., T

6 
= Number of teeth on respective gears.

Since gear 1 is in mesh with gear 2, therefore its speed ratio is

1 2

2 1

N T

N T
= ...(i)

Similarly, for gears 3 and 4, speed ratio is

3 4

4 3

N T

N T
= ...(ii)

and for gears 5 and 6, speed ratio is

5 6

6 5

N T

N T
= ...(iii)

The speed ratio of compound gear train is obtained by multiplying the equations (i), (ii) and (iii),

∴
3 5 61 2 4

2 4 6 1 3 5

N N TN T T

N N N T T T
× × = × × or

*
2 4 61

6 1 3 5

T T TN

N T T T

× ×
=

× ×

* Since gears 2 and 3 are mounted on one shaft B, therefore N
2
 = N

3
. Similarly gears 4 and 5 are mounted on

shaft C, therefore N
4
 = N

5
.
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i.e.
Speed of the first driver

Speed ratio = 
Speed of the last driven or follower

Product of the number of teeth on the drivens
= 

Product of the number of teeth on the drivers 

and
Speed of the last driven or follower

Train value = 
Speed of the first driver 

Product of the number of teeth on the drivers
= 

Product of the number of teeth on the drivens 

The advantage of a compound train over a simple gear train is that a much larger speed

reduction from the first shaft to the last shaft can be obtained with small gears. If a simple gear train

is used to give a large speed reduction, the last gear has to be very large. Usually for a speed reduction

in excess of 7 to 1, a simple train is not used and a compound train or worm gearing is employed.

Note: The gears which mesh must have the same circular pitch or module. Thus gears 1 and 2 must have the

same module as they mesh together. Similarly gears 3 and 4, and gears

5 and 6 must have the same module.

Example 13.1. The gearing of a machine tool is shown

in Fig. 13.3. The motor shaft is connected to gear A and rotates

at 975 r.p.m. The gear wheels B, C, D and E are fixed to parallel

shafts rotating together. The final gear F is fixed on the output

shaft. What is the speed of gear F ? The number of teeth on

each gear are as given below :

Gear A B C D E F

No. of teeth 20 50 25 75 26 65

Solution. Given : N
A 

= 975 r.p.m. ;

T
A 

= 20 ; T
B 

= 50 ; T
C 

= 25 ; T
D 

= 75 ; T
E 

= 26 ;

T
F 

= 65

From Fig. 13.3, we see that gears A , C

and E are drivers while the gears B, D and F are

driven or followers. Let the gear A  rotates in

clockwise direction. Since the gears B and C are

mounted on the same shaft, therefore it is a

compound gear and the direction or rotation of

both these gears is same (i.e. anticlockwise).

Similarly, the gears D and E are mounted on the

same shaft, therefore it is also a compound gear

and the direction of rotation of both these gears

is same (i.e. clockwise). The gear F will rotate in

anticlockwise direction.

Let N
F 

 = Speed of gear F, i.e. last driven or follower.

We know that

Speed of the first driver Product of no. of teeth on drivens
=

Speed of the last driven Product of no. of teeth on drivers

Fig. 13.3

Battery Car: Even though it is run by batteries,

the power transmission, gears, clutches,

brakes, etc. remain mechanical in nature.

Note : This picture is given as additional information

and is not a direct example of the current chapter.
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or
A B D F

F A C E

50 75 65
18.75

20 25 26

N T T T

N T T T

× × × ×
= = =

× × × ×

∴ A
F

975
52 r. p. m.

18.75 18.75

N
N = = =  Ans.

13.5. Design of Spur Gears

Sometimes, the spur gears (i.e. driver and driven) are to be designed for the given velocity

ratio and distance between the centres of their shafts.

Let x = Distance between the centres of two shafts,

N
1 

= Speed of the driver,

T
1 

= Number of teeth on the driver,

d
1 

= Pitch circle diameter of the driver,

N
2 

, T
2 

and d
2 

= Corresponding values for the driven or follower, and

p
c 
= Circular pitch.

We know that the distance between the centres of two shafts,

1 2

2

d d
x

+
= ...(i)

and speed ratio or velocity ratio,

1 2 2

2 1 1

N d T

N d T
= = ...(ii)

From the above equations, we can conveniently find out the values of d
1 
and d

2 
(or T

1 
and T

2
)

and the circular pitch ( p
c 

). The values of T
1 

and T
2
, as obtained above, may or may not be whole

numbers. But in a gear since the number of its teeth is always a whole number, therefore a slight

alterations must be made in the values of x, d
1 
and d

2
, so that the number of teeth in the two gears may

be a complete number.

Example 13.2. Two parallel shafts, about 600 mm apart are to be connected by spur gears.

One shaft is to run at 360 r.p.m. and the other at 120 r.p.m. Design the gears, if the circular pitch is

to be 25 mm.

Solution. Given : x = 600 mm ; N
1 

= 360 r.p.m. ; N
2 

= 120 r.p.m. ; p
c 
= 25 mm

Let d
1 

= Pitch circle diameter of the first gear, and

d
2 

= Pitch circle diameter of the second gear.

We know that speed ratio,

1 2

2 1

360
3

120

N d

N d
= = = or d

2
 = 3d

1
...(i)

and centre distance between the shafts (x),

1 2

1
600 ( )

2
d d= + or d

1
 + d

2
 = 1200 ...(ii)

From equations (i) and (ii), we find that

d
1 

= 300 mm, and d
2 

= 900 mm

∴ Number of teeth on the first gear,

2
1

300
37.7

25
c

d
T

p

π π ×
= = =
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and number of teeth on the second gear,

2
2

c

900
113.1

25

d
T

p

π π ×
= = =

Since the number of teeth on both the gears are to be in complete numbers, therefore let us

make the number of teeth on the first gear as 38. Therefore for a speed ratio of 3, the number of teeth

on the second gear should be 38 × 3 = 114.

Now the exact pitch circle diameter of the first gear,

1
1

38 25
302.36 mmc

T p
d

× ×
′ = = =

π π

and the exact pitch circle diameter of the second gear,

2
2

114 25
907.1 mmc

T p
d

× ×
′ = = =

π π

∴ Exact distance between the two shafts,

1 2 302.36 907.1
604.73 mm

2 2

d d
x

′ ′+ +
′ = = =

Hence the number of teeth on the first and second gear must be 38 and 114 and their pitch

circle diameters must be 302.36 mm and 907.1 mm

respectively. The exact distance between the two shafts

must be 604.73 mm. Ans.

13.6. Reverted Gear Train

When the axes of the first gear (i.e. first driver)

and the last gear (i.e. last driven or follower) are co-axial,

then the gear train is known as reverted gear train as

shown in Fig. 13.4.

We see that gear 1 (i.e. first driver) drives the

gear 2 (i.e. first driven or follower) in the opposite direc-

tion. Since the gears 2 and 3 are mounted on the same

shaft, therefore they form a compound gear and the gear

3 will rotate in the same direction as that of gear 2. The

gear 3 (which is now the second driver) drives the gear 4

(i.e. the last driven or follower) in the same direction as

that of gear 1. Thus we see that in a reverted gear train,

the motion of the first gear and the last gear is like.

Let  T
1 
= Number of teeth on gear 1,

 r
1
 = Pitch circle radius of gear 1, and

N
1
 = Speed of gear 1 in r.p.m.

Similarly,

     T
2
, T

3
, T

4
 = Number of teeth on respective gears,

      r
2
, r

3
, r

4
 = Pitch circle radii of  respective gears, and

   N
2
, N

3
, N

4
 = Speed of respective gears in r.p.m.

Fig. 13.4.  Reverted gear train.



Chapter 13 : Gear Trains   �  435

Since the distance between the centres of the shafts of gears 1 and 2 as well as gears 3 and 4

is same, therefore

r
1 

+ r
2 

= r
3 

+ r
4

...(i)

Also, the circular pitch or module of all the gears is assumed to be same, therefore number of

teeth on each gear is directly proportional to its circumference or radius.

∴ *T
1 
+ T

2 
= T

3 
+ T

4
...(ii)

and
Product of number of teeth on drivens

Speed ratio =
Product of number of teeth on drivers

or 1 2 4

4 1 3

×
=

×

N T T

N T T
... (iii)

From equations (i), (ii) and (iii), we can determine the number of teeth on each gear for the

given centre distance, speed ratio and module only when

the number of teeth on one gear is chosen arbitrarily.

The reverted gear trains are used in automotive trans-

missions, lathe back gears, industrial speed reducers, and in

clocks (where the minute and hour hand shafts are co-axial).

Example 13.3. The speed ratio of the reverted gear

train, as shown in Fig. 13.5, is to be 12. The module pitch of

gears A and B is 3.125 mm and of gears C and D is 2.5 mm.

Calculate the suitable numbers of teeth for the gears. No

gear is to have less than 24 teeth.

Solution. Given : Speed ratio, N
A

/N
D 

= 12 ;

m
A 

=
 
m

B 
= 3.125 mm ; m

C 
=

 
m

D
 = 2.5 mm

Let N
A

 = Speed of gear A ,

T
A

 = Number of teeth on gear A ,

r
A

 = Pitch circle radius of gear A ,

N
B
, N

C 
, N

D
 = Speed of respective gears,

T
B
, T

C 
, T

D
 = Number of teeth on respective gears, and

r
B
, r

C 
, r

D
 = Pitch circle radii of respective gears.

Fig. 13.5

* We know that circular pitch,

                            
2

c

r
p m

T

π
= = π         or      

.

2

mT
r = , where m is the module.

∴                         
1

1

.

2

m T
r =  ; 

2
2

.

2

m T
r =  ; 

3
3

.

2

mT
r =  ; 

4
4

.

2

m T
r =

Now from equation (i),

                    
31 2 4.. . .

2 2 2 2

m Tm T m T m T
+ = +

                            T
1
 + T

2
 = T

3
 + T

4
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Since the speed ratio between the gears A  and B and between the gears C and D are to be

same, therefore

* CA

B D

12 3.464
NN

N N
= = =

Also the speed ratio of any pair of gears in mesh is the inverse of their number of teeth,

therefore

B D

A C

3.464
T T

T T
= = ...(i)

We know that the distance between the shafts

x = r
A 

+ r
B 

= r
C 

+ r
D 

= 200 mm

or C CA A B B D D.. . .
200

2 2 2 2

m Tm T m T m T
+ = + =

.
...

2

m T
r

 
= 

 

�

3.125 (T
A

 + T
B
) = 2.5 (T

C
 + T

D
) = 400 ...(∵ m

A
 = m

B
, and m

C
 = m

D
)

∴ T
A 

+
 
T

B
 = 400 / 3.125 = 128 ...(ii)

and T
C 

 + T
D 

= 400 / 2.5 = 160 ...(iii)

From equation (i), T
B 

= 3.464 T
A

. Substituting this value of T
B 

in equation (ii),

T
A 

+ 3.464 T
A 

= 128 or T
A 

= 128 / 4.464 = 28.67 say 28  Ans.

and T
B 

= 128 – 28 = 100 Ans.

Again from equation (i), T
D 

= 3.464 T
C
. Substituting this value of T

D 
in equation (iii),

T
C 

+ 3.464 T
C 

= 160 or T
C 

= 160 / 4.464 = 35.84 say 36  Ans.

and T
D 

= 160 – 36 = 124 Ans.

Note : The speed ratio of the reverted gear train with the calculated values of number of teeth on each gear is

A B D

D A C

100 124
12.3

28 36

N T T

N T T

× ×
= = =

× ×

13.7. Epicyclic Gear Train

We have already discussed that in an epicyclic gear train, the axes of the shafts, over which

the gears are mounted, may move relative to a fixed axis. A simple epicyclic gear train is shown in

Fig. 13.6, where a gear A  and the arm C have a common axis at O
1 

about which they can rotate. The

gear B meshes with gear A  and has its axis on the arm at O
2
, about which the gear B can rotate. If the

*  We know that speed ratio A

D
v

Speed of first driver
12

Speed of last dri en

N

N
= = =

Also CA A

D B D

NN N

N N N
= × ...(N

B
 = N

C
, being on the same shaft)

For 
A

B

N

N
 and 

C

D

N

N
 to be same, each speed ratio should be 12  so that

CA A

D B D

12 12 12
NN N

N N N
= × = × =
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arm is fixed, the gear train is simple and gear A  can drive gear B

or vice- versa, but if gear A  is fixed and the arm is rotated about

the axis of gear A  (i.e. O
1
), then the gear B is forced to rotate

upon and around gear A . Such a motion is called epicyclic and

the gear trains arranged in such a manner that one or more of

their members move upon and around another member are

known as epicyclic gear trains (epi. means upon and cyclic

means around). The epicyclic gear trains may be simple or com-

pound.

The epicyclic gear trains are useful for transmitting

high velocity ratios with gears of moderate size in a compara-

tively lesser space. The epicyclic gear trains are used in the

back gear of lathe, differential gears of the automobiles, hoists,

pulley blocks, wrist watches etc.

13.8. Velocity Ratioz of Epicyclic Gear Train

The following two methods may be used for finding out the velocity ratio of an epicyclic

gear train.

1. Tabular method, and 2. Algebraic method.

These methods are discussed, in detail, as follows :

1. Tabular method. Consider an epicyclic gear train as shown in Fig. 13.6.

Let T
A

 = Number of teeth on  gear A , and

T
B
 = Number of teeth on gear B.

First of all, let us suppose that

the arm is fixed. Therefore the axes of

both the gears are also fixed relative to

each other. When the gear A  makes one

revolution anticlockwise, the gear B will

make *T
A

 / T
B 

revolutions, clockwise.

Assuming the anticlockwise rotation as

positive and clockwise as negative, we

may say that when gear A  makes + 1

revolution, then the gear B will make

(– T
A 

/ T
B
) revolutions. This statement

of relative motion is entered in the first

row of the table (see Table 13.1).

Secondly, if the gear A  makes

+ x revolutions, then the gear B will

make – x × T
A 

/ T
B 

 revolutions. This

statement is entered in the second row

of the table. In other words, multiply

the each motion (entered in the first row) by x.

Thirdly, each element of an epicyclic train is given + y revolutions and entered in the third

row. Finally, the motion of each element of the gear train is added up and entered in the fourth row.

* We know that N
B
 / N

A
 = T

A
 / T

B
. Since N

A
 = 1 revolution, therefore N

B
 = T

A
 / T

B
.

Fig. 13.6. Epicyclic gear train.

Inside view of a car engine.

Note : This picture is given as additional information and is not

a direct example of the current chapter.
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Arm fixed-gear A  rotates through + 1

revolution i.e. 1 rev. anticlockwise

Arm fixed-gear A  rotates through + x

revolutions

Add + y revolutions to all elements

Total motion

Table 13.1. Table of motions

Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B

–
T

T

2. 0 + x
A

B

–
T

x
T

×

3. + y + y + y

4. + y x + y
A

B

–
T

y x
T

×

A little consideration will show that when two conditions about the motion of rotation of any

two elements are known, then the unknown speed of the third element may be obtained by substitut-

ing the given data in the third column of the fourth row.

2. Algebraic method. In this method, the motion of each element of the epicyclic train relative

to the arm is set down in the form of equations. The number of equations depends upon the number of

elements in the gear train. But the two conditions are, usually, supplied in any epicyclic train viz. some

element is fixed and the other has specified motion. These two conditions are sufficient to solve all the

equations ; and hence to determine the motion of any element in the epicyclic gear train.

Let the arm C be fixed in an epicyclic gear train as shown in Fig. 13.6. Therefore speed of the

gear A  relative to the arm C

= N
A 

– N
C

and speed of the gear B relative to the arm C,

= N
B 

– N
C

Since the gears A  and B are meshing directly, therefore they will revolve in opposite directions.

∴ B C A

A C B

–
–

–

N N T

N N T
=

Since the arm C is fixed, therefore its speed, N
C
 = 0.

∴ B A

A B

–
N T

N T
=

If the gear A  is fixed, then N
A 

= 0.

B C A

C B

–
–

0 –

N N T

N T
= or B A

C B

1
N T

N T
= +

Note : The tabular method is easier and hence mostly used in solving problems on epicyclic gear train.

Example 13.4. In an epicyclic gear train, an arm carries

two gears A and B having 36 and 45 teeth respectively. If the arm

rotates at 150 r.p.m. in the anticlockwise direction about the centre

of the gear A which is fixed, determine the speed of gear B. If the

gear A instead of being fixed, makes 300 r.p.m. in the clockwise

direction, what will be the speed of gear B ?

Solution. Given : T
A 

= 36 ; T
B 

= 45 ; N
C 

= 150 r.p.m.

(anticlockwise)

The gear train is shown in Fig. 13.7. Fig. 13.7
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Arm fixed-gear A  rotates through + 1

revolution (i.e. 1 rev. anticlockwise)

Arm fixed-gear A  rotates through + x

revolutions

Add + y revolutions to all elements

Total motion

We shall solve this example, first by tabular method and then by algebraic method.

1. Tabular method

First of all prepare the table of motions as given below :

Table 13.2. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B

–
T

T

2. 0 + x
A

B

–
T

x
T

×

3. + y + y + y

4. + y x + y
A

B

–
T

y x
T

×

Speed of gear B when gear A is fixed

Since the speed of arm is 150 r.p.m. anticlockwise, therefore from the fourth row of the table,

y = + 150 r.p.m.

Also the gear A  is fixed, therefore

x + y = 0 or x = – y = – 150 r.p.m.

∴ Speed of gear B,   A
B

B

36
– 150 150 270 r.p.m.

45

T
N y x

T
= × = + × = +

= 270 r.p.m. (anticlockwise)  Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m.clockwise, therefore from the fourth row of the table,

x + y = – 300 or x = – 300 – y = – 300 – 150 = – 450 r.p.m.

∴ Speed of gear B,

       
A

B

B

36
– 150 450 510 r.p.m.

45

T
N y x

T
= × = + × = +

      = 510 r.p.m. (anticlockwise)   Ans.

2.  Algebraic method

Let N
A 

= Speed of gear A .

N
B 

= Speed of gear B, and

N
C 

= Speed of arm C.

Assuming the arm C to be fixed, speed of gear A  relative to arm C

= N
A 

– N
C

and speed of gear B relative to arm  C = N
B 

– N
C
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Since the gears A  and B revolve in opposite directions, therefore

B C A

A C B

–
–

–

N N T

N N T
= ...(i)

Speed of gear B when gear A is fixed

When gear A  is fixed, the arm rotates at 150 r.p.m. in the anticlockwise direction, i.e.

N
A 

= 0, and N
C 

= + 150 r.p.m.

∴ B – 150 36
– – 0.8

0 – 150 45

N
= = ...[From equation (i)]

or N
B
 = – 150 × – 0.8 + 150 = 120 + 150 = 270 r.p.m.  Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m. clockwise, therefore

N
A

 = – 300 r.p.m.

∴ B – 150 36
– – 0.8

–300 – 150 45

N
= =

or N
B 

= – 450 × – 0.8 + 150 = 360 + 150 = 510 r.p.m. Ans.

Example 13.5. In a reverted epicyclic gear

train, the arm A carries two gears B and C and a

compound gear D - E. The gear B meshes with gear E

and the gear C meshes with gear D. The number of teeth

on gears B, C and D are 75, 30 and 90 respectively.

Find the speed and direction of gear C when gear B is

fixed and the arm A makes 100 r.p.m. clockwise.

Solution. Given : T
B 

= 75 ; T
C 

= 30 ; T
D  

= 90 ;

N
A 

= 100 r.p.m. (clockwise)

The reverted epicyclic gear train is

shown in Fig. 13.8. First of all, let us find the

number of teeth on gear E (T
E
). Let d

B 
, d

C
 , d

D

and d
E 

be the pitch circle diameters of gears B,

C, D and E respectively. From the geometry of

the figure,

 d
B 

+ d
E 

= d
C 

+ d
D

Since the number of teeth on each gear,

for the same module, are proportional to their

pitch circle diameters, therefore

 T
B 

+ T
E 

= T
C 

+ T
D

      ∴        T
E 

= T
C 

+ T
D 

– T
B 

= 30 + 90 – 75 = 45

The table of motions is drawn as

follows :

Fig. 13.8

A gear-cutting machine is used to cut gears.
Note : This picture is given as additional information

and is not a direct example of the current chapter.



Chapter 13 : Gear Trains   �  441

Arm fixed-compound gear D-E

rotated through + 1 revolution ( i.e.

1 rev. anticlockwise)

Arm fixed-compound gear D-E

rotated through + x revolutions

Add + y revolutions to all elements

Total motion

 Table 13.3. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A Compound Gear B Gear C

No. gear D-E

1. 0 + 1
E

B

–
T

T

D

C

–
T

T

2. 0 + x
E

B

–
T

x
T

×
D

C

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
E

B

–
T

y x
T

×
D

C

–
T

y x
T

×

Since the gear B is fixed, therefore from the fourth row of the table,

E

B

– 0
T

y x
T

× = or
45

– 0
75

y x × =

∴ y – 0.6 = 0 ...(i)

Also the arm A  makes 100 r.p.m. clockwise, therefore

y = – 100 ...(ii)

Substituting y = – 100 in equation (i), we get

– 100 – 0.6 x = 0 or x = – 100 / 0.6 = – 166.67

 Model of sun and planet gears.

INPUT

Spline to Accept

Motor Shaft

Housing OD Designed to meet

RAM Bore Dia, and Share Motor

Coolant Supply

OUTPUT- External Spline to

Spindle

Ratio Detection SwitchesHydraulic or Pneumatic Speed

Change Actuator

Round Housing With O-ring

Seated Cooling Jacket

Motor Flange

Hollow Through Bore for

Drawbar Integration
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From the fourth row of the table, speed of gear C,

D
C

C

90
– – 100 166.67 400 r.p.m.

30

T
N y x

T
= × = + × = +

= 400 r.p.m. (anticlockwise) Ans.

13.9. Compound Epicyclic Gear Train—Sun and Planet Gear

A compound epicyclic

gear train is shown in Fig. 13.9.

It consists of two co-axial shafts

S
1 
and S

2
, an annulus gear A which

is fixed, the compound gear (or

planet gear) B-C, the sun gear D

and the arm H. The annulus gear

has internal teeth and the com-

pound gear is carried by the arm

and revolves freely on a pin of the

arm H. The sun gear is co-axial

with the annulus gear and the arm

but independent of them.

The annulus gear A

meshes with the gear B and the

sun gear D meshes with the gear

C. It may be noted that when the

annulus gear is fixed, the sun gear

provides the drive and when the

sun gear is fixed, the annulus gear

provides the drive. In both cases, the arm acts as a follower.

Note : The gear at the centre is called the sun gear and the gears whose axes move are called planet gears.

Fig. 13.9. Compound epicyclic gear train.

Sun and Planet gears.

Speed Change

Shift Axis

Bearing Housing

Output Belt Pulley

Slide Dog

Clutch

Output Sun

Gear

Motor

Flange

Input Sun

Gear

Planet

Gears

Oil

Collector
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Arm fixed-gear C rotates through

+ 1 revolution (i.e. 1 rev.

anticlockwise)

Arm fixed-gear C rotates through

+ x revolutions

Add + y  revolutions to all

elements

Total motion

Arm fixed-gear D rotates

through + 1 revolution

Arm fixed-gear D rotates

through + x revolutions

Add + y revolutions to all

elements

Total motion

Let T
A 

, T
B 

, T
C 

, and T
D 

be the teeth and N
A

, N
B
, N

C 
 and N

D 
 be the speeds for the gears A , B,

C and D respectively. A little consideration will show that when the arm is fixed and the sun gear D is

turned anticlockwise, then the compound gear B-C and the annulus gear A will rotate in the clockwise

direction.

The motion of rotations of the various elements are shown in the table below.

Table 13.4. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear D Compound gear Gear A

No. B-C

1. 0 + 1
D

C

–
T

T

D B

C A

–
T T

T T
×

2. 0 + x
D

C

–
T

x
T

× D B

C A

–
T T

x
T T

× ×

3. + y + y + y  + y

4. + y x + y
D

C

–
T

y x
T

×
D B

C A

–
T T

y x
T T

× ×

Note : If the annulus gear A  is rotated through one revolution anticlockwise with the arm fixed, then the

compound gear rotates through T
A 

/ T
B 

revolutions in the same sense and the sun gear D rotates through

 T
A 

/ T
B 

× T
C 

/ T
D 

revolutions in clockwise direction.

Example 13.6. An epicyclic gear consists of three gears A, B and C as shown in Fig. 13.10.

The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A

and C and is carried on an arm EF which rotates about the centre of A at 18 r.p.m.. If the gear A is

fixed, determine the speed of gears B and C.

Solution. Given : T
A 

= 72 ; T
C 

= 32 ; Speed of arm EF
 
= 18 r.p.m.

Considering the relative motion of rotation as shown in Table 13.5.

Table 13.5. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm EF Gear C Gear B Gear A

1. 0 + 1
C

B

–
T

T

C B C

B A A

– –
T T T

T T T
× =

2. 0 + x
C

B

–
T

x
T

×
C

A

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
C

B

–
T

y x
T

× C

A

–
T

y x
T

×
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Speed of gear C

We know that the speed of the arm is 18 r.p.m. therefore,

y = 18 r.p.m.

and the gear A  is fixed, therefore

C

A

– 0
T

y x
T

× = or 32
18 – 0

72
x × =

∴ x = 18 × 72 / 32 = 40.5

∴  Speed of gear C         = x + y = 40.5 + 18

= + 58.5 r.p.m.

= 58.5 r.p.m. in the direction

of arm.  Ans.

Speed of gear B

Let d
A

, d
B 

and d
C 

be the pitch circle diameters of gears

A , B and C respectively. Therefore, from the geometry of Fig. 13.10,

                
C A

B
2 2

d d
d + = or 2 d

B 
+ d

C 
= d

A

Since the number of teeth are proportional to their pitch circle diameters, therefore

               2 T
B
  + T

C
 = T

A
         or            2 T

B 
+ 32 = 72 or T

B
 = 20

∴  Speed of gear B          C

B

32
– 18 – 40.5 – 46.8 r.p.m.

20

T
y x

T
= × = × =

               = 46.8 r.p.m. in the opposite direction of arm.  Ans.

Example 13.7. An epicyclic train of gears is arranged as shown in

Fig.13.11. How many revolutions does the arm, to which the pinions B and

C are attached, make :

1. when A makes one revolution clockwise and D makes half a

revolution anticlockwise, and

2. when A makes one revolution clockwise and D is stationary ?

The number of teeth on the gears A and D are 40 and 90

respectively.

Solution. Given : T
A

 = 40 ; T
D 

= 90

First of all, let us find the number of teeth on gears B and C (i.e. T
B 

and T
C
). Let  d

A
, d

B
, d

C

and d
D 

be the pitch circle diameters of gears A , B, C and D respectively. Therefore from the geometry

of the figure,

d
A 

+ d
B 

+ d
C 

= d
D

or d
A 

+ 2 d
B 

= d
D

...(�  d
B 

= d
C
)

Since the number of teeth are proportional to their pitch circle diameters, therefore,

T
A 

+ 2 T
B 

= T
D

or 40 + 2 T
B 

= 90

∴ T
B 

= 25, and T
C 

= 25 ...(�  T
B
 = T

C
)

Fig. 13.10

Fig. 13.11
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The table of motions is given below :

Table 13.6. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Gear A Compound Gear D

gear B-C

1. 0 – 1
A

B

T

T
+

A B A

B D D

T T T

T T T
+ × = +

2. 0 – x
A

B

T
x

T
+ ×

A

D

T
x

T
+ ×

3. – y – y – y – y

4. – y – x – y
A

B

–
T

x y
T

×
A

D

–
T

x y
T

×

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution anticlockwise

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the table,

– x – y = –1 or x + y = 1 ...(i)

Also, the gear D makes half revolution anticlockwise, therefore

A

D

1
–

2

T
x y

T
× = or

40 1
–

90 2
x y× =

∴ 40 x – 90 y = 45 or x – 2.25 y = 1.125 ...(ii)

From equations (i) and (ii),   x = 1.04 and y = – 0.04

∴            Speed of arm = – y = – (– 0.04) = + 0.04

= 0.04 revolution anticlockwise  Ans.

2. Speed of arm when A makes 1 revolution clockwise and D is stationary

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the

table,

– x – y = – 1 or x + y = 1 ...(iii)

Also the gear D is stationary, therefore

A

D

– 0
T

x y
T

× = or
40

– 0
90

x y× =

∴ 40 x – 90 y = 0 or x – 2.25 y = 0 ...(iv)

From equations (iii) and (iv),

x = 0.692 and y = 0.308

∴     Speed of arm = – y = – 0.308 = 0.308 revolution clockwise Ans.

Arm fixed , gear A  rotates

through – 1 revolution (i.e. 1

rev. clockwise)

Arm fixed, gear A  rotates

through – x revolutions

Add – y  revolutions to all

elements

Total motion
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Example 13.8. In an epicyclic gear train, the internal wheels A and B and compound wheels

C and D rotate independently about axis O. The wheels E and F rotate on pins fixed to the arm G. E

gears with A and C and F gears with B and D. All the wheels have

the same module and the number of teeth are :  T
C 

= 28;  T
D 

= 26;

T
E 

= T
F 

= 18.

1. Sketch the arrangement ; 2. Find the number of teeth on

A and B ; 3. If the arm G makes 100 r.p.m. clockwise and A is fixed,

find the speed of B ; and 4. If the arm G makes 100 r.p.m. clockwise

and wheel A makes 10 r.p.m. counter clockwise ; find the speed of

wheel B.

Solution. Given : T
C 

= 28 ; T
D 

= 26 ; T
E 

= T
F 

= 18

1. Sketch the arrangement

The arrangement is shown in Fig. 13.12.

2. Number of teeth on wheels A and B

Let              T
A 

= Number of teeth on wheel A , and

            T
B 

= Number of teeth on wheel B.

If d
A 

, d
B 

, d
C 

, d
D 

, d
E 

and d
F 

are the pitch circle diameters of wheels A , B, C, D, E and F

respectively, then from the geometry of Fig. 13.12,

            d
A 

= d
C 

+ 2 d
E

and             d
B 

 = d
D 

+ 2 d
F

Since the number of teeth are proportional to their pitch circle diameters, for the same

module, therefore

           T
A 

= T
C 

+ 2 T
E 

= 28 + 2 × 18 = 64 Ans.

and            T
B 

= T
D 

+ 2 T
F 

= 26 + 2 × 18 = 62 Ans.

3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A is fixed

First of all, the table of motions is drawn as given below :

Table 13.7. Table of motions.

Revolutions of elements

Step Conditions of Arm Wheel Wheel Compound Wheel F Wheel B

No. motion G A E wheel C-D

1. 0 + 1
A

E

T

T
+

A E

E C

–
T T

T T
×

A D

C F

T T

T T
+ ×

A D F

C F B

T T T

T T T
+ × ×

2. 0 + x
A

E

T
x

T
+ ×

A

C

–
T

x
T

×
A D

C F

T T
x

T T
+ × ×

A D

C B

T T
x

T T
+ × ×

3. + y + y + y + y + y + y

4. + y x + y
A

E

T
y x

T
+ ×

A

C

–
T

y x
T

×
A D

C F

T T
y x

T T
+ × ×

A D

C B

T T
y x

T T
+ × ×

Fig. 13.12

Arm fixed- wheel A

rotates through + 1

revolution (i.e. 1 rev.

anticlockwise)

Arm fixed-wheel A

rotates through + x

revolutions

Add + y revolutions

to all elements

Total motion

A

C

–
T

T
=

A D

C B

T T

T T
= + ×
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Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table,

y = – 100 ...(i)

Also, the wheel A  is fixed, therefore from the fourth row of the table,

x + y = 0 or x = – y = 100 ...(ii)

∴   Speed of wheel A D

C B

64 26
– 100 100 – 100 95.8 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= – 4.2 r.p.m. = 4.2 r.p.m. clockwise  Ans.

4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. counter

clockwise

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the

table

y = – 100 ...(iii)

Also the wheel A  makes 10 r.p.m. counter clockwise, therefore from the fourth row of the

table,

x + y = 10 or x = 10 – y = 10 + 100 = 110 ...(iv)

∴ Speed of wheel A D

C B

64 26
– 100 110 – 100 105.4 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= + 5.4 r.p.m. = 5.4 r.p.m. counter clockwise  Ans.

Example 13.9. In an epicyclic gear of the ‘sun and planet’ type shown

in Fig. 13.13, the pitch circle diameter of the internally toothed ring is to be

224 mm and the module 4 mm. When the ring D is stationary, the spider A,

which carries three planet wheels C of equal size, is to make one revolution in

the same sense as the sunwheel B for every five revolutions of the driving

spindle carrying the sunwheel B. Determine suitable numbers of teeth for all

the wheels.

Solution. Given : d
D 

= 224 mm ; m = 4 mm ; N
A 

= N
B 

/ 5

Let T
B 

, T
C 

 and T
D 

be the number of teeth on the sun wheel B ,

planet wheels C and the internally toothed ring D. The table of motions is given below :

Table 13.8. Table of motions.

Revolutions of elements

Step No. Conditions of motion Spider A Sun wheel B Planet wheel C Internal gear D

1. 0 + 1
B

C

–
T

T

B C B

C D D

– –
T T T

T T T
× =

2. 0 + x
B

C

–
T

x
T

×
B

D

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
B

C

–
T

y x
T

×
B

D

–
T

y x
T

×

Fig. 13.13

Spider A  fixed, sun wheel

B  rotates through + 1

revolution (i.e. 1 rev.

anticlockwise)

Spider A  fixed, sun wheel

B  rotates through + x

revolutions

Add + y revolutions to all

elements

Total motion



448  �   Theory of Machines

We know that when the sun

wheel B makes + 5 revolutions, the spi-

der A  makes + 1 revolution. Therefore

from the fourth row of the table,

          y = + 1 ;  and  x + y = + 5

∴       x = 5 – y = 5 – 1 = 4

Since the internally toothed ring

D is stationary, therefore from the fourth

row of the table,

B

D

– 0
T

y x
T

× =

or B

D

1 – 4 0
T

T
× =

∴
B

D

1

4

T

T
= or T

D 
= 4 T

B
...(i)

We know that T
D 

= d
D 

/ m = 224 / 4 = 56 Ans.

∴ T
B 

= T
D 

/ 4 = 56 / 4 = 14 Ans. ...[From equation (i)]

Let d
B
, d

C 
and d

D 
be the pitch circle diameters of sun wheel B, planet wheels C and internally

toothed ring D respectively. Assuming the pitch of all the gears to be same, therefore from the geom-

etry of Fig. 13.13,

d
B 

+ 2 d
C 

= d
D

Since the number of teeth are proportional to their pitch circle diameters, therefore

T
B 

+ 2 T
C 

= T
D

or 14 + 2 T
C 

= 56

∴ T
C 

= 21 Ans.

Example 13.10. Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted

on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears

with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and is concen-

tric with the shaft axis. The compound gear D-E is mounted on a pin which projects from an arm

keyed to the shaft B. Sketch the arrangement and find the number of teeth on internal gear G

assuming that all gears have the same module. If the shaft A rotates at 110 r.p.m., find the speed

of shaft B.

Solution. Given : T
C 

= 50 ; T
D 

= 20 ; T
E 

= 35 ; N
A 

= 110 r.p.m.

The arrangement is shown in Fig. 13.14.

Number of teeth on internal gear G

Let d
C 

, d
D 

, d
E 

and d
G 

 be the pitch circle diameters of gears C, D, E and G respectively. From

the geometry of the figure,

G C D E

2 2 2 2

d d d d
= + +

or d
G

 = d
C
 + d

D
 + d

E

Power transmission in a helicopter is essentially through

gear trains.
Note : This picture is given as additional information and is not a

direct example of the current chapter.

Main rotor Tail rotor

Tail boom

Landing skids Engine, transmis-

sion fuel, etc.

Cockpit

Drive shaft
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Let T
C 

, T
D 

, T
E 

and T
G 

be the number of teeth on gears C, D, E and G respectively. Since all

the gears have the same module, therefore number of teeth are proportional to their pitch circle

diameters.

   ∴ T
G 

= T
C 

+ T
D 

+ T
E 

= 50 + 20 + 35 = 105 Ans.

Fig. 13.14

Speed of shaft B

The table of motions is given below :

Table 13.9. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear C (or Compound Gear G

No. shaft A) gear D-E

1. 0 + 1
C

D

–
T

T

C E

D G

–
T T

T T
×

2. 0 + x
C

D

–
T

x
T

×
C E

D G

–
T T

x
T T

× ×

3. + y + y + y + y

4. + y x + y
C

D

–
T

y x
T

×
C E

D G

–
T T

y x
T T

× ×

Since the gear G is fixed, therefore from the fourth row of the table,

C E

D G

– 0
T T

y x
T T

× × = or 50 35
– 0

20 105
y x × × =

∴
5

– 0
6

y x = ...(i)

Arm fixed - gear C rotates through + 1

revolution

Arm fixed - gear C rotates through + x

revolutions

Add + y revolutions to all elements

Total motion
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Since the gear C is rigidly mounted on shaft A , therefore speed of gear C and shaft A  is same.

We know that speed of shaft A  is 110 r.p.m., therefore from the fourth row of the table,

x + y = 100 ...(ii)

From equations (i) and (ii), x = 60, and    y = 50

∴               Speed of shaft B = Speed of arm = + y = 50 r.p.m. anticlockwise Ans.

Example 13.11.  Fig. 13.15 shows diagrammatically a compound

epicyclic gear train. Wheels A , D and E are free to rotate independently

on spindle O, while B and C are compound and rotate together on spindle

P, on the end of arm OP. All the teeth on different wheels have the same

module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally.

Find the number of teeth on wheels D and E which are cut internally.

If the wheel A is driven clockwise at 1 r.p.s. while D is driven

counter clockwise at 5 r.p.s., determine the magnitude and direction of

the angular velocities of arm OP and wheel E.

Solution. Given : T
A 

= 12 ; T
B 

= 30 ;T
C 

= 14 ; N
A 

= 1 r.p.s. ; N
D 

= 5 r.p.s.

Number of teeth on wheels D and E

Let T
D 

and T
E 

 be the number of teeth on wheels D and E respectively. Let d
A 

, d
B 

, d
C 

, d
D 

and d
E

be the pitch circle diameters of wheels A , B, C, D and E respectively. From the geometry of the figure,

d
E
 = d

A
 + 2d

B
and d

D
 = d

E
 – (d

B
 – d

C
)

Since the number of teeth are proportional to their pitch circle diameters for the same module,

therefore

T
E 

= T
A 

+ 2T
B 

= 12 + 2 × 30 = 72  Ans.

and T
D 

= T
E 

– (T
B 

– T
C
) = 72 – (30 – 14) = 56  Ans.

Magnitude and direction of angular velocities of arm OP and wheel E

The table of motions is drawn as follows :

Table 13.10. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Wheel A Compound Wheel D Wheel E

No. wheel B-C

1. 0 – 1
A

B

T

T
+

A C

B D

T T

T T
+ ×

A B

B E

T T

T T
+ ×

A

E

T

T
= +

 2. 0 – x
A

B

T
x

T
+ ×

A C

B D

T T
x

T T
+ × ×

A

E

T
x

T
+ ×

3. – y – y – y – y – y

4. – y – x – y
A

B

–
T

x y
T

×
A C

B D

–
T T

x y
T T

× ×
A

E

–
T

x y
T

×

Fig. 13.15

Arm fixed A  rotated through

– 1 revolution (i.e. 1 revolu-

tion clockwise)

Arm fixed-wheel A  rotated

through – x revolutions

Add – y revolutions to all ele-

ments

Total motion
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Since the wheel A  makes 1 r.p.s. clockwise, therefore from the fourth row of the table,

– x – y = – 1 or x + y = 1 ...(i)

Also, the wheel D makes 5 r.p.s. counter clockwise, therefore

CA

B D

– 5
TT

x y
T T

× × = or 12 14
– 5

30 56
x y× × =

∴ 0.1 x – y = 5 ...(ii)

From equations (i) and (ii),

x = 5.45 and y = – 4.45

∴ Angular velocity of arm OP

          = – y = –(– 4.45) = 4.45 r.p.s

= 4.45 × 2 π = 27.964 rad/s (counter clockwise) Ans.

and angular velocity of wheel A

E

12
– 5.45 – (– 4.45) 5.36 r.p.s.

72

T
E x y

T
= × = × =

= 5.36 × 2 π = 33.68 rad/s (counter clockwise)  Ans.

Example 13.12. An internal wheel B with 80 teeth is keyed to a shaft F. A fixed internal

wheel C with 82 teeth is concentric

with B. A compound wheel D-E

gears with the two internal wheels;

D has 28 teeth and gears with C

while E gears with B. The compound

wheels revolve freely on a pin which

projects from a disc keyed to a shaft

A co-axial with F. If the wheels have

the same pitch and the shaft A makes

800 r.p.m., what is the speed of the

shaft F ? Sketch the arrangement.

Solution. Given : T
B 

= 80 ; T
C

= 82 ; T
D 

= 28 ; N
A 

= 500 r.p.m.

The arrangement is shown in Fig. 13.16.

Fig. 13.16

First of all, let us find out the number of teeth on wheel E (T
E
). Let d

B 
, d

C 
, d

D 
and d

E 
be the

pitch circle diameter of wheels B, C, D and E respectively. From the geometry of the figure,

d
B 

= d
C 

– (d
D 

– d
E 

)

Helicopter
Note : This picture is given as additional information and is not a

direct example of the current chapter.



452  �   Theory of Machines

or d
E 

= d
B 

+ d
D 

– d
C

Since the number of teeth are proportional to their pitch circle diameters for the same pitch,

therefore

T
E 

= T
B 

+ T
D 

– T
C 

= 80 + 28 – 82 = 26

The table of motions is given below :

Table 13.11. Table of motions.

Revolutions of elements

Step Conditions of motion Arm (or Wheel B (or Compound Wheel C

No. shaft A) shaft F)  gear D-E

1. 0 + 1
B

E

T

T
+

B D

E C

T T

T T
+ ×

2. 0 + x
B

E

T
x

T
+ ×

B D

E C

T T
x

T T
+ × ×

3. + y + y + y + y

4. + y x + y
B

E

T
y x

T
+ ×

B D

E C

T T
y x

T T
+ × ×

Since the wheel C is fixed, therefore from the fourth row of the table,

B D

E C

0
T T

y x
T T

+ × × = or
80 28

0
26 82

y x+ × × =

∴ y + 1.05 x = 0 ...(i)

Also, the shaft A  (or the arm) makes 800 r.p.m., therefore from the fourth row of the table,

y = 800 ...(ii)

From equations (i) and (ii),

x = – 762

∴ Speed of shaft F = Speed of wheel B = x + y = – 762 + 800 = + 38 r.p.m.

= 38 r.p.m. (anticlockwise) Ans.

Example 13.13. Fig. 13.17 shows an epicyclic gear

train known as Ferguson’s paradox. Gear A is fixed to the

frame and is, therefore, stationary. The arm B and gears C

and D are free to rotate on the shaft S. Gears A, C and D have

100, 101 and 99 teeth respectively. The planet gear has 20

teeth. The pitch circle diameters of all are the same so that the

planet gear P meshes with all of them. Determine the

revolutions of gears C and D for one revolution of the arm B.

Solution. Given : T
A 

= 100 ; T
C 

= 101 ; T
D 

= 99 ;

T
P 

= 20 Fig. 13.17

Arm fixed - wheel B  rotated

through + 1 revolution (i.e. 1

revolution anticlockwise)

Arm fixed - wheel B  rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion
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The table of motions is given below :

Table 13.12. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm B Gear A Gear C Gear D

1. 0 + 1
A

C

T

T
+

A C A

C D D

T T T

T T T
+ × = +

2. 0 + x
A

C

T
x

T
+ ×

A

D

T
x

T
+ ×

3. + y + y + y + y

4. + y x + y
A

C

T
y x

T
+ ×

A

D

T
y x

T
+ ×

The arm B makes one revolution, therefore

y = 1

Since the gear A  is fixed, therefore from the fourth row of the table,

x + y = 0 or x = – y = – 1

Let N
C 

and N
D  

= Revolutions of gears C and D respectively.

From the fourth row of the table, the revolutions of gear C,

A
C

C

100 1
1 – 1

101 101

T
N y x

T
= + × = × = + Ans.

and the revolutions of gear D,

A
D

D

100 1
1 –

99 99

T
N y x

T
= + × = = –  Ans.

From above we see that for one revolution of the arm B, the gear C rotates through 1/101

revolutions in the same direction and the gear D rotates through 1/99 revolutions in the opposite

direction.

Example 13.14. In the gear drive as shown in Fig.

13.18, the driving shaft A rotates at 300 r.p.m. in the clock-

wise direction, when seen from left hand. The shaft B is the

driven shaft. The casing C is held stationary. The wheels E

and H are keyed to the central vertical spindle and wheel F

can rotate freely on this spindle. The wheels K and L are

rigidly fixed to each other and rotate together freely on a

pin fitted on the underside of F. The wheel L meshes with

internal teeth on the casing C. The numbers of teeth on the

different wheels are indicated within brackets in Fig. 13.18.

Find the number of teeth on wheel C and the speed

and direction of rotation of shaft B.

Solution. Given : N
A 

= 300 r.p.m. (clockwise) ;

T
D 

= 40 ; T
B 

= 30 ; T
F 

= 50 ; T
G 

= 80 ; T
H 

= 40 ; T
K 

= 20 ; T
L 

= 30

In the arrangement shown in Fig. 13.18, the wheels D and G are auxillary gears and do not

form a part of the epicyclic gear train.

Fig. 13.18

Arm B fixed, gear A  rotated

through + 1 revolution (i.e. 1

revolution anticlockwise)

Arm B fixed, gear A  rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion
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Speed of wheel E, D
E A

E

40
300 400 r.p.m. (clockwise)

30

T
N N

T
= × = × =

Number of teeth on wheel C

Let T
C
 = Number of teeth on wheel C.

Assuming the same module for all teeth and since the pitch circle diameter is proportional to

the number of teeth ; therefore from the geometry of Fig.13.18,

T
C 

= T
H 

+ T
K 

+ T
L 

= 40 + 20 + 30 = 90 Ans.

Speed and direction of rotation of shaft B

The table of motions is given below. The wheel F acts as an arm.

Table 13.13. Table of motions.

Revolutions of elements

Step Conditions of motion Arm or Wheel E Wheel H Compound Wheel C

No. wheel F wheel K-L

1. 0 – 1
H

K

T

T
+

H L

K C

T T

T T
+ ×

2. 0 – x – x
H

K

T
x

T
+ ×

H L

K C

T T
x

T T
+ × ×

3. – y – y – y – y – y

4. – y – x – y – x – y
H

K

–
T

x y
T

×
H L

K C

–
T T

x y
T T

× ×

Since the speed of wheel E is 400 r.p.m. (clockwise), therefore from the fourth row of the table,

– x – y = – 400 or x + y = 400 ...(i)

Also the wheel C is fixed, therefore

                
H L

K C

– 0
T T

x y
T T

× × =

or                    
40 30

– 0
20 90

x y× × =

∴                        
2

– 0
3

x
y = ...(ii)

From equations (i) and (ii),

x = 240 and y = 160

∴ Speed of wheel F, N
F 

= – y = – 160 r.p.m.

Since the wheel F is in mesh with wheel G, therefore speed of wheel G or speed of shaft B

F
F

G

50
– – – 160 100 r.p.m.

80

T
N

T

 
= × = × = 

 

...(�  Wheel G will rotate in opposite direction  to that of wheel F.)

= 100 r.p.m. anticlockwise i.e. in opposite direction of

shaft A . Ans.

Arm  fixed-wheel  E

rotated through – 1

revolution (i.e. 1

revolution clockwise)

Arm fixed-wheel E

rotated through – x

revolutions

Add – y revolutions to

all elements

Total motion

– 1(� E and

H are on the

same shaft)
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Example 13.15. Fig. 13.19 shows a compound epicyclic gear in which the casing C contains

an epicyclic train and this casing is inside the larger casing D.

Determine the velocity ratio of the output shaft B to the input shaft A when the casing D is

held stationary. The number of teeth on various wheels are as follows :

Wheel on A = 80 ; Annular wheel on B = 160 ; Annular wheel on C = 100 ; Annular wheel

on D = 120 ; Small pinion on F = 20 ; Large pinion on F = 66.

Fig. 13.19

Solution. Given : T
1 

= 80 ;  T
8
 = 160 ;  T

4 
= 100;  T

3 
= 120 ;  T

6 
= 20 ;  T

7 
= 66

First of all, let us consider the train of wheel 1 (on A ), wheel 2 (on E), annular wheel 3 (on D)

and the arm i.e. casing C. Since the pitch circle diameters of wheels are proportional to the number of

teeth, therefore from the geometry of Fig. 13.19,

T
1 

+ 2 T
2 

= T
3

or 80 + 2 T
2 

= 120

∴ T
2 

= 20

The table of motions for the train considered is given below :

Table 13.14. Table of motions.

Revolutions of elements

Step No. Conditons of motion Arm Wheel 1 Wheel 2 Wheel 3

1. 0 + 1
1

2

–
T

T

1 2 1

2 3 3

– –
T T T

T T T
× =

2. 0 + x
1

2

–
T

x
T

×
1

3

–
T

x
T

×

3. + y + y + y + y

4. y x + y
1

2

–
T

y x
T

×
1

3

–
T

y x
T

×

Arm fixed - wheel 1 rotated

through + 1 revolution

(anticlockwise)

Arm fixed - wheel 1 rotated

through + x revolutions

Add + y   revolutions to all

elements

Total motion
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Let us assume that wheel 1 makes 1 r.p.s. anticlockwise.

∴ x + y = 1 ...(i)

Also the wheel 3 is stationary, therefore from the fourth row of the table,

1

3

– 0
T

y x
T

× = or
80

– 0
120

y x × =

∴
2

– 0
3

y x = ...(ii)

From equations (i) and (ii), x = 0.6,   and y = 0.4

∴  Speed of arm or casing  C = y = 0.4  r.p.s.

and speed of wheel 2 or arm E
1

2

80
– 0.4 – 0.6 – 2 r.p.s.

20

T
y x

T
= × = × =

= 2 r.p.s. (clockwise)

Let us now consider the train of annular wheel 4 (on C), wheel 5 (on E), wheel 6 (on F) and

arm E. We know that

T
6 

+ 2 T
5  

= T
4

or 20 + 2 T
5 

= 100

∴ T
5 

= 40

The table of motions is given below :

Table 13.15. Table of motions.

Revolutions of elements

Step Conditions of motion Arm E or Wheel 6 Wheel 5 Wheel 4

No. wheel 2

1. 0 + 1
6

5

–
T

T

6 5 6

5 4 4

– –
T T T

T T T
× =

2. 0 x
1

6
1

5

–
T

x
T

×
6

1
4

–
T

x
T

×

3. + y
1

+ y
1

+ y
1

+ y
1

4. + y
1

x
1 
+ y

1

6
1 1

5

–
T

y x
T

×
6

1 1
4

–
T

y x
T

×

We know that speed of arm E = Speed of wheel 2 in the first train

∴ y
1 

= – 2 ...(iii)

             Also speed of wheel 4 = Speed of arm or casing C in the first train

∴
6

1 1

4

– 0.4
T

y x
T

× = or 1

20
–2 – 0.4

100
x × = ...(iv)

or 1

100
(–2 – 0.4) –12

20
x = =

Arm  fixed, wheel  6  rotated

through + 1 revolution

Arm  fixed, wheel  6  rotated

through + x
1 

revolutions

Add + y
1 

revolutions to all

elements

Total motion
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∴ Speed of wheel 6 (or F)

= x
1 

+ y
1 

= – 12 – 2 = – 14 r.p.s. = 14 r.p.s. (clockwise)

Now consider the train of wheels 6 and 7 (both on F), annular wheel 8 (on B) and the arm i.e.

casing C. The table of motions is given below :

Table 13.16. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Wheel 8 Wheel 7

1. 0 + 1
8

7

T

T
+

2. 0 + x
2

8
2

7

T
x

T
+ ×

3. + y
2

+ y
2

+ y
2

4. y
2

x
2 
+ y

2

8
2 2

7

T
y x

T
+ ×

We know that the speed of C in the first train is 0.4 r.p.s., therefore

y
2 

= 0.4 ...(v)

Also the speed of wheel 7 is equal to the speed of F or wheel 6 in the second train, therefore

8
2 2

7

–14
T

y x
T

+ × = or
2

160
0.4 –14

66
x+ × = ...(vi)

∴ 2

66
( 14 0.4) 5.94

160
x = − − = −

∴ Speed of wheel 8 or of the shaft B

x
2 

+ y
2 

= – 5.94 + 0.4 = – 5.54 r.p.s. = 5.54 r.p.s. (clockwise)

We have already assumed that the speed of wheel 1 or the shaft A  is 1 r.p.s. anticlockwise

∴ Velocity ratio of the output shaft B to the input shaft A

= – 5.54 Ans.

Note : The – ve sign shows that the two shafts A  and B rotate in opposite directions.

13.10. Epicyclic Gear Train with Bevel Gears

The bevel gears are used to make a more compact epicyclic system and they permit a very

high speed reduction with few gears. The useful application of the epicyclic gear train with bevel

gears is found in Humpage’s speed reduction gear and differential gear of an automobile as discussed

below :

1. Humpage’s speed reduction gear. The Humpage’s speed reduction gear was originally

designed as a substitute for back gearing of a lathe, but its use is now considerably extended to all

kinds of workshop machines and also in electrical machinery. In Humpage’s speed reduction gear, as

shown in Fig. 13.20, the driving shaft X  and the driven shaft Y  are co-axial. The driving shaft carries

a bevel gear A  and driven shaft carries a bevel gear E. The bevel gear B meshes with gear A  (also

known as pinion) and a fixed gear C. The gear E meshes with gear D which is compound with gear B.

Arm  fixed, wheel  8  rotated through

+ 1 revolution

Arm  fixed, wheel  8  rotated through

+ x
2 

revolutions

Add  + y
2  

revolutions  to  all

elements

Total motion



458  �   Theory of Machines

This compound gear B-D is mounted on the arm or spindle F which is rigidly connected with a hollow

sleeve G. The sleeve revolves freely loose on the axes of the driving and driven shafts.

Fig. 13.20. Humpage’s speed reduction gear.

2. Differential gear of an automobile. The differential gear used in the rear drive of an

automobile is shown in Fig. 13.21. Its function is

(a) to transmit motion from the engine shaft to the rear driving wheels, and

(b) to rotate the rear wheels at different speeds while the automobile is taking a turn.

As long as the automobile is running on a straight path, the rear wheels are driven directly by

the engine and speed of both the wheels is same. But when the automobile is taking a turn, the outer

wheel will run faster than the * inner wheel because at that time the outer rear wheel has to cover more

distance than the inner rear wheel. This is achieved by epicyclic gear train with bevel gears as shown

in Fig. 13.21.

The bevel gear A  (known as pinion) is keyed to

the propeller shaft driven from the engine shaft through

universal coupling. This gear A  drives the gear B (known

as crown gear) which rotates freely on the axle P. Two

equal gears C and D are mounted on two separate parts P

and Q of the rear axles respectively. These gears, in turn,

mesh with equal pinions E and F which can rotate freely

on the spindle provided on the arm attached to gear B.

When the automobile runs on a straight path, the

gears C and D must rotate together. These gears are rotated

through the spindle on the gear B. The gears E and F do

not rotate on the spindle. But when the automobile is taking

a turn, the inner rear wheel should have lesser speed than

the outer rear wheel and due to relative speed of the inner and outer gears D and C, the gears E and F

start rotating about the spindle axis and at the same time revolve about the axle axis.

Due to this epicyclic effect, the speed of the inner rear wheel decreases by a certain amount

and the speed of the outer rear wheel increases, by the same amount. This may be well understood by

drawing the table of motions as follows :

Fig. 13.21. Differential gear of an automobile.

* This difficulty does not arise with the front wheels as they are greatly used for steering purposes and are

mounted on separate axles and can run freely at different speeds.
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Table 13.17. Table of motions.

Revolutions of elements

Step No. Conditions of motion Gear B Gear C Gear E Gear D

1. 0 + 1
C

E

T

T
+

C E

E D

– – 1
T T

T T
× =

( )C DT T=�

2. 0 + x
C

E

T
x

T
+ × –x

3. + y + y + y + y

4. + y x + y
C

E

T
y x

T
+ × –y x

From the table, we see that when the gear B, which derives motion from the engine shaft,

rotates at y revolutions, then the speed of inner gear D (or the rear axle Q) is less than y by x  revolu-

tions and the speed of the outer gear C (or the rear axle P) is greater than y by x revolutions. In other

words, the two parts of the rear axle and thus the two wheels rotate at two different speeds. We also

see from the table that the speed of gear B is the mean of speeds of the gears C and D.

Example 13.16. Two bevel gears A and B (having 40 teeth and 30 teeth) are rigidly mounted

on two co-axial shafts X and Y. A bevel gear C (having

50 teeth) meshes with A and B and rotates freely on one

end of an arm. At the other end of the arm is welded a

sleeve and the sleeve is riding freely loose on the axes of

the shafts X and Y. Sketch the arrangement.

If the shaft X rotates at 100  r.p.m. clockwise  and

arm rotates at 100 r.p.m.anitclockwise, find the

speed of shaft Y.

Solution. Given : T
A 

= 40 ; T
B 

= 30 ; T
C 

= 50 ; N
X

= N
A 

= 100 r.p.m. (clockwise) ; Speed of arm = 100 r.p.m.

(anticlockwise)

The arangement is shown in Fig. 13.22.

The table of motions is drawn as below :

Table 13.18. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Gear A Gear C Gear B

1. 0 + 1
A

C

T

T
±

A C A

C B B

– –
T T T

T T T
× =

2. 0 + x
A

C

T
x

T
± ×

A

B

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
A

C

T
y x

T
± ×

A

B

–
T

y x
T

×

Fig. 13.22

* The ± sign is given to the motion of the wheel C because it is in a different plane. So we cannot indicate the

direction of its motion specifically, i.e. either clockwise or anticlockwise.

Gear B fixed-Gear C rotated

through + 1 revolution (i.e.

1 revolution anticlockwise )

Gear B fixed-Gear C rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion

Arm B fixed, gear A  rotated

through + 1 revolution (i.e. 1

revolution anticlockwise)

Arm B fixed, gear A  rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion

*
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Since the speed of the arm is 100 r.p.m. anticlockwise, therefore from the fourth row of the

table,

y = + 100

Also, the speed of the driving shaft X  or gear A  is 100 r.p.m. clockwise.

∴ x + y = – 100 or x = – y – 100 = – 100 – 100 = – 200

∴ Speed of the driven shaft i.e. shaft Y ,

N
Y 

= Speed of gear A

B

40
– 100 – – 200

30

T
B y x

T

 
= × = × 

 

= + 366.7 r.p.m. = 366.7 r.p.m. (anticlockwise) Ans.

Example 13.17. In a gear train, as

shown in Fig. 13.23, gear B is connected to the

input shaft and gear F is connected to the output

shaft. The arm A carrying the compound wheels

D and E, turns freely on the output shaft. If the

input speed is 1000 r.p.m. counter- clockwise

when seen from the right, determine the speed of

the output shaft under the following conditions :

1. When gear C is fixed, and 2. when

gear C is rotated at 10 r.p.m. counter clockwise.

Solution. Given : T
B 

= 20 ; T
C 

= 80 ;

T
D 

= 60 ; T
E 

= 30 ; T
F 

= 32 ; N
B 

= 1000 r.p.m.

(counter-clockwise)

The table of motions is given below :

Table 13.19. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A Gear B Compound Gear C Gear F (or

No. (or input wheel D-E output shaft)

shaft)

1. 0 + 1
B

D

T

T
+

B D

D C

–
T T

T T
×

B E

D F

–
T T

T T
×

B

C

–
T

T
=

2. 0 + x
B

D

T
x

T
+ ×

B

C

–
T

x
T

×
B E

D F

–
T T

x
T T

× ×

3. + y + y + y + y + y

4. + y x + y
B

D

T
y x

T
+ ×

B

C

–
T

y x
T

×
B E

D F

–
T T

y x
T T

× ×

Fig. 13.23

Arm fixed, gear B rotated

through + 1 revolution (i.e.

1 revolution anticlockwise)

Arm fixed, gear B rotated

through + x revolutions

Add + y revolutions to all

elements

Total motion
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1. Speed of the output shaft when gear C is fixed

Since the gear C is fixed, therefore from the fourth row of the table,

B

C

– 0
T

y x
T

× = or 20
– 0

80
y x × =

∴ y – 0.25 x = 0 ...(i)

We know that the input speed (or the speed of gear B) is 1000 r.p.m. counter clockwise,

therefore from the fourth row of the table,

x + y = + 1000 ...(ii)

From equations (i) and (ii), x = + 800, and y = + 200

∴  Speed of output shaft = Speed of gear B E

D F

–
T T

F y x
T T

= × ×

20 30
200 – 800 200 – 187.5 12.5 r.p.m.

80 32
= × × = =

= 12.5 r.p.m. (counter clockwise) Ans.

2. Speed of the output shaft when gear C is rotated at  10 r.p.m. counter clockwise

Since the gear C is rotated at 10 r.p.m. counter clockwise, therefore from the fourth row of the table,

B

C

– 10
T

y x
T

× = + or
20

– 10
80

y x × =

∴ y – 0.25 x = 10 ...(iii)

From equations (ii) and (iii),

x = 792, and y = 208

∴   Speed of output shaft

= Speed of gear B E

D F

20 30
– 208 – 792

80 32

T T
F y x

T T
= × × = × ×

= 208 – 185.6 = 22.4 r.p.m. = 22.4 r.p.m. (counter clockwise)  Ans.

Example 13.18. Fig. 13.24 shows a differential

gear used in a motor car. The pinion A on the propeller

shaft has 12 teeth and gears with the crown gear B which

has 60 teeth. The shafts P and Q form the rear axles to

which the road wheels are attached. If the propeller

shaft rotates at 1000 r.p.m. and the road wheel attached

to axle Q has a speed of 210 r.p.m. while taking a turn,

find the speed of road wheel attached to axle P.

Solution. Given : T
A 

= 12 ; T
B 

= 60 ; N
A 

= 1000

r.p.m. ; N
Q 

= N
D 

= 210 r.p.m.

Since the propeller shaft or the pinion A  rotates at

1000 r.p.m., therefore speed of crown gear B,

                                  
A

B A

B

12
1000

60

T
N N

T
= × = ×

                                 = 200 r.p.m.

The table of motions is given below :

Fig. 13.24
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Table 13.20. Table of motions.

Revolutions of elements

Step No. Conditions of motion Gear B Gear C Gear E Gear D

1. 0 + 1
C

E

T

T
+

C E

E D

– – 1
T T

T T
× =

C D( )T T=�

2. 0 + x
C

E

T
x

T
+ × – x

3. + y + y + y + y

4. + y x + y
C

E

T
y x

T
+ ×

y – x

Since the speed of gear B is 200 r.p.m., therefore from the fourth row of the table,

y = 200 ...(i)

Also, the speed of road wheel attached to axle Q or the speed of gear D is 210 r.p.m., there-

fore from the fourth row of the table,

y – x = 210 or x = y – 210 = 200 – 210 = – 10

∴  Speed of road wheel attached to axle P

= Speed of gear C = x + y

= – 10 + 200 = 190 r.p.m. Ans.

13.11. Torques in Epicyclic Gear Trains

Fig. 13.25. Torques in epicyclic gear trains.

When the rotating parts of an epicyclic gear train, as shown in Fig. 13.25, have no angular

acceleration, the gear train is kept in equilibrium by the three externally applied torques, viz.

1. Input torque on the driving member (T
1
),

2. Output torque or resisting or load torque on the driven member (T
2
),

3. Holding or braking or fixing torque on the fixed member (T
3
).

Gear B fixed-Gear C rotated

through + 1 revolution (i.e. 1

revolution anticlockwise)

Gear B  fixed-Gear C rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion
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The net torque applied to the gear train must be zero. In other words,

T
1 

+ T
2 

+ T
3 

 = 0 ...(i)

∴ F
1
.r

1 
+ F

2
.r

2 
+ F

3
.r

3 
= 0 ...(ii)

where F
1
, F

2 
and F

3 
are the corresponding externally applied forces at radii r

1
, r

2 
and r

3
.

Further, if ω
1
, ω

2 
and ω

3 
are the angular speeds of the driving, driven and fixed members

respectively, and the friction be neglected, then the net kinetic energy dissipated by the gear train

must be zero, i.e.

T
1
.ω

1 
+ T

2
.ω

2 
+ T

3
.ω

3 
= 0 ...(iii)

But, for a fixed member, ω
3 

= 0

∴ T
1
.ω

1 
+ T

2
.ω

2 
= 0 ...(iv)

Notes : 1. From equations (i) and (iv), the holding or braking torque T
3 

may be obtained as follows :

1
2 1

2

–T T
ω

= ×
ω

...[From equation (iv)]

and T
3 

= – (T
1
+ T

2 
) ...[From equation (i)]

1 1
1 1

2 2

– 1 – 1
N

T T
N

   ω
= =   

ω   

2. When input shaft (or driving shaft) and output shaft (or driven shaft) rotate in the same direction,

then the input and output torques will be in opposite directions. Similarly, when the input and output shafts

rotate in opposite directions, then the input and output torques will be in the same direction.

Example 13.19. Fig. 13.26 shows an epicyclic gear train. Pinion

A has 15 teeth and is rigidly fixed to the motor shaft. The wheel B has 20

teeth and gears with A and also with the annular fixed wheel E. Pinion

C has 15 teeth and is integral with B (B, C being a compound gear

wheel). Gear C meshes with annular wheel D, which is keyed to the

machine shaft. The arm rotates about the same shaft on which A is fixed

and carries the compound wheel B, C. If the motor runs at 1000 r.p.m.,

find the speed of the machine shaft. Find the torque exerted on the

machine shaft, if the motor develops a torque of 100 N-m.

Solution. Given : T
A 

= 15 ; T
B 

= 20 ; T
C 

= 15 ; N
A 

= 1000 r.p.m.; Torque developed by motor (or

pinion A) = 100 N-m

First of all, let us find the number of teeth on wheels D and E. Let T
D 

and T
E 

be the number of

teeth on wheels D and E respectively. Let d
A

, d
B
, d

C
, d

D 
and d

E 
be the pitch circle diameters of wheels

A , B, C, D and E respectively. From the geometry of the figure,

d
E 

= d
A 

+ 2 d
B

and d
D 

= d
E 

– (d
B 

– d
C
)

Since the number of teeth are proportional to their pitch circle diameters, therefore,

T
E 

= T
A 

+ 2 T
B 

= 15 + 2 × 20 = 55

and T
D 

= T
E 

– (T
B 

– T
C
) = 55 – (20 – 15) = 50

Speed of the machine shaft

The table of motions is given below :

Fig. 13.26
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Table 13.21. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Pinion Compound Wheel D Wheel E

No. A wheel B-C

1. 0 + 1
A

B

–
T

T

A C

B D

–
T T

T T
×

A B A

B E E

T T T

T T T
− × = −

2. 0 + x
A

B

–
T

x
T

×
A C

B D

–
T T

x
T T

× ×
A

E

T
x

T
− ×

3. + y + y + y + y + y

4. + y x + y
A

B

–
T

y x
T

×
A C

B D

–
T T

y x
T T

× ×
A

E

T
y x

T
− ×

We know that the speed of the motor or the speed of the pinion A  is 1000 r.p.m.

Therefore

x + y = 1000 ...(i)

Also, the annular wheel E is fixed, therefore

A

E

– 0
T

y x
T

× = or
A

E

15
0.273

55

T
y x x x

T
= × = × = ...(ii)

From equations (i) and (ii),

x = 786 and y = 214

∴  Speed of machine shaft = Speed of wheel D,

CA
D

B D

15 15
– 214 – 786 37.15 r.p.m.

20 50

TT
N y x

T T
= × × = × × = +

= 37.15 r.p.m. (anticlockwise) Ans.

Torque exerted on the machine shaft

We know that

Torque developed by motor × Angular speed of motor

= Torque exerted on machine shaft

       × Angular speed of machine shaft

or                      100 × ω
A 

= Torque exerted on machine shaft × ω
D

∴  Torque exerted on machine shaft

A A

D D

1000
100 100 100 2692 N-m

37.15

N

N

ω
= × = × = × =

ω
Ans.

Arm fixed-pinion A

rotated through + 1

revolution

(anticlockwise)

Arm fixed-pinion A

rotated through + x

revolutions

Add + y revolutions to

all elements

Total motion
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Fig. 13.27

Example 13.20. An epicyclic gear train consists of a sun wheel

S, a stationary internal gear E and three identical planet wheels P

carried on a star- shaped planet carrier C. The size of different toothed

wheels are such that the planet carrier C rotates at 1/5th of the speed

of the sunwheel S. The minimum number of teeth on any wheel is 16.

The driving torque on the sun wheel is 100 N-m. Determine : 1. num-

ber of teeth on different wheels of the train, and 2. torque necessary to

keep the internal gear stationary.

Solution.  Given :     S
C

5

N
N =

1. Number of teeth on different wheels

The arrangement of the epicyclic gear train is shown in Fig. 13.27. Let T
S 

and T
E 

be the

number of teeth on the sun wheel S and the internal gear E respectively. The table of motions is

given below :

Table 13.22. Table of motions.

Revolutions of elements

Step Conditions of motion Planet Sun Planet Internal gear E

No. carrier C wheel S wheel P

1. 0 + 1
S

P

–
T

T

S P S

P E E

– –
T T T

T T T
× =

2. 0 + x
S

P

–
T

x
T

×
S

E

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
S

P

–
T

y x
T

×
S

E

–
T

y x
T

×

We know that when the sunwheel S makes 5 revolutions, the planet carrier C makes 1

revolution. Therefore from the fourth row of the table,

y = 1, and x + y = 5 or x = 5 – y = 5 – 1 = 4

Since the gear E is stationary, therefore from the fourth row of the table,

S

E

– 0
T

y x
T

× = or S

E

1 – 4 0
T

T
× = or S

E

1

4

T

T
=

∴ T
E
 = 4T

S

Since the minimum number of teeth on any wheel is 16, therefore let us take the number of

teeth on sunwheel, T
S 

= 16

∴ T
E 

= 4 T
S 

= 64 Ans.

Let d
S
, d

P 
and d

E 
be the pitch circle diameters of wheels S, P and E respectively. Now from the

geometry of Fig. 13.27,

d
S 

+ 2 d
P 

= d
E

Planet carrier C fixed, sunwheel S

rotates through + 1 revolution (i.e.

1 rev. anticlockwise)

Planet carrier C fixed, sunwheel S

rotates through + x revolutions

Add + y revolutions to all elements

Total  motion
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Assuming the module of all the gears to be same, the number of teeth are proportional to their

pitch circle diameters.

T
S 

+ 2 T
P
 = T

E
or 16 + 2 T

P 
= 64 or T

P 
= 24 Ans.

2. Torque necessary to keep the internal gear stationary

We know that

Torque on S × Angular speed of S

= Torque on C × Angular speed of C

100 × ω
S 

= Torque on C × ω
C

∴ Torque on S S

C C

100 100 100 5 500 N-m
N

C
N

ω
= × = × = × =

ω

∴ Torque necessary to keep the internal gear stationary

= 500 – 100 = 400 N-m Ans.

Example 13.21. In the epicyclic gear train, as

shown in Fig. 13.28, the driving gear A rotating in clock-

wise direction has 14 teeth and the fixed annular gear C

has 100 teeth. The ratio of teeth in gears E and D is 98 :

41. If 1.85 kW is supplied to the gear A rotating at 1200

r.p.m., find : 1. the speed and direction of rotation of gear

E, and 2. the fixing torque required at C, assuming 100

per cent efficiency throughout and that all teeth have the

same pitch.

Solution. Given : T
A 

= 14 ; T
C 

= 100 ; T
E
 / T

D

= 98 / 41 ; P
A 

= 1.85 kW = 1850 W ; N
A 

= 1200 r.p.m.

Let d
A

, d
B 

and d
C 

be the pitch circle diameters of gears A , B and C respectively. From Fig.

13.28,

d
A 

+ 2 d
B 

= d
C

Fig. 13.28

Gears are extensively used in trains for power transmission.
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Arm fixed-Gear A  rotated

through – 1 revolution (i.e.

1 revolution clockwise)

Arm fixed-Gear A  rotated

through – x revolutions

Add – y revolutions to all

elements

Total motion

Since teeth of all gears have the same pitch and the number of teeth are proportional to their

pitch circle diameters, therefore

T
A 

+ 2T
B
 = T

C
or

C A
B

– 100 – 14
43

2 2

T T
T = = =

The table of motions is now drawn as below :

Table 13.23. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear Compound Gear C Gear E

No. A gear B-D

1. 0 – 1
A

B

T

T
+

A B

B C

T T

T T
+ ×

A D

B E

T T

T T
+ ×

A

C

T

T
= +

2. 0 – x
A

B

T
x

T
+ ×

A

C

T
x

T
+ ×

A D

B E

T T
x

T T
+ × ×

3. – y – y – y – y – y

4. – y – y – x
A

B

–
T

y x
T

+ ×
A

C

–
T

y x
T

+ ×
A D

B E

–
T T

y x
T T

+ × ×

Since the annular gear C is fixed, therefore from the fourth row of the table,

A

C

– 0
T

y x
T

+ × = or
14

– 0
100

y x+ × =

∴ – y + 0.14 x = 0 ...(i)

Also, the gear A  is rotating at 1200 r.p.m., therefore

– x – y = 1200 ...(ii)

From equations (i) and (ii), x = – 1052.6, and y = – 147.4

1. Speed and direction of rotation of gear E

From the fourth row of the table, speed of gear E,

A D
E

B E

14 41
– 147.4 – 1052.6

43 98

T T
N y x

T T
= + × × = × ×

= 147.4 – 143.4 = 4 r.p.m.

= 4 r.p.m. (anticlockwise) Ans.

2. Fixing torque required at C

We know that torque on A  A

A

60 1850 60
14.7 N-m

2 2 1200

P

N

× ×
= = =

π π ×

Since the efficiency is 100 per cent throughout, therefore the power available at E (P
E
) will

be equal to power supplied at A  (P
A

).
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∴ Torque on E
A

E

60 1850 60
4416 N-m

2 2 4

P

N

× ×
= = =

π × π ×

∴ Fixing torque required at C

= 4416 – 14.7 = 4401.3 N-m Ans.

Example 13.22. An over drive for a vehicle consists of an

epicyclic gear train, as shown in Fig. 13.29, with compound planets

B-C. B has 15 teeth and meshes with an annulus A which has 60

teeth. C has 20 teeth and meshes with the sunwheel D which is fixed.

The annulus is keyed to the propeller shaft Y which rotates at 740

rad /s. The spider which carries the pins upon which the planets

revolve, is driven directly from main gear box by shaft X, this shaft

being relatively free to rotate with respect to wheel D. Find the

speed of shaft X, when all the teeth have the same module.

When the engine develops 130 kW, what is the holding

torque on the wheel D ? Assume 100 per cent efficiency

throughout.

Solution. Given : T
B 

= 15 ; T
A 

= 60 ; T
C 

= 20 ; ω
Y
 = ω

A
 = 740 rad /s ; P = 130 kW = 130 × 103 W

First of all, let us find the number of teeth on the sunwheel D (T
D

). Let d
A 

, d
B 

, d
C 

and d
D 

be

the pitch circle diameters of wheels A , B, C and D respectively. From Fig. 13.29,

CD B A

2 2 2 2

dd d d
+ + = or d

D 
+ d

C 
+ d

B 
= d

A

Since the module is same for all teeth and the number of teeth are proportional to their pitch

circle diameters, therefore

T
D 

+ T
C 

+ T
B 

= T
A

or T
D 

= T
A 

– (T
C 

+ T
B
) = 60 – (20 + 15) = 25

The table of motions is given below :

Table 13.24. Table of motions.

Revolutions of elements

Step Conditions of motion Arm (or Wheel D Compound Wheel A

No. shaft X) wheel C-B (or shaft Y)

1. 0 + 1
D

C

–
T

T

D B

C A

–
T T

T T
×

2. 0 + x
D

C

–
T

x
T

×
D B

C A

–
T T

x
T T

× ×

3. + y + y + y + y

4. + y x + y
D

C

–
T

y x
T

×
D B

C A

–
T T

y x
T T

× ×

Since the shaft Y  or wheel A  rotates at 740 rad/s, therefore

D B

C A

– 740
T T

y x
T T

× × = or
25 15

– 740
20 60

y x × × =

y – 0.3125 x = 740 ...(i)

Arm  fixed-wheel D rotated

through + 1 revolution

(anticlockwise)

Arm  fixed-wheel D rotated

through + x revolutions

Add + y revolutions to all ele-

ments

Total motion

Fig. 13.29
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Also the wheel D is  fixed, therefore

x + y = 0 or y = – x ...(ii)

From equations (i) and (ii),

x = – 563.8 and y = 563.8

Speed of shaft X

Since the shaft X  will make the same number of revolutions as the arm, therefore

Speed of shaft X , ω
X 

= Speed of arm = y = 563.8 rad/s Ans.

Holding torque on wheel D

We know that torque on A  = P/ω
A 

= 130 × 103 / 740 = 175.7 N-m

and          Torque on  X = P/ω
X 

= 130 × 103/563.8 = 230.6 N-m

∴ Holding torque on wheel D

= 230.6 – 175.7 = 54.9 N-m Ans.

Example 13.23. Fig. 13.30 shows some details of a compound epicyclic gear drive where I

is the driving or input shaft and O is the driven or output shaft which carries two arms A and B

rigidly fixed to it. The arms carry planet wheels which mesh with annular wheels P and Q and the

sunwheels X and Y. The sun wheel X is a part of Q. Wheels Y and Z are fixed to the shaft I. Z engages

with a planet wheel carried on Q and this planet wheel engages the fixed annular wheel R. The

numbers of teeth on the wheels are :

P = 114, Q = 120, R = 120, X = 36, Y = 24 and Z = 30.

Fig. 13.30.

The driving shaft I makes 1500 r.p.m.clockwise looking from our right and the input at I is

7.5 kW.

1. Find the speed and direction of rotation of the driven shaft O and the wheel P.

2. If the mechanical efficiency of the drive is 80%, find the torque tending to rotate the fixed

wheel R.

Solution. Given : T
P 

=144 ; T
Q 

= 120 ; T
R 

= 120 ; T
X 

= 36 ; T
Y 

= 24 ; T
Z 

= 30 ; N
I 
= 1500

r.p.m. (clockwise) ; P = 7.5 kW = 7500 W ; η = 80% = 0.8

First of all, consider the train of wheels Z,R and Q (arm). The revolutions of various wheels

are shown in the following table.
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Arm fixed-wheel Z rotates through + 1

revolution (anticlockwise)

Arm fixed-wheel Z rotates through + x revo-

lutions

Add + y revolutions to all elements

Total motion

Table 13.25. Table of motions.

Revolutions of elements

Step No. Conditions of motion Q (Arm) Z (also I) R (Fixed)

1. 0 + 1
Z

R

–
T

T

2. 0 + x
Z

R

–
T

x
T

×

3. + y + y + y

4. + y x + y
Z

R

–
T

y x
T

×

Since the driving shaft I as well as wheel Z rotates at 1500 r.p.m. clockwise, therefore

x + y = – 1500 ...(i)

Also, the wheel R is fixed. Therefore

Z

R

– 0
T

y x
T

× = or
Z

R

30
0.25

120

T
y x x x

T
= × = × = ...(ii)

From equations (i) and (ii),

x = – 1200, and y = – 300

Now consider the train of wheels Y , Q, arm A , wheels P and X . The revolutions of various

elements are shown in the following table.

Table 13.26. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A, B Wheel Y Compound Wheel P

No. and Shaft O wheel Q-X

1. 0 + 1
Y

Q

–
T

T

Y X

Q P

T T

T T
+ ×

2. 0 + x
1

Y
1

Q

–
T

x
T

×
Y X

1
Q P

T T
x

T T
+ × ×

3. + y
1

+ y
1

+ y
1

+ y
1

4. + y
1

x
1 

+ y
1

Y
1 1

Q

–
T

y x
T

×
Y X

1 1
Q P

T T
y x

T T
+ × ×

Since the speed of compound wheel Q-X is same as that of Q, therefore

Y
1 1

Q

– – 300
T

y x y
T

× = =

or
1 1

24
– – 300

120
y x × =

Arm A  f ixed-wheel  Y

rotates through + 1

revolution (anticlockwise)

Arm A  fixed-wheel Y  rotates

through + x
1 
revolutions

Add + y
1 

revolutions to all

elements

Total motion
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∴ y
1 

= 0.2 x
1 

– 300 ...(iii)

Also Speed of wheel Y  =  Speed of wheel Z or shaft I

∴ x
1 

+ y
1 

= x + y = – 1500 ...(iv)

x
1 

+ 0.2 x
1 

– 300 = – 1500 ...[From equation (iii)]

1.2 x
1
= – 1500 + 300 = – 1200

or x
1 

= – 1200/1.2 = – 1000

and y
1 

= – 1500 – x
1 

= – 1500 + 1000 = – 500

1.  Speed and direction of the driven shaft O and the wheel P

Speed of the driven shaft O,

N
O 

= y
1 

= – 500 = 500 r.p.m. clockwise Ans.

and Speed of the wheel P, 
Y X

P 1 1

Q P

24 36
– 500 – 1000

120 144

T T
N y x

T T
= + × × = × ×

= – 550 = 550 r.p.m. clockwise Ans.

2.  Torque tending to rotate the fixed wheel R

We know that the torque on shaft I or input torque

1

1

60 7500 60
47.74 N-m

2 2 1500

P
T

N

× ×
= = =

π × π ×

and torque on shaft O or output torque,

2

O

60 0.8 7500 60
114.58 N-m

2 2 500

P
T

N

η × × × ×
= = =

π × π ×

Since the input and output shafts rotate in the same direction (i.e. clockwise), therefore input

and output torques will be in opposite direction.

∴ Torque tending to rotate the fixed wheel R

= T
2 

– T
1 

= 114.58 – 47.74 = 66.84 N-m  Ans.

Example 13.24. An epicyclic bevel gear train (known as Humpage’s reduction gear) is shown

in Fig. 13.31. It consists of a fixed wheel C, the

driving shaft X and the driven shaft Y. The compound

wheel B-D can revolve on a spindle F which can

turn freely about the axis X and Y.

Show that (i) if the ratio of tooth numbers

T
B 

/ T
D 

is greater than T
C 

/ T
E 

, the wheel E will ro-

tate in the same direction as wheel A, and (ii) if the

ratio T
B 

/ T
D 

is less than T
C 

/ T
E
, the direction of E is

reversed.

If the numbers of teeth on wheels A, B, C, D

and E are 34, 120, 150, 38 and 50 respectively and

7.5 kW is put into the shaft X at 500 r.p.m., what is

the output torque of the shaft Y, and what are the

forces (tangential to the pitch cones) at the contact

points between wheels D and E and between wheels B and C, if the module of all wheels is 3.5 mm ?

Solution. Given : T
A 

= 34 ; T
B 

= 120 ; T
C 

= 150 ; T
D 

= 38 ; T
E 

= 50 ; P
X 

= 7.5 kW = 7500 W ;

N
X 

= 500 r.p.m. ; m = 3.5 mm

Fig. 13.31
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Spindle fixed, wheel A

is rotated through + 1

revolution

Spindle fixed, wheel A

is rotated through + x

revolutions

Add + y revolutions to

all elements

Total motion

The table of motions is given below :

Table 13.27. Table of motions.

Revolutions of elements

Step Conditions of motion Spindle Wheel A Compound Wheel C Wheel E (or

No. F (or shaft X) wheel B-D shaft Y)

1. 0 + 1
A

B

T

T
+

A B

B C

T T

T T
− ×

A D

B E

T T

T T
− ×

A

C

–
T

T
=

2. 0 + x
A

B

T
x

T
+ ×

A

C

–
T

x
T

×
A D

B E

–
T T

x
T T

× ×

3. + y + y + y + y + y

4. + y x + y
A

B

T
y x

T
+ ×

A

C

–
T

y x
T

×
A D

B E

–
T T

y x
T T

× ×

Let us assume that the driving shaft X  rotates through 1 revolution anticlockwise, therefore

the wheel A will also rotate through 1 revolution anticlockwise.

∴ x + y = + 1 or y = 1 – x ...(i)

We also know that the wheel C is fixed, therefore

A

C

– 0
T

y x
T

× = or A

C

(1 – ) – 0
T

x x
T

× = ...[From equation (i)]

A

C

1 – 1 0
T

x
T

 
+ = 

 

or
C A

C

1
T T

x
T

 +
= 

 

and
C

C A

T
x

T T
=

+
...(ii)

From equation (i),

C A

C A C A

1 – 1 –
T T

y x
T T T T

= = =
+ +

...(iii)

We know that speed of wheel E,

CA D A A D
E

B E C A C A B E

– –
TT T T T T

N y x
T T T T T T T T

= × × = × ×
+ +

CA D

C A B E

1 –
TT T

T T T T

 
= × 

+  

...(iv)

and the speed of wheel A ,

N
A 

= x + y = + 1 revolution

(i)  If CB

D E

TT

T T
>  or T

B 
× T

E 
> T

C 
× T

D 
, then the equation (iv) will be positive. Therefore the

wheel E will rotate in the same direction as wheel A .  Ans.
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(ii)  If CB

D E

TT

T T
<  or T

B 
× T

E 
< T

C 
× T

D 
, then the equation (iv) will be negative. Therefore the

wheel E will rotate in the opposite direction as wheel A.  Ans.

Output torque of shaft Y

We know that the speed of the driving shaft X  (or wheel A ) or input speed is 500 r.p.m.,

therefore from the fourth row of the table,

x + y = 500 or y = 500 – x ...(v)

Since the wheel C is fixed, therefore

 A

C

– 0
T

y x
T

× = or 34
(500 – ) – 0

150
x x × = ...[From equation (v)]

∴  500 – x – 0.227 x = 0 or x = 500/1.227 = 407.5 r.p.m.

and                                           y = 500 – x = 500 – 407.5 = 92.5 r.p.m.

Since the speed of the driven or output shaft Y  (i.e. N
Y

) is equal to the speed of wheel E

(i.e. N
E
), therefore

                  
A D

Y E

B E

34 38
– 92.5 – 407.5

120 50

T T
N N y x

T T
= = × × = × ×

               = 92.5 – 87.75 = 4.75 r.p.m.

Assuming 100 per cent efficiency of the gear train, input power P
X 

is equal to output power

(P
Y

), i.e.

                P
Y 

= P
X 

= 7.5 kW = 7500 W

∴  Output torque of shaft Y ,

                  
Y

Y

60 7500 60
15 076 N-m 15.076 kN-m

2 2 4.75

P

N

× ×
= = = =

π π ×
 Ans.

Tangential force between wheels D and E

We know that the pitch circle radius of wheel E,

                 
E

E

3.5 50
87.5 mm 0.0875 m

2 2

m T
r

× ×
= = = =

∴  Tangential force between wheels D and E,

                  
Torque on wheel 15.076

172.3 kN
Pitch circle radius of wheel 0.0875

E

E
= = =  Ans.

...(∴ Torque on wheel E = Torque on shaft Y )

Tangential force between wheels B and C

We know that the input torque on shaft X  or on wheel A

                 
X

X

60 7500 60
143 N-m

2 2 500

P

N

× ×
= = =

π π ×

∴  Fixing torque on the fixed wheel C

                  = Torque on wheel E – Torque on wheel A

              = 15 076 – 143 = 14 933 N-m = 14.933  kN-m
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Pitch circle radius of wheel C,

                  
C

C

3.5 150
262.5 mm 0.2625 m

2 2

m T
r

× ×
= = = =

Tangential force between wheels B and C

                 
C

Fixing torque on wheel 14.933
57 kN

0.2625

C

r
= = = Ans.

EXERCISES

1. A compound train consists of six gears. The number of teeth on the gears are as follows :

Gear : A B C D E F

No. of teeth : 60 40 50 25 30 24

The gears B and C are on one shaft while the gears D and E are on another shaft. The gear A  drives gear

B, gear C drives gear D and gear E drives gear F. If the gear A  transmits 1.5 kW at 100 r.p.m. and the gear

train has an efficiency of 80 per cent, find the torque on gear F. [Ans. 30.55 N-m]

2. Two parallel shafts are to be connected by spur gearing. The approximate distance between the shafts

is 600 mm. If one shaft runs at 120 r.p.m. and the other at 360 r.p.m., find the number of teeth on each

wheel, if the module is 8 mm. Also determine the exact distance apart of the shafts.

[Ans. 114, 38 ; 608 mm]

3. In a reverted gear train, as shown in Fig. 13.32, two shafts A  and B are

in the same straight line and are geared together through an interme-

diate parallel shaft C. The gears connecting the shafts A  and C have a

module of 2 mm and those connecting the shafts C and B have a

module of 4.5 mm. The speed of shaft A  is to be about but greater than

12 times the speed of shaft B, and the ratio at each reduction is same.

Find suitable number of teeth for gears. The number of teeth of each

gear is to be a minimum but not less than 16. Also find the exact

velocity ratio and the distance of shaft C from A  and B.

                                          [Ans. 36, 126, 16, 56 ; 12.25 ; 162 mm]

4. In an epicyclic gear train, as shown in Fig.13.33, the number of teeth

on wheels A , B and C are 48, 24 and 50 respectively. If the arm rotates at 400 r.p.m., clockwise,

find : 1. Speed of wheel C when A  is fixed, and 2. Speed of wheel A  when C is fixed.

[Ans. 16 r.p.m. (clockwise) ; 16.67 (anticlockwise)]

Fig. 13.33 Fig. 13.34

Fig. 13.32
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5. In an epicyclic gear train, as shown in Fig. 13.34, the wheel C is keyed to the shaft B and wheel F is

keyed to shaft A . The wheels D and E rotate together on a pin fixed to the arm G. The number of teeth

on wheels C, D, E and F are 35, 65, 32 and 68 respectively.

If the shaft A  rotates at 60 r.p.m. and the shaft B rotates at 28 r.p.m. in the opposite direction, find

the speed and direction of rotation of arm G. [Ans. 90 r.p.m., in the same direction as shaft A]

6. An epicyclic gear train, as shown in Fig. 13.35, is composed of a fixed annular wheel A  having 150

teeth. The wheel A  is meshing with wheel B which drives wheel D through an idle wheel C, D being

concentric with A . The wheels B and C are carried on an arm which revolves clockwise at 100 r.p.m.

about the axis of A  and D. If the wheels B and D have 25 teeth and 40 teeth respectively, find the

number of teeth on C and the speed and sense of rotation of C. [Ans. 30 ; 600 r.p.m. clockwise]

                            

Fig. 13.35 Fig. 13.36

7. Fig. 13.36, shows an epicyclic gear train with the following details :

A  has 40 teeth external (fixed gear) ; B has 80 teeth internal ; C - D is a compound wheel having 20 and

50 teeth (external) respectively, E-F is a compound wheel having 20 and 40 teeth (external) respec-

tively, and G has 90 teeth (external).

The arm runs at 100 r.p.m. in clockwise direction. Determine the speeds for gears C, E, and B.

[Ans. 300 r.p.m. clockwise ; 400 r.p.m. anticlockwise ; 150 r.p.m. clockwise]

8. An epicyclic gear train, as shown in Fig. 13.37, has a sun wheel S of 30 teeth and two planet wheels

P-P of 50 teeth. The planet wheels mesh with the internal teeth of a fixed annulus A . The driving shaft

carrying the sunwheel, transmits 4 kW at 300 r.p.m. The driven shaft is connected to an arm which

carries the planet wheels. Determine the speed of the driven shaft and the torque transmitted, if the

overall efficiency is 95%. [Ans. 56.3 r.p.m. ; 644.5 N-m]

Fig. 13.37 Fig. 13.38

9. An epicyclic reduction gear, as shown in Fig. 13.38, has a shaft A  fixed to arm B. The arm B has a pin

fixed to its outer end and two gears C and E which are rigidly fixed, revolve on this pin. Gear C

meshes with annular wheel D and gear E with pinion F. G is the driver pulley and D is kept stationary.

The number of teeth are : D = 80 ; C = 10 ; E = 24 and F = 18.

If the pulley G runs at 200 r.p.m. ; find the speed of shaft A .

[Ans. 17.14 r.p.m. in the same direction as that of G]
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10. A reverted epicyclic gear train for a hoist block is shown in

Fig. 13.39. The arm E is keyed to the same shaft as the load

drum and the wheel A  is keyed to a second shaft which car-

ries a chain wheel, the chain being operated by hand. The

two shafts have common axis but can rotate independently.

The wheels B and C are compound and rotate together on a

pin carried at the end of arm E. The wheel D has internal

teeth and is fixed to the outer casing of the block so that it

does not rotate.

The wheels A  and B have 16 and 36 teeth respectively with a

module of 3 mm. The wheels C and D have a module of 4

mm. Find : 1. the number of teeth on wheels C and D when

the speed of A  is ten times the speed of arm E, both rotating

in the same sense, and 2. the speed of wheel D when the

wheel A  is fixed and the arm E rotates at 450 r.p.m.

anticlockwise.

[Ans. T
C 

= 13 ; T
D 

= 52 ; 500 r.p.m. anticlockwise]

11. A compound epicyclic gear is shown diagrammatically in Fig. 13.40. The gears A , D and E are free to

rotate on the axis P. The compound gear B and C rotate together on the axis Q at the end of arm F. All

the gears have equal pitch. The number of external teeth on the gears A , B and C are 18, 45 and 21

respectively. The gears D and E are annular gears. The gear A  rotates at 100 r.p.m. in the anticlockwise

direction and the gear D rotates at 450 r.p.m. clockwise. Find the speed and direction of the arm and

the gear E. [Ans. 400 r.p.m. clockwise ; 483.3 r.p.m. clockwise]

12. In an epicyclic gear train of the ‘sun and planet type’ as shown in Fig. 13.41, the pitch circle diameter

of the internally toothed ring D is to be 216 mm and the module 4 mm. When the ring D is stationary,

the spider A , which carries three planet wheels C of equal size, is to make one revolution in the same

sense as the sun wheel B for every five revolutions of the driving spindle carrying the sunwheel B.

Determine suitable number of teeth for all the wheels and the exact diameter of pitch circle of the ring.

[Ans. T
B 

= 14 , T
C 

= 21 , T
D 

= 56 ; 224 mm]

Fig. 13.40 Fig. 13.41

13. An epicyclic train is shown in Fig. 13.42. Internal gear A  is keyed to the driving shaft and has 30 teeth.

Compound wheel C and D of 20 and 22 teeth respectively are free to rotate on the pin fixed to the arm

P which is rigidly connected to the driven shaft. Internal gear B which has 32 teeth is fixed. If the

driving shaft runs at 60 r.p.m. clockwise, determine the speed of the driven shaft. What is the direction

of rotation of driven shaft with reference to driving shaft? [Ans. 1980 r.p.m. clockwise]

Fig. 13.39
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Fig. 13.42 Fig. 13.43

14. A shaft Y  is driven by a co-axial shaft X  by means of an epicyclic gear train, as shown in Fig. 13.43.

The wheel A  is keyed to X  and E to Y . The wheels B and D are compound and carried on an arm F

which can turn freely on the common axes of X  and Y . The wheel C is fixed. If the numbers of teeth

on A , B, C, D and E are respectively 20, 64, 80, 30 and 50 and the shaft X  makes 600 r.p.m.,

determine the speed in r.p.m. and sense of rotation of the shaft Y .

[Ans. 30 r.p.m. in the same sense as shaft X]

15. An epicyclic bevel gear train, as shown in Fig. 13.44, has fixed gear B meshing with pinion C. The

gear E on the driven shaft meshes with the pinion D. The pinions C and D are keyed to a shaft,

which revolves in bearings on the arm A . The arm A  is keyed to the driving shaft. The number of

teeth are : T
B 

= 75, T
C 

= 20, T
D 

= 18, and T
E 

= 70. Find the speed of the driven shaft, if 1. the driving

shaft makes 1000 r.p.m., and 2. the gear B turns in the same sense as the driving shaft at 400

r.p.m., the driving shaft still making 1000 r.p.m.

[Ans. 421.4 r.p.m. in the same direction as driving shaft]

16. The epicyclic gear train is shown in Fig. 13.45. The wheel D is held stationary by the shaft A  and the

arm B is rotated at 200 r.p.m. The wheels E (20 teeth) and F (40 teeth) are fixed together and rotate

freely on the pin carried by the arm. The wheel G (30 teeth) is rigidly attached to the shaft C. Find the

speed of shaft C stating the direction of rotation to that of B.

If the gearing transmits 7.5 kW, what will be the torque required to hold the shaft A  stationary, neglect-

ing all friction losses?

[Ans. 466.7 r.p.m. in opposite direction of B; 511.5 N-m in opposite direction of B]

Fig. 13.44 Fig. 13.45

17. An epicyclic gear train, as shown in Fig. 13.46, consists of two sunwheels A  and D with 28 and 24

teeth respectively, engaged with a compound planet wheels B and C with 22 and 26 teeth. The sunwheel
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D is keyed to the driven shaft and the sunwheel A  is a fixed wheel co-axial with the driven shaft. The

planet wheels are carried on an arm E from the driving shaft which is co-axial with the driven shaft.

Find the velocity ratio of gear train. If 0.75 kW is transmitted and input speed being 100 r.p.m.,

determine the torque required to hold the sunwheel A . [Ans. 2.64 ; 260.6 N-m]

Fig. 13.46 Fig. 13.47

18. In the epicyclic reduction gear, as shown in Fig. 13.47, the sunwheel D has 20 teeth and is keyed

to the input shaft. Two planet wheels B , each having 50 teeth, gear with wheel D and are carried

by an arm A  fixed to the output shaft. The wheels B  also mesh with an internal gear C which is

fixed. The input shaft rotates at 2100 r.p.m. Determine the speed of the output shaft and the torque

required to fix C when the gears are transmitting 30 kW.

[Ans. 300 r.p.m. in the same sense as the input shaft ; 818.8 N-m]

19. An epicyclic gear train for an electric motor is shown in Fig. 13.48. The wheel S has 15 teeth and is

fixed to the motor shaft rotating at 1450 r.p.m. The planet P has 45 teeth, gears with fixed annulus A

and rotates on a spindle carried by an arm which is fixed to the output shaft. The planet P also gears

with the sun wheel S. Find the speed of the output shaft. If the motor is transmitting 1.5 kW,  find the

torque required to fix the annulus A . [Ans. 181.3 r.p.m. ; 69.14 N-m]

Fig. 13.48 Fig. 13.49

20. An epicyclic gear consists of bevel wheels as shown in Fig. 13.49. The driving pinion A  has 20 teeth

and meshes with the wheel B which has 25 teeth. The wheels B and C are fixed together and turn freely

on the shaft F. The shaft F can rotate freely about the main axis X X. The wheel C has 50 teeth and

meshes with wheels D and E, each of which has 60 teeth. Find the speed and direction of E when A

rotates at 200 r.p.m., if

1. D is fixed, and 2. D rotates at 100 r.p.m., in the same direction as A .

In both the cases, find the ratio of the torques transmitted by the shafts of the wheels A  and E, the

friction being neglected.

[Ans. 800 r.p.m. in the opposite direction of A  ; 300 r.p.m. in the opposite

direction of A  ; 4 ; 1.5]
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DO YOU KNOW ?
1. What do you understand by ‘gear train’? Discuss the various types of gear trains.

2. Explain briefly the differences between simple, compound, and epicyclic gear trains. What are the

special advantages of epicyclic gear trains ?

3. Explain the procedure adopted for designing the spur wheels.

4. How the velocity ratio of epicyclic gear train is obtained by tabular method?

5. Explain with a neat sketch the ‘sun and planet wheel’.

6. What are the various types of the torques in an epicyclic gear train ?

OBJECTIVE TYPE QUESTIONS
1. In a simple gear train, if the number of idle gears is odd, then the motion of driven gear will

(a) be same as that of driving gear

(b) be opposite as that of driving gear

(c) depend upon the number of teeth on the driving gear

(d) none of the above

2. The train value of a gear train is

(a) equal to velocity ratio of a gear train (b) reciprocal of velocity ratio of a gear train

(c) always greater than unity (d) always less than unity

3. When the axes of first and last gear are co-axial, then gear train is known as

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

4. In a clock mechanism, the gear train used to connect minute hand to hour hand, is

(a) epicyclic gear train (b) reverted gear train

(c) compound gear train (d) simple gear train

5. In a gear train, when the axes of the shafts, over which the gears are mounted, move relative to a fixed

axis, is called

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

6. A differential gear in an automobile is a

(a) simple gear train (b) epicyclic gear train

(c) compound gear train (d) none of these

7. A differential gear in automobilies is used to

(a) reduce speed (b) assist in changing speed

(c) provide jerk-free movement of vehicle (d) help in turning

ANSWERS

1. (a) 2. (b) 3. (c) 4. (b) 5. (d)

6. (b) 7. (d)

GO To FIRST
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14.1.14.1.14.1.14.1.14.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have already discussed that,

1.  When a body moves along a curved path with a

uniform linear velocity, a force in the direction of centripetal

acceleration (known as centripetal force)  has to be applied

externally over the body, so that it moves along the required

curved path. This external force applied is known as active

force.

2.  When a body, itself, is moving with uniform lin-

ear velocity along a circular path, it is subjected to the cen-

trifugal force* radially outwards. This centrifugal force is

called reactive force. The action of the reactive or centrifu-

gal force is to tilt or move the body along radially outward

direction.

Note: Whenever the effect of any force or couple over a moving or

rotating body is to be considered, it should be with respect to the

reactive force or couple and not with respect  to active force or

couple.

* Centrifugal force is equal in magnitude to centripetal force but

opposite in direction.

CONTENTS

CONTENTS
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14.2. Precessional Angular Motion

We have already discussed that the angular acceleration is the rate of change of angular

velocity with respect to time. It is a vector quantity and may be represented by drawing a vector

diagram with the help of right hand screw rule (see chapter 2, Art. 2.13).

Fig. 14.1.  Precessional angular motion.

Consider a disc, as shown in Fig. 14.1 (a), revolving or spinning about the axis OX (known as

axis of spin) in anticlockwise when seen from the front, with an angular velocity ω in a plane at right

angles to the paper.

After a short interval of time δt, let the disc be spinning about the new axis of spin OX ′ (at an

angle δθ) with an angular velocity (ω + δω). Using the right hand screw rule, initial angular velocity

of the disc (ω) is represented by vector ox; and the final angular velocity of the disc (ω + δω) is

represented by vector ox′ as shown in Fig. 14.1 (b). The vector xx′ represents the change of angular

velocity in time δt i.e. the angular acceleration of the disc. This may be resolved into two components,

one parallel to ox and the other perpendicular to ox.

Component of angular acceleration in the direction of ox,

– cos –
t

xr or ox ox ox

t t t

′ δθ
α = = =

δ δ δ

( ) cos – cos cos –

t t

ω + δω δθ ω ω δθ + δω δθ ω
= =

δ δ

Since δθ is very small, therefore substituting cos δθ = 1, we have

–
t

t t

ω + δω ω δω
α = =

δ δ

Gyroscopic inertia prevents a spinning top from falling sideways.

Spin axis Input axis

Gyorscope

will resist

movement

in these

directions

Output axis

Gimbals

Wheel

Axle
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In the limit, when 0tδ → ,

0
Lt

t
t

d

t dtδ →

δω ω 
α = = 

δ 

Component of angular acceleration in the direction perpendicular to ox,

sin ( )sin sin .sin
c

rx ox

t t t t

′ ′ δθ ω + δω δθ ω δθ + δω δθ
α = = = =

δ δ δ δ

Since δθ in very small, therefore substituting sin δθ = δθ, we have

. . .
c

t t

ω δθ + δω δθ ω δθ
α = =

δ δ

...(Neglecting δω.δθ, being very small)

In the limit when δt → 0,

P
0

.
Lt .

c
t

d

t dtδ →

ω δθ θ
α = = ω × = ω ω

δ
... PSubstituting

d

dt

θ 
= ω 

 

∴  Total angular acceleration of the disc

= vector xx′ = vector sum of  α
t 
and α

c

P.
d d d

dt dt dt

ω θ ω
= + ω × = + ω ω

where dθ/dt is the angular velocity of the axis of spin about a certain axis, which is perpendicular to

the plane in which the axis of spin is going to rotate. This angular velocity of the axis of spin (i.e.

dθ/dt) is known as angular velocity of precession  and is denoted by ω
P
. The axis, about which the

axis of spin is to turn, is known as axis of precession. The angular motion of the axis of spin about the

axis of precession is known as precessional angular motion.

Notes:1. The axis of precession is perpendicular to the plane in which the axis of spin is going to rotate.

2.  If the angular velocity of the disc remains constant at all positions of the axis of spin, then dθ/dt is

zero; and thus α
c
 is zero.

3. If the angular velocity of the disc changes the direction, but remains constant in magnitude, then

angular acceleration of the disc is given by

α
c

= ω.dθ/dt = ω.ω
P

     The angular acceleration α
c
 is known as gyroscopic acceleration.

This experimental car burns hydrogen fuel in an ordinary piston engine. Its exhaust gases cause no pollution,

because they contain only water vapour.

Engine

Evaporators change liquid

hydrogen to gas Fuel tank

Note : This picture is given as additional information and is not a direct example of the current chapter.
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14.3. Gyroscopic Couple

Consider a disc spinning with an angular velocity ω rad/s about the axis of spin OX, in

anticlockwise direction when seen from the front, as shown in Fig. 14.2 (a). Since the plane in which

the disc is rotating is parallel to the plane YOZ, therefore it is called plane of spinning. The plane

XOZ  is a horizontal plane and the axis of spin rotates in a plane parallel to the horizontal plane about

an axis O Y. In other words, the axis of spin is said to be rotating or processing about an axis O Y. In

other words, the axis of spin is said to be rotating or processing about an axis OY (which is perpendicular

to both the axes OX and OZ) at an angular velocity ω
P
 rap/s. This horizontal plane XOZ is called

plane of precession and O Y is the axis of precession.

Let I = Mass moment of inertia of the disc about OX, and

ω = Angular velocity of the disc.

∴  Angular momentum of the disc

= I.ω

Since the angular momentum is a vector quantity, therefore it may be represented by the

vector ox
→

, as shown in Fig. 14.2 (b). The axis of spin OX is also rotating anticlockwise when seen

from the top about the axis O Y. Let the axis OX is turned in the plane XOZ through a small angle δθ

radians to the position OX ′ , in time δt seconds. Assuming the angular velocity ω to be constant, the

angular momentum will now be represented by vector ox′.

Fig. 14.2.  Gyroscopic couple.

∴  Change in angular momentum

– .ox ox xx ox
→ → →→
′ ′= = = δθ ...(in the direction of xx

→

′ )

= I. ω.δθ

and rate of change of angular momentum

.I
dt

δθ
= ω ×

Since the rate of change of angular momentum will result by the application of a couple to the

disc, therefore the couple applied to the disc causing precession,

P
0

Lt . . . .
t

d
C I I I

t dtδ →

δθ θ
= ω × = ω × = ω ω

δ
... P

d

dt

θ 
= ω 

 
�
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where ω
P
 = Angular velocity of precession of the

axis of spin or the speed of rotation of the axis of

spin about the axis of precession O Y.

In S.I. units, the units of C is N-m when I is

in kg-m2.

It may be noted that

1.  The couple I.ω.ω
p
, in the direction of

the vector xx′ (representing the change in angular

momentum) is the active gyroscopic couple, which

has to be applied over the disc when the axis of

spin is made to rotate with angular velocity ω
P
 about

the axis of precession. The vector xx′ lies in the

plane XOZ or the horizontal plane. In case of a very

small displacement δθ, the vector x x′ will be

perpendicular to the vertical plane X O Y. Therefore

the couple causing this change in the angular

momentum will lie in the plane X O Y.  The vector

x x′, as shown in Fig. 14.2 (b), represents an

anticlockwise couple in the plane X O Y. Therefore, the plane XOY  is called the plane of active

gyroscopic couple and the axis OZ perpendicular to the plane X O Y, about which the couple acts, is

called the axis of active gyroscopic couple.

2.  When the axis of spin itself moves with angular velocity ω
P
, the disc is subjected to

reactive couple whose magnitude is same (i.e. I. ω.ω
P
) but opposite in direction to that of active

couple. This reactive couple to which the disc is subjected when the axis of spin rotates about the axis

of precession is known as reactive gyroscopic couple. The axis of the reactive gyroscopic couple is

represented by OZ′ in Fig. 14.2 (a).

3.  The gyroscopic couple is usually applied through the bearings which support the shaft.

The bearings will resist equal and opposite couple.

4.  The gyroscopic principle is used in an instrument or toy known as gyroscope. The

gyroscopes are installed in ships in order to minimize the rolling and pitching effects of waves. They

are also used in aeroplanes, monorail cars, gyrocompasses etc.

Example 14.1. A uniform disc of diameter 300 mm and of mass 5 kg is mounted on one end

of an arm of length 600 mm. The other end of the arm is free to rotate in a universal bearing. If the

disc rotates about the arm with a speed of 300 r.p.m. clockwise,  looking from the front, with what

speed will it precess about the vertical axis?

Solution. Given: d = 300 mm or  r = 150 mm = 0.15 m ; m = 5 kg ; l =  600 mm = 0.6 m ;

N = 300 r.p.m. or ω = 2π × 300/60 = 31.42 rad/s

We know that the mass moment of inertia of the disc, about an axis through its centre of

gravity and perpendicular to the plane of disc,

I = m.r
2/2 = 5(0.15)2/2 = 0.056 kg-m2

and couple due to mass of disc,

C = m.g.l = 5 × 9.81 × 0.6 = 29.43 N-m

Let ω
P

= Speed of precession.

We know that couple (C),

29.43 = I.ω.ω
P
 = 0.056 × 31.42 × ω

P
 = 1.76 ω

P

∴ ω
P

= 29.43/1.76 = 16.7 rad/s Ans.

Above picture shows an aircraft propeller.

These rotors play role in gyroscopic couple.
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Example 14.2. A uniform disc of 150 mm diameter has a

mass of 5 kg. It is mounted centrally in bearings which maintain

its axle in a horizontal plane. The disc spins about it axle with a

constant speed of 1000 r.p.m. while the axle precesses uniformly

about the vertical at 60 r.p.m. The directions of rotation are as

shown in Fig. 14.3. If the distance between the bearings is 100

mm, find the resultant reaction at each bearing  due to the mass

and gyroscopic effects.

Solution. Given: d = 150 mm or r = 75 mm = 0.075 m ; m = 5 kg ; N = 1000 r.p.m. or

ω = 2π × 1000/60 = 104.7 rad/s (anticlockwise); N
P
 = 60 r.p.m. or ω

P
 = 2π × 60/60 = 6.284 rad/s

(anticlockwise); x = 100 mm = 0.1 m

We know that mass moment of inertia of the disc, about an axis through its centre of gravity

and perpendicular to the plane of disc,

I = m.r
2/2 = 5 (0.075)2/2 = 0.014 kg m2

∴  Gyroscopic couple acting on the disc,

C = I. ω. ω
P
 = 0.014 × 104.7 × 6.284 = 9.2 N-m

The direction of the reactive gyroscopic couple is shown in Fig.14.4 (b). Let F be the force at

each bearing due to the gyroscopic couple.

∴ F = C/x = 9.2/0.1 = 92 N

The force F will act in opposite directions at the bearings as shown in Fig. 14.4 (a). Now let

R
A

 and R
B
 be the reaction at the bearing A and B respectively due to the weight of the disc. Since the

disc is mounted centrally in bearings, therefore,

R
A

= R
B
 = 5/2 = 2.5 kg = 2.5 × 9.81 = 24.5 N

(a) (b)

Fig. 14.4

Resultant reaction at each bearing

Let R
A1

 and R
B1

= Resultant reaction at the bearings A and B respectively.

Since the reactive gyroscopic couple acts in clockwise direction when seen from the front,

therefore its effect is to increase the reaction on the left hand side bearing (i.e. A) and to decrease the

reaction on the right hand side bearing (i.e. B).

∴ R
A1

= F + R
A

 = 92 + 24.5 = 116.5 N (upwards)  Ans.

and R
B1

= F – R
B
 = 92 – 24.5 = 67.5 N (downwards) Ans.

Fig.  14.3
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14.4. Effect of the Gyroscopic Couple on an Aeroplane

The top and front view of an aeroplane are shown in Fig 14.5 (a). Let engine or propeller

rotates in the clockwise direction when seen from the rear or tail end and the aeroplane takes a turn to

the left.

Let ω = Angular velocity of the engine in rad/s,

m = Mass of the engine and the propeller in kg,

k = Its radius of gyration in metres,

I = Mass moment of inertia of the engine and the propeller in kg-m2

= m.k
2,

v = Linear velocity of the aeroplane in m/s,

R = Radius of curvature in metres, and

ω
P

= Angular velocity of precession 
v

R
=  rad/s

∴ Gyroscopic couple acting on the aeroplane,

C = I.ω.ω
P

Fig. 14.5.  Aeroplane taking a left turn.
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Before taking the left turn, the angular momentum vector is represented by ox. When it takes

left turn, the active gyroscopic couple will change the direction of the angular momentum vector from

ox to ox′ as shown in Fig. 14.6 (a). The vector xx′, in the limit, represents the change of angular

momentum or the active gyroscopic couple and is perpendicular to ox. Thus the plane of active

gyroscopic couple XOY  will be perpendicular to xx′ , i.e. vertical in this case, as shown in Fig 14.5

(b). By applying right hand screw rule to vector xx′, we find that the direction of active gyroscopic

couple is clockwise as shown in the front view of Fig. 14.5 (a). In other words, for left hand turning,

the active gyroscopic couple on the aeroplane in the axis OZ will be clockwise as shown in Fig. 14.5

(b).The reactive gyroscopic couple (equal in magnitude of active gyroscopic couple) will act in the

opposite direction (i.e. in the anticlockwise direction) and the effect of this couple is, therefore, to

raise the nose and dip the tail of the aeroplane.

(a)  Aeroplane taking left turn. (b)  Aeroplane taking right turn.

Fig. 14.6. Effect of gyroscopic couple on an aeroplane.

Notes :  1. When the aeroplane takes a right turn under similar conditions as discussed above, the effect of the

reactive gyroscopic couple will be to dip the nose and raise the tail of the aeroplane.

2.  When the engine or propeller rotates in anticlockwise direction when viewed from the rear or tail

end and the aeroplane takes a left turn, then the effect of reactive gyroscopic couple will be to dip the nose and

raise the tail of the aeroplane.

3.  When the aeroplane takes a right turn under similar conditions as mentioned in note 2 above, the

effect of reactive gyroscopic couple will be to raise the nose and dip the tail of the aeroplane.

4.  When the engine or propeller rotates in clockwise direction when viewed from the front and the

aeroplane takes a left turn, then the effect of reactive gyroscopic couple will be to raise the tail and dip the nose

of the aeroplane.

5.  When the aeroplane takes a right turn under similar conditions as mentioned in note 4-above, the

effect of reactive gyroscopic couple will be to raise the nose and dip the tail of the aeroplane.

Example 14.3. An aeroplane makes a complete half circle of 50 metres radius, towards left,

when flying at 200 km per hr. The rotary engine and the propeller of the plane has a mass of 400 kg

and a radius of gyration of 0.3 m. The engine rotates at 2400 r.p.m. clockwise when viewed from the

rear. Find the gyroscopic couple on the aircraft and state its effect on it.

Solution. Given : R = 50 m ; v  = 200 km/hr = 55.6 m/s ; m = 400 kg ;  k = 0.3 m ;

N = 2400 r.p.m. or ω = 2π × 2400/60 = 251 rad/s

We know that mass moment of inertia of the engine and the propeller,

I = m.k
2 = 400(0.3)2 = 36 kg-m2

and angular velocity of precession,

ω
P

= v/R
 
= 55.6/50 = 1.11 rad/s

We know that gyroscopic couple acting on the aircraft,

C = I. ω. ω
P
 = 36 × 251.4 × 1.11 = 100 46 N-m

= 10.046 kN-m Ans.

We have discussed in Art. 14.4 that when the aeroplane turns towards left, the effect of the

gyroscopic couple is to lift the nose upwards and tail downwards. Ans.
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14.5. Terms Used in a Naval Ship

The top and front views of a naval ship are shown in Fig 14.7. The fore end of the ship is

called bow  and the rear end is known as stern or aft. The left hand and right hand sides of the ship,

when viewed from the stern are called port and star-board respectively. We shall now discuss the

effect of gyroscopic couple on the naval ship in the following three cases:

1.  Steering,  2.  Pitching, and  3.  Rolling.

Fig. 14.7.  Terms used in a naval ship.

14.6. Effect of Gyroscopic Couple on a Naval Ship during Steering

Steering is the turning of a complete ship in a curve towards left or right, while it moves

forward. Consider the ship taking a left turn, and rotor rotates in the clockwise direction when viewed

from the stern, as shown in Fig. 14.8. The effect of gyroscopic couple on a naval ship during steering

taking left or right turn may be obtained in the similar way as for an aeroplane as discussed in Art.14.4.

Fig. 14.8.  Naval ship taking a left turn.

When the rotor of the ship rotates in the clockwise direction when viewed from the stern, it will have

its angular momentum vector in the direction ox as shown in Fig. 14.9 (a). As the ship steers to the

left, the active gyroscopic couple will change the angular momentum vector from ox to ox′. The

vector xx′ now represents the active gyroscopic couple and is perpendicular to ox. Thus the plane of

active gyroscopic couple is perpendicular to xx′ and its direction in the axis OZ for left hand turn is

clockwise as shown in Fig. 14.8. The reactive gyroscopic couple of the same magnitude will act in the
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opposite direction (i.e. in anticlockwise direction). The effect of this reactive gyroscopic couple is to

raise the bow and lower the stern.

Notes: 1.  When the ship

steers to the right under simi-

lar conditions as discussed

above, the effect of the reac-

tive gyroscopic couple, as

shown in Fig. 14.9 (b), will

be to raise the stern and

lower the bow.

2.  When the rotor rates in

the anticlockwise direction,

when viewed from the stern and the ship is steering to the

left, then the effect of reactive gyroscopic couple will be

to lower the bow and raise the stern.

3.  When the ship is steering to the right under similar

conditions as discussed in note 2 above, then the effect of

reactive gyroscopic couple will be to raise the bow and

lower the stern.

4.  When the rotor rotates in the clockwise direction when

viewed from the bow or fore end and the ship is steering

to the left, then the effect of reactive gyroscopic couple will be to raise the stern and lower the bow.

5.  When the ship is steering to the right under similar conditions as discussed in note 4 above, then the effect of

reactive gyroscopic couple will be to raise the bow and lower the stern.

6.  The effect of the reactive gyroscopic couple on a boat propelled by a turbine taking left or right turn is similar

as discussed above.

14.7. Effect of Gyroscopic Couple on a Naval Ship during Pitching

Pitching is the movement of a complete ship up and down in a vertical plane about transverse

axis, as shown in Fig. 14.10 (a). In this case, the transverse axis is the axis of precession. The pitching

of the ship is assumed to take place with simple harmonic motion i.e. the motion of the axis of spin

about transverse axis is simple harmonic.

Fig. 14.10.  Effect of gyroscopic couple on a naval ship during pitching.

Fig. 14.9.  Effect of gyroscopic couple on a naval ship during steering.
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∴∴∴∴∴  Angular displacement of the axis of spin from mean position after time t seconds,

θ = φ sin ω
1
. t

where φ = Amplitude of swing i.e. maximum angle turned from the mean

position in radians, and

ω
1

= Angular velocity of S.H.M.

2 2
rad/s

Time period of S.H.M. in seconds
p

t

π π
= =

Angular velocity of precession,

P 1 1 1( sin . ) cos
d d

t t
dt dt

θ
ω = = φ ω = φω ω

The angular velocity of precession will be maximum, if cos ω
1
.t = 1.

∴  Maximum angular velocity of precession,

ω
Pmax

= φ.ω
1
 = φ × 2π / t

p
...(Substituting cos ω

1
.t = 1)

Let I = Moment of inertia of the rotor in kg-m2, and

ω = Angular velocity of the rotor in rad/s.

∴ Mamimum gyroscopic couple,

C
max

= I. ω. ω
Pmax

When the pitching is upward, the effect of the reactive gyroscopic couple, as shown in Fig. 14.10

(b),  will try to move the ship toward star-board. On the other hand, if the pitching is downward, the effect

of the reactive gyroscopic couple, as shown in Fig. 14.10 (c), is to turn the ship towards port side.

Notes : 1.  The effect of the gyroscopic couple is always given on specific position of the axis of spin i.e.

whether it is pitching downwards or upwards.

2.  The pitching of  a ship produces forces on the bearings which act horizontally and perpendicular to

the motion of the ship.

3.  The maximum gyroscopic couple tends to shear the holding-down bolts.

4.  The angular acceleration during pitching,

2
2

1 12
– ( ) sin

d
t

dt

θ
α = = φ ω ω ... Differentiating with respect to

d
t

dt

θ 
 
 

    The angular acceleration is maximum, if sin ω
1
t = 1.

     ∴  Maximum angular acceleration during pitching,

       α
max

 = (ω
1
)2

Gryroscopic couple plays its role during ship’s turning and pitching.
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14.8. Effect of Gyroscopic Couple on a Naval Ship during Rolling

We know that, for the effect of gyroscopic couple to occur, the axis of precession should

always be perpendicular to the axis of spin. If, however, the axis of precession becomes parallel to the

axis  of spin, there will be no effect of the gyroscopic couple acting on the body of the ship.

In case of rolling of a ship, the axis of precession (i.e. longitudinal axis) is always parallel to

the axis of spin for all positions. Hence, there is no effect of the gyroscopic couple acting on the body

of a ship.

Example 14.4. The turbine rotor of a ship has a mass of 8 tonnes and a radius of gyration

0.6 m. It rotates at 1800 r.p.m. clockwise, when looking from the stern. Determine the gyroscopic

couple, if the ship travels at 100 km/hr and steer to the left in a curve of 75 m radius.

Solution. Given:  m = 8 t = 8000 kg ; k = 0.6 m ; N = 1800 r.p.m. or ω = 2π × 1800/60

= 188.5 rad/s ; v = 100 km/h = 27.8 m/s ; R = 75 m

We know that mass moment of inertia of the rotor,

I = m.k2 = 8000 (0.6)2 = 2880 kg-m2

and angular velocity of precession,

ω
P

= v / R = 27.8 / 75 = 0.37 rad/s

We know that gyroscopic couple,

C = I.ω.ω
P
= 2880 × 188.5 × 0.37 = 200 866 N-m

= 200.866 kN-m  Ans.

We have discussed in Art. 14.6, that when the rotor rotates in clockwise direction when

looking from the stern and the ship steers to the left, the effect of the reactive gyroscopic couple is to

raise the bow and lower the stern.

Example 14.5.  The heavy turbine

rotor of a sea vessel rotates at 1500 r.p.m.

clockwise looking from the stern, its mass

being 750 kg. The vessel pitches with an

angular velocity of 1 rad/s. Determine the

gyroscopic couple transmitted to the hull when

bow is rising, if the radius of gyration for the

rotor is 250 mm. Also show in what direction

the couple acts on the hull?

Solution. Given: N = 1500 r.p.m. or

ω = 2π × 1500/60 = 157.1 rad/s; m = 750 kg;

ω
P
 = 1 rad/s; k = 250 mm = 0.25 m

We know that mass moment of inertia

of the rotor,

I = m.k2 = 750 (0.25)2 = 46.875 kg-m2

∴  Gyroscopic couple transmitted to

the hull (i.e. body of the sea vessel),

C = I.ω.ω
P
 = 46.875 × 157.1 × 1= 7364 N-m = 7.364 kN-m

Ship’s propeller shown as a separate part. A ship’s

propeller is located at backside (stern) of the ship

below the water surface.
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We have discussed in Art. 14.7, that when the bow is rising i.e. when the pitching is upward,

the reactive gyroscopic couple acts in the clockwise direction which moves the sea vessel towards

star-board.

Example 14.6.  The turbine rotor of a ship has a mass of 3500 kg. It has a radius of gyration

of 0.45 m and a speed of 3000 r.p.m. clockwise when looking from stern. Determine the gyroscopic

couple and its effect upon the ship:

1.  when the ship is steering to the left on a curve of 100 m radius at a speed of 36 km/h.

2.  when the ship is pitching in a simple harmonic motion, the bow falling with its maximum

velocity. The period of pitching is 40 seconds and the total angular displacement between the two

extreme positions of pitching is 12 degrees.

Solution. Given : m = 3500 kg ; k = 0.45 m; N = 3000 r.p.m. or ω = 2π × 3000/60 = 314.2 rad/s

1.  When the ship is steering to the left

Given:       R =100 m ; v = km/h = 10 m/s

We know that mass moment of inertia of the rotor,

I = m.k
2 = 3500 (0.45)2 = 708.75 kg-m2

and angular velocity of precession,

ω
P

= v/R =
 
10/100 = 0.1 rad/s

∴  Gyroscopic couple,

C = I.ω.ω
P
 = 708.75 × 314.2 × 0.1 = 22 270 N-m

= 22.27 kN-m Ans.

We have discussed in Art. 14.6, that when the rotor rotates clockwise when looking from the

stern and the ship takes a left turn, the effect of the reactive gyroscopic couple is to raise the bow and

lower the stern. Ans.

2.  When the ship is pitching with the bow falling

Given:  t
p
 = 40 s

Since the total angular displacement between the two extreme positions of pitching is 12°

(i.e. 2φ = 12°), therefore amplitude of swing,

φ = 12 / 2 = 6° = 6 × π/180 = 0.105 rad

and angular velocity of the simple harmonic motion,

ω
1

= 2π / t
p
 = 2π / 40 = 0.157 rad/s

We know that maximum angular velocity of precession,

ω
P

= φ.ω
1
 = 0.105 × 0.157 = 0.0165 rad/s

∴ Gyroscopic couple,

C = I.ω.ω
P

 = 708.75 × 314.2 × 0.0165 = 3675 N-m

= 3.675 kN-m Ans.

We have discussed in Art. 14.7, that when the bow is falling (i.e. when the pitching is down-

ward), the effect of the reactive gyroscopic couple is to move the ship towards port side. Ans.

Example 14.7. The mass of the turbine rotor of a ship is 20 tonnes and has a radius of

gyration of 0.60 m. Its speed is 2000 r.p.m. The ship pitches 6° above and 6°  below the horizontal

position. A complete oscillation takes 30 seconds and the motion is simple harmonic. Determine the

following:
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1. Maximum gyroscopic couple, 2. Maximum angular acceleration of the ship during pitch-

ing, and 3. The direction in which the bow will tend to turn when rising, if the rotation of the rotor is

clockwise when looking from the left.

Solution. Given :  m = 20 t = 20 000 kg ; k = 0.6 m ; N = 2000 r.p.m. or ω = 2π × 2000/60 =

209.5 rad/s; φ = 6° = 6 × π/180 = 0.105 rad ; t
p
 = 30 s

1.  Maximum gyroscopic couple

We know that mass moment of inertia of the rotor,

I = m.k2 = 20 000 (0.6)2 = 7200 kg-m2

and angular velocity of the simple harmonic motion,

ω
1

= 2π / t
p
 = 2π/30 = 0.21 rad/s

∴  Maximum angular velocity of precession,

ω
Pmax

= φ.ω
1
 = 0.105 × 0.21 = 0.022 rad/s

We know that maximum  gyroscopic couple,

C
max

= I.ω.ω
Pmax

 = 7200 × 209.5 × 0.022 = 33 185 N-m

= 33.185 kN-m  Ans.

2.  Maximum angular acceleration during pitching

We know that maximum angular acceleration during pitching

= φ(ω
1
)2 = 0.105 (0.21)2 = 0.0046 rad/s2

3.  Direction in which the bow will tend to turn when rising

We have discussed in Art. 14.7, that when the rotation of the rotor is clockwise when looking

from the left (i.e. rear end or stern) and when the bow is rising (i.e. pitching is upward), then the

reactive gyroscopic couple acts in the clockwise direction which tends to turn the bow towards right

(i.e. towards star-board). Ans.

Example 14.8.  A ship propelled by a turbine rotor which has a mass of 5 tonnes and a speed

of 2100 r.p.m. The rotor has a radius of gyration of 0.5 m and rotates in a clockwise direction when

viewed from the stern. Find the gyroscopic effects in the following conditions:

1.  The ship sails at a speed of 30 km/h and steers to the left in a curve having 60 m radius.

2.  The ship pitches 6 degree above and 6 degree below the horizontal position. The bow is

descending with its maximum velocity. The motion due to pitching is simple harmonic and the periodic

time is 20 seconds.

3.  The ship rolls and at a certain instant it has an angular velocity of 0.03 rad/s clockwise

when viewed from stern.

Determine also the maximum angular acceleration during pitching. Explain how the direction

of motion due to gyroscopic effect is determined in each case.

Solution. Given : m = 5 t = 5000 kg ; N = 2100 r.p.m. or ω = 2π × 2100/60 = 220 rad/s ;

k = 0.5 m

1.  When the ship steers to the left

Given:     v = 30 km / h = 8.33 m / s ;  R = 60 m

We know that angular velocity of precession,

ω
P

= v/R = 8.33/60 = 0.14 rad/s

and mass moment of inertia of the rotor,

I = m.k2 = 5000(0.5)2 = 1250 kg-m2
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∴  Gyroscopic couple,

C = I.ω.ω
P
 = 1250 × 220 × 0.14 = 38 500 N-m = 38.5 kN-m

We have discussed in Art. 14.6, that when the rotor in a clockwise direction when viewed

from the stern and the ship steers to the left, the effect of reactive gyroscopic couple is to raise the

bow and lower the stern. Ans.

2.  When the ship pitches with the bow descending

Given:  φ = 6° = 6 × π/180 = 0.105 rad/s ; t
p
 = 20 s

We know that angular velocity of simple harmonic motion,

ω
1

= 2π / t
p
 = 2π / 20 = 0.3142 rad/s

and maximum angular velocity of precession,

ω
Pmax

= φ.ω
1
 = 0.105 × 0.3142 = 0.033 rad/s

∴  Maximum gyroscopic couple,

C
max

= I.ω.ω
Pmax

 = 1250 × 220 × 0.033 = 9075 N-m

Since the ship is pitching with the bow descending, therefore the effect of this maximum

gyroscopic couple is to turn the ship towards port side. Ans.

3.  When the ship rolls

Since the ship rolls at an angular velocity of 0.03 rad / s, therefore angular velocity of precession

when the ship rolls,

ω
P

= 0.03 rad /s

∴  Gyroscopic couple,

C = I.ω.ω
P
 = 1250 × 220 × 0.03 = 8250 N-m

In case of rolling of a ship, the axis of precession is always parallel to the axis of spin for all

positions, therefore there is no effect of gyroscopic couple. Ans.

Maximum angular acceleration during pitching

We know that maximum angular acceleration during pitching.

α
max

= φ (ω
1
)2 = 0.105 (0.3142)2 = 0.01 rad/s2 Ans.

Example 14.9. The turbine rotor of a ship has a mass of 2000 kg and rotates at a speed of

3000 r.p.m. clockwise when looking from a stern. The radius of gyration of the rotor is 0.5 m.

Determine the gyroscopic couple and its effects upon the ship when the ship is steering to the

right in a curve of 100 m radius at a speed of 16.1 knots (1 knot = 1855 m/hr).

Calculate also the torque and its effects when the ship is pitching in simple harmonic motion,

the bow falling with its maximum velocity. The period of pitching is 50 seconds and the total angular

displacement between the two extreme positions of pitching is 12°. Find the maximum acceleration

during pitching motion.

Solution. Given : m = 2000 kg ; N = 3000 r.p.m. or ω = 2π × 3000/60 = 314.2 rad/s ;

k = 0.5 m ; R = 100 m ; v = 16.1 knots = 16.1 × 1855 / 3600 = 8.3 m/s

Gyroscopic couple

We know that mass moment of inertia of the rotor,

I = m.k2 = 2000 (0.5)2 = 500 kg-m2

and angular velocity of precession,

ω
P

= v/R = 8.3/100 = 0.083 rad /s
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∴ Gyroscopic couple,

C = I.ω.ω
P
 = 500 × 314.2 × 0.083 = 13 040 N-m = 13.04 kN-m

We have discussed in Art. 14.6, that when the rotor rotates clockwise when looking from a

stern and the ship steers to the right, the effect of the reactive gyroscopic couple is to raise the stern

and lower the bow. Ans.

Torque during pitching

Given :  t
p
 =50 s ; 2 φ = 12° or φ = 6° × π/180 = 0.105 rad

We know that angular velocity of simple harmonic motion,

ω
1

= 2π /t
p
 = 2π /50 = 0.1257 rad/s

and maximum angular velocity of precession,

ω
Pmax

= φ.ω
1
 = 0.105 × 0.1257 = 0.0132 rad/s

∴ Torque or maximum gyroscopic couple during pitching,

C
max

= I.ω.ω
P max

 = 500 × 314.2 × 0.0132 = 2074 N-m Ans.

We have discussed in Art. 14.7, that when the pitching is downwards, the effect of the reac-

tive gyroscopic couple is to turn the ship towards port side.

Maximum acceleration during pitching

We know that maximum acceleration during pitching

α
max

= φ (ω
1
)2 = 0.105 (0.1257)2 = 0.00166 rad/s2 Ans.

14.9. Stability of a Four Wheel Drive Moving in a Curved Path

Consider the four wheels A , B , C and D of an

automobile locomotive taking a turn towards left as shown

in Fig. 14.11. The wheels A  and C are inner wheels, whereas

B and D are outer wheels. The centre of gravity (C.G.) of

the vehicle lies vertically above the road surface.

Let m = Mass of the vehicle in kg,

W = Weight of the vehicle in newtons = m.g,

r
W

= Radius of the wheels in metres,

R = Radius of curvature in metres

(R > r
W

),

h = Distance of centre of gravity, vertically

above the road surface in metres,

x = Width of track in metres,

I
W

= Mass moment of inertia of one of the

wheels in kg-m2,

ω
W

= Angular velocity of the wheels or ve-

locity of spin in rad/s,

I
E

= Mass moment of inertia of the rotating

parts of the engine in kg-m2,

ω
E

= Angular velocity of the rotating parts of

the engine in rad/s,

G = Gear ratio = ω
E
 /ω

W
,

v = Linear velocity of the vehicle in m/s = ω
W

.r
W

Fig. 14.11.  Four wheel drive

moving in  a curved path.
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A little considereation will show,

that the weight of the vehicle (W ) will be

equally distributed over the four wheels

which will act downwards. The reaction

between each wheel and the road surface

of the same magnitude will act upwards.

Therefore

Road reaction over each wheel

       = W /4 = m.g /4 newtons

Let us now consider the effect of

the gyroscopic couple and centrifugal couple on the vehicle.

1.  Effect of the gyroscopic couple

Since the vehicle takes a turn towards left due to the precession and other rotating parts,

therefore a gyroscopic couple will act.

We know that velocity of precession,

ω
P

= v/R

∴  Gyroscopic couple due to 4 wheels,

C
W

= 4 I
W

.ω
W

.ω
P

and gyroscopic couple due to the rotating parts of the engine,

C
E

= I
E
.ω

E
.ω

P
 = I

E
.G.ω

W
.ω

P
 ... (� G = ω

E
/ω

W
)

∴  Net gyroscopic couple,

C = C
W

 ± C
E
 = 4 I

W
.ω

W
.ω

P
 ± I

E
.G.ω

W
.ω

P

= ω
W

.ω
P
 (4 I

W
 ± G.I

E
)

The positive sign is used when the wheels and rotating parts of the engine rotate in the same

direction. If the rotating parts of the engine revolves in opposite direction, then negative sign is used.

Due to the gyroscopic couple, vertical reaction on the road surface will be produced. The

reaction will be vertically upwards on the outer wheels and vertically downwards on the inner wheels.

Let the magnitude of this reaction at the two outer or inner wheels be P newtons. Then

P × x = C   or   P = C/x

∴  Vertical reaction at each of the outer or inner wheels,

P /2 = C/ 2x

Note:     We have discussed above that when rotating parts of the engine rotate in opposite directions, then –ve

sign is used, i.e. net gyroscopic couple,

C = C
W

 – C
E

When C
E
 > C

W
, then C will be –ve. Thus the reaction will be vertically downwards on the outer wheels

and vertically upwards on the inner wheels.

2.  Effect of the centrifugal couple

Since the vehicle moves along a curved path, therefore centrifugal force will act outwardly at

the centre of gravity of the vehicle. The effect of this centrifugal force is also to overturn the vehicle.

We know that centrifugal force,

2

C

m v
F

R

×
=
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∴  The couple tending to overturn the vehicle or overturning couple,

2

O C

.m v
C F h h

R
= × = ×

This overturning couple is balanced by vertical reactions, which are vertically upwards on

the outer wheels and vertically downwards on the inner wheels. Let the magnitude of this reaction at

the two outer or inner wheels be Q. Then

Q × x = C
O

   or   

2
O . .

.

C m v h
Q

x R x
= =

∴  Vertical reaction at each of the outer or inner wheels,

2
. .

2 2 .

Q m v h

R x
=

∴  Total vertical reaction at each of the outer wheel,

O
4 2 2

W P Q
P = + +

and total vertical reaction at each of the inner wheel,

I
4 2 2

W P Q
P = − −

A little consideration will show that when the vehicle is running at high speeds, P
I
 may be

zero or even negative. This will cause the inner wheels to leave the ground thus tending to overturn

the automobile. In order to have the contact between the inner wheels and the ground, the sum of

P/2 and Q/2 must be less than W /4.

Example 14.10. A four-wheeled trolley car of mass

2500 kg runs on rails, which are 1.5 m apart and travels

around a curve of 30 m radius at 24 km / hr. The rails are at

the same level. Each wheel of the trolley is 0.75 m in diameter

and each of the two axles is driven by a motor running in a

direction opposite to that of the wheels at a speed of five

times the speed of rotation of the wheels. The moment of

inertia of each axle with gear and wheels is 18 kg-m
2
. Each

motor with shaft and gear pinion has a moment of inertia of

12 kg-m
2
. The centre of gravity of the car is 0.9 m above the

rail level. Determine the vertical force exerted by each wheel

on the rails taking into consideration the centrifugal and

gyroscopic effects. State the centrifugal and gyroscopic effects

on the trolley.

Solution. Given : m = 2500 kg ; x = 1.5 m ; R = 30 m ;

v = 24 km/h = 6.67 m/s ; d
W

 = 0.75 m or r
W

 = 0.375 m ; G = ω
E
/ω

W
 = 5 ; I

W
 = 18 kg-m2 ;

I
E
 = 12 kg-m2 ; h = 0.9 m

The weight of the trolley (W  = m.g) will be equally distributed over the four wheels, which

will act downwards. The reaction between the wheels and the road surface of the same magnitude will

act upwards.

∴  Road reaction over each wheel = W /4 = m.g/4 = 2500 × 9.81/4 = 6131.25 N

We know that angular velocity of the wheels,

ω
W

= v/r
W

 = 6.67/0.375 = 17.8 rad/s
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and angular velocity of precession, ω
P

= v/R = 6.67/30 = 0.22 rad/s

∴Gyroscopic couple due to one pair of wheels and axle,

C
W

= 2 I
W

.ω
W

.ω
P
 = 2 × 18 × 17.8 × 0.22 = 141 N-m

and gyroscopic couple due  to the rotating parts of the motor and gears,

C
E

= 2 I
E
.ω

E
.ω

P
 = 2 I

E
.G.ω

W
.ω

P
... (�  ω

E
 = G. ω

W
)

= 2 × 12 × 5 × 17.8 × 0.22 = 470 N-m

∴  Net gyroscopic couple, C = C
W

 – C
E
 = 141 – 470 = – 329 N-m

... (–ve sign is used due to opposite direction of motor)

Due to this net gyroscopic couple, the vertical reaction on the rails will be produced. Since

C
E
 is greater than C

W
, therefore the reaction will be vertically downwards on the outer wheels and

vertically upwards on the inner wheels. Let the magnitude of this reaction at each of the outer or inner

wheel be P/2 newton.

∴ P/ 2 = C/2x = 329 / 2 × 1.5 = 109.7 N

We know that centrifugal force, F
C

= m.v2/R = 2500 (6.67)2/30 = 3707 N

∴  Overturning couple, C
O

= F
C
 × h = 3707 × 0.9 = 3336.3 N-m

This overturning couple is balanced by the vertical reactions which are vertically upwards on

the outer wheels and vertically downwards on the inner wheels. Let the magnitude of this reaction at

each of the outer or inner wheels be Q/2 newton.

∴ Q/ 2 = C
O

 / 2x = 3336.3 / 2 × 1.5 = 1112.1 N

We know that vertical force exerted on each outer wheel,

O
4 2 2

W P Q
P = − + = 6131.25 – 109.7 + 1112.1 = 7142.65 N Ans.

and vertical force exerted on each inner wheel,

I
4 2 2

W P Q
P = + − = 6131.25 + 109.7 – 1112.1 = 5128.85 N Ans.

Example 14.11. A rear engine automobile is travelling along a track of 100 metres mean

radius. Each of the four road wheels has a moment of inertia of 2.5 kg-m
2
 and an effective diameter

of 0.6 m. The rotating parts of the engine have a moment of inertia of 1.2 kg-m
2
. The engine axis is

parallel to the rear axle and the crankshaft rotates in the same sense as the road wheels. The ratio of

engine speed to back axle speed is 3 : 1. The automobile has a mass of 1600 kg and has its centre of

gravity 0.5 m above road level. The width of the track of the vehicle is 1.5 m.

Determine the limiting speed of the vehicle around the curve for all four wheels to maintain

contact with the road surface. Assume that the road surface is not cambered and centre of gravity of

the automobile lies centrally with respect to the four wheels.

Solution. Given : R = 100 m ; I
W

 = 2.5 kg-m2 ; d
W

 = 0.6 m or r
W

 = 0.3 m ; I
E
 = 1.2 kg-m2;

G = ω
E
/ω

W
 = 3 ; m = 1600 kg ; h = 0.5 m ; x = 1.5 m

The weight of the vehicle (m.g) will be equally distributed over the four wheels which will act

downwards. The reaction between the wheel and the road surface of the same magnitude will act

upwards.

∴  Road reaction over each wheel

= W /4 = m.g / 4 = 1600 × 9.81/4 = 3924 N
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Let v = Limiting speed of the vehicle in m/s.

We know that angular velocity of the wheels,

W

W

3.33 rad /s
0.3

v v
v

r
ω = = =

and angular velocity of precession,

P 0.01 rad /s
100

v v
v

R
ω = = =

∴  Gyroscopic couple due to 4 wheels,

C
W

= 4 I
W

.ω
W

.ω
P
 = 

2
4 2.5 0.33 N-m

0.3 100

v v
v× × × =

and gyroscopic couple due to rotating parts of the engine,

C
E

= I
E
.ω

E
.ω

P
 = I

E
.G.ω

W
.ω

P

= 1.2 × 3 × 3.33v × 0.01v = 0.12 v2 N-m

∴  Total gyroscopic couple,

C = C
W

 + C
E
 = 0.33 v2 + 0.12 v2 = 0.45 v2 N-m

Due to this gyroscopic couple, the vertical reaction on the rails will be produced. The reac-

tion will be vertically upwards on the outer wheels and vertically downwards on the inner wheels. Let

the magnitude of this reaction at each of the outer or inner wheel be P/2 newtons.

∴ P/2 = C/2x = 0.45v2/2 × 1.5 = 0.15 v2 N

We know that centrifugal force,

F
C

= m.v2/R = 1600 × v2/100 = 16 v2 N

∴Overturning couple acting in the outward direction,

C
O

= F
C
 × h = 16 v2 × 0.5 = 8 v2 N-m

This overturning couple is balanced by vertical reactions which are vertically upwards on the

outer wheels and vertically downwards on the inner wheels. Let the magnitude of this reaction at each

of the outer or inner wheels be Q/2 newtons.

∴ Q / 2 = C
O

 / 2x = 8 v2/ 2 × 1.5 = 2.67 v2 N

We know that total vertical reaction at each of the outer wheels,

O
4 2 2

W P Q
P = + + ...(i)

and total vertical reaction at each of the inner wheels,

I – – –
4 2 2 4 2 2

W P Q W P Q
P

 
= = + 

 
...(ii)

From equation (i), we see that there will always be contact between the outer wheels and

the road surface because W /4, P/2 and Q/2 are vertically upwards. In order to have contact between

the inner wheels and road surface, the reactions should also be vertically upwards, which is only

possible if

2 2 4

P Q W
+ ≤
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i.e. 0.15 v2 + 2.67 v2 ≤ 3924       or          2.82 v2 ≤ 3924

∴ v
2 ≤ 3924/2.82 = 1391.5

or v ≤ 37.3 m/s = 37.3 × 3600 / 1000 = 134.28 km/h Ans.

Example 14.12. A  four wheeled motor car of mass 2000 kg has a wheel base 2.5 m, track

width 1.5 m and height of centre of gravity 500 mm above the ground level and lies at 1 metre from

the front axle. Each wheel has an effective diameter of 0.8 m and a moment of inertia of 0.8 kg-m
2
.

The drive shaft, engine flywheel and transmission are rotating at 4 times the speed of road wheel, in

a clockwise direction when viewed from the front, and is equivalent to a mass of 75 kg having a

radius of gyration of 100 mm. If the car is taking a right turn of 60 m radius at 60 km/h, find the load

on each wheel.

Solution. Given : m = 2000 kg : b = 2.5 m ; x = 1.5 m ; h = 500 mm = 0.5 m ; L = 1 m ; d
W

 =

0.8 m or r
W

 = 0.4 m ; I
W

 = 0.8 kg-m2 ; G = ω
E
 / ω

W
 = 4 ; m

E
 = 75 kg ; k

E
 = 100 mm = 0.1 m ;

R = 60 m ; v = 60 km/h = 16.67 m/s

Since the centre of gravity of the car lies at 1 m from the front axle and the weight of the car

(W  = m.g) lies at the centre of gravity, therefore weight on the front wheels and rear wheels will be

different.

Let W
1

= Weight on the front wheels, and

W
2

= Weight on the rear wheels.

Taking moment about the front wheels,

W
2
 × 2.5 = W  × 1 = m.g × 1 = 2000 × 9.81 × 1 = 19 620

∴ W
2

= 19 620 / 2.5 = 7848 N

We know that weight of the car or on the four wheels,

W = W
1
 + W

2
 = m.g = 2000 × 9.81 = 19 620 N

or W
1

= W  – W
2
 = 19 620 – 7848 = 11 772 N

∴  Weight on each of the front wheels

= W
1 

/ 2 = 11 772 / 2 = 5886 N

and weight on each of the rear wheels

= W
2 

/2 = 7874 / 2 = 3924 N

Since the weight of the car over the four wheels will act

downwards, therefore the reaction between each wheel and the

road surface of the same magnitude will act upwards as shown

in Fig. 14.12.

Let us now consider the effect of gyroscopic couple

due to four wheels and rotating parts of the engine.

We know angular velocity of wheels,

ω
W

= v/r
W

 = 16.67 / 0.4 = 41.675 rad /s

and angular velocity of precession,

ω
P

= v/R = 16.67 / 60 = 0.278 rad /s

Fig. 14.12
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∴  Gyroscopic couple due to four wheels,

C
W

= 4 I
W

.ω
W

.ω
P

= 4 × 0.8 × 41.675 × 0.278 = 37.1 N-m

This gyroscopic couple tends to lift the inner wheels and to press the outer wheels. In other

words, the reaction will be vertically downward on the inner wheels (i.e. wheels 1 and 3) and verti-

cally upward on the outer wheels (i.e. wheels 2 and 4) as shown in Fig. 14.12. Let P/2 newtons be the

magnitude of this reaction at each of the inner or outer wheel.

∴ P / 2 = C
W

 / 2x = 37.1 / 2 × 1.5 = 12.37 N

We know that mass moment of inertia of rotating parts of the engine,

I
E

= m
E
 (k

E
)2 = 75 (0.1)2 = 0.75 kg-m2 ...(∵ I = m.k2)

∴  Gyroscopic couple due to rotating parts of the engine,

C
E

= I
E
.ω

E
.ω

P
 = m

E
 (k

E
)2 G. ω

W
.ω

P

= 75 (0.1)2 4 × 41.675 × 0.278 = 34.7 N-m

This gyroscopic couple tends to lift the front wheels and to press the outer wheels. In other

words, the reaction will be vertically downwards on the front wheels and vertically upwards on the

rear wheels as shown in Fig. 14.12. Let F/2 newtons be the magnitude of this reaction on each of the

front and rear wheels.

∴ F / 2 = C
E
 / 2b = 34.7/2 × 2.5 = 6.94 N

Now let us consider the effect of centrifugal couple acting on the car. We know that centrifugal

force,

F
C

= m.v2 / R = 2000 (16.67)2/ 60 = 9263 N

∴  Centrifugal couple tending to overturn the car or over turning couple,

C
O

= F
C
 × h = 9263 × 0.5 = 4631.5 N-m

This overturning couple tends to reduce the pressure on the inner wheels and to increase on

the outer wheels. In other words, the reactions are vertically downward on the inner wheels and

vertically upwards on the outer wheels. Let Q/2 be the magnitude of this reaction on each of the inner

and outer wheels.

∴ Q / 2 = C
O

 / 2x = 4631.5 / 2 × 1.5 = 1543.83 N

From Fig. 14.12, we see that

Load on the front wheel 1

1 – – –
2 2 2 2

W P F Q
=  = 5886 – 12.37 – 6.94 – 1543.83 = 4322.86 N Ans.

Load on the front wheel 2

1 –
2 2 2 2

W P F Q
= + +  = 5886 + 12.37 – 6.94 + 1543.83 = 7435.26 N Ans.

Load on the rear wheel 3

2

2 2 2 2

W P F Q
= − + −  = 3924 – 12.37 + 6.94 – 1543.83 = 2374.74 N Ans.

Load on the rear wheel 4

2

2 2 2 2

W P F Q
= + + +  = 3924 + 12.37 + 6.94 + 1543.83 = 5487.14 N Ans.
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Example 14.13. A four-wheeled trolley car of total mass 2000 kg running on rails of 1.6 m

gauge, rounds a curve of 30 m radius at 54 km/h. The track is banked at 8°. The wheels have an

external diameter of 0.7 m and each pair with axle has a mass of 200 kg. The radius of gyration for

each pair is 0.3 m. The height of centre of gravity of the car above the wheel base is 1 m. Determine,

allowing for centrifugal force and gyroscopic couple actions, the pressure on each rail.

Solution. Given : m = 2000 kg ; x = 1.6 m ; R = 30 m ; v = 54 km / h = 15 m / s ; θ = 8° ;

d
W

 = 0.7 m or r
W

 = 0.35 m ; m
1
 = 200 kg ; k = 0.3 m ; h = 1 m

First of all, let us find the reactions R
A

 and R
B
 at the wheels A  and B respectively. The various

forces acting on the trolley car are shown in Fig. 14.13.

Resolving the forces perpendicular to the track,

R
A

 + R
B

= W  cos θ + F
C
 sin θ = m.g cos θ + 

2
.

sin
m v

R
θ

2
2000 (15)

2000 9.81 cos 8 sin 8
30

= × ° + × °

= 19 620 × 0.9903 + 15 000 × 0.1392 = 21 518 N

Fig. 14.13

Now taking moments about B,

R
A

 × x = (W  cos θ + F
C
 sin θ) 

2

x
+ W  sin θ × h – F

C
 cos θ × h

∴

2 2

A

. 1 .
. cos sin . sin – cos

2

m v m v h
R m g m g

R R x

   
= θ + θ + θ θ      

   
22000 (15) 1

2000 9.81 cos 8 sin 8
30 2

 
= × ° + °  

 

2
2000 (15) 1

2000 9.81 sin 8 cos 8
30 1.6

 
+ × ° − ° 

 

=  (19 620 × 0.9903 + 15 000 × 0.1392) 
1

2

+ (19 620 × 0.1392 – 15 000 × 0.9903) 
1

1.6
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1 1
(19 430 2088) (2731 – 14 855)

2 1.6
= + +

= 10 759 – 7577 = 3182 N

∴ R
B

= (R
A

 + R
B
) – R

A
 = 21 518 – 3182 = 18 336 N

We know that angular velocity of wheels,

W

W

15
42.86 rad /s

0.35

v

r
ω = = =

and angular velocity of precession,

P

15
0.5 rad /s

30

v

R
ω = = =

∴  Gyroscopic couple,

C = * I ω
W

 cos θ × ω
P
 = m

I
.k2.ω

W
 cos θ.ω

P
...(∵ I = m

I
.k2)

= 200 (0.3)2 42.86 cos 8° × 0.5 = 382 N-m

Due to this gyroscopic couple, the car will tend to overturn about the outer wheels. Let P be

the force at each pair of wheels or each rail due to the gyroscopic couple,

∴ P = C / x = 382 / 1.6 = 238.75 N

We know that pressure (or total reaction) on the inner rail,

P
I

= R
A

 – P = 3182 – 238.75 = 2943.25 N Ans.

and pressure on the outer rail,

P
O

= R
B
 + P = 18 336 + 238.75 = 18 574.75 N Ans.

Example 14.14. A pair of locomotive driving wheels with the axle, have a moment of inertia

of 180 kg-m
2. The diameter of the wheel treads is 1.8 m and the distance between wheel centres is

1.5 m. When the locomotive is travelling on a level track at 95 km/h, defective ballasting causes one

wheel to fall 6 mm and to rise again in a total time of 0.1 s. If the displacement of the wheel takes

place with simple harmonic motion, find : 1. The gyroscopic couple set up, and 2. The reaction

between the wheel and rail due to this couple.

Solution. Given : I = 180 kg-m2 ; D = 1.8 m or R = 0.9 m ; x = 1.5 m ; v = 95 km / h = 26.4 m /s

1.  Gyroscopic couple set up

We know that angular velocity of the locomotive,

ω = v/R = 26.4/ 0.9 = 29.3 rad /s

Since the defective ballasting causes one wheel to fall 6 mm and to rise again in a total time

(t) of 0.1 s, therefore

         Amplitude,
1 1 1

Fall Rise 6 3 mm
2 2 2

A = = = × =

and maximum velocity while falling,

2 2
3 118.5 mm / s 0.1885 m / s

0.1
max

v A
t

π π
= × = × = =

∴  Maximum angular velocity of tilt of the axle or angular velocity of precession,

           P

0.1885
0.126 rad /s

1.5

max

max

v

x
ω = = =

* Angular momentum about axle = I.ω
W

∴  Angular momentum about horizontal = I.ω
W

 cos θ
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We know that gyroscopic couple set up,

C = I.ω.ω
P max

 = 180 × 29.3 × 0.126 = 664.5 N-m Ans.

The gyroscopic couple will act in a horizontal plane and this couple will tend to produce

swerve i.e. it tends to turn the locomotive aside.

2.  Reaction between the wheel and rail due to the gyroscopic couple

We know that the reaction between the wheel and rail due to the gyroscopic couple is

P = C / x = 664.5 / 1.5 = 443 N Ans.

14.10. Stability of a Two Wheel Vehicle Taking a Turn

Consider a two wheel vehicle (say a scooter or motor cycle) taking a right turn as shown in

Fig. 14.14 (a).

(a) (b) (c)

Fig. 14.14.  Stability of a two wheel vehicle taking a turn.

Let m = Mass of the vehicle and its

rider in kg,

W = Weight of the vehicle and

its rider in newtons = m.g,

h = Height of the centre of

gravity of the vehicle and

rider,

r
W

= Radius of the wheels,

R = Radius of track or

curvature,

I
W

= Mass moment of inertia of each wheel,

I
E

= Mass moment of inertia of the rotating parts of the engine,

ω
W

= Angular velocity of the wheels,

ω
E

= Angular velocity of the engine,

G = Gear ratio = ω
E
 / ω

W
,

Motorcycle taking a turn.
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v = Linear velocity of the vehicle = ω
W

 × r
W

,

θ = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium.

Let us now consider the effect of the gyroscopic couple and centrifugal couple on the vehicle,

as discussed below.

1.  Effect of gyroscopic couple

We know that v = ω
W

 × r
W

           or       ω
W

 = v / r
W

and E W

W

.
v

G G
r

ω = ω = ×

∴  Total (I × ω) = 2 I
W

 × ω
W

 ± I
E
 × ω

E

W E W E

W W W

2 (2 . )
v v v

I I G I G I
r r r

= × ± × × = ±

and velocity of precession, ω
P
 = v /R

A little consideration will show that when the wheels move over the curved path, the vehicle

is always inclined at an angle θ with the vertical plane as shown in Fig. 14.14 (b). This angle is known

as angle of heel. In other words, the axis of spin is inclined to the horizontal at an angle θ, as shown

in Fig. 14.14 (c). Thus the angular momentum vector Iω due to spin is represented by OA inclined to

OX at an angle θ. But the precession axis is vertical. Therefore the spin vector is resolved along OX.

∴  Gyroscopic couple,

1 P W E

W

. cos (2 . ) cos
v v

C I I G I
r R

= ω θ × ω = ± θ ×

2

W E

W

(2 . ) cos
.

v
I G I

R r
= ± θ

Notes : (a)  When the engine is rotating in the same direction as that of wheels, then the positive sign is used in

the above expression and if the engine rotates in opposite direction, then negative sign is used.

(b)  The gyroscopic couple will act over the vehicle outwards i.e. in the anticlockwise direction

when seen from the front of the vehicle. The tendency of this couple is to overturn the vehicle in outward

direction.

An aircraft of 1920’s model.
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2.  Effect of centrifugal couple

We know that centrifugal force,

2

C

.m v
F

R
=

This force acts horizontally through the centre of gravity (C.G.) along the outward direction.

∴  Centrifugal couple,

2

2 C

.
cos cos

m v
C F h h

R

 
= × θ = θ  

 

Since the centrifugal couple has a tendency to overturn the vehicle, therefore

Total overturning couple,

C
O

= Gyroscopic couple + Centrifugal couple

( )
2 2

W E

W

.
2 . cos cos

.

v m v
I G I h

R r R
= + θ + × θ

2
W E

W

2 .
. cos

I G Iv
m h

R r

 +
= + θ 

 

We know that balancing couple = m.g.h sin θ

The balancing couple acts in clockwise direction when seen from the front of the vehicle.

Therefore for stability, the overturning couple must be equal to the balancing couple, i.e.

     

2
W E

W

2 .
. cos . . sin

I G Iv
m h m g h

R r

 +
+ θ = θ 

 

From this expression, the value of the angle of heel (θ) may be determined, so that the vehicle

does not skid.

Example 14.15. Find the angle of inclination with respect to the vertical of a two wheeler

negotiating a turn. Given : combined mass of the vehicle with its rider 250 kg ; moment of inertia of

the engine flywheel 0.3 kg-m2 ; moment of inertia of each road wheel 1 kg-m2 ; speed of engine

flywheel 5 times that of road wheels and in the same direction ; height of centre of gravity of rider

with vehicle 0.6 m ; two wheeler speed 90 km/h ; wheel radius 300 mm ; radius of turn 50 m.

Solution. Given : m = 250 kg ; I
E
 = 0.3 kg-m2 ; I

W
 = 1 kg-m2 ; ω

E
 = 5 ω

W
 or E

W

5 ;G
ω

= =
ω

h = 0.6 m ; v = 90 km/h = 25 m/s ; r
W

 = 300 mm = 0.3 m ; R = 50 m

Let θ = Angle of inclination with respect to the vertical of a two wheeler.

We know that gyroscopic couple,

2 2

1 W E

W

(25)
(2 . ) cos (2 1 5 0.3) cos

50 0.3

v
C I G I

R r
= + θ = × + × θ

× ×

= 146 cos θ N-m

and centrifugal couple,
2 2

2

. 250 (25)
cos 0.6 cos

50

m v
C h

R
= × θ = × θ = 1875 cos θ N-m

∴  Total overturning couple,

= C
1
 + C

2
 = 146 cos θ + 1875 cos θ = 2021 cos θ N-m

We know that balancing couple

= m.g.h sin θ = 250 × 9.81 × 0.6 sin θ = 1471.5 sin θ N-m
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Since the overturning couple must be equal to the balancing couple for equilibrium condi-

tion, therefore

2021 cos θ = 1471.5 sin θ

∴ tan θ = sin θ / cos θ = 2021 / 1471.5 = 1.3734 or θ = 53.94° Ans.

Example 14.16. A gyrowheel D of mass 0.5 kg, with a radius

of gyration of 20 mm, is mounted in a pivoted frame C as shown in

Fig. 14.15. The axis AB of the pivots passes through the centre of

rotation O of the wheel, but the centre of gravity G of the frame C is

10 mm below O. The frame has a mass of 0.30 kg and the speed of

rotation of the wheel is 3000 r.p.m. in the anticlockwise direction as

shown.

The entire unit is mounted on a vehicle so that the axis AB is

parallel to the direction of motion of the vehicle. If the vehicle travels

at 15 m/s in a curve of 50 metres radius, find the inclination of the

gyrowheel from the vertical, when

1. The vehicle moves in the direction of the arrow ‘X’ taking

a left hand turn along the curve, and

2. The vehicle reverse at the same speed in the direction of arrow ‘Y’ along the same path.

Solution. Given : m
1
 = 0.5 kg ; k = 20 mm = 0.02 m ; OG = h = 10 mm = 0.01 m ;

m
2
 = 0.3 kg ; N = 3000 r.p.m. or ω = 2 π × 3000 / 60 = 314.2 rad/s ; v = 15 m/s ; R = 50 m

We know that mass moment of inertia of the gyrowheel,

I = m
1
.k2 = 0.5 (0.02)2 = 0.0002 kg-m2

and angular velocity of precession,

ω
P

= v/R = 15 / 50 = 0.3 rad /s

Let θ = Angle of inclination of gyrowheel from the vertical.

1.  When the vehicle moves in the direction of arrow X taking a left turn along the curve

We know that gyroscopic couple about O,

C
1

= I ω.ω
P
 cos θ = 0.0002 × 314.2 × 0.3 cos θ N-m

= 0.019 cos θ N-m (anticlockwise)

and centrifugal couple about O,

2 2
2

2

. 0.3 (15)
cos 0.01 cos N-m

50

m v
C h

R
= × θ = × θ

= 0.0135 cos θ N-m (anticlockwise)

∴  Total overturning couple

= C
1
 – C

2
 = 0.019 cos θ – 0.0135 cos θ

... (– ve sign due to opposite direction)

= 0.0055 cos θ N-m (anticlockwise)

We know that balancing couple due to weight (W
2
 = m

2
.g) of the frame about O,

= m
2
.g.h sin θ = 0.3 × 9.81 × 0.01 sin θ N-m

= 0.029 sin θ N-m (clockwise)

Fig. 14.15
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Since the overturning couple must be equal to the balancing couple for equilibrium condi-

tion, therefore

0.0055 cos θ = 0.029 sin θ

or tan θ = sin θ / cos θ = 0.0055 / 0.029 = 0.1896

∴ θ = 10.74° Ans.

Fig. 14.16

2.  When the vehicle reverses at the same speed in the direction of arrow Y along the same path

When the vehicle reverses at the same speed in the direction of arrow Y , then the gyroscopic

and centrifugal couples (C
1
 and C

2
) will be in clockwise direction about O and the balancing couple

due to weight (W
2
 = m

2
.g) of the frame about O will be in anticlockwise direction.

∴  Total overturning couple

= C
1
 + C

2
 = 0.019 cos θ + 0.0135 cos θ = 0.0325 cos θ N-m

Equating the total overturning couple to the balancing couple, we have

0.0325 cos θ = 0.029 sin θ

or tan θ = sin θ / cos θ = 0.0325 / 0.029 = 1.1207

∴ θ = 48.26° Ans.

14.11. Effect of Gyroscopic Couple on a Disc Fixed Rigidly at a Certain
Angle to a Rotating Shaft

Consider a disc fixed rigidly to a rotating shaft such that the polar axis of the disc makes an

angle θ with the shaft axis, as shown in Fig. 14.17. Let the shaft rotates with an angular velocity ω

rad/s in the clockwise direction when viewed from the front. A little consideration will show that the

disc will also rotate about OX with the same angular velocity ω rad/s. Let OP be the polar axis and

OD the diametral axis of the disc.

Fig. 14.17.  Effect of gyroscopic couple on a disc fixed rigidly at a certain angle to a rotating shaft.



Chapter 14 : Gyroscopic Couple and Precessional Motion   �  509

∴  Angular velocity of the disc about the polar axis OP or the angular velocity of spin

= ω cos θ ... (Component of ω in the direction of OP)

Since the shaft rotates, therefore the point P will move in a plane perpendicular to the plane

of paper. In other words, precession is produced about OD.

∴  Angular velocity of the disc about the diametral axis OD or the angular velocity of precession

= ω sin θ

If I
P
 is the mass moment of inertia of the disc about the polar axis OP, then gyroscopic couple

acting on the disc,

C
P

= I
P
.ω cos θ.ω sin θ = 

1

2
 × I

P
.ω2 sin 2θ

... (∵ 2 sin θ cos θ = sin 2θ)

The effect of this gyroscopic couple is to turn the disc in the anticlockwise when viewed from

the top, about an axis through O in the plane of paper.

Now consider the movement of point D about the polar axis OP. In this case, OD is axis of

spin and OP is the axis of precession.

∴  Angular velocity of disc about OD or angular velocity of spin

= ω sin θ

and angular velocity of D about OP or angular velocity of precession

= ω cos θ

If I
D

 is the mass moment of inertia of the disc about the diametral axis OD, then gyroscopic

couple acting on the disc,

C
D

= I
D

.ω sin θ.ω cos θ = 
1

2
× I

D
.ω2 sin 2θ

The effect of this couple will be opposite to that of C
P
.

∴  Resultant gyroscopic couple acting on the disc,

C = C
P
 – C

D
 = 

1

2
× ω2 sin 2θ (I

P
 – I

D
)

This resultant gyroscopic couple will act in the anticlockwise direction as seen from the top.

In other words, the shaft tends to turn in the plane of paper in anticlockwise direction as seen from the

top, as a result the horizontal force is exerted on the shaft bearings.

Notes: 1.  The mass moment of inertia of the disc about polar axis OP,

I
P

= m.r2/2

and mass moment of inertia of the disc about diametral axis OD,

2 2

D
12 4

l r
I m

 
= +  

 

where m = Mass of disc,

r = Radius of disc, and

l = Width of disc.

2.  If the disc is thin, l may be neglected. In such a case

I
D

= m.r2/4

∴

2 2
2 2 21 . .

sin 2 – . sin 2
2 2 4 8

m r m r m
C r

 
= × ω θ = × ω θ  

 
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Example 14.17. A shaft carries a uniform thin disc of 0.6 m diameter and mass 30 kg. The

disc is out of truth and makes an angle of 1° with a plane at right angles to the axis of the shaft. Find

the gyroscopic couple acting on the bearing when the shaft rotates at 1200 r.p.m.

Solution. Given : d = 0.6 m or r = 0.3 m , m = 30 kg ; θ = 1° ; N = 1200 r.p.m. or

ω = 2 π × 1200/60 = 125.7 rad /s

We know that gyroscopic couple acting on the bearings,

2 2 2 230
. sin 2 (125.7) (0.3) sin 2

8 8

m
C r= × ω θ = °  = 186 N-m Ans.

EXERCISES
1. A flywheel of mass 10 kg and radius of gyration 200 mm is spinning about its axis, which is horizontal

and is suspended at a point distant 150 mm from the plane of rotation of the flywheel. Determine the

angular velocity of precession of the flywheel. The spin speed of flywheel is 900 r.p.m.

[Ans. 0.39 rad/s]

2. A horizontal axle A B, 1 m long, is pivoted at the mid point C. It carries a weight of 20 N at A  and a

wheel weighing 50 N at B. The wheel is made to spin at a speed of 600 r.p.m in a clockwise direction

looking from its front. Assuming that the weight of the flywheel is uniformly distributed around the

rim whose mean diameter is 0.6 m, calculate the angular velocity of precession of the system around

the vertical axis through C. [Ans. 0.52 rad/s]

3. An aeroplane runs at 600 km / h. The rotor of the engine weighs 4000 N with radius of gyration of

1 metre. The speed of rotor is 3000 r.p.m. in anticlockwise direction when seen from rear side of the

aeroplane.

If the plane takes a loop upwards in a curve of 100 metres radius, find : 1. gyroscopic couple devel-

oped; and 2. effect of reaction gyroscopic couple developed on the body of aeroplane.

[Ans. 213.5 kN-m]

4. An aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km

per hour. The rotary engine and the propeller of the plane has a mass of 400 kg with a radius of

gyration of 300 mm. The engine runs at 2400 r.p.m. clockwise, when viewed from the rear. Find the

gyroscopic couple on the aircraft and state its effect on it. What will be the effect, if the aeroplane

turns to its right instead of to the left ? [Ans. 10 kN-m]

5. Each paddle wheel of a steamer have a mass of 1600 kg and a radius of gyration of 1.2 m. The steamer

turns to port in a circle of 160 m radius at 24 km / h, the speed of the paddles being 90 r.p.m. Find the

magnitude and effect of the gyroscopic couple acting on the steamer. [Ans. 905.6 N-m]

6. The rotor of the turbine of a yacht makes 1200 r.p.m. clockwise when viewed from stern. The rotor has

a mass of 750 kg and its radius of gyration is 250 mm. Find the maximum gyroscopic couple transmit-

ted to the hull (body of the yacht) when yacht pitches with maximum angular velocity of 1 rad /s. What is

the effect of this couple ? [Ans. 5892 N-m]

7. The rotor of a turbine installed in a boat with its axis along the longitudinal axis of the boat makes

1500 r.p.m. clockwise when viewed from the stern. The rotor has a mass of 750 kg and a radius of

gyration of 300 mm. If at an instant, the boat pitches in the longitudinal vertical plane so that the bow

rises from the horizontal plane with an angular velocity of 1 rad /s, determine the torque acting on the

boat and the direction in which it tends to turn the boat at the instant. [Ans. 10.6 kN-m]

8. The mass of a turbine rotor of a ship is 8 tonnes and has a radius of gyration 0.6 m. It rotates at 1800

r.p.m. clockwise when looking from the stern. Determine the gyroscopic effects in the following

cases:

1. If the ship travelling at 100 km / h strees to the left in a curve of 75 m radius, 2. If the ship is pitching

and the bow is descending with maximum velocity. The pitching is simple harmonic, the periodic time

being 20 seconds and the total angular movement between the extreme positions is 10°, and 3. If the

ship is rolling and at a certain instant has an angular velocity of 0.03 rad/s clockwise when looking

from stern.
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In each case, explain clearly how you determine the direction in which the ship tends to move as a

result of the gyroscopic action. [Ans. 201 kN-m ; 14.87 kN-m ; 16.3 kN-m]

9. The turbine rotor of a ship has a mass of 20 tonnes and a radius of gyration of 0.75 m. Its speed is 2000

r.p.m. The ship pitches 6° above and below the horizontal position. One complete oscillation takes 18

seconds and the motion is simple harmonic. Calculate :

1. the maximum couple tending to shear the holding down bolts of the turbine, 2. the maximum

angular acceleration of the ship during pitching, and 3. the direction in which the bow will tend to turn

while rising, if the rotation of the rotor is clockwise when looking from rear.

[Ans. 86.26 kN-m ; 0.0128 rad /s2, towards star-board]

10. A motor car takes a bend of 30 m radius at a speed of 60 km / hr. Determine the magnitudes of

gyroscopic and centrifugal couples acting on the vehicle and state the effect that each of these has on

the road reactions to the road wheels. Assume that :

Each road wheel has a moment of inertia of 3 kg-m2 and an effective road radius of 0.4 m.

The rotating parts of the engine and transmission are equivalent to a flywheel of mass 75 kg with a radius

of gyration of 100 mm. The engine turns in a clockwise direction when viewed from the front.

The back-axle ratio is 4 : 1, the drive through the gear box being direct. The gyroscopic effects of the

half shafts at the back axle are to be ignored.

The car has a mass of 1200 kg and its centre of gravity is 0.6 m above the road wheel.

The turn is in a right hand direction.

If the turn has been in a left hand direction, all other details being unaltered, which answers, if any,

need modification. [Ans. 347.5 N-m : 6670 N-m]

11. A rail car has a total mass of 4 tonnes. There are two axles, each of which together with its wheels and

gearing has a total moment of inertia of 30 kg-m2. The centre distance between the two wheels on an

axle is 1.5 metres and each wheel is of 375 mm radius. Each axle is driven by a motor, the speed ratio

between the two being 1 : 3. Each motor with its gear has a moment of inertia of 15 kg-m2 and runs

in a direction opposite to that of its axle. The centre of gravity of the car is 1.05 m above the rails.

Determine the limiting speed for this car, when it rounding a curve of 240 metres radius such that no

wheel leaves the rail. Consider the centrifugal and gyroscopic effects completely. Assume that no cant

is provided for outer rail. [Ans. 144 km / h]

12. A racing car weighs 20 kN. It has a wheel base of 2 m, track width 1 m and height of C.G. 300 mm

above the ground level and lies midway between the front and rear axle. The engine flywheel rotates

at 3000 r.p.m. clockwise when viewed from the front. The moment of inertia of the flywheel is

4 kg-m2 and moment of inertia of each wheel is 3 kg-m2. Find the reactions between the wheels and

the ground when the car takes a curve of 15 m radius towards right at 30 km / h, taking into consider-

ation the gyroscopic and the centrifugal effects. Each wheel radius is 400 mm.

[Ans. Front inner wheel = 3341.7 N ; Front outer wheel = 6309.5 N ;

Rear inner wheel = 3690.5 N ; Rear outer wheel = 6658.3 N]

13. A four wheel trolley car of total mass 2000 kg running on rails of 1 m gauge, rounds a curve of 25 m

radius at 40 km / h. The track is banked at 10°. The wheels have an external diameter of 0.6 m and

each pair of an axle has a mass of 200 kg. The radius of gyration for each pair is 250 mm. The height

of C.G. of the car above the wheel base is 0.95 m. Allowing for centrifugal force and gyroscopic

couple action, determine the pressure on each rail. [Ans. 4328 N ; 16 704 N]

14. A 2.2 tonne racing car has a wheel base of 2.4 m and a track of 1.4 m from the rear axle. The equiva-

lent mass of engine parts is 140 kg with radius of gyration of 150 mm. The back axle ratio is 5. The

engine shaft and flywheel rotate clockwise when viewed from the front. Each wheel has a diameter of

0.8 m and a moment of inertia of 0.7 kg-m2. Determine the load distribution on the wheels when the

car is rounding a curve of 100 m radius at a speed of 72 km / h to the left.

15. A disc has a mass of 30 kg and a radius of gyration about its axis of symmetry 125 mm while its radius

of gyration about a diameter of the disc at right angles to the axis of symmetry is 75 mm. The disc is

pressed on to the shaft but due to incorrect boring, the angle between the axis of symmetry and the

actual axis of rotation is 0.25°, though both these axes pass through the centre of gravity of the disc.

Assuming that the shaft is rigid and is carried between bearings 200 mm apart, determine the bearing

forces due to the misalignment at a speed of 5000 r.p.m. [Ans. 1810 N]
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16. A wheel of a locomotive, travelling on a level track at 90 km / h, falls in a spot hole 10 mm deep and

rises again in a total time of 0.8 seconds. The displacement of the wheel takes place with simple

harmonic motion. The wheel has a diameter of 3 m and the distance between the wheel centres is 1.75

m. The wheel pair with axle has a moment of inertia of 500 kg-m2. Determine the magnitude and the

effect of gyrocouple produced in this case. [Ans. 186.6 N-m]

17. Each road wheel of a motor cycle has a mass moment of inertia of 1.5 kg-m2. The rotating parts of the

engine of the motor cycle have a mass moment of inertia of 0.25 kg-m2. The speed of the engine is 5

times the speed of the wheels and is in the same sense. The mass of the motor cycle with its rider is 250

kg and its centre of gravity is 0.6 m above the ground level.

Find the angle of heel if the cycle is travelling at 50 km / h and is taking a turn of 30 m radius. The

wheel diameter is 0.6 m. [Ans. 35.7°]

18. A racing motor cyclist travels at 140 km/h round a curve of 120 m radius measured horizontally. The

cycle and rider have mass of 150 kg and their centre of gravity lies at 0.7 m above the ground level

when the motor cycle is vertical. Each wheel is 0.6 m in diameter and has moment of inertia about its

axis of rotation 1.5 kg-m2. The engine has rotating parts whose moment of inertia about their axis of

rotation is 0.25 kg-m2 and it rotates at five times the wheel speed in the same direction. Find : 1. the

correct angle of banking of the track so that there is no tendency to side slip, and 2. the correct angle

of inclination of the cycle and rider to the vertical. [Ans. 52.12°; 55.57°]

[Hint. In calculating the angle of banking of the track, neglect the effect of gyroscopic couple]

DO YOU KNOW ?

1. Write a short note on gyroscope.

2. What do you understand by gyroscopic couple ? Derive a formula for its magnitude.

3. Explain the application of gyroscopic principles to aircrafts.

4. Describe the gyroscopic effect on sea going vessels.

5. Explain the effect of the gyroscopic couple on the reaction of the four wheels of a vehicle negotiating

a curve.

6. Discuss the effect of the gyroscopic couple on a two wheeled vehicle when taking a turn.

7. What will be the effect of the gyroscopic couple on a disc fixed at a certain angle to a rotating shaft ?

OBJECTIVE TYPE QUESTIONS

1. A disc is spinning with an angular velocity ω rad/s about the axis of spin. The couple applied to the

disc causing precession will be

(a)
21

.
2

I ω (b) I.ω2 (c) P

1
. .

2
I ω ω (d) I.ω.ω

P

where I = Mass moment of inertia of the disc, and

ω
P

= Angular velocity of precession of the axis of spin.

2. A disc spinning on its axis at 20 rad/s will undergo precession when a torque 100 N-m is applied about

an axis normal to it at an angular speed, if mass moment of inertia of the disc is the 1 kg-m2

(a) 2 rad/s (b) 5 rad/s (c) 10 rad/s (d) 20 rad/s

3. The engine of an aeroplane rotates in clockwise direction when seen from the tail end and the aeroplane

takes a turn to the left. The effect of the gyroscopic couple on the aeroplane will be

(a) to raise the nose and dip the tail (b) to dip the nose and raise the tail

(c) to raise the nose and tail (d) to dip the nose and tail
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4. The air screw of an aeroplane is rotating clockwise when looking from the front. If it makes a left turn,

the gyroscopic effect will

(a) tend to depress the nose and raise the tail

(b) tend to raise the nose and depress the tail

(c) tilt the aeroplane

(d) none of the above

5. The rotor of a ship rotates in clockwise direction when viewed from the stern and the ship takes a left

turn. The effect of the gyroscopic couple acting on it will be

(a) to raise the bow and stern (b) to lower the bow and stern

(c) to raise the bow and lower the stern (d) to lower the bow and raise the stern

6. When the pitching of a ship is upward, the effect of gyroscopic couple acting on it will be

(a) to move the ship towards port side (b) to move the ship towards star-board

(c) to raise the bow and lower the stern (d) to raise the stern and lower the bow

7. In an automobile, if the vehicle makes a left turn, the gyroscopic torque

(a) increases the forces on the outer wheels (b) decreases the forces on the outer wheels

(c) does not affect the forces on the outer wheels

(d) none of the above

8. A motor car moving at a certain speed takes a left turn in a curved path. If the engine rotates in the

same direction as that of wheels, then due to the centrifugal forces

(a) the reaction on the inner wheels increases and on the outer wheels decreases

(b) the reaction on the outer wheels increases and on the inner wheels decreases

(c) the reaction on the front wheels increases and on the rear wheels decreases

(d) the reaction on the rear wheels increases and on the front wheels decreases

ANSWERS

1. (d) 2. (b) 3. (a) 4. (b)

5. (c) 6. (b) 7. (a) 8. (b)

GO To FIRST
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15.1. Introduction

The inertia force is an imaginary force, which when

acts upon a rigid body, brings it in an equilibrium position. It

is numerically equal to the accelerating force in magnitude,

but opposite in direction. Mathematically,

Inertia force   =  – Accelerating force = – m.a

where                       m =  Mass of the body, and

                                 a =   Linear acceleration of the centre

                                          of gravity of the body.

Similarly, the inertia torque is an imaginary torque,

which when applied upon the rigid body, brings it in equilib-

rium position. It is equal to the accelerating couple in magni-

tude but opposite in direction.

15.2. Resultant Effect of a System of Forces
Acting on a Rigid Body

Consider a rigid body acted upon by a system of

forces. These forces may be reduced to a single resultant force

CONTENTS

CONTENTS
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F whose line of action is at a distance h from the centre of

gravity G. Now let us assume two equal and opposite forces

(of magnitude F ) acting through G, and parallel to the

resultant force, without influencing the effect of the

resultant force F, as shown in Fig. 15.1.

A little consideration will show that the body is

now subjected to a couple (equal to F × h) and a force,

equal and parallel to the resultant force F passing through

G. The force F through G causes linear acceleration of the

c.g. and the moment of the couple (F × h) causes angular

acceleration of the body about an axis passing through G

and perpendicular to the point in which the couple acts.

Let α = Angular acceleration of the rigid body due to couple,

h = Perpendicular distance between the force and centre of gravity of the

body,

m = Mass of the body,

k = Least radius of gyration about an axis through G, and

I = Moment of inertia of the body about an axis passing through its centre

of gravity and perpendicular to the point in which the couple acts

= m.k2

We know that

           Force,           F = Mass × Acceleration = m.a ...(i)

and                                      F.h = m.k
2.α = I.α 2

...( . )I m k=� ...(ii)

From equations (i) and (ii), we can

find the values of a and α, if the values of F,

m, k, and h are known.

15.3. D-Alembert’s Principle

Consider a rigid body acted upon by

a system of forces. The system may be

reduced to a single resultant force acting on

the body whose magnitude is given by the

product of the mass of the body and the linear

acceleration of the centre of mass of the body.

According to Newton’s second law of

motion,

F = m.a ...(i)

where F = Resultant force acting on the body,

m = Mass of the body, and

a = Linear acceleration of the centre of mass of the body.

The equation (i) may also be written as:

F – m.a = 0 ...(ii)

A little consideration will show, that if the quantity – m.a be treated as a force, equal, opposite

Fig. 15.1. Resultant effect of a system of

forces acting on a rigid body.

The above picture  shows the reciprocating parts

of a 19th century oil engine.
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and with the same line of action as the resultant force F, and include this force with the system of

forces of which F is the resultant, then the complete system of forces will be in equilibrium. This

principle is known as D-Alembert’s principle. The equal and opposite force – m.a is known as reversed

effective force or the inertia force (briefly written as F
I
). The equation (ii) may be written as

F + F
I

= 0 ...(iii)

Thus, D-Alembert’s principle states that the resultant force acting on a body together with

the reversed effective force (or inertia force), are in equilibrium.

This principle is used to reduce a dynamic problem into an equivalent static problem.

15.4. Velocity and Acceleration of the Reciprocating Parts in Engines

The velocity and acceleration of the reciprocating parts of the steam engine or internal

combustion engine (briefly called as I.C. engine) may be determined by graphical method or analytical

method. The velocity and acceleration, by graphical method, may be determined by one of the following

constructions:

1. Klien’s construction, 2. Ritterhaus’s construction, and 3. Bennett’s construction.

We shall now discuss these constructions, in detail, in the following pages.

15.5. Klien’s Construction

Let OC be the crank and PC the connecting rod of a reciprocating steam engine, as shown in

Fig. 15.2 (a). Let the crank makes an angle θ with the line of stroke PO and rotates with uniform

angular velocity ω rad/s  in a clockwise direction. The Klien’s velocity and acceleration diagrams are

drawn as discussed below:

             (a) Klien’s acceleration diagram.      (b) Velocity diagram. (c) Acceleration diagram.

Fig. 15.2. Klien’s construction.

Klien’s velocity diagram

First of all, draw OM perpendicular to OP; such that it intersects the line PC produced at M.

The triangle OCM is known as Klien’s velocity diagram. In this triangle OCM,

OM may be regarded as a line perpendicular to PO,

CM may be regarded as a line parallel to PC, and ...( It is the same line.)�

CO may be regarded as a line parallel to CO.

We have already discussed that the velocity diagram for given configuration is a triangle ocp
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as shown in Fig. 15.2 (b). If this triangle is revolved through 90°, it will be a triangle oc
1
 p

1
, in which

oc
1
 represents v

CO
 (i.e. velocity of C with respect to O or velocity of crank pin C) and is paralel to OC,

op
1
 represents v

PO
 (i.e. velocity of P with respect to O or velocity of cross-head or piston P)

and is perpendicular to OP, and

c
1
p

1
 represents v

PC 
(i.e. velocity of P with respect to C) and is parallel to CP.

A little consideration will show, that the triangles oc
1
p

1
 and OCM are similar. Therefore,

1 1 1 1 (a constant)
oc op c p

OC OM CM
= = = ω

or                                    
CO PO PCv v v

OC OM CM
= = = ω

∴                      v
CO

  =  ω × OC ; v
PO

 = ω × OM, and v
PC

 = ω × CM

Thus, we see that by drawing the Klien’s velocity diagram, the velocities of various points

may be obtained without drawing a separate velocity diagram.

Klien’s acceleration diagram

The Klien’s acceleration dia-

gram is drawn as discussed below:

1. First of all, draw a circle

with C as centre and CM as radius.

2. Draw another circle with

PC as diameter. Let this circle inter-

sect the previous circle at K    and L.

3. Join KL and produce it to

intersect PO at N. Let KL intersect

PC at Q. This forms the quadrilateral

CQNO, which is known as Klien’s

acceleration diagram.

We have already discussed

that the acceleration diagram for the given configuration is as shown in Fig. 15. 2 (c). We know that

(i) o'c' represents  
CO
r

a (i.e. radial component of the acceleration of crank pin C with respect

to O ) and is parallel to CO;

(ii) c'x represents 
PC
r

a (i.e. radial component of the acceleration of crosshead or piston P

with respect to crank pin C) and is parallel to CP or CQ;

(iii) xp' represents 
PC
t

a (i.e. tangential component of the acceleration of P with respect to C )

and is parallel to QN (because QN is perpendicular to CQ); and

(iv) o'p' represents a
PO 

(i.e. acceleration of P with respect to O or the acceleration of piston

P) and is parallel to PO or NO.

A little consideration will show that the quadrilateral o'c'x p' [Fig. 15.2 (c)] is similar to

quadrilateral CQNO [Fig. 15.2 (a)]. Therefore,

2
(a constant)

o c c x xp o p

OC CQ QN NO

′ ′ ′ ′ ′ ′
= = = = ω
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or                              
2CO PC PC PO

r r t
a a a a

OC CQ QN NO
= = = = ω

∴                
2 2

CO PC;
r r

a OC a CQ= ω × = ω ×

                                2 2
PC PO; and
t

a QN a NO= ω × = ω ×

Thus we see that by drawing the Klien’s acceleration diagram, the acceleration of various

points may be obtained without drawing the separate acceleration diagram.

Notes: 1. The acceleration of piston P with respect to crank pin C (i.e. a
PC

) may be obtained from:

                                   
2 2PCor

c p a

CN CN

′ ′
= ω = ω

∴    a
PC  

=  ω2 × CN

2. To find the velocity of any point D on the connecting rod PC, divide CM at D
1
 in the same ratio as D

divides CP. In other words,

                                  
1CD CD

CM CP
=

∴ Velocity of D, v
D

 = ω × OD
1

3. To find the acceleration of any point D on the connecting rod PC, draw a line from a point D parallel

to PO which intersects CN at D
2 

.

∴  Acceleration of D,   a
D

  =  ω2 × OD
2

4.  If the crank position is such that the point N  lies on the right of O instead of to the left as shown in

Fig. 15.2 (a), then the acceleration of the piston is negative. In other words, the piston is under going retardation.

5.  The acceleration of the piston P is zero and its velocity is maximum, when N coincides with O.

There is no simple graphical method of finding the corresponding crank position, but it can be shown that for N

and O to coincide, the angle between the crank and the connecting rod must be slightly less than 90°. For most

practical purposes, it is assumed that the acceleration of piston P is zero, when the crank OC and  connecting rod

PC are at right angles to each other.

15.6. Ritterhaus’s Construction

Let OC be the crank and PC the connecting rod of a rciprocating steam engine, as shown in

Fig. 15.3. Let the crank makes an angle θ with the line of stroke PO and rotates with uniform angular

velocity ω rad/s in a clockwise direction. The Ritterhaus’s velocity and acceleration diagrams are

drawn as discussed below:

Fig. 15.3. Ritterhaus’s construction.

Ritterhaus’s velocity diagram

Draw OM perpendicular to the line of stroke PO, such that it intersects the line PC produced

at M. The triangle OCM is known as Ritterhaus’s velocity diagram. It is similar to Klien’s velocity

diagram.
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∴  Velocity of C with respect to O or the velocity of crank pin C,

v
CO

  =  v
C
 = ω × OC

Velocity of P with respect to O or the velocity of crosshead or piston P,

      v
PO

  =  v
P
 = ω × OM

and velocity of P with respect to C,       v
PC

  =  ω × CM

Ritterhaus’s acceleration diagram

The Ritterhaus’s acceleration diagram is drawn as discussed below:

1.  From point M, draw MK parallel to the line of stroke PO, to interect OC produced at K.

2.  Draw KQ parallel to MO. From Q draw QN perpendicular to PC.

3.  The quadrilateral CQNO is known as Ritterhaus’s acceleration diagram. This is similar

to Klien’s acceleration diagram.

∴ Radial component of the acceleration of C with respect to O or the acceleration of crank

pin C,

                                                  2
CO C
r

a a OC= = ω ×

Radial component of the acceleration of the crosshead or piston P with respect to crank

pin C,

                                                  2
PC
r

a CQ= ω ×

Tangential component of the acceleration of P with respect to C,

     2
PC
t

a QN= ω ×

and acceleration of P with respect to O or the acceleration of piston P,

2
PO Pa a NO= = ω ×

Notes : 1. The acceleration of piston P with respect to crank pin C is given by

                                                      a
PC

  =  ω2 × CN

2. To find the velocity of any point D on the connecting rod PC, divide CM at D
1
 in the same ratio as D

divides CP. In other words,

                                                    
1CD CD

CM CP
=

∴  Velocity of D                       v
D

  =  ω × OD
1

3. To find the acceleration of any point D on the connecting rod PC, draw DD
2
 parallel to the line of

stroke PO, which intersects CN at D
2
. The acceleration of D is given by

      a
D

  =  ω2 × OD
2

15.7. Bennett’s Construction

Let OC be the crank and PC the connecting rod of reciprocating steam engine, as shown in

Fig. 15.4. Let the crank makes an angle θ with the line of stroke PO and rotates with uniform angular

velocity ω rad/s in the clockwise direction. The Bennett’s velocity and acceleration diagrams are

drawn as discussed below:

Bennett’s velocity diagram

When the crank OC is at right angle to the line of stroke, it occupies the postition OC
1
 and the

crosshead P moves to the position P
1
, as shown in Fig. 15.4. Now, produce PC to intersect OC

1
 at M .

The triangle OCM is known as Bennett’s velocity diagram. It is similar to Klien’s velocity diagram.
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Fig. 15.4. Bennett’s construction.

∴  Velocity of C with respect to O or the velocity of crank pin C,

                                                v
CO

  =  v
C
 = ω × OC

Velocity of P with respect to O or the velocity of crosshead or piston P,

    v
PO

  =  v
P
 = ω × OM

and velocity of P with respect to C,      v
PC

 = ω × CM

Bennett’s acceleration diagram

The Bennett’s acceleration diagram is drawn as discussed below:

1. From O, draw OL
1
 perpendicular to P

1
C

1
 (i.e. position of connecting rod PC when crank is

at right angle).  Mark the position of point L on the connecting rod PC such that CL = C
1
L

1
.

2. From L, draw LK perpendicular to PC and from point K draw KQ perpendicular to the line

of stroke PO. From point C, draw CN perpendicular to the line of stroke PO. Join NQ. A little

consideration will show that NQ is perpendicular to PC.

3. The quadrilateral CQNO is known as Bennett’s acceleration diagram. It is similar to

Klien’s acceleration diagram.

∴  Radial component of the acceleration of C with respect to O or the acceleration of the

crank pin C,

2
CO C
r

a a OC= = ω ×

Radial component of the acceleration of the crosshead or piston P with respect to crank

pin C,

    2
PC
r

a CQ= ω ×

Tangential component of the acceleration of P with respect to C,

    2
PC
t

a QN= ω ×

and acceleration of P with respect to O or the acceleration of piston P,

    2
PO Pa a NO= = ω ×

Notes : 1. The acceleration of piston P with respect to crank pin C is given by

     2
PCa CN= ω ×

2. The velocity and acceleration of any point D on the connecting rod PC may be obtained in the similar

way, as discussed in the previous articles, i.e.

Velocity of D, v
D

 = ω × OD
1

and           Acceleration of D, a
D

 = ω2 × OD
2
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Example 15.1. The crank and connecting rod of a reciprocating engine are 200 mm and 700

mm respectively. The crank is rotating in clockwise direction at 120 rad/s. Find with the help of

Klein’s construction: 1. Velocity and acceleration of the piston, 2. Velocity and acceleration of the

mid point of the connecting rod, and 3. Angular velocity and angular acceleration of the connecting

rod, at the instant when the crank is at 30° to I.D.C. (inner dead centre).

Solution. Given: OC = 200 mm = 0.2 m ; PC = 700 mm = 0.7 m ; ω = 120 rad/s

Fig. 15.5

The Klein’s velocity diagram OCM and Klein’s acceleration diagram CQNO as shown in Fig.

15.5 is drawn to some suitable scale, in the similar way as discussed in Art. 15.5. By measurement, we

find that

OM = 127 mm = 0.127 m ; CM = 173 mm = 0.173 m ; QN = 93 mm = 0.093 m ; NO = 200 mm

= 0.2 m

1. Velocity and acceleration of the piston

We know that the velocity of the piston P,

v
P
 = ω × OM = 120 × 0.127 = 15.24 m/s  Ans.

and acceleration of the piston P,

                                   a
P
 = ω2 × NO = (120)2 × 0.2 = 2880 m/s2  Ans.

2. Velocity and acceleration of the mid-point of the connecting rod

In order to find the velocity of the mid-point D of the connecting rod, divide CM at D
1
 in the

same ratio as D divides CP. Since D is the mid-point of CP, therefore D
1
 is the mid-point of CM, i.e.

CD
1
 = D

1
M. Join OD

1
. By measurement,

                                OD
1
 = 140 mm = 0.14 m

∴        Velocity of D, v
D

 = ω × OD
1
 = 120 × 0.14 = 16.8 m/s  Ans.

In order to find the acceleration of the mid-point of the connecting rod, draw a line DD
2

parallel to the line of stroke PO which intersects CN at D
2
. By measurement,

                               OD
2
 = 193 mm = 0.193 m

∴ Acceleration of D,

                                  a
D

 = ω2 × OD
2
 = (120)2 × 0.193 = 2779.2 m/s2 Ans.

3. Angular velocity and angular acceleration of the connecting rod

We know that the velocity of the connecting rod PC (i.e. velocity of P with respect to C),

                                 v
PC

 = ω × CM = 120 × 0.173 = 20.76 m/s
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∴  Angular acceleration of the connecting rod PC,

                                 
PC

PC

20.76
29.66 rad/s

0.7

v

PC
ω = = = Ans.

We know that the tangential  component of the acceleration of P with respect to C,

                                  2 2 2
PC (120) 0.093 1339.2 m/s
t

a QN= ω × = × =

∴ Angular acceleration of the connecting rod PC,

   
2PC

PC

1339.2
1913.14 rad/s

0.7

t
a

PC
α = = =  Ans.

Example 15.2.  In a slider crank mechanism, the length of the crank and connecting rod are

150 mm and 600 mm respectively. The crank position is 60° from inner dead centre. The crank shaft

speed is 450 r.p.m. clockwise. Using Ritterhaus’s construction, determine 1. Velocity and accelera-

tion of the slider, 2. Velocity and acceleration of point D on the connecting rod which is 150 mm from

crank pin C, and 3. angular velocity and angular acceleration of the connecting rod.

Solution. Given : OC = 150 mm = 0.15m ; PC = 600 mm = 0.6 m ; CD = 150 mm = 0.15 m ;

N = 450 r.p.m. or ω = 2π × 450/60 = 47.13 rad/s

The Ritterhaus’s velocity diagram OCM and acceleration diagram CQNO, as shown in

Fig. 15.6, is drawn to some suitable scale in the similar way as discussed in Art. 15.6. By measure-

ment, we find that

OM = 145 mm = 0.145 m ; CM = 78 mm = 0.078 m ; QN = 130 mm = 0.13 m ; and

NO = 56 mm = 0.056 m

Fig. 15.6

1. Velocity and acceleration of the slider

We know that the velocity of the slider P,

P 47.13 0.145 6.834 m/sv OM= ω × = × = Ans.

and acceleration of the slider P,

             2 2 2
P (47.13) 0.056 124.4 m/sa NO= ω × = × = Ans.

2. Velocity and acceleration of point D on the connecting rod

In order to find the velocity of point D on the connecting rod, divide CM at D
1
 in the same

ratio as D divides CP. In other words,

         
1

1

150
or 78 19.5 mm

600

CD CD CD
CD CM

CM CP CP
= = × = × =

Join OD
1
. By measurement, OD

1
 = 145 mm = 0.145 m

∴ Velocity of point D,

           D 1 47.13 0.145 6.834 m/sv OD= ω × = × = Ans.
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In order to find the acceleration of point D on the connecting rod, draw DD
2
 parallel to the

line of stroke PO. Join OD
2
. By measurement, we find that OD

2
 = 120 mm = 0.12 m.

∴ Acceleration of point D,

            2 2 2
D 2 (47.13) 0.12 266.55 m/sa OD= ω × = × = Ans.

3.  Angular velocity and angular acceleration of the connecting rod

We know that the velocity of the connecting rod PC (or the velocity of point P with respect

to C ),

          PC 47.13 0.078 3.676 m/sv CM= ω × = × =

∴ Angular velocity of the connecting rod,

          PC
PC

3.676
6.127 rad/s

0.6

v

PC
ω = = = Ans.

We know that the tangential component of the acceleration of P with respect to C,

           2 2 2
PC (47.13) 0.13 288.76 m/s
t

a QN= ω × = × =

∴  Angular acceleration of the connecting rod PC,

          
2PC

PC

288.76
481.27 rad/s

0.6

t
a

PC
α = = = Ans.

15.8. Approximate Analytical Method for Velocity and Acceleration of the
Piston

Consider the motion of a crank and connecting rod of a reciprocating steam engine as shown

in Fig. 15.7. Let OC be the crank and PC the connecting rod. Let the crank rotates with angular

velocity of ω rad/s and the crank turns through an angle θ from the inner dead centre (briefly written

as I.D.C). Let x be the displacement of a reciprocating body P from I.D.C. after time t seconds, during

which the crank has turned through an angle θ.

Fig. 15.7.  Motion of a crank and connecting rod of a reciprocating steam engine.

Let l = Length of connecting rod between the centres,

r = Radius of crank or crank pin circle,

φ = Inclination of connecting rod to the line of stroke PO, and

n = Ratio of length of connecting rod to the radius of crank = l/r.

Velocity of the piston

From the geometry of Fig. 15.7,

      ( ) ( )x P P OP OP P C C O PQ QO′ ′ ′ ′ ′= = − = + − +

                                       ( ) ( cos cos )l r l r= + − φ + θ
cos ,

...
and cos

PQ l

QO r

= φ 
 

= θ 

�
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                       (1 cos ) (1 cos ) (1 cos ) (1 cos )
l

r l r
r

 
= − θ + − φ = − θ + − φ

 
 

                                       [(1 cos ) (1 cos )]r n= − θ + − φ ...(i)

From triangles CPQ and CQO,

                CQ  =  l sin φ = r sin θ  or  l/r  = sin θ/sin φ

∴                                n  =  sin θ/sin φ   or  sin φ = sin θ/n ...(ii)

We know that,       ( )

1
1 2 2

2 2
2

sin
cos 11 sin

n

 θ
φ = = −− φ  

 

Expanding the above expression by binomial theorem, we get

                              

2

2

1 sin
cos 1 .....

2 n

θ
φ = − × + ...(Neglecting higher terms)

or                                 

2

2

sin
1 cos

2n

θ
− φ = ...(iii)

Substituting the value of (1 – cos φ) in equation (i), we have

2 2

2

sin sin
(1 cos ) (1 cos )

22
x r rn

nn

   θ θ
= =− θ + × − θ +   

  
..(iv)

Differentiating equation (iv) with respect to θ,

1 sin 2
sin 2 sin . cos sin

2 2

dx
r r

nd n

θ   
θ + × θ θ= = θ +   

θ    
... (v)

( 2 sin . cos sin 2 )θ θ = θ�

∴  Velocity of P with respect to O or velocity of the piston P,

     PO P

dx dx d dx
v v

dt d dt d

θ
= = = × = × ω

θ θ

...( Ratio of change of angular velocity / )d dt= θ = ω�

Substituting the value of dx/dθ from equation (v), we have

                                    PO P

sin2
. sin

2
v v r

n

θ 
= = ω θ + 

 
...(vi)

Note: We know that by Klien’s construction,

        Pv OM= ω ×

Comparing this equation with equation (vi), we find that

     
sin 2

sin
2

OM r
n

θ 
θ +=  

 

Acceleration of the piston

Since the acceleration is the rate of change of velocity, therefore acceleration of the piston P,

       
P P P

P

dv dv dvd
a

dt d dt d

θ
= = × = × ω

θ θ
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Differentiating equation (vi) with respect to θ,

     
P cos 2 2 cos 2

cos. . cos
2

dv
r r

nd n

θ ×  θ 
θ += ω = ω θ +   

θ   

Substituting the value of 
Pdv

dθ
in the above equation, we have

                                        
2

P

cos 2 cos 2
. .cos cosa r r

n n

θ θ   
= ω × ω = ωθ + θ +

   
   

...(vii)

Notes: 1. When crank is at the inner dead centre (I.D.C.), then θ = 0°.

∴         
2 2

P

cos 0 1
. .cos 0 1a r r

n n

°   
= ω = ω° + +  

   

2. When the crank is at the outer dead centre (O.D.C.), then θ = 180°.

∴         
2 2

P
cos 2 180 1

. .cos 180 1a r r

n n

× °   
= ω = ω° + − +  

   

As the direction of motion is reversed at the outer dead centre therefore changing the sign of the above

expression,

        
2

P
1

. 1a r

n

 
= ω −

 
 

15.9. Angular Velocity and Acceleration of the Connecting Rod

Consider the motion of a connecting rod and a crank as shown in Fig. 15.7.From the geometry

of the figure, we find that

                             CQ  =  l sin φ = r sin θ

Above picture shows a diesel engine. Steam engine, petrol engine and diesel engine, all

have reciprocating parts such as piston, piston rod, etc.
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∴                        
sin

sin sin
r

l n

θ
φ = × θ = ...

l
n

r

 
= 

 
�

Differentiating both sides with respect to time t,

                 
cos cos

cos
d d

dt n dt n

φ θ θ θ
φ × = × = × ω ...

d

dt

θ 
= ω 

 
�

Since the angular velocity of the connecting rod PC is same as the angular velocity of point P

with respect to C and is equal to dφ/dt, therefore angular velocity of the connecting rod

                             PC

cos cos

cos cos

d

dt n n

φ θ ω ω θ
ω = = × = ×

φ φ

We know that, ( )

1
1 2 2

2 2
2

sin
cos 11 sin

n

 θ
φ = = −− φ  

 

sin
... sin

n

θ 
φ = 

 
�

∴             PC 1
2 2 1/2

2 2

2

cos cos

1
( sin )sin

1

n n
n

n

n

ω θ ω θ
ω = × = ×

− θ θ
− 

 

                                    2 2 1/2

cos

( sin )n

ω θ
=

− θ
...(i)

Angular acceleration of the connecting rod PC,

                               α
PC

 = Angular acceleration of P with respect to PC( )d
C

dt

ω
=

We know that

                      
PC PC PC( ) ( ) ( )d d dd

dt d dt d

ω ω ωθ
= × = × ω

θ θ
...(ii)

...( / )d dtθ = ω�

Now differentiating equation (i), we get

PC

2 2 1/2

cos( )

( sin )

d d

nd d

ω θ ω
=  

− θθ θ  

                       

2 2 1/2 2 2 –1/ 21
2

2 2

2 2 1/2 2 2 –1/ 2 2

2 2

2 2 1/2 2 2 –1/ 2 2

2 2

( sin ) ( sin )] [(cos ) ( sin ) 2 sin cos

sin

( sin ) ( sin ) ( sin ) sin cos

sin

( sin ) ( sin ) cos
sin

sin

n n

n

n n

n

n n

n

 − θ − θ − θ × − θ × − θ θ
=ω 

− θ  

 − θ − θ + − θ θ θ
=ω  

− θ 

 − θ − − θ θ
= −ω θ  

− θ 

2 2 2

2 2 3/2

( sin ) cos
sin

( sin )

n

n

 − θ − θ
= − ω θ  

− θ 

2 2 1/2
...[Dividing and multiplying by ( sin ) ]n − θ
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2

2 2 2

2 2 3/ 2 2 2 3/ 2

sin sin ( 1)
(sin cos )

( sin ) ( sin )

n
n

n n

− ω θ −ω θ −
 = =− θ + θ 

− θ − θ

2 2
...( sin cos 1)θ + θ =�

2 2
PC

PC 2 2 3/ 2

( ) sin ( 1)

( sin )

d n

d n

ω −ω θ −
∴ α = × ω =

θ − θ
           ...[From equation (ii)] ...(iii)

The negative sign shows that the sense of the acceleration of the connecting rod is such that it tends to

reduce the angle φ.

Notes: 1. Since sin2 θ is small as compared to n2, therefore it may be neglected. Thus, equations (i) and (iii) are

reduced to

2 2

PC PC 3

cos sin ( 1)
, and

n

n n

ω θ −ω θ −
ω = α =

2. Also in equation (iii), unity is small as compared to n2, hence the term unity may be neglected.

∴

2

PC

sin

n

−ω θ
α =

Example 15.3. If the crank and the connecting rod are 300 mm and 1 m long respectively

and the crank rotates at a constant speed of 200 r.p.m., determine:1. The crank angle at which the

maximum velocity occurs, and 2. Maximum velocity of the piston.

Solution. Given : r = 300 mm = 0.3 m ; l = 1 m ; N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s

1. Crank angle at which the maximum velocity occurs

Let θ = Crank angle from the inner dead centre at which the maximum

velocity occurs.

We know that ratio of length of connecting rod to crank radius,

n = l/r = 1/0.3 = 3.33

and velocity of the piston,

                                P

sin 2
sin.

2
v r

n

θ 
θ += ω  

 
...(i)

For maximum velocity of the piston,

               
P 2 cos 2

0 . . . 0cos
2

dv
i e r

d n

θ 
= ω =θ + 

θ  

or  n cos θ + 2 cos2 θ – 1 = 0  2
...( cos 2 2 cos 1)θ = θ −�

          2 cos2 θ + 3.33 cos θ – 1 = 0

∴                        

23.33 (3.33) 4 2 1
cos 0.26

2 2

− ± + × ×
θ = =

×
...(Taking + ve sign)

or                                 θ  =  75º Ans.

2. Maximum velocity of the piston

Substituting the value of θ = 75° in equation (i), maximum velocity of the piston,

                            P( )

sin150 0.5
. 20.95 0.3 m/ssin 75 0.966

2 3.33
maxv r

n

°   
= ω = ×° + +

   
   

                                        =  6.54  m/s   Ans.
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Example 15.4.  The crank and connecting rod of a steam engine are 0.3 m and 1.5 m in

length. The crank rotates at 180 r.p.m. clockwise. Determine the velocity and acceleration of the

piston when the crank is at 40 degrees from the inner dead centre position. Also determine the

position of the crank for zero acceleration of the piston.

Solution. Given : r = 0.3; l = 1.5 m ; N = 180 r.p.m. or ω = π × 180/60 = 18.85 rad/s; θ = 40°

Velocity of the piston

We know that ratio of lengths of the connecting rod and crank,

                                n  =  l/r = 1.5/0.3 = 5

∴ Velocity of the piston,

P

sin 80sin 2
sin 40. 18.85 0.3 m/ssin

2 52
v r

n

° θ 
° += ω = ×θ +   

×   
      = 4.19 m/s  Ans.

Acceleration of the piston

We know that acceleration of piston,

                                   

2 2 2
P

cos 2 cos80
. (18.85) 0.3 m/scos cos 40

5
a r

n

θ °   
= ω = ×θ + ° +   

   

                    
2

85.35 m/s= Ans.

Position of the crank for zero acceleration of the piston

Let                           θ
1
 =  Position of the crank from the inner dead centre for zero acceleration

     of the piston.

We know that acceleration of piston,

                              
2 1

P 1

cos 2
. cosa r

n

θ 
= ω θ + 

 

or                                         
2

1 1

.
0 ( cos cos 2 )

r
n

n

ω
= θ + θ P...( 0)a =�

∴   n cos θ
1
 + cos 2θ

1
 = 0

           5 cos θ
1
 + 2 cos2 θ

1
 – 1 = 0           or 2 cos2 θ

1
 + 5 cos θ

1
 – 1 = 0

∴                     

2

1

5 5 4 1 2
cos 0.1862

2 2

− ± + × ×
θ = =

×
...(Taking + ve sign)

or                             θ
1
 = 79.27° or 280.73°   Ans.

Example 15.5. In a slider crank mechanism, the length of the crank and connecting rod are

150 mm and 600 mm respectively. The crank position is 60° from inner dead centre. The crank shaft

speed is 450 r.p.m. (clockwise). Using analytical method, determine: 1. Velocity and acceleration of

the slider, and 2. Angular velocity and angular acceleration of the connecting rod.

Solution. Given : r = 150 mm = 0.15 m ; l = 600 mm = 0.6 m ; θ = 60°; N = 400 r.p.m or

ω = π × 450/60 = 47.13 rad/s

1. Velocity and acceleration of the slider

We know that ratio of the length of connecting rod and crank,

                        n  =  l / r = 0.6 / 0.15 = 4
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∴ Velocity of the slider,

           P

sin 120sin 2
sin 60. 47.13 0.15 m/ssin

2 42
v r

n

° θ 
° += ω = ×θ +   

×   

  = 6.9 m/s  Ans.

and acceleration of the slider,

                          

2 2 2
P

2

cos 2 cos 120
. (47.13) 0.15 m/scos cos 60

4

124.94 m/s

a r
n

θ °   
= ω = ×θ + ° +  

  

=

2.  Angular velocity and angular acceleration of the connecting rod

We know that angular velocity of the connecting rod,

                        
PC

cos 47.13 cos 60
5.9 rad/s

4n

ω θ × °
ω = = = Ans.

and angular acceleration of the connecting rod,

                        

2 2
2

PC

sin (47.13) sin 60
481 rad/s

4n

ω θ × °
α = = = Ans.

15.10. Forces on the Reciprocating Parts of an Engine, Neglecting the
Weight of the Connecting Rod

The various forces acting on the reciprocating parts of a horizontal engine are shown in Fig.

15.8. The expressions for these forces, neglecting the weight of the connecting rod, may be derived as

discussed below :

1. Piston effort. It is the net force acting on the piston or crosshead pin, along the line of

stroke. It is denoted by F
P
 in Fig. 15.8.

Fig. 15.8.  Forces on the reciprocating parts of an engine.

Let                     m
R
 =   Mass of the reciprocating parts, e.g. piston, crosshead pin or

   gudgeon pin etc., in kg, and

                           W
R
 =   Weight of the reciprocating parts in newtons = m

R
.g

We know that acceleration of the reciprocating parts,

                         
2

R P

cos 2
. cosa a r

n

θ 
= = ω θ + 

 

Ans.
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∴ *Accelerating force or inertia force of the reciprocating parts,

                                   
2

I R R R

cos 2
. . . cosF m a m r

n

θ 
= = ω θ + 

 

It may be noted that in a horizontal

engine, the reciprocating parts are

accelerated from rest, during the latter half

of the stroke (i.e. when the piston moves

from inner dead centre to outer dead

centre). It is, then, retarded during the latter

half of the stroke (i.e. when the piston

moves from outer dead centre to inner dead

centre). The inertia force due to the

acceleration of the reciprocating parts,

opposes  the force on the piston due to the

difference of pressures in the cylinder on

the two sides of the piston. On the other

hand, the inertia force due to retardation of the reciprocating parts, helps the force on the piston.

Therefore,

Piston effort,     P Net load on the piston Inertia forceF = �

                                                     L IF F= � ...(Neglecting frictional resistance)

                                                         L I FF F R= −� ...(Considering frictional resistance)

where      R
F
 = Frictional resistance.

The –ve sign is used when the piston is accelerated, and +ve sign is used when the piston is

retarded.

In a double acting reciprocating steam engine, net load on the piston,

F
L

= p
1
A

1
 – p

2
 A

2
 = p

1
 A

1
 – p

2
 (A

1
 – a)

where                                p
1
, A

1
= Pressure and cross-sectional area on the back end side of the

piston,

p
2
, A

2
= Pressure and cross-sectional area on the crank end side of the

piston,

a = Cross-sectional area of the piston rod.

Notes : 1. If ‘p’ is the net pressure of steam or gas on the piston and D is diameter of the piston, then

Net load on the piston,  F
L
  =  Pressure × Area

2

4
p D

π
= × ×

2. In case of a vertical engine, the weight of the reciprocating parts assists the piston effort during the

downward stroke (i.e. when the piston moves from top dead centre to bottom dead centre) and opposes during

the upward stroke of the piston (i.e. when the piston moves from bottom dead centre to top dead centre).

∴ Piston effort,     P L I R FF F F W R= ± −�

2. Force acting along the connecting rod. It is denoted by F
Q

 in Fig. 15.8. From the geom-

etry of the figure, we find that

                              
P

Q
cos

F
F =

φ

Connecting rod of a petrol engine.

* The acceleration of the reciprocating parts by Klien’s construction is,

        a
P
 = ω2 × NO

          ∴                                             F
I
  =  m

R.
.
 
ω2  ×  NO
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We know that    

2

2

sin
cos 1

n

θ
φ = −

∴                           
P

Q
2

2

sin
1

F
F

n

=

θ
−

3. Thrust on the sides of the cylinder walls or normal reaction on the guide bars. It is

denoted by F
N

 in Fig. 15.8. From the figure, we find that

                              
P

N Q Psin sin tan
cos

F
F F F= φ = × φ = φ

φ

P
Q...

cos

F
F

 
=

 
φ 

�

4. Crank-pin effort and thrust on crank shaft bearings. The force acting on the connecting

rod F
Q

 may be resolved into two components, one perpendicular to the crank and the other along the

crank. The component of F
Q

 perpendicular to the crank is known as crank-pin effort and it is denoted

by F
T
 in Fig. 15.8. The component of F

Q
 along the crank produces a thrust on the crank shaft bearings

and it is denoted by F
B
 in Fig. 15.8.

Resolving F
Q

 perpendicular to the crank,

                               
P

T Q sin ( ) sin ( )
cos

F
F F= θ + φ = × θ + φ

φ

and resolving F
Q

 along the crank,

                               
P

B Q cos ( ) cos ( )
cos

F
F F= θ + φ = × θ + φ

φ

5. Crank effort or turning moment or torque on the crank shaft. The product of the crank-

pin effort (F
T
) and the crank pin radius (r) is known as crank effort or turning moment or torque on

the crank shaft. Mathematically,

 

P
T

P

P

sin ( )
Crank effort,

cos

(sin cos cos sin )

cos

sin
sin cos

cos

F
T F r r

F
r

F r

θ + φ
= × = ×

φ

θ φ + θ φ
= ×

φ

φ 
θ + θ ×= × 

φ 

                                     P (sin cos tan )F r= θ + θ φ × ...(i)

We know that l sin φ  = r sin θ

                           
sin

sin sin
r

l n

θ
φ = θ = ...

l
n

r

 
= 

 
�

and                          

2
2 2 2

2

sin 1
cos 1 sin 1 sinn

nn

θ
φ = − φ = − = − θ

∴                       
2 2 2 2

sin sin sin
tan

cos sin sin

n

n n n

φ θ θ
φ = = × =

φ − θ − θ
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Substituting the value of tan φ in equation (i), we have crank effort,

                                   P 2 2

cos sin
sin

sin
T F r

n

θ θ 
θ += × 

 − θ 

                                       P 2 2

sin 2
sin

2 sin
F r

n

θ 
θ += ×  

 − θ 
...(ii)

...( 2 cos sin sin 2 )θ θ = θ�

Note: Since sin2 θ is very small as compared to n2 therefore neglecting sin2 θ, we have,

Crank effort,                   P P

sin 2
sin

2
T F r F OM

n

θ 
= × = ×θ + 

 

We have seen in Art. 15.8, that

                                   
sin 2

sin
2

OM r

n

θ 
= θ + 

 

Therefore, it is convenient to find OM instead of solving the large expression.

Example 15.6. Find the inertia force for the following data of an I.C. engine.

Bore = 175 mm, stroke = 200 mm, engine speed = 500 r.p.m., length of connecting rod =

400 mm, crank angle = 60° from T.D.C and mass of reciprocating parts = 180 kg.

Solution. Given : *D =175 mm ; L = 200 mm = 0.2 m or r = L / 2 = 0.1 m ; N = 500 r.p.m. or

ω = 2π × 500/60 =52.4 rad/s ; l = 400 mm = 0.4 m ; m
R
 = 180 kg

The inertia force may be calculated by graphical method or analytical method as discussed

below:

1. Graphical method

First of all, draw the Klien’s acceleration diagram OCQN to some suitable scale as shown in

Fig. 15.9. By measurement,

              ON  =  38 mm = 0.038 m

∴ Acceleration of the reciprocating parts,

     a
R
 = ω2 × ON

          = (52.4)2 × 0.038 = 104.34 m/s

We know that inertia force,

    F
I
 = m

R
 × a

R
 = 180 × 104.34 N

        = 18 780  N = 18.78 kN  Ans.

2. Analytical method

We know that ratio of lengths of connecting rod and crank,

     n  = l / r = 0.4 / 0.1 = 4

∴ Inertia force,         2
I R

cos 2
. . cosF m r

n

θ 
= ω θ + 

 

                                       
2 cos 120

180 (52.4) 0.1 18 530 Ncos 60
4

° 
= × × =° + 

 

         = 18.53 kN Ans.

Fig. 15.9

* Superfluous data.
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Example 15.7. The crank-pin circle radius of a horizontal engine is 300 mm. The mass of the

reciprocating parts is 250 kg. When the crank has travelled 60° from I.D.C., the difference between

the driving and the back pressures is 0.35 N/mm2. The connecting rod length between centres is 1.2 m

and the cylinder bore is 0.5 m. If the engine runs at 250 r.p.m. and if the effect of piston rod diameter

is neglected, calculate : 1. pressure on slide bars, 2. thrust in the connecting rod, 3. tangential force

on the crank-pin, and 4. turning moment on the crank shaft.

Solution. Given: r = 300 mm = 0.3 m ; m
R
 = 250 kg; θ = 60°; p

1
 – p

2
 = 0.35 N/mm2;

l = 1.2 m ; D = 0.5 m = 500 mm ; N = 250 r.p.m. or ω = 2 π × 250/60 = 26.2 rad/s

First of all, let us find out the piston effort (F
P
).

We know that net load on the piston,

                               
2 2

L 1 2( ) 0.35 (500) 68730 N
4 4

F p p D
π π

= − × = × =

...( Force = Pressure × Area)�

Ratio of length of connecting rod and crank,

                                  / 1.2 / 0.3 4n l r= = =

and accelerating or inertia force on reciprocating parts,

2
I R

cos 2
. cosF m r

n

θ 
= ω θ + 

 

       
2 cos 120

250 (26.2) 0.3 19306 Ncos 60
4

° 
= =° + 

 

∴ Piston effort,      F
P
 = F

L
 – F

I
 = 68 730 – 19 306 = 49 424 N = 49.424 kN

1. Pressure on slide bars

Let                              φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that,     
sin sin 60 0.866

sin 0.2165
4 4n

θ °
φ = = = =

∴                              φ  = 12.5°

We know that pressure on the slide bars,

                             F
N

  =  F
P
 tan φ = 49.424 × tan 12.5° = 10.96 kN   Ans.

2. Thrust  in the connecting rod

We know that thrust in the connecting rod,

                               P
Q

49.424
50.62 kN

cos cos 12.5

F
F = = =

φ °
Ans.

3.  Tangential force on the crank-pin

We know that tangential force on the crank pin,

                               T Q sin ( ) 50.62 sin (60 12.5 ) 48.28 kNF F= θ + φ = ° + ° = Ans.

4. Turning moment on the crank shaft

We know that turning moment on the crank shaft,

   T 48.28 0.3 14.484 kN-mT F r= × = × = Ans.
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Example 15.8. A vertical double acting steam engine has a cylinder 300 mm diameter and

450 mm stroke and runs at 200 r.p.m. The reciprocating parts has a mass of 225 kg and the piston rod

is 50 mm diameter. The connecting rod is 1.2 m long. When the crank has turned through 125°

 from the top dead centre, the steam pressure above the piston is 30 kN/m2 and below the piston is 1.5

kN/m2. Calculate the effective turning moment on the crank shaft.

Solution. Given : D = 300 mm = 0.3 m ; L = 450 mm or r = L/2 = 225 mm = 0.225 m ;

N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s ; m
R
= 225 kg ; d = 50 mm = 0.05 m ; l = 1.2 m ;

θ = 125° ; p
1
 = 30 kN/m2 = 30 × 103 N/m2 ; p

2
 = 1.5 kN/m2 = 1.5 × 103 N/m2

We know that area of the piston,

                                 
2 2 2

1 (0.3) 0.0707 m
4 4

A D
π π

= × = × =

and area of the piston rod,      
2 2 2

(0.05) 0.001 96 m
4 4

a d
π π

= × = × =

∴ Force on the piston due to steam pressure,

                                

L 1 1 2 1

3 3

. ( )

30 10 0.0707 1.5 10 (0.0707 0.001 96) N

= 2121 – 103 = 2018 N

F p A p A a= − −

= × × − × −

Ratio of lengths of connecting rod and crank,

   n  =  l / r  =  1.2 / 0.225 = 5.33

and inertia force on the reciprocating parts,

                                 

2
1 R

2

cos 2
. . cos

cos 250
225 (20.95) 0.225 14 172 Ncos 125

5.33

F m r
n

θ 
= ω θ + 

 

° 
= × = −° + 

 

We know that for a vertical engine, net force on the piston or piston effort,

  F
P
  =  F

L
 – F

I
 + m

R
.g

      =  2018 – (– 14 172) + 225 × 9.81 = 18 397 N

Let       φ =  Angle of inclination of the connecting rod to the line of stroke.

We know that,      
sin sin 125 0.8191

sin 0.1537
5.33 5.33n

θ °
φ = = = =

∴                               8.84φ = °

We know that effective turning moment on the crank shaft,

   
P sin ( ) 18397 sin (125 8.84 )

0.225 N-m
cos cos 8.84

F
T r

× θ + φ ° + °
= × = ×

φ °

                                     = 3021.6 N-m Ans.

Example 15.9. The crank and connecting rod of a petrol engine, running at 1800 r.p.m.are

50 mm and 200 mm respectively. The diameter of the piston is 80 mm and the mass of the reciprocat-

ing parts is 1 kg. At a point during the power stroke, the pressure on the piston is 0.7 N/mm2, when it

has  moved 10 mm from the inner dead centre. Determine : 1. Net load on the gudgeon pin, 2. Thrust

in the connecting rod, 3. Reaction between the piston and cylinder, and 4. The engine speed at which

the above values become zero.

Solution. Given : N = 1800 r.p.m. or ω = 2π × 1800/60 = 188.52 rad/s ; r = 50 mm = 0.05 m;

l = 200 mm ; D = 80 mm ; m
R
 = 1 kg ; p = 0.7 N/mm2 ; x = 10 mm
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1. Net load on the gudgeon pin

We know that load on the piston,

   
2 2

L (80) 0.7 3520 N
4 4

F D p
π π

= × = × × =

Fig. 15.10

When the piston has moved 10 mm from the inner dead centre, i.e. when P
1
P = 10 mm, the

crank rotates from OC
1
 to OC through an angle θ as shown in Fig. 15.10.

By measurement, we find that *θ = 33°.

We know that ratio of lengths of connecting rod and crank,

     n  =  l/r = 200 /50 = 4

and inertia force on the reciprocating parts,

    

2
I R R R

2

cos 2
. . . cos

cos 66
1 (188.52) 0.05 1671 Ncos 33

4

F m a m r
n

θ 
= = ω θ + 

 

° 
= × × =° + 

 

We know that net load on the gudgeon pin,

   P L I 3520 1671 1849 NF F F= − = − = Ans.

2. Thrust in the connecting rod

Let φ = Angle of inclination of the connecting rod to the line of

stroke.

We know that,
sin sin 33 0.5446

sin 0.1361
4 4n

θ °
φ = = = =

∴      φ  =  7.82°

* The angle θ may also be obtained as follows:

We know that   

2 2
sin 1 cos

(1 cos ) (1 cos )
2 2

x r r
n n

   θ − θ
= =− θ + − θ +   

   

   

2
2501 cos

10 50 (1 cos ) (8 8 cos 1 cos
82 4

 − θ
 = =− θ + − θ + − θ   

× 

  = 50 – 50 cos θ + 6.25 – 6.25 cos2 θ

or 6.25 cos2 θ + 50 cos θ – 56.25 = 0

Solving this quadratic equation, we get θ = 33.14°
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We know that thrust in the connecting rod,

P
Q

1849
1866.3N

cos cos 7.82

F
F = = =

φ °
Ans.

3. Reaction between the piston and cylinder

We know that reaction between the piston and cylinder,

N P tan 1849 tan 7.82 254 NF F= φ = ° = AAns.

4. Engine speed at which the above values will become zero

A little consideration will show that the above values will become zero, if the inertia force on

the reciprocating parts (F
I
) is equal to the load on the piston (F

L
). Let ω

1
 be the speed in rad/s, at

which F
I
 = F

L
 .

∴     
2 2

R 1

cos 2
( ) cos

4
m r D p

n

πθ 
ω = ×θ + 

 

             
2 2 2

1 1

cos 66
1 ( ) 0.05 (80) 0.7 or 0.0 47 ( ) 3520cos 33

44

π° 
ω × = × × ω =° + 

 

∴  (ω
1
)2 = 3520 / 0.047 = 74 894 or ω

1
 = 273.6 rad/s

∴  Corresponding speed in r.p.m.,

N
1
 = 273.6 × 60 / 2π = 2612 r.p.m.  Ans.

Example 15.10. During a trial on steam engine, it is found that the acceleration of the piston

is 36 m/s2 when the crank has moved 30° from the inner dead centre position. The net effective steam

pressure on the piston is 0.5 N/mm2 and the frictional resistance is equivalent to a force of 600 N. The

diameter of the piston is 300 mm and the mass of the reciprocating parts is 180 kg. If the length of

the crank is 300 mm and the ratio of the connecting rod length to the crank length is 4.5, find:

1. Reaction on the guide bars, 2. Thrust on the crank shaft bearings, and 3. Turning moment on the

crank shaft.

Solution. Given : a
P
 = 36 m/s2 ; θ = 30°;  p = 0.5 N/mm2 ; R

F 
= 600 N; D = 300 mm ;

m
R
 = 180 kg ; r = 300 mm = 0.3 m ; n = l / r = 4.5

1. Reaction on the guide bars

First of all, let us find the piston effort (F
P
). We know that load on the piston,

2 2
L 0.5 (300) 35350 N

4 4
F p D

π π
= × × = × × =

Twin-cylinder aeroplane engine.
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and inertia force due to reciprocating parts,

 F
I
 = m

R
 × a

P
 = 180 × 36 = 6480 N

∴ Piston effort,    F
P
 = F

L
 – F

I
 – R

F
 = 35 350 – 6480 – 600 = 28 270 N = 28.27 kN

Let φ = Angle of inclination of the connecting rod to the line of stroke.

We know that sin φ = sin θ/n = sin 30°/4.5 = 0.1111

∴   φ = 6.38°

We know that reaction on the guide bars,

 F
N

 = F
P
 tan φ = 28.27 tan 6.38° = 3.16 kN Ans.

2. Thrust on the crank shaft bearing

We know that thrust on the crank shaft bearings,

P
B

cos ( ) 28.27 cos (30 6.38 )
22.9 kN

cos cos 6.38

F
F

θ + φ ° + °
= = =

φ °
Ans.

3.  Turning moment on the crank shaft

We know that turning moment on the crank shaft,

P sin ( ) 28.27 sin (30 6.38 )
0.3 kN-m

cos cos 6.38

F
T r

θ + φ ° + °
= × = ×

φ °

                                          5.06 kN-m=

Example 15.11.  A vertical petrol engine 100 mm diameter and 120 mm stroke has a

connecting rod 250 mm long. The mass of the piston is 1.1 kg. The speed is 2000 r.p.m. On the

expansion stroke with a crank 20° from top dead centre, the gas pressure is 700 kN/m
2
. Determine:

1. Net force on the piston, 2. Resultant load on the gudgeon pin,

3. Thrust on the cylinder walls, and 4. Speed above which, other things re-

maining same, the gudgeon pin load would be reversed in direction.

Solution. Given: D = 100 mm = 0.1 m ; L = 120 mm = 0.12 m or

r = L/2 = 0.06 m ; l = 250 mm = 0.25 m ; m
R
 = 1.1 kg ; N = 2000 r.p.m. or

ω = 2 π × 2000/60 = 209.5 rad/s ; θ = 20°; p = 700 kN/m2

1. Net force on the piston

The configuration diagram of a vertical engine is shown in Fig. 15.11.

We know that force due to gas pressure,

2 2
L 700 (0.1) 5.5 kN

4 4

= 5500 N

F p D
π π

= × × = × × =

and ratio of lengths of the connecting rod and crank,

n = l/r = 0.25 /0.06 = 4.17

∴ Inertia  force on the piston,

2
I R

2

cos 2
. . cos

cos 40
1.1 (209.5) 0.06 cos 20

4.17

3254 N

F m r
n

θ 
= ω θ + 

 

° 
= × × × ° + 

 

=

Fig. 15.11
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We know that for a vertical engine, net force on the piston,

P L I R L I R .

5500 3254 1.1 9.81 2256.8 N

F F F W F F m g= − + = − +

= − + × =

2. Resultant load on the gudgeon pin

Let             φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that,

sin φ = sin θ / n = sin 20°/4.17 = 0.082

∴ φ  =  4.7°

We know that resultant load on the gudgeon pin,

P
Q

2256.8
2265 N

cos cos 4.7

F
F = = =

φ °
Ans.

3. Thrust on the cylinder walls

We know that thrust on the cylinder walls,

       N P tan 2256.8 tan 4.7 185.5 NF F= φ = × ° = Ans.

4. Speed, above which, the gudgeon pin load would be reversed in direction

Let N
1
 =  Required speed, in r.p.m.

The gudgeon pin load i.e. F
Q

 will be reversed in direction, if F
Q
 becomes negative. This is only

possible when F
P
 is negative. Therefore, for F

P
 to be negative, F

I
 must be greater than (F

L
 + W

R
),

i.e.
2

R 1

cos 2
( ) 5500 1.1 9.81cosm r

n

θ 
ω > + ×θ + 

 

2
1

cos 40
1.1 ( ) 0.06 5510.8cos 20

4.17

° 
× ω × >° + 

 

2 2
1 10.074 ( ) 5510.8 or ( ) 5510.8 / 0.074 or 74 470ω > ω >

or 1 273 rad/sω >

∴  Corresponding speed in r.p.m.,

1 273 60 / 2 or 2606 r.p.m.N > × π Ans.

Example 15. 12. A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and

a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When

the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the

cover end side is 550 kN/m
2
 and that on the crank end side is 70 kN/m

2
. Considering the diameter of

the piston rod equal to 50 mm, determine:

1. turning moment on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the

flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.

Solution. Given : N = 120 r.p.m. or ω = 2π × 120/60 = 12.57 rad/s ; D = 250 mm = 0.25 m ;

L = 400 mm = 0.4 m or r = L/2 = 0.2 m ; l = 0.6 m ; m
R
 = 60 kg ; θ = 45° ; d = 50 mm = 0.05 m ;

p
1
 = 550 kN/m2 = 550 × 103 N/m2 ; p

2
 = 70 kN/m2 = 70 × 103 N/m2

Ans.
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1. Turning moment on the crankshaft

First of all, let us find the net load on the piston (F
P
).

We know that area of the piston on the cover end side,

                         
2 2 2

1 = (0.25) = 0.049 m
4 4

A D
π π

= × ×

and area of piston rod,        
2 2 2

(0.05) 0.00196 m
4 4

a d
π π

= × = × =

∴  Net load on the piston,

       
L 1 1 2 2 1 1 2 1

3 3

. . . ( )

550 10 0.049 70 10 (0.049 0.001 96) 23657 N

F p A p A p A p A a= − = − −

= × × − × − =

We know that ratio of lengths of the connecting rod and crank,

                                               n = l/r = 0.6/0.2 = 3

and inertia force on the reciprocating parts,

                                              

2
I R

2

cos 2
. . cos

cos 90
60 (12.57) 0.2 1340 Ncos 45

3

F m r
n

θ 
= ω θ + 

 

° 
= × × =° + 

 

∴  Net force on the piston or piston effort,

                                            P L I 23657 1340 22 317 N 22.317 kNF F F= − = − = =

Let                             φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that,     sin  φ =  sin θ/n = sin 45°/3 = 0.2357

∴                               φ = 13.6°

We know that turning moment on the crankshaft,

         

P sin ( ) 22.317 sin (45 13.6 )
0.2 kN-m

cos cos 13.6

= 3.92 kN-m = 3920 N-m

F
T r

θ + φ × ° + °
= × = ×

φ °

Ans.

High-pressure steam in

Valve rod Slide valve

Exhaust steam

Cross-head guide
Cross head

Piston Rod Piston

Cylinder
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2. Thrust on the bearings

We know that thrust on the bearings,

P
B

cos ( ) 22.317 cos (45 13.6 )
11.96 kN

cos cos 13.6

F
F

θ + φ × ° + °
= = =

φ °
Ans.

3. Acceleration of the flywheel

Given: P = 20 kW = 20 × 103 W; m = 60 kg ; k = 0.6 m

Let α = Acceleration of the flywheel in rad/s2.

We know that mass moment of inertia of the flywheel,

I  =  m.k2 = 60 × (0.6) 2 = 21.6 kg-m2

∴  Accelerating torque, T
A

 = I.α = 21.6 α N-m ...(i)

and resisting torque,                   
3

R

60 20 10 60
1591 N-m

2 2 120

P
T

N

× × ×
= = =

π π ×

2

60

NT
P

π 
∴ = 

 

Since the accelerating torque is equal to the difference of torques on the crankshaft or turning

moment (T) and the resisting torque (T
R
), therefore, accelerating torque,

T
A

 = T – T
R
 = 3920 – 1591 = 2329 N-m ...(ii)

From equation (i) and (ii),

α = 2329/21.6 = 107.8 rad/s2   Ans.

Example 15.13. A vertical, single cylinder,

single acting diesel engine has a cylinder diameter

300 mm, stroke length 500 mm, and connecting rod

length 4.5 times the crank length. The engine runs

at 180 r.p.m. The mass of the reciprocating parts is

280 kg. The compression ratio is 14 and the pressure

remains constant during the injection of the oil for

1/10th of the stroke. If the compression and

expansion follows the law p.V
1.35

 = constant, find:

1. Crank-pin effort, 2. Thrust on the bearings, and

3. Turning moment on the crank shaft, when the

crank displacement is 45° from the inner dead centre

position during expansion stroke.

The suction pressure may be taken as

0.1 N/mm2.

Solution. Given : D  = 300 mm = 0.3 m ;

L  = 500 mm = 0.5 m or  r = 0.25 m ; l =  4.5 r or n = l / r = 4.5;  N = 180 r.p.m.   or

ω = 2π × 180/60 = 18.85 rad/s ; m
R
 = 280 kg ; 1

2

14;
V

V
= θ = 45°; p

1
 = 0.1 N/mm2

The pressure-volume (i.e. p-V) diagram for a *diesel engine is shown in Fig 15.12, in which

1-2 represents the compression, 2-3 represents the injection of fuel, 3-4 represents the expan-

sion, and 4-1 represents the exhaust.

Let p
1
, p

2
, p

3
, and  p

4
 = Pressures corresponding to points 1, 2, 3 and 4 respectively, and

V
1
, V

2
, V

3
, and      V

4
 = Volumes corresponding to points 1, 2, 3 and 4 respectively.

Fig. 15.12

* In a diesel engine, the compression and expanssion are isentropic i.e. according to the law p.V
γ = constant.

The injection of fuel takes place at constant pressure and the exhaust is at constant volume.
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Since the compression follows the law p.V1.35 = constant, therefore

1.35 1.35
1 1 2 2( ) ( )p V p V=

or

1.35

1 1.35 2
2 1

2

0.1 (14) 3.526 N/mm
V

p p
V

 
= = × = 

 

We know that swept volume,

2 2 3
S (0.3) 0.5 0.035 m

4 4
V D L

π π
= × × = × × =

and        compression ratio, C S S1

2 C C

1
V V VV

V V V

+
= = = + 2 C...( )V V=�

∴
3

C

C

0.035 0.035
14 1 or 0.0027 m

14 1
V

V
= + = =

−

Since the injection of fuel takes place at constant pressure (i.e.  p
2
 = p

3
) and continues up to

1/10th of the stroke, therefore volume at the end of the injection of fuel,

3
3 C S

1 0.035
0.0027 0.0062 m

10 10
V V V= + × = + =

When the crank displacement is 45° (i.e. when θ = 45°) from the inner dead centre during

expansion stroke, the corresponding displacement of the piston (marked by point 4' on the p-V diagram)

is given by

2 2sin sin 45
(1 cos ) (1 cos 45 )

2 2 4.5
x r r

n

   θ °
= =− θ + − ° +   

×   

   
0.5

0.25 0.087 m(1 0.707)
9

 
= =− +

 
 

∴                 
2 2 2

4 C 0.0027 (0.3) 0.087 0.0088 m
4 4

V V D x
π π

′ = + × × = + × × =

Since the expansion follows the law p.V
1.35 = constant, therefore,

                 1.35 1.35
3 3 4 4( ) ( )p V p V

′ ′
=

∴                

1.35 1.35
3 2

34
4

0.0062
3.526 2.2 N/mm

0.0088

V
p p

V
′

′

   
= = =  

  

Difference of pressures on two sides of the piston,

              2 6 2
14 2.2 0.1 2.1 N/mm 2.1 10 N/mp p p′= − = − = = ×

∴ Net load on the piston,

              
2 6 2

L 2.1 10 (0.3) 148 460N
4 4

F p D
π π

= × × = × × × =

Inertia force on the reciprocating parts,

               

2
I R

2

cos 2
. . cos

cos 90
280 (18.85) 0.25 17585 Ncos 45

4.5

F m r
n

θ 
= ω θ + 

 

° 
= × × =° + 

 
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We know that net force on the piston or piston effort,

        
P L I R L I R .

148 460 17 858 280 9.81 133622 N

F F F W F F m g= − + = − +

= − + × =

1. Crank-pin effort

Let             φ  = Angle of inclination of the connecting rod to the line of stroke.

We know that,  sin φ = sin θ/n = sin 45°/4.5 = 0.1571

∴           φ  =  9.04°

We know that crank-pin effort,

        

P
T

sin ( ) 133622 sin (45 9.04 )
109522 N

cos cos 9.04

= 109.522 kN

F
F

θ + φ × ° + °
= = =

φ °

2.  Thrust on the bearings

We know that thrust on the bearings,

        

P
B

.cos ( ) 133622 sin (45 9.04 )
79 456 N

cos cos 9.04

= 79.956 kN

F
F

θ + φ × ° + °
= = =

φ °

3. Turning moment on the crankshaft

We know that the turning moment on the crankshaft,

        T 109.522 0.25 27.38 kN-mT F r= × = × = Ans.

Example 15.14. A vertical double acting steam engine

has cylinder diameter 240 mm, length of stroke 360 mm and

length of connecting rod 0.6 m. The crank rotates at 300 r.p.m.

and the mass of  the reciprocating parts is 160 kg. The steam is

admitted at a pressure of 8 bar gauge and cut-off takes place at

1/3rd of the stroke. The expansion of steam is hyperbolic. The

exhaust of steam takes place at a pressure of –0.75 bar gauge.

The frictional resistance is equivalent to a force of 500 N. Deter-

mine the turning moment on the crankshaft, when the piston is

75° from the top dead centre. Neglect the effect of clearance and

assume the atmospheric presssure as 1.03 bar.

Solution. Given D = 240 mm = 0.24 m ; L = 360 mm

= 0.36 m or r = L /2 = 0.18 m ; l = 0.6 m ; l= 0.6 m ;

N  = 300 r.p.m. or ω = 2π × 300/60= 31.42 rad/s; m
R
 = 160 kg ;

p
A

 = 8 + 1.03 = 9.03 bar = 903 × 103 N/m2 ; p
E
 = – 0.75 + 1.03

= 0.28 bar = 28 × 103 N/m2 ; F
R
 = 500 N ; θ = 75°

First of all, let us find the piston effort (F
P
).

The pressure-volume ( p-V ) diagram for a steam engine,

neglecting clearance, is shown in FIg. 15.13, in which A B

represents the admission of steam, BC the expansion and DE the exhaust  of steam. The steam is cut-

off at point B.

We know that the stroke volume,

2 2 3
S (0.24) 0.36 0.0163 m

4 4
V D L

π π
= × × = × × =

Fig. 15.13

Ans.

Ans.
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Since the admission of steam is cut-off at 1/3rd of the stroke, therefore volume of steam at

cut-off,

            V
B
 = V

S  
/ 3 = 0.0163/3 = 0.005 43 m3

We know that ratio of the lengths of the connecting rod and crank,

              / 0.6 / 0.18 3.33n l r= = =

When the crank position is 75° from the top dead centre (i.e. when θ = 75°), the displacement

of the piston (marked by point C' on the expansion curve BC) is given by

              

2 2
sin sin 75

0.18(1 cos ) 1 cos 75
2 2 3.33

0.1586 m

x r
n

   θ °
= =− θ + − ° +   

×   

=

∴              
3

C S

0.1586
0.0163 0.0072 m

0.36

x
V V

L

′ = × = × =

Since the expansion is hyperbolic (i.e. according to the law pV = constant), therefore

             
B B C C. .p V p V′ ′=

or               

3
3 2B B

C

C

903 10 0.00543
681 10 N/m

0.0072

p V
p

V

× × ×
′ = = = ×

′

∴  Difference of pressures on the two sides of the piston,

              3 3 3 2
C E 681 10 28 10 653 10 N/mp p p′= − = × − × = ×

We know that net load on the piston,

              
2 2 3

L (0.24) 653 10 29545 N
4 4

F D p
π π

= × × = × × × =

and inertia force on the reciprocating parts,

2
I R

2

cos 2
. . cos

cos 150
160 (31.42) 0.18 36 Ncos75

3.33

F m r
n

θ 
= ω θ + 

 

° 
= × × = −° + 

 

∴  Piston effort,  P L I R RF F F W F= − + −

29545 ( 36) 160 9.81 500 30651 N= − − + × − =

Turning moment on the crankshaft

Let φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that sin φ  = sin θ/n = sin 75°/3.33 = 0.29

∴ φ  = 16.86°

We know that turning moment on the crankshaft

P sin ( ) 30651 sin (75 16.86 )
0.18 N-m

cos cos 16.86

= 5762 N-m

F
T r

θ + φ ° + °
= × = ×

φ °

15.11.  Equivalent Dynamical System

In order to determine the motion of a rigid body, under the action of external forces, it is

usually convenient to replace the rigid  body by two masses placed at a fixed distance apart, in such

a way that,

Ans.
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1. the sum of their masses is equal to the total mass of the body ;

2. the centre of gravity of the two masses coincides with that of the body ; and

3. the sum of mass moment of inertia of the masses about their centre of gravity is equal to

the mass moment of inertia of the body.

When these three conditions are satisfied, then it is said to be an equivalent dynamical system.

Consider a rigid body, having its centre of gravity at G, as shown in Fig. 15.14.

Let  m = Mass of the body,

k
G

 = Radius of gyration about

   its centre of gravity G,

m
1
 and m

2
 = Two masses which form a

                  dynamical equivalent system,

l
1
 = Distance of mass m

1
 from G,

l
2
 = Distance of mass m

2
 from G,

   and

L = Total distance between the

   masses m
1
 and m

2
.

Thus, for the two masses to be dynamically equivalent,

                                          1 2m m m+ = ...(i)

                                                1 1 2 2. .m l m l= ...(ii)

and                    2 2 2
1 1 2 2 G( ) ( ) ( )m l m l m k+ = ...(iii)

From equations (i) and (ii),

2
1

1 2

.l m
m

l l
=

+
...(iv)

and
1

2

1 2

.l m
m

l l
=

+
...(v)

Substituting the value of m
1
 and m

2
 in equation (iii), we have

2 2 2 22 1 1 2 1 2
1 2 G G

1 2 1 2 1 2

. . . ( )
( ) ( ) ( ) or ( )

l m l m l l l l
l l m k k

l l l l l l

+
+ = =

+ + +

∴
2

1 2 G. ( )l l k= ...(vi)

This equation gives the essential condition of placing the two masses, so that the system

becomes dynamical equivalent. The distance of one of the masses (i.e. either l
1
 or l

2
) is arbitrary

chosen and the other distance is obtained from equation (vi).

Note : When the radius of gyration k
G

 is not known, then the position of the second mass may be obtained by

considering the body as a compound pendulum. We have already discussed, that the length of the simple pendu-

lum which gives the same frequency as the rigid body (i.e. compound pendulum) is

2 2 2 2
G G 1

1

( ) ( ) ( )k h k l
L

h l

+ +
= = ..(Replacing h by l

1
)

We also know that 2
1 2 G. ( )l l k=

∴

2
1 2 1

2 1
1

. ( )l l l
L l l

l

+
= = +

This means that the second mass is situated at the centre of oscillation or percussion of the

body, which is at a distance of l
2
 = (k

G
)2/l

1
.

Fig. 15.14. Equivalent

dynamical system.
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Fig. 15.16

Fig. 15.17

Fig. 15.15.  Determination of equivalent

dynamical system by graphical method.

15.12. Determination of Equivalent Dynamical System of Two Masses by
Graphical Method

Consider a body of mass m, acting at G as

shown in Fig. 15.15. This mass m, may be replaced

by two masses m
1
 and m

2
 so that the system becomes

dynamical equivalent. The position of mass m
1
 may

be fixed arbitrarily at A . Now  draw perpendicular

CG at G, equal in length of the radius of gyration of

the body, k
G 

. Then join A C and draw CB

perpendicular to AC intersecting AG produced in

B. The point B now fixes the position of the second

mass m
2
.

A little consideration will show that the

triangles ACG and BCG are similar. Therefore,

2G 2
G 1 2

1 G

or ( ) .
k l

k l l
l k

= =

                    ...(Same as before)

Example 15.15. The connecting rod of a gasoline engine

is 300 mm long between its centres. It has a mass of 15 kg and

mass moment of inertia of 7000 kg-mm
2
. Its centre of gravity is at

200 mm from its small end centre. Determine the dynamical

equivalent two-mass system of the connecting rod if one of the

masses is located at the small end centre.

Solution. Given : l = 300 mm ; m = 15 kg; I = 7000 kg-mm2 ;

l
1
 = 200 mm

The connecting rod is shown in Fig. 15.16.

Let   k
G

 = Radius of gyration of the connecting rod

           about an axis passing through its centre of

          gravity G.

We know that mass moment of inertia (I),

7000 = m (k
G

)2 = 15 (k
G

)2

∴ (k
G

)2 =  7000/15  =  466.7 mm2 or k
G

 = 21.6 mm

It is given that one of the masses is located at the small end

centre. Let the other mass is placed at a distance l
2
 from the centre

of gravity G, as shown in Fig. 15.17.

We know that for a dynamical equivalent system,

                2
1 2 G. ( )l l k=

∴    

2
G

2

1

( ) 466.7
2.33 mm

200

k
l

l
= = =

Let   m
1
 =  Mass placed at the small end

             centre, and

 m
2
 =     Mass placed at a distance l

2
 from

            the centre of gravity G.
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We know that

         
2

1

1 2

. 2.33 15
0.17 kg

200 2.33

l m
m

l l

×
= = =

+ +
Ans.

and         
1

2

1 2

. 200 15
14.83 kg

200 2.33

l m
m

l l

×
= = =

+ +
Ans.

Example 15.16.  A connecting rod is suspended from a point 25 mm above the centre of

small end, and 650 mm above its centre of gravity, its mass being 37.5 kg. When permitted to oscil-

late, the time period is found to be 1.87 seconds. Find the dynamical equivalent system constituted of

two masses, one of which is located at the small end centre.

Solution. Given : h = 650 mm = 0.65 m ; l
1
 = 650 – 25 = 625 mm

= 0.625 m ; m = 37.5 kg ; t
p
 = 1.87 s

First of all, let us find the radius of gyration (k
G

) of the connect-

ing rod (considering it is a compound pendulum), about an axis passing

through its centre of gravity, G.

We know that for a compound pendulum, time period of

oscillation (t
p
),

          

2 2 2 2
G G( ) ( ) (0.65)1.87

1.87 2 or
. 2 9.81 0.65

k h k

g h

+ +
= π =

π ×

Squaring both sides, we have

                

2
G( ) 0.4225

0.0885
6.38

k +
=

                  2 2
G( ) 0.0885 6.38 0.4225 0.1425 mk = × − =

∴       k
G

 = 0.377 m

It is given that one of the masses is located at the small end centre.

Let the other mass is located at a distance l
2
 from the centre of gravity G,

as shown in Fig. 15.19. We know that, for a dynamically equivalent system,

                       l
1
.l

2
 = (k

G
)2

∴        

2
G

2

1

( ) 0.1425
0.228 m

0.625

k
l

l
= = =

Let       m
1
 = Mass placed at the small end

                   centre A , and

                        m
2
 =  Mass placed at a distance l

2
 from

  G, i.e. at B.

We know that, for a dynamically equivalent system,

                      
2

1

1 2

. 0.228 37.5
10 kg

0.625 0.228

l m
m

l l

×
= = =

+ +
 Ans.

and        1
2

1 2

. 0.625 37.5
27.5 kg

0.625 0.228

l m
m

l l

×
= = =

+ +

Ans.

Fig. 15.18

Fig. 15.19
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Example 15.17. The following data relate to a connecting rod of a reciprocating engine:

Mass = 55 kg; Distance between bearing centres = 850 mm; Diameter of small end bearing

= 75 mm; Diameter of big end bearing = 100 mm; Time of oscillation when the connecting rod is

suspended from small end = 1.83 s; Time of  oscillation when the connecting rod is suspended from

big end = 1.68 s.

Determine: 1. the radius of gyration of the rod about an axis passing through the centre of

gravity and perpendicular to the plane of oscillation; 2. the moment of inertia of the rod about the

same axis; and 3. the dynamically equivalent system for the connecting rod, constituted of two masses,

one of which is situated at the small end centre.

 Solution. Given : m  = 55 kg ; l = 850 mm = 0.85 m ; d
1
 = 75 mm = 0.075 m ;

d
2
 = 100 mm = 0.1 m ; t

p1
 = 1.83 s ; t

p2
 = 1.68 s

First of all, let us find the lengths of the equivalent simple

pendulum when suspended

(a)  from the top of small end bearing; and

(b)  from the top of big end bearing.

Let L
1

= Length of equivalent simple pendulum

when  suspended from the top of small

end bearing,

L
2

= Length of equivalent simple pendulum

when suspended from the top of big end

bearing,

h
1

= Distance of centre of gravity, G, from the

top of small end bearing, and

h
2

= Distance of centre of gravity, G, from the

top of big end bearing.

We know that for a simple pendulum

2

11 1
1 2 or

2

p

p

tL L
t

g g

 
= π = 

π 
...(Squaring both sides)

∴   

2 2

1
1

1.83
9.81 0.832 m

22

pt
L g

   
= = =  

π π 

Similarly,

2 2

2
2

1.68
9.81 0.7 m

22

p
t

L g
   

= = =  
π π 

1. Radius of gyration of the rod about an axis passing through the centre of gravity and perpen-

dicular to the plane of oscillation

Let k
G

 = Required radius of gyration of the rod.

We know that the length of equivalent simple pendulum,

2 2
2 2G

G

( )
or ( ) . ( )

k h
L k L h h h L h

h

+
= = − = −

∴ When the rod is suspended from the top of small end bearing,

( )
2

1 1 1G ( )h L hk = − ...(i)

Fig. 15.20
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and when the rod is suspended from the top of big end bearing,

                ( )
2

2 2 2G ( )h L hk = − ...(ii)

Also, from the geometry of the Fig. 15.20,

                
1 2

1 2

0.075 0.1
0.85 0.9375 m

2 2 2 2

d d
h h l+ = + + = + + =

∴                2 10.9375h h= − ...(iii)

From equations (i) and (ii),

                1 1 1 2 2 2( ) ( )h L h h L h− = −

Substituting the value of h
2
 from equation (iii),

                 

[ ]1 1 1 1

2 2
1 1 1 1

1 1

(0.832 ) (0.9375 ) 0.7 (0.9375 )

0.832 ( ) 0.223 1.175 ( )

0.343 0.233 or 0.223 / 0.343 0.65 m

h h h h

h h h h

h h

− = − − −

− = − + −

= = =

Now from equation (i),

                2
G G( ) 0.65 (0.832 0.65) 0.1183 or 0.343 mk k= − = = Ans.

2. Moment of inertia of the rod

We know that moment of inertia of the rod,

               2 2
G( ) 55 0.1183 6.51 kg-mI m k= = × = Ans.

3. Dynamically equivalent system for the rod

Since one of the masses (m
1
) is situated at the centre of small end bearing, therefore its

distance from the centre of gravity, G, is

             l
1
 =  h

1
 – 0.075 / 2 = 0.65 – 0.0375 = 0.6125 m

Let                  m
2
 =  Magnitude of the second mass, and

              l
2
 = Distance of the second mass from the centre of gravity, G,

                     towards big  end bearing.

For a dynamically equivalent system,

                

2
2 G

1 2 G 2

1

( ) 0.1183
. ( ) or 0.193 m

0.6125

k
l l k l

l
= = = =

We know that 2
1

1 2

. 0.193 55
13.18 kg

0.6125 0.193

l m
m

l l

×
= = =

+ +
Ans.

and
1

2

1 2

. 0.6125 55
41.82 kg

0.6125 0.193

l m
m

l l

×
= = =

+ +
Ans.

15.13. Correction Couple to be Applied to Make Two Mass System
Dynamically Equivalent

In Art. 15.11, we have discussed the conditions for equivalent dynamical system of two

bodies. A little consideration will show that when two masses are placed arbitrarily*, then the condi-

* When considering the inertia forces on the connecting rod in a mechanism, we replace the rod by two

masses arbitrarily. This is discussed in Art. 15.14.
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tions (i) and (ii) as given in Art. 15.11 will only be satisfied. But the condition (iii) is not possible to

satisfy. This means that the mass moment of inertia of these two masses placed arbitrarily, will differ

than that of mass moment of inertia of the rigid body.

Fig. 15.21. Correction couple to be applied to make the two-mass system dynamically equivalent.

Consider two masses, one at A  and the other at D be placed arbitrarily, as shown in Fig. 15.21.

Let l
3

= Distance of mass placed at D from G,

I
1

= New mass moment of inertia of the two masses;

k
1

= New radius of gyration;

α = Angular acceleration of the body;

I = Mass moment of inertia of a dynamically equivalent system;

k
G

= Radius of gyration of a dynamically equivalent system.

We know that the torque required to accelerate the body,

T = I.α = m (k
G

)2 α ...(i)

Similarly, the torque required to accelerate the two-mass system placed arbitrarily,

T
1

= I
1
.α = m (k

1
)2 α ...(ii)

∴ Difference between the torques required to accelerate the two-mass system and the torque

required to accelerate the rigid body,

T' = T
1
–T = m (k

1
)2 α – m (k

G
)2 α = m [(k

1
)2 – (k

G
)2] α ...(iv)

The difference of the torques T' is known as correction couple. This couple must be applied,

when the masses are placed arbitrarily to make the system dynamical equivalent. This, of course, will

satisfy the condition (iii) of Art. 15.11.

Note: We know that (k
G

)2 = l
1
.l

2 
,    and   (k

1
)2 = l

1
.l

3

∴ Correction couple, T' = m  (l
1
.l

3
 – l

1
.l

2
) α = m.l

l
 (l

3
 – l

2
) α

But l
3 

– l
2

= l – L

∴ T' = m .l
1
 (l – L) α

where l = Distance between the two arbitrarily masses, and

L = Distance between the two masses for a true dynamically equivalent

system. It is the equivalent length of a simple pendulum when a body

is suspended from an axis which passes through the position of mass

m , and perpendicular to the plane of rotation of the two mass system.

2 2
G 1

1

( ) ( )k l

l

+
=
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Example 15.18. A connecting rod of an I.C. engine has a mass of 2 kg and the distance

between the centre of gudgeon pin and centre of crank pin is 250 mm. The C.G. falls at a point 100  mm

from the gudgeon pin along the line of centres. The radius of gyration about an axis through the C.G.

perpendicular to the plane of rotation is 110 mm. Find the equivalent dynamical system if only one of

the masses is located at gudgeon pin.

If the connecting rod is replaced by two masses, one at the gudgeon pin and the other at the

crank pin and the angular acceleration of the rod is 23 000 rad/s
2
 clockwise, determine the correc-

tion couple applied to the system to reduce it to a dynamically equivalent system.

Solution. Given : m = 2 kg ; l = 250 mm = 0.25 m ; l
1
 = 100 mm = 0.1m ; k

G
 = 110 mm = 0.11 m ;

α = 23 000 rad/s2

Equivalent dynamical system

It is given that one of the masses is located at the gudgeon pin. Let the other mass be located

at a distance l
2
 from the centre of gravity. We know that for an equivalent dynamical system.

                                          

2 2
2 G

1 2 G 2

1

( ) (0.11)
. ( ) or 0.121 m

0.1

k
l l k l

l
= = = =

Let                          m
1
 = Mass placed at the gudgeon pin, and

                               m
2
 = Mass placed at a distance l

2
 from C.G.

We know that        
2

1

1 2

. 0.121 2
1.1 kg

0.1 0.121

l m
m

l l

×
= = =

+ +
 Ans.

and                                     
1

2

1 2

. 0.1 2
0.9 kg

0.1 0.121

l m
m

l l

×
= = =

+ +
Ans.

Correction couple

Since the connecting rod is replaced by two masses located at the two centres (i.e. one at the

gudgeon pin and the other at the crank pin), therefore,

                                  l
 
= 0.1 m,   and   l

3
 = l – l

1
 = 0.25 – 0.1 = 0.15 m

Let                           k
1
 = New radius of gyration.

We know that        (k
1
)2= l

1
.l

3
 = 0.1 × 0.15 = 0.015 m2

∴  Correction couple,

                    
2 2 2
1 G( ) 2 23 000 133.4 N-m0.015 (0.11)T m k k′  = − α = =−  Ans.

Note : Since T' is positive, therefore, the direction of correction couple is same as that of angular acceleration

i.e. clockwise.

15.14. Inertia Forces in a Reciprocating Engine, Considering the Weight of
 Connecting Rod

In a reciprocating engine, let OC be the crank and PC, the connecting rod whose centre of

gravity lies at G. The inertia forces in a reciprocating engine may be obtained graphically as discussed

below:

1. First of all, draw the acceleration diagram OCQN by Klien’s construction. We know that

the acceleration of the piston P with respect to O,

                             a
PO

 = a
P
 = ω2 × NO,
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acting in the direction from N to O. Therefore, the inertia force F
I
 of the reciprocating parts will act in

the opposite direction as shown in Fig. 15.22.

Fig. 15.22. Inertia forces is reciprocating engine, considering the weight of connecting rod.

2. Replace the connecting rod by dynamically equivalent system of two masses as discussed

in Art. 15.12. Let one of the masses be arbitrarily placed at P. To obtain the position of the other mass,

draw GZ perpendicular to CP such that GZ = k, the radius of gyration of the connecting rod. Join PZ

and from Z draw perpendicular to DZ which intersects CP at D. Now, D is the position of the second

mass.

Note: The position of the second mass may also be obtained from the equation,

GP × GD = k2

3. Locate the points G and D on NC which is the acceleration image of the connecting rod.

This is done by drawing parallel lines from G and D to the line of stroke PO. Let these parallel lines

intersect NC at g and d respectively. Join gO and dO. Therefore, acceleration of G with respect  to O,

in the direction from g to O,

a
GO

= a
G

 = ω2 × gO

and acceleration of D with respect to O, in the direction from d to O,

a
DO

= a
D

 = ω2 × dO

4. From D, draw DE parallel to dO which intersects the line of stroke PO at E. Since the

accelerating forces on the masses at P and D intersect at E, therefore their resultant must also pass

through E. But their resultant is equal to the accelerang force on the rod, so that the line of action of

the accelerating force on the rod, is given by a line drawn through E and parallel to gO, in the direc-

tion from g to O. The inertia force of the connecting rod F
C
 therefore acts through E and in the

opposite direction as shown in Fig. 15.22. The inertia force of the connecting rod is given by

F
C

= m
C
 × ω2 × gO ...(i)

where m
C

= Mass of the connecting rod.

A little consideration will show that the forces acting on the connecting rod are :

(a) Inertia force of the reciprocating parts (F
I
) acting along the line of stroke PO,



552  �   Theory of Machines

(b) The side thrust between the

crosshead and the guide bars

(F
N

) acting at P and right angles

to line of stroke PO,

(c) The weight of the connecting rod

(W
C
 = m

C
.g),

(d) Inertia force of the connecting

rod (F
C
),

(e) The radial force (F
R
) acting

through O and parallel to the

crank OC,

(f) The force (F
T
) acting perpen-

dicular to the crank OC.

Now, produce the lines of action of

F
R
 and F

N
 to intersect at a point I, known as

instantaneous centre. From I draw I X and I

Y , perpendicular to the lines of action of F
C

and W
C
. Taking moments about I, we have

F
T
 × IC = F

I
 × IP + F

C
 × I X + W

C
 × I  Y ...(ii)

The value of F
T
 may be obtained from this equation and from the force polygon as shown in

Fig. 15.22, the forces F
N

 and F
R
 may be calculated. We know that, torque exerted on the crankshaft to

overcome the inertia of the moving parts = F
T
 × OC

Note : When the mass of the reciprocating parts is neglected, then F
I
 is zero.

15.15.  Analytical Method for Inertia Torque

The effect of the inertia of the connecting rod on the crankshaft torque may be obtained as

discussed in the following steps:

Fig. 15.23. Analytical method for inertia torque.

1. The mass of the connecting rod (m
C
) is divided into two masses. One of the mass is placed

at the crosshead pin P and the other at the crankpin C as shown in Fig. 15.23, so that the centre of

gravity of these two masses coincides with the centre of gravity of the rod G.

2. Since the inertia force due to the mass at C acts radially outwards along the crank OC,

therefore the mass at C has no effect on the crankshaft torque.

3. The inertia force of the mass at P may be obtained as follows:

Let m
C

= Mass of the connecting rod,

l = Length of the connecting rod,

l
1

= Length of the centre of gravity of the connecting rod from P.

Radial engines of a motor cycle.
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∴  Mass of the connecting rod at P,

1
C

l l
m

l

−
= ×

The mass of the reciprocating parts (m
R
) is also acting at P. Therefore,

Total equivalent mass of the reciprocating parts acting at P

1
R C

l l
m m

l

−
= + ×

∴  Total inertia force of the equivalent mass acting at P,

1
I RR C

l l
F am m

l

− 
= + × 

 
...(i)

where a
R
 = Acceleration of the reciprocating parts

2 cos 2
. cosr

n

θ 
= ω θ + 

 

∴
21

I R C

cos 2
. cos

l l
F rm m

nl

− θ   
= ω θ ++ ×   

  

and corresponding torque exerted on the crank shaft,

I I I 2 2

sin 2
sin.

2 sin
T F OM F r

n

θ 
θ += × =  

 − θ 
...(ii)

Note :  Usually the value of OM is measured by drawing the perpendicular from O on PO which intersects PC

produced at M.

4. In deriving the equation (ii) of the torque exerted on the crankshaft, it is assumed that one

of the two masses is placed at C and the other at P. This assumption does not satisfy the condition for

kinetically equivalent system of a rigid bar. Hence to compensate for it, a correcting torque is neces-

sary whose value is given by

2 2
C PC C 1 PC1 G

. ( )( ) ( )T m m l l Lk k′  = α = − α− 

where L = Equivalent length of a simple pendulum when swung about an

axis through P

2 2
G 1

1

( ) ( )k l

l

+
=

α
PC

= Angular acceleration of the connecting rod PC.

2
sin

n

−ω θ
= ...(From Art. 15.9)

The correcting torque T' may be applied to the system by two equal and opposite forces F
Y

acting through P and C. Therefore,

F
Y

 × PN = T'    or   F
Y

  =  T '/PN

and corresponding torque on the crankshaft,

C Y

T
T F NO NO

PN

′
= × = × ...(iii)

We know that, NO = OC cos θ = r cos θ

and PN = PC cos φ = l cos φ
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∴                       

cos cos

cos cos

NO r

PN l n

θ θ
= =

φ φ
...

l
n

r

 
= 

 
�

                                               
2 2 2

2

cos cos

sin sin
1

n
n

n

θ θ
= =

θ − θ
−

2

2

sin
... cos 1

n

 
θ

 φ = −
 
 

�

Since sin2θ is very small as compared to n2, therefore neglecting sin2θ, we have

                                       
cosNO

PN n

θ
=

Substituting this value in equation (iii), we have

                                          C C 1 PC

cos cos
( )T T m l l L

n n

θ θ
′= × = × − α ×

                                               

2

C 1

sin cos
( )m l l L

n n

ω θ θ
= − × − ×        

2

PC

sin
...

n

 −ω θ
α = 

 
�

                                               

2

C 1 2

sin 2
( )

2
m l l L

n

ω θ
= − × − ( )... 2 sin cos sin 2θ θ = θ�

5.  The equivalent mass of the rod acting at C,

                                         
1

2 C

l
m m

l
= ×

∴  Torque exerted on the crank shaft due to mass m
2 

,

                    
1 1

W 2 C C cos
l l

T m g NO m g NO m g r
l l

= − × × = − × × × = − × × × θ

...( cos )NO r= θ�

                                               
1

C cos
l

m g
n

= − × × × θ ...( / )l r n=�

6. The total torque exerted on the crankshaft due to the inertia of the moving parts is the

algebraic sum of T
I 
, T

C
 and T

W
.

Example 15.19. The crank and connecting rod lengths of an engine are 125 mm and 500

mm respectively. The mass of the connecting rod is 60 kg and its centre of gravity is 275 mm from the

crosshead pin centre, the radius of gyration about centre of gravity being 150 mm.

If the engine speed is 600 r.p.m. for a crank position of 45° from the inner dead centre,

determine, using Klien’s or any other construction 1. the acceleration of the piston; 2. the magni-

tude, position and direction of inertia force due to the mass of the connecting rod.

Solution. Given : r = OC = 125 mm ; l = PC = 500 mm; m
C
 = 60 kg ; PG = 275 mm ;

m
C
 = 60 kg ; PG = 275 mm ; k

G
 = 150 mm ; N = 600 r.p.m. or ω = 2π × 600/60 = 62.84 rad/s ; θ = 45°

1. Acceleration of the piston

Let                          a
P
 = Acceleration of the piston.

First of all, draw the configuration diagram OCP, as shown in Fig. 15.24, to some suitable

scale, such that

                           OC = r = 125 mm ; PC = l = 500 mm ; and θ = 45°.
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Now, draw the Klien’s acceleration diagram OCQN, as shown in Fig. 15.24, in the same

manner as already discussed. By measurement,

                                    NO = 90 mm = 0.09 m

∴  Acceleration of the piston,

                                               a
P
 = ω2 × NO = (62.84)2  × 0.09 = 355.4 m/s  Ans.

Fig. 15.24

2.  The magnitude, position and direction of inertia force due to the mass of the connecting rod

The magnitude, postition and direction of the inertia force may be obtained as follows:

(i) Replace the connecting rod by dynamical equivalent system of two masses, assuming that

one of the masses is placed at P and the other mass at D. The position of the point D is obtained as

discussed in Art. 15.12.

(ii) Locate the points G and D on NC which is the acceleration image of the connecting rod.

Let these points are g and d on NC. Join gO and dO. By measurement,

                                    gO = 103 mm = 0.103 m

∴  Acceleration of G,   a
G

 = ω2 × gO, acting in the direction from g to O.

(iii) From point D, draw DE parallel to dO. Now E is the point through which the inertia force

of the connecting rod passes. The magnitude of the inertia force of the connecting rod  is given by

                       F
C 

 = m
C
 × ω2 × gO = 60 × (62.84)2 × 0.103 = 24 400 N = 24.4 kN Ans.

(iv) From point E, draw a line parallel to gO, which shows the position of the inertia force of

the connecting rod and acts in the opposite direction of gO.

Example 15.20. The following data refer to a steam engine:

Diameter of piston = 240 mm; stroke = 600 mm ; length of connecting rod = 1.5 m ; mass of

reciprocating parts = 300 kg; mass of connecting rod = 250 kg; speed = 125 r.p.m ; centre of gravity

of connecting rod from crank pin = 500 mm ; radius of gyration of the connecting rod about an axis

through the centre of gravity = 650 mm.
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Determine the magnitude and direction of the torque exerted on the crankshaft when the

crank has turned through 30° from inner dead centre.

Solution. Given :   D = 240 mm = 0.24 m ;  L = 600 mm  or  r = L/2 = 300 mm = 0.3 m ;

l = 1.5 m ; m
R
 = 300 kg ;  m

C
 = 250 kg ;   N = 125 r.p.m.  or   ω = 2π × 125/60 = 13.1 rad/s ;

GC = 500 mm = 0.5 m ;  k
G

 = 650 mm = 0.65 m ; θ = 30°

The inertia torque on the crankshaft may be determined by graphical method or analytical

method as discussed below:

1. Graphical method

First of all, draw the configuration diagram OCP, as shown in Fig. 15.25, to some suitable

scale, such that

                                     OC = r = 300 mm ; PC = l = 1.5 m ; and angle POC = θ = 30°.

Fig. 15.25

Now draw the Klien’s acceleration diagram OCQN, as shown in Fig. 15.25, and complete the

figure in the similar manner as discussed in Art. 15.14.

By measurement; NO = 0.28 m ; gO = 0.28 m ; IP = 1.03 m ; I X = 0.38 m ; I Y = 0.98 m,

and IC = 1.7 m.

We know that inertia force of reciprocating parts,

2 2
I R 300 (13.1) 0.28 14 415 NF m NO= × ω × = × × =

and inertia force of connecting rod,

2 2
C C 250 (13.1) 0.28 12 013 NF m gO= × ω × = × × =

Let F
T

= Force acting perpendicular to the crank OC.

Taking moments about point I,

T I C CF IC F IP W IY F IX× = × + × + ×
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T 1.7 14 415 1.03 250 9.81 0.98 12013 0.38 21816F × = × + × × + × =

∴ T 2.816 /1.7 12 833 NF = = C C...( . )W m g=�

We know that torque exerted on the crankshaft

T 12 833 0.3 3850 N-mF r= × = × = Ans.

2. Analytical method

We know that the distance of centre of gravity (G) of the connecting rod from P, i.e.,

l
1
 = l – GC = 1.5 – 0.5 = 1 m

∴  Inertia force due to total mass of the reciprocating parts at P,

21
I R C

cos 2
. cos

5

l l
F rm m

l

− θ   
= ω θ ++ ×   

  

                            
21.5 1 cos 60

(13.1) .0.3 19 064 N300 250 cos 30
1.5 5

− °   
= × × =+ × ° +   

   

1.5
... 5

0.3

l
n

r

 
= = =

 
 
�

∴  Corresponding torque due to F
I 
,

I I I 2 2

sin 2
sin.

2 sin
T F OM F r

n

θ 
θ += × =  

 − θ 

     2 2

sin 60
sin 3019 064 0.3

2 5 sin 30

° 
° += ×  

 − ° 

     5719.2 0.587 3357 N-m (anticlockwise)= × =

Equivalent length of a simple pendulum when swung about an axis through P,
2 2 2 2

G 1

1

( ) ( ) (0.65) 1
1.42 m

1

k l
L

l

+ +
= = =

∴  Correcting torque,

2

C C 1 2

sin 2
. ( )

2
T m l l L

n

 ω θ
= −  

 

2

2

(13.1) sin 60
250 1 (1.5 1.42) 59.5 N-m (anticlockwise)

2 5

 °
= × − = 

× 

Torque due to the weight of the connecting rod at C,

1 1
W C Ccos cos

1
250 9.81 cos 30 424.8 N-m (anticlockwise)

5

l l
T W m g

n n
= × × θ = × × × θ

= × × × ° =

∴  Total torque exerted on the crankshaft,

I C W

3357 59.5 424.8 3841.3 N-m (anticlockwise)

T T T= + +

= + + =

Note: The slight difference in results arrived at by the above two methods is mainly due to error in measurement

in graphical method.

Ans.
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Example 15.21.  A vertical engine running at 1200 r.p.m. with a stroke of 110 mm, has a

connecting rod 250 mm between centres and mass 1.25 kg. The mass centre of the connecting  rod is

75 mm from the big end centre and when suspended as a pendulum from the gudgeon pin axis makes

21 complete oscillations in 20 seconds.

1. Calculate the radius of gyration of the connecting rod about an axis through its mass

centre.

2. When the crank is at 40° from the top dead centre and the piston is moving downwards,

find analytically, the acceleration of the piston and the angular acceleration of the connecting rod.

Hence find the inertia torque exerted on the crankshaft. To make the two-mass system to be dynami-

cally equivalent to the connecting rod, necessary correction torque has to be applied and since the

engine is vertical, gravity effects are to be considered.

Solution. Given : N = 1200 r.p.m. or ω = 2π × 1200/60 = 125.7 rad/s ;

L = 110 mm or r = L/2 = 55 mm = 0.055 m ;  l = PC = 250 mm = 0.25 m ;

m
C
 = 1.25 kg ; CG = 75 mm = 0.075 m ; θ = 40°

The configuration diagram of the engine is shown in Fig. 15.26.

1. Radius of gyration of the connecting rod about an axis through its mass

centre

Let k
G

= Radius of gyration of the connecting rod about

an axis through its mass centre,

l
1

= Distance of the centre of gravity from the point

of suspension = PG

= 250 – 75 = 175 mm = 0.175 m

Since the connecting rod makes 21 complete oscillations in 20 seconds,

therefore frequency of oscillation,

Z

21
1.05 H

20
n = =

We know that for a compound pendulum, frequency of oscillation,

           
21 1

2 2 2 2 2
G 1 G 1

. .1 1
or

2 ( ) ( ) 4 ( ) ( )

g l g l
n n

k l k l

= = ×
π + π +

...(Squaring both sides)

and                 
2 2 2 21

G 12 2 2 2

. 9.81 0.175
( ) ( ) (0.175) 0.0088 m

4 4 (1.05)

g l
k l

n

×
= − = − =

π π ×

∴                    k
G

 = 0.094 m = 94 mm Ans.

2.  Acceleration of the piston

We know that acceleration of the piston,

2 2
P

cos 80cos 2
cos 40. (125.7) 0.055cos

0.25 / 0.055
a r

n

° θ 
° += ω =θ +   

   

= 698.7 m/s2 Ans.  ...( / )n l r=�

Angular acceleration of the connecting rod

We know that mass of the connecting rod at P,

2 2
2

PC

sin (125.7) sin 40
2234.4 rad/s

0.25 / 0.055n

−ω θ − °
α = = = −  Ans.

Fig. 15.26
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Inertia torque exerted on the crankshaft

We know that mass of the connecting rod at P,

                          
1

1 C

0.25 0.175
1.25 0.375 kg

0.25

l l
m m

l

− −
= × = × =

∴ Vertical inertia force,

                          I 1 P. 0.375 698.7 262 NF m a= = × =

and corresponding torque due to F
I
,

                           I I 262 0.0425 11.135 N-mT F OM= − × = − × = −

                                = 11.135 N-m (anticlockwise) ...(By measurement, OM = 0.0425 m)

We know that the equivalent length of a simple pendulum when swung about an axis passing

through P,

                            

2 2 2 2
G 1

1

( ) ( ) (0.094) (0.175)
0.225 m

0.175

k l
L

l

+ +
= = =

∴  Correction couple,

C 1 PC. ( ) 1.25 0.175 (0.25 0.225) 2234.4 12.22 N-mT m l l L′ = − − α = − × − = −

Corresponding torque on the crankshaft,

       C

cos 12.22 cos 40
2.06 N-m 2.06 N-m (anticlockwise)

0.25 / 0.055

T
T

n

′ θ − × °
= = = − =

Torque due to the mass at P,

P 1 0.375 9.81 0.0425 0.156 N-m (clockwise)T m g OM= × × = × × =

Equivalent mass of the connecting rod at C,

                          
1

2 C

0.175
1.25 0.875 kg

0.25

l
m m

l
= × = × =

Torque due to mass at C,

W 2 0.875 9.81 0.035 0.3 N-m (clockwise)T m g NC= × × = × × =

...(By measurement, NC = 0.035 m)

∴  Inertia torque exerted on the crankshaft

                               I C P WT T T T= + − −

                                11.135 2.06 0.156 0.3 12.739 N-m (anticlockwise)= + − − = Ans.

Example 15.22.  The connecting rod of an internal combustion engine is 225 mm long and

has a mass 1.6 kg. The mass of the piston and gudgeon pin is 2.4 kg and the stroke is 150 mm. The

cylinder bore is 112.5 mm. The centre of gravity of the connection rod is 150 mm from the small end.

Its radius of gyration about the centre of gravity for oscillations in the plane of swing of the connect-

ing rod is 87.5 mm. Determine the magnitude and direction of the resultant force on the crank pin

when the crank is at 40° and the piston is moving away from inner dead centre under an effective gas

presure of 1.8 MN/m
2
. The engine speed is 1200 r.p.m.

Solution.  Given : l = PC = 225 mm = 0.225 m; m
C
 = 1.6 kg; m

R
 = 2.4 kg; L = 150 mm or

r = L/2 = 75 mm = 0.075 m ; D = 112.5 mm = 0.1125 m ; PG = 150 mm ; k
G

 = 87.5 mm = 0.0875 m ;

θ = 40° ; p = 1.8 MN/m2 = 1.8 × 106 N/m2 ; N = 1200 r.p.m. or ω = 2π × 1200/60 = 125.7 rad/s
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First of all, draw the configuration diagram OCP, as shown in Fig. 15.27 to some suitable

scale, such that OC = r = 75 mm ; PC = l = 225 mm ; and θ = 40°.

Fig. 15.27

Now, draw the Klien’s acceleration diagram OCQN. Complete the diagram in the same manner

as discussed earlier. By measurement,

NO = 0.0625 m ; gO = 0.0685 m ; IC = 0.29 m ; IP = 0.24 m ; I Y = 0.148 m ; and IX = 0.08 m

We know that force due to gas pressure,

2 2 6
L (0.1125) 1.8 10 17 895 N

4 4
F D p

π π
= × × = × × × =

Inertia force due to mass of the reciprocating parts,

2 2
I R 2.4 (125.7) 0.0625 2370 NF m NO= × ω × = × =

∴  Net force on the piston,

P L I 17 895 2370 15 525 NF F F= − = − =

Inertia force due to mass of the connecting rod,

2 2
C C 1.6 (125.7) 0.0685 1732 NF m gO= × ω × = × × =

Let F
T
 = Force acting perpendicular to the crank OC.

Now, taking moments about point I,

P C C T

T15 525 0.24 1.6 9.81 0.148 1732 0.08 0.29

F IP W IY F IX F IC

F

× = × + × + ×

× = × × + × + ×

∴  T 12 362 NF = C C...( . )W m g=�

Let us now find the values of F
N

 and F
R
 in magnitude and direction. Draw the force polygon

as shown in Fig. 15.25.
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By measurement, F
N

 = 3550 N; and F
R
 = 7550 N

The magnitude and direction of the resultant force on the crank pin is given by F
Q 

, which is

the resultant of F
R
 and F

T
.

By measurement, F
Q

 = 13 750 N  Ans.

EXERCISES

1. The crank and connecting rod of a reciprocating engine are 150 mm and 600 mm respectively. The

crank makes an angle of 60° with the inner dead centre and revolves at a uniform speed of 300 r.p.m.

Find, by Klein’s or Ritterhaus’s construction, 1. Velocity and acceleration of the piston, 2. Velocity

and acceleration of the mid-point D of the connecting rod, and 3. Angular velocity and angular accel-

eration of the connecting rod.[Ans. 4.6 m/s, 61.7 m/s2 ; 4.6 m/s, 93.8 m/s2 ; 4.17 rad/s, 214 rad/s2]

2. In a slider crank mechanism, the length of the crank and connecting rod are 100 mm and 400 mm

respectively. The crank rotates uniformly at 600 r.p.m. clockwise. When the crank has turned through

45° from the inner dead centre, find, by analytical method : 1. Velocity and acceleration of the slider,

2. Angular velocity and angular acceleration of the connecting rod. Check your result by Klein’s or

Bennett’s construction. [Ans.  5.2 m/s; 279 m/s2; 11 rad/s; 698 rad/s2]

3. A petrol engine has a stroke of 120 mm and connecting rod is 3 times the crank length. The crank

rotates at 1500 r.p.m. in clockwise direction. Determine: 1. Velocity and acceleration of the piston,

and 2. Angular velocity and angular acceleration of the connecting rod, when the piston had travelled

one-fourth of its stroke from I.D.C. [Ans. 8.24 m/s, 1047 m/s2; 37 rad/s, 5816 rad/s2]

4. The stroke of a steam engine is 600 mm and the length of connecting rod is 1.5 m. The crank rotates

at 180 r.p.m. Determine: 1. velocity and acceleration of the piston when crank has travelled through

an angle of 40° from inner dead centre, and 2. the position of the crank for zero acceleration of the

piston. [Ans. 4.2 m/s, 85.4 m/s2; 79.3° from I.D.C]

5. The following data refer to a steam engine :

Diameter of piston = 240 mm; stroke = 600 mm; length of connecting rod = 1.5 m; mass of reciprocat-

ing parts = 300 kg; speed = 125 r.p.m.

Determine the magnitude and direction of the inertia force on the crankshaft when the crank has

turned through 30° from inner dead centre. [Ans. 14.92 kN]

6. A vertical petrol engine 150 mm diameter and 200 mm stroke has a connecting rod 350 mm long. The

mass of the piston is 1.6 kg and the engine speed is 1800 r.p.m. On the expansion stroke with crank

angle 30° from top dead centre, the gas pressure is 750 kN/m2. Determine the net thrust on the piston.

[Ans.  7535 N]

7. A horizontal steam engine running at 240 r.p.m. has a bore of 300 mm and stroke 600 mm. The

connecting rod is 1.05 m long and the mass of reciprocating parts is 60 kg. When the crank is 60° past

its inner dead centre, the steam pressure on the cover side of the piston is 1.125 N/mm2 while that on

the crank side is 0.125 N/mm2. Neglecting the area of the piston rod, determine : 1. the force in the

piston rod ; and 2. the turning moment on the crankshaft. [Ans. 66.6 kN ; 19.86 kN-m]

8. A steam engine 200 mm bore and 300 mm stroke has a connecting rod 625 mm long. The mass of the

reciprocating parts is 15 kg and the speed is 250 r.p.m.When the crank is at 30° to the inner dead centre

and moving outwards, the difference in steam pressures is 840 kN/m2. If the crank pin radius is 30 mm,

determine:  1. the force on the crankshaft bearing; and 2. the torque acting on the frame.

[Ans. 20.04 kN ; 2253 N-m]

9. A vertical single cylinder engine has a cylinder diameter of 250 mm and a stroke of 450 mm. The

reciprocating parts have a mass of 180 kg. The connecting rod is 4 times the crank radius and the

speed is 360 r.p.m. When the crank has turned through an angle of 45° from top dead centre, the net

pressure on the piston is 1.05 MN/m2. Calculate the effective turning moment on the crankshaft for

this position. [Ans. 2368 N-m]
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10. A horizontal, double acting steam engine has a stroke of 300 mm and runs at 240 r.p.m. The  cylinder

diameter is 200 mm, connecting rod is 750 mm long and the mass of the reciprocating parts is 70 kg.

The steam is admitted at 600 kN/m2 for one-third of the stroke, after which expansion takes place

according to the hyperbolic law p.V  = constant. The exhaust pressure is 20 kN/m2. Neglecting the

effect of clearance and the diameter of the piston rod, find : 1. Thrust in the connecting rod, and 2.

Effective turning moment on the crankshaft when the crank has turned through 120° from inner dead

centre. [Ans. 11.506 kN; 1322 N-m]

11. A horizontal steam engine running at 150 r.p.m. has a bore of 200 mm and a stroke of 400 mm. The

connecting rod is 1 m long and the reciprocating parts has a mass of 60 kg. When the

crank has turned through an angle of 30° from inner dead centre, steam pressure on the cover side is

0.6 N/mm2  while on the crankside is 0.1 N/mm2. Neglecting the area of the piston rod, determine:

1. turning moment on the crankshaft, 2. acceleration of the flywheel, if the mean resistance torque is

600 N-m and the moment of inertia is 2.8 kg-m2. [Ans. 1508 N-m; 324.3 rad/s2]

12. The ratio of the connecting rod length to crank length for a vertical petrol engine is 4:1. The bore /

stroke is 80/100 mm and mass of the reciprocating parts is 1 kg. The gas pressure on the piston is

0.7N/mm2 when it has moved 10 mm from T.D.C. on its power stroke. Determine the net load on the

gudgeon pin. The engine runs at 1800 r.p.m. At what engine speed will this load be zero?

[Ans. 1862.8 N; 2616 r.p.m.]

13. A petrol engine 90 mm in diameter and 120 mm stroke has a connecting rod of 240 mm length. The

piston has a mass of 1 kg and the speed is 1800 r.p.m. On the explosion stroke with the crank at 30°

from top dead centre, the gas pressure is 0.5 N/mm2. Find :

1. the resultant load on the gudgeon pin, 2. the thrust on the cylinder walls, and 3. the speed, above

which other things remaining same, the gudgeon pin load would be reserved in direction.

Also calculate the crank effort at the given position of the crank.

[Ans. 1078 N; 136 N ; 2212 r.p.m.; 39.4 N-m]

14. A single cylinder vertical engine has a bore of 300 mm, storke 360 mm and a connecting rod of length

720 mm. The mass of the reciprocating parts is 130 kg. When the piston is at quarter stroke from top

dead centre and is moving downwards, the net pressure on it is 0.6 MPa. If the speed of the engine is

250 r.p.m., calculate the turning moment on the crankshaft at the instant corresponding to the position

stated above. [Ans. 6295 N-m]

15. A horizontal, single cylinder, single acting, otto cycle gas engine has a bore of 300 mm and a stroke of

500 mm. The engine runs at 180 r.p.m. The ratio of compression is 5.5. The maximum explosion

pressure is 3.2 N/mm2 gauge and expansion follows the law p.V
1.3 = constant. If the mass of the piston

is 150 kg and the connecting rod is 1.25 m long. Calculate the turning moment on the crankshaft when

the crank has turned through 60° from the inner dead centre. The atmospheric pressure is 0.1 N/mm2.

[Ans. 15.6 kN-m]

16. A vertical single cylinder, diesel engine running at 300 r.p.m. has a cylinder diameter 250 mm

and stroke 400 mm. The mass of the reciprocating parts is 200 kg. The length of the connecting

rod is 0.8 m. The ratio of compression is 14 and the pressure remains constant during injection of

oil for 1/10th of stroke. If the index of the law of expansion and compression is 1.35, find the torque

on the crankshaft when it makes an angle of 60° with the top dead centre during the expansion stroke.

The suction pressure may be taken as 0.1 N/mm2. [Ans. 7034 N-m]

17. A gas engine is coupled to a compressor, the two cylinders being horizontally opposed with the

pistons connected to a common crank pin. The stroke of each piston is 500 mm and the ratio of the

length of the connecting rod to the length of crank is 5. The cylinder diameters are 200 mm and 250 mm

and the masses of reciprocating parts are 130 kg and 150 kg respectively. When the crank has moved

through 60° from inner  dead centre on the firing stroke, the pressure of gas on the engine cylinder is

1 N/mm2 gauge and the pressure in the compressor cylinder is 0.1 N/mm2 gauge. If the crank moves

with 200 r.p.m. and the flywheel of radius of gyration 1 m has a mass of 1350 kg, determine the

angular acceleration of the flywheel. [Ans.  2.4 rad/s2]

18. The length of a connecting rod of an engine is 500 mm measured between the centres and its mass is 18

kg. The centre of gravity is 125 mm from the crank pin centre and the crank radius is 100 mm.
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Determine the dynamically equivalent system keeping one mass at the small end. The frequency of

oscillation of the rod, when suspended from the centre of the small end is 43 vibrations per minute.

[Ans. 4.14 kg; 13.86 kg]

19. A small connecting rod 220 mm long between centres has a mass of 2 kg and a moment of inertia of

0.02 kg-m2 about its centre of gravity. The centre of gravity is located at a distance of 150 mm from

the small end centre. Determine the dynamically equivalent two mass system when one mass is lo-

cated at the small end centre.

If the connecting rod is replaced by two masses located at the two centres, find the correction couple

that must be applied for complete dynamical equivalence of the system when the angular acceleration

of the connecting rod is 20 000 rad/s2 anticlockwise.

[Ans. 0.617 kg; 1.383 kg; 20 N-m (anticlockwise)]

20. The connecting rod of a horizontal reciprocating engine is 400 mm and length of the stroke is 200

mm. The mass of the reciprocating parts is 125 kg and that the connecting rod is 100 kg. The radius

of gyration of the connecting rod about an axis through the centre of gravity is 120 mm and the

distance of centre of gravity of the connecting rod from big end centre is 160 mm. The engine runs at

750 r.p.m. Determine the torque exerted on the crankshaft when the crank has turned 30° from the

inner dead centre. [Ans. 7078 N-m]

21. If the crank has turned through 135° from the inner dead centre in the above question, find the torque

on the crankshaft. [Ans. 5235 N-m]

DO YOU KNOW ?

1. Define ‘inertia force’ and ‘inertia torque’.

2. Draw and explain Klien’s construction for determining the velocity and acceleration of the piston in a

slider crank mechanism.

3. Explain Ritterhaus’s and Bennett’s constructions for determining the acceleration of the piston of a

reciprocating engine.

4. How are velocity and acceleration of the slider of a single slider crank chain determined analytically?

5. Derive an expression for the inertia force due to reciprocating mass in reciprocating engine, ne-

glecting the mass of the connecting rod.

6. What is the difference between piston effort, crank effort and crank-pin effort?

7. Discuss the method of finding the crank effort in a reciprocating single acting, single cylinder petrol

engine.

8. The inertia of the connecting rod can be replaced by two masses concentrated at two points and

connected rigidly together. How to determine the two masses so that it is dynamically equivalent to

the connecting rod ?  Show this.

9. Given acceleration image of a link. Explain how dynamical equivalent system can be used to

determine the direction of inertia force on it.

10. Describe the graphical and analytical method of finding the inertia torque on the crankshaft of a

horizontal reciprocating engine.

11. Derive an expression for the correction torque to be applied to a crankshaft if the connecting rod of

a reciprocating engine is replaced by two lumped masses at the piston pin and the crank pin

respectively.

OBJECTIVE TYPE QUESTIONS

1. When the crank is at the inner dead centre, in a horizontal reciprocating steam engine, then the velocity

of the piston will be

(a) zero (b) minimum (c) maximum
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2. The acceleration of the piston in a reciprocating steam engine is given by

(a)
sin 2

. sinr

n

θ 
ω θ + 

 
(b)

cos 2
. cosr

n

θ 
ω θ + 

 

(c)
2 sin 2
. sinr

n

θ 
ω θ + 

 
(d)

2 cos 2
. cosr

n

θ 
ω θ + 

 

where ω = Angular velocity of the crank,

r = Radius of the crank,

θ = Angle turned by the crank from inner dead centre, and

n = Ratio of length of connecting rod to crank radius.

3. A rigid body, under the action of external forces, can be replaced by two masses placed at a fixed

distance apart. The two masses form an equivalent dynamical system, if

(a) the sum of two masses is equal to the total mass of the body

(b) the centre of gravity of the two masses coincides with that of the body

(c) the sum of mass moment of inertia of the masses about their centre of gravity is equal to the  mass

moment of inertia of the body

(d) all of the above

4. The essential condition of placing the two masses, so that the system becomes dynamically equivalent

is

(a) l
1
 .l

2
 = k

G
2 (b) l

1
 .l

2
 = k

G
(c) l

1
  = k

G
(d) l

2
 = k

G

where l
1
 and l

2
  = Distance of two masses from the centre of gravity of the body, and

k
G
 = Radius of gyration of the body.

5. In an engine, the work done by inertia forces in a cycle is

(a) positive (b) zero (c) negative (d) none of these

ANSWERS

1. (a) 2. (d) 3. (d) 4. (a) 5. (a)

GO To FIRST
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16.1.16.1.16.1.16.1.16.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

The turning moment diagram (also known as crank-

effort diagram) is the graphical representation of the turning

moment or crank-effort for various positions of the crank. It is

plotted on cartesian co-ordinates, in which the turning moment

is taken as the ordinate and crank angle as abscissa.

16.2.16.2.16.2.16.2.16.2. TTTTTurururururning Moment Diagram fning Moment Diagram fning Moment Diagram fning Moment Diagram fning Moment Diagram for a Singleor a Singleor a Singleor a Singleor a Single

Cylinder Double Acting Steam EngineCylinder Double Acting Steam EngineCylinder Double Acting Steam EngineCylinder Double Acting Steam EngineCylinder Double Acting Steam Engine

A turning moment diagram for a single cylinder

double acting steam engine is shown in Fig. 16.1. The vertical

ordinate represents the turning moment and the horizontal

ordinate represents the crank angle.

We have discussed in Chapter 15 (Art. 15.10.) that

the turning moment on the crankshaft,

        P
2 2

sin 2
sin

2 sin

T F r

n

 
θ 

= × θ +
 
 − θ 

565

TTTTTurururururningningningningning
MomentMomentMomentMomentMoment

DiagramsDiagramsDiagramsDiagramsDiagrams
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Fig. 16.1. Turning moment diagram for a single cylinder, double acting steam engine.

where                   F
P

= Piston effort,

r = Radius of crank,

n = Ratio of the connecting rod length and radius of crank, and

θ = Angle turned by the crank from inner dead centre.

From the above expression, we see

that the turning moment (T ) is zero, when the

crank angle (θ) is zero. It is maximum when

the crank angle is 90° and it is again zero when

crank angle is 180°.

This is shown by the curve abc in

Fig. 16.1 and it represents the turning

moment diagram for outstroke. The curve

cde is the turning moment diagram for

instroke and is somewhat similar to the

curve abc.

Since the work done is the product

of the turning moment and the angle turned,

therefore the area of the turning moment

diagram represents the work done per

revolution. In actual practice, the engine is

assumed to work against the mean resisting

torque, as shown by a horizontal  line AF.

The height of the ordinate a A  represents the

mean height of the turning moment diagram.

Since it is assumed that the work done by

the turning moment per revolution is equal

to the work done against the mean resisting

torque, therefore the area of the rectangle

aAFe is proportional to the work done against

the mean resisting torque.

Notes: 1. When the turning moment is positive (i.e. when the engine torque is more than the mean resisting

torque) as shown between points B and C (or D and E) in Fig. 16.1, the crankshaft  accelerates and the work

is done by the steam.

For flywheel, have a look at your tailor’s manual

sewing machine.
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 2. When the turning moment is negative (i.e. when the engine torque is less than the mean resisting

torque) as shown between points C and D in Fig. 16.1, the crankshaft retards and the work is done on the

steam.

 3. If                       T = Torque on the crankshaft at any instant, and

T
mean

= Mean resisting torque.

Then accelerating torque on the rotating parts of the engine

= T – T
mean

4. If (T –T
mean

) is positive, the flywheel accelerates and if (T – T
mean

) is negative, then the flywheel retards.

16.3. Turning Moment Diagram for a Four Stroke Cycle Internal
Combustion Engine

A turning moment diagram for a four stroke cycle internal combustion engine is shown in

Fig. 16.2. We know that in a four stroke cycle internal combustion engine, there is one working

stroke after the crank has turned through two revolutions, i.e. 720° (or 4 π radians).

Fig. 16.2. Turning moment diagram for a four stroke cycle internal combustion engine.

Since the pressure inside  the engine cylinder is less than the atmospheric pressure during

the suction stroke, therefore a negative loop is formed as shown in Fig. 16.2. During the compression

stroke, the work is done on the gases, therefore a higher negative loop is obtained. During the

expansion or working stroke, the fuel burns and the gases expand, therefore a large positive loop is

obtained. In this stroke, the work is done by the gases. During exhaust stroke, the work is done on

the gases, therefore a negative loop is formed. It may be noted that the effect of the inertia forces on

the piston is taken into account in Fig. 16.2.

16.4. Turning Moment Diagram for a Multi-cylinder Engine

A separate turning moment diagram for a compound steam engine having three cylinders

and the resultant turning moment diagram is shown in Fig. 16.3. The resultant turning  moment

diagram is the sum of the turning moment diagrams for the three cylinders. It may be noted that the

first cylinder is the high pressure cylinder, second cylinder is the intermediate cylinder and the third

cylinder is the low pressure cylinder. The cranks, in case of three cylinders, are usually placed at

120° to each other.
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Fig. 16.3. Turning moment diagram for a multi-cylinder engine.

16.5. Fluctuation of Energy

The fluctuation of energy may be determined by the turning moment diagram for one complete

cycle of operation. Consider the turning moment diagram for a single cylinder double acting steam

engine as shown in Fig. 16.1. We see that the mean resisting torque line AF cuts the turning moment

diagram at points B, C, D and E. When the crank moves from a to p, the work done by the engine is

equal to the area aBp, whereas the energy required is represented by the area aABp. In other words,

the engine has done less work (equal to the area a AB) than the requirement. This amount of energy

is taken from the flywheel and hence the speed of the flywheel decreases. Now the crank moves

from p to q, the work done by the engine is equal to the area pBbCq, whereas the requirement of

energy is represented by the area pBCq. Therefore, the engine has done more work than the

requirement. This excess work (equal to the area BbC) is stored in the flywheel and hence the speed

of the flywheel increases while the crank moves from p to q.

Similarly, when the crank moves from q to r, more work is taken from the engine than is

developed. This loss of work is represented by the area C c D. To supply this loss, the flywheel gives

up some of its energy and thus the speed decreases while the crank moves from q to r. As the crank

moves from r to s, excess energy is again developed given by the area D d E and the speed again

increases. As the piston moves from s to e, again there is a loss of work and the speed decreases. The

variations of energy above and below the mean resisting torque line are called  fluctuations of

energy. The areas BbC, CcD, DdE, etc. represent fluctuations of energy.

A little consideration will show that the engine has a maximum speed either at q or at s. This

is due to the fact that the flywheel absorbs energy while the crank moves from p to q and from r to s.

On the other hand, the engine has a minimum speed either at p or at r. The reason is that the flywheel

gives out some of its energy when the crank moves from a to p and q to r. The difference between the

maximum and the minimum energies is known as maximum fluctuation of energy.

16.6. Determination of Maximum Fluctuation of Energy

A turning moment diagram for a multi-cylinder engine is shown by a wavy curve in Fig.

16.4. The horizontal line AG represents the mean torque line. Let a
1
, a

3
, a

5
 be the areas above the

mean torque line and a
2
, a

4
 and  a

6
 be the areas below the mean torque line. These areas represent

some quantity of energy which is either added or subtracted from the energy of the moving parts of

the engine.
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Let the energy in the flywheel at A  = E,

then from Fig. 16.4, we have

Energy at B  = E + a
1

Energy at C  =  E + a
1
– a

2

Energy at D  =  E + a
1
 – a

2
 + a

3

Energy at E  =  E + a
1
 – a

2
 + a

3
 – a

4

Energy at F  = E + a
1
 – a

2
 + a

3
 – a

4
 + a

5

Energy at G =  E + a
1
 – a

2
 + a

3
 – a

4
 + a

5
 – a

6

                    = Energy at A  (i.e. cycle

                        repeats after G)

Let us now suppose that the greatest of

these energies is at B and least at E. Therefore,

Maximum energy in flywheel

= E + a
1

Minimum energy in the flywheel

= E + a
1
 – a

2
 + a

3
 – a

4

∴  Maximum fluctuation of energy,

∆ E = Maximum energy – Minimum energy

= (E + a
1
) – (E + a

1
 – a

2
 + a

3
 – a

4
) = a

2
 – a

3
 + a

4

Fig. 16.4. Determination of maximum fluctuation of energy.

16.7. Coefficient of Fluctuation of Energy

It may be defined as the ratio of the maximum fluctuation of energy to the work done

per cycle. Mathematically, coefficient of fluctuation of energy,

                                  E

Maximum fluctuation of energy

Work done per cycle
C =

The work done per cycle (in N-m or joules) may be obtained by using the following two

relations :

1. Work done per cycle = T
mean

 × θ

where T
mean

= Mean torque, and

θ = Angle turned (in radians), in one revolution.

= 2π, in case of steam engine and two stroke internal combustion

engines

= 4π, in case of four stroke internal combustion engines.

A flywheel stores  energy when the supply

is in excess  and releases energy when

energy is in deficit.
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The mean torque (T
mean

) in N-m may be obtained by using the following relation :

                              
60

2
mean

P P
T

N

×
= =

π ω

where P = Power transmitted in watts,

N = Speed in r.p.m., and

ω = Angular speed in rad/s  = 2 πN/60

2.  The work done per cycle may also be obtained by using the following relation :

     Work done per cycle  
60P

n

×
=

where n = Number of working strokes per minute,

= N, in case of steam engines and two stroke internal combustion

engines,

= N /2, in case of four stroke internal combustion engines.

The following table shows the values of coefficient of fluctuation of energy for steam engines

and internal combustion engines.

Table 16.1. Coefficient of fluctuation of energy (CE) for steam and internal
combustion engines.

      S.No. Type of engine Coefficient of fluctuation

of energy (C
E
)

1. Single cylinder, double acting steam engine 0.21

2. Cross-compound steam engine 0.096

3. Single cylinder, single acting, four stroke gas engine 1.93

4. Four cylinders, single acting, four stroke gas engine 0.066

5. Six cylinders, single acting, four stroke gas engine 0.031

16.8. Flywheel

A flywheel used in machines serves as a reservoir, which stores energy during the period

when the supply of energy is more than the requirement, and releases it during the period when the

requirement of energy is more than the supply.

In case of steam engines, internal combustion engines, reciprocating compressors and pumps,

the energy is developed during one stroke and the engine is to run for the whole cycle on the energy

produced during this one stroke. For example, in internal combustion engines, the energy is developed

only during expansion or power stroke which is much more than the engine load and no energy is

being developed during suction, compression and exhaust strokes in case of four stroke engines and

during compression in case of two stroke engines. The excess energy developed during power stroke

is absorbed by the flywheel and releases it to the crankshaft during other strokes in which no energy

is developed, thus rotating the crankshaft at a uniform speed. A little consideration will show that

when the flywheel absorbs energy, its speed increases and when it releases energy, the speed decreases.

Hence a flywheel does not maintain a constant speed, it simply reduces the fluctuation of speed. In

other words, a flywheel controls the speed variations caused by the fluctuation of the engine

turning moment during each cycle of operation.
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In machines where the operation is intermittent like *punching machines, shearing machines,

rivetting machines, crushers, etc., the flywheel stores energy from the power source during the greater

portion of the operating cycle and gives it up during a small period of the cycle. Thus, the energy

from the power source to the machines is supplied practically at a constant rate throughout the

operation.

Note:  The function of a **governor in an engine is entirely different from that of a flywheel. It

regulates the mean speed of an engine when there are variations in the load, e.g., when the load on the engine

increases, it becomes necessary to increase the supply of working fluid. On the other hand, when the load

decreases, less working fluid is required. The governor automatically controls the supply of working fluid to

the engine with the varying load condition and keeps the mean speed of the engine within certain limits.

 As discussed above, the flywheel does not maintain a constant speed, it simply reduces the fluctuation

of speed. It does not control the speed variations caused by the varying load.

16.9. Coefficient of Fluctuation of Speed

The difference between the maximum and minimum speeds during a cycle is called the

maximum fluctuation of speed. The ratio of the maximum fluctuation of speed to the mean speed is

called the coefficient of fluctuation of speed.

Let N
1
 and N

2
= Maximum and minimum speeds in r.p.m. during the cycle, and

N = Mean speed in r.p.m. 
1 2

2

N N+
=

∴  Coefficient of fluctuation of speed,

                                  
( )

1 21 2

1 2

2

s

N NN N

C
N N N

−−
= =

+

                                        
( )

1 21 2

1 2

2 ω − ωω − ω
= =

ω ω + ω
...(In terms of angular speeds)

                                        
( )

1 21 2

1 2

2 v vv v

v v v

−−
= =

+
...(In terms of linear speeds)

The coefficient of fluctuation of speed is a limiting factor in the design of flywheel. It varies

depending upon the nature of service to which the flywheel is employed.

Note.  The reciprocal of the coefficient of fluctuation of speed is known

as coefficient of steadiness and is denoted by m.

∴                                
1 2

1

s

N
m

C N N
= =

−

16.10. Energy Stored in a Flywheel

A flywheel is shown in Fig. 16.5. We have discussed in

Art. 16.5 that when a flywheel absorbs energy, its speed increases

and when it gives up energy, its speed decreases.

Let m = Mass of the flywheel in kg,

k = Radius of gyration of the

flywheel in metres, Fig. 16.5. Flywheel.

* See Art. 16.12.

** See Chapter 18 on Governors.
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I = Mass moment of inertia of the flywheel about its axis of rotation

in kg-m2 = m.k2,

N
1
 and N

2
= Maximum and minimum speeds during the cycle in r.p.m.,

ω
1
 and ω

2
= Maximum and minimum angular speeds during the cycle in rad/s,

N = Mean speed during the cycle in r.p.m. 
1 2 ,

2

N N+
=

ω = Mean angular speed during the cycle in rad/s 
1 2 ,

2

ω + ω
=

C
S

= Coefficient of fluctuation of speed, 
1 2 1 2or

N N

N

− ω − ω
=

ω

We know that the mean kinetic energy of the flywheel,

                                    
2 2 21 1

. . .
2 2

E I m k= × ω = × ω (in N-m or joules)

As the speed of the flywheel changes from ω
1
 to ω

2
, the maximum fluctuation of energy,

∆E = Maximum K.E. – Minimum K.E.

                                        ( ) ( ) ( ) ( )
22 2 2

1 2 1 2

1 1 1

2 2 2
I I I

 
= × ω − × ω = × ω − ω 

 

                                        ( )( ) ( )1 2 1 2 1 2

1
.

2
I I= × ω + ω ω − ω = ω ω − ω ...(i)

1 2...
2
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ω = 

 
 

�

                                        
2 1 2.I

ω − ω 
= ω  

 ω 
... (Multiplying and dividing by ω)

= I.ω2.C
S
 = m.k2.ω2.C

S
... (∵ I = m.k2)    ...(ii)

= 2.E.C
S
 (in N–m or joules)

21
... .

2
E I

 
= × ω 

 
�  ... (iii)

The radius of gyration (k) may be taken equal to the mean radius of the rim (R), because the

thickness of rim is very small as compared to the diameter of rim. Therefore, substituting k = R, in

equation (ii), we have

∆E = m.R2.ω2.C
S
 = m.v2.C

S

where v = Mean linear velocity (i.e. at the mean radius) in m/s = ω.R

Notes.  1.  Since ω = 2 π N/60, therefore equation (i) may be written as

                                              ( )
2

1 2

1 2

2 22 4

60 60 60 3600

N NN
E I I N N N

π π π π
∆ = × − = × × − 

 
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2. In the above expressions, only the mass moment of inertia of the flywheel rim (I) is considered

and the mass moment of inertia of the hub and arms is neglected. This is due to the fact that the major portion

of the mass of the flywheel is in the rim and a small portion is in the hub and arms. Also the hub and arms are

nearer to the axis of rotation, therefore the mass moment of inertia of the hub and arms is small.

Example 16.1.  The mass of flywheel of an engine is 6.5 tonnes and the radius of gyration

is 1.8 metres. It is found from the turning moment diagram that the fluctuation of energy is

56 kN-m. If the mean speed of the engine is 120 r.p.m., find the maximum and minimum speeds.

Solution. Given : m = 6.5 t = 6500 kg ;  k = 1.8 m ; ∆ E = 56 kN-m = 56 × 103 N-m ;

N = 120 r.p.m.

Let N
1
 and N

2
= Maximum and minimum speeds respectively.

We know that fluctuation of energy (∆ E),

                         56 × 103 

2

900

π
=  × m.k2 . N (N

1
 – N

2
) 

2

900

π
=  × 6500 (1.8)2 120 (N

1
 – N

2
)

= 27 715 (N
1
 – N

2
)

∴ N
1
 – N

2
= 56 × 103 /27 715 = 2 r.p.m. ...(i)

We also know that mean speed (N),

                                 
1 2

1 2
120 or 120 2 240 r.p.m.

2

N N

N N

+
= + = × = ...(ii)

From equations (i) and (ii),

N
1

= 121 r.p.m., and N
2
 = 119 r.p.m.    Ans.

Example 16.2.  The flywheel of a steam engine has a radius of gyration of 1 m and mass

2500 kg. The starting torque of the steam engine is 1500 N-m and may be assumed constant.

Determine: 1. the angular acceleration of the flywheel, and 2. the kinetic energy of the flywheel

after 10 seconds from the start.

Solution.  Given : k = 1 m ; m = 2500 kg ; T = 1500 N-m

1.  Angular acceleration of the flywheel

Let α = Angular acceleration of the flywheel.

We know that mass moment of inertia of the flywheel,

I = m.k2 = 2500 × 12 = 2500 kg-m2

∴ Starting torque of the engine (T),

1500 = I.α = 2500 × α    or    α = 1500 / 2500 = 0.6 rad /s2  Ans.

2.  Kinetic energy of the flywheel

First of all, let us find out the angular speed of the flywheel after 10 seconds from the start

(i.e. from rest), assuming uniform acceleration.

Let ω
1

= Angular speed at rest = 0

ω
2

= Angular speed after 10 seconds, and

t = Time in seconds.

We know that ω
2

= ω
1
 + α t = 0 + 0.6 × 10 = 6 rad /s
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∴  Kinetic energy  of  the  flywheel

                                        ( )
2 2

2

1 1
2500 6 45 000 N-m = 45 kN-m

2 2
I= × ω = × × =  Ans.

Example 16.3.  A horizontal cross compound steam engine develops 300 k W at 90 r.p.m.

The coefficient of fluctuation of energy as found from the turning moment diagram is to be 0.1 and

the fluctuation of speed is to be kept within ± 0.5% of the mean speed. Find the weight of the

flywheel required, if the radius of gyration is 2 metres.

Solution.  Given : P = 300 kW = 300 × 103 W; N = 90 r.p.m.; C
E
 = 0.1; k = 2 m

We know that the mean angular speed,

ω = 2 π N/60 = 2 π × 90/60 = 9.426 rad/s

Let ω
1
 and ω

2
= Maximum and minimum speeds respectively.

Since the fluctuation of speed is ± 0.5% of mean speed, therefore total fluctuation of speed,

ω
1
 – ω

2
= 1% ω = 0.01 ω

and coefficient of fluctuation of speed,

                                  
1 2 0.01

s
C

ω − ω
= =

ω

We know that work done per cycle

= P × 60 / N = 300 × 103 × 60 / 90 = 200 × 103 N-m

∴  Maximum fluctuation of energy,

∆E = Work done per cycle × C
E
 = 200 × 103 × 0.1 = 20 × 103 N-m

Let m = Mass of the flywheel.

We know that maximum fluctuation of energy ( ∆E ),

20 × 103 = m.k2.ω2.C
S
 = m × 22 × (9.426)2 × 0.01 = 3.554 m

∴ m = 20 × 103/3.554 = 5630 kg    Ans.

Example 16.4.  The turning moment diagram for a petrol engine is drawn to the following

scales : Turning moment, 1 mm = 5 N-m ; crank angle, 1 mm = 1°. The turning moment diagram

repeats itself at every half revolution of the engine and the areas above and below the mean turning

moment line taken in order are 295, 685, 40, 340, 960, 270 mm
2. The rotating parts are equivalent

to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of

speed when the engine runs at 1800 r.p.m.

Solution.  Given : m = 36 kg ; k = 150 mm = 0.15 m ; N = 1800 r.p.m. or ω = 2 π × 1800/60

= 188.52 rad /s

Fig. 16.6

The turning moment diagram is shown in Fig. 16.6.
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Since the turning moment scale is 1 mm = 5 N-m and

crank angle scale is 1 mm = 1° = π /180 rad, therefore,

1 mm2 on turning moment diagram

                                        5 N-m
180 36

π π
= × =

Let the total energy at A  = E, then referring to

Fig. 16.6,

Energy at B = E + 295

        ... (Maximum energy)

Energy at C = E + 295 – 685 = E – 390

Energy at D = E – 390 + 40 = E – 350

Energy at E = E – 350 – 340 = E – 690 ...(Minimum energy)

Energy at F = E – 690 + 960 = E + 270

Energy at G = E + 270 – 270 = E = Energy at A

We know that maximum fluctuation of energy,

∆ E = Maximum energy – Minimum energy

= (E + 295) – (E – 690) = 985 mm2

                                        985 86 N - m 86 J
36

π
= × = =

Let C
S

= Coefficient of fluctuation of speed.

We know that maximum fluctuation of energy (∆ E),

86 = m.k2 ω2.C
S
 = 36 × (0.15)2 × (188.52)2 C

S
 = 28 787 C

S

∴ C
S

= 86 / 28 787 = 0.003 or 0.3%    Ans.

Example 16.5.  The turning moment diagram for a multicylinder engine has been drawn to

a scale 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the

output torque curve and the mean resistance line, taken in order from one end, are as follows :

+ 52, – 124, + 92, – 140, + 85, – 72 and + 107 mm
2, when the engine is running at a speed

of 600 r.p.m. If the total fluctuation of speed is not to exceed ± 1.5% of the  mean, find the necessary

mass of the flywheel of radius 0.5 m.

Solution.  Given : N = 600 r.p.m.  or  ω = 2 π × 600 / 60 = 62.84 rad / s ;  R = 0.5 m

Fig. 16.7

Since the total fluctuation of speed is not to exceed ± 1.5% of the mean speed, therefore

ω
1
 – ω

2
= 3% ω = 0.03 ω

Flywheel of an electric motor.



576  �   Theory of Machines

and coefficient of fluctuation of speed,

                                  
1 2 0.03

s
C

ω − ω
= =

ω

The turning moment diagram is shown in Fig. 16.7.

Since  the  turning  moment  scale is  1 mm  =  600 N-m  and crank angle scale is 1 mm = 3°

= 3° × π/180 = π / 60 rad, therefore

1 mm2 on turning moment diagram

= 600 × π/60 = 31.42 N-m

Let the total energy at A = E, then referring to Fig. 16.7,

Energy at B = E + 52 ...(Maximum energy)

Energy at C = E + 52 – 124 = E – 72

Energy at D = E – 72 + 92 = E + 20

Energy at E = E + 20 – 140 = E – 120 ...(Minimum energy)

Energy at F = E – 120 + 85 = E – 35

Energy at G = E – 35 – 72 = E – 107

Energy at H = E – 107 + 107 = E = Energy at A

We know that maximum fluctuation of energy,

∆ E = Maximum energy – Minimum energy

= (E + 52) – (E – 120) = 172 = 172 × 31.42 = 5404 N-m

Let m = Mass of the flywheel in kg.

We know that maximum fluctuation of energy (∆ E ),

5404 = m.R2.ω2.C
S
 = m × (0.5)2 × (62.84)2 × 0.03 = 29.6 m

∴ m = 5404 / 29.6 = 183 kg    Ans.

Example 16.6.  A shaft fitted with a flywheel rotates at 250 r.p.m. and drives a machine.

The torque of machine varies in a cyclic manner over a period of 3 revolutions. The torque rises

from 750 N-m to 3000 N-m uniformly during 1/2 revolution and remains constant for the following

revolution. It then falls uniformly to 750 N-m during the next 1/2 revolution and remains constant

for one revolution, the cycle being repeated thereafter.

Determine the power required to drive the machine and percentage fluctuation in speed, if

the driving torque applied to the shaft is constant and the mass of the flywheel is 500 kg with radius

of gyration of 600 mm.

Solution.  Given : N  = 250 r.p.m. or  ω = 2π × 250/60 = 26.2 rad/s ; m  = 500 kg ;

k = 600 mm = 0.6 m

The turning moment diagram for the complete cycle is shown in Fig. 16.8.

We know that the torque required for one complete cycle

= Area of figure OABCDEF

= Area OAEF + Area ABG + Area BCHG + Area CDH

                                        
1 1

2 2
OF OA AG BG GH CH HD CH= × + × × + × + × ×
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                                        ( ) ( )
1

6 750 3000 750 2 3000 750
2

= π × + × π − + π −

                                             
( )

1
3000 750

2
+ × π −

= 11 250 π N-m ...(i)

If T
mean

 is the mean torque in N-m, then torque required for one complete cycle

= T
mean

 × 6 π Ν-m  ...(ii)

From equations (i) and (ii),

                            T
mean

 = 11 250 π / 6 π = 1875 N-m

Fig. 16.8

Power required to drive the machine

We know that power required to drive the machine,

P = T
mean

 × ω = 1875 × 26.2 = 49 125 W = 49.125 kW  Ans.

Coefficient of fluctuation of speed

Let C
S

= Coefficient  of  fluctuation of  speed.

First of all, let us find the values of LM and NP. From similar triangles ABG and BLM,

                                   
LM BM

AG BG
=     or    

3000 1875
0.5

3000 750

LM −
= =

π −
    or    LM = 0.5 π

Now, from similar triangles CHD and CNP,

                                  
NP CN

HD CH
=     or    

3000 1875
0.5

3000 750

NP −
= =

π −
    or    NP = 0.5 π

From Fig. 16.8, we find that

BM = CN = 3000 – 1875 = 1125 N-m

Since the area above the mean torque line represents the maximum fluctuation of energy,

therefore, maximum fluctuation of energy,

∆E = Area LBCP = Area LBM + Area MBCN + Area PNC

                                        
1 1

2 2
LM BM MN BM NP CN= × × + × + × ×
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1 1

0.5 1125 2 1125 0.5 1125
2 2

= × π × + π × + × π ×

                                        8837 N - m=

We know that maximum fluctuation of energy (∆ E),

8837 = m.k2.ω2.C
S
 = 500 × (0.6)2 × (26.2)2 × C

S
 = 123 559 C

S

S

8837
0.071

123559
C = = Ans.

Flywheel of a  pump run by a  diesel engine.

Example 16.7.  During forward stroke of the piston of the double acting steam engine, the

turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with

the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m

when the crank makes an angle of  80° with the outer dead centre. The turning moment diagram for

the engine may be assumed for simplicity to be represented by two triangles.

If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the

coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within ±  0.75% of

the mean speed. Also determine the crank angle at which the speed has its minimum and maximum

values.

Solution.  Given : N = 100 r.p.m. or ω = 2π × 100/60 = 10.47 rad /s; k = 1.75 m

Since the fluctuation of speed is ± 0.75% of mean speed, therefore total fluctuation of speed,

ω
1
 – ω

2
= 1.5% ω

and coefficient of fluctuation of speed,

                                  
1 2

S

–
1.5% 0.015C

ω ω
= = =

ω

Coefficient of fluctuation of energy

The turning moment diagram for the engine during forward and backward strokes is shown

in Fig. 16.9. The point O represents the inner dead centre (I.D.C.) and point G represents the

outer dead centre (O.D.C). We know that maximum turning moment when crank makes an

angle of 80° (or 80 × π / 180 = 4π/9 rad) with I.D.C.,

∴ AB = 2000 N-m
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and maximum turning moment when crank makes an angle of 80° with outer dead centre (O.D.C.) or

180° + 80° = 260° = 260 × π /180 = 13 π / 9 rad with I.D.C.,

LM = 1500 N-m

Let T
mean

= EB = QM = Mean resisting torque.

Fig. 16.9

We know that work done per cycle

= Area of triangle OAG + Area of triangle GLS

                                        
1 1

2 2
OG AB GS LM= × × + × ×

                                        
1 1

2000 1500 1750 N-m
2 2

= × π × + × π × = π ...(i)

We also know that work done per cycle

= T
mean

 × 2 π N-m  ...(ii)

From equations (i) and (ii),

T
mean

= 1750 π / 2 π = 875 N-m

From similar triangles ACD and AOG,

                               
CD OG

AE AB
=

or                                 ( ) ( )– 2000 875 1.764 rad
2000

OG OG
CD AE AB EB

AB AB

π
= × = = − =

∴  Maximum fluctuation of energy,

                               
1

 = Area of triangle
2

E ACD CD AE∆ = × ×

                                        ( ) ( )
1 1

– 1.764 2000 875 992 N-m
2 2

CD AB EB= × = × − =

We know that coefficient of fluctuation of energy,

                                 
E

Max.fluctuation of energy 992
0.18 or 18%

Work done per cycle 1750
C = = =

π
  Ans.



580  �   Theory of Machines

Mass of the flywheel

Let  m = Mass of the flywheel.

We know that maximum fluctuation of energy (∆E),

992 = m.k2.ω2.C
S
 = m × (1.75)2 × (10.47)2 × 0.015 = 5.03 m

∴ m = 992 / 5.03 = 197.2 kg  Ans.

Crank angles for the minimum and

maximum speeds

We know that the speed of

the flywheel is minimum at point C

and maximum at point D (See

Art. 16.5).

Let θ
C
 and θ

D
 = Crank angles  from

I.D.C., for the minimum and  maximum

speeds.

From similar triangles ACE and

AOB,

                 
CE AE

OB AB
=

or                           
– 2000 875 4

rad
2000 9 4

AE AB EB
CE OB OB

AB AB

− π π
= × = × = × =

∴                               C

4 7 180
= rad 35°

9 4 36 36

π π π 7 π
θ − = = × =

π
    Ans.

Again from similar triangles AED and ABG,

                                
ED AE

BG AB
=

or                                  ( )
–AE AB EB

ED BG OG OB
AB AB

= × = −

                                        
2000 875 4 2.8

rad
2000 9 9

− π π 
= π − = 

 

 ∴                              
D

4 2.8 6.8 6.8 180
= rad 136°

9 9 9 9

π π π π
θ + = = × =

π
Ans.

Example 16.8.  A three cylinder single acting engine has its cranks set equally at 120° and

it runs at 600 r.p.m. The torque-crank angle diagram for each cycle is a triangle for the power stroke

with a maximum torque of 90 N-m at 60° from dead centre of corresponding crank. The torque on the

return stroke is sensibly zero. Determine : 1. power developed. 2. coefficient of fluctuation of speed,

if the mass of the flywheel is 12 kg and has a radius of gyration of 80 mm, 3. coefficient of fluctuation

of energy, and 4. maximum angular acceleration of the flywheel.

Solution.  Given :  N  = 600 r.p.m. or  ω = 2 π × 600/60 = 62.84 rad /s;  T
max

 = 90 N-m;

m  = 12 kg; k  = 80 mm = 0.08 m

Flywheel of small steam engine.
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The torque-crank angle diagram for the individual cylinders is shown in Fig. 16.10 (a), and

the resultant torque-crank angle diagram for the three cylinders is shown in Fig. 16.10 (b).

Fig. 16.10

1.  Power developed

We know that work done/cycle

                                     
1

Area of three triangles = 3 90 424 N-m
2

= × × π × =

and mean torque,             
Work done / cycle 424

67.5 N - m
Crank angle / cycle 2

meanT = = =
π

∴   Power developed   = T
mean

 × ω = 67.5 × 62.84 = 4240 W = 4.24 kW  Ans.

2.  Coefficient of fluctuation of speed

Let C
S

= Coefficient of fluctuation of speed.

First of all, let us find the maximum fluctuation of energy (∆E).

From Fig. 16.10 (b), we find that

                                1

1
Area of triangle =

2
a AaB AB Aa= × ×

                                     ( ) 7

1
= 67.5 45 5.89 N-m

2 6
a

π
× × − = = ...(∵ A B = 30° = π / 6 rad)

                                2

1
Area of triangle = '

2
a BbC BC bb= × ×

                                     ( )
1

= 90 67.5 11.78 N - m
2 3

π
× − = ...(∵BC = 60° = π/3 rad)

= a
3
 = a

4
 = a

5
 = a

6

Now, let the total energy at A = E, then referring to Fig. 16.10 (b),

Energy at B = E – 5.89

Energy at C = E – 5.89 + 11.78 = E + 5.89

Energy at D = E + 5.89 – 11.78 = E – 5.89

Energy at E = E – 5.89 + 11.78 = E + 5.89

Energy at G = E + 5.89 – 11.78 = E – 5.89

Energy at H = E – 5.89 + 11.78 = E + 5.89

                              Energy at J  =  E + 5.89 – 5.89 = E = Energy at A
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From above we see that maximum energy

= E + 5.89

and minimum energy = E – 5.89

∴ * Maximum fluctuation of energy,

∆E = (E + 5.89) – (E – 5.89) = 11.78 N-m

We know that maximum fluctuation of energy (∆E),

11.78 = m.k2.ω2.C
S
 = 12 × (0.08)2 × (62.84)2 × C

S
 = 303.3 C

S

∴ C
S

= 11.78 / 303.3 = 0.04 or 4%  Ans.

3.  Coefficient of fluctuation of energy

We know that coefficient of fluctuation of energy,

                                  E

Max. fluctuation of energy 11.78
0.0278 2.78%

Work done/cycle 424
C = = = = Ans.

4.  Maximum angular acceleration of the flywheel

Let α = Maximum angular acceleration of the flywheel.

We know that,

T
max

 – T
mean

= I.α = m.k2.α

90 – 67.5 = 12 × (0.08)2 × α = 0.077 α

∴                                 
290 67.5

292 rad / s
0.077

−
α = =  Ans.

Example 16.9.  A single cylinder, single acting, four stroke gas engine develops 20 kW at

300 r.p.m. The work done by the gases during the expansion stroke is three times the work done on

the gases during the compression stroke, the work done during the suction and exhaust strokes

being negligible. If the total fluctuation of speed is not to exceed ± 2 per cent of the mean speed and

the turning moment diagram during compression and expansion is assumed to be triangular in

shape, find the moment of inertia of the flywheel.

Solution.  Given : P = 20 kW = 20 × 103 W; N = 300 r.p.m. or ω = 2π × 300/60 = 31.42  rad/s

Since the total fluctuation of speed (ω
1
 – ω

2
) is not to exceed ± 2 per cent of the mean speed

(ω), therefore

ω
1
 – ω

2
= 4% ω

and coefficient of fluctuation of speed,

                                  1 2
S 4% 0.04C

ω − ω
= = =

ω

The turning moment-crank angle diagram for a four stroke engine is shown in Fig. 16.11. It

is assumed to be triangular during compression and expansion strokes, neglecting the suction and

exhaust strokes.

* Since the area above the mean torque line represents the maximum fluctuation of energy, therefore maxi-

mum fluctuation of energy,

∆E = Area Bbc = Area DdE = Area Ggh

1
(90 – 67.5) 11.78 N-m

2 3

π
= × =
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We know that for a four stroke engine, number of working strokes per cycle,

                            n = N/2 = 300 / 2 = 150

∴ Work done/cycle =P × 60/n = 20 × 103 × 60/150 = 8000 N-m ...(i)

Fig. 16.11

Since the work done during suction and exhaust strokes is negligible, therefore net work

done per cycle (during compression and expansion strokes)

                               
E

E C E E

2
– –

3 3

W
W W W W= = = ... ( ∵ W

E
 = 3W

C
) ...(ii)

Equating equations (i) and (ii), work done during expansion stroke,

                       W
E 

 = 8000 × 3/2 = 12 000 N-m

We know that work done during expansion stroke (W
E
),

                   
1 1

12 000 Area of triangle
2 2

ABC BC AG AG= = × × = × π ×

∴                   AG  = T
max

 = 12 000 × 2/π = 7638 N-m

and mean turning moment,

                   *
Work done/cycle 8000

637 N-m
Crank angle/cycle 4mean

T FG= = = =
π

∴ Excess turning moment,

                  T
excess

  = AF = AG – FG = 7638 – 637 = 7001 N-m

Now, from similar triangles ADE and ABC,

            
DE AF

BC AG
=     or    

7001
2.88 rad

7638

AF
DE BC

AG
= × = × π =

Since the area above the mean turning moment line represents the maximum fluctuation of

energy, therefore maximum fluctuation of energy,

                        
1 1

Area of 2.88 7001 10081 N-m
2 2

E ADE DE AF∆ = ∆ = × × = × × =

* The mean turning moment (T
mean

) may also be obtained by using the following relation :

P = T
mean

 × ω or T
mean

 = P/ω = 20 × 103/31.42 = 637 N-m



584  �   Theory of Machines

Let                                 I = Moment of inertia of the flywheel in kg-m2 .

We know that maximum fluctuation of energy (∆ E),

10 081 = I.ω2.C
S
 = I × (31.42)2 × 0.04 = 39.5 I

∴ I = 10081/ 39.5 = 255.2 kg-m2    Ans.

Example 16.10.  The turning moment diagram for a four stroke gas engine may be assumed

for simplicity to be represented by four triangles, the areas of which from the line of zero pressure

are as follows :

Suction stroke = 0.45 × 10–3 m2; Compression stroke = 1.7 × 10–3 m2; Expansion stroke

= 6.8 × 10–3 m2; Exhaust stroke = 0.65 × 10–3 m2. Each m2 of area represents 3 MN-m of energy.

Assuming the resisting torque to be uniform, find the mass of the rim of a flywheel required

to keep the speed between 202 and 198 r.p.m. The mean radius of the rim is 1.2 m.

Solution. Given : a
1
 = 0.45 × 10–3 m2 ; a

2
  = 1.7 × 10–3 m2 ; a

3  
= 6.8 × 10–3 m2;

a
4 

= 0.65  × 10–3 m2; N
1
 = 202 r.p.m; N

2
 = 198 r.p.m.; R = 1.2 m

The turning moment crank angle diagram for a four stroke engine is shown in Fig. 16.12.

The areas below the zero line of pressure are taken as negative while the areas above the zero line of

pressure are taken as positive.

∴ Net area = a
3 

– (a
1 

+ a
2 

+ a
4
)

= 6.8 × 10–3 – (0.45 × 10–3 + 1.7 × 10–3 + 0.65 × 10–3) = 4 × 10–3 m2

Since the energy scale is 1 m2 = 3 MN-m = 3 × 106 N-m, therefore,

Net work done per cycle = 4 × 10–3 × 3 ×106 = 12 × 103 N-m  . . . (i)

We also know that work done per cycle,

= T
mean

 × 4π N-m  . . . (ii)

From equations (i) and (ii),

T
mean

= FG = 12 × 103/4π = 955 N-m

Fig. 16.12

Work done during expansion stroke

= a
3
 × Energy scale = 6.8 × 10–3 × 3 × 106 = 20.4 × 103 N-m   ...(iii)
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Also, work done during expansion stroke

= Area of triangle ABC

                                        
1 1

1.571
2 2

BC AG AG AG= × × = × π × = × . . . (iv)

From equations (iii) and (iv),

AG = 20.4 × 103/1.571 = 12 985 N-m

∴  Excess torque,

T
excess

= AF = AG – FG = 12 985 – 955 = 12 030 N-m

Now from similar triangles ADE and ABC,

                                
DE AF

BC AG
=     or    

12 030
2.9 rad

12 985

AF
DE BC

AG
= × = × π =

We know that the maximum fluctuation of energy,

                                 
1 1

Area of 2.9 12030 N-m
2 2

E ADE DE AF∆ = ∆ = × × = × ×

= 17 444 N-m

Mass of the rim of a flywheel

Let m = Mass of the rim of a flywheel in kg, and

N = Mean speed of the flywheel

                                        
1 2 202 198

200 r .p.m.
2 2

N N+ +
= = =

We know that the maximum fluctuation of energy (∆E ),

                            ( ) )
2 2

22

1 2
17 444 . . ( – ) 1.2 200 (202 – 198

900 900
m R N N N

π π
= × = × ×

= 12.63 m

∴ m = 17 444 /12.36 = 1381 kg  Ans.

Example 16.11.  The turning moment curve for an engine is represented by the equation,

T = (20 000 + 9500 sin 2θ – 5700 cos 2θ) N-m, where θ is the angle moved by the crank from

inner dead centre. If the resisting torque is constant, find:

1. Power developed by the engine ; 2. Moment of inertia of flywheel in kg-m
2
, if the total

fluctuation of speed is not  exceed 1% of mean speed which is 180 r.p.m; and 3. Angular acceleration

of the flywheel when the crank has turned through 45° from inner dead centre.

Solution.  Given : T = (20 000 + 9500 sin 2θ – 5700 cos 2θ) N-m ; N = 180 r.p.m. or

ω = 2π × 180/60 = 18.85 rad/s

Since the total fluctuation of speed (ω
1
 – ω

2
) is 1% of mean speed (ω), therefore coefficient

of fluctuation of speed,

                                 
1 2

S

–
1% 0.01C

ω ω
= = =

ω

1.  Power developed by the engine

We know that work done per revolution

                                        ( )
2 2

20 000 9500sin 2 – 5700cos 2

0 0

T d d

π π

= θ = + θ θ θ∫ ∫
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2
9500cos 2 5700sin 2

20 000 – –
2 2 0

π
θ θ 

= θ
 
 

= 20 000 × 2π = 40 000 π N-m

and mean resisting torque of the engine,

            
Work done per revolution 40 000

20000 N-m
2 2mean

T = = =
π π

We know that power developed by the engine

= T
mean

 . ω = 20 000 × 18.85 = 377 000 W = 377 kW Ans.

2.  Moment of inertia of the flywheel

Let I = Moment of inertia of the flywheel in kg-m2.

The turning moment diagram for one stroke (i.e. half revolution of the crankshaft) is shown

in Fig. 16.13. Since at points B and D, the torque exerted on the crankshaft is equal to the mean

resisting torque on the flywheel, therefore,

T = T
mean

20 000 + 9500 sin 2θ – 5700 cos 2θ = 20 000

or 9500 sin 2θ = 5700 cos 2θ

tan 2θ = sin 2θ/cos 2θ = 5700/9500 = 0.6

∴ 2θ = 31° or θ = 15.5°

∴ θ
B

= 15.5° and θ
D

 = 90° + 15.5° = 105.5°

Fig. 16.13

Maximum fluctuation of energy,

                                 ( )
D

B

–
mean

E T T d

θ

θ

∆ = θ∫

                                        ( )
105.5

15.5

20 000 9500 sin 2 – 5700cos 2 – 20 000 d

°

°

= + θ θ θ∫

                                        

105.5

15.5

9500cos 2 5700sin 2
– – 11 078 N-m

2 2

°

°

θ θ 
= =

 
 
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We know that maximum fluctuation of energy

(∆ E),

11 078 = I.ω2.C
S
 = I × (18.85)2 × 0.01 = 3.55 I

∴     I =11078/3.55 = 3121 kg-m2 Ans.

3.  Angular acceleration of the flywheel

Let α  = Angular acceleration of the flywheel,

              and

      θ   = Angle turned by the crank from inner

              dead centre = 45°               . . . (Given)

The angular acceleration in the flywheel is

produced by the excess torque over the mean torque.

We know that excess torque at any instant,

T
excess

  = T – T
mean

           = 20000 + 9500 sin 2θ – 5700 cos 2θ

                 – 20000

           = 9500 sin 2θ – 5700 cos 2θ

∴  Excess torque at 45°

  = 9500 sin 90° – 5700 cos 90° = 9500 N-m . . . (i)

We also know that excess torque

 = I.α = 3121 × α . . . (ii)

From equations (i) and (ii),

 α  =  9500/3121 = 3.044 rad /s2 Ans.

Example 16.12. A certain machine requires a torque of (5000 + 500 sin θ ) N-m to drive it,

where θ is the angle of rotation of shaft measured from certain datum. The machine is directly

coupled to an engine which produces a torque of (5000 + 600 sin 2θ) N-m. The flywheel and the

other rotating parts attached to the engine has a mass of 500 kg at a radius of gyration of 0.4 m. If

the mean speed is 150 r.p.m., find : 1. the fluctuation of energy, 2. the total percentage fluctuation of

speed, and 3. the maximum and minimum angular acceleration of the flywheel and the corresponding

shaft position.

Solution.  Given : T
1
 = ( 5000 + 500 sin θ) N-m ; T

2
 = (5000 + 600 sin 2θ) N-m ;

m = 500 kg; k = 0.4 m ; N = 150 r.p.m. or  ω = 2 π × 150/60 = 15.71 rad/s

Fig. 16.14

Nowadays steam turbines  like this can

be produced entirely by computer-

controlled machine tools, directly from the

engineer’s computer.

Note : This picture is given as additional informa-

tion and is not a direct example of the current

chapter.
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1.  Fluctuation of energy

We know that change in torque

                                        = T
2
 – T

1
 = (5000 + 600 sin 2θ) – (5000 + 500 sin θ)

= 600 sin 2θ – 500 sin θ

This change is zero when

600 sin 2θ = 500 sin θ    or    1.2 sin 2θ = sin θ

          1.2 × 2 sin θ cos θ = sin θ    or    2.4 sin θ cos θ = sin θ . . . (∵sin 2θ = 2 sin θ cos θ)

∴  Either sin θ = 0  or   cos θ = 1/2.4 = 0.4167

when sin θ = 0, θ = 0°, 180° and 360°

i.e. θ
A

= 0°, θ
C
 = 180° and θ

E
 = 360°

when cos θ = 0.4167, θ = 65.4° and 294.6°

i.e. θ
B

= 65.4° and θ
D

 = 294.6°

The turning moment diagram is shown in Fig. 16.14. The maximum fluctuation of energy

lies between C and D (i.e. between 180° and 294.6°), as shown shaded in Fig. 16.14.

∴  Maximum fluctuation of energy,

                                 ( )
294.6

2 1

180

–E T T d

°

°

∆ = θ∫

                                        ( ) ( )
294.6

180

5000 600sin 2 – 5000 500sin d

°

°

= + θ + θ θ ∫  

                                        

294.6

180

600 cos 2
– 500 cos 1204 N-m

2

°

°

θ 
= + θ =

 
 

Ans.

2.  Total percentage fluctuation of speed

Let C
S

= Total percentage fluctuation of speed.

We know that maximum fluctuation of energy (∆E ),

1204 = m.k2.ω2.C
S
 = 500 × (0.4)2 × (15.71)2 × C

S
 = 19 744 C

S

∴ C
S

= 1204 / 19 744 = 0.061    or    6.1% Ans.

3.  Maximum and minimum angular acceleration of the flywheel and the corresponding shaft

positions

The change in torque must be maximum or minimum when acceleration is maximum or

minimum. We know that

Change in torque, T = T
2
 – T

1
 = (5000 + 600 sin 2θ) – (5000 + 500 sin θ)

= 600 sin 2θ – 500 sin θ ...(i)

Differentiating this expression with respect to θ and equating to zero for maximum or

minimum values.

∴    ( )600sin 2 – 500sin 0
d

d
θ θ =

θ
     or    1200 cos 2θ – 500 cos θ = 0

or                  12 cos 2θ – 5 cos θ = 0
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12 (2 cos2θ – 1) – 5 cos θ = 0 . . . (∵ cos 2θ = 2 cos2θ – 1)

24 cos2θ – 5 cos θ – 12 = 0

∴                           

5 25 4 12 24 5 34.3
cos

2 24 48

± + × × ±
θ = =

×

= 0.8187    or    – 0.6104

∴ θ = 35°    or    127.6°  Ans.

Substituting θ = 35° in equation (i), we have maximum torque,

T
max

= 600 sin 70° – 500 sin 35° = 277 N-m

Substituting θ =127.6° in equation (i), we have minimum torque,

T
min

= 600 sin 255.2° – 500 sin 127.6° = – 976 N-m

We know that maximum acceleration,

                             
( )

2

2

277
3.46 rad /s

500 0.4

max

max

T

I
α = = =

×
    Ans. . . . (∵ I = m .k2)

and minimum acceleration (or maximum retardation),

                             
( )

2

2

976
12.2 rad /s

500 0.4

min

min

T

I
α = = =

×
  Ans.

Example 16.13.  The equation of the turning moment curve of a three crank engine is

(5000 + 1500 sin 3 θ) N-m, where θ is the crank angle in radians. The moment of inertia of the

flywheel is 1000 kg-m2 and the mean speed is 300 r.p.m. Calculate : 1. power of the engine, and 2.

the maximum fluctuation of the speed of the flywheel in percentage when (i) the resisting torque is

constant, and (ii) the resisting torque is (5000 + 600 sin θ) N-m.

Solution.  Given : T = (5000 + 1500 sin 3θ ) N-m ; I = 1000 kg-m2 ; N = 300 r.p.m. or

ω = 2 π × 300/60 = 31.42 rad /s

1.  Power of the engine

We know that work done per revolution

                                        ( )

2

0 0

1500cos3
5000 1500sin 3 5000 –

3
d

ππ
θ 

= + θ θ = θ∫  
 

= 10 000 π N-m

∴  Mean resisting torque,

                            
Work done/rev 10000

5000 N-m
2 2mean

T
π

= = =
π π

We know that power of the engine,

P = T
mean

 . ω = 5000 × 31.42 = 157 100 W = 157.1 kW Ans.

2.  Maximum fluctuation of the speed of the flywheel

Let C
S

= Maximum or total fluctuation of speed of the flywheel.
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(i)  When resisting torque is constant

The turning moment diagram is shown in Fig. 16.15. Since the resisting torque is constant,

therefore the torque exerted on the shaft is equal to the mean resisting torque on the flywheel.

Fig. 16.15

∴                                  T = T
mean

5000 + 1500 sin 3θ = 5000

1500 sin 3θ = 0    or    sin 3θ = 0

∴ 3θ = 0°    or    180°

θ = 0°    or    60°

∴  Maximum fluctuation of energy,

                                 ( ) ( )

60 60

0 0

– 5000 1500sin3 – 5000
mean

E T T d d

° °

∆ = θ = + θ θ∫ ∫

                                        

6060

00

1500cos 3
1500sin 3 – 1000 N-m

3
d

°° θ 
= θ θ = =∫  

 

We know that maximum fluctuation of energy ( ∆E ),

1000 = I.ω2.C
S
 = 1000 × (31.42)2 × C

S
 = 987 216 C

S

∴ C
S

= 1000 / 987 216 = 0.001 or 0.1% Ans.

(ii)  When resisting torque is (5000 + 600 sin θθθθθ ) N-m

The turning moment diagram is shown in Fig. 16.16. Since at points B and C, the torque

exerted on the shaft is equal to the mean resisting torque on the flywheel, therefore

Fig. 16.16
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         5000 + 1500 sin 3θ  = 5000 + 600 sin θ    or    2.5 sin 3θ = sin θ

       2.5 (3 sin θ – 4 sin3 θ) =sin θ  ...(∵ sin 3θ = 3 sin θ – 4 sin3θ)

         3  – 4 sin2θ  =  0.4...(Dividing by 2.5 sin θ)

                 
2 3 – 0.4 

sin 0.65
4

θ = =     or    sin θ = 0.8062

∴                    θ  = 53.7°     or    126.3°    i.e.    θ
B
 = 53.7°, and θ

C
 = 126.3°

∴  Maximum fluctuation of energy,

                    * ( ) ( )

126.3

53.7

5000 1500sin 3 – 5000 600sinE d

°

°

∆ = + θ + θ θ  ∫

                                    ( )

126.3126.3

53.753.7

1500cos3
1500sin 3 – 600sin – 600cos

3
d

°°

°°

θ 
= θ θ θ = + θ

 
 

∫

                            = – 1656 N-m

We know that maximum fluctuation of energy (∆ E),

                 1656  = I.ω2.C
S
 = 1000 × (31.42)2 × C

S
 = 987 216 C

S

∴                     C
S
 = 1656 / 987 216 = 0.00 168    or    0.168% Ans.

16.11.  Dimensions of the Flywheel Rim

Consider a rim of the flywheel as shown in Fig. 16.17.

Let D = Mean diameter of rim in metres,

R = Mean radius of rim in metres,

A = Cross-sectional area of rim in m2,

ρ = Density of rim material in kg/m3,

N = Speed of the flywheel in r.p.m.,

ω = Angular velocity of the flywheel in rad/s,

v = Linear velocity at the mean radius in m/s

= ω .R = π D.N/60, and

σ = Tensile stress or hoop stress in N/m2 due to the centrifugal force.

Consider a small element of the rim as shown shaded in Fig. 16.17. Let it subtends an angle

δθ at the centre of the flywheel.

Volume of the small element

                            =  A × R.δθ

∴ Mass of the small element

                      dm  = Density × volume = ρ.A .R.δθ

and centrifugal force on the element, acting radially outwards,

                       dF  = dm.ω2.R = ρ.A .R2.ω2.δθ

Fig. 16.17. Rim of a flywheel.

* Since the fluctuation of energy is negative, therefore it is shown below the mean resisting torque curve, in

Fig. 16.16.
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* Superfluous data.

Vertical component of dF

= dF.sin θ = ρ.A .R2.ω2.δθ.sin θ

∴  Total vertical upward force tending to burst the rim across the diameter X  Y.

                                        [ ]
2 2 2 2

0
0

. . . sin . . . . – cosA R d A R

π

π
= ρ ω θ θ = ρ ω θ∫

= 2ρ.A .R2.ω2 . . . (i)

This vertical upward force will produce tensile stress or hoop stress (also called centrifugal

stress or circumferential stress), and it is resisted by 2P, such that

2P = 2 σ.A  . . . (ii)

Equating equations (i) and (ii),

2.ρ.A .R2.ω2 = 2σ.A

or σ = ρ.R2.ω2 = ρ.v2 ....(∵ v = ω.R)

∴                                 v
σ

=
ρ

...(iii)

We know that mass of the rim,

m = Volume × density = π D.A .ρ

∴                                
. .

m
A

D
=

π ρ
...(iv)

From equations (iii) and (iv), we may find the value of the mean radius and cross-sectional

area of the rim.

Note:  If the cross-section of the rim is a rectangular, then

A = b × t

where b = Width of the rim, and

t = Thickness of the rim.

Example 16.14.  The turning moment diagram for a multi-cylinder engine has been drawn

to a scale of 1 mm to 500 N-m torque and 1 mm to 6° of crank displacement. The intercepted areas

between output torque curve and mean resistance line taken in order from one end, in sq. mm are

– 30, + 410, – 280, + 320, – 330, + 250, – 360, + 280, – 260 sq. mm, when the engine is

running at 800 r.p.m.

The engine has a stroke of 300 mm and the fluctuation of speed is not to exceed ± 2% of the

mean speed. Determine a suitable diameter and cross-section of the flywheel rim for a limiting

value of the safe centrifugal stress of 7 MPa. The material density may be assumed as 7200 kg/m
3
.

The width of the rim is to be 5 times the thickness.

Solution.  Given : N  = 800 r.p.m. or ω = 2π × 800 / 60 = 83.8 rad/s; *Stroke = 300 mm ;

σ = 7 MPa = 7 × 106 N/m2 ; ρ = 7200 kg/m3

Since the fluctuation of speed is ± 2% of mean speed, therefore total fluctuation of

speed,

                          ω
1
 – ω

2
 = 4% ω = 0.04 ω
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and coefficient of fluctuation of speed,

1 2
S

� �
0.04C

ω
= =

ω

Diameter of the flywheel rim

Let D = Diameter of the flywheel rim in metres, and

v = Peripheral velocity of the flywheel rim in m/s.

We know that centrifugal stress (σ),

7 × 106 = ρ.v2 = 7200 v2   or   v2 = 7 × 106/7200 = 972.2

∴ v = 31.2 m/s

We know that v = π D.N/60

∴ D = v × 60 / π N = 31.2 × 60/π × 800 = 0.745 m Ans.

Cross-section of the flywheel rim

Let t = Thickness of the flywheel rim in metres, and

b = Width of the flywheel rim in metres = 5 t ...(Given)

∴  Cross-sectional area of flywheel rim,

A = b.t = 5 t × t = 5 t2

First of all, let us find the mass (m) of the flywheel rim. The turning moment diagram is

shown in Fig 16.18.

Fig. 16.18

Since the turning moment scale is 1 mm = 500 N-m  and  crank  angle  scale is 1 mm = 6°

= π /30 rad, therefore

1 mm2 on the turning moment diagram

= 500 × π / 30 = 52.37 N-m

Let the energy at A  = E, then referring to Fig. 16.18,

Energy at B = E – 30 . . . (Minimum energy)

Energy at C = E – 30 + 410 = E + 380

Energy at D = E + 380 – 280 = E + 100

Energy at E = E + 100 + 320 = E + 420 . . . (Maximum energy)

Energy at F = E + 420 – 330 = E + 90

Energy at G = E + 90 + 250 = E + 340

Energy at H = E + 340 – 360 = E – 20
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Energy at K = E – 20 + 280 = E + 260

Energy at L = E + 260 – 260 = E = Energy at A

We know that maximum fluctuation of energy,

∆E = Maximum energy – Minimum energy

= (E + 420) – (E – 30) = 450 mm2

= 450 × 52.37 = 23 566 N-m

We also know that maximum fluctuation of energy (∆E),

23 566 = m.v2.C
S
 = m × (31.2)2 × 0.04 = 39 m

∴ m = 23566 / 39 = 604 kg

We know that mass of the flywheel rim (m),

604 = Volume × density = π D.A .ρ

= π × 0.745 × 5t2 × 7200 = 84 268 t2

∴ t
2 = 604 / 84 268 = 0.007 17 m2  or  t = 0.085 m = 85 mm Ans.

and b = 5t = 5 × 85 = 425 mm  Ans.

Example 16.15.  A single cylinder double acting steam engine develops 150 kW at a mean

speed of 80 r.p.m. The coefficient of fluctuation of energy is 0.1 and the fluctuation of speed is ± 2%

of mean speed. If the mean diameter of the flywheel rim is 2 metre and the hub and spokes provide

5% of the rotational inertia of the flywheel, find the mass and cross-sectional area of the flywheel

rim. Assume the density of the flywheel material (which is cast iron) as 7200 kg/m
3
.

Solution.  Given : P = 150 kW = 150 × 103 W; N = 80 r.p.m. or ω = 2 π × 80 /60 = 8.4 rad/s;

C
E
 = 0.1; D = 2 m or R = 1 m ; ρ = 7200 kg/m3

Since the fluctuation of speed is ± 2% of mean speed, therefore total fluctuation of speed,

                          ω
1
 – ω

2
 =  4% ω  = 0.04 ω

and coefficient of fluctuation of speed,

                                  
1 2

S

–
0.04C

ω ω
= =

ω

Mass of the flywheel rim

Let m = Mass of the flywheel rim in kg, and

I = Mass moment of inertia of the flywheel in kg-m2.

We know that work done per cycle

= P × 60/N = 150 × 103 × 60 / 80 = 112.5 × 103 N-m

and maximum fluctuation of energy,

∆E = Work done /cycle × C
E
 = 112.5 × 103 × 0.1 = 11 250 N-m

We also know that maximum fluctuation of energy (∆E),

11 250 = I.ω2.C
S
 = I × (8.4)2 × 0.04 = 2.8224 I

∴ I = 11 250 / 2.8224 = 3986 kg-m2

Since the hub and spokes provide 5% of the rotational inertia of the flywheel, therefore,

mass moment of inertia of the flywheel rim (I
rim

) will be 95% of the flywheel, i.e.

I
rim

= 0.95 I = 0.95 × 3986 = 3787 kg-m2
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and                             I
rim

 = m.k2    or    *
2 2

3787
3787 kg

1

rim
I

m

k

= = =  Ans. . . . (∵ k = R)

Cross-sectional area of the flywheel rim

Let A = Cross-sectional area of flywheel rim in m2.

We know that the mass of the flywheel (m),

3787 = 2 π R × A  × ρ = 2 π × 1 × A × 7200 = 45 245 A

∴ A = 3787/45 245 = 0.084 m2 Ans.

Example 16.16.  A multi-cylinder engine is to run at a speed of 600 r.p.m. On drawing the

turning moment diagram to a scale of 1 mm = 250 N-m and 1 mm = 3°, the areas above and below

the mean torque line in mm
2
 are : + 160, – 172, + 168, – 191, + 197, – 162

The speed is to be kept within ± 1% of the mean speed of the engine. Calculate the necessary

moment of inertia of the flywheel. Determine the suitable dimensions of a rectangular flywheel rim

if the breadth is twice its thickness. The density of the cast iron is 7250 kg/m
3
 and its hoop stress is

6 MPa. Assume that the rim contributes 92% of the flywheel effect.

Solution.  Given : N = 600 r.p.m. or ω = 2π × 600/60 = 62.84 rad /s; ρ = 7250 kg/m3;

σ = 6 MPa = 6 × 106 N/m2

Fig. 16.19

Since the fluctuation of speed is ± 1% of mean speed, therefore, total fluctuation of speed,

ω
1
 – ω

2
= 2% ω = 0.02 ω

and coefficient of fluctuation of speed,

                                  
1 2

S

–
0.02C

ω ω
= =

ω

Moment of inertia of the flywheel

Let I = Moment of inertia of the flywheel in kg-m2.

The turning moment diagram is shown in Fig. 16.19. The turning moment scale is 1 mm =

250 N-m and crank angle scale is 1 mm = 3° = π /60 rad, therefore,

1 mm2 of turning moment diagram

= 250 × π /60 = 13.1 N-m

* The mass of the flywheel rim (m) may also be obtained by using the following relation:

∆E
rim

= 0.95 (∆E) = 0.95 × 11 250 = 10 687.5 N-m

and ∆E
rim

= m.k2.ω2.C
S
 = m (1)2 × (8.4)2 × 0.04 = 2.8224 m

∴ m = (∆E)
rim

/ 2.8224 = 10 687.5 / 2.8224 = 3787 kg
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Let the total energy at A = E. Therefore from Fig. 16.19, we find that

Energy at B = E + 160

Energy at C = E + 160 – 172 = E – 12

Energy at D = E – 12 + 168 = E + 156

Energy at E = E + 156 – 191 = E – 35 . . . (Minimum energy)

Energy at F = E – 35 + 197 = E + 162 . . . (Maximum energy)

Energy at G = E + 162 – 162 = E = Energy at A

We know that maximum fluctuation of energy,

∆E = Maximum energy – Minimum energy

= (E + 162) – (E – 35) = 197 mm2

= 197 × 13.1 = 2581 N-m

We also know that maximum fluctuation of energy (∆E ),

2581 = I.ω2.C
S
 = I × (62.84)2 × 0.02 = 79 I

∴ I = 2581/79 = 32.7 kg-m2 Ans.

Dimensions of the flywheel rim

Let t = Thickness of the flywheel rim in metres,

b = Breadth of the flywheel rim in metres = 2 t . . . (Given)

D = Mean diameter of the flywheel in metres, and

v = Peripheral velocity of the flywheel in m/s.

We know that hoop stress (σ),

6 × 106 = ρ.v2 = 7250 v2    or    v2 = 6 × 106/7250 = 827.6

∴ v = 28.8 m/s

We know that v = π DN/60,    or    D = v × 60 / π N = 28.8 × 60/π × 600 = 0.92 m

Now, let us find the mass (m) of the flywheel rim. Since the rim contributes 92% of the

flywheel effect, therefore maximum fluctuation of energy of rim,

∆E
rim

= 0.92 × ∆E = 0.92 × 2581 = 2375 N-m

We know that maximum fluctuation of energy of rim (∆E
rim

),

2375 = m.v2.C
S
 = m × (28.8)2 × 0.02 = 16.6 m

∴ m = 2375/16.6 = 143 kg

Also m = Volume × density = π D.A .ρ = π D.b.t.ρ

∴ 143 = π × 0.92 × 2 t × t × 7250 = 41 914 t2

t2 = 143 / 41 914 = 0.0034 m2

or t = 0.0584 m = 58.4 mm Ans.

and b = 2 t = 116.8 mm Ans.

Example 16.17.  The turning moment diagram of a four stroke engine may be assumed for

the sake of simplicity to be represented by four triangles in each stroke. The areas of these triangles

are as follows:
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Suction stroke = 5 × 10–5 m2; Compression stroke = 21 × 10–5 m2; Expansion stroke =

85 × 10–5 m2; Exhaust stroke = 8 × 10–5 m2.

All the areas excepting expression stroke are negative. Each m2
 of area represents 14 MN-m

of work.

Assuming the resisting torque to be constant, determine the moment of inertia of the flywheel

to keep the speed between 98 r.p.m. and 102 r.p.m. Also find the size of a rim-type flywheel based on

the minimum material criterion, given that density of flywheel material is 8150 kg/m3 ; the allowable

tensile stress of the flywheel material is 7.5 MPa. The rim cross-section is rectangular, one side

being four times the length of the other.

Solution. Given: a
1
 = 5 × 10–5 m2; a

2
 = 21 × 10–5 m2; a

3
 = 85 × 10–5 m2; a

4
 = 8 × 10–5 m2;

N
2
 = 98 r.p.m.; N

1
 = 102 r.p.m.; ρ = 8150 kg/m3; σ = 7.5 MPa = 7.5 × 106 N/m2

Fig. 16.20

The turning moment-crank angle diagram for a four stroke engine is shown in Fig. 16.20.

The areas below the zero line of pressure are taken as negative while the areas above the zero line of

pressure are taken as positive.

∴ Net area = a
3
 – (a

1
 + a

2
 + a

4
)

= 85 × 105 – (5 × 105 + 21 × 10–5 + 8 × 10–5) = 51 × 10–5 m2

Since  1m2 = 14 MN-m = 14 × 106 N-m of work, therefore

Net work done per cycle

= 51 × 10–5 × 14 × 106 = 7140 N-m ...(i)

We also know that work done per cycle

= T
mean

 × 4π N-m ...(ii)

From equation (i) and (ii),

T
mean

 = FG = 7140 / 4π = 568 N-m

Work done during expansion stroke

= a
3
 × Work scale = 85 × 10–5 × 14 × 106 = 11 900 N-m ...(iii)
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Also, work done during expansion stroke

1

2
=  × BC × AG = 

1

2
=  × π × AG = 1.571 AG ...(iv)

From equations (iii) and (iv),

AG  = 11 900/1.571 = 7575 N-m

∴ Excess torque = AF = AG – FG = 7575 – 568 = 7007 N-m

Now from similar triangles ADE and ABC,

DE AF

BC AG
= or

7007
2.9 rad

7575

AF
DE BC

AG
= × = × π =

We know that maximum fluctuation of energy,

∆E = Area of ∆ ADE = 
1

2
 × DE × AF

= 
1

2
 × 2.9 × 7007 = 10 160 N-m

Moment of Inertia of the flywheel

Let I = Moment of inertia of the flywheel in kg-m2.

We know that mean speed during the cycle

1 2 102 98
100 r.p.m.

2 2

N N
N

+ +
= = =

∴  Corresponding angular mean speed,

ω = 2πN / 60 = 2π × 100/60 = 10.47 rad/s

and coefficient of fluctuation of speed,

1 2
S

102 98
0.04

100

N N
C

N

− −
= = =

We know that maximum fluctuation of energy (∆E),

10 160 = I.ω2.C
S
 = I (10.47)2 × 0.04 = 4.385 I

∴ I = 10160 / 4.385 = 2317 kg-m2 Ans.

Size of flywheel

Let t = Thickness of the flywheel rim in metres,

b = Width of the flywheel rim in metres = 4 t ...(Given)

D = Mean diameter of the flywheel in metres, and

v = Peripheral velocity of the flywheel in m/s.

We know that hoop stress (σ),

7.5 × 106 = ρ .  v2 = 8150 v2

∴

6
2 7.5 10

920 or 30.3 m/s
8150

v v
×

= = =

and v = πDN/60  or  D = v × 60/πN = 30.3 × 60/π × 100 = 5.786 m
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* The work done per cycle for a four stroke engine is also given by

3
60 60 50 10 60

Work done per cycle 40000 N-m
Number of explosions/min 75

P P

n

× × × ×
= = = =

Now let us find the mass (m) of the flywheel rim. We know that maximum fluctuation of

energy (∆E),

10 160 = m.v2 C
S
 = m × (30.3)2  × 0.04 = 36.72 m

∴ m = 10 160/36.72 = 276.7 kg

Also m = Volume × density = D A D b t
g g

ρ ρ
π × × = π × × ×

276.7 = π × 5.786 × 4t × t × 

4
4 28 10

59.3 10
9.81

t
×

= ×

∴ t2 = 276.7/59.3 × 104 = 0.0216 m or 21.6 mm Ans.

and b = 4t = 4 × 21.6 = 86.4 mm Ans.

Example 16.18.  An otto cycle engine develops 50 kW at 150 r.p.m. with 75 explosions per

minute. The change of speed from the commencement to the end of power stroke must not exceed

0.5% of mean on either side. Find the mean diameter of the flywheel and a suitable rim cross-

section having width four times the depth so that the hoop stress does not exceed 4 MPa. Assume

that the flywheel stores 16/15 times the energy stored by the rim and the work done during power

stroke is 1.40 times the work done during the cycle. Density of rim material is 7200 kg/m3.

Solution.  Given : P = 50 kW = 50 × 103 W; N = 150 r.p.m. or ω = 2 π × 150/60 = 15.71 rad/s;

n = 75; σ = 4 MPa = 4 × 106 N/m2; r = 7200 kg/m3

First of all, let us find the mean torque (T
mean

) transmitted by the engine or flywheel. We

know that the power transmitted (P),

                         50 × 103 = T
mean

 × ω = T
mean

 × 15.71

∴ T
mean

= 50 × 103/15.71 = 3182.7 N-m

Since the explosions per minute are equal to N/2, therefore, the engine is a four stroke cycle

engine. The turning moment diagram of a four stroke engine is shown in Fig. 16.21.

Fig. 16.21

We know that *work done per cycle

= T
mean

 × θ = 3182.7 × 4π = 40 000 N-m
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∴ Workdone during power or working stroke

= 1.4 × work done per cycle ....(Given)

= 1.4 × 40 000 = 56 000 N-m ...(i)

The workdone during power stroke is shown by a triangle ABC in Fig. 16.20, in which base

AC = π radians and height BF = T
max

.

∴  Work done during working stroke

                                        
1

1.571
2 max max

T T= × π × =  . . . (ii)

From equations (i) and (ii), we have

T
max

= 56 000/1.571 = 35 646 N-m

We know that the excess torque,

T
excess

= BG = BF – FG = T
max

 – T
mean

 = 35 646 – 3182.7 = 32 463.3 N-m

Now, from similar triangles BDE and ABC,

                                
DE BG

AC BF
=     or    

32463.3
0.9107

35646

BG
DE AC

BF
= × = × π = π

We know that maximum fluctuation of energy,

∆E = Area of triangle BDE 
1

2
DE BG= × ×

                                            
1

0.9107 32 463.3 46 445 N - m
2

= × π × =

Mean diameter of the flywheel

Let D = Mean diameter of the flywheel in metres, and

v = Peripheral velocity of the flywheel in m/s.

We know that hoop stress (σ),

4 × 106 = ρ.v2 = 7200 v2    or    v2 = 4 × 106/7200 = 556

∴ v = 23.58 m/s

We know that v = π DN/60    or    D = v × 60/N = 23.58 × 60/π × 150 = 3 m Ans.

Cross-sectional dimensions of the rim

Let t = Thickness of the rim in metres, and

b = Width of the rim in metres = 4 t ...(Given)

∴  Cross-sectional area of the rim,

A = b × t = 4 t × t = 4 t2

First of all, let us find the mass of the flywheel rim.

Let m = Mass of the flywheel rim in kg, and

E = Total energy of the flywheel in N-m.

Since the fluctuation of speed is 0.5% of the mean speed on either side, therefore total

fluctuation of speed,

N
2
 – N

1
= 1% of mean speed = 0.01 N

and coefficient of fluctuation of speed,

                                  
1 2

S

–
0.01

N N

C
N

= =
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We know that the maximum fluctuation of energy ( )E∆ ,

                             S46 445 2 2 0.01 0.02E C E E= × = × × =

∴                                  3
46 445 / 0.02 2322 10 N-mE = = ×

Since the energy stored by the flywheel is 
16

15
 times the energy stored by the rim, therefore,

the energy of the rim,

                                
3 315 15

232 10 2177 10 N-m
16 16

rim
E E= = × × = ×

We know that energy of the rim ( )rimE ,

                     ( )
3 2 21

2177 10 27823.58
2

m v m m× = × × = =

∴                                  3
2177 10 / 278 7831 kgm = × =

We also knonw that mass of the flywheel rim (m),

                                2 2
7831 3 4 7200 271 469D A t t= π × × ρ = π × × × =

∴                                  2
831/ 271 469 0.0288 or 0.17 m 170 mmt t= = = = Ans.

and b = 4 t = 4 × 170 = 680 mm Ans.

16.12. Flywheel in Punching Press

We have discussed in Art. 16.8 that the function of a flywheel in an engine is to reduce the

fluctuations of speed, when the load on the crankshaft

is constant and the input torque varies during the

cycle. The flywheel can also be used to perform the

same function when the torque is constant and the

load varies during the cycle. Such an application is

found in punching press  or in a rivetting machine.

A punching press is shown diagrammatically in Fig.

16.22. The crank is driven by a motor which supplies

constant torque and the punch is at the position of

the slider in a slider-crank mechanism. From Fig.

16.22, we see that the load acts only during the

rotation of the crank from 1 2to =θ = θ θ θ , when

the actual punching takes place and the load is zero

for the rest of the cycle. Unless a flywheel is

used, the speed of the crankshaft will increase too

much during the rotation of crankshaft will

increase too much during the rotation of crank

from 2θ = θ to 2θ = π  or 0θ =  and again from

0θ =  to 1θ = θ , because there is no load  while

input energy continues to be supplied. On the other

hand,  the drop in speed of the crankshaft is

very large during the rotation of crank from

Fig. 16.22. Operation of flywheel in a

punching press.
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1 2to =θ = θ θ θ  due to much more load than the

energy supplied. Thus the flywheel has to absorb

excess energy available at one stage and has to make

up the deficient energy at the other stage to keep to

fluctuations of speed within permissible limits. This

is done by choosing the suitable moment of inertia of

the flywheel.

Let 1E  be the energy required for punching a

hole. This energy is determined by the size of the hole

punched, the thickness of the material and the physi-

cal properties of the material.

Let   1d  = Diameter of the hole punched,

         1t   = Thickness of the plate, and

         
u

τ =  Ultimate shear stress for the plate

                 material.

∴  Maximum shear force required for punching,

        S 1 1Area sheared × Ultimate shear stress .
u

F d t= = π τ

It is assumed that as the hole is punched, the shear force decreases uniformly from maximum

value to zero.

∴  Work done or energy required for punching a hole,

                                   1

1

2
s

E F t= × ×

Assuming one punching operation per revolution, the energy supplied to the shaft per revolu-

tion should also be equal to 1E . The energy supplied by the motor to the crankshaft during actual

punching operation,

                                   
2 1

2 1
2

E E
θ − θ 

=  
π 

∴  Balance energy required for punching

                                         
2 1 2 1

1 2 1 1 1– 1
2 2

E E E E E
θ − θ θ − θ   

= − = = −   
π π   

This energy is to be supplied by the flywheel by  the decrease in its kinetic energy when its

speed falls from maximum to minimum. Thus maximum fluctuation of energy,

                                  
2 1

1 2 1 1
2

E E E E
θ − θ 

∆ = − = − 
π 

The values of 1θ  and 2θ  may be determined only if the crank radius (r), length of connecting

rod (l) and the relative position of the job with respect to the crankshaft axis are known. In the

absence of relevant data, we assume that

                          
2 1

2 2 4

t t

s r

θ − θ
= =

π

Punching press and flywheel.
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where                              t  = Thickness of the material to be punched,

                             s = Stroke of the punch = 2 Crank radius 2r× = .

By using the suitable relation for the maximum fluctuation of energy (∆E) as discussed in the

previous articles, we can find the mass and size of the flywheel.

Example 16.19.  A punching press is driven by a constant torque electric motor. The press is

provided with a flywheel that rotates at maximum speed of 225 r.p.m. The radius of gyration of the

flywheel is 0.5 m. The press punches 720 holes per hour; each punching operation takes 2 second

and requires 15 kN-m of energy. Find the power of the motor and the minimum mass of the flywheel

if speed of the same is not to fall below 200 r. p. m.

Solution.  Given 1 225N =  r.p.m ; k = 0.5 m ; Hole punched = 720 per hr; 1E  = 15 kN-m

= 15 × 103 N-m ; 2 200N =  r.p.m.

Power of the motor

We know that the total energy required per second

                               = Energy required / hole × No. of holes / s

                               =15 × 103 × 720/3600 = 3000 N-m/s

        ∴  Power of the motor = 3000 W = 3 kW Ans. ( � 1 N-m/s = 1 W)

Minimum mass of the flywheel

Let                     m  =  Minimum mass of the flywheel.

Since each punching operation takes 2 seconds, therefore energy supplied by the motor in 2

seconds,

                         2 3000 2 6000 N -mE = × =

∴  Energy to be supplied by the flywheel during punching or maximum fluctuation of energy,

                        3
1 2 15 10 6000 9000 N-mE E E∆ = − = × − =

Mean speed of the flywheel,

                          
1 2 225 200

212.5 r.p.m
2 2

N N
N

+ +
= = =

We know that maximum fluctuation of energy (∆E),

                     

2
2

1 29000 . . ( )
900

m k N N N
π

= × −

                               ( ) ( )
2

2 212.5 225 2000.5
900

m
π

= × × × × −  =  14.565 m

    ∴                   m  = 9000/14.565 = 618 kg Ans.

Example 16.20.  A machine punching 38 mm holes in 32 mm thick plate requires 7 N-m of

energy per sq. mm of sheared area, and punches one hole in every 10 seconds. Calculate the power

of the motor required. The mean speed of the flywheel is 25 metres per second. The punch has a

stroke of 100 mm.

Find the mass of the flywheel required, if the total fluctuation of  speed is not to exceed 3%

of the mean speed. Assume that the motor supplies energy to the machine at uniform rate.

Solution.  Given : d = 38 mm ;  t = 32 mm ; 2
1 7 N-m/mmE =  of sheared area ; 25 m/sv = ;

s = 100 mm ; 1 2 3% 0.03v v v v− = =
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Power of the motor required

We know that sheared area,

                                     2
. 38 32 3820 mmA d t= π = π × × =

Since the energy required to punch a hole is 7 N-m/mm2 of sheared area, therefore total

energy required per hole,

                                   1 7 3820 26 740 N-mE = × =

Also the time required to punch a hole is 10 second, therefore energy required for punching

work per second

= 26 740/10  =  2674  N-m/s

∴  Power of the motor required

= 2674 W = 2.674 kW Ans.

Mass of the flywheel required

 Let m = Mass of the flywheel in kg.

Since the stroke of the punch is 100 mm and it punches one hole in every 10 seconds, there-

fore the time required to punch a hole in a 32 mm thick plate

                                         
10

32 1.6 s
2 100

= × =
×

∴   Energy supplied by the motor in 1.6 seconds,

                                   2 2674 1.6 4278 N-mE = × =

Energy to be supplied by the flywheel during punching or the maximum fluctuation of energy,

                                   1 2 26 740 4278 22 462 N-mE E E∆ = − = − =

Coefficient of fluctuation of speed,

                                   
1 2

S 0.03
v v

C
v

−
= =

We know that maximum fluctuation of energy ( )E∆ ,

                             ( )
2 2

22 462 . . 0.03 18.7525Sm v C m m= = × × =

∴  m = 22 462 / 18.75 = 1198 kg Ans.

Note : The value of maximum fluctuation of energy (∆E) may also be determined as discussed in Art. 16.12. We

know that energy required for one punch,

                                    1 26 740 N-mE =

and                                          
2 1

1
11

22

t
E E

s

 θ − θ 
−∆ = =−   

π   

2 1......
2 2

t

s

θ − θ 
= 

π 
�

                                         
32

126 740 22 462 N-m
2 100

 
−= = 

× 

Example 16.21.  A riveting machine is driven by a constant torque 3 kW motor. The moving

parts including the flywheel are equivalent to 150 kg at 0.6 m radius. One riveting operation takes

1 second and absorbs 10 000 N-m of energy. The speed of the flywheel is 300 r.p.m. before riveting.

Find the speed immediately after riveting. How many rivets can be closed per minute?

Solution. Given : P = 3 kW ; m = 150 kg ; k = 0.6 m ; 1N  = 300 r.p.m. or

ω
1
 = 2π × 300/60 = 31.42 rad/s
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Speed of the flywheel immediately after riveting

Let 2ω = Angular speed of the flywheel immediately after riveting.

We know that energy supplied by the motor,

                                   2 3kW 3000 W 3000 N-m/sE = = = (∵ 1 W = 1 N-m/s)

But energy absorbed during  one riveting operation which takes 1 second,

                                   1 = 10 000 N-mE

∴  Energy to be supplied by the flywheel for each riveting operation per second or the

maximum fluctuation of energy,

                                   1 2 10 000 3000 7000 N-mE E E∆ = − = − =

We know that maximum fluctuation of energy (∆E),

                         ( ) ( ) ( ) ( ) ( )
2 22 2 22

1 2 2

1 1
7000 . 150 0.6 31.42

2 2
m k    = × = × × ×− −ω ω ω   

                                         ( )
2

2
27 987.2 = − ω 

∴                           ( )
2

2 987.2 7000 / 27 728= − =ω  or 2 26.98 rad/sω =

Corresponding speed in r.p.m.,

                                 2 26.98 60 / 2N = × π  = 257.6 r.p.m. Ans.

Number of rivets that can be closed per minute

Since the energy absorbed by each riveting operation which takes 1 second is 10 000 N-m,

therefore, number of rivets that can be closed per minute,

                                        
2

1

3000
60 60 18

10 000

E

E
= × = × =  rivets Ans.

Example 16.22.   A  punching press is required to punch 40 mm diameter holes in a plate of

15 mm thickness at the rate of 30 holes per minute. It requires 6 N-m  of energy per mm2 of sheared

area. If the punching takes 1/10 of a second and the r.p.m. of the flywheel varies from 160 to 140,

determine the mass of the flywheel having radius of gyration of 1 metre.

Solution.  Given: d = 40 mm; t = 15  mm; No. of holes = 30 per min.; Energy required

= 6 N-m/mm2; Time = 1/10 s = 0.1 s; N
1

 = 160 r.p.m.; N
2
 =  140 r.p.m.; k = 1m

We know that sheared area per hole

                                        2
. 40 15 1885 mmd t= π = π × × =

∴  Energy required to punch a hole,

                                   1 = 6 ×1885 = 11 310 N-mE

and energy required for punching work per second

= Energy required per hole × No. of holes per second

= 11 310  × 30/60 = 5655 N-m/s

Since the punching takes 1/10 of a second, therefore, energy supplied by the motor in 1/10

second,

                                   2 = 5655 × 1/10 = 565.5 N-mE

∴  Energy to be supplied by the flywheel during punching a hole or maximum fluctuation of

energy of the flywheel,

                                  1 2 11 310 565.5 10 744.5 N-mE E E∆ = − = − =
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Mean speed of the flywheel,

                                      
1 2 160 140

150 r.p.m.
2 2

N N
N

+ +
= = =

We know that maximum fluctuation of energy ( )E∆ ,

                              ( )
2

2
1 210 744.5 .

900
m k N N N

π
= × −

   ( )
2

0.011 1 150 33160 140m m= × × × =−

∴                                 m  = 10744.5 / 33 = 327 kg Ans.

Example 16.23.  A punching machine makes 25 working strokes per minute and is capable

of punching 25 mm diameter holes in 18 mm thick steel plates having an ultimate shear strength 300

MPa. The punching operation takes place during 1/10th of a revolution of the crankshaft.

Estimate the power needed for the driving motor, assuming a mechanical efficiency of 95

percent. Dtetermine suitable dimensions for the rim cross-section of the flywheel, having width equal

to twice thickness. The flywheel is to revolve at 9 times the speed of the crankshaft. The permissible

coefficient of fluctuation of speed is 0.1.

The flywheel is to be made of cast iron having a working stress (tensile) of 6 MPa and density

of 7250 kg/m3. The diameter of the flywheel must not exceed 1.4 m owing to space restrictions. The

hub and the spokes may be assumed to provide 5% of the rotational inertia of the wheel.

Solution.  Given :  n = 25; d
1
 = 25 mm =  0.025 m; t

1
 = 18 mm = 0.018 m ; 

u
τ  = 300 MPa

= 300 × 106 N/m2 ; 
m

η  = 95% = 0.95 ; SC  = 0.1; σ = 6 MPa = 6 × 106 N/m2; ρ  = 7250 kg/m3;

D = 1.4 m or   R =   0.7 m

Power needed for the driving motor

We know  that the area of plate sheared ,

                                    6 2
s 1 1 0.025 0.018 1414 10 mA d t

−
= π × = π × × = ×

∴   Maximum shearing force required for punching,

                                   6 6
S S 1414 10 300 10 424 200 N

uF A
−

= × τ = × × × =

and energy required per stroke

= Average shear force × Thickness of plate

                                         S 1

1 1
424200 0.018 3817.8 N-m

2 2
F t= × × = × × =

∴   Energy required per min

= Energy/stroke × No. of working strokes/min

= 3817.8 × 25 = 95 450 N-m

We know that the power needed for the driving motor

                                 = 
Energy required per min 95 450

= 1675 W = 1.675 kW
60 × � �� ����

m

=
×

Ans.

Dimensions for the rim cross-section

Let t = Thickness of rim in metres, and

b = Width of rim in metres = 2t ... (Given)

∴  Cross-sectional area of rim,

                                    2
2 2A b t t t t= × = × =
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Since the punching operation takes place (i.e. energy is consumed) during 1/10th of a

revolution of the crankshaft, therefore during 9/10th of the revolution of a crankshaft, the energy

is stored in the flywheel.

∴  Maximum fluctuation of energy,

                                  
9 9

Energy/stroke = × 3817.8 = 3436 N-m
10 10

E∆ = ×

Let m = Mass of the flywheel in kg.

Since the hub and the spokes provide 5% of the rotational inertia of the wheel, therefore the

maximum fluctuation of energy provided by the flywheel by the rim will be 95%.

∴  Maximum fluctuation of energy provided by the rim,

                             0.95 0.95 3436 3264 N-m
rim

E E∆ = × ∆ = × =

Since the flywheel is to revolve at 9 times the speed of the crankshaft and there are 25 work-

ing strokes per minute, therefore, mean speed of the flywheel,

                                    9 25 225 r.p.mN = × = .

and mean angular speed,

                                     2 225 / 60 23.56 rad/sω = π × =

We know that maximum fluctuation of energy ( )rimE∆ ,

3264 = ( ) ( )
2 2 2 2

. . . 0.1 27.20.7 23.56sm R C m mω = × × × =

∴ m = 3264/27.2 = 120 kg

We also know that mass of the flywheel (m),

                                 2 2
120 1.4 2 7250 63782D A t t= π × × ρ = π × × × =

∴                                2
120 / 63782 0.001 88t = =  or t = 0.044 m = 44 mm Ans.

and b = 2 t = 2 × 44 = 88 mm  Ans.

EXERCISES

1. An engine flywheel has a mass of 6.5 tonnes and the radius of gyration is 2 m. If the maximum and

minimum speeds are 120 r. p. m. and 118 r. p. m. respectively, find maximum fluctuation of energy.

[Ans. 67. 875 kN-m]

2. A vertical double acting steam engine develops 75 kW at 250 r.p.m. The maximum fluctuation of

energy is 30 per cent of the work done per stroke.  The maximum and minimum speeds are not to vary

more than 1 per cent on either side of the mean speed. Find the mass of the flywheel required, if the

radius of gyration is 0.6 m. [Ans. 547 kg]

3. In a turning moment diagram, the areas above and below the mean torque line taken in order are 4400,

1150, 1300 and 4550 mm2 respectively. The scales of the turning moment diagram are:

Turning moment, 1 mm = 100 N-m ; Crank angle, 1 mm = 1°

Find the mass of the flywheel required to keep the speed between 297 and 303 r.p.m., if the radius of

gyration is 0.525 m. [Ans. 417 kg]

4. The turning moment diagram for a multicylinder engine has been drawn to a scale of 1 mm =

4500  N-m vertically and 1 mm = 2.4° horizontally. The intercepted areas between output torque curve

and mean resistance line taken in order from one end are 342, 23, 245, 303, 115, 232, 227, 164 mm2,

when the engine is running at 150 r.p.m. If the mass of the flywheel is 1000 kg and the total fluctuation

of speed does not exceed 3% of the mean speed, find the minimum value of the radius of gyration.

[Ans. 1.034 m]
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5. An engine has three single-acting cylinders whose cranks are spaced at 120° to each other. The turn-

ing moment diagram for each cylinder consists of a triangle having the following values:

Angle 0° 60° 180° 180° – 360°

Torque (N-m) 0 200 0 0

Find the mean torque and the moment of inertia of the flywheel to keep the speed within 180 ± 3 r.p.m.

[Ans. 150 N-m; 1.22 kg-m2]

6. The turning moment diagram for a four stroke gas engine may be assumed for simplicity to be repre-

sented by four triangles, the areas of which from the line of zero pressure are as follows:

Expansion stroke = 3550 mm2; exhaust stroke = 500 mm2; suction stroke  = 350 mm2; and compres-

sion stroke = 1400 mm2. Each mm2 represents 3 N-m.

Assuming the resisting moment to be uniform, find the mass of the rim of a flywheel required to keep

the mean speed 200 r.p.m. within ± 2%. The mean radius of the rim may be taken as 0.75 m. Also

determine the crank positions for the maximum and minimum speeds.

[Ans. 983 kg; 4° and 176° from I. D. C]

7. A single cylinder, single acting, four stroke cycle gas engine develops 20 kW at 250 r.p.m. The work

done by the gases during the expansion stroke is 3 times the work done on the gases during the

compression stroke. The work done on the suction and exhaust strokes may be neglected. If the

flywheel has a mass of 1.5 tonnes and has a radius of gyration of 0.6m, find the cyclic fluctuation of

energy and the coefficient of fluctuation of speed.

[Ans. 12.1 kN-m; 3.26%]

8. The torque exerted on the crank shaft of a two stroke engine is given by the equation:

( ) 14 500 2300 sin 2 1900 cosN- mT = + θ − 2θ

where θ  is the crank angle displacement from the inner dead centre. Assuming the resisting torque to

be constant, determine: 1. The power of the engine when the speed is 150 r.p.m. ; 2. The moment of

inertia of the flywheel if the speed variation is not to exceed 0.5%±  of the mean speed; and 3. The

angular acceleration of the flywheel when the crank has turned through 30° from the inner dead

centre. [Ans. 228 kW; 1208 kg-m2; 0.86 rad/s2]

9. A certain machine requires a torque of (2000 + 300 sin θ ) N-m to drive it, where θ is the angle of

rotation of its shaft measured from some datum. The machine is directly coupled to an electric motor

developing uniform torque. The mean speed of the machine is 200 r.p.m.

Find: 1. the power of the driving electric motor, and 2. the moment of inertia of the flywheel required

to  be used if the fluctuation of speed is limited to 2%± .

[Ans. 41.9 kW;  34.17 kg-m2]

10. The equation of the turning moment diagram for the three crank engine is given by:

( ) 25 000 7500 sin 3N-mT = − θ

where θ radians is the crank angle from inner dead centre. The moment of inertia of the flywheel is

400 kg-m2 and the mean engine speed is 300 r.p.m. Calculate the power of the engine and the total

percentage fluctuation of speed of the flywheel, if 1. The resisting torque is constant, and  2. The

resisting torque is (25 000  + 3600 sin θ ) N-m.

[Ans. 785 kW; 1.27%; 2.28%]

11. A single cylinder double acting steam engine delivers 185 kW at 100 r.p.m. The maximum fluctuation

of energy per  revolution  is 15 per cent of the energy developed per  revolution. The speed variation

is limited to 1 per cent either way from the mean. The mean diameter of the rim is 2.4 m. Find the mass

and cross-sectional dimensions of the flywheel rim when width of rim is twice the thickness. The

density of flywheel material is 7200 kg/m3.

[Ans. 5270 kg; 440 mm; 220 mm]
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12. A steam engine runs at 150 r.p.m. Its turning moment diagram gave the following area measurements

in mm2 taken in order above and below the mean torque line:

500, – 250, 270, – 390, 190, – 340, 270, – 250

The scale for the turning moment is 1 mm = 500 N-m, and for crank angle is 1mm = 5°.

The fluctuation of speed is not to exceed ± 1.5% of the mean, determine the cross-section of the rim

of the flywheel assumed rectangular with axial dimension equal to 1.5 times the radial dimension. The

hoop stress is limited to 3 MPa and the density of the material of the flywheel is 7500 kg/m3.

[Ans. 222 mm; 148 mm]

13. The turning moment diagram for the engine is drawn to the following scales:

Turning moment, 1 mm = 1000 N-m and crank angle, 1 mm = 6°.

The areas above and below the mean turning moment line taken in order are : 530, 330, 380, 470, 180,

360, 350 and 280 mm2.

The mean speed of the engine is 150 r.p.m. and the total fluctuation of speed must not exceed 3.5% of

mean speed. Determine the diameter and mass of the flywheel rim, assuming that the total energy of

the flywheel to be 15/14 that of rim. The peripheral velocity of the flywheel is 15 m/s. Find also the

suitable cross-scetional area of the rim of the flywheel. Take density of the material of the rim as 7200

kg/m3.

[Ans. 1.91 m; 8063 kg; 0.1866 m2]

14. A single cylinder internal combustion engine working on the four stroke cycle develops 75 kW at 360

r.p.m. The fluctuation of energy can be assumed to be 0.9 times the energy developed per cycle. If the

fluctuation of speed is not to exceed 1 per cent and the maximum centrifugal stress in the flywheel is

to be 5.5 MPa, estimate the mean diameter and the cross-sectional area of the rim. The material of the

rim has a density of 7.2 Mg/m3.

[Ans. 1.47 m; 0.088 m2]

15. A cast iron flywheel used for a four stroke I.C. engine is developing 187.5 kW at 250 r.p.m. The hoop

stress developed in the flywheel is 5.2 MPa. The total fluctuation of speed is to be limited to 3% of the

mean speed. If the work done during the power stroke is 1/3 times more than the average workdone

during the whole cycle, find:

1. mean diameter of the flywheel, 2. mass of the flywheel and 3. cross-sectional dimensions of the rim

when the width is twice the thickness. The density of cast iron may be taken as 7220 kg/m3.

[Ans 2.05m; 4561 kg; 440 mm, 220 mm]

16. A certain machine tool does work intermittently. The machine is fitted with a flywheel of mass 200 kg

and radius of gyration of 0.4 m. It runs at a speed of 400 r.p.m. between the operations. The machine

is driven continuously by a motor and each operation takes 8 seconds. When the machine is doing its

work, the speed drops from 400 to 250 r.p.m. Find 1. minimum power of the motor, when there are 5

operations performed per minute, and 2. energy expanded in performing each operation.

[Ans. 4.278 kW; 51.33 kN-m]

17. A constant torque 4 kW motor drives a riveting machine. A flywheel of mass 130 kg and radius of

gyration 0.5 m is fitted to the riveting machine. Each riveting operation takes 1 second and requires 9000

N-m of energy. If the speed of the flywheel is 420 r.p.m. before riveting, find: 1. the fall in speed of the

flywheel after riveting; and 2. the number of rivets fitted per hour.

[Ans. 385.15 r.p.m.; 1600]

18. A machine has to carry out punching operation at the rate of 10 holes per minute. It does 6 kN-m of

work per mm2 of the sheared area in cutting 25 mm diameter holes in 20 mm thick plates. A flywheel

is fitted to the machine shaft which is driven by a constant torque. The fluctuation of speed is between

180 and 200 r.p.m. The actual punching takes 1.5 seconds. The frictional  losses are equivalent to

1/6 of the work done during punching. Find: 1. Power required to drive the punching  machine, and 2.

Mass of the flywheel, if the radius of gyration of the wheel is 0.5 m. [Ans. 1.588 W; 686 kg]
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19. The crankshaft of a punching machine runs at a speed of 300 r.p.m. During punching of 10 mm

diameter holes in mild steel sheets, the torque required by the machine increases uniformly from 1000

N-m to 4000 N-m while the shaft turns through 40°, remains constant for the next 100°, decreases

uniformly to 1000 N-m for the next 40° and remains constant for the next 180°. This cycle is repeated

during each revolution. The power is supplied by a constant torque motor and the fluctuation of speed

is to be limited to ± 3% of  the mean speed. Find the power of the motor and the moment of inertia of

the flywheel fitted to the machine.

[Ans. 68 kW; 67.22 kg-m2]

20. A punching press pierces 35 holes per minute in a plate using 10 kN-m of energy per hole during each

revolution. Each piercing takes 40 per cent of the time needed to make one revolution. A cast iron

flywheel used with the punching machine is driven by a constant torque electric motor. The flywheel

rotates at a mean speed of 210 r.p.m. and the fluctuation of speed is not to exceed 1±  per cent of the

mean speed. Find : 1. power of the electric motor, 2. mass of the flywheel, and 3. cross-sectional

dimensions of the rim when the width is twice its thickness. Take hoop stress for cast iron = 4 MPa

and density of cast iron = 7200 kg/m3.

[Ans. 5.83 kW; 537 kg; 148 mm, 74 mm]

DO YOU KNOW ?

1. Draw the turning moment diagram of a single cylinder double acting steam engine.

2. Explain precisely the uses of turning moment diagram of reciprocating engines.

3. Explain the turning moment diagram of a four stroke cycle internal combustion engine.

4. Discuss the turning moment diagram of a multicylinder engine.

5. Explain the terms ‘fluctuation of energy’ and ‘fluctuation of speed’ as applied to flywheels.

6. Define the terms ‘coefficient of fluctuation of energy’ and ‘coefficient of fluctuation of speed’, in the

case of flywheels.

7. What is the function of a flywheel? How does it differ from that of a governor?

8. Prove that the maximum fluctuation of energy,

                                                    S2E E C∆ = ×

where                          E  =  Mean kinetic energy of the flywheel, and

C
S

= Coefficient of fluctuation of speed.

OBJECTIVE TYPE QUESTIONS

1. The maximum fluctuation of energy is the

(a) sum of maximum and minimum energies

(b) difference between the maximum and minimum energies

(c) ratio of the maximum energy and minimum energy

(d) ratio of the mean resisting torque to the work done per cycle

2. In a turning moment diagram, the variations of energy above and below the mean resisting torque line

is called

(a) fluctuation of energy

(b) maximum fluctuation of energy

(c) coefficient of fluctuation of energy

(d) none of the above
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3. The ratio of the maximum fluctuation of speed  to the mean speed is called

(a) fluctuation of speed (b) maximum fluctuation of speed

(c) coefficient of  fluctuation of speed (d) none of these

4. The ratio of the maximum fluctuation of energy to the, ......... is called coefficient of fluctuation  of

energy.

(a) minimum fluctuation of energy (b) work done per cycle

5. The maximum fluctuation of energy in a flywheel is equal to

(a) ( )1 2.I ω ω − ω (b) 2
S. .I Cω

(c) S2 .E C (d) all of these

where I = Mass moment of inertia of the flywheel,

E = Mean kinetic energy of the flywheel,

C
S 

= Coefficient of fluctuation of speed, and

ω = Mean angular speed 
1 2

2

ω + ω
= .

ANSWERS

1. (b) 2. (a) 3. (c) 4. (b) 5. (d)

GO To FIRST
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21. Walschaert Valve Gear.

17.1. Introduction

The valves are

used to control the steam

which drives the piston

of a reciprocating steam

engine. The valves have

to perform the four dis-

tinct operations on the

steam used on one side

(i.e. cover end) of the pis-

ton, as shown by the in-

dicator diagram (also

known as pressure-vol-

ume diagram) in Fig.

17.1. These operations

are as follows:

1. Admission or opening of inlet valve for admission

of steam to the cylinder. The point A  represents the point for

admission of steam just before the end of return stroke and it

is continued up to the point B.

Fig. 17.1. Indicator diagram of a

reciprocating steam engine.
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2. Cut-off or closing of inlet valve in order to stop the admission of steam prior to expansion.

The point B represents the cut-off point of steam. The curve BC represents the expansion of steam in

the engine cylinder.

3. Release or opening of exhaust valve to allow the expanded steam to escape from the

cylinder to the atmosphere or to the condenser or to a larger cylinder. The point C represents the

opening of the valve for releasing the steam. The exhaust continues during the return stroke upto

point D.

4. Compression or closing of exhaust valve for stopping the release of steam from the cylinder

prior to compression. The point D represents the closing of exhaust valve. The steam which remains

in the cylinder is compressed from D to A  and acts as a cushion for the reciprocating parts.

The same operations, as discussed above, are performed on steam in the same order on the

other side (or crank end) of the piston for each cycle or each revolution of the crank shaft. In other

words, for a double acting piston, there are eight valve operations per cycle. All these eight opera-

tions may be performed

(i) by a single slide valve such as D-slide valve,

(ii) by two piston valves, one for either end of cylinder, and

(iii) by two pairs of valves (one pair for each end of the cylinder), such as corliss valves or

drop valves. One valve at each end of the cylinder performs the operations of admission and cut-off

while the other valve performs the operations of release and compression.

The engine performance depends upon the setting of the valves. In order to set a valve at a

correct position, a valve diagram is necessary.

17.2. D-slide Valve

The simplest type of the slide valve, called the D-slide valve, is most commonly used to

control the admission, cut-off, release and compression of steam in the cylinder of reciprocating

steam engine. The usual arrangement of the D-slide valve, valve chest and cylinder for a double

acting steam engine is shown in Fig. 17.2 (a).

Sectional view of a steam engine.

Regulator valve

Fire

tubesSmokebox

Cylinder

valves

Cylinder Piston

Boiler

Firebox
Driver’s

cab



614  �   Theory of Machines

The steam from the boiler is admitted to the steam chest through a steam pipe. The recess R

in the valve is always open to the exhaust port which, in turn, is open either to atmosphere or to the

condenser. The ports P
1
 and P

2
 serve to admit steam into the cylinder or to pass out the steam from the

cylinder. The valve is driven from an eccentric keyed to the crankshaft. It reciprocates across the

ports and opens them alternately to admit high pressure steam from the steam chest and to exhaust the

used steam, through recess R to exhaust port.

The D-slide valve in its mid position relative to the ports is shown in Fig. 17.2 (a). In this

position, the outer edge of the valve overlaps the steam port by an amount s. This distance s (i.e.

lapping on the outside of steam port) is called the steam lap or outside lap. The inner edge of the

valve, also, overlaps the steam port by an amount e. This distance e (i.e. overlapping on the inside) is

called the exhaust lap or inside lap.

Fig. 17.2. D-slide valve.

The displacement of the valve may be assumed to take place with simple harmonic motion,

since the *obliquity of the eccentric rod is very small. Thus the eccentric centre line OE will be at

right angles to the line of stroke when the valve is in its mid-position. This is shown in Fig. 17.2 (b)

for clockwise rotation of the crank.

Note: Since the steam is admitted from outside the steam chest, therefore the D-slide valve is also known as

Outside admission valve.

17.3. Piston Slide Valve

The piston slide valve, as shown in Fig. 17.3 (a), consists of two rigidly connected pistons.

These pistons reciprocate in cylindrical liners and control the admission to, and exhaust from the two

ends of the cylinder. In this case, high pressure superheated steam is usually admitted to the space

between the two pistons through O and exhaust takes place from the ends of the valve chest through

E. This type of valve is mostly used for locomotives and high pressure cylinders of marine engines.

The piston slide valve has the following advantages over the D-slide valve :

* Since the length of the eccentric rod varies from 15 to 20 times the eccentricity (also known as throw of the

eccentric), therefore the effect of its obliquity is very small. The eccentricity or the throw of eccentric is

defined as the distance between the centre of crank shaft O and the centre of eccentric E. Thus the distance OE

is the eccentricity.
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1.  Since there is no unbalanced steam thrust between the valve and its seat as the pressure

on the two sides is same, therefore the power absorbed in operating the piston valve is less than the

D-slide valve.

2.  The wear of the piston valve is less than the wear of the D-slide valve.

3.   Since the valve spindle packing is subjected to the relatively low pressure and tempera-

ture of the exhaust steam, therefore the danger of leakage is less.

Fig. 17.3. Piston slide valve.

The position of the steam lap (s) and exhaust lap (e) for the piston valve in its mid position is

shown in Fig. 17.3 (a). The eccentric position for the clockwise rotation of the crank is shown in Fig.

17.3(b).

Note: Since the steam enters from the inside of the two pistons, therefore the piston valve is also known as

inside admission valve.

17.4. Relative Positions of Crank and Eccentric Centre Lines

Fig. 17.4. Relative positions of crank and eccentric centre lines for D-slide valve.

We have discussed the D-slide valve (also known as outside admission valve) and piston

slide valve (also known as inside admission valve) in Art. 17.2 and Art. 17.3 respectively. Now we

shall discuss the relative positions of the crank and the eccentric centre lines for these slide valves.
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1. D-slide or outside admission valve. The D-slide valve in its mid position is shown in

Fig. 17.2 (a). At the beginning of the stroke of the piston from left to right as shown in Fig. 17.4 (a),

the crank OC is at its inner dead centre position as shown in Fig. 17.4 (b). A little consideration will

show that the steam will only be admitted to the cylinder if the D-slide valve moves from its mid

position towards the right atleast by a distance equal to the steam lap (s). It may be noted that if

only this minimum required distance is moved by the valve, then the steam admitted to the cylinder

will be subjected to severe throttling or wire drawing. Therefore, in actual practice, the displace-

ment of the D-slide valve is greater than the steam lap (s) by a distance l which is known as the lead

of the valve.

In order to displace the valve from its mid position by a distance equal to steam lap plus lead

(i.e. s + l ), the eccentric centre line must be in advance of the 90° position by an angle α , such that

sin
s l

OE

+
α =

The angle α is known as the angle of advance of the eccentric. The relative positions of the

crank OC and the eccentric centre line OE remain unchanged during rotation of the crank OC, as

shown in Fig. 17.4 (b).

Note : The eccentricity (or throw of the eccentric) OE is equal to half of the valve travel. The valve travel is the

distance moved by the valve from one end to the other end.

2. Piston slide valve or inside admission valve. The piston slide valve in its mid position is

shown in Fig. 17.3 (a). At the beginning of the outward stroke of the piston, from left to right as

shown in Fig. 17.5 (a), the crank OC is at its inner dead centre as shown in Fig. 17.5 (b). In the

similar way as discussed for D-slide valve, the valve should be displaced from its mean position by

a distance equal to the steam lap plus lead (i.e. s + l) of the valve. The relative positions of the crank

OC and the eccentric centre line OE are as shown in Fig. 17.5 (b). In this case, the angle of advance

is (180° + α ), and

sin
s l

OE

+
α =

Fig. 17.5. Relative positions of crank and eccentric centre lines for piston slide valve.

17.5. Crank Positions for Admission, Cut-off, Release and Compression

In the previous article, we have discussed the relative positions of the crank and eccentric

centre lines for both the D-slide valve and piston slide valve. Here we will discuss only the D-slide

valve to mark the positions of crank for admission, cut-off, release and compression. The same

principle may be applied to obtain the positions of crank for piston slide valve.
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1. Crank position for admission. At admission for the cover end of the cylinder, the outer

edge of the D-slide valve coincides with the outer edge of the port P
1
. The valve moves from its mid

position towards right, as shown by arrow A  in Fig. 17.6 (a), by an amount equal to steam lap s. At the

same time, the piston moves towards left as shown by thick lines in Fig. 17.6 (a). The corresponding

position of the crank is OC
1
 and the eccentric centre line is shown by OE

1
 in Fig. 17.6 (b), such that

∠ C
1
 OE

1
= 90° + α

Fig. 17.6. Crank positions for admission and cut-off.

2. Crank position for cut-off. A little consideration will show that the cut-off will occur on

the cover end of the cylinder when the outer edge of the D-slide valve coincides with the outer edge

of the port P
1
 while the valve moves towards left as shown by arrow B. The piston now occupies the

position as shown by dotted lines in Fig. 17.6 (a). The corresponding position of the crank is OC
2
 and

the eccentric centre line is shown by OE
2
 in Fig. 17.6 (c), such that

∠ C
2
OE

2
= ∠ C

1
OE

1
 = 90° + α

3. Crank position for release. At release for the cover end of the cylinder, the inner edge of

the D-slide valve coincides with the inner edge of the port P
1
. The valve moves from its mid position

towards left, as shown by arrow C in Fig. 17.7 (a), by a distance equal to the exhaust lap e. Thus the

Fig. 17.7. Crank positions for release and compression.
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 valve opens the port to exhaust. At the same time, the piston

moves towards right as shown by thick lines in Fig. 17.7 (a).

The corresponding positions of crank and eccentric centre line

are shown by OC
3
 and OE

3
 in Fig. 17.7 (b), such that

∠ C
3
OE

3
= 90° + α

4. Crank position for compression. At compression,

for the cover end of the cylinder, the inner edge of the valve

coincides with the inner edge of the port P
1
. The valve moves

from its mid position towards right, as shown by arrow D in Fig.

17.7 (a), by a distance equal to the exhaust lap e. The valve now

closes the port to exhaust. The piston moves towards left as

shown by dotted lines in Fig. 17.7 (a). The corresponding posi-

tions of crank and eccentric centre line are shown by OC
4
 and

OE
4
 in Fig. 17.7 (c), such that

∠ C
4
OE

4
= ∠ C

3
OE

3
 = 90° + α

The positions of crank and eccentric centre line for all

the four operations may be combined into a single diagram, as

shown in Fig. 17.8 (a). Since the ideal indicator diagram, as

shown in Fig. 17.8 (b), is drawn by taking projections from the

crank positions, therefore the effect of the obliquity of the con-

necting rod is neglected.

Fig. 17.8. Combined diagram

of crank positions.

17.6. Approximate Analytical Method for Crank Positions at Admission,
Cut-off, Release and Compression

The crank positions at which admission, cut-off, release and compression occur may be

obtained directly by analytical method as discussed below :

(a)

(b)
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Let x = Displacement of the valve from its mid-position,

θ = Crank angle,

 r = Eccentricity or throw of eccentric 
1

2
Travel of valve,= ×

α = Angle of advance of eccentric.

Since the displacement of the valve may be assumed to take place with simple harmonic

motion, therefore

x = r sin (θ + α)  . . . (i)

But at admission and cut-off,

x = Steam lap, s

∴ s = r sin (θ + α) ...[From equation (i)]

 or                  –1 –1
sin , and sin –

s s

r r

   
θ + α = θ = α   

   
. . . (ii)

The two values of θ which satisfy the equation (ii) give the crank positions for admission and

cut-off.

Similarly, at release and compression, x = exhaust lap (e) and is negative as measured from

the origin O.

∴ – e = r sin  (θ + α) . . . [From equation (i)]

or    –1 –1– –
sin , and sin –

e e

r r

   
θ + α = θ = α   

   

 . . . (iii)

The two values of θ which satisfy the equation (iii) give the crank positions for release and

compression.

Example 17.1. The D-slide valve taking steam on its outside edges has a total travel of 150

mm. The steam and exhaust laps for the cover end of the cylinder are 45 mm and 20 mm respectively.

If the lead for the cover end is 6 mm, calculate the angle of advance and determine the main crank

angles at admission, cut-off, release and compression respectively for the cover end. Assume the

motion of the valve as simple harmonic.

Solution. Given : 2 r = 2 OE = 150 mm or r = OE = 75 mm ; s = 45 mm ; e = 20 mm ;

l = 6 mm

Angle of advance

Let                      α = Angle of advance.

We know that

                                 
45 6

sin 0.68
75

s l

OE

+ +
α = = =

or                                   42.8α = °  Ans.

Crank angles at admission, cut-off, release and

compression

Let

    θ
1
, θ

2
, θ

3
 and θ

4
 = Crank angles at admission,

  cut-off, release and

                                 compression  respectively.

We know that for admission and cut-off,

–1 –1 –145
sin sin sin (0.6) 36.87 or 143.13

75

s

r

   
θ + α = = = = ° °   

   

Prototype of an industrial steam engine.
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∴ θ
1

= 36.87° – α = 36.87° – 42.8° = – 5.93° Ans.

and θ
2

= 143.13° – α = 143.13° – 42.8° = 100.33° Ans.

We know that for release and compression,

–1 –1 –1– – 20
sin sin sin (– 0.2667)

75

e

r

   
θ + α = = =   

   

= 195.47° or 344.53°

∴ θ
3

= 195.47° – α = 195.47° – 42.8° = 152.67° Ans.

and θ
4

= 344.53° – α = 344.53° – 42.8° = 301.73° Ans.

17.7. Valve Diagram

The crank positions for admission, cut-off, release and compression may be easily deter-

mined by graphical constructions known as valve diagrams. There are various methods of drawing

the valve diagrams but the following three are important from the subject point of view :

1. Zeuner valve diagram. 2. Reuleaux valve diagram, and 3. Bilgram valve diagram.

We shall discuss these valve diagrams, in detail as follows.

17.8. Zeuner Valve Diagram

The Zeuner’s valve diagram, as shown in Fig. 17.9, is drawn as discussed in the  following

steps :

1. First of all, draw A B equal to the travel of the valve to some suitable scale. This diameter

A B also represents the stroke of the piston to a different scale.

Fig. 17.9. Zeuner valve diagram.

2. Draw a circle on the diameter A B such that OA = OB = eccentricity or throw of the eccen-

tric. The circle ACBD is known as the valve travel circle, where diameter CD is perpendicular to A B.

3. Draw EOF making an angle α, the angle of advance of the eccentric, with CD. It may be

noted that the angle α is measured from CD in the direction opposite to the rotation of the crank and

eccentric as marked by an arrow in Fig. 17.9.

4. In case the angle of advance ( α ) is not given, then mark OJ = steam lap (s), and JK = lead

(l) of the valve. Draw KE perpendicular to A B which intersects the valve travel circle at E. The angle

EOC is now the angle of advance.
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5. Draw circles on OE and OF as diameters. These circles are called valve circles.

6. With O as centre, draw an arc of radius OG equal to steam lap (s) cutting the valve circle

at M and N. Join OM and ON and produce them to cut the valve travel circle at C
1
 and C

2
 respectively.

Now OC
1
 and OC

2
 represent the positions of crank at admission and cut-off respectively.

Note : The circle with centre A  and radius equal to lead (l) will touch the line C
1
 C

2
.

7. Again with O as centre, draw an arc of radius OH equal to exhaust lap (e) cutting the valve

circle at P and Q. Join OP and OQ and produce them to cut the valve travel circle at C
3
 and C

4

respectively. Now OC
3
 and OC

4
 represent the position of crank at release and compression respec-

tively.

8. For any position of the crank such as OC', as shown in Fig. 17.9, the distance OX
1

represents the displacement of the valve from its mid position and the distance X
1
 X

2
 (the point X

1

is on the valve circle and the point X
2
 is on the arc JGN) gives the opening of the port to steam. The

distance X
3
 X

4
 ( point X

3
 is on the arc QHP and point X

4
 is on the valve circle) obtained by produc-

ing the crank OC',  gives the opening of the port to exhaust for the crank position OC'. The proof of

the diagram is as follows :

Join EX
1
. Now angle EX

1
O = 90°.

∴ ∠ OEX
1
 + ∠ X

1
OE = 90° = ∠ AOC = θ + ∠ X

1
OE + α

or ∠ OEX
1

= θ + α

Now from triangle OEX
1
,

OX
1

= OE sin (θ + α)

or x = r sin (θ + α)

where x = Displacement of the valve from its mid position, and

r = Eccentricity or throw of eccentric.

Now OX
1

= OX
2
 + X

1
 X

2

∴ Opening of port to steam when the valve has moved a distance x from its mid-position,

X
1
 X

2
= OX

1
 – OX

2
 = r sin (θ + α) – s ...(∵ OX

2
 = Steam lap, s)

9. Mark HR = width of the steam port. Now with O as centre, draw an arc through R intersect-

ing the valve circle at X  and Y . The lines OS and OW through X  and Y  respectively determines the

angle WOS through  which the crank turns while the steam port is full open to exhaust. The maximum

opening of port to exhaust is HF. A similar construction on the other valve circle will determine the

angle through which the crank turns while the steam port is not full open to steam. Fig. 17.9 shows

that the steam port is not full open to steam and the maximum opening of the port to steam is GE.

Note : The valve diagram, as shown in Fig. 17.9, is for the steam on the cover end side of the piston or for one-

half of the D-slide valve. In order to draw the valve diagram for the crank end side of the piston (or the other half

of the valve), the same valve circles are used but the two circles and the lines associated with them change

places. For the sake of clearness, the valve diagrams for the two ends of the piston is drawn separately.

17.9. Reuleaux’s Valve Diagram

The Reuleaux’s valve diagram is very simple to draw as compared to the Zeuner’s valve

diagram. Therefore it is widely used for most problems on slide valves. The Reuleaux’s valve dia-

gram, as shown in Fig. 17.10, is drawn as discussed in the following steps :

1. First of all, draw A B equal to the travel of the valve to some suitable scale. This diameter

A B also represents the stroke of the piston to a different scale.

2. Draw a circle on the diameter A B such that OA = OB = eccentricity or throw of the eccen-
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tric. This  circle ACBD is known as valve travel circle

where diameter CD is perpendicular to A B.

3. Draw EOF making an angle α, the angle of

advance of eccentric, with CD. It may be noted that the

angle α  is measured from CD in the direction opposite

to the rotation of crank and eccentric as marked by an

arrow in Fig. 17.10.

4. Draw GOH perpendicular to EOF. Now draw

chords C
1
 C

2
 and C

3
C

4
 parallel to GH and at distances

equal to steam lap (s) and exhaust lap (e) from GH

respectively.

5. Now OC
1
, OC

2
, OC

3
 and OC

4
 represent the

positions of crank at admission, cutt-off, release and com-

pression respectively.

The proof of the diagram is as follows :

Let OC' be any crank position making an angle θ with the inner dead centre, as shown

in Fig.17.10. Draw C' J perpendicular to GH. From right angled triangle OC' J,

C' J = C' O sin C' OJ = r sin (θ + α) ...(i)

where r = C' O = Eccentricity or throw of eccentric.

But the displacement of the valve from its mid-position corresponding to crank angle θ is

given by

x = r sin (θ + α) ...(ii)

From equations (i) and (ii),

C' J = x

It, therefore, follows that the length of the perpendicular from C' to the diameter GH is equal

to the displacement of the valve from mid-position when the crank is in the position OC'.

We see from Fig. 17.10, that when the crank is in position OC
1
 or OC

2
, the length of the

perpendicular from C
1
 or C

2
 on GH is equal to the steam lap (s). Therefore OC

1
 and OC

2
 must

represent the crank positions at admission and cut-off respectively. Similarly, when the crank is in

position OC
3
 and OC

4
, the length of perpendicular from C

3
 or  C

4
 on GH is equal to the exhaust lap

(e). Therefore OC
3
 and OC

4
 must represent the crank positions at release and compression respec-

tively.

Opening of the port to steam

We see from Fig. 17.10, that when the crank is in position OC', the displacement of the valve

C'J, from its mid-position,  exceeds the steam lap (s) by a distance C' K. The distance C' K represents

the amount of port opening to steam. Therefore when the crank is in position OA (i.e. at the inner dead

centre), the perpendicular distance from A  to GH, i.e. AP represents the displacement of the valve

from its mid-position. The distance AP exceeds the steam lap (s) by a distance AQ which is equal to

the lead of valve and represents the amount of port opening to steam.

The maximum possible opening of the port to steam is equal to NE i.e. (r–s) where r is the

throw of the eccentric or half travel of the valve and s is the steam lap. Similarly, the maximum

possible opening of the port to exhaust is equal to MF i.e. (r–e) where e is the exhaust lap. The

difference (r–e) may exceed the width of the actual port through which the steam is admitted to and

exhausted from the cylinder. In that case, the port will remain fully open for a certain period of crank

Fig. 17.10. Reuleaux’s valve diagram.
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rotation. In order to find the duration of this period, draw a chord S W parallel to C
3
C

4
 at a distance

equal to  the width of the steam port (w). The port will remain fully open to exhaust when the crank

rotates from the positon OW to OS.

17.10. Bilgram Valve Diagram

The Bilgram valve diagram, as shown in Fig. 17.11, is drawn as discussed in the following steps :

1. First of all, draw A B equal to the travel of the valve to some suitable scale. This diameter

A B also represents the stroke of the piston to a different scale.

2. Draw a circle on the diameter A B such that OA = OB = eccentricity or throw of the eccen-

tric. This circle is known as valve travel circle.

3. Draw diameter GOH making an angle α, the angle of advance, with A B. The angle α is

measured from A B in the direction opposite to the rotation of crank and eccentric as marked by an

arrow in Fig. 17.11.

4. Draw two circles with centres G and H and radii equal to steam lap (s) and exhaust lap (e)

respectively as shown in Fig. 17.11.

5. The lines OC
1
 and OC

2
 are tangential to the steam lap circles and they represent the crank

positions for admission and cut-off respectively. Similarly OC
3
 and OC

4
 are tangential to the exhaust

lap circles and represent the crank positions for release and compression.

The proof of the diagram is as follows :

Let OC' be any crank position making an angle θ with the inner dead centre, as shown in

Fig. 17.11. Draw perpendiculars GE on OC' and HF on OC' produced.

Since the triangles OGE and OHF are similar, therefore

GE = HF = OG sin (θ + α) = r sin (θ + α) ...(i)

where r = OG = Eccentricity or throw of eccentric.

But the displacement of the valve from its mid-position corresponding to crank angle θ, is given by

x = r sin (θ + α) ...(ii)

A 1930’s Steam locomotive.



624  �   Theory of Machines

From equations (i) and (ii),

GE = x

It, therefore, follows that the length of the perpendicular from G (or H) on OC' (or OC' pro-

duced) is equal to the displacement of the valve from mid-position when the crank is in the position OC'.

Fig. 17.11. Bilgram valve diagram.

We see from Fig. 17.11, that the length of the perpendiculars from G and H on OC
1
 and OC

2

respectively are equal to steam lap (s). Therefore OC
1
 and OC

2
 must represent the crank positions at

admission and cut-off respectively, Similarly, the length of perpendiculars from H and G on OC
3
 and

OC
4
 respectively are equal to exhaust lap (e). Therefore OC

3
 and OC

4
 must represent the crank

positions at release and compression respectively.

Opening of the port to steam

We see from Fig. 17.11, that when the  crank is in position OC', the displacement of the valve

GE, from its mid-position, exceeds the steam lap (s) by a distance DE.  The distance DE represents

the amount of port opening to steam. Therefore, when the crank is in position OA (i.e. at the inner

dead centre), the perpendicular distance from G to OA (i.e. GL) represents the displacement of the

valve from its mid-position. The distance GL exceeds the steam lap (s) by a distance ML which is

equal to lead of the valve and represents the amount of port opening to steam.

The maximum opening of the port to steam is equal to OP or (r – s) where r is the throw of

eccentric or half travel of the valve and s is the steam lap. Similarly the maximum opening of the port

to exhaust is OQ or (r – e) where e is the exhaust lap.

Notes :  1. The point G lies on the intersection of the bisectors of angles C
1
OT and RST.

2. The Bilgram valve diagram is usually used to determine throw of the eccentric, valve travel, angle of

advance of the eccentric, steam and exhaust laps when the crank positions at cut-off and release, lead of valve

and width of steam port are known.

Example 17.2. The following particulars refer to a D-slide valve :

Total valve travel = 150 mm ; Steam lap = 45 mm ; Exhaust lap = 20 mm ; Lead = 6 mm.

Draw the Zeuner’s valve diagram for the cover end and determine the angle of advance of

the eccentric, main crank angles at admission, cut-off, release and compression, opening of port to

steam for 30° of crank rotation and maximum opening of port to steam. If the width of the port is

40 mm, determine the angle through which the crank turns so that the exhaust valve is full open.

Solution. Given : A B = 150 mm ; s = 45 mm ; e = 20 mm ; l = 6 mm
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Angle of advance of eccentric and main crank angles at admission, cut-off, release and compression

The Zeuner’s valve diagram for the cover end is drawn as discussed in the following steps :

1. First of all draw A B = 150 mm, to some suitable scale, to represent the total valve travel.

Draw a circle on this diameter A B such that OA = OB = throw of the eccentric. This circle is known as

valve travel circle. Draw COD perpendicular to A B.

2. Mark OJ = steam lap = 45 mm, and JK = lead = 6 mm. Through K, draw a perpendicular

on A B which intersects the valve travel circle at E. Join OE. Now angle COE represents the angle of

advance of the eccentric (α) in a direction opposite to the direction of rotation of crank and eccentric

(shown clockwise in Fig. 17.12). By measurement, we find that

α = ∠ COE = 42.5° Ans.

Fig. 17.12

3. Draw a circle on OE as diameter. This circle is known as valve circle. Now with O as

centre, draw an arc of radius equal to steam lap (i.e. 45 mm) which intersects the valve circle at M and

N. Join OM and ON and produce them to intersect the valve travel circle at C
1
 and  C

2
 respectively.

The lines OC
1
 and OC

2
 represent the crank positions at admission and cut-off respectively. By mea-

surement, we find that

Crank angle at admission from inner dead centre A

= ∠ AOC
1
 = – 6° Ans.

and crank angle at cut-off from inner dead centre A

= ∠ AOC
2
 = 101° Ans.

4. Now draw the diameter EOF. On OF draw a valve circle as shown in Fig. 17.12. With O as

centre, draw an arc of radius equal to exhaust lap (i.e. 20 mm) which intersects the valve circle at P

and Q. Join OP and OQ and produce them to intersect the valve travel circle at C
3
 and C

4
 respectively.

Now OC
3
 and OC

4
 represent the crank positions at release and compression respectively. By mea-

surement, we find that

Crank angle at release from inner dead centre A

= ∠ AOC
3
 = 153° Ans.

and crank angle at compression from inner dead centre A

= ∠ AOC
4
 = 302° Ans.

Opening of port to steam for 30° of crank rotation and maximum opening of port to steam

Let OC' be the crank at θ = 30° from the inner dead centre, as shown in Fig. 17.12. The crank



626  �   Theory of Machines

OC' intersects the valve circle at X
1
 and arc MGN at X

2
. Now X

1
 X

2
 represents the opening of port to

steam for 30° of crank rotation. By measurement, we find that

X
1
X

2
= 27 mm Ans.

and maximum opening of port to steam,

GE = 30 mm Ans.

Angle through which the crank turns so that the exhaust valve is full open

Mark HR = width of port = 40 mm as shown in Fig. 17.12. Now with O as centre, draw an arc

passing through R which intersects the valve circle at X  and Y . The angle X O Y represents the crank

angle at which the exhaust valve is full open. By measurement, we find that

∠ XOY = 72° Ans.

Example 17.3. The following data refer to a D-slide valve :

Total valve travel = 120 mm ; Angle of advance = 35° ; Steam lap = 25 mm ; Exhuast

lap = 8 mm.

If the length of the connecting rod is four times the crank radius, determine the positions of

the piston as percentage of the stroke for admission, cut-off, release and compression for both ends

of the piston.

Solution. Given : A B = 120 mm ; α = 35°, s = 25 mm ; e = 8 mm

Positions of the piston as a percentage of the stroke for admission, cut-off, release and compres-

sion for cover end of the piston.

First of all, determine the crank positions for the cover end either by Zeuner’s or Reuleaux

valve diagram. The Reuleaux valve diagram for the cover end, as shown in Fig. 17.13, is drawn as

follows :

1. Draw A B = 120 mm to some suitable scale to represent the total valve travel. This diameter

A B also represents the stroke of the piston. Draw a circle on diameter A B such that OA = OB  = Throw

of the eccentric or radius of crank.

Fig. 17.13

2. Draw a line GOH making an angle of 35°, the angle of advance, in a direction opposite to

the rotation of crank which is clockwise as shown in Fig. 17.13.

3. Draw EOF perpendicular to GOH and mark ON = steam lap =  25 mm and OM = exhaust

lap = 8 mm. Through N and M draw lines parallel to GOH which intersect the valve travel circle at C
1
,

C
2
, C

3
 and C

4
. Now OC

1
, OC

2
, OC

3
 and OC

4
 represent the crank positions at admission, cut-off

release and compression respectively.

At inner dead centre A  and outer dead centre B, the connecting rod is in line with the crank.

Since the connecting rod is 4 times the crank radius OA, therefore mark A A
1
 = BB

1
 = 4 × OA = 4 × 60

= 240 mm. Now A
1
B

1
 = A B = 120 mm and represents the stroke of the piston. With C

1
, C

2
, C

3
, C

4
 as
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centres and radius equal to length of connecting rod i.e. 240 mm, mark the corresponding positions of

piston as shown by points P
1
, P

2
, P

3
 and P

4
 in Fig. 17.13. By measurement, the piston position as

percentage of stroke is given by :

At admission 1 1

1 1

100
B P

B A
= × of return stroke

119
100 99.17%

120
= × = Ans.

At cut-off 1 2

1 1

100
A P

A B
= × of forward stroke

96
100 80%

120
= × = Ans.

At release 1 3

1 1

100
A P

A B
= ×  of forward stroke

116
100 96.67%

120
= × = Ans.

At compression
1 4

1 1

100
B P

B A
= × of return stroke

100
100 83.33%

120
= × = Ans.

Note : The points p
1
, p

2
, p

3
 and p

4
 on A B are the corresponding points of P

1
, P

2
, P

3
 and P

4
 respectively. These

points may be obtained by drawing the arcs through C
1
, C

2
, C

3
 and C

4
 with their centres at P

1
, P

2
, P

3
 and P

4
 and

radius equal to the length of connecting rod. Now the piston positions as percentage of stroke is given by :

At admission 
1 100

Bp

BA
= ×  of return stroke ; At cut-off 

2 100
Ap

AB
= × of forward stroke

     At release 
3 100

Ap

AB
= × of forward stroke ; At compression 

4 100
Bp

BA
= ×  of return stroke

Positions of the piston as a percentage of the stroke for admission, cut-off, release and compres-

sion for crank end of the piston.

Fig. 17.14

The valve diagram for the crank end is drawn by rotating the valve diagram for the cover end

through 180° in the direction of rotation of the crank, as shown in Fig. 17.14. By measurement, the

piston positions as percentrage of stroke is given by :

At admission 1 1

1 1

100
B P

B A
= × of forward stroke 

1 100
Bp

BA
= × of forward stroke

119
100 99.17%

120
= × =  Ans.
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At cut-off 1 2

1 1

100
A P

A B
= × of return stroke

2 100
Ap

AB
= × of return stroke

85
100 70.83%

120
= × =  Ans.

At release 1 3

1 1

100
A P

A B
= × of return stroke 3 100

Ap

AB
= × of return stroke

112
100 93.33%

120
= × =  Ans.

At compression 1 4

1 1

100
B P

B A
= × of forward stroke 4 100

Bp

BA
= × of forward stroke

106
100 88.33%

120
= × =  Ans.

Example 17.4. A slide valve has a travel of 125 mm. The angle of advance of the eccentric is

35°. The cut-off and release takes place at 75 per cent and 95 per cent of the stroke at each end of the

cylinder. If the connecting rod is 4 times the crank length, find steam lap, exhaust lap and lead for

each end of the valve.

Solution. Given : A B = 125 mm ; α = 35°

Piston position at cut-off for both ends (i.e. cover and crank end)

= 75% of stroke

Piston position at release for both ends

= 95% of stroke

Steam lap, exhaust lap and lead for the

cover end

The Reuleaux’s diagram for the

cover end, as shown in Fig. 17.15, is drawn

as discussed below :

1. First of all, draw A B = 125 mm

to some suitable scale, to represent the valve

travel. This diameter A B also represents the

piston stroke. On this diameter A B draw a

valve travel circle such that OA = OB =

Throw of eccentric. The radius OA or OB

also represents the crank radius.

2. Draw a line GOH making an

angle of 35°, the angle of advance, in a di-

rection opposite to the rotation of the crank

which is clockwise as shown in Fig. 17.15.

3. At inner dead centre A  and outer

dead centre B, the connecting rod is in line

with the crank. Since the connecting rod is

4 times the crank radius, therefore mark A A
1

= 4 × OA = 4 × 125 /2 = 250 mm. Now

A
1
B

1
 = A B = 125 mm and represents the

stroke of the piston.

Broaching machine. Broaching is a process of machin-

ing through holes of any cross sectional shape, straight

and helical slots, external surfaces of various shapes,

external and internal toothed gears, splines, keyways

and rifling.

Note : This picture is given as additional information and is

not a direct example of the current chapter.
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4. Since the cut-off takes place at 75 percent of the stroke, therefore

1 2 2

1 1

0.75
A P Ap

A B AB
= =

∴ A
1
P

2
= A  p

2
 = 0.75 × A

1
B

1
 = 0.75 × 125 = 94 mm

...(∵ A
1
B

1
 = A B = 125 mm)

With P
2
 as centre and radius equal to P

2 
p

2
 (i.e. length of connecting rod), draw an arc

through p
2
 which intersects the valve travel circle at C

2
. This point C

2
 represents the crank-pin

position at cut-off.

Fig. 17.15

5.  From C
2
 draw C

2
C

1
 parallel to GH which intersects a line EOF (perpendicular to GOH)

at N. The point C
1
 represents the crank-pin position at admission and ON is the steam lap. By

measurement,

Steam lap = ON = 32 mm Ans.

6. Since the release takes place at 95 % of the stroke, therefore

1 3 3

1 1

0.95
A P Ap

A B AB
= =

∴∴∴∴∴ A
1
P

3
= Ap

3
 = 0.95 × A

1
B

1
 = 0.95 × 125 = 118.8 mm

With P
3
 as centre and radius equal to P

3
 p

3
 (i.e. length of connecting rod), draw an arc

through p
3
 which intersects the valve travel circle at C

3
. This point C

3
 represents the crank-pin posi-

tion at release.

7. From C
3
 draw C

3
C

4
 parallel to GH which intersects a line EOF at M. The point C

4
 repre-

sents the crank-pin position at compression and OM is the exhaust lap. By measurement,

Exhaust lap = OM = 8 mm  Ans.

8. In order to find the lead, draw a circle with centre A  such that C
1
C

2
 is tangential to this

circle (or draw A L perpendicular to C
1
C

2
). The perpendicular A L represents the lead of the valve.

By measurement,

Lead = A L = 6 mm Ans.

Steam lap, exhaust lap and lead for the crank end

Fig. 17.16
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The Reuleaux’s valve diagram for the crank end, as shown in Fig. 17.16, is drawn by rotating

the valve diagram for the cover end, through 180°. By measurement,

Steam lap = ON = 20 mm  Ans.

Exhaust lap = OM = 12 mm Ans.

and Lead = A L = 16 mm  Ans.

Example 17.5. The following data refer to a D-slide valve for the cover end :

Position of the crank at cut off = 0.7 of stroke ; Lead = 6 mm ; Maximum opening of port to

steam = 45 mm ; connecting rod length = 4 times crank length.

Find the travel of valve, angle of advance and steam lap.

Solution. Given : Position of Crank at cut-off = 0.7 of stroke ; Lead = 6 mm ; Maximum

opening of port to steam = 45 mm ; Connecting rod length = 4 times the crank length.

The travel of valve, angle of advance and steam lap may be obtained by using Bilgram valve

diagram as discussed below :

1. Draw A'B' of any convenient length, as shown in Fig. 17.17, to represent the assumed valve

travel. Draw the assumed valve travel circle on this diameter A' B' which also represents the piston

stroke (assumed).

Fig. 17.17

2. Since the length of connecting rod is 4 times the crank OA', therefore mark A'A'
1
, = B' B'

1

= 4 × OA'. Now A'
1
 B'

1
 represents the piston stroke.

3. The cut-off for the cover end takes place at 0.7 of the stroke, therefore mark

1 2 2

1 1

0.7
A P A p

A BA B

′ ′ ′′
= =

′ ′′ ′

4. Now P'
2
 as centre and radius P'

2 
p'

2
 (i.e. length of connecting rod), draw an arc p'

2
 C'

2
.

Now OC'
2
 represents the crank position at cut-off.

5.  Draw a line RS parallel to A' B' and at a distance equal to the lead i.e. 6 mm, to some

suitable scale. The point S lies on the line C'
2
 OT.

6. With O as centre, draw an arc of radius equal to the maximum opening of port to steam (i.e.

45 mm) which intersects RS at X  and OT at Y .
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7. Draw the bisector of angle RST. The point G on this bisector is obtained by hit and trial

such that the circle with centre G touches the maximum opening arc at P, the lines RS and ST. The

point G is a point on the actual valve travel circle and represents the centre for steam lap circle.

By measurement, we find that

Travel of valve = 2 AO = 2 GO = 216 mm Ans.

Angle of advance = ∠ AOG = 40° Ans.

Steam lap = GP = 63 mm Ans.

Example 17.6. In a steam engine, the D-slide valve has a cut-off at 70 per cent of the stroke

at each end of the cylinder. The steam lap and the lead for the cover end are 20 mm and 6 mm

respectively. If the length of the connecting rod is 4 times the crank length, find : valve travel, and

angle of advance of the eccentric. Determine also the steam lap and lead of the crank end.

Solution.   Given : Position of piston at cut-off on both sides of the cylinder  = 70% of stroke ;

Steam lap = 20 mm ; Lead = 6 mm ; Connecting rod length = 4 × crank length.

Valve travel and angle of advance of the eccentric

Since we have to find the valve travel, therefore the Bilgram valve diagram is used. The

position of the crank OC'
2
 for cut-off at 70 per cent of stroke is obtained in the similar manner as

discussed in the previous example.The Bilgram valve diagram is now completed as follows :

1. Draw RS parallel to A' B' and at a distance equal to the lead i.e. 6 mm, to some suitable

scale as shown in Fig. 17.18. The point S lies on the line C'
2
 OT.

Fig. 17.18

2. Draw the bisector of the angle RST. Obtain the *point G on this bisector, by hit and

trial, such that a circle with centre G and radius equal to the steam lap i.e. 20 mm touches the

lines RS and ST.

3. Now with O as centre and radius equal to OG draw the actual valve travel circle.

By measurement, we find that

Valve travel = A B = 76 mm Ans.

and angle of advance of the eccentric = ∠AOG = 42° Ans.

* The point G may also be obtained by drawing a perpendicular from A'O such that LG = steam lap

+ lead = 20 + 6 = 26 mm.
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Steam lap and lead for the crank end

Since the valve travel and angle of advance of the eccentric is known, therefore the steam lap

and lead for the crank end may be easily found by using Reuleaux valve diagram as discussed below:

1. Draw A B = 76 mm to some suitable scale, as shown in Fig. 17.19, to represent the valve

travel. This diameter A B also represents the piston stroke and OA = OB = Throw of eccentric or

radius of crank.

2. Since cut-off for the crank end takes place at 70 per cent of the stroke, threfore mark

2 0.7
Ap

AB
= or Ap

2
= 0.7 × A B = 0.7 × 76 = 53.2 mm

3. Now with centre P
2
 and radius equal to P

2
 p

2
 (i.e. length of connecting rod), draw an arc

p
2
C

2
. Now OC

2
 represents the position of crank at cut-off for crank end.

4. Draw GOH at an angle of 42°, the advance of the eccentric, with A B in the direction

opposite to the rotation of crank which is shown clockwise in Fig. 17.19.

Fig. 17.19

5. From C
2
 draw C

2
C

1
 parallel to GH. Now the perpendicular, ON and A L on C

2
C

1
 represent

the steam lap and lead respectively. By measurement

Steam lap = ON = 11 mm Ans.

Lead = A L = 14 mm Ans.

17.11. Effect of the Early Point of Cut-off with a simple Slide Valve

We have seen in the previous articles that the point of cut-off occurs very late i.e. when the

crank makes an angle greater than 90° with the inner dead centre (or when the piston moves greater

than 50 per cent of the stroke), as shown in Fig. 17.20 (a). We shall now consider the effect of the

early point of cut-off on the points of admission, release and compression. The early point of cut-off

(considering the crank at 90°) may be obtained by the following three methods :

Fig. 17.20. Effect of early point of cut-off with a simple slide valve.
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First Method

The simplest method of obtaining the earlier

cut-off is by increasing the angle of advance of the

eccentric while the throw of the eccentric, steam lap

and exhaust lap are kept constant. We see from Fig.

17.20 (b), that by increasing the angle of advance for

the earlier cut-off will also make admission, release and

compression earlier than as shown in Fig. 17.20 (a).

This will, obviously reduce the length of effective stroke

of the piston.

Second Method

Fig. 17.20 (c) shows that the earlier cut-off

may also be obtained by increasing the angle of

advance of the eccentric but reducing the throw of the

eccentric (or the valve travel) in order to retain the same

timing for admission as in the normal diagram shown

in Fig. 17.20 (a). The steam lap and exhaust lap are

constant. We see from Fig. 17.20 (c) that the release

and compression occur earlier but not so early as in

Fig. 17.20 (b). The objection to this method is that the

maximum opening of the port to steam and exhaust is

reduced due to the shortening of valve travel. This will

cause withdrawing or throttling of steam.

Third Method

Another method for obtaining the earlier cut-off is to increase the steam lap and the angle of

advance of the eccentric, as shown in Fig. 17.20 (d), but keeping constant the travel and lead of the

valve [i.e. same as in Fig. 17.20 (a)]. The advantage of this method is that there will be a normal

timing of the admission and a smaller reduction in the maximum opening of the port to steam. But the

necessity of increasing the steam lap of the valve makes it unsuitable from practical point of view.

17.12.17.12.17.12.17.12.17.12. MeMeMeMeMeyyyyyer’er’er’er’er’s Expansion s Expansion s Expansion s Expansion s Expansion VVVVValvalvalvalvalveeeee

We have seen in the previous article that in order to obtain earlier cut-off, other operations

such as admission, release and compression also take place earlier which is undesirable. The Meyer’s

expansion valve not only enables the cut-off to take place early in the stroke with normal timing for

admission, release and compression, but it also enables the cut-off to be varied while the engine is

running. There are two valves known as main valve and expansion valve which are driven by sepa-

rate eccentric from the main crankshaft as shown in Fig. 17.21.

The main valve, is similar to the ordinary slide valve, except that it is provided with exten-

sions and the steam passes from the steam chest through the ports P
1
 or P

2
. The admission of steam

to the main valve is controlled by the expansion valve which slides on the back of the main valve.

The  expansion valve consists of two blocks or plates E
1
 and E

2
 mounted on a spindle. It may be

noted that in order to admit steam into the cylinder, not only the ports P
1
 or P

2
 in the main valve are

in communication with the main ports P'
1
 or P'

2
 but at the same time these must be uncovered by the

expansion plates E
1
 or E

2
 as the case may be.

In order to obtain variable cut-off according to the requirement, the position of the plates E
1

and E
2
 is varied by means of a spindle having right and left hand threads. The spindle extends to the

engine room so that the operator can vary  the position of  E
1
 and E

2
 while the engine is running . Thus

Blades of the helicopter propeller push the

air downwards and the resultant reaction

gives helicopter the necessary lifting power.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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the variable cut-off is achieved by the expansion valve without the change of lead, maximum opening

to steam or points of admission, release and compression.

Fig. 17.21. Meyer’s expansion valve.

Fig. 17.21 shows that both the valves are in mid-position. A little consideration will show

that steam lap (s) and exhaust lap (e) for the main valve are positive whereas the steam lap (a) for the

expansion valve is negative (i.e. the port P
1
 instead of being covered by the expansion valve in

mid-position, is open to steam by a distance a ). The points of admission, release, compression and

the least point of cut-off may be obtained in the usual manner by the Reuleaux or Bilgram valve

diagrams.

17.13. Virtual or Equivalent Eccentric for the Meyer’s Expansion Valve

In order to obtain the setting of the expansion valve for the predetermined cut-off or vice-

versa,the Reuleaux or Bilgram valve diagram is drawn from the virtual or equivalent eccentric. It is

defined as an eccentric having such a length and angle of advance that will cause cut-off to take place

at the same position, as is caused by the combined effect of main eccentric and expansion eccentric.

Fig. 17.22. Virtual or equivalent eccentric for the Meyer’s expansion valve.

In the Meyer’s expansion valve, the main valve is driven by an eccentric having an angle of

advance of 25° to 30° and the expansion valve is driven by an eccentric having an angle of advance

80° to 90°. If the engine has to be reversible, the angle of advance must be 90° so that the cut-off takes

place at the same fraction of the stroke for the same setting of the expansion valve whatever may be

the direction of rotation of the crank. Fig. 17.22 (a) shows the relative positions of the crank OC,

main eccentric OM, and expansion eccentric OE, when the crank is at the inner dead centre. The

angle of advance of the main eccentric OM is denoted  by α and the angle of advance of the expansion

eccentric OE is taken as β = 90°. When the crank OC has tuned through an angle θ from the inner

dead centre, the corresponding  positions of the main eccentric and the expansion eccentric are shown

in Fig. 17.22 (b). The displacement of the main valve from its mid-position is represented by OP, the

projection of OM' on the line of stroke. Similarly the displacement of expansion valve from its mid-
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position is represented by OQ, the projection of OE' on the line of stroke. In both the cases, the

obliquity of the eccentric rod is neglected. The difference between OQ and OP (i.e. PQ) is the

displacement of the expansion valve relative to the main valve, in this case towards the right. The

displacement PQ may also be obtained by drawing a line OV parallel and equal to M'E' and then OR,

the projection of OV on the line of stroke, will be equal to PQ. Thus we see that for the given positions

of the main eccentric OM' and expansion eccentric OE', the displacement PQ is equal to the displace-

ment  given by a single eccentric OV. This eccentric OV is termed as virual or equivalent  eccentric.

Since the throw and the angle of advance are referred with respect to inner dead centre , the virtual or

equivalent eccentric may be obtained by drawing  OV parallel and equal to ME in Fig. 17.22 (a). Now

γ is the angle of advance and OV is the throw for the virtual or equivalent eccentric. The cut-off will

take place for the crank position in which  R lies at a distance ‘a’ to the left of O. This position is most

easily found by applying the Reuleaux valve diagram to the virtual or equivalent eccentric OV.

Fig. 17.23 (a) shows the Reuleaux valve diagram for the main eccentric OM in order to

determine the crank positions for admission, release, compression and for the latest possible cut-off.

(a) For main eccentric OM. (b) For virtual eccentric OV.

Fig. 17.23. Reuleaux valve diagram.

The Reuleaux valve diargam for the virtual eccentric OV as shown in Fig. 17.23 (b) is drawn

as follows :

1. First of all, draw a circle on diameter A B = 2 OV.

2. Draw G' H' making an angle α with A B in the direction opposite to the rotation of crank.

3. Draw C'
1
C'

2
 parallel to G' H' and at a distance equal to the steam lap (a) for the expansion valve.

4. Now OC '
2
 represents the crank position at which the cut-off takes place. An increase or

decrease of the steam lap (a) gives respectively a later or earlier cut-off. The steam lap (a) is altered

by means of a right and a left hand threaded spindle.

17.14.  Minimum Width and Best Setting of the Expansion Plate for Meyer’s
Expansion Valve

The minimum width and best setting of the expansion plate E
1
 or E

2
 for the Meyer’s

expansion valve may be obtained as discussed below :

1. Minimum width of the expansion plate E
1
 or E

2

Let OV = Throw of the virtual eccentric,

a = Steam lap of the expansion valve, and

p = Width of the port P
1
 or P

2
 in the main valve as shown in Fig. 17.21.

Since the maximum displacement, from the mid-position, of the expansion valve relative to

the main valve is equal to the throw of the virtual eccentric OV, therefore

Maximum overlap of the expansion valve and the port

= OV – a

∴  Minimum width of the expansion plate E
1
 or E

2
 (Fig. 17.21) required to prevent steam

from being re-admitted past the inner edge of the plate

= OV – a + p
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2. Best setting of the expansion plate E
1
 or E

2

Due to the obliquity of the connecting rod, the steam lap (a) for the two expansion plates, for

the same point of cut-off, must be different.

Let a
1

= Steam lap for the expansion plate E
1
 on the cover side, and

a
2

= Steam lap for the expansion plate E
2
 on the crank side.

Generally, the difference between the two steam laps, i.e. (a
1
 – a

2
) is different with the change

of point of cut-off. In actual practice, when the expansion plates are assembled on the valve spindle,

they may be given different laps. But the difference (a
1
 – a

2
) once fixed will remain constant for all

values of the steam lap. Therefore for the best results, it is necessary to use such a value of (a
1
 – a

2
)

which gives as nearly as possible equal cut-off on both strokes over the full range of cut-off required.

Example 17.7. The following particulars refer to a Meyer’s expansion valve :

Throw of main eccentric = 50 mm ; angle of advance of main eccentric = 30° ; Throw of

expansion eccentric = 55 mm ; Angle of advance of expansion eccentric = 90° ; Ratio of connecting

rod length to crank length = 5.

Find : 1. Steam laps required on the expansion plates in order to give cut-off at 0.2, 0.3, 0.4,

0.5, and 0.6 of the stroke on both strokes, 2. The best setting of the expansion plates, and 3. The

minimum width of the plate, if the width of the steam port in main valve is 28 mm.

Solution. Given : OM = 50 mm ; α = 30° ; OE = 55 mm ; β = 90° ; Ratio of connecting rod

length to crank length = 5

1. Steam lap required on the expansion plates

First of all, determine the throw and angle of advance of the

virtual eccentric OV as shown in Fig. 17.24. By measurement, throw of

virtual eccentric,

OV = 53 mm

and angle of advance, γ = 143°

Now draw the Reuleaux valve diagram, as shown in Fig. 17.25,

for the virtual eccentric OV as discussed below :

1. Draw a cirlce on the diameter A B, such that

AB = 2 × OV = 2 × 53 = 106 mm

2. Draw C'
1
 OC'

2
 making an angle γ = 143° with A B, where γ is the angle of advance for the

virtual eccentric.

3. Since the length of connecting rod is 5 times the crank length, therefore draw A A
1
 = BB

1
 =

5 × OA. The distance A
1
B

1
 = A B represents the stroke length.

Fig. 17.25

4. Mark the points P
1
, P

2
, P

3
, P

4
 and P

5
 corresponding to 0.2, 0.3, 0.4, 0.5 and 0.6 of the

stroke respectively for the cover end and crank end as shown in Fig. 17.25.

Fig. 17.24
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5. Now with centres P
1
, P

2
, P

3
, P

4
 and P

5
 and radius equal to 5 times OA, obtain the crank-pin

positions P'
1
, P'

2
, P'

3
, P'

4
, and P'

5
 corresponding to 0.2, 0.3, 0.4, 0.5 and 0.6 of the stroke at which

cut-off is required to take place for both the ends.

6. The  perpendicular distances for P'
1
, P'

2
 ..... etc. on C'

1
 OC'

2
 for both  the ends represent

the steam lap (a) for the virtual eccentric. By measurement, the required values of the steam lap (a)

are tabulated below :

Cut off 0.2 0.3 0.4 0.5 0.6

Steam lap (cover end) in mm 12 24 32 39 46 Ans.

Steam lap (crank end) in mm 19 30 39 46 50 Ans.

Difference in mm 7 6 7 7 4

2. Best setting of the expansion plates

From the above table, we see that if the steam lap on the end is kept 7mm more than the steam

lap on the cover end, then the cut off will occur at approximately the same fraction of the stroke for

both ends of the cylinder.

Therefore, for best results, the expansion plates may be set with steam lap at the crank end

7mm greater than that at cover end. Ans.

3. Minimum width of expansion plate

From the above table, we see that the minimum steam lap on the cover end is 12 mm and on the

crank end is 19 mm. Since the width of the steam port in the main valves is 28 mm (i.e. p = 28 mm),

therefore

Minimum width of the expansion plate on the cover end

= OV – a + p = 53 – 12 + 28 = 69 mm Ans. ...(Substituting a = 12 mm)

and minimum width of the expansion plate on the crank end

= OV – a + p = 53 – 19 + 28 = 62 mm Ans. ...(Substituting, a = 19 mm)

17.15. Reversing Gears

The primary function of the reversing gear is to reverse the direction of motion of the crank-

shaft in steam engines. It also enables to vary the power developed by the engine by altering the point

of cut-off while the engine is running. Following two types of the reversing gears are generally used :

1. Link motions, and 2. Radial valve gears.

In link motions,  two eccentrics are keyed to the crankshaft, one for forward motion and the

other for backward motion. A suitable link mechanism is introduced between the eccentrics and the

valve rod so that the valve may receive its motion either wholly from one of the two eccentrics or

partly from one and partly from the other. The examples of link motions are Stephenson link motion,

Gooch link motion  and Allan link motion. The  Stephenson link motion is most widely used.

In radial valve gears, a single eccentric or its equivalent is used which serves the same object

as two separate eccentrics of link motions. The examples of radial valve gears are Hackworth gear

and Walschaert gear.

Notes : 1. In order to determine the approximate piston position at which admission, cut-off, release and com-

pression takes place for a given setting of the gear, a simplified graphical method may be used. The  method

consists in finding the throw and angle of advance of a single eccentric (known as virtual or equivalent eccen-

tric) which gives approximately the same motion as obtained from a reversing gear. The method of finding the
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throw and angle of advance differs for the two types of the reversing gears and is discussed in the following

pages.

2. After determining the equivalent eccentric, the Reuleaux or Bilgram valve diagram is drawn to

determine the piston positions at which admission, cut-off, release and compression take place for a given

setting of the gear.

17.16.  Principle of Link Motions–Virtual Eccentric for a Valve With an Offset
  Line of Stroke

Let OC be the crank making an angle θ with the inner dead centre as shown in Fig. 17.26. The

corresponding position of one of the eccentrics is represented by OE making an angle (θ + α) with the

vertical, where α is the angle of advance. As the crank OC revolves, the end A  of the eccentric rod EA

reciprocates along the line PA  (i.e. in the direction of the path of the valve rod connected to the valve).

The line of stroke of the valve is off-set by OP. It is required to find the throw and angle of advance of

an eccentric with axis at P, which will give to A  the same motion as it receives from the actual

eccentric OE.

Fig. 17.26. Principle of link motions.

A little consideration will show that when the line AE is produced to cut the vertical line OP

at M, then the triangle OEM represents the velocity triangle for the mechanism OEA, with all its sides

perpendicular to those of a usual velocity triangle.

Let ω = Angular speed of crank or eccentric in rad/s,

v
A

= Velocity of the point A ,

v
E

= Velocity of the point E, and

β = Angle of inclination of AE with AP.

We know that

A

E

sin

sin

v OM OEM

v OE OME

∠
= =

∠
... In any triangle,

sin sin

a b

A B

 
= 

 

�
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sin [180 – ( ) – (90 )] cos ( )

sin (90 ) cos

° θ + α ° + β θ + α + β
= =

° + β β

∴
A E

cos ( )
cos ( )

cos cos

OE
v v

θ + α + β
= × = ω × × θ + α + β

β β
...(∵ v

E
 = ω. OE)

Thus the velocity of A  of the eccentric EA is same as can be obtained from a virtual eccentric

with centre P having throw equal to (OE/ cos β) and the angle of advance (α + β). Since the position

of eccentric OE changes with the rotation of crank , therefore the inclination of the eccentric EA with

the horizontal (i.e. angle β) also changes. This change of angle β is very small because the eccentric

rod length EA is 10 to 20 times the throw of eccentric OE. If γ is taken as the mean inclination of the

eccentric rod EA, then the throw of virtual eccentric will be OE/ cos γ with an angle of advance (α + γ).

Such an arrangement of the eccentric rod is called open rod arrangement.

If the eccentric rod EA instead of lying above the line of stroke of the piston (i.e. open rod

arrangement), it is in crossed position by crossing the line of stroke (i.e. crossed-rod arrangement) as

shown by EA
1
 in Fig. 17.26, then the velocity triangle for the mechanism OEA

1
 will be triangle

OEM
1
. In this case

A1 1 1

E

sin

sin

v OM OEM

v OE OME

∠
= =

∠

1 1

1 1

sin [180 – ( ) – (90 – )] cos ( – )

sin (90 – ) cos

° θ + α ° β θ + α β
= =

° β β

∴
1

A1 E 1

1 1

cos ( – )
cos ( – )

cos cos

OE
v v

θ + α β
= × = ω × × θ + α β

β β

cos ( – )
cos

OE
= ω × × θ + α γ

γ
...(Taking mean β

1
 = γ)

From the above expression, we see that for the crossed rod arrangement, the throw for the

virtual eccentric with centre P
1
 is same i.e. OE/ cos γ but the angle of advance is (α – γ).

The throw and angle of advance of the virtual eccentric may be determined by the simple

graphical construction as discussed below :

1. For A , draw PF parallel and equal to OE. From F draw FG perpendicular to PF. The angle

FPG is equal to γ. Now PG is the virtual eccentric.

2. Similarly for A
1
, P

1
G

1
 is the virtual eccentric.

(a) For open rod arrangement (b) For crossed rod arrangement.

Fig. 17.27. Determination of virtual eccentrics.
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We have already discussed that in link motions, there are two eccentrics. These two eccen-

trics are connected to their respective eccentric rods. The ends of these eccentric rods are connected

to a slotted link in which a die block slides. The die block is connected to the valve through a valve

rod. The resultant graphical construction for the open rod and crossed rod arrangements is shown in

Fig. 17.27 (a) and (b) respectively. The determination of virtual eccentrics OG and OG' for the two

eccentrics of the open rod arrangement is shown in Fig. 17.27 (a) whereas the determination of

virtual eccentrics OG
1
 and OG'

1
 for the eccentrics of the crossed rod arrangement is shown in

Fig. 17.27 (b). The straight lines GG' in Fig. 17.27 (a) and G
1
G'

1
 in Fig. 17.27 (b) are divided at Z and

Z' respectively in the same ratio in which the die block, for a given setting of the link motion, divides

the slotted link in which it slides. Now  OZ is the throw of the virtual eccentric and δ is the angle of

advance for the open rod arrangement. Similarly OZ
1
 is the throw of the virtual eccentric and δ' is the

angle of advance for the crossed rod arrangement.

17.17. Stephenson Link Motion

The Stephenson link motion, as shown in Fig. 17.28, is the most commonly used reversing

gear in steam engines. It is simple in construction and gives a good steam distribution. Fig. 17.28

shows the arrangement of the gear in mid-position, where OC is the crank and OE and OE
1
 are the

two eccentrics fixed on the driving shaft or axle in case of a locomotive. The eccentric OE is for

Fig. 17.28. Stephenson link motion.

forward running and OE
1
 is for backward running. The motion of these eccentrics is transmitted to

the *curved slotted link A B by means of eccentric rods EA and E
1
B respectively. The link A B can also

slide on the die block D. The end A  on the slotted link is connected to the controlling rod in the engine

cabin through the link AP and the bell crank lever RQP which is pivoted at the fixed fulcrum Q. By

moving the lever, the curved link A B is made to slide through the block D and enables the latter to

derive its motion either from B or A . In this way, the point of cut-off may be changed and the direction

of motion of the engine may be reversed. The valve receives its motion from the block D and the

valve rod is guided horizontally.

It may be noted that when the eccentrics OE and OE
1
 drives the eccentric rods EA and E

1
B

respectively, then the link motion is said to have an open rod arrangement. On the other hand, if the

eccentrics OE and OE
1
 drives the eccentric rods EB and E

1
A respectively, then the link motion is said

to have crossed rod arrangement. This arrangement gives different steam distribution.

* The radius of curvature of the link A B with either open or crossed rod arrangement is generally equal to the

length of the eccentric rod EA or E
1
B.
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The link motion is said to be in full forward gear position, when the curved link is lowered

so that A  and D coincides. In this position, the valve receives its motion entirely from the eccentric

OE. When the curved link is raised so that B and D coincide, it is said to be in full backward gear

position. In this position, the valve recieves its motion entirely from the eccentric OE
1
. Similarly,

when D lies in the middle of A B, the link motion is said to be in mid-gear position. In this position (or

for any other position of D between A B), the valve recieves its motion partly from the eccentric OE

and partly from the eccentric OE
1
.

17.18. Virtual or Equivalent Eccentric for Stephenson Link Motion

The Stephenson link motion in an intermediate position is shown in Fig. 17.29. Let us now

find out the equivalent eccentric for the intermediate positions of the die block D. If we assume that

ends A  and B of the curved link A B move along a straight path parallel to the line of stroke of the

valve, the equivalent eccentric for the ends A  and B and for the die block D may be determined in the

similar manner as discussed in Art 17.16. Fig. 17.30 (a) and (b) has been reproduced for the two

positions (i.e. when D is in mid-position and in intermediate position) of the open rod arrangement. In

Fig. 17.30 (a), OH is the equivalent eccentric for the mid-gear whereas in Fig. 17.30 (b), OZ is the

equivalent eccentric for any other position. If the construction is repeated for different positions of

the die block D, various points similar to Z may be obtained. Now a curve is drawn through the

various positions of Z. A close approximation to this curve may be obtained by drawing a circular arc

through the points E, H and E
1
 as shown in Fig. 17.30 (a). Now the equivalent eccentric for the gear

position, as shown in Fig. 17.29, may be determined by dividing the *arc EHE
1
 at Z in the same ratio

as D divides A B.

Fig. 17.29. Stephenon link motion in an intermediate position.

Let R be the radius of the arc of the circle representing the locus of the points similar to Z as

shown in Fig. 17.30 (a).

∴ R
2 = (OJ)2 + (EJ)2 = (OH – HJ)2 + (EJ)2 = (R – HJ)2 + (EJ)2

= R
2 + (HJ)2 – 2R × HJ + (EJ)2

or

2 2
( ) ( )

2

HJ EJ
R

HJ

+
= ...(i)

Now EJ = OE cos α ...(ii)

* A very close result can be obtained by dividing GH at Z in the same ratio as D divides A B.
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and HJ = GD = EG cos α = (OE tan γ) cos α ...(iii)

Fig. 17.30. Equivalent eccentric for the two positions of the open rod arrangement.

Substuting the values of EJ and HJ from equations (ii) and (iii) in equation (i),
2 2 2

( tan ) cos ( cos )

2 ( tan ) cos

OE OE
R

OE

γ α + α
=

γ α

2 2
cos (1 tan ) cos sec

2 tan 2 tan

OE OEα + γ α × γ
= =

γ γ
    ...(∵ 1 + tan2γ = sec2γ)

cos cos

2sin cos sin 2

OE OEα α
= =

γ γ γ
...(iv)

where γ = Mean inclination of the eccentric rod to the line of stroke of the valve.

Since γ is very small, therefore sin 2γ = 2γ in radians. From Fig. 17.29,

arc arc
sin 2 2

AB AB

OA AE
γ = γ = =

Now equation (iv) may be written as

cos
arc

EA
R OE

AB
= α × ...(v)

The equivalent eccentric for the two positions of the crossed rod arrangement, as shown in

Fig. 17.31 (a) and (b), may be determined in the similar manner as discussed above.

Fig. 17.31. Equivalent eccentric for the two positions of the crossed rod arrangement.

After finding the equivalent eccentric for a given setting of the gear, the corresponding Reuleaux

of Bilgram diagram is drawn to determine the crank positions at admission, cut-off, release and

compression.
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Note: Comparing Fig. 17.30 (a) for open rod arrangement and Fig. 17.31 (a) for crossed rod arrangement, we

see that the projection of the virtual eccentric on the line of stroke for any given setting of the gear when it

moves from full gear to mid gear position,

1. increases in case of open rod arrangement, and

2. decreases in case of crossed rod arrangement.

This projection is equal to steam lap plus lead. The steam lap being constant, it follows that during

linking up the gear (i.e. when the gear moves from full gear position to mid-gear position), the lead increases in

open rod arrangement, while it decreases in crossed rod arrangement.

Example 17.8. A stephenson link motion with open rods has a throw of each eccentric 75

mm and an angle of advance 18º. The length of the curved slotted link is 400 mm and its radius of

curvature is equal to the length of the eccentric rod which is 1.15 m. Determine the throw and angle

of advance of the equivalent eccentric when 1.  the gear is in the mid-position and 2. the gear is in the

middle of full-gear and mid-gear.

Solution. Given OE = 75 mm ; α = 18º; Arc AB = 400 mm; EA = 1.15 m = 1150 mm

1. Throw and angle of advance of the equivalent eccentric when the gear is in mid-position

Let R = Radius of the arc or the locus of points similar to Z, as shown in Fig.

17.30 (a).

We know that

cos
arc

EA
R OE

AB
= α ×

1150
75 cos 18º 205 mm

400
= × × =

Now draw OE and OE
1
 equal to 75 mm and at an

angle of 18º to vertical Y Y
1
 as shown in Fig. 17.32. The

point P on the line of stroke is found by drawing an arc

either from E or E
1
 such that EP = E

1
P = R = 205

mm. With P as centre and radius 205 mm draw an arc

EHE
1
. Now OH represents the equivalent eccentric and

angle YOH is its angle of advance when the gear is in

mid-position. By measurement, throw of equivalent

eccentric,

      OH  = 38 mm Ans.

and angle of advance = 90YOH∠ =  Ans.

2. Throw and angle of advance of the equivalent eccentric when the gear is in the middle of the

full-gear and mid-gear

In Fig. 17.32, the point E represents the full-gear position and H the mid-gear position. When

the gear is in the middle of the full-gear and mid-gear positions, i.e. in the middle of E and H, divide

the arc EH such that EZ = ZH. Now OZ represents the equivalent eccentric and angle YOZ is its angle

of advance. By measurement, throw of equivalent eccentric,

OZ = 50 mm  Ans.

and angle of advance = 45ºYOH∠ = Ans.

17.19. Radial Valve Gears

We have already discussed that in radial valve gears, only one eccentric or its equivalent is

used. The principle on which the radial valve gears operate is discussed below :

Fig. 17.32
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Let OC be the crank and OE the eccentric for a D-slide valve as shown in Fig. 17.33 (a). OX

and O Y are the projections of OE along OC and perpendicular to OC respectively. When the crank

turns through an angle θ from the inner dead centre, the distance moved by the valve from its mid-

position is given by OM which is the projection of the eccentric OE on the line of stroke, as shown in

Fig. 17.33 (b). OX and OY are the projections of the eccentric OE along the crank OC and perpen-

dicular to OC. OP and OL are the projections of OX and OY on the line of stroke. From Fig. 17.33 (b),

OM = OL + LM = OL + *OP

From the above expression, it follows that a motion given to the valve by the eccentric OE

(i.e. displacement OM) may be obtained by combining the displacements OL and OP obtained from

two separate eccentrics OY and OX. The eccentric OY is 90º out of phase with the engine crank OC

and is known as 90º component eccentric. The eccentric OX is 180º out of phase with the engine

crank OC and is known as 180º component eccentric.

Fig. 17.33. Radial valve gear.

The critical examination of Fig. 17.33 shows that

1. The throw of the 180º component eccentric (i.e. OX) is equal to the sum of steam lap and

lead. If lead is kept constant for all settings of the gear, the throw of the 180º component eccentric will

also be constant.

2. If the throw of the 90º component eccentric (i.e. O Y) is reduced, the eccentric OE will have

larger angle of advance α (∵ tan α = OX/O Y). The increase of angle of advance will cause cut-off to

take place earlier in the stroke of the piston.

3. In order to reverse the direction of rotation of the crank, the direction of 90º component

eccentric must be reversed as shown by OY' in Fig. 17.33 (a).

17.20. Hackworth Valve Gear

This is the earliest of the radial valve gears in which the eccentric OE is placed directly

opposite to the main crank OC, as shown in Fig. 17.34. The eccentric centre E is coupled to a sliding

or die block D which reciprocates along the slotted bar GH which is pivoted to the frame at F. The

slotted bar GH is inclined to OF which is perpendicular to the line of stroke. The inclination of GH

(i.e. angle β) is fixed for a given setting of the gear and is a maximum for the full gear positions. In

order to reverse the direction of rotation of the engine, the slotted bar GH is tilted into the dotted

position as shown in Fig. 17.34. In mid-gear position,the slotted bar occupies the vertical position OZ

so that the motion of die block D is then perpendicular to the line of stroke of the engine. For constant

lead of the valve for all settings, the length of eccentric rod ED must be such that D and F coincide,

when the crank is in either dead centre positions. The valve is driven by a connecting link AB from a

point A on the eccentric rod ED.

* LM = OP, being the projection of two equal and parallel lines OX and E Y respectively.
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The throw of the virtual or equivalent eccentric and its angle of advance may be determined

as follows :

Fig. 17.34. Hackworth valve gear.

The virtual eccentric OV is assumed to be equivalent to two eccentrics, i.e. 180º compo-

nent eccentric OX and 90º component eccentric O Y, as shown in Fig. 17.35 (a). First of all, let us

find the values of OX and O Y. During the motion of crank OC from one dead centre to another

dead centre, the point E on the eccentric as well as link DAE moves through a distance equal to

 2 OE along the line of stroke, while the distance moved perpendicular to the line of stroke is zero

because D occupies the position F at both the dead centres. Now the displacement of the valve

during the motion of crank from one dead centre to another will be AA' or 2 OX. This may be

clearly understood from Fig. 17.35 (b).

∴
2

or
2

OX DA DA
OX OE

OE DE DE
= = × ...(i)

This equation shows that the throw of 180º component eccentric is independent of the setting

of the gear. This throw (i.e. OX) is equal to steam lap plus lead.

Fig. 17.35. Determination of throw and angle of advance of the virtual or equivalent eccentric.

Now considering the motion of the crank OC from one vertical position to another vertical

position. The point E on the eccentric as well as the link DAE moves through a vertical distance equal

to 2 OE, while the horizontal distance moved by the point E is zero. Since the slotted bar GH is

inclined at an angle β, therefore from Fig. 17.35 (c),

Horizontal distance moved by D = DD' = 2OE tan β

Now the displacement of the valve during the motion of crank from one vertical position to

another will be 2 O Y. Therefore from Fig. 17.35 (d),
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2
or tan

2 tan

OY EA EA
OY OE

OE ED ED
= = × β

β
...(ii)

This equation shows that the throw of 90º component eccentric varies with the angle β i.e.

with the particular setting of the gear.

From Fig. 17.35 (a), the throw of the virtual eccentric,

2 2
( ) ( )OV OX OY= + ...(iii)

and the angle of advance of the virtual eccentric,

1
tan

OX

OY

−
α = ...(iv)

The equivalent eccentric for a given setting of the gear may be

determined graphically as discussed below :

1. Draw OE, to some suitable scale, to represent the throw of

the actual eccentric as shown in Fig. 17.36.

2. Through E, draw ED inclined at angle β to OE so that OD

represents OE tan β to scale. The angle β is drawn upwards when slotted

bar GH (Fig. 17.34) is in full line position and it is drawn downwards

when GH is tilted to the dotted position, as shown in Fig. 17.36.

3. Divide OE at X in the same proportion as A  divides ED in

Fig. 17.34. Through X draw a line perpendicualr to OE to meet ED at V .

Now OV is the equivalent eccentric for the motion of the valve.

Example 17.9. In a Hackworth radial valve gear, as shown in Fig. 17.37, the dimensions of

various link are as follows :

OC = 225 mm; CP = 800 mm; DE = 625 mm and AE = 300 mm

Fig. 17.36

Inside view of a factory.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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If the lead is constant at 3 mm, the steam lap is 18 mm and the angle β is 20º, find the length

of eccentric OE, the distance OF, the effective valve travel and the effective angle of advance.

Fig. 17.37

Solution. Given : l = 3 mm ; s = 18 mm ; β = 20º

Length of eccentric OE

We know that in case of a Hackworth radial valve gear, the virtual eccentric OV may be

assumed to be equivalent to two eccentrics, i.e. 180º component eccentric and 90º component eccen-

tric as shown in Fig. 17.38. The throw of the 180º component eccentric is given by

625 300

625

DE AEDA
OX OE OE OE

DE DE

− −
= × = × = ×

= 0.52 OE ...(i)

Also OX = s + l = 18 + 3 = 21 mm ...(ii)

From equations (i) and (ii),

OE = 21/ 0.52 = 40.4 mm

Distance OF

When the eccentric OE is along the line of stroke, the point D coincides with F and the angle

FOE = 90º.

∴ (OF)2 + (OE)2 = (DE)2

or 2 2 2 2
( ) ( ) (625) (40.4) 623.7 mmOF DE OE= − = − = Ans.

Effective valve travel

We know that the 90º component eccentric,

300
tan 40.4 tan 20º 7.06

625

EA
OY OE

ED
= × β = × = mm

∴  Throw of the virtual eccentric,

2 2 2 2
( ) ( ) (21) (7.06) 22.15 mmOV OX OY= + = + =

and effective valve travel = 2 × OV = 2 × 22.15 = 44.3 mm Ans.

Fig. 17.38
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Effective angle of advance

We know that effective angle of advance,

( ) ( )1 1 121
tan tan tan 2.9745 71.4º

7.06

OX

OY

− − −
α = = = = Ans.

17.21. Walschaert’s Valve Gear

The Walschaert’s valve gear, as shown in Fig. 17.39, is the most extensively used of all

reversing gears on modern locomotives. In this gear, a single eccentric OE is used and is set at 90º to

the main crank OC. The eccentric rod EG oscillates the curved slotted link GH about the fulcrum F

which is fixed to the frame of the engine. The relative motion of the sliding or die block D in the

curved slotted link GH is due to the link PQ which is operated by means of a bell crank lever SRQ and

a rod from the engine room. The die block D is capable of movement along the whole length of the

link GH. The pin K receives its motion from the die block D and ultimately from the eccentric OE,

while the pin L receives its motion from a point B on the main crosshead A , where AC is the connect-

ing rod of the engine.

When the gear is in mid-position, the block D is at F. The radius of link GH is such that when

the crank OC is at the inner dead centre position and the gear is reversed, the point K remains at rest.

This characteristic gives constant lead during all conditions of running.

Fig. 17.39. Walschaert’s valve gear.

Neglecting obliquities of all the rods, the throw of the virtual eccentric and its angle of advance

may be determined in the similar manner as discussed in the previous article. The virtual eccentric

OV is assumed to be equivalent to two eccentrics i.e. 180º component eccentric OX and 90º component

eccentric O Y, as shown in Fig. 17.40 (a).

First of all, let us find the values of OX and O Y. Considering the motion of crank OC from one

dead centre to another dead centre, the crosshead A  and hence the point L on the link JKL moves through

a distance equal to 2 OC. During this motion of the crank, the point G on the slotted link and hence the

point K on the link JKL occupy the same position as at start. In other words, the distance moved by K is

zero. Now the displacement of the valve during the motion of crank from one dead centre to another

dead centre will be JJ' or 2 OX.

From Fig. 17.40 (b),

2
or

2

OX JK JK
OX OC

OC KL KL
= = ×        ...(i)
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Thus OX is constant for all positions of the block D on the link GH and the lead remains

unchanged during all conditions of running. In case the point J lies on the same side of K as L, the

motion of J and L will be in phase. In this position, OX is termed as 0º component eccentric.

Fig. 17.40. Determination of throw and angle of advance of the virtual eccentric.

Now considering the motion of the eccentric OE from one dead centre position to another

dead centre, the crank pin C moves from one vertical position to another, thus not traversing any

horizontal distance. During this motion of the eccentric, the distance moved by the crosshead A  and

thus the point L on the link JKL will be zero. At the same time, the point E on the eccentric OE and the

point G on the curved slotted link GH moves through a distance 2 OE. Since the curved slotted link

GH is hinged at F, therefore the die block D moves through a distance DD' which is given by

or 2
2

DD FD FD
DD OE

OE FG FG

′
′= = × ...[From Fig. 17.40 (c)]

Since point K lies on the link DK, therefore point K will move through the same distance as

that of D, i.e.

2
FD

KK DD OE
FG

′ ′= = ×

Now the displacement of the valve during the motion of the crank from one vertical position

to another will be JJ' or 2 O Y. From Fig. 17.40 (d),

2
or

2

OY FGJJ JL JL

KK KL FD OE KL

×′
= =

′ ×

∴
JL FD

OY OG
KL FG

= × × ...(ii)

The position of D on the curved slotted link GH may be varied by operating the bell crank

lever from the rod in the engine room in order to suit load conditions or to effect the reversal of

direction or rotation.

From Fig. 17.40 (a), the throw of the virtual eccentric,

2 2
( ) ( )OV OX OY= + ...(iii)

and the angle of advance of the virtual eccentric,

1
tan

OX

OY

−
α = ...(iv)

Example 17.10. In a Walschaert valve gear, as shown in Fig. 17.39, the engine crank is 300

mm long. The least cut-off in the head end of the cylinder is at 120º. At this, the maximum opening to

steam is 45 mm and the lead is 6 mm. If the length of the eccentric is 115 mm, find the ratios 
JL

KL
 and

FG

FD
 of the gear. Neglect the obliquities of all the rods.

Solution. Given : OC = 300 mm ; crank angle at cut-off = 120º ; Maximum opening to steam

= 45 mm ; l = 6 mm ; OE = 115 mm
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First of all, draw the Bilgram valve diagram as discussed below :

1. Draw OC
2
, the position of crank at cut-off, at 120º to the line of stroke OV as shown in

Fig. 17.41.

Fig. 17.41

2. Draw a line parallel to OV and at a distance equal to the lead (6 mm) which intersects C
2
O

produced at S .

3. With centre O, draw an arc with radius OP = 45 mm, the maximum opening of steam.

4. Draw the bisector of the angle RST. On this bisector, obtain a point G such that a circle

drawn with centre G touches the lines SR, ST and the point P. Join OG.

By measurement, we find that throw of the virtual eccentric,

OV = OG = 81.5 mm

and angle of advance of the virtual eccentric

α = 32º

The virtual eccentric OV is assumed to be equivalent to two eccen-

trics, i.e. 180º component eccentric OX and 90º component eccentric O Y, as

shown in Fig. 17.42.

∴  180º component eccentric

= OX = V Y  = OV sin α = 81.5 sin 32º = 43.2 mm

and 90º component eccentric,

OY = OV cos 32º = 81.5 × 0.848 = 69.1 mm

We know that
JK

OX OC
KL

= × ...(Refer Fig. 17.39)

∴
43.2

0.144
300

JK OX

KL OC
= = =

Now 1 1 0.144 1.144
KL JKJL JK

KL KL KL

+
= = + = + =  Ans.

Again we know that

JL FD
OY OE

KL FG
= × ×

∴
115

1.144 1.9
69.1

FG JL OE

FD KL OY
= × = × =  Ans.

Fig. 17.42



Chapter 17 : Steam Engine Valves and Reversing Gears   �  651

EXERCISES
1. A D-slide valve has a travel of 100 mm, angle of advance 30º and the exhaust lap at both ends of the

valve is 12 mm. The cut-off takes place at 85% of the stroke on the cover end of the cylinder. Deter-

mine the lead and the point of release for this stroke.

If the lead is same for both the ends, find the point of cut-off on the crank end and the steam lap. The

length of the connecting rod is 4 times the crank length.

[Ans. 7.2 mm; 98% of stroke, 78% of stroke, 18 mm]

2. The travel of a slide valve is 100 mm and the lead at the crank end is 6 mm. If the length of connecting

rod is 4.5 times the crank length, find the angle of advance, steam lap and exhaust lap to give cut-off

and release at 65% and 95% of the stroke respectively. [Ans. 38°, 24 mm, 12 mm]

3. The following data refer to a D-slide valve :

Valve travel = 150 mm; Lead at cover end = 6 mm ; Connecting rod length = 5 times crank length;

Cut-off at both ends of the piston = 0.7 stroke

Determine the angle of advance of the eccentric and maximum opening of port to steam and steam lap

for the cover end. Find also the steam lap and lead for the crank end of the valve.

[Ans. 40°, 35 mm; 40 mm; 26 mm; 22 mm]

4. A simple slide valve with outside admission provides a lead of 3 mm, a maximum port opening of 18

mm and a cut-off at 62% at the out-stroke (i.e. at the crank end). The ratio of the connecting rod length

to the crank radius is 3.7. Find the valve travel, steam lap and the angle of advance. If the exhaust lap

is 12.5 mm, find the percentage of stroke at which release and compression will occur.

[Ans.  78 mm, 20 mm, 37º; 92.5% of forward stroke, 88% of return stroke]

5. A steam engine fitted with a D-slide valve gives a cut-off at 65% of the stroke and release at 90% of

the stroke for both ends of the cylinder. The width of the ports is 25 mm, maximum opening of port to

steam is 18 mm and the valve lead at the cover end is 6 mm. If the length of the connecting rod is 5

times the crank length, find the total valve travel and the angle of advance of the eccentric. Determine

also the valve lead at the crank end and the steam and exhaust laps  for both ends of the cylinder.

[Ans. 88 mm, 45.5; l (crank end) = 14 mm, s (cover end) = 25 mm,

(crank end) = 17.5 mm, e (cover end) = 6.5 mm, e (crank end) = 10.8 mm]

6. The following particulars refer to a Meyer’s expansion valve :

Angle of advance of main eccentric = 35º; Travel of main valve = 150 mm; Angle of advance of

expansion eccentric = 90º; Throw of expansion eccentric = 75 mm ; Ratio of connecting rod length to

crank length = 4.

Find the steam laps required at the two ends of the expansion valve in order to give cut-off at 0.2, 0.4

and 0.6 of the stroke on both strokes. Determine also the best setting of the expansion plates.

[Ans. 24 mm, 48 mm, 64 mm for cover end; 38 mm, 60 mm, 68 mm for crank end]

7. The dimensions of a Hackworth valve gear, as shown in Fig. 17.34 (Page 645) are as follows :

OC = 300 mm; CP = 700 mm; OE = 145 mm; ED = 800 mm and EA = 550 mm.

The die block D coincides with F when the crank is at dead centres. Find the throw and the angle of

advance of the equivalent eccentric when the inclination of the slotted link is 30º with the vertical.

[Ans. 73.3 mm; 38.2º]

8. The Walschaert radial valve gear of a locomotive engine in which the slide valve has inside admission,

is shown in Fig. 17.43. The main crank OC is 250 mm and the crank OE is 75 mm.

Fig. 17.43
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If DE = 0.6 FG and JK = 0.15 JL, find the travel of the valve. When the cut off is to take place at 60%

of the stroke of the piston, find steam lap and lead of the valve. The motion of points K and L may each

be assumed simple harmonic along a horizontal straight line.

[Ans. 100 mm, 32.5 mm, 0.75 mm]

DO YOU KNOW ?
1. State the function of a valve in a steam engine. Name the types of valves commonly used to control the

various operations in a steam engine.

2. Describe the action of a D-slide valve and piston slide valve. Discuss the advantages of a  piston slide

valve over D-slide valve.

3. Define steam lap, exhaust lap and angle of advance for a simple slide valve with 1. out-side steam

admission, and 2. inside steam admission.

4. Explain how the ponts of admission, cut-off, release and compression are determined for a D-slide

valve using any one of the following constructions :

1. Zeuner valve diagram. 2. Reuleaux valve diagram, and 3. Bilgram valve diagram.

5. Discuss with the help of diagrams, the disadvantages of earlier cut-off with a simple slide valve.

6. Explain with the help of a neat sketch, the function of a Meyer’s expansion valve in a steam engine.

7. What do you understand by virtual or equivalent eccentric?  How it is obtained for the Meyer’s

expansion valve?

8. Why the reversing gears are used in steam engines? State the commonly used types of reversing gears

and how they differ from one another?

9. Describe, with the help of a line diagram, the working of a Stephenson link motion. How the virtual

eccentric and its angle of advance for any setting of this link motion is determined?

10. Discuss the principle underlying the use of a radial valve gear.

11. Explain, with the help of a line diagram, the working of a Hackworth valve gear. Discuss the method

to determine the virtual eccentric and its angle of advance for this gear.

12. Describe, with the help of a line diagram, the working of a Walschaert’s valve gear. How  will you

determine the virtual eccentric and its angle of advance for this gear?

OBJECTIVE TYPE QUESTIONS
1. In a steam engine, the distance by which the outer edge of the D-slide valve overlaps the steam port is

called

(a) lead (b) steam lap

(c) exhaust lap (d) none of these

2. The D-slide valve is also known as

(a) inside admission valve (b) outside admission valve

(c) piston slide valve (d) none of these

3. In Meyer’s expansion valve, main valve is driven by an eccentric having an angle of advance

(a) 10º – 15º (b) 15º – 25º

(c) 25º – 30º (d) 30º – 40º

4. In Meyer’s expansion valve, the expansion valve is driven by an eccentric having an angle of advance

(a) 50º – 60º (b) 60º – 70º

(c) 70º – 80º (d) 80º – 90º

5. The function of a reversing gear in a steam engine is

(a) to control the supply of steam

(b) to alter the point of cut-off while the engine is running

(c) to reverse the direction of motion of the crankshaft

(d) all of the above

ANSWERS

1. (b) 2. (b) 3. (c) 4. (d) 5. (b),(c)

GO To FIRST
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Governors

18
Features

1.  Introduction.

2. Types of Governors.

3. Centrifugal Governors.

4. Terms Used in Governors.

5. Watt Governor.

6. Porter Governor.

7. Proell Governor.

8. Hartnell Governor.

9. Hartung Governor.

10. Wilson-Hartnell Governor.

11. Pickering Governor.

12. Sensitiveness of Governors.

13. Stability of Governors.

14. Isochronous Governor.

15. Hunting.

16. Effort and Power of a

Governor.

17. Effort and Power of a Porter

Governor.

18. Controlling Force.

19. Controlling Force Diagram

for a Porter Governor.

20. Controlling Force Diagram

for a Spring-controlled

Governor.

21. Coefficient of

Insensitiveness.

18.1. Introduction

The function of a governor is to regulate the mean

speed of an engine, when there are variations in the load e.g.

when the load on an engine increases, its speed decreases,

therefore it becomes necessary to increase the supply of work-

ing fluid. On the other hand, when the load on the engine

decreases, its speed increases and thus less working fluid is

required. The governor automatically controls the supply of

working fluid to the engine with the varying load conditions

and keeps the mean speed within certain limits.

A little consideration will show, that when the load

increases, the configuration of the governor changes and a

valve is moved to increase the supply of the working fluid ;

conversely, when the load decreases, the engine speed in-

creases and the governor decreases the supply of working

fluid.

Note : We have discussed in Chapter 16 (Art. 16.8) that the func-

tion of a flywheel in an engine is entirely different from that of a

governor. It controls the speed variation caused by the fluctuations

of the engine turning moment during each cycle of operation. It

does not control the speed variations caused by a varying load. The

varying demand for power is met by the governor regulating the

supply of working fluid.

18.2. Types of Governors

The governors may, broadly, be classified as

1. Centrifugal governors, and 2. Inertia governors.
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The centrifugal governors, may further be classified as follows :

18.3. Centrifugal  Governors

The centrifugal governors are based on the balancing of centrifugal force on the rotating balls

by an equal and opposite radial force, known as the controlling force*.It consists of two balls of

equal mass, which are attached to the arms as shown in Fig. 18.1. These balls are known as governor

balls or fly balls. The balls revolve with a spindle, which

is driven by the engine through bevel gears. The upper

ends of the arms are pivoted to the spindle, so that the

balls may rise up or fall down as they revolve about the

vertical axis. The arms are connected by the links to a

sleeve, which is keyed to the spindle. This sleeve re-

volves with the spindle ; but can slide up and down.

The balls and the sleeve rises when the spindle speed

increases, and falls when the speed decreases. In order

to limit the travel of the sleeve in upward and down-

ward directions, two stops S, S are provided on the

spindle. The sleeve is connected by a bell crank lever

to a throttle valve. The supply of the working fluid de-

creases when the sleeve rises and increases when it falls.

When the load on the engine increases, the en-

gine and the governor speed decreases. This results in

the decrease of centrifugal force on the balls. Hence

the balls move inwards and the sleeve moves down-

wards. The downward movement of the sleeve oper-

ates a throttle valve at the other end of the bell crank

lever to increase the supply of working fluid and thus

the engine speed is increased. In this case, the extra

power output is provided to balance the increased load.

When the load on the engine decreases, the engine and

the governor speed increases, which results in the in-

crease of centrifugal force on the balls. Thus the balls

move outwards and the sleeve rises upwards. This up-

ward movement of the sleeve reduces the supply of the

working fluid and hence the speed is decreased. In this

case, the power output is reduced.

* The controlling force is provided either by the action of gravity as in Watt governor or by a spring as in case

of Hartnell governor.

A governor controls engine speed. As it

rotates, the weights swing outwards, pulling

down a spindle that reduces the fuel supply

at high speed.

Spring steel

strip

Spindle

controls fuel

supply

Rotating

weight
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Note :  When the balls rotate at uniform speed, controlling force is equal to the centrifugal force and they

balance each other.

Fig. 18.1. Centrifugal governor.

18.4. Terms Used in Governors

The following terms used in governors are

important from the subject point of view ;

1. Height of a governor. It is the vertical

distance from the centre of the ball to a point where

the axes of the arms (or arms produced) intersect

on the spindle axis. It is usually denoted by h.

2. Equilibrium speed. It is the speed at

which the governor balls, arms etc., are in complete

equilibrium and the sleeve does not tend to move

upwards or downwards.

3. Mean equilibrium speed. It is the speed

at the mean position of the balls or the sleeve.

4. Maximum and minimum equilibrium

speeds. The speeds at the maximum and minimum

radius of rotation of the balls, without tending to

move either way are known as maximum and mini-

mum equilibrium speeds respectively.

Note : There can be many equilibrium speeds between

the mean and the maximum and the mean and the mini-

mum equilibrium speeds.

5. Sleeve lift. It is the vertical distance which

the sleeve travels due to change in equilibrium

speed.

Centrifugal governor
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18.5. Watt Governor

The simplest form of a centrifugal governor is a Watt governor, as shown in Fig. 18.2. It is

basically a conical pendulum with links attached to a sleeve of negligible mass. The arms of the

governor may be connected to the spindle in the following three ways :

1. The pivot P, may be on the spindle axis as shown in Fig. 18.2 (a).

2. The pivot P, may be offset from the spindle axis and the arms when produced intersect at

O, as shown in Fig. 18.2 (b).

3. The pivot P, may be offset, but the arms cross the axis at O, as shown in Fig. 18.2 (c).

Fig. 18.2. Watt governor.

Let m = Mass of the ball in kg,

w = Weight of the ball in newtons  =  m.g,

T = Tension in the arm in newtons,

ω = Angular velocity of the  arm and  ball about  the spindle axis in

rad/s,

r = Radius of the path of  rotation of the ball i.e. horizontal distance

from the centre of  the ball to the  spindle axis in metres,

F
C

= Centrifugal force acting on the ball in newtons   =  m. ω
2.r, and

h = Height of the governor in metres.

It is assumed that the weight of the arms, links and the sleeve are negligible as compared to

the weight of the balls. Now, the ball is in equilibrium under the action of

1. the centrifugal force (F
C
) acting on the ball, 2.  the tension (T) in the arm, and 3. the weight

(w) of the ball.

Taking moments about point O, we have

F
C
 × h = w × r  =  m.g.r

or m. ω
2.r.h = m.g.r or h = g / ω

2 . . . (i)

When g is expressed in m/s2 and ω in rad/s, then h is in metres. If N is the speed in r.p.m., then

ω = 2 π N/60

∴
2 2

9.81 895
metres

(2 / 60)
h

N N

= =

π

. . . (∵ g = 9.81 m/s2) . . . (ii)

Note : We see from the above expression that the height of a governor h, is inversely proportional to N
2.

Therefore at high speeds, the value of h is small. At such speeds, the change in the value of h corresponding to

a small change in speed is insufficient to enable a governor of this type to operate the mechanism to give the

necessary change in the fuel supply. This governor may only work satisfactorily at relatively low speeds i.e.

from 60 to 80 r.p.m.
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Example 18.1. Calculate the vertical height of a Watt governor when it rotates at 60 r.p.m.

Also find the change in vertical height when its speed increases to 61 r.p.m.

Solution. Given : N
1
 = 60 r.p.m. ; N

2
 = 61 r.p.m.

Initial height

We know that initial height,

1 2 2
1

895 895
0.248 m

( ) (60)
h

N

= = =

Change in vertical height

We know that final height,

2 2 2
2

895 895
0.24 m

( ) (61)
h

N

= = =

∴ Change in vertical height

=  h
1
 – h

2
 =  0.248 – 0.24  =  0.008 m  =  8  mm Ans.

18.6. Porter Governor

The Porter governor is a modification of a Watt’s governor, with central load attached to the

sleeve as shown in Fig. 18.3 (a). The load moves up and down the central spindle. This additional

downward force increases the speed of revolution required to enable the balls to rise to any pre-

determined level.

Consider the forces acting on one-half of the governor as shown in Fig. 18.3 (b).

(a) (b)

Fig. 18.3. Porter governor.

Let m = Mass of each ball in kg,

w = Weight of each ball in newtons = m.g,

M = Mass of the central load in kg,

W = Weight of the central  load in newtons = M.g,

r = Radius of rotation in metres,
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h = Height of governor in metres ,

N = Speed of the balls in r.p.m .,

ω = Angular speed of the  balls in  rad/s

= 2 π N/60 rad/s,

F
C

= Centrifugal force acting on the  ball

in newtons = m. ω
2.r,

T
1

= Force in the arm in  newtons,

T
2

= Force in the  link in newtons,

α = Angle  of  inclination  of the arm (or

upper  link) to the  vertical, and

β = Angle of  inclination of  the link

(or lower  link) to the vertical.

Though there are several ways of determining the

relation between the height of the governor (h) and the

angular speed of the balls (ω), yet the following two

methods are important from the subject point of view :

1. Method of resolution of forces ; and

2.  Instantaneous centre method.

1. Method of resolution of forces

Considering the equilibrium of the forces acting

at D, we have

2

.
cos

2 2

W M g
T β = =

or           2

.

2 cos

M g
T =

β
. . . (i)

Again, considering the equilibrium of the forces acting on B. The point B is in equilibrium

under the action of the following forces, as shown in Fig. 18.3 (b).

(i) The weight of ball (w = m.g),

(ii) The centrifugal force (F
C
),

(iii) The tension in the arm (T
1
), and

(iv) The tension in the link (T
2
).

Resolving the forces vertically,

                                                         1 2

.
cos cos .

2

M g
T T w m gα = β + = + . . . (ii)

2

.
. . . cos

2

M g
T

 
β = 

 

�

Resolving the forces horizontally,

T
1
 sin α + T

2
 sin β = F

C

                             1 C

.
sin sin

2 cos

M g
T Fα + × β =

β
2

.
. . .

2 cos

M g
T

 
= 

β 

�

                                  1 C

.
sin tan

2

M g
T Fα + × β =

∴ 1 C

.
sin – tan

2

M g
T Fα = × β . . . (iii)

A big hydel generator. Governors are

used to control the supply of working

fluid (water in hydel generators).

Note : This picture is given as additional

information and is not a direct example of

the current chapter.



Chapter 18 : Governors   �  659

Dividing equation (iii) by equation (ii),

C
1

1

.
– tan

sin 2

.cos
.

2

M g
F

T

M gT
m g

× β
α

=
α

+

or C

. .
. tan – tan

2 2

M g M g
m g F

 
+ α = × β 

 

C. . tan
. –

2 tan 2 tan

FM g M g
m g

β
+ = ×

α α

Substituting
tan

,
tan

q
β

=
α

and tan ,
r

h
α =  we have

2. .
. . . –

2 2

M g h M g
m g m r q

r
+ = ω × × . . . (∴ F

C
 = m.ω2.r)

or
2 .

. . . (1 )
2

M g
m h m g qω = + +

∴               
2 2

(1 )
. 1 2. (1 )

2 .

M
m q

M g g
h m g q

mm

+ +
 

= + + = ×
 

ω ω 

. . . (iv)

or               2

(1 )
1 2. (1 )

2 .

M
m q

Mg g
m g q

m h m h

+ +
 

ω = + + = ×
 
 

or               

2 (1 )
2 2

60

M
m q

N g

m h

+ +
π 

= × 
 

∴                
2

2
(1 ) (1 )

60 8952 2

2

M M
m q m q

g
N

m h m h

+ + + +
 

= × = × 
π 

. . . (v)

. . . (Taking g = 9.81 m/s2)

Notes : 1. When the length of arms are equal to the length of links and the points P and D lie on the same vertical

line, then

             tan α = tan β        or    q =  tan α / tan β = 1

Therefore, the equation (v) becomes

                
2 ( ) 895m M

N
m h

+
= × . . . (vi)

2. When the loaded sleeve moves up and down the spindle, the frictional force acts on it in a direction

opposite to that of the motion of sleeve.

If F = Frictional force acting on the sleeve in newtons, then the equations (v) and (vi) may be written as

                       2

.
. (1 )

8952

.

M g F
m g q

N
m g h

± 
+ + 

 
= × . . . (vii)

                      

. ( . ) 895

.

m g M g F

m g h

+ ±
= × . . . (When q = 1) . . . (viii)
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The + sign is used when the sleeve moves upwards or the governor speed increases and negative sign is

used when the sleeve moves downwards or the governor speed decreases.

3.  On comparing the equation (vi) with equation (ii) of Watt’s governor (Art. 18.5), we find that the

mass of the central load (M) increases the height of governor in the ratio 
m M

m

+
.

2. Instantaneous centre method

In this method, equilibrium of the forces acting on

the link BD are considered. The instantaneous centre I lies

at the point of intersection of PB produced and a line through

D perpendicular to the spindle axis, as shown in Fig. 18.4.

Taking moments about the point I,

C
2

W
F BM w IM ID× = × + ×

.
.

2

M g
m g IM ID= × + ×

∴ C

.
.

2

IM M g ID
F m g

BM BM
= × + ×

.
.

2

IM M g IM MD
m g

BM BM

+ 
= × +  

 

.
.

2

IM M g IM MD
m g

BM BM BM

 
= × + + 

 

.
. tan (tan tan )

2

M g
m g= α + α + β

. . . tan , and tan
IM MD

BM BM

 
= α = β 

 
�

Dividing throughout by tan α,

C . tan .
. 1 . (1 )

tan 2 tan 2

F M g M g
m g m g q

 β
= + + = + + 

α α 

tan
. . .

tan
q

 β
= 

α 

�

        We know that F
C
 =  m.ω2.r, and tan

r

h
α =

∴ 
2 .

. . . (1 )
2

h M g
m r m g q

r
ω × = + +

or                   
2 2

.
. (1 ) (1 )

12 2

M g M
m g q m q

g
h

m m

+ + + +

= × = ×
ω ω

. . . (Same as before)

When tan α = tan β   or  q = 1, then

                          2

m M g
h

m

+
= ×

ω

Fig. 18.4. Instantaneous centre

method.
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Example 18.2. A Porter governor has equal arms each 250 mm long and pivoted on the axis

of rotation. Each ball has a mass of 5 kg and the mass of the central load on the sleeve is 25 kg. The

radius of rotation of the ball is 150 mm when the governor begins to lift and 200 mm when the

governor is at maximum speed. Find the minimum and maximum speeds and range of speed of the

governor.

Solution. Given : BP = BD = 250 mm = 0.25 m ; m  = 5 kg ; M = 15 kg ; r
1 

= 150 mm

= 0.15m; r
2 

= 200 mm = 0.2 m

Fig. 18.5

The minimum and maximum positions of the governor are shown in Fig. 18.5 (a) and (b)

respectively.

Minimum speed when r
1 

= BG = 0.15 m

Let N
1 

= Minimum speed.

From Fig. 18.5 (a), we find that height of the governor,

2 2 2 2
1 ( ) – ( ) (0.25) – (0.15) 0.2 mh PG PB BG= = = =

We know that

2
1

1

895 5 15 895
( ) 17 900

5 0.2

m M
N

m h

+ +
= × = × =

∴ N
1
 = 133.8 r.p.m.  Ans.

Maximum speed when  r
2 

= BG = 0.2 m

Let N
2 

= Maximum speed.

From Fig. 18.5 (b), we find that height of the governor,

2 2 2 2
2 ( ) – ( ) (0.25) – (0.2) 0.15 mh PG PB BG= = = =

We know that

                                  
2

2

2

895 5 15 895
( ) 23 867

5 0.15

m M
N

m h

+ +
= × = × =

∴                                   N
2    

= 154.5 r.p.m. Ans.
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Range of speed

We know that range of speed

= N
2 

– N
1 

= 154.4 – 133.8 = 20.7 r.p.m. Ans.

Example 18.3. The arms of a Porter governor are each 250 mm long and pivoted on the

governor axis. The mass of each ball is  5 kg and the mass of the central sleeve is 30 kg. The radius

of rotation of the balls is 150 mm when the sleeve begins to rise and reaches a value of 200 mm for

maximum speed. Determine the speed range of the governor. If the friction at the sleeve is equivalent

of 20 N of load at the sleeve, determine how the speed range is modified.

Solution. Given : BP = BD = 250 mm ; m = 5 kg ; M = 30 kg ; r
1 

= 150 mm ; r
2 

= 200 mm

First of all, let us find the minimum and maximum speed of the governor. The minimum and

maximum position of the governor is shown in Fig. 18.6 (a) and (b) respectively.

Let N
1 

= Minimum  speed  when r
1 

= BG = 150 mm, and

N
2 

= Maximum  speed  when r
2 

= BG = 200 mm.

Fig. 18.6

Speed range of the governor

From Fig. 18.6 (a), we find that height of the governor,

2 2 2 2
1 ( ) – ( ) (250) – (150) 200 mm 0.2 mh PG PB BG= = = = =

We know that

2
1

1

895 5 30 895
( ) 31 325

5 0.2

m M
N

m h

+ +
= × = × =

∴ N
1 

=  177 r.p.m.

From Fig. 18.6 (b), we find that height of the governor,

2 2 2 2
2 ( ) – ( ) (250) – (200) 150 mm 0.15 mh PG PB BG= = = = =

We know that

2
2

2

895 5 30 895
( ) 41 767

5 0.15

m M
N

m h

+ +
= × = × =

∴ N
2 

= 204.4 r.p.m.
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We know that speed range of the governor

= N
2 

– N
1 

= 204.4 – 177 = 27.4 r.p.m. Ans.

Speed range when friction at the sleeve is equivalent of 20

N of load (i.e. when F = 20 N)

We know that when the sleeve moves downwards,

the friction force (F) acts upwards and the minimum speed is

given by

     
2

1

1

. ( . – ) 895
( )

.

m g M g F
N

m g h

+
= ×

                
5 9.81 (30 9.81 – 20) 895

29500
5 9.81 0.2

× + ×
= × =

×

∴ N
1
 = 172 r.p.m.

We also know that when the sleeve moves upwards,

the frictional force (F) acts downwards and the maximum

speed is given by

2
2

2

. ( . ) 895
( )

.

m g M g F
N

m g h

+ +
= ×

                
5 9.81 (30 9.81 20) 895

44200
5 9.81 0.15

× + × +
= × =

×

∴ N
2
 = 210 r.p.m.

We know that speed range of the governor

= N
2 

– N
1 

= 210 – 172 = 38 r.p.m. Ans.

Example 18.4. In an engine governor of the Porter type, the upper and lower arms are 200 mm

and 250 mm respectively and pivoted on the axis of rotation. The mass of the central load is 15 kg,

the mass of each ball is 2 kg and friction of the sleeve together with the resistance of the operating

gear is equal to a load of 25 N at the sleeve. If the limiting inclinations of the upper arms to the

vertical are 30° and 40°, find, taking friction into account, range of speed of the governor.

Solution . Given :  BP = 200 mm = 0.2 m ; BD = 250 mm = 0.25 m ; M = 15 kg ; m = 2 kg ;

F = 25 N ; α
1 

= 30°; α
2 

= 40°

First of all, let us find the minimum and maximum speed of the governor.

The minimum and maximum position of the governor is shown Fig. 18.7 (a) and (b)

respectively.

Let N
1 

= Minimum  speed,  and

N
2 

= Maximum  speed.

From Fig. 18.7 (a), we find that minimum radius of rotation,

r
1 

= BG = BP sin 30° = 0.2 × 0.5 = 0.1 m

Height of the governor,

h
1 

= PG = BP cos 30° = 0.2 × 0.866 = 0.1732 m

A series of hydel generators.

Note : This picture is given as additional

information and is not a direct example of

the current chapter.
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and 2 2 2 2
( ) – ( ) (0.25) – (0.1) 0.23DG BD BG= = = m

∴ tan β
1 

= BG/DG = 0.1/0.23 = 0.4348

and tan α
1 

= tan 30° = 0.5774

∴
1

1

1

tan 0.4348
0.753

tan 0.5774
q

β
= = =

α

Fig. 18.7

We know that when the sleeve moves downwards, the frictional force (F) acts upwards and

the minimum speed is given by

1
2

1

1

. –
. (1 )

8952
( )

.

M g F
m g q

N
m g h

 
+ + 

 
= ×

15 9.81 – 24
2 9.81 (1 0.753)

8952
33596

2 9.81 0.1732

× 
× + + 

 
= × =

×

∴ N
1
 = 183.3 r.p.m.

Now from Fig. 18.7 (b),we find that maximum radius of rotation,

r
2 

= BG = BP sin 40° =  0.2 × 0.643 = 0.1268 m

Height of the governor,

h
2
 = PG = BP cos 40° = 0.2 × 0.766 = 0.1532 m

and 2 2 2 2
( ) – ( ) (0.25) – (0.1268) 0.2154 mDG BD BG= = =

∴ tan β
2
 = BG/DG = 0.1268 / 0.2154 = 0.59

and tan α
2
 = tan 40° = 0.839

∴
2

2

2

tan 0.59
0.703

tan 0.839
q

β
= = =

α
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We know that when the sleeve moves upwards, the frictional force (F) acts downwards and

the maximum speed is given by

                                     

2
2

2

2

.
. (1 )

8952
( )

.

m g F
m g q

N
m g h

+ 
+ + 

 
= ×

15 9.81 24
2 9.81 (1 0.703)

8952
49 236

2 9.81 0.1532

× + 
× + + 

 
= × =

×

∴ N
2 

= 222  r.p.m.

We know that range of speed

= N
2
 – N

1
 = 222 – 183.3 = 38.7 r.p.m. Ans.

Example 18.5. A Porter governor has all four arms 250 mm long. The upper arms are

attached on the axis of rotation and the lower arms are attached to the sleeve at a distance of 30 mm

from the axis. The mass of each ball is 5 kg and the sleeve has a mass of 50 kg. The extreme radii of

rotation are 150 mm and 200 mm. Determine the range of speed of the governor.

Solution. Given : BP = BD = 250 mm ; DH = 30 mm ; m  = 5 kg ; M  = 50 kg ;

r
1 

= 150 mm ; r
2 

= 200 mm

First of all, let us find the minimum and maximum speed of the governor. The minimum and

maximum position of the governor is shown in Fig. 18.8 (a) and (b) respectively.

Fig. 18.8

Let N
1 

= Minimum  speed  when r
1 

= BG = 150 mm ; and

N
2 

= Maximum  speed  when r
2 

= BG = 200 mm.

From Fig. 18.8 (a), we find that height of the governor,

2 2 2 2
1 ( ) – ( ) (250) – (150) 200 mm 0.2 mh PG BP BG= = = = =

BF  = BG – FG = 150 – 30 = 120 mm . . . (� FG = DH)
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and 2 2 2 2
( ) – ( ) (250) – (120) 219 mmDF DB BF= = =

∴ tan α
1
 = BG/PG = 150 / 200 = 0.75

and tan β
1
 = BF/DF = 120/219 = 0.548

∴
1

1

1

tan 0.548
0.731

tan 0.75
q

β
= = =

α

We know that  
1

2
1

1

50
(1 ) 5 (1 0.731)

895 8952 2( ) 43206
5 0.2

M
m q

N
m h

+ + + +

= × = × =

∴ N
1
 = 208 r.p.m.

From Fig. 18.8(b), we find that height of the governor,

2 2 2 2
2 ( ) ( ) (250) (200) 150 mm 0.15 mh PG BP BG= = − = − = =

BF = BG – FG = 200 – 30 = 170 mm

and                                          2 2 2 2
( ) ( ) (250) (170) 183mmDF DB BF= − = − =

∴                           tan α
2
= BG/PG = 200/150 = 1.333

and                                      tan β
2
= BF/DF = 170/183 = 0.93

2
2

2

tan 0.93
0.7

tan 1.333
q

β
∴ = = =

α

We know that

                                   
2

2
2

2

50
(1 ) 5 (1 0.7)

895 8952 2( ) 56 683
5 0.15

M
m q

N
m h

+ + + +

= × = × =

∴  N
2 

= 238 r.p.m.

We know that range of speed

      = N
2 

– N
1 

= 238 – 208 = 30 r.p.m. Ans.

Example 18.6. The arms of a Porter governor are 300 mm long. The upper arms are pivoted

on the axis of rotation. The lower arms are attached to a sleeve at a distance of 40 mm from the axis

of rotation. The mass of the load on the sleeve is 70 kg and the mass of each ball is 10 kg. Determine

the equilibrium speed when the radius of rotation of the balls is 200 mm. If the friction is equivalent

to a load of 20 N at the sleeve, what will be the range of speed for this position ?

Solution. Given : BP = BD = 300 mm ;  DH = 40 mm ;  M = 70 kg ;  m = 10 kg ;  r = BG = 200 mm

Equilibrium speed when the radius of rotation r = BG = 200 mm

Let N  = Equilibrium  speed.

The equilibrium position of the governor is shown in Fig. 18.9. From the figure, we find that

height of the governor,

                                       2 2 2 2
( ) – ( ) (300) – (200) 224 mmh PG BP BG= = = =

                                          =  0.224m
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     ∴                                BF = BG – FG = 200 – 40 = 160

. . . (�  FG = DH)

and      2 2 2 2
( ) – ( ) (300) – (160) 254 mmDF DB BF= = =

∴ tan α = BG/PG = 200 / 224 = 0.893

and           tan β = BF/DF = 160 / 254 = 0.63

∴       
tan 0.63

0.705
tan 0.893

q
β

= = =
α

We know that

                     
2

(1 )
8952

M
m q

N
m h

+ +

= ×

   

70
10 (1 0.705)

8952 27 840
10 0.224

+ +

= × =

∴      N
2
  = 167 r.p.m. Ans.

Range of speed when friction is equivalent to load of 20 N

at the sleeve ( i.e. when F = 20 N)

Let     N
1 

= Minimum  equilibrium  speed,  and

         N
2 

= Maximum  equilibrium  speed.

We know that when the sleeve moves downwards,

the frictional force (F) acts upwards and the minimum equi-

librium speed is given by

                 2
1

. –
. (1 )

8952
( )

.

M g F
m g q

N
m g h

 
+ + 

 
= ×

                            

70 9.81 – 20
10 9.81 (1 0.705)

8952
27 144

10 9.81 0.224

× 
× + + 

 
= × =

×

∴      N
1
 = 164.8 r.p.m.

We also know that when the sleeve moves upwards, the frictional force (F) acts downwards

and the maximum equilibrium speed is given by

         2
2

.
. (1 )

8952
( )

.

M g F
m g q

N
m g h

+ 
+ + 

 
= ×

                    

70 9.81 20
10 9.81 (1 0.705)

8952
28 533

10 9.81 0.224

× + 
× + + 

 
= × =

×

∴     N
2
 = 169 r.p.m.

Fig. 18.9

An 18th century governor.
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We know that range of speed

= N
2 

– N
1 

= 169 – 164.8 = 4.2 r.p.m. Ans.

Example 18.7. A loaded Porter governor has four links each 250 mm long, two revolving

masses each of 3 kg and a central dead weight of mass 20 kg. All the links are attached to respective

sleeves at radial distances of 40 mm from the axis of rotation. The masses revolve at a radius of 150

mm at minimum speed and at a radius of 200 mm at maximum speed. Determine the range of speed.

Solution.  Given : BP = BD = 250 mm ; m = 3 kg ;  M  = 20 kg ;  PQ = DH = 40 mm ;

r
1 

= 150 mm ; r
2 

= 200 mm

First of all, let us find the minimum and maximum speed of the governor.

The minimum and maximum position of the governor is shown in Fig. 18.10 (a) and (b) respectively.

Let N
1 

=   Minimum  speed  when r
1 

= BG = 150 mm, and

N
2 

= Minimum  speed  when r
2 

= BG = 200 mm.

From Fig. 18.10 (a), we find that

BF = BG – FG = 150 – 40 = 110 mm

and sin α
1 

=  BF / BP = 110 / 250 = 0.44 or α
1 

= 26.1°

∴ Height of the governor,

h
1 

= OG  = BG / tan α
1 

= 150 / tan 26.1° = 306 mm = 0.306 m

Fig. 18.10

Since all the links are attached to respective sleeves at equal distances (i.e.40 mm) from the

axis of rotation, therefore

tan α
1 

= tan β
1

or q = 1

We know that
2

1

1

895 3 20 895
( ) 22424

3 0.306

m M
N

m h

+ +
= × = × =

        N
1 

= 150 r.p.m.
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Now from Fig. 18.10 (b), we find that

BF = BG – FG = 200 – 40   =   160  mm

and sin α
2 

= BF/BP = 160 / 250 = 0.64 or β
2  

=  39.8°

∴ Height of the governor,

h
2 

= OG = BG / tan α
2 

= 200 / tan 39.8° = 240 mm = 0.24 m

In this case also,

tan α
2 

= tan β
2

      or q = 1

We know that            
2

2

2

895 3 20 895
( ) 28 590

3 0.24

m M
N

m h

+ +
= × = × =

∴                                    N
2 

= 169 r.p.m.

We know that range of speed

                                                 = N
2 

– N
1 

= 169 – 150 = 19 r.p.m. Ans.

Example 18.8. All the arms of a Porter governor are 178 mm long and are hinged at a

distance of 38 mm from the axis of rotation. The mass of each ball is 1.15 kg and mass of the sleeve

is 20 kg. The governor sleeve begins to rise at 280 r.p.m. when the links are at an angle of 30° to the

vertical. Assuming the friction force to be constant, determine the mini-

mum and maximum speed of rotation when the inclination of the arms

to the vertical is 45°.

Solution.  Given : BP = BD = 178 mm ; PQ = DH = 38 mm ;

m = 1.15 kg ; M = 20 kg ; N = 280 r.p.m. ; α = β = 30°

First of all, let us find the friction force (F). The equilibrium

position of the governor when the lines are at 30° to vertical, is shown

in Fig. 18.11. From the figure, we find that radius of rotation,

r = BG = BF + FG = BP × sin α + FG

= 178 sin 30° + 38 = 127 mm

and height of the governor,

h = BG / tan α

= 127 / tan 30° = 220 mm = 0.22 m

We know that

2 . ( ) 895

.

m g Mg F
N

m g h

+ ±
= ×

. . . (∴ tan α = tan β or q = 1)

2 1.15 9.81 20 9.81 895
(280)

1.15 9.81 0.22

F× + × ±
= ×

×

or

2
(280) 1.15 9.81 0.22

– 1.15 9.81 – 20 9.81
895

F
× × ×

± = × ×

= 217.5 – 11.3 – 196.2 = 10 N

We know that radius of rotation when inclination of the arms to the vertical is 45 (i.e. when

 α = β = 45°),

r = BG = BF + FG = BP × sin α + FG

= 178 sin 45° + 38 = 164 mm

Fig. 18.11
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and height of the governor,

h = BG / tan α = 164 / tan 45° = 164 mm = 0.164 m

Let N
1
 = Minimum speed of rotation, and

N
2
 = Maximum speed of rotation.

We know that

2
1

. ( . – ) 895
( )

.

m g M g F
N

m g h

+
= ×

1.15 9.81 (20 9.81 – 10) 895
95 382

1.15 9.81 0.164

× + ×
= × =

×

∴ N
1
 = 309 r.p.m. Ans.

and
2

2

. ( . ) 895
( )

.

m g M g F
N

m g h

+ +
= ×

1.15 9.81 (20 9.81 10) 895
105 040

1.15 9.81 0.164

× + × +
= × =

×

N
2
 = 324 r.p.m. Ans.

18.7. Proell Governor

The Proell governor has the balls fixed at B and C to the extension of the links DF and EG, as

shown in Fig. 18.12 (a). The arms FP and GQ are pivoted at P and Q respectively.

Consider the equilibrium of the forces on one-half of the governor as shown in Fig. 18.12 (b).

The instantaneous centre (I) lies on the intersection of the line PF produced and the line from D

drawn perpendicualr to the spindle axis. The prependicular BM is drawn on ID.

Fig. 18.12. Proell governor.

Taking moments about I, using the same notations as discussed in Art. 18.6 (Porter governor),

C

.
.

2 2

W M g
F BM w IM ID m g IM ID× = × + × = × + × . . . (i)

∴ C

.
.

2

IM M g IM MD
F m g

BM BM

+ 
= × +  

 
. . . ( �   ID = IM + MD)
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Multiplying and dividing by FM, we have

C

.
.

2

FM IM M g IM MD
F m g

BM FM FM FM

  
= × + +  

  

.
. tan (tan tan )

2

FM M g
m g

BM

 
= × α + α + β

 
 

. tan
tan . 1

2 tan

FM M g
m g

BM

  β
= × α + +  

α  

We know that   F
C 

= m.ω2 
r ; tan

r

h
α =  and 

tan

tan
q

β
=

α

∴
2 .

. . . (1 )
2

FM r M g
m r m g q

BM h

 
ω = × + +

 
 

and
2

(1 )
2

M
m q

FM g

BM m h

 
+ +

 
ω =  

 
  

. . . (ii)

Substituting ω = 2π N/60, and g = 9.81 m/s2, we get

2
(1 )

8952

M
m q

FM
N

BM m h

 
+ +

 
=  

 
  

. . . (iii)

Notes : 1. The equation (i) may be applied to any given configuration of the governor.

2.  Comparing equation (iii) with the equation (v) of the Porter governor (Art. 18.6), we see that the

equilibrium speed reduces for the given values of m, M and h. Hence in order to have the same equilibrium

speed for the given values of m, M and h, balls of smaller masses are used in the Proell governor than in the

Porter governor.

3.  When α = β, then q = 1. Therefore equation (iii) may be written as

2 895FM m M
N

BM m h

+ 
=  

 
(h being in metres) ...(iv)

Example 18.9. A Proell governor has equal arms of length 300 mm. The upper and lower

ends of the arms are pivoted on the axis of the governor. The extension arms of the lower links are

each 80 mm long and parallel to the axis when the radii of rotation of the balls are 150 mm and

200 mm. The mass of each ball is 10 kg and the mass of the central load is 100 kg. Determine the

range of speed of the governor.

Solution. Given : PF = DF = 300 mm ; BF = 80 mm ; m  = 10 kg ; M  = 100 kg ;

r
1 

= 150 mm; r
2 

= 200 mm

First of all, let us find the minimum and maximum speed of the governor. The minimum and

maximum position of the governor is shown in Fig. 18.13.

Let N
1 

= Minimum  speed  when  radius  of  rotation, r
1 

= FG = 150 mm ; and

N
2 

= Maximum  speed  when  radius  of  rotation , r
2 

= FG = 200 mm.

From Fig. 18.13 (a), we find that height of the governor,

2 2 2 2
1 ( ) – ( ) (300) – (150) 260 mm 0.26 mh PG PF FG= = = = =
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and FM = GD = PG = 260 mm = 0.26 m

∴ BM = BF + FM = 80 + 260 = 340 mm = 0.34 m

We know that
2

1

1

895
( )

FM m M
N

BM m h

+ 
=  

 
. . . (∴ α = β or q = 1)

           
0.26 10 100 895

28 956
0.34 10 0.26

+ 
= = 

 
 or   N

1
 = 170 r.p.m.

Fig. 18.13

Now from Fig. 18.13 (b), we find that height of the governor,

2 2 2 2
2 ( ) – ( ) (300) – (200) 224 mm 0.224 mh PG PF FG= = = = =

and FM = GD = PG = 224 mm = 0.224 m

∴ BM = BF +  FM = 80 + 224 = 304 mm = 0.304 m

We know that 
2

2

2

895
( )

FM m M
N

BM m h

+ 
=  

 
. . . (�  α = β or q = 1)

0.224 10 100 895
32 385

0.304 10 0.224

+ 
= = 

 

or N
2
 = 180 r.p.m.

We know that range of speed

= N
2 

– N
1 

= 180 – 170 = 10 r.p.m. Ans.

Note : The example may also be solved as discussed below :

From Fig. 18.13 (a), we find that

sin α = sin β = 150 / 300 = 0.5 or α = β = 30°

and MD = FG = 150 mm = 0.15 m

FM = FD cos β = 300 cos 30° = 260 mm = 0.26 m
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IM = FM tan α = 0.26 tan 30° = 0.15 m

BM = BF + FM = 80 + 260 = 340 mm = 0.34 m

ID = IM + MD = 0.15 + 0.15 = 0.3 m

We know that centrifugal force,

 

2
2 21

C 1 1 1

2
( ) 10 0.15 0.0165 ( )

60

N
F m r N

π 
= ω = = 

 

Now taking moments about point I,

   C

.
.

2

M g
F BM m g IM ID× = × + ×

or
2

1

100 9.81
0.0165 ( ) 0.34 10 9.81 0.15 0.3

2
N

×
= × × + ×

0.0056 (N
1
)2 = 14.715 + 147.15 = 161.865

∴
2

1

161.865
( ) 28 904

0.0056
N = =    or N

1
 = 170 r.p.m.

Similarly N
2 

may be calculated.

Example 18.10. A governor of the Proell type has each arm 250 mm long. The pivots of the

upper and lower arms are 25 mm from the axis. The central load acting on the sleeve has a mass of

25 kg and the each rotating ball has a mass of 3.2 kg. When the governor sleeve is in mid-position,

the extension link of the lower arm is vertical and the radius of the path of rotation of the masses is

175 mm. The vertical height of the governor is 200 mm.

If the governor speed is 160 r.p.m. when in mid-position, find : 1. length of the extension

link; and 2. tension in the upper arm.

Note : This picture is given as additional information and is not a direct example of the current chapter.

An overview of a combined cycle power plant. Governors are used in power plants to control the

flow of working fluids.
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Solution. Given : PF = DF = 250 mm = 0.25 m ; PQ = DH = KG = 25 mm = 0.025 m ;

M = 25 kg ; m = 3.2 kg ; r = FG = 175 mm = 0.175 m ; h = QG = PK = 200 mm = 0.2 m ; N = 160 r.p.m.

1. Length of the extension link

Let BF = Length  of  the  extension  link.

The Proell governor in its mid-position is shown

in Fig. 18.14.

From the figure, we find that

FM = GH = QG = 200 mm = 0.2 m

We know that

2 895FM m M
N

BM m h

+ 
=  

 

. . . (�  α = β or q = 1)

2 0.2 3.2 25 895 7887
(160)

3.2 0.2BM BM

+ 
= = 

 

∴ BM = 7887/(160)2 = 0.308 m

From Fig. 18.14,

BF = BM – FM = 0.308 – 0.2 = 0.108 m = 108 mm  Ans.

2. Tension in the upper arm

Let T
1

= Tension  in  the  upper  arm.

                       2 2 2 2
( ) – ( ) ( ) – ( – )PK PF FK PF FG KG= =

2 2
(250) – (175 – 25) 200 mm= =

cos α = PK/PF  = 200/250 = 0.8

and 1

25 9.81
cos 3.2 9.81 154 N

2 2

Mg
T mg

×
α = + = × + =

∴ 1

154 154
192.5 N

cos 0.8
T = = =

α
Ans.

Example 18.11. The following particulars refer to a

Proell governor with open arms :

Length of all arms = 200 mm ; distance of pivot of arms

from the axis of rotation = 40 mm ; length of extension of lower

arms to which each ball is attached = 100 mm ; mass of each ball

= 6 kg and mass of the central load = 150 kg. If the radius of

rotation of the balls is 180 mm when the arms are inclined at an

angle of 40° to the axis of rotation, find the equilibrium speed for

the above configuration.

Solution. Given : PF = DF = 200 mm ; PQ = DK =

HG = 40 mm ; BF = 100 mm ; m  = 6 kg; M  = 150 kg ;

r = JG = 180 mm = 0.18 m ; α = β = 40°

Let N = Equilibrium  speed. Fig. 18.15. All dimensions in mm.

Fig. 18.14. All dimensions in mm.
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From the equilibrium position of the governor, as shown in Fig. 18.15, we find that

PH = PF × cos 40°

= 200 × 0.766 = 153.2 mm

= 0.1532 m

and FH = PF × sin 40°= 200 × 0.643 = 128.6 mm

∴ JF = JG – HG – FH = 180 – 40 – 128.6 = 11.4 mm

and 2 2
( ) – ( )BJ BF JF=

2 2
(100) – (11.4) 99.4 mm= =

We know that BM = BJ + JM = 99.4 + 153.2 = 252.6 mm . . . (�JM = HD = PH)

IM = IN – NM = FH – JF = 128.6 – 11.4 = 117.2 mm

. . . (�  IN = ND = FH)

and ID = IN + ND = 2 × IN = 2 × FH = 2 × 128.6 = 257.2 mm

Now taking moments about the instantaneous centre I,

C

.
.

2

M g
F BM m g IM ID× = × + ×

C

150 9.81
252.6 6 9.81 117.2 257.2 196 125

2
F

×
× = × × + × =

∴ C

196 125
776.4 N

252.6
F = =

We know that centrifugal force (F
C
),

              

2

2 22
776.4 . . 6 0.18 0.012

60

N
m r N

π 
= ω = = 

 

∴
2 776.4

64700
0.012

N = = or N = 254 r.p.m. Ans.

Example 18.12.  A Proell governor has all four arms of length 305 mm. The upper arms are

pivoted on the axis of rotation and the lower arms are attached to a sleeve at a distance of 38 mm

from the axis. The mass of each ball is 4.8 kg and are attached to the extension of the lower arms

which are 102 mm long. The mass on the sleeve is 45 kg. The minimum and maximum radii of

governor are 165 mm and 216 mm. Assuming that the extensions of the lower arms are parallel to the

governor axis at the minimum radius, find the corresponding equilibrium speeds.

Solution. Given : PF = DF = 305 mm ; DH = 38 mm ; BF = 102 mm ; m = 4.8 kg ; M = 54 kg

Equilibrium speed at the minimum radius of governor

The radius of the governor is the distance of the point of intersection of the upper and lower

arms from the governor axis. When the extensions of the lower arms are parallel to the governor axis,

then the radius of the governor (FG) is equal to the radius of rotation (r
1
).
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The governor configuration at the minimum radius

(i.e. when FG = 165 mm) is shown in Fig. 18.16.

Let                  N
1 

= Equilibrium  speed  at the

    minimum radius i.e. when

   FG =  r
1 

= 165 mm.

From Fig. 18.16, we find that

                        
165

sin 0.541
305

FG

FP
α = = =

∴                   α = 32.75°

and                       tan α = tan 32.75° = 0.6432

   

–
sin

165 – 38
0.4164

305

FK FG KG

DF DF
β = =

= =

∴                    β = 24.6°

and                        tan β = tan 24.6° = 0.4578

We know that

                             
tan 0.4578

0.712
tan 0.6432

q
β

= = =
α

From Fig. 18.16, we find that height of the governor,

                                        2 2 2 2
( ) – ( ) (305) – (165) 256.5 mm 0.2565 mh PG PF FG= = = = =

                       MD  = FK = FG – KG = 165 – 38 = 127 mm

∴    2 2 2 2
( ) – ( ) (305) – (127) 277 mm 0.277 mFM DF MD= = = =

and                            BM =  BF + FM = 102 + 277 = 379 mm = 0.379 m

We know that

                      

2
1

(1 )
8952( )

M
m q

FM
N

BM m h

 
+ +

 
=  

 
  

                                 

54
4.8 (1 0.712)

0.277 8952 27 109
0.379 4.8 0.2565

 
+ +

 
= = 

 
  

∴                  N
1
 = 165 r.p.m. Ans.

Note : The valve of N
1 

may also be obtained by drawing the governor configuration to some suitable scale and

measuring the distances BM, IM and ID. Now taking moments about point I,

                  C

.
. ,

2

M g
F BM m g IM ID× = × + ×

where                          

2
2 1

C 1 1 1

2
Centrifugal force ( )

60

N
F m r m r

π 
= = ω =  

 

Equilibrium speed at the maximum radius of governor

Let                 N
2 

= Equilibrium speed at the maximum radius of governor, i.e. when F
1
G

1

                                    
= r

2 
= 216 mm.

Fig. 18.16

Also
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First of all, let us find the values of BD and γ in Fig. 18.16. We know that

2 2 2 2
( ) ( ) (397) (127) 400 mmBD BM MD= + = + =

and tan γ = MD/BM = 127/379 = 0.335 or γ = 18.5°

The governor configuration at the maximum ra-

dius of F
1
G

1 
= 216 mm is shown in Fig. 18.17. From the

geometry of the figure,

1 1
1

1 1

216
sin 0.7082

305

F G

P F
α = = =

∴ α
1
 = 45.1°

1 1 1 1 1 1
1

1 1 1 1

–
sin

216 – 38
0.5836

305

F K F G K G

F D F D
β = =

= =

∴ β
1
 = 35.7°

Since the extension is rigidly connected to the

lower arm (i.e. DFB or D
1
F

1
B

1 
is one continuous link)

therefore B
1
D

1 
and angle B

1
D

1
F

1 
do  not change. In other

words,

B
1
D

1 
= BD = 400 mm

and γ – β = γ
1 

– β
1 

or γ
1 

= γ – β + β
1

= 18.5° – 24.6° + 35.7° = 29.6°

∴ Radius of rotation,

r
2 

=  M
1
D

1
 + D

1
H

1
 = B

1
D

1
 × sin γ

1 
+ 38 mm

= 400 sin 29.6° + 38 = 235.6 mm = 0.2356 m

From Fig. 18.17, we find that

B
1
M

1
 = B

1
D

1
 × cos γ

1 
= 400 × cos 29.6° = 348 mm = 0.348 m

F
1
N

1
= F

1
D

1
 × cos β

1
 = 305 × cos 35.7° = 248 mm = 0.248 m

I
1
N

1
= F

1
N

1
 × tan α

1
 = 0.248 × tan 45.1° = 0.249 m

N
1
D

1
= F

1
D

1
 × sin β

1
 = 305 × sin 35.7 = 178 mm = 0.178 m

∴ I
1
D

1
= I

1
N

1
 + N

1
D

1
 = 0.249 + 0.178 = 0.427 m

M
1
D

1
= B

1
D

1
 sin γ

1
 = 400 sin 29.6° = 198 mm = 0.198 m

∴ I
1
M

1
= I

1
D

1
 − M

1
D

1
 = 0.427 – 0.198 = 0.229 m

We know that centrifugal force,
2

2 22
C 2 2 2

2
( ) 4.8 0.2356 0.0124 ( )

60

N
F m r N

π 
= ω = = 

 
Now taking moments about point I

1
,

C 1 1 1 1 1 1

.
.

2

M g
F B M m g I M I D× = × + ×

      
2

2

54 9.81
0.0124 ( ) 0.348 4.8 9.81 0.229 0.427

2
N

×
× = × × + ×

0.0043 (N
2
)2 = 10.873 + 113.1 = 123.883

Fig. 18.17



678  �   Theory of Machines

∴
2

2

123.883
( ) 28 810

0.0043
N = = or N

2 
= 170 r.p.m. Ans.

Note : The value of N
2 

may also be obtained by drawing the governor configuration to some suitable scale and

measuring the distances B
1
M

1
, I

1
M

1 
and I

1
D

1
.

18.8. Hartnell Governor

A Hartnell governor is a spring loaded governor as shown in Fig. 18.18. It consists of two

bell crank levers pivoted at the points O,O to the frame. The frame is attached to the governor spindle

and therefore rotates with it. Each lever carries a ball at the end of the vertical arm OB and a roller at

the end of the horizontal arm OR. A helical spring in compression provides equal downward forces

on the two rollers through a collar on the sleeve. The spring force may be adjusted by screwing a nut

up or down on the sleeve.

Let m = Mass of each ball in kg,

M = Mass of sleeve in kg,

r
1

= Minimum radius of rotation in

metres,

r
2

= Maximum radius of rotation in

metres,

ω
1

= Angular speed of the governor at

minimum radius in rad/s,

ω
2

= Angular speed of the governor at

maximum radius in rad/s,

S
1

= Spring force exerted on the sleeve

at ω
1 

in newtons,

S
2

= Spring force exerted on the sleeve

at ω
2 

in newtons,

F
C1

= Centrifugal force at ω
1 

in newtons = m (ω
1
)2 r

1
,

F
C2

= Centrifugal force at ω
2 

in newtons = m (ω
2
)2 

r
2
,

s = Stiffness of the spring or the force required to compress the spring by one mm,

x = Length of the vertical or ball arm of the lever in metres,

y = Length of the horizontal or sleeve arm of the lever in metres, and

r = Distance of fulcrum O from the governor axis or the radius of rotation when the

governor is in mid-position, in metres.

Consider the forces acting at one bell crank lever. The minimum and maximum position is

shown in Fig. 18.19. Let h be the compression of the spring when the radius of rotation changes from

r
1 

to r
2
.

For the minimum position i.e. when the radius of rotation changes from r to r
1
, as shown in

Fig. 18.19 (a), the compression of the spring or the lift of sleeve h
1 

is given by

1 1 1–h a r r

y x x
= = . . . (i)

Similarly, for the maximum position i.e. when the radius of rotation changes from r to r
2
, as

shown in Fig. 18.19 (b), the compression of the spring or lift of sleeve h
2 

is given by

2 2 2 –h a r r

y x x
= = . . . (ii)

Fig. 18.18. Hartnell governor.
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Adding equations (i) and (ii),

1 2 2 1–h h r r

y x

+
= or 2 1–r rh

y x
= . . . (�  h = h

1
 + h

2
)

∴ 2 1( – )
y

h r r
x

= . . . (iii)

Fig. 18.19

Now for minimum position, taking moments about point O, we get

1
1 C1 1 1

.
.

2

M g S
y F x m g a

+
× = × − ×

or 1 C1 1 1

1

2
. ( – . )M g S F x m g a

y
+ = × × . . . (iv)

Again for maximum position, taking moments about point O, we get

2
2 C2 2 2

.
.

2

M g S
y F x m g a

+
× = × + ×

or 2 C2 2 2

2

2
. ( . )M g S F x m g a

y
+ = × + × . . . (v)

Subtracting equation (iv) from equation (v),

2 1 C2 2 2 C1 1 1

2 1

2 2
– ( . ) – ( – . )S S F x m g a F x m g a

y y
= × + × × ×

We know that

S
2
 – S

1
 = h.s, and 2 1( – )

y
h r r

x
=

∴
2 1 2 1

2 1

– –

–

S S S S x
s

h r r y

 
= =  

 

Neglecting the obliquity effect of the arms (i.e. x
1 

= x
2 

= x, and y
1 

= y
2 

= y) and the moment

due to weight of the balls (i.e. m.g), we have for minimum position,

1
C1

.

2

M g S
y F x

+
× = × or 1 C1. 2

x
M g S F

y
+ = × . . . (vi)
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Similarly for maximum position,

2
C2

.

2

M g S
y F x

+
× = × or 2 C2. 2

x
M g S F

y
+ = × . . . (vii)

Subtracting equation (vi) from equation (vii),

2 1 C2 C1– 2 ( – )
x

S S F F
y

= ...(viii)

We know that

S
2
 – S

1
 = h.s, and

2 1( – )
y

h r r
x

=

∴

2

C2 C12 1

2 1

––
2

–

F FS S x
s

h r r y

   
= =    

  
. . . (ix)

Notes : 1. Unless otherwise stated, the obliquity effect of the arms and the moment due to the weight of the balls

is neglected, in actual practice.

2. When friction is taken into account, the weight of the sleeve (M.g) may be replaced by (M.g. ± F).

3. The centrifugal force (F
C
) for any intermediate position (i.e. between the minimum and maximum

position) at a radius of rotation (r) may be obtained as discussed below :

Since the stiffness for a given spring is constant for all positions, therefore for minimum and interme-

diate position,
2

C C1

1

–
2

–

F F x
s

r r y

   
=    

  
. . . (x)

and for intermediate and maximum position,
2

C2 C

2

–
2

–

F F x
s

r r y

   
=    

  
. . . (xi)

∴        From equations (ix), (x) and (xi),

C2 C1 C C1 C2 C

2 1 1 2

– – –

– – –

F F F F F F

r r r r r r
= =

or
1 2

C C1 C2 C1 C2 C2 C1

2 1 2 1

– –
( – ) – ( – )

– –

r r r r
F F F F F F F

r r r r

   
= + =   

   

Example 18.13. A Hartnell governor having a central sleeve spring and two right-angled

bell crank levers moves between 290 r.p.m. and 310 r.p.m. for a sleeve lift of 15 mm. The sleeve arms

and the ball arms are 80 mm and 120 mm respectively. The levers are pivoted at 120 mm from the

governor axis and mass of each ball is 2.5 kg. The ball arms are parallel to the governor axis at the

lowest equilibrium speed. Determine : 1. loads on the spring at the lowest and the highest equilib-

rium speeds, and 2. stiffness of the spring.

Solution. Given : N
1 

= 290 r.p.m. or ω
1 

= 2 π × 290/60 =  30.4 rad/s ; N
2 

= 310 r.p.m. or

ω
2 

= 2 π × 310/60 = 32.5 rad/s ; h = 15 mm = 0.015 m ; y = 80 mm = 0.08 m ; x = 120 mm =

0.12 m ; r = 120 mm = 0.12 m ; m = 2.5 kg

1. Loads on the spring at the lowest and highest equilibrium speeds

Let S
 
 = Spring  load  at  lowest  equilibrium  speed, and

S
2 

= Spring load at highest  equilibrium speed.

Since the ball arms are parallel to governor axis at the lowest equilibrium speed (i.e. at

N
1 

= 290 r.p.m.), as shown in Fig. 18.20 (a), therefore

r = r
1 

= 120 mm = 0.12 m
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We know that centrifugal force at the minimum speed,

F
C1 

= m (ω
1
)2 r

1 
=  2.5 (30.4)2  0.12 = 277 N

Now let us find the radius of rotation at the highest equilibrium speed, i.e. at N
2 

= 310 r.p.m.

The position of ball arm and sleeve arm at the highest equilibrium speed is shown in Fig. 18.20 (b).

Let r
2 

= Radius of rotation at N
2 

= 310 r.p.m.

We know that 2 1( – )
y

h r r
x

=

or 2 1

0.12
0.12 0.015 0.1425 m

0.08

x
r r h

y

   
= + = + =   

  

∴  Centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r

2 
= 2.5 × (32.5)2 × 0.1425 = 376 N

Fig. 18.20

Neglecting the obliquity effect of arms and the moment due to the weight of the balls, we

have for lowest position,

1 C1

0.12
. 2 2 277 831 N

0.08

x
M g S F

y
+ = × = × × =

∴ S
2

= 831 N Ans.             (�  M = 0)

and for highest position,

2 C2

0.12
. 2 2 376 1128 N

0.08

x
M g S F

y
+ = × = × × =

∴ S
1

= 1128 N Ans.             (�  M = 0)

2. Stiffness of the spring

We know that stiffness of the spring,

2 1– 1128 – 831
19.8 N/mm

15

S S
s

h
= = =  Ans.

Example 18.14. In a spring loaded Hartnell type governor, the extreme radii of rotation of

the balls are 80 mm and 120 mm. The ball arm and the sleeve arm of the bell crank lever are equal

in length. The mass of each ball is 2 kg. If the speeds at the two extreme positions are 400 and

420 r.p.m., find : 1. the initial compression of the central spring, and 2. the spring constant.
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Solution. Given : r
1
 = 80 mm = 0.08 m ; r

2 
= 120 mm = 0.12 m ; x = y ; m = 2 kg ; N

1 
= 400

r.p.m. or ω = 2 π × 400/60 = 41.9 rad/s ; N
2 

= 420 r.p.m. or ω
2 

= 2 π × 420/60 = 44 rad/s

Initial compression of the central spring

We know that the centrifugal force at the minimum speed,

F
C1

= m (ω
1
)2 r

1 
= 2 (41.9)2  0.08 = 281 N

and centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r

2 
= 2 (44)2  0.12 = 465 N

Let S
1

= Spring force at the minimum speed, and

S
2

= Spring force at the maximum speed.

We know that for minimum position,

1 C1. 2
x

M g S F
y

+ = ×

∴ S
1

= 2 F
C1 

= 2 × 281 = 562 N . . . (�M = 0 and x = y)

Similarly for maximum position,

2 C2. 2
x

M g S F
y

+ = ×

∴ S
2

= 2 F
C2

 = 2 × 465 = 930 N

We know that lift of the sleeve,

2 1 2 1( – ) – 120 – 80 40 mm
y

h r r r r
x

= = = =         . . . (�x  = y)

∴   Stiffness of the spring,

2 1– 930 – 562
9.2 N/mm

40

S S
s

h
= = =

We know that initial compression of the central spring

1 562
61 mm

9.2

S

s
= = =  Ans.

2. Spring constant

We have calculated above that the spring constant or stiffness of the spring,

s = 9.2 N/mm Ans.

Example 18.15. A spring loaded governor of the Hartnell type has arms of equal length. The

masses rotate in a circle of 130 mm diameter when the sleeve is in the mid position and the ball arms

are vertical. The equilibrium speed for this position is 450 r.p.m., neglecting friction. The maximum

sleeve movement is to be 25 mm and the maximum variation of speed taking in account the friction to

be 5 per cent of the mid position speed. The mass of the sleeve is 4 kg and the friction may be

considered equivalent to 30 N at the sleeve. The power of the governor must be sufficient to over-

come the friction by one per cent change of speed either way at mid-position. Determine, neglecting

obliquity effect of arms ; 1. The value of each rotating mass : 2. The spring stiffness in N/mm ; and

3. The initial compression of spring.

Solution.Given : x = y ; d = 130 mm or r = 65 mm = 0.065 m ; N = 450 r.p.m. or

ω = 2 π × 450/60 = 47.23 rad/s ; h = 25 mm = 0.025 m ; M = 4 kg ; F = 30 N

1. Value of each rotating mass

Let m = Value of each rotating mass in kg, and

S = Spring force on the sleeve at mid position in newtons.
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Since the change of speed at mid position to overcome friction is 1 per cent either way

(i.e. ± 1%), therefore

Minimum speed at mid position,

ω
 
= ω – 0.01ω = 0.99ω = 0.99 × 47.13 = 46.66 rad/s

and maximum speed at mid-position,

ω
2

= ω + 0.01ω = 1.01ω = 1.01 × 47.13 = 47.6 rad/s

∴   Centrifugal force at the minimum speed,

F
C1

= m (ω
1 

)2 r = m (46.66)2  0.065 = 141.5 m N

and centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r = m (47.6)2  0.0065 = 147.3 m N

We know that for minimum speed at mid-

position,

C1( . ) 2
x

S M g F F
y

+ + = ×

or S + (4 × 9.81 – 30) = 2 × 141.5 m × 1

. . . (�  x = y)

∴ S + 9.24 = 283 m . . . (i)

and for maximum speed at mid-position,

C2( . ) 2
x

S M g F F
y

+ + = ×

S  + (4 × 9.81 + 30) = 2 × 147.3 m × 1

. . . (�x = y)

∴ S + 69.24 = 294.6 m

. . . (ii)

From equations (i) and (ii),

m = 5.2 kg Ans.

2. Spring stiffness in N/mm

Let s = Spring stiffness in N/mm.

Since the maximum variation of speed, considering friction is ± 5% of the mid-position

speed, therefore,

Minimum speed considering friction,

ω
1
' = ω – 0.05ω = 0.95ω = 0.95 × 47.13 = 44.8 rad/s

and maximum speed considering friction,

ω
2
' = ω + 0.05ω = 1.05ω = 1.05 × 47.13 = 49.5 rad/s

We know that minimum radius of rotation considering friction,

1 1

0.025
– 0.065 – 0.0525 m

2

x
r r h

y
= × = =

1... , and
2

h
x y h

 
= = 

 

�

A steam turbine used in thermal power

stations.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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and maximum radius of rotation considering friction,

2 2

0.025
0.065 0.0775 m

2

x
r r h

y
= + × = + =

2... , and
2

h
x y h

 
= = 

 
�

∴   Centrifugal force at the minimum speed considering friction,

F
C1

' = m (ω′
1
)2 r

1 
= 5.2 (44.8)2  0.0525 = 548 N

and centrifugal force at the maximum speed considering friction,

F
C2

' = m (ω
2
')2 r

2 
= 5.2 (49.5)2  0.0775 = 987 N

Let S
1

= Spring force at minimum speed considering friction, and

S
2

= Spring force at maximum speed considering  friction.

We know that for minimum speed considering friction,

1 C1( . – ) 2
x

S M g F F
y

′+ = ×

S
1
 + (4 × 9.81 – 30) = 2 × 548 × 1 . . . (�  x = y)

∴ S
1
 + 9.24 = 1096 or S

1
 = 1096 – 9.24 = 1086.76 N

and for maximum speed considering friction,

2 C2( . ) 2
x

S M g F F
y

′+ + = ×

S
2
 + (4 × 9.81 + 30) = 2 × 987 × 1 . . . (�  x = y)

∴ S
2
 + 69.24 = 1974 or S

2
 = 1974 – 69.24 = 1904.76 N

We know that stiffness of the spring,

2 1– 1904.76 – 1086.76
32.72 N/mm

25

S S
s

h
= = = Ans.

3. Initial compression of the spring

We know that initial compression of the spring

1 1086.76
33.2 mm

32.72

S

s
= = = Ans.

Example 18.16. In a spring loaded governor of the Hartnell type, the mass of each ball is

1kg, length of vertical arm of the bell crank lever is 100 mm and that of the horizontal arm is 50 mm.

The distance of fulcrum of each bell crank lever is 80 mm from the axis of rotation of the governor.

The extreme radii of rotation of the balls are 75 mm and 112.5 mm. The maximum equilibrium speed

is 5 per cent greater than the minimum equilibrium speed which is 360 r.p.m. Find, neglecting obliq-

uity of arms, initial compression of the spring and equilibrium speed corresponding to the radius of

rotation of 100 mm.

Solution.  Given : m  = 1 kg ; x  = 100 mm = 0.1 m ; y  = 50 mm = 0.05 m ; r = 80 mm

= 0.08 m ; r
1 

= 75 mm = 0.075 m ; r
2 

= 112.5 mm = 0.1125 m ; N
1 

= 360 r.p.m. or

ω
1   

=  2 π × 360/60  =  37.7 rad/s

Since the maximum equilibrium speed is 5% greater than the minimum equilibrium speed

(ω
1
), therefore maximum equilibrium speed,

ω
2

= 1.05 × 37.7 = 39.6 rad/s

We know that centrifugal force at the minimum equilibrium speed,

F
C1

= m (ω
1
)2 r

1 
= 1 (37.7)2 0.075 = 106.6 N
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 and centrifugal force at the maximum equilibrium speed,

F
C2

= m (ω
2
)2 r

2 
= 1 (39.6)2 0.1125 = 176.4 N

Initial compression of the spring

Let S
1

= Spring force corresponding to ω
1
, and

S
2

= Spring force corresponding to ω
2
.

Since the obliquity of arms is neglected, therefore for minimum equilibrium position,

1 C1

0.1
. 2 2 106.6 426.4 N

0.05

x
M g S F

y
+ = × = × × =

∴ S
1

= 426.4 N           ...(�M = 0)

and for maximum equilibrium position,

2 C2

0.1
. 2 2 176.4 705.6 N

0.05

x
M g S F

y
+ = × = × × =

∴ S
2

= 705.6 N           ...(�M = 0)

We know that lift of the sleeve,

2 1

0.05
( – ) (0.1125 – 0.075) 0.018 75 m

0.1

y
h r r

x
= = =

and stiffness of the spring  
2 1– 705.6 – 426.4

14 890 N/m 14.89 N/mm
0.018 75

S S
s

h
= = = =

∴   Initial compression of the spring

1 426.4
28.6 mm

14.89

S

s
= = = Ans.

Equilibrium speed corresponding to radius of rotation r = 100 mm = 0.1 m

Let N = Equilibrium speed in r.p.m.

Since the obliquity of the arms is neglected, therefore the centrifugal force at any instant,

1
C C1 C2 C1

2 1

–
( – )

–

r r
F F F F

r r

 
= +  

 

0.1 – 0.075
106.6 (176.4 – 106.6) 153 N

0.1125 – 0.075

 
= + = 

 

We know that centrifugal force (F
C 

),

2

2 22
153 . . 1 0.1 0.0011

60

N
m r N

π 
= ω = = 

 

∴ N 2 = 153 / 0.0011 = 139 090     or N = 373 r.p.m. Ans.

Example 18.17. In a spring loaded governor of the Hartnell type, the mass of each ball is

5 kg and the lift of the sleeve is 50 mm. The speed at which the governor begins to float is 240 r.p.m.,

and at this speed the radius of the ball path is 110 mm. The mean working speed of the governor is 20

times the range of speed when friction is neglected. If the lengths of ball and roller arm of the bell

crank lever are 120 mm and 100 mm respectively and if the distance between the centre of pivot of

bell crank lever and axis of governor spindle is 140 mm, determine the initial compression of the

spring taking into account the obliquity of arms.

If friction is equivalent to a force of 30 N at the sleeve, find the total alteration in speed before

the sleeve begins to move from mid-position.
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Solution. Given : m = 5 kg ; h = 50 mm = 0.05 m ; N
1 

= 240 r.p.m. or ω
1 

= 2 π × 240/60 =

25.14 rad/s ; r
1 

= 110 mm = 0.11 m ; x  = 120 mm = 0.12 m ; y  = 100 mm = 0.1 m ;

r = 140 mm = 0.14 m ; F = 30 N

Initial compression of the spring taking into account the obliquity of arms

First of all, let us find out the maximum speed of rotation (ω
2
) in rad/s.

We know that mean working speed,

1 2

2

ω + ω
ω =

and range of speed, neglecting friction

= ω
2 

– ω
1

Since the mean working speed is 20 times the range of speed, therefore

ω = 20 (ω
2
 – ω

1
)

or
1 2

2 120 ( – )
2

ω + ω
= ω ω

25.14 + ω
2

= 40 (ω
2
 – 25.14) = 40 ω

2
 – 1005.6

∴ 40 ω
2
 – ω

2
= 25.14 + 1005.6 = 1030.74 or ω

2
 = 26.43 rad/s

The minimum and maximum position of the governor balls is shown in Fig. 18.21 (a) and (b)

respectively.

Let r
2

= Maximum radius of rotation.

We know that lift of the sleeve,

                           2 1( – )
y

h r r
x

=

or                           2 1

0.12
0.11 0.05 0.17 m

0.1

x
r r h

y
= + × = + × =

We know that centrifugal force at the minimum speed,

F
C1

= m (ω
1
)2 r

1
 = 5 (25.14)2 0.11 = 347.6 N

and centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r

2
 = 5 (26.43)2 0.17 = 593.8 N

Fig. 18.21

Since the obliquity of arms is to be taken into account, therefore from the minimum position

as shown in Fig. 18.21 (a),

a
1

= r – r
1
 = 0.14 – 0.11 = 0.03 m
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2 2 2 2
1 1– ( ) (0.12) – (0.03) 0.1162 mx x a= = =

and 2 2 2 2
1 1– ( ) (0.1) – (0.025) 0.0986 my y h= = =

. . . (�  h
1
 = h / 2 = 0.025 m)

Similarly, for the maximum position, as shown in Fig. 18.21 (b),

a
2

= r
2
 – r = 0.17 – 0.14 = 0.03 m

∴ x
2

= x
1
 = 0.1162 m . . . (�  a

2
 = a

1
)

and y
2

= y
1
 = 0.0986 m . . . (�  h

2
 = h

1
)

Now taking moments about point O for the minimum position as shown in Fig. 18.21 (a),

1
1 C1 1 1

.
– .

2

M g S
y F x m g a

+
× = × ×

1 0.0968 347.6 0.1162 – 5 9.81 0.03 38.9 N
2

S
× = × × × = . . . (�  M = 0)

∴                   S
1
 = 2 × 38.9/0.0968 = 804 N

Similarly, taking moments about point O for the maximum position as shown in Fig. 18.21 (b),

2
2 C2 2 2

.
.

2

M g S
y F x m g a

+
× = × + ×

2 0.0968 593.8 0.1162 5 9.81 0.03 70.47 N
2

S
× = × + × × = . . . (�M = 0)

∴ S
2

= 2 × 70.47/0.0968 = 1456 N

We know that stiffness of the spring

2 1– 1456 – 804
13.04 N/mm

50

S S
s

h
= = =

∴   Initial compression of the spring

1 804
61.66 mm

13.04

S

s
= = =  Ans.

Total alternation in speed when friction is taken into account

We know that spring force for the mid-position,

                                         S = S
1
 + h

1
.s =8.4 + 25 × 13.04 = 1130  N   . . . (� h

1
 = h / 2 = 25 mm)

and mean angular speed,
1 2 25.14 26.43

25.785 rad/s
2 2

ω + ω +
ω = = =

or N = ω × 60 / 2π = 25.785 × 60 / 2π = 246.2 r.p.m.

∴   Speed when the sleeve begins to move downwards from the mid-position,

– 1130 – 30
246.2 243 r.p.m.

1130

S F
N N

S
′ = = =

and speed when the sleeve begins to move upwards from the mid-position,

1130 30
246.2 249 r.p.m.

1130

S F
N N

S

+ +
′′ = = =

∴  Alteration in speed        = N'' – N' = 249 – 243 = 6 r.p.m. Ans.
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Example 18.18. Fig. 18.22 shows diagram-

matically a centrifugal governor. The masses ‘m’ are

directly connected to one another by two parallel and

identical close coiled springs, one on either side. In

the position shown, with the mass arms parallel to

the axis of rotation, the equilibrium speed is 900

r.p.m. Given ball circle radius = 70 mm ; length of

ball arm = 85 mm and length of sleeve arm = 50

mm.

1. When the speed is increased by 1% without

any change of radius for the given position, an axial

force of 30 N is required at the sleeve to maintain

equilibrium. Determine the mass of each ball.

2. Find the stiffness and initial extension of each

spring, if the rate of sleeve movement, when in mid position is 20 mm for 480 r.p.m.   change of speed.

Solution. Given : N  = 900 r.p.m. or ω = 2 π × 900/60 = 94.26 rad/s ; r = 70 mm

= 0.07 m; x  = 85 mm = 0.085 m ; y  = 50 mm = 0.05 m ; W  = 30 N

1. Mass of each ball

Let m = Mass of each ball in kg.

We know that centrifugal force at the equilibrium speed,

F
C
 = m.ω2.r = m (94.26)2 0.07 = 622 mN

Since the speed is increased by 1% without any change of radius, therefore increased speed,

ω
1
 = ω + 0.01 ω = 1.01 ω = 1.01 × 94.26 = 95.2 rad/s

and centrifugal force at the increased speed,

F
C1

 = m (ω
1
)2 r = m (95.2)2 0.07 = 634.4 mN

Now taking moments about point O as shown in Fig. 18.23, we get

C1 C( – ) 0.085 0.05
2

W
F F = ×

30
(634.4 – 622 ) 0.085 0.05 0.75

2
m m = × =

1.054 m = 0.75

or m = 0.75/1.054 = 0.7 kg Ans.

2. Stiffness and initial extension of each spring

Let s = Stiffness of each spring.

We know that centrifugal force at the equilibrium speed, i.e. at 900 r.p.m.

F
C

= 622 m = 622 × 0.7 = 435.4 N

Since the change of speed is 480 r.p.m., therefore increased speed,

N
2

= 900 + 480 = 1380 r.p.m.

∴  Angular increased speed,

ω
2

= 2 π × 1380/60 = 144.5 rad/s

Fig. 18.23

Fig. 18.22.
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Also, it is given that for 480 r.p.m. change of speed, the rate of sleeve movement is 20 mm, i.e.

                              h = 20 mm = 0.02 m

Let                         r = Radius of rotation at 900 r.p.m. = 0.07 m . . . (Given)

                              r
2 

= Radius of rotation at 1380 r.p.m.

We know that for the radius of rotation to change from r  to r
2 
, the increase in length of radius of

rotation is

                            2

0.085
– 0.02 0.034 m

0.05

x
r r h

y
= × = × =

∴                        r
2 

= r +
 
0.034 = 0.07 + 0.034 = 0.104 m

and centrifugal force at the increased speed (ω
2
),

                          F
C2

= m (ω
2
)2 r

2
 = 0.7 (144.5)2  0.104 = 1520 N

∴   Stiffness of each spring,

C2 C

2

–Increase in force for one ball 1520 – 435.4
=

Increase in length for each spring 2 ( – ) 2 (0.104 – 0.07)

F F
s

r r
= =

= 15 950 N/m = 15.95 N/mm Ans.

and initial extension of each spring

                                       C 435.4
27.3 mm

15.95

F

s
= = =  Ans.

Example 18.19. In a spring controlled governor

of the type, as shown in Fig. 18.24, the mass of each ball is

1.5 kg and the mass of the sleeve is 8 kg. The two arms of

the bell crank lever are at right angles and their lengths

are OB = 100 mm and OA = 40 m m. The distance of

the fulcrum O of each bell crank lever from the axis of

rotation is 50 mm and minimum radius of rotation of the

governor balls is also 50 m m. The corresponding

equilibrium speed is 240 r.p.m. and the sleeve is required

to lift 10 mm for an increase in speed of 5 per cent. Find

the stiffness and initial compression of the spring.

Solution.Given : m = 1.5 kg ; M  = 8 kg ; OB = x

= 100 mm = 0.1 m ; OA = y = 40 mm = 0.04 m ; r = 50 mm

= 0.05 m; r
1 

= 50 mm = 0.05 m ; N
1 

= 240 r.p.m. or

ω
1 

= 2 π × 240/60 = 25.14 rad/s ; h = 10 mm = 0.01 m ;

Increase in speed = 5%

Stiffness of the spring

The spring controlled governor of the type, as shown in Fig. 18.24, has the pivots for the bell

crank lever on the moving sleeve. The spring is compressed between the sleeve and the cap which is

fixed to the end of the governor shaft. The simplest way of analysing this type of governor is by taking

moments about the instantaneous centre of all the forces which act on one of the bell crank levers.

The minimum position of the governor is shown in Fig. 18.25 (a).

We know that the centrifugal force acting on the ball at the minimum equilibrium speed,

                            F
C1

 = m (ω
1
)2 r

1
 = 1.5 (25.14)2 0.05 = 47.4 N

Fig. 18.24



690  �   Theory of Machines

Let                           S
1
 = Spring force at the minimum equilibrium speed.

The instantaneous centre I for the bell crank lever coincides with the roller centre A . Taking

moments about A ,

                            
1

C1

.
.

2

M g S
F x m g OA

+ 
× = + 

 

                        
1

1

8 9.81
47.4 0.1 1.5 9.81 0.04 0.6 1.57 0.02

2

S
S

× + 
× = × + = + + 

 

                                 4.74 = 2.17 + 0.02 S
1
    or  

1

4.74 – 2.17
128.5 N

0.02
S = =

Fig. 18.25

The maximum position of the governor is shown in Fig. 18.25 (b). From the geometry of the

figure,

                 2 1–r r h

x y
=      or    2 1

0.1
0.05 0.01 0.075 m

0.04

x
r r h

y
= + × = + × =

Since the increase in speed is 5%, therefore the maximum equilibrium speed of rotation,

                                 N
2
= N

1 
+ 0.05 N

1
 = 1.05 N

1
 = 1.05 × 240 = 252 r.p.m.

or                                   ω
2
= 2 π × 252/60 = 26.4 rad/s

∴  Centrifugal force acting on the ball at the maximum equilibrium speed,

                                F
C2

= m (ω
2
)2 r

2
 = 1.5 (26.4)2 0.075 = 78.4 N

Let                         S
2
 = Spring force at the maximum equilibrium speed.

The instantaneous centre in this case lies at I as shown in Fig. 18.25 (b). From the geometry

of the figure,

                       2 2 2 2 2 2
( ) – ( ) – (0.04) – (0.01) 0.0387 mOI OA IA y h= = = =

                                   2 2 2 2
2 1( ) – ( ) – ( – )BD OB OD x r r= =

                                          2 2
(0.1) – (0.075 – 0.05) 0.097 m= =

                            ID = OI + OD = 0.0387 + (0.075 – 0.05) = 0.0637 m
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Now taking moments about I,

2
C2

.
.

2

M g S
F BD m g ID OI

+
× = × + ×

28 9.81
78.4 0.097 1.5 9.81 0.0637 0.0387

2

S× + 
× = × × +  

 

7.6 = 0.937 + 1.52 + 0.02 S
2
 = 2.457 + 0.019 S

2

∴
2

7.6 – 2.457
270.7 N

0.019
S = =

We know that stiffness of the spring,

2 1– 270.7 – 128.5
14.22 N/mm

10

S S
s

h
= = =  Ans.

Initial compression of the spring

We know that initial compression of the spring

1 128.5
9.04 mm

14.22

S

s
= = = Ans.

18.9. Hartung Governor

A spring controlled governor of the Hartung type is shown in Fig. 18.26 (a). In this type of

governor, the vertical arms of the bell crank levers are fitted with spring balls which compress against

the frame of the governor when the rollers at the horizontal arm press against the sleeve.

An overview of a thermal power station.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Let S = Spring force,

F
C

= Centrifugal force,

M = Mass on the sleeve, and

x and y = Lengths of the vertical and horizontal arm of the bell crank

lever respectively.

Fig. 18.26. Hartung governor.

Fig. 18.26 (a) and (b) show the governor in mid-position. Neglecting the effect of obliquity

of the arms, taking moments about the fulcrum O,

C

.

2

M g
F x S x y× = × + ×

Example 18.20. In a spring-controlled governor of the Hartung type, the length of the ball

and sleeve arms are 80 mm and 120 mm respectively. The total travel of the sleeve is 25 mm. In the

mid position, each spring is compressed by 50 mm and the radius of rotation of the mass centres is

140 mm. Each ball has a mass of 4 kg and the spring has a stiffness of 10 kN/m of compression. The

equivalent mass of the governor gear at the sleeve is 16 kg. Neglecting the moment due to the revolving

masses when the arms are inclined, determine the ratio of the range of speed to the mean speed of the

governor. Find, also, the speed in the mid-position.

Solution.Given : x = 80 mm = 0.08 mm ; y = 120 mm = 0.12 m ; h = 25 mm = 0.025 m ;

r = 140 mm = 0.14 m ; m = 4 kg ; s = 10 kN/m = 10 × 103 N/m ; M = 16 kg ; Initial compression

= 50 mm = 0.05 m

Mean speed of the governor

First of all, let us find the mean speed of the governor i.e. the speed when the governor is in

mid-position as shown in Fig. 18.27 (a).

Fig. 18.27
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Let ω = Mean angular speed in rad/s, and

N = Mean speed in r.p.m.

We know that the centrifugal force acting on the ball spring,

F
C

= m.ω2.r = 4 × ω2 × 0.14 = 0.56 ω2 N

and Spring force, S = Stiffness × Initial compression = 10 × 103 × 0.05 = 500 N

Now taking moments about point O, neglecting the moment due to the revolving masses, we

have

C

.

2

M g
F x S x y× = × + ×

2 16 9.81
0.56 0.08 500 0.08 0.12 40 9.42 49.42

2

×
ω × = × + × = + =

∴
2 49.42

1103
0.56 0.08

ω = =
×

or ω = 33.2 rad/s

and
33.23 60

317 r.p.m.
2

N
×

= =
π

 Ans.

Ratio of range of speed to mean speed

Let ω
1

= Minimum angular speed in rad/s, at the minimum radius of

rotation r
1
,

ω
2

= Maximum angular speed in rad/s, at the maximum radius of

rotation r
2
,

N
1
 and N

2
= Corresponding minimum and maximum speeds in r.p.m.

The minimum and maximum position is shown in Fig. 18.27 (b) and (c) respectively. First of

all, let us find the minimum speed N
1
.

From the geometry of the Fig. 18.27 (b),

1

1

–r r x

h y
= or 1 1

0.025 0.08
– 0.14 – 0.132 m

2 0.12

x
r r h

y
= × = × =

. . . (�  h
1
 = h/2)

We know that centrifugal force at the minimum position,

F
C1

= m (ω
1
)2 r

1
 = 4 (ω

1
)2 0.132 = 0.528 (ω

1
)2 N

and spring force at the minimum position,

S
1

= [Initial compression – (r – r
1
)] × Stiffness

= [0.05 – (0.14 – 0.132)] 10 × 103 = 420 N

Now taking moments about the fulcrum O, neglecting the obliquity of arms (i.e. taking x
1 
= x

and y
1 

= y),

C1 1

.

2

M g
F x S x y× = × + ×

2
1

16 9.81
0.528 ( ) 0.08 420 0.08 0.12 33.6 9.42 43.02

2

×
ω = × + × = + =

∴
2

1

43.02
( ) 1019

0.528 0.08
ω = =

×
or ω

1
 = 32 rad/s

and
1

32 60
305.5 r.p.m.

2
N

×
= =

π
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Now let us find the maximum speed N
2
. From the geometry of the Fig. 18.27 (c),

                          
2

2

–r r x

h y
=     or   2 2

0.025 0.08
0.14 0.148 m

2 0.12

x
r r h

y
= + × = + × =

. . . (∵  h
2
 = h/2)

We know that centrifugal force at the maximum position,

F
C2

= m (ω
2
)2 r

2
 = 4 (ω

2
)2 0.148 = 0.592 (ω

2
)2 N

and spring force at the maximum position,

S
2

= [Initial compression + (r
2
 – r) × Stiffness

= [0.05 + (0.148 – 0.14)] × 10 × 103 = 580 N

Now taking moments about the fulcrum O, neglecting obliquity of arms (i.e. taking x
2 
= x and

y
2 

= y),

C2 2

.

2

M g
F x S x y× = × + ×

2
2

16 9.81
0.592 ( ) 0.08 580 0.08 0.12 46.4 9.42 55.82

2

×
ω = × + × = + =

∴
2

2

55.82
( ) 1178

0.592 0.08
ω = =

×
or ω

2
 = 34.32 rad/s

and 2

34.32 60
327.7 r.p.m.

2
N

×
= =

π

We know that range of speed

= N
2
 – N

1
 = 327.7 – 305.5 = 22.2 r.p.m.

∴ Ratio of range of speed to mean speed

2 1– 22.2
0.07

317

N N

N
= = = or 7% Ans.

18.10.18.10.18.10.18.10.18.10. WWWWWilson-Harilson-Harilson-Harilson-Harilson-Hartnell Gotnell Gotnell Gotnell Gotnell Govvvvvererererernornornornornor

A Wilson-Hartnell governor is a governor in which the balls are connected by a spring in

tension as shown in Fig. 18.28. An auxiliary spring is attached to the sleeve mechanism through a

lever by means of which the equilibrium speed for a given radius may be adjusted. The main spring

may be considered of two equal parts each belonging to both the balls. The line diagram of a Wilson-

Hartnell governor is shown in Fig. 18.29.

                                      

Fig. 18.28 Fig. 18.29
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Let P = Tension in the main spring or ball spring A ,

S = Tension in the auxiliary spring B,

m = Mass of each ball,

M = Mass of sleeve,

s
b

= Stiffness of each ball spring,

s
a

= Stiffness of auxiliary spring,

F
C

= Centrifugal force of each ball, and

r = Radius of rotation of balls,

Now total downward force on the sleeve

= M.g + S  × b/a

Taking moments about O and neglecting the effect of the pull of gravity on the ball,

C

. /
( – )

2

M g S b a
F P x y

+ ×
= ×

Let suffixes 1 and 2 be used to denote the values at minimum and maximum equilibrium

speeds respectively.

∴  At minimum equilibrium speed,

1
C1 1

. /
( – )

2

M g S b a
F P x y

+ ×
= × . . . (i)

and at maximum equilibrium speed,

2
C2 2

. /
( – )

2

M g S b a
F P x y

+ ×
= × . . . (ii)

Subtracting equation (i) from equation (ii), we have

   C2 C1 2 1 2 1[( – ) – ( – )] ( – )
2

b y
F F P P x S S

a
= × . . . (iii)

When the radius increases from r
1 

to r
2
, the ball springs extend by the amount 2 (r

2
 – r

1
) and

the auxiliary spring extend by the amount 2 1( – )
y b

r r
x a

×

∴ P
2
 – P

1
= 2 s

b
 × 2 (r

2
 – r

1
) = 4 s

b
 (r

2
 – r

1
)

and 2 1 2 1– ( – )
a

y b
S S s r r

x a
= ×

Substituting the values of (P
2 

– P
1
) and (S

2 
– S

1
) in equation (iii),

     C2 C1 2 1 2 1[( – ) – 4 ( – )] ( – )
2

b a

y b b y
F F s r r x s r r

x a a
= × × ×

          

2

C2 C1 2 1 2 1( – ) – 4 ( – ) ( – )
2

a

b

s y b
F F s r r r r

x a

 
= × 

 

∴

2

C2 C1

2 1

–
4

2 –

a

b

s F Fy b
s

x a r r

 
+ × = 

 

Note : When the auxiliary spring is not used, then s
a 

= 0.

∴
C2 C1

2 1

–
4

–
b

F F
s

r r
= or

C2 C1

2 1

–

4 ( – )
b

F F
s

r r
=
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Example 18.21. The following particulars refer to a Wilson-Hartnell governor :

Mass of each ball = 2 kg ; minimum radius = 125 mm ; maximum radius = 175 mm ; minimum

speed = 240 r.p.m. ; maximum speed = 250 r.p.m. ; length of the ball arm of each bell crank lever = 150

mm; length of the sleeve arm of each bell crank lever = 100 mm ; combined stiffness of the two ball

springs = 0.2 kN/m. Find the equivalent stiffness of the auxiliary spring referred to the sleeve.

Solution.  Given : m = 2 kg ; r
1 

= 125 mm = 0.125 m ; r
2 

= 175 mm = 0.175 m ;

N
1 

= 240 r.p.m. or ω
1 

= 2 π × 240/60 = 25.14 rad/s ; N
2 

= 250 r.p.m. or ω
2 

= 2 π = 250/60

= 26.2 rad/s ; x = 150 mm = 0.15 m; y  = 100 mm = 0.1 m ; s
b 

= 0.2 kN/m = 200 N/m

Let s = Equivalent stiffness of the auxiliary spring referred to the sleeve

2

a

b
s

a

 
=  

 

We know that centrifugal force at the minimum speed,

F
C1

= m (ω
1
)2 r

1
 = 2 (25.14)2 0.125 = 158 N

and centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r

2
 = 2 (26.2)2 0.175 = 240 N

We know that

2

C2 C1

2 1

–
4

2 –

a

b

s F Fy b
s

x a r r

 
+ × = 

 

2
0.1 240 – 158

4 200 1640
2 0.15 0.175 – 0.125

bs b

a

 
× + × = = 

 

2

800 0.22 1640
a

b
s

a

 
+ = 

 

or

2

0.22 1640 – 800 840
a

b
s

a

 
= = 

 

∴

2

800 / 0.22 3818 N/m = 3.818 kN/m
a

b
s

a

 
= = 

 

 Ans.

Example 18.22. A spring loaded governor is shown

in Fig. 18.30. The two balls, each of mass 6 kg, are connected

across by two springs . An auxiliary spring B provides an

additional force at the sleeve through the medium of a lever

which pivots about a fixed centre at its left hand end. In the

mean position, the radius of the governor balls is 120 mm

and the speed is 600 r.p.m. The tension in each spring is

then 1 kN. Find the tension in the spring B for this position.

When the sleeve moves up 15 mm, the speed is to be

630 r.p.m. Find the necessary stiffness of the spring B, if the

stiffness of each spring A is 10 kN/m. Neglect the moment

produced by the mass of the balls.

Solution. Given : m = 6 kg ; r = r
1 

= 120 mm =  0.12 m ; N  = N
1 

= 600 r.p.m. or

ω
1
 = 2π × 600/60 = 62.84 rad/s

Tension in spring B

Let S
B1

= Spring force or tension in spring B, and

M.g = Total load at the sleeve.

Fig. 18.30
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We know that centrifugal force at the minimum speed,

F
C1

= m (ω
1
)2 r

1
 = 6 (62.84)2 0.12 = 2843 N

Since the tension in each spring A  is 1 kN and there are two springs, therefore

Total spring force in spring A ,

S
A1

= 2 × 1 = 2 kN = 2000 N

Taking moments about the pivot P (neglecting the moment produced by the mass of balls) in

order to find the force Mg on the sleeve, in the mean position as shown in Fig. 18.31 (a),

C1 A1

.
90 90 90

2

M g
F S× = × + × or C1 A1

.

2

M g
F S= +

∴ M.g = 2 F
C1

 – 2 S
A1 

= 2 × 2843 – 2 × 2000 = 1686 N

Now taking moments about point Q,

S
B1

 × 160 = M .g. (80 + 160) = 1686 × 240 = 404 640

∴ S
B1

= 404 640/160 = 2529 N Ans.

Fig. 18.31

Stiffness of the spring B

Given : h = 15 mm = 0.015 m ; N
2
 = 630 r.p.m. or ω

2
 = 2 π × 630/60 = 66 rad/s;

S
A

 = 10 kN/m = 10 × 103 N/m

Let s
B

= Stiffness of spring B.

The maximum position is shown in Fig. 18.31 (b).

First of all, let us find the maximum radius of rotation (r
2
) when the sleeve moves up by

0.015 m. We know that

                                         2 1( – )
y

h r r
x

=    or   2 1 0.12 0.015 0.135 m
x

r r h
y

= + × = + =

. . . (� x = y = 90 mm = 0.09 m)

∴  Centrifugal force at the maximum speed,

F
C2

= m (ω
2
)2 r

2
 = 6 (66)2 0.135 = 3528 N

We know that extension of the spring A ,

= 2 (r
2
 – r

1
) × No. of springs = 2 (0.135 – 0.12) 2 = 0.06 m
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∴   Total spring force in spring A ,

S
A2

= S
A1

 + Extension of springs × Stiffness of springs (s
A

)

= 2000 + 0.06 × 10 × 103 = 2600 N

Now taking moments about P, neglecting the obliquity of arms,

C2 A2

.
90 90 90

2

M g
F S× = × + × or C2 A2

.

2

M g
F S= +

∴ M.g = 2 F
C2

 – 2 S
A2

 = 2 × 3528 – 2 × 2600 = 1856 N

Again taking moments about point Q (neglecting the moment produced by the mass of balls)

in order to find the spring force (S
B2

) when sleeve rises as shown in Fig. 18.31 (b),

S
B2

 × 160 = M.g (80 + 160) = 1856 × 240 = 445 440

∴ S
B2

= 445 440 /160 = 2784 N

When the sleeve rises 0.015 m, the extension in spring B

160
0.015 0.01 m

80 160

 
= = 

+ 

∴  Stiffness of spring B,

B2 B1
B

– 2784 – 2529
25500 N/m

Extension of spring 0.01

S S
s

B
= = =

= 25.5 N/mm Ans.

18.11. Pickering Governor

A Pickering governor is mostly used for driving gramophone. It consists of *three straight

leaf springs arranged at equal angular intervals round the spindle. Each spring carries a weight at the

centre. The weights move outwards and the springs bend as they rotate about the spindle axis with

increasing speed.

Fig. 18.32. Pickering governor.

In Fig. 18.32 (a), the governor is at rest. When the governor rotates, the springs together with

the weights are deflected as shown in Fig. 18.32 (b). The upper end of the spring is attached by a

* Only two leaf springs are shown in Fig. 18.32.
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screw to hexagonal nut fixed to the governor spindle. The lower end of the spring is attached to a

sleeve which is free to slide on the spindle. The spindle runs in a bearing at each end and is driven

through gearing by the motor. The sleeve can rise until it reaches a stop, whose position is adjustable.

Let                     m  =  Mass attached at the centre of the leaf spring,

                          a   = Distance from the spindle axis  to the centre of gravity of the mass,

                                    when the governor is at rest,

                          ω = Angular speed of the governor spindle,

                          δ  = Deflection of the centre of the leaf spring at angular speed ω,

a + δ = Distance from the spindle axis to the centre of gravity of the mass,

when the governor is rotating, and

λ = Lift of the sleeve corresponding to the deflection δ.

We know that the maximum deflection of a leaf spring with both ends fixed and carrying a

load (W ) at the centre is,

3
.

192

W l

EI
δ = . . . (i)

where l = Distance between the fixed ends of the spring,

E = Young’s modulus of the material of the spring, and

I = Moment of inertia of its cross-section about the neutral axis 

3
.

12

b t
=

(where b and t are width and thickness of spring).

In case of a Pickering governor, the central load is the centrifugal force.

∴ W = F
C
 = m.ω2 (a + δ) . . . (ii)

Substituting the value of W  in equation (i), we have

2 3
. ( )

192 .

m a l

E I

ω + δ
δ =

Note: The empirical relation between the lift of the sleeve and the deflection δ is, 

2
2.4

l

δ
λ =  approximately.

Example 18.23. A gramophone is driven by a Pickering governor. The mass of each disc

attached to the centre of a leaf spring is 20 g. The each spring is 5 mm wide and 0.125 mm thick. The

effective length of each spring is 40 mm. The distance from the spindle axis to the centre of gravity of

the mass when the governor is at rest, is 10 mm. Find the speed of the turntable when the sleeve has

risen 0.8 mm and the ratio of the governor speed to the turntable speed is 10.5. Take E = 210 kN/mm2.

Solution.Given : m = 20 g =  0.02 kg ; b = 5 mm ; t = 0.125 mm ; a = 10 mm = 0.01 m ;

E = 210 kN/mm2 = 210 × 103 N/mm2

We know that moment of inertia of the spring about its neutral axis,

3 3
–3 4. 5 (0.125)

0.8 10 mm
12 12

b t
I = = = ×

Since the effective length of each spring is 40 mm and lift of sleeve (λ) = 0.8 mm, therefore

Length of spring between fixed ends,

l = 40 – 0.8 = 39.2 mm

We know that the central deflection (λ),

2 2
22.4 2.4

0.8 0.06
39.2l

δ δ
= = = δ
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∴ δ2 = 0.8/0.06 = 13.3       or δ = 3.65 mm

Let N = Speed of the governor, and

N
1

= Speed of the turntable.

∴ N/N
1

= 10.5

We know that

2 3
. ( )

192 .

m a l

E I

ω +δ
δ =

2 3 2
2

3 –3

0.02 (10 3.65) (39.2) 16 445
3.65 0.51

32256192 210 10 0.8 10

ω + ω
= = = ω

× × × ×

∴
2 3.65

7.156
0.51

ω = = or ω = 2.675 rad/s

and N = ω × 60/2π = 2.675 × 60/2π = 25.5 r.p.m. Ans.

∴ N
1

= N/10.5 = 25.5/10.5 = 2.43 r.p.m. Ans.

18.12. Sensitiveness of Governors

Consider two governors A  and B running at the same speed. When this speed increases or

decreases by a certain amount, the lift of the sleeve of governor A  is greater than the lift of the sleeve

of governor B. It is then said that the governor A  is more sensitive than the governor B.

In general, the greater the lift of the sleeve corresponding to a given fractional change in

speed, the greater is the sensitiveness of the governor. It may also be stated in another way that for a

given lift of the sleeve, the sensitiveness of the governor increases as the speed range decreases. This

definition of sensitiveness may be quite satisfactory when the governor is considered as an independent

mechanism. But when the governor is fitted to an engine, the practical requirement is simply that the

change of equilibrium speed from the full load to the no load position of the sleeve should be as small

a fraction as possible of the mean equilibrium speed. The actual displacement of the sleeve is immaterial,

provided that it is sufficient to change the energy supplied to the engine by the required amount. For

this reason, the sensitiveness is defined as the ratio of the difference between the maximum and

minimum equilibrium speeds to the mean equilibrium speed.

Let N
1

= Minimum equilibrium speed,

N
2

= Maximum equilibrium speed, and

N = Mean equilibrium speed 
1 2 .

2

N N+
=

∴     Sensitiveness of the governor

2 1 2 1

1 2

2( – )N N N N

N N N

−
= =

+

2 1

1 2

2( – )ω ω
=

ω + ω
. . . (In terms of angular speeds)

18.13. Stability of Governors

A governor is said to be stable when for every speed within the working range there is a

definite configuration i.e. there is only one radius of rotation of the governor balls at which the

governor is in equilibrium. For a stable governor, if the equilibrium speed increases, the radius of

governor balls must also increase.

Note : A governor is said to be unstable, if the radius of rotation decreases as the speed  increases.

...(Given)
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18.14. Isochronous Governors

A governor is said to be isochronous when the equilibrium speed is constant (i.e. range of

speed is zero) for all radii of rotation of the balls within the working range, neglecting friction. The

isochronism is the stage of infinite sensitivity.

Let us consider the case of a Porter governor running at speeds N
1 

and N
2 

r.p.m. We have

discussed in Art. 18.6 that

2
1

1

(1 )
8952( )

M
m q

N
m h

+ +

= × . . . (i)

and 2
2

2

(1 )
8952( )

M
m q

N
m h

+ +

= × . . . (ii)

For isochronism, range of speed should be zero i.e. N
2 

– N
1 

= 0 or N
2 

= N
1
. Therefore from

equations (i) and (ii), h
1 

= h
2
, which is impossible in case of a Porter governor. Hence a Porter

governor cannot be isochronous.

Now consider the case of a Hartnell governor running at speeds N
1 

and N
2 

r.p.m. We have

discussed in Art. 18.8 that
2

1
1 C1 1

2
. 2 2

60

Nx x
M g S F m r

y y

π 
+ = × = × × 

 
. . . (iii)

and

2

2
2 C2 2

2
. 2 2

60

Nx x
M g S F m r

y y

π 
+ = × = × × 

 
. . . (iv)

For isochronism, N
2 

= N
1
. Therefore from equations (iii) and (iv),

1 1

2 2

.

.

M g S r

M g S r

+
=

+

Note : The isochronous governor is not of practical

use because the  sleeve will move to one of its extreme

positions immediately the speed deviates from the

isochronous speed.

18.15. Hunting

A governor is said to be hunt if the speed

of the engine fluctuates continuously above and

below the mean speed. This is caused by a too

sensitive governor which changes the fuel supply

by a large amount when a small change in the

speed of rotation takes place. For example, when

the load on the engine increases, the engine speed

decreases and, if the governor is very sensitive,

the governor sleeve immediately falls to its lowest

position. This will result in the opening of the

control valve wide which will supply the fuel to the engine in excess of its requirement so that the

engine speed rapidly increases again and the governor sleeve rises to its highest position. Due to this

movement of the sleeve, the control valve will cut off the fuel supply to the engine and thus the engine

speed begins to fall once again. This cycle is repeated indefinitely.

Such a governor may admit either the maximum or the minimum amount of fuel. The effect

of this will be to cause wide fluctuations in the engine speed or in other words, the engine will hunt.

A forklift is used to carry small loads from one

place to the other inside a factory.
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18.16. Effort and Power of a Governor

The effort of a governor is the mean force exerted at the sleeve for a given percentage

change of speed* (or lift of the sleeve). It may be noted that when the governor is running steadily,

there is no force at the sleeve. But, when the speed changes, there is a resistance at the sleeve which

opposes its motion. It is assumed that this resistance which is equal to the effort, varies uniformly

from a maximum value to zero while the governor moves into its new position of equilibrium.

The power of a governor is the work done at the sleeve for a given percentage change of

speed. It is the product of the mean value of the effort and the distance through which the sleeve

moves. Mathematically,

Power = Mean effort × lift of sleeve

18.17. Effort and Power of a Porter Governor

The effort and power of a Porter governor may be determined as discussed below.

Let N = Equilibrium speed corresponding to the configuration as shown in

Fig. 18.33 (a), and

c = Percentage increase in speed.

∴ Increase in speed = c.N

and increased speed = N + c.N = N (1 + c)

The equilibrium position of the governor at the increased speed is shown in Fig. 18.33 (b).

Fig. 18.33

We have discussed in Art. 18.6 that when the speed is N r.p.m., the sleeve load is M.g.

Assuming that the angles α and β are equal, so that q = 1, then the height of the governor,

2

895
(in metres)

m M
h

m N

+
= × . . . (i)

When the increase of speed takes place, a downward force P will have to be exerted on the

sleeve in order to prevent the sleeve from rising. If the speed increases to (1 + c) N r.p.m. and the

height of the governor remains the same, the load on the sleeve increases to M
1
.g. Therefore

1

2 2

895
(in metres)

(1 )

m M
h

m c N

+
= ×

+
. . . (ii)

Equating equations (i) and (ii), we have

1

2
(1 )

m M
m M

c

+
+ =

+
or M

1
 = (m + M) (1 + c2) – m

and M
1
 – M = (m + M) (1 + c)2 – m – M = (m + M) [(1 + c)2 – 1] . . . (iii)

* In comparing different types of governors, it is convenient to take the change of speed as one per cent.
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A little consideration will show that (M
1 
– M)g is the downward force which must be applied

in order to prevent the sleeve from rising as the speed increases. It is the same force which acts on the

governor sleeve immediately after the increase of speed has taken place and before the sleeve begins

to move. When the sleeve takes the new position as shown in Fig. 18.33 (b), this force gradually

diminishes to zero.

Let P = Mean force exerted on the sleeve during the increase in speed or

the effort of the governor.

∴

2
1( – ) ( ) [(1 ) – 1]

2 2

M M g m M c g
P

+ +
= =

2
( ) [1 2 – 1]

( )
2

m M c c g
c m M g

+ + +
= = + . . . (iv)

. . . (Neglecting c2, being very small)

If F is the frictional force (in newtons) at the sleeve, then

P = c (m.g + M.g ± F)

We have already discussed that the power of a governor is the product of the governor effort

and the lift of the sleeve.

Let x = Lift of the sleeve.

∴ Governor power = P × x . . . (v)

If the height of the governor at speed N is h and at an increased speed (1 + c) N is h
1
, then

x = 2 (h – h
1
)

As there is no resultant force at the sleeve in the two equilibrium positions, therefore

2

895
,

m M
h

m N

+
= × and 1 2 2

895
,

(1 )

m M
h

m c N

+
= ×

+

∴
1

2

1

(1 )

h

h c

=

+
or 1 2

(1 )

h
h

c

=

+

We know that 1 2 2

1
2 ( – ) 2 – 2 1 –

(1 ) (1 )

h
x h h h h

c c

   
= = =   

+ +   

2

2

1 2 – 1 2
2 2

1 21 2

c c c
h h

cc c

   + +
= =   

++ +   
. . . (vi)

. . . (Neglecting c2, being very small)

Substituting the values of P and x in equation (v), we have

Governor power         

2
2 4

( ) 2 ( ) .
1 2 1 2

c c
c m M g h m M g h

c c

 
= + × = + 

+ + 
. . . (vii)

Notes : 1. If α is not equal to β, i.e. tan β / tan α = q, then the equations (i) and (ii) may be written as

2

(1 )
8952

M
m q

h
m N

+ +

= × . . . (viii)

When speed increases to (1 + c) N and height of the governor remains the same, then

1

2

(1 )
8952

(1 )

M
m q

h
m c N

+ +

= ×
+

. . . (ix)
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From equations (viii) and (ix), we have

1

2

(1 )
2(1 )

2 (1 )

M
m q

M
m q

c

+ +

+ + =
+

or
21 (1 ) (1 ) (1 ) –

2 2

M M
q m q c m

 
+ = + + +

 
 

∴

2
21 (1 )

(1 ) –
2 1 2 1

M m c M m
c

q q

+
= + +

+ +

or

2
21 (1 )

– (1 ) – –
2 2 1 2 1 2

M M m c M m M
c

q q

+
= + +

+ +

2 2
[ (1 ) – 1 ] [ (1 ) – 1 ]

1 2

m M
c c

q
= + + +

+

2
[ (1 ) – 1 ]

1 2

m M
c

q

 
= + + 

+ 

∴      Governor effort, 21 –
[1 2 – 1]

2 1 2

M M m M
P g c c g

q

  
= = + + +  

+   

2
(2 ) .

1 2 1

m M m
c g M c g

q q

   
= + = +   

+ +   
. . . (Neglecting c2)

The equation (vi) for the lift of the sleeve becomes,

2
(1 )

1 2

c
x q h

c

 
= +  

+ 

∴        
2 2

Governor power . (1 )
1 1 2

m c
P x M c g q h

q c

   
= × = + +   

+ +   

[ ]
2 2

2 4
2 (1 ) . (1 ) .

1 2 1 2 2

c c M
m M q g h m q g h

c c

 
= + + = + +

 
+ +  

2. The above method of determining the effort and power of a Porter governor may be followed for any

other type of the governor.

Example 18.24. A Porter governor has equal arms each 250 mm long and pivoted on the

axis of rotation. Each ball has a mass of 5 kg and the mass of the central load on the sleeve is 25 kg.

The radius of rotation of the ball is 150 mm when the governor begins to lift and 200 mm when the

governor is at maximum speed. Find the range of speed, sleeve lift, governor effort and power of the

governor in the following cases :

1. When the friction at the sleeve is neglected, and

2. When the friction at the sleeve is equivalent to 10 N.

Solution. Given : BP = BD = 250 mm ; m = 5 kg ; M = 25 kg ; r
1 

=150 mm ; r
2 

= 200 mm ;

F = 10 N

1. When the friction at the sleeve is neglected

First of all, let us find the minimum and maximum speed of rotation. The minimum and

maximum position of the governor is shown in Fig. 18.34 (a) and (b) respectively.

Let N
1

= Minimum speed, and

N
2

= Maximum speed.

From Fig. 18.34 (a),

          2 2 2 2
1 ( ) – ( ) (250) – (150) 200 mm 0.2 mh PG BP BG= = = = =
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From Fig. 18.34 (b),

2 2 2 2
2 ( ) – ( ) (250) – (200) 150 mm 0.15 mh PG BP BG= = = = =

We know that
2

1

1

895 5 25 895
( ) 26 850

5 0.2

m M
N

m h

+ +
= × = × =

∴ N
1

= 164 r.p.m.

and                                  
2

2

2

895 5 25 895
( ) 35 800

5 0.15

m M
N

m h

+ +
= × = × =

�                            N
2 

= 189 r.p.m.

Fig. 18.34

Range of speed

We know that range of speed

= N
2
 – N

1 
= 189 – 164 = 25 r.p.m. Ans.

Sleeve lift

We know that sleeve lift,

x = 2 (h
1
 – h

2
) = 2 (200 – 150) = 100 mm = 0.1 m Ans.

Governor effort

Let c = Percentage increase in speed.

We know that increase in speed or range of speed,

c.N
1

= N
2
 – N

1
 = 25 r.p.m.

∴ c = 25/N
1
 = 25/164 = 0.152

We know that governor effort

P = c (m + M) g = 0.152 (5 + 25) 9.81 = 44.7 N Ans.
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Power of the governor

We know that power of the governor

= P.x = 44.7 × 0.1 = 4.47 N-m Ans.

2. When the friction at the sleeve is taken into account

We know that
2

1

1

. ( . – ) 895
( )

.

m g M g F
N

m g h

+
= ×

5 9.81 (25 9.81 – 10) 895
25 938

5 9.81 0.2

× + ×
= × =

×

∴                           N
1
 = 161 r.p.m.

and                                 2
2

2

. ( . ) 895
( )

.

m g M g F
N

m g h

+ +
= ×

                                          
5 9.81 (25 9.81 10) 895

37 016
5 9.81 0.15

× + × +
= × =

×

            ∴                            N
2
 = 192.4 r.p.m.

Range of speed

We know that range of speed

= N
2
 – N

1
 = 192.4 – 161 = 31.4 r.p.m. Ans.

Sleeve lift

The sleeve lift (x) will be same as calculated above.

∴   Sleeve lift, x = 100 mm = 0.1 m Ans.

Governor effort

Let c = Percentage increase in speed.

We know that increase in speed or range of speed,

c.N
1

= N
2
 – N

1
 = 31.4 r.p.m.

∴ c = 31.4/N
1
 = 31.4/161 = 0.195

We know that governor effort,

P = c (m.g + M.g + F) = 0.195 (5 × 9.81 + 25 × 9.81 + 10) N

= 57.4 N Ans.

Power of the governor

We know that power of the governor

= P.x = 57.4 × 0.1 = 5.74 N-m Ans.

Example 18.25. The upper arms of a Porter governor has lengths 350 mm and are pivoted

on the axis of rotation. The lower arms has lengths 300 mm and are attached to the sleeve at a

distance of 40 mm from the axis. Each ball has a mass of 4 kg and mass on the sleeve is 45 kg.

Determine the equilibrium speed for a radius of rotation of 200 mm and find also the effort and

power of the governor for 1 per cent speed change.

Solution. Given : PB = 350 mm = 0.35 m ; BD = 300 mm = 0.3 m ; DE = 40 mm = 0.04 m ;

m = 4 kg ; M = 45 kg ; r = BG = 200 mm = 0.2 m ; c = 1% = 0.01
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Equilibrium speed

Let      N = Equilibrium speed.

The equilibrium position of the governor is shown in Fig.

18.35. From the geometry of the figure,

     2 2
( ) – ( )h PG PB BG= =

      2 2
(0.35) – (0.2) 0.287 m= =

      
0.2

tan 0.697
0.287

BG

PG
α = = =

∴ BH = BG – HG = 0.2 – 0.04 = 0.16 m

. . . (�  HG = DE)

and 2 2
( ) – ( )DH BD BH=

                                     2 2
(0.3) – (0.16) 0.254 m= =

∴ tan β = BH/DH = 0.16 / 0.254 = 0.63

and     
tan 0.63

0.904
tan 0.697

q
β

= = =
α

We know that

2

45
(1 ) 4 (1 0.904)

895 8952 2 36 517
4 0.287

M
m q

N
m h

+ + + +

= × = × =

∴ N = 191 r.p.m. Ans.

Effort of the governor

We know that effort of the governor,

2 2 4
0.01 45 9.81 4.8 N

1 1 0.904

m
P c M g

q

   ×
= + = + =   

+ +   

 Ans.

Power of the governor

We know that power of the governor

2
4

(1 ) .
1 2 2

c M
m q g h

c

 
= + +

 
+  

2
4 (0.01) 45

4 (1 0.904) 9.81 0.287 0.052 N-m
1 2 0.01 2

 
= + + × =

 
+ ×  

= 52 N-mm Ans.

Example 18.26. The radius of rotation of the balls of a Hartnell governor is 80 mm at the

minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve  has

lifted by 60 mm. Also determine the initial compression of the spring, the governor effort and the

power.

The particulars of the governor are given below:

Length of ball arm = 150 mm ; length of sleeve arm = 100 mm ; mass of each ball = 4 kg ; and

stiffness of the spring = 25 N/mm.

Fig. 18.35
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Solution. Given : r
1 

= 80 mm = 0.08 m ; N
1 

= 300 r.p.m. or ω
1
 = 2π × 300/60 = 31.42 rad/s ;

h = 60 mm = 0.06 m ; x = 150 mm = 0.15 m ; y = 100 mm = 0.1 m ; m = 4 kg ; s = 25 N/mm

Fig. 18.36

The minimum and maximum position of the governor is shown in Fig. 18.36 (a) and (b)

respectively. First of all, let us find the maximum radius of rotation (r
2
). We know that lift of the

sleeve,

2 1( – )
y

h r r
x

=

or 2 1

0.15
0.08 0.06 0.17 m

0.1

x
r r h

y
= + × = + × = . . . (�h = h

1
 + h

2
)

Maximum speed of rotation

Let N
2

= Maximum speed of rotation, and

S
1
 and S

2
= Spring force at the minimum and maximum speed respectively, in

newtons.

We know centrifugal force at the minimum speed,

F
C1

= m (ω
1
)2 r

1
 = 4 (31.42)2 0.08 = 316 N

Now taking moments about the fulcrum O of the bell crank lever when in minimum position

as shown in Fig 18.36 (a). The gravity effect is neglected, i.e. the moment due to the weight of balls,

sleeve and the bell crank lever arms is neglected.

∴
1

C1

.

2

M g S
F x y

+
× = × or 1 C1

0.15
2 2 316 948 N

0.1

x
S F

y
= × = × × =

            ...(�M =0)

We know that  S
2
 – S

1
 = h.s   or    S

2
 = S

1
 + h.s = 948 + 60 × 25 = 2448 N

We know that centrifugal force at the maximum speed,

        

2 2

2 22 2
C1 2 2 2 2

2 2
( ) 0.17 0.007 46 ( )

60 60

N N
F m r r m N

π π   
= ω = = =   

   

Now taking moments about the fulcrum O when in maximum position, as shown in Fig. 18.36 (b),

2
C2

.

2

M g S
F x y

+
× = ×

2
2

2448
0.007 46 ( ) 0.15 0.1

2
N = × or 0.001 12 (N

2
)2 = 122.4 . . . (�M = 0)

2
2

122.4
( ) 109 286

0.00112
N = = or N

2
 = 331 r.p.m. Ans.
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Initial compression of the spring

We know that initial compression of the spring

        1 948
37.92 mm

25

S

s
= = =  Ans.

Governor effort

We know that the governor effort,

        2 1– 2448 – 948
750 N

2 2

S S
P = = =  Ans.

Governor power

We know that the governor power

      = P × h = 750 × 0.06 = 45 N-m Ans.

Example 18.27. In a Hartnell governor, the lengths of ball and sleeve arms of a bell crank

lever are 120 mm and 100 mm respectively. The distance of the fulcrum of the bell crank lever from

the governor axis is 140 mm. Each governor ball has a mass of 4 kg. The governor runs at a mean

speed of 300 r.p.m. with the ball arms vertical and sleeve arms horizontal. For an increase of speed

of 4 per cent, the sleeve moves 10 mm upwards. Neglecting friction, find :

1. the minimum equilibrium speed if the total sleeve movement is limited to 20 mm, 2. the

spring stiffness, 3. the sensitiveness of the governor, and 4. the spring stiffness if the governor is to be

isochronous at 300 r.p.m.

Solution. Given : x = 120 mm = 0.12 m ; y = 100 mm = 0.1 m ; r = 140 mm = 0.14 m ;

m = 4 kg ; N = 300 r.p.m. or ω = 2π × 300/60 = 31.42 rad/s ; h
1 
= 10 mm = 0.01 m ; h = 20 mm = 0.02 m

1. Minimum equilibrium speed

Let N
1

= Minimum equilibrium speed,

r
1

= Radius of rotation in the minimum position, i.e. when the sleeve

moves downward, and

r
2

= Radius of rotation in the maximum position, i.e. when the sleeve

moves upward.

Since the increase in speed is 4%, therefore maximum speed,

N
2

= N + 0.04 N = 1.04 N = 1.04 × 300 = 312 r.p.m.

or ω
2

= 2π × 312 / 60 = 32.7 rad/s

We know that lift of the sleeve for the maximum position,

h
2

= h – h
1
 = 0.02 – 0.01 = 0.01 m

Now for the minimum position,

1 1–h r r

y x
= or 1 1

0.12
– 0.14 – 0.01 0.128 m

0.1

x
r r h

y
= × = × =

Similarly for the maximum position,

2 2 –h r r

y x
= or 2 2

0.12
0.14 0.01 0.152 m

0.1

x
r r h

y
= + × = + × =

We know that centrifugal force in the mean position,

F
C

= m.ω2.r = 4 (31.42)2 0.14 = 553 N

Centrifugal force in the minimum position,

2

2 21
C1 1 2 1

2
( ) 4 0.128 0.0056 ( )

60

N
F m r N

π 
= ω = = 

 
. . . (i)
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and centrifugal force in the maximum position,

F
C2

= m.(ω
2
)2 r

2
 = 4 (32.7)2 0.152 = 650 N

We know that centrifugal force at any instant,

1
C C1 C2 C1

2 1

–
( – )

–

r r
F F F F

r r

 
= +  

 

C1 C1 1

0.14 – 0.128
553 (650 – ) 0.5 325

0.152 – 0.128
C

F F F
 

= + = + 
 

∴ C1

553 – 325
456 N

0.5
F = = ...(ii)

From equations (i) and (ii),

2
1

456
( ) 81 428

0.0056
N = = or N

1
 = 285.4 r.p.m. Ans.

2. Spring stiffness

Let S
1
 and S

2
= Spring force at the minimum and maximum position.

Neglecting the effect of obliquity of arms, we have for the minimum position,

1
C1

.

2

M g S
y F x

+
× = × or

1 C1

0.12
2 2 456 1094.4 N

0.1

x
S F

y
= × = × × =

. . . (�M = 0)

and for the maximum position,

2
C2

.

2

M g S
y F x

+
× = × or 2 C2

0.12
2 2 650 1560 N

0.1

x
S F

y
= × = × × =

We know that spring stiffness,

2 1– 1560 – 1064.4
23.28 N/mm

20

S S
s

h
= = =  Ans.

3. Sensitiveness of the governor

We know that sensitiveness of the governor

2 1

1 2

2 ( – ) 2 (312 – 285.4)
0.089 or 8.9%

285.4 312

N N

N N
= = =

+ +
 Ans.

4. Spring stiffness for the governor to be isochronous at 300 r.p.m.

The governor is isochronous, when N = N
1 

= N
2 

= 300 r.p.m. or ω = ω
1
 = ω

2
 =  31.42 rad/s

∴ F
C1 

= m.ω2.r
1 

= 4 (31.42)2 0.128 = 505.5 N

and F
C2 

= m.ω2.r
2 

= 4 (31.42)2 0.152 = 600 N

We know that 1 C1

0.12
2 2 505.5 1213 N

0.1

x
S F

y
= × = × × =

and 2 C2

0.12
2 2 600 1440 N

0.1

x
S F

y
= × = × × =

∴ Spring stiffness, 2 1– 1440 – 1213
11.35 N/mm

20

S S
s

h
= = =  Ans.
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18.18. Controlling Force

We have seen earlier that when a body rotates in a circular

path, there is an inward radial force or centripetal force acting on it.

In case of a governor running at a steady speed, the inward force

acting on the rotating balls is known as controlling force. It is equal

and opposite to the centrifugal reaction.

∴   Controlling force,  F
C 

 =  m.ω2.r

The controlling force is provided by the weight of the sleeve

and balls as in Porter governor and by the spring and weight as in

Hartnell governor (or spring controlled governor).

When the graph between the controlling force (F
C
) as

ordinate and radius of rotation of the balls (r) as abscissa is drawn,

then the graph obtained is known as controlling force diagram. This diagram enables the stability

and sensitiveness of the governor to be examined and also shows clearly the effect of friction.

18.19. Controlling Force Diagram for Porter Governor

The controlling force diagram for a Porter governor is a curve as shown in Fig. 18.37. We

know that controlling force,
2

2
C

2
. .

60

N
F m r m r

π 
= ω =  

 

or

2 2

2 C1 60 1 60
(tan )

2 2

F
N

m r m

    
= = φ    

π π    

C... tan
F

r

 
= φ

 
 
�

∴

1/ 2
60 tan

2
N

m

φ 
=  

π  
. . . (i)

where φ is the angle between the axis of radius of rotation and a line joining a given point (say A ) on

the curve to the origin O.

Notes : 1. In case the governor satisfies the condition for stability, the angle φ must increase with radius of

rotation of the governor balls. In other words, the equilibrium speed must increase with the increase of radius of

rotation of the governor balls.

2. For the governor to be more sensitive, the change in the value of φ over the change of radius of

rotation should be as small as possible.

3. For the isochronous governor, the controlling force curve is a straight line passing through the

origin. The angle φ will be constant for all values of the radius of rotation of the governor. From equation (i)

22
2 2C . . 2

tan . .N
60

F m r N
m m C

r r

ω π 
φ = = = ω = = 

 

where

2
2

constant
60

C m
π 

= = 
 

Using the above relation, the angle φ may be determined for different values of N and the lines are drawn from

the origin*. These lines enable the equilibrium speed corresponding to a given radius of rotation to be determined.

Alternatively, the same results may be obtained more simply by setting-off a speed scale along any arbitrarily

chosen ordinate. The controlling force is calculated for one constant radius of rotation and for different arbitrarily

chosen values of speed. The values thus obtained are set-off along the ordinate that corresponds to the chosen

radius and marked with the appropriate speeds.

Fig. 18.37. Controlling

force diargram.

* See Example 18.28, Fig. 18.39.
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Example 18.28. In a Porter governor, the length of each arm is 300 mm and all the arms are

pivoted on the axis of rotation. The mass of each ball is 7.5 kg and the mass of the sleeve  is 45 kg.

The extreme radii of rotation are 150 mm and 225 mm. Draw the controlling force curve and set-off

a speed scale along the ordinate corresponding to a radius of 250 mm.

Solution. Given : l = 300 mm = 0.3 m ; m = 7.5 kg ; r
1 

= 150 mm = 0.15 m ; r
2 

= 225 mm

= 0.225m

Let F
C 

= Controlling force.

We have discussed in Art 18.6 that

C

. .
. tan – tan

2 2

M g M g
m g F

 
+ α = × β 

 

∴ C

. .
. tan tan

2 2

M g M g
F m g

 
= + α + × β 

 

=
. . tan

. tan
2 2 tan

M g M g
m g

 β
+ + × α 

α 

tan
Substituting , and tan , we get

tan

r
q

h

β
= α =

α

C

.
(1 ) .

2

M g r
F q m g

h

 
= + +

 
 

Since α = β as shown in Fig. 18.38, therefore q = 1.

∴                      C
2 2

( . . ) ( )

–

r r
F m g M g g m M

h l r

= + = + × 2 2
... –h l r =

  
�

The following table shows the values of F
C
 for different values of r.

r (in metres) 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

2 2
–h l r= 0.2894 0.2958 0.2905 0.2828 0.2727 0.2598 0.2437 0.2236 0.1985 0.1658

F
C 

(in newtons) 44.5 87 133 182 236 297 370 461 584 776

These values are plotted to draw the controlling force curve as shown in Fig. 18.39. In order

to set-off the speed scale along the ordinate through r = 250 mm = 0.25 m, we have

2

2 2
C

2
. . 7.5 0.25 0.02

60

N
F m r N

π 
= ω = = 

 

The values of F
C 

for different values of N are given in the following table.

N 100 125 150 160 170 180 190 200

(in r.p.m.)

F
C

200 312.5 450 512 578 648 722 800

(in newtons)

The speed scale is now marked on the graph as shown in Fig. 18.39.

Fig. 18.38
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Fig. 18.39

The range of equilibrium speeds for the governor is obtained by drawing lines from the origin

(shown dotted in Fig. 18.39 ) through the two points A  (when r = 0.15 m ) and B ( when r = 0.225 m)

on the controlling force curve.

From the graph, we see that these lines intersect the speed scale at approximately 160 r.p.m.

and 180 r.p.m. Ans.

18.20. Controlling Force Diagram for Spring-controlled Governors

The controlling force diagram for the spring controlled governors is a straight line, as shown

in Fig. 18.40. We know that controlling force,

F
C
 = m.ω2.r or F

C 
/r = m.ω2

The following points, for the stability of spring-controlled governors, may be noted :

1. For the governor to be stable, the controlling force (F
C
) must increase as the radius of rotation

(r) increases, i.e. F
C

/ r must increase as r increases. Hence the

controlling force line A B when produced must intersect the

controlling force axis below the origin, as shown in Fig. 18.40.

The relation between the controlling force (F
C
) and the

radius of rotation (r) for the stability of spring controlled

governors is given by the following equation

F
C
 = a.r – b . . . (i)

where a and b are constants.

2. The value of b in equation (i) may be made either

zero or positive by increasing the initial tension of the spring. If

b is zero, the controlling force line CD passes through the origin

and the governor becomes isochronous because F
C 

/r will

remain constant for all radii of rotation.

The relation between the controlling force and the radius of rotation, for an isochronous

governor is, therefore,

F
C
 = a.r . . . (ii)

3. If b is greater than zero or positive, then F
C 

/r decreases as r  increases, so that the equilibrium

speed of the governor decreases with an increase of the radius of rotation of balls, which is impracticable.

Fig. 18.40
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Such a governor is said to be unstable and the relation between the controlling force and the radius of

rotation is, therefore

F
C
 = a.r + b . . . (iii)

Example 18.29. The particulars of a governor of

the type as shown in Fig. 18.41, are as follows:

The mass of each ball is 1.5 kg and the mass of the

sleeve is 7.5 kg. The lengths of the ball arm and sleeve arm

of the bell crank lever are 112.5 mm and 50 mm respectively

and are at right angles to each other. The extreme radii of

rotation are 62.5 mm and 112.5 mm. At the minimum radius,

the ball arm is vertical and the spring load is 160 N. The

spring stiffness is 10.5 N/mm. Draw the controlling force

curve and mark the speed scale along the ordinate through

125 mm.

Solution. Given : m  = 1.5 kg ; M  = 7.5 kg ;

x = 112.5 mm = 0.1125 m ;  y = 50 mm = 0.05 m ; r
1 
= 62.5 mm

= 0.0625 m ; r
2 

= 112.5 mm = 0.1125 m ; S
1 

= 160 N ;

s = 10.5 N/mm = 10 500 N/m

Let S
1 

and S
2 

be  the  spring  loads  at  the minimum  and  maximum  radius  of  rotation.

The minimum and maximum position of the balls is shown in Fig. 18.42 (a) and (b)

respectively. Taking moments about the instantaneous centre I, for the maximum position as shown

in Fig. 18.42 (b),

Fig. 18.42

2
C2

.
.

2

M g S
F BD m g ID IO

+
× = × + ×

or
2

C2

.
cos . ( sin cos ) cos

2

M g S
F x m g x y y

+
× θ = θ + θ + × θ

∴
2

C2

.
. tan

2

M g Sy y
F m g

x x

+ 
= θ + + × 

 
. . .  (i)

We know that

S
2
 – S

1
= h.s = y sin θ × s

∴ S
2

= S
1
 + y sin θ × s = 160 + 0.05 × sin θ × 10 500

= 160 + 525 sin θ . . . (ii)

Fig. 18.41
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Now the equation (i) may be written as

           C2

0.05 7.5 9.81 160 525 sin 0.05
1.5 9.81 tan

0.1125 2 0.1125
F

× + + θ 
= × θ + + × 

 

                              = 14.7 tan θ + 116.5 sin θ + 58.5      ...(iii)

From the geometry of Fig. 18.42 (b), we find that

                         r
2
 = r

1
 + OD = r

1
 + x sin θ = 0.0625 + 0.1125 sin θ      ...(iv)

In order to determine the controlling force and the radius of rotation of the ball for different

values of θ, the angle θ is treated as variable. From equations (iii) and (iv), the values of controlling

force (F
C
) and radius of rotation (r) for different values of θ are tabulated below :

θ° 0 5 10 15 20 25 30

sin θ 0 0.0871 0.1736 0.2588 0.342 0.4226 0.5

tan θ 0 0.0875 0.1763 0.2679 0.364 0.4663 0.5773

F
C 

(N) 58.5 70 81.3 92.6 103.7 114.6 125.2

r (m) 0.0625 0.0723 0.082 0.092 0.101 0.11 0.1187

The graph between  F
C 

and r is plotted as shown in Fig. 18.43. It may be seen that the

controlling force curve is nearly a straight line.

Fig. 18.43
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In order to set off the speed scale along the ordinate through r = 125 mm = 0.125 m,
2

2 2
C

2
. . 1.5 0.125 0.00206

60

N
F m r N

π 
= ω = = 

 

The corresponding values of F
C 

and N are given in the following table :

N  (r.p.m.) 200 210 220 230 240 250 260

F
C 

(N) 82.4 90.8 99.7 109 118.6 128.7 139.2

The speed scale is now marked on the graph as shown in Fig. 18.43. The range of equilibrium

speeds for the governor is obtained by drawing lines from the origin (shown dotted in Fig. 18.43)

through the two points A  (when r = 0.0625 m) and B (when r = 0.1125 m) on the controlling force curve.

From the graph we see that these lines intersect the speed scale at approximately 238 r.p.m.

and 252 r.p.m. Ans.

18.21. Coefficient of Insensitiveness

In the previous articles, we have assumed the governor to be frictionless. In actual practice,

there is always friction in the joints and operating mechanism of the governor. Since the frictional

force always acts in the opposite direction to that of motion, therefore, when the speed of rotation

decreases, the friction prevents the downward movement of the sleeve and the radial inward movement

of the balls. On the other hand, when the speed of rotation increases, the friction prevents the upward

movement of the sleeve and radial outward movement of the balls.

Fig. 18.44

Let F
S

= Force required at the sleeve to overcome friction,

F
B

= Corresponding radial force required at each ball,

F
C

= Controlling force on each ball, and

W = Total load on the sleeve = M.g.

∴ For decrease in speed, sleeve load (taking friction into account),

W
1

= W  – F
S

or M
1
.g = M.g – F

S

and for increase in speed, sleeve load (taking friction into account),

W
2

= W  + F
S

or M
1
.g = M.g + F

S

Similarly, for decrease in speed, controlling force,

F
C1

= F
C 

– F
B

and for increase in speed, controlling force,

F
C2

= F
C 

+ F
B
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Thus for a Porter governor, as shown Fig. 18.44 (a), the relation between F
S 

and F
B 

may be

obtained by taking moments about the instantaneous centre I.

∴              
S

B ( )
2

F
F BM IM MD× = +

or
S S S

B

tan
(tan tan ) 1 tan

2 2 2 tan

F F FIM MD
F

BM

 + β 
= = α + β = + α  

α   

                                         
S S(1 ) tan (1 )

2 2

F F r
q q

h
= + α = + . . . (i)

tan
... , and tan

tan

r
q

h

 β
= α = 

α 

�

Similarly, for spring loaded governors as shown in Fig. 18.44 (b), taking moments about the

fulcrum O of the bell crank lever,

S
B

2

F
F x y× = × or B S

2

y
F F

x
= × . . . (ii)

Fig. 18.45 shows the effect of friction on the

controlling force diagram. We see that for one value of the

radius of rotation (i.e. OA), there are three values of controlling

force as discussed below:

1.  For speed decreasing, the controlling force reduces

to F
C1 

(or AD) and the corresponding speed on the speed scale

is N'.

2.  For speed increasing, the controlling force

increases to F
C2 

(or AC) and the corresponding speed on the

speed scale is N'.

3.  For friction neglected, the controlling force is

F
C 

( or A B) and the corresponding speed on the speed scale

is N .

From above, it is concluded that when the radius of rotation is OA, the speed of rotation may

vary within the limits N' and N'' without causing any displacement (up or down) of the governor

sleeve. The governor is said to be insensitive if the speed fluctuates over this range.

The ratio 
–N N

N

′′ ′
 is called the coefficient of insensitiveness of the governor.

Since the controlling force is proportional to the square of the speed at a given radius, therefore

for a governor speed N,

F
C
  ∝ N 2 or F

C
= C.N2 ...(iii)

Similarly, for speed N',

F
C1

= C (N')2 ...(iv)

and for speed N'', F
C2

= C (N'')2 ...(v)

Subtracting equation (iv) from equation (v), we have

F
C2

 – F
C1

= C [(N'')2 – (N')2]

or (F
C
 + F

B
) – (F

C
 – F

B
) = C [(N'')2 – (N')2]

2F
B

= C [(N'')2 – (N')2] ...(vi)

Fig. 18.45. Effect of friction

on controlling force.
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Dividing equation (vi) by equation (iii)

            

2 2
B

2 2
C

2 ( ) – ( ) ( ) ( – ) –F N N N N N N N N N N

F N NN N

′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′+ +
= = = ×

Since 
2

N N′′ ′+
 is approximately equal to N, therefore

B

C

2 –
2

F N N

F N

′′ ′
= ×

∴  Coefficient of insensitiveness

B

C

– FN N

N F

′′ ′
= = . . . (vii)

Notes : 1 In case of a Porter governor, as shown in Fig. 18.44 (a), (i.e. when the lower arm is not attached on the

governor axis),

S
B (1 )

2

F r
F q

h
= +

∴   Coefficient of insensitiveness

B S

C C

–
(1 )

2

N N F F r
q

N F F h

′′ ′
= = = + . . . (viii)

2. When all the arms of a Porter governor are attached to the governor axis, then q = 1. In that case,

B S

r
F F

h
= ×

∴  Coefficient of insensitiveness

B S

C C

–N N F F r

N F F h

′′ ′
= = = × . . . (ix)

3. In case of a Porter governor when all the arms are attached to the governor axis, the coefficient of

insensitiveness may also be determined as discussed below :

Let h = Height of the governor at the mean speed N, when friction is neglected,

F = Frictional force on the sleeve,

N' and N'' = Minimum and maximum speed when friction is taken into account.

We have discussed above that the governor is insensitive when the sleeve does not move downwards

when the speed falls to N' or upwards when the speed rises to N'' . In other words, the height of the governor (h)

remains the same for minimum and maximum speeds N' and N'' respectively. We know that

2 895m M
N

m h

+
= ×

Similarly,
2 . ( . – ) 895

( )
.

m g M g F
N

m g h

+
′ = ×

and
2 . ( . ) 895

( )
.

m g M g F
N

m g h

+ +
′′ = ×

Now (N'')2 – (N')2 = (N'' + N') (N'' – N') = 2 N (N'' – N') . ..
2

N N
N

′′ ′+ 
= 

 
�

∴

2 2
( ) – ( )

–
2

N N
N N

N

′′ ′
′′ ′ =
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and coefficient of insensitiveness

                                      

2 2

2

. ( . ) . ( . – )
–

– ( ) – ( ) . .

2
2

m g M g F m g M g F

N N N N m g m g

m MN N

m

+ + +

′′ ′ ′′ ′
= = =

+ 
 
 

                                              
1 2

2 ( ) ( )

F F

m M g m M g

 
= = 

+ + 
        ...(x)

4. In case of a Porter governor, when the upper arms are pivoted to the governor axis and the lower

arms are  at a certain distance from the governor axis i.e. when α is not equal to β (Refer Art. 18.6), then it may

be proved that

Coefficient of insensitiveness

                               
– (1 )

2 . . (1 )

N N F q

N m g M g q

′′ ′ +
=

+ +

5. In case of a Hartnell governor,

                                        B S
2

y
F F

x
= ×

∴  Coefficient of insensitiveness B S

C C

–

2

N N F F y

N F F x

′′ ′
= = = × ...(xi)

Example 18.30. A Porter governor has equal arms 200 mm long pivoted on the axis of

rotation. The mass of each ball is 3 kg and the mass on the sleeve is 15 kg. The ball path is 120 mm

when the governor begins to lift and 160 mm at the maximum speed. Determine the range of speed.

If the friction at the sleeve is equivalent to a force of 10 N, find the coefficient of insensitiveness.

Solution.Given : BP = BD = 200 mm = 0.2 m ; m = 3 kg ; M = 15 kg ; r
1 
= 120 mm = 0.12 m ;

r
2 

= 160 mm = 0.16 m ; F = 10 N

Range of speed

First of all, let us find the minimum and maximum speed of rotation.

Fig. 18.46

The minimum and maximum position of the balls is shown in Fig 18.46 (a) and (b) respectively.

Let N
1
 = Minimum speed, and

N
2
 = Maximum speed.
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From Fig. 18.46 (a), 2 2 2 2
1 ( ) – ( ) (0.2) – (0.12) 0.16 mh BP BG= = =

and from Fig. 18.46 (b), 2 2 2 2
2 ( ) – ( ) (0.2) – (0.16) 0.12 mh BP BG= = =

We know that  
2

1

1

895 3 15 895
( ) 33 563

3 0.16

m M
N

m h

+ +
= × = × =

∴ N
1
 = 183.2 r.p.m.

Similarly
2

2

1

895 3 15 895
( ) 44750

3 0.12

m M
N

m h

+ +
= × = × =

∴ N
2
 = 211.5 r.p.m.

We know that range of speed

= N
2
 – N

1
 = 211.5 – 183.2 = 28.3 r.p.m. Ans.

Coefficient of insensitiveness

We know that coefficient of insensitiveness,

                   
– 10

0.0566 5.66%
( ) (3 15) 9.81

N N F

N m M g

′′ ′
= = = =

+ +
 Ans.

Example 18.31. The following particulars refer to a Proell governor with open arms :

Length of all arms = 200 mm, distance of pivot of arms from the axis of rotation = 40 mm,

length of extension of lower arms to which the ball is attached = 100 mm, mass of each ball = 6 kg

and mass of the central load = 150 kg. If the radius of rotation of the balls is 180 mm when the arms

are inclined at 40° to the axis of rotation, find :

1. the equilibrium speed for the above configuration, 2. the coefficient of insensitiveness if

the friction of the governor mechanism is equivalent to a force of 20 N at the sleeve, and 3. the range

of speed between which the governor is inoperative.

Solution. Given : PF = FD = 200 mm = 0.2 m ; DK = 40 mm = 0.04 m ; BF = 100 mm

= 0.1 m ; m = 6 kg ; M = 150 kg ; r = JG = 180 mm = 0.18 m ; F = 20 N

1. Equilibrium speed

Let N = Equilibrium speed.

From the equilibrium position, as shown in Fig 18.47, we find that the height of the governor,

h = PH = PF cos 40°

= 0.2 × 0.766 = 0.1532 m

and FH = PF sin 40°

= 0.2 × 0.643 = 0.1286 m

∴ JF = JG – HG – FH

= 0.18 – 0.04 – 0.1286

= 0.0114 m

and 2 2
( ) – ( )BJ BF JF=

2 2
(0.1) – (0.0114)=

= 0.0993 m

BM = BJ + JM

= 0.0993 + 0.1532 = 0.2525 m . . . ( �  JM = MD = PH)

Fig. 18.47

All dimensions in mm.
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 IM = IN – MN = FH – JF = 0.1286 – 0.0114 = 0.1172 m

  ID = 2 × IN = 2 × FH = 2 × 0.1286 = 0.2572 m

We know that centrifugal force,

        

2

2 2
C

2
. . 6 0.18 0.012

60

N
F m r N

π 
= ω = = 

 

Now taking moments about I,

        C

.
.

2

M g
F BM m g IM ID× = × + ×

                  
2 150 9.81

0.012 0.2525 6 9.81 0.1172 0.2572
2

N
×

× = × × + ×

or                        0.003 03 N 2 = 6.9 + 189.2 = 196.1

∴                          N 2 = 196.1/0.003 03 = 64 720 or N = 254.4 r.p.m. Ans.

Coefficient of insensitiveness

Let N' and N'' = Minimum and maximum speed considering friction.

We know that centrifugal force at the minimum speed,

2

2 2
C

2
( ) 6 0.18 0.012 ( )

60

N
F m r N

′π ′ ′ ′= ω = = 
 

and centrifugal force at the maximum speed,

2

2 2
C

2
( ) 6 0.18 0.012 ( )

60

N
F m r N

′′π ′′ ′′ ′′= ω = = 
 

Taking moments about I, when sleeve moves downwards,

C

.
.

2

M g F
F BM m g IM ID

−
′ × = × + ×

               
2 150 9.81 20

0.012( ) 0.2525 6 9.81 0.1172 0.2572
2

N
× −

′ = × × + ×

0.003 03 (N')2 = 6.9 + 186.7 = 193.6

∴ (N')2 = 193.6/0.003 03 = 63 894 or N' = 252.8 r.p.m.

Again taking moments about I, when the sleeve moves upwards,

C

.
.

2

M g F
F BM m g IM ID

+′′ × = × + ×

2 150 9.81 20
0.012 ( ) 0.2525 6 9.81 0.1172 0.2572

2
N

× +
′′ = × × + ×

0.003 03 (N'')2 = 6.9 + 191.8 = 198.7

∴ (N'')2 = 198.7/0.003 03 = 65 578 or N'' = 256 r.p.m.

We know that coefficient of insensitiveness,

– 256 – 252.8
0.0126 or 1.26%

254.4

N N

N

′′ ′
= =  Ans.

3. Range of speed

We know that range of speed

= N'' – N' = 256 – 252.8 = 3.2 r.p.m. Ans.
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Example 18.32. A spring controlled governor is shown in Fig. 18.48. The central spindle

does not move axially. The mass of the sleeve is 20 kg and the frictional resistance to its movement is

equivalent to 20 N. The balls attached to the right angled bell crank levers have mass 4 kg each. The

stiffness of the spring is 40 N/mm compression. The radius of rotation of the balls is 125 mm when the

sleeve is in its lowest position, and the ball arms are vertical and the spring exerts a force of 600 N.

Determine :

1.  the speed at which the sleeve will begin to rise from its lowest position,

2.  the range of speed when the sleeve is 12.5 mm above its lowest position, and

3.  the coefficient of insensitiveness at higher speed.

Solution.Given : M  = 20 kg ; F = 20 N ; m = 4 kg ; s = 40 N/mm ; r
1 

= 125 mm = 0.125 m ;

S
1 

= 600 N

1. Speed at which sleeve will begin to rise from its lowest position

Let N
1

= Required speed.

The lowest position is shown in Fig. 18.49 (a).

We know that the centrifugal force at the lowest position,
2

2 21
C1 1 1 1

2
( ) 4 0.125 0.0055 ( )

60

N
F m r N

π 
= ω = = 

 

Fig. 18.48 Fig. 18.49

Since the sleeve is about to rise, therefore frictional resistance is taken positive. Also the

central spindle is stationary, therefore all the forces are transferred to both the pivots of the bell crank

lever i.e. 1.

2

M g S F+ +
 at each pivot, as shown in Fig. 18.49 (a).

Since the pivot O moves vertically and the roller A  moves horizontally, therefore A  is the

instantaneous centre of the bell crank lever.

Now taking moments about A ,

1
C1

.
.

2

M g S F
F OB m g OA

+ + 
× = + 

 

2
1

20 9.81 600 20
0.0055 ( ) 0.19 4 9.81 0.085

2
N

× + + 
= × + 

 

0.001 05 (N
1
)2 = 3.3 + 34.7 = 38 or (N

1
)2 = 38 / 0.001 05 = 36 190

∴ N
1

= 190 r.p.m. Ans.
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2. Range of speed

The highest position is shown in Fig. 18.49 (b).

Let                       N
2
 =Maximum speed,

                            h = Lift of the sleeve = 12.5 mm = 0.0125 m              . . . (Given)

                              r
2
 = Maximum radius of rotation of the balls, and

                             S
2
 =  Maximum spring force.

We know that lift of the sleeve

                                   2 1 2 1( – ) ( – )
y OA

h r r r r
x OB

= × = ×  . . (Here x = OB, and y = OA)

∴                          r
2
 =  r

1
 + h × OB/OA = 0.125 + 0.0125 × 0.19/0.085 = 0.153 m

We know that centrifugal force at the highest position,

                                
2 22

C2 2 2 2

2
( ) 4 0.153 0.0067 ( )

60

N
F m r N

π 
= ω = = 

 

and                            S
2
 – S

1
  = h.s or S

2
 = S

1
 + h.s = 600 + 12.5 × 40 = 1100 N

From Fig 18.49 (b), we find that

                                 2 2 2 2
( ) – ( ) (85) – (12.5) 84 mm 0.084 mOI OA AI= = = =

. . . (�  AI = h)

2 2 2 2
( ) – ( ) (190) – (153 – 125) 188 mm 0.188 mBC OB OC= = = =

. . . (�OC = r
2
 – r

1
)

and                                IC = OI + OC = 84 + (153 – 125) = 112 mm = 0.112 m

Now taking moments about the instantaneous centre I,

                      
2

C2

.
.

2

M g S F
F BC m g IC OI

+ ±
× = × + ×

The ± sign denotes that at the highest position, the sleeve may either rise or fall. Therefore

     
2

2

20 9.81 1100 20
0.0067 ( ) 0.188 4 9.81 0.112 0.084

2
N

× + ± 
= × × +  

 

             0.001 26 (N
2
)2 = 4.4 + 54.4 ± 0.84 = 58.8 ± 0.84

Taking – ve sign, when the sleeve is about to fall,

              0.001 26 (N
2
)2 = 58.8 – 0.84 = 57.96

                           (N
2
)2 = 57.96/0.001 26 = 46 000 or N

2
 = 214.5 r.p.m.

Taking + ve sign, when the sleeve is about to lift,

            0.001 26 (N
2
')2 = 58.8 + 0.84 = 59.64

                           (N
2
')2 = 59.64/0.001 26 = 47 333 or N

2
' = 217.5 r.p.m.

∴  Range of speed at the maximum radius

                                     = N
2
' – N

2
 = 217.5 – 214.5 = 3 r.p.m. Ans.
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3. Coefficient of insensitiveness at higher speed

We know that coefficient of insensitiveness

2 2

2 2

2 ( – ) 2 (217.5 – 214.5)
0.014 1.4%

217.5 214.5

N N

N N

′

= = = =
+′ +

 Ans.

Example 18.33. In a spring controlled governor, the curve of controlling force is a straight

line. When balls are 400 mm apart, the controlling force is 1200 N and when 200 mm apart, the

controlling force is 450 N. At what speed will the governor run when the balls are 250 mm apart?

What initial tension on the spring would be required for isochronism and what would then be the

speed ? The mass of each ball is 9 kg.

Solution. Given : When balls are 400 mm apart, i.e. when the radius of rotation (r
2
) is 200

mm, the controlling force,

F
C2

= 1200 N

When balls are 200 mm apart i.e. when the radius of rotation (r
1
) is 100 mm, the controlling

force,

F
C1

= 450 N

Mass of each ball, m = 9 kg

Speed of the governor when the balls are 250 mm apart, i.e. when radius of rotation (r) is 125 mm

Let N = Required speed.

We know that for the stability of the spring controlled governors, the controlling force (F
C
) is

expressed in the form

* F
C

= a.r – b . . . (i)

When r = r
1
 = 100 mm = 0.1 m, then

450 = a × 0.1 – b = 0.1 a – b . . .(ii)

and when r = r
2
 = 200 mm = 0.2 m, then

1200 = a × 0.2 – b = 0.2 a – b . . . (iii)

From equations (ii) and (iii), we find that

a = 7500, and b = 300

Now the equation (i) may be written as

F
C

= 7500 r – 300 . . . (iv)

Substituting  r = 125 mm = 0.125 m, in equation (iv), we get

F
C

= 7500 × 0.125 – 300 = 637.5 N

We know that

2

2
C

2
. .

60

N
F m r m r

π 
= ω =  

 

2

22
637.5 9 0.125 0.012 34

60

N
N

π 
= = 

 

∴ N 2 = 637.5 / 0.012 34  = 51 661 or N = 227.3 r.p.m. Ans.

* We find that C1 C2

1 2

450 1200
4500 and 6000.

0.1 0.2

F F

r r
= = = =

Since F
C

/ r increases as r increases, therefore for stability

F
C
 = a.r – b (See Art. 18.20)
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Initial tension on the spring for isochronism

We have discussed in Art. 18.20 that for an isochronous governor, the controlling force line

passed through the origin (i.e. b = 0). The value of b is made zero by increasing the initial tension of

the spring to 300 N.

∴   Initial tension on the spring for isochronism = 300 N Ans.

Isochronous speed

Let N' = Isochronous speed, and

F
C

' = Controlling force at the isochronous speed.

We know that for isochronism,

F
C

' = a.r or m (ω')2 r = a.r or m (ω')2 = a

∴

2
2

60

N
m a

′π 
= 

 

     or 9 × 0.011 (N')2 = 7500

(N)2 = 7500 / 0.099 = 75 758 or N' = 275 r.p.m. Ans.

Example 18.34. The controlling force (F
C
) in newtons and the radius of rotation (r) in

metres for a spring controlled governor is given by the expression

F
C

= 2800 r – 76

The mass of the ball is 5 kg and the extreme radii of rotation of the balls are 100 mm and

175 mm. Find the maximum and minimum speeds of equilibrium. If the friction of the governor

mechanism is equivalent to a force of 5 N at each ball, find the coefficient of insensitiveness of the

governor at the extreme radii.

Solution. Given : m = 5 kg ; r
1 

= 100 mm = 0.1 m ; r
2 

= 175 mm = 0.175 m

Maximum and minimum speeds of equilibrium

Let N
2
 and N

1
= Maximum and minimum speeds of equilibrium respectively.

The controlling force is given by the expression,

F
C

= 2800 r – 76

∴  Controlling force at the minimum radius of rotation (i.e. at r
1 

= 0.1 m),

F
C1

= 2800 × 0.1 – 76 = 204 N

and controlling force at the maximum radius of rotation (i.e. at r
2 

= 0.175 m),

F
C2

= 2800 × 0.175 – 76 = 414 N

We know that

2

2 1
C1 1 1 1

2
( )

60

N
F m r m r

π 
= ω =  

 

or

2

21
1

2
204 5 0.1 0.0055 ( )

60

N
N

π 
= = 

 

∴ (N
1
)2 = 204 / 0.0055 = 37 091 or N

1
 = 192.6 r.p.m. Ans.

Similarly

2

2 2
C2 2 2 2

2
( )

60

N
F m r m r

π 
= ω =  

 

or

2

22
2

2
414 5 0.175 0.0096 ( )

60

N
N

π 
= = 

 

∴ (N
2
)2 = 414 / 0.0096 = 43 125 or N

2
 = 207.6 r.p.m. Ans.
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Coefficient of insensitiveness

Let N
1
' and N

2
' = Minimum and maximum speeds of the governor considering

   friction.

We know that frictional force at each ball

= 5 N . . . (Given)

∴

2

2 1
C1 1 1 1

2
– ( )

60

N
F F m r m r

 ′π
′  = ω =

 
 

2

21
1

2
204 – 5 5 0.1 0.0055 ( )

60

N
N

 ′π
′ = =

 
 

∴
2

1 1

204 – 5
( ) 36 182 or 190.2 r.p.m.

0.0055
N N′ ′= = =

Similarly

2

2 2
C2 2 2 2

2
( )

60

N
F F m r m r

 ′π
′  + = ω =

 
 

2

22
2

2
414 5 5 0.175 0.0096 ( )

60

N
N

 ′π
′ + = =

 
 

∴
2

2 2

414 5
( ) 43 646 or 209 r.p.m.

0.0096
N N

+
′ ′= = =

We know that coefficient of insensitiveness

2 1

2 1

2 ( – ) 2 (209 – 190.2)
0.094 or 9.4%

209 190.2

N N

N N

′ ′

= = =
+′ ′+

 Ans.

EXERCISES

1. The length of the upper arm of a Watt governor is 400 mm and its inclination to the vertical is 30°.

Find the percentage increase in speed, if the balls rise by 20 mm. [Ans. 3%]

2. A Porter governor has two balls each of mass 3 kg and a central load of mass 15 kg. The arms are all

200 mm long, pivoted on the axis. If the maximum and minimum radii of rotation of the balls are 160

mm and 120 mm respectively, find the range of speed. [Ans. 28.3 r.p.m.]

3. In a Porter governor, the mass of the central load is 18 kg and the mass of each ball is 2 kg. The top

arms are 250 mm while the bottom arms are each 300 mm long. The friction of the sleeve is 14 N. If

the top arms make 45° with the axis of rotation in the equilibrium position, find the range of speed of

the governor in that position. [Ans. 15 r.p.m.]

4. A loaded governor of the Porter type has equal arms and links each 250 mm long. The mass of each

ball is 2 kg and the central mass is 12 kg. When the ball radius is 150 mm, the valve is fully open and

when the radius is 185 mm, the valve is closed. Find the maximum speed and the range of speed. If the

maximum speed is to be increased 20% by an addition of mass to the central load, find what additional

mass is required. [Ans. 193 r.p.m. ; 16 r.p.m.; 6.14 kg]

5. The arms of a Porter governor are 300 mm long. The upper arms are pivoted on the axis of rotation

and the lower arms are attached to the sleeve at a distance of 35 mm from the axis of rotation. The load

on the sleeve is 54 kg and the mass of each ball is 7 kg. Determine the equilibrium speed when the
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radius of the balls is 225 mm. What will be the range of speed for this position, if the frictional

resistances to the motion of the sleeve are equivalent to a force of 30 N?

[Ans. 174.3 r.p.m. ; 8.5 r.p.m.]

6. In a Porter governor, the upper and lower arms are each 250 mm long and are pivoted on the axis of

rotation. The mass of each rotating ball is 3 kg and the mass of the sleeve is 20 kg. The sleeve is in its

lowest position when the arms are inclined at 30° to the governor axis. The lift of the sleeve is 36 mm.

Find the force of friction at the sleeve, if the speed at the moment it rises from the lowest position is

equal to the speed at the moment it falls from the highest position. Also, find the range of speed of the

governor. [Ans. 9.8 N ; 16 r.p.m.]

7. A Porter governor has links 150 mm long and are attached to pivots at a radial distance of 30 mm from

the vertical axis of the governor. The mass of each ball is 1.75 kg and the mass of the sleeve is 25 kg.

The governor sleeve begins to rise at 300 r.p.m. when the links are at 30° to the vertical. Assuming the

friction force to be constant, find the minimum and maximum speed of rotation when the inclination

of the links is 45° to the vertical. [Ans. 284 r.p.m. ; 347 r.p.m.]

8. A Proell governor has all the four arms of length 250 mm. The upper and lower ends of the arms are

pivoted on the axis of rotation of the governor. The extension arms of the lower links are each 100 mm

long and parallel to the axis when the radius of the ball path is 150 mm. The mass of each ball is 4.5

kg and the mass of the central load is 36 kg. Determine the equilibrium speed of the governor.

[Ans. 164 r.p.m.]

9. A Proell governor has arms of 300 mm length. The upper arms are hinged on the axis of rotation,

whereas the lower arms are pivoted at a distance of 35 mm from the axis of rotation. The extension of

lower arms to which the balls are attached are 100 mm long. The mass of each ball is 8 kg and the mass

on the sleeve is 60 kg. At the minimum radius of rotation of 200 mm, the extensions are parallel to the

governor axis. Determine the equilibrium speed of the governor for the given configuration. What

will be the equilibrium speed for the maximum radius of 250 mm?

[Ans. 144.5 r.p.m. ; 158.2 r.p.m.]

10. A spring controlled governor of the Hartnell type with a central spring under compression has balls

each of mass 2 kg. The ball and sleeve arms of the bell crank levers are respectively 100 mm and 60

mm long and are at right angles. In the lowest position of the governor sleeve, the radius of rotation of

the balls is 80 mm and the ball arms are parallel to the governor axis. Find the initial load on the spring

in order that the sleeve may begin to lift at 300 r.p.m. If the stiffness of the spring is 30 kN/m, what is

the equilibrium speed corresponding to a sleeve lift of 10 mm? [Ans. 527 N ; 342 r.p.m.]

11. In a governor of the Hartnell type, the mass of each ball is 1.5 kg and the lengths of the vertical and

horizontal arms of the bell crank lever are 100 mm and 50 mm respectively. The fulcrum of the bell

crank lever is at a distance of 90 mm from the axis of rotation. The maximum and minimum radii of

rotation of balls are 120 mm and 80 mm and the corresponding equilibrium speeds are 325 and  300

r.p.m. Find the stiffness of the spring and the equilibrium speed when the radius of rotation is 100 mm.

[Ans. 18 kN/m, 315 r.p.m.]

12. A governor of the Hartnell type has equal balls of mass 3 kg, set initially at a radius of 200 mm. The

arms of the bell crank lever are 110 mm vertically and 150 mm horizontally. Find :  1. the initial

compressive force on the spring, if the speed for an initial ball radius of 200 mm is 240 r.p.m. ; and  2.

the stiffness of the spring required to permit a sleeve movement of 4 mm on a fluctuation of 7.5 per

cent in the engine speed. [Ans. 556 N ; 23.75 N/mm]

13. A spring controlled governor of the Hartnell type has the following data :

Mass of the ball = 1.8 kg ; Mass of the sleeve = 6 kg ; Ball and sleeve arms of the bell crank lever = 150

mm and 120 mm respectively. The equilibrium speed and radius of rotation for the lowest position of

the sleeve are 400 r.p.m. and 150 mm respectively. The sleeve lift is 10 mm and the change in speed

for full sleeve lift is 5%. During an overhaul, the spring was compressed 2 mm more than the correct

compression for the initial setting. Determine the stiffness of the spring and the new equilibrium

speed for the lowest position of the sleeve. [Ans. 28.96 N/mm ; 472 r.p.m.]
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14. A spring controlled governor of the Hartnell type has two rotating balls of mass 1.35 kg each. The ball

arm is 75 mm and the sleeve arm is 62.5 mm. In the mid position of the sleeve, the sleeve arm is

horizontal and the balls rotate in a circle of 100 mm radius. The total sleeve movement is 30 mm.

Due to maladjustment of the spring, it is found that the equilibrium speed at the topmost position

of the sleeve is 420 r.p.m. and that corresponding to the lowest position is 435 r.p.m.

Determine : 1. stiffness and initial compression of the spring, and 2. the required initial compression

of the spring to give an equilibrium speed at the topmost position which is 12 r.p.m. more than at the

lowest position. Neglect the moment due to mass of the balls.

[Ans. 6.3 N/mm, 87.54 mm ; 53.5 mm]

15. A Hartnell governor has two rotating balls, of mass 2.7 kg each. The ball radius is 125 mm in the mean

position when the ball arms are vertical and the speed is 150 r.p.m. with the sleeve rising. The length

of the ball arms is 140 mm and the length of the sleeve arms 90 mm. The stiffness of the spring is

7 kN/m and the total sleeve movement is 12 mm from the mean position. Allowing for a constant

friction force of 14 N acting at the sleeve, determine the speed range of the governor in the lowest and

highest sleeve positions. Neglect the obliquity of the ball arms. [Ans. 10.7 r.pm., 6.6 r.pm.]

16. The spring controlled governor of the Hartung type has two rotating masses each of 2.5 kg and the

limits of their radius of rotation are 100 mm and 125 mm. The each mass is directly controlled by a

spring attached to it and to the inner casing of the governor as shown in Fig 18.26 (a). The stiffness of

the spring is 8 kN/m and the force on each spring, when the masses are in their mid-position, is 320 N.

In addition, there is an equivalent constant inward radial force of 80 N acting on each revolving mass

in order to allow for the dead weight of the mechanism. Neglecting friction, find the range of speed of

the governor. [Ans. 51 r.p.m.]

17. In a spring controlled governor of the Hartung type, the lengths of the horizontal and vertical arms of

the bell crank levers are 100 mm and 80 mm respectively. The fulcrum of the bell crank lever is at a

distance of 120 mm from the axis of the governor. The each revolving mass is 9 kg. The stiffness of the

spring is 25 kN/m. If the length of each spring is 120 mm when the radius of rotation is 70 mm and the

equilibrium speed is 360 r.p.m., find the free length of the spring. If the radius of rotation increases to

120 mm, what will be the corresponding percentage increase in speed ?

[Ans 145.75 mm ; 10.83%]

[Hint. Free length of the spring = Length of the spring + compression of the spring]

18. The following particulars refer to a Wilson-Hartnell governor :

Mass of each ball = 4 kg ; minimum radius = 80 mm ; maximum radius = 90 mm ; minimum speed =

240 r.p.m.; maximum speed = 252 r.p.m.; length of the ball arm of each bell crank lever   = 80 mm ;

length of sleeve arm of each bell crank lever = 60 mm ; combined stiffness of the two ball springs =

750 N/m.

Find the required stiffness of the auxiliary spring, if the lever is pivoted at the mid-point.

[Ans. 6.786 kN/m]

19. A spring loaded governor of the Wilson-Hartnell type

is shown in Fig 18.50. Two balls each of mass 4 kg are

connected across by two springs A . The stiffness of

each spring is 750 N/m and a free length of 100 mm.

The length of ball arm of each bell crank lever is 80

mm and that of sleeve arm is 60 mm. The lever is

pivoted at its mid-point. The speed of the governor is

240 r.p.m. in its mean position and the radius of rotation

of the ball is 80 mm. If the lift of the sleeve is 7.5 mm

for an increase of speed of 5%, find the required

stiffness of the auxiliary spring B.

                                                   [Ans. 6.756 kN/m] Fig. 18.50
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20. A Porter governor has all four arms 200 mm long. The upper arms are pivoted on the axis of rotation

and the lower arms are attached to a sleeve at a distance of 25 mm from the axis. Each ball has a mass

of 2 kg and the mass of the load on the sleeve is 20 kg. If the radius of rotation of the balls at a speed

of 250 r.p.m. is 100 mm, find the speed of the governor after the sleeve has lifted 50 mm. Also

determine the effort and power of the governor. [Ans. 275.6 r.p.m.; 22.4 N ; 1.12 N-m]

21. A Porter governor has arms 250 mm each and four rotating flyballs of mass 0.8 kg each. The sleeve

movement is restricted to ± 20 mm from the height when the mean speed is 100 r.p.m. Calculate the

central dead load and sensitivity of the governor neglecting friction when the flyball exerts a centrifugal

force of 9.81 N. Determine also the effort and power of the governor for 1 percent speed change.

[Ans. 11.76 N; 11.12; 0.196 N; 7.7 N-mm]

22. The upper arms of a Porter governor are pivoted on the axis of rotation and the lower arms are pivoted

to the sleeve at a distance of 30 mm from the axis of rotation. The length of each arm is 300 mm and

the mass of each ball is 6 kg. If the equilibrium speed is 200 r.p.m. when the radius of rotation is 200

mm, find the required mass on the sleeve. If the friction is equivalent to a force of 40 N at the sleeve,

find the coefficient of insensitiveness at 200 mm radius. [Ans. 61.1 kg. ; 6%]

23. In a spring controlled governor, the radial force acting on the balls was 4500 N when the centre of

balls was 200 mm from the axis and 7500 N when at 300 mm. Assuming that the force varies directly

as the radius, find the radius of the ball path when the governor runs at 270 r.p.m. Also find what

alteration in spring load is required in order to make the governor isochronous and the speed at which

it would then run. The mass of each ball is 30 kg. [Ans. 250 mm ; 1500 N ; 301.5 r.p.m.]

DO YOU KNOW ?

1. What is the function of a governor ? How does it differ from that of a flywheel ?

2. State the different types of governors. What is the difference between centrifugal and inertia type

governors ? Why is the former preferred to the latter ?

3. Explain the term height of the governor. Derive an expression for the height in the case of a Watt

governor. What are the limitations of a Watt governor ?

4. What are the effects of friction and of adding a central weight to the sleeve of a Watt governor ?

5. Discuss the controlling force and stability of a governor and show that the stability of a governor

depends on the slope of the curve connecting the controlling force (F
C
) and radius of rotation (r) and

the value (F
C 

/r).

6. What is stability of a governor ? Sketch the controlling force versus radius diagrams for a stable,

unstable and isochronous governor. Derive the conditions for stability.

7. Explain clearly how would you determine from the controlling force curve whether a governor is

stable, unstable or isochronous. Show also how the effect of friction may be indicated on the curve.

8. Define and explain the following terms relating to governors :

1. Stability, 2. Sensitiveness, 3. Isochronism, and 4. Hunting.

9. Explain the terms and derive expressions for ‘effort’ and ‘power’ of a Porter governor.

10. Prove that the sensitiveness of a Proell governor is greater than that of a Porter governor.

11. Write short note on ‘coefficient of insensitiveness’ of governors.

OBJECTIVE TYPE QUESTIONS

1. The height of a Watt’s governor (in metres) in equal to

(a) 8.95/N2 (b) 89.5/N2 (c) 895/N2 (d) 8950/N2

where    N = Speed of the arm and ball about the spindle axis.
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2. The ratio of the height of a Porter governor (when the length of arms and links are equal) to the height

of a Watt’s governor is

(a)
m

m M+
(b)

M

m M+
(c)

m M

m

+
(d)

m M

M

+

where          m = Mass of the ball, and

                    M = Mass of the load on the sleeve.

3. When the sleeve of a Porter governor moves upwards, the governor speed

(a) increases (b) decreases (c) remains unaffected

4. A Hartnell governor is a

(a) pendulum type governor (b) spring loaded governor

(c) dead weight governor (d) inertia governor

5. Which of the following governor is used to drive a gramophone ?

(a) Watt governor (b) Porter governor

(c) Pickering governor (d) Hartnell governor

6. Which of the following is a spring controlled governor?

(a) Hartnell (b) Hartung (c) Pickering (d) all of these

7. For two governors A  and B, the lift of sleeve of governor A  is more than that of governor B, for a given

fractional change in speed. It indicates that

(a) governor A  is more sensitive than governor B

(b) governor B is more sensitive than governor A

(c) both governors A  and B are equally sensitive

(d) none of the above

8. The sensitiveness of a governor is given by

(a)

2 1

mean
ω

ω − ω
(b)

2 1

mean

ω − ω

ω
(c)

2 1

2 mean

ω − ω

ω
(d) none of these

where           ω
1
 and ω

2
 = Minimum and maximum angular speed, and

                     ω
mean

 = Mean angular speed.

9. In a Hartnell governor, if a spring of greater stiffness is used, then the governor will be

(a) more sensitive (b) less sensitive (c) isochronous

10. A governor is said to be hunting, if the speed of the engine

(a) remains constant at the mean speed

(b) is above the mean speed

(c) is below the mean speed

(d) fluctuates continuously above and below the mean speed.

11. A hunting governor is

(a) more stable (b) less sensitive (c) more sensitive (d) none of these

12. Isochronism in a governor is desirable when

(a) the engine operates at low speeds

(b) the engine operates at high speeds

(c) the engine operates at variable speeds

(d) one speed is desired under one load



Chapter 18 : Governors   �  731

13. The power of a governor is equal to

(a)

2

( )
1 2

c
m M h

c
+

+
(b)

2
2

( )
1 2

c
m M h

c
+

+

(c)

2
3

( )
1 2

c
m M h

c
+

+
(d)

2
4

( )
1 2

c
m M h

c
+

+

where   c = Percentage increase in speed.

14. When the relation between the controlling force (F
C 

) and radius of rotation (r) for a spring controlled

governor is F
C 

 = a.r + b, then the governor will be

(a) stable (b) unstable (c) isochronous

15. For a governor, if F
C
 is the controlling force, r is the radius of rotation of the balls, the stability of the

governor will be ensured when

(a)
C Cd F F

dr r
> (b)

C Cd F F

dr r
< (c)

C 0
d F

dr
= (d) none of these

ANSWERS
1. (c) 2. (c) 3. (a) 4. (b) 5. (c)

6. (d) 7. (a) 8. (b) 9. (b) 10. (d)

11. (c) 12. (d) 13. (d) 14. (b) 15. (a)

GO To FIRST
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Brakes and
Dynamometers

19
Features

1. Introduction

2. Materials for Brake Lining.

3. Types of Brakes.

4. Single Block or Shoe Brake.

5. Pivoted Block or Shoe Brake.

6. Double Block or Shoe Brake.

7. Simple Band Brake.

8. Differential Band Brake.

9. Band and Block Brake.

10. Internal Expanding Brake.

11. Braking of a Vehicle.

12. Dynamometer.

13. Types of Dynamometers.

14. Classification of Absorption

Dynamometers.

15. Prony Brake Dynamometer.

16. Rope Brake Dynamometers.

17. Classification of Transmission

Dynamometers.

18. Epicyclic-train

Dynamometers.

19. Belt Transmission

Dynamometer-Froude or

Throneycraft Transmission

Dynamometer.

20. Torsion Dynamometer.

21. Bevis Gibson Flash Light

Torsion Dynamometer.

19.1. Introduction

A brake is a device by means of which artificial

frictional resistance is applied to a moving machine member,

in order to retard or stop the motion of a machine. In the process

of performing this function, the brake absorbs either kinetic

energy of the moving member or potential energy given up by

objects being lowered by hoists, elevators etc. The energy

absorbed by brakes is dissipated in the form of heat. This heat

is dissipated in the surrounding air (or water which is circulated

through the passages in the brake drum) so that excessive

heating of the brake lining does not take place. The capacity of

a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,

2. The coefficient of friction between the braking

surfaces,

3. The peripheral velocity of the brake drum,

4. The projected area of the friction surfaces, and

5. The ability of the brake to dissipate heat equivalent

to the energy being absorbed.

The major functional difference between a clutch and

a brake is that a clutch is used to keep the driving and driven

member moving together, whereas brakes are used to stop a

moving member or to control its speed.

19.2. Materials for Brake Lining

The material used for the brake lining should have the

following characteristics :

732
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1. It should have high coefficient of friction with minimum fading. In other words, the coeffi-

cient of friction should remain constant with change in temperature.

2. It should have low wear rate.

3. It should have high heat resistance.

4. It should have high heat dissipation capacity.

5. It should have adequate mechanical strength.

6. It should not be affected by moisture and oil.

The materials commonly used for facing or lining of brakes and their properties are shown in

the following table.

Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.

Coefficient of friction (µ) Allowable

Material for braking lining  pressure ( p )

Dry Greasy Lubricated N/mm2

Cast iron on cast iron 0.15 – 0.2 0.06 – 0.10 0.05 – 0.10 1.0 – 1.75

Bronze on cast iron – 0.05 – 0.10 0.05 – 0.10 0.56 – 0.84

Steel on cast iron 0.20 – 0.30 0.07 – 0.12 0.06 – 0.10 0.84 – 1.40

Wood on cast iron 0.20 – 0.35 0.08 – 0.12 – 0.40 – 0.62

Fibre on metal – 0.10 – 0.20 – 0.07 – 0.28

Cork on metal 0.35 0.25 – 0.30 0.22 – 0.25 0.05 – 0.10

Leather on metal 0.30 – 0.5 0.15 – 0.20 0.12 – 0.15 0.07 – 0.28

Wire asbestos on metal 0.35 – 0.5 0.25 – 0.30 0.20 – 0.25 0.20 – 0.55

Asbestos blocks on metal 0.40 – 0.48 0.25 – 0.30 – 0.28 – 1.1

Asbestos on metal (Short – – 0.20 – 0.25 1.4 – 2.1

action)

Metal on cast iron (Short – – 0.05 – 0.10 1.4 – 2.1

action)

19.3.19.3.19.3.19.3.19.3. Types of BrakesTypes of BrakesTypes of BrakesTypes of BrakesTypes of Brakes

The brakes, according to the means used for transforming the energy by the braking  elements,

are classified as :

1.  Hydraulic brakes e.g. pumps or hydrodynamic brake

and fluid agitator,

2.  Electric brakes e.g. generators and eddy current

brakes, and

3.  Mechanical brakes.

The hydraulic and electric brakes cannot bring the

member to rest and are mostly used where large amounts of

energy are to be transformed while the brake is retarding the

load such as in laboratory dynamometers, high way trucks and

electric locomotives. These brakes are also used for retarding

or controlling the speed of a vehicle for down-hill travel.

The mechanical brakes, according to the direction of

acting force, may be divided into the following two groups :

(a) Radial brakes. In these brakes, the force acting on

the brake drum is in radial direction. The radial brakes may be Simple bicycle brakes.
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sub-divided into external brakes and internal brakes. According to the shape of the friction ele-

ments, these brakes may be block or shoe brakes and band brakes.

(b) Axial brakes. In these brakes, the force acting on the brake drum is in axial direction. The

axial brakes may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches.

Since we are concerned with only mechanical brakes, therefore, these are discussed, in detail,

in the following pages.

19.4. Single Block or Shoe Brake

A single block or shoe brake is shown in Fig. 19.1. It consists of a block or shoe which is

pressed against the rim of a revolving brake wheel drum. The block is made of a softer material than

the rim of the wheel. This type of a brake is commonly used on railway trains and tram cars. The

friction between the block and the wheel causes a tangential braking force to act on the wheel, which

retard the rotation of the wheel. The block is pressed against the wheel by a force applied to one end

of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other end of the lever is

pivoted on a fixed fulcrum O.

 (a) Clockwise rotation of brake wheel                             (b) Anticlockwise rotation of brake wheel.

Fig. 19.1. Single block brake. Line of action of tangential force passes through the fulcrum of the lever.

Let             P = Force applied at the end of the lever,

          R
N

= Normal force pressing the brake block on the wheel,

              r = Radius of the wheel,

          2θ = Angle of contact surface of the block,

           µ = Coefficient of friction, and

             F
t
 = Tangential braking force or the frictional force acting at the contact

      surface of the block and the wheel.

If the angle of contact is less than 60°, then it may

be assumed that the normal pressure between the block and

the wheel is uniform. In such cases, tangential braking force

on the wheel,

            F
t
 = µ.R

N
 ...(i)

and the braking torque,   T
B
 = F

t
.r = µ.R

N
.r  ... (ii)

Let us now consider the following three cases :

Case 1. When the line of action of tangential brak-

ing force (F
t
 ) passes through the fulcrum O of the lever,

and the brake wheel rotates clockwise as shown in Fig. 19.1

(a), then for equilibrium, taking moments about the fulcrum

O, we have

  NR x P l× = ×  or 
N

P l
R

x

×
=

∴  Braking torque,

                       B N

. . . .
. .

P l P l r
T R r r

x x

µ
= µ = µ × × =

When brakes are on, the pads grip the

wheel rim from either side, friction

between the pads and the rim converts

the cycle's kinetic energy into heat as

they reduce its speed.
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It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. 19.1 (b),

then the braking torque is same, i.e.

          B N

. . .
. .

P l r
T R r

x

µ
= µ =

Case 2. When the line of action of the tangential braking force (F
t
) passes through a distance

‘a’ below the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.2 (a), then for

equilibrium, taking moments about the fulcrum O,

      R
N

 × x + F
t
 × a = P.l  or   R

N
 × x + µ R

N
 × a = P.l     or    R

N
 = 

.

.

P l

x a+ µ

and braking torque,       B N

. . .
.

.

p l r
T R r

x a

µ
= µ =

+ µ

(a)  Clockwise rotation of brake wheel.       (b) Anticlockwise rotation of brake wheel.

Fig. 19.2. Single block brake. Line of action of F
t

 passes below the fulcrum.

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium,

         R
N

.x = P.l + F
t
.a = P.l + µ.R

N
.a ...(i)

or          R
N

 (x – µ.a) = P.l    or R
N

 = 
.

.

P l

x a− µ

and braking torque,        B N

. . .
. .

.

P l r
T R r

x a

µ
= µ =

− µ

Case 3. When the line of action of the tangential braking force (F
t
) passes through a distance

‘a’ above the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for

equilibrium, taking moments about the fulcrum O, we have

         R
N

.x = P.l + F
t
. a = P.l + µ.R

N
.a . . . (ii)

or           R
N

 (x – µ.a) = P.l         or            R
N

 = 
.

.

P l

x a− µ

(a) Clockwise rotation of brake wheel.                   (b) Anticlockwise rotation of brake wheel.

Fig. 19.3. Single block brake. Line of action of F
t

passes above the fulcrum.

and braking torque,       T
B
 = µ.R

N
.r = 

. . .

.

P l r

x a

µ

− µ
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When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then for equilibrium,

taking moments about the fulcrum O, we have

    R
N

 × x + F
t
 × a = P.l     or     R

N
 × x + µ.R

N
 × a = P.l    or    R

N
 = 

.

.

P l

x a+ µ

and braking torque,       T
B
 = µ.R

N
.r = 

. . .

.

P l r

x a

µ

+ µ

Notes : 1. From above we see that when the brake wheel rotates anticlockwise in case 2 [Fig. 19.2 (b)] and when

it rotates clockwise in case 3 [Fig. 19.3 (a)], the equations (i) and (ii) are same, i.e.

    R
N

 × x = P.l + µ.R
N
.a

From this we see that

the moment of frictional force

(µ.R
N

.a) adds to the moment

of force (P.l). In other words,

the frictional force helps to

apply the brake. Such type of

brakes are said to be self ener-

gizing brakes. When the fric-

tional force is great enough to

apply the brake with no exter-

nal force, then the brake is said

to be self-locking brake.

From the above ex-

pression, we see that if

.x a≤ µ , then P will be negative or equal to zero. This means no external force is needed to apply the brake and

hence the brake is self locking. Therefore the condition for the brake to be self locking is

.x a≤ µ

The self locking brake is used only in back-stop applications.

2. The brake should be self energizing and not the self locking.

3. In order to avoid self locking and to prevent the brake from grabbing, x is kept greater than µ . a.

4. If A
b
 is the projected bearing area of the block or shoe, then the bearing pressure on the shoe,

             p
b
 = R

N 
/ A

b

We know that       A
b
 = Width of shoe × Projected length of shoe = (2 sin )w r θ

5. When a single block or shoe brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to heavy normal force (R
N

) and produces bending of the shaft.

In order to overcome this drawback, a double block or shoe brake is used, as discussed in Art. 19.6.

19.5. Pivoted Block or Shoe Brake
We have discussed in the previous article that when the angle of contact is less than 60°, then

it may be assumed that the normal pressure between the block and the wheel is uniform. But

when the angle of contact is greater than 60°, then the unit

pressure normal to the surface of contact is less at the ends

than at the centre. In such cases, the block or shoe is pivoted

to the lever, as shown in Fig. 19.4, instead of being rigidly

attached to the lever. This gives uniform wear of the brake

lining in the direction of the applied force. The braking torque

for a pivoted block or shoe brake (i.e. when 2 θ  > 60°) is

given by
        B N. .

t
T F r R r′= × = µ

where         ′µ = Equivalent coefficient of friction = 
4 sin

2 sin 2

µ θ

θ + θ
, and

           µ = Actual coefficient of friction.

These brakes have more life and may provide a higher braking torque.

Fig. 19.4. Pivoted block or shoe brake.

Shoe brakes of a racing car
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Example 19.1. A single block brake is shown in Fig. 19.5.

The diameter of the drum is 250 mm and the angle of contact is

90°. If the operating force of 700 N is applied at the end of a lever

and the coefficient of friction between the drum and the lining is

0.35, determine the torque that may be transmitted by the block

brake.

Solution. Given : d = 250 mm or r = 125 mm ; 2θ = 90°

 = / 2π  rad ; P = 700 N ; µ = 0.35

Since the angle of contact is greater than 60°, therefore

equivalent coefficient of friction,

                
4 sin 4 0.35 sin 45

2 sin 2 / 2 sin 90

µ θ × × °
′µ = =

θ + θ π + °
= 0.385

Let                  R
N

 = Normal force pressing the block to the brake drum, and

                  F
t
 = Tangential braking force = N.R′µ

Taking moments about the fulcrum O, we have

            N700(250 200) 50 200 200 200 520
0.385

t t
t t

F F
F R F+ + × = × = × = × =

′µ

or  520 F
t
 – 50F

t
 = 700 × 450    or     F

t
 = 700 × 450/470 = 670 N

We know that torque transmitted by the block brake,

               T
B
 = F

t
 × r = 670 × 125 = 8 3750 N-mm = 83.75N-m Ans.

Example 19.2. Fig. 19.6 shows a brake shoe

applied to a drum by a lever AB which is

 pivoted at a fixed point A and rigidly fixed to the shoe.

The radius of the drum is 160 mm. The coefficient of

friction at the brake lining is 0.3. If the drum rotates

clockwise, find the braking torque due to the horizon-

tal force of 600 N at B.

Solution. Given : r = 160 mm = 0.16 m ;

µ = 0.3 ; P = 600 N

Since the angle subtended by the shoe at the

centre of drum is 40°, therefore we need not to calcu-

late the equivalent coefficient of friction .′µ

Let R
N

 = Normal force pressing the

block to the brake drum, and

 F
t
 = Tangential braking force = µ.R

N

Taking moments about point A ,

R
N

 × 350 + F
t
 (200 – 160) = 600 (400 + 350)

350 40 600 750
0.3

t
t

F
F× + = ×  or 1207 F

t
 = 450 × 103

∴                  F
t
 = 450 × 103/1207 = 372.8 N

We know that braking torque,

      T
B
 = F

t
 × r = 372.8 × 0.16 = 59.6 N-m Ans.

All dimensions in mm.

Fig. 19.5

Fig. 19.6
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Example 19.3. A bicycle and rider of mass 100 kg are travelling at the rate of 16 km/h on a

level road. A brake is applied to the rear wheel which is 0.9 m in diameter and this is the only

resistance acting. How far will the bicycle travel and how many turns will it make before it comes to

rest ? The pressure applied on the brake is 100 N and µ  = 0.05.

Solution. Given : m = 100 kg, v = 16 km / h = 4.44 m / s ; D = 0.9 m ; R
N

 = 100 N ; µ = 0.05

Distance travelled by the bicycle before it comes to rest

Let      x = Distance travelled (in metres) by the bicycle before it comes to rest.

We know that tangential braking force acting at the point of contact of the brake and wheel,

                F
t
 = µ.R

N
 = 0.05 × 100 = 5 N

and work done        = F
t
 × x = 5  × x = 5x N-m . . . (i)

We know that kinetic energy of the bicycle

                      

2 2
. 100(4.44)

2 2

986N-m

mν
= =

=

In order to bring the bicycle to rest, the work done

against friction must be equal to kinetic energy of the bi-

cycle. Therefore equating equations (i) and (ii),

   5x = 986  or   x = 986/5 = 197.2 m  Ans.

Number of revolutions made by the bicycle before it

comes to rest

Let     N = Required number of revolutions.

We know that distance travelled by the bicycle (x),

            197.2 0.9 2.83= π = π× =DN N N

∴               N = 197.2 / 2.83 = 70 Ans.

Example 19.4. A braking system has its braking lever inclined at an angle of 30° to the

horizontal plane, as shown in Fig. 19.7. The mass and diameter of the brake drum are 218 kg and

0.54 m respectively.

Fig. 19.7

At the instant the lever is pressed on the brake drum with a vertical force of 600 N, the drum

is found to rotate at 2400 r.p.m. clockwise. The coefficient of friction between the brake shoe and the

brake drum is 0.4. Assume that the lever and brake shoe are perfectly rigid and possess negligible

weight. Find :

Shoe brake.

. . . (ii)



Chapter 19 : Brakes and Dynamometers   �  739

1. Braking torque, 2. Number of revolutions the drum will make before coming to rest from

the instant of pressing the lever, and 3. Time taken for the drum to come to rest from the instant of

pressing the lever.

Solution. Given : m = 218 kg ; d = 0.54 m   or   r = 0.27 m ;  P = 600 N ;  N = 2400 r.p.m.;

µ = 0.4

1. Braking torque

Let R
N

 = Normal force pressing the block to the brake drum, and

F
t
 = Tangential braking force.

The various forces acting on the braking system are shown in Fig. 19.8.

Fig. 19.8

Taking moments about the fulcrum O,

   600 cos 30° × 1.2 = R
N

 × 0.4      or      623.5 = 0.4 R
N

∴            R
N

 =  623.5/0.4 = 1560 N

and F
t
  = µ.R

N
 = 0.4 × 1560 = 624 N

We know that braking torque,

T
B
 = F

t
  × r = 624 × 0.27 = 168.5 N-m Ans.

2. Number of revolutions the drum will make before coming to rest

Let  n = Required number of revolutions.

We know that kinetic energy of the brake drum

   = 

2 22
. 218 . 0.54 2400

109 N-m
2 2 60 60

m v d Nπ π× ×   
= =   

   

   = 502 × 103 N-m . . . (i)

and work done by the brake drum due to braking torque

    = B 2 168.5 2 1060 N-mT n n n× π = × π = . . . (ii)

Since the kinetic energy of the brake drum is used to overcome the work done due to braking

torque, therefore equating equations (i) and (ii),

 n = 502 × 103/1060 = 474 Ans.

3. Time taken for the drum to come to rest

We know that time taken for the drum to come to rest i.e. time required for 474 revolutions,

  
474

0.2 min
2400

= = =
n

t
N

= 12 s Ans.
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19.6. Double Block or Shoe Brake

When a single block brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to the normal force (R
N

). This produces

bending of the shaft. In order to overcome this drawback, a double

block or shoe brake, as shown in Fig. 19.9, is used. It consists of

two brake blocks applied at the opposite ends of a diameter of

the wheel which eliminate or reduces the unbalanced force on

the shaft. The brake is set by a spring which pulls the upper ends

of the brake arms together. When a force P is applied to the bell

crank lever, the spring is compressed and the brake is released.

This type of brake is often used on electric cranes and the force

P is produced by an electromagnet or solenoid. When the current

is switched off, there is no force on the bell crank lever and the

brake is engaged automatically due to the spring force and thus

there will be no downward movement of the load.

In a double block brake, the braking action is doubled

by the use of two blocks and these blocks may be operated

practically by the same force which will operate one. In case of

double block or shoe brake, the braking torque is given by

      T
B
 = (F

t1
 + F

t2
) r

where F
t1

 and F
t2

 are the braking forces on the two blocks.

Example 19.5. A double shoe brake, as shown in Fig. 19.10,

is capable of absorbing a torque of 1400 N-m. The diameter of the

brake drum is 350 mm and the angle of contact for each shoe is 100°.

If the coefficient of friction between the brake drum and lining is

0.4 ; find 1. the spring force necessary to set the brake ; and 2. the

width of the brake shoes, if the bearing pressure on the lining

material is not to exceed 0.3 N/mm2.

Solution. Given :  T
B
 = 1400 N-m = 1400 × 103 N-mm ;

d = 350 mm or r = 175 mm ; 2θ  = 100° = 100 × π /180 = 1.75 rad;

µ = 0.4 ; p
b
 = 0.3 N/mm2

1. Spring force necessary to set the brake

Let            S  = Spring force necessary to

          set the brake.

R
N1

 and F
t1

 = Normal reaction and the

        braking force on the right

           hand side shoe, and

 R
N2

 and F
t2

 = Corresponding values on

           the left hand side shoe.

Since the angle of contact is greater than

60°, therefore equivalent coefficient of friction,

         
4 sin 4 0.4 sin 50

0.45
2 sin 2 1.75 sin100

µ θ × × °
µ′ = = =

θ + θ + °

Fig. 19.9. Double block or shoe

 brake.

All dimensions in mm.

Fig. 19.10

Brakes on a railway coach.
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Taking moments about the fulcrum O
1
, we have

         
1

N1 1 1 1450 200 (175 40) 200 135 579.4
0.45

t t

t

t

F
S R F F F× = × + − = × + × =

. . . 
1

N1Substituting tF
R

 
= 

′µ 

∴   F
t1

 = S × 450 / 579.4 = 0.776 S

Again taking moments about O
2
, we have

            
2

2 N2 2450 (175 40) 200 200 444.4
0.45

t

t t

F
S F R F× + − = × = × =

. . .
2

N2Substituting tF
R

 
= 

′µ 

      444.4 F
t2

 – 135F
t2

 = S × 450   or   309.4 F
t2

 = S × 450

∴  F
t2

 = S × 450 / 309.4 = 1.454 S

We know that torque capacity of the brake (T
B
),

  1400 × 103  = (F
t1

 + F
t2

) r = (0.776 S + 1.454 S) 175 = 390.25 S

∴     S = 1400 × 103/390.25 = 3587 N Ans.

2. Width of the brake shoes

Let     b = Width of the brake shoes in mm.

We know that projected bearing area for one shoe,

2
(2 sin ) (2 175sin 50 ) 268 mm

bA b r b b= θ = × ° =

Normal force on the right hand side of the shoe,

1
N1

0.776 0.776 3587
6186 N

0.45 0.45

tF S
R

× ×
= = = =

′µ

and normal force on the left hand side of the shoe,

             
2

N2

1.454 1.454 3587
11 590 N

0.45 0.45

tF S
R

× ×
= = = =

′µ

We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall

find the width of the shoe for the maximum normal force i.e. R
N2

.

We know that the bearing pressure on the lining material ( p
b
),

 
N2 11 590 43.25

0.3
268

b

R

A b b
= = =

∴                  b = 43.25 / 0.3 = 144.2 mm Ans.

19.7. Simple Band Brake

A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with

friction material, which embraces a part of the circumference of the drum. A band brake, as shown in

Fig. 19.11, is called a simple band brake in which one end of the band is attached to a fixed pin or

fulcrum of the lever while the other end is attached to the lever at a distance b from the fulcrum.

When a force P is applied to the lever at C, the lever turns about the fulcrum pin O and tightens

the band on the drum and hence the brakes are applied. The friction between the band and the drum

provides the braking force. The force P on the lever at C may be determined as discussed below :

Let T
1
 = Tension in the tight side of the band,

T
2
 = Tension in the slack side of the band,
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θ  = Angle of lap (or embrace) of the band on the drum,

 µ = Coefficient of friction between the band and the drum,

  r = Radius of the drum,

  t = Thickness of the band, and

r
e
 = Effective radius of the drum = 

2
+

t
r

(a) Clockwise rotation of drum. (b) Anticlockwise rotation of drum.

Fig. 19.11. Simple band brake.

We know that limiting ratio of the tensions is given by the relation,

             
1

2

µθ
=

T
e

T
or

1

2

2.3log .
T

T

 
= µ θ 

 

and braking force on the drum = T
1
 – T

2

∴  Braking torque on the drum,

              T
B
 = (T

1
 – T

2
) r . . . (Neglecting thickness of band)

    = (T
1
 – T

2
) r

e
 . . . (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum

rotates in the clockwise direction, as shown in Fig. 19.11 (a), the end of the band attached to the

fulcrum O will be slack with tension T
2
 and end of the band attached to B will be tight with tension T

1
.

On the other hand, when the drum rotates in the anticlockwise direction, as shown in Fig. 19.11 (b),

the tensions in the band will reverse, i.e. the end of the band attached to the fulcrum O will be tight

with tension T
1
 and the end of the band attached to B will be slack with tension T

2
. Now taking

moments about the fulcrum O, we have

           P.l = T
1
.b . . . (For clockwise rotation of the drum)

and            P.l = T
2
.b  . . . (For anticlockwise rotation of the drum)

Band brake Bands of a brake shown separately
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where   l = Length of the lever from the fulcrum (OC), and

 b = Perpendicular distance from O to the line of action of T
1
  or T

2
.

Notes : 1. When the brake band is attached to the lever, as shown in Fig. 19.11 (a) and (b), then the force (P)

must act in the upward direction in order to tighten the band on the drum.

2. If the permissible tensile stress ( σ ) for the material of the band is known, then maximum tension in

the band is given by

T
1
 = . .σ wt

where w = Width of the band, and

  t = thickness of the band.

Example 19.6. A band brake acts on the 3/4th of circumference of a drum of 450 mm diam-

eter which is keyed to the shaft. The band brake provides a braking torque of 225 N-m. One end of

the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum.

If the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25,

find the operating force when the drum rotates in the (a) anticlockwise direction, and (b) clockwise

direction.

Solution. Given : d = 450 mm or r = 225 mm = 0.225 m ; T
B
 = 225 N-m ; b = OB = 100 mm

= 0.1 m ; l = 500 mm = 0.5 m ; µ = 0.25

Let    P = Operating force.

(a) Operating force when drum rotates in anticlockwise

direction

The band brake is shown in Fig. 19.11. Since one

end of the band is attached to the fulcrum at O, therefore the

operating force P will act upward and when the drum ro-

tates anticlockwise, as shown in Fig. 19.11 (b), the end of

the band attached to O will be tight with tension T
1
 and the

end of the band attached to B will be slack with tension T
2
.

First of all, let us find the tensions T
1
  and T

2
.

We know that angle of wrap,

                                
3 3

th of circumference = 360 270
4 4

θ = × ° = °

     270 /180 4.713 rad= × π =

and                1

1

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴                  1

2

1.178
log 0.5123

2.3

 
= = 

 

T

T

 or 1

2

3.253=
T

T

. . . (i)

. . . (Taking antilog of 0.5123)

We know that braking torque (T
B
),

             225 = (T
1
 – T

2
) r = (T

1
 – T

2
) 0.225

∴                    T
1
 – T

2
 = 225 / 0.225 = 1000 N . . . (ii)

From equations (i) and (ii), we have

  T
1
 = 1444 N;  and      T

2
 = 444 N

Now taking moments about the fulcrum O, we have

          P × l = T
2
.b       or        P × 0.5 = 444 × 0.1 = 44.4

∴                 P = 44.4 / 0.5 = 88.8 N Ans.

Drums for band brakes.
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(b) Operating force when drum rotates in clockwise direction

When the drum rotates in clockwise direction, as shown in Fig.19.11 (a), then taking mo-

ments about the fulcrum O, we have

        P × l = T
1
. b        or       P × 0.5 = 1444 × 0.1 = 144.4

∴ P = 144.4 / 0.5 = 288.8 N Ans.

Example 19.7. The simple band brake, as shown in Fig. 19.12, is applied to a shaft carrying

a flywheel of mass 400 kg. The radius of gyration of the flywheel is 450 mm and runs at 300 r.p.m.

If the coefficient of friction is 0.2 and the brake drum

diameter is 240 mm, find :

1. the torque applied due to a hand load of 100 N,

2. the number of turns of the wheel before it is brought to

rest, and

3. the time required to bring it to rest, from the moment of

the application of the brake.

Solution. Given :  m = 400 kg ; k = 450 mm = 0.45 m ;

N = 300 r.p.m. or 2 300 / 60ω = π×  = 31.42 rad/s ; µ = 0.2 ;

d = 240 mm = 0.24 m or r = 0.12 m

1. Torque applied due to hand load

First of all, let us find the tensions in the tight and slack sides of the band i.e. T
1
 and T

2

respectively.

From the geometry of the Fig. 19.12, angle of lap of the band on the drum,

         360 150 210 210 3.666 rad
180

π
θ = ° − ° = ° = × =

We know that

     
1

2

2.3log . 0.2 3.666 0.7332
 

= µ θ = × = 
 

T

T

           1

2

0.7332
log 0.3188

2.3

 
= = 

 

T

T
       or

1

2

2.08=
T

T
. . . (i)

... (Taking antilog of 0.3188)

Taking moments about the fulcrum O,

           T
2
 × 120 = 100 × 300 = 30 000 or  T

2
 = 30 000/120 = 250 N

∴                      T
1
 = 2.08T

2
 = 2.08 × 250 = 520 N  . . . [From equation (i)]

We know that torque applied,

       T
B

 = (T
1
 – T

2
 ) r =  (520 – 250) 0.12 = 32.4 N-m Ans.

2. Number of turns of the wheel before it is brought to rest

Let          n = Number of turns of the wheel before it is brought to rest.

We know that kinetic energy of rotation of the drum

           
2 2 2 2 21 1 1

. . . 400(0.45) (31.42)
2 2 2

= × ω = × ω = ×I m k = 40 000 N-m

This energy is used to overcome the work done due to the braking torque (T
B

).

∴              40 000 = T
B
 × 2πn  = 32.4 × 2πn  = 203.6 n

or          n = 40 000 / 203.6 = 196.5 Ans.

All dimensions in mm.

Fig. 19.12
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3. Time required to bring the wheel to rest

We know that the time required to bring the wheel to rest

= n / N = 196.5 / 300 = 0.655 min = 39.3 s Ans.

Example 19.8. A simple band brake operates on a drum of 600 mm in diameter that is

running at 200 r.p.m. The coefficient of friction is 0.25. The brake band has a contact of 270°, one

end is fastened to a fixed pin and the other end to the brake arm 125 mm from the fixed pin. The

straight brake arm is 750 mm long and placed perpendicular to the diameter that bisects the angle of

contact.

1. What is the pull necessary on the end of the brake

arm to stop the wheel if 35 kW is being absorbed ? What is the

direction for this minimum pull ?

2. What width of steel band of 2.5 mm thick is required

for this brake if the maximum tensile stress is not to exceed

50 N/mm
2
 ?

Solution. Given : d = 600 mm or r = 300 mm ;

N = 200 r.p.m. ; µ = 0.25 ; 270 270 /180θ = ° = × π = 4.713 rad ;

Power = 35 kW = 35 × 103 W ; t = 2.5 mm ; σ  = 50 N/mm2

1. Pull necessary on the end of the brake arm to stop the wheel

Let P = Pull necessary on the end of the brake arm to

stop the wheel.

The simple band brake is shown in Fig. 19.13. Since one end of the band is attached to the

fixed pin O, therefore the pull P on the end of the brake arm will act upward and when the wheel

rotates anticlockwise, the end of the band attached to O will be tight with tension T
1
 and the end of the

band attached to B will be slack with tension T
2
. First of all, let us find the tensions T

1
 and T

2
. We

know that

     
1

2

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴      1

2

1.178
log 0.5122

2.3

T

T

 
= = 

 

 or  1

2

3.25
T

T
=      ... (Taking antilog of 0.5122)  ... (i)

Let  T
B
 = Braking torque.

We know that power absorbed,

       
3 B B

B

2 . 2 200
35 10 21

60 60

N T T
T

π× π× ×
× = = =

∴                3 3
B 35 10 / 21 1667 N-m 1667 10 N-mmT = × = = ×

We also know that braking torque (T
B

),

  1667 × 103 = (T
1
 – T

2
)  r = (T

1
 – T

2
) 300

∴                     T
1
 – T

2
 = 1167 × 103/300 = 5556 N ...(ii)

From equations (i) and (ii), we find that

  T
1
 = 8025 N; and T

2
 = 2469 N

Fig. 19.13

All dimensions in mm
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Now taking moments about O, we have

              P × 750 = T
2
 × *OD = T

2
 × 62.5 2  = 2469 × 88.4 = 218 260

∴                       P = 218260 / 750 = 291 N Ans.

2.  Width of steel band

Let         w = Width of steel band in mm.

We know that maximum tension in the band (T
1
),

    8025 = . .wtσ  = 50 × w × 2.5 = 125 w

∴          w = 8025 / 125 = 64.2 mm Ans.

19.8. Differential Band Brake

In a differential band brake, as shown in Fig. 19.14, the ends of the band are joined at A and

B to a lever AOC pivoted on a fixed pin or fulcrum O. It may be noted that for the band to tighten, the

length OA must be greater than the length OB.

    (a) Clockwise rotation of the drum. (a) Anticlockwise rotation of the drum.

Fig. 19.14.  Differential band brake.

The braking torque on the drum may be obtained

in the similar way as discussed in simple band brake. Now

considering the equilibrium of the lever AOC. It may be

noted that when the drum rotates in the clockwise direc-

tion, as shown in Fig. 19.14 (a), the end of the band

attached to A will be slack with tension T
2
 and end of the

band attached to B will be tight with tension T
1
. On the

other hand, when the drum rotates in the anticlockwise

direction, as shown in Fig. 19.14 (b), the end of the band

attached to A will be tight with tension T
1
 and end of the

band attached to B will be slack with tension T
2
. Now

taking moments about the fulcrum O, we have

 P.l  + T
1
.b = T

2
.a

... (For clockwise rotation of the drum )

or                     P.l = T
2
.a – T

1
.b  ... (i)

and        P.l + T
2
.b = T

1
.a

... (For anticlockwise rotation of the drum )

or         P.l = T
1
.a – T

2
.b ... (ii)

* OD = Perpendicular distance from O to the line of action of tension T
2
.

OE = EB = OB/2 = 125/2 = 62.5 mm, and ∠DOE  = 45°

 ∴ OD = OE sec 45° = 62.5 2 mm

Tractors  are specially made to move on

rough terrain and  exert high power at

low speeds.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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We have discussed in block brakes (Art. 19.4), that when the frictional force helps to apply

the brake, it is said to be self energizing brake. In case of differential band brake, we see from equa-

tions (i) and (ii) that the moment T
1
.b and T

2
.b helps in applying the brake (because it adds to the

moment P.l ) for the clockwise and anticlockwise rotation of the drum respectively.

We have also discussed that when the force P is negative or zero, then brake is self locking.

Thus for differential band brake and for clockwise rotation of the drum, the condition for self locking

is

2 1. .T a T b≤ or 2 1/ /T T b a≤

and for anticlockwise rotation of the drum, the condition for self locking is

1 2. .T a T b≤ or 1 2/ /T T b a≤

Notes : 1.  The condition for self locking may also be written as follows :

    For clockwise rotation of the drum,

1 2. .T b T a≥ or 1 2/ /T T a b≥

and for anticlockwise rotation of the drum,

2 1. .T b T a≥ or 1 2/ /T T a b≥

2. When in Fig. 19.14 (a) and (b), the length OB is greater than OA, then the force P must act in the

upward direction in order to apply the brake. The tensions in the band, i.e. T
1
 and T

2
 will remain unchanged.

Example 19.9. In a winch, the rope supports a load W and is wound round a barrel 450 mm

diameter. A differential band brake acts on a drum 800 mm diameter which is keyed to the same shaft

as the barrel. The two ends of the bands are attached to pins on opposite sides of the fulcrum of the

brake lever and at distances of 25 mm and 100 mm from the fulcrum. The angle of lap of the brake

band is 250° and the coefficient of friction is 0.25. What is the maximum load W which can be

supported by the brake when a force of 750 N is applied to the lever at a distance of 3000 mm from

the fulcrum ?

Solution. Given : D = 450 mm or R = 225 mm ; d = 800 mm or r = 400 mm ; OB = 25 mm ;

OA = 100 mm ; θ  = 250° = 250 × π /180 = 4.364 rad ;

µ = 0.25 ; P = 750 N ; l = OC = 3000 mm

Since OA is greater than OB, therefore the

operating force (P = 750 N) will act downwards.

First of all, let us consider that the drum rotates

in clockwise direction.

We know that when the drum rotates in clock-

wise direction, the end of band attached to A  will be

slack with tension T
2
 and the end of the band attached

to B will be tight with tension T
1
, as shown in Fig. 19.15.

Now let us find out the values of tensions T
1
 and T

2
. We

know that

1

2

2.3log . 0.25 4.364 1.091
T

T

 
= µ θ = × = 

 

∴    1

2

1.091
log 0.4743

2.3

T

T

 
= = 

 

 or 1

2

2.98
T

T
= ... (Taking antilog of 0.4743)

and                        T
1
 = 2.98 T

2
... (i)

Now taking moments about the fulcrum O,

    750 × 3000 + T
1
 × 25 = T

2
 × 100

All dimensions in mm.

Fig. 19.15
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or T
2
 × 100 – 2.98 T

2
 × 25 = 2250 × 103  ... (�  T

1
 = 2.98 T

2
)

 25.5 T
2

= 2250 × 103 or T
2
 = 2250 × 103/25.5 = 88 × 103 N

and         T
1

= 2.98T
2
 = 2.98 × 88 × 103 = 262 × 103 N

We know that braking torque,

       T
B

= (T
1
 – T

2
) r

= (262 × 103 – 88 × 103) 400 = 69.6 × 106 N-mm ...(i)

and the torque due to load W newtons,

      T
W

 = W.R = W × 225 = 225 W N-mm ... (ii)

Since the braking torque must be equal to the torque due to load W  newtons, therefore from

equations (i) and (ii),

      W  = 69.6 × 106/225 = 309 × 103 N = 309 kN

Now let us consider that the drum rotates in

anticlockwise direction. We know that when the drum rotates

in anticlockwise direction, the end of the band attached to A

will be tight with tension T
1
 and end of the band attached to

B will be slack with tension T
2
, as shown in Fig. 19.16. The

ratio of tensions T
1
 and T

2
 will be same as calculated above,

i.e.

       1

2

2.98
T

T
=  or T

1
 = 2.98 T

2

Now taking moments about the fulcrum O,

       750 × 3000 + T
2
 × 25 = T

1
 × 100

or 2.98 T
2
 × 100 – T

2
× 25 = 2250 × 103  ... (�  T

1
 = 2.98 T

2
)

273 T
2
 = 2250 × 103      or      T

2
 = 2250 × 103/273 = 8242 N

and         T
1
 = 2.98 T

2
 = 2.98 × 8242 = 24 561 N

∴        Braking torque, T
B
 = (T

1
 × T

2
) r

           = (24 561 – 8242)400 = 6.53 × 106 N-mm ...(iii)

From equations (ii) and (iii),

W = 6.53 × 106/225 = 29 × 103 N = 29 kN

From above, we see that the maximum load (W ) that can be supported by the brake is 309 kN,

when the drum rotates in clockwise direction. Ans.

Example 19.10. A differential band brake, as shown in Fig. 19.17, has an angle of contact of

225°. The band has a compressed woven lining and bears against a cast iron drum of 350 mm

diameter. The brake is to sustain a torque of 350 N-m and the coefficient of friction between the band

and the drum is 0.3. Find : 1. The necessary force (P) for the clockwise and anticlockwise rotation of

the drum; and 2. The value of ‘OA’ for the brake to be self locking, when the drum rotates clockwise.

Solution. Given: θ = 225° = 225 × π /180 = 3.93 rad ; d = 350 mm    or   r = 175 mm ;

T = 350 N-m = 350 × 103 N-mm

1. Necessary force (P) for the clockwise and anticlockwise rotation of the drum

When the drum rotates in the clockwise direction, the end of the band attached to A will be

slack with tension T
2
 and the end of the band attached to B will be tight with tension T

1
, as shown in

Fig. 19.18. First of all, let us find the values of tensions T
1
 and T

2
.

All dimensions in mm.

Fig. 19.16
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All dimensions in mm.

     Fig. 19.17   Fig. 19.18

We know that

      
1

2

2.3log . 0.3 3.93 1.179
T

T

 
= µ θ = × = 

 

∴         1

2

1.179
log 0.5126

2.3

T

T

 
= = 

 

     or    1

2

3.255
T

T
= ... (Taking antilog of 0.5126 ) ... (i)

and braking torque (T
B
),

          350 × 103 = (T
1
 – T

2
)r = (T

1
 – T

2
) 175

∴           T
1
 – T

2
 = 350 × 103/175 = 2000 N  ... (ii)

From equations (i) and (ii), we find that

        T
1
 = 2887 N ; and T

2
 = 887 N

Now taking moments about the fulcrum O, we have

            P × 500 = T
2
 × 150 – T

1
 × 35 = 887 × 150 – 2887 × 35 = 32 ×103

∴          P = 32 × 103/500 = 64 N Ans.

When the drum rotates in the anticlockwise

direction, the end of the band attached to A will be tight

with tension T
1
 and end of the band attached to B will

be slack with tension T
2
, as shown in Fig. 19.19. Taking

moments about the fulcrum O, we have

             P × 500 = T
1
 × 150 – T

2
 × 35

            = 2887 × 150 – 887 × 35

            = 402 × 103

          P = 402 × 103/500 = 804 N  Ans.

2. Value of ‘OA’ for the brake to be self locking, when

the drum rotates clockwise

The clockwise rotation of the drum is shown in Fig 19.18.

For clockwise rotation of the drum, we know that

            P × 500 = T
2
 × OA – T

1
 × OB

For the brake to be self locking, P must be equal to zero. Therefore

             T
2
 × OA = T

1
 × OB

and      
1

2

2887 35

887

T OB
OA

T

× ×
= =  = 114 mm Ans.

Fig. 19.19
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19.9. Band and Block Brake

The band brake may be lined with blocks of wood or other material, as shown in Fig. 19.20

(a). The friction between the blocks and the drum provides braking action. Let there are ‘n’ number

of blocks, each subtending an angle 2θ  at the centre and the drum rotates in anticlockwise direction.

(a) (b)

Fig. 19.20. Band and block brake.

Let T
1
 = Tension in the tight side,

T
2
 = Tension in the slack side,

 µ = Coefficient of friction between the blocks and drum,

1T ′ = Tension in the band between the first and second block,

               2 3,T T′ ′  etc.= Tensions in the band between the second and third block,

         between the third and fourth block etc.

Consider one of the blocks (say first block) as shown in Fig. 19.20 (b). This is in equilibrium

under the action of the following forces :

1. Tension in the tight side (T
1
),

2. Tension in the slack side (
1T ′ ) or tension in the band between the first and second block,

3. Normal reaction of the drum on the block (R
N

), and

4. The force of friction ( µ.R
N

 ).

Resolving the forces radially, we have

1 1 N( )sinT T R′+ θ =  ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos .T T R′+ θ = µ  ... (ii)

Dividing equation (ii) by (i), we have

N1 1

N1 1

.( ) cos

( ) sin

RT T

RT T

′ µ− θ
=

′+ θ

or
1 1 1 1( ) tan ( )T T T T′ ′− = µ θ +

∴     1

1

1 tan

1 tan

T

T

+ µ θ
=

− µ θ′

Similarly, it can be proved for each of the blocks that

                  
3 11 2

22 3 4

1 tan
........

1 tan

nT TT T

TT T T

−
′′ ′ + µ θ

= = = =
− µ θ′ ′ ′
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∴              
11 1 1 2

2 21 2 3

1 tan
.........

1 tan

n

nTT T T T

T TT T T

−
′ ′  + µ θ

= × × × × =  
− µ θ′ ′ ′  

 ... (iii)

Braking torque on the drum of effective radius r
e
,

   T
B
 = (T

1
 – T

2
) r

e

        = (T
1
 – T

2
) r  ... [Neglecting thickness of band]

Note : For the first block, the tension in the tight side is T
1
 and in the slack side is 1T ′  and for the second block,

the tension in the tight side is  1T ′ and in the slack side is 2T ′ . Similarly for the third block, the tension in the

tight side is 2T ′  and in the slack side is 3T ′ and so on. For the last block, the tension in the tight side is

T
n-1

 and in the slack side is T
2
.

Example 19.11. In the band and block brake

shown in Fig. 19.21, the band is lined with 12 blocks

each of which subtends an angle of 15° at the centre

of the rotating drum. The thickness of the blocks is 75

mm and the diameter of the drum is 850 mm. If, when

the brake is in action, the greatest and least tensions

in the brake strap are T
1
 and T

2
, show that

12

1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °
=  

− µ ° 

, where µ is the

coefficient of friction for the blocks.

With the lever arrangement as shown in

Fig.19.21, find the least force required at C for the

blocks to absorb 225 kW at 240 r.p.m. The coefficient

of friction between the band and blocks is 0.4.

Solution. Given : n = 12 ;    2θ  = 15°  or  θ  = 7.5°;   t = 75 mm = 0.075 m ;   d = 850 mm

= 0.85 m ;    Power = 225 kW = 225 × 103 W ;    N = 240 r.p.m.;    µ = 0.4

Since OA > OB, therefore the force at C must act downward. Also, the drum rotates clock-

wise, therefore the end of the band attached to A will be slack with tension T
2
 (least tension) and the

end of the band attached to B will be tight with tension T
1
 (greatest tension).

Consider one of the blocks (say first block) as shown in Fig. 19.22. This is in equilibrium

under the action of the following four forces :

1. Tension in the tight side (T
1
),

2. Tension in the slack side (
1T ′ ) or the tension in the band between the first and second block,

3. Normal reaction of the drum on the block (R
N

), and

4. The force of friction ( µ.R
N

 ).

Resolving the forces radially, we have

1 1 N( )sin 7.5T T R′+ ° = ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos 7.5 .T T R′− ° = µ ... (ii)

Dividing equation (ii) by (i), we have

1 1

1 1

( ) cos 7.5

( )sin 7.5

′− °
= µ

′+ °

T T

T T

    or   
1 1

1 1

tan 7.5
T T

T T

′−
= µ °

′+

All dimensions in mm.

Fig. 19.21

Fig. 19.22
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∴  
1 1 1 1. tan 7.5 . tan 7.5T T T T′ ′− = µ ° + µ °

or                
1 1(1 tan 7.5 ) (1 tan 7.5 )T T ′− µ ° = + µ °

∴                       1

1

1 tan 7.5

1 tan 7.5

T

T

 + µ °
=  

− µ °′  

Similarly, for the other blocks, the ratio of tensions 
1 2

2 3

T T

T T

′ ′
=

′ ′
 etc. remains constant.

 Therefore for 12 blocks having greatest tension T
1
 and least tension T

2
 is

        

12

1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °
=  

− µ ° 

Least force required at C

Let         P = Least force required at C.

We know that diameter of band,

         D = d + 2t = 0.85 + 2 × 0.075 = 1 m

∴ Power absorbed  = 
1 2( ) .

60

T T D N− π

or                
3

1 2

Power 60 225 10 60

1 240
T T

DN

× × ×
− = =

π π × ×
= 17 900 N  ... (iii)

We have proved that

              

12 12 12
1

2

1 tan 7.5 1 0.4 0.1317 1.0527
3.55

1 tan 7.5 1 0.4 0.1317 0.9473

 + µ ° + ×   
= = = =     

− µ ° − ×    

T

T

... (iv)

From equations (iii) and (iv), we find that

       T
1
 = 24  920 N, and T

2
 = 7020 N

Now taking moments about O, we have

              P × 500 = T
2
 × 150 – T

1
 × 30 = 7020 × 150 – 24 920 × 30 = 305 400

∴           P = 305 400 / 500 = 610.8 N Ans.

Example 19.12.  A band and block brake, having 14 blocks each of which subtends an angle

of 15° at the centre, is applied to a drum of 1 m effective diameter. The drum and flywheel mounted

on the same shaft has a mass of 2000 kg and a combined radius of gyration of 500 mm. The two ends

of the band are attached to pins on opposite sides of the brake lever at distances of 30 mm and 120

mm from the fulcrum. If a force of 200 N is applied at a distance of 750 mm from the fulcrum, find:

1. maximum braking torque, 2. angular retardation of the drum, and 3. time taken by the

system to come to rest from the rated speed of 360 r.p.m.

The coefficient of friction between blocks and drum may be taken as 0.25.

Solution. Given : n = 14 ; 2θ  = 15°     or   θ  = 7.5° ;   d = 1 m    or    r = 0.5 m ;    m = 2000 kg ;

k = 500 mm = 0.5 m ;    P = 200 N ;    N = 360 r.p.m. ;    l = 750 mm ;    µ = 0.25

1. Maximum braking torque

The braking torque will be maximum when OB > OA and the drum rotates anticlockwise as

shown in Fig. 19.23. The force P must act upwards and the end of the band attached to A is tight under

tension T
1
 and the end of the band attached to B is slack under tension T

2
.
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Taking moments about O,

           200 × 750 + T
1
 × 30 = T

2
 × 120

        12 T
2
 – 3T

1
 = 15 000              . . . (i)

We know that             
1

2

1 tan

1 tan

n
T

T

 + µ θ
=  

− µ θ 

          = 

14
1 0.25 tan 7.5

1 0.25 tan 7.5

+ ° 
 

− ° 

          = 

14
1 0.25 0.1317

1 .025 0.1317

+ × 
 

− × 

          = (1.068)14 = 2.512 . . . (ii)

From equations (i) and (ii),

                 T
1
 = 8440 N, and T

2
 = 3360 N

We know that maximum braking torque,

                   B 1 2( ) (8440 3360)0.5 2540 N-mT T T r= − = − = Ans.

2.  Angular retardation of the drum

Let                  α  = Angular retardation of the drum.

We know that braking torque (T
B 

),

              2 22540 . . . 2000(0.5) 500I m k= α = α = α = α

∴                                2540 / 500α = = 5.08 rad/s2 Ans.

3.  Time taken by the system to come to rest

Let                     t = Required time.

Since the system is to come to rest from the rated speed of 360 r.p.m., therefore

Initial angular speed, 1 2 360 / 60 37.7 rad/sω = π× =

and final angular speed, 2 0ω =

We know that 2 1 .tω = ω − α  . . . (– ve sign due to retardation )

∴                   1 / 37.7 / 5.08t = ω α =  = 7.42 s Ans.

19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake

An internal expanding brake consists of two shoes S
1
 and S

2
 as shown in Fig. 19.24. The

outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the

coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about

a fixed fulcrum O
1
 and O

2
 and made to contact a cam at the other end. When the cam rotates, the

shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum

produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in

off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep out

dust and moisture. This type of brake is commonly used in motor cars and light trucks.

All dimensions in mm

Fig. 19.23



754      �               Theory of Machines

Fig. 19.24. Internal expanding brake. Fig. 19.25. Forces on an internal expanding brake.

We shall now consider the forces acting on such a brake, when the drum rotates in the

anticlockwise direction as shown in Fig. 19.25. It may be noted that for the anticlockwise direction,

the left hand shoe is known as leading or primary shoe while the right hand shoe is known as trailing

or secondary shoe.

Let  r = Internal radius of the wheel rim,

 b =  Width of the brake lining,

p
1
 = Maximum intensity of normal

        pressure,

            p
N

 = Normal pressure,

F
1

= Force exerted by the cam on

        the leading shoe, and

F
2
 = Force exerted by the cam on

        the trailing shoe.

Consider a small element of the brake lining

AC subtending an angle δθ  at the centre. Let OA

makes an angle θ with OO
1
 as shown in Fig. 19.25. It

is assumed that the pressure distribution on the shoe

is nearly uniform, however the friction lining wears

out more at the free end. Since the shoe turns about

O
1
, therefore the rate of wear of the shoe lining at A

will be proportional to the radial displacement of that point. The rate of wear of the shoe lining varies

directly as the perpendicular distance from O
1
 to OA, i.e. O

1
B. From the geometry of the figure,

                 O
1
B = OO

1
 sin θ

and normal pressure at A,

         N 1N
sin or sinp p p∝ θ = θ

∴      Normal force acting on the element,

 NRδ  = Normal pressure × Area of the element

          = 1N
( . . ) sin ( . . )p b r p b rδθ = θ δθ

and braking or friction force on the element,

    N 1
. sin ( . . )F R p b rδ = µ × δ = µ θ δθ

∴   Braking torque due to the element about O,     

                 2
B 1 1. sin ( . . ) . (sin . )T F r p b r r p b rδ = δ × = µ θ δθ = µ θ δθ

Internal expanding brake.

Loading Shoe

Return Spring

40 mm

70 mm overall,
50 mm spring,
one on each

side

135 mm

35 mm 25 mm

Trailing

Shoe

110 mm overall

(behind shoes)
60 mm overall, 25 mm

spring

Lever
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and total braking torque about O for whole of one shoe,

         [ ]

2

2

1

1

2 2
B 1 1sin cosT p b r d p b r

θ

θ

θ

θ

= µ θ θ = µ − θ∫

= 
2

1 21
(cos cos )p brµ θ − θ

Moment of normal force NRδ  of the element about the fulcrum O
1
,

   N N 1 N 1( sin )M R O B R OOδ = δ × = δ θ

= 
1

2
1 1 1sin ( . . ) ( sin ) sin ( . . )p b r OO p b r OOθ δθ θ = θ δθ

∴   Total moment of normal forces about the fulcrum O
1
,

     

2 2

1 1

2 2
N 1 1 11

sin ( . . ) . . . sinM p b r OO p b r OO d

θ θ

θ θ

= θ δθ = θ θ∫ ∫

= 

2

1

1 1

1
. . . (1 cos 2 )

2
p b r OO d

θ

θ

− θ θ∫        ...
2 1

sin (1 cos2 )
2

 
θ = − θ

 
 
∵

= 

2

1

11

1 sin 2
. . .

2 2
p b r OO

θ

θ

θ 
θ −

 
 

= 
2 1

1 2 11

sin 2 sin 21
. . .

2 2 2
p b r OO

θ θ 
θ − − θ + 

 

= 1 2 1 1 21

1 1
. . . ( ) (sin 2 sin 2 )

2 2
p b r OO

 
θ − θ + θ − θ

 
 

Moment of frictional force Fδ  about the fulcrum O
1
,

      F 1( cos )M F AB F r OOδ = δ × = δ − θ ... (∵  AB = r – OO
1
 cos θ )

11
sin ( . . ) ( cos )p b r r OO= µ θ δθ − θ

1 1. . . ( sin sin cos )p b r r OO= µ θ − θ θ δθ

= 
1

1. . . sin sin 2
2

OO
p b r r

 
µ θ − θ δθ 

 
... ( 2sin cos sin2 )θ θ = θ∵

∴    Total moment of frictional force about the fulcrum O
1
,

         M
F
 =

2

1

1
1 sin sin 2

2

OO
p b r r d

θ

θ

 
µ θ − θ θ 

 
∫

2

1

1
1 cos cos 2

4

OO
p b r r

θ

θ

 
= µ − θ + θ

 
 

        = 
1 1

1 2 2 1 1cos cos 2 cos cos 2
4 4

OO OO
p b r r r

 
µ − θ + θ + θ − θ 

 

        = 
1

1 1 2 2 1(cos cos ) (cos 2 cos 2 )
4

OO
p b r r

 
µ θ − θ + θ − θ 

 

Internal exparding brake.
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Now for leading shoe, taking moments about the fulcrum O
1
,

   F
1
 × l = M

N
 – M

F

and for trailing shoe, taking moments about the fulcrum O
2
,

 F
2
 × l  = M

N
 + M

F

Note : If M
F
 > M

N
, then the brake becomes self locking.

Example 19.13. The arrangement of an internal expanding friction brake, in which the

brake shoe is pivoted at ‘C’ is shown in Fig. 19.26. The distance ‘CO’ is 75 mm, O being the centre

of the drum. The internal radius of the brake drum is

100 mm. The friction lining extends over an arc AB, such

that the angle AOC is 135° and angle BOC is 45°. The

brake is applied by means of a force at Q, perpendicular

to the line CQ, the distance CQ being 150 mm.

The local rate of wear on the lining may be taken as

proportional to the normal pressure on an element at an

angle of ‘ θ ’ with OC and may be taken as equal to

 p
1
 sin θ , where p

1
 is the maximum intensity of normal

pressure.

The coefficient of friction may be taken as 0.4 and

the braking torque required is 21 N-m. Calculate the force

Q required to operate the brake when 1. The drum rotates

clockwise, and 2. The drum rotates anticlockwise.

Solution. Given : OC = 75 mm ; r = 100 mm ;

2θ  = 135° = 135 × π  /180 = 2.356 rad ; 1θ  = 45° = 45 × π /180 = 0.786 rad ; l = 150 mm ;

µ  = 0.4 ; T
B
 = 21 N-m = 21 × 103 N-mm

1. Force ‘Q’ required to operate the brake when drum rotates clockwise

We know that total braking torque due to shoe (T
B 

),

 
1

3 2
1 221 10 . . . (cos cos )p b r× = µ θ − θ

1

2
10.4 (100) (cos 45 cos135 ) 5656 .p b p b= × × ° − ° =

∴
3

1. 21 10 / 5656 3.7p b = × =

Total moment of normal forces about the fulcrum C,

     
N 1 2 1 1 2

1 1
. . . ( ) (sin 2 sin 2 )

2 2
M p b r OC

 
= θ − θ + θ − θ

 
 

= 
1 1

3.7 100 75 (2.356 0.786) (sin 90 sin 270 )
2 2

 
× × × − + ° − °

 
 

= 13 875 (1.57 + 1) = 35 660 N-mm

and total moment of friction force about the fulcrum C,

       F 1 1 2 2 1. . . (cos cos ) (cos 2 cos 2 )
4

OC
M p b r r

 
= µ θ − θ + θ − θ

 
 

= 0.4 × 3.7 × 100 
75

100 (cos 45 cos135 ) (cos 270 cos90 )
4

 
° − ° + ° − °

 
 

= 148 × 141.4 = 20 930 N-mm

All dimensions in mm

Fig. 19.26
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Taking moments about the fulcrum C, we have

 Q × 150 = M
N

 + M
F
 = 35 660 + 20 930 = 56 590

∴                      Q = 56 590 / 150 = 377 N Ans.

2. Force ‘Q’ required to operate the brake when drum rotates anticlockwise

Taking moments about the fulcrum C, we have

 Q × 150 = M
N

 – M
F
 = 35 660 – 20 930 = 14 730

∴                     Q = 14 730/150 = 98.2 N Ans.

19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle

In a four wheeled moving vehicle, the brakes may be applied to

1. the rear wheels only,

2. the front wheels only, and

3. all the four wheels.

In all the above mentioned three types of

braking, it is required to determine the retardation

of the vehicle when brakes are applied. Since the

vehicle retards, therefore it is a problem of

dynamics. But it may be reduced to an equivalent

problem of statics by including the inertia force in

the system of forces actually applied to the vehicle.

The inertia force is equal and opposite to the

braking force causing retardation.

Now, consider a vehicle moving up an

inclined plane, as shown in Fig. 19.27.

Let  α   =  Angle of inclination of the plane to the horizontal,

m = Mass of the vehicle in kg (such that its weight is m.g newtons),

h = Height of the C.G. of the vehicle above the road surface in metres,

x = Perpendicular distance of C.G. from the rear axle in metres,

L =  Distance between the centres of the rear and front wheels (also called wheel

base) of the vehicle in metres,

R
A

= Total normal reaction between the ground and the front wheels in newtons,

R
B

= Total normal reaction between the ground and the rear wheels in newtons,

µ = Coefficient of friction between the tyres and road surface, and

a = Retardation of the vehicle in m/s2.

We shall now consider the above mentioned three cases of braking, one by one. In all these

cases, the braking force acts in the opposite direction to the direction of motion of the vehicle.

1. When the brakes are applied to the rear wheels only

It is a common way of braking the vehicle in which the braking force acts at the rear wheels

only.

Let   F
B
 = Total braking force (in newtons) acting at the rear wheels due to the

         application of the brakes. Its maximum value is µ.R
B
.

The various forces acting on the vehicle are shown in Fig. 19.27. For the equilibrium of the

vehicle, the forces acting on the vehicle must be in equilibrium.

Resolving the forces parallel to the plane,

B . .sin .F m g m a+ α =  . . . (i)

Fig. 19.27. Motion of vehicle up the inclined

plane and brakes are applied to rear wheels only.
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Resolving the forces perpendicular to the plane,

A B . cosR R m g+ = α  . . . (ii)

Taking moments about G, the centre of gravity of the vehicle,

F
B
 × h + R

B
 × x = R

A
 (L – x)  . . . (iii)

Substituting the value of F
B
 = µ.R

B
, and R

A
 = m.g cos α  – R

B
  [from equation (ii) ] in the

above expression, we have

 µ.R
B
 × h + R

B
 × x = (m.g cos α  – R

B
) (L – x)

R
B
 (L + µ.h) = m.g cos α  (L – x)

∴ R
B
 = 

. cos ( )

.

m g L x

L h

α −

+ µ

and R
A

 = B

. cos ( )
. cos . cos

.

m g L x
m g R m g

L h

α −
α − = α −

+ µ

. cos ( . )

.

m g x h

L h

α + µ
=

+ µ

We know from equation (i),

            
B B B. sin .

sin sin
m

F m g F R
a g g

m m

+ α µ
= = + α = + α

               
. cos ( )

sin
.

g L x
g

L h

µ α −
= + α

+ µ
 . . . (Substituting the value of R

B
)

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ B A

. ( ) . ( . )
;

. .

m g L x m g x h
R R

L h L h

− + µ
= =

+ µ + µ
  and  

. ( )

.

g L x
a

L h

µ −
=

+ µ

2. If the vehicle moves down the plane, then equation (i) becomes

B . sin .F m g m a− α =

∴
B B. . cos ( )

.sin .sin sin
.

F R g L x
a g g g

m m L h

µ µ α −
= − α = − α = − α

+ µ

2. When the brakes are applied to front wheels only

It is a very rare way of braking the

vehicle, in which the braking force acts at the

front wheels only.

Let F
A

 = Total braking force (in newtons)

     acting at the front wheels due to

   the application of brakes. Its

    maximum value is µ.R
A

.

The various forces acting on the vehicle

are shown in Fig. 19.28.

Resolving the forces parallel to the

plane,

A . sin .F m g m a+ α = . . . (i)

Resolving the forces perpendicular to

the plane,

    A B . cosR R m g+ = α  . . . (ii)

Fig. 19.28. Motion of the vehicle up the inclined

plane and brakes are applied to front wheels only.
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Taking moments about G, the centre of gravity of the vehicle,

F
A

 × h + R
B
 × x = R

A
 (L – x)

Substituting the value of F
A

 = µ.R
A

 and R
B
 = m.g cos α – R

A
 [from equation (ii) ] in the above

expression, we have

µ.R
A

 × h + (m.g cos α – R
A

) x = R
A

 (L – x)

µ.R
A

 × h + m.g cos α × x = R
A

 × L

∴ A

. cos

.

m g x
R

L h

α ×
=

− µ

and B A

. cos
. cos . cos

.

m g x
R m g R m g

L h

α×
= α − = α −

− µ

    
.

. cos 1 . cos
. .

x L h x
m g m g

L h L h

   − µ −
= α − = α   

− µ − µ   

We know from equation (i),

  
A A. sin . . sinF m g R m g

a
m m

+ α µ + α
= =

     = 
. . cos . sin

( . )

m g x m g

L h m m

µ α × α
+

− µ
 . . . (Substituting the value of R

A
)

    = 
. cos

sin
.

g x
g

L h

µ α ×
+ α

− µ

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ A B

. . ( . )
; ;

. .

m g x m g L h x
R R

L h L h

× − µ −
= =

− µ − µ
   and   

.

.

g x
a

L h

µ ⋅
=

− µ

2. When the vehicle moves down the plane, then equation (i) becomes

  A . sin .F m g m a− α =

∴  
A A. . cos

.sin .sin sin
m .

F R g x
a g g g

m L h

µ µ α ×
= − α = − α = − α

− µ

3. When the brakes are applied to all the four

wheels

This is the most common way of braking

the vehicle, in which the braking force acts on

both the rear and front wheels.

Let  F
A

 = Braking force provided by the

             front wheels = µ.R
A

, and

    F
B
 = Braking force provided by the

              rear wheels = µ.R
B
.

A little consideration will show that when

the brakes are applied to all the four wheels, the

braking distance (i.e. the distance in which the

vehicle is brought to rest after applying the

brakes) will be the least. It is due to this reason

that the brakes are applied to all the four wheels.

The various forces acting on the vehicle

are shown in Fig. 19.29.

Fig. 19.29. Motion of the vehicle up the inclined

plane and the brakes are applied to all

the four wheels.
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Resolving the forces parallel to the plane,

                      A B . sin .F F m g m a+ + α =  . . . (i)

Resolving the forces perpendicular to the plane,

           A B . cosR R m g+ = α  . . . (ii)

Taking moments about G, the centre of gravity of the vehicle,

                     A B B A( ) ( )F F h R x R L x+ + × = −  . . . (iii)

Substituting the value of A A B B. , .F R F R= µ = µ  and B A. cosR m g R= α −  [From equation

(ii)] in the above expression,

A B A A( ) ( . cos ) ( )R R h m g R x R L xµ + + α − = −

A A A A( . cos ) ( . cos ) ( )R m g R h m g R x R L xµ + α − + α − = −

        A. . cos . cosm g h m g x R Lµ α× + α× = ×

∴               R
A 

= 
. cos ( . )m g h x

L

α µ +

and             B A

cos ( . )
. cos . cos

mg h x
R m g R m g

L

α µ +
= α − = α −

                           = 
. .

. cos 1 . cos
h x L h x

m g m g
L L

µ + − µ −   
α − = α  

   

Now from equation (i),

   A B. . sin .R R m g m aµ + µ + α =

  A B( ) . sin .R R m g m aµ + + α =

   . . .cos . sin .m g m g m aµ α + α =  . . . [From equation (ii)]

∴          ( .cos sin )a g= µ α + α

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴                        A B

. ( . ) .
; . ;

m g h x L h x
R R m g

L L

µ + − µ − 
= =  

 
 and a = g.µ

2. If the vehicle moves down the plane, then equation (i) may be written as

            A B . sin .F F m g m a+ − α =

or                       A B( ) . sin .R R m g m aµ + − α =

    . . cos . sin .m g m g m aµ α − α =

and                          ( .cos sin )a g= µ α − α

Example 19.14. A car moving on a level road at a speed 50 km/h has a wheel base 2.8

metres, distance of C.G. from ground level 600 mm, and the distance of C.G. from rear wheels 1.2

metres. Find the distance travelled by the car before coming to rest when brakes are applied,

1. to the rear wheels, 2. to the front wheels, and 3. to all the four wheels.

The coefficient of friction between the tyres and the road may be taken as 0.6.

Solution. Given : u = 50 km/h = 13.89 m/s ; L = 2.8 m ; h = 600 mm = 0.6 m ; x = 1.2 m ; µ = 0.6

 Let      s = Distance travelled by the car before coming to rest.

1. When brakes are applied to the rear wheels

Since the vehicle moves on a level road, therefore retardation of the car,

             
2. ( ) 0.6 9.81(2.8 1.2)

2.98 m/s
. 2.8 0.6 0.6

g L x
a

L h

µ − × −
= = =

+ µ + ×



Chapter 19 : Brakes and Dynamometers           �          761

We know that for uniform retardation,

2 2(13.89)

2 2 2.98

u
s

a
= =

×
= 32.4 m Ans.

2. When brakes are applied to the front wheels

Since the vehicle moves on a level road, therefore retardation of the car,

2. . 0.6 9.18 1.2
2.9 m/s

. 2.8 0.6 0.6

g x
a

L h

µ × ×
= = =

− µ − ×

We know that for uniform retardation,

2 2(13.89)

2 2 2.9

u
s

a
= =

×
 = 33.26 m Ans.

3. When the brakes are applied to all the four wheels

Since the vehicle moves on a level road, therefore retardation of the car,

2. 9.81 0.6 5.886 m/sa g= µ = × =

We know that for uniform retardation,

2 2(13.89)

2 2 5.886

u
s

a
= =

×
 = 16.4 m  Ans.

Example 19.15. A vehicle moving on a rough plane inclined at 10° with the horizontal at a

speed of 36 km/h has a wheel base 1.8 metres. The centre of gravity of the vehicle is 0.8 metre from

the rear wheels and 0.9 metre above the inclined plane. Find the distance travelled by the vehicle

before coming to rest and the time taken to do so when 1. The vehicle moves up the plane, and 2. The

vehicle moves down the plane.

The brakes are applied to all the four wheels and the coefficient of friction is 0.5.

Solution. Given :  α = 10°; u = 36 km / h = 10 m / s ; L = 1.8 m ; x = 0.8 m ; h = 0.9 m ; µ = 0.5

Let                s = Distance travelled by the vehicle before  coming to rest, and

              t = Time taken by the vehicle in coming to rest.

1.  When the vehicle moves up the plane and brakes are applied to all the four wheels

Since the vehicle moves up the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α + α

    = 9.81 (0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)° + ° = × + = 6.53 m/s2

We know that for uniform retardation,

2 2(10)

2 2 6.53

u
s

a
= =

×
 = 7.657 m Ans.

and final velocity of the vehicle (v),

0 . 10 6.53u a t t= + = − . . .(Minus sign due to retardation)

∴                 t = 10 / 6.53 = 1.53 s Ans.

2.  When the vehicle moves down the plane and brakes are applied to all the four wheels

Since the vehicle moves down the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α − α

   9.81(0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)= ° − ° = × − = 3.13 m/s2
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We know that for uniform retardation,

2 2(10)

2 2 3.13

u
s

a
= =

×
= 16 m Ans.

and final velocity of the vehicle (v),

0 = u + a.t = 10 – 3.13 t . . . (Minus sign due to retardation)

∴   t = 10/3.13 = 3.2 s Ans.

Example 19.16. The wheel base of a car is 3 metres and its centre of gravity is 1.2 metres

ahead the rear axle and 0.75 m above the ground level. The coefficient of friction between the wheels

and the road is 0.5. Determine the maximum deceleration of the car when it moves on a level road,

if the braking force on all the wheels is the same and no wheel slip occurs.

Solution. Given : L = 3 m ; x = 1.2 m ; h = 0.75 m ; µ = 0.5

Let a = Maximum deceleration of the car,

m = Mass of the car,

F
A

 and F
B
 = Braking forces at

the front and

rear wheels

 respectively, and

 R
A

and R
B  

= Normal reactions

   at the front and

 rear wheels

 respectively.

The various forces acting on the car are

shown in Fig. 19.30.

We shall consider the following two cases:

(a) When the slipping is imminent at the rear wheels

We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            B

. 3 0.5 0.75 1.2
. 9.81 4.66 N

3

L h x
R m g m m

L

− µ − − × −   
= = × =   

   

and       F
A

 + F
B
 = m.a or 2µ.  R

B
 = m.a . . . (∵  F

B
 = F

A
 and F

B
 = µ.R

B
)

∴             2 × 0.5 × 4.66 m = m.a or a = 4.66 m/s2

(b) When the slipping is imminent at the front wheels

We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            A

. ( . ) 9.81(0.5 0.75 1.2)
5.15 N

3

m g h x m
R m

L

µ + × × +
= = =

and                    F
A

 + F
B
 = m.a      or          2µ . R

A
 = m.a . . . (∵  F

A
 = F

B
 and F

A
 = µ . R

A
)

∴       2 × 0.5 × 5.15 m = m.a      or                 a = 5.15 m/s2

Hence the maximum possible deceleration is 4.66 m/s2 and slipping would occur first at the

rear wheels. Ans.

19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer

A dynamometer is a brake but in addition it has a device to measure the frictional resistance.

Knowing the frictional resistance, we may obtain the torque transmitted and hence the power of the

engine.

Fig. 19.30
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19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers

Following are the two types of

dynamometers, used for measuring the brake

power of an engine.

1. Absorption dynamometers, and

2. Transmission dynamometers.

In the absorption dynamometers, the

entire energy or power produced by the

engine is absorbed by the friction resistances

of the brake and is transformed into heat,

during the process of measurement. But in

the transmission dynamometers, the energy

is not wasted in friction but is used for doing

work. The energy or power produced by the

engine is transmitted through the dynamom-

eter to some other machines where the power

developed is suitably measured.

19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers

The following two types of absorption dynamometers are important from the subject point of

view :

1. Prony brake dynamometer, and 2. Rope brake dynamometer.

These dynamometers are discussed, in detail, in the following pages.

19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer

A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown

in Fig. 19.31. It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine

whose power is required to be measured. The blocks are clamped by means of two bolts and nuts, as

shown in Fig. 19.31. A helical spring is provided between the nut and the upper block to adjust the

pressure on the pulley to control its speed. The upper block has a long lever attached to it and carries

a weight W at its outer end. A counter weight is placed at the other end of the lever which balances the

brake when unloaded. Two stops S, S are provided to limit the motion of the lever.

Fig. 19.31. Prony brake dynamometer.

When the brake is to be put in operation, the long end of the lever is loaded with suitable

weights W and the nuts are tightened until the engine shaft runs at a constant speed and the lever is in

horizontal position. Under these conditions, the moment due to the weight W must balance the mo-

ment of the frictional resistance between the blocks and the pulley.

Dynamometers  measure the power of the engines.
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Let W = Weight at the outer end of the lever in newtons,

L = Horizontal distance of the weight W

from the centre of the pulley in metres,

F = Frictional resistance between the blocks

and the pulley in newtons,

R = Radius of the pulley in metres, and

N = Speed of the shaft in r.p.m.

We know that the moment of the frictional re-

sistance or torque on the shaft,

                T = W.L = F.R N-m

Work done in one revolution

       = Torque × Angle turned in radians

                     = 2 N-mT × π

  ∴    Work done per minute

            = 2 N-mT N× π

We know that brake power of the engine,

            
Work done per min. 2 . 2

. . watts
60 60 60

T N W L N
B P

× π × π
= = =

Notes : 1. From the above expression, we see that while determining the brake power of engine with the help of

a prony brake dynamometer, it is not necessary to know the radius of the pulley, the coefficient of friction

between the wooden blocks and the pulley and the pressure exerted by tightening of the nuts.

2. When the driving torque on the shaft is not uniform, this dynamometer is subjected to severe oscil-

lations.

19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most commonly used for measur-

ing the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or

rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring

balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.

19.32. In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at

intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional

torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let W = Dead load in newtons,

S = Spring balance reading in newtons,

D = Diameter of the wheel in metres,

d = diameter of rope in metres, and

N  = Speed of the engine shaft in r.p.m.

∴  Net load on the brake

   = (W – S) N

We know that distance moved in one revolution

  = ( )mD dπ +

Another dynamo
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∴     Work done per revolution

= ( ) ( ) N-mW S D d− π +

and work done per minute

= ( ) ( ) N-mW S D d N− π +

Fig. 19.32. Rope brake dynamometer.

∴     Brake power of the engine,

 
Work done per min ( ) ( )

B.P watts
60 60

W S D d N− π +
= =

If the diameter of the rope (d) is neglected, then brake

power of the engine,

( )
B.P. watts

60

W S D N− π
=

Note: Since the energy produced by the engine is absorbed by the

frictional resistances of the brake and is transformed into heat,

therefore it is necessary to keep the flywheel of the engine cool with

soapy water. The flywheels have their rims made of a channel section

so as to receive a stream of water which is being whirled round by

the wheel. The water is kept continually flowing into the rim and is

drained away by a sharp edged scoop on the other side, as shown in

Fig. 19.32.

Example 19.17. In a laboratory experiment, the

following data were recorded with rope brake:

Diameter of the flywheel 1.2 m; diameter of the rope

12.5 mm; speed of the engine 200 r.p.m.; dead load on the

brake 600 N; spring balance reading 150 N. Calculate the

brake power of the engine.

Solution. Given : D = 1.2 m ; d = 12.5 mm

= 0.0125 m ; N = 200 r.p.m ; W = 600 N ; S = 150 N

An engine is being readied for

testing on a dynamometer
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We know that brake power of the engine,

( ) ( ) (600 150) (1.2 0.0125)200
B.P. 5715 W

60 60

W S D d N− π + − π +
= = =

       = 5.715 kW Ans.

19.17.19.17.19.17.19.17.19.17. Classification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission Dynamometers
The following types of transmission dynamometers are important from the subject point of

view :

1. Epicyclic-train dynamometer, 2. Belt transmission dynamometer, and 3. Torsion dyna-

mometer.

We shall now discuss these dynamometers, in detail, in the following pages.

19.18.19.18.19.18.19.18.19.18. Epicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train Dynamometer

Fig. 19.33. Epicyclic train dynamometer.

An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train

of gears, i.e. a spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is

keyed to the engine shaft (i.e. driving shaft) and rotates in anticlockwise direction. The annular gear

is also keyed to the driving shaft and rotates in clockwise direction. The pinion or the intermediate

gear meshes with both the spur and annular gears. The pinion revolves freely on a lever which is

pivoted to the common axis of the driving and driven shafts. A weight w is placed at the smaller end

of the lever in order to keep it in position. A little consideration will show that if the friction of the pin

on which the pinion rotates is neglected, then the tangential effort P exerted by the spur gear on the

pinion and the tangential reaction of the annular gear on the pinion are equal.

Since these efforts act in the upward direction as shown, therefore total upward force on the

lever acting through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum

and it is balanced by a dead weight W at the end of the lever. The stops S, S are provided to control the

movement of the lever.

For equilibrium of the lever, taking moments about the fulcrum F,

 2P × a = W.L or P = W.L /2a

Let   R = Pitch circle radius of the spur gear in metres, and

      N  = Speed of the engine shaft in r.p.m.

∴    Torque transmitted,   T = P.R

and power transmitted                    
2 . 2

watts
60 60

T N P R N× π × π
= =
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19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission

DynamometerDynamometerDynamometerDynamometerDynamometer

When the belt is transmitting power from one pulley to another, the tangential effort on the

driven pulley is equal to the difference between the tensions in the tight and slack sides of the belt. A

belt dynamometer is introduced to measure directly the difference between the tensions of the belt,

while it is running.

Fig. 19.34. Froude or Throneycroft transmission dynamometer.

A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft

transmission dynamometer. It consists of a pulley A (called driving pulley) which is rigidly fixed to

the shaft of an engine whose power is required to be measured. There is another pulley B (called

driven pulley) mounted on another shaft to which the power from pulley A is transmitted. The pulleys

A and B are connected by means of a continuous belt passing round the two loose pulleys C and D

which are mounted on a T-shaped frame. The frame is pivoted at E and its movement is controlled by

two stops S,S. Since the tension in the tight side of the belt (T
1
) is greater than the tension in the slack

side of the belt (T
2
), therefore the total force acting on the pulley C (i.e. 2T

1
) is greater than the total

force acting on the pulley D (i.e. 2T
2
). It is thus obvious that the frame causes movement about E in

the anticlockwise direction. In order to balance it, a weight W is applied at a distance L from E on the

frame as shown in Fig. 19.34.

Now taking moments about the pivot E, neglecting friction,

1 22 2 .T a T a W L× = × + or 1 2

.

2

W L
T T

a
− =

Let D = diameter of the pulley A in metres, and

N = Speed of the engine shaft in r.p.m.

∴          Work done in one revolution = 1 2( ) N-mT T D− π

and workdone per minute                    = 1 2( ) N-mT T DN− π

∴    Brake power of the engine, 1 2( )
B.P. watts

60

T T DN− π
=

Example 19.18. The essential features of a transmission dynamometer are shown in Fig.

19.35. A is the driving pulley which runs at 600 r.p.m. B and C are jockey pulleys mounted on a

horizontal beam pivoted at D, about which point the complete beam is balanced when at rest. E is the

driven pulley and all portions of the belt between the pulleys are vertical. A, B and C are each 300

mm diameter and the thickness and weight of the belt are neglected. The length DF is 750 mm.

Find : 1. the value of the weight W to maintain the beam in a horizontal position when

4.5 kW is being transmitted, and 2. the value of W, when the belt just begins to slip on pulley A. The

coefficient of friction being 0.2 and maximum tension in the belt 1.5 kN.
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Fig. 19.35. All dimensions in mm.

Solution. Given : N
A

 = 600 r.p.m. : D
A

 = D
B
 = D

C
 = 300 mm = 0.3 m

1. Value of the weight W to maintain the beam in a horizontal position

Given : Power transmitted (P) = 4.5 kW = 4500 W

Let T
1
 = Tension in the tight side of the belt on pulley A, and

T
2
 = Tension in the slack side of the belt on pulley A.

∴   Force acting upwards on the pulley C = 2T
1

and force acting upwards on the pulley B = 2T
2

Now taking moments about the pivot D,

W × 750 = 2T
1
 × 300 – 2T

2
 × 300 = 600 (T

1
 – T

2
)

∴  T
1
 – T

2
 = W × 750 / 600 = 1.25 W N

We know that the power transmitted (P),

1 2 A A( ) 1.25 0.3 600
4500 11.78

60 60

T T D N W
W

− π × π× ×
= = =

∴    W = 4500 / 11.78 = 382 N Ans.

2. Value of W, when the belt just begins to slip on A

Given :   µ = 0.2 ; T
1
 = 1.5 kN = 1500 N

We know that

1

2

2.3log . 0.2 0.6284
T

T

 
= µ θ = × π = 

 

. . . (∵ θ  = 180° = π  rad)

    1

2

0.6284
log 0.2732

2.3

 
= = 

 

T

T

    or   
1

2

1.876
T

T
=   . . . (Taking antilog of 0.2732)

∴  T
2
 = T

1
/ 1.876 = 1500 / 1.876 = 800 N

Now taking moments about the pivot D,

               W × 750 = 2T
1
 × 300 – 2T

2
 × 300 = 2 × 1500 × 300 – 2 × 800 × 300

                = 420 × 103

∴            W = 420 × 103/ 750 = 560 N Ans.
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19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer

A torsion dynamometer is used for measuring large powers particularly the power transmit-

ted along the propeller shaft of a turbine or motor vessel. A little consideration will show that when

the power is being transmitted, then the driving end of the shaft twists through a small angle relative

to the driven end of the shaft. The amount of twist depends upon many factors such as torque acting

on the shaft (T), length of the shaft (l), diameter of the shaft (D) and modulus of rigidity (C) of the

material of the shaft. We know that the torsion equation is

.T C

J l

θ
=

where θ  = Angle of twist in radians, and

 J = Polar moment of inertia of the shaft.

For a solid shaft of diameter D, the polar moment of inertia

4

32
J D

π
= ×

and for a hollow shaft of external diameter D and internal diameter d, the polar moment of inertia,

4 4
( )

32
J D d

π
= −

From the above torsion equation,
.

.
C J

T k
l

= × θ = θ

where k = C.J/l is a constant for a particular shaft. Thus, the torque acting on the shaft is proportional

to the angle of twist. This means that if the angle of twist is measured by some means, then the torque

and hence the power transmitted may be determined.

We know that the power transmitted

2

60

T N
P

× π
=  watts, where N is the speed in r.p.m.

A number of dynamometers are used to measure the angle of twist, one of which is discussed

in Art. 19.21. Since the angle of twist is measured for a small length of the shaft, therefore some

magnifying device must be introduced in the dynamometer for accurate measurement.

Example 19.19. A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is

found that the shaft twists 2° in a length of 20 metres at 120 r.p.m. If the shaft is hollow with 400 mm

external diameter and 300 mm internal diameter, find the power of the engine. Take modulus of

rigidity for the shaft material as 80  GPa.

Solution. Given : θ  = 2° = 2 × π /180 = 0.035 rad ; l = 20 m ; N = 120 r.p.m. ; D = 400 mm

= 0.4 m ; d = 300 mm = 0.3 m ; C = 80 GPa =  80 × 109 N/m2

We know that polar moment of inertia of the shaft,

4 4 4 4 4
( ) (0.4) (0.3) 0.0017m

32 32
J D d

π π
 = − = − =
 

and torque applied to the shaft,

9
3. 80 10 0.0017

0.035 238 10 N-m
20

C J
T

l

× ×
= × θ = × = ×

We know that power of the engine,
32 238 10 2 120

60 60

× π × × π×
= =

T N
P  = 2990 × 103 W = 2990 kW Ans.
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19.21. Bevis-Gibson Flash Light Torsion Dynamometer

Fig. 19.36. Bevis-Gibson flash light torsion dynamometer.

It depends upon the fact that the light travels in a straight line through air of uniform density

and the velocity of light is infinite. It consists of two discs A and B fixed on a shaft at a convenient

distance apart, as shown in Fig. 19.36 (a). Each disc has a small radial slot and these two slots are in

the same line when no power is transmitted and there is no torque on the shaft. A bright electric lamp

L, behind the disc A , is fixed on the bearing of the shaft. This lamp is masked having a slot directly

opposite to the slot of disc A . At every revolution of the shaft, a flash of light is projected through the

slot in the disc A towards the disc B in a direction parallel to the shaft. An eye piece E is fitted behind

the disc B on the shaft bearing and is capable of slight circumferential adjustment.

When the shaft does not transmit any torque (i.e. at rest), a flash of light may be seen after

every revolution of the shaft, as the positions of the slit do not change relative to one another as shown

in Fig. 19.36 (b). Now when the torque is transmitted, the shaft twists and the slot in the disc B

changes its position, though the slots in L, A and E are still in line. Due to this, the light does not reach

to the eye piece as shown in Fig. 19.36 (c). If the eye piece is now moved round by an amount equal

to the lag of disc B, then the slot in the eye piece will be opposite to the slot in disc B as shown in Fig.

19.36 (d) and hence the eye piece receives flash of light. The eye piece is moved by operating a

micrometer spindle and by means of scale and vernier, the angle of twist may be measured upto

1/100th of a degree.

The torsion meter discussed above gives the angle of twist of

the shaft, when the uniform torque is transmitted during each revolution

as in case of turbine shaft. But when the torque varies during each revo-

lution as in reciprocating engines, it is necessary to measure the angle of

twist at several different angular positions. For this, the discs A and B

are perforated with slots arranged in the form of spiral as shown in Fig.

19.37. The lamp and the eye piece must be moved radially so as to bring

them into line with each corresponding pair of slots in the discs.

EXERCISES
1. A single block brake, as shown in Fig. 19.38, has the drum diameter 250 mm. The angle of contact is

90° and the coefficient of friction between the drum and the lining is 0.35. If the operating force of

650 N is applied at the end of the lever, determine the torque that may be transmitted by the block

brake. [Ans. 65.6 N-m]

Fig. 19.37.  Perforated

disc.



Chapter 19 : Brakes and Dynamometers   �  771

                        Fig. 19.38                                                        Fig. 19.39

2. The layout and dimensions of a double shoe brake is shown in Fig. 19.39. The diameter of the brake

drum is 300 mm and the contact angle for each shoe is 90°. If the coefficient of friction for the brake

lining and the drum is 0.4, find the spring force necessary to transmit a torque of 30 N-m. Also

determine the width of the brake shoes, if the bearing pressure on the lining material is not to exceed

0.28 N/mm2. [Ans. 98.4 N ; 5 mm]

3. The arrangements of a transmission brake is shown in Fig. 19.40. The arms are pivoted at O
1
 and O

2

and when force is applied at the end of a hand lever, the screw A B rotates. The left and right hand

threads working in nuts on the ends of the arms move the arms together and thus apply the brake. The

force on the hand lever is applied 400 mm from the axis of the screw.

The drum is 240 mm in diameter and the angle subtended by each is 90°. The screw has six square

threads with a mean diameter of 20 mm and a lead of 55 mm. Assuming a coefficient of friction for the

braking surface as 0.3 and for the threads 0.15, determine the force on the hand lever required to set

the brake when the torque on the drum is 245 N-m. [Ans. 86.5 N]

All dimensions in mm.          All dimensions in mm.

Fig. 19.40 Fig. 19.41

4. The layout and dimensions of the block brake are shown in Fig. 19.41. The diameter of the wheel is

300 mm and the contact angle for each block is 90°. If the coefficient of friction for the brake lining

and wheel is 0.4 and the torque on the wheel is 30 N-m, find the force P on the operating arm required

to set the brake for anticlockwise rotation of the wheel. [Ans. 10 N]

5. A simple band brake is operated by a lever of length 500 mm. The brake drum has a diameter of 500

mm and the brake band embraces 5/8 of the circumference. One end of the band is attached to the

fulcrum of the lever while the other end is attached to a pin on the lever 100 mm from the fulcrum. If

the effort applied to the end of the lever is 2 kN and the coefficient of friction is 0.25, find the

maximum braking torque on the drum. [Ans. 4.2 kN-m]

All dimensions in mm.
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6. A differential band brake acting on the 3/4 th of the circumference of a drum of 450 mm diameter, is

to provide a braking torque of 225 N-m. One end of the band is attached to a pin 100 mm from the

fulcrum of the lever and the other end to another pin 25 mm from the fulcrum on the other side of it

where the operating force is also acting. If the operating force is applied at 500 mm from the fulcrum

and the coefficient of friction is 0.25, find the two values of the operating force corresponding to two

directions of rotation of the drum. [Ans. 16.6 N for clockwise ; 266.6 N for anticlockwise]

7. A differential band brake is shown in Fig. 19.42. The diameter of the drum is 800 mm. The coefficient

of friction between the band and the drum is 0.3 and the angle of embrace is 240°.

     Fig. 19.42      Fig. 19.43

When a force of 600 N is applied at the free end of the lever, find for clockwise and anticlockwise

rotation of the drum: 1. the maximum and minimum forces in the band ; and 2. the torque which can

be applied by the brake.   [Ans. 176 kN, 50 kN, 50.4 kN-m ; 6.46 kN, 1.835 kN, 1.85 kN-m]

8. A differential band brake is shown in Fig. 19.43. The diameter of the drum is 1 metre and rotates at

1200 r.p.m. in the anticlockwise direction. The angle of contact is 320°. The various lengths are :

OA = 30 mm; AB = 150 mm and OC = 700 mm. Find the pull

required at the end C of a lever to absorb 40 kW. Also find the

length of AB for self locking. The coefficient of friction may

be taken as 0.2.                             [Ans. 25.7 N ; 91.8 mm]

9. In a band and block brake, the band is lined with 14 blocks,

each of which subtends an angle of 20° at the drum centre.

One end of the band is attached to the fulcrum of the brake

lever and the other to a pin 150 mm from the fulcrum. Find the

force required at the end of the lever 1 metre long from the

fulcrum to give a torque of 4 kN-m. The diameter of the brake

drum is 1 metre and the coefficient of friction between the

blocks and the drum is 0.25.                         [Ans. 1712 N]

10. Fig. 19.44 shows the particulars of two brake shoes which act

on the internal surface of a cylindrical brake drum. The braking

forces F
1
 and F

2
 are applied as shown, and each shoe pivots on its fixed fulcrum O

1
 and O

2
.

The width of the brake lining is 35 mm. The intensity of pressure at any point A is 0.4 sin θ  N/mm2,

where θ is measured as shown from either pivot. The coefficient of friction is 0.4. Determine the

braking torque and the magnitude of the forces F
1
 and F

2
. [Ans. 373 N-m ; 685 N, 2323 N]

11. A lorry is moving on a level road at a speed of 36 km/h. Its centre of gravity lies at a distance of 0.6 m

from the ground level. The wheel base is 2.4 metres and the distance of C.G. from the rear wheels is

0.9 m. Find the distance travelled by the car before coming to rest when brakes are applied,

(a)   to the rear wheels, (b) to the front wheels, and (c) to all the four wheels.

The coefficient of friction between the tyres and the road surface is 0.45.

[Ans. 21.55 m; 26.82 m; 11.36 m]

12. A torsion dynamometer is fitted on a turbine shaft to measure the angle of twist. It is observed that the

shaft twists 1.5° in a length of 5 metres at 500 r.p.m. The shaft is solid and has a diameter of 200 mm.

If the modulus of rigidity for the shaft material is 85 GPa, find the power transmitted by the turbine.

[Ans. 3662 kW]

    Fig. 19.44

All dimensions in mm.
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DO YOU KNOW ?
1. Distinguish between brakes and dynamometers.

2. Discuss the various types of the brakes.

3. Show that, in a band and block brake, the ratio of the maximum and minimum tensions in the brake

straps is

0 1 tan

1 tan

n

n

T

T

 + µ θ
=  

− µ θ 

where  T0 = Maximum tension,

 T
n
 = Minimum tension

  µ = Coefficient of friction between the blocks and drum, and

             2θ  = Angle subtended by each block at the centre of the drum.

4. Describe with the help of a neat sketch the principles of operation of an internal expanding shoe.

Derive the expression for the braking torque.

5. What are the leading and trailing shoes of an internal expanding shoe brake ?

6. What is the difference between absorption and transmission dynamometers ? What are torsion dyna-

mometers ?

7. Describe the construction and operation of a prony brake or rope brake absorption dynamometer.

8. Describe with sketches one form of torsion dynamometer and explain with detail the calculations

involved in finding the power transmitted.

9. Explain with neat sketches the Bevis-Gibson flash light dynamometer.

OBJECTIVE TYPE QUESTIONS
1. The brakes commonly used in railway trains is

(a) shoe brake (b) band brake

(c) band and block brake (d) internal expanding brake

2. The brake commonly used in motor cars is

(a) shoe brake (b) band brake

(c) band and block brake (d) internal

expanding brake

3. In a differential band brake, as shown in Fig. 19.45, the length

OA is greater than OB. In order to apply the brake, the force P

at C should

(a)  be zero (b) act in upward direction

(c) act in downward direction

4. For the brake to be self locking, the force P at C as shown in

Fig. 19.45, should

(a) be zero

(b)  act in upward direction

(c) act in downward direction

5. When brakes are applied to all the four wheels of a moving car, the distance travelled by the car before

it is brought to rest, will be

 (a) maximum  (b) minimum

6. Which of the following is an absorption type dynamometer ?

(a) prony brake dynamometer (b) rope brake dynamometer

(c) epicyclic-train dynamometer (d) torsion dynamometer

ANSWERS
1. (a) 2. (d) 3. (c) 4. (a) 5. (b) 6. (a), (b)

Fig. 19.45

GO To FIRST
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CamsCamsCamsCamsCams
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4. Terms used in Radial cams.

5. Motion of the Follower.

6. Displacement, Velocity and

Acceleration Diagrams

when the Follower Moves

with Uniform Velocity.

7. Displacement, Velocity and

Acceleration Diagrams

when the Follower Moves

with Simple Harmonic

Motion.

8. Displacement, Velocity and

Acceleration Diagrams

when the Follower Moves

with Uniform Acceleration

and Retardation.

9. Displacement, Velocity and

Acceleration Diagrams

when the Follower Moves

with Cycloidal Motion.

10. Construction of Cam

Profiles.

11. Cams with Specified

Contours.

12. Tangent Cam with

Reciprocating Roller

Follower.

13. Circular Arc Cam with Flat-

faced Follower.

20.1.20.1.20.1.20.1.20.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

A cam is a rotating machine element which gives

reciprocating or oscillating motion to another element known

as follower. The cam and the follower have a line contact

and constitute a higher pair. The cams are usually rotated at

uniform speed by a shaft, but the follower motion is pre-

determined and will be according to the shape of the cam.

The cam and follower is one of the simplest as well as one

of the most important mechanisms found in modern

machinery today. The cams are widely used for operating

the inlet and exhaust valves of internal combustion engines,

automatic attachment of machineries, paper cutting machines,

spinning and weaving textile machineries, feed mechanism

of automatic lathes etc.

20.2.20.2.20.2.20.2.20.2. Classification of FollowersClassification of FollowersClassification of FollowersClassification of FollowersClassification of Followers

The followers may be classified as discussed below :

1. According to the surface in contact. The followers,

according to the surface in contact, are as follows :

(a) Knife edge follower. When the contacting end of

the follower has a sharp knife edge, it is called a

knife edge follower, as shown in Fig. 20.1 (a). The

sliding motion takes place between the contacting

surfaces (i.e. the knife edge and the cam surface). It

is seldom used in practice because the small area of

contacting surface results in excessive wear. In knife

edge followers, a considerable side thrust exists

between the follower and the guide.
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(b) Roller follower. When the contacting end of the follower is a roller, it is called a roller

follower, as shown in Fig. 20.1 (b). Since the rolling motion takes place between the

contacting surfaces (i.e. the roller and the cam), therefore the rate of wear is greatly reduced.

In roller followers also the side thrust exists between the follower and the guide. The

roller followers are extensively used where more space is available such as in stationary

gas and oil engines and aircraft engines.

(c) Flat faced or mushroom follower. When the contacting end of the follower is a perfectly

flat face, it is called a flat-faced follower, as shown in Fig. 20.1 (c). It may be noted that

the side thrust between the follower and the guide is much reduced in case of flat faced

followers. The only side thrust is due to friction between the contact surfaces of the follower

and the cam. The relative motion between these surfaces is largely of sliding nature but

wear may be reduced by off-setting the axis of the follower, as shown in Fig. 20.1 (f ) so

that when the cam rotates, the follower also rotates about its own axis. The flat faced

followers are generally used where space is limited such as in cams which operate the

valves of automobile engines.

Note : When the flat faced follower is circular, it is then called a mushroom follower.

(d) Spherical faced follower. When the contacting end of the follower is of spherical shape,

it is called a spherical faced follower, as shown in Fig. 20.1 (d). It may be noted that when

a flat-faced follower is used in automobile engines, high surface stresses are produced. In

order to minimise these stresses, the flat end of the follower is machined to a spherical

shape.

(a) Cam with knife     (b) Cam with roller (c) Cam with flat

    edge follower. follower.      faced follower.

(d) Cam with spherical           (e) Cam with spherical (f) Cam with offset

     faced follower.     faced follower.     follower.

Fig. 20.1. Classification of followers.

2. According to the motion of the follower. The followers, according to its motion, are of the

following two types:
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(a) Reciprocating or translating follower. When the follower reciprocates in guides as the

cam rotates uniformly, it is known as reciprocating or translating follower. The followers

as shown in Fig. 20.1 (a) to (d) are all reciprocating or translating followers.

(b) Oscillating or rotating follower. When the uniform rotary motion of the cam is converted

into predetermined oscillatory motion of the follower, it is called oscillating or rotating

follower. The follower, as shown in Fig 20.1 (e), is an oscillating or rotating follower.

3. According to the path of motion of the follower. The followers, according to its path of

motion, are of the following two types:

(a) Radial follower. When the motion of the follower is along an axis passing through the

centre of the cam, it is known as radial follower. The followers, as shown in Fig. 20.1 (a)

to (e), are all radial followers.

(b) Off-set follower. When the motion of the follower is along an axis away from the axis of

the cam centre, it is called off-set follower. The follower, as shown in Fig. 20.1 ( f ), is an

off-set follower.

Note : In all cases, the follower must be constrained to follow the cam. This may be done by springs, gravity

or hydraulic means. In some types of cams, the follower may ride in a groove.

20.3.20.3.20.3.20.3.20.3. Classification of CamsClassification of CamsClassification of CamsClassification of CamsClassification of Cams

Though the cams may be classified in many ways, yet the following two types are important

from the subject point of view :

(a) Cylindrical cam with reciprocating     (b) Cylindrical cam with oscillating follower.

follower.

Fig. 20.2. Cylindrical cam.

1. Radial or disc cam. In radial

cams, the follower reciprocates or

oscillates in a direction perpendicular to

the cam axis. The cams as shown in Fig.

20.1 are all radial cams.

2. Cylindrical cam. In cylindrical

cams, the follower reciprocates or

oscillates in a direction parallel to the cam

axis. The follower rides in a groove at its

cylindrical surface. A cylindrical grooved

cam with a reciprocating and an oscillating

follower is shown in Fig. 20.2 (a) and (b)

respectively.

Note : In actual practice, radial cams are widely

used. Therefore our discussion will be only

confined to radial cams.

In IC engines, cams are widely used to

operate valves.
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20.4.20.4.20.4.20.4.20.4. TTTTTerererererms Used in Radial Camsms Used in Radial Camsms Used in Radial Camsms Used in Radial Camsms Used in Radial Cams

Fig. 20.3 shows a radial cam with reciprocating roller follower. The following terms are

important in order to draw the cam profile.

1. Base circle. It is the smallest circle that can be drawn to the cam profile.

2. Trace point. It is a reference point on the follower and is used to generate the pitch curve.

In case of knife edge follower, the knife edge represents the trace point and the pitch curve

corresponds to the cam profile. In a roller follower, the centre of the roller represents the trace point.

3. Pressure angle. It is the angle between the direction of the follower motion and a normal

to the pitch curve. This angle is very important in designing a cam profile. If the pressure angle is

too large, a reciprocating follower will jam in its bearings.

4. Pitch point. It is a point on the pitch curve having the maximum pressure angle.

5. Pitch circle. It is a circle drawn from the centre of the cam through the pitch points.

6. Pitch curve. It is the curve generated by the trace point as the follower moves relative to

the cam. For a knife edge follower, the pitch curve and the cam profile are same whereas for a

roller follower, they are separated by the radius of the roller.

7. Prime circle. It is the smallest circle that can be drawn from the centre of the cam and

tangent to the pitch curve. For a knife edge and a flat face follower, the prime circle and the base

circle are identical. For a roller follower, the prime circle is larger than the base circle by the radius

of the roller.

8. Lift or stroke. It is the maximum travel of the follower from its lowest position to the

topmost position.

Fig. 20.3. Terms used in radial cams.

20.5.20.5.20.5.20.5.20.5. Motion of the FollowerMotion of the FollowerMotion of the FollowerMotion of the FollowerMotion of the Follower

The follower, during its travel, may have one of the following motions.

1. Uniform velocity, 2. Simple harmonic motion, 3. Uniform acceleration and retardation,

and 4. Cycloidal motion.
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We shall now discuss the displacement, velocity and acceleration diagrams for the cam when

the follower moves with the above mentioned motions.

20.6.20.6.20.6.20.6.20.6. Displacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when the

Follower Moves with Uniform VelocityFollower Moves with Uniform VelocityFollower Moves with Uniform VelocityFollower Moves with Uniform VelocityFollower Moves with Uniform Velocity

The displacement, velocity and acceleration diagrams when a knife-edged follower moves

with uniform velocity are shown in Fig. 20.4 (a), (b) and (c) respectively. The abscissa (base)

represents the time (i.e. the number of seconds required for the cam to complete one revolution) or

it may represent the angular displacement of the cam in degrees. The ordinate represents the dis-

placement, or velocity or acceleration of the follower.

Since the follower moves with uniform velocity during its rise and return stroke, therefore

the slope of the displacement curves must be constant. In other words, AB
1
 and C

1
D must be

straight lines. A little consideration will show that the follower remains at rest during part of the

cam rotation. The periods during which the follower remains at rest are known as dwell periods, as

shown by lines B
1
C

1
 and DE in Fig. 20.4 (a). From Fig. 20.4 (c), we see that the acceleration or

retardation of the follower at the beginning and at the end of each stroke is infinite. This is due to

the fact that the follower is required to start from rest and has to gain a velocity within no time.

This is only possible if the acceleration or retardation at the beginning and at the end of each stroke

is infinite. These conditions are however, impracticable.

Fig. 20.4. Displacement, velocity and Fig. 20.5. Modified displacement, velocity and

     acceleration diagrams when the acceleration diagrams when the  follower

      follower moves with uniform velocity.  moves with uniform velocity.

In order to have the acceleration and retardation within

the finite limits, it is necessary to modify the conditions which

govern the motion of the follower. This may be done by

rounding off the sharp corners of the displacement diagram

at the beginning and at the end of each stroke, as shown in

Fig. 20.5 (a). By doing so, the velocity of the follower

increases gradually to its maximum value at the beginning

of each stroke and decreases gradually to zero at the end of

each stroke as shown in Fig. 20.5 (b). The modified
Camshaft of an IC engine.
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displacement, velocity and acceleration diagrams are shown in Fig. 20.5. The round corners of the

displacement diagram are usually parabolic curves because the parabolic motion results in a very

low acceleration of the follower for a given stroke and cam speed.

20.7.20.7.20.7.20.7.20.7. Displacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when the

Follower Moves with Simple Harmonic MotionFollower Moves with Simple Harmonic MotionFollower Moves with Simple Harmonic MotionFollower Moves with Simple Harmonic MotionFollower Moves with Simple Harmonic Motion
The displacement, velocity and acceleration diagrams when the follower moves with simple

harmonic motion are shown in Fig. 20.6 (a), (b) and (c) respectively. The displacement diagram is

drawn as follows :

1. Draw a semi-circle on the follower stroke as diameter.

2. Divide the semi-circle into any number of even equal parts (say eight).

3. Divide the angular displacements of the cam during out stroke and return stroke into the

same number of equal parts.

4. The displacement diagram is obtained by projecting the points as shown in Fig. 20.6 (a).

The velocity and acceleration diagrams are shown in Fig. 20.6 (b) and (c) respectively. Since

the follower moves with a simple harmonic motion, therefore velocity diagram consists of a sine

curve and the acceleration diagram is a cosine curve. We see from Fig. 20.6 (b) that the velocity of

the follower is zero at the beginning and at the end of its stroke and increases gradually to a

maximum at mid-stroke. On the other hand, the acceleration of the follower is maximum at the

beginning and at the ends of the stroke and diminishes to zero at mid-stroke.

Fig. 20.6. Displacement, velocity and acceleration diagrams when the follower

moves with simple harmonic motion.

Let S = Stroke of the follower,

     Oθ and Rθ  = Angular displacement of the cam during out stroke and return stroke of the

follower respectively, in radians, and

ω = Angular velocity of the cam in rad/s.
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∴Time required for the out stroke of the follower in seconds,

O O /t = θ ω

Consider a point P moving at a uniform speed Pω  radians per sec round the circumference

of a circle with the stroke S as diameter, as shown in Fig. 20.7.

The point ′P  (which is the projection of a point P on the diam-

eter) executes a simple harmonic motion as the point P rotates.

The motion of the follower is similar to that of point P′.

∴  Peripheral speed of the point P′,

P
O O

1

2 2

S S
v

t

π π ω
= × = ×

θ

and maximum velocity of the follower on the outstroke,

PO
O O

.

2 2

S S
v v

π ω πω
= = × =

θ θ

We know that the centripetal acceleration of the point P,

        

22 2 2
P

P 2
O O

( ) . 2 .

2 2( )

v S S
a

OP S

 πω π ω
= = × = 

θ θ 

∴   Maximum acceleration of the follower on the outstroke,

       

2 2

O P 2
O

.

2 ( )

S
a a

π ω
= =

θ

Similarly, maximum velocity of the follower on the return stroke,

      R
R

.

2

S
v

πω
=

θ

and maximum acceleration of the follower on the return stroke,

       

2 2

R 2
R

.

2 ( )

S
a

π ω
=

θ

20.8.20.8.20.8.20.8.20.8. Displacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when the

Follower Moves with Uniform Acceleration and RetardationFollower Moves with Uniform Acceleration and RetardationFollower Moves with Uniform Acceleration and RetardationFollower Moves with Uniform Acceleration and RetardationFollower Moves with Uniform Acceleration and Retardation

The displacement, velocity and acceleration diagrams when the follower moves with uniform

acceleration and retardation are shown in Fig. 20.8 (a), (b) and (c) respectively. We see that the

displacement diagram consists of a parabolic curve and may be drawn as discussed below :

1. Divide the angular displacement of the cam during outstroke ( Oθ ) into any even number

of equal parts (say eight) and draw vertical lines through these points as shown in Fig.

20.8 (a).

2. Divide the stroke of the follower (S) into the same number of equal even parts.

3. Join Aa to intersect the vertical line through point 1 at B. Similarly, obtain the other points

C, D etc. as shown in Fig. 20.8 (a). Now join these points to obtain the parabolic curve

for the out stroke of the follower.

4. In the similar way as discussed above, the displacement diagram for the follower during

return stroke may be drawn.

Since the acceleration and retardation are uniform, therefore the velocity varies directly with

the time. The velocity diagram is shown in Fig. 20.8 (b).

Let         S = Stroke of the follower,

Fig. 20.7. Motion of a point.
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      Oθ  and Rθ  = Angular displacement of the cam during out stroke and return stroke

   of the follower respectively, and

        ω  = Angular velocity of the cam.

We know that time required for the follower during outstroke,

        O O /t = θ ω

and time required for the follower during return stroke,

        R R /t = θ ω

Mean velocity of the follower during outstroke

           = S/t
O

and mean velocity of the follower during return stroke

           = S/t
R

Fig. 20.8. Displacement, velocity and acceleration diagrams when the follower moves

with uniform acceleration and retardation.

Since the maximum velocity of follower is equal to twice the mean velocity, therefore maxi-

mum velocity of the follower during outstroke,

        O
O O

2 2 .S S
v

t

ω
= =

θ

Similarly, maximum velocity of the follower during return stroke,

       R
R

2 .S
v

ω
=

θ
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We see from the acceleration diagram, as shown in Fig. 20.8 (c), that during first half of the

outstroke there is uniform acceleration and during the second half of the out stroke there is uniform

retardation. Thus, the maximum velocity of the follower is reached after the time t
O

/ 2 (during out

stroke) and t
R
 /2 (during return stroke).

∴   Maximum acceleration of the follower during outstroke,

       

2
O

O 2
O O O O

2 2 . 4 .

/ 2 . ( )

v S S
a

t t

× ω ω
= = =

θ θ
. . . (∵   O O /t = θ ω )

Similarly, maximum acceleration of the follower during return stroke,

       

2

R 2
R

4 .

( )

S
a

ω
=

θ

20.9.20.9.20.9.20.9.20.9. Displacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when theDisplacement, Velocity and Acceleration Diagrams when the

Follower Moves with Cycloidal MotionFollower Moves with Cycloidal MotionFollower Moves with Cycloidal MotionFollower Moves with Cycloidal MotionFollower Moves with Cycloidal Motion

Fig. 20.9. Displacement, velocity and acceleration diagrams when the

follower moves with cycloidal motion.

The displacement, velocity and acceleration diagrams when the follower moves with cycloidal

motion are shown in Fig. 20.9 (a), (b) and (c) respectively. We know that cycloid is a curve traced

by a point on a circle when the circle rolls without slipping on a straight line.

In case of cams, this straight line is a stroke of the follower which is translating and the

circumference of the rolling circle is equal to the stroke (S) of the follower. Therefore the radius of
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the rolling circle is / 2S π  . The displacement diagram is drawn as discussed below :

1. Draw a circle of radius / 2S π  with A as centre.

2. Divide the circle into any

number of equal even parts

(say six). Project these points

horizontally on the vertical

centre line of the circle.

These points are shown by a′

and b′  in Fig. 20.9 (a).

3. Divide the angular displace-

ment of the cam during out-

stroke into the same number

of equal even parts as the

circle is divided. Draw verti-

cal lines through these points.

4. Join AB which intersects the

vertical line through  3′ at c.

From a′  draw a line parallel

to AB intersecting the verti-

cal lines through 1′  and 2′

at a and b respectively.

5. Similarly, from b′  draw a

line parallel to AB intersect-

ing the vertical lines through

4′  and 5′  at d and e respec-

tively.

6. Join the points A a b c d e B

by a smooth curve. This is the required cycloidal curve for the follower during outstroke.

Let           θ  = Angle through which the cam rotates in time t seconds, and

         ω  = Angular velocity of the cam.

We know that displacement of the follower after time t seconds,

          
O O

1 2
sin

2
x S

  θ πθ
= −  

θ π θ   

. . . (i)

∴   Velocity of the follower after time t seconds,

       
O O O

1 2 2
cos

2

dx d d
S

dt dt dt

  θ π πθ θ
= × −  

θ πθ θ   

 . . . [Differentiating equation (i)]

O O O O

2 . 2
1 cos 1 cos

S d S

dt

      θ πθ ω πθ
= × − = −      

θ θ θ θ         
. . . (ii)

Cams are used in Jet and aircraft engines. The

above picture shows an aircraft engine.
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The velocity is maximum, when

O

2
cos 1

 πθ
= − 

θ 

     or     
O

2πθ
= π

θ
     or    O / 2θ = θ

Substituting O / 2θ = θ in equation (ii), we have maximum velocity of the follower during

outstroke,

         O
O O

. 2 .
(1 1)

S S
v

ω ω
= + =

θ θ

Similarly, maximum velocity of the follower during return stroke,

R
R

2 .S
v

ω
=

θ

Now, acceleration of the follower after time t sec,

         

2

2
O O O

. 2 2
sin

d x S d

dtdt

  ω π πθ θ
=   

θ θ θ   
 . . . [Differentiating equation (ii)]

    

2

2
OO

2 . 2
sin

( )

S  πω πθ
=  

θθ  
. . . 

d

dt

θ 
= ω 

 
∵     . . . (iii)

The acceleration is maximum, when

  
O

2
sin 1

 πθ
= 

θ 

    or     
O

2

2

πθ π
=

θ
    or    O / 4θ = θ

Substituting O / 4θ = θ in equation (iii), we have maximum acceleration of the follower dur-

ing outstroke, 2

O 2
O

2 .

( )

S
a

πω
=

θ

Similarly, maximum acceleration of the follower during return stroke,

2

R 2
R

2 .

( )

S
a

πω
=

θ

The velocity and acceleration diagrams are shown in Fig. 20.9 (b) and (c) respectively.

20.10.20.10.20.10.20.10.20.10. Construction of Cam Profile for a Radial CamConstruction of Cam Profile for a Radial CamConstruction of Cam Profile for a Radial CamConstruction of Cam Profile for a Radial CamConstruction of Cam Profile for a Radial Cam

In order to draw the cam profile for a radial cam, first of all the displacement diagram for the

given motion of the follower is drawn. Then by constructing the follower in its proper position at

each angular position, the profile of the working surface of the cam is drawn.

In constructing the cam profile, the principle of kinematic inversion is used, i.e. the cam is

imagined to be stationary and the follower is allowed to rotate in the opposite direction to the cam

rotation.

The construction of cam profiles for different types of follower with different types of

motions are discussed in the following examples.

Example 20.1. A cam is to give the following motion to a knife-edged follower :

1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ;

3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam

rotation.

The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The

follower moves with uniform velocity during both the outstroke and return strokes. Draw the pro-

file of the cam when (a) the axis of the follower passes through the axis of the cam shaft, and

(b) the axis of the follower is offset by 20 mm from the axis of the cam shaft.
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Construction

Fig. 20.10

First of all, the displacement diagram, as shown in Fig. 20.10, is drawn as discussed in the

following steps :

1. Draw a horizontal line AX = 360° to some suitable scale. On this line, mark AS = 60° to

represent outstroke of the follower, ST = 30° to represent dwell, TP = 60° to represent

return stroke and PX = 210° to represent dwell.

2. Draw vertical line AY equal to the stroke of the follower (i.e. 40 mm) and complete the

rectangle as shown in Fig. 20.10.

3. Divide the angular displacement during outstroke and return stroke into any equal number

of even parts (say six) and draw vertical lines through each point.

4. Since the follower moves with uniform velocity during outstroke and return stroke, there-

fore the displacement diagram consists of straight lines. Join AG and HP.

5. The complete displacement diagram is shown by AGHPX in Fig. 20.10.

(a) Profile of the cam when the axis of follower passes through the axis of cam shaft

The profile of the cam when the axis of the follower passes through the axis of the cam shaft,

as shown in Fig. 20.11, is drawn as discussed in the following steps :

Fig. 20.11
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1. Draw a base circle with radius equal to the minimum radius of the cam (i.e. 50 mm) with

O as centre.

2. Since the axis of the follower passes through the axis of the cam shaft, therefore mark

trace point A, as shown in Fig. 20.11.

3. From OA, mark angle AOS = 60° to represent outstroke, angle SOT = 30° to represent

dwell and angle TOP = 60° to represent return stroke.

4. Divide the angular displacements during outstroke and return stroke (i.e. angle AOS and

angle TOP) into the same number of equal even parts as in displacement diagram.

5. Join the points 1, 2, 3 ...etc. and 0′ ,1′ , 2′ , 3′ ,  ... etc. with centre O and produce beyond

the base circle as shown in Fig. 20.11.

6. Now set off 1B, 2C, 3D ... etc. and 0′ H,1′ J ... etc. from the displacement diagram.

7. Join the points A, B, C,... M, N, P with a smooth curve. The curve AGHPA is the complete

profile of the cam.

Notes : The points B, C, D .... L, M, N may also be obtained as follows :

1. Mark AY = 40 mm on the axis of the follower, and set of Ab, Ac, Ad... etc. equal to the distances 1B,

2C, 3D... etc. as in displacement diagram.

2. From the centre of the cam O, draw arcs with radii Ob, Oc, Od etc. The arcs intersect the produced

lines O1, O2... etc. at B, C, D ... L, M, N.

(b) Profile of the cam when the axis of the follower is offset by 20 mm from the axis of the cam

shaft

The profile of the cam when the axis of the follower is offset from the axis of the cam shaft,

as shown in Fig. 20.12, is drawn as discussed in the following steps :

Fig. 20.12

1. Draw a base circle with radius equal to the minimum radius of the cam (i.e. 50 mm) with

O as centre.

2. Draw the axis of the follower at a distance of 20 mm from the axis of the cam, which

intersects the base circle at A.

3. Join AO and draw an offset circle of radius 20 mm with centre O.

4. From OA, mark angle AOS = 60° to represent outstroke, angle SOT = 30° to represent

dwell and angle TOP = 60° to represent return stroke.
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5. Divide the angular displacement during outstroke and return stroke (i.e. angle AOS and

angle TOP) into the same number of equal even parts as in displacement diagram.

6. Now from the points 1, 2, 3 ... etc. and 0 ,1 , 2 ,3′ ′ ′ ′ ... etc. on the base circle, draw tangents

to the offset circle and produce these tangents beyond the base circle as shown in Fig.

20.12.

7. Now set off 1B, 2C, 3D ... etc. and  0′ H,1′ J ... etc. from the displacement diagram.

8. Join the points A, B, C ...M, N, P with a smooth curve. The curve AGHPA is the complete

profile of the cam.

Example 20.2. A cam is to be designed for a knife edge follower with the following data :

1. Cam lift = 40 mm during 90° of cam rotation with simple harmonic motion.

2. Dwell for the next 30°.

3. During the next 60° of cam rotation, the follower returns to its original position with

simple harmonic motion.

4. Dwell during the remaining 180°.

Draw the profile of the cam when

(a) the line of stroke of the follower passes through the axis of the cam shaft, and

(b) the line of stroke is offset 20 mm from the axis of the cam shaft.

The radius of the base circle of the cam is 40 mm. Determine the maximum velocity and

acceleration of the follower during its ascent and descent, if the cam rotates at 240 r.p.m.

Solution. Given : S = 40 mm = 0.04 m; Oθ  = 90° = π /2 rad = 1.571 rad ; Rθ  = 60° =

π /3 rad = 1.047 rad ; N = 240 r.p.m.

Fig. 20.13

First of all, the displacement diagram, as shown in Fig 20.13, is drawn as discussed in the

following steps :

1. Draw horizontal line AX = 360° to some suitable scale. On this line, mark AS = 90° to

represent out stroke ; SR = 30° to represent dwell ; RP = 60° to represent return stroke

and PX = 180° to represent dwell.

2. Draw vertical line AY = 40 mm to represent the cam lift or stroke of the follower and

complete the rectangle as shown in Fig. 20.13.

3. Divide the angular displacement during out stroke and return stroke into any equal num-

ber of even parts (say six) and draw vertical lines through each point.

4. Since the follower moves with simple harmonic motion, therefore draw a semicircle with

AY as diameter and divide into six equal parts.

5. From points a, b, c ... etc. draw horizontal lines intersecting the vertical lines drawn through

1, 2, 3 ... etc. and 0′ ,1′ , 2′  ...etc. at B, C, D ... M, N, P.

6. Join the points A, B, C ... etc. with a smooth curve as shown in Fig. 20.13. This is the

required displacement diagram.
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(a) Profile of the cam when the line of stroke of the follower passes through the axis of the cam

shaft

The profile of the cam when the line of stroke of the follower passes through the axis of the

cam shaft, as shown in Fig. 20.14, is drawn in the similar way as is discussed in Example 20.1.

Fig. 20.14

(b) Profile of the cam when the line of stroke of the follower is offset 20 mm from the axis

of the cam shaft

The profile of the cam when the line of stroke of the follower is offset 20 mm from the axis

of the cam shaft, as shown in Fig. 20.15, is drawn in the similar way as discussed in Example 20.1.

Fig. 20.15
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Maximum velocity of the follower during its ascent and descent

We know that angular velocity of the cam,

2 2 240
25.14

60 60

π π×
ω = = =

N
 rad/s

We also know that the maximum velocity of the
follower during its ascent,

       O
O

. 25.14 0.04

2 2 1.571

S
v

πω π× ×
= =

θ ×
 = 1 m/s Ans.

and maximum velocity of the follower during its
descent,

 R
R

. 25.14 0.04

2 2 1.047

S
v

πω π× ×
= =

θ ×
 = 1.51 m/s Ans.

Maximum acceleration of the follower during its

ascent and descent

We know that the maximum acceleration of the

follower during its ascent,

2 2 2 2

O 2 2
O

. (25.14) 0.04

2( ) 2 (1.571)

S
a

π ω π
= =

θ

 = 50.6 m/s
2 Ans.

and maximum acceleration of the follower during its descent,

  

2 2 2 2

R 2 2
R

. (25.14) 0.04

2( ) 2(1.047)

S
a

π ω π
= =

θ
 = 113.8 m/s

2 Ans.

Example 20.3. A cam, with a minimum radius of 25 mm, rotating clockwise at a uniform speed

is to be designed to give a roller follower, at the end of a valve rod, motion described below :

1. To raise the valve through 50 mm during 120° rotation of the cam ;

2. To keep the valve fully raised through next 30°;

3. To lower the valve during next 60°; and

4. To keep the valve closed during rest of the revolution i.e. 150° ;

The diameter of the roller is 20 mm and the diameter of the cam shaft is 25 mm.

Draw the profile of the cam when (a) the line of stroke of the valve rod passes through the

axis of the cam shaft, and (b) the line of the stroke is offset 15 mm from the axis of the cam shaft.

The displacement of the valve, while being raised and lowered, is to take place with simple

harmonic motion. Determine the maximum acceleration of the valve rod when the cam shaft rotates

at 100 r.p.m.

Draw the displacement, the velocity and the acceleration diagrams for one complete revolu-

tion of the cam.

Solution. Given : S = 50 mm = 0.05 m ; Oθ  = 120° = 2 π /3 rad = 2.1 rad ; Rθ  = 60° =

π /3 rad = 1.047 rad ; N = 100 r.p.m.

Since the valve is being raised and lowered with simple harmonic motion, therefore the dis-

placement diagram, as shown in Fig. 20.16 (a), is drawn in the similar manner as discussed in the

previous example.

Role of cams in piston movement.
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(((((a) Profile of the cam when the line of stroke of the valve rod passes through the axis of

the cam shaft

The profile of the cam, as shown in Fig. 20.17, is drawn as discussed in the following steps :

1. Draw a base circle with centre O and radius equal to the minimum radius of the cam

( i.e. 25 mm ).

Fig. 20.16

2. Draw a prime circle with centre O and radius,

         −OA  = Min. radius of cam + 
1

2
 Dia. of roller = 

1
25 20 35

2
+ × =  mm

3. Draw angle AOS = 120° to represent raising or out stroke of the valve, angle SOT = 30° to

represent dwell and angle TOP = 60° to represent lowering or return stroke of the valve.

4. Divide the angular displacements of the cam during raising and lowering of the valve (i.e.

angle AOS and TOP ) into the same number of equal even parts as in displacement diagram.

5. Join the points 1, 2, 3, etc. with the centre O and produce the lines beyond prime circle as

shown in Fig. 20.17.

6. Set off 1B, 2C, 3D etc. equal to the displacements from displacement diagram.

7. Join the points A, B, C ... N, P, A. The curve drawn through these points is known as pitch

curve.
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8. From the points A, B, C ... N, P, draw circles of radius equal to the radius of the roller.

9. Join the bottoms of the circles with a smooth curve as shown in Fig. 20.17. This is the

required profile of the cam.

Fig. 20.17

Fig. 20.18
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(b) Profile of the cam when the line of stroke is offset 15 mm from the axis of the cam shaft

The profile of the cam when the line of stroke is offset from the axis of the cam shaft, as

shown in Fig. 20.18, may be drawn as discussed in the following steps :

1. Draw a base circle with centre O and radius equal to 25 mm.

2. Draw a prime circle with centre O and radius OA = 35 mm.

3. Draw an off-set circle with centre O and radius equal to 15 mm.

4. Join OA. From OA draw the angular displacements of cam i.e. draw angle AOS = 120°,

angle SOT = 30° and angle TOP = 60°.

5. Divide the angular displacements of the cam during raising and lowering of the valve into

the same number of equal even parts (i.e. six parts ) as in displacement diagram.

6. From points 1, 2, 3 .... etc. and 0′ ,1′ , 3′ , ...etc. on the prime circle, draw tangents to the

offset circle.

7. Set off 1B, 2C, 3D... etc. equal to displacements as measured from displacement diagram.

8. By joining the points A, B, C ... M, N, P, with a smooth curve, we get a pitch curve.

9. Now A, B, C...etc. as centre, draw circles with radius equal to the radius of roller.

10. Join the bottoms of the circles with a smooth curve as shown in Fig. 20.18. This is the

required profile of the cam.

Maximum acceleration of the valve rod

We know that angular velocity of the cam shaft,

2 2 100
10.47

60 60

π π×
ω = = =

N
 rad/s

We also know that maximum velocity of the valve rod to raise valve,

           O
O

. 10.47 0.05
0.39

2 2 2.1

S
v

πω π× ×
= = =

θ ×
 m/s

and maximum velocity of the valve rod to lower the valve,

         R
R

. 10.47 0.05
0.785

2 2 1.047

S
v

πω π× ×
= = =

θ ×
 m/s

The velocity diagram for one complete revolution of the cam is shown in Fig. 20.16 (b).

We know that the maximum acceleration of the valve rod to raise the valve,

           
2 2 2 2

O 2 2
0

. (10.47) 0.05
6.13

2( ) 2(2.1)

S
a

π ω π
= = =

θ

 m/s
2 Ans.

and maximum acceleration of the valve rod to lower the valve,

         
2 2 2 2

R 2 2
R

. (10.47) 0.05
24.67

2( ) 2(1.047)

S
a

π ω π
= = =

θ

 m/s
2 Ans.

The acceleration diagram for one complete revolution of the cam is shown in Fig. 20.16 (c).

Example 20.4. A cam drives a flat reciprocating follower in the following manner :

During first 120° rotation of the cam, follower moves outwards through a distance of 20 mm

with simple harmonic motion. The follower dwells during next 30° of cam rotation. During next

120° of cam rotation, the follower moves inwards with simple harmonic motion. The follower

dwells for the next 90° of cam rotation.

The minimum radius of the cam is 25 mm. Draw the profile of the cam.
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Construction

Since the follower moves outwards and inwards with simple harmonic motion, therefore the

displacement diagram, as shown in Fig. 20.19, is drawn in the similar manner as discussed earlier.

Fig. 20.19

Now the profile of the cam driving a flat reciprocating follower, as shown in Fig. 20.20, is

drawn as discussed in the following steps :

1. Draw a base circle with centre O and radius OA equal to the minimum radius of the cam

(i.e. 25 mm).

2. Draw angle AOS = 120° to represent the outward stroke, angle SOT = 30° to represent

dwell and angle TOP = 120° to represent inward stroke.

3. Divide the angular displacement during outward stroke and inward stroke (i.e. angles AOS

and TOP ) into the same number of equal even parts as in the displacement diagram.

Fig. 20.20
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4. Join the points 1, 2, 3 . . . etc. with centre O and produce beyond the base circle.

5. From points 1, 2, 3 . . . etc., set off 1B, 2C, 3D . . . etc. equal to the distances measured

from the displacement diagram.

6. Now at points B, C, D . . . M, N, P, draw the position of the flat-faced follower. The axis

of the follower at all these positions passes through the cam centre.

7. The curve drawn tangentially to the flat side of the follower is the required profile of the

cam, as shown in Fig. 20.20.

Example 20.5. Draw a cam profile to drive an oscillating roller follower to the specifica-

tions given below :

(a) Follower to move outwards through an angular displacement of 20° during the first 120°

rotation of the cam ;

(b) Follower to return to its initial position during next 120° rotation of the cam ;

(c) Follower to dwell during the next 120° of cam rotation.

The distance between pivot centre and roller centre = 120 mm ; distance between pivot

centre and cam axis = 130 mm ; minimum radius of cam = 40 mm ; radius of roller = 10 mm ;

inward and outward strokes take place with simple harmonic motion.

Construction

We know that the angular displacement

of the roller follower

20 20 /180 / 9= ° = × π = π  rad

Since the distance between the pivot

centre and the roller centre (i.e. the radius

A
1
 A) is 120 mm, therefore length of the arc

AA
2
, as shown in Fig. 20.21, along which the

displacement of the roller actually takes place

120 / 9 41.88= × π =  mm

. . . (∵    Length of arc = Radius of arc × Angle subtended by the arc at the centre in radians)

Since the angle is very small, therefore length of chord AA
2
 is taken equal to the length of arc

AA
2
. Thus in order to draw the displacement diagram, we shall take lift of the follower equal to

length of chord AA
2
 i.e. 41.88 mm.

Fig. 20.22

The outward and inward strokes take place with simple harmonic motion, therefore the dis-

placement diagram, as shown in Fig. 20.22, is drawn in the similar way as discussed in Example

20.4.

Fig. 20.21
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The profile of the cam to drive an oscillating roller follower, as shown in Fig. 20.23, is drawn

as discussed in the following steps :

1. First of all, draw a base circle with centre O and radius equal to the minimum radius of

the cam (i.e. 40 mm)

2. Draw a prime circle with centre O and radius OA

= Min. radius of cam + radius of roller = 40 + 10 = 50 mm

3. Now locate the pivot centre A
1
 such that OA

1
  = 130 mm and AA

1
 = 120 mm. Draw a

pivot circle with centre O and radius OA
1
 = 130 mm.

Fig. 20.23

4. Join OA
1
. Draw angle A

1
OS = 120° to represent the outward stroke of the follower, angle

SOT = 120° to represent the inward stroke of the follower and angle TOA
1
 = 120° to

represent the dwell.

5. Divide angles A
1
OS and SOT into the same number of equal even parts as in the displace-

ment diagram and mark points 1, 2, 3 . . . 4′ , 5′ , 6′   on the pivot circle.

6. Now with points 1, 2, 3 . . . 4′ , 5′ , 6′ (on the pivot circle) as centre and radius equal to

A
1
A (i.e. 120 mm) draw circular arcs to intersect the prime circle at points 1, 2, 3 . . .

4′ , 5′ , 6′ .
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7. Set off the distances 1B, 2C, 3D... 4 ,′L  5′M along the arcs drawn equal to the distances

as measured from the displacement diagram.

8. The curve passing through the points A, B,  C....L, M, N is known as pitch curve.

9. Now draw circles with A, B, C, D....L, M, N as centre and radius equal to the radius of

roller.

10. Join the bottoms of the circles with a smooth curve as shown in Fig. 20.23. This is the

required profile of the cam.

Example 20.6. A cam, with a minimum radius of 50 mm, rotating clockwise at a uniform

speed, is required to give a knife edge follower the motion as described below :

1. To move outwards through 40 mm during 100° rotation of the cam ; 2. To dwell for next

80° ; 3. To return to its starting position during next 90°, and 4. To dwell for the rest period of a

revolution i.e. 90°.

Draw the profile of the cam

(i) when the line of stroke of the follower passes through the centre of the cam shaft, and

(ii) when the line of stroke of the follower is off-set by 15 mm.

The displacement of the follower is to take place with uniform acceleration and uniform

retardation. Determine the maximum velocity and acceleration of the follower when the cam shaft

rotates at 900 r.p.m.

Draw the displacement, velocity and acceleration diagrams for one complete revolution of

the cam.

Solution. Given : S = 40 mm = 0.04 m; oθ =100° = 100 × π /180 = 1.745 rad ; Rθ  = 90° =

π /2 = 1.571 rad ; N = 900 r.p.m.

First of all, the displacement diagram, as shown in Fig. 20.24 (a), is drawn as discussed in

the following steps :

1. Draw a horizontal line ASTPQ such that AS represents the angular displacement of the

cam during outward stroke (i.e. 100° ) to some suitable scale. The line ST represents the

dwell period of 80° after outward stroke. The line TP represents the angular displacement

of the cam during return stroke (i.e. 90°) and the line PQ represents the dwell period of

90° after return stroke.

2. Divide AS and TP into any number of equal even parts (say six).

3. Draw vertical lines through points 0, 1, 2, 3 etc. and equal to the lift of the valve i.e. 40

mm.

4. Divide the vertical lines 3-f and 3 - f′ ′ into six equal parts as shown by points a, b, c . . .

and ′a , ′b , ′c . . . in Fig. 20.24 (a).

5. Since the follower moves with equal uniform acceleration and uniform retardation, there-

fore the displacement diagram of the outward and return stroke consists of a double pa-

rabola.

6. Join Aa, Ab and Ac intersecting the vertical lines through 1, 2 and 3 at B, C and D respec-

tively.

7. Join the points B, C and D with a smooth curve. This is the required parabola for the half

outstroke of the valve. Similarly the other curves may be drawn as shown in Fig. 20.24.

8. The curve A B C . . . N P Q is the required displacement diagram.
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Fig. 20.24

Fig. 20.25
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(i) Profile of the cam when the line of stroke of the follower passes through the centre of

the cam shaft

The profile of the cam when the line of stroke of the follower passes through the centre of

cam shaft, as shown in Fig. 20.25, may be drawn as discussed in the following steps :

1. Draw a base circle with centre O and radius 50 mm (equal to minimum radius of the

cam).

2. Divide the base circle such that angle AOS = 100° ; angle SOT = 80° and angle TOP =

90°.

3. Divide angles AOS and TOP into the same number of equal even parts as in displacement

diagram (i.e. six parts).

4. Join the points 1, 2, 3 . . . and 1′ , 2′ , 3′ , . . . with centre O and produce these lines beyond

the base circle.

5. From points 1, 2, 3 . . . and 1′ , 2′ , 3′ , . . . mark the displacements 1B, 2C, 3D . . . etc. as

measured from the displacement diagram.

6. Join the points A, B, C . . . M, N, P with a smooth curve as shown in Fig. 20.25. This is

the required profile of the cam.

(ii) Profile of the cam when the line of stroke of the follower is offset by 15 mm

The profile of the cam when the line of stroke of the follower is offset may be drawn as

discussed in Example 20.2. The profile of cam is shown in Fig. 20.26.

Fig. 20.26

Maximum velocity of the follower during out stroke and return stroke

We know that angular velocity of the cam shaft,

          
2 2 900

94.26
60 60

π π×
ω = = =

N
 rad/s
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We also know that the maximum velocity of the follower during out stroke,

        O
O

2 . 2 94.26 0.04
4.32

1.745

S
v

ω × ×
= = =

θ
 m/s Ans.

and maximum velocity of the follower during return

stroke,

        R
R

2 . 2 94.26 0.04
4.8

1.571

S
v

ω × ×
= = =

θ
 m/s Ans.

The velocity diagram is shown in Fig. 20.24 (b).

Maximum acceleration of the follower during out

stroke and return stroke

We know that the maximum acceleration of

the follower during out stroke,

2 2

O 2 2
O

4 . 4(94.26) 0.04
467

( ) (1.745)

S
a

ω
= = =

θ

m/s
2
 Ans.

and maximum acceleration of the follower during return stroke,

    
2 2

R 2 2
R

4 . 4(94.26) 0.04

( ) (1.571)

S
a

ω
= = =

θ

 576 m/s2 Ans.

The acceleration diagram is shown in Fig. 20.24 (c).

Example 20.7. Design a cam for operating the exhaust valve of an oil engine. It is required

to give equal uniform acceleration and retardation during opening and closing of the valve each

of which corresponds to 60° of cam rotation. The valve must remain in the fully open position for

20° of cam rotation.

The lift of the valve is 37.5 mm and the least radius of the cam is 40 mm. The follower is

provided with a roller of radius 20 mm and its line of stroke passes through the axis of the cam.

Construction

First of all, the displacement diagram, as shown in Fig. 20.27, is drawn as discussed in the

following steps :

Fig. 20.27

1. Draw a horizontal line ASTP such that AS represents the angular displacement of the cam

during opening (i.e. out stroke ) of the valve (equal to 60°), to some suitable scale. The

line ST represents the dwell period of 20° i.e. the period during which the valve remains

A type of roller follower.
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fully open and TP represents the angular displacement during closing (i.e. return stroke)

of the valve which is equal to 60°.

2. Divide AS and TP into any number of equal even parts (say six).

3. Draw vertical lines through points 0, 1, 2, 3 etc. and equal to lift of the valve i.e. 37.5

mm.

4. Divide the vertical lines 3f and 3′ ′f into six equal parts as shown by the points a, b, c . ..

and ′a , ′b , ′c . . . in Fig. 20.27.

5. Since the valve moves with equal uniform acceleration and retardation, therefore the dis-

placement diagram for opening and closing of a valve consists of double parabola.

6. Complete the displacement diagram as shown in Fig. 20.27.

Now the profile of the cam, with a roller follower when its line of stroke passes through the

axis of cam, as shown in Fig. 20.28, is drawn in the similar way as discussed in Example 20.3.

Fig. 20.28

Example 20.8. A cam rotating clockwise at a uniform speed of 1000 r.p.m. is required to

give a roller follower the motion defined below :

1. Follower to move outwards through 50 mm during 120° of cam rotation,

2. Follower to dwell for next 60° of cam rotation,

3. Follower to return to its starting position during next 90° of cam rotation,

4. Follower to dwell for the rest of the cam rotation.

The minimum radius of the cam is 50 mm and the diameter of roller is 10 mm. The line of

stroke of the follower is off-set by 20 mm from the axis of the cam shaft. If the displacement of the
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follower takes place with uniform and equal acceleration and retardation on both the outward and

return strokes, draw profile of the cam and find the maximum velocity and acceleration during out

stroke and return stroke.

Solution. Given : N = 1000 r.p.m. ; S = 50 mm = 0.05 m ; Oθ  = 120° = 2 π /3 rad = 2.1 rad ;

Rθ  = 90° = π /2 rad = 1.571 rad

Since the displacement of the follower takes place with uniform and equal acceleration and

retardation on both outward and return strokes, therefore the displacement diagram, as shown in

Fig. 20.29, is drawn in the similar manner as discussed in the previous example. But in this case,

the angular displacement and stroke of the follower is divided into eight equal parts.

Fig. 20.29

Now, the profile of the cam, as shown in Fig. 20.30, is drawn as discussed in the following

steps :

1. Draw a base circle with centre O and radius equal to the minimum radius of the cam

(i.e. 50 mm).

Fig. 20.30
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2. Draw a prime circle with centre O and radius

OA  = Minimum radius of the cam + radius of roller = 50 + 5 = 55 mm

3. Draw an off-set circle with centre O and radius equal to 20 mm.

4. Divide the angular displacements of the cam during out stroke and return stroke into eight

equal parts as shown by points 0, 1, 2 . . . and 0′ ,1′ , 2′ . . . etc. on the prime circle in Fig.

20.30.

5. From these points draw tangents to the off-set circle.

6. Set off 1B, 2C, 3D . . . etc. equal to the displacements as measured from the displacement

diagram.

7. By joining the points A, B, C . . . T, U, A with a smooth curve, we get a pitch curve.

8. Now from points A, B, C . . . T, U, draw circles with radius equal to the radius of the

roller.

9. Join the bottoms of these circles with a smooth curve to obtain the profile of the cam as

shown in Fig. 20.30.

Maximum velocity of the follower during out stroke and return stroke

We know that angular velocity of the cam,

     
2 2 1000

104.7
60 60

π π×
ω = = =

N
 rad/s.

We also know that the maximum velocity of the

follower during outstroke,

           O
O

2 . 2 104.7 0.05
5

2.1

S
v

ω × ×
= = =

θ
 m/s Ans.

and maximum velocity of the follower during return

stroke,

           R
R

2 . 2 104.7 0.05
6.66

1.571

S
v

ω × ×
= = =

θ
 m/s Ans.

Maximum acceleration of the follower during out

stroke and return stroke

We know that the maximum acceleration of the

follower during out stroke,

        
2 2

O 2 2
O

4 . 4 (104.7) 0.05
497.2

( ) (2.1)

S
a

ω
= = =

θ

 m/s
2
 Ans.

and maximum acceleration of the follower during return stroke,

        
2 2

R 2 2
R

4 . 4(104.7) 0.05
888

( ) (1.571)

S
a

ω
= = =

θ

 m/s
2
 Ans.

Example 20.9. Construct the profile of a cam to suit the following specifications :

Cam shaft diameter = 40 mm ; Least radius of cam = 25 mm ; Diameter of roller = 25 mm;

Angle of lift = 120° ; Angle of fall = 150° ; Lift of the follower = 40 mm ; Number of pauses are

two of equal interval between motions.

A rocker using a cam.
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During the lift, the motion is S.H.M. During the fall the motion is uniform acceleration and

deceleration. The speed of the cam shaft is uniform. The line of stroke of the follower is off-set

12.5 mm from the centre of the cam.

Construction

First of all the displacement diagram, as shown in Fig. 20.31, is drawn as discussed in the

following steps :

1. Since the follower moves with simple harmonic motion during lift (i.e. for 120° of cam

rotation), therefore draw the displacement curve ADG in the similar manner as discussed

in Example 20.2.

2. Since the follower moves with uniform acceleration and deceleration during fall (i.e. for

150° of cam rotation), therefore draw the displacement curve HLP consisting of double

parabola as discussed in Example 20.6.

Fig. 20.31

Now the profile of the cam, when the line of stroke of the follower is off-set 12.5 mm from

the centre of the cam, as shown in Fig. 20.32, is drawn as discussed in the following steps :

1. Draw a base circle with centre O and radius equal to the least radius of cam (i.e. 25 mm).

Fig. 20.32
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2. Draw a prime circle with centre O and radius,

OA  = Least radius of cam + radius of roller = 25 + 25/2 = 37.5 mm

3. Draw a circle with centre O and radius equal to 20 mm to represent the cam shaft.

4.  Draw an offset circle with centre O and radius equal to 12.5 mm.

5. Join OA. From OA draw angular displacements of the cam, i.e. draw angle AOS = 120° to

represent lift of the follower, angle SOT = 45° to represent pause, angle TOP = 150° to

represent fall of the follower and angle POA = 45° to represent pause.

Note. Since the number of pauses are two of equal interval between motions (i.e. between lift and

fall of the follower), therefore angular displacement of each pause

 
360 (120 150 )

45
2

° − ° + °
= = °

6. Divide the angular displacements during lift and fall (i.e. angle AOS and TOP) into the

same number of equal even parts (i.e. six parts) as in the displacement diagram.

7. From points 1, 2, 3 . . . etc. and  0 , 1 , 2 , 3′ ′ ′ ′ . . . etc. on the prime circle, draw tangents to

the off-set circle.

8. Set off 1B, 2C, 3D . . . etc. equal to the displacements as measured from the displacement

diagram.

9. By joining the points A, B, C . . . M, N, P with a smooth curve, we get a pitch curve.

10. Now with A, B, C . . . etc. as centre, draw circles with radius equal to the radius of roller.

11. Join the bottoms of the circles with a smooth curve as shown in Fig. 20.32. This is the

required profile of the cam.

Example 20.10. It is required to set out the profile of a cam to give the following motion to

the reciprocating follower with a flat mushroom contact face :

(i) Follower to have a stroke of 20 mm during 120° of cam rotation ;

(ii) Follower to dwell for 30° of cam rotation ;

(iii) Follower to return to its initial position during 120° of cam rotation ; and

(iv) Follower to dwell for remaining 90° of cam rotation.

The minimum radius of the cam is 25 mm. The out stroke of the follower is performed with

simple harmonic motion and the return stroke with equal uniform acceleration and retardation.

Construction

Since the out stroke of the follower is performed with simple harmonic motion and the return

stroke with uniform acceleration and retardation, therefore the displacement diagram, as shown in

Fig. 20.33, is drawn in the similar manner as discussed in the previous example.

Fig. 20.33
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The profile of the cam with a flat mushroom contact face reciprocating follower, as shown in

Fig. 20.34, is drawn in the similar way as discussed in Example 20.4.

Fig. 20.34

Example 20.11. It is required to set out the profile of a cam with oscillating follower for the

following motion :

(a) Follower to move outward through an angular displacement of 20° during 90° of cam

rotation ; (b) Follower to dwell for 45° of cam rotation ; (c) Follower to return to its original

position of zero displacement in 75° of cam rotation ; and (d) Follower to dwell for the remaining

period of the revolution of the cam.

The distance between the pivot centre and the follower roller centre is 70 mm and the roller

diameter is 20 mm. The minimum radius of the cam corresponds to the starting position of the

follower as given in (a). The location of the pivot point is 70 mm to the left and 60 mm above the

axis of rotation of the cam. The motion of the follower is to take place with S.H.M. during out

stroke and with uniform acceleration and retardation during return stroke.

Construction

We know that the angular displacement of the

roller follower,

20 20 /180 / 9= ° = × π = π  rad

Since the distance between the pivot centre and

the roller centre (i.e. radius A
1
A) is 70 mm, therefore

length of arc AA
2
, as shown in Fig. 20.35, along which

the displacement of the roller actually takes place

70 / 9 24.5= × π =  mm Fig. 20.35
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Since the angle is very small, therefore length of chord AA
2
 is taken equal to the length of arc

AA
2
. Thus in order to draw the displacement diagram, we shall take lift of the follower equal to the

length of chord AA
2
 i.e. 24.5 mm.

Fig. 20.36

Fig. 20.37
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The follower moves with simple harmonic motion during out stroke and with uniform accel-

eration and retardation during return stroke. Therefore, the displacement diagram, as shown in Fig.

20.36, is drawn in the similar way as discussed in the previous example.

The profile of the cam, as shown in Fig. 20.37, is drawn as discussed in the following steps :

1. First of all, locate the pivot point A
1
 which is 70 mm to the left and 60 mm above the axis

of the cam.

2. Since the distance between the pivot centre A
1
 and the follower roller centre A is 70 mm

and the roller diameter is 20 mm, therefore draw a circle with centre A and radius equal to

the radius of roller i.e. 10 mm.

3. We find that the minimum radius of the cam

      60 10 50= − =  mm

∴   Radius of the prime circle,

OA  = Min. radius of cam + Radius of roller = 50 + 10 = 60 mm

4. Now complete the profile of the cam in the similar way as discussed in Example 20.5.

Example 20.12. Draw the profile of the cam when the roller follower moves with cycloidal

motion during out stroke and return stroke, as given below :

1. Out stroke with maximum displacement of 31.4 mm during 180° of cam rotation,

2. Return stroke for the next 150° of cam rotation,

3. Dwell for the remaining 30° of cam rotation.

The minimum radius of the cam is 15 mm and the roller diameter of the follower is 10 mm.

The axis of the roller follower is offset by 10 mm towards right from the axis of cam shaft.

Construction

First of all, the displacement diagram, as shown in Fig. 20.38, is drawn as discussed in the

following steps :

Fig. 20.38

1. Draw horizontal line ASP such that AS = 180° to represent the out stroke, SN = 150° to

represent the return stroke and NP = 30° to represent the dwell period.

2. Divide AS and SN into any number of even equal parts (say six).

3. From the points 1, 2, 3 . . . etc. draw vertical lines and set-off equal to the stroke of the

follower.

4. From a point G draw a generating circle of radius,

    
Stroke 31.4

2 2
= =

π π
r  = 5 mm
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5. Divide the generating circle into six equal parts and from these points draw horizontal

lines to meet the vertical diameter at ′a , G and ′b .

6. Join AG and GN. From point ′a , draw lines parallel to AG and GN to intersect the verti-

cal lines drawn through 1, 2,  4′  and 5′ at B, C, L and M respectively. Similarly draw

parallel lines from ′b intersecting the vertical lines through 4, 5, 1′  and 2′ at E, F, H and

J respectively.

Fig. 20.39

7. Join the points A, B, C . . . L, M, N with a smooth curve.

8. The curve A B C . . . L M N is the required displacement diagram.

Now the profile of the cam, as shown in Fig. 20.39, may be drawn in the similar way as

discussed in Example 20.9.

20.11.20.11.20.11.20.11.20.11. Cams with Specified ContoursCams with Specified ContoursCams with Specified ContoursCams with Specified ContoursCams with Specified Contours

In the previous articles, we have discussed about the design of the profile of a cam when the

follower moves with the specified motion. But, the shape of the cam profile thus obtained may be

difficult and costly to manufacture. In actual practice, the cams with specified contours (cam pro-

files consisting of circular arcs and straight lines are preferred) are assumed and then motion of the

follower is determined.

20.12.20.12.20.12.20.12.20.12. Tangent Cam with Reciprocating Roller FollowerTangent Cam with Reciprocating Roller FollowerTangent Cam with Reciprocating Roller FollowerTangent Cam with Reciprocating Roller FollowerTangent Cam with Reciprocating Roller Follower

When the flanks of the cam are straight and tangential to the base circle and nose circle, then

the cam is known as a tangent cam, as shown in Fig. 20.40. These cams are usually symmetrical

about the centre line of the cam shaft. Such type of cams are used for operating the inlet and

exhaust valves of internal combustion engines. We shall now derive the expressions for displace-

ment, velocity and acceleration of the follower for the following two cases :
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1. When the roller has contact with the straight flanks ; and

2. When the roller has contact with the nose.

Let               r
1
 = Radius of the base circle or minimum radius of the cam,

                r
2
 = Radius of the roller,

     r
3
 = Radius of nose,

    α  = Semi-angle of action of cam or angle of ascent,

                  θ = Angle turned by the cam from the beginning of the roller displacement,

    φ  = Angle turned by the cam for contact of roller with the straight flank, and

    ω  = Angular velocity of the cam.

1. When the roller has contact with straight flanks. A roller having contact with straight

flanks is shown in Fig. 20.40. The point O is the centre of cam shaft and the point K is the centre

of nose. EG and PQ are straight flanks of the cam. When the roller is in lowest position, (i.e. when

the roller has contact with the straight flank at E ), the centre of roller lies at B on the pitch curve.

Let the cam has turned through an angle* θ ( less than φ) for the roller to have contact at any point

(say F) between the straight flanks EG. The centre of roller at this stage lies at C. Therefore

displacement (or lift or stroke) of the roller from its lowest position is given by

       
1 cos

cos cos

− θ 
= − = − =  

θ θ 

OB
x OC OB OB OB

         1 2

1 cos
( )

cos

− θ 
= +  

θ 

r r . . . 1 2( )OB OE EB r r= + = +∵  . . . (i)

Fig. 20.40. Tangent cam with reciprocating roller follower having contact with straight flanks.

* Since the cam is assumed to be stationary, the angle θ  is turned by the roller.
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Differentiating equation (i) with respect to t, we have velocity of the follower,

       1 2 2

sin
( )

cos

θ θ θ 
= = × = +  

θ θ 

dx dx d d
v r r

dt d dt dt

1 2 2

sin
( )

cos

θ 
= ω +  

θ 

r r . . . ( / )θ = ω∵ d dt  . . . (ii)

From equation (ii), we see

that when θ  increases, sin θ

increases and cos θ  decreases. In

other words, sin θ / cos
2

θ increases. Thus the velocity is

maximum where θ  is maximum.

This happens when θ  = φ  i.e.

when the roller just leaves contact

with the straight flank at G or when

the straight flank merges into a

circular nose.

∴   Maximum velocity of the

follower,

        1 2 2

sin
( )

cos
maxv r r

 φ
= ω +  

 
φ 

Now differentiating equation
(ii) with respect to t, we have
acceleration of the follower,

θ
= = ×

θ

dv dv d
a

dt d dt

   

2

1 2 4

cos .cos sin 2cos sin
( )

cos

 θ θ − θ× θ× − θ θ
= ω +  

 
θ 

d
r r

dt

   

2 2
2

1 2 3

cos 2sin
( )

cos

 θ + θ
= ω +  

 
θ 

r r . . . 
d

dt

θ 
= ω 

 
∵

   

2 2
2

1 2 3

cos 2(1 cos )
( )

cos

 θ + − θ
= ω +  

θ  

r r

   

2
2

1 2 3

2 cos
( )

cos

 − θ
= ω +  

 
θ 

r r . . . (iii)

A little consideration will show that the acceleration is minimum when 

2

3

2 cos

cos

− θ

θ
 is mini-

mum. This is only possible when (
2

2 cos− θ ) is minimum and cos
3
θ  is maximum. This happens

A car in the assembly line.
Note : This picture is given as additional information and is not a

direct example of the current chapter.
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when θ  = 0°, i.e. when the roller is at the beginning of its lift along the straight flank (or when the

roller has contact with the straight flank at E ).

∴   Minimum acceleration of the follower,

        2
1 2( )

mina r r= ω +

The acceleration is maximum when θ  = φ , i.e. when the roller just leaves contact with the

straight flank at G or when the straight flank merges into a circular nose.

∴  Maximum acceleration of the follower,

    1

2
2

2 3

2 cos
( )

cos
maxa r r

 − φ
= ω +  

 
φ 

2. When the roller has contact with the nose. A roller having contact with the circular nose

at G is shown in Fig 20.41. The centre of roller lies at D on the pitch curve. The displacement is

usually measured from the top position of the roller, i.e. when the roller has contact at the apex of

the nose (point H) and the centre of roller lies at J on the pitch curve.

Fig. 20.41. Tangent cam with reciprocating roller follower having contact with the nose.

Let           1θ  = Angle turned by the cam measured from the position when the roller

 is at the top of the nose.
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The displacement of the roller is given by

 ( ) ( ) ( )= − = − + = + − +x OJ OD OJ OA AD OK KJ OA AD

Substituting  =OK r  and 3 2= + = + =KJ KH HJ r r L , we have

 1( ) ( cos cos )= + − × θ + βx r L OK DK

  1( ) ( cos cos )= + − θ + βr L r L . . . 3 2( )DK KJ r r L= = + =∵

   1cos cos= + − θ − βL r r L . . . (i)

Now from right angled triangles OAK and DAK,

          1sin sin= β = θAK DK OK

or       1sin sinβ = θL r

Squaring both sides,

       2 2 2 2
1sin sinβ = θL r  or 2 2 2 2

1(1 cos ) sin− β = θL r

2 2 2 2 2
1cos sin− β = θL L r  or 2 2 2 2 2

1cos sinβ = − θL L r

∴        

1

2 2 2 2
1cos ( sin )β = − θL L r

Substituting the value of cosβL in equation (i), we get

             
1

2 2 2 2
1 1cos ( sin )= + − θ − − θx L r r L r

. . . (ii)

Differentiating equation (ii) with respect to t, we have velocity of the follower,

 
1

1

θ
= = ×

θ

ddx dx
v

dt d dt

   

1

2 2 2 21 12
1 1 1 1

1
sin ( sin ) ( 2sin cos )

2

−θ θ
= − ×− θ × − − θ − × θ θ

d d
r L r r

dt dt

   

1

2 2 2 21 12
1 1 1

1
sin ( sin ) sin 2

2

−θ θ
= θ × + − θ × θ ×

d d
r L r r

dt dt

   
1

1 1

2 2 2 2
1

sin 2
. sin

2( sin )

 

 θ
= ω θ + 

 
− θ  

r
r

L r

        . . . 
1Substituting

d

dt

θ 
= ω 

 
 . . . (iii)

Now differentiating equation (iii) with respect to t, we have acceleration of the follower,

 
1

1

θ
= = ×

θ

ddv dv
a

dt d dt

   
1

1

2 2 2 2
1 1

1

2 2 2 22
1 1 1 1

1 2 2 2
1

( sin ) ( 2cos 2

1
sin 2 ( sin ) ( 2sin cos )

2. cos
2( sin )

L r r

d
r L r r

dt
r

L r

−

 

 − θ × θ +
 

 
θ

 θ × − θ × θ θ
 = ω θ +
 − θ 
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Substituting 1θ
= ω

d

dt

and multiplying the numerator and denominator of second term by

1

2 2 2 2
1( sin )− θL r , we have

     

2 2 2 3 2
1 1 1

2
1 2 2 2 3/ 2

1

1
( sin ) (2 cos 2 ) sin 2

2. cos
2( sin )

 
− θ θ + × θ

 
= ω θ + 

− θ 
  

L r r r

a r

L r

        

2 3 2 3 2
1 1 1 1 1

2
1 2 2 2 3/ 2

1

1
2 cos 2 2 sin .cos 2 (2sin cos )

2. cos
2( sin )

 
× θ − θ θ + × θ θ

 
= ω θ + 

− θ 
  

L r r r

r

L r

        

2 3 2 2 3 2 2
2 1 1 1 1 1

1 2 2 2 3/ 2
1

2 . cos 2 2 .sin (1 2sin ) 2 sin (1 sin )
. cos

2( sin )

 θ − θ − θ + θ − θ
= ω θ + 

− θ  

L r r r
r

L r

        

2 3 4
2 1 1

1 2 2 2 3/ 2
1

. cos 2 sin
. cos

( sin )

 θ + θ
= ω θ + 

− θ  

L r r
r

L r

Notes : 1. Since 1θ is measured from the top position of the roller, therefore for the roller to have contact at

the apex of the nose (i.e. at point H),then 1θ  = 0, and for the roller to have contact where straight flank

merges into a nose (i.e. at point G), then 1θ = α − φ .

2. The velocity is zero at H and maximum at G.

3. The acceleration is minimum at H and maximum at G.

4. From Fig 20.41, we see that the distances OK and KD remains constant for all positions of the roller

when it moves along the circular nose. In other words, a tangent cam operating a roller follower and having

contact with the nose is equivalent to a slider crank mechanism (i.e. ODK ) in which the roller is assumed

equivalent to the slider D, crank OK and connecting rod

DK. Therefore the velocity and acceleration of the roller

follower may be obtained graphically as discussed in

Chapters 7 and 8.

Example 20.13. In a symmetrical tangent cam

operating a roller follower, the least radius of the

cam is 30 mm and roller radius is 17.5 mm. The angle

of ascent is 75° and the total lift is 17.5 mm. The

speed of the cam shaft is 600 r.p.m. Calculate : 1. the

principal dimensions of the cam ; 2. the accelerations

of the follower at the beginning of the lift, where

straight flank merges into the circular nose and at

the apex of the circular nose. Assume that there is no

dwell between ascent and descent.

Solution. Given : r
1
 = 30 mm ; r

2
 = 17.5 mm ;

α = 75° ; Total lift = 17.5 mm ; N = 600 r.p.m. or

ω = 2 π × 600/60 = 62.84 rad/s

Fig. 20.42
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1. Principal dimensions of the cam

Let                     r = OK = Distance between cam  centre and nose centre,

                    r
3
 =  Nose radius, and

                    φ  = Angle of contact of cam with straight flanks.

From the geometry of Fig. 20.42,

    3 1+ =r r r  + Total lift

 = 30 + 17.5 = 47.5 mm

∴          347.5= −r r . . . (i)

Also,        = +OE OP PE        or          1 3= +r OP r

∴        1 3 330= − = −OP r r r . . . (ii)

Now from right angled triangle OKP,

       cosOP OK= × α . . . ( cos / )OP OKα =∵

or                       3 3 3 330 (47.5 )cos75 (47.5 )0.2588 12.3 0.2588− = − ° = − = −r r r r

. . . ( )OK r=∵

∴                   r
3
 = 23.88 mm Ans.

and                      347.5 47.5 23.88 23.62= = − = − =r OK r  mm Ans.

Again, from right angled triangle ODB,

     
1 2

sin 23.62sin 75
tan 0.4803

30 17.5

α °
φ = = = = =

+ +

DB KP OK

OB OB r r

∴          25.6φ = ° Ans.

2. Acceleration of the follower at the beginning of the lift

We know that acceleration of the follower at the beginning of the lift, i.e. when the roller has

contact at E on the straight flank,

     2 2 2
1 2( ) (62.84) (30 17.5) 187 600

mina r r= ω + = + =  mm/s
2

            = 187.6 m/s
2 Ans.

Acceleration of the follower where straight flank merges into a circular nose

We know that acceleration of the follower where straight flank merges into a circular nose

i.e. when the roller just leaves contact at G,

    

2 2
2 2

1 2 3 3

2 cos 2 cos 25.6
( ) (62.84) (30 17.5)

cos cos 25.6
maxa r r

   − φ − °
= ω + = +   

 
φ °    

            
2 0.813

187600 303 800
0.733

− 
= = 

 

 mm/s
2
 = 303.8 m/s2 Ans.
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Acceleration of the follower at the apex of the circular nose

We know that acceleration of the follower for contact with the circular nose,

      

2 3 4
2 1 1

1 2 2 2 3/ 2
1

. cos 2 sin
. cos

( sin )

 θ + θ
= ω θ + 

− θ  

L r r
a r

L r

Since 1θ  is measured from the top position of the follower, therefore for the follower to have

contact at the apex of the circular nose (i.e. at point H ), 1θ  = 0.

∴   Acceleration of the follower at the apex of the circular nose,

   

2
2 2 2

3
2 3

.
. 1 . 1 . 1

    
= ω + = ω + = ω +      +    

L r r r
a r r r

L r rL

       
2 23.62

(62.84) 23.62 1
17.5 23.88

 
= + 

+ 
 = 146 530 mm/s

2
    . . . 2 3( )L r r= +∵

         = 146.53 m/s
2 Ans.

Example 20.14. A cam has straight working faces which are tangential to a base circle of

diameter 90 mm. The follower is a roller of diameter 40 mm and the centre of roller moves along

a straight line passing through the centre line of the cam shaft. The angle between the tangential

faces of the cam is 90° and the faces are joined by a nose circle of 10 mm radius. The speed of

rotation of the cam is 120 revolutions per min.

Find the acceleration of the roller centre 1. when during the lift, the roller is just about to

leave the straight flank ; and 2. when the roller is at the outer end of its lift.

Solution. Given : d
1
 = 90 mm  or  r

1
 = 45 mm ; d

2
 = 40 mm  or  r

2
 = 20 mm ; 2 α  = 90° or

α  = 45° ; r
3
 = 10 mm ; N = 120 r.p.m. or ω  = 2 π  × 120/60 = 12.57 rad/s

The tangent cam operating a roller follower is shown in Fig. 20.43.

Fig. 20.43

First of all, let us find the *angle turned by the cam ( φ ) when the roller is just about to leave

the straight flank at G. The centre of roller at this position lies at D.

* Since the cam is assumed to be stationary, φ is the angle turned by the roller when it is just about to leave

the straight flank at G.
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From the geometry of the figure,

                BD PK OP OE PE= = = −

                     
1 3 45 10 35 mm

OE KG

r r

= −

= − = − =

Now from triangle OBD,

               

1 2

tan

35
0.5385

45 20

BD BD

OB OE EB

BD

r r

φ = =
+

= = =
+ +

∴    28.3φ = °

1. Acceleration of the roller centre when roller is just about to leave the straight flank

We know that acceleration of the roller centre when the roller is just about to leave the

straight flank,

                

2 2
2 2

1 2 3 3

2 cos 2 cos 28.3
( ) (12.57) (45 20)

cos cos 28.3

   − φ − °
= ω + = +   

   
φ °   

a r r

     = 18 500 mm/s
2
 = 18.5 m/s

2
 Ans.

2. Acceleration of the roller centre when the roller is at the outer end of the lift

First of all, let us find the values of OK and KD. From the geometry of the figure,

2 2
( ) ( ) 2= = + = ×OK r OP PK OP . . . ( )OP PK=∵

       2( ) 2(45 10) 49.5= − = − =OE EP  mm

 3 2 10 20 30= = + = + = + =KD L KG GD r r  mm

We know that acceleration of the roller centre when the roller is at the outer end of the lift,

i.e. when the roller has contact at the top of the nose,

   

2 3 4
2 21 1

1 2 2 2 3/ 2
1

. cos 2 sin
. cos . 1

( sin )

 θ + θ  
= ω θ + = ω +   

 − θ  

L r r r
a r r

LL r

. . . (∵  At the outer end of the lift, 1 0θ = )

      2 49.5
(12.57) 49.5 1 20 730

30

 
= + = 

 

  mm/s
2
 = 20.73 m/s

2 Ans.

20.13. Circular Arc Cam with Flat-faced Follower20.13. Circular Arc Cam with Flat-faced Follower20.13. Circular Arc Cam with Flat-faced Follower20.13. Circular Arc Cam with Flat-faced Follower20.13. Circular Arc Cam with Flat-faced Follower

When the flanks of the cam connecting the base circle and nose are of convex circular arcs,

then the cam is known as circular arc cam. A symmetrical circular arc cam operating a flat-faced

follower is shown in Fig. 20.44, in which O and Q are the centres of cam and nose respectively. EF

and GH are two circular flanks whose centres lie at P and P′   respectively. The centres * P and P′

* The centres P and P′  may also be obtained by drawing arcs with centres O and Q and radii equal to OP

and PQ respectively. The circular flanks EF and GH are now drawn with centres P and P′  and radius

equal to PE.

In aircraft engines roller followers are

widely used.



Chapter 20 : Cams           �          817

lie on lines EO and GO produced.

Let r
1
 = Minimum radius of the cam or radius of the base circle = OE,

r
2
 = Radius of nose,

          R = Radius of circular flank = PE,

          2α  = Total angle of action of cam = angle EOG,

α  = Semi-angle of action of cam or angle of ascent = angle EOK, and

           φ  = Angle of action of cam on the circular flank.

Fig. 20.44. Circular arc cam with flat face of the follower having contact with the circular flank.

       We shall consider the following two cases :

1. When the flat face of the follower has contact on the circular flank, and

2. When the flat face of the follower has contact on the nose.

In deriving the expressions for displacement, velocity and acceleration of the follower for the

above two cases, it is assumed that the cam is fixed and the follower rotates in the opposite sense

to that of the cam. In Fig. 20.44, the cam is rotating in the clockwise direction and the follower

rotates in the counter-clockwise direction.

1. When the flat face of the follower has contact on the circular flank. First of all, let us

consider that the flat face of the follower has contact at E (i.e. at the junction of the circular flank

and base circle). When the cam turns through an angle θ  (less than φ ) relative to the follower, the

contact of the flat face of the follower will shift from E to C on the circular flank, such that flat face

of the follower is perpendicular to PC. Since OB is perpendicular to BC, therefore OB is parallel to

PC. From O, draw OD perpendicular to PC.

From the geometry of the figure, the displacement or lift of the follower (x) at any instant for

contact on the circular flank, is given by

            = = − = −x BA BO AO CD EO . . . (i)

We know that

        cos= − = − θCD PC PD PE OP

   cos (1 cos )= + − θ = + − θOP OE OP OE OP
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Substituting the value of CD in equation (i),

(1 cos ) (1 cos )x OE OP EO OP= + − θ − = − θ

  1( )(1 cos ) ( ) (1 cos )PE OE R r= − − θ = − − θ . . . (ii)

Differentiating equation (ii) with respect to t, we have velocity of the follower,

dx dx d dx
v

dt d dt d

θ
= = × = × ω

θ θ
 . . . substituting

d

dt

θ 
= ω 

 

   1 1( )sin ( )sinR r R r= − θ×ω = ω − θ  . . . (iii)

From the above expression, we see that at the beginning of the ascent (i.e. when θ  = 0 ), the

velocity is zero (because sin 0 = 0 ) and it increases as θ  increases. The velocity will be maximum

when θ  = φ , i.e. when the contact of the follower just shifts from circular flank to circular nose.

Therefore maximum velocity of the follower,

        1( )sinmaxv R r= ω − φ

Now differentiating equation (iii) with respect to t, we have acceleration of the follower,

           
dv dv d dv

a
dt d dt d

θ
= = × = × ω

θ θ

   2
1 1( )cos ( )cosR r R r= ω − θ×ω = ω − θ  . . . (iv)

From the above expression, we see that at the beginning of the ascent (i.e. when θ  = 0 ), the

acceleration is maximum (because cos 0 = 1 ) and it decreases as θ  increases. The acceleration

will be minimum when θ  = φ .

∴    Maximum acceleration of the follower,

       2
1( )

maxa R r= ω −

and minimum acceleration of the follower,

        2
1( ) cos

mina R r= ω − φ

2. When the flat face of the follower has contact on the nose. The flat face of the follower

having contact on the nose at C is shown in Fig. 20.45. The centre of curvature of the nose lies at

Q. In this case, the displacement or lift of the follower at any instant when the cam has turned

through an angle θ  (greater than φ  ) is given by

 x AB OB OA CD OA= = − = − . . .( ∵   OB = CD ) . . . (i)

But         cos ( )CD CQ QD CQ OQ= + = + α − θ

Substituting the value of CD in equation (i), we have

 cos( )x CQ OQ OA= + α − θ −  . . . (ii)

The displacement or lift of the follower when the contact is at the apex K of the nose i.e.

when α − θ  = 0 is

* 2 1x CQ OQ OA r OQ r= + − = + −

* From the geometry of Fig. 20.45, we also find that lift of the follower when the contact is at the apex K

of the nose is

x = JK = OQ + QK – OJ = OQ + r
2
 – r

1
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Differentiating equation (ii) with respect to t, we have velocity of the follower,

    
dx dx d dx

v
dt d dt d

θ
= = × = × ω

θ θ

        sin ( ) sin ( )OQ OQ= α − θ ω = ω× α − θ  . . . (iii)

. . .(∵   CQ, OQ, OA and α  are constant)

From the above expression, we see that the velocity is zero when α − θ  = 0 or α = θ  i.e.

when the follower is at the apex K of the nose. The velocity will be maximum when ( α − θ ) is

maximum. This happens when the follower changes contact from circular flank to circular nose at

point F, i.e. when ( α − θ ) = φ .

Now differentiating equation (iii) with respect to t, we have acceleration of the follower,

    
dv dv d dv

a
dt d dt d

θ
= = × = × ω

θ θ

        2cos ( ) cos ( )OQ OQ= −ω× α − θ ω = −ω × α − θ     . . . (iv)

The negative sign in the above expression shows that there is a retardation when the

follower is in contact with the nose of the cam.

From the above expression, we see that retardation is maximum when α − θ  = 0 or θ = α ,

i.e. when the follower is at the apex K of the nose.

∴  Maximum retardation = 
2

OQω ×

The retardation is minimum when α − θ  is maximum. This happens when the follower changes

contact from circular flank to circular nose at point F i.e. when θ = φ .

∴  Minimum retardation = 
2 cos( )OQω × α − φ

Fig. 20.45. Circular arc cam with flat face of the follower having contact on the nose.
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Example 20.15. A symmetrical circular cam operating a flat-faced follower has the

following particulars :

Minimum radius of the cam = 30 mm ; Total lift = 20 mm ; Angle of lift = 75° ; Nose radius

= 5 mm ; Speed = 600 r.p.m. Find : 1. the principal dimensions of the cam, and 2. the accelera-

tion of the follower at the beginning of the lift, at the end of contact with the circular flank , at the

beginning of contact with nose and at the apex of the nose.

Solution. Given : r
1
 = OE = 30 mm ; x = JK = 20 mm ; α  = 75° ; r

2
 = QF = QK = 5 mm ;

N = 600 r.p.m. or ω  = 2 600 / 60 62.84π× =  rad/s

1. Principal dimensions of the cam

A symmetrical circular cam operating a flat faced follower is shown in Fig. 20.46.

Let         OQ = Distance between cam centre and nose centre,

         R = PE = Radius of circular flank, and

         φ  = Angle of contact on the circular flank.

We know that lift of the follower (x),

        2 120 5 30 25= + − = + − = −OQ r r OQ OQ

∴         OQ = 20 + 25 = 45 mm Ans.

We know that    PQ PF FQ PE FQ OP OE FQ= − = − = + −

             30 5 ( 25)OP OP= + − = +  mm

Now from a triangle OPQ,

             2 2 2( ) ( ) ( ) 2 cosPQ OP OQ OP OQ= + − × × β

       2 2 2( 25) ( ) 45 2 45cos (180 75 )OP OP OP+ = + − × × ° − °

  2 2( ) 50 625 ( ) 2025 23.3OP OP OP OP+ + = + +

   50 23.3 2025 625OP OP− = −

or   26.7 OP = 1400

and        OP = 1400/26.7 = 52.4 mm

∴  Radius of circular flanks,

          R PE OP OE= = + = 52.4 + 30

  = 82.4 mm Ans.

and         PQ = OP + 25 = 52.4 + 25

 = 77.4 mm Ans.

In order to find angle φ , consider a triangle OPQ. We

know that

     
sin sin

OQ PQ
=

φ β

or        
sin 45 sin (180 75 )

sin 0.5616
77.4

OQ

PQ

× β × ° − °
φ = = =

∴            34.2φ = ° Ans.

Fig. 20.46
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2. Acceleration of the follower

We know that acceleration of the follower at the beginning of the lift,

2 2
1 1( ) cos ( )a R r R r= ω − θ = ω −   . . . (∵  At the beginning of lift, 0θ = ° )

= (62.84)
2
 (82.4 – 30) = 206 930 mm/s = 206.93 m/s

2
 Ans.

Acceleration of the follower at the end of contact with the circular flank,

      2 2
1 1( )cos ( )cosa R r R r= ω − θ = ω − φ

. . . (∵  At the end of contact with the circular flank, θ = φ  )

       = – (62.84)
2
 (82.4 – 30) cos 34.2° = 171 130 mm/s

2
 = 171.13 m/s

2 Ans.

Acceleration of the follower at the beginning of contact with nose,

      2 2cos ( ) cos ( )a OQ OQ= −ω × α − θ = −ω × α − φ

 . . . (∵   At the beginning of contact with nose, θ = φ  )

= – (62.84)
2
 45 cos (75°– 34.2°) = – 134 520 mm/s

2
 = – 134.52 m/s

2

= 134.52 m/s
2
 (Retardation) Ans.

and acceleration of the follower at the apex of nose,

        2 2cos ( )a OQ OQ= −ω × α − θ = −ω ×  ... (∵At the apex of nose, α − θ = 0 )

          = – (62.84)
2
 45 = – 177 700 mm/s

2
 = – 177.7 m/s

2

          = 177.7 m/s
2
 (Retardation) Ans.

Example 20.16. A symmetrical cam with convex flanks operates a flat-footed follower. The

lift is 8 mm, base circle radius 25 mm and the nose radius 12 mm. The total angle of the cam

action is 120°.

1. Find the radius of convex flanks, 2. Draw the profile of the cam, and 3. Determine the

maximum velocity and the maximum acceleration when the cam shaft rotates at 500 r.p.m.

Solution. Given : x = JK = 8 mm ; r
1
 = OE = OJ = 25 mm ; r

2
 = QF = QK = 12 mm ;

2 120EOGα = ∠ = °   or 60EOKα = ∠ = ° ; N = 500 r.p.m. or 2ω = π  × 500/60 = 52.37 rad/s

1. Radius of convex flanks

Let           R = Radius of convex flanks = PE = P G′

A symmetrical cam with convex flanks operating a flat footed follower is shown in Fig.

20.47. From the geometry of the figure,

     OQ OJ JK QK= + − 1 2r x r= + −

 = 25 + 8 – 12 = 21 mm

       PQ PF QF PE QF= − = −   = (R – 12) mm

and        ( 25)OP PE OE R= − = −  mm
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Now consider the triangle OPQ. We know that

 2 2 2( ) ( ) ( ) 2 cosPQ OP OQ OP OQ= + − × × β

        2 2 2( 12) ( 25) (21) 2 ( 25)21cos(180 60 )R R R− = − + − − ° − °

  2 224 144 50 625 441 21 525R R R R R− + = − + + + −

     – 24 R + 144 = – 29 R + 541 or 5 R = 397

∴                     R = 397/5 = 79.4 mm Ans.

Fig. 20.47

2. Profile of the cam

The profile of the cam, as shown in Fig. 20.47, is drawn as discussed in the following steps :

(a) First of all, draw a base circle with centre O and radius OE = r
1
 = 25 mm.

(b) Draw angle EOK = 60° and angle KOG = 60° such that the total angle of cam action is

120°.

(c) On line OK mark OQ = 21 mm (as calculated above). Now Q as centre, draw a circle of

radius equal to the nose radius r
2
 = QK = QF = 12 mm. This circle cuts the line OK at J.

Now JK represents the lift of the follower (i.e. 8 mm).

(d) Produce EO and GO as shown in Fig. 20.47. Now with Q as centre and radius equal to

PQ = R – r
2
 = 79.4 – 12 = 67.4 mm, draw arcs intersecting the lines EO and GO produced

at P and P′  respectively. The centre  P′ may also be obtained by drawing arcs with

centres O and Q and radii OP and PQ respectively.

(e) Now with P and P′as centres and radius equal to R = 79.4 mm, draw arcs EF and GH

which represent the convex flanks. EFKHGAE is the profile of the cam.

3. Maximum velocity and maximum acceleration

First of all, let us find the angle φ . From triangle OPQ,

   
sin sin

OQ PQ
=

φ β
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or                  
21

sin sin sin (180 60 ) 0.2698
79.4 12

OQ

PQ
φ = × β = × ° − ° =

−

. . . (∵   PQ = R – 12 )

∴          15.65φ = °

We know that maximum velocity,

    1( )sin 52.37(79.4 25)sin15.65 770maxv R r= ω − φ = − ° =  mm/s

= 0.77 m/s Ans.

and maximum acceleration,

    2 2
1( ) (52.37) (79.4 25) 149200

maxa R r= ω − = − =  mm/s
2
= 149.2 m/s

2
 Ans.

Example 20.17. The following particulars relate to a symmetrical circular cam operating a

flat faced follower :

Least radius = 16 mm, nose radius = 3.2 mm, distance between cam shaft centre and nose

centre = 25 mm, angle of action of cam = 150°, and cam shaft speed = 600 r.p.m.

Assuming that there is no dwell between ascent or descent, determine the lift of the valve,

the flank radius and the acceleration and retardation of the follower at a point where circular

nose merges into circular flank.

Solution.  Given : r
1
 = OE = OJ = 16 mm ; r

2
 = QK = QF = 3.2 mm ; OQ = 25 mm ;

2 α  = 150° or α  = 75° ; N = 600 r.p.m. or ω  = 2 π × 600/60 = 62.84 rad/s

Lift of the valve

A symmetrical circular cam operating a flat faced

follower is shown in Fig. 20.48.

We know that lift of the valve,

         x JK OK OJ= = −

            2 1OQ QK OJ OQ r r= + − = + −

         = 25 + 3.2 – 16 = 12.2 mm Ans.

Flank radius

Let         R = PE = Flank radius.

First of all, let us find out the values of OP and

PQ. From the geometry of Fig. 20.48,

       16OP PE OE R= − = −

and        3.2PQ PF FQ R= − = −

Now consider the triangle OPQ. We know that

  2 2 2( ) ( ) ( ) 2 cosPQ OP OQ OP OQ= + − × × β

Substituting the values of OP and PQ in the above expression,

           2 2 2( 3.2) ( 16) (25) 2( 16) 25cos(180 75 )R R R− = − + − − × ° − °

Fig. 20.48
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  2 26.4 10.24 32 256 625 (50 800) ( 0.2588)R R R R R− + = − + + − − −

      6.4 10.24 19.06 673.96R R− + = − +   or  12.66 R = 663.72

∴            R = 52.43 mm Ans.

Acceleration and retardation of the follower at a point where circular nose merges into circular

flank

From Fig. 20.48 we see that at a point F, the circular nose merges into a circular flank. Let φ

be the angle of action of cam at point F. From triangle OPQ,

       
sin sin

OQ PQ
=

φ β

or         sin sin (180 75 ) sin105
OQ OQ

PQ PF FQ
φ = × ° − ° = × °

−

   
25

0.966 0.4907
52.43 3.2

= × =
−

∴  29.4φ = °

We know that acceleration of the follower,

2 2
1cos ( )cosa OP R r= ω × × θ = ω − φ . . . (∵     θ = φ )

   = (62.84)2 (52.43 – 16) cos 29.4° = 125 330 mm/s2

   = 125.33 m/s
2 Ans.

We also know that retardation of the follower,

2 2cos( ) cos ( )a OQ OQ= ω × α − θ = ω × α − φ . . . (∵     θ = φ )

   = (62.84)
2
 25 cos (75° – 29.4°) = 69 110 mm/s

2

    = 69.11 m/s
2 Ans.

Example 20.18. A flat ended valve tappet is operated by a symmetrical cam with circular

arc for flank and nose. The straight line path of the tappet passes through the cam axis. Total

angle of action = 150°. Lift = 6 mm. Base circle diameter = 30 mm. Period of acceleration is half

the period of retardation during the lift. The cam rotates at 1250 r.p.m. Find : 1. flank and nose

radii ; 2. maximum acceleration and retardation during the lift.

Solution. Given : 2 α  = 150° or α  = 75° ; x = JK = 6 mm ;

d
1
 = 30 mm or r

1
 = OE = OJ = 15 mm ; N = 1250 r.p.m. or

ω  = 2 π  × 1250/60 = 131 rad/s

1. 1. 1. 1. 1. Flank and nose radii

The circular arc cam operating a flat ended valve tappet

is shown in Fig. 20.49.

Let R = PE = Flank radius, and

           2r QF QK= =  = Nose radius.
Fig. 20.49
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First of all, let us find the values of OP, OQ and PQ. The acceleration takes place while the

follower is on the flank and retardation while the follower is on nose. Since the period of accelera-

tion is half the period of retardation during the lift, therefore

1

2
φ = γ  . . . (i)

We know that         180 180 75 105β = ° − α = ° − ° = °

∴        75 180 180 105 75φ + γ = ° = ° − β = ° − ° = ° . . . (ii)

From equations (i) and (ii),

25φ = °  ,     and       50γ = °

Now from the geometry of Fig. 20.49,

         1 2 2 215 6 21OQ OJ JK QK r x r r r= + − = + − = + − = −  . . . (iii)

and          2( ) 15PQ PF FQ PE FQ OP OE FQ OP r= − = − = + − = + − . . . (iv)

Now from triangle OPQ,

       
sin sin sin

OP OQ PQ
= =

γ φ β

or     
2 221 15

sin 50 sin 25 sin105

r OP rOP − + −
= =

° ° °

∴         2 2
2

21 21
sin 50 0.766 38 1.8

sin 25 0.4226

r r
OP r

− −
= × ° = × = −

°

 . . . (v)

Also          2 215 15
sin 50 0.766

sin105 0.966

OP r OP r
OP

+ − + −
= × ° = ×

°

   = 0.793 × OP + 11.9 – 0.793 r
2

∴   0.207 OP = 11.9 – 0.793 r
2
     or         OP =  57.5 – 3.83 r

2
. . . (vi)

From equations (v) and (vi),

38 – 1.8 r
2
 = 57.5 – 3.83 r

2
      or     2.03 r

2
 = 19.5

∴           r
2
 = 9.6 mm Ans.

We know that      238 1.8 38 1.8 9.6 20.7OP r= − = − × =  mm . . . [From equation (v)]

∴ R = PE = OP + OE = 20.7 + 15 = 35.7 mm Ans.

2. Maximum acceleration and retardation during the lift

We know that maximum acceleration

 2 2 2
1( ) (131) 20.7 355230R r OP= ω − = ω × = =  mm/s

2

   = 355.23 m/s
2 Ans.

and maximum retardation,  2 2
2(21 )OQ r= ω × = ω − . . . [From equation (iii) ]

   = (131)
2
 (21 – 9.6) = 195 640 mm/s

2
 = 195.64 m/s

2 Ans.
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Example 20.19. A cam consists of a circular disc of diameter

75 mm with its centre displaced 25 mm from the camshaft axis. The

follower has a flat surface (horizontal) in contact with the cam and

the line of action of the follower is vertical and passes through the

shaft axis as shown in Fig. 20.50. The mass of the follower is 2.3 kg

and is pressed downwards by a spring which has a stiffness of 3.5

N/mm. In the lowest position the spring force is 45 N.

1. Derive an expression for the acceleration of the follower in

terms of the angle of rotation from the beginning of the lift.

2. As the cam shaft speed is gradually increased, a value is

reached at which the follower begins to lift from the cam surface.

Determine the camshaft speed for this condition.

Solution. Given : d = 75 mm   or   r = OA = 37.5 mm ;

OQ = 25 mm ;   m = 2.3 kg ;   s = 3.5 N/mm ;  S = 45 N

1. Expression for the acceleration of the follower

The cam in its lowest position is shown by full lines in Fig. 20.51 and by dotted lines when

it has rotated through an angle θ .

From the geometry of the figure, the displacement of the follower,

         x AB OS OQ QS= = = −

  cosOQ PQ= − θ

  cosOQ OQ= − θ       . . . ( )PQ OQ=∵

 (1 cos ) 25(1 cos )OQ= − θ = − θ . . . (i)

Differentiating equation (i) with respect to t, we

get velocity of the follower,

dx dx d dx
v

dt d dt d

θ
= = × = × ω

θ θ

 . . .(Substituting /d dtθ = ω )

 25sin 25 sin= θ×ω = ω θ . . . (ii)

Now differentiating equation (ii) with respect to

t, we get acceleration of the follower,

           25 cos
dv dv d

a
dt d dt

θ
= = × = ω θ× ω

θ

 225 cos= ω θ  mm/s
2
 = 20.025 cosω θ   m/s

2 Ans.

2. Cam shaft speed

Let            N = Cam shaft speed in r.p.m.

We know that accelerating force

 2 2. 2.3 0.025 cos 0.0575 cosm a= = × ω θ = ω θ  N

Now for any value of θ , the algebraic sum of the spring force, weight of the follower and the

accelerating force is equal to the vertical reaction between the cam and follower. When this reac-

tion is zero, then the follower will just begin to leave the cam.

Fig. 20.50

Fig. 20.51
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∴     . . . 0S s x m g m a+ + + =

245 3.5 25(1 cos ) 2.3 9.81 0.0575 cos 0+ × − θ + × + ω θ =

245 87.5 87.5cos 22.56 0.0575 cos 0+ − θ + + ω θ =

2155.06 87.5cos 0.0575 cos 0− θ + ω θ =

2
2697 1522cos cos 0− θ + ω θ =  . . . ( Dividing by 0.0575 )

          2 cos 1522cos 2697ω θ = θ −  or 2 1522 2697secω = − θ

Since sec 1θ ≥ +  or , 1≤ − , therefore the minimum value of 2
ω occurs when θ = 180° there-

fore

                2 1522 ( 2697) 4219ω = − − =  . . . [Substituting sec θ  = – 1 ]

∴        65ω =  rad/s

and maximum allowable cam shaft speed,

     
60 65 60

2 2
N

ω× ×
= =

π π
 = 621 r.p.m. Ans.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES
1. A disc cam is to give uniform motion to a knife edge follower during out stroke of 50 mm during

the first half of the cam revolution. The follower again returns to its original position with uniform

motion during the next half of the revolution. The minimum radius of the cam is 50 mm and the

diameter of the cam shaft is 35 mm. Draw the profile of the cam when 1. the axis of follower passes

through the axis of cam shaft, and 2. the axis of follower is offset by 20 mm from the axis of the

cam shaft.

2. A cam operating a knife-edged follower has the following data :

(a) Follower moves outwards through 40 mm during 60° of cam rotation.

(b) Follower dwells for the next 45°.

(c) Follower returns to its original position during next 90°.

(d) Follower dwells for the rest of the rotation.

The displacement of the follower is to take place with simple harmonic motion during both the

outward and return strokes. The least radius of the cam is 50 mm. Draw the profile of the cam when

1. the axis of the follower passes through the cam axis, and 2. the axis of the follower is offset 20

mm towards right from the cam axis. If the cam rotates at 300 r.p.m., determine maximum velocity

and acceleration of the follower during the outward stroke and the return stroke.

[Ans. 1.88 m/s, 1.26 m/s ; 177.7 m/s2, 79 m/s2]

3. A disc cam rotating in a clockwise direction is used to move a reciprocating roller with simple

harmonic motion in a radial path, as given below :

(i) Outstroke with maximum displacement of 25 mm during 120° of cam rotation,

(ii)  Dwell for 60° of cam rotation,

(iii)  Return stroke with maximum displacement of 25 mm during 90° of cam rotation, and

(iv)   Dwell during remaining 90° of cam rotation.

The line of reciprocation of follower passes through the camshaft axis. The maximum radius of cam

is 20 mm. If the cam rotates at a uniform speed of 300 r.p.m. find the maximum velocity and

acceleration during outstroke and return stroke. The roller diameter is 8 mm.
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Draw the profile of the cam when the line of reciprocation of the follower is offset by 20 mm

towards right from the cam shaft axis. [Ans. 0.59 m/s, 0.786 m/s ; 27.8 m/s2, 49.4 m/s2]

4. Design a cam to raise a valve with simple harmonic motion through 50 mm in 1/3 of a revolution,

keep if fully raised through 1/12 revolution and to lower it with harmonic motion in 1/6 revolution.

The valve remains closed during the rest of the revolution. The diameter of the roller is 20 mm and

the minimum radius of the cam is 25 mm. The diameter of the camshaft is 25 mm. The axis of the

valve rod passes through the axis of the camshaft. If the camshaft rotates at uniform speed of 100

r.p.m. ; find the maximum velocity and acceleration of a valve during raising and lowering.

[ Ans. 0.39 m/s, 0.78 m/s ; 6.17 m/s2, 24.67 m/s2]

5. A cam rotating clockwise with a uniform speed is to give the roller follower of 20 mm diameter with

the following motion :

(a) Follower to move outwards through a distance of 30 mm during 120° of cam rotation ;

(b) Follower to dwell for 60° of cam rotation ;

(c) Follower to return to its initial position during 90° of cam rotation ; and

(d) Follower to dwell for the remaining 90° of cam rotation.

The minimum radius of the cam is 45 mm and the line of stroke of the follower is offset 15 mm

from the axis of the cam and the displacement of the follower is to take place with simple harmonic

motion on both the outward and return strokes. Draw the cam profile.

6. A cam rotating clockwise at a uniform speed of 100 r.p.m. is required to give motion to knife-edge

follower as below :

(a) Follower to move outwards through 25 mm during 120° of cam rotation,

(b) Follower to dwell for the next 60° of cam rotation,

(c) Follower to return to its starting position during next 90° of cam rotation, and

(d) Follower to dwell for the rest of the cam rotation.

The minimum radius of the cam is 50 mm and the line of stroke of the follower passes through the

axis of the cam shaft. If the displacement of the follower takes place with uniform and equal accel-

eration and retardation on both the outward and return strokes, find the maximum velocity and

acceleration during outstroke and return stroke. [Ans. 0.25 m/s, 0.33 m/s ; 2.5 m/s2 , 4.44 m/s2]

7. A cam with 30 mm as minimum diameter is rotating clockwise at a uniform speed of 1200 r.p.m.

and has to give the following motion to a roller follower 10 mm in diameter:

(a) Follower to complete outward stroke of 25 mm during 120° of cam rotation with equal uniform

acceleration and retardation ;

(b) Follower to dwell for 60° of cam rotation ;

(c) Follower to return to its initial position during 90° of cam rotation with equal uniform accelera-

tion and retardation ;

(d) Follower to dwell for the remaining 90° of cam rotation.

Draw the cam profile if the axis of the roller follower passes through the axis of the cam.

Determine the maximum velocity of the follower during the outstroke and return stroke and

also the uniform acceleration of the follower on the out stroke and the return stoke.

[Ans. 3 m/s , 4 m/s ; 360.2 m/s2, 640.34 m/s2]

8. A cam rotating clockwise at a uniform speed of 200 r.p.m. is required to move an offset roller

follower with a uniform and equal acceleration and retardation on both the outward and return

strokes. The angle of ascent, the angle of dwell (between ascent and descent) and the angle of

descent is 120°, 60° and 90° respectively. The follower dwells for the rest of cam rotation. The least

radius of the cam is 50 mm, the lift of the follower is 25 mm and the diameter of the roller is 10

mm. The line of stroke of the follower is offset by 20 mm from the axis of the cam. Draw the cam

profile and find the maximum velocity and acceleration of the follower during the outstroke.

9. A flat faced reciprocating follower has the following motion :
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(i) The follower moves out for 80° of cam rotation with uniform acceleration and retardation, the

acceleration being twice the retardation.

(ii) The follower dwells for the next 80° of cam rotation.

(iii) It moves in for the next 120° of cam rotation with uniform acceleration and retardation, the

retardation being twice the acceleration.

(iv) The follower dwells for the remaining period.

The base circle diameter of the cam is 60 mm and the stroke of the follower is 20 mm. The line

of movement of the follower passes through the cam centre.

Draw the displacement diagram and the profile of the cam very neatly showing all construc-

tional details.

10. From the following data, draw the profile of a cam in which the follower moves with simple har-

monic motion during ascent while it moves with uniformly accelerated motion during descent :

Least radius of cam = 50 mm ; Angle of ascent = 48° ; Angle of dwell between ascent and

descent = 42° ; Angle of descent = 60° ; Lift of follower = 40 mm ; Diameter of roller = 30 mm ;

Distance between the line of action of follower and the axis of cam = 20 mm.

If the cam rotates at 360 r.p.m. anticlockwise, find the maximum velocity and acceleration of

the follower during descent. [Ans. 2.88 m/s ; 207.4 m/s2]

11. Draw the profile of a cam with oscillating roller follower for the following motion :

(a) Follower to move outwards through an angular displacement of 20° during 120° of cam rota-

tion.

(b) Follower to dwell for 50° of cam rotation.

(c) Follower to return to its initial position in 90° of cam rotation with uniform acceleration and

retardation.

(d) Follower to dwell for the remaining period of cam rotation.

The distance between the pivot centre and the roller centre is 130 mm and the distance between

the pivot centre and cam axis is 150 mm. The minimum radius of the cam is 80 mm and the

diameter of the roller is 50 mm.

12. Draw the profile of the cam when the roller follower moves with cycloidal motion as given below :

(a) Outstroke with maximum displacement of 44 mm during 180° of cam rotation.

(b) Return stroke for the next 150° of cam rotation.

(c) Dwell for the remaining 30° of cam rotation.

The minimum radius of the cam is 20 mm and the diameter of the roller is 10 mm. The axis of

the roller follower passes through the cam shaft axis.

13. A symmetrical tangent cam operating a roller follower has the following particulars :

Radius of base circle of cam = 40 mm, roller radius = 20 mm, angle of ascent = 75°, total lift = 20

mm, speed of cam shaft = 300 r.p.m.

Determine : 1. the principal dimensions of the cam, 2. the equation for the displacement curve,

when the follower is in contact with the straight flank, and 3. the acceleration of the follower when

it is in contact with the straight flank where it merges into the circular nose.

[Ans. r
3
 = 33 mm ; θ θ θ θ θ  = 23.5° ; 89.4 m/s2]

14. A cam profile consists of two circular arcs of radii 24 mm and 12 mm, joined by straight lines,

giving the follower a lift of 12 mm. The follower is a roller of 24 mm radius and its line of action

is a straight line passing through the cam shaft axis. When the cam shaft has a uniform speed of 500

rev/min, find the maximum velocity and acceleration of the follower while in contact with the straight

flank of the cam. [Ans. 1.2 m/s ; 198 m/s2]

15. The following particulars relate to a symmetrical tangent cam operating a roller follower :-

Least radius = 30 mm, nose radius = 24 mm, roller radius = 17.5 mm, distance between cam shaft

and nose centre = 23.5 mm, angle of action of cam = 150°, cam shaft speed = 600 r.p.m.

Assuming that there is no dwell between ascent and descent, determine the lift of the valve and the
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acceleration of the follower at a point where straight flank merges into the circular nose.

[Ans. 17.5 mm ; 304.5 m/s2]

16. Following is the data for a circular arc cam working with a flat faced reciprocating follower :

Minimum radius of the cam = 30 mm ; Total angle of cam action = 120° ; Radius of the circular arc

= 80 mm ; Nose radius = 10 mm.

1. Find the distance of the centre of nose circle from the cam axis ; 2. Draw the profile of the cam

to full scale; 3. Find the angle through which the cam turns when the point of contact moves from

the junction of minimum radius arc and circular arc to the junction of nose radius arc and circular

arc ; and 4. Find the velocity and acceleration of the follower when the cam has turned through an

angle of θ  = 20°. The angle θ  is measured from the point where the follower just starts moving

away from the cam. The angular velocity of the cam is 10 rad/s.

[Ans. 30 mm ; 22°; 68.4 mm/s ; 1880 mm/s2]

17. The suction valve of a four stroke petrol engine is operated by a circular arc cam with a flat faced

follower. The lift of the follower is 10 mm ; base circle diameter of the cam is 40 mm and the nose

radius is 2.5 mm. The crank angle when suction valve opens is 4° after top dead centre and when

the suction valve closes, the crank angle is 50° after bottom dead centre. If the cam shaft rotates at

600 r.p.m., determine: 1. maximum velocity of the valve, and 2. maximum acceleration and retarda-

tion of the valve.

[Ans. 1.22 m/s ; 383 m/s2, 108.6 m/s2]

[Hint. Total angle turned by the crankshaft when valve is open

= 180° – 4° + 50° = 226°

Since the engine is a four stroke cycle, therefore speed of cam shaft is half of the speed of the crank

shaft.

        ∴ Total angle turned by the cam shaft during opening of valve, 2 α  = 226/2 = 113° or

α  = 56.5°].

18. The following particulars relate to a symmetrical circular cam operating a flat-faced follower :

Least radius = 25 mm ; nose radius = 8 mm, lift of the valve = 10 mm, angle of action of cam =

120°, cam shaft speed = 1000 r.p.m.

Determine the flank radius and the maximum velocity, acceleration and retardation of the follower. If

the mass of the follower and valve with which it is in contact is 4 kg, find the minimum force to be

exerted by the spring to overcome inertia of the valve parts.

[Ans. 88 mm ; 1.93 m/s, 690.6 m/s2, 296 m/s2 ; 1184 N]

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?
1. Write short notes on cams and followers.

2. Explain with sketches the different types of cams and followers.

3. Why a roller follower is preferred to that of a knife-edged follower ?

4. Define the following terms as applied to cam with a neat sketch :-

(a)  Base circle,    (b)   Pitch circle,    (c)  Pressure angle, and   (d)   Stroke of the follower.

5. What are the different types of motion with which a follower can move ?

6. Draw the displacement, velocity and acceleration diagrams for a follower when it moves with simple

harmonic motion. Derive the expression for velocity and acceleration during outstroke and return

stroke of the follower.

7. Draw the displacement, velocity and acceleration diagrams for a follower when it moves with uni-

form acceleration and retardation. Derive the expression for velocity and acceleration during out-

stroke and return stroke of the follower.

8. Derive expressions for displacement, velocity and acceleration for a tangent cam operating on a

radial-translating roller follower :
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(i) when the contact is on straight flank, and

(ii) when the contact is on circular nose.

9. Derive the expressions for displacement, velocity and acceleration for a circular arc cam operating a

flat-faced follower

(i) when the contact is on the circular flank, and

(ii) when the contact is on circular nose.

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS
1. The size of a cam depends upon

(a) base circle (b) pitch circle (c) prime circle (d) pitch curve

2. The angle between the direction of the follower motion and a normal to the pitch curve is called

(a) pitch angle (b)  prime angle

(c) base angle (d)  pressure angle

3. A circle drawn with centre as the cam centre and radius equal to the distance between the cam

centre and the point on the pitch curve at which the pressure angle is maximum, is called

(a) base circle (b)  pitch circle

(c) prime circle (d)  none of these

4. The cam follower generally used in automobile engines is

(a) knife edge follower (b)  flat faced follower

(c) spherical faced follower  (d)  roller follower

5. The cam follower extensively used in air-craft engines is

(a) knife edge follower (b)  flat faced follower

(c) spherical faced follower (d)  roller follower

6. In a radial cam, the follower moves

(a) in a direction perpendicular to the cam axis

(b) in a direction parallel to the cam axis

(c) in any direction irrespective of the cam axis

(d) along the cam axis

7. A radial follower is one

(a) that reciprocates in the guides (b)  that oscillates

(c) in which the follower translates along an axis passing through the cam centre of rotation.

(d) none of the above

8. Offet is provided to a cam follower mechanism to

(a) minimise the side thrust (b)  accelerate

(c) avoid jerk (d)  none of these

9. For low and moderate speed engines, the cam follower should move with

(a) uniform velocity (b)  simple harmonic motion

(c) uniform acceleration and retardation (d)  cycloidal motion

10. For high speed engines, the cam follower should move with

(a) uniform velocity (b)  simple harmonic motion

(c) uniform acceleration and retardation (d)  cycloidal motion

11. Which of the following displacement diagrams should be chosen for better dynamic performance of

a cam-follower mechanism ?

(a) simple hormonic motion (b)  parabolic motion

(c) cycloidal motion (d)  none of these
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12. For a given lift of the follower of a cam follower mechanism, a smaller base circle diameter is

desired.

(a) because it will give a steeper cam and higher pressure angle.

(b) because it will give a profile with lower pressure angle

(c) because it will avoid jumping

(d) none of the above.

13. The linear velocity of the reciprocating roller follower when it has contact with the straight flanks of

the tangent cam, is given by

(a) 1 2( )sinr rω − θ (b) 1 2( )cosr rω − θ

(c)
1 2

2
( )sin secr rω + θ θ (d) 

1 2
2

( )cos cosecr rω + θ θ

where       ω  = Angular velocity of the cam shaft,

 r
1
 = Minimum radius of the cam,

 r
2
 = Radius of the roller, and

θ  = Angle turned by the cam from the beginning of the displacement for contact

                of roller with the straight flanks.

14. The displacement of a flat faced follower when it has contact with the flank of a circular arc cam, is

given by

(a) (1 cos )− θR          (b)  (1 sin )− θR

(c) 1( )(1 cos )R r− − θ                      (d)  1( )(1 sin )R r− − θ

where  R = Radius of the flank,

 r
1
 = Minimum radius of the cam, and

 θ = Angle turned by the cam for contact with the circular flank.

15. The retardation of a flat faced follower when it has contact at the apex of the nose of a circular arc

cam, is given by

(a)  2
ω × OQ (b) 2

sinω × θOQ

(c)  2
cosω × θOQ                                (d) 2

tanω × θOQ

where OQ = Distance between the centre of circular flank and centre of nose.

ANSWERSANSWERSANSWERSANSWERSANSWERS
1.  (a) 2.  (d) 3.  (b) 4.  (c) 5.  (d)

6.  (a) 7.  (a) 8.  (a) 9. (b) 10. (d)

11.  (c) 12.  (d) 13.  (c) 14. (c) 15. (a)

GO To FIRST
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21.1.21.1.21.1.21.1.21.1. IntroductionIntroductionIntroductionIntroductionIntroduction

The high speed of engines and other machines is a

common phenomenon now-a-days. It is, therefore, very

essential that all the rotating and reciprocating parts should

be completely balanced as far as possible. If these parts are

not properly balanced, the dynamic forces are set up. These

forces not only increase the loads on bearings and stresses

in the various members, but also produce unpleasant and

even dangerous vibrations. In this chapter we shall discuss

the balancing of unbalanced forces caused by rotating masses,

in order to minimise pressure on the main bearings when an

engine is running.

21.2.21.2.21.2.21.2.21.2. Balancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating Masses

We have already discussed, that whenever a certain

mass is attached to a rotating shaft, it exerts some centrifu-

gal force, whose effect is to bend the shaft and to produce

vibrations in it. In order to prevent the effect of centrifugal

force, another mass is attached to the opposite side of the

shaft, at such a position so as to balance the effect of the

centrifugal force of the first mass. This is done in such a

833
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way that the centrifugal force of both the masses are made to be equal and opposite. The process of

providing the second mass in order to counteract the effect of the centrifugal force of the first mass,

is called balancing of rotating masses.

The following cases are important from the subject point of view:

1. Balancing of a single rotating mass by a single mass rotating in the same plane.

2. Balancing of a single rotating mass by two masses rotating in different planes.

3. Balancing of different masses rotating in the same plane.

4. Balancing of different masses rotating in different planes.

We shall now discuss these cases, in detail, in the following pages.

21.3.21.3.21.3.21.3.21.3. Balancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating in

the Same Planethe Same Planethe Same Planethe Same Planethe Same Plane

Consider a disturbing mass m
1
 attached to a shaft rotating at ω  rad/s as shown in Fig. 21.1.

Let r
1
 be the radius of rotation of the mass m

1
 (i.e. distance between the axis of rotation of the shaft

and the centre of gravity of the mass m
1
).

We know that the centrifugal force exerted by the mass m
1
 on the shaft,

= ⋅ω ⋅
2

Cl 1 1F m r . . . (i)

This centrifugal force acts radially outwards and thus produces bending moment on the

shaft. In order to counteract the effect of this force, a balancing mass (m
2
) may be attached in the

same plane of rotation as that of disturbing mass (m
1
) such that the centrifugal forces due to the

two masses are equal and opposite.

Fig. 21.1. Balancing of a single rotating mass by a single mass rotating in the same plane.

Let          r
2
 = Radius of rotation of the balancing mass m

2
 (i.e. distance between the

 axis of rotation of the shaft and the centre of gravity of mass m
2
 ).

∴   Centrifugal force due to mass m
2
,

     = ⋅ω ⋅
2

C2 2 2F m r . . . (ii)

Equating equations (i) and (ii),

         2 2
1 1 2 2.m r m rω ⋅ = ⋅ω ⋅    or   1 1 2 2m r m r⋅ = ⋅

Notes : 1. The product m
2
.r

2
 may be split up in any convenient way. But the radius of rotation of the

balancing mass (m
2
) is generally made large in order to reduce the balancing mass m

2
.

  2. The centrifugal forces are proportional to the product of the mass and radius of rotation of

respective masses, because 
2

ω  is same for each mass.
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21.4.21.4.21.4.21.4.21.4. Balancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating in

Different PlanesDifferent PlanesDifferent PlanesDifferent PlanesDifferent Planes

We have discussed in the previous article that by introducing a single balancing mass in the

same plane of rotation as that of disturbing mass, the centrifugal forces are balanced. In other

words, the two forces are equal in magnitude and opposite in direction. But this type of arrange-

ment for balancing gives rise to a couple which tends to rock the shaft in its bearings. Therefore in

order to put the system in complete balance, two balancing masses are placed in two different

planes, parallel to the plane of rotation of the disturbing mass, in such a way that they satisfy the

following two conditions of equilibrium.

1. The net dynamic force acting on the shaft is equal to zero. This requires that the line of

action of three centrifugal forces must be the same. In other words, the centre of the

masses of the system must lie on the axis of rotation. This is the condition for static

balancing.

2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In other

words, the algebraic sum of the moments about any point in the plane must be zero.

The conditions (1) and (2) together give dynamic balancing. The following two possibili-

ties may arise while attaching the two balancing masses :

1. The plane of the disturbing mass may be in between the planes of the two balancing

masses, and

2. The plane of the disturbing mass may lie on the left or right of the two planes containing

the balancing masses.

 We shall now discuss both the above cases one by one.

1.  When the plane of the disturbing mass lies in between the planes of the two balancing

   masses

Consider a disturbing mass m lying in a plane A to be balanced by two rotating masses m
1

and m
2
 lying in two different planes L and M as shown in Fig. 21.2. Let r, r

1
 and r

2
 be the radii of

rotation of the masses in planes A, L and M respectively.

The picture shows a diesel engine. All diesel, petrol and steam engines have reciprocating and

rotating masses inside them which need to be balanced.
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Let       l
1
 = Distance between the planes A and L,

                  l
2
 = Distance between the planes A and M, and

                   l = Distance between the planes L and M.

Fig. 21.2. Balancing of a single rotating mass by two rotating masses in different planes when the

     plane of single rotating mass lies in between the planes of two balancing masses.

We know that the centrifugal force exerted by the mass m in the plane A,

    = ⋅ω ⋅
2

CF m r

Similarly, the centrifugal force exerted by the mass m
1
 in the plane L,

  = ⋅ω ⋅
2

C1 1 1F m r

and, the centrifugal force exerted by the mass m
2
 in the plane M,

  = ⋅ω ⋅
2

C2 2 2F m r

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force

on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing masses,

therefore

    C C1 C2F F F= +          or      ⋅ω ⋅ = ω ⋅ + ⋅ω ⋅
2 2 2

1 1 2 2.m r m r m r

∴              1 1 2 2m r m r m r⋅ = ⋅ + ⋅  . . . (i)

Now in order to find the magnitude of balancing force in the plane L (or the dynamic force

at the bearing Q of a shaft), take moments about P which is the point of intersection of the plane M

and the axis of rotation. Therefore

           C1 C 2F l F l× = ×      or    2 2
1 1 2m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴          1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅      or    
2

1 1

l
m r m r

l
⋅ = ⋅ ×  . . . (ii)

Similarly, in order to find the balancing force in plane M (or the dynamic force at the

bearing P of a shaft), take moments about Q which is the point of intersection of the plane L and

the axis of rotation. Therefore

          C2 C 1F l F l× = ×    or   2 2
2 2 1m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴          2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅    or   
1

2 2

l
m r m r

l
⋅ = ⋅ ×  . . . (iii)
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It may be noted that equation (i) represents the condition for static balance, but in order to

achieve dynamic balance, equations (ii) or (iii) must also be satisfied.

2.  When the plane of the disturbing mass lies on one end of the planes of the balancing

    masses

Fig. 21.3. Balancing of a single rotating mass by two rotating masses in different planes, when the

plane of single rotating mass lies at one end of the planes of balancing masses.

In this case, the mass m lies in the plane A and the balancing masses lie in the planes L and

M, as shown in Fig. 21.3. As discussed above, the following conditions must be satisfied in order

to balance the system, i.e.

      C2 C1C
F F F+ = or     2 2 2

2 2 1 1m r m r m r⋅ω ⋅ + ⋅ω ⋅ = ⋅ ω ⋅

∴    2 2 1 1.m r m r m r⋅ + ⋅ =  . . . (iv)

Now, to find the balancing force in the plane L (or the dynamic force at the bearing Q of a

shaft), take moments about P which is the point of intersection of the plane M and the axis of

rotation. Therefore

         C1 C 2F l F l× = ×   or   2 2
1 1 2m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴                    1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅   or   2
1 1

l
m r m r

l
⋅ = ⋅ ×  . . . (v)

. . . [Same as equation (ii)]

Similarly, to find the balancing force in the plane M (or the dynamic force at the bearing P

of a shaft), take moments about Q which is the point of intersection of the plane L and the axis of

rotation. Therefore

          C2 C 1F l F l× = ×   or   2 2
2 2 1m r l m r l⋅ω ⋅ × = ⋅ω ⋅ ×

         2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅  or   
1

2 2

l
m r m r

l
⋅ = ⋅ × . . . (vi)

. . . [Same as equation (iii)]

21.5.21.5.21.5.21.5.21.5. Balancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same Plane

Consider any number of masses (say four) of magnitude m
1
, m

2
, m

3
 and m

4
 at distances of

r
1
, r

2
, r

3
 and r

4
 from the axis of the rotating shaft. Let 1 2 3 4, , andθ θ θ θ be the angles of these

masses with the horizontal line OX, as shown in Fig. 21.4 (a). Let these masses rotate about an axis

through O and perpendicular to the plane of paper, with a constant angular velocity of ω  rad/s.
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The magnitude and position of the balancing mass may be found out analytically or

graphically as discussed below :

(a) Space diagram.         (b) Vector diagram.

Fig. 21.4. Balancing of several masses rotating in the same plane.

1. Analytical method

The magnitude and direction of the balancing mass may be obtained, analytically, as

discussed below :

1. First of all, find out the centrifugal force* (or the product of the mass and its radius of

rotation) exerted by each mass on the rotating shaft.

* Since ω
2
 is same for each mass, therefore the magnitude of the centrifugal force for each mass is propor-

tional to the product of the respective mass and its radius of rotation.

A car assembly line.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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2. Resolve the centrifugal forces horizontally and vertically and find their sums, i.e. HΣ

and VΣ . We know that

Sum of horizontal components of the centrifugal forces,

   1 1 1 2 2 2cos cos . . . . . .H m r m rΣ = ⋅ θ + ⋅ θ +

and sum of vertical components of the centrifugal forces,

  1 1 1 2 2 2sin sin . . . . . .V m r m rΣ = ⋅ θ + ⋅ θ +

3. Magnitude of the resultant centrifugal force,

    = Σ + Σ
2 2

C ( ) ( )F H V

4. If θ  is the angle, which the resultant force makes with the horizontal, then

 tan /V Hθ = Σ Σ

5. The balancing force is then equal to the resultant force, but in opposite direction.

6. Now find out the magnitude of the balancing mass, such that

    = ⋅CF m r

where       m = Balancing mass, and

       r = Its radius of rotation.

2. Graphical method

The magnitude and position of the balancing mass may also be obtained graphically as

discussed below :

1. First of all, draw the space diagram with the positions of the several masses, as shown in

Fig. 21.4 (a).

2. Find out the centrifugal force (or product of the mass and radius of rotation) exerted by

each mass on the rotating shaft.

3. Now draw the vector diagram with the obtained centrifugal forces (or the product of the

masses and their radii of rotation), such that ab represents the centrifugal force exerted by

the mass m
1
 (or m

1
.r

1
) in magnitude and direction to some suitable scale. Similarly, draw

bc, cd and de to represent centrifugal forces of other masses m
2
, m

3
 and m

4
 (or m

2
.r

2
,

m
3
.r

3
 and m

4
.r

4
).

4. Now, as per polygon law of forces, the closing side ae represents the resultant force in

magnitude and direction, as shown in Fig. 21.4 (b).

5. The balancing force is, then, equal to the resultant force, but in opposite direction.

6. Now find out the magnitude of the balancing mass (m) at a given radius of rotation (r),

such that

        
2

m r⋅ω ⋅  = Resultant centrifugal force

or     m.r = Resultant of m
1
.r

1
, m

2
.r

2
, m

3
.r

3
 and m

4
.r

4

Example 21.1. Four masses m
1
, m

2
, m

3
 and m

4
 are 200 kg, 300 kg, 240 kg and 260 kg

respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively

and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude

of the balance mass required, if its radius of rotation is 0.2 m.

Solution. Given : m
1
 = 200 kg ; m

2
 = 300 kg ; m

3
 = 240 kg ; m

4
 = 260 kg ; r

1
 = 0.2 m ;

r
2
 = 0.15 m ; r

3
= 0.25 m ; r

4
 = 0.3 m ; 1θ  = 0° ; 2θ  = 45° ; 3θ  = 45° + 75° = 120° ; 4θ  = 45° + 75°

+ 135° = 255° ; r = 0.2 m
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Let               m = Balancing mass, and

                 θ = The angle which the balancing mass makes with m
1
.

Since the magnitude of centrifugal forces are

proportional to the product of each mass and its radius,

therefore

            ⋅ = × =1 1 200 0.2 40 kg-mm r

           ⋅ = × =2 2 300 0.15 45kg-mm r

                        ⋅ = × =3 3 240 0.25 60 kg-mm r

           ⋅ = × =4 4 260 0.3 78 kg-mm r

The problem may, now, be solved either analytically

or graphically. But we shall solve the problem by both the

methods one by one.

1. Analytical method

The space diagram is shown in Fig. 21.5.

Resolving m
1
.r

1
, m

2
.r

2
, m

3
.r

3
 and m

4
.r

4
 horizontally,

   1 1 1 2 2 2 3 3 3 4 4 4cos cos cos cosH m r m r m r m rΣ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ

        40 cos0 45cos45 60 cos120 78cos255= ° + ° + ° + °

       40 31.8 30 20.2 21.6 kg-m= + − − =

Now resolving vertically,

   Σ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ1 1 1 2 2 2 3 3 3 4 4 4sin sin sin sinV m r m r m r m r

       40 sin0 45sin45 60 sin120 78sin255= ° + ° + ° + °

       0 31.8 52 75.3 8.5 kg-m= + + − =

∴Resultant,   R = 2 2 2 2
( ) ( ) (21.6) (8.5) 23.2 kg-mH VΣ + Σ = + =

We know that

 23.2m r R⋅ = =    or  = = =23.2 / 23.2 / 0.2 116 kgm r  Ans.

and  tan / 8.5/ 21.6 0.3935V H′θ = Σ Σ = =    or  ′θ  = 21.48°

Since ′θ  is the angle of the resultant R from the horizontal mass of 200 kg, therefore the

angle of the balancing mass from the horizontal mass of 200 kg,

     θ  = 180° + 21.48° = 201.48° Ans.

2. Graphical method

The magnitude and the position of the balancing mass may also be found graphically as

discussed below :

1. First of all, draw the space diagram showing the positions of all the given masses as

shown in Fig 21.6 (a).

2. Since the centrifugal force of each mass is proportional to the product of the mass and

radius, therefore

  m
1
.r

1
 = 200 × 0.2 =  40 kg-m

 m
2
.r

2
 = 300 × 0.15 = 45 kg-m

Fig. 21.5
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             m
3
.r

3
 = 240 × 0.25 = 60 kg-m

   m
4
.r

4
 = 260 × 0.3 =  78 kg-m

3. Now draw the vector diagram with the above values, to some suitable scale, as shown in

Fig. 21.6 (b). The closing side of the polygon ae represents the resultant force. By mea-

surement, we find that ae = 23 kg-m.

(a) Space diagram. (b) Vector diagram

Fig. 21.6

4. The balancing force is equal to the resultant force, but opposite in direction as shown in

Fig. 21.6 (a). Since the balancing force is proportional to m.r, therefore

          m × 0.2 = vector ea = 23 kg-m   or   m = 23/0.2 = 115 kg Ans.

By measurement we also find that the angle of inclination of the balancing mass (m) from

the horizontal mass of 200 kg,

    θ  = 201° Ans.

21.6.21.6.21.6.21.6.21.6. Balancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different Planes

When several masses revolve in different planes, they

may be transferred to a reference plane (briefly written as

R.P.), which may be defined as the plane passing through a

point on the axis of rotation and perpendicular to it. The

effect of transferring a revolving mass (in one plane) to a

reference plane is to cause a force of magnitude equal to the

centrifugal force of the revolving mass to act in the reference

plane, together with a couple of magnitude equal to the

product of the force and the distance between the plane of

rotation and the reference plane. In order to have a complete

balance of the several revolving masses in different planes,

the following two conditions must be satisfied :

1. The forces in the reference plane must balance, i.e.

the resultant force must be zero.

2. The couples about the reference plane must balance,

i.e. the resultant couple must be zero.

Let us now consider four masses m
1
, m

2
, m

3
 and m

4

revolving in planes 1, 2, 3 and 4 respectively as shown in
Diesel engine.
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Fig. 21.7 (a). The relative angular positions of these masses are shown in the end view [Fig. 21.7

(b)]. The magnitude of the balancing masses m
L
 and m

M
 in planes L and M may be obtained as

discussed below :

1. Take one of the planes, say L as the reference plane (R.P.). The distances of all the other

planes to the left of the reference plane may be regarded as negative, and those to the

right as positive.

2. Tabulate the data as shown in Table 21.1. The planes are tabulated in the same order in

which they occur, reading from left to right.

Table 21.1Table 21.1Table 21.1Table 21.1Table 21.1

Plane Mass (m) Radius(r) Cent.force 2
÷ ω Distance from Couple 2

÷ ω

(m.r) Plane L (l) (m.r.l)

(1) (2) (3) (4) (5) (6)

1 m
1

r
1

m
1
.r

1
–l

1
– m

1
.r

1
.l

1

L(R.P.) m
L

r
L

m
L
.r

L
0 0

2 m
2

r
2

m
2
.r

2
l
2

m
2
.r

2
.l

2

3 m
3

r
3

m
3
.r

3
l
3

m
3
.r

3
.l

3

M m
M

r
M

m
M

.r
M

l
M

m
M

.r
M

.l
M

4 m
4

r
4

m
4
.r

4
l
4

m
4
.r

4
.l

4

(a) Position of planes of the masses.   (b) Angular position of the masses.

(c) Couple vector.      (d) Couple vectors turned  (e) Couple polygon.   ( f ) Force polygon.

     counter clockwise through

a right angle.

Fig. 21.7. Balancing of several masses rotating in different planes.

3. A couple may be represented by a vector drawn perpendicular to the plane of the couple.

The couple C
1
 introduced by transferring m

1
 to the reference plane through O is propor-
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tional to m
1
.r

1
.l

1
 and acts in a plane through Om

1
 and perpendicular to the paper. The

vector representing this couple is drawn in the plane of the paper and perpendicular to

Om
1
 as shown by OC

1
 in Fig. 21.7 (c). Similarly, the vectors OC

2
, OC

3
 and OC

4
 are

drawn perpendicular to Om
2
, Om

3
 and Om

4
 respectively and in the plane of the paper.

4. The couple vectors as discussed above, are turned counter clockwise through a right angle

for convenience of drawing as shown in Fig. 21.7 (d). We see that their relative positions

remains unaffected. Now the vectors OC
2
, OC

3
 and OC

4
 are parallel and in the same

direction as Om
2
, Om

3
 and Om

4
, while the vector OC

1
 is parallel to Om

1
 but in *opposite

direction. Hence the couple vectors are drawn radially outwards for the masses on one

side of the reference plane and radially inward for the masses on the other side of the

reference plane.

5. Now draw the couple polygon as shown in Fig. 21.7 (e). The vector d o′ ′  represents the

balanced couple. Since the balanced couple C
M

 is proportional to m
M

.r
M

.l
M

, therefore

   M M M M vector C m r l d o′ ′= ⋅ ⋅ =     or    M

M M

vector d o
m

r l

′ ′
=

⋅

From this expression, the value of the balancing mass m
M

 in the plane M may be obtained,

and the angle of inclination φ  of this mass may be measured from Fig. 21.7 (b).

6. Now draw the force polygon as shown in Fig. 21.7 ( f ). The vector eo (in the direction

from e to o ) represents the balanced force. Since the balanced force is proportional to

m
L
.r

L
, therefore,

           L L vectorm r eo⋅ =      or     L

L

vector eo
m

r
=

From this expression, the value of the balancing mass m
L
 in the plane L may be obtained

and the angle of inclination α of this mass with the horizontal may be measured from Fig. 21.7 (b).

Example 21.2. A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,

400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes

measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured

anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed

in planes X and Y. The distance between the planes A and X is 100 mm, between X and Y is 400

mm and between Y and D is 200 mm. If the balancing masses revolve at a radius of 100 mm, find

their magnitudes and angular positions.

Solution. Given : m
A

 = 200 kg ; m
B
 = 300 kg ; m

C
 = 400 kg ; m

D
 = 200 kg ; r

A
 = 80 mm

= 0.08m ; r
B
 = 70 mm = 0.07 m ; r

C
 = 60 mm = 0.06 m ; r

D
 = 80 mm = 0.08 m ; r

X
 = r

Y
 = 100 mm

= 0.1 m

Let     m
X

 = Balancing mass placed in plane X, and

    m
Y

 = Balancing mass placed in plane Y.

The position of planes and angular position of the masses (assuming the mass A as

horizontal) are shown in Fig. 21.8 (a) and (b) respectively.

Assume the plane X as the reference plane (R.P.). The distances of the planes to the right of

plane X are taken as + ve while the distances of the planes to the left of plane X are taken as – ve.

The data may be tabulated as shown in Table 21.2.

*  From Table 21.1 (column 6) we see that the couple is – m
1
,r

1
.l

1
.
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Table 21.2Table 21.2Table 21.2Table 21.2Table 21.2

Plane Mass (m) Radius (r) Cent.force ÷ ω
2 Distance from Couple ÷ ω

2

kg  m (m.r) kg-m Plane x(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 200 0.08 16 – 0.1 – 1.6

X(R.P.) m
X

0.1 0.1 m
X

0 0

B 300 0.07 21 0.2 4.2

C 400 0.06 24 0.3 7.2

Y m
Y

0.1 0.1 m
Y

0.4 0.04 m
Y

D 200 0.08 16 0.6 9.6

The balancing masses m
X

 and m
Y

 and their angular positions may be determined graphi-

cally as discussed below :

1. First of all, draw the couple polygon from the data given in Table 21.2 (column 6) as

shown in Fig. 21.8 (c) to some suitable scale. The vector  d o′ ′  represents the balanced

couple. Since the balanced couple is proportional to 0.04 m
Y

, therefore by measurement,

Y. vector . kg-mm d o′ ′= =
2

0 04 7 3      or    m
Y

 = 182.5 kg Ans.

All dimensions in mm.

(a) Position of planes. (b) Angular position of masses.

          (c) Couple polygon. (d) Force polygon.

Fig. 21.8
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The angular position of the mass m
Y

 is obtained by drawing Om
Y

 in Fig. 21.8 (b), parallel

to vector d o′ ′  . By measurement, the angular position of m
Y

 is Y 12θ = °  in the clockwise

direction from mass m
A

 (i.e. 200 kg ). Ans.

2. Now draw the force polygon from the data given in Table 21.2 (column 4) as shown in

Fig. 21.8 (d). The vector eo represents the balanced force. Since the balanced force is

proportional to 0.1 m
X

, therefore by measurement,

X0.1 vector 35.5 kg-mm eo= =     or    m
X

 = 355 kg Ans.

The angular position of the mass m
X

 is obtained by drawing Om
X

 in Fig. 21.8 (b), parallel

to vector eo. By measurement, the angular position of m
X

 is X 145θ = ° in the clockwise

direction from mass m
A

 (i.e. 200 kg ). Ans.

Example 21.3. Four masses A, B, C and D as shown below are to be completely balanced.

A B C D

Mass (kg) — 30 50 40

Radius (mm) 180 240 120 150

The planes containing masses B and C are 300 mm apart. The angle between planes

containing B and C is 90°. B and C make angles of 210° and 120° respectively with D in the same

sense. Find :

1. The magnitude and the angular position of mass A ; and

2. The position of planes A and D.

Solution. Given : r
A

 = 180 mm = 0.18 m ; m
B
 = 30 kg ; r

B
 = 240 mm = 0.24 m ;

m
C
 = 50 kg ; r

C
 = 120 mm = 0.12 m ; m

D
 = 40 kg ; r

D
 = 150 mm = 0.15 m ;  ∠ BOC = 90° ;

∠ BOD = 210° ;  ∠ COD = 120°

1. The magnitude and the angular position of mass A

Let            m
A

 = Magnitude of Mass A,

  x = Distance between the planes B and D, and

              y = Distance between the planes A and B.

The position of the planes and the angular position of the masses is shown in Fig. 21.9 (a)

and (b) respectively.

Assuming the plane B as the reference plane (R.P.) and the mass B (m
B
) along the horizon-

tal line as shown in Fig. 21.9 (b), the data may be tabulated as below :

Table 21.3Table 21.3Table 21.3Table 21.3Table 21.3

Plane Mass Radius Cent.force ÷ ω
2 Distance from Couple ÷ ω

2

(m) kg (r) m (m.r) kg-m plane B (l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A m
A

0.18 0.08 m
A

– y – 0.18 m
A.

y

B (R.P) 30 0.24 7.2 0 0

C 50 0.12 6 0.3 1.8

D 40 0.15 6 x 6x

The magnitude and angular position of mass A may be determined by drawing the force

polygon from the data given in Table 21.3 (Column 4), as shown in Fig. 21.9 (c), to some suitable
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scale. Since the masses are to be completely balanced, therefore the force polygon must be a closed

figure. The closing side (i.e. vector do) is proportional to 0.18 m
A

. By measurement,

     0.18 m
A

 = Vector do = 3.6 kg-m   or   m
A

 = 20 kg Ans.

In order to find the angular position of mass A, draw OA in Fig. 21.9 (b) parallel to vector

do. By measurement, we find that the angular position of mass A from mass B in the anticlockwise

direction is  ∠ AOB = 236° Ans.

(c) Force polygon.                    (d) Couple polygon.

Fig. 21.9.

2. Position of planes A and D

The position of planes A and D may be obtained by drawing the couple polygon, as shown

in Fig. 21.9 (d), from the data given in Table 21.3 (column 6). The couple polygon is drawn as

discussed below :

1. Draw vector o c′ ′   parallel to OC and equal to 1.8 kg-m
2
, to some suitable scale.

2. From points c′  and o′ , draw lines parallel to OD and OA respectively, such that they

intersect at point d′ . By measurement, we find that

6 x = vector c d′ ′  = 2.3 kg-m
2
 or x = 0.383 m

We see from the couple polygon that the direction of vector  c d′ ′  is opposite to the

direction of mass D. Therefore the plane of mass D is 0.383 m or 383 mm towards left of plane B

and not towards right of plane B as already assumed. Ans.

(a) Position of planes.                 (b) Angular position of masses.

All dimensions in mm.
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Again by measurement from couple polygon,

           – 0.18 m
A

.y = vector ′′o d  = 3.6 kg-m
2

         – 0.18 × 20 y = 3.6     or   y = – 1 m

The negative sign indicates that the plane A is not towards left of B as assumed but it is

1 m or 1000 mm towards right of plane B. Ans.

Example 21.4. A, B, C and D are four masses carried by a rotating shaft at radii 100,

125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm

apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively.

Find the required mass A and the relative angular settings of the four masses so that the

shaft shall be in complete balance.

Solution. Given : r
A
 = 100 mm = 0.1 m ; r

B
 = 125 mm = 0.125 m ; r

C
 = 200 mm = 0.2 m ;

r
D

 = 150 mm = 0.15 m ; m
B
 = 10 kg ; m

C
 = 5 kg ; m

D
 = 4 kg

The position of planes is shown in Fig. 21.10 (a). Assuming the plane of mass A as the

reference plane (R.P.), the data may be tabulated as below :

Table 21.4Table 21.4Table 21.4Table 21.4Table 21.4

Plane Mass (m) Radius (r) Cent. Force ÷ ω
2 Distance from Couple ÷ ω

2

kg m (m.r)kg-m plane A (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A(R.P.) m
A

0.1 0.1 m
A

0 0

B 10 0.125 1.25 0.6 0.75

C 5 0.2 1 1.2 1.2

D 4 0.15 0.6 1.8 1.08

First of all, the angular setting of masses C and D is obtained by drawing the couple
polygon from the data given in Table 21.4 (column 6). Assume the position of mass B in the
horizontal direction OB as shown in Fig. 21.10 (b). Now the couple polygon as shown in Fig.
21.10 (c) is drawn as discussed below :

1. Draw vector o′ b′  in the horizontal direction (i.e. parallel to OB) and equal to 0.75 kg-m
2
,

to some suitable scale.

2. From points o′ and b′, draw vectors  o′ c′ and b′ c′  equal to 1.2 kg-m
2
 and 1.08 kg-m

2

respectively. These vectors intersect at c′.

3. Now in Fig. 21.10 (b), draw OC parallel to vector  o′ c′ and OD parallel to vector b′ c′.

By measurement, we find that the angular setting of mass C from mass B in the anticlockwise
direction, i.e.

   BOC∠  = 240° Ans.

and angular setting of mass D from mass B in the anticlockwise direction, i.e.

    BOD∠  = 100° Ans.

In order to find the required mass A (m
A

) and its angular setting, draw the force polygon to

some suitable scale, as shown in Fig. 21.10 (d), from the data given in Table 21.4 (column 4).

Since the closing side of the force polygon (vector do) is proportional to 0.1 m
A

, therefore
by measurement,

      0.1 m
A

 = 0.7 kg-m
2
   or   m

A
 = 7 kg Ans.
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Now draw OA in Fig. 21.10 (b), parallel to vector do. By measurement, we find that the
angular setting of mass A from mass B in the anticlockwise direction, i.e.

    BOA∠  = 155° Ans.

(c) Couple polygon. (d) Force polygon.

Fig. 21.10

Example 21.5. A shaft carries four masses in parallel planes A, B, C and D in this order

along its length. The masses at B and C are 18 kg and 12.5 kg respectively, and each has an

eccentricity of 60 mm. The masses at A and D have an eccentricity of 80 mm. The angle between

the masses at B and C is 100° and that between the masses at B and A is 190°, both being

measured in the same direction. The axial distance between the planes A and B is 100 mm and

that between B and C is 200 mm. If the shaft is in complete dynamic balance, determine :

1. The magnitude of the masses at A and D ; 2. the distance between planes A and D ; and

3. the angular position of the mass at D.

Solution. Given : m
B
 = 18 kg ; m

C
 = 12.5 kg ; r

B
 = r

C 
= 60 mm = 0.06 m ; r

A
 = r

D
 = 80 mm

= 0.08 m ;  ∠ BOC = 100° ;  ∠  BOA = 190°

1. Magnitude of the masses at A and D

Let            M
A

 = Mass at A,

          M
D

 = Mass at D, and

  x = Distance between planes A and D.

All dimensions in mm

(a) Position of planes. (b) Angular position of masses.
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The position of the planes and angular position of the masses is shown in Fig. 21.11 (a)

and (b) respectively. The position of mass B is assumed in the horizontal direction, i.e. along OB.

Taking the plane of mass A as the reference plane, the data may be tabulated as below :

Table 21.5Table 21.5Table 21.5Table 21.5Table 21.5

Plane Mass Eccentricity Cent. force ÷ ω
2 Distance from Couple ÷ ω

2

(m) kg (r) m (m.r) kg-m plane A(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A (R.P.) m
A

0.08 0.08 m
A

0 0

B 18 0.06 1.08 0.1 0.108

C 12.5 0.06 0.75 0.3 0.225

D m
D

0.08 0.08 m
D

x 0.08 m
D

 . x

(a) Position of planes. (b) Angular position of masses.

(c) Couple polygon. (d) Force polygon.

Fig. 21.11

First of all, the direction of mass D is fixed by drawing the couple polygon to some suit-

able scale, as shown in Fig. 21.11 (c), from the data given in Table 21.5 (column 6). The closing

All dimensions in mm.
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side of the couple polygon (vector c o′ ′  ) is proportional to 0.08 m
D

.x. By measurement, we find that

0.08 m
D

.x = vector c o′ ′  = 0.235 kg-m
2

 . . . (i)

In Fig. 21.11 (b), draw OD parallel to vector c o′ ′  to fix the direction of mass D.

Now draw the force polygon, to some suitable scale, as shown in Fig. 21.11 (d), from the

data given in Table 21.5 (column 4), as discussed below :

1. Draw vector ob parallel to OB and equal to 1.08 kg-m.

2. From point b, draw vector bc parallel to OC and equal to 0.75 kg-m.

3. For the shaft to be in complete dynamic balance, the force polygon must be a closed

figure. Therefore from point c, draw vector cd parallel to OA and from point o draw

vector od parallel to OD. The vectors cd and od intersect at d. Since the vector cd is

proportional to 0.08 m
A

, therefore by measurement

   0.08 m
A

 = vector cd = 0.77 kg-m   or   m
A

 = 9.625 kg Ans.

and vector do is proportional to 0.08 m
D

, therefore by measurement,

 0.08 m
D

 = vector do = 0.65 kg-m   or   m
D

 = 8.125 kg Ans.

2. Distance between planes A and D

From equation (i),

0.08 m
D

.x = 0.235 kg-m
2

   0.08 × 8.125 × x = 0.235 kg-m
2
   or   0.65 x = 0.235

∴         
0.235

0.3615
0.65

x = = m  = 361.5 mm Ans.

3. Angular position of mass at D

By measurement from Fig. 21.11 (b), we find that the angular position of mass at D from

mass B in the anticlockwise direction, i.e.  ∠ BOD = 251° Ans.

Example 21.6. A shaft has three eccentrics, each 75 mm diameter and 25 mm thick,

machined in one piece with the shaft. The central planes of the eccentric are 60 mm apart. The

distance of the centres from the axis of rotation are 12 mm, 18 mm and 12 mm and their angular

positions are 120° apart. The density of metal is 7000 kg/m
3
. Find the amount of out-of-balance

force and couple at 600 r.p.m. If the shaft is balanced by adding two masses at a radius 75 mm

and at distances of 100 mm from the central plane of the middle eccentric, find the amount of the

masses and their angular positions.

Solution. Given : D = 75 mm = 0.075 m ; t = 25 mm = 0.025 m ; r
A
 = 12 mm = 0.012 m ;

r
B
 = 18 mm = 0.018 m ; r

C
 = 12 mm = 0.012 mm ; ρ  = 7000 kg/m

3
 ; N = 600 r.p.m. or

2ω = π × 600/60 = 62.84 rad/s ; r
L
 = r

M
 = 75 mm = 0.075 m

We know that mass of each eccentric,

        m
A

 = m
B
 = m

C
 = Volume × Density = 

2

4
D t

π
× × ×ρ

 = 
2

(0.075) (0.025)7000 0.77 kg
4

π
=

Let L and M be the planes at distances of 100 mm from the central plane of middle

eccentric. The position of the planes and the angular position of the three eccentrics is shown in

Fig. 21.12 (a) and (b) respectively. Assuming L as the reference plane and mass of the eccentric A

in the vertical direction, the data may be tabulated as below :
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Table 21.6.Table 21.6.Table 21.6.Table 21.6.Table 21.6.

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane L.(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

L (R.P.) m
L

0.075 75 × 10
–3

 m
L

0 0

A 0.77 0.012 9.24 × 10
–3

0.04 0.3696 × 10
–3

B 0.77 0.018 13.86 × 10
–3

0.1 1.386 × 10
–3

C 0.77 0.012 9.24 × 10
–3

0.16 1.4784 × 10
–3

M m
M

0.075 75 × 10
–3

 m
M

0.20 15 × 10
–3

 m
M

Out-of-balance force

The out-of-balance force is obtained by drawing the force polygon, as shown in Fig. 21.12

(c), from the data given in Table 21.6 (column 4). The resultant oc represents the out-of-balance

force.

(a) Position of planes. (b) Angular position of masses.

3
9.24 10oa

−
= ×

3
0.3696 10o a

−
′ ′ = ×

3
9.24 10oa

−
= ×

3
13.86 10ab

−
= ×

3
1.386 10a b

−
′ ′ = ×

3
13.86 10ab

−
= ×

3
9.24 10b c

−
= ×

3
1.4784 10b c

−
′ ′ = ×

3
9.24 10b c

−
= ×

3
M75 10cd m

−
= ×

(c) Force polygon.  (d) Couple polygon. (e) Force polygon.

Fig. 21.12

All dimensions in mm.
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Since the centrifugal force is proportional to the product of mass and radius (i.e. m.r),

therefore by measurement.

 Out-of-balance force = vector oc = 4.75 × 10
–3

 kg-m

  = 4.75 × 10
–3

 × 
2

ω  = 4.75 × 10
–3

 (62.84)
2
 = 18.76 N Ans.

Out-of-balance couple

The out-of-balance couple is obtained by drawing the couple polygon from the data given

in Table 21.6 (column 6), as shown in Fig. 21.12 (d). The resultant o c′ ′  represents the out-of-

balance couple. Since the couple is proportional to the product of force and distance (m.r.l), there-

fore by measurement,

Out-of-balance couple = vector o c′ ′  = 1.1 × 10–3 kg-m2

  3 2 3 2
1.1 10 1.1 10 (62.84)

− −
= × ×ω = ×  = 4.34 N-m Ans.

Amount of balancing masses and their angular positions

The vector c o′ ′  (in the direction from c′  to o′ ), as shown in Fig. 21.12 (d) represents the

balancing couple and is proportional to 15 × 10–3 m
M

, i.e.

       15 × 10
–3

 m
M

 = vector c o′ ′  = 1.1 × 10
–3

 kg-m
2

or           m
M

 = 0.073 kg Ans.

Draw OM in Fig. 21.12 (b) parallel to vector c o′ ′ . By measurement, we find that the angular

position of balancing mass (m
M

) is 5° from mass A in the clockwise direction. Ans.

Ship powered by a diesel engine.
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In order to find the balancing mass (m
L
), a force polygon as shown in Fig. 21.12 (e) is

drawn. The closing side of the polygon i.e. vector do (in the direction from d to o) represents the

balancing force and is proportional to 75 × 10
–3

 m
L
. By measurement, we find that

         75 × 10
–3

 m
L
 = vector do = 5.2 ×10

–3
 kg-m

or           m
L
 = 0.0693 kg Ans.

Draw OL in Fig. 21.12 (b), parallel to vector do. By measurement, we find that the angular

position of mass (m
L
) is 124° from mass A in the clockwise direction. Ans.

Example 21.7. A shaft is supported in bearings 1.8 m apart and projects 0.45 m beyond

bearings at each end. The shaft carries three pulleys one at each end and one at the middle of its

length. The mass of end pulleys is 48 kg and 20 kg and their centre of gravity are 15 mm and 12.5

mm respectively from the shaft axis. The centre pulley has a mass of 56 kg and its centre of gravity

is 15 mm from the shaft axis. If the pulleys are arranged so as to give static balance, determine :

1. relative angular positions of the pulleys, and 2. dynamic forces produced on the bearings when

the shaft rotates at 300 r.p.m.

Solution. Given : m
A

 = 48 kg ; m
C
 = 20 kg ; r

A
 = 15 mm = 0.015 m ; r

C
 = 12.5 mm =

0.0125 m ; m
B
 = 56 kg ; r

B
 = 15 mm = 0.015 m ; N = 300 r.p.m. or ω = 2 π  × 300/60

= 31.42 rad/s

1. Relative angular position of the pulleys

The position of the shaft and pulleys is shown in Fig. 21.13 (a).

Let          m
L
 and m

M
 = Mass at the bearings L and M, and

    r
L
 and r

M
 = Radius of rotation of the masses at L and M respectively.

Assuming the plane of bearing L as reference plane, the data may be tabulated as below :

Table 21.7.Table 21.7.Table 21.7.Table 21.7.Table 21.7.

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane L(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 48 0.015 0.72 – 0.45 – 0.324

L(R.P) m
L

r
L

m
L
.r

L
0 0

B 56 0.015 0.84 0.9 0.756

M m
M

r
M

m
M

.r
M

1.8 1.8 m
M

.r
M

C 20 0.0125 0.25 2.25 0.5625

First of all, draw the force polygon to some suitable scale, as shown in Fig. 21.13 (c), from

the data given in Table 21.7 (column 4). It is assumed that the mass of pulley B acts in vertical

direction. We know that for the static balance of the pulleys, the centre of gravity of the system

must lie on the axis of rotation. Therefore a force polygon must be a closed figure. Now in Fig.

21.13 (b), draw OA parallel to vector bc and OC parallel to vector co. By measurement, we find

that

Angle between pulleys B and A  = 161° Ans.

Angle between pulleys A and C  = 76° Ans.

and Angle between pulleys C and B  = 123°  Ans.

2. Dynamic forces at the two bearings

In order to find the dynamic forces (or reactions) at the two bearings L and M, let us first

calculate the values of m
L
.r

L
 and m

M
.r

M
 as discussed below :
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(a) Position of shaft and pulleys. (b) Angular position of pulleys.

(c) Force polygon. (d) Couple polygon. (e) Force polygon.

Fig. 21.13

1. Draw the couple polygon to some suitable scale, as shown in Fig. 21.13 (d), from the data

given in Table 21.7 (column 6). The closing side of the polygon (vector  c o′ ′  ) represents

the balanced couple and is proportional to 1.8 m
M

.r
M

. By measurement, we find that

1.8 m
M

.r
M

 = vector c o′ ′  = 0.97 kg-m2        or          m
M

.r
M

 = 0.54 kg-m

 ∴  Dynamic force at the bearing M

  = 
2 2

M M. . 0.54 (31.42)m r ω =  = 533 N Ans.

2. Now draw the force polygon, as shown in Fig. 21.13 (e), from the data given in Table

21.7 (column 4) and taking m
M

.r
M

 = 0.54 kg-m. The closing side of the polygon (vector

do) represents the balanced force and is proportional to m
L
.r

L
. By measurement, we find

that

      m
L
.r

L
 = 0.54 kg-m

∴  Dynamic force at the bearing L

              = 2
L. .m r ωL

= 0.54 (31.42)
2
 = 533 N Ans.
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Notes : 1. The dynamic force at the two bearings are equal in

magnitude but opposite in direction.

2. The dynamic force at the two bearings may also be ob-

tained as discussed below :

From couple polygon as shown in Fig. 21.13 (d), we see

that the vector ′ ′o c   in the direction from o′  to c′  represents the

out-of-balance couple.

By measurement, we find that

Out-of-balance couple

        =  vector o c′ ′  = 0.97 kg-m
2

        = 0.97 × ω
2

 = 0.97  (31.42)
2
 = 957.6 N-m

Since the shaft is in static balance, therefore it is only sub-

jected to an unbalanced couple which is same about all planes and the

bearing reactions are then equal and opposite. We know that

Dynamic force on each bearing

          
Out-of-balance couple 957.6

Distance between bearings 1.8
= = = 532 N Ans.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

1. Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 12

kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40 mm, 50 mm, 60 mm and

30 mm. The angular position of the masses B, C and D are 60°, 135° and 270° from the mass A.

Find the magnitude and position of the balancing mass at a radius of 100 mm.

[Ans. 7.56 kg ; 87° clockwise from A]

2. Four masses A, B, C and D revolve at equal radii and are equally spaced along a shaft. The mass B

is 7 kg and the radii of C and D make angles of 90° and 240° respectively with the radius of B. Find

the magnitude of the masses A, C and D and the angular position of A so that the system may be

completely balanced.

[Ans. 5 kg ; 6 kg ; 4.67 kg ; 205° from mass B in anticlockwise direction]

3. A rotating shaft carries four masses A, B, C and D which are radially attached to it. The mass

centres are 30 mm, 38 mm, 40 mm and 35 mm respectively from the axis of rotation. The masses

A, C and D are 7.5 kg, 5 kg and 4 kg respectively. The axial distances between the planes of

rotation of A and B is 400 mm and between B and C is 500 mm. The masses A and C are at right

angles to each other. Find for a complete balance,

1. the angles between the masses B and D from mass A,

2. the axial distance between the planes of rotation of C and D,

3. the magnitude of mass B. [Ans. 162.5°, 47.5° ; 511 mm : 9.24 kg]

4. A rotating shaft carries four unbalanced masses 18 kg, 14 kg, 16 kg and 12 kg at radii 50 mm, 60

mm, 70 mm and 60 mm respectively. The 2nd, 3rd and 4th masses revolve in planes 80 mm, 160

mm and 280 mm respectively measured from the plane of the first mass and are angularly located at

60°, 135° and 270° respectively measured clockwise from the first mass looking from this mass end

of the shaft. The shaft is dynamically balanced by two masses, both located at 50 mm radii and

revolving in planes mid-way between those of 1st and 2nd masses and midway between those of

3rd and 4th masses. Determine, graphically or otherwise, the magnitudes of the masses and their

respective angular positions.

[Ans. 13.3 kg and 10.4 kg at 25° and 275° from mass A in anticlockwise direction]

A spiral elevator conveyor for

material handling.
Note : This picture is given as

additional information and is not a

direct example of the current chapter.
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5. A shaft carries five masses A, B, C, D and E which revolve at the same radius in planes which are

equidistant from one another. The magnitude of the masses in planes A, C and D are 50 kg, 40 kg

and 80 kg respectively. The angle between A and C is 90° and that between C and D is 135°.

Determine the magnitude of the masses in planes B and E and their positions to put the shaft in

complete rotating balance.

[Ans. 12 kg, 15 kg ; 130° and 24° from mass A in anticlockwise direction]

6. A shaft with 3 metres span between two bearings carries two masses of 10 kg and 20 kg acting at

the extremities of the arms 0.45 m and 0.6 m long respectively. The planes in which these masses

rotate are 1.2 m and 2.4 m respectively from the left end bearing supporting the shaft. The angle

between the arms is 60°. The speed of rotation of the shaft is 200 r.p.m. If the masses are balanced

by two counter-masses rotating with the shaft acting at radii of 0.3 m and placed at 0.3 m from each

bearing centres, estimate the magnitude of the two balance masses and their orientation with respect

to the X-axis, i.e. mass of 10 kg.

[Ans. 10 kg and 41 kg at 190° and 235° from X-axis in the anticlockwise direction]

7. A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 150 mm, 150 mm and

200 mm respectively. The planes in which the masses rotate are spaced at 500 mm apart and the

magnitude of the masses B, C and D are 9 kg, 5 kg and 4 kg respectively. Find the required mass A

and the relative angular settings of the four masses so that the shaft shall be in complete balance.

[Ans. 10 kg ; Between B and A 165°, Between B and C 295°, Between B and D 145°]

8. A 3.6 m long shaft carries three pulleys, two at its two ends and third at the mid-point. The two end

pulleys has mass of 79 kg and 40 kg and their centre of gravity are 3 mm and 5 mm respectively

from the axis of the shaft. The middle pulley mass is 50 kg and its centre of gravity is 8 mm from

the shaft axis. The pulleys are so keyed to the shaft that the assembly is in static balance. The shaft

rotates at 300 r.p.m. in two bearings 2.4m apart with equal overhang on either side. Determine :

1. the relative angular positions of the pulleys, and 2. dynamic reactions at the two bearings.

9. The camshaft of high speed pump consists of a parallel shaft 25 mm diameter and 480 mm long. It

carries three eccentrics, each of diameter 60 mm and a uniform thickness of 18 mm. The assembly is

symmetrical as shown in Fig. 21.14 and the bearings are at A and B. The angle between the eccentrics

is 120° and the eccentricity of each is 12.5 mm. The material density is 7000 kg/m
3
, and the speed of

rotation is 1430 r.p.m.

All dimensions in mm.

Fig. 21.14

Find : 1. dynamic load on each bearing due to the out-of-balance couple ; and 2. kinetic energy of

the complete assembly. [Ans. 6.12 kg ; 8.7 N-m]

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?

1. Why is balancing of rotating parts necessary for high speed engines ?

2. Explain clearly the terms ‘static balancing’ and ‘dynamic balancing’. State the necessary conditions

to achieve them.

3. Discuss how a single revolving mass is balanced by two masses revolving in different planes.
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4. Explain the method of balancing of different masses revolving in the same plane.

5. How the different masses rotating in different planes are balanced ?

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS

1. The balancing of rotating and reciprocating parts of an engine is necessary when it runs at

(a) slow speed (b)  medium speed        (c) high speed

2. A disturbing mass m
1
 attached to a rotating shaft may be balanced by a single mass m

2
 attached in

the same plane of rotation as that of m
1
 such that

(a) m
1
.r

2
 = m

2
.r

1
(b)  m

1
.r

1
 = m

2
.r

2
       (c) m

1
. m

2
 = r

1
.r

2

3. For static balancing of a shaft,

(a) the net dynamic force acting on the shaft is equal to zero

(b) the net couple due to the dynamic forces acting on the shaft is equal to zero

(c) both (a) and (b)

(d) none of the above

4. For dynamic balancing of a shaft,

(a) the net dynamic force acting on the shaft is equal to zero

(b) the net couple due to dynamic forces acting on the shaft is equal to zero

(c) both (a) and (b)

(d) none of the above

5. In order to have a complete balance of the several revolving masses in different planes

(a) the resultant force must be zero

(b) the resultant couple must be zero

(c) both the resultant force and couple must be zero

(d) none of the above

ANSWERSANSWERSANSWERSANSWERSANSWERS

1. (c) 2. (b) 3. (a) 4. (c) 5. (c)

GO To FIRST
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Balancing ofBalancing ofBalancing ofBalancing ofBalancing of
ReciprocatingReciprocatingReciprocatingReciprocatingReciprocating

MassesMassesMassesMassesMasses

22
FeaturesFeaturesFeaturesFeaturesFeatures

1. Introduction.

2. Primary and Secondary

Unbalanced Forces of

Reciprocating Masses.

3. Partial Balancing of

Unbalanced Primary Force

in a Reciprocating Engine.

4. Partial Balancing of

Locomotives.

5. Effect of Partial Balancing of

Reciprocating Parts of Two

Cylinder Locomotives.

6. Variation of Tractive Force.

7. Swaying Couple.

8. Hammer Blow.

9. Balancing of Coupled

Locomotives.

10. Balancing of Primary Forces

of Multi-cylinder In-line

Engines.

11. Balancing of Secondary

Forces of Multi-cylinder In-

line Engines.

12. Balancing of Radial Engines

(Direct and Reverse Crank

Method).

13. Balancing of V-engines.

22.1.22.1.22.1.22.1.22.1. IntroductionIntroductionIntroductionIntroductionIntroduction

We have discussed in Chapter 15 (Art. 15.10), the

various forces acting on the reciprocating parts of an en-

gine. The resultant of all the forces acting on the body of the

engine due to inertia forces only is known as unbalanced

force or shaking force. Thus if the resultant of all the forces

due to inertia effects is zero, then there will be no unbal-

anced force, but even then an unbalanced couple or shaking

couple will be present.

Consider a horizontal reciprocating engine mecha-

nism as shown in Fig. 22.1.

Fig. 22.1. Reciprocating engine mechanism.

Let F
R
 = Force required to accelerate the

        reciprocating parts,

CONTENTS

CONTENTS
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F
I
 = Inertia force due to reciprocating parts,

           F
N

 = Force on the sides of the cylinder walls or normal force acting on

       the cross-head guides, and

F
B
 = Force acting on the crankshaft bearing or main bearing.

Since F
R
 and F

I
 are equal in magnitude but opposite in direction, therefore they balance

each other. The horizontal component of F
B
 (i.e. F

BH
) acting along the line of reciprocation is also

equal and opposite to F
I
. This force F

BH
 = F

U
 is an unbalanced force or shaking force and required

to be properly balanced.

The force on the sides of the cylinder walls (F
N

) and the vertical component of F
B

(i.e. F
BV

) are equal and opposite and thus form a shaking couple of magnitude F
N

 × x or F
BV

 × x.

 From above we see that the effect of the reciprocating parts is to produce a shaking force

and a shaking couple. Since the shaking force and a shaking couple vary in magnitude and direc-

tion during the engine cycle, therefore they cause very objectionable vibrations.

Thus the purpose of balancing the reciprocating masses is to eliminate the shaking force

and a shaking couple. In most of the mechanisms, we can reduce the shaking force and a shaking

couple by adding appropriate balancing mass, but it is usually not practical to eliminate them

completely. In other words, the reciprocating masses are only partially balanced.

Note : The masses rotating with the crankshaft are normally balanced and they do not transmit any unbalanced

or shaking force on the body of the engine.

22.2.22.2.22.2.22.2.22.2. Primary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating MassesPrimary and Secondary Unbalanced Forces of Reciprocating Masses

Consider a reciprocating engine mechanism as shown in Fig. 22.1.

Let         m = Mass of the reciprocating parts,

         l = Length of the connecting rod PC,

         r = Radius of the crank OC,

        θ  = Angle of inclination of the crank with the line of stroke PO,

       ω  = Angular speed of the crank,

         n = Ratio of length of the connecting rod to the crank radius = l / r.

We have already discussed in Art. 15.8 that the acceleration of the reciprocating parts is

approximately given by the expression,

       
θ 

= ω ⋅ θ + 
 

2
R

cos2
cosa r

n

∴  Inertia force due to reciprocating parts or force required to accelerate the reciprocating

parts,

        F
I
 = F

R
 = Mass × acceleration = 

2 cos2
cosm r

n

θ 
⋅ω ⋅ θ + 

 

We have discussed in the previous article that the horizontal component of the force exerted

on the crank shaft bearing (i.e. F
BH

) is equal and opposite to inertia force (F
I
). This force is an

unbalanced one and is denoted by F
U

.

∴ Unbalanced force,

       
2 2 2

U

cos2 cos2
cos . cosF m r m r m r

n n

θ θ 
= ⋅ω ⋅ θ + = ω ⋅ θ + ⋅ ω ⋅ × 

 
 = F

P
 + F

S

The expression 2
( cos )m r⋅ω ⋅ θ  is known as primary unbalanced force and

2 cos2
m r

n

θ 
⋅ω ⋅ × 

 
is called secondary unbalanced force.
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∴   Primary unbalanced force, = ⋅ω ⋅ θ
2

P cosF m r

and secondary unbalanced force,        
θ

= ⋅ω ⋅ ×
2

S

cos2
F m r

n

Notes: 1. The primary unbalanced force is maximum, when θ = 0° or 180°. Thus, the primary force is

maximum twice in one revolution of the crank. The maximum primary unbalanced force is given by

           = ⋅ω ⋅
2

P( )maxF m r

2. The secondary unbalanced force is maximum, when θ = 0°, 90°,180° and 360°. Thus, the second-

ary force is maximum four times in one revolution of the crank. The maximum secondary unbalanced force is

given by

           = ⋅ ω ×
2

S( )max

r
F m

n

3. From above we see that secondary unbalanced force is 1/n times the maximum primary

unbalanced force.

4. In case of moderate speeds, the secondary unbalanced force is so small that it may be neglected as

compared to primary unbalanced force.

5. The unbalanced force due to reciprocating masses varies in magnitude but constant in direction

while due to the revolving masses, the unbalanced force is constant in magnitude but varies in direction.

22.3.22.3.22.3.22.3.22.3. Partial Balancing of Unbalanced Primary Force in a ReciprocatingPartial Balancing of Unbalanced Primary Force in a ReciprocatingPartial Balancing of Unbalanced Primary Force in a ReciprocatingPartial Balancing of Unbalanced Primary Force in a ReciprocatingPartial Balancing of Unbalanced Primary Force in a Reciprocating

EngineEngineEngineEngineEngine

The primary unbalanced force 
2

( cos )m r⋅ω ⋅ θ  may be considered as the component of the

centrifugal force produced by a rotating mass m placed at the crank radius r, as shown in Fig. 22.2.

Fig. 22.2. Partial balancing of unbalanced primary force in a reciprocating engine.

The primary force acts from O to P along the line of stroke. Hence, balancing of primary

force is considered as equivalent to the balancing of mass m rotating at the crank radius r. This is

balanced by having a mass B at a radius b, placed diametrically opposite to the crank pin C.

We know that centrifugal force due to mass B,

                 2
B b= ⋅ω ⋅

and horizontal component of this force acting in opposite direction of primary force

                 2 cosB b= ⋅ω ⋅ θ

The primary force is balanced, if

             2 2
cos cosB b m r⋅ω ⋅ θ = ⋅ω ⋅ θ    or    B.b = m.r
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A little consideration will show,

that the primary force is completely

balanced if B.b = m.r, but the centrifugal

force produced due to the revolving mass

B, has also a vertical component

(perpendicular to the line of stroke) of

magnitude
2 sinB b⋅ ω ⋅ θ . This force

remains unbalanced. The maximum value

of this force is equal to 2
B b⋅ω ⋅  when θ

is 90° and 270°, which is same as the

maximum value of the primary force
2

m r⋅ω ⋅ .

From the above discussion, we see

that in the first case, the primary unbalanced

force acts along the line of stroke whereas

in the second case, the unbalanced force acts

along the perpendicular to the line of stroke.

The maximum value of the force remains

same in both the cases. It is thus obvious,

that the effect of the above method of

balancing is to change the direction of the

maximum unbalanced force from the line

of stroke to the perpendicular of line of

stroke. As a compromise let a fraction ‘c’

of the reciprocating masses is balanced,

such that

                c.m.r = B.b

∴  Unbalanced force along the line

of stroke

            2 2
cos cosm r B b= ⋅ω ⋅ θ − ⋅ω ⋅ θ

            2 2
cos cosm r c m r= ⋅ω ⋅ θ − ⋅ ⋅ω ⋅ θ ... (∵  B.b = c.m.r)

            2
(1 ) cosc m r= − ⋅ω ⋅ θ

and unbalanced force along the perpendicular to the line of stroke

           = ⋅ω ⋅ θ = ⋅ ⋅ω ⋅ θ
2 2

sin sinB b c m r

∴  Resultant unbalanced force at any instant

            
2 2

2 2
(1 ) cos sinc m r c m r   = − ⋅ω ⋅ θ + ⋅ ⋅ω ⋅ θ

   

           2 2 2 2 2
(1 ) cos sinm r c c= ⋅ω ⋅ − θ + θ

Note : If the balancing mass is required to balance the revolving masses as well as reciprocating masses, then

        = ⋅ + ⋅ ⋅ = + ⋅1 1. ( )B b m r c m r m c m r

where                     m
1
 = Magnitude of the revolving masses, and

          m = magnitude of the reciprocating masses.

Operating handle

Carrying handle

Bin where larger

dust particles

accumulate.

Cleaner lead

containing brushCable winder

Hose for use in

awkward place

Cable winder

for stowing

flex

Cyclone cleaner.
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Example 22.1. A single cylinder reciprocating engine has speed 240 r.p.m., stroke 300

mm, mass of reciprocating parts 50 kg, mass of revolving parts at 150 mm radius 37 kg. If two-

third of the reciprocating parts and all the revolving parts are to be balanced, find : 1. The balance

mass required at a radius of 400 mm, and 2. The residual unbalanced force when the crank has

rotated 60° from top dead centre.

Solution. Given : N = 240 r.p.m. or 2 240 / 60ω = π ×  = 25.14 rad/s ; Stroke = 300 mm

= 0.3 m; m = 50 kg ; m
1
 = 37 kg ; r = 150 mm = 0.15 m ; c = 2/3

1. Balance mass required

Let          B = Balance mass required, and

         b = Radius of rotation of the balance mass = 400 mm = 0.4 m

. . . (Given)

We know that

      B.b = (m
1
 + c.m) r

 B × 0.4 = 
2

37 50 0.15 10.55
3

 
+ × = 

 

   or   B = 26.38 kg Ans.

2. Residual unbalanced force

Let         θ  = Crank angle from top dead centre = 60° . . . (Given)

We know that residual unbalanced force

          2 2 2 2 2
(1 ) cos sinm r c c= ⋅ω ⋅ − θ + θ

          

2 2

2 2 22 2
50(25.14) 0.15 1 cos 60 sin 60 N

3 3

   
= − ° + °   

   

         = 4740 × 0.601 = 2849 N Ans.

22.4.22.4.22.4.22.4.22.4. Partial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of LocomotivesPartial Balancing of Locomotives

The locomotives, usually, have two cylinders with cranks placed at right angles to each

other in order to have uniformity in turning moment diagram. The two cylinder locomotives may

be classified as :

1. Inside cylinder locomotives ; and 2. Outside cylinder locomotives.

In the inside cylinder locomotives, the two cylinders are placed in between the planes of

two driving wheels as shown in Fig. 22.3 (a) ; whereas in the outside cylinder locomotives, the two

cylinders are placed outside the driving wheels, one on each side of the driving wheel, as shown in

Fig. 22.3 (b). The locomotives may be

(a) Single or uncoupled locomotives ; and (b) Coupled locomotives.

        (a) Inside cylinder locomotives. (b) Outside cylinder locomotives.

Fig. 22.3
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A single or uncoupled locomotive is one, in which the effort is transmitted to one pair of

the wheels only ; whereas in coupled locomotives, the driving wheels are connected to the leading

and trailing wheel by an outside coupling rod.

22.5.22.5.22.5.22.5.22.5. Effect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two CylinderEffect of Partial Balancing of Reciprocating Parts of Two Cylinder

LocomotivesLocomotivesLocomotivesLocomotivesLocomotives

We have discussed in the previous article that the reciprocating parts are only partially

balanced. Due to this partial balancing of the reciprocating parts, there is an unbalanced primary

force along the line of stroke and also an unbalanced primary force perpendicular to the line of

stroke. The effect of an unbalanced primary force along the line of stroke is to produce;

1. Variation in tractive force along the line of stroke ; and 2. Swaying couple.

The effect of an unbalanced primary force perpendicular to the line of stroke is to produce

variation in pressure on the rails, which results in hammering action on the rails. The maximum

magnitude of the unbalanced force along the perpendicular to the line of stroke is known as a

hammer blow. We shall now discuss the effects of an unbalanced primary force in the following

articles.

22.6.22.6.22.6.22.6.22.6. Variation of Tractive ForceVariation of Tractive ForceVariation of Tractive ForceVariation of Tractive ForceVariation of Tractive Force

The resultant unbalanced force due to the two cylinders, along the line of stroke, is known

as tractive force. Let the crank for the first cylinder be inclined at an angle θ  with the line of

stroke, as shown in Fig. 22.4. Since the crank for the second cylinder is at right angle to the first

crank, therefore the angle of inclination for the second crank will be (90° + θ ).

Let          m = Mass of the reciprocating parts per cylinder, and

          c = Fraction of the reciprocating parts to be balanced.

We know that unbalanced force along the line of stroke for cylinder 1

          = 
2(1– ) . . cosc m rω θ

Similarly, unbalanced force along the line of stroke for cylinder 2,

           2(1 ) . cos(90 )c m r= − ω ⋅ ° + θ

∴  As per definition, the tractive force,

         F
T
 = Resultant unbalanced force

   along the line of stroke

          = 
2(1 ) . . cosc m r− ω θ

     + 
2(1 ) . . cos(90 )− ω ° + θc m r

          = 
2(1 ) . . (cos sin )c m r− ω θ − θ

The tractive force is maximum or minimum when (cos θ  – sin θ ) is maximum or mini-

mum. For (cos θ  – sin θ ) to be maximum or minimum,

   (cos sin ) 0
d

d
θ − θ =

θ

 or       sin cos 0− θ − θ =     or    sin cos− θ = θ

∴                tan 1θ = −      or        135θ = °     or     315°

Thus, the tractive force is maximum or minimum when θ  = 135° or 315°.

∴  Maximum and minimum value of the tractive force or the variation in tractive force

           = 2 2(1 ) . . (cos135 sin135 ) 2 (1 ) . .c m r c m r± − ω ° − ° = ± − ω

Fig. 22.4. Variation of tractive force.
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22.7.22.7.22.7.22.7.22.7. Swaying CoupleSwaying CoupleSwaying CoupleSwaying CoupleSwaying Couple

The unbalanced forces along the line of stroke for the two cylinders constitute a couple

about the centre line YY between the cylinders as shown in Fig. 22.5.

This couple has swaying effect about a vertical axis, and tends to sway the engine alternately

in clockwise and anticlockwise directions. Hence the couple is known as swaying couple.

Let            a = Distance between the centre lines of the two cylinders.

∴  Swaying couple

           = 
2(1 ) . . cos

2

a
c m r− ω θ×

       
2

(1 ) . . cos (90 )
2

a
c m r− − ω ° + θ

             = 
2(1 ) . . (cos sin )

2

a
c m r− ω × θ + θ

The swaying couple is maximum or minimum when

(cos sin )θ + θ  is maximum or minimum. For (cos sin )θ + θ  to

be maximum or minimum,

   (cos sin ) 0
d

d
θ + θ =

θ

      or     sin cos 0− θ + θ =   or   sin cos− θ = − θ

∴     tan 1θ =        or       45θ = °   or    225°

Thus, the swaying couple is maximum or minimum when θ  = 45° or 225°.

∴  Maximum and minimum value of the swaying couple

 = 
2 2(1 ) . . (cos 45 sin 45 ) (1 ) . .

2 2

a a
c m r c m r± − ω × ° + ° = ± − ω

Note : In order to reduce the magnitude of the swaying couple, revolving balancing masses are introduced.

But, as discussed in the previous article, the revolving balancing masses cause unbalanced forces to act at

right angles to the line of stroke. These forces vary the downward pressure of the wheels on the rails and

cause oscillation of the locomotive in a vertical plane about a horizontal axis. Since a swaying couple is more

harmful than an oscillating couple, therefore a value of ‘c’ from 2/3 to 3/4, in two-cylinder locomotives with

two pairs of coupled wheels, is usually used. But in large four cylinder locomotives with three or more pairs

of coupled wheels, the value of ‘c’ is taken as 2/5.

22.8.22.8.22.8.22.8.22.8. Hammer BlowHammer BlowHammer BlowHammer BlowHammer Blow

We have already discussed that the maximum magnitude of the unbalanced force along the

perpendicular to the line of stroke is known as hammer blow.

We know that the unbalanced force along the perpendicular to the line of stroke due to the

balancing mass B, at a radius b, in order to balance reciprocating parts only is B. ω
2
.b sin θ . This

force will be maximum when sin θ is unity, i.e. when θ  = 90° or 270°.

∴      Hammer blow = B. ω
2
.b (Substituiting sin θ  = 1)

The effect of hammer blow is to cause the variation in pressure between the wheel and the

rail. This variation is shown in Fig. 22.6, for one revolution of the wheel.

Let P be the downward pressure on the rails (or static wheel load).

Fig. 22.5. Swaying couple.
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∴  Net pressure between the wheel and the rail

          = 2
. .P B b± ω

Fig. 22.6. Hammer blow.

If (P–B. ω
2
.b) is negative, then the wheel will be lifted from the rails. Therefore the limiting

condition in order that the wheel does not lift from the rails is given by

       2
. .P B b= ω

and the permissible value of the angular speed,

        
.

P

B b
ω =

Example 22.2. An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and

has a stroke of 0.6 m. The rotating masses per cylinder are equivalent to 150 kg at the crank pin,

and the reciprocating masses per cylinder to 180 kg. The wheel centre lines are 1.5 m apart. The

cranks are at right angles.

The whole of the rotating and 2/3 of the recipro-

cating masses are to be balanced by masses placed at a

radius of 0.6 m. Find the magnitude and direction of the

balancing masses.

Find the fluctuation in rail pressure under one

wheel, variation of tractive effort and the magnitude of

swaying couple at a crank speed of 300 r.p.m.

Solution. Given : a = 0.7 m; l
B
 = l

C
 = 0.6 m or

r
B

 = r
C

 = 0.3 m; m
1
 = 150 kg; m

2
 = 180 kg;

c = 2/3; r
A

 = r
D

 = 0.6 m; N  = 300 r.p.m. or

2 300 / 60ω = π× = 31.42 rad/s

We know that the equivalent mass of the rotating

parts to be balanced per cylinder at the crank pin,

 m = m
B
 = m

C
 = m

1
 + c.m

2
 = 150 + 

2

3
× 180 = 270 kg

Magnitude and direction of the balancing masses

Let        m
A

 and m
D

 = Magnitude of the balancing

     masses

          Aθ and Dθ = Angular position of the

     balancing masses m
A

     and m
D

 from the first

     crank B.

This Brinel hardness testing machine is

used to test the hardness of the metal.

Note : This picture is given as additional

information and is not a direct example of

the current chapter.
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The magnitude and direction of the balancing masses may be determined graphically as

discussed below :

1. First of all, draw the space diagram to show the positions of the planes of the wheels and

the cylinders, as shown in Fig. 22.7 (a). Since the cranks of the cylinders are at right

angles, therefore assuming the position of crank of the cylinder B in the horizontal direc-

tion, draw OC and OB at right angles to each other as shown in Fig. 22.7 (b).

2. Tabulate the data as given in the following table. Assume the plane of wheel A as the

reference plane.

Table 22.1Table 22.1Table 22.1Table 22.1Table 22.1

Plane mass. Radius Cent. force ÷÷÷÷÷ 
2

ω Distance from Couple ÷÷÷÷÷ 
2

ω

(m) kg (r)m (m.r) kg-m plane A (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A (R.P.) m
A

0.6 0.6 m
A

0 0

B 270 0.3 81 0.4 32.4

C 270 0.3 81 1.1 89.1

D m
D

0.6 0.6m
D

1.5 0.9 m
D

3. Now, draw the couple polygon from the data given in Table 22.1 (column 6), to some

suitable scale, as shown in Fig 22.7 (c). The closing side c o′ ′  represents the balancing

couple and it is proportional to 0.9 m
D

. Therefore, by measurement,

0.9 m
D

 = vector c′o′ = 94.5 kg-m
2
   or   m

D
 = 105 kg  Ans.

            

               (a) Position of planes.  (b) Angular position of masses.

                                  

          (c) Couple polygon.             (d) Force polygon.

Fig. 22.7
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4. To determine the angular position of the balancing mass D, draw OD in Fig. 22.7 (b)

parallel to vector c o′ ′ . By measurement,

     Dθ  = 250° Ans.

5. In order to find the balancing mass A, draw the force polygon from the data given in

Table 22.1 (column 4), to some suitable scale, as shown in Fig. 22.7 (d), The vector do

represents the balancing force and it is proportional to 0.6 m
A

. Therefore by measurement,

 0.6 m
A

 = vector do = 63 kg-m or m
A

 = 105 kg Ans.

6. To determine the angular position of the balancing mass A, draw OA in Fig. 22.7 (b)

parallel to vector do. By measurement,

     Aθ  = 200° Ans.

Fluctuation in rail pressure

We know that each balancing mass

 = 105 kg

∴  Balancing mass for rotating masses,

          D = 
1 150

105 105 58.3 kg
270

m

m
× = × =

and balancing mass for reciprocating masses,

         
2. 2 180

105 105 46.6 kg
3 270

c m
B

m
= × = × × =

This balancing mass of 46.6 kg for reciprocating masses gives rise to the centrifugal force.

∴  Fluctuation in rail pressure or hammer blow

 = 2 2. . 46.6 (31.42) 0.6B bω = = 27 602 N. Ans. ... (∵  b = r
A

 = r
D

)

Variation of tractive effort

We know that maximum variation of tractive effort

 = 
2 2

2

2
2(1 ) . . 2 1 180(31.42) 0.3N

3
c m r

 
± − ω = ± − 

 

 = ± 25 127 N Ans. ... (∵  r = r
B
 = r

C
)

Swaying couple

We know that maximum swaying couple

 = 
2 2

2

2
0.7 1

(1 ) 3
. . 180(31.42) 0.3 N-m

2 2

a c
m r

 
− 

−  
× ω = ×

 = 8797 N-m Ans.

Example 22.3 The three cranks of a three cylinder locomotive are all on the same axle

and are set at 120°. The pitch of the cylinders is 1 metre and the stroke of each piston is 0.6 m. The

reciprocating masses are 300 kg for inside cylinder and 260 kg for each outside cylinder and the

planes of rotation of the balance masses are 0.8 m from the inside crank.

If 40% of the reciprocating parts are to be balanced, find :

1. the magnitude and the position of the balancing masses required at a radius of 0.6 m ;

and

2. the hammer blow per wheel when the axle makes 6 r.p.s.
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Solution. Given : ∠ AOB = ∠ BOC = ∠ COA = 120° ; l
A

 = l
B
 = l

C
 = 0.6 m or r

A
 = r

B

= r
C
 = 0.3 m ; m

I
 = 300 kg ; m

O
 = 260 kg ; c = 40% = 0.4 ; b

1
 = b

2
 = 0.6 m ; N = 6 r.p.s.

= 6 × 2 π  = 37.7 rad/s

Since 40% of the reciprocating masses are to be balanced, therefore mass of the reciprocat-

ing parts to be balanced for each outside cylinder,

       m
A

 = m
C
 = c × m

O
 = 0.4 × 260 = 104 kg

and mass of the reciprocating parts to be balanced for inside cylinder,

      m
B
 = c × m

1
 = 0.4 × 300 = 120 kg

1. Magnitude and position of the balancing masses

Let        B
1
 and B

2
 = Magnitude of the balancing masses in kg,

      1θ  and 2θ  = Angular position of the balancing masses B
1
 and B

2
 from crank A.

The magnitude and position of the balancing masses may be determined graphically as

discussed below :

1. First of all, draw the position of planes and cranks as shown in Fig. 22.8 (a) and (b)

respectively. The position of crank A is assumed in the horizontal direction.

2. Tabulate the data as given in the following table. Assume the plane of balancing mass B
1

(i.e. plane 1) as the reference plane.

Table 22.2Table 22.2Table 22.2Table 22.2Table 22.2

Plane Mass Radius Cent. force 
2

÷ ω Distance from Couple 
2

÷ ω

(m)kg (r) m (m.r) kg-m plane1 (l)m (m.r.l.) kg-m2

(1)  (2) (3) (4) (5) (6)

A 104 0.3 31.2 – 0.2 – 6.24

1 (R.P.) B
1

0.6 0.6 B
1

0 0

B 120 0.3 36 0.8 28.8

2 B
2

0.6 0.6 B
2

1.6 0.96 B
2

C 104 0.3 31.2 1.8 56.16

3. Now draw the couple polygon with the data given in Table 22.2 (column 6), to some

suitable scale, as shown in Fig. 22.8 (c). The closing side c o′ ′  represents the balancing

couple and it is proportional to 0.96 B
2
. Therefore, by measurement,

  0.96 B
2
 = vector c o′ ′  = 55.2 kg-m

2
 or B

2
 = 57.5 kg Ans.

4. To determine the angular position of the balancing mass B
2
, draw OB

2
 parallel to vector

c o′ ′  as shown in Fig. 22.8 (b). By measurement,

       2θ  = 24° Ans.

5. In order to find the balance mass B
1
, draw the force polygon with the data given in Table

22.2 (column 4 ), to some suitable scale, as shown in Fig. 22.8 (d). The closing side co

represents the balancing force and it is proportional to 0.6 B
1
. Therefore, by measurement,

    0.6 B
1
 = vector co = 34.5 kg-m   or   B

1
 = 57.5 kg Ans.

6. To determine the angular position of the balancing mass B
1
, draw OB

1
 parallel to vector

co, as shown in Fig. 22.8 (b). By measurement,

        1θ  = 215° Ans.
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        (a) Position of planes.      (b) Position of cranks.

               (c) Couple polygon.            (d) Force polygon.

Fig. 22.8

2. Hammer blow per wheel

We know that hammer blow per wheel

            = 2
1 1. .B bω  = 57.5 (37.7)

2
 20.6 = 49 035 N Ans.

Example 22.4. The following data refer to two cylinder locomotive with cranks at 90° :

Reciprocating mass per cylinder = 300 kg ; Crank radius = 0.3 m ; Driving wheel

diameter = 1.8 m ; Distance between cylinder centre lines = 0.65 m ; Distance between the driving

wheel central planes = 1.55 m.

Determine : 1. the fraction of the reciprocating masses to be balanced, if the hammer blow

is not to exceed 46 kN at 96.5 km. p.h. ; 2. the variation in tractive effort ; and 3. the maximum

swaying couple.

This chamber is used to test the
acoustics of a vehicle so that the
noise it produces can be reduced.
The panels in the walls and ceiling
of the room absorb the sound which
is monitored (above)

Note : This picture is given as

additional information and is not a

direct example of the current chapter.
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Solution. Given : m = 300 kg ; r = 0.3 m ; D = 1.8 m or R = 0.9 m ; a = 0.65 m ; Hammer

blow = 46 kN = 46 × 10
3
 N ; v = 96.5 km/h = 26.8 m/s

1. Fraction of the reciprocating masses to be balanced

Let         c = Fraction of the reciprocating masses to be balanced, and

          B = Magnitude of balancing mass placed at each of the driving wheels at

   radius b.

We know that the mass of the reciprocating parts to be balanced

. 300 kgc m c= =

(a) Position of planes.          (b) Position of cranks.

Fig. 22.9

The position of planes of the wheels and cylinders is shown in Fig. 22.9 (a), and the

position of cranks is shown in Fig 22.9 (b). Assuming the plane of wheel A as the reference plane,

the data may be tabulated as below :

Table 22.3Table 22.3Table 22.3Table 22.3Table 22.3

Plane Mass Radius Cent. force
2

÷ ω Distance from Couple 
2

÷ ω

(m) kg (r) m (m.r) kg-m plane A (l)m (m.r.l.) kg-m2

(1) (2) (3) (4) (5) (6)

A (R.P.) B b B.b 0 0

B 300 c 0.3 90 c 0.45 40.5 c

C 300 c 0.3 90 c 1.1 99 c

D B b B.b 1.55 1.55 B.b

Now the couple polygon, to some suitable scale, may be drawn with the data given in

Table 22.3 (column 6), as shown in Fig. 22.10. The closing side of the polygon (vector c o′ ′ )

represents the balancing couple and is proportional to 1.55 B.b.

From the couple polygon,

            2 2
1.55 . (40.5 ) (99 ) 107B b c c c= + =

∴                 B.b = 107 c / 1.55 = 69 c

We know that angular speed,

        ω = v/R = 26.8/0.9 = 29.8 rad/s

∴  Hammer blow,

            46 × 10
3
 = B. 

2
ω .b

  = 69 c (29.8)
2
 = 61 275 c

∴           c = 46 × 10
3
/61 275 = 0.751 Ans. Fig. 22.10



Chapter 22 : Balancing of Reciprocating Masses           �          871

2. Variation in tractive effort

We know that variation in tractive effort

 = 22(1 ) . .c m r± − ω = 22(1 0.751) 300(29.8) 0.3± −

           = 28 140 N = 28.14 kN Ans.

Maximum swaying couple

We know the maximum swaying couple

          = 
2(1 )

. .
2

a c
m r

−
× ω  = 

20.65(1 0.751)
300(29.8) 0.3 9148 N-m

2

−
× =

          = 9.148 kN-m Ans.

Example 22.5. The following data apply to an outside cylinder uncoupled locomotive :

Mass of rotating parts per cylinder = 360 kg ; Mass of reciprocating parts per cylinder

= 300 kg ; Angle between cranks = 90° ; Crank radius = 0.3 m ; Cylinder centres = 1.75 m ;

Radius of balance masses = 0.75 m ; Wheel centres = 1.45 m.

If whole of the rotating and two-thirds of reciprocating parts are to be balanced in planes

of the driving wheels, find :

1. Magnitude and angular positions of balance masses,

2. Speed in kilometres per hour at which the wheel will lift off the rails when the load on

each driving wheel is 30 kN and the diameter of tread of driving wheels is 1.8 m, and

3. Swaying couple at speed arrived at in (2) above.

Solution : Given : m
1
 = 360 kg ; m

2
 = 300 kg ; ∠  AOD = 90° ; r

A
 = r

D
 = 0.3 m ;

a = 1.75 m ; r
B
 = r

C
 = 0.75 m ; c = 2 / 3.

We know that the equivalent mass of the rotating parts to be balanced per cylinder,

         m = m
A

 = m
D

 = m
1
 + c.m

2
 = 360 + 

2

3
 × 300 = 560 kg

1. Magnitude and angular position of balance masses

Let       m
B
 and m

C
 = Magnitude of the balance masses, and

        Bθ  and Cθ  = angular position of the balance masses m
B
 and m

C
 from the crank A.

The magnitude and direction of the balance masses may be determined, graphically, as

discussed below :

1. First of all, draw the positions of the planes of the wheels and the cylinders as shown in

Fig. 22.11 (a). Since the cranks of the two cylinders are at right angles, therefore assum-

ing the position of the cylinder A in the horizontal direction, draw OA and OD at right

angles to each other as shown in Fig. 22.11 (b).

2. Assuming the plane of wheel B as the reference plane, the data may be tabulated as be-

low:
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Table 22.4Table 22.4Table 22.4Table 22.4Table 22.4

Plane Mass Radius Cent. force 
2

÷ ω Distance from Couple 
2

÷ ω

(m) kg (r) m (m.r) kg-m plane B(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 560 0.3 168 – 0.15 – 25.2

B (R.P) m
B

0.75 0.75 m
B

0 0

C m
C

0.75 0.75 m
C

1.45 1.08 m
C

D 560 0.3 168 1.6 268.8

3. Now draw the couple polygon with the data given in Table 22.4 column (6), to some

suitable scale as shown in Fig. 22.11(c). The closing side d o′ ′  represents the balancing

couple and it is proportional to 1.08 m
C
. Therefore, by measurement,

 1.08 m
C
 = 269.6 kg-m

2
    or    m

C
 = 249 kg  Ans.

        

       (a) Position of planes. (b) Position of masses.

       (c) Couple polygon.          (d) Force polygon.

Fig. 22.11

4. To determine the angular position of the balancing mass C, draw OC parallel to vector

d o′ ′  as shown in Fig. 22.11 (b). By measurement,

      Cθ  = 275° Ans.

5. In order to find the balancing mass B, draw the force polygon with the data given in Table

22.4 column (4), to some suitable scale, as shown in Fig. 22.11 (d). The vector co represents
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the balancing force and it is proportional to 0.75 m
B
. Therefore, by measurement,

  0.75 m
B
 = 186.75 kg-m   or    m

B
 = 249 kg Ans.

6. To determine the angular position of the balancing mass B, draw OB parallel to vector oc

as shown Fig. 22.11 (b). By measurement,

       Bθ  = 174.5° Ans.

2. Speed at which the wheel will lift off the rails

Given :          P = 30 kN = 30 × 10
3
 N ; D = 1.8 m

Let          ω  = Angular speed at which the wheels will lift off the rails in rad/s, and

         v = Corresponding linear speed in km/h.

We know that each balancing mass,

        m
B
 = m

C
 = 249 kg

∴  Balancing mass for reciprocating parts,

          
2. 2 300

249 249 89 kg
3 560

c m
B

m
= × = × × =

We know that    

330 10
21.2 rad/s

. 89 0.75

P

B b

×
ω = = =

×
...( ∵  b = r

B
 = r

C
)

and           / 2 21.2 1.8 / 2 19.08 m/sv D= ω× = × =

 = 19.08 × 3600/ 1000 = 68.7 km/h Ans.

3. Swaying couple at speed ω  = 21.1 rad/s

We know that the swaying couple

            
2

2

(1 )
. .

2

a c
m r

−
= × ω 2

2
1.75 1

3
300(21.2) 0.3

2

 
−

 
 

= × N-m

 = 16 687 N-m = 16.687 kN-m Ans.

22.9.22.9.22.9.22.9.22.9. Balancing of CoupledBalancing of CoupledBalancing of CoupledBalancing of CoupledBalancing of Coupled

LocomotivesLocomotivesLocomotivesLocomotivesLocomotives

The uncoupled locomotives as

discussed in the previous article, are

obsolete now-a-days. In a coupled

locomotive, the driving wheels are

connected to the leading and trailing

wheels by an outside coupling rod. By

such an arrangement, a greater portion

of the engine mass is utilised by tractive

purposes. In coupled locomotives, the

coupling rod cranks are placed

diametrically opposite to the adjacent

main cranks (i.e. driving cranks). The

coupling rods together with cranks and

pins may be treated as rotating masses

A dynamo converts mechanical energy into electrical

energy.

Note : This picture is given as additional information and is not

a direct example of the current chapter.
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and completely balanced by masses in the respective wheels. Thus in a coupled engine, the rotating

and reciprocating masses must be treated separately and the balanced masses for the two systems

are suitably combined in the wheel.

It may be noted that the variation of pressure between the wheel and the rail (i.e. hammer

blow) may be reduced by equal distribution of balanced mass (B) between the driving, leading and

trailing wheels respectively.

Example 22.6. The following particulars relate to a two-cylinder locomotive with two

coupled wheels on each side :

Stroke = 650 mm

Mass of reciprocating parts per cylinder = 240 kg

Mass of revolving parts per cylinder = 200 kg

Mass of each coupling rod = 250 kg

Radius of centre of coupling rod pin = 250 mm

Distances between cylinders = 0.6 m

Distance between wheels = 1.5 m

Distance between coupling rods = 1.8 m

The main cranks are at right angles and the coupling rod pins are at 180° to their respec-

tive main cranks. The balance masses are to be placed in the wheels at a mean radius of 675 mm

in order to balance whole of the revolving and 3/4th of the reciprocating masses. The balance

mass for the reciprocating masses is to be divided equally between the driving wheels and the

coupled wheels. Find : 1. The magnitudes and angular positions of the masses required for the

driving and trailing wheels, and 2. The hammer blow at 120 km/h, if the wheels are 1.8 metre

diameter.

Solution. Given : L
C
 = L

D
 = 650 mm or r

C
 = r

D
 = 325 mm = 0.325 m ; m

1
 = 240 kg ;

m
2
 = 200 kg ; m

3
 = 250 kg ; r

A
 = r

F
 = 250 mm = 0.25 m ; CD = 0.6 m ; BE = 1.5 m ; AF = 1.8 m ;

r
B
 = r

E
 = 675 mm = 0.675 m ; c = 3/4

The position of planes for the driving wheels B and E, cylinders C and D, and coupling

rods A and F, are shown in Fig. 22.12 (a).

The angular position of cranks C and D and coupling pins A and F are shown in Fig.

22.12(b).

We know that mass of the reciprocating parts per cylinder to be balanced

            = 1

3
. 240 180 kg

4
c m = × =

Since the reciprocating masses are to be divided equally between the driving wheels and

trailing wheels, therefore 90 kg is taken for driving wheels and 90 kg for trailing wheels. Now for

each driving wheel, the following masses are to be balanced :

1. Half of the mass of coupling rod i.e. 
1

250
2

× 125 kg= . In other words, the masses at the

coupling rods A and F to be balanced for each driving wheel are

      A F 125 kgm m= =
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2.  Whole of the revolving mass i.e. 200 kg and the mass of the reciprocating parts i.e.

90 kg. In other words, total mass at the cylinders C and D to be balanced for each driving wheel are

      m
C
 = m

D
 = 200 + 90 = 290 kg

(a) Position of planes. (b) Angular position of cranks and coupling pins.

   (c) Couple polygon : Driving wheel E.       (d) Force polygon : Driving wheel B.

Fig. 22.12

Balanced masses in the driving wheels

Let m
B
 and m

E
 be the balance masses placed in the driving wheels B and E respectively.

Taking the plane of B as reference plane, the data may be tabulated as below :

Table 22.5. (For driving wheels)Table 22.5. (For driving wheels)Table 22.5. (For driving wheels)Table 22.5. (For driving wheels)Table 22.5. (For driving wheels)

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m Plane B(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 125 0.25 31.25 – 0.15 – 4.7

B (R.P.) m
B

0.675 0.675 m
B

0 0

C 290 0.325 94.25 0.45 42.4

D 290 0.325 94.25 1.05 99

E m
E

0.675 0.675 m
E

1.5 1.01 m
E

F 125 0.25 31.25 1.65 51.6

In order to find the balance mass m
E
 in the driving wheel E, draw a couple polygon from the

data given in Table 22.5 (column 6), to some suitable scale as shown in Fig 22.12 (c). The closing

side of polygon as shown dotted is proportional to 1.01 m
E
, Therefore by measurement, we find that
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 1.01 m
E
 = 67.4 kg-m

2
  or  m

E
 = 66.7 kg Ans.

and         θ  = 45° Ans.

Now draw the force polygon from the data given in Table 22.5 (column 4), to some suit-

able scale, as shown in Fig. 22.12 (d). The closing side of the polygon as shown dotted is propor-

tional to 0.675 m
B
. Therefore by measurement, we find that

           0.675 m
B
 = 45 kg-m    or   m

B
 = 66.7 kg Ans.

and         φ = 45° Ans.

Balance masses in the trailing wheels

For each trailing wheel, the following masses are to be balanced :

1. Half of the mass of the coupling rod i.e. 125 kg. In other words, the masses at the cou-

pling rods A and F to be balanced for each trailing wheel are

       m
A

 = m
F
 = 125 kg

2. Mass of the reciprocating parts i.e. 90 kg. In other words, the mass at the cylinders C and

D to be balanced for each trailing wheel are

      m
C
 = m

D
 = 90 kg

Let Bm′  and Em ′  be the balanced masses placed in the trailing wheels. Taking the plane of

B as the reference plane, the data may be tabulated as below :

Table 22.6. (For trailing wheels)Table 22.6. (For trailing wheels)Table 22.6. (For trailing wheels)Table 22.6. (For trailing wheels)Table 22.6. (For trailing wheels)

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane B (l) m (m.r.l) kg-m
2

(1) (2) (3) (4) (5) (6)

A 125 0.25 31.25 – 0.15 – 4.7

B (R.P.) Bm′ 0.675 0.675 Bm′ 0 0

C 90 0.325 29.25 0.45 13.2

D 90 0.325 29.25 1.05 30.7

E Em ′ 0.675 0.675 Em ′ 1.5 1.01 Em ′

F 125 0.25 31.25 1.65 51.6

In order to find the balance mass Em ′  in the trailing wheel E, draw a couple polygon from the

data given in Table 22.6 (column 6), to some suitable scale, as shown in Fig. 22.13 (a). The closing

side of the polygon as shown dotted is proportional to 1.01 Em ′ . Therefore by measurement, we find

that

       1.01 m′
E
 = 27.5 m

2
    or    m′

E
 = 27.5 kg Ans.

and   α  = 40° Ans.

Now draw the force polygon from the data given in Table 22.6 (column 4), to some suit-

able scale, as shown in Fig. 22.13 (b). The closing side of the polygon as shown dotted is propor-

tional to 0.675 Bm′ . Therefore by measurement, we find that

B0.675 18.35 kg-mm′ =   or  Bm′  = 27.2 kg Ans.

and          β  = 50° Ans.
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Fig. 22.14 shows the balance masses in the four wheels and it will be seen that the balance

masses for the driving wheels are symmetrical about the axis X-X [Fig. 22.12 (b)]. Similarly the

balance masses for the trailing wheels are symmetrical about the axis X-X.

   (a) Couple polygon : Trailing wheel E. (b) Force polygon : Trailing wheel B.

Fig. 22.13

Driving wheel E.        Trailing wheel E.       Driving wheel B.  Trailing wheel B.

          (a)    (b)    (c)        (d)

Fig. 22.14

Hammer blow

In order to find the hammer blow, we must find the balance mass required for reciprocating

masses only. For this, the data may be tabulated as below. Let B
m′′  and E

m′′  be the balanced

masses required for the reciprocating masses.

Table 22.7. (For hammer blow)Table 22.7. (For hammer blow)Table 22.7. (For hammer blow)Table 22.7. (For hammer blow)Table 22.7. (For hammer blow)

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m Plane B(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

B(R.P.) Bm′′ 0.675 0675 Bm′′ 0 0

C 90 0.325 29.25 0.45 13.2

D 90 0.325 29.25 1.05 30.7

E Em′′ 0.675 0.675 Em′′ 1.5 1.01 Em′′

Now the couple polygon and the force polygon may be drawn, but due to symmetry we

shall only draw the couple polygon from the data given in Table 22.7 (column 6), to some suitable

scale as shown in Fig 22.15.

From Fig. 22.15,

2 2
E

1.01 (30.7) (13.2) 33.4m′′ = + =

∴                    Em′′  = 33 kg
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We know that linear speed of the wheel,

           v = 120 km/h = 33.33 m/s

and diameter of the wheel, D = 1.8 m

∴ Angular speed of the wheel

            
33.33

37rad/s
/ 2 1.8 / 2

v

D
ω = = =

We know that hammer blow

             2 2. . 33(37) 0.675B b= ± ω =  = ± 30.494 N Ans.

. . . (  EB m′′=∵ , and b = r
B
 = r

E
)

22.10.22.10.22.10.22.10.22.10. Balancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line EnginesBalancing of Primary Forces of Multi-cylinder In-line Engines

The multi-cylinder engines with the cylinder centre lines in the same plane and on the same

side of the centre line of the crankshaft, are known as In-line engines. The following two conditions

must be satisfied in order to give the primary balance of the reciprocating parts of a multi-cylinder

engine :

1. The algebraic sum of the primary forces must be equal to zero. In other words, the pri-

mary force polygon must *close ; and

2. The algebraic sum of the couples about any point in the plane of the primary forces must

be equal to zero. In other words, the primary couple polygon must close.

We have already

discussed, that the primary

unbalanced force due to the

reciprocating masses is equal to

the component, parallel to the line

of stroke, of the centrifugal force

produced by the equal mass

placed at the crankpin and

revolving with it. Therefore, in

order to give the primary balance

of the reciprocating parts of a

multi-cylinder engine, it is

convenient to imagine the

reciprocating masses to be
transferred to their respective

crankpins and to treat the

problem as one of revolving

masses.

Notes : 1. For a two cylinder engine

with cranks at 180°, condition (1) may

be satisfied, but this will result in an

unbalanced couple. Thus the above

method of primary balancing cannot be applied in this case.

2. For a three cylinder engine with cranks at 120° and if the reciprocating masses per cylinder are

same, then condition (1) will be satisfied because the forces may be represented by the sides of an equilateral

triangle. However, by taking a reference plane through one of the cylinder centre lines, two couples with non-

parallel axes will remain and these cannot vanish vectorially. Hence the above method of balancing fails in

this case also.

* The closing side of the primary force polygon gives the maximum unbalanced primary force and the

closing side of the primary couple polygon gives the maximum unblanced primary couple.

Fig. 22.15

The speedometer is an instrument which shows how fast a

car is moving. It works with a magnet that spins around as

the car moves.

Note : This picture is given as additional information and is not a direct

example of the current chapter.
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Fig. 22.16. Secondary force.

  3. For a four cylinder engine, similar reasoning will show that complete primary balance is pos-

sible and it follows that

‘For a multi-cylinder engine, the primary forces may be completely balanced by suitably ar-

ranging the crank angles, provided that the number of cranks are not less than four’.

22.11.22.11.22.11.22.11.22.11. Balancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line EnginesBalancing of Secondary Forces of Multi-cylinder In-line Engines

When the connecting rod is not too long (i.e. when the obliquity of the connecting rod is

considered), then the secondary disturbing force due to the reciprocating mass arises.

We have discussed in Art. 22.2, that the secondary force,

      
2

 S

cos 2
. .F m r

n

θ
= ω ×

This expression may be written as

      
2

 S .(2 ) cos 2
4

r
F m

n
= ω × × θ

As in case of primary forces, the secondary forces may be considered to be equivalent to

the component, parallel to the line of stroke, of the centrifugal force produced by an equal mass

placed at the imaginary crank of length r / 4n and revolving at twice the speed of the actual crank

(i.e. 2 ω ) as shown in Fig. 22.16.

Thus, in multi-cylinder in-line engines, each imagi-

nary secondary crank with a mass attached to the crankpin

is inclined to the line of stroke at twice the angle of the

actual crank. The values of the secondary forces and couples

may be obtained by considering the revolving mass. This is

done in the similar way as discussed for primary forces.

The following two conditions must be satisfied in order to

give a complete secondary balance of an engine :

1. The algebraic sum of the secondary forces must be equal to zero. In other words, the

secondary force polygon must close, and

2. The algebraic sum of the couples about any point in the plane of the secondary forces

must be equal to zero. In other words, the secondary couple polygon must close.

Note : The closing side of the secondary force polygon gives the maximum unbalanced secondary force and

the closing side of the secondary couple polygon gives the maximum unbalanced

secondary couple.

Example 22.7. A four cylinder vertical engine has cranks 150 mm long. The planes of

rotation of the first, second and fourth cranks are 400 mm, 200 mm and 200 mm respectively from

the third crank and their reciprocating masses are 50 kg, 60 kg and 50 kg respectively. Find the

mass of the reciprocating parts for the third cylinder and the relative angular positions of the

cranks in order that the engine may be in complete primary balance.

Solution. Given r
1
 = r

2
 = r

3
 = r

4
 = 150 mm = 0.15 m ; m

1
 = 50 kg ; m

2
 = 60 kg ;

m
4
 = 50 kg

We have discussed in Art. 22.10 that in order to give the primary balance of the reciprocat-

ing parts of a multi-cylinder engine, the problem may be treated as that of revolving masses with

the reciprocating masses transferred to their respective crank pins.

The position of planes is shown in Fig. 22.17 (a). Assuming the plane of third cylinder as

the reference plane, the data may be tabulated as given in Table 22.8.
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Table 22.8Table 22.8Table 22.8Table 22.8Table 22.8

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane 3(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

1 50 0.15 7.5 – 0.4 – 3

2 60 0.15 9 – 0.2 – 1.8

3(R.P.) m
3

0.15 0.15m
3

0 0

4 50 0.15 7.5 0.2 1.5

First of all, the angular position of cranks 2 and 4 are obtained by drawing the couple

polygon from the data given in Table 22.8 (column 6). Assume the position of crank 1 in the

horizontal direction as shown in Fig 22.17 (b), The couple polygon, as shown in Fig. 22.17 (c), is

drawn as discussed below:

1. Draw vector o a′ ′  in the horizontal direction (i.e. parallel to O1) and equal to – 3 kg-m
2
,

to some suitable scale.

2. From point o′  and a′ , draw vectors o b′ ′  and a b′ ′  equal to – 1.8 kg-m
2
 and 1.5 kg-m

2

respectively. These vectors intersect at b′.

      (a) Position of planes.       (b) Angular position of cranks.

      (c) Couple polygon.      (d) Force polygon.

Fig. 22.17

3. Now in Fig. 22.17 (b), draw O2 parallel to vector o b′ ′  and O4 parallel to vector a b′ ′ .

By measurement, we find that the angular position of crank 2 from crank 1 in the

anticlockwise direction is

2θ  = 160° Ans.

and the angular position of crank 4 from crank 1 in the anticlockwise direction is

 4θ = 26° Ans.

In order to find the mass of the third cylinder (m
3
) and its angular position, draw the force

polygon, to some suitable scale, as shown in Fig. 22.17 (d), from the data given in Table 22.8

(column 4). Since the closing side of the force polygon (vector co) is proportional to 0.15 m
3
,

therefore by measurement,

     0.15m
3
 = 9 kg-m   or   m

3
 = 60 kg Ans.
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Now draw O3 in Fig 22.17 (b), parallel to vector co. By measurement, we find that the

angular position of crank 3 from crank 1 in the anticlockwise direction is

            3θ  = 227° Ans.

Example 22.8.  A four crank engine has the two outer cranks set at 120° to each other,

and their reciprocating masses are each 400 kg. The distance between the planes of rotation of

adjacent cranks are 450 mm, 750 mm and 600 mm. If the engine is to be in complete primary

balance, find the reciprocating mass and the relative angular position for each of the inner cranks.

If the length of each crank is 300 mm, the length of each connecting rod is 1.2 m and the

speed of rotation is 240 r.p.m., what is the maximum secondary unbalanced force ?

Solution. Given : m
1
 = m

4
 = 400 kg ; r = 300 mm = 0.3 m ; l = 1.2 m ; N = 240 r.p.m. or

2 240 / 60ω = π× = 25.14 rad/s

Reciprocating mass and the relative angular position for each of the inner cranks

Let               m
2
 and m

3
 = Reciprocating mass for the inner cranks 2 and 3 respectively, and

              2θ  and 3θ  = Angular positions of the cranks 2 and 3 with respect to crank 1

                     respectively.

The position of the planes of rotation of the cranks and their angular setting are shown in

Fig. 22.18 (a) and (b) respectively. Taking the plane of crank 2 as the reference plane, the data may

be tabulated as below :

Table 22.9Table 22.9Table 22.9Table 22.9Table 22.9

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane (2) (l) m  (m.r.l.) kg-m2

(1)  (2) (3) (4) (5) (6)

1 400 0.3 120 – 0.45 – 54

2(R.P.) m
2

0.3 0.3 m
2

0 0

3 m
3

0.3 0.3 m
3

0.75 0.225 m
3

4 400 0.3 120 1.35 162

Since the engine is to be in complete primary balance, therefore the primary couple poly-

gon and the primary force polygon must close. First of all, the primary couple polygon, as shown

in Fig. 22.18 (c), is drawn to some suitable scale from the data given in Table 22.9 (column 6), in

order to find the reciprocating mass for crank 3. Now by measurement, we find that

               2
30.225 196 kg-mm =    or   m

3
 
= 871 kg Ans.

and its angular position with respect to crank 1 in the anticlockwise direction,

             3θ = 326° Ans.

Now in order to find the reciprocating mass for crank 2, draw the primary force polygon,

as shown in Fig. 22.18 (d), to some suitable scale from the data given in Table 22.9 (column 4).

Now by measurement, we find that

        0.3 m
2
 = 284 kg-m    or    m

2
 = 947 kg Ans.

and its angular position with respect to crank 1 in the anticlockwise direction,

            2θ  = 168° Ans.

Maximum secondary unbalanced force

The secondary crank positions obtained by rotating the primary cranks at twice the angle,
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is shown in Fig. 22.18 (e). Now draw the secondary force polygon, as shown in Fig. 22.18 ( f ), to

some suitable scale, from the data given in Table 22.9 (column 4). The closing side of the polygon

shown dotted in Fig. 22.18 ( f ) represents the maximum secondary unbalanced force. By measure-

ment, we find that the maximum secondary unbalanced force is proportional to 582 kg-m.

∴   Maximum secondary unbalanced force

         = 
2 2582(25.14)

582 91 960N
1.2 / 0.3n

ω
× = =  = 91.96 kN Ans.    . . . (∵  n = l/r)

(a) Positions of planes. (b) Primary crank positions.

(c) Primary couple polygon. (d) Primary force polygon.

(e) Secondary crank positions. ( f ) Secondary force polygon.

Fig. 22.18

Example 22.9. The cranks and connecting rods of a 4-cylinder in-line engine running at

1800 r.p.m. are 60 mm and 240 mm each respectively and the cylinders are spaced 150 mm apart.

If the cylinders are numbered 1 to 4 in sequence from one end, the cranks appear at intervals of

90° in an end view in the order 1-4-2-3. The reciprocating mass corresponding to each cylinder is

1.5 kg.

Determine : 1. Unbalanced primary and secondary forces, if any, and 2. Unbalanced

primary and secondary couples with reference to central plane of the engine.
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Solution. Given : N = 1800 r.p.m. or 2ω = π  × 1800/60 = 188.52 rad/s ; r = 60 mm

= 0.6 m ; l = 240 mm = 0.24 m ; m = 1.5 kg

1. Unbalanced primary and secondary forces

The position of the cylinder planes and cranks is shown in Fig.22.19 (a) and (b) respec-

tively. With reference to central plane of the engine, the data may be tabulated as below :

Table 22.10Table 22.10Table 22.10Table 22.10Table 22.10

Plane Mass Radius Cent. force 2
÷ ω Distance from ref. Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane 3 (l) m (m.r.l.) kg-m
2

(1) (2) (3) (4) (5) (6)

1 1.5 0.6 0.9 – 0.225 – 0.2025

2 1.5 0.6 0.9 – 0.075 – 0.0675

3 1.5 0.6 0.9 + 0.075 + 0.0675

4 1.5 0.6 0.9 + 0.225 + 0.2025

(a) Cylinder plane positions. (b) Primary crank positions.

(c) Primary force polygon. (d) Primary couple polygon.

(e) Secondary crank           ( f) Secondary force (g) Secondary couple

    positions.     polygon.      polygon.

Fig. 22.19
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The primary force polygon from the data given in Table 22.10 (column 4) is drawn as

shown in Fig. 22.19 (c). Since the primary force polygon is a closed figure, therefore there are no

unbalanced primary forces. Ans.

The secondary crank positions, taking crank 3 as the reference crank, is shown in Fig.

22.19 (e). From the secondary force polygon as shown in Fig. 22.19 ( f ), we see that it is a closed

figure. Therefore there are no unbalanced secondary forces. Ans.

2. Unbalanced primary and secondary couples

The primary couple polygon from the data given in Table 22.10 (column 6) is drawn as

shown in Fig. 22.19 (d). The closing side of the polygon, shown dotted in the figure, represents

unbalanced primary couple. By measurement, we find the unbalanced primary couple is propor-

tional to 0.19 kg-m
2
.

∴   Unbalanced primary couple,

   U.P.C = 0.19 × 2
ω  = 0.19 (188.52)2 = 6752 N-m Ans.

The secondary couple polygon is shown in Fig. 22.1 (g). The unbalanced secondary couple

is shown by dotted line. By measurement, we find that unbalanced secondary couple is propor-

tional to 0.54 kg-m
2
.

∴   Unbalanced secondary couple,

  

2 2(188.52)
. . . 0.54 0.54

0.24 / 0.6
U S C

n

ω
= × = ×  = 4798 N-m Ans. . . . (∵  n = l / r )

Example 22.10. Fig. 22.20 shows the arrangement of the cranks in a four crank symmetrical

engine in which the masses of the reciprocating parts at cranks 1 and 4 are each equal to m
1
 and

at cranks 2 and 3 are each equal to m
2
.

Fig. 22.20

Show that the arrangement is balanced for primary forces and couples and for secondary

forces provided that

      
1 2 1 2

2 1 2 1

cos tan
; ,

cos tan

m a

m a

θ θ
= =

θ θ
    and   1 2

1
cos .cos

2
θ θ = .

Solution. Given : Mass of reciprocating parts at cranks 1 and 4 = m
1
 ; Mass of the

reciprocating parts at cranks 2 and 3 = m
2

The position of planes and primary and secondary crank positions are shown in Fig. 22.21

(a), (b) and (c) respectively. Assuming the reference plane midway between the planes of rotation

of cranks 2 and 3, the data may be tabulated as below :
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Table 22.11Table 22.11Table 22.11Table 22.11Table 22.11

Plane Mass (m) Radius (r) Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m.r) ref. plane (l) (m.r.l)

(1) (2) (3) (4) (5) (6)

1 m
1

r m
1
.r – a

1
– m

1
.r.a

1

2 m
2

r m
2
.r – a

2
– m

2
.r.a

2

3 m
2

r m
2
.r + a

2
+ m

2
.r.a

2

4 m
1

r m
1
.r + a

1
+ m

1
.r.a

1

 (a) Position of planes.      (b) Primary crank          (c) Secondary crank Positions.

           positions.

(d) Primary force         (e) Primary couple ( f ) Secondary force

     polygon.  polygon.        polygon.

Fig. 22.21

In order to balance the arrangement for primary forces and couples, the primary force and

couple polygons must close. Fig. 22.21 (d) and (e) show the primary force and couple polygons,

which are closed figures. From Fig. 22.21 (d),

      1 1 2 2. cos . cosPQ m r m r= θ = θ      or     
1 2

2 1

cos

cos

m

m

θ
=

θ

 

 
 Ans.

From Fig. 22.21 (e),

      1 1 1 2 2 2. . sin . . sinFG m r a m r a= θ = θ

or         1 1 1 2 2 2. sin . sinm a m aθ = θ

            1 1 2

2 2 1

sin

sin

m a

m a

θ
× =

θ
     or     2 1 2

1 2 1

cos sin

cos sin

a

a

θ θ
× =

θ θ
... 

1 2

2 1

cos

cos

m

m

 θ
= 

θ 

∵
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∴        
1 2 1 2

2 1 2 1

sin cos tan

sin cos tan

a

a

θ θ θ
= × =

θ θ θ
 Ans.

In order to balance the arrangement for secondary forces, the secondary force polygon

must close. The position of the secondary cranks is shown in Fig. 22.21 (c) and the secondary force

polygon is shown in Fig. 22.21 ( f ).

Now from Fig. 22.21 ( f ),

                 1 1 2 2. cos 2 . cos(180 2 )RS m r m r= θ = ° − θ

or                     1 2 2 2.cos 2 .cos 2m mθ = − θ

∴       

2
1 2 2

2
2 1 1

cos 2 (2cos 1)

cos 2 2cos 1

m

m

− θ − θ −
= =

θ θ −

 . . . ( 2
cos 2 2 cos 1θ = θ −∵ )

             

2
2 2

2
1 1

cos (1 2cos )

cos 2cos 1

θ − θ
=

θ θ −
. . . 

1 2

2 1

cos

cos

m

m

 θ
= 

θ 

∵

    2 2
1 2 2 1 2 12cos .cos cos cos 2cos .cosθ θ − θ = θ − θ θ

      1 2 1 2 1 22cos .cos (cos cos ) cos cosθ θ θ + θ = θ + θ

    1 22cos .cos 1θ θ =     or   1 2

1
cos .cos

2
θ θ =  Ans.

Example 22.11. A four cylinder engine has cranks arranged symmetrically along the shaft

as shown in Fig. 22.22. The distance between the outer cranks A and D is 5.4 metres and that

between the inner cranks B and C is 2.4 metres. The mass of the reciprocating parts belonging to

each of the outer cylinders is 2 tonnes, and that belonging to each of the inner cylinders is

m tonnes.

Fig. 22.22

If the primary and secondary forces are to be balanced and also the primary couples,

determine the crank angle positions and the mass of the reciprocating parts (m) corresponding to

the inner cylinders.

Find also the maximum value of the unbalanced secondary couple, if the stroke is 1 metre,

the connecting rod length 2 metres, and the speed of the engine is 110 r.p.m.

Solution. Given : AD = 5.4 m ; BC = 2.4 m ; m
A

 = m
D
 = 2 t ; L = 1 m or r = L / 2 = 0.5 m ;

l = 2 m ; N = 110 r.p.m. or 2ω = π  × 110/60 = 11.52 rad/s

Fig. 22.23 (a) shows the position of planes and Fig. 22.23 (b) shows the end view of the

cranks with primary crank angles α and φ which are to be determined. Assuming the reference
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plane mid-way between the planes of rotation of cranks A and D, the data may be tabulated as

below :

Table 22.12Table 22.12Table 22.12Table 22.12Table 22.12

Plane Mass Radius Cent. force 2
÷ ω Distance from ref. Couple 2

÷ ω

(m) t (r) m (m.r) t-m  plane (l) m (m.r.l) t-m2

(1) (2) (3) (3) (4) (5)

A 2 0.5 1 – 2.7 – 2.7

B m 0.5 0.5 m – 1.2 – 0.6 m

C m 0.5 0.5 m + 1.2 + 0.6 m

D 2 0.5 1 + 2.7 + 2.7

   (a) Positions of planes.        (b) Primary crank positions.

    (c) Primary force polygon.        (d) Primary couple polygon.

    (e) Secondary crank (f) Secondary force (g) Secondary couple

         positions.      polygon.       polygon.

Fig. 22.23
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Since the primary forces and couples are to be balanced, therefore the primary force and

couple polygons, drawn from the data given in Table 22.12 column (4) and (6) respectively, as

shown in Fig. 22.23 (c) and (d), must close.

From Fig. 22.23 (c),

           1cos 0.5 cosPQ m= α = φ

∴                   
1cos 2cos

cos
0.5 m m

α α
φ = =  . . . (i)

From Fig. 22.23 (d),

           2.7sin 0.6 sinFG m= α = φ

∴                   
0.6 sin sin

sin
2.7 4.5

m mφ φ
α = = . . . (ii)

Now draw the secondary crank positions as shown in Fig. 22.23 (e). Let OP be the reference

line. The secondary crank angles are given below :

              OP to OA = 2α

              OP to OC = 2 (180° – φ ) = 360° – 2φ

              OP to OB = 2 (180° + φ ) = 360° + 2φ

              OP to OD = 2 (360° – α ) = 720° – 2α

Since the secondary forces are to be balanced, therefore the secondary force polygon, as
shown in Fig. 22.23 ( f ), must close. Now from Fig. 22.23 ( f ),

                        RS = 1 cos 2α = 0.5 m cos (180° – 2φ )

or                    

2

2

1 cos 2 (2cos 1)

0.5 cos 2 2cos 1m

− φ − θ −
= =

α α −
. . . 2

( cos2 2cos 1)θ = θ −∵

A Steam-powered ship.
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2
2 2 2cos

2cos 1 0.5 (1 2 cos ) 0.5 1 2m m
m

 α 
α − = − φ =  −  

   

    . . . [From equation (i)]

             

2 2

2

8cos 4cos
0.5 1 0.5m m

mm

 α α
= − = − 

  

 
2

2 4cos
2cos 1 0.5m

m

α
α + = +    or   

2 2 4
cos 1 0.5

m
m

m

+ 
α = + 

 

∴               2
cos (1 0.5 )

2 4 4

m m
m

m
α = + × =

+

 . . . (iii)

Now from equation (ii)

     

2
2 sin

sin
4.5

m φ 
α =  

 

or             

22 2 2 2
2 2sin 2 cos

1 cos (1 cos ) 1
20.25 20.25 20.25

m m m

m

 φ α 
− α = = − φ =  −  

   

 . . . [From equations (i)]

     

2 2 2

2

4 1
1 1 1

4 20.25 4 20.25 20.25 20.25

m m m m m m

mm

   
− = − × = − = −   

  

 . . . [From equation (iii) ]

or     

2

1 0
20.25 20.25 4

m m m
− + − =  or 

2 4.0625 20.25 0m m+ − =

∴             

2
4.0625 (4.0625) 4 20.25

2.9 t
2

m
− ± + ×

= =

We know that 
2 2.9

cos 0.725
4 4

m
α = = =

∴      cos 0.851α =  or α  = 31.6° Ans.

Also             
2cos 2 0.851

cos 0.5869
2.9m

α ×
φ = = =      or    φ  = 54.06° Ans.

Maximum unbalanced secondary couple

The secondary couple polygon is shown in Fig. 22.23 (g). The maximum unbalanced sec-

ondary couple is shown by a dotted line. By measurement, we find that the maximum unbalanced

secondary couple is proportional to 8 t-m
2
.

∴   Maximum unbalanced secondary couple,

    

2 2(11.52)
. . 8 8

2 / 0.5
U S C

n

ω
= × = ×  = 265.4 kN-m Ans. . . . (∵  n = l / r )

Example 22.12. A five cylinder in-line engine running at 750 r.p.m. has successive cranks

144° apart, the distance between the cylinder centre lines being 375 mm. The piston stroke is 225

mm and the ratio of the connecting rod to the crank is 4. Examine the engine for balance of

primary and secondary forces and couples. Find the maximum values of these and the position of

the central crank at which these maximum values occur. The reciprocating mass for each cylinder

is 15 kg.
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Solution. Given : N = 750 r.p.m. or 2ω = π × 750/60 = 78.55 rad/s ; L = 225 mm = 0.225 m

or r = 0.1125 m ; n = l / r = 4 ; m = 15 kg

Assuming the engine to be a vertical engine, the positions of the cylinders and the cranks

are shown in Fig. 22.24 (a), (b) and (c). The plane 3 may be taken as the reference plane and the

crank 3 as the reference crank. The data may be tabulated as given in the following table.

Table 22.13Table 22.13Table 22.13Table 22.13Table 22.13

Plane Mass Radius Cent. force 2
÷ ω Distance from ref. Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m Plane 3 (l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

1 15 0.1125 1.6875 – 0.75 – 1.265

2 15 0.1125 1.6875 – 0.375 – 0.6328

3(R.P.) 15 0.1125 1.6875 0 0

4 15 0.1125 1.6875 + 0.375 + 0.6328

5 15 0.1125 1.6875 + 0.75 + 1.265

Now, draw the force and couple polygons for primary and secondary cranks as shown in

Fig. 22.24 (d), (e), ( f ), and (g). Since the primary and secondary force polygons are close, there-

fore the engine is balanced for primary and secondary forces. Ans.

    (a) Position of planes. (b) Primary crank positions. (c) Secondary crank positions.

(d) Primary force polygon.    (e) Primary couple polygon.

(f) Secondary force polygon.    (g) Secondary couple polygon.

Fig. 22.24

Maximum unbalanced primary couple

We know that the closing side of the primary couple polygon [shown dotted in Fig. 22.24

(e)] gives the maximum unbalanced primary couple. By measurement, we find that maximum un-

balanced primary couple is proportional to 1.62 kg-m
2
.
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∴   Maximum unbalanced primary couple,

U.P.C. = 1.62 × ω
2
 = 1.62 (78.55)

2
 = 9996 N-m Ans.

We see from Fig. 22.24 (e) [shown by dotted line] that the maximum unbalanced primary

couple occurs when crank 3 is at 90° from the line of stroke.

Maximum unbalanced secondary couple

We know that the closing side of the secondary couple polygon [shown dotted in Fig.

22.24 (g)] gives the maximum unbalanced secondary couple. By measurement, we find that maximum

unbalanced secondary couple is proportional to 2.7 kg-m
2
.

∴ Maximum unbalanced secondary couple.

 

2 2(78.55)
. . 2.7 2.7

4
U S C

n

ω
= × = ×  = 4165 N-m Ans.

We see from Fig. 22.24 (g) that if the vector representing the unbalanced secondary couple

(shown by dotted line) is rotated through 90°, it will coincide with the line of stroke. Hence the

original crank will be rotated through 45°. Therefore, the maximum unbalanced secondary couple

occurs when crank 3 is at 45° and at successive intervals of 90° (i.e. 135°, 225° and 315°) from the

line of stroke.

Example 22.13. The firing order in a 6 cylinder vertical four stroke in-line engine is

1-4-2-6-3-5. The piston stroke is 100 mm and the length of each connecting rod is 200 mm. The

pitch distances between the cylinder centre lines are 100 mm, 100 mm, 150 mm, 100 mm, and 100

mm respectively. The reciprocating mass per cylinder is 1 kg and the engine runs at 3000 r.p.m.

Determine the out-of-balance primary and secondary forces and couples on this engine,

taking a plane midway between the cylinder 3 and 4 as the reference plane.

Solution. Given : L = 100 mm or r = L / 2 = 50 mm = 0.05 m ; l = 200 mm ; m = 1 kg ;

N = 3000 r.p.m.

The position of the cylinders and the cranks are shown in Fig. 22.25 (a), (b) and (c). With

the reference plane midway between the cylinders 3 and 4, the data may be tabulated as given in

the following table :

Table 22.14Table 22.14Table 22.14Table 22.14Table 22.14

Plane Mass Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

(m) kg (r) m (m.r) kg-m plane 3 (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

1 1 0.05 0.05 – 0.275 – 0.01375

2 1 0.05 0.05 – 0.175 – 0.00875

3 1 0.05 0.05 – 0.075 – 0.00375

4 1 0.05 0.05 + 0.075 + 0.00375

5 1 0.05 0.05 + 0.175 + 0.00875

6 1 0.05 0.05 + 0.275 + 0.01375

Now, draw the force and couple polygons for the primary and secondary cranks as shown

in Fig. 22.25 (d), (e), ( f ) and (g).
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(a) Positions of planes. (b) Primary crank positions. (c) Secondary crank positions.

 (d) Primary force polygon. (e) Secondary force polygon.

  ( f ) Primary couple polygon. (g) Secondary couple polygon.

Fig. 22.25

From Fig. 22.25 (d) and (e), we see that the primary and secondary force polygons are

closed figures, therefore there are no out-of-balance primary and secondary forces. Thus the engine

is balanced for primary and secondary forces. Also, the primary and secondary couple polygons, as

shown in Fig. 22.25 ( f ) and (g) are closed figures, therefore there are no out-of-balance primary

and secondary couples. Thus the engine is balanced for primary and secondary couples. Ans.

Example 22.14. In an in-line six cylinder engine working on two stroke cycle, the cylinder

centre lines are spaced at 600 mm. In the end view, the cranks are 60° apart and in the order

1-4-5-2-3-6. The stroke of each piston is 400 mm and the connecting rod length is 1 metre. The

mass of the reciprocating parts is 200 kg per cylinder and that of rotating parts 100 kg per crank.

The engine rotates at 300 r.p.m. Examine the engine for the balance of primary and secondary

forces and couples. Find the maximum unbalanced forces and couples.

Solution. Given : L = 400 mm or r = L/2 = 200 mm = 0.2 m ; l = 1 m ; m
1
 = 200 kg ;

m
2
 = 100 kg ; N = 300 r.p.m. or 2ω = π  × 300/60 = 31.42 rad/s

Assuming the engine to be a vertical engine, the position of planes of cylinders and the

angular position of primary and secondary cranks (assuming the crank 1 coinciding with the line of

stroke i.e. in the vertical direction ) are shown in Fig. 22.26 (a), (b) and (c) respectively. It may be

noted that the mass of rotating parts (m
2
) at each crank pin is included with the mass of reciprocating

parts (m
1
) for primary forces and couples only. Taking the reference plane between the cylinders 3

and 4, the data may be tabulated as below:
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Table 22.15. (For primary forces and couples only)Table 22.15. (For primary forces and couples only)Table 22.15. (For primary forces and couples only)Table 22.15. (For primary forces and couples only)Table 22.15. (For primary forces and couples only)

Plane Mass (m) kg Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

m = m
1
 + m

2
(r) m (m.r)kg-m ref. plane (1) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

1 300 0.2 60 – 1.5 – 90

2 300 0.2 60 – 0.9 – 54

3 300 0.2 60 – 0.3 – 18

4 300 0.2 60 + 0.3 + 18

5 300 0.2 60 + 0.9 + 54

6 300 0.2 60 + 1.5 + 90

 (a) Positions of planes of cylinders. (b) Primary crank positions. (c) Secondary crank positions.

 (d) Primary force polygon.  (e) Primary couple polygon.

( f ) Secondary force polygon.   (g) Secondary couple polygon.     (h) Secondary couple polygon.

Fig. 22.26
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Now draw the force polygon and couple polygon for primary cranks from the data given in

Table 22.15 (column 4 and 6) respectively, as shown in Fig. 22.26 (d) and (e). Since the force and

couple polygons are closed figures, therefore the engine is balanced for primary force and couple

(i.e. there is no unbalanced primary force and couple ).

The data for the secondary forces and couples, taking m = m
1
 = 200 kg, may be tabulated

as below :

Table 22.16. (For secondary forces and couples)Table 22.16. (For secondary forces and couples)Table 22.16. (For secondary forces and couples)Table 22.16. (For secondary forces and couples)Table 22.16. (For secondary forces and couples)

Plane Mass (m) kg Radius Cent. force 2
÷ ω Distance from Couple 2

÷ ω

m = m
1

(r) m (m.r) kg-m ref. plane (l) m (m.r.l) kg-m2

1 200 0.2 40 – 1.5 – 60

2 200 0.2 40 – 0.9 – 36

3 200 0.2 40 – 0.3 – 12

4 200 0.2 40 + 0.3 + 12

5 200 0.2 40 + 0.9 + 36

6 200 0.2 40 + 1.5 + 60

First of all, draw the secondary force polygon for secondary cranks [the angular position of

which is shown in Fig. 22.26 (c)] from the data given in Table 22.16 (column 4) as shown in Fig.

22.26 ( f ). Since the secondary force polygon is a closed figure, therefore the engine is balanced

for secondary forces (i.e. there is no unbalanced secondary forces.) Now draw the secondary couple

polygon for the secondary cranks from the data given in Table 22.16 (column 6) as shown in Fig.

22.26 (g). The closing side of the polygon as shown by dotted line represents the maximum unbal-

anced secondary couple. By measurement, we find that maximum unbalanced couple is propor-

tional to 168 kg-m
2
.

∴   Maximum unbalanced secondary couple

           

2 2(31.42)
168 168 33 170 N-m

1/ 0.2n

ω
= × = × = = 33.17 kN-m Ans.

 . . . ( ∵  n = l / r)

Note : The secondary couple polygon may also be drawn as shown in Fig. 22.26 (h).

22.12.22.12.22.12.22.12.22.12. Balancing of Radial Engines (Direct and Reverse Cranks Method )Balancing of Radial Engines (Direct and Reverse Cranks Method )Balancing of Radial Engines (Direct and Reverse Cranks Method )Balancing of Radial Engines (Direct and Reverse Cranks Method )Balancing of Radial Engines (Direct and Reverse Cranks Method )

The method of direct and reverse cranks is used in balancing of radial or V-engines, in

which the connecting rods are connected to a common crank. Since the plane of rotation of the

various cranks (in radial or V-engines) is same, therefore there is no unbalanced primary or second-

ary couple.

Fig. 22.27. Reciprocating engine mechanism.



Chapter 22 : Balancing of Reciprocating Masses           �          895

Consider a reciprocating engine mechanism as shown in Fig. 22.27. Let the crank OC

(known as the direct crank) rotates uniformly at ω  radians per second in a clockwise direction. Let

at any instant the crank makes an angle θ  with the line of stroke OP. The indirect or reverse crank

OC ′  is the image of the direct crank OC, when seen through the mirror placed at the line of stroke.

A little consideration will show that when the direct crank revolves in a clockwise direction, the

reverse crank will revolve in the anticlockwise direction. We shall now discuss the primary and

secondary forces due to the mass (m) of the reciprocating parts at P.

Considering the primary forces

We have already discussed that primary force is 
2

. . cosm rω θ . This force is equal to the

component of the centrifugal force along the line of stroke, produced by a mass (m) placed at the

crank pin C. Now let us suppose that the mass (m) of the reciprocating parts is divided into two

parts, each equal to m / 2.

Fig. 22.28. Primary forces on reciprocating engine mechanism.

It is assumed that m / 2 is fixed at the direct crank (termed as primary direct crank) pin C

and m / 2 at the reverse crank (termed as primary reverse crank) pin C′ , as shown in Fig. 22.28.

We know that the centrifugal force acting on the primary direct and reverse crank

            
2 .

2

m
r= ×ω

∴   Component of the centrifugal force acting on the primary direct crank

           
2
. cos

2

m
r= × ω θ  . . . (in the direction from O to P)

and, the component of the centrifugal force acting on the primary reverse crank

            
2
. cos

2

m
r= × ω θ . . . (in the direction from O to P)

∴  Total component of the centrifugal force along the line of stroke

           
2 2

2 . cos . . cos
2

m
r m r= × × ω θ = ω θ  = Primary force, F

P

Hence, for primary effects the mass m of the reciprocating parts at P may be replaced

by two masses at C and ′C  each of magnitude m/2.

Note : The component of the centrifugal forces of the direct and reverse cranks, in a direction perpendicular

to the line of stroke, are each equal to 
2
. sin ,

2

m
r× ω θ , but opposite in direction. Hence these components are

balanced.



896      �               Theory of Machines

Considering secondary forces

We know that the secondary force

           
2 2 cos 2

(2 ) cos 2 . .
4

r
m m r

n n

θ
= ω × θ = ω ×

In the similar way as discussed above, it will be seen that for the secondary effects, the

mass (m) of the reciprocating parts may be replaced by two masses (each m/2) placed at D and D′

such that OD = OD′  = r/4n. The crank OD is the secondary direct crank and rotates at 2ω  rad/s in

the clockwise direction, while the crank OD′ is the secondary reverse crank and rotates at 2ω

rad/s in the anticlockwise direction as shown in Fig. 22.29.

Fig. 22.29. Secondary force on reciprocating engine mechanism.

Example 22.15. The three cylinders of an air compressor have their axes 120° to one

another, and their connecting rods are coupled to a single crank. The stroke is 100 mm and the

length of each connecting rod is 150 mm. The mass of the reciprocating parts per cylinder is 1.5

kg. Find the maximum primary and secondary forces acting on the frame of the compressor when

running at 3000 r.p.m. Describe clearly a method by which such forces may be balanced.

A diesel train engine.



Chapter 22 : Balancing of Reciprocating Masses           �          897

Solution. Given : L = 100 mm or r = L / 2 = 50 mm = 0.05 m ; l = 150 mm = 0.15 m ;

m = 1.5 kg ; N = 3000 r.p.m. or 2ω = π  × 3000/60 = 314.2 rad/s

The position of three cylinders is shown in

Fig. 22.30. Let the common crank be along the inner

dead centre of cylinder 1. Since common crank rotates

clockwise, therefore θ  is positive when measured

clockwise.

Maximum primary force acting on the frame of the

compressor

The primary direct and reverse crank positions

as shown in Fig. 22.31 (a) and (b), are obtained as

discussed below :

1. Since θ  = 0° for cylinder 1, therefore both the

primary direct and reverse cranks will coincide

with the common crank.

2. Since θ  =  ±120° for cylinder 2, therefore the

primary direct crank is 120° clockwise and the

primary reverse crank is 120° anti-clockwise

from the line of stroke of cylinder 2.

3. Since θ  = ± 240° for cylinder 3, therefore the primary direct crank is 240° clockwise and

the primary reverse crank is 240° anti-clockwise from the line of stroke of cylinder 3.

From Fig. 22.31 (b), we see that the primary reverse cranks form a balanced system. There-

fore there is no unbalanced primary force due to the reverse cranks. From Fig. 22.31 (a), we see

that the resultant primary force is equivalent to the centrifugal force of a mass 3 m/2 attached to the

end of the crank.

∴  Maximum primary force  = 
2 23 3 1.5
. (314.2) 0.05 11106 N

2 2

m
r

×
×ω = =  = 11.106 kN Ans.

(a) Direct primary cranks. (b) Reverse primary cranks.

Fig. 22.31

The maximum primary force may be balanced by a mass attached diametrically opposite to

the crank pin and rotating with the crank, of magnitude B
1
 at radius b

1
 such that

      1 1

3 3 1.5
. 0.05

2 2

m
B b r

×
= × = ×  = 0.1125 N-m Ans.

Fig. 22.30
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Maximum secondary force acting on the frame of the compressor

The secondary direct and reverse crank positions as shown in Fig. 22.32 (a) and (b), are

obtained as discussed below :

1. Since θ = 0° and 2 θ  = 0° for cylinder 1, therefore both the secondary direct and reverse

cranks will coincide with the common crank.

2. Since θ  =  ±120° and 2 θ  =  ± 240° for cylinder 2, therefore the secondary direct crank

is 240° clockwise and the secondary reverse crank is 240° anticlockwise from the line of

stroke of cylinder 2.

3. Since θ  = ± 240° and 2 θ  =  ± 480°, therefore the secondary direct crank is 480° or 120°

clockwise and the secondary reverse crank is 480° or 120° anti-clockwise from the line of

stroke of cylinder 3.

(a) Direct secondary cranks. (b) Reverse secondary cranks.

Fig. 22.32

From Fig. 22.32 (a), we see that the secondary direct cranks form a balanced system.

Therefore there is no unbalanced secondary force due to the direct cranks. From Fig. 22.32 (b),

we see that the resultant secondary force is equivalent to the centrifugal force of a mass 3 m/2

attached at a crank radius of r/4n and rotating at a speed of 2ω  rad/s in the opposite direction to

the crank.

Submarines are powered by diesel or nuclear powered engines which have

reciprocating and rotating parts.
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∴   Maximum secondary force

           
2 22 3 1.5 0.05

(2 ) (2 314.2) N
2 4 2 4 0.15 / 0.05

m r

n

×   
= ω = ×   

×   

...( / )n l r=∵

= 3702 N Ans.

This maximum secondary force may be balanced by a mass B
2
 at radius b

2
, attached dia-

metrically opposite to the crankpin, and rotating anti-clockwise at twice the crank speed, such that

   2 2

3 3 1.5 0.05
.

2 4 2 4 0.15 / 0.05

m r
B b

n

×
= × = × =

×
 0.009 375 N-m Ans.

Notes : 1. Proceeding in the same way as discussed in the above example, we may prove that in a radial

engine with an odd number of cylinders, the primary forces may be balanced by attaching single mass of

magnitude 
1

2
K.m (K being the number of cylinders), at crank radius diametrically opposite to the crank pin.

2. For a radial engine containing four or more cylinders, the secondary direct and reverse cranks

form a balanced system, i.e. the secondary forces are in complete balance.

22.13.22.13.22.13.22.13.22.13. Balancing of V-enginesBalancing of V-enginesBalancing of V-enginesBalancing of V-enginesBalancing of V-engines

Consider a symmetrical two cylinder V-engine as shown in Fig. 22.33, The common crank

OC is driven by two connecting rods PC and QC. The lines of stroke OP and OQ are inclined to

the vertical OY, at an angle α as shown in Fig 22.33.

Let          m = Mass of reciprocating parts per cylinder,

           l = Length of connecting rod,

          r = Radius of crank,

        n = Ratio of length of connecting rod to crank radius =  l / r

         θ  = Inclination of crank to the vertical at any instant,

        ω  = Angular velocity of crank.

Fig.22.33. Balancing of V-engines.

We know that inertia force due to reciprocating parts of cylinder 1, along the line of stroke

           
2 cos 2( )

. . cos( )m r
n

α − θ 
= ω α − θ +

 
 

and the inertia force due to reciprocating parts of cylinder 2, along the line of stroke

            
2 cos 2( )

. . cos( )m r
n

α + θ 
= ω α − θ +

 
 
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The balancing of V-engines is only considered for primary and secondary forces* as
discussed below :

Considering primary forces

We know that primary force acting along the line of stroke of cylinder 1,

      2
P1 . . cos( )F m r= ω α − θ

∴   Component of F
P1

 along the vertical line OY,

            = 2
P1 cos . .cos( )cosF m rα = ω α − θ α  . . . (i)

and component of F
P1

 along the horizontal line OX

= 2
P1 sin . . cos( )sinF m rα = ω α −θ α . . . (ii)

Similarly, primary force acting along the line of stroke of cylinder 2,

    2
P2 . . cos( )F m r= ω α + θ

∴   Component of F
P2

 along the vertical line OY

= 2
P2 cos . . cos( )cosF m rα = ω α + θ α  . . . (iii)

and component of F
P2

 along the horizontal line OX ′

                       = 2
P2 sin . . cos( )sinF m rα = ω α + θ α  . . . (iv)

Total component of primary force along the vertical line OY

    PVF = (i) + (iii) 2. . cos [cos( ) cos( )]m r= ω α α −θ + α + θ

            = 
2

. . cos 2 cos cosm rω α × α θ

... [ cos( ) cos( ) 2cos cos ]α − θ + α + θ = α θ∵

= 
2 2

2 . . cos .cosm rω α θ

and total component of primary force along the horizontal line OX

     PHF = (ii) – (iv) 2. . sin [cos( ) cos( )]m r= ω α α − θ − α + θ

= 
2. . sin 2sin sinm rω α× α θ

...  [ cos( ) cos( ) 2sin sin ]α − θ − α + θ = α θ∵

= 
2 2

2 . . sin .sinm rω α θ

∴   Resultant primary force,

       2 2
P PV PH( ) ( )F F F= +

= 
2 2 2 2 2

2 . . (cos .cos ) (sin .sin )m rω α θ + α θ  . . . (v)

Notes : The following results, derived from equation (v), depending upon the value of α may be noted :

1. When 2 60α = °    or   30 ,α = °

     2 2 2 2 2
P 2 . . (cos 30 cos ) (sin 30 sin )F m r= ω ° θ + ° θ

* Since the plane of rotation of the crank is same, therefore there are no unbalanced primary and secondary

couples.
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            = 

2 2
2 3 1

2 . . cos sin
4 4

m r
   

ω θ + θ   
   

 = 
2 2 2
. 9cos sin

2

m
r× ω θ + θ      ...(vi)

2. When 2 90α = °    or  45α = °

      2 2 2 2 2
P 2 . . (cos 45 cos ) (sin 45 sin )F m r= ω ° θ + ° θ

            

2 2
2 21 1

2 . . cos ) sin . .
2 2

m r m r
   

= ω θ + θ = ω   
   

 . . . (vii)

3. When 2 120α = °    or   60α = ° ,

       2 2 2 2 2
P 2 . . (cos 60 cos ) (sin 60 sin )F m r= ω ° θ + ° θ

= 

2 2
2 1 3

2 . . cos sin
4 4

m r
   

ω θ + θ   
   

= 
2 2 2
. cos 9sin

2

m
r× ω θ + θ ... (viii)

Considering secondary forces

We know that secondary force acting along the line of stroke of cylinder 1,

     
2

S1

cos 2( )
. .F m r

n

α − θ
= ω ×

∴   Component of F
S1

 along the vertical line OY

         
2

S1

cos 2( )
cos . . cosF m r

n

α − θ
= α = ω × × α . . . (ix)

and component of F
S1

 along the horizontal line OX

          
2

S1

cos 2( )
sin . . sinF m r

n

α − θ
= α = ω × × α  . . . (x)

Similarly, secondary force acting along the line of stroke of cylinder 2,

      
2

S2

cos 2( )
.F m r

n

α + θ
= ω ×

∴   Component of F
S2

 along the vertical line OY

          
2

S2

cos 2( )
cos . . cosF m r

n

α + θ
= α = ω × × α  . . . (xi)

and component of F
S2

 along the horizontal line OX ′

           
2

S2

cos 2( )
sin . . sinF m r

n

α + θ
= α = ω × × α  . . . (xii)

Total component of secondary force along the vertical line OY,

    SVF = (ix) + (xi) 
2
. cos [cos 2( ) cos 2( )]

m
r

n
= × ω α α − θ + α + θ

=
2 . cos 2 cos 2 cos 2

m
r

n
× ω α× α θ  = 

22
. cos .cos 2 cos 2

m
r

n
× ω α α θ

and total component of secondary force along the horizontal line OX,

      F
SH

 = (x) – (xii) 
2
. sin [cos 2( ) cos 2( )]

m
r

n
= × ω α α − θ − α + θ

           
2
. sin 2sin 2 .sin 2

m
r

n
= × ω α × α θ

       
22
. sin .sin 2 .sin 2

m
r

n
= × ω α α θ
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∴ Resultant secondary force,

      
2 2

S SV SH( ) ( )F F F= +

          
2 2 22
. (cos .cos 2 .cos 2 ) (sin .sin 2 .sin 2 )

m
r

n
= × ω α α θ + α α θ

 . . .(xiii)

Notes : The following results, derived from equation (xiii), depending upon the value of α, may be noted.

1. When 2 60α = °  or 30α = ° ,

       
2 2 2

S

2
. (cos30 cos60 cos2 ) (sin30 sin 60 sin 2 )

m
F r

n
= × ω ° ° θ + ° ° θ

= 

2 2

22 3 1 1 3
. cos2 sin 2

2 2 2 2

m
r

n

   
× ω × θ + × θ   

      

= 
23
.

2

m
r

n
× × ω  . . . (xiv)

2. When 2 90α = °  or 45α = ° ,

       
2 2 2

S

2
. (cos45 cos90 cos2 ) (sin 45 sin 90 sin 2 )

m
F r

n
= × ω ° ° θ + ° ° θ

            = 

2
2 22 1 2
. 0 1 sin 2 . sin 2

2

m m
r r

n n

 
× ω + × × θ = × ω θ 

 
 . . . (xv)

Note : This picture is given as additional information and is not a direct example of the current chapter.

Automated Guided Vehicles,  AGVs, operate in many factories. They ferry goods and materials

along carefully marked routes. Many AGVs are guided by signals from electrical loops buried

under factory floors.
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        3.  When 2 120α = °  or 60α = °

        
2 2 2

S

2
. (cos60 cos120 cos2 ) (sin 60 sin120 sin 2 )

m
F r

n
= × ω ° ° θ + ° ° θ

           

22
22 1 1 3 3
. cos2 sin 2

2 2 2 2

m
r

n

  
= × ω × − × θ + × × θ  

    

2 2 22
. cos 2 9sin 2

m
r

n
= × ω θ + θ            . . . (xvi)

Example 22.16.  A vee-twin engine has the cylinder axes at right angles and the connect-

ing rods operate a common crank. The reciprocating mass per cylinder is 11.5 kg and the crank

radius is 75 mm. The length of the connecting rod is 0.3 m. Show that the engine may be balanced

for primary forces by means of a revolving balance mass.

If the engine speed is 500 r.p.m. What is the value of maximum resultant secondary force ?

Solution. Given :  2 90α = °  or 45α = ° ; m = 11.5 kg ; r = 75 mm = 0.075 m ; l = 0.3 m ;

N = 500 r.p.m. or 2 500 / 60ω = π×  = 52.37 rad/s

We know that resultant primary force,

     2 2 2 2 2
 P 2 . . (cos cos ) (sin sin )F m r= ω α θ + α θ

          2 2 2 2 2
2 . . (cos 45 cos ) (sin 45 sin )m r= ω ° θ + ° θ

           

2 2
2 2cos sin

2 . . . .
2 2

m r m r
θ θ   

= ω + = ω
   
   

Since the resultant primary force 
2

. .m rω is the centrifugal force of a mass m at the crank

radius r when rotating at ω  rad / s, therefore, the engine may be balanced by a rotating balance

mass.

Maximum resultant secondary force

We know that resultant secondary force,

      
2

 S 2 . sin 2
m

F r
n

= × × ω θ  . . . ( When 2 α  = 90°)

This is maximum, when sin 2 θ  is maximum i.e. when sin 2 θ  = ± 1 or θ  = 45° or 135°.

∴  Maximum resultant secondary force,

  
2

S 2 .
max

m
F r

n
= × × ω  . . . (Substituting θ  = 45° )

           
211.5

2 (52.37) 0.075
0.3 / 0.075

= × =  836 N Ans. . . . (∵  n = l / r)

Example 22.17. The reciprocating mass per cylinder in a 60° V-twin engine is 1.5 kg. The

stroke and connecting rod length are 100 mm and 250 mm respectively. If the engine runs at 2500

r.p.m., determine the maximum and minimum values of the primary and secondary forces. Also

find out the crank position corresponding these values.
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Solution. Given 2α = 60°   or   α = 30°,   m = 1.5 kg ;  Stroke = 100 mm or r = 100/2

= 50 mm = 0.05 m ;  l = 250 mm = 0.25 m ;  N = 250 r.p.m.   or  ω = 2 π × 2500 / 60 = 261.8 rad/s

Maximum and minimum values of primary forces

We know that the resultant primary force,

        F
P
 = 

2 2 2 2 2
2 . . (cos cos ) (sin sin )m rω α ⋅ θ + α ⋅ θ

             = 
2 2 2 2 2

2 . . (cos 30 cos ) (cos 30 sin )m rω ° θ + ° θ

 = 

2 2

2 3 1
2 cos sin

4 4
m r

   
ω θ + θ   

   

 = 
2 2 2

9cos sin
2

m
r× ω θ + θ ...(i)

The primary force is maximum, when θ = 0°. Therefore substituting θ = 0° in equation (i),

we have maximum primary force,

  
2 2

P( )

1.5
3 (261.8) 0.05 3 7710.7 N

2 2
max

m
F r= × ω × = × = Ans.

The primary force is minimum, when θ = 90°. Therefore substituting θ = 90° in equation

(i), we have minimum primary force,

            
2 2

P( )

1.5
(261.8) 0.05 2570.2 N

2 2
min

m
F r= × ω = =  Ans.

Maximum and minimum values of secondary forces

We know that resultant secondary force.

        
2 2 2

S

2
(cos cos 2 cos 2 ) (sin sin 2 sin 2 )

m
F

n
= × ω α α θ + α α θ

 
2 2 22

(cos30 cos60 cos 2 ) (sin 30 sin 60 sin 2 )
m

r
n

= × ω ° ° θ + ° ° θ

 

2 2

22 3 1 1 3
cos2 sin 2

2 2 2 2

m
r

n

   
= ×ω × θ + × θ   

   
   

 
23

2
= × ×ω

m
r

n

 
23 1.5

(261.8) 0.05
2 0.25 / 0.05

= × ... (∵ n = l / r)

 890.3 N=  Ans.
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EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

1. A single cylinder horizontal engine runs at 120 r.p.m. The length of stroke is 400 mm. The mass of

the revolving parts assumed concentrated at the crank pin is 100 kg and mass of the reciprocating

parts is 150 kg. Determine the magnitude of the balancing mass required to be placed opposite to

the crank at a radius of 150mm which is equivalent to all the revolving and 2/3rd of the reciprocat-

ing masses. If the crank turns 30° from the inner dead centre, find the magnitude of the unbalanced

force due to the balancing mass. [Ans. 212.4 kg]

2. A single cylinder engine runs at 250 r.p.m. and has a stroke of 180 mm. The reciprocating parts has

a mass of 120 kg and the revolving parts are equivalent to a mass of 70 kg at a radius of 90 mm. A

mass is placed opposite to the crank at a radius of 150 mm to balance the whole of the revolving

mass and two-thirds of the reciprocating mass. Determine the magnitude of the balancing mass and

the resultant residual unbalance force when the crank has turned 30° from the inner dead centre,

neglect the obliquity of the connecting rod. [Ans. 90 kg ; 3.264 kN]

3. A two cylinder uncoupled locomotive has inside cylinders 0.6 m apart. The radius of each crank is

300 mm and are at right angles. The revolving mass per cylinder is 250 kg and the reciprocating

mass per cylinder is 300 kg. The whole of the revolving and two-third of the reciprocating masses

are to be balanced and the balanced masses are placed, in the planes of rotation of the driving

wheels, at a radius of 0.8 m. The driving wheels are 2 m in diameter and 1.5 m apart. If the speed

of the engine is 80 km. p.h. ; find hammer blow, maximum variation in tractive effort and maximum

swaying couple. [Ans. 18.30 kN, 16.92 kN, 16.2 kN-m]

4. A two cylinder uncoupled locomotive with cranks at 90° has a crank radius of 325 mm. The distance

between the centres of driving wheels is 1.5 m. The pitch of cylinders is 0.6 m. The diameter of

treads of driving wheels is 1.8 m. The radius of centres of gravity of balance masses is 0.65 m. The

pressure due to dead load on each wheel is 40 kN. The masses of reciprocating and rotating parts

per cylinder are 330 kg and 300 kg respectively. The speed of the locomotive is 60 km. p.h. find :

1. The balancing masses both in magnitude and position required to be placed is the planes of

driving wheels to balance whole of the revolving and two-third of the reciprocating masses ; 2. The

swaying couple ; 3.The variation is tractive force ; 4. The maximum and minimum pressure on

rails ; and 5. The maximum speed at which it is possible to run the locomotive, in order that the

wheels are not lifted from the rails.

[Ans. 200 kg ; 13 kN-m ; 17.34 kN ; 58.86 kN, 21.14 kN ; 87.54 km/h]

5. Two locomotives are built with similar sets of reciprocating parts. One is an inside cylinder engine

with two cylinders with centre lines at 0.6 m apart. The other is an outside cylinder with centre

lines at 1.98 m apart. The distance between the driving wheel centres is 1.5 m in both the cases.

The inside cylinder locomotive runs at 0.8 times the speed of the outside cylinder locomotive and

the hammer blow of the inside cylinder locomotive is 1.2 times the hammer blow of the outside

cylinder locomotive.

If the diameter of the driving wheel of the outside cylinder locomotive is 1.98 m, calculate the

diameter of the driving wheel of the inside cylinder locomotive. Compare also the variation in the

swaying couples of the two engines. Assume that the same fraction of the reciprocating masses are

balanced in both the cases. [Ans. 1.184 m, 1.185]

6. An air compressor has four vertical cylinders 1,2,3 and 4 in line and the driving cranks at 90°

intervals reach their upper most positions in this order. The cranks are of 150 mm radius, the

connecting rods 500 mm long and the cylinder centre line 400 mm apart. The mass of the recipro-

cating parts for each cylinder is 22.5 kg and the speed of rotation is 400 r.p.m. Show that there are

no out-of-balance primary or secondary forces and determine the corresponding couples, indicating

the positions of No. 1 crank for maximum values. The central plane of the machine may be taken as

reference plane. [Ans. Primary couple = 6.7 kN-m at 45° and 225° ;

Secondary couple = 1.4 kN-m at 0°, 90°, 180°, 270°]

7. A four cylinder engine has the two outer cranks at 120° to each other and their reciprocating masses

are each 400 kg. The distance between the planes of rotation of adjacent cranks are 400 mm, 700

mm, 700 mm and 500 mm. Find the reciprocating mass and the relative angular position for each of

the inner cranks, if the engine is to be in complete primary balance. Also find the maximum
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unbalanced secondary force, if the length of each crank is 350 mm, the length of each connecting

rod 1.7 m and the engine speed 500 r.p.m.

[Ans. 800 kg at 163° counter clockwise from crank 1, 830 kg at

312° counter clockwise from crank 1 ; 397.3 kN ]

8. The reciprocating masses of the first three cylinders of a four cylinder engine are 4.1, 6.2 and 7.4

tonnes respectively. The centre lines of the three cylinders are 5.2 m, 3.2 m and 1.2 m from the

fourth cylinder. If the cranks for all the cylinders are equal, determine the reciprocating mass of the

fourth cylinder and the angular position of the cranks such that the system is completely balanced

for the primary force and couple.

If the cranks are 0.8 m long, the connecting rods 3.8 m, and the speed of the engine 75 r.p.m. ; find

the maximum unbalanced secondary force and the crank angle at which it occurs.

[Ans. 6.19 t ; 7.5 kN, 33° clockwise from I.D.C.]

9. In a four cylinder petrol engine equally spaced, the cranks, numbered from the front end are 1,2,3,

and 4. The cranks 1 and 4 are in phase and 180° ahead of cranks 2 and 3. The reciprocating mass

of each cylinder is 1 kg. The cranks are 50 mm radius and the connecting rod 200 mm long.

What are the resultant unbalanced forces and couples, primary and secondary, when cranks 1 and 4

are on top dead centre position ? The engine is rotating at 1500 r.p.m. in a clockwise direction

when viewed from the front. Take the reference plane midway between cylinder 2 and 3.

10. A four cylinder inline marine oil engine has cranks at angular displacement of 90°. The outer

cranks are 3 m apart and inner cranks are 1.2 m apart. The inner cranks are placed symmetrically

between the outer cranks. The length of each crank is 450 mm. If the engine runs at 90 r.p.m. and

the mass of reciprocating parts for each cylinder is 900 kg, find the firing order of the cylinders for

the best primary balancing force of reciprocating masses. Determine the maximum unbalanced pri-

mary couple for the best arrangement. [Ans. 1-4-2-3 ; 45.7 kN-m]

11. In a four crank symmetrical engine, the reciprocating masses of the two outside cylinders A and D

are each 600 kg and those of the two inside cylinders B and C are each 900 kg. The distance

between the cylinder axes of A and D is 5.4 metres. Taking the reference line to bisect the angle

between the cranks A and D, and the reference plane to bisect the distance between the cylinder

axes of A and D, find the angles between the cranks and the distance between the cylinder axes of

B and C for complete balance except for secondary couples.

Determine the maximum value of the unbalanced secondary couple if the length of the crank is 425

mm, length of connecting rod 1.8 m and speed is 150 r.p.m.

[Ans. A = 210°, B = 54.7°, C = 305.3°, D =150°; 2.2 m ; 67 N-m ]

12. In a four cylinder inline engine, the cylinders are placed symmetrically along the longitudinal axis,

with a centre distance of 2.4 m between the outside cylinders and 0.6 m between the inside cylinders.

The cranks between the two inside cylinders are at 90° to each other and the mass of reciprocating

parts of each of these is 225 kg. All the four cranks are of 0.3 m radius. If the system is to be

completely balanced for the primary effects, determine 1. The mass of the reciprocating parts of

each of the outside cranks, and 2. The angular position of the outside cranks with reference to the

nearest inside cranks, measured in clockwise direction and draw an end view of the four primary

cranks marking these angles therein.

With the above arrangement, evaluate the secondary unbalanced effects completely, with reference

to a plane through the centre line of cylinder no. 1 and show by means of an end view the angular

position of these with reference to secondary crank no. 1. The engine is running at 180 r.p.m. and

the length of each connecting rod is 1.2 m.

[ Ans. 164 kg each ; 128° and 148° ; 814 kN and 12.7 kN-m ]

13. A six-cylinder, single acting, two stroke Diesel engine is arranged with cranks at 60° for the firing

sequence 1-4-5-2-3-6. The cylinders, numbered 1 to 6 in succession are pitched 1.5 m apart, except

cylinders 3 and 4 which are 1.8 m apart. The reciprocating and revolving masses per line are 2.2

tonnes and 1.6 tonnes respectively. The crank length is 375 mm, the connecting rod length is 1.6 m,

and the speed is 120 r.p.m.

Determine the maximum and minimum values of the primary couple due to the reciprocating and

revolving parts. Also find the maximum secondary couple and angular position relative to crank

No. 1. Take the plane between the cylinders 3 and 4 as the reference plane.
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14. A three cylinder radial engine driven by a common crank has the cylinders spaced at 120°. The

stroke is 125 mm, length of the connecting rod 225 mm and the mass of the reciprocating parts per

cylinder 2 kg. Calculate the primary and secondary forces at crank shaft speed of 1200 r.p.m.

[Ans. 3000 N ; 830 N]

15. The pistons of a 60° twin V-engine has strokes of 120 mm. The connecting rods driving a common

crank has a length of 200 mm. The mass of the reciprocating parts per cylinder is 1 kg and the

speed of the crank shaft is 2500 r.p.m. Determine the magnitude of the primary and secondary

forces. [Ans. 6.3 kN ; 1.1 kN]

16. A twin cylinder V-engine has the cylinders set at an angle of 45°, with both pistons connected to

the single crank. The crank radius is 62.5 mm and the connecting rods are 275 mm long. The

reciprocating mass per line is 1.5 kg and the total rotating mass is equivalent to 2 kg at the crank

radius. A balance mass fitted opposite to the crank, is equivalent to 2.25 kg at a radius of 87.5 mm.

Determine for an engine speed of 1800 r.p.m. ; the maximum and minimum values of the primary

and secondary forces due to the inertia of reciprocating and rotating masses.

[ Ans. Primary forces : 3240 N (max.) and 1830 N (min.)

Secondary forces : 1020 N (max.) and 470 N (min.)]

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?
1. Write a short note on primary and secondary balancing.

2. Explain why only a part of the unbalanced force due to reciprocating masses is balanced by revolving

mass.

3. Derive the following expressions, for an uncoupled two cylinder locomotive engine :

(a) Variation is tractive force ; (b) Swaying couple ; and (c) Hammer blow.

4. What are in-line engines ? How are they balanced ? It is possible to balance them completely ?

5. Explain the ‘direct and reverse crank’ method for determining unbalanced forces in radial engines.

6. Discuss the balancing of V-engines.

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS
1. The primary unbalanced force is maximum when the angle of inclination of the crank with the line

of stroke is

(a) 0° (b) 90° (c)  180° (d) 360°

2.  The partial balancing means

(a) balancing partially the revolving masses

(b) balancing partially the reciprocating masses

(c) best balancing of engines

(d) all of the above

3. In order to facilitate the starting of locomotive in any position, the cranks of a locomotive, with two

cylinders, are placed at . . . . . . to each other.

(a) 45° (b) 90° (c) 120° (d) 180°

4. In a locomotive, the ratio of the connecting rod length to the crank radius is kept very large in order to

(a) minimise the effect of primary forces (b) minimise the effect of secondary forces

(c) have perfect balancing (d) start the locomotive quickly

5. If c be the fraction of the reciprocating parts of mass m to be balanced per cyclinder of a steam

locomotive with crank radius r, angular speed ω, distance between centre lines of two cylinders a,

then the magnitude of the maximum swaying couple is given by

(a)
21

2

c
mr a

−
× ω (b)

21

2

c
mr a

−
× ω

(c) 2
2(1 )c mr a− ω (d) none of these
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6. The swaying couple is maximum or minimum when the angle of inclination of the crank to the line

of stroke ( θ ) is equal to

(a) 45° and 135° (b) 90° and 135°

(c) 135° and 225° (d) 45° and 225°

7. The tractive force is maximum or minimum when the angle of inclination of the crank to the line of

stroke ( θ ) is equal to

(a) 90° and 225° (b) 135° and 180° (c) 180° and 225° (d) 135° and 315°

8. The swaying couple is due to the

(a) primary unbalanced force (b) secondary unbalanced force

(c) two cylinders of locomotive (d) partial balancing

9. In a locomotive, the maximum magnitude of the unbalanced force along the perpendicular to the

line of stroke, is known as

(a ) tractive force (b) swaying couple (c) hammer blow (d) none of these

10. The effect of hammer blow in a locomotive can be reduced by

(a) decreasing the speed

(b) using two or three pairs of wheels coupled together

(c) balancing whole of the reciprocating parts

(d) both (a) and (b)

11. Multi-cylinder engines are desirable because

(a) only balancing problems are reduced (b) only flywheel size is reduced

(c) both (a) and (b) (d) none of these

12. When the primary direct crank of a reciprocating engine makes an angle θ  with the line of stroke,

then the secondary direct crank will make an angle of . . . . . with the line of stroke.

(a) θ /2 (b) θ (c) 2 θ (d) 4 θ

13. Secondary forces in reciprocating mass on engine frame are

(a) of same frequency as of primary forces

(b) twice the frequency as  of primary forces

(c) four times the frequency as of primary forces

(d) none of the above

14. The secondary unbalanced force produced by the reciprocating parts of a certain cylinder of a given

engine with crank radius r and connecting rod length l can be considered as equal to primary

unbalanced force produced by the same weight having

(a) an equivalent crank radius r
2
/4l and rotating at twice the speed of the engine

(b) r
2
/4l as equivalent crank radius and rotating at engine speed

(c) equivalent crank length of r
2
/4l and rotating at engine speed

(d) none of the above

15. Which of the following statement is correct?

(a) In any engine, 100% of the reciprocating masses can be balanced dynamically

(b) In the case of balancing of multicylinder engine, the value of secondary force is higher than

the value of the primary force

(c) In the case of balancing of multimass rotating systems, dynamic balancing can be directly

started without static balancing done to the system

(d) none of the above.

ANSWERSANSWERSANSWERSANSWERSANSWERS

    1.  (c) 2. (b) 3. (b) 4. (b) 5. (b)

    6.  (d) 7. (d) 8. (a) 9. (c) 10. (d)

   11.  (c) 12. (c) 13. (b) 14. (a) 15. (c)

GO To FIRST
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909

LongitudinalLongitudinalLongitudinalLongitudinalLongitudinal
andandandandand

TTTTTransvransvransvransvransvererererersesesesese
VVVVVibraibraibraibraibrationstionstionstionstions

23
FFFFFeaeaeaeaeaturturturturtures (Main)es (Main)es (Main)es (Main)es (Main)

1. Introduction.

2. Terms Used in Vibratory

Motion.

3. Types of Vibratory Motion.

4. Types of Free Vibrations.

5. Natural Frequency of Free

Longitudinal Vibrations.

6. Natural Frequency of Free

Transverse Vibrations.

7. Effect of Inertia of the

Constraint in Longitudinal and

Transverse Vibrations.

8. Natural Frequency of Free

Transverse Vibrations.

9. Natural Frequency of Free

Transverse Vibrations.

10. Natural Frequency of Free

Transverse Vibrations.

11. Natural Frequency of Free

Transverse Vibrations.

12. Critical or Whirling Speed of

a Shaft.

13. Frequency of Free Damped

Vibrations(Viscous Damping).

14. Damping Factor or Damping

Ratio.

15. Logarithmic Decrement.

16. Frequency of Under Damped

Forced Vibrations.

17. Magnification Factor or

Dynamic Magnifier.

18. Vibration Isolation and

Transmissibility.

23.1.23.1.23.1.23.1.23.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

When elastic bodies such as a spring, a beam and a

shaft are displaced from the equilibrium position by the ap-

plication of external forces, and then released, they execute

a vibratory motion. This is due to the reason that, when a

body is displaced, the internal forces in the form of elastic

or strain energy are present in the body. At release, these

forces bring the body to its original position. When the body

reaches the equilibrium position, the whole of the elastic or

strain energy is converted into kinetic energy due to which

the body continues to move in the opposite direction. The

whole of the kinetic energy is again converted into strain

energy due to which the body again returns to the equilib-

rium position. In this way, the vibratory motion is repeated

indefinitely.

23.2.23.2.23.2.23.2.23.2. TTTTTerererererms Used in ms Used in ms Used in ms Used in ms Used in VVVVVibraibraibraibraibratortortortortory Motiony Motiony Motiony Motiony Motion

The following terms are commonly used in connec-

tion with the vibratory motions :

CONTENTS

CONTENTS
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1. Period of vibration or time period. It is the time interval after which the motion is

repeated itself. The period of vibration is usually expressed in seconds.

2. Cycle. It is the motion completed during one time period.

3. Frequency. It is the number of cycles described in one second. In S.I. units, the fre-

quency is expressed in hertz (briefly written as Hz) which is equal to one cycle per second.

23.3.23.3.23.3.23.3.23.3. Types of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory MotionTypes of Vibratory Motion

The following types of vibratory motion are important from the subject point of view :

1. Free or natural vibrations. When no external force acts on the body, after giving it an

initial displacement, then the body is said to be under free or natural vibrations. The frequency of

the free vibrations is called free or natural frequency.

2. Forced vibrations. When the body vibrates under the influence of external force, then

the body is said to be under forced vibrations. The external force applied to the body is a periodic

disturbing force created by unbalance. The vibrations have the same frequency as the applied force.

Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes

place.

3. Damped vibrations. When there is a reduction in amplitude over every cycle of vibration,

the motion is said to be damped vibration. This is due to the fact that a certain amount of energy

possessed by the vibrating system is always dissipated in overcoming frictional resistances to the

motion.

23.4.23.4.23.4.23.4.23.4. Types of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free VibrationsTypes of Free Vibrations

The following three types of free vibrations are important from the subject point of view :

1. Longitudinal vibrations, 2. Transverse vibrations, and 3. Torsional vibrations.

Consider a weightless constraint (spring or shaft) whose one end is fixed and the other end

carrying a heavy disc, as shown in Fig. 23.1. This system may execute one of the three above

mentioned types of vibrations.

B = Mean position ; A and C = Extreme positions.

(a) Longitudinal vibrations.  (b) Transverse vibrations.     (c) Torsional vibrations.

Fig. 23.1. Types of free vibrations.

1. Longitudinal vibrations. When the particles of the shaft or disc moves parallel to the

axis of the shaft, as shown in Fig. 23.1 (a), then the vibrations are known as longitudinal vibrations.

In this case, the shaft is elongated and shortened alternately and thus the tensile and compressive

stresses are induced alternately in the shaft.
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2. Transverse vibrations. When the particles of the shaft or disc move approximately

perpendicular to the axis of the shaft, as shown in Fig. 23.1 (b), then the vibrations are known as

transverse vibrations. In this case, the shaft is straight and bent alternately and bending stresses are

induced in the shaft.

3. Torsional vibrations*. When the particles of the shaft or disc move in a circle about the

axis of the shaft, as shown in Fig. 23.1 (c), then the vibrations are known as torsional vibrations.

In this case, the shaft is twisted and untwisted alternately and the torsional shear stresses are in-

duced in the shaft.

Note : If the limit of proportionality (i.e. stress proportional to strain) is not exceeded in the three types of

vibrations, then the restoring force in longitudinal and transverse vibrations or the restoring couple in torsional

vibrations which is exerted on the disc by the shaft (due to the stiffness of the shaft) is directly proportional

to the displacement of the disc from its equilibrium or mean position. Hence it follows that the acceleration

towards the equilibrium position is directly proportional to the displacement from that position and the vibration

is, therefore, simple harmonic.

23.5.23.5.23.5.23.5.23.5. Natural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal VibrationsNatural Frequency of Free Longitudinal Vibrations

The natural frequency of the free longitudinal vibrations may be determined by the following

three methods :

1. Equilibrium Method

Consider a constraint (i.e. spring) of negligible mass in an unstrained position, as shown in

Fig. 23.2 (a).

 Let  s = Stiffness of the constraint. It is the force required to produce

unit displacement in the direction of vibration. It is usually

expressed in N/m.

m = Mass of the body suspended from the constraint in kg,

W = Weight of the body in newtons = m.g,

*     The torsional vibrations are separately discussed in chapter 24.

Bridges should be built taking vibrations into account.
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       δ = Static deflection of the spring in metres due to weight W

 newtons, and

             x = Displacement given to the body by the external force, in metres.

Fig. 23.2. Natural frequency of free longitudinal vibrations.

In the equilibrium position, as shown in Fig. 23.2 (b), the gravitational pull W = m.g, is

balanced by a force of spring, such that W = s. δ .

Since the mass is now displaced from its equilibrium position by a distance x, as shown in

Fig. 23.2 (c), and is then released, therefore after time t,

Restoring force           ( ) . .W s x W s s x= − δ + = − δ −

          . . . .s s s x s x= δ − δ − = −  . . . ( . )W s= δ∵  . . . (i)

 . . . (Taking upward force as negative)

and          Accelerating force = Mass × Acceleration

2

2

d x
m

dt

= × . . . (Taking downward force as positive) . .  . (ii)

Equating equations (i) and (ii), the equation of motion of the body of mass m after time t is

          

2

2
.

d x
m s x

dt

× = −    or    

2

2
. 0

d x
m s x

dt

× + =

∴

2

2
0

d x s
x

mdt

+ × =  . . . (iii)

We know that the fundamental equation of simple harmonic motion is

     

2
2

2
. 0

d x
x

dt

+ ω =  . . . (iv)

Comparing equations (iii) and (iv), we have

       
s

m
ω =

∴     Time period,      
2

2p

m
t

s

π
= = π

ω
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and natural frequency,     1 1 1

2 2
n

p

s g
f

t m
= = =

π π δ

. . . ( . . )m g s= δ∵

Taking the value of g as 9.81 m/s
2
 and δ in metres,

    
1 9.81 0.4985

Hz
2

n
f = =

π δ δ

Note : The value of static deflection δ may be found out from the given conditions of the problem. For

longitudinal vibrations, it may be obtained by the relation,

Stress

Strain
E=    or      

W l
E

A
× =

δ
    or      

.

.

W l

E A
δ =

where                       δ   = Static deflection i.e. extension or compression of the constraint,

    W = Load attached to the free end of constraint,

      l = Length of the constraint,

    E = Young’s modulus for the constraint, and

     A = Cross-sectional area of the constraint.

2.  Energy method

We know that the kinetic

energy is due to the motion of the

body and the potential energy is

with respect to a certain datum

position which is equal to the

amount of work required to move

the body from the datum position.

In the case of vibrations, the

datum position is the mean or

equilibrium position at which the

potential energy of the body or the

system is zero.

In the free vibrations, no

energy is transferred to the system

or from the system. Therefore the

summation of kinetic energy and

potential energy must be a

constant quantity which is same at

all the times. In other words,

∴  ( . . . .) 0
d

K E P E
dt

+ =

We know that kinetic en-

ergy,

    

2
1

. .
2

dx
K E m

dt

 
= ×  

 

∵

This industrial compressor uses compressed air to power heavy-

duty construction tools. Compressors are used for jobs, such

as breaking up concrete or paving, drilling, pile driving, sand-

blasting and tunnelling. A compressor works on the same prin-

ciple as a pump. A piston moves backwards and forwards in-

side a hollow cylinder, which compresses the air and forces it

into a hollow chamber. A pipe or hose connected to the cham-

ber channels the compressed air to the tools.

Note : This picture is given as additional information and

is not a direct example of the current chapter.
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and potential energy,           20 . 1
. . .

2 2

s x
P E x s x

+ 
= = × 

 

. . . (∵P.E. = Mean force × Displacement )

∴          

2
21 1

. 0
2 2

d dx
m s x

dt dt

 
 

 × + ×  = 
   

           

2

2

1 1
2 2 0

2 2

dx d x dx
m s x

dt dtdt

× × × × + × × × =

or      

2

2
. 0

d x
m s x

dt

× + =     or     

2

2
0

d x s
x

mdt

+ × =  . . . (Same as before)

The time period and the natural frequency may be obtained as discussed in the previous

method.

3. Rayleigh’s method

In this method, the maximum kinetic energy at the mean position is equal to the maximum

potential energy (or strain energy) at the extreme position. Assuming the motion executed by the

vibration to be simple harmonic, then

       sin .x X t= ω . . . (i)

where          x = Displacement of the body from the mean position after time t

   seconds, and

          X = Maximum displacement from mean position to extreme position.

Now, differentiating equation (i), we have

     cos .
dx

X t
dt

= ω× ω

Since at the mean position, t = 0, therefore maximum velocity at the mean position,

        .
dx

v X
dt

= = ω

∴    Maximum kinetic energy at mean position

          
2 2 21 1

. . .
2 2

m v m X= × = × ω  . . . (ii)

and maximum potential energy at the extreme position

          
20 . 1

.
2 2

s X
X s X

+ 
= = × 

 
 . . . (iii)

Equating equations (ii) and (iii),

     
2 2 21 1

. . .
2 2

m X s X× ω = ×     or   2 s

m
ω =  , and 

s

m
ω =

∴    Time period,        
2

2p

s
t

m

π
= = π

ω
. . . (Same as before)
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and natural frequency, 
1 1

2 2
n

p

s
f

t m

ω
= = =

π π

. . . (Same as before)

Note : In all the above expressions, ω is known as natural circular frequency and is generally denoted by

ω
n
.

23.6.23.6.23.6.23.6.23.6. Natural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse VibrationsNatural Frequency of Free Transverse Vibrations

Consider a shaft of negligible mass, whose one

end is fixed and the other end carries a body of weight

W, as shown in Fig. 23.3.

Let            s = Stiffness of shaft,

         δ = Static deflection due to

    weight of the body,

            x = Displacement of body from

      mean position after time t.

           m = Mass of body = W/g

As discussed in the previous article,

    Restoring force  = – s.x . . . (i)

  and accelerating force       
2

2

d x
m

dt

= × . . . (ii)

Equating equations (i) and (ii), the equation of motion becomes

   
2

2
.

d x
m s x

dt

× = −       or      

2

2
. 0

d x
m s x

dt

× + =

∴     
2

2
0

d x s
x

mdt

+ × =                    . . . (Same as before )

Hence, the time period and the natural frequency of the transverse vibrations are same as

that of longitudinal vibrations. Therefore

Time period, 2p

m
t

s
= π

and natural frequency,    
1 1 1

2 2
n

p

s g
f

t m
= = =

π π δ

Note : The shape of the curve, into which the vibrating shaft deflects, is identical with the static deflection

curve of a cantilever beam loaded at the end. It has been proved in the text book on Strength of Materials,

that the static deflection of a cantilever beam loaded at the free end is

3

3

Wl

EI
δ =  (in metres)

where            W = Load at the free end, in newtons,

l = Length of the shaft or beam in metres,

E = Young’s modulus for the material of the shaft or beam in

N/m
2
, and

I = Moment of inertia of the shaft or beam in m
4
.

Fig. 23.3. Natural frequency of free

       transverse vibrations.
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Example 23.1. A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass

100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m
2
. Determine the

frequency of longitudinal and transverse vibrations of the shaft.

Solution. Given : d = 50 mm = 0.05 m ; l = 300 mm = 0.03 m ; m = 100 kg ;

E = 200 GN/m
2
 = 200 ×10

9
 N/m

2

We know that cross-sectional area of the shaft,

       
2 2 3 2

(0.05) 1.96 10 m
4 4

A d
−π π

= × = = ×

and moment of inertia of the shaft,

      
4 4 6 4(0.05) 0.3 10 m

64 64
I d

−π π
= × = = ×

Frequency of longitudinal vibration

We know that static deflection of the shaft,

               
6

3 9

. 100 9.81 0.3
0.751 10

. 1.96 10 200 10

W l

A E

−

−

× ×
δ = = = ×

× × ×

 m

( . )W m g=… ∵

∴Frequency of longitudinal vibration,

     
6

0.4985 0.4985
575

0.751 10
nf

−

= = =
δ ×

 Hz  Ans.

Frequency of transverse vibration

We know that static deflection of the shaft,

      

3 3
3

9 6

. 100 9.81 (0.3)
0.147 10

3 . 3 200 10 0.3 10

W l

E I

−

−

× ×
δ = = = ×

× × × ×

 m

∴     Frequency of transverse vibration,

     
3

0.4985 0.4985

0.147 10
nf

−

= =
δ ×

 = 41 Hz Ans.

23.7.23.7.23.7.23.7.23.7. Effect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and TransverseEffect of Inertia of the Constraint in Longitudinal and Transverse

VibrationsVibrationsVibrationsVibrationsVibrations

In deriving the expressions for natural frequency of

longitudinal and transverse vibrations, we have neglected the inertia

of the constraint i.e. shaft. We shall now discuss the effect of the

inertia of the constraint, as below :

1. Longitudinal vibration

Consider the constraint whose one end is fixed and other end

is free as shown in Fig. 23.4.

Let       m
1
 = Mass of the constraint per unit length,

       l = Length of the constraint,

     m
C

= Total mass of the constraint = m
1
. l, and

        v = Longitudinal velocity of the free end.

Fig. 23.4. Effect of inertia

of the constraint in

longitudinal vibrations.
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Consider a small element of the constraint at a distance x from the fixed end and of

length xδ .

∴   Velocity of the small element

          
x

v
l

= ×

and kinetic energy possessed by the element

          
1

2
=  × Mass (velocity)

2

          

2 2 2
1

1 2

.1
.

2 2

m v xx
m x v x

l l

 
= × δ × = × δ 

 

∴    Total kinetic energy possessed by the constraint,

         

2 2 2 3
1 1

2 20
0

. .

32 2

l
l m v x m v x

dx

l l

 
= × =  

 
∫

2 3
2 2 2C1 1

12

. .1 1 1
.

3 2 3 2 3 2 32

mm v m ll l
m v v v

l

  
= × = × × = =   

   
. . . (i)

. . . (Substituting  m
1
 . l = m

C
)

If a mass of 
C

3

m
 is placed at the free end and the constraint is assumed to be of negligible

mass, then

Total kinetic energy possessed by the constraint

          
2C1

2 3

m
v

 
=  

 
 . . . [Same as equation (i)] . . . (ii)

Hence the two systems are dynamically same. Therefore, inertia of the constraint may be

allowed for by adding one-third of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m
C
 and the mass

of the disc m at the end is given, then natural frequency of vibration,

      C

1

2

3

n

s
f

m
m

=
π

+

2. Transverse vibration

Consider a constraint whose one end is fixed and the other

end is free as shown in Fig. 23.5.

Let       m
1
 = Mass of constraint per unit length,

        l = Length of the constraint,

      m
C
 = Total mass of the constraint = m

1
.l, and

        v = Transverse velocity of the free end.

Consider a small element of the constraint at a distance x

from the fixed end and of length xδ . The velocity of this element is

Fig. 23.5. Effect of inertia

of the constraint in

transverse vibrations.
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given by 

2 3

3

3 .

2

l x x
v

l

 −
× 

  

.

∴     Kinetic energy of the element

      

2
2 3

1 3

1 3 .
.

2 2

l x x
m x v

l

 −
= × δ × 

 
 

and total kinetic energy of the constraint,

      

2
22 3

2 4 5 61
1 3 6

0 0

.1 3 .
(9 . 6 . )

2 2 8

l l

m vl x x
m v dx l x l x x dx

l l

 −
= × × = − + 

 
 

∫ ∫

      

2 2 5 6 7
1

6

0

. 9 . 6 .

5 6 78

l

m v l x l x x

l

 
= − + 

  

      

2 27 7 7 7
1 1

6 6

. .9 6 33

5 6 7 358 8

m v m vl l l l

l l

   
= − + =   

 
    

      
2 2 2

1 1 C

33 1 33 1 33
. . .

280 2 140 2 140
m l v m l v m v

   
= × = × = ×   

   
 . . . (i)

. . . (Substituting m
1
.l = m

C
)

If a mass of 
C33

140

m
 is placed at the free end and the constraint is assumed to be of negli-

gible mass, then

Total kinetic energy possessed by the constraint

      
2C331

2 140

m
v

 
=  

 
. . . [Same as equation (i)]

Hence the two systems are dynamically same. Therefore the inertia of the constraint may

be allowed for by adding 
33

140
 of its mass to the disc at the free end.

From the above discussion, we find that when the mass of the constraint m
C
 and the mass

of the disc m at the free end is given, then natural frequency of vibration,

 C

1

332

140

n

s
f

m
m

=
π

+

Notes : 1. If both the ends of the constraint are fixed, and the disc is situated in the middle of it, then

proceeding in the similar way as discussed above, we may prove that the inertia of the constraint may be

allowed for by adding 
13

35
 of its mass to the disc.

2. If the constraint is like a simply supported beam, then 
17

35
 of its mass may be added to the mass

of the disc.
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23.8.23.8.23.8.23.8.23.8. Natural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a PointNatural Frequency of Free Transverse Vibrations Due to a Point

Load Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over aLoad Acting Over a Simply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported ShaftSimply Supported Shaft

Consider a shaft AB of length l, carrying a point

load W at C which is at a distance of l
1
 from A and l

2
 from

B, as shown in Fig. 23.6. A little consideration will show

that when the shaft is deflected and suddenly released, it

will make transverse vibrations. The deflection of the shaft

is proportional to the load W and if the beam is deflected

beyond the static equilibrium position then the load will

vibrate with simple harmonic motion (as by a helical

spring). If δ is the static deflection due to load W, then the

natural frequency of the free transverse vibration is

     
1 0.4985

2
n

g
f = =

π δ δ
 Hz  . . . (Substituting, g = 9.81 m/s

2
)

Some of the values of the static deflection for the various types of beams and under various

load conditions are given in the following table.

Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (Table 23.1. Values of static deflection (δδδδδ) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams) for the various types of beams

and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.and under various load conditions.

S.No. Type of beam Deflection (δδδδδ)

1. Cantilever beam with a point load W at the δ =

3

3

Wl

EI
 (at the free end)

free end.

2. Cantilever beam with a uniformly δ =

4

8

wl

EI
 (at the free end)

distributed load of w per unit length.

3. Simply supported beam with an eccentric δ =

2 2

3

Wa b

E I l
 (at the point load)

point load W.

4. Simply supported beam with a central point δ =

3

48

W l

EI
 (at the centre)

load W.

Fig. 23.6. Simply supported beam

with a point load.
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5. Simply supported beam with a uniformly δ = ×

4
5

384

wl

EI
 (at the centre)

distributed load of w per unit length.

6. Fixed beam with an eccentric point load W. δ =

3 3

3

Wa b

E I l
 (at the point load)

7. Fixed beam with a central point load W. δ =

3

192

Wl

EI
 (at the centre)

8. Fixed beam with a uniformly distributed δ =

4

384

wl

EI
 (at the centre)

load of w per unit length.

Example 23.2. A shaft of length 0.75 m, supported freely at the ends, is carrying a body of

mass 90 kg at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume

E = 200 GN/m
2
 and shaft diameter = 50 mm.

Solution. Given : l = 0.75 m ; m = 90 kg ; a = AC = 0.25 m ; E = 200 GN/m
2
 = 200 × 10

9

N/m
2
; d = 50 mm = 0.05 m

The shaft is shown in Fig. 23.7.

We know that moment of inertia of the shaft,

       
4 4 4(0.05) m

64 64
I d

π π
= × =

          6 40.307 10 m−
= ×

and static deflection at the load point (i.e. at point C),

       
2 2 2 2

3

9 6

90 9.81(0.25) (0.5)
0.1 10

3 3 200 10 0.307 10 0.75

Wa b

E I l

−

−

×
δ = = = ×

× × × × ×

 m

. . . (∵b = BC = 0.5 m)

∵

S.No. Type of beam Deflection (δδδδδ)

Fig. 23.7
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We know that natural frequency of transverse vibration,

  
3

0.4985 0.4985

0.1 10
nf

−

= =
δ ×

 = 49.85 Hz Ans.

Example 23.3. A flywheel is mounted on a vertical shaft as shown in Fig. 23.8. The both

ends of the shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg. Find the

natural frequencies of longitudinal and transverse vibrations. Take E = 200 GN/m
2
.

Solution. Given : d = 50 mm = 0.05 m ; m = 500 kg ; E = 200 GN/m2 = 200 × 109 N/m2

We know that cross-sectional area of shaft,

   
2 2 3

(0.05) 1.96 10
4 4

A d
−π π

= × = = ×  m
2

and moment of inertia of shaft,

     
4 4 6 4

(0.05) 0.307 10 m
64 64

I d
−π π

= × = = ×

Natural frequency of longitudinal vibration

Let     m
1
 = Mass of flywheel carried by the length l

1
.

∴           m – m
1

= Mass of flywheel carried by length l
2
.

We know that extension of length l
1

       1 1 1 1. . .

. .

W l m g l

A E A E
= = . . . (i)

Similarly, compression of length l
2

       
1 2 1 2( ) ( ) .

. .

W W l m m g l

A E A E

− −
= =  . . . (ii)

Since extension of length l
1
 must be equal to compression of length l

2
, therefore equating

equations (i) and (ii),

 1 1 1 2. ( )m l m m l= −

       1 1 10.9 (500 ) 0.6 300 0.6m m m× = − = −  or 1 200m =  kg

∴     Extension of length l
1
,

    61 1

3 9

. . 200 9.81 0.9
4.5 10

. 1.96 10 200 10

m g l

A E

−

−

× ×
δ = = = ×

× × ×

m

We know that natural frequency of longitudinal vibration,

   
6

0.4985 0.4985

4.5 10
nf

−

= =
δ ×

 = 235 Hz Ans.

Natural frequency of transverse vibration

We know that the static deflection for a shaft fixed at both ends and carrying a point load

is given by

    
3 3 3 3

3

3 9 6 3

500 9.81(0.9) (0.6)
1.24 10

3 3 200 10 0.307 10 (1.5)

Wa b

E Il

−

−

×
δ = = = ×

× × × ×

 m

. . . (Substituting W = m.g ; a = l
1
, and b = l

2
)

Fig. 23.8
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We know that natural frequency of transverse vibration,

    
3

0.4985 0.4985

1.24 10
nf

−

= =
δ ×

 = 14.24 Hz   Ans.

23.9.23.9.23.9.23.9.23.9. Natural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to UniformlyNatural Frequency of Free Transverse Vibrations Due to Uniformly

Distributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported ShaftDistributed Load Acting Over a Simply Supported Shaft

Consider a shaft AB carrying a uniformly distributed load of w per unit length as shown in

Fig. 23.9.

Let     y
1

= Static deflection at the middle of the shaft,

     a
1
= Amplitude of vibration at the middle of the shaft, and

    w
1 

= Uniformly distributed load per unit static deflection at the

 middle of the shaft = w/y
1
.

Fig. 23.9. Simply supported shaft carrying a uniformly distributed load.

Now, consider a small section of the shaft at a distance x from A and length xδ .

Let        y = Static deflection at a distance x from A, and

     a = Amplitude of its vibration.

∴     Work done on this small section

         
1

1 1 1

1 1

1 1 1
. . .

2 2 2

aw
w a x a a x a w a x

y y
= × δ × = × × δ × = × × × × δ

Since the maximum potential energy at the extreme position is equal to the amount of work

done to move the beam from the mean position to one of its extreme positions, therefore

Maximum potential energy at the extreme position

         
1

1
0

1

2
.

l

a
w a dx

y
= × × ×∫  . . . (i)

Assuming that the shape of the curve of a vibrating shaft is similar to the static deflection

curve of a beam, therefore

     1

1

a a

y y
=  = Constant, C      or     1

1

a
C

y
=  and a = y.C

Substituting these values in equation (i), we have maximum potential energy at the extreme

position

        2

0 0

1 1
. . . .

2 2

l l

w C y C dx w C y dx= × × × = ×∫ ∫  . . . (ii)



Chapter 23 : Longitudinal and Transverse Vibrations           �          923

Since the maximum velocity at the mean position is 1.aω , where ω is the circular frequency

of vibration, therefore

Maximum kinetic energy at the mean position

          
2 2 2 2

0 0

1 .
( . ) .

2 2

l l

w dx w
a C y dx

g g
= × ω = ×ω ×∫ ∫  . . . (iii)

. . .(Substituting a = y.C )

We know that the maximum potential energy at the extreme position is equal to the maximum

kinetic energy at the mean position, therefore equating equations (ii) and (iii),

           
2 2 2 2

0 0

1
. .

2 2

l l

w
w C y dx C y dx

g
× × = ×ω ×∫ ∫

∴                  
2 0

2

0

.

.

l

l

g y dx

y dx

ω =

∫

∫

      or       0

2

0

.

.

l

l

g y dx

y dx

ω =

∫

∫

. . . (iv)

When the shaft is a simply supported, then the static deflection at a distance x from A is

      *
4 3 3

( 2 )
24

w
y x l x l x

EI
= − + . . . (v)

where        w = Uniformly distributed load unit length,

       E = Young’s modulus for the material of the shaft, and

        I = Moment of inertia of the shaft.

* It has been proved in books on ‘Strength of Materials’ that maximum bending moment at a distance x
from A is

        

2 2

2
( . .)

2 2
max

d y wx wl x
B M EI

dx

= = −

Integrating this expression,

 

3 2

1
.

.
2 3 2 2

dy wx wl x
EI C

dx
= − +

× ×

On further integrating,

  

4 3

1 2
.

. .
2 3 4 2 2 3

= − + +
× × × ×

wx wl x
E I y C x C

          

4 3

1 2
24 12

= − + +
wx wlx

C x C

where C
1
 and C

2
 are the constants of integration and may be determined from the given conditions of

the problem. Here
        when          x = 0, y = 0 ;              ∴      C

2
 = 0

        and when          x = l, y = 0 ;    ∴       C
1
 = 

3

24

wl

Substituting the value of C
1
, we get

       
4 3 3

( 2 )
24

= − +
w

y x l x l x
EI
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Now integrating the above equation (v) within the limits from 0 to l,

 

5 4 3 2
4 3 3

00 0

2
( 2 )

24 24 5 4 2

ll l

w w x lx l x
y dx x lx l x dx

EI EI

 
= − + = − + 

 
∫ ∫

           

5 5 5 5 5
2 .

24 5 4 2 24 5 120 .

w l l l w l wl

EI EI E I

 
= − + = × = 

 

 . . . (vi)

Now

2

2 4 3 3

0 0

( 2 )
24

l l

w
y dx x l x l x dx

EI

 
= − + 

 
∫ ∫

           

2

8 2 6 6 2 7 4 4 3 5

0

( 4 4 4 2 )
24

l

w
x l x l x l x l x l x dx

EI

 
= + + − − + 

 
∫

           

2 9 2 7 6 3 8 4 5 3 6

2 2

0

4 4 4 2

9 7 3 8 5 6576

 
= ⋅ + + − − + 

  

l

w x l x l x lx l x l x

E I

           

2 9 9 9 9 9 9

2 2

4 4 4 2

9 7 3 8 5 6576

w l l l l l l

E I

 
= + + − − + 

 

           

2 9

2 2

31

630576

w l

E I

= × . . . (vii)

Substituting the value in equation (iv) from equations (vi) and (vii), we get circular frequency

due to uniformly distributed load,

        

5 2 2

2 9

576 630

120 31

wl E I
g

EI w l

 ×
ω = × 

 
× 

A railway bridge.
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2

4 4

24 630

155

EI EI g
g

wl wl

= × = π  . . . (viii)

∴    Natural frequency due to uniformly distributed load,

     

2

4 42 2 2
n

EI g EIg
f

wl wl

ω π π
= = =

π π
. . . (ix)

We know that the static deflection of a simply supported shaft due to uniformly distributed

load of w per unit length, is

      
4

S

5

384

wl

EI
δ =       or     

4
S

5

384

EI

wl

=
δ

Equation (ix) may be written as

     
S S

5 0.5615

2 384
n

g
f

π
= =

δ δ
 Hz . . . (Substituting, g = 9.81 m/s

2
)

23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at23.10. Natural Frequency of Free Transverse Vibrations of a Shaft Fixed at

 Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load Both Ends  Carrying a Uniformly Distributed Load

Consider a shaft AB fixed at both ends

and carrying a uniformly distributed load of w

per unit length as shown in Fig. 23.10.

We know that the static deflection at a

distance x from A is given by

      *
4 2 2 3( 2 )

24

w
y x l x lx

EI
= + −  . . . (i)

*      It has been proved in books on ‘Strength of Materials’ that the bending moment at a distance x from A is

       

2 2 2

2 12 2 2
= = + −

d y wl wx wlx
M EI

dx

Integrating this equation,

 

2 3 2

1
12 2 3 2 2

= + − +
× ×

dy wl wx wlx
EI x C

dx

where C
1
 is the constant of integration. We know that when 0, 0= =

dy
x

dx

. Therefore C
1
 = 0.

or

2 3 2

12 6 4
= + −

dy wl wx wlx
EI x

dx

Integrating the above equation,

   

2 2 4 3 2 2 4 3

2.
12 2 6 4 4 3 24 24 12

= + − × + = + − +
× ×

wl x wx wl x wl x wx wlx
EI y C C

where C
2
 is the constant of integration. We know that when x = 0, y = 0. Therefore C

2
 = 0.

or
2 2 4 3

. ( 2 )
24

= + −
w

EI y l x x lx

or
4 2 2 3

( 2 )
24

= + −
w

y x l x lx
EI

Fig. 23.10. Shaft fixed at both ends

carrying a uniformly distributed load.
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Integrating the above equation within limits from 0 to l,

 
4 2 2 3

0 0

( 2 )
24

l l

w
y dx x l x l x dx

EI
= + −∫ ∫

          

5 2 3 4 5 5 5

0

2 2

24 5 3 4 24 5 3 4

l

w x l x l x w l l l

EI EI

   
= + − = + −   

   

          

5 5

24 30 720

w l wl

EI EI
= × =

Now integrating y
2
 within the limits from 0 to l,

           

2

2 4 2 2 3 2

0 0

( 2 )
24

ll

w
y dx x l x l x dx

EI

 
= + − 

 
∫ ∫

          

2

8 4 4 2 6 2 6 7 3 5

0

( 4 2 4 2 )
24

l

w
x l x l x l x l x l x dx

EI

 
= + + + − − 

 
∫

          

2

8 4 4 2 6 7 3 5

0

( 6 4 2 )
24

l

w
x l x l x l x l x dx

EI

 
= + + + − 

 
∫

          

2 9 4 5 2 7 8 3 6

0

6 4 2

24 9 5 7 8 6

l

w x l x l x l x l x

EI

  
= + + − −  

   

          

2 29 9 9 9 9 9
6 4 2

24 9 5 7 8 6 24 630

w l l l l l w l

EI EI

    
= + + − − =    

    

We know that

    

5 2
02

2 9 4

2

0

(24 ) 630 504

720

l

l

g y dx

wl EI EIg
g

EI w l wl

y dx

×
ω = = × × =

∫

∫

∴
4

504 EIg

wl

ω =

and natural frequency,

     4 4

1 504
3.573

2 2
n

EIg E I g
f

wl wl

ω
= = =

π π

Since the static deflection of a shaft fixed at both ends and carrying a uniformly distributed

load is

     

4

S
384

wl

EI
δ =       or    

4
S

1

384

E I

wl

=
δ

∴                     

S S

0.571
3.573

384
n

g
f = =

δ δ

 Hz . . . (Substituting, g = 9.81 m/s
2
)
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23.11.23.11.23.11.23.11.23.11.Natural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a ShaftNatural Frequency of Free Transverse Vibrations For a Shaft

Subjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point LoadsSubjected to a Number of Point Loads

Consider a shaft AB of negligible mass loaded with

point loads W
1
 , W

2
, W

3
 and W

4
 etc. in newtons, as shown

in Fig. 23.11. Let m
1
, m

2
, m

3
 and m

4
 etc. be the corre-

sponding masses in kg. The natural frequency of such a

shaft may be found out by the following two methods :

1. Energy (or Rayleigh’s) method

Let y
1
, y

2
, y

3
, y

4
 etc. be total deflection under loads

W
1
, W

2
, W

3
 and W

4
 etc. as shown in Fig. 23.11.

We know that maximum potential energy

      1 1 2 2 3 3 4 4

1 1 1 1
. . . . . . . . .....

2 2 2 2
m g y m g y m g y m g y= × + × + + × +

      
1

. .
2

m g y= Σ

and maximum kinetic energy

      
2 2 2 2

1 1 2 2 3 3 4 4

1 1 1 1
( . ) ( . ) ( . ) ( . ) ......

2 2 2 2
m y m y m y m y= × ω + × ω + × ω + × ω +

      
2 2 2 2 2

1 1 2 2 3 3 4 4

1
( ) ( ) ( ) ( ) ....

2
m y m y m y m y = × ω + + + +

 

      
2 21

.
2

m y= × ω Σ . . . ( where ω  = Circular frequency of vibration)

Equating the maximum kinetic energy to the maximum potential energy, we have

2 21 1
. . .

2 2
m y m g y× ω Σ = Σ

∴
2

2 2

. . .

. .

m g y g m y

m y m y

Σ Σ
ω = =

Σ Σ

          or      
2

.

.

g m y

m y

Σ
ω =

Σ

∴    Natural frequency of transverse vibration,

 2

1 .

2 2 .
n

g m y
f

m y

ω Σ
= =

π π Σ

2. Dunkerley’s method

The natural frequency of transverse vibration for a shaft carrying a number of point loads

and uniformly distributed load is obtained from Dunkerley’s empirical formula. According to this

         2 2 2 2 2
1 2 3

1 1 1 1 1
....

( ) ( ) ( ) ( ) ( )
n n n n nsf f f f f

= + + + +

Fig. 23.11. Shaft carrying a

number of point loads.
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where                       f
n
 = Natural frequency of transverse vibration of the shaft

  carrying point loads and uniformly distributed load.

        1 2 3, ,
n n nf f f , etc.  =   Natural frequency of transverse vibration of each point load.

   nsf  =  Natural frequency of transverse vibration of the uniformly

  distributed load (or due to the mass of the shaft).

Now, consider a shaft AB loaded as shown in Fig. 23.12.

Fig. 23.12. Shaft carrying a number of point loads and a uniformly distributed load.

Let 1 2 3, , ,δ δ δ  etc. =  Static deflection due to the load W
1
, W

2
, W

3
 etc. when

  considered separately.

     Sδ  =   Static deflection due to the uniformly distributed load or due

   to the mass of the

   shaft.

We know that natural frequency of transverse

vibration due to load W
1
,

    
1

1

0.4985
n

f =
δ

 Hz

Similarly, natural frequency of transverse vibra-

tion due to load W
2
,

   
2

2

0.4985
n

f =
δ

 Hz

and, natural frequency of transverse vibration due to load

W
3
,

   
3

3

0.4985
nf =

δ

 Hz

Also natural frequency of transverse vibration

due to uniformly distributed load or weight of the shaft,

    

S

0.5615
ns

f =
δ

 Hz

Therefore, according to Dunkerley’s empirical

formula, the natural frequency of the whole system,

2 2 2 3 2
1 2 3

1 1 1 1 1
....

( ) ( ) ( ) ( ) ( )
n n n n nsf f f f f

= + + + +

         
3 S1 2

2 2 2 2
....

(0.4985) (0.4985) (0.4985) (0.5615)

δ δδ δ
= + + + +

         
S

1 2 32

1
....

1.27(0.4985)

δ 
= δ + δ + δ + + 

 

Suspension spring of an automobile.
Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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or     
S

1 2 3

0.4985

....
1.27

n
f =

δ
δ + δ + δ + +

 Hz

Notes : 1. When there is no uniformly distributed load or mass of the shaft is negligible, then S 0δ = .

∴
1 2 3

0.4985

....
nf =

δ + δ + δ +
 Hz

2. The value of 1 2 3, ,δ δ δ  etc. for a simply supported shaft may be obtained from the relation

       

2 2

3

Wa b

EIl
δ =

where        δ  = Static deflection due to load W,

             a and b = Distances of the load from the ends,

        E = Young’s modulus for the material of the shaft,

        I = Moment of inertia of the shaft, and

       l = Total length of the shaft.

Example 23.4. A shaft 50 mm diameter and 3 metres long is simply supported at the ends

and carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left support.

The Young's modulus for shaft material is 200 GN/m
2
. Find the frequency of transverse vibration.

Solution. Given : d = 50 mm = 0.05 m ; l = 3 m, W
1
 = 1000 N ; W

2
 = 1500 N ;

W
3
 = 750 N; E = 200 GN/m

2
 = 200 × 10

9
 N/m

2

The shaft carrying the loads is shown in Fig. 23.13

We know that moment of inertia of the shaft,

       
4 4 6 4(0.05) 0.307 10 m

64 64
I d

−π π
= × = = ×

and the static deflection due to a point load W,

      

2 2

3

Wa b

EIl
δ =

Fig. 23.13

∴      Static deflection due to a load of 1000 N,

     

2 2
3

1 9 6

1000 1 2
7.24 10

3 200 10 0.307 10 3

−

−

× ×
δ = = ×

× × × × ×
 m

. . . (Here a = 1 m, and b = 2 m)
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Similarly, static deflection due to a load of 1500 N,

      
2 2

3
2 9 6

1500 2 1
10.86 10

3 200 10 0.307 10 3

−

−

× ×
δ = = ×

× × × × ×

 m

. . . (Here a = 2 m, and b = 1 m)

and static deflection due to a load of 750 N,

     
2 2

3
3 9 6

750(2.5) (0.5)
2.12 10

3 200 10 0.307 10 3

−

−
δ = = ×

× × × × ×

 m

. . . (Here a = 2.5 m, and b = 0.5 m)

We know that frequency of transverse vibration,

                     3 3 3
1 2 3

0.4985 0.4985

7.24 10 10.86 10 2.12 10
nf

− − −

= =
δ + δ + δ × + × + ×

          
0.4985

0.1422
= = 3.5 Hz Ans.

23.12.23.12.23.12.23.12.23.12. Critical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a ShaftCritical or Whirling Speed of a Shaft

In actual practice, a rotating shaft carries different mountings and accessories in the form

of gears, pulleys, etc. When the gears or pulleys are put on the shaft, the centre of gravity of the

pulley or gear does not coincide with the centre line of the bearings or with the axis of the shaft,

when the shaft is stationary. This means that the centre of gravity of the pulley or gear is at a

certain distance from the axis of rotation and due to this, the shaft is subjected to centrifugal force.

This force will bent the shaft which will further increase the distance of centre of gravity of the

pulley or gear from the axis of rotation. This correspondingly increases the value of centrifugal

force, which further increases the distance of centre of gravity from the axis of rotation. This effect

is cumulative and ultimately the shaft fails. The bending of shaft not only depends upon the value

of eccentricity (distance between centre of gravity of the pulley and the axis of rotation) but also

depends upon the speed at which the shaft rotates.

The speed at which the shaft runs so that the additional deflection of the shaft from

the axis of rotation becomes infinite, is known as critical or whirling speed.

(a) When shaft is stationary. (b) When shaft is rotating.

Fig. 23.14. Critical or whirling speed of a shaft.

Consider a shaft of negligible mass carrying a rotor, as shown in Fig.23.14 (a). The point

O is on the shaft axis and G is the centre of gravity of the rotor. When the shaft is stationary, the

centre line of the bearing and the axis of the shaft coincides. Fig. 23.14 (b) shows the shaft when

rotating about the axis of rotation at a uniform speed of ω  rad/s.

Let        m = Mass of the rotor,

         e = Initial distance of centre of gravity of the rotor from the centre

             line of the bearing or shaft axis, when the shaft is stationary,
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        y = Additional deflection of centre of gravity of the rotor when

  the shaft starts rotating at ω  rad/s, and

         s = Stiffness of the shaft i.e. the load required per unit deflection

  of the shaft.

Since the shaft is rotating at ω  rad/s, therefore centrifugal force acting radially outwards

through G causing the shaft to deflect is given by

     2
C . ( )F m y e= ω +

The shaft behaves like a spring. Therefore the force resisting the deflection y,

         = s.y

For the equilibrium position,

    2. ( ) .m y e s yω + =

or            2 2. . . . .m y m e s yω + ω =     or   2 2( . ) . .y s m m e− ω = ω

∴        

2 2

2 2

. . .

. /

m e e
y

s m s m

ω ω
= =

− ω − ω
. . . (i)

We know that circular frequency,

     n

s

m
ω =     or    

2

2 2

.

( )n

e
y

ω
=

ω − ω

. . . [ From equation (i) ]

A little consideration will show that when nω > ω , the value of y will be negative and the

shaft deflects is the opposite direction as shown dotted in Fig 23.14 (b).

In order to have the value of y always positive, both plus and minus signs are taken.

∴              

2

2 2 2 2( )
1 1

n n c

e e e
y

ω ± ±
= ± = =

ω − ω ω ω   
− −   

ω ω   

... (Substituting n cω = ω )

We see from the above expression that when n cω = ω , the value of y becomes infinite.

Therefore cω  is the critical or whirling speed.

∴      Critical or whirling speed,

    c n

s g

m
ω = ω = =

δ
 Hz . . . 

.m g

s

 
δ = 

 

∵

If N
c
 is the critical or whirling speed in r.p.s., then

 2 c

g
Nπ =

δ
     or   

1 0.4985
r.p.s.

2
c

g
N = =

π δ δ

where      δ  = Static deflection of the shaft in metres.

Hence the critical or whirling speed is the same as the natural frequency of transverse

vibration but its unit will be revolutions per second.
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Notes : 1. When the centre of gravity of the

rotor lies between the centre line of the shaft

and the centre line of the bearing, e is taken

negative. On the other hand, if the centre of

gravity of the rotor does not lie between the

centre line of the shaft and the centre line of

the bearing (as in the above article) the value

of e is taken positive.

2. To determine the critical speed of a

shaft which may be subjected to point loads,

uniformly distributed load or combination of

both, find the frequency of transverse vibration

which is equal to critical speed of a shaft in

r.p.s. The Dunkerley’s method may be used for

calculating the frequency.

3. A shaft supported is short bearings

(or ball bearings) is assumed to be a simply sup-

ported shaft while the shaft supported in long

bearings (or journal bearings) is assumed to

have both ends fixed.

Example 23.5. Calculate the

whirling speed of a shaft 20 mm diameter

and 0.6 m long carrying a mass of 1 kg at

its mid-point. The density of the shaft ma-

terial is 40 Mg/m
3
, and Young’s modulus is 200 GN/m

2
. Assume the shaft to be freely supported.

Solution. Given : d = 20 mm = 0.02 m ; l = 0.6 m ; m
1
 = 1 kg ; ρ  = 40 Mg/m

3

= 40 × 10
6
 g/m

3
 = 40 × 10

3
 kg/m

3
 ; E = 200 GN/m

2
 = 200 × 10

9
 N/m

2

The shaft is shown in Fig. 23.15.

We know that moment of inertia of the shaft,

       
4 4 4

(0.02) m
64 64

I d
π π

= × =

          = 7.855 × 10
–9

 m
4

Since the density of shaft material is 40 × 10
3
 kg/m

3
,

therefore mass of the shaft per metre length,

     
2 3

S Area length density (0.02) 1 40 10
4

m
π

= × × = × × ×  = 12.6 kg/m

We know that static deflection due to 1 kg of mass at the centre,

        

3 3
6

9 9

1 9.81(0.6)
28 10

48 48 200 10 7.855 10

Wl

EI

−

−

×
δ = = = ×

× × × ×
 m

and static deflection due to mass of the shaft,

       

4 4
3

S 9 9

5 5 12.6 9.81(0.6)
0.133 10

384 384 200 10 7.855 10

wl

EI

−

−

× ×
δ = = = ×

× × × ×
 m

Fig. 23.15

Diesel engines have several advantages over petrol

engines. They do not need an electrical ignition system;

they use cheaper fuel; and they do not need a

carburettor. Diesel engines also have a greater ability

to convert the stored energy in the fuel into mechanical

energy, or work.
Note : This picture is given as additional information and is

not a direct example of the current chapter.

Exhaust

valve

Intake

valve

Compression Exhaust

Fuel injector Power

Induction

Burned

gases

Piston

Air intake

Crankshaft
Compressed air

and fuel mixture Fuel injection

and combustion
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∴     Frequency of transverse vibration,

    
3

S 6

0.4985 0.4985

0.133 10
28 10

1.27 1.27

nf
−

−

= +
δ ×

δ + × +

         
3

0.4985

11.52 10
−

=
×

 = 43.3 Hz

Let       N
c
= Whirling speed of a shaft.

We know that whirling speed of a shaft in r.p.s. is equal to the frequency of transverse

vibration in Hz , therefore

    N
c
 = 43.3 r.p.s. = 43.3 × 60 = 2598 r.p.m. Ans.

Example 23.6. A shaft 1.5 m long, supported in flexible bearings at the ends carries two

wheels each of 50 kg mass. One wheel is situated at the centre of the shaft and the other at a

distance of 375 mm from the centre towards left. The shaft is hollow of external diameter 75 mm

and internal diameter 40 mm. The density of the shaft material is 7700 kg/m
3
 and its modulus of

elasticity is 200 GN/m
2
. Find the lowest whirling speed of the shaft, taking into account the mass

of the shaft.

Solution. l = 1.5 m ; m
1
 = m

2
 = 50 kg ;

d
1

= 75 mm = 0.075 m ; d
2
 = 40 mm = 0.04 m ;

ρ = 7700 kg/m
3
 ; E = 200 GN/m

2
 = 200 × 10

9

N/m2

The shaft is shown in Fig. 23.16.

We know that moment of inertia of the shaft,

      
4 4 4 4 6 4

1 2( ) ( ) (0.075) (0.04) 1.4 10 m
64 64

I d d
−π π

   = − = − = ×
   

Since the density of shaft material is 7700 kg/m3, therefore mass of the shaft per metre

length,

     m
S
 = Area × length × density

         
2 2

(0.075) (0.04) 1 7700
4

π
 = − ×
 

 = 24.34 kg/m

We know that the static deflection due to a load W

         

2 2 2 2
.

3 3

Wa b m ga b

EIl EIl
= =

∴     Static deflection due to a mass of 50 kg at C,

     

2 2 2 2
1

1 9 6

50 9.81(0.375) (1.125)

3 3 200 10 1.4 10 1.5

m ga b

EIl −

×
δ = =

× × × × ×
 = 70 × 10

–6
 m

. . . (Here a = 0.375 m, and b = 1.125 m)

Similarly, static deflection due to a mass of 50 kg at D

    

2 2 2 2
1

2 9 6

50 9.81(0.75) (0.75)

3 3 200 10 1.4 10 1.5

m ga b

EIl −

×
δ = =

× × × × ×
 = 123 × 10

–6
 m

. . . (Here a = b = 0.75 m)

Fig. 23.16
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We know that static deflection due to uniformly distributed load or mass of the shaft,

 

4 4

S 9 6

5 5 24.34 9.81(1.5)

384 384 200 10 1.4 10

wl

EI
−

×
δ = × = ×

× × ×
 = 56 × 10

–6
 m

. . . (Substituting, w = m
S
 × g)

We know that frequency of transverse vibration,

6
S 6 6

1 2

0.4985 0.4985

56 10
70 10 123 10

1.27 1.27

nf
−

− −

= =
δ ×

δ + δ + × + × +

 Hz

   = 32.4 Hz

Since the whirling speed of shaft (N
c
) in r.p.s. is equal to the frequency of transverse

vibration in Hz, therefore

N
c
 = 32.4 r.p.s. = 32.4 × 60 = 1944 r.p.m. Ans.

Example 23.7. A vertical shaft of 5 mm diameter is 200 mm long and is supported in long

bearings at its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any

increase in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation

and the maximum bending stress when the shaft is rotating at 75% of the critical speed. The centre

of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m
2
.

Solution. Given : d = 5 mm = 0.005 m ; l = 200 mm = 0.2 m ; m = 50 kg ; e = 0.25 mm

= 0.25 × 10
–3

 m ; E = 200 GN/m
2
 = 200 × 10

9
 N/m

2

Critical speed of rotation

We know that moment of inertia of the shaft,

  
4 4 12 4

(0.005) 30.7 10 m
64 64

I d
−π π

= × = = ×

Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We

know that the static deflection at the centre of the shaft due to a mass of 50 kg,

  

3 3
3

9 12

50 9.81(0.2)
3.33 10 m

192 192 200 10 30.7 10

Wl

EI

−

−

×
δ = = = ×

× × × ×

 . . .  (∵  W = m.g)

We know that critical speed of rotation (or natural frequency of transverse vibrations),

3

0.4985

3.33 10
cN

−

=

×

 = 8.64 r.p.s. Ans.

Maximum bending stress

Let σ  = Maximum bending stress in N/m
2
, and

  N = Speed of the shaft = 75% of critical speed = 0.75 N
c
 . . . (Given)

When the shaft starts rotating, the additional dynamic load (W
1
) to which the shaft is

subjected, may be obtained by using the bending equation,

1

M

I y

σ
=       or      

1

.I
M

y

σ
=
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We know that for a shaft fixed at both ends and carrying a point load (W
1
) at the centre, the

maximum bending moment

                   
1.

8

W l
M =

∴      1.

8 / 2

W l I

d

σ ⋅
=  . . .(∵  y

1
 = d / 2)

and        
12

6
1

. 8 30.7 10 8
0.49 10 N

/ 2 0.005 / 2 0.2

I
W

d l

−
−σ σ× ×

= × = × = × σ

∴    Additional deflection due to load W
1
,

         

6
3 121 0.49 10

3.33 10 3.327 10
50 9.81

W
y

W

−
− −× σ

= ×δ = × × = × σ
×

We know that

                    
2

11
c

c

e e
y

N

N

± ±
= =

 ω  − −   ω 

           . . . (Substituting c c
Nω = and Nω = )

   

3
12 3

2

0.25 10
3.327 10 0.32 10

1
0.75

c

c

N

N

−
− −± ×

× σ = = ± ×

 
− 

 

       3 12 9 20.32 10 / 3.327 10 0.0962 10 N / m− −
σ = × × = ×  …( Taking + ve sign )

          = 96.2 × 10
6
 N/m

2
 = 96.2 MN/m

2 Ans.

Example 23.8. A vertical steel shaft 15 mm diameter is held in long bearings 1 metre

apart and carries at its middle a disc of mass 15 kg. The eccentricity of the centre of gravity of the

disc from the centre of the rotor is 0.30 mm.

The modulus of elasticity for the shaft material is 200 GN/m
2
 and the permissible stress is

70 MN/m
2
. Determine : 1. The critical speed of the shaft and 2. The range of speed over which it

is unsafe to run the shaft. Neglect the mass of the shaft.

[For a shaft with fixed end carrying a concentrated load (W) at the centre assume 

3

192

Wl

EI
δ = ,

and M = 
.

8

W l
, where δ  and M are maximum deflection and bending moment respectively].

Solution. Given : d = 15 mm = 0.015 m ; l = 1 m ; m = 15 kg ; e = 0.3 mm

= 0.3 × 10
–3

 m ; E = 200 GN/m
2
 = 200 × 10

9
 N/m

2
 ; σ  = 70 MN/m

2
 = 70 × 10

6
 N/m

2

We know that moment of inertia of the shaft,

4 4 9 4
(0.015) 2.5 10 m

64 64
I d

−π π
= × = = ×

1. Critical speed of the shaft

Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ends. We

know that the static deflection at the centre of shaft,

                     

3 3
3

9 9

15 9.81 1
1.5 10 m

192 192 200 10 2.5 10

Wl

EI

−

−

× ×
δ = = = ×

× × × ×
    …(∵ W = m.g)
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∴     Natural frequency of transverse vibrations,

     3

0.4985 0.4985
12.88Hz

1.5 10
nf

−

= = =
δ ×

We know that the critical speed of the shaft in r.p.s. is equal to the natural frequency of

transverse vibrations in Hz.

∴      Critical speed of the shaft,

     N
c
 = 12.88 r.p.s. = 12.88 × 60 = 772.8 r.p.m. Ans.

2. Range of speed

Let       N
1
 and N

2
 = Minimum and maximum speed respectively.

When the shaft starts rotating, the additional dynamic load (W
1
 = m

1
.g) to which the shaft

is subjected may be obtained from the relation

    
1

M

I y

σ
= or

1

.I
M

y

σ
=

Since       1 1. . .

8 8

W l m g l
M = =  ,    and    1

2

d
y = , therefore

1. . .

8 / 2

m g l I

d

σ
=

or      

6 9

1

8 2 8 2 70 10 2.5 10
19 kg

. . 0.015 9.81 1

I
m

d g l

−
× × σ× × × × × ×

= = =
× ×

∴    Additional deflection due to load W
1
 = m

1
g,

   
3 31 1 19

1.5 10 1.9 10 m
15

W m
y

W m

− −
= × δ = × δ = × × = ×

We know that,

      
2

1c

e
y

±
=

ω 
− 

ω 

     or    
2

1

1c

y

e N

N

± =

 
− 

 

. . . (Substituting, c cNω =  , and Nω = )

∴      
3

3 2

1.9 10 1

0.3 10
1cN

N

−

−

×
± =

×  
− 

 

      or    

2
0.3

1 0.16
1.9

cN

N

 
− = ± = ± 

 

         

2

1 0.16 1.16cN

N

 
= ± = 

 
 or     0.84

 . . . (Taking first plus sign and then negative sign)

or      
1.16

cN
N =           or      

0.84

cN
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∴ 1

772.8
718 r.p.m.

1.16 1.16

cN
N = = =

and 2

772.8
843 r.p.m.

0.84 0.84

cN
N = = =

Hence the range of speed is from 718 r.p.m. to 843 r.p.m. Ans.

23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)23.13. Frequency of Free Damped Vibrations (Viscous Damping)

We have already discussed that the motion of a body is resisted by frictional forces. In

vibrating systems, the effect of friction is referred to as damping. The damping provided by fluid

resistance is known as viscous damping.

We have also discussed that in damped

vibrations, the amplitude of the resulting vibration

gradually diminishes. This is due to the reason that

a certain amount of energy is always dissipated to

overcome the frictional resistance. The resistance

to the motion of the body is provided partly by the

medium in which the vibration takes place and

partly by the internal friction, and in some cases

partly by a dash pot or other external damping

device.

Consider a vibrating system, as shown in

Fig. 23.17, in which a mass is suspended from one

end of the spiral spring and the other end of which

is fixed. A damper is provided between the mass

and the rigid support.

Let   m = Mass suspended from the spring,

 s = Stiffness of the spring,

  x = Displacement of the mass from

the mean position at time t,

δ = Static deflection of  the spring

= m.g/s, and

 c = Damping coefficient or the damping

    force per unit velocity.

Since in viscous damping, it is assumed that the frictional

resistance to the motion of the body is directly proportional to

the speed of the movement, therefore

Damping force or frictional force on the mass acting in

opposite direction to the motion of the mass

dx
c

dt
= ×

Accelerating force on the mass, acting along the

motion of the mass

2

2

d x
m

dt

= ×

Riveting Machine

Note : This picture is given as

additional information and is not a

direct example of the current chapter.

Fig. 23.17. Frequency of free damped

vibrations.
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and spring force on the mass, acting in opposite direction to the motion of the mass,

          = s.x

Therefore the equation of motion becomes

         

2

2
.

d x dx
m c s x

dtdt

 
× = − × + 

 

 …(Negative sign indicates that the force opposes the motion)

or      
2

2
. 0

d x dx
m c s x

dtdt

× + × + =

or    
*

 

2

2
0

d x c dx s
x

m dt mdt

+ × + × =

This is a differential equation of the second order. Assuming a solution of the form

x = e
k t

 where k is a constant to be determined. Now the above differential equation reduces to

2
. . 0

kt kt ktc s
k e k e e

m m
+ × + × = …

2
2

2
, and .

kt ktdx d x
ke k e

dt dt

 
= = 

  

∵

or 2 0
c s

k k
m m

+ × + =  . . . (i)

and       

2

4

2

c c s

m m m
k

 
− ± − × 

 
=

          

2

2 2

c c s

m m m

 
= − ± − 

 

∴      The two roots of the equation are

     

2

1
2 2

c c s
k

m m m

 
= − + − 

 

and       

2

2
2 2

c c s
k

m m m

 
= − − − 

 

The most general solution of the differential equation (i) with its right hand side equal to

zero has only complementary function and it is given by

       1 2
1 2

k t k t
x C e C e= +  . . . (ii)

where C
1
 and C

2
 are two arbitrary constants which are to be determined from the initial conditions

of the motion of the mass.

It may be noted that the roots k
1
 and k

2
 may be real, complex conjugate (imaginary) or

equal. We shall now discuss these three cases as below :

*  A system described by this equation is said to be a single degree of freedom harmonic oscillator with

viscous damping.
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1. When the roots are real (overdamping)

If  

2

2

c s

m m

 
> 

 
, then the roots k

1
 and k

2
 are real but negative. This is a case of overdamping

or large damping and the mass moves slowly to the equilibrium position. This motion is known as

aperiodic. When the roots are real, the most general solution of the differential equation is

       1 2
1 2

k t k t
x C e C e= +

         

2 2

2 2 2 2

1 2

c c s c c s
t t

m m m m m m

C e C e

   
   

   − + − − − −   
      
   = +

Note : In actual practice, the overdamped vibrations are avoided.

2. When the roots are complex conjugate (underdamping)

If 

2

2

s c

m m

 
>  

 

, then the radical (i.e. the term under the square root) becomes negative.

The two roots k
1
 and k

2
 are then known as complex conjugate. This is a most practical case of

damping and it is known as underdamping or small damping. The two roots are

      

2

1
2 2

c s c
k i

m m m

 
= − + −  

 

and      

2

2
2 2

c s c
k i

m m m

 
= − − −  

 

where i is a Greek letter known as iota and its value is 1− . For the sake of mathematical calcu-

lations, let

    
2

; ( ) ;
2

n

c s
a

m m
= = ω  and 

2

2 2
( )

2
d n

s c
a

m m

 
− = ω = ω − 

 

Therefore the two roots may be written as

     1 dk a i= − + ω  ;     and     2 dk a i= − − ω

We know that the general solution of a differential equation is

       1 2 ( ) ( )
1 2 1 2

d da i t a i tk t k t
x C e C e C e C e

− + ω − − ω
= + = +

         .
1 2( )d di t i tat

e C e C e
ω − ω−

= +    …(Using e
m + n

 = e
m

 × e
n
) …(iii)

Now according to Euler’s theorem

   cos sin
i

e i
+ θ

= θ + θ  ; and cos sin
i

e i
− θ

= θ − θ

Therefore the equation (iii) may be written as

       [ ]1 2(cos . sin . ) (cos . sin . )
at

d d d dx e C t i t C t i t
−

= ω + ω + ω − ω

          [ ]1 2 1 2( )cos . ( )sin . )at

d d
e C C t i C C t

−
= + ω + − ω

Let            1 2 ,C C A+ =  and 1 2( )i C C B− =
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∴        ( cos . sin . )
at

d dx e A t B t
−

= ω + ω  . . . (iv)

Again, let  cosA C= θ , and sinB C= θ , therefore

       2 2
C A B= +  , and    tan

B

A
θ =

Now the equation (iv) becomes

       ( cos cos . sin sin . )
at

d dx e C t C t
−

= θ ω + θ ω

          cos ( . )
at

dCe t
−

= ω − θ . . . (v)

If t is measured from the instant at which the mass m is released after an initial displace-

ment A, then

       cosA C= θ . . . [Substituting x = A and t = 0 in equation (v)]

and            when 0θ = , then A = C

∴     The equation (v) may be written as

      cos .
at

dx Ae t
−

= ω  . . . (vi)

where      

2
2 2– ( )

2
d n

s c
a

m m

 
ω = = ω − 

 

 ; and 
2

c
a

m
=

We see from equation (vi), that the motion of the mass is simple harmonic whose circular

damped frequency is dω  and the amplitude is 
at

Ae
−

 which diminishes exponentially with time as

shown in Fig. 23.18. Though the mass eventually returns to its equilibrium position because of its

inertia, yet it overshoots and the oscillations may take some considerable time to die away.

Fig. 23.18. Underdamping or small damping.

We know that the periodic time of vibration,

 
2 2 2

2 2 2

( )

2

p

d
n

t

as c

m m

π π π
= = =

ω
ω − 

−  
 

and frequency of damped vibration,

    

2
2 21 1 1

( )
2 2 2 2

d
d n

p

s c
f a

t m m

ω  
= = = ω − = −  

π π π  
 . . . (vii)
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Note : When no damper is provided in the system, then c = 0. Therefore the frequency of the undamped

vibration,

      
1

2
n

s
f

m
=

π

. . . [Substituting c = 0, in equation (vii)]

It is the same as discussed under free vibra-

tions.

3. When the roots are equal (critical damping)

If 

2

2

c s

m m

 
= 

 
, then the radical becomes

zero and the two roots k
1
 and k

2
 are equal. This is a

case of critical damping. In other words, the critical

damping is said to occur when frequency of damped

vibration (f
d
) is zero (i.e. motion is aperiodic). This

type of damping is also avoided because the mass

moves back rapidly to its equilibrium position, in

the shortest possible time.

For critical damping, equation (ii) may be

written as

      
−

−ω
= + = +2

1 2 1 2( ) ( ) n

c
t

tmx C C e C C e
... 

 
= = ω 

  

∵

2
n

c s

m m

Thus the motion is again aperiodic. The critical damping coefficient (c
c
) may be obtained

by substituting c
c
 for c in the condition for critical damping, i.e.

          
2

2

cc s

m m

 
= 

 

      or     2 2c n

s
c m m

m
= = ×ω

The critical damping coefficient is the amount of damping required for a system to be

critically damped.

23.14.23.14.23.14.23.14.23.14. Damping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping RatioDamping Factor or Damping Ratio

The ratio of the actual damping coefficient (c) to the critical damping coefficient (c
c
) is

known as damping factor or damping ratio. Mathematically,

Damping factor           
2 .c n

c c

c m
= =

ω
. . . ( 2 . )c nc = π ω∵

The damping factor is the measure of the relative amount of damping in the existing system

with that necessary for the critical damped system.

23.15.23.15.23.15.23.15.23.15. Logarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic DecrementLogarithmic Decrement

It is defined as the natural logarithm of the amplitude reduction factor. The amplitude

reduction factor is the ratio of any two successive amplitudes on the same side of the mean position.

If x
1
 and x

2
 are successive values of the amplitude on the same side of the mean position,

Note : This picture is given as additional information

and is not a direct example of the current chapter.

In a disc brake, hydraulic pressure forces

friction pads to squeeze a metal disc that

rotates on the same axle as the wheel.

Here a disc brake is being tested.
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as shown in Fig. 23.18, then amplitude reduction factor,

    
1

( )
2

p

p

at
at

a t t

x Ae
e

x Ae

−

− +
= =  = constant

where t
p
 is the period of forced oscillation or the time difference between two consecutive amplitudes.

As per definition, logarithmic decrement,

       
1

2

log log p
atx

e
x

 
δ = = 

 

or                   1

2 22

2 2
log .

( )
e p

d
n

x a
a t a

x
a

  π × π
δ = = = × = 

ω  ω −

. . . 
2 2

( )d n a
 

ω = ω −
  
∵

         
2

2

2
2

( )
2

n

c

m

c

m

× π

=

 
ω −  

 

. . . 
2

c
a

m

 
= 

 

∵

          
2 2

2
22

1 1
2 .

n c

n c

c

cm

c c
c

m c

× π
× π

= =

   
ω − −   

ω   

         … ( 2 . )c nc m= ω∵

         2 2

2

( )c

c

c c

π×
=

−

In general, amplitude reduction factor,

     
31 2

2 3 4 1

.... patn

n

x xx x
e

x x x x +

= = = = =  = constant

∴      Logarithmic decrement,

      2 21

2
log .

( )

n
e p

n
c

x c
a t

x
c c+

  π×
δ = = = 

  −

Example 23.9. A vibrating system consists of a mass of 200 kg, a spring of stiffness

80 N/mm and a damper with damping coefficient of 800 N/m/s. Determine the frequency of vibration

of the system.

Solution. Given : m = 200 kg ; s = 80 N/mm = 80 × 10
3
 N/m ; c = 800 N/m/s

We know that circular frequency of undamped vibrations,

     

380 10

200
n

s

m

×
ω = =  = 20 rad/s
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and circular frequency of damped vibrations,

   2 2 2 2
( ) ( ) ( / 2 )d n na c mω = ω − = ω − … ( / 2 )a c m=∵

= 2 2
(20) (800 / 2 200) 19.9 rad/s− × =

∴     Frequency of vibration of the system,

/ 2 19.9 / 2d df = ω π = π  = 3.17 Hz  Ans.

Example 23.10. The following data are given for a vibratory system with viscous damp-

ing:

Mass = 2.5 kg ; spring constant = 3 N/mm and the amplitude decreases to 0.25 of the

initial value after five consecutive cycles.

Determine the damping coefficient of the damper in the system.

Solution. Given : m = 2.5 kg ; s = 3 N/mm = 3000 N/m ; x
6
 = 0.25 x

1

We know that natural circular frequency of vibration,

                  
3000

2.5
ω = =n

s

m
 = 34.64 rad/s

Let             c = Damping coefficient of the damper in N/m/s,

x
1
 = Initial amplitude, and

        x
6
 = Final amplitude after five consecutive cycles = 0.25 x

1    
…(Given)

We know that

3 51 2 4

2 3 4 5 6

x xx x x

x x x x x
= = = =

or

5

3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x

x x x x x x x

 
= × × × × =  

 

∴

1/ 5 1/ 5

1/ 51 1 1

2 6 1

(4) 1.32
0.25

x x x

x x x

   
= = = =   

  

We know that

1

2 22

2
log

( )
e

n

x
a

x
a

  π
= × 

  ω −

2 2

2
log (1.32)

(34.64)
e a

a

π
= ×

−

     or        
2

2
0.2776

1200

a

a

× π
=

−

Squaring both sides,

2

2

39.5
0.077

1200

a

a

=

−
                  or      2 292.4 0.077 39.5a a− =

∴         2
2.335a =      or     a = 1.53

We know that     a = c / 2m      or     c = a × 2m =  1.53 × 2 × 2.5 = 7.65 N/m/s  Ans.
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Example 23.11. An instrument vibrates with a frequency of 1 Hz when there is no damping.

When the damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz.

Find 1. the damping factor, and 2. logarithmic decrement.

Solution. Given : f
n
 = 1 Hz ; f

d
 = 0.9 Hz

1.  Damping factor

Let      m = Mass of the instrument in kg,

     c = Damping coefficient

or damping force per unit

velocity in N/m/s, and

     c
c
= Critical damping coefficient in

N/m/s.

We know that natural circular frequency of undamped vibrations,

     2 2 1 6.284ω = π× = π× =n nf  rad/s

and circular frequency of damped vibrations,

     2 2 0.9 5.66ω = π× = π× =d df  rad/s

We also know that circular frequency of damped vibrations ( ωd ),

   2 2 2 25.66 ( ) (6.284)= ω − = −n a a

Squaring both sides,

(5.66)
2
 = (6.284)

2
 – a

2
 or 32 = 39.5 – a

2

∴                  a
2
 = 7.5           or        a = 2.74

We know that,        a = c/2m        or        c = a × 2m = 2.74 × 2m = 5.48 m N/m/s

and      2 . 2 6.284= ω = ×c nc m m  = 12.568 m N/m/s

∴     Damping factor,

 / 5.48 /12.568=cc c m m  = 0.436 Ans.

2.  Logarithmic decrement

We know that logarithmic decrement,

       
2 2 2 2

2 2 5.48 34.4

11.3( ) (12.568 ) (5.48 )

π π×
δ = = =

− −c

c m

c c m m

 = 3.04  Ans.

Example 23.12. The measurements on a mechanical vibrating system show that it has a

mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness

5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the

mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2. damping factor, 3. logarithmic

decrement, and 4. ratio of two consecutive amplitudes.

Solution. Given : m = 8 kg ; s = 5.4 N/mm = 5400 N/m

Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore

Damping coefficient (actual),

       c = 40 N/m/s

Guitar
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1. Critical damping coefficient

We know that critical damping coefficient,

     
5400

2 . 2 2 8
8

c n

s
c m m

m
= ω = × = ×  = 416 N/m/s Ans.

2. Damping factor

We know that damping factor

         
40

416
= =

c

c

c
 = 0.096 Ans.

3. Logarithmic decrement

We know that logarithmic decrement,

     
2 2 2 2

2 2 40

( ) (416) (40)

π π×
δ = =

− −c

c

c c

 = 0.6 Ans.

4. Ratio of two consecutive amplitudes

Let     x
n
 and x

n+1
 = Magnitude of two consecutive amplitudes,

We know that logarithmic decrement,

      

1

log

+

 
δ =  

 

n

e

n

x

x

 or 0.6

1

(2.7)
δ

+

= =
n

n

x
e

x

 = 1.82 Ans.

Example 23.13. A mass suspended from a helical

spring vibrates in a viscous fluid medium whose resistance

varies directly with the speed. It is observed that the frequency

of damped vibration is 90 per minute and that the amplitude

decreases to 20 % of its initial value in one complete vibration.

Find the frequency of the free undamped vibration of the

system.

Solution. Given : f
d
 = 90/min = 90/60 = 1.5 Hz

We know that time period,

     t
p
 = 1/f

d
 =  1/1.5 = 0.67 s

Let       x
1 

= Initial amplitude, and

      x
2
 = Final amplitude after one

  complete vibration

= 20% x
1
 = 0.2 x

1

 . . . (Given)

We know that

       1

2

log .
 

= 
 

e p

x
a t

x
    or   1

1

log 0.67
0.2

 
= × 

 
e

x
a

x

∴                       log
e
 5 = 0.67 a  or   1.61 = 0.67 a or  a = 2.4 . . . (∵  log

e
 5 = 1.61)

Helical spring suspension of a

two-wheeler.
Note : This picture is given as

additional information and is not a

direct example of the current chapter.
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We also know that frequency of free damped vibration,

     
2 21

( )
2

= ω −
π

d n
f a

or                         2 2 2( ) (2 )ω = π× +n df a . . . (By squaring and arranging)

          2 2(2 1.5) (2.4) 94.6= π× + =

∴                   9.726ω =n  rad/s

We know that frequency of undamped vibration,

     
9.726

2 2

ω
= =

π π

n
nf  = 1.55 Hz Ans.

Example 23.14. A coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at

the free end. The motion is resisted by the oil dashpot. It is found that the amplitude at the beginning

of the fourth cycle is 0.8 times the amplitude of the previous vibration. Determine the damping

force per unit velocity. Also find the ratio of the frequency of damped and undamped vibrations.

Solution. Given : s = 4 N/mm = 4000 N/m ; m = 20 kg

Damping force per unit velocity

Let         c = Damping force in newtons per unit velocity i.e. in N/m/s

       x
n
 = Amplitude at the beginning of the third cycle,

    x
n+1

 = Amplitude at the beginning of the fourth cycle = 0.8 x
n

. . . (Given)

We know that natural circular frequency of motion,

      
4000

14.14
20

ω = = =n

s

m

 rad/s

and     
2 2

2
log

1 ( )

  π
= × 

+  ω −

n
e

n
n

x
a

x
a

or
2 2

2
log

0.8 (14.14)

  π
= × 

  −

n

e

n

x
a

x
a

         
2

2
log 1.25

200

π
= ×

−

e a

a

    or    
2

2
0.223

200

π
= ×

−

a

a

Squaring both sides

   

2 2 2

2 2

4 39.5
0.05

200 200

× π
= =

− −

a a

a a

      0.05 × 200 – 0.05 a
2
 = 39.5a

2
               or      39.55 a

2
 = 10

∴ a
2
 = 10 / 39.55 = 0.25   or      a = 0.5

We know that        a = c / 2m

∴ c = a × 2m = 0.5 ×2 × 20 = 20 N/m/s Ans.

Ratio of the frequencies

Let      1nf  = Frequency of damped vibrations = 
2

dω

π
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    2nf  = Frequency of undamped vibrations = 
2

nω

π

∴

                                      

2 2 2 2
1

2

( )2 (14.14) (0.5)

2 14.14

n d d n

n n n n

f a

f

ω ω ω −π −
= × = = =

π ω ω ω

. . . ( )2 2
( )

d n aω = ω −∵

          = 0.999 Ans.

Example 23.15. A machine of mass 75 kg is mounted on springs and is fitted with a

dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found

that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations.

Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-

pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the

undamped vibration ; and 3. the periodic time of the damped vibration.

Solution. Given : m = 75 kg ; s = 10 N/mm = 10 ×10
3
 N/m ; x

1
 = 38.4 mm = 0.0384 m ;

x
3
 = 6.4 mm = 0.0064 m

Since the stiffness of each spring is 10 × 10
3
 N/m and there are 3 springs, therefore total

stiffness,

       
3 3

3 10 10 30 10s = × × = ×  N/m

We know that natural circular frequency of motion,

     

330 10
20

75
n

s

m

×
ω = = =  rad/s

1. Resistance of the dashpot at unit velocity

Let         c =  Resistance of the dashpot in newtons at unit velocity i.e. in

  N/m/s,

       x
2
 = Amplitude after one complete oscillation in metres, and

       x
3
 = Amplitude after two complete oscillations in metres.

We know that      
1 2

2 3

x x

x x
=

∴

2

1 1

2 3

x x

x x

 
= 

 

. . . 

2

1 1 2 1 1 1

3 2 3 2 2 2

x x x x x x

x x x x x x

 
 

 = × = × =  
  
 

∵

or      

1/ 2 1/ 2
1 1

2 3

0.0384
2.45

0.0064

x x

x x

   
= = =   

  

We also know that

       
1

2 22

2
log

( )
e

n

x
a

x
a

  π
= × 

  ω −
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       2 2

2
log 2.45

(20)
e a

a

π
= ×

−

2

2
0.8951

400

a

a

× π
=

−

  or   
2

2

39.5
0.8

400

a

a

×
=

−

 . . . (Squaring both sides)

∴     a
2
 = 7.94      or    a = 2.8

We know that      a = c / 2m

∴ c = a × 2m = 2.8 × 2 × 75 = 420 N/m/s Ans.

2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration

Let    1n
f  = Frequency of damped vibration = 

2

dω

π

  2n
f  = Frequency of undamped vibration = 

2

nω

π

∴    

2 2 2 2
1

2

( ) (20) (2.8)2

2 20

nn d d

n n n n

af

f

ω − −ω ωπ
= × = = =

π ω ω ω
 = 0.99 Ans.

3. Periodic time of damped vibration

We know that periodic time of damped vibration

        
2 2 2 2

2 2 2

( ) (20) (2.8)d
n a

π π π
= = =

ω
ω − −

 = 0.32 s Ans.

Example 23.16. The mass of a single degree damped vibrating system is 7.5 kg and makes

24 free oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of

vibration reduces to 0.25 of its initial value after five oscillations. Determine : 1. stiffness of the

spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system damping to

critical damping.

Solution. Given : m = 7.5 kg

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

   f
n
 = 24/14 = 1.7

and   2 2 1.7 10.7n nfω = π× = π× =  rad/s

1. Stiffness of the spring

Let       s =  Stiffness of the spring in N/m.

We know that      2( ) /
n s mω =  or 2 2( ) (10.7) 7.5

ns m= ω =  = 860 N/m Ans.

2. Logarithmic decrement

Let      x
1
 =  Initial amplitude,

x
6
 = Final amplitude after five oscillations = 0.25 x

1
... (Given)

∴          

5

3 51 1 2 4 1

6 2 3 4 5 6 2

x xx x x x x

x x x x x x x

 
= × × × × =  

 

1 2 3 4 5

2 3 4 5 6

x x x x x

x x x x x

 
= = = = 

 

… ∵
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or      

1/ 5 1/ 5

1/ 51 1 1

2 6 1

(4) 1.32
0.25

x x x

x x x

   
= = = =   

  

We know that logarithmic decrement,

    
1

2

log log 1.32e e

x

x

 
δ = = 

 

 = 0.28 Ans.

3. Damping factor

Let         c = Damping coefficient for the actual system, and

       c
c
 = Damping coefficient for the critical damped system.

We know that logarithmic decrement ( δ ),

 2 2 2 2

2 2
0.28

( ) (10.7)n

a a

a a

× π × π
= =

ω − −

2

2

39.5
0.0784

114.5

a

a

×
=

−
 . . . (Squaring both sides)

         8.977 – 0.0784 a
2
 = 39.5 a

2
     or       a

2
 = 0.227     or    a = 0.476

We know that             a = c / 2m         or    c = a × 2m = 0.476 × 2 × 7.5 = 7.2 N/m/s Ans.

and       2 . 2 7.5 10.7c n
c m= ω = × ×  = 160.5 N/m/s Ans.

∴              Damping factor = c/c
c
 = 7.2 / 160.5 = 0.045 Ans.

23.16.23.16.23.16.23.16.23.16. Frequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced VibrationsFrequency of Under Damped Forced Vibrations

Consider a system consisting of spring, mass and

damper as shown in Fig. 23.19. Let the system is acted

upon by an external periodic (i.e. simple harmonic)

disturbing force,

      cos .xF F t= ω

where                     F = Static force, and

                   ω= Angular velocity of

     the periodic disturbing

   force.

When the system is constrained to move in vertical

guides, it has only one degree of freedom. Let at sometime

t, the mass is displaced downwards through a distance x

from its mean position.

Using the symbols as discussed in the previous article, the equation of motion may be

written as
2

2
. cos .

d x dx
m c s x F t

dtdt

× = − × − + ω

or    

2

2
. cos .

d x dx
m c s x F t

dtdt

× + × + = ω . . . (i)

Fig. 23.19. Frequency of under

damped forced vibrations.
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This equation of motion may be solved either by differential equation method or by graphi-

cal method as discussed below :

1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is

some function in t. The solution of such type of differential equation consists of two parts ; one

part is the complementary function and the second is particular integral. Therefore the solution

may be written as

        x = x
1
 + x

2

where         x
1
 = Complementary function, and

      x
2
 = Particular integral.

The complementary function is same as discussed in the previous article, i.e.

     
1 cos ( )

at

dx Ce t
−

= ω − θ  . . . (ii)

where C and θ are constants. Let us now find the value of particular integral as discussed below :

Let the particular integral of equation (i) is given by

      2 1 2sin . cos .x B t B t= ω + ω   . . . (where B
1
 and B

2
 are constants)

∴ 1 2. cos . . sin .
dx

B t B t
dt

= ω ω − ω ω

and   

2
2 2

1 22
. sin . . cos .

d x
B t B t

dt

= − ω ω − ω ω

Substituting these values in the given differential equation (i), we get

    2 2
1 2 1 2 1 2( . sin . . cos . ) ( . cos . . sin . ) ( sin . cos . )m B t B t c B t B t s B t B t− ω ω − ω ω + ω ω − ω ω + ω + ω

          cos .F t= ω

or 2 2
1 2 1 2 1 2( . . . . . )sin . ( . . . . . ) cos .m B c B s B t m B c B s B t− ω − ω + ω + − ω + ω + ω

          cos .F t= ω

or 2 2
1 2 1 2( . ) . . sin . . . ( . ) cos .s m B c B t c B s m B t   − ω − ω ω + ω + − ω ω

   

          cos . 0sin .F t t= ω + ω

Comparing the coefficients of sin ωt and cos ωt on the left hand side and right hand side

separately, we get

    2
1 2( . ) . . 0s m B c B− ω − ω = . . . (iii)

and    2
1 2. . ( . )c B s m B Fω + − ω =  . . . (iv)

Now from equation (iii)

    2
1 2( . ) . .s m B c B− ω = ω

∴

2

2 1

.

.

s m
B B

c

− ω
= ×

ω

. . . (v)

Substituting the value of B
2
 in equation (iv)

2 2

1 1

( . ) ( . )
. .

.

s m s m
c B B F

c

− ω − ω
ω + × =

ω
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2 2 2 2
1 1. . ( . ) . .c B s m B c Fω + − ω = ω

2 2 2 2
1 . ( . ) . .B c s m c F ω + − ω = ω

 

∴       1 2 2 2 2

. .

. ( . )

c F
B

c s m

ω
=

ω + − ω

and                

2

2 2 2 2 2

. . .

. . ( . )

s m c F
B

c c s m

− ω ω
= ×

ω ω + − ω
 . . . [From equation (v)]

          

2

2 2 2 2

( . )

. ( . )

F s m

c s m

− ω
=

ω + − ω

∴      The particular integral of the differential equation (i) is

      2 1 2sin . cos .x B t B t= ω + ω

          

2

2 2 2 2 2 2 2 2

. . ( . )
sin . cos .

. ( . ) . ( . )

c F F s m
t t

c s m c s m

ω − ω
= × ω + × ω

ω + − ω ω + − ω

          
2

2 2 2 2
. sin . ( . ) cos .

. ( . )

F
c t s m t

c s m

 = ω ω + − ω ω
 

ω + − ω
. . . (vi)

Let      . sin ;c Xω = φ  and 2. coss m X− ω = φ

∴
2 2 2 2
. ( . )X c s m= ω + − ω . . . (By squaring and adding)

Note : This picture is given as additional information and is not a direct example of the current chapter.

This machine performs pressing operation, welding operation and material handling.
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and    
2

.
tan

.

c

s m

ω
φ =

− ω

       or       
1

2

.
tan

.

c

s m

− ω 
φ =  

− ω 

Now the equation (vi) may be written as

       [ ]2 2 2 2 2
sin .sin cos cos

. ( . )

F
x X t X t

c s m

= φ ω + φ ω

ω + − ω

           2 2 2 2

.
cos ( . )

. ( . )

F X
t

c s m

= × ω − φ

ω + − ω

                                  

2 2 2 2

2 2 2 2

. ( . )
cos ( . )

. ( . )

F c s m
t

c s m

ω + − ω
= × ω − φ

ω + − ω

               2 2 2 2
cos ( . )

. ( . )

F
t

c s m

= × ω − φ

ω + − ω

∴      The complete solution of the differential equation (i) becomes

                                x = x
1
 + x

2

                     2 2 2 2
. cos ( . ) cos( . )

. ( . )

at

d

F
C e t t

c s m

−
= ω − θ + × ω − φ

ω + − ω

In actual practice, the value of the complementary function x
1
 at any time t is much smaller

as compared to particular integral x
2
. Therefore, the displacement x, at any time t, is given by the

particular integral x
2
 only.

∴                     
2 2 2 2

cos ( . )

. ( . )

F
x t

c s m

= × ω − φ

ω + − ω

... (vii)

This equation shows that motion is simple harmonic whose circular frequency is ω  and the

amplitude is 
2 2 2 2. ( . )

F

c s mω + − ω

.

A little consideration will show that the frequency of forced vibration is equal to the angular

velocity of the periodic force and the amplitude of the forced vibration is equal to the maximum

displacement of vibration.

∴      Maximum displacement or the amplitude of forced vibration,

                           2 2 2 2
. ( . )

max

F
x

c s m

=

ω + − ω
 . . . (viii)

Notes : 1. The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes

place.

           2. The equation (viii) may be written as

                          
2 2 2 2

2 2

/

. ( . )
max

F s
x

c s m

s s

=

ω − ω
+

. . . (Dividing the numerator and denominator by s)
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2
2 2 2

2

. .
1

ox

c m

ss

=

 ω ω
 + −
 
 

 . . . (Substituting F/s = x
o
)

where x
o
 is the deflection of the system under the static force F. We know that the natural frequency of free

vibrations is given by

 2
( ) /n s mω =

∴       

2
2 2 2

2 2

.
1

( )

o
max

n

x
x

c

s

=

 ω ω
 + −
 

ω 

. . . (ix)

3. When damping is negligible, then c = 0.

∴                      

2

2 2 2 2 2

2

( ) /

( ) ( )
1

( )

o o n o
max

n n

n

x x x s m
x

ω ×
= = =

ω ω − ω ω − ω
−

ω

         . . . 
2

( ) /n s m ω =
  
∵

∴  2 2
( )n

F

m

=
 ω − ω
  

 . . . ( ).oF x s=∵  . . . (x)

4. At resonance nω = ω . Therefore the angular speed at which the resonance occurs is

 n

s

m
ω = ω =  rad/s

and         
.

max o

n

s
x x

c
= ×

ω
 . . . [From equation (ix)]

2. Graphical method

The solution of the equation of motion for a forced and damped vibration may be easily

obtained by graphical method as discussed below :

Let us assume that the displacement of the mass (m) in the system, as shown in Fig. 23.19,

under the action of the applied simple harmonic force F cos .tω  is itself simple harmonic, so that

it can be represented by the equation,

  cos( )x A t= ω − φ

where A is the amplitude of vibration.

Now differentiating the above equation,

[ ]. sin ( . ) . cos 90 ( . )
dx

A t A t
dt

= −ω ω − φ = ω ° + ω − φ

and [ ]
2

2 2

2
. cos ( . ) . cos 180 ( . )

d x
A t A t

dt

= −ω ω − φ = ω ° + ω − φ
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∴      Elastic force i.e. the force required to extend the spring

          . . cos ( . )s x s A t= = ω − φ

Disturbing force i.e. the force required to overcome the resistance of dashpot

          [ ]. . cos 90 ( . )
dx

c c A t
dt

= × = ω ° + ω − φ

and inertia force i.e. the force required to accelerate the mass m

          [ ]
2

2

2
. . cos 180 ( . )

d x
m m A t

dt

= × = ω ° + ω − φ

Fig. 23.20. Graphical method.

The algebraic sum of these three forces at any given instant must be equal to the applied

force cosF tω . These forces are represented graphically in Fig. 23.20 (a). The vector OP repre-

sents, to some suitable scale, the elastic force (of maximum value s.A), at an inclination ( . )tω − φ

to the vertical. The vector OQ (of maximum value .c Aω ) and vector OR (of maximum value
2.m Aω ) represents, to the same scale, the disturbing force and inertia force respectively. The vec-

tors OP, OQ and OR are at successive intervals of 90°.

The projected lengths Op, Oq and Or represent the instantaneous values of these forces at

time t and Os (the algebraic sum of Op, Oq and Or) must represent the value F cos .tω of the

applied force at the same instant. Thus the force vector OS must be the vector sum of OP, OQ and

OR or force F must be the vector sum of s.A, . .c Aω  and 
2. .m Aω , as shown in Fig. 23.20 (b). From

the geometry of the figure,

      2 2 2 2
( ) ( ) ( ) ( )F oc od cd oa ad cd= = + = − +

          2 2 2 2 2 2 2
( . . . ) ( . . ) ( . ) .s A m A c A A s m c= − ω + ω = − ω + ω

∴                 
2 2 2 2

(or )

( . ) .
max

F
A x

s m c

=

− ω + ω

. . . (Same as before)

and    

2

2 2

. . .
tan

. . . .

cd c A c

od s A m A s m

ω ω
φ = = =

− ω − ω
. . . (Same as before)

(a) (b)
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23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier23.17. Magnification Factor or Dynamic Magnifier

It is the ratio of maximum displacement of the forced vibration (x
max 

) to the deflection

due to the static force F(x
o
). We have proved in the previous article that the maximum displace-

ment or the amplitude of forced vibration,

   

2
2 2 2

2 2

.
1

( )

o

max

n

x
x

c

s

=

 ω ω
+ − 

 
ω 

    Fig. 23.21. Relationship between magnification factor and phase angle for different values of / nω ω .

∴     Magnification factor or dynamic magnifier,

       
2

2 2 2

2 2

1

.
1

( )

max

o

n

x
D

x
c

s

= =

 ω ω
+ − 

 
ω 

... (i)

          

22
2

2

1

2 .
1

. ( )c n n

c

c

=

  ω ω
+ −  

   ω ω   

. . . 2

. 2 . 2 . 2 .

.2 ( )2 c nn

c c c c

ss cmm
m

 

 ω ω ω ω
= = = 

ωω ×
  

∵
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The magnification factor or dynamic magnifier gives the factor by which the static deflection

produced by a force F (i.e. x
o
) must be multiplied in order to obtain the maximum amplitude of the

forced vibration (i.e. x
max

) by the harmonic force F cos .ωt

∴ max o
x x D= ×

Fig. 23.21 shows the relationship between the magnification factor (D) and phase angle φ

for different value of /ω ωn  and for values of damping factor c/c
c
 = 0.1, 0.2 and 0.5.

Notes: 1. If there is no damping (i.e. if the vibration is undamped), then c = 0. In that case, magnification

factor,

      

2

2 22
2

2

1 ( )

( )

1
( )

max n

o n

n

x
D

x

ω
= = =

ω − ω
 ω

− 
 ω 

2. At resonance, nω = ω . Therefore magnification factor,

      
.

max

o n

x s
D

x c
= =

ω

Example 23.17. A single cylinder vertical petrol engine of total mass 300 kg is mounted

upon a steel chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts

of the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple

harmonic motion. A dashpot is provided whose damping resistance is directly proportional to the

velocity and amounts to 1.5 kN per metre per second.

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of

forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2. the speed of the

driving shaft at which resonance will occur.

Solution : Given. m = 300 kg; δ  = 2 mm = 2 × 10
–3

 m ; m
1
 = 20 kg ; l = 150 mm

= 0.15 m ; c = 1.5 kN/m/s = 1500 N/m/s ; N = 480 r.p.m. or 2 480 / 60ω = π×  = 50.3 rad/s

Depending upon the case bridges can be treated as beams subjected to

uniformly distributed leads and point loads.
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1. Amplitude of the forced vibrations

We know that stiffness of the frame,

       s = m.g / δ  = 300 × 9.81/2 × 10
–3

 = 1.47 × 10
6
 N/m

Since the length of stroke ( l ) = 150 mm = 0.15 m, therefore radius of crank,

        r = l / 2 = 0.15 / 2 = 0.075 m

We know that the centrifugal force due to the reciprocating parts or the static force,

     2
1. .= ωF m r  = 20 (50.3)

2
 0.075 = 3795 N

∴     Amplitude of the forced vibration (maximum),

   2 2 2 2. ( . )
max

F
x

c s m

=

ω + − ω

          2 2 6 2 2

3795

(1500) (50.3) [1.47 10 300(50.3) ]

=

+ × −

          
3

39 9

3795 3795
5.3 10

710 105.7 10 500 10

−
= = = ×

×× + ×

 m

           = 5.3 mm Ans.

2. Speed of the driving shaft at which the resonance occurs

Let         N = Speed of the driving shaft at which the resonance occurs in

 r.p.m.

We know that the angular speed at which the resonance occurs,

       

61.47 10
70

300

×
ω = ω = = =n

s

m
 rad/s

∴                  60 / 2 70 60 / 2= ω× π = × πN  = 668.4 r.p.m. Ans.

Example 23.18. A mass of 10 kg is suspended from one end of a helical spring, the other

end being fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude

to decrease to one-tenth of the initial value in four complete oscillations. If a periodic force of

150 cos 50 t N is applied at the mass in the vertical direction, find the amplitude of the forced

vibrations. What is its value of resonance ?

Solution.  Given :  m = 10 kg ; s = 10 N/mm = 10 × 10
3
 N/m ; 

1
5

10

x
x =

Since the periodic force, cos . 150cos50x
F F t t= ω = , therefore

Static force,        F = 150 N

and angular velocity of the periodic disturbing force,

       50ω = rad/s

We know that angular speed or natural circular frequency of free vibrations,

    

310 10

10

×
ω = =n

s

m
 = 31.6 rad/s
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Amplitude of the forced vibrations

Since the amplitude decreases to 1/10th of the initial value in four complete oscillations,

therefore, the ratio of initial  amplitude (x
1
) to the final amplitude after four complete oscillations

(x
5
) is given by

                             

4

31 1 2 4 1

5 2 3 4 5 2

 
= × × × =  

 

xx x x x x

x x x x x x
        . . . 

1 2 3 4

2 3 4 5

x x x x

x x x x

 
= = = 

 

∵

∴                   

1/ 4 1/ 4

1/ 41 1 1

2 5 1

(10) 1.78
/10

x x x

x x x

   
= = = =   

  
. . . 

1
5

10

x
x

 
= 

 

We know that

        
1

2 22

2
log

( )

  π
= × 

  ω −

e

n

x
a

x
a

          
2 2

2
log 1.78

(31.6)

π
= ×

−

e a

a

 or 
2

2
0.576

1000

× π
=

−

a

a

Squaring both sides and rearranging,

         39.832 a
2
 = 332     or    a

2
 = 8.335    or     a = 2.887

We know that           a = c/2m   or     c = a × 2m = 2.887 × 2 × 10 = 57.74 N/m/s

and deflection of the system produced by the static force F,

       x
o
 = F/s = 150/10 × 10

3
 = 0.015 m

We know that amplitude of the forced vibrations,

  

2
2 2 2

2 2

.
1

( )

o

max

n

x
x

c

s

=

 ω ω
+ − 

ω  

           

2
22 2

3 2

0.015 0.015

0.083 2.25
(57.74) (50) 50

1
31.6(10 10 )

= =
+

 
 

+ −  
 ×   

           
30.015

9.8 10
1.53

−
= = ×  m = 9.8 mm Ans.

Amplitude of forced vibrations at resonance

We know that amplitude of forced vibrations at resonance,

    

3

0

10 10
0.015 0.0822

. 57.54 31.6
max

n

s
x x

c

×
= × = × =

ω ×
 m = 82.2 mm Ans.

Example 23.19. A body of mass 20 kg is suspended from a spring which deflects 15 mm

under this load. Calculate the frequency of free vibrations and verify that a viscous damping force

amounting to approximately 1000 N at a speed of 1 m/s is just-sufficient to make the motion

aperiodic.
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If when damped to this extent, the body is subjected to a disturbing force with a maximum

value of 125 N making 8 cycles/s, find the amplitude of the ultimate motion.

Solution . Given : m = 20 kg ; δ   = 15 mm = 0.015 m ; c = 1000 N/m/s ; F = 125 N ;

f = 8 cycles/s

Frequency of free vibrations

We know that frequency of free vibrations,

      
1 1 9.81

2 2 0.015
= =

π δ π
n

g
f  = 4.07 Hz Ans.

The critical damping to make the motion aperiodic is such that damped frequency is zero,

i.e.

 

2

2

 
= 

 

c s

m m

∴          2 .
4 4 . 4= × = = × ×

δ

s m g
c m s m m

m

. . . 
.m g

s
 

= 
δ 

∵

          
20 9.81

4 20 1023
0.015

×
= × × =  N/m/s

This means that the viscous damping force is 1023 N at a speed of 1 m/s. Therefore a

viscous damping force amounting to approximately 1000 N at a speed of 1 m/s is just sufficient to

make the motion aperiodic. Ans.

Amplitude of ultimate motion

We know that angular speed of forced vibration,

       2 2 8 50.3ω = π× = π× =f  rad/s

and stiffness of the spring,      s = m.g/ δ  =  20 × 9.81 / 0.015 = 13.1 × 10
3
 N/m

∴      Amplitude of ultimate motion i.e. maximum amplitude of forced vibration,

  2 2 2 2
. ( . )

max

F
x

c s m

=

ω + − ω

          2 2 3 2 2

125

(1023) (50.3) [13.1 10 20(50.3) ]

=

+ × −

          36 6

125 125

63.7 102600 10 1406 10

= =
×× + ×

 = 1.96 × 10
–3

 m

           = 1.96 mm Ans.

Example 23.20. A machine part of mass 2 kg vibrates in a viscous medium. Determine the

damping coefficient when a harmonic exciting force of 25 N results in a resonant amplitude of

12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of frequency

4 Hz what will be the percentage increase in the amplitude of vibration when damper is removed

as compared with that with damping.

Solution . Given : m = 2 kg ; F = 25 N ; Resonant x
max

 = 12.5 mm = 0.0125 m ;

t
p
 = 0.2 s ; f = 4 Hz
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Damping coefficient

Let         c = Damping coefficient in N/m/s.

We know that natural circular frequency of the exicting force,

    2 / 2 / 0.2ω = π = πn pt  = 31.42 rad/s

We also know that the maximum amplitude of vibration at resonance (x
max

 ),

25 0.796
0.0125

. 31.42
= = =

ω ×n

F

c c c

 or c = 63.7 N/m/s Ans.

Percentage increase in amplitude

Since the system is excited by a harmonic force of frequency ( f ) = 4 Hz, therefore corre-

sponding circular frequency

       2 2 4 25.14ω = π× = π× =f  rad/s

We know that maximum amplitude of vibration with damping,

 2 2 2 2. ( . )
max

F
x

c s m

=

ω + − ω

         2 2 2 2 2

25

(63.7) (25.14) [2(31.42) 2 (25.14) ]

=

+ −

. . . 
2 2( ) / or ( )

n ns m s m ω = = ω
 
∵

          
6 6

25 25
0.0143

17492.56 10 0.5 10

= = =

× + ×

 m = 14.3 mm

and the maximum amplitude of vibration when damper is removed,

 
2 22 2

25 25

7102[(31.42) (25.14) ]( )
max

n

F
x

m

= = =
  −ω − ω
 

 = 0.0352 m

          = 35.2 mm

∴     Percentage increase in amplitude

          
35.2 14.3

14.3

−
=  = 1.46    or    146% Ans.

Example 23.21. The time of free vibration of a mass hung from the end of a helical spring

is 0.8 second. When the mass is stationary, the upper end is made to move upwards with a

displacement y metre such that y = 0.018 sin 2 π t, where t is the time in seconds measured from

the beginning of the motion. Neglecting the mass of the spring and any damping effects, determine

the vertical distance through which the mass is moved in the first 0.3 second.

Solution. Given : t
p
 = 0.8 s ; y = 0.018 sin 2 π t

Let        m =  Mass hung to the spring in kg, and

        s = Stiffness of the spring in N/m.

We know that time period of free vibrations (t
p
),

     0.8 2
m

s
= π         or      

2
0.8

0.0162
2

 
= = 

π 

m

s
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If x metres is the upward displacement of mass m from its equilibrium position after time t

seconds, the equation of motion is given by

          

2

2
( )× = −

d x
m s y x

dt
      or      

2

2
0.018sin 2× + = = π

m d x
x y t

s dt

The solution of this differential equation is

       
2

0.018sin 2
sin cos

2
1

/

π
= × + × +

π 
−  

 

s s t
x A t B t

m m

s m

 . . . (where A and B are constants)

          2

0.018sin 2
sin cos

0.0162 0.0162 1 4 0.0162

t t t
A B

π
= + +

− π ×

          sin 7.85 cos7.85 0.05sin 2= + + πA t B t t  . . . (i)

Now when     t = 0, x = 0, then from equation (i), B = 0.

Again when   t = 0, dx/dt = 0.

Therefore differentiating equation (i) and equating to zero, we have

 / 7.85 cos7.85 0.05 2 cos 2 0= + × π π =dx dt A t t . . . (∵    B = 0 )

or             7.85 cos7.85 0.05 2 cos2A t t= − × π π

∴                   0.05 2 / 7.85 0.04A = − × π = − . . . (∵    t = 0 )

Now the equation (i) becomes

      0.04sin 7.85 0.05sin 2x t t= − + π . . . (∵    B = 0)  . . . (ii)

∴  Vertical distance through which the mass is moved in the first 0.3 second (i.e.

when t = 0.3 s),

         0.04sin (7.85 0.3) 0.05sin (2 0.3)= − × + π×

 . . . [ Substituting t = 0.3 in equation (ii)]

          0.04 0.708 0.05 0.951 0.0283 0.0476 0.0193= − × + × = − + =  m

         =  19.3 mm Ans.

23.18.23.18.23.18.23.18.23.18. Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility Vibration Isolation and Transmissibility

A little consideration will show that when an

unbalanced machine is installed on the foundation, it produces

vibration in the foundation. In order to prevent these vibrations

or to minimise the transmission of forces to the foundation,

the machines are mounted on springs and dampers or on some

vibration isolating material, as shown in Fig. 23.22. The

arrangement is assumed to have one degree of freedom, i.e. it

can move up and down only.

It may be noted that when a periodic (i.e. simple

harmonic) disturbing force F cos ω t is applied to a machine
Fig. 23.22. Vibration isolation.
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of mass m supported by a spring of stiffness s, then the force is transmitted by means of the spring

and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted (F
T
) to the force applied (F) is known as the isolation

factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol-

lowing two forces :

1. Spring force or elastic force which is equal to s. x
max

, and

2. Damping force which is equal to c. ω .x
max

.

Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore

the force transmitted,

     2 2
T ( . ) ( . . )

max max
F s x c x= + ω

          2 2 2
.maxx s c= + ω

∴     Transmissibility ratio,

        

2 2 2
T .

maxx s cF

F F

+ ω
ε = =

We know that

  max o

F
x x D D

s
= × = × . . . o

F
x

s

 
= 

 
∵

∴

2 2
2 2 2

2

.
. 1

ω
ε = + ω = +

D c
s c D

s s

          

2
2

1
c n

c
D

c

 ω
= + × 

ω 
. . . 

. 2

c n

c c

s c

 ω ω
= × 

ω 

∵

We have seen in Art. 23.17 that the magnification factor,

      

22 2

2

1

2 .
1

. ( )

=

  ω ω
+ −  

 ω ω   c n n

D

c

c

∴

2

22 2

2

2 .
1

.

2 .
1

. ( )

 ω
+  

ω 
ε =

  ω ω
+ −    ω ω   

c n

c n n

c

c

c

c

. . . (i)

When the damper is not provided, then c = 0, and

        2

1

1 ( / )
ε =

− ω ωn

 . . . (ii)

Fig. 23.23
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From above, we see that when / 1,ω ω > εn  is negative. This means that there is a phase

difference of 180° between the transmitted force and the disturbing force ( cos . )ωF t . The value of

/ω ωn  must be greater than 2  if ε  is to be less than 1 and it is the numerical value of ε ,

independent of any phase difference between the forces that may exist which is important. It is

therefore more convenient to use equation (ii) in the following form, i.e.

        2

1

( / ) 1
ε =

ω ω −n

 . . . (iii)

Fig. 23.24 is the graph for different values of damping factor c/c
c
 to show the variation of

transmissibility ratio ( ε ) against the ratio /ω ωn .

1. When / 2ω ω =n , then all the curves pass through the point ε  = 1 for all values of

damping factor c/c
c
 .

Fig. 23.24. Graph showing the variation of transmissibility ratio.

2. When / 2ω ω <n , then ε  > 1 for all values of damping factor c/c
c
. This means that the

force transmitted to the foundation through elastic support is greater than the force applied.

3. When / 2ω ω >n  , then ε  < 1 for all values of damping factor c/c
c
. This shows that

the force transmitted through elastic support is less than the applied force. Thus vibration isolation

is possible only in the range of / 2ω ω >n
 .
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We also see from the curves in Fig. 23.24 that the damping is detrimental beyond

/ 2ω ω >n
 and advantageous only in the region / 2ω ω <n

. It is thus concluded that for the

vibration isolation, dampers need not to be provided but in order to limit resonance amplitude,

stops may be provided.

Example 23.22. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The

armature mass is 35 kg and its C.G. lies 0.5 mm from the axis of rotation.  The motor is mounted

on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed

force. Assume that the mass of the motor is equally distributed among the five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the

operating speed; and 3. natural frequency of the system.

Solution. Given m
1
 = 120 kg ;  m

2
 = 35 kg;   r = 0.5 mm = 5 × 10

–4
 m;  ε = 1 / 11;

N = 1500 r.p.m.  or  ω = 2π × 1500 / 60 = 157.1 rad/s ;

1. Stiffness of each spring

Let                   s = Combined stiffness of the spring in N-m, and

            ω
n
 = Natural circular frequency of vibration of the machine in

  rad/s.

We know that transmissibility ratio (ε),

     

2 2

2 2 2 2 2

( ) ( )1 1

11 ( ) (157.1) ( )
1

n n

n n

n

ω ω
= = =

ω − ω − ω ω
− 

ω 

or                    2 2 2(157.1) ( ) 11( )
n n− ω = ω    or   2( ) 2057ω =n

  or   45.35ω =n  rad/s

We know that     1/n s mω =

                 2
1( ) 120 2057 246 840 N / m

ns m= ω = × =

Since these are five springs, therefore stiffness of each spring

        = 246 840 / 5 = 49 368 N/m  Ans.

2.  Dynamic force transmitted to the base at the operating speed (i.e. 1500 r.p.m.  or  157.1 rad/s)

We know that maximum unbalanced force on the motor due to armature mass,

     2 2 4
2 35(157.1) 5 10 432 NF m r

−
= ω ⋅ = × =

∴ Dynamic force transmitted to the base,

     T

1
. 432 39.27 N

11
F F= ε = × =  Ans.

3. Natural frequency of the system

We have calculated above that the natural frequency of the system,

     45.35ω =n  rad/s   Ans.
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Example 23.23. A machine has a mass of 100 kg and unbalanced reciprocating parts of

mass 2 kg which move through a vertical stroke of 80 mm with simple harmonic motion. The

machine is mounted on four springs, symmetrically arranged with respect to centre of mass, in

such a way that the machine has one degree of freedom and can undergo vertical displacements

only.

Neglecting damping, calculate the combined stiffness of the spring in order that the force

transmitted to the foundation is 1 / 25 th of the applied force, when the speed of rotation of ma-

chine crank shaft is 1000 r.p.m.

When the machine is actually supported on the springs, it is found that the damping reduces

the amplitude of successive free vibrations by 25%. Find : 1. the force transmitted to foundation at

1000 r.p.m., 2. the force transmitted to the foundation at resonance, and 3. the amplitude of the

forced vibration of the machine at resonance.

Solution. Given : m
1
 = 100 kg ; m

2
 = 2 kg ; l = 80 mm = 0.08 m ; ε  = 1 / 25 ;

N = 1000 r.p.m. or 2 1000 / 60ω = π×  = 104.7 rad/s

Combined stiffness of springs

Let         s = Combined stiffness of springs in N/m, and

      ωn  = Natural circular frequency of vibration of the machine in rad/s.

We know that transmissibility ratio ( ε ),

     

2 2

2 2 2 2 2

( ) ( )1 1

25 ( ) (104.7) ( )
1

ω ω
= = =

ω − ω − ω ω
− 

ω 

n n

n n

n

or            2 2 2(104.7) ( ) 25( )− ω = ωn n
      or    2( ) 421.6ω =n

 or 20.5ω =n  rad/s

We know that      1/ω =n s m

∴        2
1 ( ) 100 421.6= ω = ×ns m  = 42 160 N/m Ans.

1. Force transmitted to the foundation at 1000 r.p.m.

Let      F
T
 = Force transmitted, and

       x
1
 = Initial amplitude of vibration.

Since the damping reduces the amplitude of successive free vibrations by 25%, therefore

final amplitude of vibration,

     2 10.75=x x

We know that

       
1

2 22

2
log

( )

  × π
= 

  ω −

e

n

x a

x
a

      or      1

21

2
log

0.75 421.6

  × π
= 

  −

e

x a

x
a

Squaring both sides,

        

2 2
2

2

4
(0.2877)

421.6

× π
=

−

a

a
         or       

2

2

39.5
0.083

421.6
=

−

a

a

1
... log log 1.333 0.2877

0.75
e e

  
= =  

  

∵

    2 235 0.083 39.5− =a a               or    
2 0.884=a     or    a = 0.94
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We know that damping coefficient or damping force per unit velocity,

       12 0.94 2 100= × = × ×c a m  = 188 N/m/s

and critical damping coefficient,

      2 . 2 100 20.5= ω = × ×c n
c m  = 4100 N/m/s

∴ Actual value of transmissibility ratio,

        

2

22 2

2

2 .
1

.

2 .
1

. ( )

 ω
+  

ω 
ε =

  ω ω
+ −    ω ω   

c n

c n n

c

c

c

c

           

2

2
2 2

2 188 104.7
1

4100 20.5

2 188 104.7 104.7
1

4100 20.5 20.5

× × 
+  

× 
=

 × ×   
+ −    

×     

 

1 0.22

0.22 629

+
=

+

           
1.104

0.044
25.08

= =

We know that the maximum unbalanced force on the machine due to reciprocating parts,

      2 2
2 . . 2(104.7) (0.08 / 2) 877= ω = =F m r  N . . . (∵    r = l / 2)

∴     Force transmitted to the foundation,

     T . 0.044 877= ε = ×F F  = 38.6 N Ans. . . . (∵    T /F Fε = )

2. Force transmitted to the foundation at resonance

Since at resonance, ω = ωn , therefore transmissibility ratio,

        

2 2

2 2

2 2 188
1 1

4100 1 0.0084
10.92

0.092
2 1882

4100

  × 
+ +   

+   
ε = = = =

×   
  
  

c

c

c

c

c

c

and maximum unbalanced force on the machine due to reciprocating parts at resonance speed ωn ,

      2 2
2 ( ) 2(20.5) (0.08 / 2) 33.6= ω = =nF m r  N . . . (∵   r = l / 2)

∴     Force transmitted to the foundation at resonance,

     T . 10.92 33.6= ε = ×F F  = 367 N Ans.

3. Amplitude of the forced vibration of the machine at resonance

We know that amplitude of the forced vibration at resonance

          
3Force transmitted at resonance 367

8.7 10
Combinedstiffness 42 160

−
= = = ×  m

          = 8.7 mm Ans.
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Example 23.24. A single-cylinder engine of total mass 200 kg is to be mounted on an

elastic support which permits vibratory movement in vertical direction only. The mass of the piston

is 3.5 kg and has a vertical reciprocating motion which may be assumed simple harmonic with a

stroke of 150 mm. It is desired that the maximum vibratory force transmitted through the elastic

support to the foundation shall be 600 N when the engine speed is 800 r.p.m. and less than this at

all higher speeds.

1. Find the necessary stiffness of the elastic support, and the amplitude of vibration at 800

r.p.m., and

2. If the engine speed is reduced below 800 r.p.m. at what speed will the transmitted force

again becomes 600 N?

Solution. Given : m
1
 = 200 kg ; m

2
 = 3.5 kg ; l = 150 mm = 0.15 mm or r = l/2 = 0.075 m ;

F
T
 = 600 N ; N = 800 r.p.m. or 2 800 / 60ω = π×  = 83.8 rad/s

We know that the disturbing force at 800 r.p.m.,

      F = Centrifugal force on the piston

2
2 . .= ωm r  = 3.5 (83.8)

2
 0.075 = 1843 N

1. Stiffness of elastic support and amplitude of vibration

Let        s = Stiffness of elastic support in N/m, and

    x
max

 = Max. amplitude of vibration in metres.

Since the max. vibratory force transmitted to the foundation is equal to the force on the

elastic support (neglecting damping), therefore

Max. vibratory force transmitted to the foundation,

     F
T
 = Force on the elastic support

= Stiffness of elastic support × Max. amplitude of vibration

          = s × x
max 2 2( )

n

F
s

m

= ×
 ω − ω
 

          2
2

.

.
= × =

  ω −
ω − 

 

F F s
s

s m s
m

m

. . . 
2

( )n

s

m

 
ω =

 
 
∵

∴
2 6

1843 1843
600

200(83.8) 1.4 10

×
= =

− × −

s s

s s

. . . (Substituting m = m
1
)

* The equation (x) of Art. 23.16 is

 2 2
( )

max

n

F
x

m

=
 ω − ω
 

Since the max. vibratory force transmitted to the foundation through the elastic support decreases at all

higher speeds (i.e. above N = 800 r.p.m. or ω  = 83.8 rad/s), therefore we shall use

                2 2
( )

max

n

F
x

m

=
 ω − ω
 
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or         840 × 10
6
 – 600 s = 1843 s

∴ s = 0.344 × 10
6
 = 344 × 10

3
 N/m Ans.

and maximum amplitude of vibration,

  
2 2 3 3

1843 1843

. 200(83.8) 344 10 1056 10
max

F
x

m s

= = =

ω − − × ×

m

           = 1.745 × 10
–3

 m = 1.745 mm Ans.

2. Speed at the which the transmitted force again becomes 600 N

The transmitted force will rise as the speed of the engine falls and passes through reso-

nance. There will be a speed below resonance at which the transmitted force will again equal to

600 N. Let this speed be 1ω  rad/s (or N
1
 r.p.m.).

∴      Disturbing force, 2 2 2
2 1 1 1( ) 3.5( ) 0.075 0.2625( )= ω = ω = ωF m r N

Since the engine speed is reduced below N
1
 = 800 r.p.m., therefore in this case, max,

amplitude of vibration,

  
22 2 2 11 1

( )( ) ( ) ( )

max

n

F F F
x

s s mm
m

m

= = =
    − ωω − ω − ω   

 

and           Force transmitted = 
2

1( )
×

− ω

F
s

s m

∴                           
2 3 2

3 1 1

3 2 2 2
1 1

0.2625( ) 90.3 10 ( )
600 344 10

344 10 200( ) 344 10 200( )

ω × ω
= × × =

× − ω × − ω

. . . (Substituting m = m
1
)

6 3 2 3 2
1 1206.4 10 120 10 ( ) 90.3 10 ( )× − × ω = × ω    or   2

1( ) 981ω =

∴                   1 31.32ω =  rad/s  or  1 31.32 60 / 2= × πN   = 299 r.p.m.  Ans.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

1. A shaft of 100 mm diameter and 1 metre long is fixed at one end and other end carries a flywheel

of mass 1 tonne. Taking Young’s modulus for the shaft material as 200 GN/m
2
, find the natural

frequency of longitudinal and transverse vibrations. [Ans. 200 Hz ; 8.6 Hz]

2. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end together

with a central load of mass 1000 kg. Calculate the frequency of transverse vibrations. Neglect the

mass of the beam and take I = 10
9
 mm

4
 and E = 205×10

3
 N/mm

2
. [Ans. 13.8 Hz]

3. A steel bar 25 mm wide and 50 mm deep is freely supported at two points 1 m apart and carries a

mass of 200 kg in the middle of the bar. Neglecting the mass of the bar, find the frequency of

transverse vibration.

If an additional mass of 200 kg is distributed uniformly over the length of the shaft, what will be

the frequency of vibration ? Take E = 200 GN/m
2
. [Ans. 17.8 Hz ; 14.6 Hz]

4. A shaft 1.5 m long is supported in flexible bearings at the ends and carries two wheels each of 50

kg mass. One wheel is situated at the centre of the shaft and the other at a distance of 0.4 m from

the centre towards right. The shaft is hollow of external diameter 75 mm and inner diameter 37.5

mm. The density of the shaft material is 8000 kg/m
3
. The Young’s modulus for the shaft material is

200 GN/m
2
. Find the frequency of transverse vibration. [Ans. 33.2 Hz]
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5. A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is supported by two short

bearings, the centre distance of which is 400 mm. Find the whirling speed : 1. neglecting the mass

of the shaft, and 2. taking the mass of the shaft also into consideration. The density of shaft material

is 7500 kg/m
3
. [Ans. 748 r.p.m.; 744 r.p.m.]

6. A shaft 180 mm diameter is supported in two bearings 2.5 metres apart. It carries three discs of

mass 250 kg, 500 kg and 200 kg at 0.6 m, 1.5 m and 2 m from the left hand. Assuming the mass of

the shaft 190 kg/m, determine the critical speed of the shaft. Young’s modulus for the material of

the shaft is 211 GN/m
2
. [Ans. 18.8 r.p.m.]

7. A shaft 12.5 mm diameter rotates in long bearings and a disc of mass 16 kg is secured to a shaft at

the middle of its length. The span of the shaft between the bearing is 0.5 m. The mass centre of the

disc is 0.5 mm from the axis of the shaft. Neglecting the mass of the shaft and taking E = 200

GN/m
2
, find : 1 critical speed of rotation in r.p.m., and 2. the range of speed over which the stress

in the shaft due to bending will not exceed 120 MN/m
2
. Take the static deflection of the shaft for a

beam fixed at both ends, i.e. 

3

192

Wl

EI
δ = .                           [Ans. 1450 r.p.m. ; 1184 to 2050 r.p.m.]

8. A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carries a pulley

of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm from the axis of the

shaft. Find (a) the whirling speed, and (b) the bending stress in the shaft, when it is rotating at 1700

r.p.m. Neglect the mass of the shaft and E = 200 GN/m
2
. [Ans. 3996 r.p.m ; 12.1 MN/m2]

9. A shaft 12 mm in diameter and 600 mm long between long bearings carries a central mass of 4 kg.

If the centre of gravity of the mass is 0.2 mm from the axis of the shaft, compute the maximum

flexural stress in the shaft when it is running at 90 per cent of its critical speed. The value of

Young’s modulus of the material of the shaft is 200 GN/m
2
. [Ans. 14.8 kN/m2]

10. A vibrating system consists of a mass of 8 kg, spring of stiffness 5.6 N/mm and a dashpot of

damping coefficient of 40 N/m/s. Find (a) damping factor, (b) logarithmic decrement, and (c) ratio

of the two consecutive amplitudes. [Ans. 0.094 ; 0.6 ; 1.82]

11. A body of mass of 50 kg is supported by an elastic structure of stiffness 10 kN/m. The motion of

the body is controlled by a dashpot such that the amplitude of vibration decreases to one-tenth of its

original value after two complete vibrations. Determine : 1. the damping force at 1 m/s ; 2. the

damping ratio, and 3. the natural frequency of vibration. [Ans. 252 N/m/s ; 0.178 ; 2.214 Hz]

12. A mass of 85 kg is supported on springs which deflect 18 mm under the weight of the mass. The

vibrations of the mass are constrained to be linear and vertical and are damped by a dashpot which

reduces the amplitude to one quarter of its initial value in two complete oscillations. Find : 1. the

magnitude of the damping force at unit speed, and 2. the periodic time of damped vibration.

[Ans. 435 N/m/s ; 0.27 s]

13. The mass of a machine is 100 kg. Its vibrations are damped by a viscous dash pot which diminishes

amplitude of vibrations from 40 mm to 10 mm in three complete oscillations. If the machine is

mounted on four springs each of stiffness 25 kN/m, find (a) the resistance of the dash pot at unit

velocity, and (b) the periodic time of the damped vibration. [Ans. 6.92 N/m/s ; 0.2 s]

14. A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations

is 35 seconds and the ratio of the first and seventh displacement is 2.5. Find (a) the stiffness of the

spring, and (b) the damping resistance in N/m/s. If the oscillations are critically damped, what is the

damping resistance required in N/m/s ? [Ans. 870 N/m ; 3.9 N/m/s ; 162 N/m/s]

15. A mass of 5 kg is supported by a spring of stiffness 5 kN/m. In addition, the motion of mass is

controlled by a damper whose resistance is proportional to velocity. The amplitude of vibration

reduces to 1/15th of the initial amplitude in four complete cycles. Determine the damping force per

unit velocity and the ratio of the frequencies of the damped and undamped vibrations.

[Ans. 34 N/m/s : 0.994]

16. A mass of 50 kg suspended from a spring produces a statical deflection of 17 mm and when in

motion it experiences a viscous damping force of value 250 N at a velocity of 0.3 m/s. Calculate the

periodic time of damped vibration. If the mass is then subjected to a periodic disturbing force

having a maximum value of 200 N and making 2 cycles/s, find the amplitude of ultimate motion.

[Ans. 0.262 s ; 8.53 mm]
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Fig. 23.25

17. A mass of 50 kg is supported by an elastic structure of total stiffness 20 kN/m. The damping ratio

of the system is 0.2. A simple harmonic disturbing force acts on the mass and at any time t seconds,

the force is 60 cos 10 t newtons. Find the amplitude of the vibrations and the phase angle caused by

the damping. [Ans. 3.865 mm ; 14.93°]

18. A machine of mass 100 kg is supported on openings of total stiffness 800 kN/m and has a rotating

unbalanced element which results in a disturbing force of 400 N at a speed of 3000 r.p.m. Assum-

ing the damping ratio as 0.25, determine : 1. the amplitude of vibrations due to unbalance ; and 2.

the transmitted force. [Ans. 0.04 mm ; 35.2 N]

19. A mass of 500 kg is mounted on supports having a total stiffness of 100 kN/m and which provides

viscous damping, the damping ratio being 0.4. The mass is constrained to move vertically and is

subjected to a vertical disturbing force of the type F cos ω t. Determine the frequency at which

resonance will occur and the maximum allowable value of F if the amplitude at resonance is to be

restricted to 5 mm. [Ans. 2.25 Hz ; 400 N]

20. A machine of mass 75 kg is mounted on springs of stiffness 1200 kN/m and with an assumed

damping factor of 0.2. A piston within the machine of mass 2 kg has a reciprocating motion with a

stroke of 80 mm and a speed of 3000 cycles/min. Assuming the motion to be simple harmonic,

find : 1. the amplitude of motion of the machine, 2. its phase angle with respect to the exciting

force, 3. the force transmitted to the foundation, and 4. the phase angle of transmitted force with

respect to the exciting force. [Ans. 1.254 mm ; 169.05° ; 2132 N ; 44.8°]

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?

1. What are the causes and effects of vibrations ?

2. Define, in short, free vibrations, forced vibrations and damped vibrations.

3. Discuss briefly with neat sketches the longitudinal, transverse and torsional free vibrations.

4. Derive an expression for the natural frequency of free transverse and longitudinal vibrations by

equilibrium method.

5. Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations.

6. Deduce an expression for the natural frequency of free transverse vibrations for a simply supported

shaft carrying uniformly distributed mass of m kg per unit length.

7. Deduce an expression for the natural frequency of free transverse vibrations for a beam fixed at

both ends and carrying a uniformly distributed mass of m kg per unit length.

8. Establish an expression for the natural frequency of free transverse vibrations for a simply sup-

ported beam carrying a number of point loads, by (a) Energy method ; and (b) Dunkerley’s method.

9. Explain the term ‘whirling speed’ or ‘critical speed’ of a shaft. Prove that the whirling speed for a

rotating shaft is the same as the frequency of natural transverse vibration.

10. Derive the differential equation characterising the motion of an oscillation system subject to vis-

cous damping and no periodic external force. Assuming the solution to the

equation, find the frequency of oscillation of the system.

11. Explain the terms ‘under damping, critical damping’ and ‘over damping’

12. A thin plate of area A and mass m is attached to the end of a spring and is

allowed to oscillate in a viscous fluid, as shown in Fig. 23.25. Show that

2 2
( )µ = ω − ωd

m

A

where the damping force on the plate is equal to . .µ Av ; v being the velocity.

The symbols ω  and ωd  indicate the undamped and damped natural circular frequencies of

oscillations.

13. Explain the term 'Logarithmic decrement' as applied to damped vibrations.

14. Establish an expression for the amplitude of forced vibrations.

15. Explain the term ‘dynamic magnifier’.

16. What do you understand by transmissibility ?
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OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS

1. When there is a reduction in amplitude over every cycle of vibration, then the body is said to have

(a) free vibration (b) forced vibration (c) damped vibration

2. Longitudinal vibrations are said to occur when the particles of a body moves

(a) perpendicular to its axis (b) parallel to its axis

(c) in a circle about its axis

3. When a body is subjected to transverse vibrations, the stress induced in a body will be

(a) shear stress (b) tensile stress (c) compressive stress

4. The natural frequency (in Hz) of free longitudinal vibrations is equal to

(a)
1

2π

s

m
(b) 

1

2π δ

g
(c ) 

0.4985

δ

(d) any one of these

where    m = Mass of the body in kg,

s = Stiffness of the body in N/m, and

δ  = Static deflection of the body in metres.

5. The factor which affects the critical speed of a shaft is

(a) diameter of the disc (b) span of the shaft

(c) eccentricity (d) all of these

6. The equation of motion for a vibrating system with viscous damping is

2

2
0

d x c dx s
x

m dt mdt

+ × + × =

If the roots of this equation are real, then the system will be

(a) over damped (b) under damped (c) critically damped

7.  In under damped vibrating system, if x
1
 and x

2
 are the successive values of the amplitude on the

same side of the mean position, then the logarithmic decrement is equal to

(a)  x
1
/x

2
(b) log (x

1
/x

2
) (c) log

e
 (x

1
/x

2
) (d) log (x

1
.x

2
)

8. The ratio of the maximum displacement of the forced vibration to the deflection due to the static

force, is known as

(a)  damping factor (b) damping coefficient

(c)  logarithmic decrement (d) magnification factor

9.  In vibration isolation system, if / nω ω  is less than 2 , then for all values of the damping factor, the

transmissibility will be

(a) less than unity   (b)  equal to unity (c) greater than unity (d) zero

   where   ω = Circular frequency of the system in rad/s, and

      ω
n
 = Natural circular frequency of vibration of the system in rad/s.

10. In vibration isolation system, if ω/ω
n
 > 1, then the phase difference between the transmitted force

and the disturbing force is

(a) 0° (b) 90° (c) 180° (d) 270°

ANSWERSANSWERSANSWERSANSWERSANSWERS

1.  (c) 2.  (b) 3.  (b) 4.  (d) 5.  (d)

6.  (a) 7.  (b) 8.  (d) 9.  (c) 10.  (c)

GO To FIRST
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TTTTTorororororsionalsionalsionalsionalsional
VVVVVibraibraibraibraibrationstionstionstionstions

24
FFFFFeaeaeaeaeaturturturturtureseseseses

1. Introduction.

2. Natural Frequency of Free

Torsional Vibrations.

3. Effect of Inertia of the

Constraint on Torsional

Vibrations.

4. Free Torsional Vibrations of

a Single Rotor System.

5. Free Torsional Vibrations of

a Two Rotor System.

6. Free Torsional Vibrations of

a Three Rotor System.

7. Torsionally Equivalent

Shaft.

8. Free Torsional Vibrations of

a Geared System.

24.1.24.1.24.1.24.1.24.1. IntroductionIntroductionIntroductionIntroductionIntroduction

We have already discussed in the previous chapter

that when the particles of a shaft or disc move in a circle

about the axis of a shaft, then the vibrations are known as

torsional vibrations. In this case, the shaft is twisted and

untwisted alternately and torsional shear stresses are induced

in the shaft. In this chapter, we shall now discuss the fre-

quency of torsional vibrations of various systems.

24.2.24.2.24.2.24.2.24.2. Natural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free TorsionalNatural Frequency of Free Torsional

VibrationsVibrationsVibrationsVibrationsVibrations

Consider a shaft of negligible mass whose one end

is fixed and the other end carrying a disc as shown in Fig.

24.1.

Let        θ = Angular displacement of the shaft

from mean position after time t

in radians,

m = Mass of disc in kg,

             I = Mass moment of inertia of disc

in kg-m
2 

 = m.k
2
,

k = Radius of gyration in metres,

q = Torsional stiffness of the shaft in

N-m.

CONTENTS

CONTENTS
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Fig 24.1. Natural frequency of

free torsional vibrations.

∴     Restoring force        = .θq  ... (i)

and accelerating force          
2

2

θ
= ×

d
I

dt

... (ii)

Equating equations (i) and (ii), the equation of

motion is

2

2
.

d
I q

dt

θ
× = − θ

or
2

2
. 0

d
I q

dt

θ
× + θ =

∴

2

2
0

θ
+ × θ =

d q

Idt
. . . (iii)

The fundamental equation of the simple harmonic motion is

       

2
2

2
. 0

θ
+ ω =

d
x

dt
. . . (iv)

Comparing equations (iii) and (iv),

       ω =
q

I

∴     Time period,        
2

2
π

= = π
ω

p

I
t

q

and natural frequency ,        
1 1

2
= =

π
n

p

q
f

t I

A modern lathe can create an artificial hip joint from information fed into it by a computer. Accurate

drawings of the joint are first made on a computer and the information about the dimensions fed is

directly into the lathe.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Note : The value of the torsional stiffness q may be obtained from the torsion equation,

       
.T C

J l

θ
=       or     

.T C J

l
=

θ

∴

.C J
q

l
= . . . 

T
q

 
= 

θ 

∵

where       C  = Modulus of rigidity for the shaft material,

        J = Polar moment of inertia of the shaft cross-section,

          
4

32
d

π
=  ; d is the diameter of the shaft, and

         l = Length of the shaft.

Example 24.1. A shaft of 100 mm diameter and 1 metre long has one of its end fixed and

the other end carries a disc of mass 500 kg at a radius of gyration of 450 mm. The modulus of

rigidity for the shaft material is 80 GN/m
2
. Determine the frequency of torsional vibrations.

Solution. Given : d = 100 mm = 0.1 m ; l = 1 m ; m = 500 kg ; k = 450 mm = 0.45 m ;

C = 80 GN/m
2
 =  80 × 10

9
 N/m

2

We know that polar moment of inertia of the shaft,

      
4 4 6 4

(0.1) 9.82 10 m
32 32

−π π
= × = = ×J d

∴     Torsional stiffness of the shaft,

     

9 6
3. 80 10 9.82 10

785.6 10
1

−
× × ×

= = = ×
C J

q
l

N-m

We know that mass moment of inertia of the shaft,

       2 2. 500(0.45) 101.25= = =I m k  kg-m
2

∴     Frequency of torsional vibrations,

     

3
1 1 785.6 10 88.1

2 2 101.25 2

×
= = =

π π π
n

q
f

I
 = 14 Hz Ans.

Example 24.2. A flywheel is mounted on a vertical shaft as shown in Fig 24.2. The both

ends of a shaft are fixed and its diameter is 50 mm. The flywheel has a mass of 500 kg and its

radius of gyration is 0.5 m. Find the natural frequency of torsional vibrations, if the modulus of

rigidity for the shaft material is 80 GN/m
2
.

Solution. Given : d = 50 mm = 0.05 m ; m = 500 kg ; k = 0.5m; G = 80 GN/m
2

= 84 × 10
9
 N/m

2

We know that polar moment of inertia of the shaft,

       
4 4 4

(0.05) m
32 32

J d
π π

= × =

         6 40.6 10 m−
= ×

∴     Torsional stiffness of the shaft for length l
1
,

     

9 6

1
1

. 84 10 0.6 10

0.9

−
× × ×

= =
C J

q
l

         = 56 × 10
3
 N-m Fig 24.2
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Similarly torsional stiffness of the shaft for length l
2
,

  

9 6

2
2

. 84 10 0.6 10

0.6

−
× × ×

= =
C J

q
l

 = 84 × 103 N-m

∴    Total torsional stiffness of the shaft,

      3 3 3
1 2 56 10 84 10 140 10= + = × + × = ×q q q  N-m

We know that mass moment of inertia of the flywheel,

       2 2. 500(0.5) 125= = =I m k  kg-m
2

∴     Natural frequency of torsional vibration,

      

31 1 140 10 33.5

2 2 125 2

×
= = =

π π π
n

q
f

I
 = 5.32 Hz Ans.

24.3.24.3.24.3.24.3.24.3. Effect of Inertia of the Constraint on Torsional VibrationsEffect of Inertia of the Constraint on Torsional VibrationsEffect of Inertia of the Constraint on Torsional VibrationsEffect of Inertia of the Constraint on Torsional VibrationsEffect of Inertia of the Constraint on Torsional Vibrations

Consider a constraint i.e. shaft whose one end is fixed and the

other end free, as shown in Fig.24.3.

Let      ω = Angular velocity of free end,

 m = Mass of constraint for unit length,

          l = Length of constraint,

m
C

= Total mass of constraint = m.l,

  k = Radius of gyration of constraint,

 I
C

= Total mass moment of inertia of

        constraint

                       = m
C
.k

2
 = m.l.k

2
.

Consider a small element at a distance x from the fixed end and

of length δx . Therefore,

Mass moment of inertia of the element

2 2( . ) . .
δ

= δ = ×
x

m x k m k l
l

... (Dividing and multiplying by l)

    C

δ
= ×

x
I

l
... (Substituting m.k

2
.l = I

C
)

and angular velocity of the element

          
ω

= × x
l

Kinetic energy possessed by the element

          

2 2 2
C

C 3

. .1

2 2

I xx
I x x

l l l

ωδ ω  
= × × = × δ  

  

∴   Total kinetic energy of the constraint

2 2 3
2 2C C C

3 3

00

. . 1

3 2 32 2

ll

I I Ix
x dx

l l

 ω ω  
= × = = ω   

   
∫    . . . (i)

Fig 24.3. Effect of inertia

of the constraint on

torsional vibrations.
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24.4.24.4.24.4.24.4.24.4. Free Torsional Vibrations of a Single Rotor SystemFree Torsional Vibrations of a Single Rotor SystemFree Torsional Vibrations of a Single Rotor SystemFree Torsional Vibrations of a Single Rotor SystemFree Torsional Vibrations of a Single Rotor System
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When loads are applied on the above two pulleys, the shaft is subject to torsional vibration
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24.5.24.5.24.5.24.5.24.5. Free Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor SystemFree Torsional Vibrations of a Two Rotor System
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Inside view of a workshop.

Note : This picture is given as additional information and is not a

direct example of the current chapter.
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Note : This picture is given as additional information and is not a direct example of the current chapter.

The above machine tools include grinding machine, drill, router, milling machines, lathe and a

circular saw.
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Note : This picture is given as additional information

and is not a direct example of the current chapter.
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CNC lathe ata turning centre.
Note : This picture is given as additional information and

is not a direct example of the current chapter.
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Note : This picture is given as additional information and is not a direct example of the current chapter.

Grinding is a commonly used method for removing the excess material from the cestings,

forgings and weldments



���
���	��	/�������

��0���
���
�           �          997

(���
�����
������������ 2 2 5 5! !� � � �
				��E�D!�>4�+�D!D4 @�E�C!*�+�D!*@>������	+� !����"��	

���	���	��

&��
�����
 ��
 ���������
 ������������
(���
�����
�����
������
������
����
������������'
��
����
���

������� * * 8 * 9 : 9D!D4*: D!@�4  D ��� ��� �
�&�����
������������

��������
���
��

����
C 8 !  @*  D D!@�4  D

� ! �  !� D!�>4�
� �
� �� � � ��+�8D!*�%3�"��	

����������	�#	�0����
���	���	���.���	����.������	%�	�%���%���	%��������%�	�%�	���	�%��%+8
��&	�,���
�	"��	�,���
	��	�	����
�%�����&	����	��&���	�%.
���	�%	�	�������.&��	
.

	���%.&�	�	
���
%�	&�����	"��	�����	��%
	���	��,+����	%�	���	��&���	�%	���	&���	+����	��	%�	)(	

	���
����	���	'$(


	���&���	"��	�����	��%
	���	
���%�	�%	���	
.

	��	%�	�(	

	���
����	���	7((	

	���&���	"��
��&���	�
���	��		 #

� ��	%�	���	
.

	�
����
�%
���	%�	�������	%�	���	��,+���� <	-((	�&8
�

�%
���	%�	�������	%�	���	&���	+����	<	#$	�&8
�

�%
���	%�	�������	%�	���	
���%� <	�	�&8
�

�%
���	%�	�������	%�	���	
.

 <	#/	�&8
�

�%�.�.�	%�	��&����,	�%�	�����	
�������	��	-�	1�2
��



998      �               ����������	
���
��
��� 
���	�A�'�
�/�� �+�8D����+�D!D8���B�� �+�C4D����+�D!C4���B����+�*D����+�D!D*���B

��� +� �DD� ��� +� D!�� �� B�1� +�  �*� +� D!�4� B� �2� +� @DD� ��7��� B� �H� +�  4� ��7��� B� �&� +� *� ��7��� B
�5�+� >���7
�B���+�@*�A6����+�@*�E� DC�6���

���������

��

����������'
��
����������������
��
�&��!��*! C�9�:�

��9!:���������'���!�&����
���
�������������
�������
�������
������
����
������������'
��
����
��
�� ; ����������'
��
������� �


������
������

����
���������������'
��
����
��������
��������
������
��� �+�8D���!

(���
�����
���
�������
������
����
������������'
��
����
��
�� ; �
������� � � �H H & �  4 * �9D!�4: >C ��7�� � � 1

"���&���������������	
���	���	�!

	
�������
������
����
������������'
��
������� � �
��� � � �5 5 �  > �9D!�4: �>� ��7�� � 1



��
������

����
���������������'
��
����
���

��������
* *

� � � �
�

D!D8! 9D!�4: D!� D!DC4�D!D*
�� 1 � �

���������

����������������������������
���������������������
������
��
��*! C�9!:!�.�����
��
�������������
����
�����������������'
��
��������!

.�� 								 �2�+�-���

������
����� ���������������

�
�� 5� +�-���

������
������������������ � !



���
���	��	/�������

��0���
���
�           �          999

(���
�����
� ���� 2 2 5 5! !� � � � ���������� 52 5 5 5
2

�>� D!�*@DD
�� � � ��

2��� ������������  25 5 H � 5

    
! � �� � � � �

���������
5 5 5

    
>C�>� D!C4 D!�* D!DC4� � �

�������� 5 5
5 5 5

9D!DC4 D!C4 D!�* :>C
�>� 9D!C4 D!�* : 9D!DC4 :

� �
� � �

�� 5
�5 5 5

 !D*4  !�*D!�C
D!DC D!C@ D!�*9 :

�
� � �

� �5 5 5 5D!D�8 D!�@ D! 9 :  !D*4  !�*9 :� � � �
� �5 5 !**9 :  !��4 D!D�8 D� �

�
5

 !��4 9 !��4: *  !** D!D�8  !��4  !�8>
�  !** �!@@�

������� +�D!C��������D!D���


� ���� 2 5D!�* D!�D8 �� � ������� D!DD8@�

(��������
�����
� 5� �+�D!C�������
��2�+�D!�D8��!��������'��������������
������
����
�������
�2+�D!�D8�������D8���!�(��
� 5� �+�D!D�����������������
��
��'
��������2�+�D!DD8@������8!@���!
�������'��������������
��������
�����
������
��
�&��!��*! C�9�:!

(���
�����
�����
������
������
����
������������'
��
����
���

�������� * * 8 * 9 : 9D!D8:  !�>  D ��� ��� �

�6
���
��������
������������

��������
���
������
���
����
�����������

�����
C 8

 
2 2

 !  @*  D  !�>  D %3� ! � D!�D8 @DD�
� �� � �

�����������+���!���%3�"��	 !�!�!�9#���������
���2�+�D!�D8��:
#����
����

���
��������
������������

��������
���
������
�����
�����������

����
C 8

�
2 2

 !  @*  D  !�>  D %3� ! � D!DD8@ @DD�
� �� � �

�����������+���!��%3�"��	 !� !� !�9#���������
�� �2�+�D!DD8@��:



1000      �               ����������	
���
��

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

�	 2� ��
��� ���  DD� ��� ��
������ 

��  � ������ ��
�� ��� ��)��� 
�� �
�� �
�� 

�� ���� ������ �
�� �
������ 

�������������
��� � ��

�!������
�����������
���
���� ���� ��������� ���D!4��!�&�
�� ����������
�����
������

��'���
���
����������������������������������������
����
����
�����@D�A6���! ("��	��	!�)*+

�	 ����������������

��
��
�����'�
��
���

����
��
��
������ @D����

��
��
�����������
���
�����D
��!�������
���
����������������
���
��

��������'����
��������4D����

�����4D������
�����!����

��
����� �
��� ���  �D� ��� 

�� ���� �
����� ��� ���
���
� ��� ��!4� ��!� ���� ��

��� ��
��� ��� *�� ��
��
������ 

���DD�����������'�� ��
���!��
����
��� �����������
����
����

�� ������
������ ������

�
������
���
!���+�@���6����! ("��	��#
����,-���,�'%.���������)*+

�	 �����������������

���	
���
��
�������������
�����
���
���4DD������
�!������
�����������������	��
�DD���	

������ �
�����������
���
� ����DD���!�������������
��
��'
�������� ������������
���4DD���


��*4D������������'���!�������
��� ���>D�����
���
������ ���� �����������4D����B� �D�������� ���

�)��>D����

�� DD������
�����������������
�
�
����
���!�����������������������������������
��
�
����
�� ��� @D� A6���!� &�
�� /�  !� ���� �������
� ��� ���� 
����� 

�� �!� ���� ������
��� ��� ������

�
'���
���
! ("��	���
����,-���"�/���	��)*+

�	 �����������������	

���	�
'�
������
������
����
�����DDD�B�8DDD�B�

���4DD���7�����������'����
��
�
�������
�
��
��������
������D!�4�����
�����!�������
�������������
���������
�������������	

���
���8���

��������
��	

���	 �������!�&�
�� ����

���
�� ������
������ ���� ������

��'���
���
�!����
������������������������������
����
����
�����@D�A6���! ("��	��	���)*�/���	���)*+


	 2���������
��
����������
�������������
��
�������	

��:	
������
��
�&��!��*!�D�������
���������
������
������
���!���������������������������������
����
�����������
������@*�A6���!�����������
�

�'���
���������
��
����
�� D8!4��������������������������	���
��
��

��
���!�I��
�������
�
���
������� ��'�
� ������� ��
�/�  !� ���� �������
� ��� ���� ������ 
����� �!� ���� 

���
�� ������
��� ��� ���� ����
������

�� '���
���
��� ���� ���� ��'�
� �������
�� ��� ���� 
������ 

�� �!� ���� �
����� ��� ���
���
� ��� ���
������:!

� � � � � � � � � � �0�
���,�-�
�-�

			
	
��� �� *4D 4*D �8D
1
������� �4D �DD
���
���
����

:%�%� � � :

� � � ����	���	�# ("��	���
����,-���#�/���#�)*�/��#����+
�	 2
�������������������
��
��
�� 4DD��!�!�!����'���
���
������
�������
��4DD��!�!�!� ��������
���
���

��
��� ��������
���
��
�!���������
��� ��� �
����
� ��� ���� ��������������� 

�� ��������� ��������� 
��
*DD���7���

�� *DD���7�����������'���!�������������
������*4�����
���
������

�� @D������
�!
�����������
������CD�����
���
������

��*4D������
�!
-������
������������
������������

��������
���
�����������������
�������
�������
����
����������
��!
����������������������������������
����
����
�����@*�A6���! ("��	��	��)*+

�	 �����
�
�������
�����	

���	�����
�������4D����

��>D������������'����
�����

���������
��
�����
��
���������� ���� ������ ����	 ���
�� *� ������ ��
�� ����!� ���� ��������� ����
�������
�� ��� �
����
� �
��7��� ��� ���
���� �
� ��
����	 
�� 
� ����

��� ��� D!C� �� ����� ���� ��
��!� ���� ��
����	 
���� �
������ 

�������������
�������
������
����
� 8���7���
��
�����

������D!8��������������
��!�6�������
�����
���������� ���� ��
���

����
���
�������
����
��� ���� ��
�
��
�
�� ������
������ ����� ������

��������
7
���
��

�������������
����
����!�2��������������������������
��@*�A6���!

("��	���	��)*�/�#	�
���,-���
.��,�'%.��������.�,
�'+
�	 2���
������
�������������'�
���������
��
�����������������������

������
��
�!������������
��
��*

������ ������������� �����
��
�!�������
��� ����������
��
����������� ��� ������
�� ���>4������
�����


�� !������
�����������
�������������
��
����������������4D������
������

��*DD������
�!����
����
������
����
�
���
���������/
&��������+� DDD���7����A�
��+��4��������,�
��
�+� D���7����

��,�������������+�*D���7��!
&�
������

���
��������
��������������

��������
���
���������������!��
�����+�@*�A6���!

("��	��	��)*�/��!	��)*+



���
���	��	/�������

��0���
���
�           �          1001

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?
�	 -���'��

��)�������
� ���� ���� ������
������ ����� ������

��'���
���
�� ����
� ��
��� ��)���
���
���
�



���
����
��
���
���
�����������
�!
�	 -����������������������
����
����
���
����
����������������

��'���
���
�!
�	 %�������

���
��������
������������

��'���
���
������
������������������������
�
���J
�	 -�������� ����������� ��� ��
��
�� ���� 

���
�� ������
��� ��� ������

�� '���
���
�� ���� 
� ������ �����

������!

	 (�
�������

�����������

��������'
��
����
�������
���
���
��������������
�����������
��J�-���'�

�����)�������
�������������'
��
����
�������
���
����������
'����'��
�������!
�	 H��
�����������)�������
�����������
������������
������������

��'���
���
�����
���
����������!

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS

�	 ����

���
��������
�����������������

��'���
���
�����
���
�����

� 9�:� � �
�

9�: � !� � 9�:  
�

�
� 9�:  !� � �

� � � � � � � � � � � � � � � ������ �	+�������

�������
�������������
����

�
��+�	
�������
������
����
�������������
��
�����
�������
�����������
��!

�	 2��
�
��
�����
���
�
���
���� ����
������������������

��'���
���
���
9�:��3��� 9!: ��
���� 9�: �
)����

�	 ������
������

����
�������
��
�&��!��*!� !�������
�������

�����'
��
����
����� �����'�
���

9�:���+�� �F����F��� 9!:
*

� �
�� � �

9�:��
*

� � �
�� � � � 9�: �

**
   � �� �

� �� � � �� �

���	���	��
�	 2���
����
����
�������������
�������
���������
'�

9�: 
��
��� 9!: �
��
��� 9�: ����
���� 9�: ������
����

	 2���
����
����
���������������������
'�

9�: 
��
��� 9!: �
��
��� 9�: ����
���� 9�: ������
����

ANSWERSANSWERSANSWERSANSWERSANSWERS
�	� 9�: �	� 9�: �	� 9�: �	� 9!: 
	� 9�:

GO To FIRST



1002      �               Theory of Machines1002      �               Theory of Machines

1002

ComputerComputerComputerComputerComputer
AidedAidedAidedAidedAided

Analysis andAnalysis andAnalysis andAnalysis andAnalysis and
Synthesis ofSynthesis ofSynthesis ofSynthesis ofSynthesis of

MechanismsMechanismsMechanismsMechanismsMechanisms

25
FFFFFeaeaeaeaeaturturturturtures (Main)es (Main)es (Main)es (Main)es (Main)
1. Introduction.

2. Computer Aided Analysis for

Four Bar Mechanism

(Freudenstein’s Equation).

3. Programme for Four Bar

Mechanism.

4. Computer Aided Analysis for

Slider Crank Mechanism.

6. Coupler Curves.

7. Synthesis of Mechanisms.

8. Classifications of Synthesis

Problem.

9. Precision Points for Function

Generation.

10. Angle Relationship for

function Generation.

11. Graphical Synthesis of Four

Bar Mechanism.

12. Graphical Synthesis of Slider

Crank Mechanism.

13. Computer Aided (Analytical)

Synthesis of Four Bar

Mechanism.

15. Least square Technique.

16. Programme using Least

Square Technique.

17. Computer Aided Synthesis of

Four Bar Mechanism With

Coupler Point.

18. Synthesis of Four Bar

Mechanism for Body

Guidance

19. Analytical Synthesis for

slider Crank Mechanism

25.1. Introduction

We have already discussed in chapters 7 and 8, the

graphical methods to determine velocity and acceleration

analysis of a mechanism. It may be noted that graphical

method is only suitable for determining the velocity and

acceleration of the links in a mechanism for a single position

of the crank. In order to determine the velocity and

acceleration of the links in a mechanism for different

positions of the crank, we have to draw the velocity and

acceleration diagrams for each position of the crank which

is inconvenient. In this chapter, we shall discuss the analytical

expressions for the displacement, velocity and acceleration

in terms of general parameters of a mechanism and

calculations may be performed either by a desk calculator

or digital computer.

CONTENTS

CONTENTS
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25.2. Computer Aided Analysis for Four Bar Mechanism (Freudenstein’s

Equation)

Consider a four bar mechanism ABCD, as shown in Fig. 25.1 (a), in which AB = a, BC = b,

CD = c, and DA = d. The link AD is fixed and lies along X-axis. Let the links AB (input link), BC

(coupler) and DC (output link) make angles , andθ β φ  respectively along the X-axis or fixed link

AD.

(a) Four bar mechanism.         (b) Components along X-axis and Y-axis.

Fig. 25.1

The relation between the angles and link lengths may be developed by considering the

links as vectors. The expressions for displacement, velocity and acceleration analysis are derived

as discussed below :

1. Displacement analysis

For equilibrium of the mechanism, the sum of the components along X-axis and along

Y-axis must be equal to zero. First of all, taking the sum of the components along X-axis as shown

in Fig. 25.1 (b), we have

cos cos cos 0a b c dθ + β − φ − = . . . (i)

or cos cos cosβ = φ + − θb c d a

Squaring both sides

2 2 2cos ( cos cos )β = φ + − θb c d a

        = 
2 2 2 2 2cos 2 cos cosc d c d aφ + + φ + θ

               2 cos cos 2 cosa c a d− φ θ − θ . . . (ii)

Now taking the sum of the components along Y-axis, we have

  sin sin sin 0a b cθ + β − φ = . . . (iii)

or sin sin sinb c aβ = φ − θ

Squaring both sides,

       2 2 2sin ( sin sin )b c aβ = φ − θ

2 2 2 2sin sin 2 sin sinc a a c= φ + θ − φ θ . . . (iv)

Adding equations (ii) and (iv),

       
2 2 2 2 2 2 2 2 2 2(cos sin ) (cos sin ) 2 cos (cos sin )β + β = φ + φ + + φ + θ + θb c d c d a

2 (cos cos sin sin ) 2 cosa c a d− φ θ + φ θ − θ
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or      2 2 2 22 cos 2 (cos cos sin sin ) 2 cosb c d c d a a c a d= + + φ + − φ θ + φ θ − θ

or 2 2 2 22 (cos cos sin sin ) 2 cos 2 cosa c a b c d c d a dφ θ + φ θ = − + + + φ − θ

     

2 2 2 2

cos cos sin sin cos cos
2

a b c d d d

a c a c

− + +
φ θ + φ θ = + φ − θ . . . (v)

Let
2 2 2 2

1 2 3; ; and
2

d d a b c d
k k k

a c a c

− + +
= = = . . . (vi)

Equation (v) may be written as

         1 2 3cos cos sin sin cos cosk k kφ θ + φ θ = φ − θ + . . . (vii)

or   cos (φ – θ) or     1 2 3cos( ) cos cosθ − φ = φ − θ +k k k

The equation (vii) is known as Freudenstein’s equation.

Since it is very difficult to determine the value of φ  for the given value of θ , from

equation (vii), therefore it is necessary to simplify this equation.

From trigonometrical ratios, we know that

2

2 tan( / 2)
sin

1 tan ( / 2)

φ
φ =

+ φ

   and   

2

2

1 tan ( / 2)
cos

1 tan ( / 2)

− φ
φ =

+ φ

Substituting these values of sin φ and cosφ  in equation (vii),

   

2

2 2

1 tan ( / 2) 2 tan( / 2)
cos sin

1 tan ( / 2) 1 tan ( / 2)

− φ φ
× θ + × θ

+ φ + φ

           

2

1 2 32

1 tan ( / 2)
cos

1 tan ( / 2)
k k k

− φ
= × − θ +

+ φ

2cos [1 tan ( / 2)] 2sin tan ( / 2)θ − φ + θ φ

          
2 2 2

1 2 3[1 tan ( / 2)] cos [1 tan ( / 2)] [1 tan ( / 2)]k k k= − φ − θ + φ + + φ

 2cos cos tan ( / 2) 2sin tan ( / 2)θ − θ φ + θ φ

                                   2 2 2
1 1 2 2 3 3tan ( / 2) cos cos tan ( / 2) tan ( / 2)k k k k k k= − φ − θ − θ φ + + φ

Rearranging this equation,

2 2 2 2
1 2 3cos tan ( / 2) tan ( / 2) cos tan ( / 2) tan ( / 2) 2sin tan ( / 2)k k k− θ φ + φ + θ φ − φ + θ φ

           1 2 3cos cosk k k= − θ + − θ +

2
1 2 3 1 3 2tan ( / 2) [cos cos ] 2sin tan ( / 2) cos (1 ) 0− φ θ − − θ + + θ φ − − + θ + =k k k k k k

2
2 3 1 1 3 2[ (1 )cos ] tan / 2 ( 2sin ) tan / 2 [ (1 )cos ] 0k k k k k k− θ + − φ + − θ φ + + − + θ =

(By changing the sign)

or 2tan ( / 2) tan( / 2) 0φ + φ + =A B C . . . (viii)
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where 2 3 1,

1 3 2

(1 )cos

2sin ,and

(1 )cos

A k k k

B

C k k k

= − θ + + 


= − θ 

= + − + θ


. . . (ix)

The equation (viii) is a quadratic equation in tan( / 2).φ  Its two roots are

          
2

4
tan ( / 2)

2

B B AC

A

− ± −
φ =

or          

2
1 4

2 tan
2

B B AC

A

−
 

− ± −
 φ =
 
 

. . . (x)

From this equation (x), we can find the position of output link CD (i.e. angle φ ) if the

length of the links (i.e. a, b, c and d) and position of the input link AB (i.e. angle θ ) is known.

If the relation between the position of input link AB (i.e. angle θ ) and the position of

coupler link BC (i.e. angle β ) is required, then eliminate angle φ  from the equations (i) and (iii).

The equation (i) may be written as

   cos cos cosφ = θ + β −c a b d ... (xi)

Squaring both sides,

           2 2 2 2 2 2cos cos cos 2 cos cosφ = θ + β + θ βc a b a b

   + 2 2 cos 2 cos− θ − βd a d b d . . . (xii)

Now equation (iii) may be written as

   sin sin sinφ = θ + βc a b . . . (xiii)

Inner view of an aircraft engine.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Squaring both sides,

           2 2 2 2 2 2sin sin sin 2 sin sinφ = θ + β + θ βc a b a b ... (xiv)

Adding equations (xii) and (xiv),

 2 2 2 2 2 2 2 2 2(cos sin ) (cos sin ) (cos sin )φ + θ = θ + θ + β + βc a b

    22 (cos cos sin sin ) 2 cos 2 cosab d a d b d+ θ β + θ β + − θ − β

or      2 2 2 2 (cos cos sin sin )= + + θ β + θ βc a b a b

                                       2 2 cos 2 cos+ − θ − βd ad b d

or 2 2 2 22 (cos cos sin sin ) 2 cos 2 cosθ β + θ β = − − − + θ + βab c a b d a d b d

      

2 2 2 2

cos cos sin sin cos cos
2

− − −
θ β + θ β = + θ + β

c a b d d d

ab b a
. . . (xv)

Let                
1 4; ;= =

d d
k k

a b

   and   
2 2 2 2

5
2

− − −
=

c a b d
k

a b

. . . (xvi)

∴  Equation (xvi) may be written as

1 4 5cos cos sin sin cos cosθ β + θ β = β + θ +k k k . . . (xvii)

From trigonometrical ratios, we know that

     
2

2 tan( / 2)
sin ,

1 tan ( / 2)

β
β =

+ β

   and   

2

2

1 tan ( / 2)
cos

1 tan ( / 2)

− β
β =

+ β

Substituting these values of sin β  and cosβ  in equation (xvii),

   

2

2 2

1 tan ( / 2) 2 tan( / 2)
cos sin

1 tan ( / 2) 1 tan ( / 2)

   − β β
θ + θ   

+ β + β     

2

1 4 52

1 tan ( / 2)
cos

1 tan ( / 2)

 − β
= + θ + 

+ β  

k k k

2cos [1 tan ( / 2)] 2sin tan( / 2)θ − β + θ β

                      
2 2

1 41 tan ( / 2) cos 1 tan ( / 2)   = − β + θ + β
   

k k  
2

5 1 tan ( / 2) + + β
 

k

2cos cos tan ( / 2) 2sin tan( / 2)θ − θ β + θ β

            = 2 2
1 1 4 4tan ( / 2) cos cos tan ( / 2)− β + θ + θ βk k k k

                                   2
5 5 tan ( / 2)+ + βk k

2 2 2 2
1 4 5cos tan ( / 2) tan ( / 2) cos tan ( / 2) tan ( / 2)− θ β + β − θ β − βk k k

1 4 52sin tan( / 2) cos cos 0k k k+ θ β − − θ − + θ =

2
4 5 1 4 5 1tan ( / 2)[( 1)cos ] 2sin tan( / 2) [( 1)cos ] 0− β + θ + − + θ β − − θ + + =k k k k k k
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or 2
4 5 1 4 5 1[( 1)cos ] tan ( / 2) ( 2sin ) tan( / 2) [( 1)cos ] 0+ θ + − β + − θ β + − θ + + =k k k k k k

(By changing the sign)

or 2tan ( / 2) tan( / 2) 0β + β + =D E F . . . (xviii)

where

4 5 1

4 5 1

( 1)cos ,

2sin , and

[( 1)cos ]

= + θ + − 


= − θ



− θ + + 

D k k k

E

F = k k k

... (xix)

The equation (xviii) is a quadratic equation in tan( / 2)β . Its two roots are

              

2
4

tan( / 2)
2

− ± −
β =

E E D F

D

or            
2

1 4
2 tan

2

−
 

− ± −
 β =
 
 

E E DF

D

. . . (xx)

From this equation (xx), we can find the position of coupler link BC (i.e. angle β ).

Note:  The angle α may be obtained directly from equation (i) or (iii) after determining the angle φ.

2. Velocity analysis

Let    1ω  = Angular velocity of the link /= θAB d dt ,

  2ω  = Angular velocity of the link /BC d dt= β , and

 3ω  = Angular velocity of the link /CD d dt= φ .

Differentiating equation (i) with respect to time,

    sin sin sin 0
d d d

a b c
dt dt dt

θ β φ
− θ× − β× + φ× =

or     1 2 3sin sin sin 0a b c− ω θ − ω β + ω φ = ... (xxi)

Again, differentiating equation (iii) with respect to time,

    cos cos cos 0
d d d

a b c
dt dt dt

θ β φ
θ× + β× − φ× =

or    1 2 3cos cos cos 0a b cω θ + ω β − ω φ = ... (xxii)

Multiplying the equation (xxi) by cosβ  and equation (xxii) by sinβ ,

1 2 3sin cos sin cos sin cos 0a b c− ω θ β − ω β β + ω φ β = ... (xxiii)

and 1 2 3cos sin cos sin cos sin 0a b cω θ β + ω β β − ω φ β = ... (xxiv)

Adding equations (xxiii) and (xxiv),

   1 3sin( ) sin ( ) 0a cω β − θ + ω φ − β =

∴     1
3

sin( )

sin( )

a

c

− ω β − θ
ω =

φ − β

... (xxv)
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Again, multiplying the equation (xxi) by cosφ  and equation (xxii) by sinφ ,

 1 2 3sin cos sin cos sin cos 0a b c− ω θ φ − ω β φ + ω φ φ = ... (xxvi)

and    1 2 3cos sin cos sin cos sin 0a b cω θ φ + ω β φ − ω φ φ = ... (xxvii)

Adding equations (xxvi) and (xxvii),

   1 2sin( ) sin( ) 0a bω φ − θ + ω φ − β =

∴ 1
2

sin( )

sin( )

a

b

− ω φ − θ
ω =

φ − β

... (xxviii)

From equations (xxv) and (xxviii), we can find ω3  and 2ω , if θ φ β, , , , ,a b c  and 1ω  are

known.

3. Acceleration analysis

Let 1α  = Angular acceleration of the link 1 /AB d dt= ω ,

2α  = Angular acceleration of the link 2 /BC d dt= ω , and

3α  = Angular acceleration of the link 3 /CD d dt= ω .

Differentiating equation (xxi) with respect to time,

1 2
1 2cos sin cos sin

d dd d
a b

dt dt dt dt

ω ωθ β   
− ω θ× + θ× − ω β× + β×

   
   

3
3 cos sin 0

dd
c

dt dt

ωφ 
+ ω φ× + φ× =

 
 

. . . 
 

= × +
 
 

∵ ( )
d d

u u
dx dx

v du
v v ×

dx

or 2 2
1 1 2 2cos sin cos sina a b b− ω θ − θα − ω β − βα

           2
3 3cos sin 0c c+ ω φ + φα = ... (xxix)

Again, differentiating equation (xxii) with respect to time,

   
1 2

1 2sin cos sin cos
d dd d

a b
dt dt dt dt

ω ωθ β   
ω × − θ× + θ× + ω × − β× + β×

   
   

  
3

3 sin cos 0
dd

c
dt dt

ωφ 
− ω × − φ× + φ× =

 
 

or 2 2
1 1 2 2sin cos sin cosa a b b− ω θ + θα − ω β + βα

 2
3 3sin cos 0+ ω φ − φα =c c ... (xxx)

Multiplying equation (xxix) by cosφ , and equation (xxx) by sin φ ,

2 2
1 1 2cos cos sin cos cos cos− ω θ φ − α θ φ − ω β φa a b

          2 2
2 3 3sin cos cos sin cos 0− α β φ + ω φ + α φ φ =b c c ... (xxxi)
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and 2 2
1 1 2sin sin cos sin sin sin− ω θ φ + α θ φ − ω β φa a b

2 2
2 3 3cos sin sin cos sin 0+ α β φ + ω φ − α φ φ =b c c ... (xxxii)

Adding equations (xxxi) and (xxxii),

2
1 1(cos cos sin sin ) (sin cos cos sin )− ω φ θ + φ θ + α φ θ − φ θa a

2
2 2(cos cos sin sin ) (sin cos cos sin )b b− ω φ β + φ β + α φ β − φ β

2 2 2
3 (cos sin ) 0+ ω φ + φ =c

2 2 2
1 1 2 2 3cos( ) sin ( ) cos( ) sin ( ) 0− ω φ − θ + α φ − θ − ω φ − β + α φ −β + ω =a a b b c

∴     
2 2 2

1 1 2 3
2

sin ( ) cos( ) cos( )

sin ( )

− α φ − θ + ω φ − θ + ω φ −β − ω
α =

φ −β

a a b c

b

 ... (xxxiii)

Again multiplying equation (xxix) by cosβ  and equation (xxx) by sin β ,

2 2 2
1 1 2 2cos cos sin cos cos sin cos− ω θ β − α θ β − ω β − α β βa a b b

        2
3 3cos cos sin cos 0+ ω φ β + α φ β =c c ... (xxxiv)

and 2 2 2
1 1 2 2sin sin cos sin sin cos sin− ω θ β + α θ β − ω β + α β βa a b b

                               2
3 3sin sin cos sin 0+ ω φ β − α φ β =c c ... (xxxv)

Adding equations (xxxiv) and (xxxv),

    2 2 2 2
1 1 2(cos cos sin sin ) (sin cos cos sin ) (cos sin )− ω β θ + β θ + α β θ − β θ − ω β + βa a b

2
3 3(cos cos sin sin ) (sin cos cos sin ) 0c c+ ω φ β + φ β + α φ β − φ β =

2 2 2
1 1 2 3 3cos ( ) sin ( ) cos( ) sin ( ) 0− ω β − θ + α β − θ − ω + ω φ −β + α φ −β =a a b c c

∴     
2 2 2

1 1 2 3
3

sin ( ) cos ( ) cos( )

sin ( )

− α β − θ + ω β − θ + ω − ω φ −β
=

φ − β

a a b c
a

c

... (xxxvi)

From equations (xxxiii) and (xxxvi), the angular acceleration of the links BC and CD (i.e.

2α  and 3α ) may be determined.

25.3. Programme for Four Bar Mechanism

The following is a programme in Fortran for determining the velocity and acceleration of

the links in a four bar mechanism for different position of the crank.

C PROGRAM TO FIND THE VELOCITY AND ACCELERATION IN A FOUR-BAR

C MECHANISM

DIMENSION PH (2), PHI (2), PP (2), BET (2), BT (2), VELC (2), VELB (2), ACCC (2),

ACCB (2), C1 (2), C2 (2), C3 (2), C4 (2), B1 (2), B2 (2), B3 (2), B4 (2)

READ (*, *) A, B, C, D, VELA, ACCA, THETA

PI = 4.0 * ATAN (1.0)

THET = 0

IHT = 180/THETA

DTHET = PI/IHT
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DO 10 J = 1, 2 * IHT

THET = (J – 1) * DTHET

AK = (A * A – B * B + C * C + D * D) * 0.5)

TH = THET * 180/PI

AA = AK – A * (D – C) * COS (THET) – (C * D)

BB = – 2.0 * A* C * SIN (THET)

CC = AK – A * (D + C) * COS (THET) + (C * D)

AB = BB * * 2 – 4 * AA * CC

IF     (AB . LT . 0) GO TO 10

PHH = SQRT (AB)

PH (1) = – BB + PHH

PH (2) = – BB – PHH

DO 9 I =   1, 2

PHI (I) = ATAN (PH (I) * 0.5/AA) * 2

PP (I) = PHI (I) * 180/PI

BET (I) = ASIN ((C * SIN (PHI (I)) – A * SIN (THET)) / B)

BT (I) = BET (I) * 180/PI

VELC (I) = A * VELA * SIN (BET (I) – THET) / (C * SIN (BET (I) – PHI (I)))

VELB (I) = (A * VELA * SIN (PHI (I) – THET) ) / (B * SIN (BET (I) – PHI (I))))

C1 (I) = A * ACCA * SIN (BET (I) – THET)

C2 (I) = A * VELA * * 2 * COS (BET (I) – THET) + B * VELB (I) * * 2

C3 (I) = C * VELC (I) * * 2 * COS (PHI (I) – BET (I) )

C4 (I) = C * SIN (BET (I) – PHI (I))

ACCC (I) = (C1 (I) – C2 (I) + C3 (I) ) / C4 (I)

B1 (I) = A* ACCA* SIN (PHI (I) – THET )

B2 (I) = A * VELA * * 2 * COS (PHI (I) – THET )

B3 (I) = B * VELB (I) * * 2 * COS (PHI (I) – BET (I) ) – C * VELC (I) * * 2

B4 (I) = B * (SIN (BET (I) – PHI (I))))

9 ACCB (I) = (B1 (I) – B2 (I) – B3 (I)) / B4 (I)

IF (J . NE . 1) GO TO 8

WRITE (*, 7)

7 FORMAT (4X,’ THET’, 4X,’ PHI’, 4X,’ BETA’, 4X,’ VELC’, 4X,’ VELB’, 4X,’ ACCC’, 4X,’

ACCB’)

8 WRITE (*, 6) TH, PP (1), BT (1), VELC (1), VELB (1), ACCC (1), ACCB (1)

6 FORMAT (8F8 . 2)

WRITE (*, 5) PP (2), BT (2), VELC (2), VELB (2), ACCC (2), ACCB (2)

5 FORMAT (8X, 8F8 . 2)

10 CONTINUE

STOP

END

The various input variables are

   A, B, C, D = Lengths of the links AB, BC, CD, and DA  respectively in mm,

       THETA = Interval of the input angle in degrees,

        VELA = Angular Velocity of the input link AB in rad/s, and

        ACCA = Angular acceleration of the input link in rad/s
2
.

The output variables are :

         THET = Angular displacement of the input link AB in degrees,

           PHI = Angular displacement of the output link DC in degrees,

         BETA = Angular displacement of the coupler link BC in degrees,

        VELC = Angular velocity of the output link DC in rad/s,

         VELB = Angular velocity of the coupler link BC in rad/s,

        ACCC = Angular acceleration of the output link DC in rad/s
2
,

        ACCB = Angular acceleration of the coupler link BC in rad/s
2
.
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Example 25.1. ABCD is a four bar mechanism, with link AD fixed. The lengths of the links

are

AB = 300 mm; BC = 360 mm; CD = 360 mm and AD = 600 mm.

The crank AB has an angular velocity of 10 rad/s and an angular retardation of 30 rad/s
2
,

both anticlockwise. Find the angular displacements, velocities and accelerations of the links BC

and CD, for an interval of 30° of the crank AB.

Solution.

Given input :

A = 300, B = 360,   C = 360,   D = 600, VA = 10, ACCA = –30, THETA = 30

OUTPUT :

THET PHI BETA VELC VELB ACCC ACCB

.00 – 114.62 – 65.38 – 10.00 – 10.00 – 61.67 121.67

114.62 65.38 – 10.00 – 10.00 121.67 – 61.67

30.00 – 144.88 – 82.70 – 8.69 – .84 101.52 181.43

97.30 35.12 – .84 – 8.69 181.43 101.52

60.00 – 166.19 – 73.81 – 6.02 6.02 38.02 77.45

106.19 13.81 6.02 – 6.02 77.45 38.02

90.00 174.73 – 47.86 – 8.26 12.26 – 180.18 216.18

132.14 – 5.27 12.26 – 8.26 216.18 – 180.18

270.00 – 132.14 5.27 12.26 – 8.26 – 289.73 229.73

– 174.73 47.86 – 8.26 12.26 229.73 – 289.73

300.00 – 106.19 – 13.81 6.02 – 6.02 – 113.57 – 1.90

166.19 73.81 – 6.02 6.02 – 1.90 – 113.57

330.00 – 97.30 – 35.12 – .84 – 8.69 – 170.39 – 49.36

144.88 82.70 – 8.69 – .84 – 49.36 – 176.39

25.4. Computer Aided Analysis For Slider Crank Mechanism

A slider crank mechanism is shown in Fig. 25.2 (a). The slider is attached to the connecting

rod BC of length b. Let the crank AB of radius a rotates in anticlockwise direction with uniform

angular velocity 1ω  rad/s and an angular acceleration 1α  rad/s
2
. Let the crank makes an angle θ

with the X-axis and the slider reciprocates along a path parallel to the X-axis, i.e. at an eccentricity

CD =  e, as shown in Fig. 25.2 (a).

(a)                  (b)

Fig. 25.2 Slider crank mechanism.
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The expressions for displacement, velocity and acceleration analysis are derived as

discussed below :

1. Displacement analysis

For equilibrium of the mechanism, the sum of the components along X-axis and along Y-

axis must be equal to zero. First of all, taking the sum of the components along X-axis, as shown in

Fig. 25.2 (b), we have

cos cos( ) 0a b xθ + −β − = ... ( β  in clockwise direction from X-axis is taken – ve)

or cos cosb x aβ = − θ ... (i)

Squaring both sides,

2 2 2 2 2cos cos 2 cosb x a x aβ = + θ − θ ... (ii)

Now taking the sum of components along Y-axis, we have

sin( ) sin 0b e a−β + + θ =

or sin sinb e a− β + = θ

∴ sin sinb e aβ = − θ ... (iii)

Squaring both sides,

      2 2 2 2 2sin sin 2 sinb e a e aβ = + θ − θ ... (iv)

Adding equations (ii) and (iv),

    2 2 2 2 2 2 2 2(cos sin ) (cos sin ) 2 cos 2 sinb x e a x a e aβ + β = + + θ + θ − θ − θ

  2 2 2 2 2 cos 2 sinb x e a x a e a= + + − θ − θ

or           2 2 2 2( 2 cos ) 2 sin 0x a x a b e e a+ − θ + − + − θ =

or           2
1 2 0x k x k+ + = ... (v)

where 1 2 cosk a= − θ , and 2 2 2
2 2 sink a b e e a= − + − θ ... (vi)

The equation (v) is a quadratic equation in x. Its two roots are

               

2
1 1 24

2

k k k
x

− ± −
= ... (vii)

From this expression, the output displacement x may be determined if the values of a, b, e

and  θ  are known. The position of the connecting rod BC (i.e. angle β) is given by

                  
sin

sin ( )
a e

b

θ −
−β =

or                       
sin

sin
e a

b

− θ
β =

∴                         1 sin
sin

e a

b

− − θ 
β =  

 

... (viii)
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Note : When the slider lies on the X-axis, i.e. the line of stroke of the slider passes through the axis of

rotation of the crank, then eccentricity, e = 0. In such a case, equations (vi) and (viii) may be written as

     1 2 cosk a= − θ ,   and   2 2
2k a b= −

and       
1 sin

sin
a

b

− − θ 
β =  

 

2. Velocity analysis

Let     1ω  = Angular velocity of the crank / ,AB d dt= θ

   2ω  = Angular velocity of the connecting rod /BC d dt= β , and

    Sv  = Linear velocity of the slider = / .dx dt

Differentiating equation (i) with respect to time,

sin sin
d dx d

b a
dt dt dt

β θ
× − β× = − × − θ×

or
1 2sin sin 0

dx
a b

dt
− ω θ − ω β − = ... (ix)

Again, differentiating equation (iii) with respect to time,

    cos cos
d d

b a
dt dt

β θ
β× = − θ×

or         
1 2cos cos 0a bω θ + ω β = ... (x)

Multiplying equation (ix) by cosβ  and equation (x) by sinβ ,

    
1 2sin cos sin cos cos 0

dx
a b

dt
− ω θ β − ω β β − × β =  ... (xi)

and 1 2cos sin cos sin 0a bω θ β + ω β β = ... (xii)

Adding equations (xi) and (xii),

1(sin cos cos sin ) cos 0
dx

a
dt

ω β θ − β θ − × β =

1 sin( ) cos
dx

a
dt

ω β − θ = × β

∴
1 sin( )

cos

adx

dt

ω β − θ
=

β
... (xiii)

From this equation, the linear velocity of the slider ( Sv ) may be determined.

The angular velocity of the connecting rod BC (i.e. 2ω ) may be determined from equa-

tion (x) and it is given by

    
1

2

cos

cos

a

b

− ω θ
ω =

β
... (xiv)
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3. Acceleration analysis

Let    1α  = Angular acceleration of the crank 1 /AB d dt= ω ,

   2α  = Angular acceleration of the connecting rod = 2 / ,d dtω and

   Sa  = Linear acceleration of the slider = 
2 2/d x dt

Differentiating equation (ix) with respect to time,

 

2
1 2

1 2 2
cos sin cos sin 0

d dd d d x
a b

dt dt dt dt dt

ω ωθ β   
− ω θ× + θ× − ω β× + β× − =

   
   

 

2
2 2

1 1 2 2 2
sin cos sin cos 0

d x
a b

dt

   − α θ + ω θ − α β + ω β − =
   

... (xv)

Differentiating equation (x) with respect to time,

1 2
1 2sin cos sin cos 0

d dd d
a b

dt dt dt dt

ω ωθ β   
ω × − θ× + θ× + ω × − β× + β× =

   
   

2 2
1 1 2 2cos sin cos sin 0a b   α θ − ω θ + α β − ω β =

   
... (xvi)

Multiplying equation (xv) by cos β  and equation (xvi) by sin β ,

   
2 2 2

1 1 2 2sin cos cos cos sin cos cosa b   − α θ β + ω θ β − α β β + ω β
   

2

2
cos 0

d x

dt

− × β = ... (xvii)

and                  
2 2 2

1 1 2 2cos sin sin sin cos sin sin 0a b   α θ β − ω θ β + α β β − ω β =
   

... (xviii)

The chain-belt at the bottom of a bulldozer provides powerful grip, spreads weight

and force on the ground, and allows to exert high force on the objects to be moved.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Adding equations (xvii) and (xviii),

2
1 1(sin cos cos sin ) (cos cos sin sin )a  α β θ − β θ − ω β θ + β θ

 

2
2 2 2
2 2
(cos sin ) cos 0

d x
b

dt

− ω β + β − × β =

 

2
2 2

1 1 2 2
sin ( ) cos ( ) cos 0

d x
a a b

dt

α β − θ − ω β − θ − ω − × β =

∴

2 22
1 1 2

2

sin ( ) cos ( )

cos

a a bd x

dt

α β − θ − ω β − θ − ω
=

β

... (xix)

From this equation, the linear acceleration of the slider (a
S
) may be determined.

The angular acceleration of the connecting rod BC (i.e. 2α ) may be determined from

equation (xvi) and it is given by,

2 2
1 1 2

2

( cos sin ) sin

cos

a b

b

α θ − ω θ − ω β
α =

β
... (xx)

25.5. Programme for a Slider Crank Mechanism

The following is a programme in Fortran to find the velocity and acceleration in a slider

crank mechanism.

c PROGRAM TO FIND THE VELOCITY AND ACCELERATION IN A SLIDER

c CRANK MECHANISM

READ (*, *) A, B, E, VA, ACC, THA

PI = 4 * ATAN (1.)

TH = 0

IH = 180/THA

DTH = PI / IH

DO 10 I = 1, 2 * I H

TH = (I – 1) * DTH

BET = ASIN (E – A * SIN (TH) ) / B)

VS = – A * VA * SIN (TH – BET) / (COS (BET) * 1000)

VB = – A * VA * COS (TH) / B * COS (BET)

AC1 = A * ACC * SIN (BET – TH) – B * VB * * 2

AC2 = A * VA * * 2 * COS (BET – TH)

ACS = (AC1 – AC2) / (COS (BET) * 1000)

AC3 = A * ACC * COS (TH) – A * VA * * 2 * SIN (TH)

AC4 = B * VB * * 2 * SIN (BET)

ACB = – (AC3 – AC4) / (B * COS (BET) )

I F (i . EQ . 1) WRITE (*, 9)

9 FORMAT (3X,’ TH’, 5X,’ BET’, 4X,’ VS,’ 4X,’ VB,’ 4X,’ ACS’, 4X,’ ACB’)

10 WRITE (*, 8) TH * 180 / P I , BET * 180 / P I, VS, VB, ACS, ACB

8 FORMAT (6 F 8 . 2)

STOP

END
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The input variables are :

A, B, E = Length of crank AB (a), connecting rod BC (b) and offset (e) in mm,

     VA =  Angular velocity of crank AB (input link) in rad/s,

   ACC = Angular acceleration of the crank AB (input link) in rad/s
2
, and

  THA = Interval of the input angle in degrees.

The output variables are :

   THA = Angular displacement of the crank or input link AB in degrees,

   BET = Angular displacement of the connecting rod BC in degrees,

     VS = Linear velocity of the slider in m/s,

     VB = Angular velocity of the crank or input link AB in rad/s,

   ACS = Linear acceleration of the slider in m/s
2
, and

   ACB = Angular acceleration of the crank or input link AB in rad/s
2
.

Example 25.2. In a slider crank mechanism, the crank AB = 200 mm and the connecting

rod BC = 750 mm. The line of stroke of the slider is offset by a perpendicular distance of 50 mm.

If the crank rotates at an angular speed of 20 rad/s and angular acceleration of 10 rad/s
2
, find at

an interval of 30° of the crank, 1. the linear velocity and acceleration of the slider, and 2. the

angular velocity and acceleration of the connecting rod.

Solution.

Given input :

A = 200, B = 750, E = 50, VA = 20, ACC = 10, THA = 30

OUTPUT :

T H B E T V S V B ACS AC B

.00 3.82 .27 – 5.32 – 101.15 – .78

30.00 – 3.82 – 2.23 – 4.61 – 83.69 49.72

60.00 – 9.46 – 3.80 – 2.63 – 35.62 91.14

90.00 – 11.54 – 4.00 .00 14.33 108.87

120.00 – 9.46 – 3.13 2.63 44.71 93.85

150.00 – 3.82 – 1.77 4.61 55.11 54.35

180.00 3.82 – .27 5.32 58.58 4.56

210.00 11.54 1.29 4.53 62.42 – 47.90

240.00 17.31 2.84 2.55 57.93 – 93.34

270.00 19.47 4.00 .00 30.28 – 113.14

300.00 17.31 4.09 – 2.55 – 21.45 – 96.14

330.00 11.54 2.71 – 4.53 – 75.44 – 52.61

25.6. Coupler Curves

It is often desired to have a mechanism to guide a point along a specified path. The path

generated by a point on the coupler link is known as a coupler curve and the generating point is

called a coupler point (also known as tracer point). The straight line mechanisms as discussed in

chapter 9 (Art. 9.3) are the examples of the use of coupler curves. In this article, we shall discuss



Chapter 25 : Computer Aided Analysis and Synthesis of Mechanisms           �          1017

the method of determining the co-ordinates of the cou-

pler point in case of a four bar mechanism and a slider

crank mechanism.

1. Four bar mechanism

Consider a four bar mechanism ABCD with an

offset coupler point E on the coupler link BC, as shown

in Fig. 25.3. Let the point E makes an angle α  with BC

in the anticlockwise direction and its co-ordinates are E

(x
E
, y

E
).

First of all, let us find the value of BD, γ  and β .

From right angled triangle BB
1
 D,

    
1 1

1 1

sin
tan

cos

BB BB a

B D AD AB d a

θ
γ = = =

− − θ

or        1 sin
tan

cos

a

d a

−  θ
γ =  

− θ 

and 2 2 2 2 2
1 1 1 1( ) ( ) ( ) ( ) ( )BD BB B D BB AD AB= + = + −

         2 2( sin ) ( cos )= θ + − θa d a

         2 2 2 2 2sin cos 2 cos= θ + + θ − θa d a a d

         2 2 2 2(sin cos ) 2 cosa d a d= θ + θ + − θ

         2 2 2 cosa d a d= + − θ

Now in triangle DBC,

2 2 2
( ) ( ) ( )

cos( )
2

BD BC CD

BC BD

+ −
γ +β =

×
... (cosine law of triangle)

          

2 2 2

2

f b c

b f

+ −
=

or   

2 2 2
1

cos
2

f b c

b f

−
 + −

γ + β =  
 
 

∴      
2 2 2

1
cos

2

f b c

b f

−
 + −

β = − γ 
 
 

 ... (i)

Let us now find the co-ordinates x
E
 and y

E
. From Fig. 25.3, we find that

     E 2 1 1 2 1 1x AE AB B E AB BE= = + = + ...  (∵ 1 2 1B E BE= )

        cos cos( )a e= θ + α + β ... (ii)

and      E 2 2 1 1 1 1y E E E E E E B B E E= = + = + ... (∵ 2 1 1E E B B= )

         sin sin ( )a e= θ + α + β ... (iii)

From the above equations, the co-ordinates of the point E may be determined if a, e, θ , α

and β are known.

Fig. 25.3. Four bar mechainsm

with a coupler point.
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2. Slider crank mechanism

Consider a slider crank mechanism with an offset coupler point E, as shown in Fig. 25.4.

Let the point E makes an angle α  with BC in the anticlockwise direction and its co-ordinates are

E (x
E
, y

E
).

First of all, let us find the angle β . From right angled triangle BC
1
C,

  1 1 1 1 1sin
sin

BC BB B C a e

BC BC b

− θ −
β = = =

∴      1 1sin
sin

a e

b

− θ − 
β =  

 

      ... (iv)

Now          E 1 1 1 1 1 2x AE AB B E AB BB= = + = +

         cos cos( )a e= θ + α −β       ... (v)

and      E 1 1 2 2 1 2y E E E B B E B B B E= = + = +

         sin sin ( )a e= θ + α − β       ... (vi)

From the above equations, the co-ordinates of the

point E may be determined, if a, b, e, e
1
, θ , α  and β

are known.

Note : When the slider lies on the X-axis, i.e. the line of stroke of the slider passes through the axis of

rotation of the crank, then eccentricity e
1
 = 0. In such a case equation (iv) may be written as

1 sin
sin

a

b

− θ 
β =  

 

25.7. Synthesis of Mechanisms

In the previous articles, we have discussed the computer-aided analysis of mechanisms, i.e.

the determination of displacement, velocity

and acceleration for the given proportions

of the mechanism. The synthesis is the

opposite of analysis. The synthesis of

mechanism is the design or creation of a

mechanism to produce a desired output

motion for a given input motion. In other

words, the synthesis of mechanism deals

with the determination of proportions of a

mechanism for the given input and output

motion. We have already discussed the

application of synthesis in designing a cam

(Chapter 20) to give follower  a known

motion from the displacement diagram and

in the determination of number of teeth on

the members in a gear train (Chapter 13)

to produce a desired velocity ratio.

In the application of synthesis, to

the design of a mechanism, the problem

divides itself into the following three parts:

Fig. 25.4 Slider crank mechanism with

coupler point.

Roller conveyor.

Note : This picture is given as additional information and is

not a direct example of the current chapter.
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1.  Type synthesis, i.e. the type of mechanism to be used,

2.  Number synthesis, i.e. the number of links and the number of joints needed to produce

the required motion, and

3. Dimensional synthesis, i.e. the proportions or lengths of the links necessary to satisfy

the required motion characteristics.

In designing a mechanism, one factor that must be kept in mind is that of the accuracy

required of the mechanism. Sometimes, it is possible to design a mechanism that will theoretically

generate a given motion. The difference between the desired motion and the actual motion produced

is known as structural error. In addition to this, there are errors due to manufacture. The error

resulting from tolerances in the length of links and bearing clearances is known as mechanical

error.

25.8. Classifications of Synthesis Problem

The problems in synthesis can be placed in one of the following three categories :

1. Function generation ; 2. Path generation ; and 3. Body guidance.

These are discussed as follows :

1. Function generation. The major classification of the synthesis problems that arises in

the design of links in a mechanism is a function generation. In designing a mechanism, the frequent

requirement is that the output link should either rotate, oscillate or reciprocate according to a

specified function of time or function of the motion of input link. This is known as function genera-

tion. A simple example is that of designing a four bar mechanism to generate the function y = f (x).

In this case, x represents the motion of the input link and the mechanism is to be designed so that

the motion of the output link approximates the function y.

Note : The common mechanism used for function generation is that of a cam and a follower in which the

angular displacement of the follower is specified as a function of the angle of rotation of the cam. The

synthesis problem is to find the shape of the cam surface for the given follower displacements.

2. Path generation. In a path generation, the mechanism is required to guide a point (called

a tracer point or coupler point) along a path having a prescribed shape. The common requirements

are that a portion of the path be a circular arc, elliptical or a straight line.

3. Body guidance. In body guidance, both the position of a point within a moving body

and the angular displacement of the body are specified. The problem may be a simple translation

or a combination of translation and rotation.

25.9. Precision Points for Function Generation

In designing a mechanism to generate a particular function, it is usually impossible to

accurately produce the function at more than a few points. The points at which the generated and

desired functions agree are known as precision points or accuracy points and must be located so

as to minimise the error generated between these points.

The best spacing of the precision points, for the first trial, is called Chebychev spacing.

According to Freudenstein and Sandor, the Chebychev spacing for n points in the range S Fx x x≤ ≤

(i.e. when x varies between x
S
 and x

F
) is given by

S F F S

1 1 (2 1)
( ) ( ) cos

2 2 2
j

j
x x x x x

n

π − 
= + − −

 
 

... (i)

    S F

1 1 (2 1)
( ) cos

2 2 2

j
x x x

n

π − 
= + − × ∆ ×

 
 
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where    x
j
 = Precision points

           x∆  = Range in F S ,x x x= −  and

    j = 1, 2, ... n

The subscripts 
S
 and 

F
 indicate start and finish positions respectively.

The precision or accuracy points may be easily obtained by using the graphical method as

discussed below.

1. Draw a circle of diameter equal to the range F Sx x x∆ = − .

2. Inscribe a regular polygon having the number of sides equal to twice the number of

precision points required, i.e. for three precision points, draw a regular hexagon inside the circle,

as shown in Fig. 25.5.

3. Draw perpendiculars from each corner which intersect the diagonal of a circle at preci-

sion points x
1
, x

2
, x

3
.

Now for the range S F1 3, 1; 3x x x≤ ≤ = = , and

∴   F S 3 1 2x x x∆ = − = − =

or radius of circle,               / 2 2 / 2 1r x= ∆ = =

∴               2 S S

2
1 2

2 2

x
x x r x

∆
= + = + = + =

              1 2 2cos30 cos30
2

x
x x r x

∆
= − ° = − °

      
2

2 cos30 1.134
2

= − ° =

and               3 2 2cos30 cos30
2

x
x x r x

∆
= + ° = + °

       
2

2 cos30 2.866
2

= + ° =

25.10. Angle Relationships for Function Generation

(a) Four bar mechanism. (b) Linear relationship between x and θ.

Fig. 25.6

Fig. 25.5. Graphical method for

determining three precision

points.
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Consider a four bar mechanism, as shown in Fig. 25.6 (a) arranged to generate a function

y = f (x) over a limited range. Let the range in x is (x
F
 – x

S
) and the corresponding range in θ  is

F S( )θ − θ . Similarly, let the range in y is ( F S( )y y−  and the corresponding range in φ  is F S( )φ − φ .

The linear relationship between x and θ  is shown in Fig. 25.6 (b). From the figure, we find

that

      F S
S S

F S

( )x x
x x

θ − θ
θ = θ + −

−
... (i)

Similarly, the linear relationship between y and φ  may be written as

      
F S

S S

F S

( )y y
y y

φ − φ
φ = φ + −

−
... (ii)

For n points in the range, the equation (i) and (ii) may be written as

      
F S

S S

F S

( )
j jx x

x x

θ − θ
θ = θ + −

−
 S S( )

jx x
x

∆θ
= θ + −

∆

and     
F S

S S

F S

( )
j jy y

y y

φ − φ
φ = φ + −

−
 S S( )

jy y
y

∆ φ
= φ + −

∆

where       j = 1, 2, ... n,

     F Sx x x∆ = − ;  F S∆θ = θ − θ ,

     F Sy y y∆ = − ;     and  F S∆ φ = φ − φ

An automatic filling and sealing machine.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Example 25.3. A four bar mechanism is to be designed, by using three precision points, to

generate the function

      
1.5

y x= , for the range 1 x 4≤ ≤ .

Assuming 30° starting position and 120° finishing position for the input link and 90°

starting position and 180° finishing position for the output link, find the values of x, y, θ  and φ

corresponding to the three precision points.

Solution : Given : x
S
 = 1 ; x

F
 = 4 ; S 30θ = °  ; F 120θ = °  ; S 90φ = °  ; F 180φ = °

Values of x

The three values of x corresponding to three precision points (i.e. for n = 3) according to

Chebychev’s spacing are given by

S F F S

1 1 (2 1)
( ) ( ) cos

2 2 2
j

j
x x x x x

n

π − 
= + − −

 
 

,      where j = 1, 2 and 3

∴ 1

1 1 (2 1 1)
(1 4) (4 1)cos

2 2 2 3
x

π × − 
= + − −

 
× 

 = 1.2 Ans. ... (∵  j = 1)

2

1 1 (2 2 1)
(1 4) (4 1)cos

2 2 2 3
x

π × − 
= + − −

 
× 

 = 2.5 Ans.  ... (∵  j = 2)

and 3

1 1 (2 3 1)
(1 4) (4 1)cos

2 2 2 3
x

π × − 
= + − −

 
× 

 = 3.8 Ans. ... (∵  j = 3)

Note : The three precision points x
1
, x

2
 and x

3
 may be determined graphically as discussed in Art. 25.9.

Values of y

Since y = x
1.5

 , therefore the corresponding values of y are

1.5 1.5
1 1( ) (1.2)y x= =  = 1.316 Ans.

1.5 1.5
2 2( ) (2.5)y x= =  = 3.952 Ans.

1.5 1.5
3 3( ) (3.8)y x= =  = 7.41 Ans.

Note :      1.5 1.5

S S( ) (1) 1= = =y x   and  1.5 1.5

F F( ) (4) 8= = =y x

Values of θθθθθ

The three values of θ  corresponding to three precision points are given by

F S
S S

F S

( )j jx x
x x

θ − θ
θ = θ + −

−
, where j = 1, 2 and 3

∴ 1

120 30
30 (1.2 1)

4 1

−
θ = + −

−
 = 36° Ans.

2

120 30
30 (2.5 1)

4 1

−
θ = + −

−
 = 75° Ans.

and 3

120 30
30 (3.8 1)

4 1

−
θ = + −

−
 = 114° Ans.
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Values of 

The three values of φ  corresponding to three precision points are given by

             
F S

S S

F S

( )
j jy y

y y

φ − φ
φ = φ + −

−

∴   
1

180 90
90 (1.316 1)

8 1

−
φ = + −

−
 = 94.06° Ans.

            2

180 90
90 (3.952 1)

8 1

−
φ = + −

−
 = 127.95° Ans.

and             3

180 90
90 (7.41 1)

8 1

−
φ = + −

−
 = 172.41° Ans.

25.11. Graphical Synthesis of Four Bar Mechanism

The synthesis of four bar mechanism consists of determining the dimensions of the links in

which the output link is to occupy three specified positions corresponding to the three given positions

of the input link. Fig. 25.7 shows the layout of a four bar mechanism in which the starting angle of

the input link AB
1
 (link 2) of known length is θ . Let 12θ , 23θ  and 13θ  be the angles between the

positions B
1
B

2
, B

2
B

3
 and B

1
B

3
 measured anticlockwise. Let the output link DC

1
 (link 4) passes

through the desired positions C
1
, C

2
 and C

3
 and 12 23,φ φ  and 13φ  are the corresponding angles

between the positions 1 2 2 3,C C C C  and 1 3C C . The length of the fixed link (link 1) is also known.

Now we are required to determine the lengths of links B
1
C

1
 and DC

1
 (i.e. links 3 and 4) and the

starting position of link 4 ( φ ).

The easiest way to solve the problem is based on inverting the mechanism on link 4. The

procedure is discused as follows :

1. Draw AD equal to the known length of fixed link, as shown in Fig. 25.8.

2. At A, draw the input link 1 in its three specified angular positions AB
1
, AB

2
 and AB

3
.

3. Since we have to invert the mechanism on link 4, therefore draw a line B
2
D and and rotate

it clockwise (in a direction opposite to the direction in which link 1 rotates) through an

angle 12φ  (i.e. the angle of the output link 4 between the first and second position) in

order to locate the point 2B′ .

Fig. 25.7. Layout of four bar mechanism.

4. Similarly, draw another line B
3
D and rotate it clockwise through an angle 13φ  (i.e. angle

of the output link between the first and third position) in order to locate point 3B′ .
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Fig. 25.8. Design of four bar mechanism (Three point synthesis).

5. Since the mechanism is to be inverted on the first design position, therefore B
1
 and 1B′  are

coincident.

6. Draw the perpendicular bisectors of the lines 1 2B B′ ′  and 2 3B B′ ′ . These bisectors intersect

at point C
1
.

7. Join 1 1B C′  and 1C D . The figure 
1 1AB C D′  is the required four bar mechanism. Now the

length of the link 3 and length of the link 4 and its starting position ( φ ) are determined.

25.12. Graphical Synthesis of Slider Crank Mechanism

Consider a slider crank mechanism for which the three positions of the crank AB (i.e.

1 2,θ θ  and 3θ ) and corresponding three positions of the slider C (i.e. s
1
, s

2
 and s

3
) are known, as

shown in Fig. 25.9.

In order to synthesis such a mechanism, the following procedure is adopted.

1. First of all, draw the crank AB
1
 in its initial position. If the length of crank is not speci-

fied, it may be assumed.

2. Now find the *relative poles P
12

 and P
13

 as shown in Fig. 25.10. The relative poles are

obtained by fixing the link A and observing the motion of the crank AB
1
 in the reverse

direction. Thus, to find P
12

, draw angle YAP
12

 equal to half of the angle between the first

and second position ( 12θ ) in the reverse direction and from AY draw IP
12

 equal to half of

the slider displacement between the first and second position (i.e. s
12

). Similarly P
13

 may

be obtained.

3. From P
12

 and P
13

, draw two lines P
12

 Q
12

 and P
13

 Q
13

 such that 12 1 12 12AP I B P Q∠ = ∠

and 13 1 13 13AP I B P Q∠ = ∠ . The lines P
12

 Q
12

 and P
13

 Q
13

 intersect at C
1
, which is the

location of the slider at its first position. Now the length of the connecting rod B
1
C

1
 and

the offset (e) may be determined.

* The relative pole is the centre of rotation of the connecting rod relative to the crank rotation and

the corresponding slider displacement.
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(a) Three positions of the crank. (b) Three positions of the slider.

Fig. 25.9

Fig. 25.10

25.13. Computer Aided (Analytical) Synthesis of Four Bar Mechanism

(a) Four bar mechanism.      (b) Three positions of input and output link.

Fig. 25.11

Consider a four bar mechanism as shown in Fig. 25.11.

The synthesis of a four bar mechanism, when input and output angles are specified, is

discussed below :

Let the three positions i.e. angular displacements ( 1 2,θ θ  and 3θ ) of the input link AB and
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the three positions ( 1 2,φ φ  and 3φ ) of the output link, as shown in Fig. 25.11 (b), are known and

we have to determine the dimensions a, b, c and d of the four bar mechanism.

We have discussed in Art. 25.2 that the Freudenstein’s equation is

1 2 3cos cos cos ( )k k kφ − θ + = θ − φ ... (i)

where       
1

d
k

a
=  ; 2

d
k

c
=  ; and 

2 2 2 2

3
2

a b c d
k

a c

− + +
=  ... (ii)

For the three different positions of the mechanism, the equation (i) may be written as

1 1 2 1 3 1 1cos cos cos ( )φ − θ + = θ − φk k k ... (iii)

1 2 2 2 3 2 2cos cos cos ( )φ − θ + = θ − φk k k ... (iv)

and 1 3 2 3 3 3 3cos cos cos( )φ − θ + = θ − φk k k ... (v)

The equations (iii), (iv) and (v) are three simultaneous equations and may be solved for k
1
,

k
2
 and k

3
 either by elimination method (See Examples 25.4 and 25.5) or by using Cramer’s rule of

determinants as discussed below :

              

1 1

2 2

3 3

cos cos 1

cos cos 1

cos cos 1

φ θ

∆ = φ θ

φ θ

                         

1 1 1

1 2 2 2

3 3 3

cos ( ) cos 1

cos ( ) cos 1

cos ( ) cos 1

θ − φ θ

∆ = θ − φ θ

θ − φ θ

An off-shore oil well.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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1 1 1

2 2 2 2

3 3 3

cos cos ( ) 1

cos cos ( ) 1

cos cos ( ) 1

φ θ − φ

∆ = φ θ − φ

φ θ − φ

           

1 1 1 1

3 2 2 2 2

3 3 3 3

cos cos cos( )

cos cos cos( )

cos cos cos ( )

φ θ θ − φ

∆ = φ θ θ − φ

φ θ θ − φ

Now the values of k
1
, k

2
 and k

3
 are given by

1 2
1 2,k k

∆ ∆
= =

∆ ∆
 and 

3
3k

∆
=

∆

Once the values of k
1
, k

2
 and k

3
 are known, then the link lengths a, b, c and d are determined

by using equation (ii). In actual practice, either the value of a or d is assumed to be unity to get the

proportionate values of other links.

Note : The designed mechanism may not satisfy the input and output angle co-ordination at positions other

than these three positions. It is observed that a four bar mechanism can be designed precisely for five positions

of the input and output links provided θ and φ are measured from some arbitrary reference rather than from

the reference fixed link AD. In such cases, the synthesis equations become non-linear and some other means

are required to solve such synthesis equations.

25.14. Programme to Co-ordinate the Angular Displacement of the Input

and Output Links

The following is the programme in Fortran to co-ordinate the angular displacements of the

input and output links.

C PROGRAM TO COORDINATE ANGULAR DISPLACEMENTS OF

C THE INPUT AND OUTPUT LINKS IN THREE POSITIONS

READ (*, *) Q1, Q2, Q3, P1, P2, P3

RAD = 4 * ATAN (1.0) / 180

QA = COS (Q1 * RAD)

QB = COS (Q2 * RAD)

QC = COS (Q3 * RAD)

PA = COS (P1 * RAD)

PB = COS (P2 * RAD)

PC = COS (P3 * RAD)

AA = COS ( (Q1 – P1) * RAD )

BB = COS ( (Q2 – P2) * RAD )

CC = COS ( (Q3 – P3) * RAD )

D = PA * (QB – QC) + QA * (PC – PB) + (PB * QC – PC * QB)

D1 = AA * (QB – QC) + QA * (CC – BB) + (BB * QC – CC * QB)

D2 = PA * (BB – CC) + AA * (PC – PB) + (PB * CC – PC * BB)

D3 = PA * (QB * CC – QC * BB) + QA * (BB * PC – CC * PB) + AA * (PB * QC – PC * QB)

A1 = D/D1

A2 = SQRT (A1 * A1 + A3 * A3 + 1.0 – 2 * A1 * A3 * D3 / D)

A3 = – D/D2

WRITE (*, 1) A1, A2, A3, 1

1 FORMAT (6X, A1’, 7X,’ A2’, 7X,’ A3’ 7X,’ A4,’ / 4F8 . 2)

STOP

END
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The input variables are :

Q
1
, Q

2
, Q

3
 = Angular displacement of the

       input link AB in degrees,

 P
1
, P

2
, P

3
 = Angular displacement of the

        output link DC in degrees.

The output variables are :

  A, B, C, D =  Ratio of length of the links AB,

        BC, CD and AD respectively

Example 25.4. Design a four bar mechanism

to co-ordinate the input and output angles as follows :

Input angles = 15°, 30° and 45° ; Output angles

= 30°, 40° and 55°.

Solution. Given : 1 15θ = °  ; 2 30θ = °  ;

3 45θ = ° ; 1 30φ = °  ; 2 40φ = °  ; 3 55φ = °

The Freudenstein’s equation for the first position

of the input and output link (i.e. when 1 15θ = °  and

1 30φ = ° ) may be written as

1 2 3cos30 cos15 cos (15 30 )k k k° − ° + = ° − °

or  0.866 k
1
 – 0.966 k

2
 + k

3
  = 0.966 ... (i)

Similarly, for the second position (i.e. when 2 30θ = °  and 2 40φ = ° ),

1 2 3cos 40 cos30 cos (30 40 )k k k° − ° + = ° − °

or           0.766 k
1
 – 0.866 k

2
 + k

3
 = 0.985 ... (ii)

and for the third position (i.e. when 3 45θ = °  and 3 55φ = ° ),

 1 2 3cos55 cos 45 cos (45 55 )k k k° − ° + = ° − °

or           0.574 k
1
 – 0.707 k

2
 + k

3
 = 0.985 ... (iii)

Solving the three simultaneous equations (i), (ii) and (iii), we get

k
1
 = 0.905 ; k

2
 = 1.01 and k

3
 = 1.158

Fig. 25.12

Assuming the length of one of the links, say a as one unit, we get the length of the other

links as follows :

We know that k
1
 = d / a        or      d = k

1
 a = 0.905 units Ans.

Grinding machine.
Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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    k
2
 = d / c or c = d / k

2
 = 0.905 / 1.01 = 0.896 units  Ans.

and     

2 2 2 2

3
2

a b c d
k

ac

− + +
=

or              2 2 2 2
3 2 ( )b k a c a c d− = × − + +

        = 1.158 × 2 × 1 × 0.896 – [1
2
 + (0.896)

2
 + (0.905)

2
]

        = 2.075 – 2.622 = – 0.547     or     b = 0.74 units  Ans.

The designed mechanism with AB = a = 1 unit, BC = b = 0.74 units ; CD = c = 0.896 units

and AD = d = 0.905 units, is shown in Fig. 25.12.

Example 25.5. Determine the proportions of four bar mechanism, by using three precision

points, to generate y = x
1.5

, where x varies between 1 and 4. Assume S 30θ = ° ; 90∆θ = °  ;

S 90φ = ° ; and 90∆φ = ° . Take length of the fixed link AD as 25 mm.

Solution. Given : x
S
 = 1 ; x

F
 = 4 ; S 30θ = °  ; F S 90∆ θ = θ − θ = ° ; S 90φ = ° ;

F S 90∆ φ = φ − φ = °  ; d = 25 mm

We have already calculated the three values of x and y for the above given data in Example

25.3. These values are :

    x
1
 = 1.2 ;        x

2
 = 2.5 ;        and      x

3
 = 3.8

    y
1
 = 1.316 ;     y

2
 = 3.952 ;     and      y

3
 = 7.41

The corresponding values of θ  and φ  are

    1 36θ = ° ; 2 75θ = °  ; and 3 114θ = °

    1 94.06φ = °  ; 2 127.95φ = °  ; and 3 172.41φ = °

We know that the Freudenstein’s equation is

   
1 2 3cos cos cos ( )k k kφ − θ + = θ − φ ... (i)

where     1

d
k

a
=  ; 

2

d
k

c
=  ;     and     

2 2 2 2

3
2

a b c d
k

ac

− + +
= ... (ii)

Now for the three different positions of the mechanism, the equation (i) may be written

three times as follows :

    1 2 3cos94.06 cos36 cos (36 94.06 )k k k° − ° + = ° − °

or       – 0.0708 k
1
 – 0.809 k

2
 + k

3
 = 0.529 ... (iii)

Similarly    1 2 3cos127.95 cos 75 cos (75 127.95 )k k k° − ° + = ° − °

or        – 0.615 k
1
 – 0.259 k

2
 + k

3
 = 0.6025 ... (iv)

and            1 2 3cos172.41 cos114 cos (114 172.41 )k k k° − ° + = ° − °

    – 0.9912 k
1
 + 0.4067 k

2
 + k

3
 = 0.5238 ... (v)

Solving three simultaneous equations (iii), (iv) and (v), we get

k
1
 = 0.6 ; k

2
 = 0.453 ; and k

3
 = 0.12

Now from equation (ii),

1

25
41.7mm

0.6

d
a

k
= = = Ans.
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2

25
55.2mm

0.453

d
c

k
= = =  Ans.

and          2 2 2 1/ 2
3( 2 )b a c d k a c= + + − ×

1/ 2
2 2 2

(41.7) (55.2) (25) 0.12 2 41.7 55.2 = + + − × × ×
 

 = 69.7 mm Ans.

The designed four bar mechanism AB
2
 C

2
D in one position (i.e. for 2 2, xθ  and 2 2, yφ ) is

shown by thick lines in Fig. 25.13.

Fig. 25.13

The other two positions of the four bar mechanism may be drawn by joining B
1
C

2
 (i.e.

1 1, xθ  and 1 1, yφ ) and B
3
C

3
 (i.e. 3 3, xθ  and 3 3, yφ ).

Note : In the above example, the motion of input link and output link is taken clockwise.

Example 25.6. Synthesize a four bar linkage, as shown in Fig. 25.14, using Freudenstein’s

equation to satisfy in one of  its positions. The specification

of position θ, velocity ω and acceleration α are as follows :

θ = 60°,   ω
2
 = 5 rad/s; α

2
 = 2 rad/s

2
;

φ = 90°;   ω
4
 = 2 rad/s; α

4
 = 7 rad/s

2
.

Solution : Given : θ = 60° ; ω
2
 = 5 rad/s ; α

2
 = 2 rad/s

2
;

φ = 90°, ω
4
 = 2 rad/s; α

4
 = 7 rad/s

2

The four bar linkages is shown in Fig. 25.15. Let

AB = Input link = a,

BC = Coupler = b,

CD = Output link = c, and

AD = Fixed link = d.

The Freudenstein’s equation is given by

1 2 3cos cos cos( )φ − θ + = θ − φk k k   ... (i)

Fig. 25.14

Fig. 25.15
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where 1 =
d

k
a

;   2 ;=
d

k
c

   and   

2 2 2 2

3
2

− + +
=

a b c d
k

ac

Substituting the value of θ and φ in equation (i),

1 2 3cos90 cos 60 cos(60 90 )° − ° + = ° − °k k k

        1 2 30 0.5 0.866× − × + =k k k

      2 30.5 0.866k k− + = ... (ii)

Differentiating equation (i) with respect to time,

1 2

( )
sin sin sin( )

φ θ θ − φ
× − φ× − × − θ× = − θ − φ ×

d d d
k k

dt dt dt

   1 4 2 2 2 4sin sin sin( )( )k k− φω + θω = − θ − φ ω − ω ... (iii)

4 2; and
d d

dt dt

φ θ 
=ω =ω 

 
… ∵

  1 2sin90 2 sin60 5 sin(60 90 ) (5 2)k k− × °× + °× = − ° − ° −

  1 2

5 3 3
2

2 2
− + =k k

or 1 22.165 0.75= −k k .... (iv)

Now differentiating equation (iii) with respect to time,

4 2
1 4 2 2sin cos sin cos

d dd d
k k

dt dt dt dt

ω ωφ θ   
− φ× + ω φ× + θ× + ω θ×   

   

          
2 4

2 4

( ) ( )
sin( ) ( ) cos( )

ω − ω θ − φ
= − θ − φ + ω − ω θ − φ ×

d d

dt dt

2 2
1 4 4 2 2 2sin cos sin cos   − φ×α + ω φ + θ×α + ω θ

   
k k

          
2

2 4 2 4
sin( ) ( ) ( ) cos( ) = − θ−φ α −α + ω −ω θ−φ

 

      
2 2

1 2
sin90 7 2 cos90 sin60 2 5 cos60k k   − °× + ° + °× + °

   

          
2sin(60 90 ) (2 7) (5 2) cos(60 90 ) = − °− ° − + − °− °

 

1 2(7 0) (1.732 12.5) (2.5 7.794)k k− + + + = − +

1 27 14.232 10.294k k− + = −

or        1 22.033 1.47k k= + ... (v)

From equations (iv) and (v),

  2 2 22.165 0.75 2.033 1.47 or 16.8k k k− = + =
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From equation (v)

            1 22.165 0.75 2.165 16.8 0.75 35.6= − = × − =k k

and from equation (ii),

k
3
 = 0.5 k

2
 + 0.866 = 0.5 × 16.8 + 0.866 = 9.266

Assuming the length of one of links say a as one unit, we get the length of the links as

follows :

We know that k
1
 = d / a  or   d = k

1
 . a = 35.6 units  Ans.

k
2
 = d / c   or  c = d / k

2
 = 35.6 / 16.8 = 2.12 units  Ans.

and

2 2 2 2 2 2 2 2

3

1 (2.12) (35.6)

2 2 1 2.12

− + + − + +
= =

× ×

a b c d b
k

ac

       

2 21 4.494 1267.36 1272.854
9.266

4.24 4.24

− + + −
= =

b b

b
2
 = 1272.854 – 9.266 × 4.24 = 1233.566

∴ b = 35.12 units  Ans.

Example 25.7. Synthesize a four-bar mechanism to generate a function y = sin x for

.0 x 90≤ ≤ °  The range of the output crank may be chosen as 60° while that of inut crank be 120°.

Assume three precision points which are to be abtained from Chebyshev spacing. Assume fixed

link to be 52.5 mm long and 1 105θ = °  and 1 .66φ = °

Solution. Given : S 0 ;x =  F 90 ;x = °  60 ;∆φ = °  120 ;∆θ = °  52.5 mm;d =

1 1.05 ;θ = ° 1 66φ = °

The three values of x corresponding to three precision points (i.e. for n = 3), according to

Chebyshev spacing are given by

S F SF

1 (2 1)
( ) ( ) cos ,

2 2
j

j
x x x x x

n

π − 
= + − −

 
 

 where j = 1, 2, 3

∴ 1

1 1 (2 1 1)
(0 90) (90 0) cos

2 2 2 3
x

π × − 
= + − −

 
× 

    = 45 – 45 cos 30° = 6° ... (∵   j = 1)

           2

1 1 (2 2 1)
(0 90) (90 0) cos

2 2 2 3
x

π × − 
= + − −

 
× 

               45 45cos90 45= − ° = ° ... (∵  j = 2)

and                       3

1 1 (2 3 1)
(0 90) (90 – 0)cos

2 2 2 3
x

π × − 
= + −

 
× 

    45 45cos150 84= − ° = °

Since y = sin x, therefore corresponding values of y are

1 1sin sin 6 0.1045= = ° =y x
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2 2sin sin 45 0.707y x= = ° =

and 3 3sin sin84 0.9945y x= = ° =

Also s ssin sin 0 0y x= = ° =

and F Fsin sin 90 1y x= = ° =

The relation between the input angle (θ) and x is given by

F S
S S

F S

( ),
j jx x

x x

θ − θ
θ = θ + −

−
 where j = 1, 2 and 3.

The above expression may be written as

S S( )
j j

x x
x

∆θ
θ = θ + −

∆

The three values of θ corresponding to three precision points are given by

1 S 1x
x

∆θ
θ = θ + ×

∆
... ( )S 0x =∵ ... (i)

2 S 2x
x

∆θ
θ = θ + ×

∆
... (ii)

and 3 S 3x
x

∆θ
θ = θ + ×

∆
.... (iii)

From equations (i), (ii) and (iii),

2 1 2 1

120
( ) (45 6) 52

90

∆θ
θ − θ = − = − = °

∆
x x

x
... (iv)

... F S( 90 0 90)x x x∆ = − = − =∵

3 2 3 2

120
( ) (84 45) 52

90
x x

x

∆θ
θ − θ = − = − = °

∆
... (v)

and 3 1 3 1

120
( ) (84 6) 104

90
x x

x

∆θ
θ − θ = − = − = °

∆
... (iv)

Since 1 105θ = °   (Given), therefore

2 1 52 105 52 157θ = θ + ° = ° + ° = °

3 2 52 157 52 209θ = θ + ° = ° + = °

The relation between the output angle (φ) and y is given by

F S
S S

F S

( ),
j jy y

y y

φ − φ
φ = φ + −

−
 when j = 1, 2 and 3

This expression may be written as

S S( )
j jy y

y

∆φ
φ = φ + −

∆
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The three values of φ corresponding to three precision points are given by

1 S 1y
y

∆φ
φ = φ + ×

∆
.... (∵ y

S
 = 0) ... (vii)

2 S 2y
y

∆φ
φ = φ + ×

∆
... (viii)

and 3 S 3y
y

∆φ
φ = φ + ×

∆
... (ix)

From equations (vii), (viii) and (ix),

2 1 2 1

60
( ) (0.707 0.1045) 36.15

1
y y

y

∆φ
φ − φ = − = − = °

∆
... (x)

... (∵ ∆y = y
F
 – y

S
 = 1 – 0 = 1)

3 2 3 2

60
( ) (0.9945 0.707) 17.25

1

∆φ
φ − φ = − = − = °

∆
y y

y
... (xi)

3 1 3 1

60
( ) (0.9945 0.1045) 53.4

1

∆φ
φ − φ = − = − = °

∆
y y

y
... (xii)

Since 1 66φ = °  (Given), therefore

2 1 36.15 66 36.15 102.15φ = φ + ° = ° + ° = °

3 2 17.25 102.15 17.25 119.40φ = φ + ° = ° + ° = °

We have calculated above the three positions i.e. the angular  displacements (θ
1
, θ

2
 and θ

3
)

of the input crank and the three positions (φ
1
, φ

2
 and φ

3
) of the output crank. Now let us find the

dimensions of the four bar mechanism.

Let  a = Length of the input crank,

 b = Length of the coupler,

 c = Length of the output crank, and

 d = Length of the fixed crank = 52.5 mm (Given)

We know that the Freudenstein displacement equation is

1 2 3cos cos cos( )k k kφ − θ + = θ − φ ... (xiii)

where            1 ;=
d

k
a

2 =
d

k
c

     and      
2 2 2 2

3
2

− + +
=

a b c d
k

ac

The equation (xiii) for the first position of input and output crank (i.e. when θ
1
 = 45° and

φ = 66°) may be written as

    1 1 2 1 3 1 1cos cos cos( )φ − θ + = θ − φk k k

1 2 3cos 66 cos105 cos(105 66 )k k k° − ° + = ° − °

  1 2 30.4067 0.2588 0.7771+ + =k k k ... (xiv)
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Similarly, for the second position (i.e. when θ
2
 = 157° and φ

2
 = 102.15°),

1 2 2 2 3 2 2cos cos cos( )φ − θ + = θ − φk k k

1 2 3cos102.15 cos157 cos(157 102.15 )k k k° − ° + = ° − °

1 2 30.2105 0.9205 0.5757k k k− + + = ...(xv)

   and for the third position (i.e. when θ
3
 = 209° and φ

3
 = 119.4°),

1 3 2 3 3 3 3cos cos cos( )φ − θ + = θ − φk k k

    1 2 3cos119.4 cos 209 cos(209 119.4 )k k k° − ° + = ° − °

1 2 30.4909 0.8746 0.007k k k− + + = ... (xvi)

Solving the three simultaneous equations (xiv), (xv) and (xvi), we get

k
1
 = 1.8; k

2
 = 1.375  and k

3
 = – 0.311

Since the length of the fixed link (i.e. d = 52.5 mm) is known, therefore we get the length

of other links as follows:

We know that

k
1
 = d / a or a = d / k

1
 = 52.5 / 1.8 = 29.17 mm  Ans.

k
2
 = d / c or c = d / k

2
 = 52.5 / 1.375 = 38.18 mm   Ans.

and

2 2 2 2

3
2

− + +
=

a b c d
k

ac

or b
2 

= 2 2 2
3 2+ + − ×a c d k ac

  = (29.17)
2
 + (38.18)

2
 + (52.5)

2
 – (– 0.311)× 2 × 29.17 × 38.18 = 5758

∴ b = 75.88 mm  Ans.

25.15.Least Square Technique

Most of the mechanisms are not possible to design even for five positions of the input and

output links. However, it is possible to design a mechanism to give least deviation from the specified

positions. This is done by using least square technique as discussed below :

We have already discussed that the Freudenstein’s equation is

1 2 3cos cos cos ( ) 0k k kφ − θ + − θ − φ =

The angles θ  and φ  are specified for a position. If iθ  and iφ  are the angles for ith

position, then Freudenstein’s equation may be written as

1 2 3cos cos cos( ) 0
i i i i

k k kφ − θ + − θ −φ =

Let e be the error which is defined as

 
2

1 2 3

1

[ cos cos cos ( )]

n

i i i i

i

e k k k

=

= φ − θ + − θ − φ∑

For e to be minimum, the partial derivatives of e with respect to k
1
, k

2
, k

3
 separately must

be equal to zero, i.e.

1

0
e

k

∂
=

∂
 ; 

2

0
e

k

∂
=

∂
, and 

3

0
e

k

∂
=

∂
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∴ 1 2 3
1 1

2 [ cos cos cos ( )]cos 0

n

i i i i i

i

e
k k k

k
=

∂
= φ − θ + − θ − φ φ =

∂
∑

or 2
1 2 3

1 1 1 1

cos cos cos cos cos ( ) cos

= = = =

φ − θ φ + φ = θ − φ φ∑ ∑ ∑ ∑
n n n n

i i i i i i i

i i i i

k k k ... (i)

Similarly,   
1 2 3

2 1

2 [ cos cos cos ( )]cos 0

n

i i i i i

i

e
k k k

k
=

∂
= − φ − θ + − θ − φ θ =

∂
∑

or           2
1 2 3

1 1 1 1

cos cos cos cos cos ( ) cos

n n n n

i i i i i i i

i i i i

k k k

= = = =

φ θ + θ + θ = θ − φ θ∑ ∑ ∑ ∑ ... (ii)

Now 1 2 3
3 1

2 [ cos cos cos ( )] 0

n

i i i i

i

e
k k k

k
=

∂
= φ − θ + − θ − φ =

∂
∑

or 1 2 3

1 1 1 1

cos cos 1 cos ( )

n n n n

i i i i

i i i i

k k k

= = = =

φ + θ + = θ − φ∑ ∑ ∑ ∑ ... (iii)

The equations (i), (ii) and (iii) are simultaneous, linear, non-homogeneous equations in

three unknowns k
1
, k

2
 and k

3
. These equations can be solved by using Cramer’s rule.

25.16. Programme Using Least Square Technique

The following is a programme in Fortrans to find the ratio of lengths for different links by

using the least square technique.

The input variables are :

    J = Number of specified positions

          TH (I) = Angular displacements of the input link AB for I = 1 to J (degrees), and

          PH (I) = Angular displacements of the output link DC for I = 1 to J (degrees).

The output variables are :

    A, B, C, D = Ratio of the lengths of the links AB, BC, CD and AD respectively.

C PROGRAM TO COORDINATE ANGULAR DISPLACEMENT OF THE

C INPUT AND OUTPUT LINKS IN MORE THAN THREE POSITIONS TO

C FIND RATIO OF DIFFERENT LINKS USING LEAST SQUARE TECHNIQUE

DIMENSION

READ (*, *) J

READ (*, *) (TH (I), I = 1, J), PH (I), I = 1, J)

RAD = 4 * ATAN (1.0) / 180

DO 10 K = 1 . J

A1 = A1 + (COS (PH (K) * RAD ) ) * * 2

A2 = A2 + (COS (TH (K) RAD ) ) * (COS (PH (K) * RAD ) )

A3 = A3 + (COS (PH (K) * RAD ) )

B1 = A2

B2 = B2 + (COS (TH (K) * RAD ) ) * * 2
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B3 = B3 + (COS (TH (K) * RAD ) )

P1 = A3

P2 = B3

P3 = J

TT = COS ( ( TH (K) – PH (K) * RAD )

Q1 = Q1 + TT * COS (PH (K) * RAD )

Q2 = Q2 + TT * COS (TH (K) * RAD

10 Q3 = Q3 + TT

D = A1 * (B2 * P3 – B3 * P2) + B1 * (P2 * A3 – P3 * A2) + P1 * (A2 * B3 – A3 * B2)

D1 = Q1 * (B2 * P3 – B3 * P2) + B1 * (P2 * Q3 – P3 * Q2) + P1 * (Q2 * B3 – Q3 * B2)

D2 = A1 * (Q2 * P3 – Q3 * P2) + Q1 *  (P2 * A3 – P3 * A2) + P1 * (A2 * Q3 – A3 * Q2)

D3 = A1 * (B2 * Q3 – B3 * Q2) + B1 * (Q2 * A3 – Q3 * A2) + Q1 * (A2 * B3 – A3 * B2)

Q = D / D1

R = – D / D2

P = SQRT (Q * Q + r * r + 1. – 2. * r * r * 03 / D)

WRITE (* , 9) Q, P, r, 1.

9 FORMAT (6X, ’ Q’, 7X,’ P’, 7X,’ r’, 7X,’ D’ / 4F8 . 2)

STOP

END

25.17. Computer Aided Synthesis of Four Bar Mechanism with Coupler

Point

Consider a four bar mechanism ABCD with a couple point E, as shown in Fig. 25.16,

which is specified by r and γ .

Fig. 25.16. Four bar mechanism with a couple point.

Let  1 2,θ θ  and 3θ  = Three positions of the input link AB,

     r
1
, r

2
 and r

3
 = Three positions of the coupler point E from point O, and

 1 2,γ γ  and 3γ  = Three angular positions of the coupler point E from OX.

The dimensions a, c, e, f and the location of points A and D specified by (q, β ) and (p, α )

respectively, may be determined as discussed below :
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Considering the loop OABE, the horizontal and vertical components of vectors q, a, e and

r are

cos cos cos cosβ + θ + δ = γq a e r ... (i)

and sin sin sin sinβ + θ + δ = γq a e r ... (ii)

Squaring equations (i) and (ii) and adding in order to eliminate angle δ , we have

      2 2 2 2[2 cos( )] [2 cos( )] [2cos ( )]q r a r e q a r q aγ −β + θ − γ + − − = + θ −β ... (iii)

Let  q = k
1
 ; a = k

2
 ; 2 2 2

3− − =e q a k  ; and q a = k
4
 = k

1
 k

2
... (iv)

Now the equation (iii) may be written as

2
1 2 3 4[2 cos( )] [2 cos ( )] [2cos ( )]γ −β + θ − γ + = + θ −βk r k r k r k ... (v)

Since 4 1 2=k k k , therefore the equation (v) is difficult to solve for 1 2 3, ,k k k  and k
4
. Such

type of non-linear equations can be solved easily by making them linear by some substitutions as

given below :

Let 1 1 1= + λk l m  ; 2 2 2= + λk l m  ; and 3 3 3= + λk l m ... (vi)

where  4 1 2 1 1 2 2( )( )λ = = = + λ + λk k k l m l m

  2
1 2 1 2 1 2 1 2= + λ + λ + λl l l m m l m m

or                2
1 2 1 2 2 1 1 2( 1) 0λ + + − λ + =m m l m l m l l

or 2 0λ + λ + =A B C

∴

2
4

2

− ± −
λ =

B B AC

A

... (vii)

where 1 2=A m m  ; 1 2 2 1( 1)= + −B l m l m  ; and C = l
1
 l

2
... (viii)

Substituting the values of k
1
, k

2
, k

3
 and k

4
 in equation (v),

1 1 2 2 3 3( )[2 cos ( )] ( )[2 cos( )] ( )+ λ γ −β + + λ θ − γ + + λl m r l m r l m

   2 ([2cos( )]= + λ θ −βr

Equating the terms with λ  and without λ  separately equal to zero, we get the components

into two groups, one with λ  and the other without λ . These components are

2
1 2 3[2 cos( )] [2 cos( )]γ −β + θ − γ + =l r l r l r ... (ix)

and        1 2 3[2 cos ( )] [2 cos ( )] 2cos ( )γ −β + θ − γ + = θ − βm r m r m ... (x)

The equation (ix) for the three positions of θ , r and γ  may be written three times as

follows :

  
2

1 1 1 2 1 1 1 3 1[2 cos( )] [2 cos( )]l r l r l rγ −β + θ − γ + = ... (xi)

2
1 2 2 2 2 2 2 3 2[2 cos( )] [2 cos( )]l r l r l rγ −β + θ − γ + = ... (xii)

 2
1 3 3 2 3 3 3 3 3[2 cos( )] [2 cos( )]l r l r l rγ −β + θ − γ + = ... (xiii)

Similarly, equation (x) for the three positions of θ , r and γ  may be written three  times as

follows :
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1 1 2 1 1 3 1[2 cos ( )] [2 cos ( )] 2cos( )γ −β + θ − γ + = θ −βm r m r m ... (xiv)

1 2 2 2 2 3 2[2 cos ( )] [2 cos ( )] 2cos( )γ −β + θ − γ + = θ −βm r m r m ... (xv)

1 3 2 3 3 3 3[2 cos ( )] [2 cos ( )] 2 cos ( )γ − β + θ − γ + = θ − βm r m r m ... (xvi)

The equations (xi), (xii) and (xiii) are three linear equations in l
1
, l

2
, l

3
. Similarly, equations

(xiv), (xv) and (xvi) are three linear equations in m
1
, m

2
 and m

3
. Assuming a suitable value of β ,

the values of l
1
, l

2
, l

3
 and m

1
, m

2
, m

3
 may be determined by using elimination method or Cramer’s

rule.

Knowing the values of l
1
, l

2
, l

3
 and m

1
, m

2
, m

3
, we can find the value of λ  from equation

(vii). Now the values of k
1
, k

2
 and k

3
 are determined from equation (vi) and hence q, a and e are

known from equation (iv). Using equation (i) or (ii), we can find the three valves of δ  i.e. 1 2,δ δ

and 3δ . From equation (i), we have

cos cos cos cosδ = γ − β − θe r q a

∴               1 1 1 1
1

cos cos cos
cos

− γ − β − θ 
δ =  

 

r q a

e

... (xvii)

Similarly,      1 2 2 2
2

cos cos cos
cos

− γ − β − θ 
δ =  

 

r q a

e

... (xviii)

and      1 3 3 3
3

cos cos cos
cos− γ − β − θ 

δ =
 
 

r q a

e
... (xix)

Thus by considering the loop OABE, we can find the values of q, a, e, β  and δ .

Now considering the loop ODCE in order to find p, c, f, α  and ψ . The horizontal and

vertical components of vectors p, c, f and r are

cos cos cos cosα + φ + ψ = γp c f r ... (xx)

and sin sin sin sinα + φ + ψ = γp c f r ... (xxi)

Since these equations are similar to equations (i) and (ii), therefore we shall proceed in the

similar way as discussed for loop OABE.

Squaring equations (xx) and (xxi) and adding in order to eliminate angle φ , we have

2 2 2 2[2 cos ( )] [2 cos ( )] [2cos( )]p r f r c p f r p fγ − α + ψ − γ + − − = + ψ − α ... (xxii)

Let p = k
5
 ; f = k

6
 ; c

2
 – p

2
 – f

2
 = k

7
 and p f = k

8
 = k

5
 k

6
... (xxiii)

Now equations (xxii) may be written as

2
5 6 7 8[2 cos( )] [2 cos( )] [2cos( )]k r k r k r kγ − α + ψ − γ + = + ψ − α ... (xxiv)

The equation (xxiv) is a non-linear equation and can be solved easily by making it linear

by some substitutions as given below :

Let 5 5 1 5 6 6 1 6;k l m k l m= + λ = + λ  ;  and  7 7 1 7= + λk l m ... (xxv)

where 1 8 5 6 5 1 5 6 1 6( ) ( )k k k l m l mλ = = = + λ + λ

    2
5 6 5 1 6 1 5 6 1 5 6l l l m m l m m= + λ + λ + λ

or                           2
5 6 1 5 6 6 5 1 5 6( 1) 0m m l m l m l lλ + + − λ + =
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or   2
1 1 0D E Fλ + λ + =

∴      

2

1

4

2

E E D F

D

− ± −
λ = ... (xxvi)

where     5 6 5 6 6 5; ( 1)D m m E l m l m= = + −  ; and F = l
5
 l

6
... (xxvii)

Substituting the values of k
5
, k

6
, k

7
 and k

8
 in equation (xxiv),

5 1 5 6 1 6 7 1 7( )[2 cos ( )] ( )[2 cos ( )]l m r l m r l m+ λ γ − α + + λ ψ − γ + + λ

 2
1[2cos ( )]= + λ ψ − αr

Equating the terms with λ  and without λ  separately equal to zero, we get the components

into two groups, one with λ  and the other without λ . These components are

2
5 6 7[2 cos( )] [2 cos ( )]γ − α + ψ − γ + =l r l r l r ... (xxviii)

and 5 6 7[2 cos ( )] [2 cos ( )] 2cos ( )γ − α + ψ − γ + = ψ − αm r m r m ... (xxix)

The equation (xxviii) for the three positions of r, γ  and ψ  may be written three times as

follows :

2
5 1 1 6 1 1 1 7 1[2 cos( )] [2 cos ( )]γ − α + ψ − γ + =l r l r l r ... (xxx)

2
5 2 2 6 2 2 2 7 2[2 cos( )] [2 cos( )]γ − α + ψ − γ + =l r l r l r ... (xxxi)

2
5 3 3 6 3 3 3 7 3[2 cos( )] [2 cos( )]γ − α + ψ − γ + =l r l r l r ... (xxxii)

Similarly, equation (xxix) for the three positions of r, γ  and ψ  may be written three times

as follows :

            5 1 1 6 1 1 1 7 1[2 cos( )] [2 cos( )] 2cos( )γ − α + ψ − γ + = ψ − αm r m r m ... (xxxiii)

5 2 2 6 2 2 2 7 2[2 cos ( )] [2 cos ( )] 2 cos ( )γ − α + ψ − γ + = ψ − αm r m r m  .. (xxxiv)

            5 3 3 6 3 3 3 7 3[2 cos ( )] [2 cos ( )] 2cos ( )γ − α + ψ − γ + = ψ − αm r m r m                    ... (xxxv)

The equations (xxx), (xxxi) and (xxxii) are three linear equations in l
5
, l

6
 and l

7
. Similarly,

equations (xxxiii), (xxxiv) and (xxxv) are linear equations in m
5
, m

6
 and m

7
. Assuming a suitable

value of α , the values of l
5
, l

6
, l

7
 and m

5
, m

6
, m

7
 may be determined by using elimination method

or Cramer’s rule.

Knowing the values of l
5
, l

6
, l

7
 and m

5
, m

6
, m

7
, we can find the value of 1λ  from equation

(xxvi). Now the values of k
5
, k

6
 and k

7
 are determined from equation (xxv) and hence p, f and c are

known from equation (xxiii).

Assuming the value of 1ψ , the corresponding values of 2ψ  and 3ψ  may be calculated as

follows :

Since the angular displacements of the coupler link BCE is same at the points B and C,

therefore

           2 1 2 1ψ − ψ = δ − δ

or       2 1 2 1( )ψ = ψ + δ − δ ... (xxxvi)

Similarly,                  3 1 3 1( )ψ = ψ + δ − δ ... (xxxvii)

If the mechanism is to be designed for more than three positions of the input link AB and
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the same number of positions of the couple point E, then the least square technique is used. The

error function from equations (ix) and (x) are defined as

2 2
1 1 2 3[ {2 cos ( )} {2 cos ( )} ]= γ − β + θ − γ + −∑e l r l r l r ... (xxxviii)

and
2

2 1 2 3[ {2 cos( )} {2 cos( )} 2cos( )]= γ −β + θ − γ + − θ −β∑e m r m r m ... (xxxix)

For e
1
 and e

2
 to be minimum, the partial derivatives of e

1
 with respect to l

1
, l

2
, l

3
 and

partial derivatives of e
2
 with respect to m

1
, m

2
, m

3
 separately must be equal to zero, i.e.

and

1 1 1

1 2 3

2 2 2

1 2 3

0 ; 0 ; 0

0 ; 0 ; 0

e e e

l l l

e e e

m m m

∂ ∂ ∂ 
= = =


∂ ∂ ∂



∂ ∂ ∂
= = = 

∂ ∂ ∂ 

... (xxxx)

First consider when 
1

1

0
∂

=
∂

e

l
,

2
1 2 3

1

2 2 cos( ) 2 cos ( ) 2 cos( ) 0

n

l r l r l r r γ −β + θ − γ + − γ − β =
 ∑

or  2
1 2

1 1

[2 cos ( )] [2 cos( )][2 cos( )]γ −β + θ − γ γ −β∑ ∑
n n

l r l r r

                
2

3

1 1

[2 cos( )] [2 cos( )]+ γ −β = γ −β∑ ∑
n n

l r r r  ... (xxxxi)

Similarly, for 
1

2

0
∂

=
∂

e

l
,

2
1 2

1 1

[2 cos( )][2 cos( )] [2 cos ( )]γ −β θ − γ + θ − γ∑ ∑
n n

l r r l r

             
2

3

1 1

[2 cos( )] [2 cos( )]+ θ − γ = θ − γ∑ ∑
n n

l r r r  ... (xxxxii)

Note : This picture is given as additional information and is not a direct example of the current chapter.
An aircraft assembling plant.
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and for   
1

3

0
∂

=
∂

e

l
, 

2
1 2 3

1 1 1

[2 cos ( )] [2 cos( )] 1γ −β + θ − γ + =∑ ∑ ∑ ∑
n n n

l r l r l r ... (xxxxiii)

The above three equations can be solved by using Cramer’s rule to find l
1
, l

2
 and l

3
.

In the similar way as discussed above, for 
2

1

0
∂

=
∂

e

m

         
2

1 2

1 1

[2 cos( )] [2 cos ( )][2 cos ( )]γ −β + θ − γ γ −β∑ ∑
n n

m r m r r

        3

1 1

[2 cos ( )] [2 cos ( )][2 cos ( )]+ γ −β = θ − β γ − β∑ ∑
n n

m r r r  ... (xxxxiv)

Similarly, for 
2

2

0,
e

m

∂
=

∂

2
1 2

1 1

[2 cos ( )] [2 cos ( )] [2 cos ( )]γ −β + θ − γ + θ − γ∑ ∑
n n

m r r m r

        3

1 1

[2 cos( )] [2 cos( )][2 cos( )]+ θ − γ = θ −β θ − γ∑ ∑
n n

m r r r   ... (xxxxv)

and for 2

3

0
∂

=
∂

e

m
,

         1 2 3

1 1 1

[2 cos ( )] [2 cos ( )] 1 [2 cos ( )]γ −β + θ − γ + = θ − γ∑ ∑ ∑ ∑
n n n

m r m r m r  ... (xxxxvi)

The above three equations can be solved by using Cramer’s rule to find m
1
, m

2
 and m

3
.

Knowing the values of l
1
, l

2
, l

3
 and m

1
, m

2
, m

3
, we can find the value of λ  from equation

(vii) and k
1
, k

2
, k

3
 from equation (vi). Thus q, a and e are determined. Now 1 2 3, ,δ δ δ  may be

determined by using equation (i) or (ii).

The values of p, c and f are obtained by solving equation (xxiv) in the similar way as

discussed earlier.

25.18. Synthesis of Four Bar Mechanism For Body Guidance

Consider the three positions of a rigid planer body containing the points A and B as shown

in Fig. 25.17 (a). The four bar mechanism for body guidance, considering the three positions of the

body, may be designed graphically as discussed below.

1. Consider the three positions of the points A and B such as A
1
, A

2
, A

3
 and B

1
, B

2
, B

3
 as

shown in Fig. 25.17 (a).

2. Find the centre of a circle which passes through three points A
1
, A

2
, A

3
. This is obtained

by drawing the perpendicular bisectors of the line segments A
1
 A

2
 and A

2
 A

3
. Let these bisectors

intersect at O
A

. It is evident that a rigid link A O
A

 pinned to the body at point A and pinned to the
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ground at point O
A

 will guide point A through its three positions A
1
, A

2
 and A

3
.

(a) (b)

Fig. 25.17. Four bar mechanism for body guidance.

3. Similarly, find the centre O
B
 of a circle which passes through three points B

1
, B

2
, B

3
. It

is evident that a rigid link B O
B
 pinned to the body at point B and pinned to the ground at point O

B

will guide point B through its three positions B
1
, B

2
 and B

3
.

4. The above construction forms the four bar mechanism O
A

 ABO
B
 which guides the body

through three specified positions. Fig. 25.17 (b) shows a four bar mechanism in these three positions.

The points O
A

 and O
B
 may be determined analytically as discussed below :

Consider the three positions of the point A such as A
1
, A

2
, A

3
. Let the co-ordinates of these

points are A
1
 (x

1
, y

1
) ; A

2
 (x

2
 , y

2
) and A

3
 (x

3
, y

3
). Let the co-ordinates of the point O

A
 are (x, y).

Now we know that

Distance between points A
1
 and O

A
,

2 2 1/ 2
1 A 1 1[( ) ( ) ]= − + −A O x x y y ... (i)

Similarly, distance between points A
2
 and O

A
,

2 2 1/ 2
2 A 2 2[( ) ( ) ]= − + −A O x x y y ... (ii)

and distance between points A
3
 and O

A
,

           2 2 1/ 2
3 A 3 3[( ) ( ) ]= − + −A O x x y y ... (iii)

For the point O
A

 to be the centre of a circle passing through the points A
1
, A

2
 and A

3
, the

distances A
1
O

A
, A

2
O

A
 and A

3
O

A
 must be equal. In other words,

1 A 2 A 3 A= =A O A O A O

Now considering  1 A 2 A=A O A O , we have

1/ 2 1/ 2
2 2 2 2

1 1 2 2( ) ( ) ( ) ( )   − + − = − + −
   

x x y y x x y y ... (iv)

Similarly, considering 2 A 3 A=A O A O , we have

             
1/ 2 1/ 2

2 2 2 2
2 2 3 3( ) ( ) ( ) ( )   − + − = − + −

   
x x y y x x y y ... (v)

Squaring both sides of the equations (iv) and (v) and simplifying, we get the following two

equations in the unknowns x and y.
2 2 2 2

2 1 2 1 1 2 1 22 ( ) 2 ( ) ( ) ( ) 0− + − + − + − =x x x y y y x x y y ... (vi)

and 2 2 2 2
3 2 3 2 2 3 2 32 ( ) 2 ( ) ( ) ( ) 0− + − + − + − =x x x y y y x x y y ... (vii)
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The equations (vi) and (vii) are simultaneous equations and may be solved to find the

co-ordinates x, y of the point O
A

. This point O
A

 becomes the location of the fixed pivot guiding the

point A. The length of the guiding link O
A

A may be determined by any of the equations (i), (ii) or

(iii).

In the similar way, as discussed above, we can find the location of the fixed pivot point O
B

and the length of the link O
B
B.

Example 25.8. Synthesize a four bar mechanism to guide a rod AB through three consecu-

tive positions A
1
B

1
, A

2
B

2
 and A

3
B

3
 as shown in Fig. 25.18.

Fig. 25.18

Solution : In order to synthesize a four bar mechanism, we shall use the graphical method

as discussed below :

1. Join points A
1
, A

2
 and A

2
, A

3
. Draw the perpendicular bisectors of line segments A

1
A

2

and A
2
A

3
 to intersect at O

A
, as shown in Fig. 25.19. It is evident that a rigid link O

A
A

1
 pinned to the

body at point A
1
 and pinned to the ground at point O

A
 will guide point A

1
 through its three posi-

tions.

Fig. 25.19
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2. Similarly, join points B
1
, B

2
 and B

2
, B

3
. Draw the perpendicular bisectors of line seg-

ments B
1
B

2
 and B

2
B

3
 to intersect at O

B
 as shown in Fig. 25.19. It is evident that a rigid link O

B
B

1

pinned to the body at point B
1
 and pinned to the ground at point O

B
 will guide point B, through its

three positions.

3. From above we see that the points O
A

 and O
B
 are the required fixed points and

O
A

 A
1
 B

1
 O

B
 is one position of the four bar mechanism. The other two positions of the mechanism

will be A 2 2 BO A B O  and A 3 3 BO A B O .

25.19. Analytical Synthesis for Slider Crank Mechanism

A slider crank mechanism is shown in Fig. 25.20. In the sysnthesis problem of the slider

crank mechanism, the displacement (s) of the slider C has to co-ordinate with the crank angle ( θ )

in a specified manner. For example, consider that the displacement of the slider is proportional to

crank angle over a given interval, i.e.

S S( )s s C− = θ − θ , for S Fθ ≤ θ ≤ θ ... (i)

where      C = Constant of proportionality, and

      s = Displacement of the slider when crank angle is θ .

The subscripts 
S
 and 

F
 denote

starting and finishing positions.

The synthesis of a slider crank

mechanism for three precision points

is obtained as discussed below.

The three positions of the crank

( 1 2,θ θ  and 3θ ) may be obtained in

the similar way as discussed in Art.

25.10 and the corresponding three

positions of the slider (s
1
, s

2
 and s

3
) are

obtained from the given condition as in

equation (i). Now the dimensions a, b

and c may be determined as discussed

below :

In a right angled triangle ′BC C ,

; sinBC b BC a c′= = θ −  , and cos′ = − θCC s a

∴  2 2 2( sin ) ( cos )= θ − + − θb a c s a

     2 2 2 2 2 2sin 2 sin cos 2 cos= θ + − θ + + θ − θa c a c s a s a

     2 2 22 sin 2 cos= + − θ − − θa c ac s a s

or              2 2 2 22 cos 2 sinθ + θ + − − =a s a c b a c s

           2
1 2 3cos sinθ + θ − =k s k k s ... (ii)

where             1 2=k a  ; 2 2=k a c  and 2 2 2
3 = − +k a b c ... (iii)

Fig. 25.20. Slider crank mechanism.



1046      �               Theory of Machines

For the three different positions of the mechanism i.e. for 1 2 3( , )θ θ θ  and (s
1
, s

2
, s

3
), the

equation (ii) may be written as

 2
1 1 1 2 1 3 1cos sink s k k sθ + θ − = ... (iv)

           2
1 2 2 2 2 3 2cos sink s k k sθ + θ − = ... (v)

2
1 3 3 2 3 3 3cos sink s k k sθ + θ − = ... (vi)

The equations (iv), (v) and (vi) are three simultaneous equations and may be solved for

three unknowns k
1
, k

2
 and k

3
. Knowing the values of k

1
, k

2
 and k

3
, the lengths a, b and c may be

obtained from equations (iii).

Example 25.9. Synthesize a slider crank mechanism so that the displacement of the slider

is proportional to the square of the crank rotation in the interval 45 135° ≤ θ ≤ ° . Use three preci-

sion points with Chebyshev’s spacing.

Solution : Given. S 45θ = °  ; F 135θ = °

First of all, let us find the three precision points (i.e. x
1
, x

2
 and x

3
). We know that

S F F S

1 1 (2 1)
( ) ( ) cos

2 2 2
j

j
x x x x x

n

π − 
= + − −

 
 

 ; where  j = 1, 2 and 3

Assuming the starting displacement of the slider (s
S
) = 100 mm and final displacement of

the slider (s
F
) = 30 mm. It may be noted that for the crank rotating in anticlockwise direction, the

final displacement will be less than the starting displacement.

∴    1

1 1 (2 1 1)
(100 30) (30 100)cos 95.3

2 2 2 3
x

π × − 
= + − − =

 
× 

 mm.

. . . (∵     S Sx s=  ; F Fx s=  and n = 3)

2

1 1 (2 2 1)
(100 30) (30 100)cos

2 2 2 3
x

π × − 
= + − −

 
× 

 = 65 mm

and 3

1 1 (2 3 1)
(100 30) (30 100)cos

2 2 2 3
x

π × − 
= + − −

 
× 

 = 34.7 mm

The corresponding three values of θ  are given by

F S
S S

F S

( )
j jx x

x x

θ − θ
θ = θ + −

−
 ; j = 1, 2, and 3

∴ 1

135 45
45 (95.3 100) 51.04

30 100

−
θ = + − = °

−

2

135 45
45 (65 100) 90

30 100

−
θ = + − = °

−

and             
3

135 45
45 (34.7 100) 128.96

30 100

−
θ = + − = °

−

Since it is given that the displacement of the slider (s)

is proportional to the square of the crank rotation ( θ ), therefore,

for the displacement from initial position (s
S
) to s when crank

rotates from initial position ( Sθ ) to θ , we have

A belt-conveyor that can trans-

port small components.
Note : This picture is given as

additional information and is not a

direct example of the current chapter.
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   2
S S( )s s C− = θ − θ ... ( θ  is expressed in degrees)

∴    
S

2 2
S

30 100 7

810( ) (135 45)

s s
C

− − −
= = =

θ − θ −
... (Taking s = s

F
 ; and Fθ = θ )

Now the three positions for the slider displacement (s) corresponding to the three positions

of the crank angle ( θ ) are given by

2 2
1 S 1 S

7
( ) 100 (51.4 45) 99.7

810
s s C= + θ − θ = − − =  mm

2 2
2 S 2 S

7
( ) 100 (90 45) 82.5

810
s s C= + θ − θ = − − =  mm

    2 2
3 S 3 S

7
( ) 100 (128.96 45) 39.08

810
s s C= + θ − θ = − − =  mm

Now the three equations relating the ( 1 1, sθ ), ( 2 2, sθ ) and (θ
3
, s

3
) are written as

2
1 2 399.7cos51.04 sin51.04 (99.7)k k k× °+ °− =

or             1 2 362.7 0.7776 9940k k k+ − = ... (i)

Similarly, 
2

1 2 382.5cos90 sin90 (82.5)k k k× °+ °− =

or   2 3 6806− =k k ... (ii)

and 2
1 2 339.08cos128.96 sin128.96 (39.08)k k k× °+ ° − =

or            1 2 324.57 0.776 1527k k k− + − = ... (iii)

The equations (i), (ii) and (iii) are three simultaneous equations in three unknowns k
1
, k

2

and k
3
. On solving, we get

       k
1
 = 96.4 ;  k

2
 = 13 084 ; and k

3
 = 6278

We know that   k
1
 = 2a, or  a = k

1
 / 2 = 96.4 / 2 = 48.2 mm Ans.

        k
2
 = 2a.c or  c = k

2
 / 2a = 13 084 / 2 × 48.2 = 135.7 mm Ans.

and       2 2 2
3 = − +k a b c

       2 2 2 2 2
3 (48.2) (135.7) 6278 14 460b a c k= + − = + − =

or         b = 120.2 mm Ans.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

1. In a four bar mechanism PQRS, the link PS is fixed. The length of the links are : PQ = 62.5 mm ;

QR = 175 mm ; RS = 112.5 mm and PS = 200 mm. The crank PQ rotates at 10 rad/s clockwise.

Find the angular velocity and angular acceleration of the links QR and RS for the values of angle

QPS at an interval of 60°.

2. In a slider crank mechanism, the crank AB = 100 mm and the connecting rod BC = 300 mm. When

the crank is at 120° from the inner dead centre, the crank shaft has a speed of 75 rad/s and an

angular acceleration of 1200 rad/s
2
 both clockwise. Find at an interval of 60° 1. the linear velocity

and acceleration of the slider, and 2. the angular velocity and angular acceleration of the rod, when
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(a) the line of stroke of the slider is offset by 30 mm, and

(b) the line of stroke of the slider is along the axis of rotation of the crank.

3. A mechanism is to be designed to generate the function

y = x
0.8

for the range 1 3x≤ ≤ , using three precision points. Find the three values of x and y.

[Ans. 1.134, 2, 2.866 ; 1.106, 1.741, 2.322]

4. Determine the three precision positions of input and output angles for a mechanism to generate  a

function

y = x
1.8

when x varies from 1 to 5, using Chebyshev’s spacing. Assume that the initial values for the input

and output crank are 30° and 90° respectively and the difference between  the final and initial

values for the input and output cranks are each equal to 90°.

[Ans. 36°, 75°, 94.48°; 91.22°, 144.57°, 181.22°]

5. Synthesize a four bar linkage using Freudenstein’s equation to generate the function y = x
1.8

 for

the interval 1 5.x≤ ≤  The input crank is to start from S 30θ = °  and is to have a range of 90°. The

output follower is to start at S 0φ = °  and is to have a range of 90°. Take three accuracy points at x

= 1, 3 and 5.

6. A four bar function generator is used to generate the function y = 1/x for 1 3x≤ ≤  between the

input angle of a crank and the angle the follower makes with the frame. Find the three precision

points from Chebyshev’s spacing if the initial values of input angle (i.e. crank angle) and output

angle (i.e. follower angle) are 30° and 200° respectively. The difference between the final and

initial values of the crank and follower angles are each equal to 90°.

7. Synthesize a four bar linkage that will generate a function y = x
1.2 

for the range 1 5.x≤ ≤  Take

three precision points : θ = °S 30 ;  φ = °S 60  and 90 ,∆θ = ∆φ = °  where θ
S
 and φ

S
 represent respec-

tively the initial angular positions of the input and output crank; ∆θ and ∆φ are respectively the

ranges of the angular movements of the input and output crank.

8. Synthesize a four bar mechanism to generate the function y = log x, where x varies between 1 and

10. Use three accuracy points with Chebyshev’s spacing. Assume θ
S
 = 45°; θ

F
 = 105°; φ

S
 = 135°

and φ
F
 = 225°. Take the length of the smallest link equal to 50 mm.

9. Synthesize a four bar mechanism to move the rod AB as shown in Fig. 25.21, through the positions

1, 2 and 3. The end points A and B are used as moving pivot points.

Fig. 25.21 Fig. 25.22
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Fig. 25.23

10. Design a four bar mechanism to guide the door in and out with little rotation until it clears the

surrounding structure, after which it swings fully open to one side. The three positions of such a

door under going  this type of motion is shown in Fig. 25.22. The points A and B are used as

moving pivots that guides the body through the three positions.

DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?DO YOU KNOW ?
1. Explain Freudenstein’s method of three point synthesis of mechanisms.

2. Derive the expressions for displacement, velocity and acceleration of a four bar mechanism.

3. What do you understand by coupler curves ? Describe the method of obtaining the co-ordinates of

a coupler point in a slider crank mechanism.

4. Explain synthesis of mechanism with examples. What do you understand by

(a) Type synthesis ;     (b) Number synthesis ; and (c) dimensional synthesis.

5. Describe the classifications of synthesis problem.

6. Write an expression for determining the precision points.

7. Discuss the method of determining the angles for input and output link in a four bar mechanism for

function generation.

8. Describe the method of designing a four bar mechanism as a function generation.

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS
1. The analysis of mechanism deals with

(a)  the determination of input and output angles of a mechanism

(b)  the determination of dimensions of the links in a mechanism

(c)  the determination of displacement, velocity and acceleration of the links in a mechanism

(d)  none of the above

2.  The synthesis of mechanism deals with

(a)  the determination of input and output angles of a mechanism

(b)  the determination of dimensions of the links in a mechanism

(c)   the determination of displacement, velocity and acceleration of the links in a mechanism

(d)  none of the above

3. The three precision points in the range 1 3x≤ ≤  are

 (a) 1.1, 2, 2.6 (b) 1.6, 2.5, 2.95

 (c) 1.134, 2, 2.866 (d) 1.341, 2 , 2.686

4. For a four bar mechanism, as shown in Fig. 25.23 the Freudenstein’s equation is

(a)  1 2 3cos cos cos( )k k kθ + φ + = θ − φ

(b)  1 2 3cos cos cos( )k k kθ − φ + = θ − φ

(c)  1 2 3cos cos cos( )k k kφ + θ + = θ − φ

(d)  1 2 3cos cos cos( )k k kφ − θ + = θ − φ

where 1

d
k

a
=  ; 2

d
k

c
=  ; 

2 2 2 2

3
2

a b c d
k

ac

− + +
=

ANSWERSANSWERSANSWERSANSWERSANSWERS
1. (c) 2.  (b) 3. (c) 4. (d)

GO To FIRST
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2. Terms Used in Automatic

control of Systems.

3. Types of Automatic Control

System.

4. Block Diagrams.

5. Lag in Response.

6. Transfer Function.

7. Overall Transfer Function.

8. Transfer Function for a

System with Viscous

Damped Output.

9. Transfer Function of a

Hartnell Governor.

10. Open-Loop Transfer

Function.

11. Closed-Loop Transfer

Function.

26.1.26.1.26.1.26.1.26.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

The automatic control of system (or machine) is a very

accurate and effective means to perform desired function by

the system in which the human operator is replaced by a

device thereby relieving the human operator from the job thus

saving physical strength. The automatic control systems are

also called as self-activated systems. The centrifugally

actuated ball governor which controls the throttle valve to

maintain the constant speed of an engine is an example of an

automatically controlled system.

The automatic control systems are very fast, produces

uniform and quality products. It reduces the requirement of

human operators thus minimising wage bills.

26.2.26.2.26.2.26.2.26.2. TTTTTerererererms used in ms used in ms used in ms used in ms used in AAAAAutomautomautomautomautomatic Contrtic Contrtic Contrtic Contrtic Control ofol ofol ofol ofol of
SystemsSystemsSystemsSystemsSystems

The following terms are generally used in automatic

control of systems :

1. Command. The result of the act of adjustment, i.e.

closing a valve, moving a lever, pressing a button etc., is

known as command.

2. Response. The subsequent result of the system to

the command is known as response.

3. Process control. The automatic control of variables

i.e. change in pressure, temperature or speed etc. in machine

is termed as process control.

CONTENTS

CONTENTS
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4. Process controller. The device

which controls a process is called a

process controller.

5. Regulator. The device used to

keep the variables at a constant desired

value is called as regulator.

6. Kinetic control. The automatic

control of the displacement or velocity or

acceleration of a member of a machine is

called as kinetic control.

7. Feed back. It is defined as

measuring the output of the machine for

comparison with the input to the machine.

8. Error detector. A differential

device used to measure the actual

controlled quantity and to compare it

continuously with the desired value is

called an error detector. It is also known

as deviation sensor.

9. Transducer. It is a device to

change a signal which is in one physical form to a corresponding signal in another physical form.

A Bourdon tube is an example of transducer because it converts a pressure signal into a displacement,

thereby facilitating the indication of the pressure on a calibrated scale. The other examples of

transducer are a loud speaker (because it converts electrical signal into a sound) and a photo-

electric cell (because it converts a light signal into an electric signal). Similarly, the primary elements

of all the many different forms of thermometers are transducers.

10.  Amplification. It is defined as increasing the amplitude of the signal without affecting its

waveform. For example, an error detector itself has insufficient power output to actuate the correcting

mechanism and hence the error signal has to be amplified. This is generally done by employing

mechanical or hydraulic or pneumatic amplifying elements like levers, gears and venturimeters etc.

26.3.26.3.26.3.26.3.26.3. TTTTTypes of ypes of ypes of ypes of ypes of AAAAAutomautomautomautomautomatic Contrtic Contrtic Contrtic Contrtic Control Systemol Systemol Systemol Systemol System
The automatic control systems are of the following two types :

1. Open-loop or unmonitored system. When the input to a system is independent of the

output from the system, then the system is called an open-loop or unmonitored system. It is also

called as a calibrated system. Most measuring instruments are open-loop control systems, as for

the same input  signal, the readings will depend upon things like ambient temperature and pressure.

Following are the examples of open-loop system :

(a) A simple Bourdon tube pressure gauge commonly used for measuring pressure.

(b) A simple carburettor in which the air-fuel ratio adjusted through venturi remains same

irrespective of load conditions.

(c) In traffic lights system, the timing of lights is preset irrespective of intensity of traffic.

2. Closed-loop or monitored system. When output of a system is measured and is continu-

ously compared with the required value, then it is known as closed-loop or monitored system. In

this system, the output is measured and through a feedback transducer, it is sent to an error detector

which detects any error in the output from the required value thus adjusting the input in a way to

get the required output. Following are the examples of  a closed-loop system :

(a) In a traffic control system, if the flow of traffic is measured either by counting the number

of vehicles by a person or by counting the impulses due to the vehicles passing over a pressure pad

and then setting the time of signal lights.

A rail-track maintenance machine.

Note : This picture is given as additional information and is not

a direct example of the current chapter.



1052      �               Theory of Machines

(b) In a thermostatically controlled water heater, whenever the temperature of water heater

rises above the required point, the thermostate senses it and switches the water heater off so as to

bring the temperature down to the required point. Similarly, when the temperature falls below the

required point, the thermostate switches on the water heater to raise the temperature of water to the

required point.

26.4.26.4.26.4.26.4.26.4. Block DiagramsBlock DiagramsBlock DiagramsBlock DiagramsBlock Diagrams

Fig. 26.1. Block diagram of a single carburettor.

The block diagrams are used to study the automatic control systems in a simplified way. In

this, the functioning of a system is explained by the interconnected blocks where each block represents

a labelled rectangle and is thought of as a block box with a definite function. These blocks are

connected to other blocks by lines with arrow marks in order to indicate the sequence of events that

are taking place. Fig. 26.1 shows the diagram of a simple carburettor. The reduction of a control

system to a block diagram greatly facilitates the analysis of the system performance or response.

26.5.26.5.26.5.26.5.26.5. Lag in ResponseLag in ResponseLag in ResponseLag in ResponseLag in Response

We know that response is the subsequent result of the system to the command. In any control

system, there is a delay in response (output) due to some inherent cause and it becomes difficult to

measure the input and output simultaneously. This delay in response is termed as lag in response.

For example, in steam turbines, with the sudden decrease in load, the hydraulic relay moves in the

direction to close the valve. But unless the piston valve ports are made with literally zero overlap,

there would be some lag in operation, since the first movement of the piston valve would not be

sufficient to open the ports. This lag increases the probability of unstable operation.

26.6 26.6 26.6 26.6 26.6 TTTTTransfer Functionransfer Functionransfer Functionransfer Functionransfer Function

The transfer function is an expression showing the relation between output and the input to

each unit or block of a control system. Mathematically,

Transfer function = /o iθ θ

where oθ  = Output signal of the block of a system, and

i
θ  =  Input signal to the block of a system.
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Thus, the output from an element may be obtained by multiplying the input signal with the

transfer function.

Note : From the transfer function of the individual blocks, the equation of motion of system can be formu-

lated.

26.7 Ov26.7 Ov26.7 Ov26.7 Ov26.7 Overall erall erall erall erall TTTTTransfer Functionransfer Functionransfer Functionransfer Functionransfer Function

In the previous article, we have discussed the transfer function of a block. A control system

actually consists of several such blocks which are connected in series. The overall transfer function

of the series is the product of the individual transfer function. Consider a block diagram of any

control system represented by the three blocks as shown in Fig. 26.2.

Fig. 26.2. Overall transfer function.

Thus, if F
1
 (D), F

2
 (D), F

3
 (D) are individual transfer functions of three blocks in series, then

the overall transfer function of the system is given as

1 2
1 2 3

1 2

( ) ( ) ( ) ( )o o

i i

F D F D F D KG D
θ θθ θ

= × × = × × =
θ θ θ θ

where K = Constant representing the overall amplification or gain, and

        G(D) = Some function of the operator D.

Note: The above equation is only true if there is no interaction between the blocks, that is the output from

one block is not affected by its connection to the subsequent blocks.

26.8.26.8.26.8.26.8.26.8.     TTTTTransfer Function fransfer Function fransfer Function fransfer Function fransfer Function for a System with viscous Damped Outputor a System with viscous Damped Outputor a System with viscous Damped Outputor a System with viscous Damped Outputor a System with viscous Damped Output

Consider a shaft, which is used to position a load (which may be pulley or gear) as shown in

Fig. 26.3. The movement of the load is resisted by a viscous damping torque.

Fig. 26.3. Transfer function for a system with viscous damped output.

Let iθ  = Input signal to the shaft,

           oθ  = Output signal of the shaft,

  q = Stiffness of the shaft,

  I = Moment of Inertia of the load, and

 T
d
 = Viscous damping torque per unit angular velocity.
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After some time t,

Twist in the shaft i o= θ − θ

∴  Torque transmitted to the load ( )i o
q= θ − θ

We also know that damping torque = 0
o

d d

d
T = T

dt

θ 
ω  

 
... 0( / )

o
d dtω = θ∵

According to Newton’s Second law, the equation of motion of the system is given by

          
2

2
( )o o

i o d

d d
I q T

dtdt

 θ θ 
= θ − θ −       

... (i)

         

2

2

o o
i o d

d d
I q q T

dtdt

 θ θ 
= θ − θ −       

Replacing d / dt by D in above equation, we get

2( ) ( )
o i o d oI D q q T Dθ = θ − θ − θ

or 2( ) ( )
o d o o iI D T D q qθ + θ + θ = θ

           
2

( ) ( ) ( )d

o o o i

T q q
D D

I I I
θ + θ + θ = θ

        
2 2 2

( ) ( ) ( )d

o o n o n

T
D D

I
θ + θ + ω θ = ω θ ... (ii)

where nω  = Natural frequency of the shaft = 
q

I

Also we know that viscous damping torque per unit angular velocity,

 = 2d n
T I ξω    or   / = 2d n

T I ξω

where   ξ  = Damping factor or damping ratio.

Material being moved via-belt conveyor.
Note : This picture is given as additional information and is not a direct example of the current chapter.

or
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The equation (ii) may now be written as

    2 2 2
2 ( ) ( ) ( )

n o n o n iD Dθ+ ξω θ + ω θ = ω θ

or 2 2 2
[ 2 ( ) ] ( )

n n o n iD D+ ξω + ω θ = ω θ

∴                    Transfer function 

2

2 2

( )

2 ( )

o n

i n nD D

θ ω
= =

θ + ξω + ω

                   2 2

1

2 1T D T D

=

+ ξ +

where                                           T = Time constant = 1/ nω

Note: The time constant (T) may also be obtained by dividing the periodic time (t
d
) of the undamped natural

oscillations of the system by 2π . Mathematically,

                            2 1 1

2 2

d

n n

t
T

π
= = × =

π ω π ω

... 
2

d

n

t
 π

= 
ω 

∵

Example 26.1. The motion of  a pointer over a scale is resisted by a viscous damping torque

of magnitude 0.6 N-m at an angular velocity of 1 rad / s. The pointer, of negligible inertia, is

mounted on the end of  a relatively flexible shaft of stiffness 1.2 N-m / rad, and this shaft is driven

through a 4 to 1 reduction gear box. Determine its overall transfer function.

If the input shaft to the gear box is suddenly rotated through 1 completed revolution, determine

the time taken by the pointer to reach a position within 1 percent of its final value.

Solution. Given:

T
d
 = 0.6/1 = 0.6 N-ms/rad;

 q = 1.2 N-m/rad

The control system along with its

block diagram is shown in Fig 26.4 (a)

and (b) respectively.

1. Overall transfer function

Since the inertia of the pointer is

negligible, therefore the torque generated

by the twisting of the shaft has only to

overcome the damping torque.

Therefore

1( ) ( / )
o d oq T d dtθ − θ = θ

where           θ
1
 = Output from the gear box.

∴             1 ( )
o d o

q q T Dθ − θ = θ . . . ( / )d dt D=∵

or          1( )
d o

q T D q+ θ = θ

∴                      

1

1 1

1 ( / ) 1

o

d d

q

q T D T q D T D

θ
= = =

θ + + +

...(i)

where  T = Time constant = T
d

/ q = 0.6/1.2 = 0.5s

Fig. 26.4
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Substituting this value in equation (i), we get

θ
=

θ +

0

1

1

1 0.5D

We know that overall transfer function for the control system is

1 2

1

1 1
×

4 (1+ 0.5 )

o

i i D

θ θ θ
= × =

θ θ θ
 Ans. ... 1

1
/ (Given)

4
i

 
θ θ =

 
 

∵

2. Time taken by the pointer

Let    t = Time taken by the pointer.

Since the input shaft to the gear box is rotated through 1 complete revolution, therefore

2 ,iθ = π  a constant.

We know that transfer function for the control system is

1 1
or (1 0.5 )

4 (1 0.5 ) 4

o i
o

i

D
D

θ θ
= × + θ =

θ +

∴ 0.5
4

o i

o

d

dt

θ θ 
+ θ = 

 

... (∵ D ≡ d / dt)

Substituting 2iθ = π  in the above equation, we get

2
0.5

4 2

o
o

d

dt

θ π π 
+ θ = = 

 

or        0.5
2

o

o

d

dt

θ π 
= − θ 

 

Separating the variables, we get

2
o

d
dt

θ
=

π − θ

Aircraft engine is being assembled.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Integrating the above equation, we get

log 2 constant
2

e o t
π 

− − θ = + 
 

... (ii)

Applying initial conditions to the above equation i.e. when t = 0, 0oθ = , we get

         constant = log
2

e

π 
−  

 

Substituting the value of constant in equation (i),

log 2 log
2 2

e o et
π π   

− − θ = −   
   

or  log 2 log
2 2

e o et
π π   

− θ = − +   
   

∴            
2

2 2

t

o e
−π π

− θ = ×

or         
2/ 2

/ 2

to
e

−π − θ
=

π

i.e                  
−π

θ = −
2

(1 )
2

t

o
e ... (iii)

The curve depicted by above equation is shown in Fig. 26.5 and is known as simple expo-

nential time delay curve.

Fig. 26.5

The output oθ  will be within 1 percent of its final value when 0 0.99( / 2).θ = π  Substituting

this value in equation (iii), we get

        ( )2
0.99 1

2 2

t
e

−π π 
= − 

 

                             2 20.99 1 or 0.01
t t

e e
− −

= − =

∴                  2 log 100 4.6 or 2.3set t= = =  Ans.



1058      �               Theory of Machines

26.9.26.9.26.9.26.9.26.9.     TTTTTransfer Function of a ransfer Function of a ransfer Function of a ransfer Function of a ransfer Function of a HHHHHararararartnell Gotnell Gotnell Gotnell Gotnell Govvvvvererererernornornornornor

Consider a Hartnell governor* as shown in Fig. 26.6 (a). The various forces acting on the

governor are shown in Fig. 26.6 (b).

Let m = Mass of the ball

           M = mass of the sleeve,

r  = Radius of rotation of the governor in mid position,

         r∆  = Change in radius of rotation,

           ω  = Angular speed of rotation in mid position,

            ∆ω  = Change in angular speed of rotation,

(a) Hartnell governor.  (b) Forces acting on a Hartnell governor.

Fig. 26.6

 x = Length of the vertical or ball

      arm of the lever,

 y =Length of the horizontal or

      sleeve arm of the lever,

h = compression of spring with

      balls in vertical position,

          h′  = Displacement of the sleeve,

 s = Stiffness of the spring,

c = Damping coefficient i.e.

   damping force per unit

                 velocity, and

           ξ  = Damping factor.

* For details on Hartnell governor, refer chapter 18, Art. 18.8.

Bucket conveyor

Note : This picture is given as additional information

and is not a direct example of the current chapter.
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The various forces acting on the governor at the given position are as follows :

1.  Centrifugal force due to ball mass,

2( ) ( )
cF m r r= + ∆ ω+ ∆ω

                 = 
2( ) ( + )

x
m r h

y

 
′+ ω ∆ω 

 

2. Inertia force of the balls,            

2

2im

x d h
F m

y dt

 ′ 
=    

  

3. Inertia force of the sleeve mass,    

2

2

 ′
=  

 
 

iM

d h
F M

dt

4. Damping force, d

dx
F c

dt

 
=  

 

5. Spring force,              ( )sF s h h′= +

It is assumed that the load on the sleeve, weight of the balls and the friction force are negligible

as compared to the inertia forces. Now, taking moments about the fulcrum O, considering only one

half of the governor,

2 2
2

2 2

1
( )

2

x x d h d h
m r h x m x M y

y y dt dt

   ′ ′ 
′+ ω+ ∆ω = × + ×        

     

               
1 1

( )
2 2

dh
c y s h h y

dt

′ 
′+ × + × + 

 

Neglecting the product of small terms, we get

2 2 2 ( )′ω + × × ω + ω ∆ω
x

mr x m h x mr x
y

= 

2 2 2

2 2

1 1

2 2

mx d h d h dh
M y c y

y dtdt dt

   ′ ′ ′ 
+ × + ×             

 
1

( )
2

s y h h′+ × +

...(i)

Also, we know that at equilibrium position,

2 1

2
mr x s h yω = ×

Now the equation (i) may be written as

2
2 2 21 1 1

2 ( ) ( ) ( ) ( )
2 2 2

x mx
s h y m h x mr x D h My D h c y Dh

y y

′ ′ ′ ′× + × × ω + ω ∆ω = + +

           
1

( )
2

sy h h′+ + ... ( / )d dt D=∵
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or

2 2
2 21 1 1

2 ( )
2 2 2

mx mx
My D h cy Dh sy D h mr x

y y

    
′ ′ ′+ + × + − × = ω ∆ω           

Multiplying the above equation throughout by 2y, we get

2 2 2 2 2 2 2(2 ) ( ) ( 2 ) 4 ( )mx My D h c y dh sy mx h mr x y′ ′ ′+ + + − ω = ω ∆ω

2 2 2 2
2 2 2

2 2 2 2

2
(2 ) 4 ( )

2 2

cy sy mx
mx My D h mr xy

mx My mx My

 − ω
′+ + + = ω ∆ω 

 
+ + 

or

2 2 2 2
2

2 2 2 2 2 2

2 4 ( )

2 2 2

cy sy mx mr xy
D D h

mx My mx My mx My

 − ω ω ∆ω
′+ × + = 

 
+ + + 

or
2 2

2 2

4 ( )
2 ( )

2
n n

mr xy
D D h

mx My

ω ∆ω
′+ ξω + ω =

+

∴
2 2 2 2

4 ( ) 1

2 2 ( )n n

mr xy
h

mx My D D

ω ∆ω
′ = ×

+ + ξω + ω

where       
2

2 2
2

2
n

cy

mx My

ξ ω =

+

            ξ  = Damping factor, and

          nω  = Natural frequency  = 

2 2 2

2 2

2

2

sy mx

mx My

− ω

+

Thus, transfer function for the Hartnell governor,

   
Output signal Displacement of sleeve ( )

=
Input signal Change in speed ( )

h′
=

∆ω

              2 2 2 2

4 1

2 2 ( )n n

m r xy

mx My D D

ω
= ×

+ + ξω + ω

26.10.26.10.26.10.26.10.26.10. Open-Loop Open-Loop Open-Loop Open-Loop Open-Loop TTTTTransfer Functionransfer Functionransfer Functionransfer Functionransfer Function

Fig. 26.7. Open loop control system.

Fig. 26.8 Simplified open loop control system.

The open loop transfer function is defined as the overall transfer function of the forward path

elements. Consider an open loop control system consisting of several elements having individual

transfer function such F
1
(D), F

2
(D), F

3
 (D) as shown in Fig. 26. 7. Thus
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Open loop transfer function = 1 2

1 2

o o

i i

θ θθ θ
= × ×

θ θ θ θ

            = 1 2 3( ) ( ) ( ) ( )F D F D F D KG D× × =

The simplified block diagram of open loop transfer function is shown in Fig. 26.8.

26.11.26.11.26.11.26.11.26.11. Closed - Loop  Closed - Loop  Closed - Loop  Closed - Loop  Closed - Loop TTTTTransfer Functionransfer Functionransfer Functionransfer Functionransfer Function

The closed loop transfer function is defined as the overall transfer function of the entire

control system. Consider a closed loop transfer function consisting of several elements as shown in

Fig. 26.9.

Fig 26.9 Closed-loop transfer function.

Now, for the forward path element, we know that

1

( )o o

i o

K G D
θ θ

= =
θ θ − θ

where      1 2 3( ) ( ) ( ) ( )K G D F D F D F D= × ×

On rearranging, we get

           ( ) ( )o i o
K G D K G Dθ = θ − θ

or     [1 ( )] ( )o i
K G D K G D+ θ = θ

∴            
( ) Open loop

1 ( ) 1+ Open loop

o

i

K G D TF

K G D TF

θ
= =

θ +

The above expression shows the transfer function for the closed-loop control system.

Thus the block diagram may be further simplified as shown in Fig. 26.10, where the entire

system is represented by a single block.

Fig. 26.10. Simplified closed-loop system.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

1. Define the following terms:

(a) Response (b) Process control

(c) Regulator (d) Transducer

2. What do you understand by open-loop and closed loop control system? Explain with an example.

3. Discuss the importance of block diagrams in control systems.
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4. Draw the block diagrams for the following control systems:

(a) A simple carburettor,

(b) A thermostatically controlled electric furnace.

5. What is a transfer function ?

OBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONSOBJECTIVE TYPE QUESTIONS

1. The device used to keep the variables at a constant desired value is called a

(a) process controlled (b) regulator

(c) deviation sensor (d) amplifier

2. The transfer function of a 4 to 1 reduction gear box is

(a) 4 (b) 2

(c) 1/4 (d) 1/2

3. A simple Bourdon tube pressure gauge is a

(a) closed-loop control system

(b) open-loop control system

(c) manually operated system

(d) none of the above

4. The overall transfer function of three blocks connected in series is

(a)
1 2

3

( ) ( )

( )

×F D F D

F D
                          (b) 

1 3

2

( ) ( )

( )

×F D F D

F D

(c) 1 2 3( ) ( ) ( )× ×F D F D F D                         (d) 
1 2 3

1

( ) ( ) ( )× ×F D F D F D

where F
1
 (D), F

2
 (D) and F

3
 (D) are the individual transfer functions of the three blocks.

5. The transfer function for a closed-loop control system is

(a)
( )

1 ( )+

K G D

K G D
(b) ( )[1 ( )]+K G D KG D

(c)
1 ( )

( )

+ K G D

KG D
(d)

( )

1 ( )−

K G D

K G D

ANSWERSANSWERSANSWERSANSWERSANSWERS

1. (b) 2. (c) 3. (b) 4. (c) 5. (a)
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