(CSE)

COMPUTER SCIENCE AND ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(CSE)

Set Code : T2

Booklet Code : A

Vote: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- (1) 3I
- (2) 9I
- (3) 271
- (4) 811

1. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3)
- (4) 4

What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3

- (1) 64
- (2) 268
- (3) 512
- (4) 256

If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1
- (2) 2
- (3) 3
- (4) 4

Set Code : T2 Booklet Code :

- 5. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A =______, B =______

 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$
- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A,
- (2) 2A,
- (3) 4A
- (4) 4A

- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- $(3) 3\pi$
- (4)

- If $A+B=45^\circ$, then $(1-\cot A) \cdot (1-\cot B)$ is
 - (1) 1
- (2) 0
- (3) 2

- 10. The value of sin 78° + cos 132° is

- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

- (2) x=0
- (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$
- (4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code : Booklet Code:

12	The value of Tan-	(2) + Tan-1	(3)	ic
13.	The value of Tan	(2) T I all	O,	12

- (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2
- (2) Δ^{-2}
- (3) Δ⁻³

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (2)
- (3)
- (4)

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$ (2) $\cos^{-1}(2/5)$
- (3) cos⁻¹ (7/9) (4) cos⁻¹ (1/3)

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$
- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

Set Code : T2 Booklet Code :

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (3) c/2
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta$, $y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{c^2} \frac{y^2}{h^2} = 1$ is (1) c = a/m (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. $\lim_{x \to 1} \frac{\sqrt{5x-4} \sqrt{x}}{x-1}$ is
- (1) 3

- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$
- (2) $\pi/4$

- 28. $\frac{d}{dr}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- $(1) \quad \frac{2\sqrt{x}}{x^x} \qquad (2) \quad 2\sqrt{x}e^x \qquad (3)$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

- (2) $tan^{-1}(2)$ (3) $tan^{-1}(3)$ (4) $tan^{-1}(4)$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) $6x^3$

36.
$$\int \csc x dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

7-A

Set Code : T2 Booklet Code :

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

38.
$$\int f'(x) [f(x)]^n dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(3)
$$n[f(x)]^{n-1} + C$$

(4)
$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+r^2}+C$$

$$(3) \quad x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log(1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + C$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{7}{2}} \sin|x| \, dx =$$

- (1) 0 (2) 1

Set Code : **Booklet Code:**

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- 46. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y=10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_2 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2x + C_2x^2)e^x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

Set Code :	12
Booklet Code :	

PHYSICS

					LUL	,0			
51.					lation	A/B = m where n	m is lin	ear mass density and	Ais
	force. The dimensions of B will be								
		same as that of		heat	(2)				
	(3)	same as that of	work		(4)	same as that o	fmom	entum	
52.	The	dimensional for	nula c	of capacitance in	term	of M, L, T and	I is	ii a	
	(1)	$[ML^2T^2I^2]$	(2)	$\left[ML^{-2}T^4I^2\right]$	(3)	$[M^{\cdot 1}L^3T^3I]$	(4)	$[M^{-1}L^{-2}T^4I^2]$	
53.	If <i>l</i> ,	m and n are the d	irecti	on cosines of a	vector	then			
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	<i>Imn</i> = 1	A
54.	The	angle between i+	i and	i+k is				194	
		0° .	(2)		(3)	45°	(4)	60°	
55.		article is moving					econds	the velocity change	s to
		101111111111111111111111111111111111111		and and and					
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	s nor	h-west	(2)	zero	154		
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towa	rds no	rth-east	
56.	The		n of a	particle varies v	vith tir	me t as p = a + bt	+ct² w	hich of the followin	g is
		Force varies wit	h time	in a quadratic r	nanne	r.			
	(2)	Force is time-de							
	(3)	The velocity of	-		ional	to time.		9 9	
	(4)	The displaceme	_						
57.		ell of mass m mo remains stationar	-			•	o two p	pieces. One part of m	iass
	(1)		(2)	2v		3v/4	(4)	4v/3	
5				,	10-A				

Set Code : T2

Booklet Code : A

58.	The	velocity of a fi	reely fall	ling body aft	er 2s is				
		9.8 ms ⁻¹		10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.	A la	rge number of ground on whic	bullets ar	re fired in all bullets will s	directions pread is	with the same	e speed u	. The maximu	um area on
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.	The the c	minimum stop	ping dis riction b	tance for a ca between the t	or of mass tyres and t	m, moving wi he road is μ, v	th a spee vill be	d v along a le	vel road, if
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{\nu}{2\mu g}$	
61.		en a bicycle is that it acts					13		
	(1)	In the backwa	ard direc	tion on the fi	ront wheel	and in the for	ward dir	ection on the	rear wheel
	(2)					nd in the back		ection on the	rear wheel
	(3)					and the rear w			22
	(4)	In the forwar	d directi	on on both th	he front an	d the rear wh	eels		
62.	In a	perfectly inela	stic coll	ision, the tw	o bodies				
	(1)	strike and ex	plode		(2)	explode with	out strik	ing	
5	(3)	implode and	explode		(4)	combine and	l move to	gether	
63.		ler the action o	f a const	tant force, a p	particle is	experiencing	a consta	nt acceleratio	n, then the
	(1)	zero			(2)	positive			
		negative			(4)	increasing u	niformly	with time	
			100						

			10						Se	t Code : T2
2.5									Booklet	Code: A
64.	Con	sider the follow	ving tw	o stater	nents:					
	A:	Linear mome	ntum o	f a syst	em of pa	rticles	is zero.			
	B:	Kinetic energ						3. 1		
	Then	i	70							
	(1)	A implies B &	B imp	lies A		(2)	A does	not imply B	& B does	not imply A
	(3)	A implies B b	ut B do	es not i	mply A	(4)		not imply B		
65.	An e	ngine develops nt of 40 m? (Gi	s 10 kV ven g=	V of por	wer. Hov	w mucl	h time wi	ll it take to	lift a mass	of 200 kg to a
20	(1)	4s	.(2)	5s		(3)	8s	(4)	10s	
66.	Ifas	pring has time	period	T, and i	s cut into	n equ	al parts, t	hen the time	e period w	ill be
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$		(3)	nΤ	(4)	т.	
67.	When	temperature i	ncreas	es, the f	requenc	vofat	uning for	k		
,3.7.7.	(1)	increases		00, 1110 1	squene	, or a c	annig Ton			
	2.5	decreases								
	(3)	remains same		3.0			(4)			
	(4)	increases or de	ecrease	s depen	ding on	the ma	terials			14
					*				g Q	*9
68.	If a si	mple harmonic	e motic	n is rep	resented	by $\frac{d^2}{dy}$	$\frac{2x}{x^2} + \alpha x = 0$	0, its time p	eriod is	S.
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	a ii	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$	
69.	A cin	ema hall has vo	olume (of 7500	m³. It is	requir	ed to have	e reverberat	ion time o	f 1.5 seconds.

 $(1) \quad 850 \text{ w-m}^2 \qquad \qquad (2) \quad 82.50 \text{ w-m}^2 \qquad \qquad (3) \quad 8.250 \text{ w-m}^2 \qquad \qquad (4) \quad 0.825 \text{ w-m}^2$

The total absorption in the hall should be

	Set Code : T2 Booklet Code : A
70.	To absorb the sound in a hall which of the following are used (1) Glasses, stores (2) Carpets, curtains (3) Polished surfaces (4) Platforms
71.	If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6
72.	The mean translational kinetic energy of a perfect gas molecule at the temperature T K is
	(1) $\frac{1}{2}kT$ (2) kT (3) $\frac{3}{2}kT$ (4) $2kT$
73.	The amount of heat given to a body which raises its temperature by 1°C
	(1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient
74.	During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is
	(1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$
75.	Cladding in the optical fiber is mainly used to
75.	(1) to protect the fiber from mechanical stresses
	(2) to protect the fiber from corrosion
	(3) to protect the fiber from mechanical strength
	(4) to protect the fiber from electromagnetic guidance
4	

www.sakshieducation.com

Set Code : T2

Booklet Code : A

	×			CH	EMIST	TRY		()*:	
76.	The	valency electr	onic co	nfiguration of	Phospho	orous atom (At.)	No. 15) is	
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	3s2 3p2 3d1	(4)	3s1 3p2 3d2	70
77.	And	element 'A' of A	At.No.12	2 combines wit	h an ele	ment 'B' of At.N	0.17.	The compound forme	d is
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB	
78.	The	number of neu	trons p	resent in the at	om of 56	Ba ¹³⁷ is			
	(1)	56	(2)	137	(3)	193	(4)	- 81	
79.	Hyd	rogen bonding	in wate	r molecule is r	esponsi	ble for	,		
	(1)	decrease in it	s freezi	ng point	(2)	increase in its	degree	e of ionization	
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point	
80.	In th	e HCl molecul	e, the be	onding between	n hydro	gen and chlorine	is	•	
	(1)	purely covale	nt (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	e
81.	Pota	ssium metal ar	nd potas	sium ions					
	(1)	both react wit	h water		(2)	have the same	numbe	er of protons	
	(3)	both react wit	h chlor	ine gas	(4)	have the same	electro	onic configuration	5
82.	stand	dard flask. 10 m	lofthis	solution were p	pipetted		lask ar	made upto 100 ml in and made up with distil solution now is	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
83.	Con	centration of a	1.0 M s	olution of pho	sphoric	acid in water is			
		0.33 N	(2)	1.0 N	-	2.0 N	(4)	3.0 N	
84.	Whi	ch of the follow	ving is a	Lewis acid?					
		Ammonia	_		(2)	Berylium chlor	ride		
	(3)	Boron trifluo	ride		(4)	Magnesium ox	ide		
					14-A				

	Set Code : T2 Booklet Code : A
	Booklet Code . A
85.	Which of the following constitutes the components of a buffer solution? (1) Potassium chloride and potassium hydroxide (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate
86.	Which of the following is an electrolyte?
80.	(1) Acetic acid (2) Glucose (3) Urea (4) Pyridine
87.	Calculate the Standard emf of the cell, $Cd/Cd^{+2}//Cu^{+2}/Cu$ given that E^0 $Cd/Cd^{+2} = 0.44V$ and E^0 $Cu/Cu^{+2} = (-) 0.34 \text{ V}$.
	(1) $(-)$ 1.0 V (2) 1.0 V (3) $(-)$ 0.78 V (4) 0.78 V
88.	A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis, (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode
89.	Which of the following metals will undergo oxidation fastest?
. 67.	(1) Cu (2) Li (3) Zinc (4) Iron
90.	Which of the following cannot be used for the sterilization of drinking water?
90.	(1) Ozone (2) Calcium Oxychloride
	(3) Potassium Chloride (4) Chlorine water
91.	A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness in
	terms of calcium carbonate equivalent is
	(1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm
92.	Soda used in the L-S process for softening of water is, Chemically.
12.	(1) sodium bicarbonate (2) sodium carbonate decanyulate
	(3) sodium carbonate (4) sodium hydroxide (40%)
0.2	The process of cementation with zinc powder is known as
93.	(1) sherardizing (2) zincing (3) metal cladding (4) electroplating
	15-A

					Set Code : T2
					Booklet Code : A
94.	Car	rosion of a metal is fastest in			8
	(1)	rain-water (2) acidulated wa	ater (3)	distilled water (4)	de-ionised water
95.	Wh	ich of the following is a thermoset po	lymer?		
	(1)	Polystyrene	(2)	PVC	
	(3)	Polythene	(4)	Urea-formaldehyde	resin
96.	Che	emically, neoprene is			
	(1)	polyvinyl benzene	(2)	polyacetylene	
	(3)	polychloroprene	(4)	poly-1,3-butadiene	
97.	Vul	canization involves heating of raw rub	ber with	h	
	(1)	selenium element	(2)	elemental sulphur	* 2
. 2	(3)	a mixture of Se and elemental sulph	ur (4)	a mixture of seleniu	m and sulphur dioxide
98.	Petr	ol largely contains			•
	(1)	a mixture of unsaturated hydrocarbo	ns C	C,	
	(2)	a mixture of benzene, toluene and xy			
	(3)	a mixture of saturated hydrocarbons	C12 - C	14	X 8 1
	(4)	a mixture of saturated hydrocarbons			y
99.	Whi	ch of the following gases is largely re	sponsil	ble for acid-rain?	9 51 6
		SO, & NO,	- Tale	CO, & water vapour	· · · · · · · · · · · · · · · · · · ·
i.	(3)		(4)	•	
*				* . * .	
100.	BOD	Stands for		P.,	
	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen D	emand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen	Demand