Electrical installation handbook Volume 1
$3^{\text {rd }}$ edition

Protection and control devices

ABB SACE

Electrical installation handbook

Volume 1
Protection and control devices

3rd edition
June 2005
Index

Index
ntroduction

Introduction 2
Standards
1.1 General aspectsrotection and control devices
2.1 Circuit-breaker nameplates

$$
\begin{aligned}
& \text { 2.2 Main definitions...... } \\
& \text { 2.3 } \\
& \text { Typa }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2.3 Types of releases... } \\
& 3 \text { General characteristics }
\end{aligned}
$$

3.1 Electrical characteristics of circuit breakers

 3.2 Trip curves.

......................... 188
4 Protection coordination
4.1 Protection coordination .. 194
4 Protection coordination $\begin{aligned} & \text { 4.1 Protection coordination ... } 19\end{aligned}$
4.2 Discrimination tables 203
4.2 Discrimination tables .. 228
4.4 Coordination tables between circuit breakers and
mitch disconnector
Special applications
1 Direct currons
5. 1 Direct current networks ... 236
5.2 Networks at particular frequencies; 400 Hz and $162 / 3 \mathrm{~Hz}$.......................... 247
5.4 Automatic Transfer Switches ... 276
6 Switchboards
6.1 Electrical switchboards
6.2 MNS switchboards......
6.2 MNS switchboards ... 283
................... 294
Annex A: Protection against short-circuit effects inside
ow-voltage switchboards ...
Annex B: Temperature rise evaluation
ording to IEC 60890
Applicatien to IEC 60890 .. 306
Application examples:832
247
Switchboards
6.2 MNS switchboards ... 293
Annex A: $\begin{aligned} & \text { Protection against short-circuit effects inside } \\ & \text { low-voltage switchboards ... } 297\end{aligned}$
according to IEC 6089
Advanced protection functions with PR123/P release 320

First edition 2003
Second edition 2004 Third edition 2005

Published by ABB SACE via Baioni, 35-24123 Bergamo (Italy)

All rights reserved

Introduction

Scope and objectives

The scope of this electrical installation handbook is to provide the designer and user of electrical plants with a quick reference, immediate-use working tool. This is not intended to be a theoretical document, nor a technical catalogue, but, in addition to the latter, aims to be of help in the correct definition of equipment, in numerous practical installation situations.

The dimensioning of an electrical plant requires knowledge of different factors relating to, for example, installation utilities, the electrical conductors and other components; this knowledge leads the design engineer to consult numerous documents and technical catalogues. This electrical installation handbook, however, aims to supply, in a single document, tables for the quick definition of the main parameters of the components of an electrical plant and for the selection of the protection devices for a wide range of installations. Some application examples are included to aid comprehension of the selection tables.

Electrical installation handbook users

The electrical installation handbook is a tool which is suitable for all those who are interested in electrical plants: useful for installers and maintenance technicians through brief yet important electrotechnical references, and for sales engineers through quick reference selection tables.

Validity of the electrical installation handbook

Some tables show approximate values due to the generalization of the selection process, for example those regarding the constructional characteristics of electrical machinery. In every case, where possible, correction factors are given for actual conditions which may differ from the assumed ones. The tables are always drawn up conservatively, in favour of safety; for more accurate calculations, the use of DOCWin software is recommended for the dimensioning of electrical installations.

1 Standards

1.1 General aspects

In each technical field, and in particular in the electrical sector, a condition sufficient (even if not necessary) for the realization of plants according to the status of the art" and a requirement essential to properly meet the demands of customers and of the community, is the respect of all the relevant laws and technical standards.
Therefore, a precise knowledge of the standards is the fundamental premise for a correct approach to the problems of the electrical plants which shall be esigned in order to guarantee that "acceptable safety leve" which is never absolute.

Juridical Standards

These are all the standards from which derive rules of behavior for the juridical persons who are under the sovereignty of that State.

Technical Standards
These standards are the whole of the prescriptions on the basis of which machines, apparatus, materials and the installations should be designed manufactured and tested so that efficiency and function safety are ensured. The technical standards, published by national and international bodies, are circumstantially drawn up and can have legal force when this is attributed by a legislative measure.

	Application fields		
	Electrotechnics and Electronics	Telecommunications	Mechanics, Ergonomics and Safety
International Body	IEC	ITU	ISO
European Body	CENELEC	ETSI	CEN
	This technical collection takes into consideration only the bodies dealing with electrical and electronic technologies.		

EC International Electrotechnical Commission

The International Electrotechnical Commission (IEC) was officially founded in 1906, with the aim of securing the international co-operation as regards standardization and certification in electrical and electronic technologies. This association is formed by the International Committees of over 40 countries all over the world.
The IEC publishes international standards, technical guides and reports which are the bases or, in any case, a reference of utmost importance for any national and European standardization activity.
IEC Standards are generally issued in two languages: English and French. In 1991 the IEC has ratified co-operation agreements with CENELEC (European standardization body), for a common planning of new standardization activities and for parallel voting on standard drafts.

1 Standards

CENELEC European Committee for Electrotechnical Standardization

The European Committee for Electrotechnical Standardization (CENELEC) was set up in 1973. Presently it comprises 28 countries (Austria, Belgium, Cyprus, Czech Repubic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, celand, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Portugal, Poland, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom) and cooperates with 7 affiliates (Albania, Bosnia and Herzegovina Bulgaria, Croatia, Romania, Turkey, Ukraine) which have first maintained the national documents side by side with the CENELEC ones and then replaced them with the Harmonized Documents (HD).
There is a difference between EN Standards and Harmonization Documents (HD): while the first ones have to be accepted at any level and without additions or modifications in the different countries, the second ones can be amended to meet particular national requirements.
EN Standards are generally issued in three languages: English, French and German.
From 1991 CENELEC cooperates with the IEC to accelerate the standards preparation process of International Standards
CENELEC deals with specific subjects, for which standardization is urgently required.
When the study of a specific subject has already been started by the IEC, the European standardization body (CENELEC) can decide to accept or, whenever necessary, to amend the works already approved by the Internationa standardization bod

EC DIRECTIVES FOR ELECTRICAL EQUIPMENT

Among its institutional roles, the European Community has the task of promulgating directives which must be adopted by the different member states and then transposed into national law.
Once adopted, these directives come into juridical force and become a reference by law.
Directives are based on the following principles:
harmonization is limited to essential requirements:

- only the products which comply with the essential requirements specified by the directives can be marketed and put into service;
the harmonized standards, whose reference numbers are published in the Official Journal of the European Communities and which are transposed into the national standards, are considered in compliance with the essential requirements
- the applicability of the harmonized standards or of other technical specifications is facultative and manufacturers are free to choose other technical solution which ensure compliance with the essential requirements;
- a manufacturer can choose among the different conformity evaluation proce dure provided by the applicable directive
The scope of each directive is to make manufacturers take all the necessary steps and measures so that the product does not affect the safety and health of persons, animals and property.

1 Standards

Low Voltage" Directive 73/23/CEE - 93/68/CEE

The Low Voltage Directive refers to any electrical equipment designed for use at a rated voltage from 50 to 1000 V for alternating current and from 75 to 1500 V for direct current
n particular, it is applicable to any apparatus used for production, conversion, transmission, distribution and use of electrical power, such as machines, ransformers, devices, measuring instruments, protection devices and wiring materials.
The following categories are outside the scope of this Directive:

- electrical equipment for use in an explosive atmosphere
- electrical equipment for radiology and medical purposes
electrical parts for goods and passenger lifts;
electrical energy meters;
- plugs and socket outlets for domestic use;
electric fence controllers;
radio-electrical interference
- specialized electrical equipment, for use on ships, aircraft or railways, which complies with the safety provisions drawn up by international bodies in which the Member States participate.

Directive EMC 89/336/EEC ("Electromagnetic Compatibility")

The Directive on electromagnetic compatibility regards all the electrical and electronic apparatus as well as systems and installations containing electrica and/or electronic components. In particular, the apparatus covered by this Directive are divided into the following categories according to their characteristics:
domestic radio and TV receivers;

- industrial manufacturing equipment;
mobile radio equipment;
mobile radio and commercial radio telephone equipment;
- medical and scientific apparatus;
information technology equipment (ITE);
domestic appliances and household electronic equipment:
- aeronautical and marine radio apparatus;
- educational electronic equipment;
telecommunications networks and apparatus;
- radio and television broadcast transmitters
lights and fluorescent lamps.
The apparatus shall be so constructed that:
a) the electromagnetic disturbance it generates does not exceed a level allowing radio and telecommunications equipment and other apparatus to operate as intended;
b) the apparatus has an adequate level of intrinsic immunity to electromagnetic disturbance to enable it to operate as intended
An apparatus is declared in conformity to the provisions at points a) and b) when the apparatus complies with the harmonized standards relevant to its product family or, in case there aren't any, with the general standards.

1 Standards

CE conformity marking

The CE conformity marking shall indicate conformity to all the obligations imposed on the manufacturer, as regards his products, by virtue of the European Community directives providing for the affixing of the CE marking.

$$
c \in
$$

When the CE marking is affixed on a product, it represents a declaration of the manufacturer or of his authorized representative that the product in question conforms to all the applicable provisions including the conformity assessment procedures. This prevents the Member States from limiting the marketing and putting into service of products bearing the CE marking, unless this measure is justified by the proved non-conformity of the product.

Flow diagram for the conformity assessment procedures established by the Directiv 73/23/EEC on electrical equipment designed for use within particular voltage range:

Technical file

The manufacturer draw up the technical documentation covering the design, manufacture and peration of the product

Naval type approval

The environmental conditions which characterize the use of circuit breakers for n-board installations can be different from the service conditions in standard industrial environments; as a matter of fact, marine applications can require installation under particular conditions, such as

- environments characterized by high temperature and humidity, including saltmist atmosphere (damp-heat, salt-mist environment);
- on board environments (engine room) where the apparatus operate in the presence of vibrations characterized by considerable amplitude and duration.

In order to ensure the proper function in such environments, the shipping registers require that the apparatus has to be tested according to specific type approval tests, the most significant of which are vibration, dynamic inclination, humidity and dry-heat tests.

1 Standards

ABB SACE circuit-breakers (Isomax-Tmax-Emax) are approved by the following shipping registers:

- RINA	Registro Italiano Navale	Italian shipping register
- DNV	Det Norske Veritas	Norwegian shipping register
-	BV	Bureau Veritas

t is always advisable to ask ABB SACE as regards the typologies and the performances of the certified circuit-breakers or to consult the section certificates in the website http://bol.it.abb.com

Marks of conformity to the relevant national and international Standards

The international and national marks of conformity are reported in the following table, for information only:

COUNTRY	Symbol	Mark designation	Applicability/Organization
EUROPE		Mark of compliance with the harmonized European standards listed in the ENEC Agreement.	
AUSTRALIA		AS Mark Electrical and non-electrical products. It guarantees compliance with SAA (Standard Association of Australia).	
AUSTRALIA		Standards Association of Australia (S.A.A.). The Electricity Authority of New South Wales Sydney Australia	
AUSTRIA		Austrian Test Mark	Installation equipment and materials

COUNTRY	Symbol	Mark designation	Applicability/Organization
CROATIA	KONCMA	KONKAR	Electrical Engineering Institute
DENMARK		DEMKO Approval Mark	Low voltage materials. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FINLAND		Safety Mark of the Elektriska Inspektoratet	Low voltage material. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FRANCE	CONTRÔLE NF LIMITĖ À LA SĖCURITĖ	ESC Mark	Household appliances
FRANCE		NF Mark	Conductors and cables Conduits and ducting Installation materials
FRANCE		NF Identification Thread	Cables
FRANCE		NF Mark	Portable motor-operated tools
FRANCE		NF Mark	Household appliances

1 Standards

1 Standards

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
SPAIN		AENOR	Asociación Española de Normalización y Certificación. (Spanish Standarization and Certification Association)
SWEDEN		SEMKO Mark	Mandatory safety approval for low voltage material and equipment.
SWITZERLAND		Safety Mark	Swiss low voltage material subject to mandatory approval (safety).
SWITZERLAND	+ +	-	Cables subject to mandatory approval
SWITZERLAND		SEV Safety Mark	Low voltage material subject to mandatory approval
UNITED KINGDOM		ASTA Mark	Mark which guarantees compliance with the relevant "British Standards"
UNITED KINGDOM		BASEC Mark	Mark which guarantees compliance with the "British Standards" for conductors, cables and ancillary products.
$\begin{aligned} & \hline \text { UNITED } \\ & \text { KINGDOM } \end{aligned}$		BASEC Identification Thread	Cables

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
UNITED KINGDOM		BEAB Safety Mark	Compliance with the "British Standards" for household appliances
UNITED KINGDOM		BSI Safety Mark	Compliance with the "British Standards"
UNITED KINGDOM		BEAB Kitemark	Compliance with the relevant "British Standards" regarding safety and performances
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UL Recognition	Electrical and non-electrical products
CEN		CEN Mark	Mark issued by the European Committee for Standardization (CEN): it guarantees compliance with the European Standards.
CENELEC	$\langle\mathrm{HAR}\rangle$	Mark	Cables

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
CENELEC		Harmonization Mark	Certification mark providing assurance that the harmonized cable complies with the relevant harmonized CENLEC Standards -identification thread
EC		Ex EUROPEA Mark	Mark assuring the compliance with the relevant European Standards of the products to be used in environments with explosion hazards
CEEel		CEEel Mark	Mark which is applicable to some household appliances (shavers, electric clocks, etc).

EC - Declaration of Conformity

The EC Declaration of Conformity is the statement of the manufacturer, who declares under his own responsibility that all the equipment, procedures or services refer and comply with specific standards (directives) or other normative documents.
The EC Declaration of Conformity should contain the following information:

- name and address of the manufacturer or by its European representative;
description of the product,
- reference to the harmonized standards and directives involved,
- any reference to the technical specifications of conformity;
- the two last digits of the year of affixing of the CE marking;
- identification of the signer.

A copy of the EC Declaration of Conformity shall be kept by the manufacturer or by his representative together with the technical documentation.

1 Standards
1.2 IEC Standards for electrica installation

STANDARD	YEAR	TITLE
IEC 60027-1	1992	Letter symbols to be used in electrical technology - Part 1: General
IEC 60034-1	2004	Rotating electrical machines - Part 1: Rating and performance
IEC 60617-DB-12M	2001	Graphical symbols for diagrams - 12month subscription to online database comprising parts 2 to 11 of IEC 60617
IEC 61082-1	1991	Preparation of documents used in electrotechnology - Part 1: General requirements
IEC 61082-2	1993	Preparation of documents used in electrotechnology - Part 2: Functionoriented diagrams
IEC 61082-3	1993	Preparation of documents used in electrotechnology - Part 3: Connection diagrams, tables and lists
IEC 61082-4	1996	Preparation of documents used in electrotechnology - Part 4: Location and installation documents
IEC 60038	2002	IEC standard voltages
IEC 60664-1	2002	Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
IEC 60909-0	2001	Short-circuit currents in three-phase a.c. systems - Part 0: Calculation of currents
IEC 60865-1	1993	Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods
IEC 60781	1989	Application guide for calculation of shortcircuit currents in low-voltage radial systems
IEC 60076-1	2000	Power transformers - Part 1: General
IEC 60076-2	1993	Power transformers - Part 2: Temperature rise
IEC 60076-3	2000	Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air
IEC 60076-5	2000	Power transformers - Part 5: Ability to withstand short circuit
IEC/TR 60616	1978	Terminal and tapping markings for power transformers
IEC 60076-11	2004	Power transformers - Part 11: Dry-type transformers
IEC 60445	1999	Basic and safety principles for manmachine interface, marking and identification - Identification of equipment terminals and of terminations of certain designated conductors, including general rules for an alphanumeric system

1 Standards

STANDARD	YEAR	TITLE
IEC 60073	2002	Basic and safety principles for man- machine interface, marking and identification - Coding for indicators and actuators
IEC 60446	Basic and safety principles for man- machine interface, marking and identification - Identification of conductors by colours or numerals	
IEC 60447	Basic and safety principles for man- machine interface, marking and identification - Actuating principles	
IEC 60947-1	Low-voltage switchgear and controlgear - Part 1: General rules	
IEC 60947-2	2004	Low-voltage switchgear and controlgear - Part 2: Circuit-breakers
IEC 60947-3	Low-voltage switchgear and controlgear - Part 3: Switches, disconnectors, switch- disconnectors and fuse-combination units	
IEC 60947-4-1	2003	Low-voltage switchgear and controlgear - Part 4-1: Contactors and motor-starters - Electromechanical contactors and motor- starters
IEC 60947-4-2	2002	Low-voltage switchgear and controlgear - Part 4-2: Contactors and motor-starters -
AC semiconductor motor controllers and		
starters		

1 Standards

STANDARD	YEAR	TITLE
IEC 60947-5-6	1999	Low-voltage switchgear and controlgear Part 5-6: Control circuit devices and switching elements - DC interface for proximity sensors and switching amplifiers (NAMUR)
IEC 60947-6-1	1998	Low-voltage switchgear and controlgear Part 6-1: Multiple function equipment Automatic transfer switching equipment
IEC 60947-6-2	2002	Low-voltage switchgear and controlgear Part 6-2: Multiple function equipment Control and protective switching devices (or equipment) (CPS)
IEC 60947-7-1	2002	Low-voltage switchgear and controlgear - Part 7: Ancillary equipment - Section 1: Terminal blocks for copper conductors
IEC 60947-7-2	2002	Low-voltage switchgear and controlgear Part 7: Ancillary equipment - Section 2: Protective conductor terminal blocks for copper conductors
IEC 60439-1	2004	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies
IEC 60439-2	2000	Low-voltage switchgear and controlgear assemblies - Part 2: Particular requirements for busbar trunking systems (busways)
IEC 60439-3	2001	Low-voltage switchgear and controlgear assemblies - Part 3: Particular requirements for low-voltage switchgear and controlgear assemblies intended to be installed in places where unskilled persons have access for their use Distribution boards
IEC 60439-4	2004	Low-voltage switchgear and controlgear assemblies - Part 4: Particular requirements for assemblies for construction sites (ACS)
IEC 60439-5	1998	Low-voltage switchgear and controlgear assemblies - Part 5: Particular requirements for assemblies intended to be installed outdoors in public places Cable distribution cabinets (CDCs) for power distribution in networks
IEC 61095	2000	Electromechanical contactors for household and similar purposes

1 Standards

STANDARD	YEAR	TITLE
IEC 60890	1987	A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear
IEC/TR 61117	1992	A method for assessing the short-circuit withstand strength of partially type-tested assemblies (PTTA)
IEC 60092-303	1980	Electrical installations in ships. Part 303: Equipment - Transformers for power and lighting
IEC 60092-301	1980	Electrical installations in ships. Part 301: Equipment - Generators and motors
IEC 60092-101	2002	Electrical installations in ships - Part 101: Definitions and general requirements
IEC 60092-401	1980	Electrical installations in ships. Part 401: Installation and test of completed installation
IEC 60092-201	1994	Electrical installations in ships - Part 201: System design - General
IEC 60092-202	1994	Electrical installations in ships - Part 202: System design - Protection
IEC 60092-302	1997	Electrical installations in ships - Part 302: Low-voltage switchgear and controlgear assemblies
IEC 60092-350	2001	Electrical installations in ships - Part 350: Shipboard power cables - General construction and test requirements
IEC 60092-352	1997	Electrical installations in ships - Part 352: Choice and installation of cables for lowvoltage power systems
IEC 60364-5-52	2001	Electrical installations of buildings - Part 5-52: Selection and erection of electrical equipment - Wiring systems
IEC 60227		Polyvinyl chloride insulated cables of rated voltages up to and including 450/ 750 V
	1998	Part 1: General requirements
	2003	Part 2: Test methods
	1997	Part 3: Non-sheathed cables for fixed wiring
	1997	Part 4: Sheathed cables for fixed wiring
	2003	Part 5: Flexible cables (cords)
	2001	Part 6: Lift cables and cables for flexible connections
	2003	Part 7: Flexible cables screened and unscreened with two or more conductors
IEC 60228	2004	Conductors of insulated cables
IEC 60245		Rubber insulated cables - Rated voltages up to and including 450/750 V
	2003	Part 1: General requirements
	1998	Part 2: Test methods
	1994	Part 3: Heat resistant silicone insulated cables

1 Standards

STANDARD	YEAR	TITLE
	1994	Part 5: Lift cables
	1994	Part 6: Arc welding electrode cables
	1994	Part 7: Heat resistant ethylene-vinyl acetate rubber insulated cables
	2004	Part 8: Cords for applications requiring high flexibility
IEC 60309-2	1999	Plugs, socket-outlets and couplers for industrial purposes - Part 2: Dimensional interchangeability requirements for pin and contact-tube accessories
IEC 61008-1	2002	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs) Part 1: General rules
IEC 61008-2-1	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-1: Applicability of the general rules to RCCB's functionally independent of line voltage
IEC 61008-2-2	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-2: Applicability of the general rules to RCCB's functionally dependent on line voltage
IEC 61009-1	2003	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) Part 1: General rules
IEC 61009-2-1	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-1: Applicability of the general rules to RCBO's functionally independent of line voltage
IEC 61009-2-2	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-2: Applicability of the general rules to RCBO's functionally dependent on line voltage
IEC 60670-1	2002	Boxes and enclosures for electrical accessories for household and similar fixed electrical installations - Part 1: General requirements
IEC 60669-2-1	2002	Switches for household and similar fixed electrical installations - Part 2-1: Particular requirements - Electronic switches
IEC 60669-2-2	2002	Switches for household and similar fixed electrical installations - Part 2: Particular requirements - Section 2: Remote-control switches (RCS)
IEC 60669-2-3	1997	Switches for household and similar fixed electrical installations - Part 2-3: Particular requirements - Time-delay switches (TDS)

1 Standards

STANDARD	YEAR	TITLE
IEC 60079-10	2002	Electrical apparatus for explosive gas atmospheres - Part 10: Classification of hazardous areas
IEC 60079-14	2002	Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines)
IEC 60079-17	2002	Electrical apparatus for explosive gas atmospheres - Part 17: Inspection and maintenance of electrical installations in hazardous areas (other than mines)
IEC 60269-1	1998	Low-voltage fuses - Part 1: General requirements
IEC 60269-2	1986	Low-voltage fuses. Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application)
IEC 60269-3-1	2004	Low-voltage fuses - Part 3-1: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) Sections I to IV: Examples of types of standardized fuses
IEC 60127-1/10		Miniature fuses -
	2003	Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links
	2003	Part 2: Cartridge fuse-links
	1988	Part 3: Sub-miniature fuse-links
	1996	Part 4: Universal Modular Fuse-Links (UMF)
	1988	Part 5: Guidelines for quality assessment of miniature fuse-links
	1994	Part 6: Fuse-holders for miniature cartridge fuse-links
	2001	Part 10: User guide for miniature fuses
IEC 60730-2-7	1990	Automatic electrical controls for household and similar use. Part 2-7: Particular requirements for timers and time switches
IEC 60364-1	2001	Electrical installations of buildings - Part 1 Fundamental principles, assessment of general characteristics, definitions
IEC 60364-4	2001	Electrical installations of buildings - Part 4: Protection for safety
IEC 60364-5	2001... 2002	Electrical installations of buildings - Part 5: Selection and erection of electrical equipment
IEC 60364-6	2001	Electrical installations of buildings - Part 6: Verification
IEC 60364-7	1983... 2002	Electrical installations of buildings. Part 7: Requirements for special installations or locations

1 Standards

STANDARD	YEAR	TITLE
IEC 60529	2001	Degrees of protection provided by enclosures (IP Code)
IEC 61032	1997	Protection of persons and equipment by enclosures - Probes for verification
IEC/TR 61000-1-1	1992	Electromagnetic compatibility (EMC) - Part 1: General - Section 1: Application and interpretation of fundamental definitions and terms
IEC/TS 61000-1-2	2001	Electromagnetic compatibility (EMC) - Part 1-2: General - Methodology for the achievement of the functional safety of electrical and electronic equipment with regard to electromagnetic phenomena
IEC/TR 61000-1-3	2002	Electromagnetic compatibility (EMC) - Part 1-3: General - The effects of high- altitude EMP (HEMP) on civil equipment and systems

2.1 Circuit-breaker nameplates

Moulded-case circuit-breaker: Tmax

Air circuit-breaker: Emax

The main definitions regarding LV switchgear and controlgear are included in the international Standards IEC 60947-1, IEC 60947-2 and IEC 60947-3.

Main characteristics

Circuit-breaker

A mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short-circuit
Current-limiting circuit-breaker
A circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value.

Plug-in circuit-breaker

A circuit-breaker which, in addition to its interrupting contacts, has a set of contacts which enable the circuit-breaker to be removed.

Withdrawable circuit-breaker

A circuit-breaker which, in addition to its interrupting contacts, has a set of isolating contacts which enable the circuit-breaker to be disconnected from the main circuit, in the withdrawn position, to achieve an isolating distance in accordance with specified requirements.
Moulded-case circuit-breaker
A circuit-breaker having a supporting housing of moulded insulating material forming an integral part of the circuit-breaker.

Disconnector

A mechanical switching device which, in the open position, complies with the requirements specified for the isolating function.
Release
A device, mechanically connected to a mechanical switching device, which releases the holding means and permits the opening or the closing of the switching device.

Fault types and currents

Overload

Operating conditions in an electrically undamaged circuit which cause an overcurrent.

Short-circuit

The accidental or intentional connection, by a relatively low resistance or impedance, of two or more points in a circuit which are normally at different voltages.
Residual current (I)
It is the vectorial sum of the currents flowing in the main circuit of the circuitbreaker.

2 Protection and control devices

Rated performances

Voltages and frequencies
Rated operational voltage (U_{e})
A rated operational voltage of an equipment is a value of voltage which combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilization categories are referred to.
Rated insulation voltage (U_{i})
The rated insulation voltage of an equipment is the value of voltage to which dielectric tests voltage and creepage distances are referred. In no case the maximum value of the rated operational voltage shall exceed that of the rated insulation voltage.
Rated impulse withstand voltage $\left(U_{i m p}\right)$
The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred

Rated frequency

The supply frequency for which an equipment is designed and to which the other characteristic values correspond.

Currents

Rated uninterrupted current $\left(l_{u}\right)$
The rated uninterrupted current of an equipment is a value of current, stated by the manufacturer, which the equipment can carry in uninterrupted duty.

Rated residual operating current (I $I_{\Delta n}$

It is the r.m.s. value of a sinusoidal residual operating current assigned to the CBR by the manufacturer, at which the CBR shall operate under specified conditions.

Performances under short-circuit conditions

Rated making capacity

The rated making capacity of an equipment is a value of current, stated by the manufacturer, which the equipment can satisfactorily make under specified making conditions.

Rated breaking capacity

The rated breaking of an equipment is a value of current, stated by the manufacturer, which the equipment can satisfactorily break, under specified breaking conditions.

2 Protection and control devices

Rated ultimate short-circuit breaking capacity ($I_{\text {cu }}$)
The rated ultimate short-circuit breaking capacity of a circuit-breaker is the maximum short-circuit current value which the circuit-breaker can break twice (in accordance with the sequence $\mathrm{O}-\mathrm{t}-\mathrm{CO}$), at the corresponding rated operational voltage. After the opening and closing sequence the circuit-breaker is not required to carry its rated current.
Rated service short-circuit breaking capacity (I $I_{\text {cs }}$)
The rated service short-circuit breaking capacity of a circuit-breaker is the maximum short-circuit current value which the circuit-breaker can break three times in accordance with a sequence of opening and closing operations (O-

- CO - t-CO) at a defined rated operational voltage (U_{e}) and at a defined power factor. After this sequence the circuit-breaker is required to carry its rated current.
Rated short-time withstand current (I $I_{c w}$)
The rated short-time withstand current is the current that the circuit-breaker in the closed position can carry during a specified short time under prescribed conditions of use and behaviour; the circuit-breaker shall be able to carry this current during the associated short-time delay in order to ensure discrimination between the circuit-breakers in series

Rated short-circuit making capacity (lcm)

The rated short-circuit making capacity of an equipment is the value of shortcircuit making capacity assigned to that equipment by the manufacturer for the ated operational voltage, at rated frequency, and at a specified power-factor or ac.

Utilization categories

The utilization category of a circuit-breaker shall be stated with reference to whether or not it is specifically intended for selectivity by means of an intentiona time delay with respect to other circuit-breakers in series on the load side, under short-circuit conditions (Table 4 IEC 60947-2).

Category A - Circuit-breakers not specifically intended for selectivity under short-circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. without a short-time withstand current rating.

Category B - Circuit-breakers specifically intended for selectivity under short circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. with and intentional short-time delay provided for selectivity under short-circuit conditions. Such circuit-breakers have a short-time withstand current rating.

2 Protection and control devices

A circuit-breaker is classified in category B if its $I_{\text {cw }}$ is higher than (Table 3 IEC 60947-2):
2.In or 5 kA , whichever is the greater
or $\mathrm{In} \leq 2500 \mathrm{~A}$
30 kA
for In $>2500 \mathrm{~A}$

Electrical and mechanical durability

Mechanical durability

The mechanical durability of an apparatus is expressed by the number of no oad operating cycles (each operating cycle consists of one closing and opening operation) which can be effected before it becomes necessary to service or replace any of its mechanical parts (however, normal maintenance may be permitted).

Electrical durability

The electrical durability of an apparatus is expressed by the number of on-load operating cycles and gives the contact resistance to electrical wear under the service conditions stated in the relevant product Standard

2.3 Types of releases

A circuit-breaker must control and protect, in case of faults or malfunctioning the connected elements of a plant. In order to perform this function, after detection of an anomalous condition, the release intervenes in a definite time by opening the interrupting part.
The protection releases fitted with ABB SACE moulded-case and air circuit breakers can control and protect any plant, from the simplest ones to those

2 Protection and control devices

with particular requirements, thanks to their wide setting possibilities of both thresholds and tripping times,
Among the devices sensitive to overcurrents, the following can be considered:
thermomagnetic releases and magnetic only releases
microprocessor-based releases,
residual current devices.

The choice and adjusting of protection releases are based both on the equirements of the part of plant to be protected, as well as on the coordination with other devices; in general, discriminating factors for the selection are the required threshold, time and curve characteristic.

2.3.1 THERMOMAGNETIC RELEASES AND MAGNETIC ONLY RELEASES

The thermomagnetic releases use a bimetal and an electromagnet to detect overloads and short-circuits; they are suitable to protect both alternating and direct current networks

The following table shows the available rated currents and the relevant magnetic settings

Circuit-breaker	$\ln [\mathrm{A}]$	$\rightarrow 1$	1.6	2	2.5	3.2	4	5	6.3	8	8.5	10	11	12.5	16	20	25	32	40	50	52	63	80	100	125	160	200	250	320	400	500	630	800
Magnetict type	Themal	\rightarrow -	1.1-1.6	$1.4-2$	1.8-2.5	2.2-3.2	2.8-4	3.5-5	4.4-6.3	5.6-8	-	7-10	-	8.8-12.5	11-16	14-20	18-25	22-32	28-40	35-50	-	44-63	56-80	70-100	88-125	112-160	140-200	175-250	224-320	280-400	$350-500$	441-630	560-800
T1 TMD 10x ${ }^{\text {a }}$															500	500	500	500	500	500		630	800	1000	1250	1600							
T2 TMD 10x ${ }^{\text {n }}$			16	20	25	32	40	50	63	80		100		125	500	500	500	500	500	500		630	800	1000	1250	1600							
MF 13x ${ }^{\text {n }}$		13	321	26	33	42	52	65	84		110		145	163																			
MA 6-12xn																120-240		192-384			$314-624$		480-960	600-1200									
T3 TMD 10x ${ }^{\text {a }}$																						630	800	1000	1250	1600	2000	2500					
TMG3x'																						400	400	400	400	480	600	750					
MA 6-12xn																								600-1200	750-1500	960-1920	$1200-2400$						
T4 TMD 10x ${ }^{\text {n }}$	${ }^{13} \mathrm{~A} / \mathrm{]}$															320		320		500													
TMA 5-10xin																							400-800	500-1000	625-1250	800-1600	1000-2000	1250-2500					
MA 6-14xn												60-140					150-350				$314-728$		480-1120	600-1400	750-1750	960-2240	$1200-2800$						
T5 TMA5-10x\|n																													1600-3200	2000-4000	2500-500		
TMG 2.5.5xn																													800-1600	1000-2000	1250-2500		
T6 TMA5-10x\|n																																3150.6300	4000-8000

${ }^{*}$ Note: TMD Thermomagnetic release with adjustable thermal and fixed magnetic threshold
TMA Thermomagnetic release with adjustable thermal and magnetic threshold
TMG Thermomagnetic release for generator protection
MA Adjustable magnetic only releases
MF Fixed magnetic only releases

2 Protection and control devices

For example, a circuit-breaker type T2, with rated current In equal to 2.5 A , is available in two versions:
thermomagnetic with adjustable thermal current l_{1} from 1.8 up to 2.5 A and
fixed magnetic current I_{3} equal to 25 A .
fixed magnetic only releases (MF) with I_{3} equal to 33 A

2.3.2 ELECTRONIC RELEASES

These releases are connected with current transformers (three or four according to the number of conductors to be protected), which are positioned inside the circuit-breaker and have the double functions of supplying the power necessary to the proper functioning of the release (self-supply) and of detecting the value of the current flowing inside the live conductors; therefore hey are compatible with alternating current networks only.
The signal coming from the transformers and from the Rogowsky coils is processed by the electronic component (microprocessor) which compares it with the set thresholds. When the signal exceeds the thresholds, the trip of the circuit-breaker is operated through an opening solenoid which directly acts on the circuit-breaker operating mechanism.
In case of auxiliary power supply in addition to self-supply from the current transformers, the voltage shall be $24 \mathrm{Vdc} \pm 20 \%$.

2 Protection and control devices

Besides the standard protection functions, releases provide:
measurements of the main characteristics of the plant: current,voltage,powe power factor, frequency, peak factor and energy (PR223);
measurements of the main characteristics of the plant: current,voltage,power, power factor, frequency, peak factor, energy, harmonics calculation and maintenance (PR122-PR123);
serial communication with remote control for a complete management of the plant (PR212-PR222-PR223-PR122-PR123 equipped with dialogue unit)

CURRENT TRANSFORMER SIZE

 Circuit-breaker lu $[A]$

Rated Current In $[\mathrm{A}] \rightarrow$		10	25	63	$100{ }^{27}$	$160{ }^{24}$	200	250	320	400	630	800	1000	1250	1600	2000	2500	3200
$\underset{\text { Function }}{\mathbf{L}}$	PR221	4-10	10-25	25-63	40-100	64-160		100-250	128-320	160-400	252-630	320-800	400-1000					
	PR222				40-100	64-160		100-250	128-320	160-400	252-630	320-800	400-1000					
	PR223				18-100	28.8-160		45-250	57.6-320	72-400	113.4.630	144-800	180-1000					
	PR211/PR212												400-1000	500-1250	640-1600	800-2000	1000-2500	1280-3200
	PR222MP				40-100	64-160	80-200		128-320	160-400	252-630							
	PR212/MP												400-1000					
$\begin{gathered} \mathbf{S} \\ \text { Function } \end{gathered}$	PR221 ${ }^{\text {(1) }}$	10-100	25-250	63-630	100-1000	160-1600		250-2500	320-3200	400-4000	630-6300	800-8000	1000-10000					
	PR222				60-1000	96-1600		150-2500	192-3200	240-4000	378.6300	480-8000	600-10000					
	PR223				60-1000	96-1600		150-2500	192-3200	240-4000	$378-6300$	480-8000	600-1000					
	PR211/PR212												1000-10000	1250-12500	1600-1600	2000-20000	250-25000	3200-32000
1 Function	PR221 ${ }^{\text {(1) }}$	10-100	25-250	63-630	100-1000	160-1600		250-2500	320-3200	400-4000	$630-6300$	800-8000	1000-10000					
	PR222				150-1200	240-1920		375-3000	480-3200*	600-4800	945-6300 **	1200-9600	1500-12000					
	PR223				150-1200	240-1920		375-3000	480-3200*	600-4800	945-6300**	1200-9600	1500-12000					
	PR211/PR212												1500-12000	2875-15000	2400-19200	$3000-24000$	3750-3000	4800-38400
	PR222MP				600-1300	960-2080	1200-2600		1920-4160	2400-5200	3780-8190		6000-13000					
	PR212/MP												6000-13000					

[^0]2 Protection and control devices

2 Protection and control devices

2.3.2.1 PROTECTION FUNCTIONS OF ELECTRONIC RELEASES

The protection functions available for the electronic releases are:
L - Overload protection with inverse long time delay
unction of protection against overloads with inverse long time delay and constant specific let-through energy; it cannot be excluded.

- Overload protection in compliance with Std. IEC 60255-3

Function of protection against overloads with inverse long time delay and trip curves complying with IEC 60255-3; applicable in the coordination with fuses and with medium voltage protections.
S - Short-circuit protection with adjustable delay
Function of protection against short-circuit currents with adjustable delay; thanks to the adjustable delay, this protection is particularly useful when it is necessary to obtain selective coordination between different devices.
S_{2} - Double S
This function allows two thresholds of protection function S to be set independently and activated simultaneously, selectivity can also be achieved under highly critical conditions.

- Directional short-circuit protection with adjustable delay

The directional protection, which is similar to function S, can intervene in a different way according to the direction of the short-circuit current; particularly suitable in meshed networks or with multiple supply lines in parallel.

- Short-circuit protection with instantaneous trip

Function for the instantaneous protection against short-circuit.
EFDP - Early Fault Detection and Prevention
Thanks to this function, the release is able to isolate a fault in shorter times than the zone selectivities currently available on the market.
Rc - Residual current protection
This function is particularly suitable where low-sensitivity residual curren protection is required and for high-sensitivity applications to protect people gainst indirect contact
G - Earth fault protection with adjustable delay
Function protecting the plant against earth faults.

- Phase unbalance protection

Protection function which intervenes when an excessive unbalance between the currents of the single phases protected by the circuit-breaker is detected. OT - Self-protection against overtemperature
Protection function controlling the opening of the circuit-breaker when the tem perature inside the release can jeopardize its functioning.

JV - Undervoltage protection

Protection function which intervenes when the phase voltage drops below the preset threshold.

Rated cur	ent $\ln [\mathrm{A}] \rightarrow$	400	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300
L Function	$\begin{aligned} & \hline \text { PR121 } \\ & \text { PR122/PR123 } \\ & \hline \end{aligned}$	$160 \div 400$	252\%630	320 -800	400 $\div 1000$	500 $\div 1250$	640 $\div 1600$	800 $\div 2000$	1000 $~ 2500$	1280 $~ 3200$	1600 $~ 4000$	2000 -5000	2520 -6300
S	PR121	400 $\div 4000$	630 -6300	800 $\div 8000$	1000 $\div 10000$	1250 $~ 12500$	1600 $\div 16000$	2000 -20000	2500 -25000	3200 -32000	4000 $\div 40000$	5000 $\div 50000$	6300 -63000
Function	PR122/PR123	$240 \div 4000$	378 $\div 6300$	480 $\div 8000$	600 $\div 10000$	750 +12500	960 $\div 16000$	$1200 \div 20000$	1500 -25000	1920 $\div 32000$	$2400 \div 40000$	$3000 \div 50000$	37806ㅜ000
$\begin{gathered} \hline \mathbf{I} \\ \text { Function } \end{gathered}$	$\begin{aligned} & \hline \text { PR121 } \\ & \text { PR122/PR123 } \\ & \hline \end{aligned}$	600 $\div 6000$	945 9450	1200 $\div 12000$	1500 -15000	1875 +18750	2400 -24000	3000 $\div 30000$	3750 -37500	$4800 \div 48000$	6000 60000	$7500 \div 75000$	9450 -94500

2 Protection and control devices

OV - Overvoltage protection

Protection function which intervenes when the phase voltage exceeds the prese hreshold
RV - Residual voltage protection
Protection which identifies anomalous voltages on the neutral conductor.
RP - Reverse power protection
Protection which intervenes when the direction of the active power is opposite o normal operation.
UF - Under frequency protection
his frequency protection detects the reduction of network frequency above ,
This frequency protection detect
his frequency above \mathbf{M} - Thermal memory
Thanks to this function, it is possible to take into account the heating of component so that the tripping is the quicker the less time has elapsed since the last one.
R - Protection against rotor blockage
Function intervening as soon as conditions are detected, which could lead to the block of the rotor of the protected motor during operation.
linst - Very fast instantaneous protection against short-circuit
This particular protection function has the aim of maintaining the integrity of lower than those guaranteed by the protection against instantaneous short circuit. This protection must be set exclusively by ABB SACE and cannot be excluded.
Dual setting
With this function it is possible to program two different sets of parameters (LSIG) and, through an external command, to switch from one set to the other
The following table summarizes the types of electronic release and the functions they implement:

SERIES	SIZE	RELEASE	PROTECTION FUNCTION
Imax	T2	PR221DS LS	L-S or L-I
		PR221DSI	1
	T4-T5-T6	PR221DS LS/I	L-S-I
		PR222DS/P LSI	L-S-I
		PR222DS/P LSIG	L-S-I-G
		PR222MP LRIU	L-R-I-U
		PR223DS	L-S-I-G
		PR223EF	L-S-I-G-EFDP
Isomax	S7	PR211/P LI	L-I
		PR211/P I	1
	S7-S8	PR212/P LSI	L-S-I
		PR212/P LSIG	L-S-I-G
	S7	PR212/MP LRIU	L-R-I-U
Emax	E1-E2-E3-E4-E6	PR121/P LI	L-I
		PR121/P LSI	L-S-I
		PR121/P LSIG	L-S-I-G
		PR122/P LI	L-I-OT-U-M
		PR122/P LSI	L-S-I-OT-U-M
		PR122/P LSIG	L-S-I-G-OT-U-M
		PR122/P LSIRc	L-S-I-Rc-OT-U-M
		PR123/P LSI	L-S-S2-I-Rc-D-U-OT-UV-OV-RV-RP-UF-OF-M
		PR123/P LSIG	L-S-S2-I-G-Rc-D-U-OT-UV-OV-RV-RP-UF-OF-M

The settings and curves of the single protection functions are reported in the chapter 3.2.2

2 Protection and control devices

2.3.3 RESIDUAL CURRENT DEVICES

The residual current releases are associated with the circuit-breaker in order to obtain two main functions in a single device
protection against overloads and short-circuits;
protection against indirect contacts (presence of voltage on exposed conductive parts due to loss of insulation).
the frotection against the risk fir ering farlt or leakage currents which are not Residual
re also used as a means for additional protection not exceeding 30 mA位 Their logic is based on the detection of the vectorial sum of the line currents hrough an internal or external toroid.
This sum is zero under service conditions or equal to the earth fault current (lı in case of earth fault.

When the release detects a residual current different from zero, it opens the circuit-breaker through an opening solenoid.

As we can see in the picture the protection conductor or the equipotential conductor have to be installed outside the eventual external toroid

Generic distribution system (IT, TT, TN)

he operating principle of the residual current release makes it suitable for the distribution systems TT, IT (even if paying particular attention to the latter) and N-S, but not in the systems TN-C. In fact, in these systems, the neutral is used also as protective conductor and therefore the detection of the residual current would not be possible if the neutral passes through the toroid, since the vectorial sum of the currents would always be equal to zero.

2 Protection and control devices

One of the main characteristics of a residual current release is its minimum rated residual current $I_{\Delta n}$. This represents the sensitivity of the release. According to their sensitivity to the fault current, the residual current circuit breakers are classified as:

- type AC: a residual current device for which tripping is ensured in case of residual sinusoidal alternating current, in the absence of a dc component whether suddenly applied or slowly rising;
-type A: a residual current device for which tripping is ensured for residua sinusoidal alternating currents in the presence of specified residual pulsating direct currents, whether suddenly applied or slowly rising
- type B residual current device for which tripping is ensured for residua sinusoidal alternating currents in presence of specified residual pulsanting direct currents whether suddenly applied or slowy rising, for residual directs may result from rectifying circuits.

	Form of residual current	Correct functioning of residual current devices Type		
Sinusoidal ac	$\bigcap_{\text {slowly rising }}^{\text {suddenly applied }}$	AC	A	B
Pulsating dc	suddenly applied with or without $\uparrow 0,006 \mathrm{~A}_{\Omega}^{\Omega}$ $\underbrace{\Omega \Omega \text { rising }_{2}}_{\text {slowly }}$		+	+
Smooth dc				+

In presence of electrical apparatuses with electronic components (computers photocopiers, fax etc.) the earth fault current might assume a non sinusoidal shape but a type of a pulsating unidirectional dc shape. In these cases it is necessary to use a residual current release classified as type A.
In presence of rectifying circuits (i.e. single phase connection with capacitive oad causing smooth direct current, three pulse star connection or six pulse bridge connection, two pulse connection line-to-line) the earth fault current might assume a unidirectional dc shape

2 Protection and control devices

In these case it is necessary to use a residual current release classified as type B The following table shows the main characteristics of ABB SACE residual curren devices; they can be mounted both on circuit-breakers as well as on switch disconnectors (in case of fault currents to earth lower than the apparatus breaking capacity), are type A devices and they do not need auxiliary supply since they are self-supplied.

Suitable for circuit-breaker type	RC221		RC222	
	T1-T2-T3	T1-T2-T3	T4	T5
	T1D-T3D	T1D-T3D	T4D	T5D
Primary service voltage [V]	85-500	85-500	85-500	85-500
Rated service current [A]	250	250	250	400
Rated residual current trip Δ_{n} [A]	$\begin{gathered} 0.03-0.1-0.3- \\ 0.5-1-3 \end{gathered}$	$\begin{gathered} 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$	$\begin{gathered} 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$	$\begin{gathered} 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$
		3-5-10	3-5-10	3-5-10
Time limit for non-trip (at $2 \times 1 \Delta_{\mathrm{n}}$) [s]	Instantaneous	$\begin{aligned} & \text { Inst.-0.1-0.2- } \\ & 0.3-0.5-1-2-3 \end{aligned}$	$\begin{aligned} & \text { Inst.-0.1-0.2- } \\ & 0.3-0.5-1-2-3 \end{aligned}$	$\begin{aligned} & \text { Inst. }-0.1-0.2- \\ & 0.3-0.5-1-2-3 \end{aligned}$
Tolerance over trip times [\%]		± 20	± 20	± 20

Note: for detailed information, please consult the relevant technical catalogues.
Emax air circuit-breakers can be equipped with a toroid fitted on the back of the circuit-breaker so as to ensure protection against earth faults. In particular, he electronic release types able to perform this function are
PR122/P LSIRc
th "Measuring module"
which can all be provided for the following types of circuit-breakers: E2 and E3, both three and four pole version, and E4 (three pole version).
Along with the family of residual current releases illustrated previously ABB
SACE is developing the RC223 (B type) residual current release, which can only be combined with the Tmax T4 four-pole circuit-breaker in the fixed or plug-in version. It is characterized by the same types of reference as the RC222 S and AE type) release, but can also boast conformity with type B operation, which guarantees sensitivity to residual fault currents with alternating, alternating pulsating and direct current components.
Apart from the signals and settings typical of the RC222 residual current release, he RC223 also allows selection of the maximum threshold of sensitivity to the esidual fault frequency (3 steps: $400-700-1000 \mathrm{~Hz}$). It is therefore possible o adapt the residual current device to the different requirements of the industria plant according to the prospective fault frequencies generated on the load side of the release
SACE moulded-case circuit-breakers series Isomax ${ }^{1}$ and Tmax and air circuit-breakers series Emax ${ }^{1}$ can be combined with the switchboard residua current relay type RCQ, type A, with separate toroid (to be installed externally on the line conductors).

up to 2000 A rated cu			RCQ
Power supply voltage	ac	[V]	$80 \div 500$
	dc	[V]	$48 \div 125$

Trip threshold adjustements $I_{\Delta n}$ 1st range of adjustements	[A]	$0.03-0.05-0.1-0.3-0.5$
$2{ }^{\text {nd }}$ range of adjustements	[A]	1-3-5-10-30
Trip time adjustement	[s]	$\begin{gathered} 0-0.1-0.2-0.3-0.5- \\ 0.7-1-2-3-5 \end{gathered}$
Tolerance over Trip times	[\%]	± 20

[^1]The versions with adjustable trip times allow to obtain a residual current protection system coordinated from a discrimination point of view, from the main switchboard to the ultimate load.

3 General characteristics

3 General characteristics

3 General characteristics

3 General characteristics
SACE Isomax moulded-case circuit-breakers

3 General characteristics
3 General characteristics

Tmax moulded-case circuit-breakers for motor protection

$\begin{gathered} \text { Tmax T4 } \\ 250,320 \\ \hline \end{gathered}$					$\begin{gathered} \text { Tmax T5 } \\ 400,630 \\ \hline \end{gathered}$					Tmax T6$630,800,1000$			
10...320					320, 400, 630					630, 800, 1000			
3					3					3			
690					690					690			
750					750					750			
8					8					8			
1000					1000					1000			
3500					3500					3500			
N	s	H	L	v	N	s	H	L	v	N	s	H	L
70	85	100	200	300	70	85	100	200	300	70	85	100	200
36	50	70	120	200	36	50	70	120	200	36	50	70	100
30	40	65	100	180	30	40	65	100	180	30	45	50	80
25	30	50	85	150	25	30	50	85	150	25	35	50	65
20	25	40	70	80	20	25	40	70	80	20	22	25	30
100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	75\%
100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	75\%
100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	75\%
100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\% ${ }^{(1)}$	100\%	100\%	100\%	100\%	75\%
100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\% ${ }^{(1)}$	100\% ${ }^{(2)}$	100\%	75\%	75\%	75\%	75\%
154	187	220	440	660	154	187	220	440	660	154	187	220	440
75.6	105	154	264	440	75.6	105	154	264	440	75.6	105	154	220
63	84	143	220	396	63	84	143	220	396	63	94.5	105	176
52.5	63	105	187	330	52.5	63	105	187	330	52.5	73.5	105	143
40	52.5	84	154	176	40	52.5	84	154	176	40	46.2	52.5	63
5	5	5	5	5	6	6	6	6	6	10	9	8	7
A					$\mathrm{B}(400 \mathrm{~A})^{7}-\mathrm{A}(630 \mathrm{~A})$					$\mathrm{B}(630 \mathrm{~A}-800 \mathrm{~A})^{7}-\mathrm{A}(1000 \mathrm{~A})$			
		-			-					-			
IEC 60947-2					IEC 60947-2					IEC 60947-2			
-					-					-			
-					-					-			
【(for T4 250 N-S-L only)					[(for T5 $400 \mathrm{~N}-\mathrm{S}$-L only)								
\square					-					- (for T6 800 only)			
					F-P-W					F-W			
F-FC Cu-FC CuAl - EF-ES-R-MC					F-FC Cu-FC CuAl - EF-ES - R					F-EF-ES-FCCUAI-R-RC			
EF - ES - FC Cu-FC CuAl - HR - VR					EF - ES - FC Cu - FC CuAl - HR - VR					-			
EF - ES - FC Cu-FC CuAl - HR - VR					EF - ES - FC Cu - FC CuAl - HR - VR					EF-HR-VR			
-					-					-			
20000					20000					20000			
240					120					120			
8000120					7000					5000			
					60					60			
105					140					210			
103.5					103.5					103.5			
205					205					268			
2.35					3.25					9.5			
3.6					5.15					-			
3.85					5.4					12.1			

3 General characteristics

SACE Isomax moulded-case circuit-breakers for motor protection

3 General characteristics

$R C=$ Rear for copper or aluminium cables
HR = Rear horizontal flat bar
$\mathrm{VR}=$ Rear vertical flat bar

3 General characteristics
3 General characteristics
SACE Emax air circuit-breakers

Common data

Voltages		
Rated operational voltage Ue	M	690
Rated insulation voltage Ui	M	1000
Rated impulse withstand voltage Uimp	[kV]	12
Test voltage at industrial frequency for 1 min .	M	3500 ~
Service temperature	$\left.{ }^{\circ} \mathrm{C}\right]$	-25....70
Storage temperature	[${ }^{\circ} \mathrm{C}$]	-40....70
Frequency f	[Hz]	50-60
Number of poles		3-4
Version	Fixed	Withrawable

Pefrommance levels	
Currents: rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]
	[A]
Neutral pole current-ararying capacity for 3 -pole CBS	[\%/u]
Raied utitimat breaking capacity under short-cicicit cu	
22012303880400415 V ~	[ka]
440 V	[k a]
$500525 \mathrm{~V} \sim$	[ka]
$660169 \mathrm{~V} \sim$	[ka]
Rated service breaking capacity under shor-c-icicitl cs	
220123013804000415 V ~	[k]
440 V ~	[ka]
$5001525 \mathrm{~V} \sim$	[ka]
$660690 \mathrm{~V} \sim$	[ka]
Rateo shortimme withstand durenent lew	[ka]
	[k]
Rated making capacity under shor-c-ircuit (peak value) lm	
$22023013804400415 \mathrm{~V} \sim$	[kA]
$440 \mathrm{~V} \sim$	[kA]
$5000525 \mathrm{~V} \sim$	[kA]
$6860169 \mathrm{~V} \sim$	[k]
Uutilistion category (acoording to CEIEN 60947-2)	
Isolation behaviour (according to CEI EN $60947-2)$	
0 vercurrent protection	
Electronic releases for AC applications	
Operating times	
Closing time (max)	[ms]
Breaking time for Klow (max) ${ }^{(1)}$	[ms]
Breaking time for Δ lcw (max)	[ms]
Overall dimensions	
F xed: $\mathrm{H}=418 \mathrm{~mm} \cdot \mathrm{D}=302 \mathrm{mmL}$ L34 poles)	[mm]
W thdrawable: $\mathrm{H}=461 \mathrm{~mm}$ - $\mathrm{D}=396.5 \mathrm{mmL}$ L 34 poles)	[mm]
W eights (cricuibibreake complete withreleases and CTs, induding accessories)	
Fixed34/ poles	[kg]
W thrawable 34 p ples (induding fixed patt)	[kg]

SACE Emax air circuit-breakers	E1 B-N			E2 B-N-S			
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu \quad [A]	800	1000-1250	1600	800	1000-1250	1600	2000
Mechanical life with regular ordinary maintenance [No. operations x 1000]	25	25	25	25	25	25	25
Operation frequency [Operations/hour]	60	60	60	60	60	60	60
Electrical life $\quad(440 \mathrm{~V} \sim)$ [N . operations $\times 1000]$	10	10	10	15	15	12	10
$(690 \mathrm{~V} \sim)$ [No . operations $\times 1000]$	10	8	8	15	15	10	8
Operation frequency [Operations/hour]	30	30	30	30	30	30	30

E1		E2				E3					E4			E6	
в	N	B	N	s	L	N	s	H	V	L	s	H	v	H	v
800	800	1600	1000	80012	1250	2500	1000	800	800	2000	4000	3200	3200	4000	3200
1000	1000	2000	1250	100016	1600	3200	1250	1000	1250	2500		4000	4000	5000	4000
1250	1250		1600	1250			1600	1250	1600					6300	5000
1600	1600		2000	1600			2000	1600	200						6330
				2000			2500	200	2500						
							3200	250	3200						
								3200							
100	100	100	100	100	100	100	100	100	100	100	50	50	50	50	50
$42 \quad 50$		42	65	85	130	65	75	100	130	130	75	100	150	100	150
42	50	42	65	85	110	65	75	100	130	110	75	100	150	100	150
42	50	42	55	65	85	65	75	100	100	85	75	100	130	100	130
	50	42	55	65	85	65	75	859	100	85	75	$85{ }^{17}$	100	100	100
42															
42	50	42	65	85	130	65	75	85	100	130	75	100	125	100	125
42	50	42	65	85	110	65	75	85	100	110	75	100	125	100	125
42	50	42	55	65	65	65	75	85	85	65	75	100	130	100	100
	50	42	55	65	65	65	75	85	85	65	75	85	100	100	100
42	50	42	55	65	10	65	75	75	85	15	75	100	100	100	100
36	36	42	42	42	-	65	65	65	65	-	75	75	75	85	85
88.210		88.2	143	187	286	143	165	220	286	286	165	220	330	220	330
88.2105		88.2	143	187	242	143	165	220	286	242	165	220	330	220	330
75.675.		84	121	143	187	143	165	187	220	187	165	220	286	220	286
75.675.		84	121	143	187	143	165	187	220	187	165	187	220	220	220
B B		B	B	B	A	B	B	¢	B	A	B	B		B	¢
■		\square	\square	\square	■	\square									
■		\square	\square	\square	-	\square									
-															
$80 \quad 80$		80	80	80	80	80	80	80	80	80	80	80	80	80	80
70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
$30 \quad 30$		30	30	30	12	30	30	30	30	12	30	30	30	30	30
296386		2961386				404530					566656			782008	
324414				1414				432558				594684			
-		500615061500615263													
4554	4554					6680	6680	6680	6680	7283	$97 / 117$	$97 / 17$	97/17	140160	1401660
70827082		78937893788938095				104125	104412	104112	104125	110127	147165	147165	147165	210280	210240

E2 L		E3 $\mathrm{N}-\mathrm{S}-\mathrm{H}-\mathrm{V}$						E3 L		E4 S-H-V		E6 H-V			
1250	1600	800	1000-1250	1600	2000	2500	3200	2000	2500	3200	4000	3200	4000	5000	6300
20	20	20	20	20	20	20	20	15	15	15	15	12	12	12	12
60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
4	3	12	12	10	9	8	6	2	1.8	7	5	5	4	3	2
3	2	12	12	10	9	7	5	1.5	1.3	7	4	5	4	2	1.5
20	20	20	20	20	20	20	20	20	20	10	10	10	10	10	10

3 General characteristics
SACE Emax air circuit-breakers with full-size neutral conductor

		E4S/f	E4H/f	E6H/f
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	4000	3200	4000
	[A]		4000	5000
				6300
Number of poles		4	4	4
Rated operational voltage Ue	[V ~]	690	690	690
Rated ultimate short-circuit breaking capacity Icu				
220/230/380/400/415 V ~	[kA]	80	100	100
440 V ~	[kA]	80	100	100
$500 / 525$ V ~	[kA]	75	100	100
660/690 V ~	[kA]	75	100	100
Rated service short-circuit breaking capacity Ics				
220/230/380/400/415 V ~	[kA]	80	100	100
440 V ~	[kA]	80	100	100
$500 / 525 \mathrm{~V}$ ~	[kA]	75	100	100
660/690 V ~	[kA]	75	100	100
Rated short-time withstand current Icw				
(1s)	[kA]	75	85	100
(3s)	[kA]	75	75	85
Rated short-circuit making capacity Icm				
220/230/380/400/415 V ~	[kA]	176	220	220
440 V ~	[kA]	176	220	220
$500 / 525 \mathrm{~V}$ ~	[kA]	165	220	220
660/690 V ~	[kA]	165	220	220
Utilization category (in accordance with IEC 60947-2)		B	B	B
Isolation behavior (in accordance with IEC 60947-2)		\square	\square	\square
Overall dimensions				
Fixed: $\mathrm{H}=418 \mathrm{~mm}-\mathrm{D}=302 \mathrm{~mm} \mathrm{~L}$	[mm]	746	746	1034
Withdrawable: $\mathrm{H}=461$ - D $=396.5 \mathrm{~mm} \mathrm{~L}$	[mm]	774	774	1062
Weight (circuit-breaker complete with releases and CT, not including accessories)				
Fixed	[kg]	120	120	165
Withdrawable (including fixed part)	[kg]	170	170	250

3 General characteristics

3.2 Trip curves

3.2.1 Trip curves of thermomagnetic and magnetic only releases

he overload protection function must not trip the breaker in 2 hours for current values which are lower than 1.05 times the set current, and must trip within 1.3 imes the set current. By "cold trip conditions", it is meant that the overload occurs when the circuit-breaker has not reached normal working temperature no current flows through the circuit-breaker before the anomalous condition occurs); on the contrary "hot trip conditions" refer to the circuit-breaker having eached the normal working temperature with the rated current flowing through, before the overload current occurs. For this reason "cold trip conditions" times are always greater than "hot trip conditions" times
The protection function against short-circuit is represented in the time-current curve by a vertical line, corresponding to the rated value of the trip threshold I_{3} In accordance with the Standard IEC 60947-2, the real value of this threshold s within the range $0.8 \cdot 13$ and $1.2 \cdot 13$. The trip time of this protection varies according to the electrical characteristics of the fault and the presence of other devices: it is not possible to represent the envelope of all the possible situation n a sufficiently clear way in this curve; therefore it is better to use a single straight line, parallel to the current axis. All the information relevant to this trip area and useful for the sizing and coordination of the plant are represented in the limitation curve and in the curves for the specific let-through energy of the circuit-breaker under short-circuit conditions.

3 General characteristics
Trip curve
thermomagnetic
release
T1 160
In = 16 $\div 63 \mathrm{~A}$
t [s]

Trip curve thermomagnetic release T1 160 TMD
In $=80 \div 160 \mathrm{~A}$

3 General characteristics
 thermomagnetic release T2 16 $I_{3}=13 \mathrm{xln}$
t [s]

10

102
$\times \ln$

Trip curve thermomagnetic
release
T2 160 TMD
$\mathrm{ln}=1.6 \div 100 \mathrm{~A}$

3 General characteristics

3 General characteristics

Trip curve

 thermomagneticrelease
T3 250 TMD
In $=63 \div 250 \mathrm{~A}$
$t[s]$

Trip curve thermomagnetic
release
T3 250 TMG
In $=63 \div 250 \mathrm{~A}$

3 General characteristics

Trip curve thermomagnetic release T4 250 TMD
In $=20 \div 50 \mathrm{~A}$
t [s]

3 General characteristics
Trip curve thermomagnetic
release
T4 250/320
TMA
In $=80 \div 250 \mathrm{~A}$
t [s]

Trip curve

 thermomagnetic release T5 400/630 TMAIn $=320 \div 500 \mathrm{~A}$
t [s]

3 General characteristics

3 General characteristics

Trip curve

 thermomagnetic release T6 630 TMAIn = 630 A

3 General characteristics

3 General characteristics

Example of thermomagnetic release setting

Consider a circuit-breaker type T1 160 In 160 and select, using the trimmer for thermal regulation, the current threshold, for example at 144 A ; the magnetic trip threshold, fixed at $10 \cdot \mathrm{In}$, is equal to 1600 A .
Note that, according to the conditions under which the overload occurs, that is either with the circuit-breaker at full working temperature or not, the trip of the thermal release varies considerably. For example, for an overload current of 600 A , the trip time is between 1.2 and 3.8 s for hot trip, and between 3.8 and
14.8 s for cold trip.

For fault current values higher than 1600 A, the circuit-breaker trips instantaneously through magnetic protection.

T1 160 - In 160 Time-Current curves

3 General characteristics

3.2.2 Trip curves of electronic release

introduction
The following figures show the curves of the single protection functions available in the electronic releases. The setting ranges and resolution are referred to setting operations to be carried out locally.
L FUNCTION (overload protection)

	$11 \quad 100^{-1}$	$t 1{ }^{101} \quad 10{ }^{2} \mathbf{x}$ ln
PR221	$\begin{aligned} & \hline 0.4-0.44-0.48-0.52-0.56-0.6-0.64-0.68-0.72- \\ & 0.76-0.8-0.84-0.88-0.92-0.96-1) \times \ln \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~s}-6 \mathrm{~s}(@ 6 \times 11) \text { for } \mathrm{T} 2 \\ & 3 \mathrm{~s}-12 \mathrm{~s}(@ 6 \times 11) \text { for } \mathrm{T} 4, \mathrm{~T} 5, \mathrm{~T} \end{aligned}$
$\overline{\text { PR222 }}$	(0.4 ...1) \times In with step $0.02 \times \mathrm{ln}$	3s-6s-9s-18is s (@6x11)
$\overline{\text { PR223 }}$	(0.18...1) \times In with step $0.01 \times \mathrm{ln}$	3...18s ${ }^{(1)}$ (@ 6x11)
PR211	$(0.4-0.5-0.6-0.7-0.8-0.9-0.95-1) \times \ln$	$\mathrm{A}=3 \mathrm{~s} ; \mathrm{B}=6 \mathrm{~s} ; \mathrm{C}=12 \mathrm{~s} ; \mathrm{D}=18 \mathrm{~s}(@ 6 \times 11)$
PR212	$\begin{aligned} & 0.4-0.5-0.55-0.6-0.65-0.7-0.75-0.8-0.85- \\ & 0.875-0.9-0.925-0.95-0.975-1) \times 10 \end{aligned}$	$A=3 s ; B=6 s ; C=12 s ; D=18 s$ (@ 6×11)
$\overline{\text { PR121 }}$	$(0.4-0.425-0.45-0.475-0.5-0.525-0.55-0.575-$ $0.6-0.625-0.65-0.675-0.7-0.725-0.75-0.775-\mathrm{In}$ $0.8-0.825-0.85-0.875-0.9-0.925-0.95-0.975) \times$ In	$\begin{aligned} & 3-12-24-36-48-72-108-144 \mathrm{~s}(2) \\ & (@ 3 \times 11) \end{aligned}$
$\begin{aligned} & \hline \text { PR122 } \\ & \text { PR123 } \\ & \hline \end{aligned}$	(0.4 ... 1) x In with step $0.01 \times \mathrm{ln}$	3 ... 144s with step 3s (@ 3x 11)
	${ }^{\text {(1) }}$ for T4 In $=320 \mathrm{~A}$ and T5 $\mathrm{ln}=630 \mathrm{~A}$	2 s .
	11 Here below the tolerances:	t1
$\overline{\text { PR221 }}{ }^{\text {(6) }}$	1.1 $\div 1.3 \times 11$	$\begin{aligned} & \pm 10 \% \text { (up to } 6 \times \text { In) } \\ & \pm 20 \% \text { (over } 6 \times \ln) \\ & \hline \end{aligned}$
PR222	1.1*1.3 $\times 11$	± 10 \%
PR223	1.1 $1.1 .3 \times 11$	$\pm 10 \%$
$\begin{aligned} & \text { PR221444 } \\ & \text { PR211 } \\ & \text { PR212 } \end{aligned}$	$1.05 \div 1.3 \times 11$	$\begin{aligned} & \pm 10 \%(\text { up to } 2 \times \text { In }) \\ & \pm 20 \%(\text { over } 2 \times \ln) \end{aligned}$
$\begin{aligned} & \text { PR121 } \\ & \text { PR121 } \\ & \text { PR122 } \\ & \hline \end{aligned}$	$1.05 \div 1.2 \times 11$	$\begin{aligned} & \pm 10 \%(\text { up to } 4 \times \text { In } \\ & \pm 20 \%(\text { over } 4 \times \ln) \end{aligned}$
${ }^{(1)}$ For $\mathrm{T} 4 \mathrm{In}=320 \mathrm{~A}$ and $\mathrm{T} 5 \mathrm{In}=630 \mathrm{~A} \rightarrow \mathrm{t}=12 \mathrm{~s}$, ${ }^{(2)}$ The minimum trip values is 1 s , regardless of type of curve set (self protection), ${ }^{(3)}$ For T4-T5-T6, ${ }^{(4)}$ For T2.		
		- Protection

3 General characteristics

3 General characteristics

13
$\overline{\text { PR221 }} \frac{13}{(1-1.5-2-2.5-3-3.5-4.5-5.5-6.5-7-7.5-8-8.5-9-10-~ O F F) ~} \times \ln$
x In

PR222 (1.5-2.5-3-4-3.5-4.5-5-5.5-6.5-7-7.5-8-9-9.5-10.5-12- OFF) x In
$\frac{\text { PR223 }}{\text { PR211 }} \frac{(1.5 \ldots 12-\text { OFF) } \times \ln (1) \text { with step } 0.1 \times \ln }{(1.5-2-4}$
PR211 ($1.5-2-4-6-8-10-12-$ OFF) $\times \ln$
$\frac{\text { PR121 }}{\text { PR12 }} \frac{(1.5-2-3-4-5-6-7-8-9-10-11-12-13-14-15 \text { OFF) } \times \ln }{}$
PR122 ($1.5 \ldots 15-$ OFF) \times In with step $0.1 \times$ In
(1) for $T 4 \mathrm{In}=320 \mathrm{~A}$ and $\mathrm{T} 5 \mathrm{In}=630 \mathrm{~A} \rightarrow 13$ max $=10 \times \mathrm{In}$

Here below the tolerances:

3 General characteristics

	14	t4
PR222	(0.2-0.25-0.45-0.55-0.75-0.8-1-OFF) \times In	0.1 s up to $3.15 \times 14 ; 0.2$ s up to 2.25×14 0.4 s up to $1.6 \times 14 ; 0.8$ s up to 1.10×14
PR212	(0.2-0.3-0.4-0.6-0.8-0.9-1- OFF) x In	$\mathrm{A}=0.1 \mathrm{~s} ; \mathrm{B}=0.2 \mathrm{~s} ; \mathrm{C}=0.4 \mathrm{~s} ; \mathrm{D}=0.8 \mathrm{~s}$ (@ 4 $\times 14$)
PR223	(0.2 ...1- OFF) x In with step 0.01 x In	0.1...0.8s with step 0.01s
PR121	(0.2-0.3-0.4-0.6-0.8-0.9-1-OFF) x In	$\begin{aligned} & \mathrm{t} 4=0.1-0.2-0.4-0.8 \mathrm{~s}(@ 4 \times 14, \text { with } 12 \mathrm{t}=\mathrm{k}) \\ & \mathrm{t} 4=0.1-0.2-0.4-0.8 \mathrm{~s}(@\|>\| 4 \text {, with } \mathrm{t}=\mathrm{k}) \end{aligned}$
$\begin{aligned} & \hline \text { PR122 } \\ & \text { PR123 } \\ & \hline \end{aligned}$	(0.2...1-OFF) \times In with step $0.02 \times \mathrm{In}$	$\begin{aligned} & \mathrm{t} 4=0.1 \ldots 1 \mathrm{~s} \text { with step } 0.05(@ 4 \times 14 \text {, with } 12 \mathrm{t}=\mathrm{k}) \\ & \mathrm{t} 4=0.1 \ldots 1 \mathrm{~s} \text { with step } 0.05(@ 1>14, \text { with } \mathrm{t}=\mathrm{k}) \\ & \hline \end{aligned}$

	14	e tolerances: $\underline{t 4}$
$\begin{aligned} & \overline{\text { PR222 }} \\ & \text { PR223 } \end{aligned}$	$\pm 10 \%$	± 20 \%
PR212	± 20 \%	± 20 \%
$\begin{aligned} & \hline \text { PR121 } \\ & \text { PR122 } \\ & \text { PR123 } \end{aligned}$	$\pm 7 \%$	$\begin{aligned} & \pm 15 \%(12 \mathrm{t}=\mathrm{k}) \\ & \text { the better of th } \end{aligned}$

3 General characteristics
Trip curve electronic releases
T2 160 PR221DS

L-S Functions
t [s]

Trip curve
electronic releases

T2 160

 PR221DSL-I Functions

Trip curve
electronic releases
T4 250/320
T5 400/630
T6 630/800/1000 PR221DS
L-I Functions

3 General characteristics

Trip curve
electronic releases
T4 250/320
T5 400/630 T6 630/800/1000 PR221DS
L-S Functions

3 General characteristics
Trip curve
electronic releases
T4 250/320
T5 400/630
T6 630/800/1000
PR222DS/P
PR222DS/PD
PR223DS
PR223EF*
without Vaux $\mathrm{t}[\mathrm{s}]$
L-S-I Functions
(${ }^{2} \mathrm{t}$ const $=\mathrm{ON}$)

The dotted curve of function L corresponds to the maximum delay (t, t) which can be set at $6 \times 1_{1}$, in the case where $320 \mathrm{~A} \mathrm{CTs} \mathrm{are} \mathrm{used} \mathrm{for} \mathrm{T4} \mathrm{and} 630 \mathrm{~A}$ for T5. For all the CT
sizes $t_{1}=18 \mathrm{~s}$, except with 220 A . 14 and $630 \mathrm{~A}\left(\mathrm{~T} 5\right.$ where $t_{1}=12 \mathrm{~s}$.
For PR223DS and PR223EF the electronic settings only are available.
${ }^{\text {(1) }}$ For PR223DS and PR223EF only

Trip curve
electronic releases

4 250/320

T5 400/630

6 630/800/1000 PR222DS/P PR222DS/PD PR223DS PR223EF*
*without Vaux t [s]
L-S-I Functions (12 t const $=$ OFF)

3 General characteristics

Note:

The dotted curve of function L corresponds to the maximum delay (t) which can be set at 6 xl , in the case where 320 A CTs are used for $T 4$ and 630 A for $T 5$. For all the CT
sizes $t_{1}=18 \mathrm{~s}$, except with $320 \mathrm{ACT}(\mathrm{T} 4)$ and $630 \mathrm{~A}(\mathrm{~T} 5)$ where $\mathrm{t}_{1}=12 \mathrm{~s}$.
For T4 4 In $=320$ A T5 In $=630 \mathrm{~A}$ and T6 $\mathrm{In}=1000 \mathrm{~A} \Rightarrow \mathrm{I}$ max $=10 \times \mathrm{ln}$.
For PR223DS and PR223EF the electronic settings only are available.
${ }^{11}$) For PR223DS and PR223EF only.

3 General characteristics

Trip curve
electronic releases
T4 250/320
T5 400/630
T6 630/800/1000 PR222DS/P PR222DS/PD PR223DS PR223EF

G Function

Trip curve electronic releases T4L 250/320 $5 L$ 400/630 T6L 630/800/1000 PR223EF
with Vaux L-S-EF Functions ($1^{2} \mathrm{t}$ const $=\mathrm{ON}$)

3 General characteristics

Note:
For all the CT sizes the maximum delay t_{1} is equal to 18 s , except for 320 ACT (T4) and $330 \mathrm{~A}(\mathrm{~T} 5)$ where $\mathrm{t}_{1}=12 \mathrm{~s}$.
or $\mathrm{T} 4 \mathrm{In}=320 \mathrm{~A}, \mathrm{~T} 5 \mathrm{In}=630 \mathrm{~A}$ and $\mathrm{T} 6 \mathrm{In}=630 \mathrm{~A} \Rightarrow \mathrm{I}_{3} \mathrm{max}=10 \mathrm{x} \mathrm{In}$.
Only the electronic settings are available.

3 General characteristics

Trip curve
electronic releases T4L 250/320 T5L 400/630 T6L 630/800/1000 PR223EF
with Vaux
L-S-EF Functions (12 t const $=\mathrm{OFF}$)

Note:
For all the CT sizes the maximum delay t_{1} is equal to 18 s , except for 320 ACT (T4) and $630 \mathrm{~A}(\mathrm{~T} 5)$ where $\mathrm{t}_{1}=12 \mathrm{~s}$.
For $\mathrm{T} 4 \mathrm{In}=320 \mathrm{~A}, \mathrm{~T} 5 \mathrm{In}=630 \mathrm{~A}$ and $\mathrm{T} 6 \mathrm{In}=630 \mathrm{~A} \Rightarrow \mathrm{I}_{3} \max =10 \mathrm{xn}$. Only the electronic settings are available.

3 General characteristics
Trip curve
electronic releases
T2 160 PR221DS-I

I Function

3 General characteristics

Trip curve

electronic releases

T4 250/320

T5 400/630
T6 630/800/1000
PR221DS-I
Function
t [s]

3 General characteristics

Trip curve
 electronic releases

T4 250
T5 400

T6 800 PR222MP
L Function (hot and cold trip)
t [s]
105 10

10

$\frac{11}{(0.4}$
$(0.4 \div 1) \times \ln$ with $\operatorname{step} 0.01 \times \ln$
4 4-8 -8-16--
\qquad $\underline{\text { According to IEC 60947-4-1 }}$

3 General characteristics

	11	t1
PR222MP	(0.4 $\div 1) \times$ In with step $0.01 \times$ In	4-8-16-24s
	Here the tolerances	
	11	t1
PR222MP	$\pm 15 \%$	$\pm 15 \%$

3 General characteristics

R	15	t5
PR222MP	(3-4-5-6-7-8-10-OFF) $\times 11$	1-4-7-10s
U	16	t6
PR222MP	ON (0.4 x 11) - OFF	4 s
	Here the tolerances	
R	15	t5
PR222MP	± 15 \%	± 10 \%
U	16	t6
PR222MP	± 15 \%	± 10 \%

3 General characteristics
$\frac{13}{\text { PR222MP }} \frac{\frac{13}{(6-7-8-9-10-11-12-13) \times \ln }}{\text { Here the tolerances }}$
$\frac{13}{\underline{\text { PR222MP }}} \xlongequal{ \pm 15 \%}$

Trip curve
electronic releases
S7
PR211/P
L-I Functions

Note: for PR211/P-I releases, consider the curves relevant to function I only.
x In

3 General characteristics
Trip curve
electronic releases
S7-S8
PR212/P
L-S-I Functions, S inverse short delay
(${ }^{12}$ t =constant)

t [s]

Trip curve
electronic releases
S7-S8 PR212/P
L-S-I Functions,
S inverse short
delay
($\mathrm{t}=$ constant)

3 General characteristics

3 General characteristics

Trip curve
electronic releases
S7
PR212/MP
L Function
(hot and cold trip)

	11	t1
PR212/MP	(0.4 $~ 1) \times \ln$ with step $0.01 \times \ln$	4-8-16-24 s
	Here the tolerances	
	11	t1
PR212/MP	According to IEC 60947-4-1	According to IEC 60947-4-1

3 General characteristics
Trip curve
electronic releases
S7

PR212/MP

L Function
hot trip with one or two phases supplied)

3 General characteristics
electronic releases
S7

PR212/MP

R-U Functions

R	15	t5
PR212/MP	(3-4-5-6-7-8-10-OFF) x 11	1-4-7-10s
U	16	t6
PR212/MP	0.4×11	4 s
	Here the tolerances	
R	15	t5
PR212/MP	± 10 \%	± 20 \%
U	16	t6
PR212/MP	± 20 \%	$\pm 20 \%$

3 General characteristics

$\overline{\text { PR212/MP }} \frac{13}{(6-7-8-9-10-11-12-13-\text { OFF) } \times \ln }$
The tolerances are according to IEC 60947-4-1.

3 General characteristics
Trip curve
electronic releases
Emax

PR121/P

L-S-I Functions,
Sinverse short
time delay
(${ }^{2} \mathrm{t}=$ const. $)$
t [s]

3 General characteristics

Trip curve
electronic releases
Emax
P121/P
L-S-I Functions
S indipendent
time delay
(t = constant)
t [s]

3 General characteristics

Trip curve
electronic releases
Emax
PR122/P
L-I Functions

3 General characteristics
Trip curve
electronic releases
Emax PR122/P-PR123/P
L-S-I Functions S inverse short time delay
(${ }^{2} \mathrm{t}=$ const.)
t [s]

Trip curve electronic releases
Emax
PR122/P-PR123/P
L-S-I Functions S indipendent time delay
($\mathrm{t}=$ constant)

3 General characteristics

3 General characteristics
Trip curve electronic releases
Emax PR122/P-PR123/P G Function

3 General characteristics

Trip curve electronic releases
max PR123/P
L Function (IEC 60255-3)

PR123/P release - Function L in compliance with Std EC 60255-3

The following three curves refer to the protection function L complying with Std. IEC 60255-3 and integrate the standard one; they are applicable in coordination with fuses and MV circuit-breakers.

PR 123/P k=0.14 alfa=0.02

t [s] 10^{4}

-
10^{3}
10^{2}
${ }^{102}$

	11	t1
PR123	(0.4...1) \times In with step $0.01 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 1=3 \mathrm{~s} . . .144 \mathrm{~s} \text { with step 3s (1) } \\ & (@ \mid=3 \times U n) \end{aligned}$
	11 Here below the tolerances:	
PR123	1.05...1.2 x In	$\begin{aligned} & \pm 20 \% I_{g}>5 \times I_{1} \\ & \pm 30 \% 2 \times I_{1} \leq I_{g} \leq 5 \times I_{1} \ln \\ & \hline \end{aligned}$

3 General characteristics

3 General characteristics
electronic releases \quad PR 123/P $\mathrm{k}=80$ alfa=2
Emax $\mathrm{t}[\mathrm{s}] 10^{4}$

PR123/P

L Function (IEC 60255-3

	11	t1
PR123	(0.4...1) \times In with step $0.01 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 1=3 \mathrm{~s} . . .144 \mathrm{~s} \text { with step 3s (1) } \\ & (@ \mathrm{l}=3 \times \mathrm{Un}) \end{aligned}$
	Here below the tolerances:	
PR123	1.05...1.2 x In	$\begin{aligned} & \pm 20 \% I_{g}>5 \times I_{1} \\ & \pm 30 \% 2 \times I_{1} \leq I_{g} \leq 5 \times I_{1} \ln \\ & \hline \end{aligned}$

3 General characteristics

Trip curve electronic releases

Emax

PR 122/PR123 release - Other protection functions

The following curves refer to the particular protection functions provided for PR122/PR123.

	17	t7
PR123	(0.6 ...10-OFF) \times In with step $0.1 \times \mathrm{ln}$	$0.2 \mathrm{~s} . . .0 .8 \mathrm{~s}$ with step 0.01 s (@1>17)
	17 Here below the tolerances:	t7
PR123	$\pm 10 \%$	the better of the two figures: $\pm 10 \% \text { or } \pm 40 \mathrm{~ms}$

3 General characteristics

Trip curve
electronic releases
releases
$\mathrm{t}[\mathrm{s}]$
PR122/P
Function

PR122/P PR123/P	$(5 \% \ldots 90 \%-$ OFF $)$ with step 5%	

3 General characteristics
Trip curve
electronic releases

	U8	t8
$\begin{aligned} & \hline \text { PR122/P } \\ & \text { PR123/P } \end{aligned}$	(0.5 ... 0.95 - OFF) \times Un with step $0.01 \times$ Un	with $\mathrm{U}<\mathrm{U}_{8}$ $0.1 \ldots 5$ with step 0.1 s
	Here below the tolerances:	
	U8	t8
PR122/P	± 5 \%	The better of two figures: $\pm 20 \%$ or $\pm 100 \mathrm{~ms}$
PR123/P	$\pm 5 \%$	The better of two figures: $\pm 20 \% \text { or } \pm 40 \mathrm{~ms}$

3 General characteristics

Trip curve
electronic releases
Emax t
PR122/P
PR123/P
Function OV

	U9	t9
$\begin{aligned} & \hline \text { PR122/P } \\ & \text { PR123/P } \\ & \hline \end{aligned}$	(1.05 ... 1.2 - OFF) x Un with step $0.01 \times$ Un	with $\mathrm{U}<\mathrm{U}_{9}$ $0.1 \mathrm{~s} . . .5$ s with step 0.1 s
	Here below the tolerances:	
	U9	t9
PR122/P	± 5 \%	The better of two figures: $\pm 20 \% \text { or } \pm 100 \mathrm{~ms}$
PR123/P	± 5 \%	The better of two figures: $\pm 20 \% \text { or } \pm 40 \mathrm{~ms}$

3 General characteristics
Trip curve
electronic release

3 General characteristics
Trip curve
electronic releases
Emax

3 General characteristics

Example of electronic release setting

Considering a circuit-breaker type E1B1000 fitted with a PR121/P LSI release and with a rating plugs of 1000 , it is supposed that for the system requirements, the protection functions are regulated according to the following settings:

The trip curve of the release is represented in the following figure (continuous ines): it can be seen that:

- for function L, the curve is represented by the mean value between the tolerances given by the Standard (the overload protection function must not trip for current values lower than 1.05.In, and must trip within 1.3.In), therefore corresponding to $1.175 \cdot \mathrm{In}$ (around 700 A):
- graphically, point $\mathbf{1}$ is obtained at the intersection of the vertical part of function
L and the horizontal segment $\left(\mathrm{C}_{0.4 \mathrm{ln}}-\mathrm{C}_{11 n}\right)$ which connects the points relevant to the same t 1 , taken from the curves with setting $0.4 \cdot \mathrm{In}$ and $1 \cdot \mathrm{In}$;
- corresponding to point $2(4000 \mathrm{~A})$, the function S takes the place of function L, as the trip time of function S is lower than the trip time of function L;
- in the same way as for point $\mathbf{2}$, for point $\mathbf{3}(8000 \mathrm{~A})$ and beyond, function S is substituted by function I.
10^{3}

3 General characteristics

3.3 Limitation curves

A circuit-breaker in which the opening of the contacts occurs after the passage of the peak of the short-circuit current, or in which the trip occurs with the natural passage to zero, allows the system components to be subjected to high stresses, of both thermal and dynamic type. To reduce these stresses, current-limiting circuit-breakers have been designed (see Chapter 2.2 "Main definitions"), which are able to start the opening operation before the short-circuit current has reached its first peak, and to quickly extinguish the arc between the contacts; the following diagram shows the shape of the waves of both the prospective short-circuit current as well as of the limited short-circuit current.

The following diagram shows the limit curve for Tmax T2L160, In160 circuit-breaker The x-axis shows the effective values of the symmetrical prospective short-circuit current, while the y-axis shows the relative peak value. The limiting effect can be evaluated by comparing, at equal values of symmetrical fault current, the peak value corresponding to the prospective short-circuit current (curve A) with he limited peak value (curve B).
Circuit-breaker T2L160 with thermomagnetic release In160 at 400 V , for a fault current of 40 kA , limits the short-circuit peak to 16.2 kA only, with a reduction of about 68 kA compared with the peak value in the absence of limitation (84 kA)

3 General characteristics

Considering that the electro-dynamic stresses and the consequent mechanical stresses are closely connected to the current peak, the use of current limiting circuit-breakers allows optimum dimensioning of the components in an electrical plant. Besides, current limitation may also be used to obtain back-up protection between two circuit-breakers in series.
In addition to the advantages in terms of design, the use of current-limiting circuit-breakers allows, for the cases detailed by Standard IEC 60439-1, the circuit-breakers allows, for the cases detailed by Standara avoidance of short-circuit withstand verifications for switchboards. Clause avoidance of short-circuit withstand verifications for switchboards. Clause the verification of the short-circuit withstand strength" states that:
"A verification of the short-circuit withstand strength is not required in the following cases.

For ASSEMBLIES protected by current-limiting devices having a cut-off current not exceeding 17 kA at the maximum allowable prospective short-circuit current at the terminals of the incoming circuit of the ASSEMBLY.
..."
The example above is included among those considered by the Standard: if the circuit-breaker was used as a main breaker in a switchboard to be installed in a point of the plant where the prospective short-circuit current is 40 kA , would not be necessary to carry out the verification of short-circuit withstand

Limitation curves

T1 160

230 V
10^{2}

3 General characteristics
Limitation curves
T2 160
230 V

Ip [kA]

Limitation curves
T3 250
230 V

3 General characteristics

Limitation curves
T5 400/630
230 V
3 General characteristics

3 General characteristics
Limitation curves
T6 630/800/1000 230 V

Ip [kA]

Limitation curves
T1 160 400-440 V Ip $[k A]$

3 General characteristics
10^{2}

3 General characteristics

Limitation curves

T2 160
$400-440 \mathrm{~V}$
p [kA]

Limitation curves
T3 250
$400-440$ V
$\begin{aligned} & \\ & \\ & \text { Ip }[\mathrm{kA}]\end{aligned}$
10^{2}

3 General characteristics
Limitation curves
T4 250/320 400-440 V

Limitation curves
T5 400/630
$400-440$ V

3 General characteristics
Limitation curves
T6 630/800/1000 $400-440$ V

Ip [kA]

Limitation curves
T1 160
500 V

3 General characteristics
Limitation curves
T2 160
500 V
Ip [kA]

Limitation curves
T3 250
500 V

3 General characteristics

3 General characteristics
Limitation curves
T4 250/320 500 V

Limitation curves
T5 400/630
500 V

3 General characteristics
Limitation curves
T6 630/800/1000 500 V

Ip [kA]

Limitation curves
T1 160
690 V

3 General characteristics

3 General characteristics
Limitation curves
T2 160
690 V
lp [kA]

Limitation curves
T3 250
690 V

3 General characteristics

Limitation curves
T5 400/630
690 V

3 General characteristics
Limitation curves
T6 630/800/1000 690 V

Ip [kA]

Limitation curves
S7-S8 230 V

3 General characteristics

3 General characteristics

Limitation curves

S7-S8 $400-440$ V

Limitation curves
S7-S8 690 V
6

3 General characteristics

3 General characteristics

Limitation curves
E3L
690 V ~
$380 / 415 \mathrm{~V}$ ~
Ip [kA]

3 General characteristics

3.4 Specific let-through energy curves

n case of short-circuit, the parts of a plant affected by a fault are subjected to thermal stresses which are proportional both to the square of the fault curren as well as to the time required by the protection device to break the current. The energy let through by the protection device during the trip is termed "specific et-through energy" (12t), measured in A2s. The knowledge of the value of the specific let-through energy in various fault conditions is fundamental for the dimensioning and the protection of the various parts of the installation.
The effect of limitation and the reduced trip times influence the value of the specific let-through energy. For those current values for which the tripping of the circuit-breaker is regulated by the timing of the release, the value of the specific let-through energy is obtained by multiplying the square of the effective fault current by the time required for the protection device to trip; in other cases the value of the specific let-through energy may be obtained from the following diagrams.

The following is an example of the reading from a diagram of the specific let through energy curve for a circuit-breaker type T3S $250 \ln 160$ at 400 V .
The x-axis shows the symmetrical prospective short-circuit current, while the y-axis shows the specific let-through energy values, expressed in (kA)²s. Corresponding to a short-circuit current equal to 20 kA , the circuit-breaker lets through a value of l2t equal to $1.17(\mathrm{kA})^{2} \mathrm{~s}\left(1170000 \mathrm{~A}^{2} \mathrm{~s}\right)$.

Specific let-through
energy curves

T1 160

230 V
10^{-1}
1

3 General characteristics

3 General characteristics

3 General characteristics
Specific let-through energy curves

T4 250/320
230 V
${ }^{12 t}\left[(k A)^{2 s}\right]$

Specific let-through energy curves T5 400/630
230 V

3 General characteristics
Specific let-through
energy curves
230 V
$I^{2} t\left[(k A)^{2} s\right]$
10^{2}

Specific let-through energy curves

T1 160
$400-440$ V

3 General characteristics

Specific let-through energy curves

T3 250

400-440 V
$1^{2} t\left[(k A)^{2} s\right]$
${ }^{2 t}\left[(k A)^{2} s\right]$

3 General characteristics
Specific let-through energy curves

Specific let-through energy curves

T5 400/630

400-440 V

3 General characteristics

Specific let-through energy curves

T1 160
500 V

3 General characteristics

Specific let-through energy curves

T3 250
500 V

3 General characteristics
 energy curves

T4 250/320
500 V

3 General characteristics
Specific let-through energy curves

T5 400/630
500 V
${ }^{12 t}\left[\left[(\mathrm{KA})^{2} \mathrm{~s}\right]\right.$

3 General characteristics

Specific let-through energy curves

T1 160

 690 V3 General characteristics

Specific let-through energy curves

T3 250
690 V

3 General characteristics
Specific let-through energy curves

T4 250/320
690 V

Specific let-through energy curves T5 400/630 690 V

3 General characteristics

3 General characteristics

3 General characteristics

Specific let-throurg
energy curves
690 V

3 General characteristics

Specific let-through energy curves

E3L
690 V~ 380/415 V~

3 General characteristics

.5 Temperature derating

Standard IEC 60947-2 states that the temperature rise limits for circuit-breakers working at rated current must be within the limits given in the following table

Table 1 - Temperature rise limits for terminals and accessible parts

Description of part*		Temperature rise limits K
- Terminal for external connections		80
Manual operating	metallic	25
means:	non metallic	35
Parts intended to be touched but not hand-held:	metallic	40
	non metallic	50
Parts which need not be touched for normal operation:	metallic	50
	non metalic	60

No value is specified for parts other than those listed but no damage should be caused to adiacent parts of insulating materials.

These values are valid for a maximum reference ambient temperature of $40^{\circ} \mathrm{C}$ as stated in Standard IEC 60947-1, clause 6.1.1.
Whenever the ambient temperature is other than $40^{\circ} \mathrm{C}$, the value of the curren which can be carried continuously by the circuit-breaker is given in the following ables:
Circuit-breakers with thermomagnetic release
Tmax T1 and T1 1P (*)
$10^{\circ} \mathrm{C} \quad 20^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C} \quad 30^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C} \quad 50^{\circ} \mathrm{C}$

$60^{\circ} \mathrm{C} \quad 70^{\circ} \mathrm{C}$ | $\operatorname{In}[A]$ | MIN | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 13 | 18 | 12 | 18 | 12 | 17 | 11 | 16 | 11 | 15 | 10 | 14 | 9 | 13 |

16	13	18	12	18	12	17	11	16	11	15	10	14	9	13
20	16	23	15	22	15	21	14	20	13	19	12	18	11	16
25	20	29	19	28	18	26	18	25	16	23	15	22	14	20
32	26	37	25	35	24	34	22	32	21	30	20	28	18	26
40	32	46	31	44	29	42	28	40	26	38	25	35	23	33
50	40	58	39	55	37	53	35	50	33	47	31	44	28	41
63	51	72	49	69	46	66	44	63	41	59	39	55	36	51
80	64	92	62	88	59	84	56	80	53	75	49	70	46	65
100	81	115	77	110	74	105	70	100	66	94	61	88	57	81
125	101	144	96	138	92	131	88	125	82	117	77	109	71	102
160	129	184	123	176	118	168	112	160	105	150	98	140	91	130

For the 1 1P circuit-breaker (fitted with TMF fixed thermomagnetic release), consid
only the column corresponding to the maximum adjustment of the TMD releases.

3 General characteristics

Tmax T2

	10°		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
$\ln [\mathrm{A}]$	MIN	MAX												
1	0.8	1.1	0.8	1.1	0.7	1.1	0.7	1.0	0.7	0.9	0.6	0.9	0.6	0.8
1.6	1.3	1.8	1.2	1.8	1.2	1.7	1.1	1.6	1.0	1.5	1.0	1.4	0.9	1.3
2	1.6	2.3	1.5	2.2	1.5	2.1	1.4	2.0	1.3	1.9	1.2	1.7	1.1	1.6
2.5	2.0	2.9	1.9	2.8	1.8	2.6	1.8	2.5	1.6	2.3	1.5	2.2	1.4	2.0
3.2	2.6	3.7	2.5	3.5	2.4	3.4	2.2	3.2	2.1	3.0	1.9	2.8	1.8	2.6
4	3.2	4.6	3.1	4.4	2.9	4.2	2.8	4.0	2.6	3.7	2.4	3.5	2.3	3.2
5	4.0	5.7	3.9	5.5	3.7	5.3	3.5	5.0	3.3	4.7	3.0	4.3	2.8	4.0
6.3	5.1	7.2	4.9	6.9	4.6	6.6	4.4	6.3	4.1	5.9	3.8	5.5	3.6	5.1
8	6.4	9.2	6.2	8.8	5.9	8.4	5.6	8.0	5.2	7.5	4.9	7.0	4.5	6.5
10	8.0	11.5	7.7	11.0	7.4	10.5	7.0	10.0	6.5	9.3	6.1	8.7	5.6	8.1
12.5	10.1	14.4	9.6	13.8	9.2	13.2	8.8	12.5	8.2	11.7	7.6	10.9	7.1	10.1
16	13	18	12	18	12	17	11	16	10	15	10	14	9	13
20	16	23	15	22	15	21	14	20	13	19	12	17	11	16
25	20	29	19	28	18	26	18	25	16	23	15	22	14	20
32	26	37	25	35	24	34	22	32	21	30	19	28	18	26
40	32	46	31	44	29	42	28	40	26	37	24	35	23	32
50	40	57	39	55	37	53	35	50	33	47	30	43	28	40
63	51	72	49	69	46	66	44	63	41	59	38	55	36	51
80	64	92	62	88	59	84	56	80	52	75	49	70	45	65
100	80	115	77	110	74	105	70	100	65	93	61	87	56	81
125	101	144	96	138	92	132	88	125	82	117	76	109	71	101
160	129	184	123	178	118	168	112	160	105	150	97	139	90	129

Tmax T

In [A]	MIN	MAX												
63	51	72	49	69	46	66	44	63	41	59	38	55	35	51
80	64	92	62	88	59	84	56	80	52	75	48	69	45	64
100	80	115	77	110	74	105	70	100	65	93	61	87	56	80
125	101	144	96	138	92	132	88	125	82	116	76	108	70	100
160	129	184	123	176	118	168	112	160	104	149	97	139	90	129
200	161	230	154	220	147	211	140	200	130	186	121	173	112	161
250	201	287	193	278	184	263	175	250	163	233	152	216	141	201

3 General characteristics

Tmax T4

	$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
In [A$]$	MIN	MAX												
20	19	27	18	24	16	23	14	20	12	17	10	15	8	13
32	26	43	24	39	22	36	19	32	16	27	14	24	11	21
50	37	62	35	58	33	54	30	50	27	46	25	42	22	39
80	59	98	55	92	52	86	48	80	44	74	40	66	32	58
100	83	118	80	113	74	106	70	100	66	95	59	85	49	75
125	103	145	100	140	94	134	88	12	80	115	73	105	63	95
160	130	185	124	176	118	168	112	160	106	150	100	104	90	130
200	162	230	155	220	147	210	140	200	133	190	122	175	107	160
250	200	285	193	275	183	262	175	250	168	240	160	230	150	22

Tmax T5

$10^{\circ} \mathrm{C} \quad 20^{\circ} \mathrm{C} \quad 30^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C} \quad 50^{\circ} \mathrm{C} \quad 60^{\circ} \mathrm{C} \quad 70^{\circ} \mathrm{C}$

$\ln [A]$	MIN	MAX												
$\mathbf{3 2 0}$	260	368	245	350	234	335	224	320	212	305	200	285	182	263
400	325	465	310	442	295	420	280	400	265	380	250	355	230	325
500	435	620	405	580	380	540	350	500	315	450	280	400	240	345

Tmax 16

$10^{\circ} \mathrm{C} \quad 20^{\circ} \mathrm{C} \quad 30^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C} \quad 50^{\circ} \mathrm{C} \quad 60^{\circ} \mathrm{C} \quad 70^{\circ} \mathrm{C}$ | In $[$ A $]$ | MIN | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 630 | 520 | 740 | 493 | 705 | 462 | 660 | 441 | 630 | 405 | 580 | 380 | 540 | 350 | 500 | | | 740 | 493 | 705 | 462 | 660 | 441 | 630 | 405 | 580 | 380 | 540 | 350 | 500 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 800 | 685 | 965 | 640 | 905 | 605 | 855 | 560 | 800 | 520 | 740 | 470 | 670 | 420 | 610 |

3 General characteristics

Circuit-breakers with electronic release

= Front flat teminals; EF = Front extended teminals; ES = Front extended spread terminals;
FC Cu = Front teminals for copper cables; FC CuAl = Front terminals for CuAl cables; R=Rear teminals

Plug-in - Withdrawable

$$
\begin{aligned}
& \mathrm{FC}=\text { Front terminals for } \\
& \text { flat vertical terminals. }
\end{aligned}
$$

Tmax T4 320								
Fixed	up to $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$I_{\text {max }}[\mathrm{A}]$	I_{1}	$\mathrm{lmax}_{\text {ma }}$ A]	I_{1}	$\mathrm{Imax}^{\text {[}}$] $]$	I_{1}	$\mathrm{Imax}_{\text {ma }}$ A]	I_{1}
FC	320	1	307	0.96	281	0.88	256	0.80
F	320	1	307	0.96	281	0.88	256	0.80
HR	320	1	294	0.92	269	0.84	243	0.76
VR	320	1	294	0.92	269	0.84	243	0.76

Plug-in - Withdrawable								
$F C$	$\mathbf{3 2 0}$	1	294	0.92	268	0.84	242	0.76
F	$\mathbf{3 2 0}$	1	307	0.96	282	0.88	256	0.80
$H R$	$\mathbf{3 2 0}$	1	294	0.92	268	0.84	242	0.76
$V R$	$\mathbf{3 2 0}$	1	294	0.92	268	0.84	242	0.76

| 320 | 1 | 294 | 0.92 | 268 | 0.84 | 242 | 0.76 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{FC}=$ Front terminals

flat vertical terminals.

3 General characteristics

Tmax T5 400								
Fixed	$\begin{gathered} \text { up to } 4 \\ I_{\max }[\mathrm{A}] \end{gathered}$	a $\mathrm{I}_{1} \mathrm{C}$	$\operatorname{lmax}\left[\begin{array}{c} 50 \\ \hline \end{array}\right.$	I,	$\operatorname{lmax}[A]$	${ }^{\text {C }}$	$\begin{gathered} 70 \\ I_{\max }[\mathrm{A}] \end{gathered}$	${ }^{\circ} \mathrm{C}$
FC	400	1	400	1	400	1	368	0.92
F	400	1	400	1	400	1	368	0.92
HR	400	1	400	1	400	1	352	0.88
VR	400	1	400	1	400	1	352	0.88
Plug-in - Withdrawable								
FC	400	1	400	1	382	0.96	350	0.88
F	400	1	400	1	382	0.96	350	0.88
HR	400	1	400	1	368	0.92	336	0.84
VR	400	1	400	1	368	0.92	336	0.84
FC = Front terminals for cables; F = Front flat terminals; $H R=$ Rear flat horizontal terminals; VR = Rear flat vertical terminals.								
Tmax T5 630								
Fixed	up to 4		50		60		70	
FC	630	1	605	0.96	554	0.88	504	0.80
F	630	1	605	0.96	554	0.88	504	0.80
HR	630	1	580	0.92	529	0.84	479	0.76
VR	630	1	580	0.92	529	0.84	479	0.76
Plug-in - Withdrawable								
F	630	1	607	0.96	552	0.88	476	0.76
HR	630	1	580	0.92	517	0.82	454	0.72
VR	630<	1	580	0.92	517	0.82	454	0.72
FC = Front terminals for cables; F = Front flat terminals; HR = Rear flat horizontal terminals; VR = Rear flat vertical terminals.								
Tmax T6 630								
Fixed	$I_{\text {max }}[A]$	I_{1}	$\operatorname{lmax}_{\text {ma }}[\mathrm{A}]$	I_{1}	$\operatorname{lmax}^{[A]}$	I_{1}	$1 \max _{\text {ma }}[$] $]$	I_{1}
F	630	1	630	1	630	1	598.5	0.95
FC	630	1	630	1	598.5	0.95	567	0.9
R (HR-VR)	630	1	630	1	567	0.9	504	0.8
Withdrawable								
EF	630	1	630	1	598.5	0.95	567	0.9
VR	630	1	630	1	598.5	0.95	567	0.9
HR	630	1	598.5	0.95	567	0.9	504	0.8

Tmax T6 800

Fixed	up to $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$I_{\text {max }}[\mathrm{A}]$	1_{1}	$I_{\text {max }}[\mathrm{A}]$	I_{1}	$I_{\text {max }}[\mathrm{A}]$	I_{1}	$1 \max ^{\text {a }}$ A]	I_{1}
F	800	1	800	1	800	1	760	0.95
FC	800	1	800	1	760	0.95	720	0.9
R (HR - VR)	800	1	800	1	720	0.9	640	0.8
Withdrawable								
EF	800	1	800	1	760	0.95	720	0.9
VR	800	1	800	1	760	0.95	720	0.9
HR	800	1	760	0.95	720	0.9	640	0.8

General characteristics

Tmax T6 1000								
Fixed	$\begin{gathered} \text { up to } \\ l_{\max }[A] \end{gathered}$	1	$\begin{array}{r} 50 \\ \operatorname{lmax}[\mathrm{~A}] \end{array}$	I_{1}	$\begin{gathered} 60 \\ I \max [A] \end{gathered}$	I_{1}	$\begin{gathered} 70 \\ I \max [\mathrm{~A}] \end{gathered}$	${ }^{\circ} \mathrm{C}$
FC	1000	1	1000	1	913	0.91	817	0.82
R(HR)	1000	1	926	0.93	845	0.85	756	0.76
R(VR)	1000	1	961	0.96	877	0.88	784	0.78
ES	1000	1	800	0.8	600	0.6	600	0.4

$\mathrm{C}=$ Front terminals for cables; $\mathrm{R}(\mathrm{HR})=$ Rear terminals oriented in horizontal; $\mathrm{R} N \mathrm{R})=$ Rear terminals oriented in vertical; ES = Spreaded extended front terminals.

up to $40^{\circ} \mathrm{C}$			$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Fixed	$\mathrm{Imax}^{\text {[}}$] $]$	1	$\operatorname{lmax}^{[A]}$	I_{1}	1 max $[$ A $]$	I_{1}	$\mathrm{Imax}^{\text {[}}$] $]$	I_{1}
Front flat bar	1600	1	1520	0.95	1440	0.9	1280	0.8
Rear vertical flat bar	1600	1	1520	0.95	1440	0.9	1280	0.8
Rear horizontal flat b	ar 160	1	1440	0.9	1280	0.8	1120	0.7

Plug-in - Withdrawable

Front flat bar	1600	1	1440	0.9	1280	0.8	1120	0.7
Rear vertical flat bar	$\mathbf{1 6 0 0}$	1	1440	0.9	1280	0.8	1120	0.7
Rear horizontal flat bar 1600	1	1280	0.8	1120	0.7	906	0.6	

SACE Isomax S8 2500

Fixed	up to $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\mathrm{l}_{\text {max }}[\mathrm{A}]$,	$\mathrm{lmax}_{\text {a }}$ [A]	1	1 max ${ }^{\text {A] }}$	I_{1}	$\mathrm{l}_{\text {max }}[$ A]	I_{1}
Front flat bar	2500	1	2500	1	2270	0,9	2040	0,8
Rear vertical flat bar	2500	1	2500	1	2375	0,95	2130	0,85

3 General characteristics

SACE Emax E1

Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	E1 800		E1 1000		E1 1250		E1 1600	
	\%	[A]	\%	[A]	\%	[A]	\%	[A]
10	100	800	100	1000	100	1250	100	1600
20	100	800	100	1000	100	1250	100	1600
30	100	800	100	1000	100	1250	100	1600
40	100	800	100	1000	100	1250	100	1600
45	100	800	100	1000	100	1250	98	1570
50	100	800	100	1000	100	1250	96	1530
55	100	800	100	1000	100	1250	94	1500
60	100	800	100	1000	100	1250	92	1470
65	100	800	100	1000	99	1240	89	1430
70	100	800	100	1000	98	1230	87	1400

SACE Emax E2

Temperature [${ }^{\circ} \mathrm{C}$]	E2 800		E2 1000		E2 1250		E2 1600		E2 2000	
	\%	[A]	\%	[A]	\%	[A]	\%	A]	\%	[A]
10	100	800	100	1000	100	1250	100	1600	100	2000
20	100	800	100	1000	100	1250	100	1600	100	2000
30	100	800	100	1000	100	1250	100	1600	100	2000
40	100	800	100	1000	100	1250	100	1600	100	2000
45	100	800	100	1000	100	1250	100	1600	100	2000
50	100	800	100	1000	100	1250	100	1600	97	1945
55	100	800	100	1000	100	1250	100	1600	94	1885
60	100	800	100	1000	100	1250	98	1570	91	1825
65	100	800	100	1000	100	1250	96	1538	88	176
70	100	800	100	1000	100	1250	94	1510	85	

SACE Emax E3

Temperature	E3 800			E3 1250	E3 1600	E3 2000			0 E3 3200	
[C°]	\% [A]	\%	[A]	\% [A]	\% [A]	\% [A]	\%	[A]	\%	A]
10	100800	100	1000	1001250	1001600	1002000	100	2500	10	3200
20	100800	100	1000	1001250	1001600	100200	100	250	100	3200
30	100800	100	1000	1001250	1001600	100200	100	250	100	3200
40	100800	100	1000	1001250	1001600	10020	100	25	100	3200
45	100800	100	1000	1001250	1001600	1002000	100	2500	100	3200
50	100800	100	1000	1001250	1001600	100200	100	250	97	3090
55	100800	100	100	1001250	1001600	1002000	10	250		2975
60	100800	100	1000	1001250	1001600	1002000	100	2500	89	286
65	100800	100	1000	1001250	1001600	1002000		24		
70	100800	100	1000	1001250	1001600	0	0	2350	82	

3 General characteristics

Emax E4

Temperature [${ }^{\circ} \mathrm{C}$]		[A]		[A]
10	100	3200	100	4000
20	100	3200	100	4000
30	100	3200	100	4000
40	100	3200	100	4000
45	100	3200	100	4000
50	100	3200	98	3900
55	100	3200	95	3790
60	100	3200	92	3680
65	98	3120	89	3570
70	95	3040	87	3460

Emax E6

Temperature	E6 3200		E6 4000		E6 5000		E6 6300	
$\left[\begin{array}{lllll} \\ {\left[{ }^{\circ} \mathrm{C}\right]}\end{array}\right.$	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$
10	100	3200	100	4000	100	5000	100	6300
20	100	3200	100	4000	100	5000	100	6300
30	100	3200	100	4000	100	5000	100	6300
40	100	3200	100	4000	100	5000	100	6300
45	100	3200	100	4000	100	5000	100	6300
50	100	3200	100	4000	100	5000	100	6300
55	100	3200	100	4000	100	5000	98	6190
60	100	3200	100	4000	98	4910	96	6070
65	100	3200	100	4000	96	4815	94	5850
70	100	3200	100	4000	94	4720	92	5600

3 General characteristics

The following table lists examples of the continuous current carrying capacity for circuit-breakers installed in a switchboard with the dimensions indicated below. These values refer to withdrawable switchgear installed in non segregated switchboards with a protection rating up to IP31, and following dimensions: 300×1400×1500 (HX1 ×D) for E4- - 6
The values refer to a maximum temperature at the terminals of $120^{\circ} \mathrm{C}$. For withdrawable circuit-breakers with a rated current of 6300 A, the use of vertical rear terminals is recommended.

Vertical terminals				Horizontal and front terminals			
Continuous capacity			$\begin{gathered} \text { Busbars section } \\ {\left[m m^{2}\right]} \end{gathered}$	Continuous capacity			Busbars section $\left[\mathrm{mm}^{2}\right]$
$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	
800	800	800	1×(60x10)	800	800	800	1x(60x10)
1000	1000	1000	$1 \times(80 \times 10)$	1000	1000	1000	2x(60x8)
1250	1250	1250	$1 \times(80 \times 10)$	1250	1250	1200	2x(60x8)
1600	1600	1500	$2 \times(60 \times 10)$	1550	1450	1350	$2 \times(60 \times 10)$
800	800	800	$1 \times(60 \times 10)$	800	800	800	1x(60x10)
1000	1000	1000	$1 \times(60 \times 10)$	1000	1000	1000	$1 \times(60 \times 10)$
1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	1×(60x10)
1600	1600	1600	$2 \times(60 \times 10)$	1600	1600	1530	$2 \times(60 \times 10)$
2000	2000	1800	$3 \times(60 \times 10)$	2000	2000	1750	$3 \times(60 \times 10)$
1250	1250	1250	1x(60x10)	1250	1250	1250	$1 \times(60 \times 10)$
1600	1600	1500	$2 \times(60 \times 10)$	1600	1500	1400	$2 \times(60 \times 10)$
800	800	800	$1 \times(60 \times 10)$	800	800	800	1x(60x10)
1000	1000	1000	$1 \times(60 \times 10)$	1000	1000	1000	$1 \times(60 \times 10)$
1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	$1 \times(60 \times 10)$
1600	1600	1600	1x(100x10)	1600	1600	1600	1x(100x10)
2000	2000	2000	2x(100x10)	2000	2000	2000	2x(100x10)
2500	2500	2500	2x(100x10)	2500	2450	2400	2x(100x10)
3200	3100	2800	$3 \times(100 \times 10)$	3000	2880	2650	$3 \times(100 \times 10)$
2000	2000	2000	2x(100x10)	2000	2000	1970	2x(100x10)
2500	2390	2250	2×(100x10)	2375	2270	2100	2x(100x10)
3200	3200	3200	$3 \times(100 \times 10)$	3200	3150	3000	$3 \times(100 \times 10)$
4000	3980	3500	$4 \times(100 \times 10)$	3600	3510	3150	$6 \times(60 \times 10)$
3200	3200	3200	$3 \times(100 \times 10)$	3200	3200	3200	$3 \times(100 \times 10)$
4000	4000	4000	4x(100x10)	4000	4000	4000	$4 \times(100 \times 10)$
5000	4850	4600	$6 \times(100 \times 10)$	4850	4510	4250	$6 \times(100 \times 10)$

Note: the reference temperature is the ambient temperature

Examples:

Selection of a moulded-case circuit-breaker, with thermomagnetic release, for load current of 180 A , at an ambient temperature of $60^{\circ} \mathrm{C}$. From the table referring to Tmax circuit-breakers (page 173), it can be seen that the most suitable breaker is the T3 In 250, which can be set from 152 A to 216 A.
Selection of a moulded-case circuit-breaker, with electronic release, in withdrawable version with rear flat horizontal bar terminals, for a load current equal to 720 A , with an ambient temperature of $50^{\circ} \mathrm{C}$. 176 , it can be seen that From the table referring to Tmax circuit-breakers (page 176), it can be seen th the most suitable breaker is the T6 800, which can be set from 320 A to 760 A.

Selection of an air circuit-breaker, with electronic release, in withdrawable version with vertical terminals, for a load current of 2700 A , with a temperature outside of the IP31 switchboard of $55^{\circ} \mathrm{C}$.
From the tables referring to the current carrying capacity inside the switchboard for Emax circuit-breakers (see above), it can be seen that the most suitable breaker is the E3 3200, with busbar section $3 \times(100 \times 10) \mathrm{mm}^{2}$, which can be se from 1280 A to 2800 A.

3 General characteristics

The following tables show the maximum settings for L protection (agains overload) for electronic releases, according to temperature, version and

Tmax T2 In $\leq 125 \mathrm{~A}$		All terminals	
	F	P	
$\mathbf{y n} \leq 40$			
45			
50	1	1	
55			
60			
65			
70			

Tmax T2 $\mathrm{In}=160 \mathrm{~A}$	All terminals	
	F	P
≤ 40	1	0.88
45	0.96	0.88
50	0.96	0.88
55	0.92	0.88
60	0.88	0.88
65	0.84	0.84
70	0.8	0.8

Tmax $\mathbf{T} 2$$\ln \leq 100 A$	Fixed - Plug-in
	PR221
	All terminals
≤ 40	
45	
50	
55	1
60	
65	
70	

Tmax T2 $\ln 160 \mathrm{~A}$	Fixed - Plug-in
	PR221
$\mathbf{y n} \leq 40$	All terminals
45	1
50	0.96
55	0.96
60	0.92
	0.88
65	0.84
70	0.8

Tmax 72$\mathrm{ln} \leq 160 \mathrm{~A}$	Fixed - Plug-in Withdrawable
	PR221-PR222
	FC-F-HR-VR
≤ 40	
45	
50	
55	1
60	
65	
70	

$\begin{aligned} & \text { Tmax T4 } \\ & \text { In }=250 \mathrm{~A} \end{aligned}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC-F	HR-VR	FC-F	HR - VR	FC-F	HR - VR	FC-F	HR - VR
≤ 40	1	1	1	1	1	1	1	1
45								
50								
55								
60					0.96	0.92	0.96	0.92
65	0.96	0.92	0.96	0.94	0.92	0.88	0.92	0.88
70	0.92	0.88	0.92	0.88	0.88	0.84	0.88	0.84

FC = Front terminals for cables; F = Front flat terminals; HR = Rear flat horizontal terminals; VR = Rear flat vertical terminals

3 General characteristics

Tmax T4$\mathrm{In}=320 \mathrm{~A}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR - VR	FC-F	HR - VR	F	FC-HR-VR	F	FC-HR-VR
≤ 40	1	1	1	1	1	1	1	1
45						0.96		0.96
50	0.96	0.92	0.96	0.92	0.96	0.92	0.96	0.92
55	0.92	0.88	0.92	0.88	0.92	0.88	0.92	0.88
60	0.88	0.84	0.88	0.84	0.88	0.84	0.88	0.84
65	0.84	0.8	0.84	0.8	0.84	0.80	0.84	0.80
70	0.8	0.76	0.8	0.76	0.8	0.76	0.8	0.76

Tmax 75$\mathrm{ln} \leq 320 \mathrm{~A}$	Fixed - Plug-in Withdrawable
	PR221-PR222-PR223
	FC-F-HR - VR
≤ 40	1
45	
50	
55	
60	
65	
70	

$\begin{aligned} & \text { Tmax T5 } \\ & I n=400 A \end{aligned}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR-VR	FC-F	HR - VR	FC-F	HR - VR	FC-F	HR - VR
≤ 40	1	1	1	1	1	1	1	1
45								
50								
55					0.96	0.96	0.98	0.96
60					0.96	0.92	0.96	0.92
65	0.96	0.92	0.96	0.94	0.92	0.88	0.92	0.88
70	0.92	0.88	0.92	0.88	0.88	0.84	0.88	0.84

$\begin{aligned} & \text { Tmax T5 } \\ & \text { In = 630A } \end{aligned}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC-F	HR - VR	FC-F	HR-VR	F	HR-VR	F	HR-VR
≤ 40	1	1	1	1	1	1	1	1
45								
50	0.96	0.92	0.96	0.92	0.96	0.92	0.96	0.92
55	0.92	0.88	0.92	0.88	0.92	0.84	0.92	0.86
60	0.88	0.84	0.88	0.84	0.88	0.8	0.88	0.82
65	0.84	0.8	0.84	0.8	0.8	0.76	0.8	0.76
70	0.8	0.76	0.8	0.76	0.76	0.72	0.76	0.72

FC = Front terminals for cables; F = Front flat terminals; HR = Rear flat horizontal terminals; VR = Rear flat vertical terminals.

3 General characteristics

Tmax 76$\ln =630 \mathrm{~A}$	Fixed						Withdrawable			
	PR221			PR222/PR223			PR221		PR222/PR223	
	F	FC	R	F	FC	R	EF-VR	HR	EF-VR	HR
≤ 40	1	1	1	1	1	1	1	1	1	1
45								0.96		0.96
50								0.92		0.94
55		0.96	0.92		0.96	0.94	0.96	0.92	0.96	0.92
60		0.92	0.88		0.94	0.9	0.92	0.88	0.94	0.9
65	0.96	0.92	0.84	0.96	0.92	0.84	0.92	0.84	0.92	0.84
70	0.92	0.88	0.8	0.94	0.9	0.8	0.88	0.8	0.9	0.8

Tmax T6$\mathrm{ln}=800 \mathrm{~A}$	Fixed						Withdrawable			
	PR221			PR222/PR223			PR221		PR222/PR223	
	F	FC	R	F	FC	R	EF-VR	HR	EF-VR	HR
≤ 40	1	1	1	1	1	1	1	1	1	1
45								0.96		0.96
50								0.92		0.94
55		0.96	0.92		0.96	0.94	0.96	0.92	0.96	0.92
60		0.92	0.88		0.94	0.9	0.92	0.88	0.94	0.9
65	0.96	0.92	0.84	0.96	0.92	0.84	0.92	0.84	0.92	0.84
70	0.92	0.88	0.8	0.94	0.9	0.8	0.88	0.8	0.9	0.8

Tmax T6$\ln =1000 \mathrm{~A}$	Fixed							
	PR221				PR222/PR223			
	FC	R (HR)	R (VR)	ES	FC	R (HR)	R (VR)	ES
≤ 40	1	1	1	1	1	1	1	1
45		0.96	0.96	0.88		0.96	0.98	0.9
50		0.92	0.96	0.8		0.92	0.96	0.8
55	0.92	0.88	0.88	0.68	0.94	0.88	0.9	0.7
60	0.88	0.84	0.84	0.6	0.9	0.84	0.86	0.6
65	0.84	0.8	0.8	0.48	0.86	0.8	0.82	0.5
70	0.8	0.72	0.76	0.4	0.8	0.74	0.78	0.4

$\mathrm{F}=$ Front flat terminals; $\mathrm{HR}=$ Rear flat horizontal terminals; $\mathrm{VR}=$ Rear flat vertical terminals; $\mathrm{FC}=$ Front terminals for cables; $\mathrm{R}(\mathrm{HR})=$ Rear terminals oriented in horizontal; $\mathrm{R}(\mathrm{VR})=$ Rear terminals oriented in vertical; ES = Spreaded extended front terminals; R = Rear terminals; EF = Front extended.

3 General characteristics

Emax E1	800 A	
	PR121	PR122/PR123
≤ 40		
$y n n$	1	
50		
55		
60		
65		
70		

Emax E1	1000 A	
	PR121	PR122/PR123
≤ 40	1	1
45		
50		
55		
60		
65		
70		

Emax E1	1250 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		
60		0.99
65	0.975	0.98
70		

Emax E1	1600 A	
	PR121	PR122/PR123
≤ 40	1	1
45	0.975	0.98
50	0.95	0.95
55	0.925	0.93
60	0.9	0.91
65	0.875	0.89
70	0.85	0.87

Emax E2	$800 / 1000 / 1250$ A	
	PR121	PR122/PR123
≤ 40		
45		
50	1	1
55		
60		
65		
70		

Emax E2	1600 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55	0.975	0.98
60	0.95	0.96
65	0.925	0.94
70		

Emax E2	2000 A	
	PR121	PR122/PR123
≤ 40	1	1
45		0.97
50	0.95	0.94
55	0.925	0.91
60	0.9	0.88
65	0.875	0.85
70	0.85	

Emax E3	$800 / 1000 / 1250 / 1600 / 2000$ A	
	PR121	PR122/PR123
≤ 40		
45		
50	1	1
55		
60		
65		
70		

3 General characteristics

Emax E3	2500 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		0.97
60	0.95	0.94
65	0.925	
70		

Emax E3	3200 A	
	PR121	PR122/PR123
≤ 40	1	1
45		0.96
50	0.95	0.92
55	0.9	0.89
60	0.875	0.85
65	0.85	0.82
70	0.8	

Emax E4	3200 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		
60	0.975	0.97
65	0.95	0.95
70		

Emax E4	4000 A	
	PR121	PR122/PR123
≤ 40	1	1
45	0.975	0.97
50	0.925	0.94
55	0.9	0.92
60	0.875	0.89
65	0.85	0.86
70		

Emax E6	$3200 / 4000$ A	
	PR121	PR122/PR123
≤ 40		
45		
50	1	1
55		
60		
65		
70		

Emax E6	5000 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		0.98
60	0.975	0.96
65	0.95	0.94
70	0.925	0.94

Emax E6	6300 A	
	PR121	PR122/PR123
≤ 40		1
45	1	
50		0.98
55	0.975	0.96
60	0.95	0.92
65	0.9	0.88
70	0.875	

3 General characteristics

	Vertical Terminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR121	PR122/PR123	PR121	PR122/PR123	PR121	PR122/PR123
E1B/N 08	1	1	1	1	1	1
E1B/N 10	1	1	1	1	1	1
E1B/N 12	1	1			1	1
E1B/N 16	1	1	1	1	0.925	0.93
E2S 08	1	1	1	1	1	1
E2N/S 10	1	1		1	1	,
E2N/S 12	1	1	1	1	1	1
E2B/N/S16	1	1	1	1	1	1
E2B/N/S20	1	1	1	1	0.9	0.9
E2L 12	1	1	1	1	1	1
E2L 16	1	1	1	1	0.925	0.93
E3HN 08	1	1	1	1	1	1
E3S/V 10	1	1	1	1	1	1
E3S/HN 12	1	1	1	1	1	1
E3S/HN 16	1	1	1	1	1	1
E3S/HN20	1	1	1	1	1	1
E3N/S/H/V25	1	1	1	1	1	1
E3N/S/H/ V32	1	1	0.95	0.96	0.875	0.87
E3L 20	1	1	1	1	1	1
E3L 25	1	1	0.95	0.95	0.9	0.9
E4HN32	1	1	1	1	1	1
E4S/HN40	1	1	0.975	0.99	0.875	0.87
E6V 32	1	1	1	1	,	1
E6H/V 40	1	1	1	1	1	1
E6H/V 50	1	1	0.95	0.97	0.9	0.92
E6HN 63	0.95	0.95	0.9	0.9	0.825	0.83

	Vertical Terminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR121	PR122/PR123	PR121	PR122/PR123	PR121	PR122/PR123
E1B/N 08	1	1	1	1	1	1
E1B/N 10	1	1	1	1	1	1
E1B/N 12	1	1	1	1	0.95	0.96
E1B/N 16	0.95	0.96	0.9	0.9	0.825	0.84
E2S 08	1	1	1	1	1	1
E2N/S 10	1	1	1	1	1	1
E2N/S 12	1	1	1	1	1	1
E2B/N/S16	1	1	1	1	0.95	0.95
E2B/N/S20	1	1	1	1	0.875	0.87
E2L 12	1	1	1	1	1	1
E2L 16	1	1	0.925	0.93	0.875	0.87
E3H/V 08	1	1	1	1	1	1
E3S/H 10	1	1	1	1	1	1
E3S/H/V 12	1	1	1	1	1	1
E3S/H/ V16	1	1	1	1	1	1
E3S/H/ V20	1	1	1	1	1	1
E3N/S/H/V25	1	1	0.975	0.98	0.95	0.96
E3N/S/H/ V32	0.925	0.93	0.9	0.9	0.825	0.82
E3L 20	1	1	1	1	0.975	0.98
E3L 25	0.95	0.95	0.9	0.9	0.825	0.84
E4H/ V32	1	1	0.975	0.98	0.925	0.93
E4S/H/V40	0.9	0.9	0.875	0.87	0.775	0.78
E6V 32	1	1	1	1	1	1
E6H/V 40	1	1	1	1	1	1
E6H/V 50	0.95	0.97	0.9	0.9	0.85	0.85
E6H/V 63						

3 General characteristics

3.7 Electrical characteristics of switch disconnectors

A switch disconnector as defined by the standard IEC 60947-3 is a mechanica switching device which, when in the open position, carries out a disconnecting function and ensures an isolating distance (distance between contacts) sufficien to guarantee safety. This safety of disconnection must be guaranteed and verified by the positive operation: the operating lever must always indicate the actua position of the mobile contacts of the device
The mechanical switching device must be able to make, carry and break currents in normal circuit conditions, including any overload currents in normal service, and to carry, for a specified duration, currents in abnormal circuit conditions, such as, for example, short-circuit conditions

Switch disconnectors are often used as:
main sub-switchboard devices;
switching and disconnecting devices for lines, busbars or load units;
bus-tie.
The switch disconnector shall ensure that the whole plant or part of it is not live safely disconnecting from any electrical supply. The use of such a switch disconnector allows, for example, personnel to carry out work on the plant without risks of electrical nature.
Even if the use of a single pole devices side by side is not forbidden, the standards recommend the use of multi-pole devices so as to guarantee the simultaneous solation of all poles in the circuit.
The specific rated characteristics of switch disconnectors are defined by the standard IEC 60947-3, as detailed below:

- Icw [kA]: rated short-time withstand current:
is the current that a switch is capable of carrying, without damage, in the closed position for a specific duration
- Icm [kA]: rated short-circuit making capacity:
is the maximum peak value of a short-circuit current which the switch disconnector can close without damages. When this value is not given by th manufacturer it must be taken to be at least equal to the peak current corresponding to Icw. It is not possible to define a breaking capacity Icu [kA] since switch disconnectors are not required to break short-circuit currents
- utilization categories with alternating current AC and with direct current DC:
define the kind of the conditions of using which are represented by two letters to indicate the type of circuit in which the device may be installed (AC for alternating current and DC for direct current), with a two digit number for the type of load which must be operated, and an additional letter (A or B) which represents the frequency in the using.
With reference to the utilization categories, the product standard defines the current values which the switch disconnector must be able to break and make under abnormal conditions.

3 General characteristics

The characteristics of the utilization categories are detailed in Table 1 below. The most demanding category in alternating current is AC23A, for which the device must be capable of connecting a current equal to 10 times the rated current of the device, and of disconnecting a current equal to 8 times the rated current of the device

From the point of view of construction, the switch disconnector is a very simple device. It is not fitted with devices for overcurrent detection and the consequent automatic interruption of the current. Therefore the switch disconnector cannot e used for automatic protection against overcurrent which may occur in the case of failure, protection must be provided by a coordinated circuit-breaker. he combination of the two devices allows the use of switch disconnectors in systems in which the short-circuit current value is greater than the electrical parameters which define the performance of the disconnector (back-up protection see Chapter 4.4. This is valid only for Isomax and Tmax switch disconnectors. For the Emax/MS air disconnectors, it must be verified that the values for Icw and lcm are higher to the values for short-circuit in the plant and correspondent peak, respectively.

Table1: Utilization categories

Nature of current	Utilization categories		
	Utilization category		Typical applications
	Frequent operation	Non-frequent operation	
Alternating Current	AC-20A	AC-20B	Connecting and disconnecting under no-load conditions
	AC-21A	AC-21B	Switching of resistive loads including moderate overloads
	AC-22A	AC-22B	Switching of mixed resistive and inductive loads, including moderate overload
	AC-23A	AC-23B	Switching of motor loads or other highly inductive loads
Direct Current	DC-20A	DC-20B	Connecting and disconnecting under no-load conditions
	DC-21A	DC-21B	Switching of resistive loads including moderate overloads
	DC-22A	DC-22B	Switching of mixed resistive and inductive loads, including moderate overload (e.g. shunt motors)
	DC-23A	DC-23B	Switching of highly inductive loads

3 General characteristics

Tables 2, 3 and 4 detail the main characteristics of the disconnectors.

Table 2: Tmax switch disconnectors		T1D
Conventional thermal current, lth	[A]	160
Rated current in AC-22A utilization category, le	[A]	160
Rated current in AC-23A utilization category, le	[A]	125
Poles	[N]	3/4
Rated operational voltage, Ue	$50-60 \mathrm{~Hz}$ [Vac]	690
	dc [Vdc]	500
Rated impulse withstand voltage, Uimp	[kV]	8
Rated insulation voltage, Ui	M]	800
Test voltage at industrial frequency for 1 minute	[3000
Rated short-circuit making capacity (415Vac), Icm	(min) switch disconnector only [kA]	2.8
	(max) with circuit-breaker on supply side [kA]	187
Rated short time withstand current for 1s, lcw	[kA]	2
Insulation behaviour	\square	\square
Reference standard		IEC 60947-3
Versions		F
Terminals		FCCu-EF FC CuAl
Mechanical life	[No. of operations]	25000
	[Operations per hour]	120
	3 poles L[mm]	76
Basic dimensions, fixed	4 poles L[mm]	102
	D [mm]	130
	H [mm]	70
Weight	$3 / 4$ poles fixed [kg]	0.9/1.2
	$3 / 4$ poles plug-in [kg]	-
	$3 / 4$ poles withdrawable [kg]	-

T3D	T4D	T5D	T6D
250	250/320	400/630	630/800/1000
250	250/320	400/630	630/800/1000
200	250	400	630/800
3/4	3/4	3/4	3/4
690	690	690	690
500	750	750	750
8	8	8	8
800	800	800	1000
3000	3000	3000	3500
5.3	5,3	11	30
105	440	440	440
3.6	3.6	6	15
\square	\square	\square	\square
IEC 60947-3	IEC 60947-3	IEC 60947-3	IEC 60947-3
F-P	F-P W	F-P - W	F-W
$\begin{aligned} & \text { F - FC Cu - FC CuAl } \\ & \text { EF-ES - R-FC CuAl } \end{aligned}$	$\begin{gathered} \text { F- FCCu - FCCuAI - EF-ES } \\ \text { R-MC -HR - VR } \end{gathered}$	$\begin{gathered} \text { - FCCu - FCCuAI -EF } \\ \text { ES-R - HR -VR } \end{gathered}$	$\begin{gathered} \text { F-EF-FC - CuAl-R } \\ \text { ES - RC } \end{gathered}$
25000	20000	20000	20000
120	120	120	120
105	105	140	210
140	140	184	280
150	205	205	103,5
70	103,5	103,5	268
2.1/3	2.35/3.05	3.25/4.15	9.5/12
2.1/3.7	3.6/4.65	5.15/6.65	-
-	3.85/4.9	5.4/6.9	12/15.1
$\begin{aligned} & \text { KEY TO VERSIONS } \\ & \text { F = Fixed } \\ & \text { P = Plug-in } \\ & \text { W = Withdrawable } \end{aligned}$	KEY TO TERMINALS FC C F = Front R $=$ R EF EXtended front RC $=$ ES = Extended spreaded front HR =	= Front for copper or aluminium c r threaded ear for copper or aluminium cables ear horizontal flat bar	$V R=$ Rear vertical flat bar

3 General characteristics

3 General characteristics

4 Protection coordination

4.1 Protection coordination

The design of a system for protecting an electric network is of fundamenta mportance both to ensure the correct economic and functional operation of he installation as a whole and to reduce to a minimum any problem caused by anomalous operating conditions and/or malfunctions
The present analysis discusses the coordination between the different devices dedicated to the protection of zones and specific components with a view to

- guaranteeing safety for people and installation at all times
- identifying and rapidly excluding only the zone affected by a problem, instead of taking indiscriminate actions and thus reducing the energy available to the rest of the network;
containing the effects of a malfunction on other intact parts of the network (voltage dips, loss of stability in the rotating machines);
- reducing the stress on components and damage in the affected zone;
- ensuring the continuity of the service with a good quality feeding voltage;
- guaranteeing an adequate back-up in the event of any malfunction of the protective device responsible for opening the circuit;
- providing staff and management systems with the information they need to restore the service as rapidly as possible and with a minimal disturbance to the rest of the network;
- achieving a valid compromise between reliability, simplicity and cos effectiveness
o be more precise, a valid protection system must be able to:
understand what has happened and where it has happened, discriminating between situations that are anomalous but tolerable and faults within a given zone of influence, avoiding unnecessary tripping and the consequen unjustified disconnection of a sound part of the system;
- take action as rapidly as possible to contain damage (destruction, accelerated ageing, ...), safeguarding the continuity and stability of the power supply.
The most suitable solution derives from a compromise between these two opposing needs - to identify precisely the fault and to act rapidly - and is defined in function of which of these two requirements takes priority.

Over-current coordination

Influence of the network's electrical parameters (rated current and short

 circuit currentThe strategy adopted to coordinate the protective devices depends mainly on the rated current $\left(I_{n}\right)$ and short-circuit current $\left(I_{k}\right)$ values in the considered poin of network.
Generally speaking, we can classify the following types of coordination:

- current discrimination,
- time (or time-current) discrimination;
- zone (or logical) discrimination;
energy discrimination
- back-up.

4 Protection coordination

Definition of discrimination

The over-current discrimination is defined in the Standards as "coordination of the operating characteristics of two or more over-current protective devices such that, on the incidence of over-currents within stated limits, the device intended to operate within these limits does so, while the others do not opera (IEC 60947-1, def. 2.5.23)
It is possible to distinguish between:

- total discrimination, which means "over-current discrimination such that, in the case of two over-current protective devices in series, the protective device on the load side provides protection without tripping the other protective device (IEC 60947-2, def. 2.17.2):
- partial discrimination, which means "over-current discrimination such that, in the case of two over-current protective devices in series, the protective device on the load side provides protection up to a given over-current limit without tripping the other" (IEC 60947-2 def. 2.17.3): this over-current threshold is called "discrimination limit current I_{s} " (IEC 60947-2, def. 2.17.4).

Current discrimination

This type of discrimination is based on the observation that the closer the fault comes to the network's feeder, the greater the short-circuit current will be. We can therefore pinpoint the zone where the fault has occurred simply by calibrating the instantaneous protection of the device upstream to a limit value higher than he fault current which causes the tripping of the device downstream
We can normally achieve total discrimination only in specific cases where the ault current is not very high (and comparable with the device's rated current) or where a component with high impedance is between the two protective devices e.g. a transformer, a very long or small cable...) giving rise to a large difference between the short-circuit current values.

This type of coordination is consequently feasible mainly in final distribution networks (with low rated current and short-circuit current values and a high mpedance of the connection cables).
The devices' time-current tripping curves are generally used for the study.
This solution is:
rapid;
easy to implement;

- and inexpensive.

On the other hand
the discrimination limits are normally low,

- increasing the discrimination levels causes a rapid growing of the device sizes

The following example shows a typical application of current discrimination based n the different instantaneous tripping threshold values of the circuit-breakers onsidered

4 Protection coordination

With a fault current value at the defined point equal to 1000 A , an adequate coordination is obtained by using the considered circuit-breakers as verified in the tripping curves of the protection devices.
The discrimination limit is given by the minimum magnetic threshold of the circuit-breaker upstream, T1B160 In160.

Time discrimination
This type of discrimination is an evolution from the previous one. The setting strategy is therefore based on progressively increasing the current thresholds and the time delays for tripping the protective devices as we come closer to the power supply source. As in the case of current discrimination, the study is based on a comparison of the time-current tripping curves of the protective devices.

This type of coordination:

- is easy to study and implement;
- is relatively inexpensive;
- enables to achieve even high discrimination levels, depending on the I_{cw} of the upstream device;
- allows a redundancy of the protective functions and can send valid information to the control system,

but has the following disadvantages:

- the tripping times and the energy levels that the protective devices (especially those closer to the sources) let through are high, with obvious problems concerning safety and damage to the components even in zones unaffected by the fault;

4 Protection coordination

it enables the use of current-limiting circuit-breakers only at levels hierarchically lower down the chain; the other circuit-breakers have to be capable of withstanding the thermal and electro-dynamic stresses related to the passage of the fault current for the intentional time delay. Selective circuit-breakers often air type, have to be used for the various levels to guarantee a sufficiently high short-time withstand current;

- the duration of the disturbance induced by the short-circuit current on the power supply voltages in the zones unaffected by the fault can cause problems with electronic and electro-mechanical devices (voltage below the electromagnetic releasing value)
- the number of discrimination levels is limited by the maximum time that the network can stand without loss of stability.

The following example shows a typical application of time discrimination obtained by setting differently the tripping times of the different protection devices.

Electronic release:	L (Long delay)	S (Short delay)	1 (IST)
E4S 4000 PR121-LSI In4000	Setting: 0.9	Setting: 8.5	Off
	Curve: 12 s	Curve: 0.5s	
E3N 2500 PR121-LSI In2500	Setting: 1	Setting: 10	Off
	Curve: 3 s	Curve: 0.3s	
S7H 1600 PR211-LI In1600	Setting: 1		Setting: 10
	Curve: A		

Time-current curves

4 Protection coordination

Zone (or logical) discrimination

The zone discrimination is available with MCCB (T4 L-T6 L-T6L with PR223 EF) and ACB (with PR122 or PR123)
This type of coordination is implemented by means of a dialogue between current measuring devices that, when they ascertain that a setting threshold has been exceeded, give the correct identification and disconnection only of the zone affected by the fault.
In practice, it can be implemented in two ways

- the releases send information on the preset current threshold that has been exceeded to the supervisor system and the latter decides which protective device has to trip;
- in the event of current values exceeding its setting threshold, each protective device sends a blocking signal via a direct connection or bus to the protective device higher in the hierarchy (i.e. upstream with respect to the direction of the power flow) and, before it trips, it makes sure that a similar blocking signa has not arrived from the protective device downstream; in this way, only th protective device immediately upstream of the fault trips.

The first mode foresees tripping times of about one second and is used mainly in the case of not particularly high short-circuit currents where a power flow is not uniquely defined.
The second mode enables distinctly shorter tripping times: with respect to a time discrimination coordination, there is no longer any need to increase the intentional time delay progressively as we move closer to the source of the power supply. The maximum delay is in relation to the time necessary to detect any presence of a blocking signal sent from the protective device downstream Advantages:

- reduction of the tripping times and increase of the safety level;
- reduction of both the damages caused by the fault as well of the disturbances in the power supply network;
- reduction of the thermal and dynamic stresses on the circuit-breakers and on the components of the system;
large number of discrimination levels;
- redundancy of protections: in case of malfunction of zone discrimination, the tripping is ensured by the settings of the other protection functions of the circuit-breakers. In particular, it is possible to adjust the time-delay protection functions against short-circuit at increasing time values, the closer they are to the network's feeder.

Disadvantages:

- higher costs;
- greater complexity of the system (special components, additional wiring, auxiliary power sources, ...).

This solution is therefore used mainly in systems with high rated current and high short-circuit current values, with precise needs in terms of both safety and continuity of service: in particular, examples of logical discrimination can be often found in primary distribution switchboards, immediately downstream of transformers and generators and in meshed networks.

4 Protection coordination

Zone selectivity for circuit-breakers type Emax with PR123 releases

The example above shows a plant wired so as to guarantee zone selectivity with Emax CB equipped with PR122/P-PR123/P releases
Each circuit-breaker detecting a fault sends a signal to the circuit-breake mmediately on the supply side through a communication wire; the circuit-breaker hat does not receive any communication from the circuit-breakers on the load side shall launch the opening command.
n this example, with a fault located in the indicated point, the circuit-breakers and E do not detect the fault and therefore they do not communicate with the circuit-breaker on the supply side (circuit-breaker B), which shall launch the opening command within the selectivity time set from 40 to 200 ms .

To actuate correctly zone selectivity, the following settings are suggested:
S
G
Selectivity time

```
= selectivity time
3 = OFF
4 = selectivity time
same settings for each circuit-breaker
```

4 Protection coordination
Zone selectivity for circuit-breakers type Tmax (T4L-T5L-T6L) with PR223 EF releases

The example above shows a plant wired through an interlocking protocol (Interlocking, IL), so as to guarantee zone selectivity through PR223 EF release. In case of short-circuit, the circuit-breaker immediately on the supply side of the fault sends through the bus a block signal to the protection device hierarchically higher and verifies, before tripping, that an analogous block signal has not been sent by the protection on the load side
In the example in the figure, the circuit-breaker C , immediately on the supply side of the fault, sends a block signal to the circuit-breaker A, which is hierarchically higher. If, as in the given example, no protection on the load side is present, the circuit-breaker C shall open in very quick times since it has received no block signal.
Everything occurs in shorter times (10 to 15ms) than in the case of zone selectivity with the Emax series air circuit-breaker (40 to 200ms), thus subjecting the plant to lower electrodynamic stresses, and with a consequent cost reduction for the plant.

4 Protection coordination

Energy discrimination

Energy coordination is a particular type of discrimination that exploits the current imiting characteristics of moulded-case circuit-breakers. It is important to remember that a current-limiting circuit-breaker is "a circuit-breaker with a break time short enough to prevent the short-circuit current reaching its otherwise attainable peak value" (IEC 60947-2, def. 2.3).
In practice, ABB SACE moulded-case circuit-breakers of Isomax and Tmax series, under short-circuit conditions, are extremely rapid (tripping times of about some milliseconds) and therefore it is impossible to use the time-current curves or the coordination studies.
The phenomena are mainly dynamic (and therefore proportional to the square of the instantaneous current value) and can be described by using the specific et-through energy curves.
In general, it is necessary to verify that the let-through energy of the circuitbreaker downstream is lower than the energy value needed to complete the opening of the circuit-breaker upstream.
This type of discrimination is certainly more difficult to consider than the previous ones because it depends largely on the interaction between the two devices placed in series and demands access to data often unavailable to the end user. Manufacturers provide tables, rules and calculation programs in which the minimum discrimination limits are given between different combinations of circuitbreakers.

Advantages:

- fast breaking, with tripping times which reduce as the short-circuit current increases;
- reduction of the damages caused by the fault (thermal and dynamic stresses), of the disturbances to the power supply system, of the costs...;
- the discrimination level is no longer limited by the value of the short-time withstand current I_{cw} which the devices can withstand;
- large number of discrimination levels:
- possibility of coordination of different current-limiting devices (fuses, circuit breakers...) even if they are positioned in intermediate positions along the chain.

Disadvantage:

- difficulty of coordination between circuit-breakers of similar sizes.

This type of coordination is used above all for secondary and final distribution networks, with rated currents below 1600A.

Back-up protection

The back-up protection is an "over-current coordination of two over-current protective devices in series where the protective device, generally but not hecessarily on the supply side, effects the over-current protection with or without the assistance of the other protective device and prevents any excessive stress on the latter" (IEC 60947-1, def. 2.5.24).
Besides, IEC 60364-4-43, § 434.5.1 states: "... A lower breaking capacity is admitted if another protective device having the necessary breaking capacity is installed on the supply side. In that case, characteristics of the devices, mus be co-ordinated so that the energy let through by these two devices does not exceed that which can be withstood without damage by the device on the load side and the conductors protected by these devices."

4 Protection coordination

Advantages:

cost-saving solution;

- extremely rapid tripping.

Disadvantages:

extremely low discrimination values
low service quality, since at least two circuit-breakers in series have to trip.

Coordination between circuit-breaker and switch disconnector

The switch disconnector

The switch disconnectors derive from the corresponding circuit-breakers, of which they keep the overall dimensions, the fixing systems and the possibility which they keep the overall dimensions, the fixing systems and the possibiity
of mounting all the accessories provided for the basic versions. They are device which can make, carry and break currents under normal service conditions of the circuit.
They can also be used as general circuit-breakers in sub-switchboards, as bus-ties, or to isolate installation parts, such as lines, busbars or groups of oads.
Once the contacts have opened, these switches guarantee isolation thanks to their contacts, which are at the suitable distance to prevent an arc from striking in compliance with the prescriptions of the standards regarding aptitude to isolation.

Protection of switch disconnectors

Each switch disconnector shall be protected by a coordinated device which safeguards it against overcurrents, usually a circuit-breaker able to limit the short-circuit current and the let-through energy values at levels acceptable for the switch-disconnector.
As regards overload protection, the rated current of the circuit-breaker shall be ower than or equal to the size of the disconnector to be protected.
Regarding Isomax and Tmax series switch disconnectors the coordination tables show the circuit-breakers which can protect them against the indicated prospective short-circuit currents values.
Regarding Emax series switch disconnectors it is necessary to verify that the short-circuit current value at the installation point is lower than the short-time withstand current I_{cw} of the disconnector, and that the peak value is lower than the making current value $\left(I_{\mathrm{cm}}\right)$.

4 Protection coordination

2 Discrimination table

The tables below give the selectivity values of short-circuit currents (in KA between pre-selected combinations of circuit-breakers, for voltages from 380 to 415 V . The tables cover the possible combinations of ABB SACE Emax air irculbrear serd th The valus are obained following particular rus which, if
give selectivity values which in some cases may be much lower then, may given. Some of these guidelines are generally valid and are indicated below thers refer exclusively to particular types of circuit-breakers and will be subject to notes below the relevant table.

General rules:

the function I of electronic releases (PR121-PR122-PR123, PR211/P-PR212/ P, PR221DS-PR222DS/P) of upstream breakers must be excluded (I3 in OFF) - the magnetic trip of thermomagnetic (TM) or magnetic only (MA-MF) breakers positioned upstream must be $\geq 10 \cdot I_{n}$ and set to the maximum threshold;
it is fundamentally important to verify that the settings adopted by the user for the electronic and thermomagnetic releases of breakers positioned either upstream or downstream result in time-current curves properly spaced.

Notes for the correct reading of the coordination tables:

The limit value of selectivity is obtained considering the lower among the given value, the breaking capacity of the CB on the supply side and the breaking capacity of the CB on the load side.
The letter T indicates total selectivity for the given combination, the corresponding value in KA is obtained considering the lower of the downstream and upstream circuit-breakers' breaking capacities (Icu).

The following tables show the breaking capacities at 415Vac for SACE Emax somax and Tmax circuit-breakers.

Tmax @ 415V ac		Isomax @ 415V ac		Emax @ 415V ac	
Version	Icu [kA	Version	Icu [kA]	Version	Icu [kA]
B	16	N	35*	B	42
C	25	S	50	N	65**
N	36	H	65	S	$75^{* *}$
S	50	L	100	H	100
H	70			L	130
L (for T2)	85	Versions	ritifed at 36 kA	V	$150{ }^{* * * *}$
L (for T4-T5)	120	For Ema	E1 version N Icu=	kA	
L (for T6)	100	For Ema	E2 version S Icu=8		
V	200	${ }^{* * * *}$ For Emax	E3 version V Icu=	0 kA	
Keys					
For MCCB (Moulded-case circuit-breaker) ACB (Air circuit-breaker) TM = thermomagnetic release - TMD (Tmax) - TMA (Tmax) - T adjustable M adjustable (Isomax) $M=$ magnetic only release - MF (Tmax) - MA (Tmax) EL = elettronic release -PR121/P - PR122/P - PR123/P - PR211/P - PR212/P (Isomax) - PR221DS - PR222DS (Tmax)			For MCB (Miniatu $\mathrm{B}=$ charatteristic C = charatteristic $\mathrm{D}=$ charatteristic $\mathrm{K}=$ charatteristic $\mathrm{Z}=$ charatteristic	circuit-breaker) ($13=3 . . .5 \mathrm{ln}$) ($13=5 \ldots 10 \mathrm{ln}$) $(13=10 \ldots 20 \ln)$ (13=8...141n) $(13=2 \ldots 3 \ln)$	

4 Protection coordination

xample:

rom the selectivity table on page 213 it can be seen that breakers E2N1250 and T5H400, correctly set, are selective up to 55kA (higher than the short-circuit current at the busbar).
From the selectivity table on page 206 it can be seen that, between T5H400 and T1N160 $\ln 125$, the total sectivity is granted; as aleady specified on pag 189 this means selectivity up to the breaking capacity of T1N and therefore up to 36 kA (higher than the short-circuit current at the busbar).

From the curves it is evident that between breakers E2N1250 and T5H400 time discrimination exists, while between breakers T5H400 and T1N160 there is energy discrimination

4 Protection coordination

Discrimination tables MCB-MCB

MCB-S2. B @ 415V

							Supply s.					
							S290		S500			
	Char.						D		D			
		Icu [kA					1					
	B	6	10	15	25	In [A]	80	100	32	40	50	63
$\left\lvert\, \begin{aligned} & \dot{\infty} \\ & \underset{\tilde{0}}{\square} \end{aligned}\right.$		-	-	-	-	≤ 2						
		-	-	-	-	3						
		-	-	-	-	4						
		-	S200	S200M	S200P	6	10.5	T	1.5	2	3	5.5
		-	S200	S200M	S200P	8	10.5	T	1.5	2	3	5.5
		-	S200	S200M	S200P	10	5	8	1	1.5	2	3
		-	S200	S200M	S200P	13	4.5	7		1.5	2	3
		-	S200	S200M	S200P	16	4,5	7			2	3
		-	S200	S200M	S200P	20	3.5	5				2.5
		-	S200	S200M	S200P	25	3.5	5				
		-	S200	S200M-S200P	-	32		4.5				
		-	S200	S200M-S200P	-	40						
		-	S200	S200M-S200P	-	50						
		-	S200	S200M-S200P	-	63						

MCB - S2.. C @ 415V

Discrimination tables MCB-MCB

MCB - S2.. D @ 415V

MCB - S2.. Z @ 415V

							Supply s.					
							S290		S500			
	Char.Icu [kA]						D		D			
							1					
	z	6	10	15	25	$\ln [\mathrm{A}]$	80	100	32	40	50	63
		-	S200	-	S200P	≤ 2	T	T	T	T	T	T
		-	S200	-	S200P	3	T	T	3	6	T	T
		-	S200	-	S200P	4	T	T	2	3	6	T
		-	S200	-	S200P	6	10.5	T	1.5	2	3	5.5
		-	S200	-	S200P	8	10.5	T	1.5	2	3	5.5
		-	S200	-	S200P	10	5	8	1	1.5	2	3
		-	-	-	S200P	13	4.5	7	1	1.5	2	3
		-	S200	-	S200P	16	4.5	7	1	1.5	2	3
		-	S200	-	S200P	20	3.5	5		1.5	2	2.5
		-	S200	-	S200P	25	3.5	5			2	2.5
		-	S200	S200P	-	32	3	4.5				2
		-	S200	S200P	-	40	3	4.5				
		-	S200	S200P	-	50		3				
		-	S200	S200P	-	63						

MCB - S2.. K @ 415V

Discrimination tables MCB/MCCB - S500
MCB/MCCB-S500 @415V

$\left.{ }^{11} 2\right)$ Value for the supply side magnetic only 12 circuit-breaker.
(2) Value for the supply side magnetic only $T 2$-T3 circuit-breaker
${ }^{\text {3) }}$ (4) Value for the supply side magnetic only $T 3$ circuit-breaker.

Discrimination tables MCCB - S2.

MCCB - S2. B @ 415V

[^2]Discrimination tables MCCB - S2..
mCCB-s2. C @ 415V

荡
C

Icu [kA]			
6	10	15	25
-	S200	S200M	S200P
-	S200	S200M	S200P
-	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M	S200P
S200L	S200	S200M-S200P	-
S200L	S200	S200M-S200P	-
-	S200	S200M-S200P	-
-	S200	S200M-S200P	-
-	-	S290	-
-	-	S290	-
-	-	S290	-

Version	B, C, N, S, H, L						B, C, N, S, H, L, V																										
$\begin{array}{\|l} \text { Release } \\ \hline \text { Supply s. } \\ \hline \end{array}$	TM T2							тM																		EL							
								T1-T2-T3					T3		T4										T5	T2					T4		$\begin{array}{\|c\|} \hline \text { T5 } \\ \hline 320+ \\ 630 \\ \hline \end{array}$
$\ln [\mathrm{A}]$	12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{array}{\|c\|} \hline 320+i \\ 500 \end{array}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \\ \hline \end{array}$	
≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T ${ }^{4}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T4)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
6	$5.5{ }^{\text {(1) }}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
8			5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
10			31)	3	3	3	4.5	7.5	8.5	17	T	T	T	T	5	54)	5	6.5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
13			$3{ }^{(1)}$		3	3	4.5	7.5	7.5	12	20	T	T	T		5^{44}	5	6.5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
16					$3^{(1)}$	3	4.5	5	7.5	12	20	T	T	T		3^{44}	5	6.5	8	T	T	T	T	T	T			T	T	T	T	T	T
20					$3^{(1)}$		3	5	6	10	15	T	T	T				5	7.5	T	T	T	T	T	T			T	T	T	T	T	T
25							3^{17}	5	6	10	15	T	T	T				5	7.5	T	T	T	1	T	T			T	T	T	T	T	T
32							$3^{(1)}$		6	7.5	12	T	T	T				54)	7.5	T	T	T	T	T	T			T	T	T	T	T	T
40									5.50)	7.5	12	T	T	T					6.5	T	T	T	T	T	T				T	T	T	T	T
50									$3^{(1)}$	$5{ }^{22}$	7.5	10.5	T	T					5^{44}	T	T	T	T	T	T				10.5	10.5	T	T	T
63										$5{ }^{22}$	$6{ }^{(3)}$	10.5	T	T						T^{44}	T ${ }^{4}$	T	T	T	T					10.5	T	T	T
80												$4^{(3)}$	10	15								5	11	T	T					4	T ${ }^{5}$	T	T
100												$4^{(3)}$	$7.5{ }^{33}$	15								5^{44}	8	T	T					4	$12^{(4)}$	T	T
125													7.5^{33}										$8^{(4)}$	12	T					4		T	T

${ }^{(1)}$ Value for the supply side magnetic only T2 circuit-breaker
${ }^{(2)}$ Value for the supply side magnetic only T2-T3 circuit-breake
(3) Value for the supply side magnetic only T3 circuit-breaker
${ }^{5}$) Value for the supply side T4 In160 circuit-breaker.

Discrimination tables MCCB - S2..
MCCB - S2.. D @ 415V

						Version			B, C,	N, S,														B, C,	N, S,	H, L, V													
						$\begin{gathered} \text { Release } \\ \text { Supply s. } \\ \hline \quad \ln [\mathrm{A}] \end{gathered}$	TM							TM																		EL							
	Char.	Icu [kA]					T2	T1-T2						T1-T2-T3					T3		T4										T5	T2					T4		T5 $320 \div$ 630
		6	10	15 25			12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\left.\begin{gathered} 320 \div \\ 500 \end{gathered} \right\rvert\,$	10	25	63	100	160	$\begin{aligned} & \hline 100 \\ & 160 \end{aligned}$	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	
$\begin{array}{\|l\|l} \hline \dot{0} \\ \stackrel{0}{0} \end{array}$	D	-	S200	S200M	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$T^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T ${ }^{4}$)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T(4)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	6	5.5 ${ }^{(1)}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	12	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	10			$3{ }^{\text {(1) }}$	3	3	3	3	5	8.5	17	T	T	T	T	5	$5{ }^{(4)}$	5	5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	13					$2^{(1)}$	2	2	3	5	8	13.5	T	T	T		5^{44}		4	5.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	16					2^{14}	2	2	3	5	8	13.5	T	T	T				4	5.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	20					2^{11}		2	3	4.5	6.5	11	T	T	T				44)	5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	25							$2^{\text {(1) }}$	2.5	4	6	9.5	T	T	T				44)	4.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	32									4	6	9.5	T	T	T					4.54)	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	40									$3^{\text {(1) }}$	5	8	T	T	T					4.54)	$\mathrm{T}^{(4)}$	T	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									$2^{\text {(1) }}$	322	5	9.5	T	T						T^{44}	T ${ }^{(4)}$	T	T	T	T				9.5	9.5	T	T	T
		-	S200	S200M-S200P	-	63										$3{ }^{22}$	$5^{(3)}$	9.5	T	T							T ${ }^{4}$	T^{44}	T	T	T					9.5	T	T	T
		-	-	S290	-	80												4^{43}	10	15								5	11	T	T					4	T ${ }^{\text {f }}$	T	T
		-	-	S290	-	100												4^{33}	$7.5{ }^{313}$	15									8	T	T					4	12^{56}	T	T
		-	-	-	-	125																																	

${ }^{\text {(1) }}$ Value for the supply side magnetic only T2 circuit-breaker
3) Value for the supply side magnetic only T3 circuit-breake
${ }^{4}$) Value for the supply side magnetic only T4 circuit-breaker
${ }^{\text {(5) }}$ Value for the supply side T4 In160 circuit-breaker.

Discrimination tables MCCB - S2.
MCCB - S2. K @ 415V

						Version			B, C,	N, S,														B, C,	, N, S, H,	H, L, V													
						Release Supply s. $\ln [A]$	T2 TM							TM																		EL							
	Char.	$\mathrm{Icu}[\mathrm{KA}]$												T1-T2-T3					T3		T4										T5	T2					T4		$\begin{array}{\|l\|l\|} \hline & \text { T5 } \\ \hline 0 & 320+ \\ 0 & 630 \\ \hline \end{array}$
		6	10	15	25		12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{array}{\|l\|} \hline 320+ \\ 500 \end{array}$	10	25	63	100	160	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \\ \hline \end{array}$	
$\left\lvert\, \begin{aligned} & \dot{\infty} \\ & \stackrel{\text { g}}{2} \end{aligned}\right.$	K	-	S200	S200M	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T^{44}	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T(4)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T4)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	6	$5.51{ }^{\text {(1) }}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	12	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	10			3 (i)	3	3	3	3	6	8.5	17	T	T	T	T		54)	5	5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	-	-	S200P	13					$2^{(1)}$	3	3	5	7.5	10	13.5	T	T	T		54)	5	5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	16					$2^{(1)}$	3	3	4.5	7.5	10	13.5	T	T	T		54)		5	8	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	20					$2^{\text {(1) }}$		3	3.5	5.5	6.5	11	T	T	T				5	6	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	25							$2^{(1)}$	3.5	5.5	6	9.5	T	T	T				5^{44}	6^{44}	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	32									4.5	6	9,5	T	T	T				5^{44}	6^{44}	T(4)	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	40									$3^{\text {(i) }}$	5	8	T	T	T					5.54)	$\mathrm{T}^{4} \mathrm{~T}^{\text {a }}$	T^{44}	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									$2^{11)}$	32)	6	9.5	T	T					54)	T(4)	T ${ }^{4}$	$T^{(4)}$	T	T	T				9.5	9.5	T	T	T
		-	S200	S200M-S200P	-	63										32)	$5.5^{(3)}$	9.5	T	T						T(4)	T4)	$\mathrm{T}^{(4)}$	T ${ }^{4}$	T	T					9.5	T	T	T
		-	-	S290	-	80												$4^{(3)}$	10	15								5	11	T	T					4	$T^{\text {® }}$	T	T
		-	-	S290	-	100												$4^{(3)}$	$7.5{ }^{531}$	15								5^{44}	8	T	T					4	$12^{\text {6] }}$	T	T
		-	-	-	-	125																																	

${ }^{(1)}$ Value for the supply side magnetic only T 2 circuit-breaker.
${ }^{(2)}$ Value for the supply side magnetic only T2-T3 circuit-breake
${ }^{\text {3 }}$) Value for the supply side magnetic only T3 circuit-breake
${ }^{5)}$ Value for the supply side T4 In160 circuit-breaker.

Discrimination tables МССВ - S2.

mcce-s2. Z © 400V

						Version			B, C,	N, S, H														B, C,	N, S,	H, L, V													
							TM							TM																		EL							
	Char.	Icu [kA]				Supply s.	T2	T1-T2						T1-T2-T3					T3		T4										$\begin{array}{\|c\|} \hline \text { T5 } \\ \hline 320+ \\ 500 \\ \hline \end{array}$	T2					T4		$\begin{array}{\|c\|c\|} \hline & \text { T5 } \\ \hline 0 & 320+ \\ 0 & 630 \\ \hline \end{array}$
		6	10	15	25	$\ln [\mathrm{A}]$	12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250		10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \\ \hline \end{array}$	
	z	-	S200	-	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$T^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$T^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	6	$5.5^{(t)}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	10			$3^{\text {(1) }}$	3	3	3	4.5	8	8.5	17	T	T	T	T	5	54)	5	6.5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	-	-	S200P	13			317)		3	3	4.5	7.5	7.5	12	20	T	T	T		54)	5	6.5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	16					$3^{(1)}$	3	4.5	5	7.5	12	20	T	T	T		5^{44}	4.5	6.5	8	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	-	S200P	20					$3^{\text {(t) }}$		3	5	6	10	15	T	T	T				5	6.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	-	S200P	25							$3^{(1)}$	5	6	10	15	T	T	T				5	6.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200P	-	32							$3^{(1)}$		-	7.5	12	T	T	T				5^{44}	6.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200P	-	40									$5.5{ }^{(1)}$	7.5	12	T	T	T					5	T	T	T	T	T	T				T	T	T	T	T
		-	S200	S200P	-	50									$4^{(1)}$	521	7.5	10.5	T	T					3.544	T	T	T	T	T	T				10.5	10.5	T	T	T
		-	S200	S200P	-	63										5^{22}	$6^{(3)}$	10.5	T	T						$\mathrm{T}^{(4)}$	T	T	T	T	T					10.5	T	T	T
		-	-	-	-	80																																	
		-	-	-	-	100																																	
		-	-	-	-	125																																	

(1) Value for the supply side magnetic only $T 2$ circuit-breaker.
(2) Value for the supply side magnetic only T2-T3 circuit-breaker.
(3) Value for the
$\left.{ }^{4}\right)$ Value for the supply side magnetic only T4 circuit-breake.

4 Protection coordination

4 Protection coordination

Discrimination tables MCCB - MCC

MCCB-T1 @ 415V

*Value for the supply side magnetic only circuit-breaker.

Discrimination tables MCCB - MCCB

MCCB T2 @ 415V

Value for the supply side magnetic only circuit-breaker.

Discrimination tables MCCB - MCCB
MCCB - T3 @ 415V

* Value for the supply side magnetic only circuit-breaker.

MCCB - T4 @ 415V

* Value for the supply side magnetic only circuit-breaker.

4 Protection coordination

Discrimination tables MCCB - MCCB

MCCB-T5 @ 415V

				ply s.			T6				S7	
	Version				N,S,H,L					S,H,L		
		Release			TM,M		EL			EL		
			${ }_{1}[\mathrm{~A}]$		630	800	630	800	1000		50	1600
Load s.				In_{n} [A]	630	800	630	800	1000	1000	1250	1600
T5	$\begin{aligned} & \mathrm{N}, \\ & \mathrm{~S}, \\ & \mathrm{H}, \\ & \mathrm{~L}, \\ & \mathrm{~V} \end{aligned}$	тM	400	320	30	30	30	30	30	T	T	T
				400		30		30	30	T	T	T
			630	500				30	30	T	T	T
		EL	400	320	30	30	30	30	30	T	T	T
				400	30	30	30	30	30	T	T	T
			630	630					30	T	T	T

MCCB - T6 @ 415V

4 Protection coordination

Discrimination tables ACB - MCCB

ACB - MCCB @ 415V

Table valid for Emax circuit-breaker only with PR121/P, PR122/P and PR123/P release *Emax L circuit-breakers only with PR122/P and PR123/P releases

4 Protection coordination
4.3 Back-up tables

The tables shown give the short-circuit current value (in KA) for which the backup protection is verified for the chosen circuit-breaker combination, at voltages from 380 up to 415 V . These tables cover all the possible combinations between ABB SACE moulded-case circuit-breakers Isomax and Tmax and those between the above mentioned circuit-breakers and ABB MCBs.

Notes for a correct interpretation of the coordination

 tables:| Tmax @ 415V ac | |
| :--- | :---: |
| Version | Icu $[k A]$ |
| B | 16 |
| C | 25 |
| N | 36 |
| S | 50 |
| H | 70 |
| L (for T2) | 85 |
| L (for T4-T5) | 120 |
| L (for T6) | 100 |
| V | 200 |

Isomax @ 415V ac	
Version	
N	Icu [kA]
S	35^{\star}
H	50
L	65

*orsions certified at 36 kA
Fmax E1 version N Icu $=50 \mathrm{kA}$
**** For Er

Keys

For MCCB (Moulded-case circuit-breaker) ACB (Air circuit-breaker)	For MCB (Miniature circuit-breaker): $B=$ charateristic trip $(13=3 \ldots 5 \mathrm{n})$
TM = thermomagnetic release	$\mathrm{C}=$ charateristic trip ($13=5 . . .10 \mathrm{In}$)
- TMD (Tmax)	$\mathrm{D}=$ charateristic trip (13=10...20in)
- TMA (Tmax) - T adiustable M adiustable (Isomax)	$\mathrm{K}=\text { charateristic trip (} 13=8 . . .14 \mathrm{ln} \text {) }$ Z = charateristic trip (I3=2...3n
$\begin{aligned} \text { M } & =\text { magnetic only release } \\ & - \text { MF (Tmax) } \\ & - \text { MA (Tmax) } \end{aligned}$	
$\mathrm{EL}=$ elettronic release - PR121/P - PR122/P - PR123/P (Emax) - PR211/P - PR212/P (Isomax) -PR221DS - PR222DS (Tmax)	

4 Protection coordination

Example:

From the coordination table on page 217 the following conclusion is derived the circuit-breakers type T5H and T1N are coordinated in back-up protection up to a value of 65 kA (higher than the short-circuit current measured at the installation point), although the maximum breaking capacity of T1N , at 415 V , is
36 kA.

MCB - MCB @ 240V

			Supply s.	S 200 L	S200	s200м	S20	OP	S280	S290	S500
	Char.			c	B-C	B-C	в-C	B-C	B-C	C	B-C
Load s.		Icu [kA]		10	20	25	40	40	20	25	100
			$\ln [A]$	6.40	0.5.63	0.5.63	0.5. 25	32.63	80, 100	80.125	$6 . .63$
S931 N	c	4.5	2.40	10	20	25	40	25	15	15	100
S941 N	B, C	6	2.40	10	20	25	40	25	15	15	100
S951 N	B, C	10	2.40	10	20	25	40	25	15	15	100
S971 N	B, C	10	2.40	10	20	25	40	25	15	15	100
S200L	C	10	6.40		20	25	40	25	15	15	100
S200	B,C,K,Z	20	0.5..63			25	40	25			100
S200M	B,C, D	25	0.5..63				40				100
S200P	$\begin{gathered} \hline \mathrm{B}, \mathrm{C}, \\ \mathrm{D}, \mathrm{~K}, \mathrm{Z} \end{gathered}$	40	0.5..25								100
		25	32..63								100
S280	B,C	20	80, 100								
S290	C, D	25	80.125								
5500	B,C,D		$6 . .63$								

			Supply s.	s200L	S200	s200M	S20	OOP	S280	S290	S500
	Char.			C	B-C	B-C	B-C	B-C	B-C	C	B-C
Loads.		Icu [kA]		6	10	15	25	15	6	15	50
			$\ln [\mathrm{A}]$	6.40	0.5.63	0.5.63	0.5.25	32.63	80, 100	80.125	$6 . .63$
S200L	C	6	6.40		10	15	25	15		15	50
S200	B,C,K,Z	10	0.5..63			15	25	15		15	50
S200M	B,C,D	15	0.5..63				25				50
S200P	$\begin{gathered} \hline \mathrm{B}, \mathrm{C}, \\ \mathrm{D}, \mathrm{~K}, \mathrm{Z} \\ \hline \end{gathered}$	25	0.5.25								50
		15	32..63								
S280	B, C	6	80, 100								
S290	C, D	15	$80 . .125$								
S500	B, C, D	50	6.63								

MCCB - MCB @ 415V

MCCB - MCCB @ 415V

		Supply s.	T1	T1	T2	T3 ${ }^{\text {T }}$	T4 ${ }^{\text {T }}$	T5 T	T6 ${ }^{\text {T }}$		т3 ${ }^{\text {T }}$	T4 ${ }^{\text {T }}$	T5 ${ }^{\text {T }}$	T6 ${ }^{\text {S }}$	S7		T4	T5	T6	S7	T2	T4 ${ }^{\text {T5 }}$		S7		T5
		Version	c			N						S						H			L	L		L		V
Load side	Version	Icu [kA]				36						50					70			65	85	120		100		200
T1	B	16	25	36	36	36	30	30	30	505	50	36	36	36		70	40	40	40		85	5050	50		85	85
T1	c	25		36	36	36	36	36	36	505	50	404	405	505	50	70	65	65	65	50	85	8585	70	50	130	0100
T1										505	505	505	505	505	50	70	65	65	65	50	85	100100	70	50	200	
T2										505	505	505	505	505	50	70	65	65	65	65	85	100100	85	85	200	
T3	N	36									505	505	505	505	50		65	65	65	50		100100	100	50	200	
T4												505	505	505	50		65	65	65	50		100100	65	65	200	
T5													505	505	50			65	65	50		100	85	65		120
T6														504	40				65	40			70	50		
T2																	70	70	70	65	85	100100	85	85		
T3																	70	70	70			100100	100		200	
T4	s	50															70	70	70	65		100100	85	85	200	
T5																		70	70	65		100	85	85		150
T6																			70				85	85		
T2																					85	120120	85	85	200	0150
T4	H																					120120	100	100	200	0150
T5	H	70																				120	100	100		150
T6																							100	85		
T2		85																				120120			200	0180
T4	L																								200	020
T5		120																								200

4 Protection coordination

4.4 Coordination tables between circuit-

breakers and switch disconnectors
The tables shown give the values of the short-circuit current (in kA) for which back-up protection is verified by the pre-selected combination of circuit-breaker and switch disconnector, for voltages between 380 and 415 V . The tables cover the possible combinations of moulded-case circuit-breakers in the ABB SACE somax and Tmax series, with the switch disconnectors detailed above.

4 Protection coordination

Notes for the correct reading of the coordination tables:

[^3]4.4 Coordination tables between circuit-breakers and switch disconnectors

4 Protection coordination

Example:
From the coordination table on page 218-219 it can be seen that circuit-breaker T2S160 is able to protect the switch disconnector T1D160 up to a short-circuit current of 50 kA (higher than the short-circuit current at the installation point). Overload protection is also verified, as the rated current of the breaker is not higher than the size of the disconnector.
4.4 Coordination tables between circuit-breakers and switch disconnectors

4 Protection coordination

Example:
For the correct selection of the components, the disconnector must be protected from overloads by a device with a rated current not greater han the size of the disconnector, while in short-circuit conditions it must be verified that:
$\mathrm{cw}_{\mathrm{w}} \geq \mathrm{l}_{\mathrm{k}}$
$m \geq 1$
Therefore, with regard to the electrical parameters of the single devices, Emax E2N1250/MS disconnector is selected, and a F2N1250 breaker That is:
(E2N $/$ MS $)=55 \mathrm{kA}>45 \mathrm{kA}$
$\mathrm{cm}(E 2 N / M S)=143 \mathrm{kA}>100 \mathrm{kA}$

5 Special applications

5.1 Direct current networks
 Main applications of direct current:

- Emergency supply or auxiliary services:
the use of direct current is due to the need to employ a back-up energy source which allows the supply of essential services such as protection services, emergency lighting, alarm systems, hospital and industrial services, data-processing centres etc., using accumulator batteries, for example.
- Electrical traction:
the advantages offered by the use of dc motors in terms of regulation and of single supply lines lead to the widespread use of direct current for railways, underground railways, trams, lifts and public transport in general.
- Particular industrial installations:
there are some electrolytic process plants and applications which have a particular need for the use of electrical machinery.
Typical uses of circuit-breakers include the protection of cables, devices and the operation of motors.

Considerations for the interruption of direct current

Direct current presents larger problems than alternating current does in terms of the phenomena associated with the interruption of high currents. Alternating currents have a natural passage to zero of the current every half-cycle, which corresponds to a spontaneous extinguishing of the arc which is formed when the circuit is opened
This characteristic does not exist in direct currents, and furthermore, in order to extinguish the arc, it is necessary that the current lowers to zero.
The extinguishing time of a direct current, all other conditions being equal, is proportional to the time constant of the circuit $T=L / R$.
It is necessary that the interruption takes place gradually, without a sudden switching off of the current which could cause large over-voltages. This can be carried out by extending and cooling the arc so as to insert an ever higher esistance into the circuit.
The energetic characteristics which develop in the circuit depend upon the voltage level of the plant and result in the installation of breakers according to connection diagrams in which the poles of the breaker are positioned in series to increase their performance under short-circuit conditions. The breaking capacity of the switching device becomes higher as the number of contacts which open the circuit increases and, therefore, when the arc voltage applied is arger.
This also means that when the supply voltage of the installation rises, so must the number of current switches and therefore the poles in series.

5 Special applications

Calculation of the short-circuit current of an accumulator battery The short-circuit current at the terminals of an accumulator battery may be supplied by the battery manufacturer, or may be calculated using the following formula:

$$
I_{k}=\frac{U_{M a x}}{R_{i}}
$$

where:
UMax is the maximum flashover voltage (no-load voltage);

- R_{i} is the internal resistance of the elements forming the battery

The internal resistance is usually supplied by the manufacturer, but may be calculated from the discharge characteristics obtained through a test such as detailed by IEC 60896-1 or IEC 60896-2.
For example, a battery of 12.84 V and internal resistance of 0.005Ω gives a short-circuit current at the terminals of 2568 A.
Under short-circuit conditions the current increases very rapidly in the initial moments, reaches a peak and then decreases with the discharge voltage of the battery. Naturally, this high value of the fault current causes intense heating inside the battery, due to the internal resistance, and may lead to explosion. Therefore it is very important to prevent and / or minimize short-circuit currents in direct currents systems supplied by accumulator batteries.

Criteria for the selection of circuit-breakers

For the correct selection of a circuit-breaker for the protection of a direct current hetwork, the following factors must be considered:
1.the load current, according to which the size of the breaker and the setting for the thermo-magnetic over-current release can be determined;
2.the rated plant voltage, according to which the number of poles to be connected in series is determined, thus the breaking capacity of the device can also be increased;
3.the prospective short-circuit current at the point of installation of the breaker influencing the choice of the breaker;
4.the type of network, more specifically the type of earthing connection.

Note: in case of using of four pole circuit-breakers, the neutral must be at 100%

Direct current network types

Direct current networks may be carried out
with both polarities insulated from earth;

- with one polarity connected to earth;
- with median point connected to earth

5 Special applications

Network with both polarities insulated from earth

- Fault a: the fault, without negligible impedance, between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage, according to which the breaking capacity of the breaker must be selected.
- Fault b: the fault between the polarity and earth has no consequences from the point of view of the function of the installation.
- Fault c: again, this fault between the polarity and earth has no consequences from the point of view of the function of the installation.
In insulated networks it is necessary to install a device capable of signalling the presence of the first earth fault in order to eliminate it. In the worst conditions, when a second earth fault is verified, the breaker may have to interrupt the short-circuit current with the full voltage applied to a single polarity and therefore with a breaking capacity which may not be sufficient.
In networks with both polarities insulated from earth it is appropriate to divide the number of poles of the breaker necessary for interruption on each polarity (positive and negative) in such a way as to obtain separation of the circuit.

The diagrams to be used are as follows:

Diagram A

Three-pole breaker with one pole per polarity

5 Special applications

Diagram B

Three-pole breaker with two poles in series for one polarity and one pole for the other polarity (1)

Diagram D

Four-pole breaker with two poles in parallel per polarity

Diagram G

Four-pole breaker with three poles in series on one polarity and one pole on the remaining polarity (1)

I) It is not advisable to divide the poles of the breaker unequally as, in this type of network second earth fault may lead to the single pole working under fault conditions at full voltage. In these circumstances, it is essential to install a device capable of signalling the earth fault or the loss of insulation of one polarity.

5 Special applications

Diagram H

Four-pole breaker with two poles in series per polarity

Network with one polarity connected to earth

- Fault a: the fault between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage U , according to which the breaking capacity of the breaker is selected.
- Fault b: the fault on the polarity not connected to earth sets up a current which involves the over-current protection according to the resistance of the ground.
- Fault c: the fault between the polarity connected to earth and earth has no consequences from the point of view of the function of the installation.
In a network with one polarity connected to earth, all the poles of the breaker necessary for protection must be connected in series on the non-earthed polarity. If isolation is required, it is necessary to provide another breaker pole on the earthed polarity.

5 Special applications

Diagrams to be used with circuit isolation are as follows:

Diagram A

Three-pole breaker with one pole per polarity

Diagram B

Three-pole breaker with two poles in series on the polarity not connected to earth, and one pole on the remaining polarity

Diagram D

Four-pole breaker with two poles in parallel per polarity

5 Special applications

Diagram G

our-pole breaker with three poles in series on the polarity not connected to earth, and one pole on the remaining polarity

Diagrams to be used without circuit isolation are as follows:

Diagram C

Three-pole breaker with three poles in series

Diagram E

Four-pole breaker with series of two poles in parallel

5 Special applications

Diagram F

Four-pole breaker with four poles in series on the polarity not connected to earth

Network with the median point connected to earth

- Fault a: the fault between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage U , according to which the breaking capacity of the breaker is selected
- Fault b: the fault between the polarity and earth sets up a short-circuit current less than that of a fault between the two polarities, as it is supplied by a voltage equal to 0.5 U
- Fault c: the fault in this case is analogous to the previous case, but concerns the negative polarity
With network with the median point connected to earth the breaker must be inserted on both polarities.

Diagrams to be used are as follows:

Diagram A

Three-pole breaker with one pole per polarity

5 Special applications

Diagram D

Four-pole breaker with two poles in parallel per polarity

Diagram H

Four-pole breaker with two poles in series per polarity

Use of switching devices in direct current

Parallel connection of breaker poles

According to the number of poles connected in parallel, the coefficients detailed in the following table must be applied:

Table 1: Correction factor for poles connected in parallel

number of poles in parallel	2	3	4 (neutral 100%)
reduction factor of dc carrying capacity	0.9	0.8	0.7
breaker current carrying capacity	$1.8 \times \ln$	$2.4 \times \ln$	$2.8 \times 1 n$

The connections which are external from the breaker terminals must be carried out by the user in such a way as to ensure that the connection is perfectly balanced.

5 Special applications

Example:

Using a Tmax T6N800 In800 circuit-breaker with three poles in parallel, a coefficient equal to 0.8 must be applied, therefore the maximum carrying current will be $0.8 \cdot 3 \cdot 800=1920 \mathrm{~A}$.

Behaviour of thermal releases

As the functioning of these releases is based on thermal phenomena arising from the flowing of current, they can therefore be used with direct current, their trip characteristics remaining unaltered.

Behaviour of magnetic releases

The values of the trip thresholds of ac magnetic releases, used for direct current, must be multiplied by the following coefficient $\left(k_{m}\right)$, according to the breake and the connection diagram:

Table 2: \mathbf{k}_{m} coefficient

Circuit-breaker	diagram A	diagram B	diagram C	diagram D	diagram E	$\underset{\mathbf{F}}{\text { diagram }}$	$\underset{\mathbf{G}}{ }$	diagram H
T1	1.3	1	1	-	-	-	-	-
T2	1.3	1.15	1.15	-	-	-	-	-
T3	1.3	1.15	1.15	-	-	-	-	-
T4	1.3	1.15	1.15	1	1	1	-	-
T5	1.1	1	1	0.9	0.9	0.9	-	-
T6	1.1	1	1	0.9	0.9	0.9	-	-

Example

Data:

- Direct current network connected to earth;

Rated voltage Ur = 250 V;

- Short-circuit current Ik $=32 \mathrm{kA}$
- Load current lb = 230 A

Using Table 3, it is possible to select the Tmax T3N250 In = 250 A three pole breaker, using the connection shown in diagram B (two poles in series for the polarity not connected to earth and one poles in series for the polarity connected o earth).
rom Table 2 corresponding to diagram B, and with breaker Tmax T3, it risults $k_{m}=1.15$; therefore the nominal magnetic trip will occur at 2875 A (taking into account the tolerance, the trip will occur between 2300 A and 3450 A).

5 Special applications

The following table summarizes the breaking capacity of the various circuit breakers available for direct current. The number of poles to be connected in series to guarantee the breaking capacity is given in brackets.

Table 3: Breaking capacity in direct current according to the voltage

Circuit-breaker	Rated current [A]	Breaking capacity [kA]			
		$\leq 125 \mathrm{~V}^{1}$	250 M	500 V]	750 N]
T1B160	$16 \div 160$	16 (1P)	20 (3P) - 16 (2P)	16 (3P)	
T1C160	$25 \div 160$	25 (1P)	30 (3P) - 25 (2P)	25 (3P)	
T1N160	$32 \div 160$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T2N160	$1.6 \div 160$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T2S160	$1.6 \div 160$	50 (1P)	55 (3P) - 50 (2P)	50 (3P)	
T2H160	$1.6 \div 160$	70 (1P)	85 (3P) - 70 (2P)	70 (3P)	
T2L160	$1.6 \div 160$	85 (1P)	100 (3P) - 85 (2P)	85 (3P)	
T3N250	$63 \div 250$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T3S250	$63 \div 250$	50 (1P)	55 (3P) - 50 (2P)	50 (3P)	
T4N250/320	$20 \div 250$	36 (1P)	36 (2P)	25 (2P)	16 (3P)
T4S250/320	$20 \div 250$	50 (1P)	50 (2P)	36 (2P)	25 (3P)
T4H250/320	$20 \div 250$	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T4L250/320	$20 \div 250$	100 (1P)	100 (2P)	70 (2P)	50 (3P)
T4V250/320	$20 \div 250$	100 (1P)	100 (2P)	100 (2P)	70 (3P)
T5N400/630	$320 \div 500$	36 (1P)	36 (2P)	25 (2P)	16 (3P)
T5S400/630	$320 \div 500$	50 (1P)	50 (2P)	36 (2P)	25 (3P)
T5H400/630	$320 \div 500$	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T5L400/630	$320 \div 500$	100 (1P)	100 (2P)	70 (2P)	50 (3P)
T5V400/630	$320 \div 500$	100 (1P)	100 (2P)	100 (2P)	70 (3P)
T6N630/800	630-800	36 (1P)	36 (2P)	20 (2P)	16 (3P)
T6S630/800	630-800	50 (1P)	50 (2P)	35 (2P)	20 (3P)
T6H630/800	630-800	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T6L630/800	630-800	100 (1P)	100 (2P)	65 (2P)	50 (3P)

imum allowed voltage 24 Vdc

5 Special applications

5.2 Networks at particular frequencies: 400 Hz and $162 / 3 \mathrm{~Hz}$

Standard production breakers can be used with alternating currents with frequencies other than $50 / 60 \mathrm{~Hz}$ (the frequencies to which the rated perfor mance of the device refer, with alternating current) as appropriate derating coefficients are applied.

5.2.1 400 Hz networks

At high frequencies, performance is reclassified to take into account phenomena uch as:
the increase in the skin effect and the increase in the inductive reactance directly proportional to the frequency causes overheating of the conductor or the copper components in the breaker which normally carry current;
the lengthening of the hysteresis loop and the reduction of the magnetic saturation value with the consequent variation of the forces associated with the magnetic field at a given current value.
n general these phenomena have consequences on the behaviour of both thermo-magnetic releases and the current interrupting parts of the circuitbreaker.

The following tables refer to circuit-breakers with thermomagnetic releases with a breaking capacity lower than 36 kA . This value is usually more than sufficient for the protection of installations where such a frequency is used normally characterized by rather low short-circuit currents.
As can be seen from the data shown, the tripping threshold of the therma element $\left(l_{n}\right)$ decreases as the frequency increases because of the reduced conductivity of the materials and the increase of the associated therma phenomena; in general, the derating of this performance is generally equal to 10%. Vice versa, the magnetic threshold $\left(I_{3}\right)$ increases with the increase in frequency: for this reason it is recommended practice to use a 5.1 version

5 Special applications

Table 1: Tmax performance T1 16-63 A TMD

		$11(400 \mathrm{~Hz})$			13		
T1B 160		MIN	MED	MAX	I3 (50Hz)	K_{m}	I3 (400Hz)
T1C 160	In16	10	12	14	500	2	1000
T1N 160	In20	12	15	18	500	2	1000
	In25	16	19	22	500	2	1000
	In32	20	24.5	29	500	2	1000
	In40	25	30.5	36	500	2	1000
	In50	31	38	45	500	2	1000
	In63	39	48	57	630	2	1260

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves
thermomagnetic release
T1 B/C/N 160
In 16 to 63 A
TMD

5 Special applications

Table 2: Tmax performance T1 80 A TMD

		11 (400Hz)			13		
T1B 160		MIN	MED	MAX	13 (50Hz)	K_{m}	I3 (400Hz)
T1C 160 T1N 160	In80	50	61	72	800	2	1600

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves

thermomagnetic release
T1 B/C/N 160

5 Special applications
Table 3: Tmax performance T2 1.6-80 A TMD

5 Special applications

Table 4: Tmax performance T3 63-250 A TMG

		11 (400Hz)			13 (Low magnetic setting)		
T3N 250		MIN	MED	MAX	13 (50Hz)	K_{m}	I3 (400Hz)
	In63	39	48	57	400	1.7	680
	$\ln 80$	50	61	72	400	1.7	680
	$\ln 100$	63	76.5	90	400	1.7	680
	In125	79	96	113	400	1.7	680
	In160	100	122	144	480	1.7	816
	In200	126	153	180	600	1.7	1020
	In250	157	191	225	750	1.7	1275

[^4]
Trip curves

hermomagnetic release
T3N 250

5 Special applications

Table 5: Tmax performance T3 63-125 A TMD

		$11(400 \mathrm{~Hz})$			13		
T3N 250		MIN	MED	MAX	13 (50Hz)	K_{m}	I3 (400Hz)
	In63	39	48	57	630	1.7	1071
	$\ln 80$	50	61	72	800	1.7	1360
	In100	63	76.5	90	1000	1.7	1700
	In125	79	96	113	1250	1.7	2125

$K_{m}=$ Multiplier factor of $l 3$ due to the induced magnetic fields

Trip curves
hermomagnetic release
T3N 250
In 63 to 125 A
TMD
t [s]

5 Special applications

$k_{m}=$ Mutiplier factor of l 3 due to the induced magnetic field

Trip curves
hermomagnetic release

4 N 250

In 20 to 50 A
TMD

5 Special applications

Table 7: Tmax performance T4N 80-250 A TMA

	$11(400 \mathrm{~Hz})$			13 setting (MIN=5xin)		
T4N 250/320	MIN	MED	MAX	I3 @ 5xin (50Hz)	K_{m}	$13 @ 5 x \ln (400 \mathrm{~Hz})$
In80	50	61	72	400	1.7	680
In100	63	76.5	90	500	1.7	850
In125	79	96	113	625	1.7	1060
In160	100	122	144	800	1.7	1360
In200	126	153	180	1000	1.7	1700
In250	157	191	225	1250	1.7	2125

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves
thermomagnetic release
T4N 250/320

n 80 to 250 A

TMA

5 Special applications

Table 8: Tmax performance T5N 320-500 A TMA

		$11(400 \mathrm{~Hz})$			13 setting (MIN=5xin)		
T5N400/630		MIN	MED	MAX	13 @ $5 \times \ln (50 \mathrm{~Hz})$	K_{m}	$13 @ 5 \times \ln (400) \mathrm{Hz}$
	In320	201	244	288	1600	1.5	2400
	$\operatorname{In} 400$	252	306	360	2000	1.5	3000
	In500	315	382	450	2500	1.5	3750

$K_{m}=$ Multiplier factor of $I 3$ due to the induced magnetic fields

Trip curves

thermomagnetic release

5 N 400/630

5 Special applications

Table 9: Tmax performance T5N 320-500 A TMG

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of I due to the induced magnetic fields

thermomagnetic release

5 Special applications

Table 10: Tmax performance T6N 630 A TMA

		$11(400 \mathrm{~Hz})$			$13=5 \div 10 \mathrm{ln}$ (set $13=5 \mathrm{ln}$)		
-	In630	MIN	MED	MAX	I3 (50Hz)	K ${ }_{\text {m }}$	I3 (400Hz)
	In630	397	482	567	3150	1.5	4725

Trip curves
thermomagnetic release
T6N 630
In 630 A
TMA

102
11

5 Special applications

table 11: Tmax performance T6N 800 A TMA

		11 (400Hz)			$13=5-10 \mathrm{ln}$ (set $13=5 \mathrm{ln}$)		
T6N 800	In800	MIN	MED	MAX	13 (50Hz)	K_{m}	13 (400Hz)
16N 800	In800	504	602	720	4000	1.5	6000

Trip curves

thermomagnetic release

T6N 800

In 800 A
TMA

5 Special applications

5.2.2 16 2/3 Hz networks

Single phase distribution with a frequency of $162 / 3 \mathrm{~Hz}$ was developed for electrical traction systems as an alternative to three phase 50 Hz systems, and to direct current systems.
At low frequencies the thermal tripping threshold is not subject to any derating while the magnetic threshold requires a correction coefficient k_{m}, as detailed in table 2.
The Isomax and Tmax series thermomagnetic moulded-case circuit-breakers are suitable for use with frequencies of $162 / 3 \mathrm{~Hz}$; the electrical performance and the relevant connection diagrams are shown below.

Table 1: Breaking capacity [kA]

		250 V	500 V	750 V	$1000 \mathrm{~V}{ }^{(1)}$
In [A]					
T1B160	$16 \div 160$	16 (2P) 20 (3P)	16 (3P)	-	-
T1C160	$25 \div 160$	25 (2P) 30 (3P)	25 (3P)	-	-
T1N160	$32 \div 160$	36 (2P) 40 (3P)	36 (3P)	-	-
T2N160	$1.6 \div 160$	36 (2P) 40 (3P)	36 (3P)	-	-
T2S160	$1.6 \div 160$	50 (2P) 55 (3P)	50 (3P)	-	-
T2H160	$1.6 \div 160$	70 (2P) 85 (3P)	70 (3P)	-	-
T2L160	$1.6 \div 160$	85 (2P) 100 (3P)	85 (3P)	50 (4P) (2)	-
T3N250	$63 \div 250$	36 (2P) 40 (3P)	36 (3P)	-	-
T3S250	$63 \div 250$	50 (2P) 55 (3P)	50 (3P)	-	-
T4N250/320	$20 \div 250$	36 (2P)	25 (2P)	16 (3P)	-
T4S250/320	$20 \div 250$	50 (2P)	36 (2P)	25 (3P)	-
T4H250/320	$20 \div 250$	70 (2P)	50 (2P)	36 (3P)	-
T4L250/320	$20 \div 250$	100 (2P)	70 (2P)	50 (3P)	-
T4V250/320	$20 \div 250$	150 (2P)	100 (2P)	70 (3P)	-
T4V250	$32 \div 250$				40 (4P)
T5N400/630	$320 \div 500$	36 (2P)	25 (2P)	16 (3P)	-
T5S400/630	$320 \div 500$	50 (2P)	36 (2P)	25 (3P)	-
T5H400/630	$320 \div 500$	70 (2P)	50 (2P)	36 (3P)	-
T5L400/630	$320 \div 500$	100 (2P)	70 (2P)	50 (3P)	-
T5V400/630	$320 \div 500$	150 (2P)	100 (2P)	70 (3P)	-
T5V400/630	$400 \div 500$				40 (4P)
T6N630/800	$630 \div 800$	36 (2P)	20 (2P)	16 (3P)	-
T6S630/800	$630 \div 800$	50 (2P)	35 (2P)	20 (3P)	-
T6H630/800	$630 \div 800$	70 (2P)	50 (2P)	36 (3P)	-
T6L630/800	$630 \div 800$	100 (2P)	70 (2P)	50 (3P)	40 (4P)

5 Special applications

Table 2: \mathbf{k}_{m} factor

	Diagram A	Diagram B	Diagram \mathbf{C}
T1	1	1	-
T2	0.9	0.9	0.9
T3	0.9	0.9	-
T4	0.9	0.9	0.9
T5	0.9	0.9	0.9
T6	0.9	0.9	0.9

Table 3: Possible connections according to the voltage, the type of distribution and the type of fault

Neutral not grounded		Neutral grounded*	
		L-N fault	L-E fault
250 V 2 poles in series	A1	A2	B2
250 V 3 poles in series**	B1	B2, B3	B3
500 V 2 poles in series	A1	A2, B2	B2, B3
500 V 3 poles in series**	B1	B2, B3	B3
750 V 3 poles in series	B1	B2, B3	B3
750 V 4 poles in series ${ }^{* * *}$	C1	C2, C3	C2
1000 V 4 poles in series	C1	C2, C3	C2
In the case of the only possible faults being L-N or L-E (E=Earth) with non-significant impedance, use the diagrams shown. If both faults are possible, use the diagrams valid for L-E fault. ** T1, T2, T3 only ** T2 only			

5 Special applications

Connection diagrams

Diagram A1

Configuration with two poles in series (without neutral connected to earth)
Interruption for phase to neutral fault: 2 poles in series

- Interruption for phase to earth fault: not considered

The installation method must be such as to make the probability of a second earth fault negligible)

Diagram A2

Configuration with two poles in series (with neutral connected to earth)
Interruption for phase to neutral fault: 2 poles in series

- Interruption for phase to earth fault: single pole (same capacity as two poles in series, but limited to 125 V)

5 Special applications

Diagram B1

Configuration with three poles in series (without neutral connected to earth) - Interruption for phase to neutral fault: 3 poles in series

- Interruption for phase to earth fault: not considered
(The installation method must be such as to make the probability of a second earth fault negligible)

Diagram B2

Configuration with three poles in series (with neutral connected to earth and interrupted)

- Interruption for phase to neutral fault: 3 poles in series
- Interruption for phase to earth fault: 2 poles in series

Diagram B3

Configuration with three poles in series (with neutral connected to earth but not interrupted)

- Interruption for phase to neutral fault: 3 poles in series
- Interruption for phase to earth fault: 3 poles in series

5 Special applications

Diagram C1

Configuration with four poles in series (without neutral connected to earth)

- Interruption for phase to neutral fault: 4 poles in series
- Interruption for phase to earth fault: not considered
(The installation method must be such as to make the probability of a second earth fault negligible)

Diagram C2

Configuration with four poles in series, on one polarity (with neutral connected earth and not interrupted)

- Interruption for phase to neutral fault: 4 poles in series
- Interruption for phase to earth fault: 4 poles in series

Diagram C3

interruption with four poles in series (with neutral connected to earth and interrupted)

- Interruption for phase to neutral fault: 4 poles in series

Interruption for phase to earth fault: 3 poles in series

5 Special applications

Example:

Network data:
Rated voltage 250 V
Rated frequency $162 / 3 \mathrm{~Hz}$
Load current 120 A
Phase to neutral short-circuit current 45 kA
Neutral connected to earth
Assuming that the probability of a phase to earth fault is negligible, Table shows that connections A2, B2 or B3 may be used.
Therefore it is possible to choose a Tmax T2S160 $\operatorname{In} 125$ circuit-breaker, which with the connection according to diagram A2 (two poles in series) has a breaking capacity of 50 kA , while according to diagrams B2 or B3 (three poles in series) the breaking capacity is 55 kA (Table 1). To determine the magnetic trip, see actor k_{m} in Table 2. The magnetic threshold will be:
$r_{3}=1250 \cdot 0.9=1125 \mathrm{~A}$
If it is possible to have an earth fault with non significant impedance, the diagrams to be considered (Table 3) are only B2 or B3. In particular, in diagram B2 it can be seen that only 2 poles are working in series, the breaking capacity will be 50 kA (Table 1), while with diagram B3, with 3 poles working in series, the breaking capacity is 55 kA .

5.3 1000 Vdc and 1000 Vac networks

The Tmax, SACE Isomax and Emax /E 1000 V circuit-breakers are particularly suitable for use in installations in mines, petrochemical plants and services connected to electrical traction (tunnel lighting)

5.3.1 1000 V dc networks

1000 Vdc Moulded case circuit-breakers

General Characteristics

The range of Tmax and SACE Isomax S moulded-case circuit-breakers for use in installations with rated voltage up to 1000 V direct current comply with international standard IEC 60947-2. The range is fitted with adjustable thermomagnetic releases and is suitable for all installation requirements and has a range of available settings from 32 A to 800 A . The four-pole version circuit breakers allow high performance levels to be reached thanks to the series connection of the poles
The circuit breakers in the Tmax and SACE Isomax S 1000 V range maintain the same dimensions and fixing points as standard circuit breakers.
These circuit-breakers can also be fitted with the relevant range of standard accessories, with the exception of residual current releases for Tmax and mechanical interlocks for SACE Isomax.
In particular it is possible to use conversion kits for removable and withdrawable moving parts and various terminal kits.

5 Special applications

1000 V dc Moulded-case circuit-breakers	T4	T5	T6
Rated uninterrupted current, lu [A]	250	400/630	630/800
Poles Nr .	4	4	4
Rated operational voltage, $\mathrm{Ue} \quad[\mathrm{V}-]$	1000	1000	1000
Rated impulse withstand voltage, Uimp [kV]	8	8	8
Rated insulation voltage, Ui [V]	1000	1000	1000
Test voltage at industrial frequency for 1 min . [V]	3500	3500	3500
Rated ultimate short-circuit breaking capacity, Icu	V	V	L
(4 poles in series) [kA]	40	40	40
Rated short-time withstand current for 1 s , Icw [kA]	-	5 (400A)	7.6 (630A) - 10 (800A)
Utilisation category (EN 60947-2)	A	$\mathrm{B}(400 \mathrm{~A})-\mathrm{A}(630 \mathrm{~A})$	B
Isolation behaviour	\square	\square	\square
IEC 60947-2, EN 60947-2	\square	\square	\square
Thermomagnetic releases TMD	\square	-	-
Thermomagnetic releases TMA	\square	\square	\square
Thermomagnetic releases, T adjustable - M adjustable	-	-	\square
Versions	F	F	F
Terminals Fixed	FCCu	FCCu	F - FC CuAl - R
Mechanical life [No . operations / operations per hours]	20000/240	20000/120	20000/120
Basic dimensions, fixed $\quad \mathrm{L}[\mathrm{mm}]$	140	184	280
$\overline{\mathrm{D}}[\mathrm{mm}]$	103.5	103.5	103.5
H [mm]	205	205	268
TERMINAL CAPTION ES = Front extended spread F = Front EF = Front extended FC Cu Front for copper cables FC CuAl = Front for CuAl cables	$\begin{array}{ll} R=\text { Rear orientated } & M C=\text { Multicable } \\ H R=\text { Rear in horizontal flat bar } & \\ V R=\text { Rear in vertical flat bar } & \end{array}$		

Connection diagrams

Possible connection diagrams with reference to the type of distribution system in which they can be used follow.

Networks insulated from earth

The following diagrams can be used (the polarity may be inverted).

A) $3+1$ poles in series (1000 Vdc)

5 Special applications

B) $2+2$ poles in series (1000 Vdc

It is assumed that the risk of a double earth fault in which the first fault is downstream of the breaker on one polarity and the second is upstream of the same switching device on the opposite polarity is null.
in this condition the fault current, which can reach high values, effects only some of the 4 poles necessary to ensure the breaking capacity.
It is possible to prevent the possibility of a double earth fault by installing a device which signals the loss of insulation and identifies the position of the first earth fault, allowing it to be eliminated quickly.

Networks with one polarity connected to earth

As the polarity connected to earth does not have to be interrupted (in the example it is assumed that the polarity connected to earth is negative, although the following is also valid with the polarity inverted), the diagram which shows the connection of 4 poles in series on the polarity not connected to earth may be used.

5 Special applications

Networks with median point of the supply source connected to earth

In the presence of an earth fault of positive or negative polarity, the poles involved in the fault work at $\mathrm{U} / 2(500 \mathrm{~V})$; the following diagram must be used:

D) $2+2$ poles in series $(1000 \mathrm{Vdc})$

Correction factors for tripping thresholds

With regard to overload protection, no correction factors need to be applied. However, for the magnetic threshold values in use with 1000 Vdc with the previously described applicable diagrams, refer to the corresponding values for alternating current, multiplied by the correction factors given in the following table:

Circuit-breaker	k_{m}
T4V	1
T5V	0.9
T6L	0.8

Circuit-breakers with thermomagnetic release for direct current

In [A]	$32{ }^{(1)}$	$50{ }^{(1)}$	$80^{(2)}$	$100{ }^{(2)}$	$125{ }^{(2)}$	$160{ }^{(2)}$	$200{ }^{(2)}$	$250{ }^{(2)}$	$400{ }^{(2)}$	$500{ }^{(2)}$	$630{ }^{(2)}$	$800{ }^{(2)}$
T4V 250	\square	\square	■	■	\square	\square	■	■	-	-	-	-
T5V 400	-	-	-	-	-	-	-	-	■	-	-	-
T5V 630	-	-	-	-	-	-	-	-	-	\square	-	-
T6L 630	-	-	-	-	-	-	-	-	-	-	\square	-
T6L 800	-	-	-	-	-	-	-	-	-	-	-	■
$13=\left(10 \mathrm{xIN}_{n}[\mathrm{~A}]\right.$	320	500	-	-	-	-	-	-	-	-	-	-

[^5]
5 Special applications

Example

o ensure the protection of a user supplied with a network having the following characteristics:
Rated voltage
Short-circuit current

$$
\begin{aligned}
& U_{r}=1000 \mathrm{Vdc} \\
& \mathrm{I}_{\mathrm{k}}=18 \mathrm{kA}
\end{aligned}
$$

Load current
Network with both polarities insulated from earth.
From the table of available settings, the circuit-breaker to be used is
$5 \mathrm{~V} 630 \mathrm{I}_{\mathrm{n}}=500$ four-pole $\mathrm{I}_{\text {cu }} @ 1000 \mathrm{Vdc}=40 \mathrm{kA}$
Thermal trip threshold adjustable from (0.7-1) x I_{n} therefore from 350 A to 500 A to be set at 0.84 .
Magnetic trip threshold adjustable from $(5-10) \times I_{n}$ which with correction factor $k_{m}=0.9$ gives the following adjustment range: 2250 A to 4500 A . The magnetic threshold will be adjusted according to any conductors to be protected The connection of the poles must be as described in diagrams A or B. A device which signals any first earth fault must be present.
With the same system data, if the network is carried out with a polarity connected to earth, the circuit-breaker must be connected as described in diagram C.

5 Special applications

1000 Vdc air switch disconnectors

The air switch disconnectors derived from the Emax air breakers are identified by the standard range code together with the code "/E MS".
These comply with the international Standard IEC 60947-3 and are especially suitable for use as bus-ties or principle isolators in direct current installations, for example in electrical traction applications.
The overall dimensions and the fixing points remain unaltered from those of standard breakers, and they can be fitted with various terminal kits and all the accessories for the Emax range; they are available in both withdrawable and fixed versions, and in three-pole version (up to 750 Vdc) and four-pole (up to 1000 Vdc).
The withdrawable breakers are assembled with special version fixed parts for applications of $750 / 1000 \mathrm{Vdc}$.
The range covers all installation requirements up to $1000 \mathrm{Vdc} / 3200 \mathrm{~A}$ or up to $750 \mathrm{Vdc} / 4000 \mathrm{~A}$.
A breaking capacity equal to the rated short-time withstand current is attributed to these breakers when they are associated with a suitable external relay.

The following table shows the available versions and their relative electrica performance:

Note: The breaking capacity Icu, by means of external protection relay, with 500 ms maximum timing, is equal to the value of Icw (1s).

1) The performances at 750 V are
or E1B/EMS Icw $=25 \mathrm{kA}$,
or E3H/E MS Icw = 50 kA .

5 Special applications

Connection diagrams

Connection diagrams to be used according to the type of distribution system ollow.

The risk of a double earth fault on different poles is assumed to be zero, that is, the fault current involves only one part of the breaker poles.

Networks insulated from earth

The following diagrams may be used (the polarity may be inverted)

E) $3+1$ poles in series (1000 Vdc)

5 Special applications

G) $2+1$ poles in series (750 Vdc)

Networks with one polarity connected to earth

The polarity connected to earth does not have to be interrupted (in the examples it is assumed that the polarity connected to earth is negative):

H) 4 poles in series (1000 Vdc)

1) 3 poles in series $(750 \mathrm{Vdc})$

Only four-pole breakers may be used as in the configuration shown in diagram F).

5 Special applications

5.3.2 1000 Vac networks

1000 Vac moulded-case circuit-breakers

General characteristics

The circuit breakers in the Tmax 1000 V range comply with the international standard IEC 60947-2.
These circuit breakers can be fitted with thermo-magnetic releases (for the smaller sizes) and with-electronic releases. All installation requirements can be met with a range of available settings from 32 A to 800 A and with breaking met with a range of available set
capacity up to 20 kA at 1000 Vac

1000 Vac moulded-case circuit-breakers

Rated uninterrupted current, Iu	[A]
Poles	Nr .
Rated operational voltage, Ue (ac) 50-60Hz	[$]$
Rated impulse withstand voltage, Uimp	[kV]
Rated insulation voltage, Ui	[V]
Test voltage at industrial frequency for 1 min .	[V]
Rated ultimate short-circuit breaking capacity,	
Icu (ac) $50-60 \mathrm{~Hz} 1000 \mathrm{~V}$	[kA]
Rated service short-circuit breaking capacity, Ics (ac) $50-60 \mathrm{~Hz} 1000 \mathrm{~V}$	[kA]
Rated short-circuit making capacity Icm (ac) $50-60 \mathrm{~Hz} 1000 \mathrm{~V}$	[kA]
Rated short-time withstand current for 1 s , Icw	[kA]
Utilisation category (EN 60947-2)	
Isolation behaviour	
IEC 60947-2, EN 60947-2	
Thermomagnetic releases	TMD
	TMA
Electronic releases	PR221DS-LS
	PR221DS-I
	PR222DS-LSI
	PR222DS-LSIG
Interchangeability	
Versions	
Terminals	Fixed
Mechanical life [No. operations /	rations per hours]
Dimensions	L [mm]
	D [mm]
	$\mathrm{H}[\mathrm{mm}]$

5 Special applications

The circuit-breakers in the 1000 V range maintain the same dimensions as standard circuit breakers.
These circuit-breakers can also be fitted with the relevant range of standard accessories, with the exception of residual current releases.

The following tables show the electrical characteristics of the range:

T4		T5			T6	
250		400/630			630/800	
$3 \quad 3$	4	3	3	4	3	4
1000		1000			1000	
8		8			8	
1000		1000			1000	
3500		3500			3500	
$\mathrm{L} \quad \mathbf{V}^{\text {(1) }}$	V ${ }^{\text {(1) }}$	L	V ${ }^{(1)}$	V ${ }^{\text {(1) }}$	L	
12 20	20	12	20	20	12	
12 12	12	10	10	10	6	
24 40	40	24	40	40	24	
-		5 (400A)			7.6(630A) - 10(800A)	
A		B (400A) A (630A)			B	
■		-			-	
\square		\square			\square	
- -	\square	-	-	-	-	
- -	\square	-	-	\square	-	\square
■ ■	-	\square	\square	-	\square	-
$\square \square$	-	\square	\square	-	\square	-
■ ■	-	-	-	-	■	-
■ ■	-	■	\square	-	\square	-
\square		\square			■	
F		F			F	
F-FC Cu		F-FC Cu			F-FC CuAl-R	
20000/240		20000/120			20000/120	
105105	140	140	140	184	210	280
103.5 103.5	103.5	103.5	103.5	103.5	103.5	
2051205	205	205	205	205	268	
TERMINAL CAPTION F = Front FC Cu = Front for copper cables	FC CuAl = Front for CuAl cables $R=$ Rear orientated					
${ }^{\text {(1) }}$ The circuit-breaker can be supplied only through the upper terminals.						

5 Special applications

The following tables show the available releases.

Circuit-breakers with electronic release for alternating currents

	In100	In250	In400	In630	In800
$T 4250$	\square	\square	-	-	-
$T 5400$	-	-	\square	-	-
$T 5630$	-	-	-	\square	-
$T 6 L 630$	-	-	-	\square	-
$T 6 L 800$	-	-	-	-	\square
$I_{3}(1 \div 10 \times \ln)[A]^{(1)}$	$100 \div 1000$	$250 \div 2500$	$400 \div 4000$	$630 \div 6300$	$800 \div 8000$
$I_{3}\left(1.5 \div 12 \times \ln [A]^{(2)}\right.$	$150 \div 1200$	$375 \div 3000$	$600 \div 4800$	$945 \div 7560$	$1200 \div 9600$

(1) PR221
(2) PR222

Circuit-breakers with thermomagnetic release for alternating currents

$\ln [\mathrm{A}]$	$32^{(1)}$	$50^{(1)}$	$80^{(2)}$	$100^{(2)}$	$125^{(2)}$	$160^{(2)}$	$200{ }^{(2)}$	$250{ }^{(2)}$	$400^{(2)}$	$500^{(2)}$
T4V 250	\square	-	-							
T5V 400	-	-	-	-	-	-	-	-	\square	-
T5V 630	-	-	-	-	-	-	-	-	-	\square
$\mathrm{I}_{3}=\left(10 \mathrm{x} \mathrm{I}_{n}[\mathrm{~A}]\right.$	320	500	-	-	-	-	-	-	-	-
$\mathrm{I}_{3}=(5-10 \times 1)[\mathrm{A}]$	-	-	400:800	500 1000	625 1250	800 1600	1000*2000	1250 2500	2000:4000	2500-5000

I, (5-10x1) \qquad $400 \div 800 \quad 500 \div 1000 \quad 625 \div 1250 \quad 800 \div 1600 \quad 1000 \div 2000 \quad 1250 \div 2500 \quad 2000 \div 4000 \quad 2500 \div 5000$
(2) Themal hreshold adjustable from 0.7 and $1 \times$ in; fixed magnetic threshold
${ }^{(2)}$ Thermal threshold adjustable from 0.7 and $1 \times \mathrm{ln}$; magnetic threshold adjustable between 5 and $10 \times \mathrm{In}$.

1150 Vac air circuit-breakers and switch disconnector

For 1150 V alternating current installations, the following devices are available: - Circuit-breakers in compliance with Standard IEC 60947-2.

The special version breakers up to 1150 Vac are identified by the standard range code together with the suffix "/E", and are derived from the correspondent Emax standard breakers and retain the same versions, accessories and overall dimensions.
The Emax range of breakers is available in both withdrawable and fixed versions with three and four poles, and can be fitted with accessories and equipped with the full range of electronic releases and microprocessors (PR121-PR122PR123).

- Switch disconnectors in compliance with Standard IEC 60947-3.

These breakers are identified by the code of the standard range, from which they are derived, together with the suffix "/E MS". Three-pole and four-pole versions are available in both withdrawable and fixed versions with the same dimensions, accessory characteristics and installation as the standard switch disconnectors.

5 Special applications

The following tables show the electrical characteristics of the devices:

Air circuit-breakers

	E2B/E			E2N/E			E3H/E					E4H/E		E6H/E	
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	1600	2000	1250	1600	2000	1250	1600	2000	2500	3200	3200	4000	5000	6300
Rated service voltage Ue	[N]	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
Rated insulation voltage Ui	[N]	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
Rated ultimate breaking capacity under short-circuitlcu															
1000 V	[kA]	20	20	30	30	30	50	50	50	50	50	65	65	65	65
1150 V	[kA]	20	20	30	30	30	30	30	30	30	30	65	65	65	65
Rated service breaking capacity under short-circuitlcs															
1000 V	[kA]	20	20	30	30	30	50	50	50	50	50	65	65	65	65
1150 V	[kA]	20	20	30	30	30	30	30	30	30	30	65	65	65	65
Rated short-time withstand current Icw (1s)															
currenticw 1000 V	[kA]	20	20	30	30	30	50	50	50	50	50	65	65	65	65
1150 V	[kA]	20	20	30	30	30	30	30	30	30	30	65	65	65	65
Rated making capacity under short-circuit (peak value) Icm															
1000 V	[kA]	40	40	63	63	63	105	105	105	105	105	143	143	143	143
1150 V	[kA]	40	40	63	63	63	63	63	63	63	63	143	143	143	143

Air switch disconnectors (at 1150 Vac)

		E2B/E MS	E2N/E MS	E3H/E MS	E4H/E MS	E6H/E MS
Rated current (at $40^{\circ} \mathrm{C}$) Iu	[A]	1600	1250	1250	3200	5000
	[A]	2000	1600	1600	4000	6300
	[A]		2000	2000		
	[A]			2500		
	[A]			3200		
Poles		3/4	3/4	3/4	3/4	3/4
Rated service voltage Ue	M	1150	1150	1150	1150	1150
Rated insulation voltage Ui	M	1250	1250	1250	1250	1250
Rated impulse withstand voltage Uimp	[kV]	12	12	12	12	12
Rated shor-time withstand current licw (1s)	[kA]	20	30	30^{17}	65	65
Rated making capacity Icm (peak value)	[kA]	40	63	63^{27}	143	143

Note: The breaking capacity Icu, by means of external protection relay, with 500 ms
maximum timing, is equal to the value of Icw (1s
(1) The performance at 1000 V is 50 kA
(2) The performance at 1000 V is 105 kA

5 Special applications

5.4 Automatic Transfer Switches

n the electrical plants, where a high reliability is required from the power supply source because the operation cycle cannot be interrupted and the risk of a ack of power supply is unacceptable, an emergency line supply is indispensable to avoid the loss of large quantities of data, damages to working processes, plant stops etc.
For these reasons, transfer switch devices are used mainly for:

- power supply of hotels and airports;
surgical rooms and primary services in hospitals
- power supply of UPS groups;
- databanks, telecommunication systems, PC rooms;
- power supply of industrial lines for continuous processes

ATS010 is the solution offered by ABB: it is an automatic transfer switch system with micro-processor based technology which allows switching of the supply from the normal line (N -Line) to the emergency line (E -Line) in case any of the following anomalies occurs on the main network:
overvoltages and voltage dips;

- lack of one of the phases;
- asymmetries in the phase cycle;
- frequency values out of the setting range.

Then, when the network standard parameters are recovered, the system switches again the power supply to the main network (N-Line)

ATS010 is used in systems with two distinct supply lines connected to the same busbar system and functioning independently ("island condition"): the first one is used as normal supply line, the second is used for emergency powe supply from a generator system. It is also possible to provide the system with a device to disconnect the non-priority loads when the network is supplied from the E-Line

The following scheme shows a plant having a safety auxiliary power supply:

5 Special applications

ATS010 device is interfaced by means of appropriate terminals:
with the protection circuit-breakers of the N -Line and of the E-Line, motorized and mechanically interlocked, to detect their status and send opening and closing commands according to the set time delays;
with the control card of the Gen set to control its status and send start and stop commands;
with any further signals coming from the plant in order to block the switching logic;
with the N -Line to detect any possible anomaly and with the E-Line to verify the voltage presence;
with an additional device to disconnect non-priority loads
with an auxiliary power supply at $24 \mathrm{Vdc} \pm 20 \%$ (or $48 \mathrm{Vdc} \pm 10 \%$). This supply source shall be present also in case of lack of voltage on both lines (N Line and E-Line).

The circuit-breakers used to switch from the N -line to the E -line shall have all the necessary accessories and shall be properly interlocked in order to guarantee the correct working of the plant. The following accessories are required:

Moulded-case circuit-breakers Tmax (T4-T5-T6) and SACE Isomax (S7)

motor operator from 48 V to 110 V dc or up to 250 V ac;
trip signaling contact;
open/closed signaling contact
racked-in signaling contact in case of plug-in or withdrawable circuit-breakers mechanical interlock between two circuit-breakers.

Air circuit-breakers Emax

- charging spring motor;
shunt opening release
shunt closing release;
trip signaling contact:
open/closed signaling contacts;
racked-in signaling contact in case of withdrawable circuit-breakers
- mechanical interlock between two circuit-breakers.

Switching strategies

According to the application where ATS010 device is used, two different switching strategies can be chosen.
Strategy 1: this strategy is used when an auxiliary supply source is available for the supply of the motor operators of the circuit-breakers; the switching sequence is as follows:
normal line anomaly detection;

- normal line circuit-breaker opening and Gen Set starting;
waiting for presence of Gen Set voltage and emergency circuit-breaker closing

5 Special applications

For example, strategy 1 is used for systems in which a redundant 110 V auxilian power supply is available (MV/LV substations); the plant is designed so that the auxiliary voltage is always present even when neither the normal line nor the Gen Set are active. In this case, the auxiliary power supply can be used to feed he motor operators and/or the shunt opening and closing releases of the circut breakers. ATS010 operates the circuit-breakers regardless of the presence of the network and of the Gen Set.

Strategy 2: this strategy is absolutely necessary when the power supply fo the auxiliary accessories of the circuit-breakers is directly derived from the network and the Gen Set, since a safety auxiliary power supply is not available in this case, before operating the circuit-breakers, ATS010 waits for availability of normal line or emergency line voltage: normal line or Gen Set. The switching sequence is as follows:
normal line anomaly detection
Gen Set starting;

- waiting for presence of Gen Set voltage and normal line circuit-breaker opening Gen Set circuit-breaker closing.

Note: in both strategies, it is necessary to provide an auxiliary power supply for ATS010

Operating modes

By using the front selector it is possible to choose one of the following six perating modes:

TEST:

This operating mode is useful to test the Gen Set start and therefore to test the emergency line power supply status without disconnecting normal line power supply.

AUTOMATIC:

The transfer switch logic is ON and checks both the circuit-breakers as well as the generator. In case of normal line anomalies, the transfer switch procedure begins from normal to energency line and viceversa when normal line voltage become available again.

5 Special applications

MANUAL:
The MANUAL mode offers a choice between the following possibilities:

1. Normal ON

The emergency line circuit-breaker is forced to open and the normal line circuit breaker is forced to close; the Gen Set is stopped and the transfer switch logic is disabled.
This selector position guarantees that the emergency line is not closed and that the Gen Set is not running; this position is useful when the user wants to carry out maintenance on the emergency line or on the Gen Set (in these cases it is advisable to install mechanical lock in open position for the emergency line circuit-breaker)

2. Normal - Emergency OFF (maintenance)

Both circuit-breakers (N -Line and E-Line) are forced in open position. It is useful when all loads are to be disconnected from the power supply sources, for example to carry out maintenance on the plant (in these cases, it is advisable to mechanically lock both circuit-breakers in the open position)

3. Gen Set START

The START command of the Gen Set has been activated through the proper output. The circuit-breakers are not operated and the transfer switch logic is disabled
When emergency line voltage is present and switching is enabled, it is possible to switch the selector to 'Emergency ON' position in order to force supply from the emergency line

4. Emergency ON

Power supply is forced from the emergency line. Before switching to this position, 'Gen-Set START' operating mode is activated and shall be present until switching is enabled as previously described.

5 Special applications

Setting of parameters

All the parameters for the functioning of ATS010 can be simply adjusted through dip-switches or trimmers

Rated voltage for three-phase or single-phase plant
The following parameters of the N-Line can be set through dip-switches:
network rated voltage value (from 100 V up to 500 V ;

- power supply type (three-phase or single-phase);
- frequency value (50 Hz or 60 Hz);
type of strategy.
Note: Voltages higher than 500 V can be reached by using VTs (voltage transformers); in this case the setting of the voltage value shall consider the transformation ratio.
$6: O F F=1 ~$
$O N=3 \sim$
1-4: UN

on off

7: OFF=50Hz

ON=60Hz
8: OFF=Strategy ON=Strategy2

The figure below shows all the possible voltage values which can be set by the dip-switches from 1 to 4.

5 Special applications

Note: the black square shows the dip-switch position.

5 Special applications

Overvoltage threshold

According to the load characteristics, it is possible to set the voltage range outside which the N -Line supply cannot be accepted and switching to the ELine is necessary.

Transfer switch delay configuration

Transfer switch delays can be set through special trimmers. Setting times and relevant purposes are reported below:

T1 $=0 \div 32$ s CB-N open

Delay time from net anomaly detection to N-Line CB opening. It is used to avoid transfer switching in case of short voltage dips

T2 $=0 \div 32$ s GEN-SET START

Delay time from net anomaly detection to Gen set start command. It is used to prevent from transfer switching in case of short voltage dips.

5 Special applications

$3=0 \div 254$ s GEN-SET STOP

Delay time from N-Line return to Gen set stop command. It is used when the Generator needs a cooling time after the disconnection of the load (opening of the E-Line circuit-breaker).

T4= $0 \div 254$ s BACK TO NORMAL LINE OK

Delay time necessary for N-Line voltage to establish, before inverse switching procedure is started.

T5 $=0 \div 32$ s CB-E CLOSE

Delay time to allow the gen-set voltage to stabilize: after starting the generator and detecting a voltage on the emergency line, the ATS010 unit waits for a time 5 before considering this voltage stable.
In Strategy 1, after detecting the gen-set voltage, the ATS010 unit waits for time $T 5$ before closing CB-E.
In strategy 2, the ATS010 unit cannot open or close the breakers unless there is a stable voltage source. Therefore, the unit waits for a time 15 before opening CB-N. If, however, a time delay T1 since voltage loss has not elapsed, the ATS010 unit waits until T1 has elapsed, and only then opens CB-N.

5 Special applications

Check on the plant and on the circuit-breakers

ATS010 can be used in plants with the following characteristics:
the Gen set shall function independently ("island" condition);

- rated voltage and frequency of the plants are included within the given ranges
- ATS010 supply is guaranteed even if N -Line and E -Line voltages are missing

The two circuit-breakers controlled by ATS are to be:
mechanically interlocked;
of the prescribed type and size;

- equipped with the prescribed accessories.

References Standards

EN 50178 (1997): "Electronic equipment for use in power installations"
Compliance with "Low Voltage Directive" (LVD) no. 73/23/EEC and "Electromagnetic Compatibility Directive" (EMC) no. 89/336/EEC.
Electromagnetic compatibility: EN 50081-2, EN 50082-2
Environmental conditions: IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-3.

ATS010 - main technical characteristics

Rated power supply voltage (galvanically isolated from the ground)	$24 \mathrm{Vdc} \pm 20 \%$ $48 \mathrm{Vdc} \pm 10 \%$ (maximum ripple $\pm 5 \%$)
Maximum power consumption	$5 \mathrm{~W} @ 24 \mathrm{Vdc}$
	$10 \mathrm{~W} @ 48 \mathrm{Vdc}$
Rated power	$1,8 \mathrm{~W} @ 24 \mathrm{Vdc}$
(N-Line voltage present and CBs not operated)	$4,5 \mathrm{~W} @ 48 \mathrm{Vdc}$
Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Maximum humidity	90% without condensation
Storing temperature	$-20^{\circ} \mathrm{C} \ldots .+80^{\circ} \mathrm{C}$
Degree of protection	1 P 54 (front panel)
Dimensions ($\mathrm{HW} \times \mathrm{D})$	$144 \times 144 \times 85$
Weight $[k g]$	0,8

Normal line voltage sensor

Normal line rated voltage	$100 \ldots .500$ Vac with direct connection Over 500 Vac with external voltage transformers
Rated frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Impulse withstand voltage on L1, L2, L3 inputs	6 kV
Motor operators - shunt opening/closing releases	
Tmax T4-T5-T6 Isomax S7	Up to 250 Vac Emax
From 48 Vdc to 110 Vdc 25 Vac From 24 Vdc to 110 Vdc	

6 Switchboards

6.1 Electrical switchboards

The switchboard is a combination of one or more low voltage switching protection and other devices assembled in one or more enclosure so as to satisfy the requirements regarding safety and to allow the functions for which it was designed to be carried out
A switchboard consists of a container, termed enclosure by the relevan Standards (which has the function of support and mechanical protection of the components contained within), and the electrical equipment, which consists of devices, internal connections and input and output terminals for connection with the system.

The reference Standard is IEC 60439-1 published in 1999, titled "Low-voltage witchgear and controlgear assemblies - Part 1: Type-tested and partially type tested assemblies", approved by CENELEC code number EN 60439-1.

Supplementary calculation guides are:
EC 60890 "A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear".

EC 61117 "A method for assessing the short-circuit withstand strength of partially type-tested assemblies (PTTA)".

EC 60865-1 "Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods".

Standard IEC 60439-1 sets out the requirements relating to the construction safety and maintainability of electrical switchboards, and identifies the nomina haracteristics, the operational environmental conditions, the mechanical and ectrical requirements and the performance regulations
The type-tests and individual tests are defined, as well as the method of their execution and the criteria necessary for the evaluation of the results.

Standard IEC 60439-1 distinguishes between the two types of switchboard TTA (type-tested assemblies) and PTTA (partially type-tested assemblies).
By "type-tested assemblies (IA), it is meant a low voltage switchgear and controlgear assemblies conforming to an established type or system withou deviations likely to significantly influence the performance from the typica assembly verified to be in accordance with the Standard prescriptions.
TA switchboards are assemblies derived directly from a prototype designed in all details and subiected to type-tests; as the type-tests are very complex witchboards designed by a manufacturer with a sound technical and financia basis are referred to. Nevertheless, TTA assemblies can be mounted by a pane builder or installer who follows the manufacturer's instructions; deviations from the prototype are only allowed if they do not significantly change the perfor mance compared with the type-tested equipment

6 Switchboards

By "partially type-tested assemblies" (PTTA), it is meant a low voltage and controlgear assembly, tested only with a part of the type-tests; some tests may be substituted by extrapolation which are calculations based on experimenta esults obtained from assemblies which have passed the type-tests. Verification through simplified measurements or calculations, allowed as an alternative to type tests, concern heating, short circuit withstand and insulation

Standard IEC 60439-1 states that some steps of assembly may take place outside the factory of the manufacturer, provided the assembly is performed in accordance with the manufacturer's instructions.
The installer may use commercial assembly kits to realize a suitable switchboard configuration.
The same Standard specifies a division of responsibility between the manufacturer and the assembler in Table 7: "List of verifications and tests to be performed on TTA and PTIA" in which the type-tests and individual tests to be carried out on the assembly are detailed.
The type-tests verify the compliance of the prototype with the requirements of the Standard, and are generally under the responsibility of the manufacturer, who must also supply instructions for the production and assembly of the switchboard. The assembler has responsibility for the selection and assembly of components in accordance with the instructions supplied and must confirm compliance with the Standards through the previously stated checks in the case of switchboards that deviate from a tested prototype. Routine tests must also be carried out on every example produced

The distinction between TTA and PTTA switchgear and controlgear assemblies has no relevance to the declaration of conformity with Standard IEC 60439-1 in so far as the switchboard must comply with this Standard

6 Switchboards

Degrees of protection

The degree of protection IP indicates a level of protection provided by the assembly against access to or contact with live parts, against ingress of solid foreign bodies and against the ingress of liquid. The IP code is the system used or the identification of the degree of protection, in compliance with the requirements of Standard IEC 60529. Unless otherwise specified by the manufacturer, the degree of protection applies to the complete switchboard assembled and installed for normal use (with door closed)
The manufacturer shall also state the degree of protection applicable to particula configurations which may arise in service, such as the degree of protection with the door open or with devices removed or withdrawn

Elements of the IP Code and their meanings

Element	Numerials or letters	Meaning for the protection of equipment	Meaning for the protection of persons	Ref.
Code letters	IP			
First characteristic numeral		Against ingress of the solid foreign objects	Against access to hazardous parts with	$\overline{\mathrm{Cl} .5}$
	0	(non-protected)	(non-protected)	
	1	$\geq 50 \mathrm{~mm}$ diameter	back of hand	
	2	$\geq 12.5 \mathrm{~mm}$ diameter	finger	
	3	$\geq 2.5 \mathrm{~mm}$ diameter	tool	
	4	$\geq 1.0 \mathrm{~mm}$ diameter	wire	
	5	dust-protected	wire	
	6	dust-tight	wire	
Second characteristic		Against ingress of water with harmful effects		Cl. 6
	0	(non-protected)		
	1	vertically dripping		
	2	dripping (15° tilted)		
	3	spraying		
	4	splashing		
	5	jetting		
	6	powerful jetting		
	7	temporary immersion		
	8	continuous immersion		
Additional letter (optional)			Against access to hazardous parts with	CI. 7
	A		back of hand	
	B		finger	
	C		tool	
	D		wire	
Supplementary letter (optional		Supplemetary information specific to:		Cl. 8
	A	Hight voltage apparatus		
	B	Motion during water test		
	C	Stationary during water test		
	D	Weather conditions		

6 Switchboards

Form of separation and classification of switchboards

Forms of internal separation

By form of separation it is meant the type of subdivision provided within the switchboard. Separation by means of barriers or partitions (metallic or insulating) may have the function to:

- provide protection against direct contact (at least IPXXB) in the case of access to a part of the switchboard which is not live, with respect to the rest of the switchboard which remains live;
- reduce the risk of starting or propagating an internal arc;
impede the passage of solid bodies between different parts of the switchboard (degree of protection of at least IP2X).

A partition is a separation element between two parts, while a barrier protects the operator from direct contact and from arcing effects from any interruption devices in the normal access direction
The following table from Standard IEC 60439-1 highlights typical forms of separation which can be obtained using barriers or partitions:

Main criteria	Subcriteria	Form
No separation		Form 1
Separation of busbars from the functional units	Terminals for external conductors not separated from busbars	Form 2a
	Terminals for external conductors separated from busbars	Form 2b
Separation of busbars from the functional units and separation of all functional units from one another. Separation of the terminals for external conductors from the functional units, but not from each other	Terminals for external conductors not separated from busbars	Form 3a
	Terminals for external conductors separated from busbars	Form 3b
Separation of busbars from the functional units and separation of all functional units from one another, including the terminals for external conductors which are an integral part of the functional unit	Terminals for external conductors in the same compartment as the associated functional unit	Form 4a
	Terminals for external conductors not in the same compartment as the associated functional unit, but in individual, separate, enclosed protected spaces or compartments	Form 4b

6 Switchboards

Classification

Different classifications of electrical switchboard exist, depending on a range of actors.

Based on construction type, Standard IEC 60439-1 firstly distinguishes between anen and enclosed assemblies.
A switchboard is enclosed when it comprises protective panels on all sides, providing a degree of protection against direct contact of at least IPXXB. Switchboards used in normal environments must be enclosed.

Open switchboards, with or without front covering, which have the live parts accessible. These switchboards may only be used in electrical plants

With regard to external design, switchboards are divided into the following categories:

Cubicle-type assembly

Used for large scale control and distribution equipment; multi-cubicle-type assembly can be obtained by placing cubicles side by side.

6 Switchboards

- Desk-type assembly

Used for the control of machinery or complex systems in the mechanical, iron and steel, and chemical industries.

Box-type assembly

Characterized by wall mounting, either mounted on a wall or flush-fitting these switchboards are generally used for distribution at department or zone level in industrial environments and in the tertiary sector.

Multi-box-type assembly

Each box, generally protected and flanged, contains a functional unit which may be an automatic circuit-breaker, a starter, a socket complete with locking switch or circuit-breaker.

With regard to the intended function, switchboards may be divided into the following types:

Main distribution boards
Main distribution boards are generally installed immediately downstream of MV/LV transformers, or of generators; they are also termed power centres. Main distribution boards comprise one or more incoming units, busba connectors, and a relatively smaller number of output units.

Secondary distribution boards

Secondary distribution boards include a wide range of switchboards for the distribution of power, and are equipped with a single input unit and numerous output units.

- Motor operation boards

Motor control boards are designed for the control and centralised protection of motors: therefore they comprise the relative coordinated devices fo operation and protection, and auxiliary control and signalling devices.

- Control, measurement and protection boards

Control, measurement and protection boards generally consist of desks containing mainly equipment for the control, monitoring and measurement of industrial processes and systems.

Machine-side boards

Machine-side boards are functionally similar to the above; their role is to provide an interface between the machine with the power supply and the operator.

Assemblies for construction sites (ASC

Assemblies for construction sites may be of different sizes, from a simple plug and socket assembly to true distribution boards with enclosures of meta or insulating material. They are generally mobile or, in any case, transportable

6 Switchboards

Method of temperature rise assessment by

 extrapolation for partially tested assemblies (PTTA)For PTTA assemblies, the temperature rise can be determined by laboratory ests or calculations, which can be carried out in accordance with Standard EC 60890. The formulae and coefficients given in this Standard are deduced rom measurements taken from numerous switchboards, and the validity of the method has been checked by comparison with the test results
This method does not cover the whole range of low voltage switchgear and controlgear assemblies since it has been developed under precise hypothese which limit the applications; this can however be correct, suited and integrated with other calculation procedures which can be demonstrated to have a technica

Standard IEC 60890 serves to determine the temperature rise of the air inside he switchboard caused by the energy dissipated by the devices and conductors nstalled within the switchboard.
o calculate the temperature rise of the air inside an enclosure, once the requirements of the Standard have been met, the following must be considered:

Dimensions of the enclosure.
Type of installation:
enclosure open to air on all sides;
wall-mounted enclosure;
enclosure designed for mounting in extremities enclosure in an internal position in a multicompartment switchboard
Any ventilation openings, and their dimensions,
Number of horizontal internal separators;
Power losses from the effective current flowing through any device and conductor installed within the switchboard or compartment

The Standard allows the calculation of temperature rise of the air at mid-heigh and at the highest point of the switchboard. Once the values are calculated, it must be evaluated if the switchboard can comply with the requirements relating o the set limits at certain points within the same switchboard.
The Annex B explains the calculation method described in the Standard ABB supplies the client with calculation software which allows the temperature rise inside the switchboard to be calculated quickly.

6 Switchboards

2 MNS switchboards

MNS systems are suitable for applications in all fields concerning the generation, distribution and use of electrical energy; e. g., they can be used as:
main and sub-distribution boards;

- motor power supply of MCCs (Motor Control Centres)
automation switchboards.
The MNS system is a framework construction with maintenance-free bolted connections which can be equipped as required with standardized components and can be adapted to any application. The consistent application of the mo dular principle both in electrical and mechanical design permits optional selection ff the structural design, interior arrangement and degree of protection according o the operating and environmental conditions.

The design and material used for the MNS system largely prevent the occurrence of electric arcs, or provide for arc extinguishing within a short time. The MNS System complies with the requirements laid down in VDE0660 Part 500 as well as IEC 61641 and has furthermore been subjected to extensive accidental arc tests by an independent institute.

The MNS system offers the user many alternative solutions and notable advantages in comparison with conventional-type installations:

- compact, space-saving design;
- back-to-back arrangement
- optimized energy distribution in the cubicles;
- easy project and detail engineering through standardized components
comprehensive range of standardized modules;
- various design levels depending on operating and environmental conditions; easy combination of the different equipment systems, such as fixed and withdrawable modules in a single cubicle;
- possibility of arc-proof design (standard design with fixed module design)
possibility of earthquake-, vibration- and shock-proof design;
easy assembly without special tools;
easy conversion and retrofit
largely maintenance-free;
- high operational reliabiity;
- high safety for human beings.

The basic elements of the frame are C-sections with holes at 25 mm intervals in compliance with Standard DIN 43660. All frame parts are secured maintenanceree with tapping screws or ESLOK screws. Based on the basic grid size of 25 m. frames can be constructed for the various cubicle types without any specia ools. Single or multi-cubicle switchgear assemblies for front or front and rea perations are possible.
Different designs are available, depending on the enclosure required
single equipment compartment door;
double equipment compartment door
equipment and cable compartment door
module doors and/or withdrawable module covers and cable compartment door The bottom side of the cubicle can be provided with floor plates. With the aid of flanged plates, cable ducts can be provided to suit all requirements. Doors and ladding can be provided with one or more ventilation opening, roof plates can be provided with metallic grid (IP 30-IP40) or with ventilation chimney (IP 40, 41, 42).

6 Switchboards

Depending on the requirements, a frame structure can be subdivided into the following compartments (functional areas):
equipment compartmen
busbar compartment
The equipment compartment holds the equipment modules, the busbar compartment contains the busbars and distribution bars, the cable compartmen houses the incoming and outgoing cables (optionally from above and from below) with the wiring required for connecting the modules as well as the supporting devices (cable mounting rails, cable connection parts, paralle connections, wiring ducts, etc) The functional compartments of a cubicle as well as the cubicles themselves can be separated by partitions. Horizontal partitions with or without ventilation openings can also be inserted between the compartments.
All incoming/outgoing feeder and bus coupler cubicles include one switching device. These devices can be fixed-mounted switch disconnectors, fixedmounted or withdrawable air or moulded-case circuit-breakers,
This type of cubicles is subdivided into equipment and busbar compartments; their size $(H \times W)$ is $2200 \mathrm{~mm} \times 400 \mathrm{~mm} / 1200 \mathrm{~mm} \times 600 \mathrm{~mm}$, and the depth depends on the dimensions of the switchgear used.
Cubicles with air circuit-breakers up to 2000 A can be built in the reduced dimensioned version ($W=400 \mathrm{~mm}$)
It is possible to interconnect cubicles to form optimal delivery units with a maximum width of 3000 mm .

6.3 ArTu distribution switchboard

The range of ABB SACE ArTu distribution switchboards provides a complete and integrated offer of switchboards and kit systems for constructing primary and secondary low voltage distribution switchboards,
With a single range of accessories and starting from simple assembly kits, the ArTu switchboards make it possible to assembly a wide range of configurations mounting modular, moulded-case and air circuit-breakers, with any interna separation up to Form 4.
ABB SACE offers a series of standardized kits, consisting of pre-drilled plates and panels for the installation of the whole range of circuit-breakers type System pro M, Isomax, Tmax and Emax E1, E2, E3, E4 without the need of additiona drilling operations or adaptations.
Special consideration has been given to cabling requirements, providing specia seats to fix the plastic cabling duct horizontally and vertically.
Standardization of the components is extended to internal separation of the switchboard: in ArTu switchboards, separation is easily carried out and it does not require either construction of "made-to-measure" switchboards or any additional sheet cutting, bending or drilling work.
ArTu switchboards are characterized by the following features:
integrated range of modular metalwork structures up to 4000 A with common accessories;
possibility of fulfilling all application requirements in terms of installation (wallmounting, floor-mounting, monoblock and cabinet kits) and degree o protection (IP31, IP41, IP43, IP65);
structure made of hot-galvanized sheet;

6 Switchboards

maximum integration with modular devices and ABB SACE moulded-case and air circuit-breakers;
minimum switchboard assembly times thanks to the simplicity of the kits, the standardization of the small assembly items, the self-supporting elements and the presence of clear reference points for assembly of the plates and panels
separations in kits up to Form 4
he range of ArTu switchbeards includes fourversions, which can be equipped with the same accessories

ArTu L series

ArTu L series consists of a range of modular switchboard kits, with a capacity of 24 modules per row and degree of protection IP31 (without door) or IP43 (basic version with door). These switchboards can be wall- or floor-mounted wall-mounted ArTu L series, with heights of 600, 800, 1000 and 1200 mm depth 200 mm , width 700 mm . Both System pro M modular devices and moulded-case circuit-breakers Tmax T1-T2-T3 are housed inside this switchboard series
floor-mounted ArTu L series, with heights of 1400, 1600, 1800 and 2000 mm , depth 240 mm , width 700 mm . System pro M modular devices, moulded case circuit-breakers type Tmax T1-T2-T3-T4-T5-T6 (fixed version with fron terminals) are housed inside this switchboard series.

ArTu M series

ArTu M series consists of a modular range of monoblock switchboards for wall mount (with dopths of 150 and 200 mm with P65 degree of protection) foor-mounted (with depth of 250 mm and IP31 or IP65 degrees of protection installations, in which it is possible to mount System pro M modular devices nd Tmax T1-T2-T3 moulded-case circuit-breakers on a DIN rail ArTu M serie of floor-mounted switchboards can be equipped with Tmax series.

ArTu K series

ArTu K series consists of a range of modular switchboard kits for floor-mounted installation with four different depths (250, 350, 600, 800 and 1000 mm) and with degree of protection IP31 (without front door), IP41 (with front door and ventilated side panels) or IP65 (with front door and blind side panels), in which is possible to mount System pro M modular devices, the whole range of moulded-case circuit-breakers Tmax and Isomax, and Emax circuit-breakers E1, E2, E3 and E4
ArTu switchboards have three functional widths
-400 mm , for the installation of moulded-case circuit-breakers up to 630 A (T5);
600 mm , which is the basic dimension for the installation of all the apparatus;
800 mm , for the creation of the side cable container within the structure of the floor-mounted switchboard or for the use of panels with the same width.

The available internal space varies in height from 600 mm (wall-mounted L series) to 2000 mm (floor-mounted M series and K series), thus offering a possible solution for the most varied application requirements.

6 Switchboards

ArTu PB Series (Panelboard and Pan Assembly)

The ArTu line is now upgraded with the new ArTu PB Panelboard solution The ArTu PB Panelboard is suitable for distribution applications with an income up to 800A and outgoing feeders up to 250A.
The ArTu PB Panelboard is extremely sturdy thanks to its new designed framework and it is available both in the wall-mounted version as well as in the floor-mounted one.
ArTu PB Panelboard customisation is extremely flexible due to the smart design based on configurations of 6,12 and 18 outgoing ways and to the new ABB plug-in system that allows easy and fast connections for all T1 and T3 versions. Upon request, extension boxes are available on all sides of the structure, for metering purposes too
The vertical trunking system is running behind the MCCB's layer allowing easy access to every accessory wiring (SR's, UV's, AUX contacts).
The ArTu PB Panelboard, supplied as a standard with a blind door, is available with a glazed one as well.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

The Std. IEC 60439-1 specifies that ASSEMBLIES (referred to hereafter as witchboards) shall be constructed so as to be capable of withstanding the hermal and dynamic stresses resulting from short-circuit currents up to the ated values.
urthermore, switchboards shall be protected against short-circuit currents by means of circuit-breakers, fuses or a combination of both, which may either be ncorporated in the switchboard or arranged upstream
When ordering a switchboard, the user shall specify the short-circuit conditions at the point of installation.

This chapter takes into consideration the following aspects:
The need, or not, to carry out a verification of the short-circuit withstand strength of the switchboard.
The suitability of a switchboard for a plant as a function of the prospective short-circuit current of the plant and of the short-circuit parameters of the switchboard.

- The suitability of a busbar system as a function of the short-circuit current and of the protective devices.

Annex A: Protection against short-circuit effect

Annex A: Protection against short-circuit effects inside low-voltage switchboards
 Verification of short-circuit withstand strength

The verification of the short-circuit withstand strength is dealt with in the Standard EC 60439-1, where, in particular, the cases requiring this verification and the different types of verification are specified.
The verification of the short-circuit withstand strength is not required if the following conditions are fulfilled:

- For switchboards having a rated short-time current (Icw) or rated conditional current (Ik) not exceeding 10 kA
- For switchboards protected by current limiting devices having a cut-off current not exceeding 17 kA at the maximum allowable prospective short-circuit current at the terminals of the incoming circuit of the switchboard.
- For auxiliary circuits of switchboards intended to be connected to transformers whose rated power does not exceed 10 kVA for a rated secondary voltage of not less than 110 V , or 1.6 kVA for a rated secondary voltage less than 110 V , and whose short-circuit impedance is not less than 4\%.
- For all the parts of switchboards (busbars, busbar supports, connections to busbars, incoming and outgoing units, switching and protective devices, etc.) which have already been subjected to type tests valid for conditions in the switchboard.

Therefore, from an engineering point of view, the need to verify the short-circuit withstand strength may be viewed as follows

As regards the details of the test performance, reference shall be made directly to the Standard IEC 60439-1.

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Short-circuit current and suitability of the switchboard

 for the plantThe verification of the short-circuit withstand strength is based on two values stated by the manufacturer in alternative to each other:
the rated short-time current Icw
the rated conditional short-circuit current Ik
Based on one of these two values, it is possible to determine whether the switchboard is suitable to be installed in a particular point of the system.

It shall be necessary to verify that the breaking capacities of the apparatus inside the switchboard are compatible with the short-circuit values of the system.

The rated short-time withstand current Icw is a predefined r.m.s. value of tes current, to which a determined peak value applied to the test circuit of the witchboard for a specified time (usually 1s) corresponds. The switchboard hall be able to withstand the thermal and electro-dynamical stresses without amaes or deformations which could compromise the operation of the system. From this test (if passed) it is possible to obtain the specific let-through energ 12t) which can be carried by the switchboard:

$$
\mathrm{I}^{2} \mathrm{t}=\mathrm{Ic} \mathrm{w}^{2} \mathrm{t}
$$

The test shall be carried out at a power factor value specified below in the Table 4 of the Std. IEC 60439-1. A factor "n" corresponding at this $\cos \varphi$ value allows o determine the peak value of the short-circuit current withstood by the switchboard through the following formula:

$l p=I c w \cdot n$		
Table 4		
r.m.s. value of short-circuit current	power factor $\cos \varphi$	n
$1 \leq 5 \mathrm{kA}$	0.7	1.5
$5<1 \leq 10 \mathrm{kA}$	0.5	1.7
10<l $\leq 20 \mathrm{kA}$	0.3	2
$20<1 \leq 50 \mathrm{kA}$	0.25	2.1
50<1	0.2	2.2
The values of this table represent the majority of applications. In special locations, for example in the vicinity of transformers or generators, lower values of power factor may be found, whereby the maximum prospective peak current may become the limiting value instead of the r.m.s. value of the short-circuit current.		

The conditional short-circuit current is a predetermined r.m.s. value of test current o which a defined peak value corresponds and which can be withstand by the switchboard during the operating time of a specified protective device. This devices is usually the main circuit-breaker of the switchboard

By comparing the two values Icw and Ip with the prospective short-circuit current of the plant, it is possible to establish whether the switchboard is suitable to be nstalled at a specified point of the system.
The following diagrams show the method to determine the compatibility of the switchboard with the plant

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects

 inside low-voltage switchboards

The breaking capacities of the apparatus inside the switchboard shall be verified to be compatible with the short-circuit values of the plant.

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Example

Plant data: Rated voltage Ur=400 V Rated frequency fr=50Hz Short-circuit current Ik=35kA

Assume that in an existing system there is a switchboard with Icw equal to 35 kA and that, at the installation point of the switchboard, the prospective short-circuit current is equal to 35 kA .

Now assume that an increase in the power supply of a plant is decided and hat the short-circuit value rises to 60 kA .
Plant data after the value

$$
\begin{aligned}
& \text { Rated voltage } \mathrm{Ur}=400 \mathrm{~V} \\
& \text { Rated frequency fr }=50 \mathrm{~Hz} \\
& \text { Short-circuit current } \mathrm{Ik}=60 \mathrm{kA}
\end{aligned}
$$

Since the Icw of the switchboard is lower than the short-circuit current of the system, in order to verify that the actual switchboard is still compatible, it is necessary to:
determine the $12 t$ and $l p$ values let-through by the circuit-breaker on the supply side of the switchboard
verify that the protective devices installed inside the switchboard have a sufficient breaking capacity (separately or in back-up)

$\mathrm{cw}=35 \mathrm{kA}$ from which

2 t switchboard $=35^{2} \times 1=1225 \mathrm{MA}^{2} \mathrm{~s}$
$\mathrm{p}_{\text {switchboard }}=73.5 \mathrm{kA}$ (according to Table 4)
Assuming that on the supply side of the switchboard a circuit-breaker type Tmax T5H (Icu=70kA@415V) is installed
${ }^{2} \mathrm{t}_{\mathrm{CB}}<4 \mathrm{MA}{ }^{2}$ S
$\mathrm{p}_{\mathrm{CB}}<40 \mathrm{kA}$
ince
$\mathrm{R}_{\text {switchboard }}>{ }^{2 \mathrm{t}_{\mathrm{CB}}}$
$\mathrm{p}_{\text {switchboard }}>\mathrm{P}_{\mathrm{CB}}$
it results that the switchboard (structure and busbar system) is suitable.
Assume that the circuit-breakers installed inside the switchboard are circuitbreakers type T1, T2 and T3 version N with Icu=36kA@415V. From the back p tables (see Chapter 4.3), it results that the circuit-breakers inside the switchboard are suitable for the plant, since their breaking capacity is increased o 65 kA thanks to the circuit-breaker type T5H on the supply side

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects

 inside low-voltage switchboards
Selection of the distribution system in relation to short circuit withstand strength

The dimensioning of the distribution system of the switchboard is obtained by taking into consideration the rated current flowing through it and the prospective short-circuit current of the plant
The manufacturer usually provides tables which allow the choice of the busba cross-section as a function of the rated current and give the mounting distance of the busbar supports to ensure the short-circuit withstand strength.

To select a distribution system compatible with the short-circuit data of the plant, one of these procedures shall be followed:

- If the protective device on the supply side of the distribution system is known
From the law value of the distribution system it results:
$1 \mathrm{k}_{\text {syst }}=\mathrm{Icw} \cdot \mathrm{n}$ where n is the factor deduced from the Table 4
12 t syst $=\mathrm{lcw} 2 \cdot \mathrm{t}$ where t is equal to 1 s
In correspondence with the prospective short-circuit current value of the plant the following values can be determined:
the cut-off current of the circuit-breaker
the specific let-through energy of the circuit-breaker ${ }^{12 \mathrm{t}} \mathrm{CB}$
If $\mathrm{l}_{\mathrm{CB}}<\mathrm{p}_{\text {syst }}$ and ${ }^{2} \mathrm{t}_{\mathrm{CB}}<12 \mathrm{t}_{\text {syst }}$, then the distribution system is suitable

- If the protective device on the supply side of the distribution system is not known

The following condition must be fulfilled

Ik (prospective) < Icw (system)

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Example

Plant data: \quad Rated voltage $\mathrm{Ur}=400 \mathrm{~V}$

$$
\text { Rated frequency fr }=50 \mathrm{~Hz}
$$

$$
\text { Short-circuit current } \mathrm{Ik}=65 \mathrm{kA}
$$

By considering the need of using a system of 400 A busbars with shaped form in the ABB SACE catalogue "ArTu distribution switchboards" the following choice s possible
BA0400 In=400 A (IP65) Icw=35kA
By assuming to have on the supply side of the busbar system a moulded-case circuit-breaker type

ABB SACE Tmax T5400 In400
from the lcw of the busbar system, it derives
$\mathrm{lp}_{\text {syst }}=\mathrm{l} \mathrm{cw} \cdot \mathrm{n}=35 \cdot 2.1=73.5 \quad[\mathrm{kA}]$
2 t syst $=\mathrm{lcw} 2 \cdot \mathrm{t}=35^{2} \cdot 1=1225\left[(\mathrm{KA})^{2} \mathrm{~s}\right.$]
From the curves
at page 118
lk 65kA corresponds at about \quad lp $\mathrm{CB}_{\mathrm{CB}}=35 \mathrm{kA}$

- at page 144

Ik 65kA
corresponds at about $\quad{ }^{2} \mathrm{t}_{\mathrm{CB}}=4\left[(\mathrm{kA})^{2} \mathrm{~s}\right]=4\left[\mathrm{MA}^{2} \mathrm{sec}\right]$

Thus, since
$\mathrm{lp}_{\mathrm{CB}}<\mathrm{Ip}_{\text {syst }}$
and
${ }^{2} \mathrm{t}_{\mathrm{CB}}<12 \mathrm{t}_{\text {sys }}$
results that the busbar system is compatible with the switchboard.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Selection of conductors on the supply side of the protective devices

The Standard IEC 60439-1 prescribes that in a switchboard, the active conductors (distribution busbars included) positioned between the main busbars and the supply side of the single functional units, as well as the constructional components of these units, can be dimensioned according to the reduced shortcircuit stresses which occur on the load side of the short-circuit protective device of the unit.

This may be possible if the conductors are installed in such a way throughout the switchboard that, under normal operating conditions, an internal short-circuit between phases and/or between phase and earth is only a remote possibility. It is advisable that such conductors are of solid rigid manufacture.
As an example, this Standard gives conductor types and installation requirements which allow to consider a short-circuit between phases and/or between phase and earth only a remote possibility.

Type of conductor
Bare conductors or single-core conductors w basic insulation, for example cables according to IEC 60227-3.

Single-core conductors with basic insulation and a maximum permissible conductoroperating temperature above $90^{\circ} \mathrm{C}$, for example cables according to IEC 60245-3, or heatresistant PVC insulated cables according to IEC 60227-3.
Conductors with basic insulation, for example cables according to IEC 60227-3, having additional secondary insulation, for example individually covered cables with shrink sleeving or individually run cables in plastic conduits. Conductors insulated with a very high mechanical strength material, for example FTFE insulation, or double-insulated conductors with an enhanced outer sheath rated for use up to 3 kV, for example cables according to IEC 60502. Single or multi-core sheathed cables, for example cables acording to IEC 00245-4 or 60227-4.

Requirements

Mutual contact or contact with conductive parts shal Mutual contact or contact with conductive parts is permitted where there is no applied external pressure ontact with sharp edges must be avoided. There must e no risk of mechanical damage.
These conductors may only be loaded such that an operating temperature of $70^{\circ} \mathrm{C}$ is not exceeded.

No additional requirements if there is no risk of mechanical damage.

Under these conditions or if anyway the integral short-circuit may be considered a remote possibility, the above described procedure shall be used to verity the suitability of the distribution system to the short-circuit conditions, when these are determined as a function of the characteristics of the circuit-breakers on the oad side of the busbars.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Example

Plant data:
Rated voltage Ur=400 V
Rated frequency fr $=50 \mathrm{~Hz}$
Short-circuit current $1 \mathrm{k}=45 \mathrm{kA}$
In the switchboard shown in the figu e, the vertical distribution busbars are derived from the main busbars.
These are 800 A busbars with shaped ection and with the following characteristics:
n (IP65) $=800 \mathrm{~A}$,
cw max $=35 \mathrm{kA}$
Since it is a "rigid" system with spacers, according to the Std. IEC 60439-1 a short-circuit between busbars is a re
 mote possibility
Anyway, a verification that the stresses reduced by the circuit-breakers on th oad side of the system are compatible with the system is required. Assuming that in the cubicles there are the following circuit-breakers: ABB SACE T3S250
ABB SACE T2S160
it is necessary to verify that, in the case of a short-circuit on any outgoing conductor, the limitations created by the circuit-breaker are compatible with the busbar system; to comply with this requirement, at the maximum allowable prospective short-circuit current, the circuit-breaker with higher cut-off current and let-through energy must have an adequate current limiting capability for the busbar system.

In this case the circuit-breaker is type ABB SACE T3S250 $\ln 250$ The verification shall be carried out as in the previous paragraph:

From the Icw of the busbar system, it derives:
$\begin{array}{ll}\text { lp syst }=\text { Icw } \cdot n=35 \cdot 2.1=73.5 & {[k A]} \\ 12 t \text { syst }=\text { Icw } 2 . t=352 \cdot 1=1225 & {\left[(\mathrm{kA})^{2}\right.}\end{array}$
From the limitation and let-through energy curves

- at page 116
$\mathrm{kk}=45 \mathrm{kA}$
at page 142
$\mathrm{kk}=45 \mathrm{kA}$
corresponds at about
corresponds at about $\quad \mid 2 t_{C B}=2\left[(k A)^{2} s\right]$

Thus, since
$\mathrm{p}_{\mathrm{CB}}<\mathrm{pl}_{\text {syst }}$
and
${ }^{12} \mathrm{t}_{\mathrm{CB}}<12 \mathrm{t}_{\text {syst }}$
it results that the busbar system is compatible with the switchboard.

Annex B: Temperature rise evaluation according to IEC 60890

The calculation method suggested in the Standard IEC 60890 makes it possible o evaluate the temperature rise inside an assembly (PTTA); this method is applicable only if the following conditions are met:

- there is an approximately even distribution of power losses inside the enclosure
- the installed equipment is arranged in a way that air circulation is only slightly impeded;
the equipment installed is designed for direct current or alternating current up to and including 60 Hz with the total of supply currents not exceeding 3150 A
conductors carrying high currents and structural parts are arranged in a way that eddy-current losses are negligible;
- for enclosures with ventilating openings, the cross-section of the air outle openings is at least 1.1 times the cross-section of the air inlet openings;
there are no more than three horizontal partitions in the PTTA or a section of it
- where enclosures with external ventilation openings have compartments, the surface of the ventilation openings in each horizontal partition shall be at leas 50% of the horizontal cross section of the compartment.

The data necessary for the calculation are
dimensions of the enclosure: height, width, depth;
the type of installation of the enclosure (see Table 8);
presence of ventilation openings
number of internal horizontal partitions,
the power loss of the equipment installed in the enclosure (see Tables 13 and 14) the power loss of the conductors inside the enclosure, equal to the sum of the power loss of every conductor, according to Tables 1, 2 and 3.

For equipment and conductors not fully loaded, it is possible to evaluate the power loss as:

$$
P=P_{n}\left(\frac{I_{b}}{I_{n}}\right)^{2}
$$

here:

P is the actual power loss,
P_{n} is the rated power loss (at I_{r});
b is the actual current
I_{n} is the rated current.

Annex B: Temperature rise evaluation according to IEC 60890

Table 1: Operating current and power losses of insulated conductors

Conductors for auxiliary circuits

					Diam.
0.12	2.6	1.2	1.7	0.5	0.4
0.14	2.9	1.3	1.9	0.6	-
0.20	3.2	1.1	2.1	0.5	-
0.22	3.6	1.3	2.3	0.5	0.5
0.30	4.4	1.4	2.9	0.6	0.6
0.34	4.7	1.4	3.1	0.6	0.6
0.50	6.4	1.8	4.2	0.8	0.8
0.56		1.6		0.7	-
0.75	8.2	1.9	5.4	0.8	1.0
1.00	9.3	1.8	6.1	0.8	-

1) Any arrangement desired with the values specified referring to six cores in a multi-core bundle with a simultaneous load 100%
2) single length

Annex B: Temperature rise evaluation according to IEC 60890

Table 2: Operating current and power losses of bare conductors, in vertical arrangement without direct connections to apparatus

Annex B: Temperature rise evaluation according to IEC 60890

Table 3: Operating current and power losses of bare conductors used as connections between apparatus and busbars

Annex B: Temperature rise evaluation according to IEC 60890

Where enclosures without vertical partitions or individual sections have an effective cooling surface greater than about 11.5 m or a width grater than about 1.5 m , they should be divided for the calculation into fictitious sections, whose dimensions approximate to the foregoing values.

The following diagram shows the procedure to evaluate the temperature rise

Annex B: Temperature rise evaluation according to IEC 60890

Table 4: Surface factor b according to the type of installation

Type of installation	Surface factor \boldsymbol{b}
Exposed top surface	1.4
Covered top surface, e.g. of built-in enclosures	0.7
Exposed side faces, e.g. front, rear and side walls	0.9
Covered side faces, e.g. rear side of wall-mounted enclosures	0.5
Side faces of central enclosures	0.5
Floor surface	Not taken into account

Fictitious side faces of sections which have been introduced only for calculation purposes re not taken into account

Table 5: Factor d for enclosures without ventilation openings and with an effective cooling surface $A_{e}>1.25 \mathrm{~m}^{2}$

Number of horizontal partitions \boldsymbol{n}	Factor \boldsymbol{d}
0	1
1	1.05
2	1.15
3	1.3

Table 6: Factor d for enclosures with ventilation openings and with an effective cooling surface $A_{e}>1.25 \mathrm{~m}^{2}$

Number of horizontal partitions \boldsymbol{n}	Factor \boldsymbol{d}
0	1
1	1.05
2	1.1
3	1.15

Table 7: Enclosure constant k for enclosures without ventilation openings, with an effective cooling surface $A>1.25 \mathrm{~m}^{2}$

$\mathbf{A}_{\boldsymbol{e}}\left[\mathbf{m}^{2} \mathbf{]}\right.$	\mathbf{k}	$\mathbf{A}_{\boldsymbol{e}} \mathbf{[\mathbf { m } ^ { 2 }]}$	\mathbf{k}
1.25	0.524	6.5	0.135
1.5	0.45	7	0.13
2	0.35	7.5	0.125
2.5	0.275	8	0.12
3	0.225	8.5	0.115
3.5	0.2	9	0.11
4	0.185	10	0.105
4.5	0.17	10.5	0.1
5	0.16	11	0.095
5.5	0.15	11.5	0.09
6	0.14	0.085	

Annex B: Temperature rise evaluation according to IEC 60890

Table 8: Temperature distribution factor c for enclosures without ventilation openings, with an effective cooling surface $A_{e}>1.25 \mathbf{m}^{2}$

$f=h^{1.35}$	Type of installation				
A_{b}	1	2	3	4	5
0.6	1.225	1.21	1.19	1.17	1.113
1	1.24	1.225	1.21	1.185	1.14
1.5	1.265	1.245	1.23	1.21	1.17
2	1.285	1.27	1.25	1.23	1.19
2.5	1.31	1.29	1.275	1.25	1.21
3	1.325	1.31	1.295	1.27	1.23
3.5	1.35	1.33	1.315	1.29	1.255
4	1.37	1.355	1.34	1.32	1.275
4.5	1.395	1.375	1.36	1.34	1.295
5	1.415	1.395	1.38	1.36	1.32
5.5	1.435	1.415	1.4	1.38	1.34
6	1.45	1.435	1.42	1.395	1.355
6.5	1.47	1.45	1.435	1.41	1.37
7	1.48	1.47	1.45	1.43	1.39
7.5	1.495	1.48	1.465	1.44	1.4
8	1.51	1.49	1.475	1.455	1.415
8.5	1.52	1.505	1.49	1.47	1.43
9	1.535	1.52	1.5	1.48	1.44
9.5	1.55	1.53	1.515	1.49	1.455
10	1.56	1.54	1.52	1.5	1.47
10.5	1.57	1.55	1.535	1.51	1.475
11	1.575	1.565	1.549	1.52	1.485
11.5	1.585	1.57	1.55	1.525	1.49
12	1.59	1.58	1.56	1.535	1.5
12.5	1.6	1.585	1.57	1.54	1.51

where h is the height of the enclosure, and A_{b} is the area of the base For "Type of installation"

Type of installation n°		
$\mathbf{1}$	Separate enclosure, detached on all sides	
$\mathbf{2}$	First or last enclosure, detached type	
$\mathbf{3}$ Separate enclosure for wall-mounting		
	Central enclosure, detached type	
	Central enclosure for wall-mounting and with covered top surface	
$\mathbf{5}$	Central enclosure, wall-mounting type	

Annex B: Temperature rise evaluation according to IEC 60890

Table 9: Enclosure constant k for enclosures with ventilation openings and an effective cooling surface $A_{e}>1.25 \mathrm{~m}^{2}$

Ventilation opening in \mathbf{m}^{2}	$\mathbf{1}$	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{A}_{\mathbf{e}}\left[\mathbf{m}^{\mathbf{2}}\right]$						
50	0.36	0.33	0.3	0.28	0.26	0.24	0.22	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$
100	0.293	0.27	0.25	0.233	0.22	0.203	0.187	0.175	0.194	0.18	0.165	0.145	0.135
150	0.247	0.227	0.21	0.198	0.187	0.173	0.16	0.15	0.14	0.135	0.14	0.128	0.119
200	0.213	0.196	0.184	0.1174	0.164	0.152	0.143	0.135	0.127	0.12	0.11	0.103	0.107
250	0.19	0.175	0.165	0.155	0.147	0.138	0.13	0.121	0.116	0.11	0.1	0.095	0.09
300	0.17	0.157	0.148	0.14	0.133	0.125	0.118	0.115	0.106	0.1	0.093	0.088	0.084
350	0.152	0.141	0.135	0.128	0.121	0.115	0.109	0.103	0.098	0.093	0.087	0.082	0.079
400	0.138	0.129	0.121	0.117	0.11	0.106	0.1	0.096	0.091	0.088	0.081	0.078	0.075
450	0.126	0.119	0.111	0.108	0.103	0.099	0.094	0.09	0.086	0.083	0.078	0.074	0.07
500	0.116	0.11	0.104	0.1	0.096	0.092	0.088	0.085	0.082	0.078	0.073	0.07	0.067
550	0.107	0.102	0.097	0.093	0.09	0.087	0.083	0.08	0.078	0.075	0.07	0.068	0.065
600	0.1	0.095	0.09	0.088	0.085	0.082	0.079	0.076	0.073	0.07	0.067	0.065	0.063
650	0.094	0.09	0.086	0.083	0.08	0.077	0.075	0.072	0.07	0.068	0.065	0.063	0.061
700	0.089	0.085	0.08	0.078	0.076	0.074	0.072	0.07	0.068	0.066	0.064	0.062	0.06

Table 10: Temperature distribution factor c for enclosures with ventilation openings and an effective cooling surface $A_{e}>1.25 \mathrm{~m}$

Ventilation opening in cm ${ }^{2}$	1.5	2	3	$f=\frac{h^{1.35}}{A_{b}}$			7	8	9	10
				4	5	6				
50	1.3	1.35	1.43	1.5	1.57	1.63	1.68	1.74	1.78	1.83
100	1.41	1.46	1.55	1.62	1.68	1.74	1.79	1.84	1.88	1.92
150	1.5	1.55	1.63	1.69	1.75	1.8	1.85	1.9	1.94	1.97
200	1.56	1.61	1.67	1.75	1.8	1.85	1.9	1.94	1.97	2.01
250	1.61	1.65	1.73	1.78	1.84	1.88	1.93	1.97	2.01	2.04
300	1.65	1.69	1.75	1.82	1.86	1.92	1.96	2	2.03	2.06
350	1.68	1.72	1.78	1.85	1.9	1.94	1.97	2.02	2.05	2.08
400	1.71	1.75	1.81	1.87	1.92	1.96	2	2.04	2.07	2.1
450	1.74	1.77	1.83	1.88	1.94	1.97	2.02	2.05	2.08	2.12
500	1.76	1.79	1.85	1.9	1.95	1.99	2.04	2.06	2.1	2.13
550	1.77	1.82	1.88	1.93	1.97	2.01	2.05	2.08	2.11	2.14
600	1.8	1.83	1.88	1.94	1.98	2.02	2.06	2.09	2.12	2.15
650	1.81	1.85	1.9	1.95	1.99	2.04	2.07	2.1	2.14	2.17
700	1.83	1.87	1.92	1.96	2	2.05	2.08	2.12	2.15	2.18

Annex B: Temperature rise evaluation

 according to IEC 60890Table 11: Enclosure constant k for enclosures without ventilation openings and with an effective cooling surface $A \leq 1.25 \mathrm{~m}^{2}$

$\mathbf{A}_{\boldsymbol{e}}\left[\mathbf{m}^{\mathbf{2}} \boldsymbol{]}\right.$	\mathbf{k}	$\mathbf{A}_{\boldsymbol{e}} \mathbf{[\mathbf { m } ^ { 2 }]}$	\mathbf{k}
0.08	3.973	0.65	0.848
0.09	3.643	0.7	0.803
0.1	3.371	0.75	0.764
0.15	2.5	0.8	0.728
0.2	2.022	0.85	0.696
0.25	1.716	0.9	0.668
0.3	1.5	0.95	0.641
0.35	1.339	1	0.618
0.4	1.213	1.05	0.596
0.45	1.113	1.1	0.576
0.5	1.029	1.15	0.557
0.55	0.960	1.2	0.540
0.6	0.9	1.25	0.524

Table 12: Temperature distribution factor c for enclosures without ventilation openings and with an effective cooling surface $A_{e} \leq 1.25 \mathrm{~m}^{2}$

\mathbf{g}	\mathbf{c}	\mathbf{g}	\mathbf{c}
0	1	1.5	1.231
0.1	1.02	1.6	1.237
0.2	1.04	1.7	1.24
0.3	1.06	1.8	1.244
0.4	1.078	1.9	1.246
0.5	1.097	2	1.249
0.6	1.118	2.1	1.251
0.7	1.137	2.2	1.253
0.8	1.156	2.3	1.254
0.9	1.174	2.4	1.255
1	1.188	2.5	1.256
1.1	1.2	2.6	1.257
1.2	1.21	2.7	1.258
1.3	1.22	2.8	1.259
1.4	1.226		

where g is the ratio of the height and the width of the enclosure.

Annex B: Temperature rise evaluation according to IEC 60890

Table 14: Emax power losses

Total (3/4 poles) power loss in W	E1B-N		E2B-N-S		E2L		E3N-S-H-V		E3L		E4S-H-V		E6H-V	
	F	W	F	W	F	W	F	W	F	W	F	W	F	W
In=800	65	95	29	53			22	36						
$\mathrm{ln}=1000$	96	147	45	83			38	58						
$\mathrm{ln}=1250$	150	230	70	130	105	165	60	90						
$\mathrm{ln}=1600$	253	378	115	215	170	265	85	150						
ln=2000			180	330			130	225	215	330				
ln=2500							205	350	335	515				
ln=3200							330	570			235	425	170	290
$\mathrm{ln}=4000$											360	660	265	445
ln=5000													415	700
$\mathrm{ln}=6300$													650	1100

Example

Hereunder an example of temperature rise evaluation for a switchboard with the following characteristics:

- enclosure without ventilation openings
- no internal segregation
- separate enclosure for wall-mounting
one main circuit-breaker
- 5 circuit-breakers for load supply
busbars and cable systems

Enclosure

Circuit diagram

Annex B: Temperature rise evaluation according to IEC 60890

For the cables connecting the circuit-breakers to the supply and the loads, the power losses are calculated as $\mathrm{P}=\mathrm{Pn}\left(\frac{\mathrm{lb}}{\mathrm{In}}\right)^{2} \cdot(3 \cdot$ Length $)$, with In and Pn given in the Table 4.
Here below the power losses for each connection:

Cables	Cross-section	Length	lb	Power losses
	[n]xmm ${ }^{\text {2 }}$	[m]	[A]	[W]
IG	4×240	1.0	1340	133.8
11	240	2.0	330	64.9
12	240	1.7	330	55.2
13	240	1.4	330	45.4
14	120	1.1	175	19
15	120	0.8	175	13.8
Total power loss of cables [W]				332

Thus, the total power loss inside the enclosure is: $\mathbf{P}=\mathbf{7 8 4}$ [W]
From the geometrical dimensions of the switchboard, the effective cooling surface Ae is determined below:

	Dimensions $[\mathrm{m}] \times[\mathrm{m}]$	$\mathrm{A}_{0}\left[\mathrm{~m}^{2}\right]$	b factor	A_{0}
Top	0.840×1.44	1.21	1.4	1.69
Front	2×1.44	1.64	0.9	2.59
Rear	2×1.44	1.64	0.5	1.44
Left-hand side	2×0.840	1.68	0.9	1.51
Right-hand side	2×0.840	1.68	0.9	1.51
		$\mathrm{Ae}=\Sigma\left(\mathrm{A}_{0} \cdot \mathrm{~b}\right)$	8.75	

Making reference to the procedure described in the diagram at page 294, it is possible to evaluate the temperature rise inside the switchboard.

Annex B: Temperature rise evaluation according to IEC 60890

From Table 7, k results 0.112 (value interpolated)
Since $x=0.804$, the temperature rise at half the height of the enclosure is:
$\Delta \mathrm{t}_{0.5}=\mathrm{d} \cdot \mathrm{k} \cdot \mathrm{Px}^{\mathrm{x}}=1 \cdot 0.112 \cdot 7840.804=23.8 \mathrm{k}$
For the evaluation of the temperature rise at the top of the enclosure, it is necessary to determine the c factor by using the f factor:
$f=\frac{h^{1.35}}{A_{b}}=\frac{21.35}{1.44 \cdot 0.84}=2.107 \quad\left(A_{b}\right.$ is the base area of the switchboard $)$
From Table 8, column 3 (separate enclosure for wall-mounting), c results to be equal to1. 255 (value interpolated).
$\Delta \mathrm{t}_{1}=\mathrm{c} \cdot \Delta \mathrm{t}_{0.5}=1.255 \cdot 23.8=29.8 \mathrm{k}$
Considering $35^{\circ} \mathrm{C}$ ambient temperature, as prescribed by the Standard, the following temperatures shall be reached inside the enclosure:
$\mathrm{t}_{0.5}=35+23.8 \approx 59^{\circ} \mathrm{C}$
$1=35+29.8 \approx 65^{\circ} \mathrm{C}$
Assuming that the temperature derating of the circuit-breakers inside the switchboard can be compared to the derating at an ambient temperature different from $40^{\circ} \mathrm{C}$, through the tables of Chapter 3.5 , it is possible to verify if he selected circuit-breakers can carry the required currents.

E2 1600 at $65^{\circ} \mathrm{C} \quad \mathrm{In}=1538[\mathrm{~A}]>\mathrm{lg}=1340$ [A]
T5 400 at $65^{\circ} \mathrm{C} \quad \mathrm{In}=384[\mathrm{~A}]>11=12=13=330[\mathrm{~A}]$
T3 250 at $60^{\circ} \mathrm{C} \quad \mathrm{n}=216[\mathrm{~A}]>14=15=175[\mathrm{~A}]$

Annex C: Application examples

Advanced protection functions with PR123 release

Dual Setting

Thanks to the new PR123 release, it is possible to program two different sets of parameters and, through an external command, to switch from one set to e other.
This function is useful when there is an emergency source (generator) in the system, only supplying voltage in the case of a power loss on the network side.

Example:

In the system described below, in the case of a loss of the normal supply on the network side, by means of ABB SACE ATS010 automatic transfer switch, it is possible to switch the supply from the network to the emergency power unit and to disconnect the non-primary loads by opening the QS1 witch-disconnector
Under normal service conditions of the installation, the circuit-breakers C are set in order to be selective with both circuit-breaker A, on the supply side, as well as with circuit-breakers D on the load side
By switching from the network to the emergency power unit, circuit-breaker B becomes the reference circuit-breaker on the supply side of circuit-breakers C. This circuit-breaker, being the protection of a generator, must be set to trip times shorter than A and therefore the setting values of the circuit-breakers on the load side might not guarantee the selectivity with B
By means of the "dual setting" function of the PR123 release, it is possible to switch circuit-breakers C from a parameter set which guarantees selectivity with A , to another set which make them selective with B .
However, these new settings could make the combination between circuitbreakers C and the circuit-breakers on the load side non-selective

The figure at the side shows the time-current curves of the installation nder normal service conditions.
The values set allow no intersection of the curves.

The figure at the side shows the situation in which, after switching, the power is supplied by the power unit hrough circuit-breaker B. the settings of circuitthe settings of circu reakers C are not odifed, there will be no selectivity with the

This last figure shows how it is possible to switch to a set of parameters which guarantees selectivity of circuit-breakers C with B y means of the "dual etting" function

Annex C: Application examples
 Advanced protection functions with PR123 release

ime curren

Time curren curves

Annex C: Application examples

Advanced protection functions with PR123 release

Double G

The Emax type circuit-breakers, equipped with the PR123 electronic release, allow two independent curves for protection G :
one for the internal protection (function G without external toroid)
one for the external protection (function G with external toroid)

A typical application of function double G consists in simultaneous protection both against earth fault of the secondary of the transformer and of its connection cables to the circuit-breaker terminals (restricted earth fault protection), as well as against earth faults on the load side of the circuit-breaker (outside the restricted earth fault protection).

xample

Figure 1 shows a fault on the load side of an Emax circuit-breaker: the faul current flows through one phase only and, if the vectorial sum of the currents detected by the four current transformers (CTs) results to be higher than the se threshold, the electronic release activates function G (and the circuit-breaker trips).

Annex C: Application examples

Advanced protection functions with PR123 release

With the same configuration, a fault on the supply side of the circuit-breaker (Figure 2) does not cause intervention of function G since the fault current does ot affect either the CT of the phase or that of the neutral. Figure 2

The use of function "double G" allows installation of an external toroid, as shown in Figure 3, so that earth faults on the supply side of Emax CB can be detected s well. In this case, the alarm contact of the second G is exploited in order to trip the circuit-breaker installed on the primary and to ensure fault disconnection. Figure 3

Annex C: Application examples Advanced protection functions with PR123 release

If, with the same configuration as Figure 3, the fault occurs on the load side of the Emax circuit-breaker, the fault current would affect both the toroid as well as the current transformers on the phases. To define which circuit-breaker is to trip (MV or LV circuit-breaker), suitable coordination of the trip times is required: in particular, it is necessary to set the times so that LV circuit-breaker opening due to internal function G is faster than realization of the alarm signal coming from the external toroid. Therefore, thanks to the time-current discrimination between the two G protection functions, before the MV circuitbreaker on the primary of the transformer receives the trip command, the circuit breaker on the LV side is able to eliminate the earth fault.
Obviously, if the fault occurred on the supply side of the LV circuit-breaker, only the circuit-breaker on the MV side would trip.

The table shows the main characteristics of the range of toroids (available only in the closed version).

Characteristics of the toroid ranges

Annex C: Application examples

Advanced protection functions with PR123 release

Double S

Thanks to the new PR123 release, which allows two thresholds of protection unction S to be set independently and be activated simultaneously, selectivity can also be achieved under highly critical conditions
Here is an example of how, by using the new release, it is possible to obtain a better selectivity level compared with the use of a release without "double S" This is the wiring diagram of the system under examination; in particular, attention must be focussed on:
-the presence, on the supply side, of a MV circuit-breaker, which, for selectivity reasons, imposes low setting values for the Emax circuit-breaker on the LV side
the presence of a LV/LV transformer which, due to the inrush currents, imposes high setting values for the circuit-breakers on its primary side

Annex C: Application examples

Advanced protection functions with PR123 release

Solution with a release without "double S"

Time curre
curves

MV CB (PR521)		
$\mathbf{5 0}$	$(\mid>): 50 \mathrm{~A}$	$\mathrm{t}=0.5 \mathrm{~s}$
$\mathbf{5 1}$	$(\mid \gg): 500 \mathrm{~A}$	$\mathrm{t}=0 \mathrm{~s}$

		E2N 1250 PR122 LSIG R1250	T5V 630 PR222DS/P LSIG R630
\mathbf{L}	Setting	0.8	0.74
	Curve	108 s	12 s
\mathbf{S} t=constant Setting	3.5	4.2	
	Curve	0.5 s	0.25 s
\mathbf{I}	Setting	OFF	7

In the case of a short-circuit, the Emax E2 circuit-breaker and the MV circuitbreaker will open simultaneously with this solution. Attention must be paid to the fact that, owing to the value Ik, function I of the E2 circuit-breaker has to be disabled (I3=OFF) so that selectivity with the T5 on the load side is guaranteed.

Annex C: Application examples

Advanced protection functions with PR123 release

Solution with the PR123 release with "double S"
Time current
curves
@ 400V

As evident, by means of the "double S" function, selectivity can be achieved both with the T5 circuit-breaker on the load side as well as with the MV circuitbreaker on the supply side.
A further advantage obtained by using the "double S" function is the reduction in the time of permanence of high current values under short-circuit conditions, which results in lower thermal and dynamic stresses on the busbars and on the other installation components

Due to possible developments of standards as well as of materials, the characteristics and dimensions specified in this document may only be considered binding after confirmation by ABB SACE.

ABB SACE S.p.A.
An ABB Group Company
L.V. Breakers
Via Baioni, 35
24123 Bergamo - Italy
Tel.: +39 035.395.111 - Telefax: +39 035.395.306-433

[^0]: For T2 only: S function is in alternative to I function
 Not available with PR223 E
 For T5 480-3840

[^1]: Note: for detailed information, please consult the relevant technical catalogues.

[^2]: 11) Value for the supply side magnetic only $T 2$ circuit-breaker.
 (2) Value for the supply side magnetic only T2-T3 circuit-breaker.
 (3) Value for the supply side magnetic only T3 circuit-breaker.
 ${ }^{(4)}$ Value for the supply side magnetic only T4 circuit-breaker.
[^3]: for T4 250 or T4 320 only with 11 setting at 250 A.

[^4]: $\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of 13 due to the induced magnetic field

[^5]: Thermal threshold adjustable from 0.7 and $1 \times \mathrm{In}$; fixed magnetic threshold
 Thermal threshold adjustable from 0.7 and $1 \times \ln$; magnetic threshold adjustable between 5 and $10 \times \ln$.

