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PREFACE

In 1972, 1 taught an infunnal course on numerical solution of heat transfer
und fuid flow to 2 small group of research workers at Imperial College,
Lonidon, Loter. the naterial was expanded and formalized for presentation in
praduzie courses at the University of Waterloo in Canada (in 1974}, au the
Norwepian nstimte of Technology, Trondheim {in 1977), and at the Uni-
versily of Minnesola (in [9 1977, and 1979). During the last two years, [
have also presented he s material in 3 shortcourse format at ASME
nutional meetings. The enthusiastic response accorded to these courses ha
cnconraged me 1o write this book, which can be used as a text for a graduate
course as well ps 2 reference book for computational wark in heat tronsfer
aned flujd flow.

Although there is an extensive literature on computational thermofluid
analysis, the newcomer to the field has insufficient help available. The
praduate student, the researcher, and the practicing engineer must struggle
through jowmzl articles or he content with elementary presentation in books
on numerical analysis. Qften, it is the subtle details that determine the success
or failure of 3 computational activity; yet, the practices that are leamned
throush experience by successful computing groups rarely appear in print. A
comstquence s that many workers either give up the computational approach
after many menths of frustrating pursuil or stcupgle through o the end with
inefficient compuier Programs.

Being aware of this situation, [ have tried lo present m this book a
sell-cantained, simple, and practical treatment of the subject. The book s
introductory in slyle and @ intended for the potential practitioner of
numercal heat transfer and fluid Now; it is not designed for the experts in the
subject zrea. In developing the numernical techniques, | emphasize physical
significance rather than mathematics] menipulation. Indeed, most of 1he
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Xii PREEFACE

mathematics used here B limited to simplé algebra. The resul is that, wheress
the book enables the reader (9 travel all the way i e present-lay fronticr
al the subject, the journey fokes place through delightfully simple and
illurninating  physical coneepts and considerations, In waching the maierial
with sueh an approach, | have often been pleasantly surprised by the fact that
the students nol only [earm about numeéncal methods but also develop z better
appreciation of 1he relevant physical processes.

As ¢ user of numerical techniques, I have come 10 prefer a cerlain family
of methods and a cerlain set of practices. This reperioire has been collected
partdy from the literature and subsequently has been enriched, adapred, and
modified. Thus, since a considerzble amount of sorting and sifting of availahle
methods has elready taken place (aibeil with my own buas), I have limied the
scope of this book to the set of methads that 1 wish to recommend. T do not
atemipt ta present o compavative stody of @l wwatlable methods: orhier
methods are only cccasionslly mentioned when they serve o illuminate 2
specific feature under consitdecation, In this sense, this book reprosents my
persofial view of the subject. Although | am, of course. onthusizstc about this
vigwpoint, I recognize that my choices have been influenced by my back-
ground, personal preferences, and tachnical objectves. Ollers operating in
different environments may well come Lo prefer aliernative approaches.

To illustrate the application of the material, problems age given ot the end
of some chapters. Most of the problems can be solved by using a pocket
caleufator, althowgh some of them should be progrmmed for o digital
computer. The problems dare not meant for testing the student reader, by are
included primarily for extending and enciching the learning proeess, They
suggest altermative fechnigues and present additdonal material, AL thaes, in my
aitempt o give 3 hint for the problem solution, | almost disclose the Tull
answer. In sech cases, arriving at the correct apswer is not the maln alyective;
the reader should (ocus on the messape that the pooblem 8 designed (o
convey.

This boock carnes the description of the pumerical method 0 o poinl
where the reader couid begin to write a computer program, Indeed, e reader
should be able to construct computer programs that generate the Mod of
results presented in rhe final chapter of the book. A ranee of compuue
programs of varying generality can be designed depending upon the natwre uf
the problems o be solved. Many readers might hove Tound iU helpful if o
iepresentative computer progeam were incleded in this book. 1 did consides
the possibility, However, the task of providing a reisonably pomeral computes
orogeam, Its detailed deseriplion, and several examples of iis use seemed 50
formidable that it would have comsidesably delayed the publication of (his
book. For the time Belng, | have included 3 section on the preparation and
testing of a computer program (Section 7.4), where many useful proceduses
end practices gathered thruugh experience are descabed.

The completion of thiz book Folfifs « desire and a drean) that T Jave Tield

MLEFAUK x{l

for 7 mymbér of years. It was in 1971 thal Professor D, Drizn Spalding and 1
planned @ book ol this kind and wrote 2 preliminay outline for 1. Furthey
progress, hawever, became difficult because of the peoprphicsl distance
between us and because of our fovelvement in a wvaricly of demanding
aglivities. Finally, o joinl book scemed impracticable, and 1 proceeded 1o
converl my lectdre nates Into (his textbook. The present book has some
resemblance 1o the juint book that we had plinned, since | have made lberal
use of Spalding's lectures and writings. His direct involvement, however, would
Ligve made this book much better,

In this unpdertiking, | owe ihe preatesl debe to Professor Spalding. He
introduced me to the Tascinaling world of computational methods. The work
that we accomnplished togother represents the most delighiful and cieative
experienve of my professional [ie, The influence of his ideas on my thinking
van be seen throughout his busk, The concepts of Yope-way™ and *two-way™
coordinates {and the terms themselves) are the product of his [imagination. It
was bt who organized all the relevant pliysical processes through a general
differential cquation of 5 standard form. Above all, cor rapid progress in
computational work has resulted frum Spalding’s vision and convicrion that
oiie day all practeeal situations will hecome amenable fo compurer analysis.

I wish to record my sincere thanks (o Professor D. Brian Spalding for his
creative influence on my profossiooal activities, for continued warm Triend:
ship, and far his dreet dnd jrilirpet conteibutions 1o this book,

Professar Ephsaim M. Sparng®sbos been my mest cnthusiestic suppocter
in the activity of writing Uils bocs®SNis interest bepin even cadier wiisn he
attended my graduale codrse on Uhe subjeot ! have preatly bepelited (o 5
questions ond subsequent discussioms, He spent countless howrs in reading the
maniscript af 1his book and v soggesting changes and improvements. 1t s dop
ta his critical review that | have been able to achiove some measuee of clerily
and completengss in this book. 1 am wvery grateful to him Dor his scljwe
interest in thiz waork and for his perganal miérest in me.

A number of olher colleagues and friends have also provided constant
inspiration through their specizl interést dn my work. In particdlar, I wish to
(liank Professor Richard J. Goldstein for his support and engouragement and
Prufessor George DL Raithby for many stimulating discusslons, My thanks are
also due to the many students in my graduste courses, wha have conteibuted
sigaificantly 1o this book thyeugh thelr questions and discussions and throbgh
their enthusiasnl and response, T am grateful to M. Lucille I, Laing, who
iyped the manuscrt so carefully and cheerfully. T would like te thank Mr.
William  Begell, President of Hemisphere Publishing Corporation, for his
persondl interest if pulblishing this hook and the stafl at Hemisphere (ar their
competent handling of this project.

My Fimily has beén very Undersianding and supportive during my writlng
gctivity; now that the wrlting is over, | plan lo spend more Hme with my wife
and childsan,
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CHAPTER

ONE

INTRODUCTION

1.1 SCOPE OF THE BOOK

fmportance af ficar rrangfer and fTuid ffow. This book is concerned with heat
wred mass transfer, fluid Mow, chemical reaction, and other related processes
that oecur In engineering equipment, in the natural environment, and In lving
organisms. That these processes play g vital role can be observed in 3 great
variety of practical situations. Nearly all methods of power production involve
fluid flow and heat transfer as cssential processes. The same processes govern
the heating and air conditioning of buildings. Major segments of the chemical
and metallurgical industries use components such as fumaces, heat exchangers,
condensers, and reactors, where thermofluid processes are at work, Afrerait
and rockets owe their functioning to fluid fMow, heat transfer, and chemical
reaction. In the design of electrical machinery and electronic cireuits, heat
transfer is often the limiting factor. The pollution of the matural envirenment
iz largely caused by heat and mass transfer, and o are storms, Moods, and
fires. In the face of changing weather conditions, the human body resorts to
heat and imass transfer for ifs temperaturs control. The processes of heat
transfer and fluid Qow seem to pervade all zspeces of our life,

Need for understanding and predicrion, Since the processes under con-
sideration have such an overwhelming impact on human life, we should be
able to deal with them effectively. This ability can result from an understanding
of the nature of the processes and from methodology with which to pradict
them guantitztively. Armed with this expertise, the designer of an enginesring
device can ensure the desired performance—the designer is able (o choose the

1
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optimmum Gesign Trony amuengt @ oumber of dlie native posshilities. The power
af” peediglion enshiles us o operaiz existing equipment mune safvly and
efficiently. Predictions of the felevanl processes help us i Forecasting, and
evenl controlling, potential dangers such as flvods, fides, and [(ires. Tn all these
cases, predictions offer economic benelils and contrilae (o human well-heing.

Aiuee of prediction, The predidion of belavios inoa given pliysical
situalion consists of the values of the elevant varfable: woveming the
arocesser of interest, Let us consider a particular example. ln 3 combustion
chamber of & corlzin descriplion, & complote predigtfvn shoubd give os e
vilaes of selocily, pressere, temperature, cuncentrations of the relayant
cligmyical species, eic., throughout the domwn of intercsi; it should alsa
ceovide e shear strégses, heat Muxes, and meass Now rates at ihe confining

dig ol she combastion chamber. The predicnon should state bow any of
gudgs quandtios wonld cliange o response (o proposcd changes i goomelry,
> s Tl propoeiies, ot

Poirpass of phe ook, This book s poomarily alwed ol developing a generdl
fethrsd ol predicno foe bheat and fnass teansfer, Muid New, aed zelued
srugesiis As e shal shertly sec, dmong the different méthods of prediction,
vocrieal snltion offers grede promise. In thiys Dueic, wislal? duastrera
cainerizal miothod for predicting the processes of dezest

Geolar as possible, gur gim will he tw Jesign o pumerical method Laviag
complete genpiality, We shall, therefore, refrain from acceprling any fnal
sastrictions sucheas two-dimensiopality, boundarydaver appiaiimaiions, and
e L Lt [ 1 N If any restrictions are temporarily adopeed, it will be
jor vzse of presentation and usdérstanding dnd sot Because of dny intrinsic
Linitstion, We shail begin the subject st a very clementary level and; from
inere, lravel nearly 10 the fontier of the subject,

This ambitious tzsk ¢annol, of course, be accomplished in a modest-sized
Dook without leaving oub 3 pumber of important topics. Thorefore, the
—uidiematieal focmalation of the eouations that zovern the processes of
fmterdsr will he dizcussed only briefly in this book. For the compleie
tarivation of the tequired equations, the reader must turd 1o standard
soxtbaaks on the subfect. The mathematical models for complex procosses like
worbulence, combustion, and radiation will be mssumed to be Kngwn o
wvitlable te the eeader, Even in the subject of numerical solution, we shall not
sunvey gl aveilgble methods and discuss their merits 2od deperits. Rather, we
s7a!] focus attention on a partcular family of methods that the author has
wied, daveloped, or contributed to. Reference to other methods will be made
oy when this serves to highlight a certain issue. While a generad formulation
will be attempied, no special attention will be given to supersonic flows,
frec-surface flows, or two-phase Nows,

An Important characteristic of the numerical methods to be devcluped in
Thig boak §$ that they are strongly based on physical considerations, not Juest
on matherwtical mamipulstions. Iadeed, nothing more sophisticated than

IHTRADUCTION

sipple atgebra and elementary calvdlus is used. A significant sdvantige of this
staatepy 16 that the peadee, while lcarning about the numericsl methods,
davelups o deeper waderstanding of, and insight into, the underlying physical
processts, This appreciation for physicdl signilicance s very helpful in
wiilysing and Ederpreting computed results. But, even if the reader never
perlonis numerical computations, this study of the numerical methods will
provide—Il is interesting to noté- 4 greater {oel Jor the physical aspects of heat
teansfer and fluid Now, Further, the physical approach will cquip the reader
with geperal criteria with which {0 judge other existing and Muture sumerical
inelliods,

1.2 METHODS OF PREDICTION

Prediction ol heat transfer and fuid-flow processes can be obtained by two
aiit methods: experimental investigation and theoretical calculation. We shall
bricfly consider ¢ach and then compare the two.

1.2-1 Experimental Investigation

The jwost relishle fnlormativn about o physical process is often given by
agtunl ipessurement. An cxperimeéntal investigation involving full-seale cquip-
ment can be used to predict how identical copies of the equipment would
perform under the same conditions. Such Tull-scale tests are, in most cases,
prohibisively cxpepsivé ond oftén jmpossible. The alternaiive them 5 to
perform experiments an small-scale models. The resulting information, how-
cver, must be extrapolated o full scale, and general rules [or doing this are
often unavailable. Further, the small-scale models do not always simulate all
the features of the full-scale equipment; frequently, important features such as
combustion or boiing are omitted from the model'tests, This further reduces
the uselubness of the test resulis. Finally, it must be remembered that there are
scrious difficulties of measurement in many situations, and that the measuring
instruttients gre nol free from eopors,

1.2-2 Theoretical Caleulation

A theuretical prediction works out the consequences of a mathemutical model,
rather than those of an actual physical model. For the physical processes of
intepest here, (he matbematical model mainly consisis of 4 =et of differential
equations, 17 the methods of elassical mathematics were to be used for selving
these cguations, there would be little hope of predicting many phenomena of
practical interest. A lovk at 2 classical text on heat conduction or fuid
mechanics leads to the concluzion that only a tiny fraction of the range of
praclical problems can be salved in closed form, Further, these solutions often

wm T, T B T e T e I e e e —
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Heated vl Insulgrad section

B B e il i .

Figure 1.1 Grid layout for 2 numerical solutlen for the temperature eld,

cortaln miinite feres, special functions, transceniental equatlons for eizen-
values, ete., so that their numerical evalustion may present @ formidable rask.®

Fortunately, the development of numerical methods and the availability
of lasge digital computers hold the promise that the implications of a
mathemalical madel can be worked out for almost any practical problem. A
preliminary idea of the numerical approsch 1o problers solving can be
obtained by reference to Fig 1.1, Suppose that we wish 1o obtain the
ramperzture feld in the domain shown It may Be sullicienl 1o koow the
vafues of temperature at discrete points of the domain. One possible method
is 1o imaginc a grid that fills the domein, and 1o seek the values of
temparalure at the grid poimis. We then construct dnd solve afpebroic
equations for these unknown lemperatures. The simplitication inherent in the
pse of algebraic equations rether than differential cquations is what makes
dumerical methods so powerul and widely spplicableé.

1.2-3 Advantages of a Theoretical Caleulation

We shall now list the edvantages that a theoretical calculation offers over a
comesponding experimental investigation.

'lt i pot Implicd here that exact apalytleal soluviicns ace without practical value.
Indeed, as we shall s=¢ later, some features of numerical methods aro constructed. by the
use of sepple analyifcsl solvilons. Farther, there it opo Betrer wey of checking the
aoouracy of 4 ngumerical mothod than by compansen with an exoct analytical solnfion,
Hirwever, there seems o be fiale dauht that flie meothods of classical mathemalies dir ot
oifer & practical way of solving complex enginsering preblems.

INTRODUCTION 5

Low ozt The most important advantage of a computational ‘prediction is
its Tuw cost. In most applications, the cost of a computer ron s many orders
of magnitude Tower than the cost of a corresponding experimental Investiza-
tion. This Tactor assomes increasing importance as the physical situation to be
studied hecomes larper and more complicated, Further, whereas the prices of
mos! Hems are increasing, commtting costs arg likely to be even lawer in the
future,

Speed. A computptional investipation can be performed with remarkable
speed. A desigher can study  the implications of hondreds of different
configueations in less than a day and choose the optimum design, On the
other hand, a corresponding experimental investigation, It is casy to imagine,
would take a very long time.

Complete informativn. A computer solution of a problem pives detailed
and complete information. 1t can provide the valves of &f the relevant
variables (such us velocity, pressure, temperalure, concentration, turbulence
intensity} drropghonr the domain of interest. Unlike the =ituation in an
expariment, there aré few fnaceesyible lacations in a computation, and there i
o cotmterpart o the How disturbance caused by the probes. Obviously. ne
experimental study eczn be cxpected to messure the disteibutions of ol
variables over the entire domain. For this reason, even when an experinient i
performed, there is great value i obtaining a companion computer selution to
supplement the experimental informatian,

Abificy to simulate reelistic conditions. In oz theorctical ealeulation,
realistie conditions can be eastly simulated. There s mo need to resort fu
small-seale or cold-low models. For a computer program, there is litle
difficulty in having very larpe o very small dimensions, in treating very low or
very  high temperatures, in handling toxie or Mammable substances, or in
folowing very fast or very slow proceszes.

Ability to simulate ideal colditions A prediction method is sometimes
uged to study a basic phémomencn, Tather than a complex engineering
application. In the study of a phenomenon, one wants to (ocus attention on 2
few cssential parameters and climinate all dirceléevant featvres. Thus, many
idealizations are desirable—lor example, two-dimensionallly, constant density,
an adiabatic surface, or infinite reaction rate, In a compu lation, sitch
canditions can be casily amd exactly set up. O the other hand, even a very
careiul experdment can barely approximate the idealization.

1.2-4 Disadvaninges of a Theoretical Calculation

The foregoing advaniages are sulficlently impressive to stimulate enthusiasm
about compurer analysis, A blind enthusiasm for any cause is, however,
updesirable, It s usefit) fo be aware of the drawbacks and limitations.

As mentioned earlier, @ computer analysis works out the jmplications of a
mathematical model, The exporiinental Investigation, by contrast, observes the




RFUMERICAL HEAT THASNSERTE AN LU FLUW

corally irself, The vahidity of the mathematical svndel, therelve, liguts he
peefeiness of @ computation. ln this buok, we shall be concerned Galy with
sampuretional methods sd not with: mathematical mudels, Wel, we bt moile
=l the wste of the computer analysis recejves an end producl thal depeads
o both the maethematical mods] and the numesical method. A peifecily
cuiisfactory sumerical techmique can produce worthless results il an inade-
siate mythemaiical misdel is employed.

Far the purpose of discussing the disodvantages of a thegretivil caleily-
tian, il ts, therefore, wseful to divide all practical problems intia (wo Groups,

Granp A= Probloms Tor which an sdequate mathematical desuiption cm ho
wittten. (Exampies: heat conductivn. Taminar flows, siople tarbulen
boondary layers.)

Group #: Problems for which an adequete matliematical desceiption las no
ver beep worked out. (Examples: comples turbulent dluews, certain
pan-Nevdonian News, Torhation of nitric oxides in wrbuleat combistian,
some tea-phise Tows)

o7 coume, the group (nta which a given prablem [Alls will Be detenmined by

wihsl we are prepared 10 consider oz an “adequale™ description,

Bladvontener for Grawp A, 10 may, be stoed thae, for mosl probl2es ol
fiauy A, the theaesticad calcubadon sufferss fromy no iisadvanisgas, The
cogimirer sululion thop répreseats an -alternalive that is highly superior tr an
Tmerdal  study,  Oecasionally, however, ooe  cncuunders Somc dis-
ze. I the prediczion has a very Hmited objective (such finding tle
sl Trogsure drop for @ compliczted appacalus), the eompubstion may nut
i txoensive then an experiment. For diffizult problems fveling
Jen pRomelny, strong ponlingdrities, sensitive uld-property variations,
szg,. 1 mugierical solutios may be hard o obtzin and would be excessively
sepencive (0t all possible. Exteemecly fost and smali-scale phengmena such @s
turhulence, if they are to be computed in all their time-dependent dewad by
coting the unsteady Nawer-Stokes equations, are stll bevond the praciical
jzack of cosputational methods. Finally, when the mathematical problen
perzsenally admits more than ome solution, it is nol edsy o d2téring
whethar the computed salutian cerresponds to reality,

Meseirch in compurational mcthods @& aimed =t making them moe
redlable, segarate, and efficient. The disadvantages mentianed here will
Cimiitisn as 1654 73search DroRresses.

Oissdvartages for Group B, The problems of Group B share all the
Gisadvantages of Gromp A; in addilion, there is the uncertainty sbout the
extent to which the computed results would agree with reality. In stch cases,
seme experimental beckup is highly desicable.

Rewsarch i mathemaztical models causes a transfer o problems from
Group B inle Group A. This research consists of proposing 1 muodel, working
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ol s jinplications by compuler analysis, and comparing the resolts with
cxpenmental dals Thus, computativnel methads play a key role in this
research. A stiking examiple of this role can be fosad i the recent
development of (urbulence models, The currently popular and widely used
iwo-equation  furbalence models are primanly  based  on the waork of
Kolmogorov (1942} and Prandtl ( 1945), 1t was, however, only in the 19705,
when computers and compatationa methods became more powerfil, thut the
tarbulenes models were put b0 practical wse.

1.2-5 Chaice ol Prediction Method

This discission about the relative merits of vompuier analysis and experi-
mientsl fuvestigition is not aimed at recommending compuiation to the
sxelusion of exporiment, An appreciation of the strengths and weaknesses of
both approaches is cssential to the proper choige of the appropriate technique.

There i no donbt that experiment is the only method for fneestigating a
naw hasic phennmenon. In this sense, experiment [cads and computaiion
follows. It |5 i (he syothesis of 3 number of Interacting known phesdmena
that the computation performs mare elficiently. Even then, sullicient valida-
tion uf the computed resulls by comparison with experimental dita s
pecptired, O the other hand, for the design of experimental apparatus,
prelitninary compuiations dre often helpful, and the awmobmd of cxpen-
mentption gan wiually be significantly reduced if the investigation is supple-
mented by compulation.

An wptima! prediction effort shoudd thus be a judics mbinatjion of
computation and experiment, The proportions of the tweo ingredients would
depend on the nature of the problem, on the objectives of the prediction, and
an the economic and other constraints of the situation.

1.3 OUTLINE OF THE BOOK

“This book is designed to unfold the subject in a cértain sequence, and the
reader iz urged to Mollow the same scquence. Tt will not be profitable to jump
toa later chapter, @5 all chapters build upon the material covered in the
previous ones, The problems at the end of some chapters are intended to give
the reader both direct experience with and deeper wnderstanding of the
prisciples developed in the book.

The nine chapters that cumprise this book can be prouped into three
different parts of three chapters each. The first three chapters constitute the
preparatory phase. Here, a preliminary discussion about the mathematical and
numerical aspectz js included, and the particular philosophy of the book j3
cutlined, Chaplers 4-6 coatain the main development of the numerical
method, The last three chapters are devoted to elucidations and applications.
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Before we begin the task of numerical solution, the pliysical phenomena
must be described via appropriate differential equations, This is outlined and
discussed jn Chapter 2. Of special importance in that chapter is the examina-
tion of the parabolic or elliptic nature of these equations [rom a physically
mezningful viewpoint.

The concept of numerical solution iz developed in Chapter 3, where the
common procedures of constructing numerical methods are described, Anuing
these, the method that lends itself to easy physical interpretation is chosen
and illustrated by means of a very simple example. This introduetary maferial
is used to formulate general criteria in the fomm of fowr basic rules. These
rules form the guideposts for the development of the pumerical method in the
rest of this book. Although the rules are formufated from physical con-
siderations alone, they often lead to results that—it js interesting to ohsere—
are normally dedved from purely mathematical asalysis. Furthermore, these
rules guide ws to better formulations that may not have heen supeested by
standard mathematical methods,

The construction of the numerical method beging in Chapter 4. It is
carried out im three stages. Heat condection {i.c., the general problem without
the pomvection term) is treated in Chapler 4. Chopter 5 concentrates on the
interaction of convection and conduction, with the Mow field regarded as wven.
Finally, the caleulation of the velocity feld ltself is dealt with in Chapter 6.

Rezders who are interested in fluid flow alone, and not in heat transfer,
should note that Chapier 6 is not g sclfcontained chapter. Tt deseribes only
the additional featuzes required for the Muid-Mow cilcelation, the other details
having already been given in Chapters 4 and 5. Thus, Chapter 4 does not
merely deal with heat coaduction; It completes much of the groundwork
needed for fluid flow, The treatment of convection in Chepter 5 5 also
equally applicable to fTuid-flow calculation. This approach~handling fluid flow
through heat transfer—may be unfamiliar te some readers, but it appears to be
an effective pedapogical technique. The early focus on heal transfer enables us
to conduct all the preliminary discussion in terms of temperature, which iz an
casy-to-understand scalar variable. It also reimforces the conceptual wmity
hetween variables such as lemperature mmd momentum, which is uscful in
understanding and interpreting resules.

Ancther technigue that will be in evidence in these chapters is the use of
ane-dimensional situgtions 1o constrict the basic algorithm. which i then
fuickly generalived to multidimensional cases. The one-dimensional problem
serves to keep the algebraic complication to a minimum and to focos
attention on the significant issues.

Chapter 7 i5 a3 compilation of & swmber of elucidatinggmarks and
suggestions that can be properly apprecisted afier the rea 13t had an
overview of the method through familisrity with the first six chapters.
Chapter 8 deals with calcufation procedures that can be considered as special
cases of the peneral method déveloped in the book. The control-wolume-based
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finite-element method, which is briefly described in Section 8.4, is, however,
an extension rather than a special case of the general method.

The last chapler serves to give the reader a taste of possible applications
of the method. Tt containg 3 briel description of some of the problems solved
by the suthor and his co-workers, This is, of course, only a very small fraction
of the totality of interesting problems that are within the reach of the
method, The possibilitics are limited only by the imagination of the user.
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CHAPTER

TWO

MATHEMATICAL DESCRIPTION
OF PHYSICAL PHENOMENA

The numerical solution of heat transfer, fluid flow, and other related processes
cont Begln when the laws governing these processes have been expressed in
wiathematical form, generally in terms of differential equations. For a detailed
and complete derivation of these eguations, the reader should tum to a
standard textbook. Our purpose here is to develop familiarity with the form
and the meaning of these equations. It will be shown that all the equations of
relevance here possess a common form, the identification of which is the {irst
step toward constructing a general solution procedurs. We shall also discuss
some characteristics of the independent variables used in these equations.

2.1 GOVERNING DIFFERENTIAL EQUATIONS

2.1-1 Meaning of a Di'&ntial Equation

The individual differential equations that we shall encounter express a certain
conservation principle. Each equation employs a certain physical quantity as
its dependent variable and implies that there must be a balance among the
various factors that influence the varable. The dependent wvariables of these
differential equations are usually specific properties, j.e., quantilics expressed
©n 2 unit-mass basis. Examples™ are mass fraction, velocity (Le., momentum
per unit mass), and specific enthalpy.

“rmpcr:lum, which i quite frequently used as g dependent wvariable, is not a
specific property; it arises from more basic ¢quations employing specific internzl encrgy
or specifie enthalpy a3 the dependent varable. )

11
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The terms in a differential equation of this (ype denote influences vn 2
unit-volume basis. An example will make this clear. Suppose 1 denotes a fox
influercing 2 typical dependent variable ¢. Let us consider the control yolume
of dimensions dx, dy, dz shown in Fig 2.0, The flux 7 {which is the
x-direction component of I) iz shown entering one face of arca dy dz, while
the fux leaving the opposite face is shown as [ + (3 /8x) dx, Thus, the ner
efffux s (8/,/8x) dx dy di over the areg of the face. Considering the
contributions of the y and z directions as well and noting that de dy oz is the
volume of the region considered, we have

ad,

Met efflux per unit volume = 5 il oy 91

an az
= div ] (2.1)

This interpretation of div J will be particularly uselul to s becpuse, as we shall
see later, our nomerical method will be constructed by performing a batanee
ever a control volume.

Angther example of a term expressed uno 2 unitvolume basls is the
rate-of-change term 3(pg)/or. IT ¢ is a specific property and 2 i the density,
then pg denotes the amount of the correspunding extensive perty  con-
rained in a unit volume. Thus, d{pg}far is the rate of change‘(:hc relevant

roperty per unit volume,

A diiferential equation is a compilation of such terms, each representing
an influenice on 3 unitwolume basis, and all the terms together implying 2
halarice or conservation. We shall now take as examples a few standard
difTerential equations, 1o find & genesal form.

2.1-2 Conservation of a Chemnical Species

Let mrp denote the mass fraction™ of & chemical speeies. In the presence of 4
velocity field v, the conservation of my is expressed as

% {pmy) + div {pum, + 1} = Ry, (2.2}

Here 3(pm,)f3r denotes, as explained earlier, the rate of change of the mass al
the chemical species per unit valume. The gquantity pum is the convection
flux of the species, ie. the flux carried by the general fow ficld pu The
symbol 1; stands for the diffusion flux, which is normally caused by the

'The mass fraction my of a chemical fpecics ! is dedjmed a5 the ratio of the mass of
the species { {contained in 2 given volume) o the total mass of the mixture (contuned in
the smme volume).
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4
% 4
[ 7 I-I—-— o= ——-|-]
X
Figure 2.1 Flux balance over o contrd volumc,

geadients of my. The divergence of the two fluxes (convegtion and diffusion)
forms the second term of the differential equation, The quantity &) on the
right-hand side is the rate of generation of the chemical species per unit
volume. The goneration is caused by chemical reaction. OF course, Ry can have
1 positive or negative value depending on whether the reaction actually
produces ar destroys the chemical species, and Ry is zero for a nonreacting
species.

If the diffusion Mux J) is expressed by the use of Fick's law of diffusion,
WieCcan. write

Sy = =T grad my | (2.3)
wlhiere Ty is the diffusion coelficient. The substitution of Eq. (2.3) inta (2.2)
leads to

g 2 :
¥ (pemy) + div (oumy) = div (17 grad ) + Ry . (2.4)

2.1-3 The Energy Equation

The energy  eguation in its most general forin contains a large number of
influences. Sincc we are primacily interested in the form father than in the
details of the equation, it will be sufficient to consider soms restristed coses.

For a steady low-velosity Tow with neglizible viscous digsipatilon, the
cnerzy equation can be written as

div (owi) = div (k prad T) + 5, {2.5)

where hi s the specific cothalpy, & is the lhermal conduetivity, T is the
temperature, and 53 is the velumetric rate of heat generation. The term div (&
grad Ty tepresents the influence of conduction heat transfer within the fuid,
sceording to the Fourder law of conduction.

i
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Fur idesl pases and for solids and liquids, we can wride
cgrad T=grad i , (2.0}

wiegre oI5 the constamb-pressure specifis heat, With this sulstitution, (e
Lhiefay codation beconies

div {puh) = div (% arad .‘l) + S (2.7}

[ s constant, the i =~ T relation simplifies

fo=eT, {2.8)
which wolld lead
div (pu) = div (E prad T) + %! _ (2.9)
A

i this menner, either the enthalpy or the lemperature can be chosen as the

dependent variable.
The steady heat-conduction situatron is obtained by setting the velocity u

toororny this,

div{kgrad Ty + 5, = 0. (2.10)

2.1-4 A Momentum Equation

The difrerential equation governing the conservation of momentum in 3 given
diregtion for 2 Newtonian fluid can be wristen along similar lines; however,
the cozipiication 5 greater because both shear and normal strésses must be
considered znd bzcause the Stokes viscosity law 15 muore complicated than
Fick's law or Fourder™ Jaw. With & dencting the x-direction velocity, we wrile
T coicciognding momentum equation as

:IH‘ [an) + div {puu} = div (g oorad u) - E—; gt Vi i {2,113

where pis the viscosily, pis the pressure, 8, @5 the x<direction body force per
unit volume, and P stands for the viscous terms thai are in addition to those
srpressad by div (@ grad o).

2.1-3 The Time-averaged Equations for Turbulent Flow

Turbulent flows are commonly encountered in practical applications. [t is the
time-mean behavior of these flows that & wually of practical intercsi.

N T Y TR R A AT T T
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Thesefure, the equations or unsteady Jaminar flow arc converted mta the fe-
averaged equations for turbulent fow by an averoging operation in whivh il is
assumed that there are rapid and random Muctuations sbout the mean vilue. P
wdditional terms arsing from this operation are the so-called Reynolds stresses,
lurhuleat heai fux, turbulent diffusion Nux, cic. To express these Nuxes in
terns of the inean propertics ol the flow is the task of a tarbulence model.

Many turhulence models coploy the concept of a turbulent viscosily or a
turlinlent diffusivity to express the turbulent stresses and fluxes. The resull is
that the timeaverazed equations for turbulent fow have the same appearance
as the equations fur Jamds ow, bid the lamimar exchange coelficivats such
as viscosity, diffusivity, @l conductivity are replaced by effecrive (ic,
laminar plus  twibulent) exchaoge cocflicients. From a  computativng)
viewpoint, a turbulent flow within this framework is equivalent to o buninar
Mow with a rather complicated prescription of viscosity. (The same idea s
applicable to pon-MNewtonian flows, which can be thought of a5 flows in which
the viscosity depends on the velocity gradient,)

2.1-6 The Turbulence-Kinetic-Energy Equation

The currertdly poputar “two-equation modeis”™ of turbulence (Launder and
Spalding, 1972, 1974) employ, as une of the equaljons, the cguation for the
kinctic emergy & of the Nucluating motion, which reads

E-D:r {pk) + div {guk} = div ([ grad &) + & — pe | {21

whare Py is the diffusion cocefficient for Kk, & is the rate of generation ol
turbulence encrgy, and ¢ is the kinematic rate of dissipation, The quantity
7 = pe i5 the awer source term in the equation. A similar differential equation
governs the varable €

2.1-7 The General Differential Equation

This triel journey through some of the relevant differential equations has
indicated that all the dependent varizbles of interest here seem to obey a
zeneralized conservation principle, I the dependent variable is denoted iy @,
the general differential equation is

-E.’r_i {pd) + div {pud) = div (T grad ) + 5, (2.13)

where [ s the diffusion coefiicient, and & is the source term. The quantitjes
[" and § are specific o a particular mezning of ¢. (Indeed, we should have
used the symbols Ty and S, this would, bowever, lead to too many
subscripts in subsequent work.)
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The four terms in the peneral differential equation are the unsteady term,
the convection term, the diffusivn term, and the sousce term. The depeadent
variable 4 cn stand for a varety of different quantitics, such as the mass
fraction of a chemical species, the eathalpy or the temperature, a velocity
component, the turbuleace kinetic energy, or a turbulence length scule.
Accordingly, for each of these varizbles, an appropriste racaning vl have to
be glven to the diffusion coeflicicnt I and the source term X ’

Not &l diffusion fluxes are governed by the gradienl of Me relevant
variable. The use of div ([ prad &) as the diffuzion term docs nat, however,
limit the general ¢ equation to gradient-deven diffusion processes. Whatever
cannot be fitted inte the nomina! diflesion term can always be expressed as a
part of the source term; in foct, the diffusion cocfficient T can even be sot
equal to zero if desired. A gradient-diffusion term has been explicidy included
in the peneral ¢ equation because most dependent wvariables do require 2
prominent diffusion terim of this nature.

The density appearing in Eqg. (2.13) may be related, via an egquation of
ziate, to variables such as mass fraction and temperature, These varighles anil
the welocity components obey the general differential cquation. Further, the
flow feld should saeisfy an  additional constraint, namely; the mass
conservation of the continuity equation, which is

:_‘: + div (o) = 0 - (2.14)

We h%ritten Ege. (2.13) and (2.14) in vector form. Anoiher useful
representation is the Czrtesian-tensor form of these eguations:

G 4 =2 fp8dyy
= {og) + E{'ﬂ“’rﬂ = (l" ax,) ) 215§
E + i (pus) =10, (214}

df s
whete the subseript [ can take the walues ), 2, 3, denuting the three space

ranrdinates. When a suhscript 15 repeated in a term, a summation of three
terms is implied; for example,

ax

3 (nae). @ (pa), 2 (o), 2 (noe
w0 (2 L2 S R): v

An immediate benefit of the Cartesian-lensor form iz that the ore-dimensial
form of the equation is obtained by simply dropping (he Subscrigit f.

B e 3 B
a—nfﬁa‘j}—aﬂﬂﬂﬂ*‘aiﬁuﬂ" 3nsvu;.,,J {2an

MATHEMATICAL DESCRIFTION OF PHYSICAL FHENOMENA 17

The procedure for casting any pacticular differential equation info the
separal Torm (2.73) is to manipulate jt ountil, for the chosen dependent
variable, the ynsteady term and the convectivn and diffusion terms conform
ta the standard [orm. The coelficient of grad ¢ in the diffusion term is then
teken a5 the expression for [, and the remaining terms on the right-hand side
are collectively delined as the sowree term S,

Although we Iuve so for considercd all the variables as dimensicna!
quantities, it is at fimes more convanient to work with dimensionless variables.
Again, any particular differential squation written in terms of dimensionless
yiriables can be reparded s possessiog the general Toeme (2213}, with $
standing for the dimeastartiess dependent varizble, and with I’ and & being the
imensionless Torps of e diffusion coelfeient and the source ferm. 1o many
cases, the dimensionless value of Pomey simply be wnity, while § may teke the
value af O or 1.

The recognition that all the relevant differential equations for leat and
roass  fansfer, floid  Aow, 1orbelence, and related phenomena can be
thought of a5 particular cases of the gencral ¢ cquulion is an important
time-siving step. As a consequence, we npeed Lo concern ousselyves with the
numerical selution of only Eg- {2.13). Even in the construction of a computer
program, it is sufficient to write 2 zeneral sequence of instructions for solving
Eq. (2.13), which can be repeatedly wsed for different meanings of ¢ along
with appropriate expressions for T and 5, and, of course, with appropriate
imitial and boundary conditions, Thus, the concept of the general § equation
pnables us to formulate @ general nomerical method and to prepare general
PUrpose compueics programs, ~

2.2 NATURE OF COORDINATES

Sa Tar we hive piven attedlion to the dependent varables. Now we shall tum
i the independen! variables and discuss their propertics from the computa-
tignal point of view,

2.2-1 lndependent Variables

‘The dependent warizhle ¢ would, o general, be a Function of three space
coprdinates and fime, Thus,

g=Hleutz 1) (2.19)

where & v, z, and 1 are the indegeqdent variables. In a numerical selution, we
shall ghooze the values of the indeoendent variables at which the valpes of &

prc to b calcufated,
Fortunately, not 2l preblens  requre  considerstion: ol all foer
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i tepentent verichles, The sioallec the gumber of partizipating independent
visidivies, the fewer will B the locetions for grid poics) ot whish U ¢ valucs
st e caloufared (provided that otherwise Ui probloms are of conpaiabic
simplesity ).

When the relevant physical quantitics deperd on andy  one  space
siordinate the situstion 15 called ane-dfrensional, Dependence o v space
senpdinates leads 1o 2 fwo-dinensional situation, aud on theee space Q-
Greinates o oa threcsdimensional situation. Wihen (e probloisn contains oo
sdeace on ime, 1t ois called sreedy, Otherwise, 8 s ealleld wersposd)y ur
c-denendent. Condidering the dependence on space and time (ogethes, we
snell describe a situation s an wnsteady ome-dimensional problem, o sfeady
ihoczadhmensional Mow, cic,

The copice al independent coordinates as expressed by Eqge (2,09} 05 not
teeopnly pessibifity, Instead ol desceibing a steady temperatuse distrilintion us
THx, ¥ ), we may wiite

z =z(T, % ¥, (2.20)

widre 7 becomes the dependent varisble that stands Toe the heiht of an
jazzhgrmal surface commesponding o T gt the docation {x, vk A methad based
on such a representation has been develuped by Dix and Cizek ( (970) and Dy
Crank and cosworkers (Crank and Phahle, 19737 Crank and Gupra, 1975;
Crank and Crowley, 1978) and is known as the forherin migracion method.
Thne methed s, however, limited to temperature ficlds that are monotonic
fenctions of the coordinates; for more general felds, the height 2 could have
severdl values for given values of T, x. and p: this makes z, for comgrutativial
FLrposes, unsuitable a3 a dependent variable.

2.2-2 Proper Choice of Coordinates

Rizce the pumber af orid points would, in general, be reélated b the number

indenendeng) vanables, thers B 2 significant compuiational saving fo be
ronzevesd by owarding with [ewer indlépendent varizbles. A judicions choice of
diz pooicinate systemn ©3a sometimes raduce the awmber of jndependent

vEmLatius T

Although we have uszd &, 3 oand z as the space courdineley, Q0 is oal
metied A=t we must wse e Cartesian coordinale sysiem; any description of
Ui ospatizl locadom will do. We shall now flustrate, by o [ew specific
swemmples, how the choice of coordipates inflluences the number of
imlependent vardables.

i. The fow around an airplane that ‘3% moving with consant velocity is
unsdeady when viewed from a stalionary coordinate system, but sreedy
with resooct to a moving cuordinate system attached to the airplane.
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2, The axisymmetie {low in 3 cireular pipe appears 4o be three-diniensional in
a Cartestan coordinate system but is two-dimensmonal in cylindrical polar
coardinates v, 3, z, since

=l 2) (2.21)

with oo dependence on B,
3. Tramsformed coordinates offer Turther possibilities of fewer independent
vatiables. For example:
2. A two-dimensional Jsminar boundary layer oa a flat plate gives a
similarity behavior such that the selocity & depends un » alone, where

. BF
i (2.22)

v

and where ¢ s a dimensional constant, Thus, a two-dimensional problem
p reduced to o one-dimensional problem.

b Unsteady heat conduction in a semi-infinite solid has x and r as the
independont variables, However, for some simple boundary conditions,
the temperaiure can be shown o depend an £ alone, where

i

E E= i {2.23)

with C representing an appropriate dimensionsl constant.
4, A change of the dependent voriable can lead to a redwction in the number
of Independent varisbles. For example:
g In a fully developed duct flow, the temperature T depends on the
streamwise conedinate x and the crossstream coordinate . However, in
the thermally developed regime with uniform wall temperature T, we

have
8=0(y), {2.24)
where
s T g
AR

and T is the bulk temperature, which varics with x.
& A plane free jet 45 3 two-dimensional fow. However, we can write

i = d(m, ' (2.25)
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where

3

]
1]

- u
HE— . 7 {2.26)
“l.'

[Tere w, represents the centerding velocity, v is e eross-stesim
conrdinate, and § i5 3 characteristic jer width. Bolh 1. and & vary wigh

the strearnwise coordinate .,

Although most of the discussion jn this book will be copdiicted in terms
of x, v, z, and ¢ as the mdependent vardables, it should be remembered that
all the ideas and practices are equally spplicable to the transformed s
dimensionless vanables illostrated here. Indeed, for copnpuiational efficiency,
numerical methods should always be used with the sppropriate choice of
coordinates.

2.2-3 Ope-Way and Two-Way Coordinales

We shall now consider new concepts about the properties of coordmafis and
then establish a comnection between thete and the standard matbemaneal
terminology.

Definfrions. A two-way cootdinate iz such that the conditions at a glvan
locution in that coardingte are Iafluenced by changes in conditlons cn cithor
side of that location. A gme-way coordinate s such that the comditiong al a
given logation fn that coordinate are influenced by changes In copditions on
ohly one side of that location,

Examplet, Onedimensional steady heat conduction in & rod provides an
example of 3 two-way coordinate. The temperatuce of any given puint in the
rod can be influsnced by chansing the {emperature of either end, Nurmally,
space coordinates are two-way coordinates, Time, on the other hand, is afiways
2 oneswzy courdinate. Durng the unsteady cooling of & solid, the tempurthare
at a given instant can be infloenced by changing wndy those conditions thm
prevailed before that instanf. Tt §5 2 inatter of common experience fhit
vesterday's events affect today™s Nappenings, but tomnrmow’s tonditions have
no influence on what Rappens today.

Spage ar a one-way coordingre. What is more interesting is that cven a
space coordinate can very peatly become one-way ander he action of {fuid
flow, I these is & strong unidirectional flow in the coordinate directiim, (hien
significant influences travel only from wpstream to dowsstream, The cordis
Hons at a point are then affected larzelv by the upstreasn conditiums, and very
litthe by the downstream ones. Theé ene-way mature of a space coordinate s un
gpproximaetion. It is true that convection B 2 one-way process, bl diffusion
{which s always present) has twooway infteences. However, when the flow
rate j¢ large, convection overpowers diffusion and thes makes the space
coordinate nearly one-way.

MATHEMATICAL DESCRIFTION OV PNYSICAL FUENOMENA i) |

Marabiolie, elfiptic, feperbolic. 1t appears that the mathematieal terms
paralolic smd elliptic, which are used for the classification of differential
equations; correspond 1o our compulationy] concepis of one-way and two-way
coordinates. The term parabolic indicates a one-way beluvior, while efliptic
significs the bwa-way cohcept.

It would be more meaningfol 7 sitvations were deseribed as beoing
parabolic or elliptic in o given coordpiie. Thus, (e unsteady heat condiclion
problem, whigh is formally called parabulic, §s actually parabolic in timo and
glliptic in the zpace conrdinates, The steady heat conduction problem is
elliptic in all courdinates. A (wu-limensional boundary layer is pacabolic In
thé streamwise coordinate and clliptic in the crogsstream coordinate,

Simce such descriptions are unconventional, o conneotion with established
practice can perhaps be achieved by the following rule:

A sitvation 15 parabolic AF there exists ot least one one-way courdinzte;
otheryise, it 0% olliptic:

A flow with one oocwzy space coordinatc is sometimes called 2
bournfary-layer-tvpe flow, while a Tow with all two-way coorditiaras i
referred to asa cecirculating Now [see the titles of the bouks by Patankar and
Spalding (1970} and Gesmen, Pun, Runchal, Spalding, snd Welfshicin
(Ee6am].

Wh, out the third categary, gamely, hyporbolic? 10 so happens that o
hyperbolic=ftikation does not neatly fit into the computational classification.
A hyperbolic problem has a kind of one-way bebavior, which is, however, not
alumg coordinate directions but along special lines called characteristics. There
are nurerical methods that make vse of the characteristic lines, but they are
rastricted to hyperbolic problems. On the other hand, the nomerical method
to ke developed In this book does not take advantsge of the special nature of
+ hyperbolic problem, We shall treat hyperbolfc problems oz members of the
wenera) class of elliptic prolblems (Le., all two-way coordinates),

Computarional implicgtions, The mollvation for the foresoing discussion
about one-way and two-way coordinates s that, if a one-way coordinate can
ba identified in a piven situation, substantial economy of computer storage
and computer time is possible, Let us consider an unsteady two-dimensional
heat conduction problem. We zhall construct a two-dimensional array of grid
points ‘In the coleulation domain, At any Instant of Gime, there will be a
correspanding two-dimentional temperature fiefd, Such a feld will have o be
haniled in the computer for cach of the successive instanis of time. However,
singe Wime i3 3 ope-way coordinae, the temperdture feld at 2 given Doe 5
vl afficted by the flefpre lemperatise fields, Indeed, the entire unsteady
problem can be reduced fo the required repetitions of ane bosic step, namely
this! Given the temperature feld at time f, find the temperature fTeld at time
rof Ar Thus, computer storage will be needed only for these (wo temperature
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Telidss the same storage space cap be used, over amd over again, for all the
R A LS

17 this manoer, stariing with a given el tentperature feld, wao are able
s Smarch! farward to sucecessive instants of time. Durpg say time step, only
oae dwa-diznensionad arzy of temperztures forms the unknowns to be treated
mvitangously.t They sre decoupled from all feture valves of temperadure,
atd e previous values that influesce them are known. Thus, we neal (o
: muchosimpler sed uf equarions, with @ consequant saving of compuicr

ln o similar mapner, a (wo-dimensional boundary Jayer is computed by
snarching in the streamwise coardinate, Wih values of the dependent vaiables
Zven alemg one crossstream line ab an upsiredm station, the values long
succossve orossstremm lines are obtaimed. Only one-dimensional computer
stomsge i peeded for handling the two-dimsensivnal low, Simalady, a three-
dimenstonal duct fow that (s parabolic in the streamwise direcijon can bo
rroated gz @ series of two-dimensional problems for spccessive cross-stream
oLaTieE,

It this book, we shall gve only oecgsional attention to the vne-way gwee
ciucsdinats. However, its greel potentisl for saving computer storase anid
computer time should alwzys be kept in mind.

PROBLEMS

1 Wrie the uasteady heal condwclion bqua.uuh toe the cuse of constant speeifle heat e
Stisw that, with refcrence to the gencral equatien (20133, this mplies o =7, a=1,
T =kfe, and S0 Sle

2.2 Derive the expresssivns for ¢, T, and 5 il in Problem 2.1 the specilic heat © cannol Le
tzken as consiaznt. (Mime: Llige the internal energy i as the dependent variable; nide that
i =¢dT

2.3 IF Eg, €273 were 1o be written for an wtmsready situalion, show thal the resulling
forsy can be cxpressed zs o =h, P=&c, and § = 8y + agfar.

2.4 Derive an axpresston for My in Eq. (2.11). Hence show thal o, becomes cenie whea
ke density and viscosity are constant. {Use the continufty cquaticn.}

15 Defipe an effecifve pressurs by
P=p—tudivu,

whizia s ke thermodynamic presure, IF the viscosity 8 constant but 1he density g is
oo constzat (and hemce div w#0), show that e term F, in Lg. (2.11) can be
oxmbined with the pressure gradicnt such that

P

iax

*It s zssumed here that an implicit method s o b employed, This matier i
cismeased in SHail i Chapler 4.

e T - R
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L6 I the coatinuity equation (2.14) were [ be reparded as o special cise of the gencrsl
wepuatbon (2,13), what would he the expressions for g, 1% and 57

2.7 Comler 3 mixtuge of various chemical species. Pefine the mixture enchalpy by
ko= :.'nr,h;, where miy Bothe mass fraction of a fypical spocies, and fiy & ity specific

enthalpy, which is given by
T
b=y +f o dr .

Hete Jér; it 3 constant, and ¢ 5 the conslant-pressure specific beat of spreics I. Write the
steady-state enthalpyvonservation cquation and lienee show that a=#h, =4/, and
F= g 4#div T [{r7 - £fedy gead. g, where ¢ s ihe mixture specific heat, given by
oy,

g e e A TR e e A




CHAPTER

THREE

DISCRETIZATION METHODS

So far we have scen that there are significant benefils in ohtaining a
theoretical predictivn of physical phenemens. The phenomena of interest here
are governed by differential cquations, which we have représenied by a general
equation for the variable ¢ Now our main task is to develop the means of
salving this equation.

For ease of understanding, we shall assume in this chapter that the
variable @ s a function of only one independent variable x. However, the
ideps developed herc continue to be gpplicable when more than one inde-
perddent variable is active.

3.1 THE NATURE OF NUMERICAL METHODS

3.1-1 The Taszk

A numerical selution of a differential cquation consists of a set of numbers
from which the distribution of the dependent varfable @ can be constructed,
In this sense, 2 aumerical method iz 2kin to 2 laboratory experiment, in which
a set of instrument readings enables us to establish the distribution of the
meatured quantily in the domain under investigation. The numerical analyst
and the laboratory experimenter both must remain content with only a finite
nurber of numericl values as the outeome, although this number can, &t
least in principle, be made [arge enough for practical purposes,

25
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Let ws suppose that we decide to represenl the variation of g Ly o
palynomisl o,

gmog Faed gt oo g™ (3.1)

anc employ 2 nemerical metvod o find the Rnile norober of cecilicients a,,
-y , dppe This wil] enable ws to evaluate & at any locafion x by
fetfng the valpe of x oand the yalues of the a%% mto Eq. 13.1). Thas
povdire ln however, Samewlat hconveniant if our ultimate lrterest fs 1o
oot e lmkies oF @ oal vameus Tocations. The values of the a's are, by
[yes, not partioulaely meaninglul, and e substitution dperation Diest
Bo wormwt ik to arrive 3t e wequined values of & This leads us i the
Pazhowaid Beiuzha; Why nol adnsirnct 2 merthod that empluy: the vallies ul 4
. st:nney of given points e the peimiay  tnkonowns? Indecd, nost
jupetical methods for solving differentizl equations do belong i@ this
coiegony, and Ltheretore we shall limit oar attention to such nrethads,

Thus, 2 pumerical method treats os its basic vekoowng e values ol e
sndent variable at a finite mumber of locativms (ealled the grid pdnis) o
the gateulztion domain. The method includes the lasks of providing a sel of
fpsheaic equations for these onkmowns afd of peeseribimg am alporiton loo
saiaaog the equations.

3.1-2 Thae Discretization Concept

Li Twcmsing attentpon on the values at the grid points, we have replaced the

pninuouy micomation contained in the cxact solutica of the diferential
criation with discrete values. We have thus discretlzed the distribution of 4,
sl il is oppropoate 1o refer to this class of numerical methods as disoresizo-
ot eetiods,

The sigchraic equations involving the unknown values of ¢ at chosen grid
suinis, whoch we shall now mame the disereffzation equations, are derived
trom the differentiad eguation gaverning ¢, In this derivation, we must employ
same assamption shewt how § varies bepweent the geid points, Although this
“arofile” of @ could be chosen such that a single algebraic expression suilices
for the whole calewlation domain, it is often more practical to use piocewise
nrufies such that 3 piven segment describes the varfation of ¢ over only a
sitail rezion io forms of the ¢ values at the grid points within and around that
cezion. Thus, it s common o sibdivide the caléulation domain into 2 number
ol sebdomaing or elements such that a separate profile assumption can he
1ssoclated with ezch subdamatn,

in iz manoer, we encounter the diseeetization concept in another
wiritext, The contnuum calculation Jdomain has been discretized. It is this

criptic dizcretization of space sad of the dependent varizbles that makes it

TUEIRMIETG T
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possitle to replace the governing differential cquations with simple algcbraig
squal.imis, which can be solved with rfelstive epse,

3.1-3 The Structure of the Discretization Equation

A discretizadion equation is an algebraic telation commecting the values of ¢
fur A group of grid points. Such an equation is derived from the differential
ediation govérnmyg ¢ and thus exprosses the same physical information as the
differential equation. That only a fow grid poiets participate in a piven
diseretizition equalion [ 3 consequence of the piccewlse nafure of the profiles
chosen, The value of ¢ at a grd point thereby influenees the distribution of @
only in its immedizte neighborhood, As the number of grid points becomes
very large, the solution of the discretisation equations is expected fo approach
the exact solution of the comesponding differential cquation. This Tillows
fraim the consideration that, as the prid points get clnser together, the change
in @ belween peighboring grid points becomes small, and then the aotual
details of the profile assumption becoime unimportant,

For a given differenlial equation, the possible discretization equations arc
by o means unique, although sl types of discretization cquations are, in the
limit wf a wvery large aumber of grid points, expected to give the same
solutlon, The different types arise from the differcnces In the prafile
wsaumptons and in the methods of derivation.

Until now we have deliberately relrained from making reforence ta
finite-difference and finite-clement methods, Now it may be stated that these
can be thought of 23 two altemative versions of the discretization method,
witch we have described in gencral terms. The distinction between the
firiite-dilTerence method and the finite-clement method results from the ways
of choosing the profiles and deriving the discretization equations. The method
that is to be the main focus of attention in this book has the appearance of g
fnite-difference method, but i ploys many ideas that are typical of the
fniteclement methodofogy, TA¥Call the present method 3 finite-difference
method might convey an adherence lo the conveptional fnite-difference
prectice. For this reason, we shall refer to it simply as a discretization
method, Alwo, we shall note in Chapter 8 how a method that has the
ippearance of a finite-element method can be constructed Fom the general
principles prosented ia this book.

3.1 METHODS OF DERIVING
THE DISCRETIZATION EQUATIONS

Fue 3 given differential cquation, the required discretization equations can be
derived in many ways, Hore, we shall outling 4 few common methods and
then Indicate. 2 preference,
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3.2-1 Taylor-Series Formulation

The usual procedure for deriving finite-differcace cquations consists ol

approximating the derivatives in the dilferemtial cquation via a trumcated
Taylor serics. Let us comsider the grid points shown in Fig. 310 For
geid point X, focated midway between gid paimes 1 oand 3 such thue
Ax =xy —x; =25 — Xy, the Taylerseries cxpansion around 2 gives

- dg ] 5
& =g —Ax (_)2 + 5 {ax) (Jx’): t1.2)
= de 1 2 (de
and gy =¢; T Ax (dr)z + : {Ax) (d?)! + : 13.2)

Truncating the series just after the thicd term, and adding #nd subtracting the
two cquations, we obtain

del _ i —d .
(ﬂ’x)z 2 3x 2t
di0) _ ¢+ 8 20
ard (d’xi); == {1'.3.'{}* ; [3:5)

The substitution of such expressions into e differential equation leads to the
finite-differcace equation.

The method Ineludes the assumption that the varation of ¢ is somewhat
like a pelyrtomial in x, so that the higher derivatives are unimportant. This
sssumption, however, leads to an ondesieable formulation when, for example,
esponential variations are encountered, (We shall refer wo this matter again in
Chapter 5.) The Tavlorserics formelation i relatively straightforaard  bist
allows Tess ftexibility and provides little jnsight into the physical meaninus ol
the terms.”

*This is admittedly a2n entirely subjective wview. Someone with proper Tiermatical
sraining may Tind the Taylorseries methal highly umineting and meanngl

2 3
& O &
I I f
[ L Cas e

Figure 3.1 Three successive prid pointy weed for the Tavldr-szries expansion.
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3.2-2 Varational Formulation

Another method of obtaining the discretization equations is bosed on the
caleulus of variations. To enderstand the method fully, the reader shouwld have
sufficient knowledge of this branch of calewlus. Howewer, a pencral apprecis-
ivn of the main ingredients of the formulation s ol that is necded for the
pPresent Purposes,

The calculus of variations shows that solving certain dilferential equations
i equivalent to mindmizing a related guantity called the functional. This
cyulvalence s known as a varfational principle, 11 the functional is minimized
with respect 1o the gril-point values of the dependent varfoble, the resulting
conditivns  gve the required  discretization  equations, The variational
formulation is very commonly employed in finite-clement methods lor siress
artalysis, where it can be linked to the virlual-work principle. In addition to its
alpebraic amd conceptual complexity, the mabn drawhack of this formulation is
its limited applicability; since a vanational principle does not exist for all
diffcrential equations of interest.

3.2-3 Method of Weighted Residuals

A powerful metbod For solving differential equations is the method of
weighted residuals, which is described in detadl by Finlayson (1972). The basic
concept is simple and interesting. Let the differential eqeation be represented

Lgy=0. {3.6)

Further, let us assume an approXimale solution ¢ that containg a numbes of
undetermined parzmeters, for example,

go=mg Fayx Fapxrd b d g k™, (3.7

the a5 being the parameters. The substitution of & into the diffcrential
equation leaves # residual 2, defired 15

R=L{g). {3.8)
We wish to ke this residoal small in some senge. Let ug propose that
T WR dx =0, {3.9)

where Wi a weighting function amd (he intepration is performed over the
domain of interest. By choosing 1 succession of weighting Tunctions, we can

!
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soperate as many egualions as afe fequired For evalualing (e paiimeders,
Tliese alpebraic cguations conkuining e parimerers as the wnknowss are

solvad to obran) the approximate solugon to the differential equation,

Lilferent versions of the method (known by specific sames) resull from the
chioiee of Jdifferent classes of weighting functions.

The method was very popalar in boundary-layer analysis before the
Tinfte-difference method neady replaced it However, a conpgction with the
fnate-difference method, or tather with the diserétication methad, can be
citabiished iF the approditnate solution o, instead of being o single ulgebrai
cupression over the whole domain, is constrected via piecewist profiles with
ihe prd-point valugs of @ as the unknown pacaieters. [ndeed, much of the
recent development of the finite-clement tecliniyus is also based on piecewise
rrofiles used in conjunction with o pacticular weiphted-residual prictice known
== the Cialerkin method,

T simnplest weighting fAeetion & W= 1. Frem this, a2 sember of
cerphifd-coszdunl  equations edn Dbe penerated by Jdividing the caleulation
coptan ot skbdopaing or conteol voluinds, and setting the weighung
Ceniblion) [ be o unity over dne subddmein at a time add zeio evorywhere else,
atof the grethod of weighted residuals &5 calledl the subaurrsie
- e cottredksofome facmutation. [0 dmplics bat Oie ndemal of die
= oewer cach cotteal velume suust become rero. Sineo we shail adopt he
sompmlveiume sppioach in chis book, a more detailed discossion s destrabide,
et o Tollows.

3.2-4 ControkYolume Formulation

Tznoslermenlary  textbooks on heat (raasfor derive the [nitc-biMerenge
soaalicn vig the Taylorseries method and then demenstirate that the resulting
cquation I3 consitent with @ Deal balanee over & small region surrounding a
srid point We have lso seen that the controlwvolume lormulation can be
rrearded wt o specidl version of the metheod of weighred residuals. The basic
Ligz @l tme o cantizlyolume formulztion ie eesy to understand and lends itsell

Cirest physica] Intampresation. The caleulation domain 15 divided Into L
rumber of nonoverlapping control volumes such that thers is une conteal
valume surrounding cach grnd peint. The differencial equation is Integrated
wwer each control volume: Piecewise profiles expressing the veriztion of o
tztween the grid points dre wied Lo evaluate the required integrals. The result
i ihe discretization eguation ¢onlaning the values of O for 3 groop of giid points.

Toe diserelization eguation obtained in this manner expresses the con-
servation principle for & for the finite control valume, just a3 the differential
equzlion expresses it for an infinitesimal contral volume.™

“Indezd, deriving the contfolvolume discrellation equation by mtcpraling the
ZifTerentiz] cquation over a finlee comlen] volume is 3 mther roondaboul process, much

DESCRETIZATION METI01LS Eh

The most attractjve Teature ol the controbvolume formulation i sl (he
resulting sofulion woull fnply thal the mricgral conscrvation ol quantitics
such as mass, peontenlom, dnd cncigy s exactly satlsfied over any group of
conttol  valtmes and, of course, over the whole calculation doniain. This
chatactinistic exists for gy number of grid points—nob just in a limiting sense
when the sumber of grid polis becoines large. Thus, even the coarse-grid
solution exhibits exded fntepral hatanges,

When ifie ihscrefivation eguations are solved o oblaln the grid-poipt
values of the dependent wariable, the result cin be viewed in two different
ways. 1o the fnite-clelent wethod ad in most weighted-residoal methods,
the ossumed variation of J@nsisting of the srid-point values and the
interpolation functions (or @ilcs) Letween the grid peinis i3 laken 15 the
spproximate solution. In thE ilnite-difference method, however, only the
grid-point values of ¢ are considered to constitute the solution, without any
explicit relerence d5 to how ¢ varics betweern (be grid points. This ls akin o 3
Liboratory cxpénment where the distribution of a quantity is obtalned in
termis ol the messured values at some discrete locations without any statement
about the variation betweed these locations. [n owr controlvolume approach,
we shall also adopt this view. We shall seek the salution in the form of the
grid-point values only. The interpolation formolas or the profiles will be
rsegarded as auxiliary relations needed to evaluate the required integrals in the
furmulativn, Onee the discretization equations are derived, the profile assump-
tions he forgatten, This viewpoint permits complete freedom of choice in
emplafee=>if we wish, different profile assumptions for integratine differcnt
terms in the differential equation,

To make the foregoing discession more comcrcte, we shall nuw derive the
control-volume discretization equation for a simple situation.

3.3 AN ILLUSTRATIVE EXAMPLE
Let us gansider steady one-dimensional heat conduction governed by

d a7
P — + =
| gy T {3.10)

where & i the thermal eonductivity, T is the temperature, and § is the rate of
heat generation per urdt volume.

like prepaging mashed potstoes frons dehydrated peiato powder, After sll, rexthogk
deriations of dilferential equations: always siart Trom the vonserafion principle zpplicd
e a small eonfzul valume: [t is useful to Dnagine ourselves (o be in the prescaleulus days;
then the conlrdlwolume cqoation would fave been gug daly way of siating the
conscrvalion principle.
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Preparation. To derive ihe discretization equation, we shall employ the
grid-point cluster shown in Fig. 3.2, We focus altention on the grid point £,
which has the grid points £ and W as its neighbors. (F denotes the cast side,
i.e., the positive x dircction, while W stands for west or the negative x Jired-
tion.} The dashed lines show the faces of the control volume; their exact
locations are unimportant for the time being. The letters ¢ and w denote these
faces. For the one-dimensional problem under considerativn, we shall assume a
unit thickness in the ¥ and z directions, Thus, the volume of the control
volume shown is Ax X 1 X1, If we integrate Eq. (300} over the control

volume, we get

&

dT dT
) - (k2] + =
(.i.' )4- (k )1... Sy =1, {3.01)

W

Profile assumption, To make further progress, we need o profile assump-
tion of an interpolation formula. Two simple profile assumptions are shown in
Fig. '3.3. The simplest possibility is to assume that the value of T at a grid
point prevails over the control voleme surrounding it, This gives t stopwise
profile sketched in Fig. 3.3a. For this profile, the slope 4T/dx :‘)Jt dheFined
at the control-volume faces (ie., at w or ). A profile that dol¥ not sulfer
from this difficulty is the piecewisc-linear profile (Fig. 3.38). lere, lincar
interpolation functions are used between the grid points,

The discretization cquation. 16 we evaluate the derivatives dT/dx in By
[3.11} from the piecewise-linear profile, the resulting eguation will be

kelTe —Tp) _ b (Te — Tw) ] =
x) 50 +&ax=10, {3.17)

where § is the average value of § over the contrel volume. 11 15 wsafid o cast
the discretizzetion equation (3,12} into the following Torm:

apTp = agTg +myTw + b, (3.13)
.—-—mxaw—-i.— T p—
| 1
| - (1 ik
L ] el I s
w 1 = 1 E
1 1
Ax
—_—
x

Figure 3.2 Grid-point cluster for the one-dimensional prohics,
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Figure 3.3 Two simple profile assumptions. fr) Slepwize profile; (B} piecewize-linear profile.

whare
ke
= 1
[iF T (3.14a)
k‘ll-'
T = e (3.145)
e
dp = A + o, (3!‘1{']
and b=§ ax. (3.144)
Coarimen s

I, Equation (3.13) represents the standard form in which we shall write cor
discretizstion equations. The temperature Tp at the central grid point
appears on the left side of the equstion, while the neighbor-polnt
temperatures and the constant & form the terms on the right side. As we
shall see later, the number of neighbors inereases for two- and three-
ditnensional sitogtions. Tn general, it is convenient to think of Eq. (3.13) as

having the form

”FTF =K Tah Tnl} Falr (3.'5]
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whers the subscript nb deauores a neiphbor, and the suinmation @ o be

taken over 4l ibe noighlors,

I derping Eg- (3:13), we have used the simplest prefile assumgpiion tial

crabl=d us to eviluate @fYdx. OF course, many other dtcepolation

functions would have been possible.

i. Further, It is important to woderstand that we need wot use the same
profile foo all guantities. For examale, § need aot be caleulated Fom a
linear varation of § between the grid points, nor &, Trom 4 lncar variation
of & between kpoand kg,

2. Twen for = piven variable, the same profile ssuinption necd not be wsed for
all 1erms in the equation. For example, if Eq. (3.10) had an additional
term dnvolving T oalone, it would have been permissible to use a stepwise
profile for that term, instead of adhering to the piecewise-lingar prolile
psed for evaluating dTdx,

Crebnding preineipfes. The Teedom of choide dwatid so fhr gives rise W a
verioty of disgretization tormulations. ke is true that, as (ke nunber of prid
ciings i3 increased, nll the formulations are oxpected o pive the sume
sodutivin, We shal[, however, impott an addifional requirement that will coablz
us 1o nmrow dows the number of acceptable furmulations, We shiall coguine
that sven the coarse-grid solution should always have () ploysically realistic
crhaviar and () overall balance,

Frvsical realism Js easy (o onderstand, ac lesst in simple cascs. The
czriatieos shawn in 3 A illustrate this concept. A realistic variation sbould
layve e fame gualitative trend as the exael varation, e hewt conduction
withour solrcds, no temperaturs can le outside the range of lempéraluee
zarzbiizned by the hewendery temoeratures. When a let solid s being cooled

Linrealistic

Approsymate, bur
physigalty realiztic

i

~  Pigure 14 Physically realistic
and Unrcahsibe brhavier.
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by an mnbieat fuid, the solid cannet acquire a temperature lower than Lhat
of the Ttuitd. We shall always apply such fesis to our diseretization eguations.

The requircmcnt of overall balance Imiplics integral conservation over the
whale calewlation damain, We shall insist that the heat Muxes, mass Mow rates,
and moementiom ixes must correctly pive an overall balance with appropriate
sources and sinks—not just in the lmit as the number ol grid peints becomes
very large, but for eny number of grid points. Our control-volume formulation
makes this overall balance possible, but care is necded, as we shall shortly sce,
in calculating fluxes al the control-velume interfaces.

The constraints of physical réalism and overall balance will be used o
guide onr choices of profile wsumptions and related peagtices, On the basis uf
these constraints, we shall develop some basic rufes that will enable us to
diseriminate between available (orewlations and to mvent new ones. The
dacistons that are normally zoverned by mathemarical considerations can now
b directed by physical reasoning.

Treqtmrent of he source ferme Belore we progeed to develop the basic
rufes, we shall give some attention to the source term 5 jn Ty, (3,100 Often,
the scurce term i3 a function of the dependent variable T itsell, and it is then
desirable to wcknowledge this depandenee in constructmg the discretization
equation. We can, hewever, Termally sccount for only a linear dependence
because, as we shall sce Jater, the discretization equations will be solved by
the techinigues for lnedr glgebrae equations. The procedure for “lnearizing™ a
given §~ T relationship will be discussed in the next chupter. Here, it is
sufficient lo express the average value & as

=50 +5:Tp, (3.16)

where 5 stands for the constant part of 5, while Sp is the coefficient of Tp.
{Obvicusly, 5p does wor stand for 8 evaluated at point F)

The appearance of Tpin Eq. (3.16) reveals that, in cxpressing the average
value 8, we have presumed that the value Fp prevails over the control volume:
in other words, the stepwise profile shown in Fig. 3.3g has been uwsed. (It
should be noted that we are free to use the stepwise profile fur the source
term while using the piecewise-linear profilé for the dT/dx term.)

With the linearized source expression, the diseretization éguation would
still loak like Eq. (3.13), but the cosfiicient definitions [Egs. (3.14)] would
change. The new set 5

ﬂ'Prp:ﬂ'ETE Tty + b, {-3'.1?}

e o P A M St i e s o A P
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ke
e (3,186
W FE

dp = 4 5 i _.Sp hx ¥ {3-]&‘}

‘ {3.18:4)

The foregoing introductory discussion provides sufficient backpround to
allow the formulation of the basic rsles that our discretization cquations
should obey, to ensure physical realism and overall balance. These seemingly
simple mules have far-reaching implications, and they will guide the develop-
ment of methods throughout this boak,

and b=08cAx.

3.4 THE FOUR BASIC RULES

Rule 1: Consistency at control-volome faces When a face is common to
two adjzcent contral volumes, the flux across if moust be reprosented by
the sgme expression in the discretization cyuatiuns for the two control
yolumes.

Diteussion. Obviously, the heat flux that leaves one control volume
through a particular Face must be identical t flux that epters the next
control wolume through the same face. DtherwistS™e overall balance would
rot be satisfied. Althowgh this requirement js casy to understand, subtle
violations must be watched for. For the contrel volume shown in Fig, 3.0, we
could have cvaluated the interface heat fluxes & d7fdx from 2 guadratic
profile pussing through Ty, Tp, and Tp. The use of the same kind of
formulation for the next control volume implies thet the gradient dTde at
the common interfzee is calculated from different peofiles, depending an
which control volume is being considered. The resulting inconsistency™ in
dTidy (and hence in the heat flux) & sketched in Fig. 3.5

Another practice that could lead to flux inconsistency i to assume that
the fluxes at the fices of 3 piven eontrol velume are all governed by the
center-point conductivity kp, Then the heat flux at the imtecface ¢ (shown in
Fig. 3.7} will be expressed as kp (Tp— Telfi(bx}), when the conteol volume
surrounding the point P is considered, and as kp (Tp — Tehidx), when the
equation with £ as the center puint is cumstructed. To avoid such incon-

*It s happens that, il the interfaces sre located mefgwor between Lhe prid poims,
The type of quadratic prafile shawn in Fig 3.5 docs aot give 2oy ineansistency. This &
heeause the glope of 3 parabola at a locafirn midway betwern pwo puints i exactly cjual
to the slope of the straight line jodaing the two points. But this property af the patabul
must be roparded =3 forluitous, snd one muosl, on pencral, refrain from chingine e
interface fex ¢xpretsion while going fvam one control volume 1o the pext.
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Slope from right

____inﬂzi from Iefi

EE

Figure 3.5 Flux incensistency resadfing from quadratic profile.

sistencies, it i useful to remember that an interface flux must be considered
in its own right, and not as belonging 1o & certain contral volume.

Rule 2: Positive coclficients Most situations of interest here will be such
that the value of a dependent variable ot 2 grid pdint iz influenced by the
values at asizhboring acdd points only through the processes of convection
apd diffusion. Then it follows that an fncrezse in the value 2t one zrid
point should, with other conditions remazining unchanged, lead to arn
incregse (and not a decroase) in the value at the neighboring grid point. In
g, (3.13), il an increase in Tz must leadd to an increasc in T, it follows
that the coeflicients gg and ap must have the same sign. [n other words,
for the gereral equation {3.15), the neighbor coslMficients apy and the
center-point coefficient @p ull must be of the same sign. We can, of
caurse, choose to make them all positive or all negative. Let us decide to
write our discretization eguations such that the coefficients are positive;
then Rule 2 can be stated as follows:

All coelficients {ep afdd neiphbor coefficients agy) must always be
positive.

Comments. The coeflicient definitions given in Eys. (3.14) show that our
iistrative  discretization equation  [Eq. (3.13)] does obey Lhe positive-
coefficient rulz. Tlowever, 28 we shall see later, there are numerous formula-
tions that frequently wiolate this role. Usually, the consequence is @ physically
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soredliste salution, The presenve of a negative acighbor cocliicient can kad
t3 the sltystos m which an incredse iy bouodacy \emperatuse causes e
teperatne atl the adjacent grid poinl to decrease. Wy ghall accept only Uhose
Feramalations ihet guarantec positive coclTicients wisder afl vircumstioees,

Rule 3: MNegative-slope lincarization of the source term IV wo consider the
caefiiciont definitions i Eqs. {3.18), it appears that, even il the neighlu
cocfiicients are positive, the centor-point coelficient ep can Docome
Agpaiive via the Sp torm, Q@ course, the Jdanger can be completely avuidled
oy reguiring that 8 will aot be positive, Thus, we Dwrmulate Rule 3 as
fellows;

When the sauzce term is fincarized as 5§ =8¢ + 8pTp. the coelficient
Sp must always be less than or equal o gero,

Kemgris, This mule € a6l oy arbitrary a3 i selands. Most physical

I processes do bave a negative-slope relationship between the soorge term und

the dependenit variable, Indeed, if Sp were pusitive, the physical situation

could become unstable. A positive Sp implics that, as T increases, the sousee

term increases; If am effective heat-removal mechanism s not available, this

I maw, an turn, bead to zn inorcase in Tp, and 5o on, Compudativnally', 3135 vital

 Keep Feomesative so that instabilitics and plasically unrealistic selutions dv

arise, The source-termy linearization is further discussed o the next

chapter, It Is sufficient to note here that, for computational success, the
principle of negative Sp is essential,

Rule 4; Som of the nelghbor coefficients Often the povernmng differential
couations contain only the derivatives of the dependent variable, Then, jf
T reoresents the dependent variable, the functions T and T+ ¢ (where ¢
S oam arbllmary constant) both satisfy he differeniial equation, This
arpparny of the differentis] cquation must also be eeflected by e
disoretization equatian. Thus, Eg (315} should cepdin valid even when
Tpoend ol Tog'soare eiezsed bY o comstast, Fram his cequirentent, Tt
folkows that gp must equel the sum of the neighbor coeflwients, Henca.
<he statetnent of Rule 415t

We regoire
ap = E.ﬂ'nb {3.149)

Mur sitvalions where the differentizl equation continues to cemiin
satisfied after a constant is added to (ke dependent variable.

Discasions It i5 easy to see that Eq. (3.13) does satisfy this rule. The rule
smplies that the center-point value Tp is 3 weighted average of the neighbor

IMSCHETIZATION METHGDS a4

vahues ¥y Unlike Bo. (313}, the cocflicients i 1k, (3.07) do nut obey the
rute. ‘This is, however, riof 2 yviolation, fut a case of inapplicabilily of the mle,
When il source term depends an T bath T and T+ ¢ do not satisfy the
differential equation, Even in such cases, the rule should not be forgotten, but
shoudd be applied by cnvisaging a special case ol the cquativn. [T, for example,
Spois osot equal o zomo Im Eg, (3.17), the rule becomes applicable and is
intteed obeyed.

When he differential etqualion iz satisfied by both 7 and T+¢, the
desited emperature field T does hot become oioltivalued or indeterminate.
The values of T ean be made determinate by appropriale boundary conditions.
Conformity to Hule 4 ensures thal, i, for example, the boundary lempera.
tures were incrcased by oo constant, all terperatlires would increase by exacily
thut comstant.

Anotlicr way of locking at Rule 4 is this; When the source term is absent
and the neighbor temperatures. Ty oare all equal, the center temperaivre To
musl hecome equal to them. Ondy 3 poor discretization equation would not
peedict Tp = Typ wnder these clrcumstances,

35 CLOSURE

la tins chapter; we have made certain basie decisions about the tvpe of
diseretization method to be developed in this book. Through a sirnpfem
example, we have been able o formulate four basic jules, which constitute
the undedying puiding principles for all further work. Tha discussion hias been
siven in terms of temperature T oas the dependent varizble, This was done
simply for conceprual convenience. Wa shall continue with T in Chapter 4,
but switch to the peperal variable @ from Chapter 5 onward. OF colrs=, the
four rules developed in this chapter are sll applicable to the general variabie &,

The convection term in the general differcntial equation (2.13) requires
special formulation. This matter is deferred to Chapter 5. The remaining three
terms of Tig. (2.03) arc dealt with in Chapter 4 In the framework of Beat
copduction.

PROBLEMS

3.1 Using the Taylosserles expansion wround pomt P oin Fiz. 3.2, chow thar the
Nnite-difference approximation for 4 Tlde?! is given by

d"T= 2 TE_TP_TP_'TII.-’
det T (Bxke b (Bhy | 16w, Bxhy |

3.2 For the differential equation {3100, derive a discretliation equation by (he method
of weighted residuals @ the [oliowing fanner: Asmume & and § to be comstant (for

i P e e
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convenience). Let the weighting fupction W be zera wverywhere except bejwven 1he
points W and £ in Fig. 3.2 Further, assume that the weighting function is piegewises
linear, with value unily at P and rero at points W and £ Multiply Eq. (3100 by the
weighting function, and integrate over the region Trom point W to point £ Use 5
piccewise-livear profile for T, Comparc the resubting discrctirotion equatlon with .
(312} {MNote that th: method owtlined here, which is a special case of the meihed of
weighted residuals, i$ known as the Gabrkin motld, )

1.3 Consider g, i3.10) snd atdume that § i constant, but & depends on x. Fureher, use
4 uniform grid spacing in Fig 3.2, 5o that ay = {3x), = {8xhy,. Derve the discretization
cquation by writing Fa, (3.10} as

STk gt
dx? dr e

+5=1

znd using the approximations

& d"T= Lp(Ty 4 T -- 27¢) 1

dx? [&x)
e Te—Tw
dx v B 5

with difdr as a given quantity, Noting that dkfax can be positive or nepative, find e
canditions for which the coeificient ¢z or ey would become nepative, s vielaling Rube
2. {Note that the derivation in Section 3.3, which was based un the physical significano
of the terms, did not jead to negative cocfficients.)

34 Tn an axisymmerdical sitwation. & steady one-dimeasions conduction problet ix

vuverned by
1 & o4 A
v F (“ ?) Bt

where £ i (he madial cocrdinate. Folluwing the procedure v Seciion 3.3, derse a
Ziscretization equation for this situstivn, (Multiply e differential equation by r, and
:hen integrate with respect 10 r (Tam Foo 10 o) Interpret the cocflicients in the
discretization equation in physical terms,

CHAPTER

FOUR

HEAT CONDUCTION

4.1 OBIECTIVES OF THE CHAPTER

In this chapter, we shall begin the task of gapstructing a numerical method
for solving the general differential equation (%ES% which Eoverns the physical
processes of interest lere, As we have secn, the equition contains four basie
terms. Here wo shall omit the convection term and concentrate an the
remaining three terms. The construction of the method will be completed in
Chapier 5, where the treatment of the conveetion term will be discussed.

Omisslon of the convection term reduces the situation to g conduction-
type problem. Heat conduction provides a convenient starting point for our
farmulation, becawse the physical processes are easy W understznd and the
mathematical complication is minimal.

The wobjectives of this chapter, however, go Far beyond presenting a
numerical method for hest conduction alone. First, other physical Processes
are governed by very similar mathematical equations. Among these are
potential flow, muss dilTusion, low through porous media, and some fully
developed Juct Mlows. The numerical techniques deseribed fn this chapter are
directly applicable to all these processes. Electromagnetic field theony,
diffusion models of thermal radiation, and lubrication flows ore further
examples of phenomena poverned by conduction-type equations, Althouzh we
shall only occasionally make mference to these related progesses, it s
important to remember that the technigues developed in this chapter arc
irmmiediately available for application in these different areas.

Second, this chapter accomplishes much of the preparatory work needed

B
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bo lgker lapiesse Tie progedure Tor the sohution of the algeariic ':f-jufmﬂrﬁ is
| ke oo oncepnd-Torall manace  Bater olizpiers madily the

[t it |

cantene of the alpelraic equations, bud the same solutiun teelnique comlimes
to be applicable. This, oven far the reader who o cxclusively interesled in
DuideQow calevlation, an understanding of {his chapler is essential) mach al
the material here (and in the next chaprer) isan integial part of e Muid-low
cetenlation scheme Lo be prescniad in Chapter 6.

Tu he able to see the similarities between transfer ul jnomeniem and
wansfer of Beat aod toe regard welocity as, T sume wavd, anudopous Lo
rnperature i 4 geeat conceptual help. The use ol heat conduction as o
Building blesck in the Auid-flow calcwlation scheme rejulorces this conceptual

Laity.
4.2 STEADY ONE-DIMENSIONAL CONDUCTION

4.2-1 The Basic Equations

in sheogourse of peesenting the ilustrotive cxample in Section 3.3, which was
used gy e velicte to explain the four basic rules, wo have dlrepdy derived the
diseretivation equaton for steady conduction in one dimension, To roview the
faain ingredients, the governing differential equation is

d [, dr
i S=0. 4.1
dx('lrir)-’-g g s 0

This leads to the discretization eguation

aplp=asTp +apTy + b, {4.2)
[

. o (43a)

B 5
gt 4.35
ary (Bak, { 1
dp =dg Ty = 5p 23X, {4.3c)
b=Sc Ax. (4.3d)

ihe prid points £, F, and i are showa in Fig. 3.2, where various distances are

4Ll

i imaliated. The contrebvolums faces @ and w oare placed Between the srid

HEAT CONDUCTION a3

poind P and #s corrcsponding neighbors, The exact locations of these faces
can be considered to be arbiteary. Many practices for their placement are
pussible, some of which will be discussed in Section 4.6-1. For the tine being,
we shall simply regard the locations of e and w as Eeowse in relation 1o the
pried points £ £ and W The guantitics S and Sp aise from the source-term
linearization of the Tom

§= % H 8T (4.4)

Az 1o the profile assumplivns, the pradient d7fds has been evaluated Trom a
picvewise-linear variation of T with x, while for the linearized source term the
villue Tp s assupned to prevail throughout the control volume, It should, of
cowrse, e memembered  that other choices of profiles are possible and
permissible, as long as the fuur basic rules are not violated. The policy here is
ey adupt rather simple profiles within the constraints of these mles and to
introduce sophistication only where it is necded.

Miwy important aspects of the onc-dimensionsl heal-conduction problem
still reimain to be discussed, It ks to these topice that we now turn,

4.2-2 The Grid Spacing

For the grid points shewn in Fig 3.2, it i3 not necessary that the distances
éx},. and {fx),, be equal. Indeed, the use of nonuniform grid spacing is often

fe, for it cnables us o deploy camputing power eflectively. [n general,
we shall obtain an accurate solution only when the geid iy sufficiently fine.
But there i no need to employ a fine zrid in rcgions where the dependent
variable T changes rather slowly with x. On the other hand, a fine grid is
réquircd where the T ~.x variation is steep.

A misconeeption seems o prevail that nonuniform grids Jead to less
accuracy then do uniform grids. There is no sound basis {or such an assertion,
The grid spacing should be directly linked 1o the way the dependent variahie

changes in the calculation domgin. Also, there wre no universal rules about
what maximum (or rnjnimumﬁiu the adjacent grid intervals should main-
Laim,

Since the T~ux distribution is not known before the problem is solved,
horw can we design an appropriate nonuniform zeid? First, one normadly has
some qualitative expectations about the solution, from which soma guidance
can be obtzined. Second, preliminary coarse-grid solutions ean be wsed to find
the pattern of the T~ varidtion; then, a suitable nonunilorm grid can be
constricted. This is one of the reasons why we insist that vur method should
give physically meaningful solutions even for coarse grids. An cxploratory
coarse-grid solution would not be wsaful il the method gave reasonable
solutions only Tor sufficiently line gride, :

The number of grid points needed for given aceursey and the way they
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should be distributed in the ealeulation domain are mattors that depend on
the nature of the problem ta he solved, Exploratory calculations using anly a
few prid points provide 3 convendent way of leaming about the solution, After
all, this & precisely what is commonly done in a labumrory experiment,
Preliminary experiments or trial runs are cofducted, and  the resulting
information i wsed to decide the number and locations of the praboz to he
installed for the final experiment,

4.2-3 The Interface Conductivity

In Eq. (4.3), the conductivity %, has been used to represent the value of &
pertaining to the control-volyme fage o similarly, k., refers to the interface w,
When the conductivity &k is a function of x, we shall often know the value of
& only at the grid points W, £ F, and so on. We then need a preseription for
evaluating the interface conductivity, saY k., m terms of 1 £rid-point
values. The following discussion is, of course, ot relevant tisations of
uniform conductivity,

Wonupiform conductivity can arise from nonhomageneity of the material,
35 in 2 composite slab. Even in a homogeneous matedlal, the temperatin
dependence of conductivity can [ead to 2 cunductivily variation in response to
the temperature distributlon, o the treatment of (he gencral differcntial
equation for ¢, the dilfusion coefficient T will be handled in fhe SATTE wWay As
the conductivity &. Significant varations of T are frequently encountersd, for
cmrﬁn turbulent flow, where T may stand for the turbulent viscosity or
turbu ¥ onductivity. Thus, a proper formulation for neauniform & o T is
highly desirable.

The most strafehtforward procedure  for obaining the mterface con-
ductivity k, 15 to 1ssume a linear variation of & batween points F and £
Then,

ke =Tekp + (1 = o)z . (4.5)

where the interpolation factor £, is 3 ratio defined in terms of the distances
shown in Fig £.]:

(4.6)

If the interface & were midway between the grid points, £ would e 0.5, and
k. would be the arfthmetic mean of kpand kg,

We shall shortly show that this simple-minded appeoach legds to rather
Incorrect [mphications in some cages and cannot apcurately handle the abrupt
changes of conduciivity that may oecur in composite matecials, Fortunately, a
much better alternative of comparable stmplicity Jz available, Tn develaping
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Figure 4.1 Distances associated with the interface ¢,

this alicrnative, we recopnize tiat it iz not the local value of “‘I‘""”E'Lﬂt?" A
the interface e that concerns us primarily. Our main vbjecetive is to oblain a
goed representation for the heat fux g, at the interface via

= KelTo —Te)
ot (55

which las, in effect, been nsed in deriving the discretization L:J‘-'ﬂj“” {2
The desired expression for k. is the one that feads to a “correct e 1

Let us consider that the control volume surrounding the grid point P 5
filled with a material of uniform conductivity kp, and the vie around £ with
i material of conductivity kg. For the composite slab hetween poinis £ and
&, u steady one-dimensional analysis (without sourges) leads 1o

(4.7

i , (4.8)

e = Bxd_thr + () fhe

Combination of Eqs. (4.6)(4.8) vields

;e 1=t +£ i 1 (4.9)
: kp ke
When the inteelace ¢ is plaged avdwer between Pand &, we hove £, = 0.5 tren
'i'-l;l == U’..S{kﬁl % kE'1J (.1 U{TJ
" Y f4.104)
& ke

Equations (4.10) show that k. is the haemonic mean of Ap amel ke, rather
than the arithmetic mean which Gy, {(4.5) would give when fp = (0.5,

gl s v e ki

P Taly
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Thi wge of Eq- f4.9) n the coefficient defnitions (4.3} leads o the
foltadiey cxpression 10r we-

I T O
i [—kp +T:| ‘ [(4.11)

& aimilar expresston can be written for g, Clearly, ap reprosents the
canductance of the rmaterial between points £ givd £
e cifectiveness af this fosmulaton can be quickly seen in the following

oo b cases:
| Let kg — 0. Then, from Eq. (4.9),

Kyl (4.1

This imiplics that the beat Mux a3t the face of an wsulates becomes feco, 45
it should. The arithmetie-mean formedation, on the other hand, woild hove
givan 4 noneero fMux in this situation,

2 Lot kp ¥ kg Then

ko = =L {4.13}

This cesult =N implications; one s casy to understand, and the other
is more obscure, Equation (4.13) indicates that the interface conductivily
ke I ot at all dependent on ke This &5 to he expected Docause the
high-conductivity material around point P wouold ofler nepliphle resistance
i camputison with the material around £ (The arithmaotic-inean formula
wonbd have retained the effect of &p on k..) The other implication is that
K. is not equal to Kz, but rather L, times it A Jittle mellection will show
the gppropristeness of this, Que purpose is to get & correcl value of g, v
Zi. (4.7), The use of Eg, (4.13) yiclds

ke(Tp = T2) 5
o HE A= e 314
Fe @), : )

When kg2 kg, the temparators Tpowill prevail right up to the interface e,
End e lemperature drop Te= Te Wil actoslly take place over the
Hintunoe [82) ., This, the comrect heat Tox will be as given by Bg: (R 14).
in other words, the factor f. In Eg. (4.13) can be seen to compensate [or
the use of the neming! distance (8x). in Eq. {4.7).

Considération of these two limiting ¢ases shouws that the formulation can
azndle abrupt changes in the conduciivity without requiring an exgessively

ARt o TR o P mey ey - e ==
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fine prid in the vigimty of the obanpe. This iz not anly comvenicnt for
cendition caleulations in composite slabs, but it has other quile [scinating
implications. These have been described in Patankur (1978) and will be
explained in later chapters.

The recommended interface-conductivity formula (4.9) is based on the
steady, mo-source, one-dimensional situatios in which the conductivity varies
i stepwise fashion JTom onc control volume to the next. Even i siluations
with nunzeen sources o witlyg@®atinnous vidation of condugiivity, it performs
much betler than the ari!alic-mc:m formula. This s demomstrated in
Patankar (1978) For some Jases for which exact analytical solutions can be
found,

4.2-4 Nonlinearity

The discietization cyuation (4.2) is a Lincar alzebraic eyvation, and we shall
salve the set of such equations by the methods for linear algebraic equations.
We shall, however, frequently encuunter nonlinesr situations even in hest
conduction, The conductivity & may depend on T, or the source § may be a
nonbinear function of F. Then, the coofficients in the discretization equatfun
will themselves depend on . We shal] handle such situations by iteration. This
process involves the fullowing steps:

|, Stzer with @ pazss or estimate for the valees of T at all grid points.

2. From these puessed T, caleulate tentative values of the coefficients in (he
discretization equation,

3. Solve the nominally linear set of algebraic equations to gel now values of
T,

4, With thess 775 as better guisses, retum (o step 2 and repeat the process
until further repetitions {called iteralions) cease to produce any significant
chapges in the values of T,

This find unchancing state is called the conversence of the iterations.* The
converged solution is actually the correct solution of the nonlinear equatians
althiowgh it is arrived at by the methods for solving linear cquations, ,

It is, hawever, possible that successive iterations would not cver converge
o a selution. The valucs of 7 may steadily drilt or oscillate with increasing
a_l_upljlude, This process, which js the opposite of converpence, is called
a".wfmefce. A sood numerical method should minimize the passibilities of
divergence. As we shall ses tater, adherence to our four basic rules promotes

® =

S«ummn_m:s, U sorm convergence s used for the pracess by which Successive grid
:cﬁncmcut brings 1he mamenical solution cleser (o the exact salulion. We shall refer g
this aspecd as the “acuracy™ of the aumerical solution, and reserve the word CORYeIEEnce
for the converpence of iteralions.
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convergence; we shall also discuss other stratepies for avoiding Brerzence. At
this point, it s sufficient to note that our procedure g not | ed 1o ljnear
problems, and that any nonlinearity can, ot least in principle, be handled by
the iterative techrigue just outlined,

4,25 Source-Term Linearization

When the source § depends on T, we cxpress the dependence in a linear form
given by Eq. {4.4). This iz done because (1) our nominally linear frymework
would allow only a formally linear dependence, and (2) the incorporation of
linear dependence s better than treating 5 a8 a constant,

When & is a nonlinear function of T, we must lnegrize it, ic., specily the
values of Sp and Sp, which may themsclves depend on 7. During each
iteration cycle, §a and Sp would then be recalculated from (he new values uf
T. The lnearization of § showid be 3 pood repesentation of the §~7T
relationship. Further, the basic rufe about nonpositive Sp must be abeyed.

There are many ways of splitilng a given cxpression for § into 5o und
5pTp, Some of these are illustrated by the following examples. The nembers
appearing in these examples have no particular significance. The symbol TH i
used to denote the geess value or the previous-iterarion valug of Tp.

Example 1 Given: § = § — 4T Some possilile lmearientions are:

1. 5,=35 8p=—4 This is the most ahviows form and is recommended.

2 Sp=5~4Tz, Sa=0. This is the apprazel] ol the lazy persan who
throws the entite § intn S and sets Sp equal to zeru. This approsgh,
however, s not impractcahle and i perhaps the only choice whew the
expression for § i very complicated,

3 S5p=5+7Ff, Sp=—11. This proposcs a stecper 5 ~ T relationship
them the one actually gven. The result will he that the convergence of
the iterstions will slow down. However, 0 1here are other nons
linearities in the problem, this dowdown may actually be welcome.

Example 2 Given: § = 3 + 7T Some possible lincarizations are:

1, 8p =3, Sp=7T. In general this is not acceprable, as it makes &g
positive, 1T the problem could be solved without iteration, thig
incarization would dgve the comect solutinn, buat 3F iteralion s
employed for some reason (such as the nonlinearity of other terms),
the presence of a positive Sp may cause divargence,

2 8;=3+7Tp, Sp==0. This is the practics one should follow when o
nepalive Jp i3 not naturzfly forthcoming,

3 Se=34% 9T;, &p=—2. This iz an artificial creztion of @ negative Sp.
It will, in general, slow down the converaspce,
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Example 3 Given: ¥ =4 — 5T*, Some possible linearizations are:

I 8p=d =578, Sp=0 This is the lazy-person approach, which fnils
tey take sdvantage of the known dependence of § on T.

2. 85p=4, 5p =—5TRE, This Tooks like the correct lincarization, but the
given & ~ T curve is steeper than this implics,

3. Recommended method:

*®
Hesv 4 (:;.) (Tr—TE) =4 —STS — 1573 (T — T2).

Thus,
Se=4+10T2", Sp=—I5T27,

This Knearization represents the tangent to the §~ T cuive at Tn,
4 Sp=4+ 20Tp%, Sp=—25T8%. This linearization, which ls ddepes
than the gven 5§ -~ T ourve, wonld slow down convergence,

These four possible lirearizations are shown in Fig, 4.2 along with the
actopl 8~ T curve, On such p dizggram, straisht fines of positive slope
woull viglate basic Rufe 3. Anwma the negative-slope lines, the tangent to
the given curve is usually tie best chotce. Steeper lines are acceptable; but
wiald pormally lead to slower convergence. Less steep lines are wnde-
s}%s they fail lo incorpoeate the given rate of fall of § with T,

This discussion of the source-term linearization Iz adequate for present
pusposes. Further considerations are given in Chapter 7.

|

Giwgn gurve
Sz 4 - a7t

Figure 4.2 The four possible
ol lincarizations for Example 3.
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1.2-6 Boundary Conditions

4 ows comeider that, for the onesdimensionsl probler, the steing of arid
=oiais shown in Fig 4.3 is chosen, There is one grid puint o cach wf the wa
soundsries. The other orid points will be called the frerdal points, aruitmd
sach uf which 5 shown a conlrol volume. A disceetization cquation like 14,
SN e b written Mer cachosuch control volume, TF B, (4.2) s regarded s
aticay for Te, we dhen bave the nevesszry eguations Tor all the anknow
1 Larsont the imtceaal grid paints, T bl these equarivng, Tewever,
vty Lo boumdary geid-point temperatuses. 1L is through the frsstment of
(lewe Doundery temperatures that (he glven bonpdary conditions e o
dyerd into the aumerical solution scheme,

Simwed it is med necessary o diseuss the twe Doundary poeints seprmatoly
sizension will be focused on the teft-hand buendary point £, which 18 adjacent
te the first internal point £ oas shown in Figo 4.3, Typically, three kinds of
anidary cenditions sre encountercd in heat conduction. These are:

|, Liven ooundacy lemperatsrc

2 Ciiven boundary heat Mux

Toundary heat fux specified via @ lwat transfer eoellivient und e
temperature of the surrounding fuid

gl

[T the bouadany temperature is given {Le., i the value of Ty is kouwny,
pip particular difficulty srises, and oo additional cquations are roquircd, When
the houndary temperature is mor given, we need o sonstruct an additional
cquation for Ty This is Jone by mtegrating the differential cquation o e
<L eontrol volume shown adjacent to the boundary in Fig,o 4.3 (Thas
cantral valume extends only on one side of the grid point 8. This Is why we
-eier to it s the half centrol volume) An enlarged view of this contral
volume is given in Fig. 4.4 Integrating Eg. (4.1) over this control velume and
pating that the heat flux g stands for —& T, we gt

gg — i+ {5g +3pTg) ax=10, {4.15)

"“Hall" control volums
/'
\":E 1

7%

/Tvr}il:al contral volume

Iy

Tlesre 4.3 Cantrel velemes fon the intemsl and toopdary pinis:

o
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Figure 4.4 Hall controf volume neer
the boumdary.

where the souree term has been lincarized in the usuval fashion. The interface
Tigat Aux o can be weitten along the lines of Eg, {(4.7). The result is

P57 Tt ;) SN .
i 5, (S + 5pTa} &x = 0. {4.16)

Further implementation of this equation depends on what is given abtout
the boundary heat Mux gg. 10 the value of g5 itsell is given, the required

eiquation fur Ty bocomes

dplng =a; T + b, {4.17)

where

4= &
i Bl (4.18a)

b=S- Ax +qp., (4.188)
dg =dy— §p Ax. {4.18c)

IT the heat Mux gg is specified in terms of & heat transfer coelficient &
and a serrounding-fluid temperature Ty such that™

Gu =H{Tr—Tgl. (4.19)

then the ¢quation for Ty bocomes

dpTg =aT; + 68, (4‘2[]}"
where
a = ki
i (6x); {4.21a)

S
IU may be recalled that we wsed he symbel i in Chapter 2 to denote the specific
cathalpy, 1lowever, oo confusiog with the head eansler cocffeient & s likely to arjse.
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=%, &x +. Ir]'} 2 (4.210)
Hﬂn:ﬂf—Sp A+ 4. {4.2“‘]

In this manner we are able to construct the requited pumber of equations for
the upknown temperatures. We shall now descriie the method For sulving

them.

4.2-7 Solution of the Linear Algebraic Equations

The solution of the discretization equations for the one-dimensivnal situation
can be obtained by the standard Gavssian-elimination method. Because of the
particularly simple form of the equations, the elimination process tums into a
delightfully convenicnt algorithm. This &5 sometimes called the Thomus
algorithm ot the TDMA (TrifHagonal-Matrix Algorithm). The designatien
TDMA refers to the fact that when the matrix of ihe coefficients of these
tquations it written, all the nonzero coefficicnts align themselves alomg three
diagonals of the matrix.

For convenience in presenting the wporithm, it fs nocessary  boo use
semewhat different nomenclature, Suppose the zrid points in Fig. 4.3 were
nombered 1, 2, 3, ...,V with points I and ¥ denatisig the boundary points,
The discretization equations can be wrirten as

T =T +ali_y +4; (4.22)

for i=1, 2, 3, .., V. Thus, the temperature T, s eclated 10 the neighboring
temperatures Tyop ind Tp_p. To account fur the special form of the
boundary-point equations, let us set

ey =0  and =0, {4.22)

so that the temperatures Ty and Tyeo; will not bave any meaningful sole to
play, (When the boundary femperatures arc given, these boundury-point
gquations take & rather trivisl Torm. For example. it Ty iz given, we have
ap="1b =0 =0, and oy = the given value of T, }

These conditions frmply that Ty 5 known in serms of Ty, The equatiog
for F=12is a relatinn between T, Ty, and T, But, since Ty can be expressed
i terms of Ty, this relation reduces 1o a reletion berween T and T3. In
other words, T3 can ke expressed in terms of Ty, This process of substitution
can be continued untd Ty i formally cxpressed in terms of Th.,. But,
because Ty has no meaningful existence, we acteally obtsin the numericsl
value of Ty at this stage. This enables us to hezin the “hack-substitution™
process in which Ty, s obtained from Ty, Ty from Ty_y. ..., T

fram T3, and Ty from Ty, This is the essence of the TDMA.

= Y
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Su;:rpn?sci in the lorward-sabstitution process, we seek a refation
=T + g {4.24)
alter we have just obtained
Ty =H i+ 0, . (4.25)
Substitution of Eq, (1.25) into Ey. {4.22) leads to
TG =&l Y (P i+ Q) + 4, (4.26)

which can be rearranged 1o look [li%e Eq. (4.24). In other words, the
coctlicients £; and € then stand for

-
= =
! ar = cifi—; 27}
i
LR S (4.27h)

These gre recerrence relations, since they #ive B and 2 in terms of £y md
@i—y- To stait the teourrence process, we note that Eqg. (4.22) for f=1 i

almost of the Torm {4,243, Thos, the values of Py and @ are given by

_ iy _ ey
s E and O = ;‘L' . (4.24)

[0 is interesting to wate that these expressions do follow from Eq. (4.27)
aller the substitution e = 0]

At the other end of the F;, @) sequence, we note that Bp = 0. This leads
to Py =0, and henee from Eq. (4.24) we obtain

T =y (4,29}

MOW we dre in @ position to start the back substitution via Eq. (4.24).
Surnrrary of the algorithn,

1. Caleulate £y and ) from Eq. (4,28).

2, Use the recurrence relations (4.27) to ubtain Fiand @ fori=2,3, ... :
N,

. et TN = Q‘\r.

Use Eg. (4.24) Tor i=N—1, N —2, ..., 3,2, 1 v ohtain To—1: Th—g,

m oy Tjr TJ- rl‘

¥
:

-
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The trdizgonal-matrix agonthm s 3 very powerful and convenicit
covlion subver whepever the algebraic eguiations can be epiescated in the
form of Eg. (4.22). Undike general matrix methods, ihe TOMA requires
coomoutsr storeze and compiter tme proportional only (o &, rather than to

ere ek

15 o

4.3 UMESTEADY ONE-DIMENSIONAL CONDUCTION

L13-1 The General Diseretization Equation

VWil relerence Lo e peneral differentizf equation Tur &, we have now scen, al
loast in the ane-dimensional context, how to handle the diffusion term el
e sougee terny, Here, we tumn to the unsteady lerm and temporacily drop the
source lerm, since pathing new needs (o be said about . Thus, we seck o
selvie the unsteady one-dimensional heat-conduction cquation

ae 8l (k H) i {4.30)

Furiher, {for convenienve, we shall assume pe to be constant. {In Chapter 2, it
was shown how the beat conduction equation could be modified Lo take
cecount of the varizble specific heat e, See Problem 2.2.)

Since time is g one-way coordinate, we obtain the solution by marching
in time from a given initial distribetion of temperature, Thus, in 3 lypical
“ime step’ the task is this: Given the grid-point values of T at time ¢, find
tire values of T ut time ¢ + Af. The "old™ {given) values of T at the grid
soints will be denoted by TH, T2, 7% and the “new” {unkrown) values at
fime.+ + A by T}. TE"-, T i

The discretization equation is now derived by intesrating Bg. (4.30) over
the control volume showa in Fig. 3.2 and over the nme interval from £ to
&+ Ar, Thus,

£ mrEAT fHAar e
G i ar ;
E bkl ) — s ) s
Ircff Y ¢ dx f f i (A ﬁx) dx dr, (4.31)
W 4 r W

witere thie opder of the integrations is chosen sccording to the nature of the
tirme, For the representation of the termy o77dr, we shall assume that the
srid-moing value of T prevails throughout the control valume, Then,

= T+ &r
pcf f gTT dide=pcAe (T —T8) . (432)
W 3

5
!
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Fallowing our stealy-state practice Tor & 8773, we ubtain
I+ A

kelTe —Tpt _ kufTp — Tuy)
{5), Bk

prax (Th—Thi= di . (4.33)

¥

b By ab this poidt tiat we need an assumption sbout how Tp, Ty, and Ty
vary wille time Iram ¢ to r+ AL Many assimptions are pussible, and some of
them can b generalized by proposing

Id-Aar

Tudt= |fTh + (1 — T2] Ar, {4.34)

I

where [ s 2 welghting factor between O and 1. Using similar formulas for the
integrals of Tp and Ty, we desive from Eq. (4.33)

Ak goy _or | Relfe = Tp) _ kotrh — 13
¥ i 7 7 £ r widip }
(Th—TR1=r [ = o iv

e | kTR (TR =
+(I ﬂ[ {{gx}’ Pl _ “;ijwﬁ]] . (4.35)

While rearranging this, we shall drop the superscript 1, and remember that Tp
T Tw henceforth stand fur the new values of T at time £ + Ar. The :e:
sull iz :

@elp =ap [[Te L (1 =)Tg] *ay [Ty + (1 — 11T

+ [ap— (1= flag — (1 — Nay] TS, (4.36)
where

ap = . S

£ Gy, {4.37a)
k

ay = {aT?,: " (4.375)
P g (4.37¢)
ap = far + fay +ap . A{4.37d)

&
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4.3-2 Explicit, Crank-Nicolson,
and Fully Implicit Schemes

For cerfain specific values of the weighting Tactor f the discretizalion
equation reduces to one of the well-known schemes for parabolic differential
cguations. In particular, =0 leads (o the explicit scheme, f=05 to the
Crank-Nicolson scheme, and f=1 to the fully implicit scheme, We shall
briefly discuss these schémes and finafly indicate the Fully {mplicit scheme as
our preference.

The difTerent values of f can be interpreted in terms of e Tp~r
variations shown in Fig. 4.5. The explicit scheme essentially assumes that the
old value T prevails throughout the entire time step except at time ¢ + Af.
The fully implicit scheme postulates that, at time r, Tp suddenly drops (tom
Tp to Tp and then stays at Th over the whole of the time step; thus the
temperature during the time step is characterized by Th. the new value. The
Crank-Nicolson scheme assunies a Hnear variation of Tp. AL Tirst sight, the
linear varigtion would gppear more sensible tham the two other alternatives.
Why then would we prefer the fully implicit schéme? The answer will emerie
wvery zhortly.

For the explicit scheme (7= 0), Eq. (4.36) becomes

apTp=deTe +apTy + (af —ag —aw)Tp . (4.38)
Thig mezns that T is not related to other unknowns s s T or Ty, but

is explivitly chiainable in teems of the known temperafurc=sey, ]"'E, i"'ff. This
is why the scheme is called explicit, Any scheme with £+ 0 would be implicit;

Explicit

P

Crank-Micmdsnn

e

Th=—=

{

Fully implicit

r+ at

e -

Fioure £.5 Varption of temperature with tnse for three dilferent sohemds,

p
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that is, Tp would be linked to the unknowns T and Ty, and the solution of
a set of simultaneous equations would be necessary. The convenicnce of the
explicit scheme in this regard s, however, offsel by a serious limitation. 11 we
remember the basic rule about positive coelficients (Rule 7) and exarine Eq.
(4,38}, we note thai the cocfficient of 7§ can become negative, (We consider
T;ﬂ as a neighbor of Te in the tme direction.) Indeed, for this cocfiicient fo
be positive, the time step &¢ would have to be small enough so that B
cxeceds op +ay. For uniform conductivity amd Ax=(5x), = (8x},,, this
condition can be expregsed a5

pe(dx)

Ar <
s

(4.39)

IT this condition I violated, physically unrealistic results could emerge,
because the negative coefficient implies that a higher T8 results in a lower Th.
Equation {43%9) is the well-known stability criterion for the explicil scheme,
It is interesting to note that we lave been able to derive this from physical
arguments based on one of our basic rules, The troublesome feature abouot
candition (4.39) is that, as we reduce Ax to improve the spatial accuraey, we
arc forced to use a much smaller Az

The Crank-Nicolson scheme is usually deseribed as unconditionally stabls.
An dnexperienced user aften interprets this to imply that a physically realistic
slution will result no matter how large the time step, and such a vser is.
therefore, surprised to epcounter oscillatory solutions. The “stability™ in @
mathematical sense simply ensures that these oscillations will eveptoglly die
out, but it docs not guarantee physically plausible solutions. Some examples
uf wnrealistic solutions piven hy the Crank-Nicolson scheme cany be Tound in
Patankar and Baliga (1978).

In our [ramework, this béhavior {3 easy to explaln, For f'=0.5, the
oefficient of Tp in Eq. (4.36) bocomes op - {ag +ap)f2. For uniform
conductivity and uniform grid spacing, this coefficient can be seen to he po
AxfAr — kfAx, Again, whenever the time step is not sufficiently smell, this
cocfTicient could hecume negalive, with its potential Tor physically unreslistic
resulis. The szemingly reasonable deegr profile in Fig. 4.5 45 a1 2ood
represcntation of the temperature-fime relationship for only smufl time
intervals, Ovor a larger inteeval, the intrinsically exponential decay of tempesa-
ture o5 akin to a steep drop in the beginning, fullowed by a figt tafl, The
assumptions made m the fully implicit scheme sre thus closer to reality than
the lincar prefile used in the Crank-Nicolson scheme, especially for farge fime
Eleps,

If we require that the cocfficient of T in Eq. (4.36) must never become
negative, ihe only constant value of £ that ensures this is 1. (OF course, it is
ool mezningful Tor £ o be greater than 1) Thus, the fully implicit scheme
[f=1) satisfies oor requiremenis of simplicity and physically satisfactory

Wl sl I
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behavior. 1t is for this reason that we sl adope e fully Gplicit scheme in
this book.

b st be adimitted thot for small time steps the fully mnplicit scleme is
rat as pecurate g5 the Crank-Micolson scheme. Again, the reason can be seen
fronn Figo 4.3; the temperaluré-time curve 8 tearly linear for sowll fime
izrervals. It is tempting to seck a scheme that combines the advimtages al
hath schemes amd shares the diszdvantages of neither. Indeed, this hay been
Jome, and the resuir, called the cxponciein? scheme, has been doseribed by
I'zrankar nd Balizga 73978), That scheme, however, B osomewhat complicated,
M dp oanension an ahis boeak, o which many other chiemes are oy be
sresenned, wauld have made the teatment guite infricate,

Fully Implicit Discretization Equation

piere e Tecord the fully implicit form of Eq. (4.361. ks doing s, we shall
dviroduce the Inearized souree teoal, which we had tempoardy dropped. The

apTp =apTe YupTy + b, {440}

- e ﬁe ; (4410
By é—;"w : (4.418)
a8 = ‘”";‘J‘ (4.41¢c)

b=25 Ax +apTp. (d.41d)
Gp =agg Faw tap—8Sp Ax . {a.41c)

[: can he seen that, as Ar—+oo, this equation reducas to our steady-state
discietjzalion eqbalion.

The muain principle of the fuilly implicit scheme is that the new value T
prevails over the entire time step. Thus, If the conductivity &p depernded un
trmperatize, it should be iteratively recaléwlated from Tp, cxactly as inoou
sizsdy.siate proceduss. Other aspects of the steady-staie progedure, such as
coundery conditions, source-term linearization, and ihe TDMA, are abo
sounily applicable to the unsteady situation.

ouer detalled consideration of the ene-dimensional problem has now set
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the slage Ou o cxbensien Lo bwo and three  diomwensions. The extension s
SUTprisigly edsy.

4.4 TWO= AND THREE-DIMENSIONAL SITUATIONS

4.4-1 Discretization Equation for Two Dhmensions

A purticn of o two-dimensional grid is shown in Fig, 4.6, Far the grid point
Popuints £ aod B oare s x-divection neighbors, while N and & {denoting north
and south) are the py-diection neighbors, The control volume around P is
shown by dashed lines. Its thickness in the z dircction js assumed to be unity.
The aomenclaiure introduced in Fig. 3.2 for distances Ax, (5x),, etc. is 1o be
extended 1o bwo dimensions here, The question of the actusl location of the
control-volume fices in relation o the grid points is still left upen, Luocating
them exactly wridway between the neighboring grid points is an abvious
possibility, but other praclices can also be employed, some of which will be
discussed in Sectiun 4.6-1, Here we shall derive discretization equations that
will be applicable to any such practice,

We liave scen how te caleolate the heat flux g. at he controbvalume fce
between ' and £, We shall assume that .. thus obtained, prevails over the
cntire face of ares Ap ¥ |, Heat Mow rates through the other faces can be
vhtained in a similar fashion, Tn this manner, the Jifferential equatjon

ar ] a7 a o
e S et ] T oy - St
Fol i i E!x) ™ (A EI_}') +.5 (4.42)
N
T
T
w w %—P o £
5
Coatrgl volume
5
¥
Figure 4.6 Control valume
far 1he two-dimensicnal
x situation,
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can be instantly tumed into the discretization equation

where

aplp = 2T + awly +ayTy + agls + b,

Ty =

HN=

dg = —m——— |

o _ peAx ay
T kg
b=5, Ax Ay +aoTh .

dp =gg + ay +ay tag T ap = 5p Ax Ay

The prodoct &x Ay is the volume of the contral volume.

4.4-2 Discretization Equation for Three Dimensions

Finally, we add two mure neighbors T and B {top and hottom
girection to complete the three-dimensional configuration. The di

equation can easily he seen to he

wheare

(4.43)

(4.44a)

(4.445)

(4.44r)

(4.44d)

{4.44¢)

(4.441)
{2.44g)

] ‘ the =
Lizaticn

aplp =arTg tawTw tanTy tasTs tarly taply + 5, (445

S k. Ay AT

T T ey,
gis = B Ay A7
oS 2
g = Fon f7 Ax

AR T

{4.déwr)

(4.45)

(£:40)
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wkite i
e %E:%E ; {5 46c
g = —*"(;f" 1 (4.461)
s i A “’;f“’ =3 (4.46¢)

b= Sp Ax Ap Az + gl TE {4.46h)

gp=ag tay tay tagtartay ol —5p Ax Ay Az . (4460

At this point, It is mteresting to examine the pliysical significance of the
varinus cocfficionts in the discretization equation. The neighbor coefficients
Ty T Ay, o oo B TEpresent the conductance between the point P and the
corresponding neighbor, The term o373 is the internal cnergy (divided by
Ar) contzined in the control volurme at time ¢, The constant term & consists
of this internal energy and the rate of heat geperation in the control volume
resulting from Sp. The center-point coefficient ap iz the f all neighbor
coefficients (including af, which is the coefficient of the “gme neighbor™ Th)
and contains a contribution from the Jincarized source term,

4.4-3 Solution of the Algebraic Equations

It should be noted that, while constructing the discretization equations, we
cast them into a linear form but did not assume that a particular method
would be used for their solution, Therefore, any suitable solution method can
be cmployed at this stage. It is wseful to consider the derivation of the
cquations and their soletion as two distinet operations, and there = no need
for the chajces it one to influence the other. In 3 computer program, the two
operations can be conveniently performed in separate seclivns, and either
section can be independently modified when desired.

So far, we have obtained the multidimensional discretization equations by
a straightforward extension of the one-dimensional sitvation. One procedure
that canrot o easily be extended to multiple dimensions iz the tridiagonal-
matrix algarithm (TOMA). Direct methods (e, those reguiring no iteration)
for solving the algebraic equations arising in two- or threedimensional
problems are much more complicated and require rather large amounts of
computer storage and Hme. For o linear problem, which requires the solwtion
of the algebraic equations ealy once, a direct method may be acceptzble; hut
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A aunlnear problems, since e equations luve to be sulved wepeatedly with
upilated soeflicients, the vse of a dize¢t method is usually not cconomical. We
shail, therefore, exclude direct snetheds from ferther consideration, except o
say that 2 computer program  for the direct solutjon of discretization
aquations in iwo dimensions has been published by King {1976).

The alternative, then, Is itérative mefhods fur e solution of dlgebraic
eeuations. These start from 4 guessed fiold of T (the dependeg) variable) and
use the slgebraic cquations in some waneer to obtain an improved field.
Sugcessive repelitions of the algorithm finally lead to a solution that is
saificiently clase to the correct solutivn of dhe alpebraic equations. lesadive
methods usually require very sowll additionad storage in the computer, and
they  arc especiolly  attraclive fod handling nonfinearities. Iti 4 nonlinear
prablem, it I not necessary ac wise Ju take the solution of the algpebraic
soasbjeas 16 [ingd convergence for u Mxed sot of coefficiedt values, With a
civen sct of these values, 3 fow jterations of the equition-sulving oorithn ame
sulfickent before the updating of the cosfficieats 3§ perfrmed, [t scems that,
:rogercrak there should be 3 cerlain balance between the elfact reouingd to
sthiulile the goeffigicnts and dkat spent un selving the cquations: Chice the
1 cients we calcuiated, we must perform sufficient derations of the
salation sobver foocxiracd substantial bencfit freww the coclflcients, Wil it is
nwige 13 spend an exsessive amount of effosl on solbving equations thiat ace
kased on enly lentative coefficients.

There are many iterative methuds for solving algebraic equativns. We shall
woacrive oaly two methods; the first will set the hackground, aond the second
i recommended for gsa.

ke GrassSeidel point-Dy-point methed The simplest of all irerative methods
iz the Geuss-Seidel method in which the values of the variable are calculated
b wisiting each grid point in a certain veder. Only one set of T 45 held in
sempater storage. I the bepinning, these represent the initial puess or values
Tam the previous iterzlion. As cach grid paint is visited, the corresponding
vitue of T in the computer storage is altered as fallows: T the discretization
eLuytion is written as

aplp = E oy T 8, {4.47)

=t the subscript nb denotes ¢ neighbor peint, then Tp at the visited grid
piint is calgilited from

3 annTop +
To= _"'“:f”#b / {4.48)
P

where Ty stands for the neighbor-point wvalue present in the cumputer
siorage. For neighbors that have already bieen visited durbng the curreat
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weratlon, £, s the Freshly calculated valve; for yet-to-he-visited neighibors,
Top b5 the value from the previous iteration. In any case, T is the latest
available value fur the veighborpoint temperature. When all grid points have
been  visited e (s Jrimlﬂﬂr.? iteration of the CGuuss-Seidel merhod is
complole.

Tu illusteate the method, we shall consider two very simple examples,

Equaitons:
Ty =047, + 0.2, (4 .4%a)
e L {498)
Sofution:
licratipnmo. O l 1 3 4 5 s o
F 0 0.2 (LR ] DAt 0949 0,950 g L0
Iy 0 1.2 168 .72 1,040 1.5%80 24

It can be seen that, starting with an arbitrary guess, we have been
able to approgch the correet solution of the equationg, An interesting
feature of iterative methods is that the accuracy of the calculations may
nat be very high in the jntermediate stages, Approximate ca tfons, and
even errors, tend to be wiped out, since the jntermediate \&m used
stinply as puesses or the next dleration, We can gadn further insight from
the Tollowing exaemple,

Equarions:
Ty =T =1, (4.504)
T-: = 2.5T| o 55 ' (4.50#1]
Kewles pivin :
Iteratbonne, 9 1 2 3 4
T o F —d —10.5 — 3,25
T. U =3 -5 -2975 7603

This dogs not look very hopeful. Here the iteration process has
diverged, What 1= more surprising is that Eqs. (4.50) sre sitply rearranged
versions of Egs. (4.49), for which we did get convergence,
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We thus conclude that the Giuss-Seidel methad does not plways converis,
Indeed, a criterion has been lormulated by Scarhorough (1958) that, when
salisflied, guarantees the converzence of the Gauss-Serdel methud, We shgll
state it without proof and discuss its implications.
The Scarborcugh criterion, A wsufficiesnr condition for the convergenoe ol
the Gauss-Seidel method iz

=1 for all eqiatio b5l
E‘gg_' o7 all eginztioms {d.51a)

gl <1 fisr at lesst one equation . 451k}

Commene (1) The crterion 5 u sulfieient condition, nut a fecessany
vne, This means that we can, at times, violate the criteriun and still obtan
convergence. (2) Although we shall not advocate the use of (he G gs-Seide]
method, it weems desirable that our discretization aquations stonld satisfy the
Scatborough criterion so that convesgence is assured by at least one iteraijve
nethod, (3) Some of our basic toles, whicl have hap mativated by physical
considerations. can now be seen do Mlfill the demands of the Searbaragh
sritetion. For example, the presence of a negative Sp dezds to Zagylep <L
Our requirement of positive coelficients can alse ke viewed in this Heht. If
some of the coefficicnts were negative, then #p (which wlten equals )
coubd have a magnitude less than Zlayy| (since T Pt = Elayy, ), thus leading
tn a viclation of the critesion. (4) W) equats gy and all ihe
coelficicnis are positive, we pbtain, for all equarions, Efg.,lflael = |, Where,
thea, is the equation at least Tor which Elagplflapl would beeome less than
unity? The answer lies in the boundary conditions, For te problemt (o have a
determinate solution, the temperature must be speetlizd Tor at Teast cne
Saundary point. The discretization equation in which this point appears gz
nng of the neighbors does imply Tl |00 |, This §2 so beequse 2oy
should Be caleulated, for the purpase of using the Scarborough criterion, as
the sum of the coeffcients of anly the wrkmawn neighbors; ga, un the other
hapd. is the sutm of zll neighbor cocfficients including the beundary-poin
coeflicient,

A major disadvantzge of the otherwise attractive Guuss-Seidel metiod s
that j15 convergence is too shiw, espocially when a large number ol 2rid pufats
are frvalved. The reason for the slowness is edsy 1o undersiand; the method
transmits tae boundary-condition information 3t ¢ roe of one grid anfeovak nor

iteration.

A line-by-line method A cosvenient combipation ol the direc methnd (TEMA)
[ar one-dimensional situations and the Gauss-Seidel method N now be
formed. We shall choose a grid ling (say, in the p dirccrion), assume (hat the
I''s along the neiphboring lines (e, the x- and z-direction neighbars of the
pitints en the chosen line) are known from their “latest” values, and salve for
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the T's alomg the chosen line by the TDMA. We shall Tollow this procedure
for all the lincs in one diroction and repeat the procedure, §f desired, Jor the
lines in the other direction(s). Although the method is equally applicable to
twe or three dimensions, we shall, for convenience, conduct the following
discussion for twodimensional sifuatione,

Discussion. (1) The line-bydine scheme et be easily visualived witly
reference to Fig. 4.7, The discretization equations fur the grid poins alerg a
chosen line are considercd. They contain the temperatires at the prid ooin
{shown by crisses) alomg the two neighboring fincs. IT these temperatines are
substitwted from \hcie Litest velues, the equations Tor the grid points {shewn
by dots) along the chisen bne would Juok like one-dimensicnal equations znd
could be solved by the TDMA. This procedure i carried out for all the [ines
in the » direction and may be followed by a similsr treatment for the x
direction. (2) The convergence of the line-by-line method s faster, because the
boundary-condition information from the ends of the line is trapsmiitted ar
it o the interioe of the domain, no matter how raany grid points lis ang
the Tme. The rate of fransmission of information in the other direction is
similar to that of the point-by-point methud. (3) By altemating the directions
in which the TDMA traverse is employved, we gan quickly bring the informa-
ton from all boundaries to the interor {4) Often the geometry and other
properties of the situation resalt in, for cxample, the p-direetion coelficients
being much larger than the xedireetion coefficients [s0e Fig, 4.8). In such a
case, especially fast cunvergence i obtalned when the TDMA traverse iz
employed inm the v direction {the direction af larger coefficients). This fs
beecause  the guess valyes substituted for  the temperatures dlong the
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Vigure 4.7 Kepresentalion of the Tineboeline metkod,
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iigure 4.8 Sirsihion In which the ydircction guefficients aoe much larser han dhe -
direcilon cosificknts.

neizhbodng lines have insignificant influence on the discretization equations.
t2) In addition to the tmverse direction, the sweep direction (e, the
sequence in which lings are chosen) iz also important in some cases. Fur the
boundary conditions showa in Fig, 4.9, a left-to-right sweep (ie., chousing the
el boundary of the domain as the first line and then moving successively to
the lines to the right} would transmit the known temperature on the left
cramelany dnto the domain; v the other hand, since no temperatures are gven

fhe ght boundary, s mght-todeft sweep would bring oo such wseful
mhermation, (Fhe same consideration applies to the scquence in which points
2 vlgted noa puinl-by-point scheme.) The sweep direction is especially
Igportant when convection is present. Quite cleasly, a sweep from upslream
=3 cawnshream would produce mush [aster convergence than @ sweep apainst

ArESlrEaE;

Diler iterative methods A commonly used line-bydine method known as ADE
i~tliernating-Direction Smplicit) was introduced by Peaceman and Rachfard
2955}, Anather ierative technique for solving multidimensionat discretization
= juatiaes 5 the Strongly fmplicit Procedure (SIF) described by Stone {1964).
& detailed study of these methods is left to the interested teader.

\

Adiabatic

Nr=n

Figure 4.9 Boundary ooditions thet make a lef-to-rigln sweep mare advantapeous
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4.5 OVERRELAXATION
AND UNDERRELAXATION

In he iferative soiution of the algebraic equations or i the overall iterative
scheme employed for handling nonlinearily, il is often desirable to speed up
or to slow down the changes, from itcration to iteration, in the values of the
dependent variable, This process is callod overrefaxarion or wederrefmogtion,
depending on wiwether the varable changes are aceelerated or slowed down.
Overrelavation is often used in conjunction with the Gouss-Seidel methed, the
iesulting scheme being known as Successive (her-Relaxation (SOR). With the
line-byline ‘method, the use of overrelaxation is less common. Underrelaxation
is @ very wseful device for nonlinear problems. [t is often employed to avoid
divergence in the iterative solution of strongly nonlinear eguations.

There are many ways of Introducing overrclaxation or underrelaxation.
Some practices will be described here. We shall work with the peperal
tizeretization equation ol the form

tplp =Z an,Tun + & (1.52)

Further, 7'# will be taken as the value of Tp fram the previous iteration.
- Use gf @ reluxatfon facror, Equation (4.52) can be written as

il Eanthb + &

Tp (4.53)
ap
16 we add Tp to the right-hand side and subtract it, we have
. + =
Te=Th + (l%.b;&é___b 3, TP) A (4.54)
i

where the contents af the parentheses represent the change in Tp produced by
the corrent iteration. This change can be modified by the introduction of a
relmiation factor o, so that

: +
Tp=Th+ua (ﬂﬂ:ﬂ?_‘!’ - TF) ; (4.552)
ap
or % Vo= B gy T+ 5 4 (1 — o "?P i (4.558)

At first, it should be nuted that, when the iterations converge, that is, e
becomes equal to T3, Eq. {4.55a) implies that the converged values of T do
satisfy the orginal cquation (4.52), Any relaxation scheme, of course, must
pessess this propertys the final converged solution, although obtained theough
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the use af arbitrary rélaxation factors or similar devices, must still satisfy (he
originagl discretization equation.

When the relaxation factor o in Eg. (4.55) is berween O and 1, its eifeet
is underrefaxation: that Is, the values of Tp stay closer to Te. Fur 4 very small
value of a, the changes in Tp become very dow. When o is preatér than 1,
overielaxation s produced,

There are no general rules for choosing the best value of & The oplimum
value depends upon a number of factors, such 4s e nature of the problem,
the number of grid points, the grid spacing, and the iterative procedure used.
Usually, 2 suitable value of o can be fousd by expericnce and froum
cxploratory computations for the given problem.

There = no need to maintain the same value of a donng the entie
compltation, The value can be changed from iteration o fteratiom. Indecd, it
is permissihle, though not very convenient, 1o choose 2 dilTerent wlue of &
for each geid poelnt,

Reloyation through inerria. Another technique of wverreluxation ar under
relaxation is to replace the discretization equation (4.51) with

fap + )Tp =T ogp Ty + 0 +075 (4.56)

wlherz [ js the sogalled jnertfa. For positive walues of {, Tig. (4.36) has the
effect of underrelaxation, whils negative values of 7 produce overrelaxation.

Agzin, there are no peneral rules for finding the optimumy value of the
[ertia §; it must be determined [rom experbenge with g partioular problem.
Trom L. (4,56), we ¢an deduce thal i should be comparable w gp, ond the
greater the magnitude of ¢ the stropger will be the effeet of the relaxstlon,

Sometintes, the salutdon of 3 steady-siate problem is obtained through the
usz of the discretization equations for = Correspunding unstcady siteation,
Then the "“time steps” become theé same ag itesations, apd rthe “old™ value r}:
simply represents the previous-iteration value T_;. In this sense, the térm a;]’ﬁ
in Eq. (4.46H) acts in the same way a5 the term iTp in Eq. (4.56). Thus, the
mertla £ is analogous to the coefficient ag in the unsteady formulbation. This
analogy sumgests one way of deciding on a reasonable value of 4. Oo the other
hand, the practice of sobving 2 steadv-state problem via the upsteady
farmulation can now be recognized g5 simply 2 particular kind of ooder
relaxation procedure. The smalfler the time step chogen, the stronger is the
resulting onéecrelaxation. Incidentzily, a negative walie of the time step ¢
wirsld produce overrelaxation.

4.0 SOME GEOMETRIC CONSIDERATIONS

4,6-1 Location of the Control-Volume Faces

S far, no specifie iaformation has been provided a3 1w where the confeal-
volume faces are to be located in relalion to the grid points, The derivation al
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the diserelization eguation has been conducted fn general terms so that it wifl
be wpplicable to any particular way of locating the contrulvelume faces.
Among the many possible practices, we shal! look at two difTercnt alternatives
und discuss their telafive merits. The two practices will be caflled Practice A
and Practice 8. Tor convenicnce, the description will refer to a two-
dimensional situation, although the concepts involved are applicable to ones
and theee-dimensional siteations as well,

Practice A fover located midfway between the grid points. The rwiost
vhviotis way of constructing the cantrel voelumes is to place thelr fages
midway hetween nelghboring grid peists. This s shown in Fig, 4,10, where
the dashed lines indicate the contrul-volume faces. The grid is deliberately
drawn to be highly sonuniform; one consequence is {lat a typical grid point
ot gan be observed, does nol fie gt the peometric confer of the cantrol
valume that sarreunds it

Practice B: grid poime pfrced e e certers al” thie eemrrol polumer
Apother practice, Ulustrated in Fiz. 411, 5 fu daw the control-valome
boundaries st and then pleec 2 zrid point 3t the geometric center of zach
control volume In this echeme, whert the control-volurme siges ore (on.
uriform, their faces do not be midway Getween the grid points,

fiscussign. (1} It should be noted ihat for uniform geids {or uniform
control-volume sizes) the two practices become identical, Therefore, 3 com-
parison of the two practices is meaningful only in the context of nonuaiform
grid spacing. (2) The “midwey™ laces in Practice A do provide preater
acearacy in caleulating the heat Mux across the face, As poted In Section 3.4,
ihe slope of the piecewise-litcar temperature profile happens to be the same
as the slope of any parabolic profile evaluated midway between the geid
points, Thus, even though z Ilnear profile is used, the resulis effectively
correspond 1o & less crude parsbuolic profile. (3) Qo the other hand, the fact
that the grid point P in Fig. 4,10 may not be at the geometric center af the
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Figore 4.0 1 Loctlons of the conindl-velutne Maces for Practice B.

control valupe represents o disadvantage. The temperature Tp then cannut be
regzcdsd as 2 good represenfative value for the coptrol volume in e
catculation of the sowrce term, the conductivity, and similar quantitics.
Further, even in the calculation of the heat Auxes al the contrefvolume faces,
Prictice A #s not free rom ohjections. The point ¢ in Fig. 4,10, for example,

i= naf ac the center of the coatrol-voltme face on which 3t lies, Then, W
czaumae inhad the Beat fAux st ¢ prevails over (he endpre fce cotals some
%jm.uuu:acy. (4} Fraciice B docs not have these shortcomings, sace he point P
=akn by defmrtion, af the cemter of the control yolumic, and points such as e
Zoooat e cemter ol their respective faces {see Figo 4.11) The faces,

, fuonot lie myidway between he erid points dnd dheretore, unlike
fog che Praczice B Joes pot beoedll fiom the fortoltous propertys af he
solg. 2] Pernzps the deglsive sdvanizge of Practice B &5 the convenienge it
Singe Lhe control volume lurns oot 0 be the basic upit of (e
Citerotization method developed so fae, it s more convenleml 1o draw the
conteelvolume  boundares first and let the grid-point locatians follow as
a comsequence. For a composite solid, for example, we ¢an logate the
coptrral-volume faces where the discontinuity in the material propesties occurs
{ File. 412} Simllarly. discontinuitics tn boundary conditions can be
ernently handied. IF 2 part of the boundary is adiabatic and the rcst
ssclhermel, the control volume can be designed g0 as 10 avoid the presence of
the discontinuity within 2 controlvolume face; this & shown i Fig. 4.12. In
Peagtice A, it & much more difficult to arrange that the contrul-volume Faces
izl b tne desired focations, because ome must first specify the positiens of
272 grid points. (6) The design of the control volumes near the houndaries of
tiz caleulation domain reguires additional consideration. As shown in Fig.
.13, Praciice A leads to the “half™ control volumes (introdueed in Section
2.2.6) around the boundary prid points. [n Practice B, it i3 convenient 1o
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completely fill the calculation dumain with regalar control volumes and to
plice the boundazry grid peints on the [aces of the acar-boundny contral
vilwines. This srrangement is shown in Fig 414, A typical boundary face [is
not - located berween the boundary point B and the internal point f, bur
actually passes through the bBoundary pomnt. [F 3 control volume of zero
thickness s magmed around point &, the location of the face § in rélation to
the prid goiats & and [ cal be seen lo conform to the general pattern of
Practice B, With. such @n arrangement, there & po necd [or the special
diseretization equation lar the near-boundary control volume! the available
boundary-conditivn Jata, such as miven temperature or heit Mux, can be
directly used at the botndary face £

4.6-2 Other Coordinate Systeins

S0 far, we have formadated the discretization eguations by using a grid in the
Cartesian coordinate system. In the rest of the book, we shall continus to
eraplay the samc coordinate system for siearly all the treatment. This provides
convenience of presentation and ease of understanding. However, the method
being developed is mot limited to Cartesian grids but can be used Wwith a grid
in amy erhogunal coordinzte system. To illustrate the derivalion of the

Figure 4,13 Doundzry caniral
velumes in Practice A.
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discretization equation In other coordinate systems, we shall consider
two-dimensional situation fn polar coordinates, namely r and 0.
The rf counterpart of Eq. (4.42) is

o7 _ L3 f oT\ .18 (kar
Po=Shptlyg s B il g 4,
0 ar r&r(r ar) r?ﬂi(r Ehﬂ) . e

The grid and the control volume in A courdinates are shown in Fig. 415 The
z-direction thickness of the control volume is assumed to be unity. To obtain
the discretizztion equetion, we multiply Eq. (4.57) by 7 ond integrate with
recpect to roand 8 over the control volume. (This operation pives the volume
intzgral, since r dr df represents a volume element of unit thickness)

Figure 4,15 Comtral wolume in
polar coordinages
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Following the same procedure a5 in Scction 4.4-1, we obtain the discretization
equation

-IJ'FTP = EET_E + ﬂ'wT‘W +: ‘INTN + ﬂsI:'I; + b - f4.58}
where
k. AF
Jg = ——— | 4.
£ G0, (4.59)
Koo
PR .o (4.598)

r(60),,
L

e 7T oE e (4.59¢)
ape (4.594)
(8r)g
i BEDLL
ar (4.5%)
B="5a AV +anTl, (4.590)
ap = gp S a +ay Fag ol =55 AF {4.59¢)

Here AV s the volume of the control voline; it is equal to 0.5(r, +r,) Al
ar. (It should be noted that AV is not necessarily cqual to rp A8 Ar, unlecs P
lies midway between n and 5. 5

The foregoing Tlustration shows that the additional features introduced
by 2 new coordinare system are mainly peometric, As long as the required
lengths, areas, and volumes are properly calewlated, no new pringiples are
needed. Miseretizarion equaticns in any orthogonal coordinate system can now
be derived along the same lines, The requirement of orthogonality, howewver, 15
essential if profiles defined by just two grid points are to be used, The [3ot
that the controlvolume face e in Fig. 4.15 is perpendicular to the line FF
enables us to caleulate the flux across the face from Tp and T alone. A mome
complex discretization formula would be needed for nonorthogonal grids.

In the remainder of the book, we shall use only Cartesian coordinates for
all alpebraic derivations. The entire treatment, however, Js cqually applicable
te any orthegonal coordinate system when the obvious geometric changes are
introduced.

4.7 CLOSURE

This chapter marks the first major step in the development of the numerical
methad for the genecal differential equation (2.13). Heat conduction presents
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- rhysical sitwation that embadies all the ingredients wf the general eguslion
sxcepl cunveetien, Thus, whereas we have nearly completed lhe ennatrug o
ol the method, the romaining ingredient, namely convection, Joes give wise fo
-uany interesting and important considemtions. The tregiment of cunvection s
cot oas steaiphtforward as one would at firsl expect, aid yot A T
ireaiment is crucial for handling situations with fluid fMoew. The next chiapter
iz devoted to the special features that convection hrimgs fnto the discretization
method.

PROBLEMS

5.1 Tor the siteation shows i Fig. 4.3, i the boupdary temperature. ¥y were giveda,
expluin how you would obtain the heat flux g5 wt Lhe boundary, affer the caliatation «f
-3 the grid-peint temperatuzes, (Mote that an atlempl te approsimale STl ut dbe
bgundary is nof consistent with the ponitobvolume procedure; e il Fednteel-vlume
eqiution shioyll be used to find g g.)

4.2 When the boundary empersiure Tg in Fip 4.3 @5 gven, weo do not wse the balf
spnirel-¥olume dquation for obiaining the wemperature Oeld. Dovs (s mean thal we do
nol walisfy coengy copscrvation owgr the witale wilculatian domain for 1he wiven-
tobndary-lemperaiure condition? (Se¢ the sote for Problem 4.1.)

4.1 The boumlary condition expressed by Eq (4.0%) @n b thought ol as (he gost
cederal condition. 1t i then possible to Gblain e lwo ather iypes ol Iiweduy
conditivns (mamely, miven temperaturs amd gwven heat [ux) as T cases of this
peeral condition. Explain how this qan be achieved.

4.8 Consider ihe differertial équation %

o aT
2 (o),

Tiafine & mew variabie 7 swdh thel g =(10K) de, Berve the disoreiitalivn cguation by

soumiirs thal T i5 lnear in g in & piecewisd manmer. Express ooin derms of 2 and the
sniny cepductivities by postulating that the condostivity 2 a prid paint prevails
it ke entzal volame serrelmding e Vedfy that the pesolting expression [or op
il By, 440010

mATUEL
4.5 Deove e discoetization equailon from Ego (40) for the siteafion in which
T=r =47 where a asd b am copstants. Ust a piccewhedinear profile Tor ¥ for

peth o Tide am) & Commment on the resaliing discrefizalinn squulion wath
e Mol 2,

4.6 Kepaa iae depration in Seeliod . 3-1 By assuming & plesewiss-hosa T—x prolile
gg ler o lme 37Per term. For F=1 (ihat & the fully maplict schemes, exqujne the
hiner cocllicknts ez and ape with reference to Rule L [Have yos aulieed that, wilh
seference to Bd. (4.20), the sT78c leren behaves much like § (= S+ SpTpl and that
aTar, if tegarded as a part of §, would give a négative Sp o5 desired? |

170 o combined conduclion-tadidlion problem the source tecm ix given Dy
Z=giFt—T"), where o and T, ar¢ constants and o 5 positive. Write a appropoate
lizparization [or the fource term.

4% ‘(1 sources term for a dependent vadable & I given by § = 4 — Blolg, whert 4 and
I ma potilive constants, H this erm i (e be linsanized as S+ Spep commend o Lhe
fulitiwiag practices {p denoles the previousiteration valueh:

i by e

B L L et il TRy

T e ) FITS L] P

i) Ser= A — Blpplag  Sp=1
Wi Se = Sp - Blgpl
(1S = A + Mefwmp, Sp= 2Bwp
@) Se= A + g plop, Sp= —10H 05
4.4 Comsider 0 oue-dimensional beat comduction dlopition with §=Xund & =1 covery-
whicee. 17 fowr grid points uf &=, 1,2, 3 e used te span (6 damain of length=3, wTic
the Four discreliralion equations (inchuding e half-comttol-volume eqiations) wsing (e
following butnidary conditions: AL 8= f, the heds fux i e domain is 5 at r=13,
the st Oux leuvine the domain is L.
Sulve the Tour diseretization vqualpens by;
@) The TDMA
(&) The GeamssSenkel irerdtion
i1 Seifing ihe lomperature i the [ist pmid point eyuad 1o 10U and applying 1he TOMA
o the rormnining Hirce equaliens
i) Siuic as (eh, but solving 1he cyualions Ly the Gauss-Seidel mothod
|Cormmmers: With the Liven boendmy comditions, the valuds uf T ard ot amiquely
dedined - {he ofifferraecs hetween temperatures arc miramingful, but thelr absolute valucs
are mist, Floae, by methiod (@), no sodution cin be obtzined. The solutions obdained in
{4y and (o) wilt, inogengral, Affer by oo consiant. Also, the convergence fn () will be
Fasior [han im (o). 105 thercfore, botter to let (he solution seck s own level thaea to
insisL o 3 definite valee ata pacticalar grnd point.|
410 For the explicit “clemng, Eig. :‘4,39; gy Lie sbabiloly opbtcoon for one-dimensional
peablems. Dirive the crileda for twe- and three-dimensional sitwitions Gom e neqbire-
masdtl [hat (he veelTicient of Tf; myst Rman posilive.
401 An inlinite stab of thickucss 8 onils lis s faces maintained 0l a wemperaturd of
1), The wémperatiee ficld s governed by Lg, (4.0) with & =35 and & =50 every wheie,
Using onty a lew grid points, cblain @ nimeocsl solution by the amethed developed in
tliis chapter. Comparc the values of T [tom the solulion with those [rom the cxact
wolution, (7 the grld i1 desicned according 19 Practice A, the agrecmenl with the exact
solution will be pecfioct, Why?)
402 Formulate the following pr' in torms of epproprale dimensionbess variablics:
Thi governing #juntion is
drT
b w50,

wheie & zud 8 arc tonstanl. The boundary conditons ars

a k oLl f (T, Tal
% = VI N |
I N ada
47T
=1 B ===N -
: dx Ll = 1d.

alicie Ay wod Ap are (he heat nansfor cocllicients, and T, and Ty are the cosresponding
boundary. lomperatures, Scbve the problem numesicaly Tor the case R L% =1 and
.-':Lﬂ,ﬁ: = 1, and comgue (he rcselis with the cxact zalution,

413 A mumber of ample folly devcloped flows gre poverned by conduciionlike
equations For cxample, the fully devcloped flow Between parallel plates obexs the

LHUELET
I T g
e ey =K
dy ay de
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where n is {he velocity, p is the viscosity, and dp/dx is fhe constant pressure gradiend.
Moting that this cquation & essentially entical to Lq. {4.1), we can use the discreliza-
tion method developed in this chapter for caloutating Tully developed flows,
(o) Compute the wefocily distribution in the fufly developed flow eiween siationary
parallel plates
{d) Let eme of the plites be siztiomary, while the ofher & moving with welocity
U, Calculate the fully developed flow between the plates Tor various values of the
patameter L7 (dpfdeiulh, where L s the distance between the lwo plaies,
te) Calculate the velocity feld for the fully developed fow in @ circular pipe.
4.14 The thermafly fully developed region in 8 duct is characterized by o tempersture
field {hat, when expressed in approprate diensionless form, remaing wnchanged with fhe
sireamwise distance. Calcolate the fully developed temperature (eld and the Nusselt
number In a fully developed fMlow between two paraflel plates, assuming that the velocity
profile is parshelic, one plate i adiabalic, and there 1z 2 uniform heat fux across (e
other plate. [A lame variety of [ully develeped {low and heut transfer problems can now
e solved by the method developed in this chapter. You may wish to sorify soomc of the
results presented in Sparrow and Patankar (1877)]
4.15 Consder unstesdy heat conduction dn an infinite slab. One foce of the shab i
insulated, while a constznt heat lux eénfers the glab through the other face, After the
initlal tremsient, the tomperature prodde will sequire a3 fwxed shape, amd all the
temperaturcs will mdse with time at the same rade. Further. this rate will be pelated o the
amount of heat fux through the face. Formutate and solve the problem by dhe
technigues of steodi-frafe hest eonduction. |Such “lully devcloped™ regime in unsteady
heat eanduction is discussed more [ully in Patankar (02798).]
4.16 Consider the one<dimensional heal comductlon problem in 3 rod that is beat mio 2
circular shape o form an cndless loop. It thos no expased ends and no meaningul
boundary conditions. Tndeed, all rid points the imtermal geid polats. The
diseretization equations will still have the form (4.22), but the ponditions glven by Lo
(4.23) wlll ot apply. Instead, Tpyay will be interpreied as T, and Ty g% T Degive a
solution algorthm (which we shall call the circular TEMA} for such a s:1 of equatiuns.
[This alporithm will be useful in applying the Gine-by-ling methed in ¢ coordinates.
becausa the grid points forming a d-direction line may be aranped |noan endless loop.
Ancther application of the circular TDMA, and the details of its derivaticn, can be Teund
in Patankar, Liw, and Sparraw (1977))
4,17 Consider two dependent varizbles (and g, which are govern=i by coupled cquations
of the form

afy = tifiay Yol Fdi £ gt s
zd Ay = Befigy + Crfp_gp + Dy + &7 .

for f=1, 2, 3 oo, N Ao, £, =0, by =0, €, =0, and By = 0. Using 1he basic e
of the TDMA, derive an alpanithm for sobving these equations.

4.18 Compare Eqe. (4.56) and (4.55k) to show that the inertis § that B implicl i the
use of a relanation faclor o i given by § ={1 — olap'o.

419 A shb of thickaess [ has a linear temperature distribulion within it from = T, &l
x=0t T=T, at x=L. At time +=0, the face at ¥ = L i made adiabatle, while the
fage at x =10 is still held at T= T,. Cabeulate the distribution of {(T— T (T, — Tl
function of =L and or/LY, where o is the fherma! diffusivity. Continue the computations
until the value of {7— T, T, - T,)atxz =L Ml below 0.5,

4.20 Consider the steady one-dimensional conductivn in a constant-urea fin governed by

A

R LT M R TS U kbt

HEAT CONDUCTION 7

f kd‘]" +.Fr."_r
eriendy el R call s

wieere A Js the heat lrinster coelficent bepween the 1tn surlace and (he syprownding Tyid
at lemperature Ty, A Qs the crosssectional zrea of the fin, and P is the perimeter of the
gross section, The bovndary comditions dres At x =0, T=T, (the base emperalunel, and
sox=0, & dTidr =0 finsukiged tip). Find the fenerical solution Tor the dimensjanfes
temperalure {T—TJ.-}I{T, — Ty} ax a function of xfE Tor kLKA = 2, and comparse it
with the exzol solnion. For 2 uniform grd, And the aumber of prid points neesded to
predict the heal Mux ab the base within 1% of the exact valuc. (Nole that the propor
linearization of the source torm in the given equation & gquite olwious. However, i0 yoo
attempt to sulve the problem iteratively by cxpressing the eatie source term as Spoand
seiting Sp=1, you will observe that the iterations successively produce wnreatistic reenlts
and make the convergence difficell to allain.)

]
A
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CHAPTER

FI_VE
CONVECTION AND DIFFUSION

5.1 THE TASK

So far, in the guise of heat conduction, we have seen how to formulate the
diseretization equativn from the peneral differential cquation containing the
unsteady term, the diffusion termy, and thie source term. (The description in
tie fast chapter in werms of temperature T and conductivity & can casily be
recast i termis of the geweral variable ¢ and its diffusion coefficient .} The
valy omission hat been the convection term, which we shall now include. We
have also dealt with the methods of solving the algebraic cquations: as long as
the additivn of the convection term does not alter the form of the
discretization equation, the same methods continue to apply.

The convection is created by fluid fow. Our task in this chapter is to
obtain a sclution for ¢ in the presence of a sven fFow field (1o, the veloziey
companents and the density). How we know the flow field is a question we
do not ask at this stage. [t could have come from experiment, be aiven as an
amalytical solution, be obtained by the method described later in Chapter &,
or simply be guessed. The origin of the flow-field information js immaterial
here. Having somehow acquired the flow feld, we wish to calculate the
temperature, concentration, enthalpy, or any such quantity that is represented
by the general varablz ¢

Although convection is the only new term introduced in this chapter; its
formulation i Aot very straightforward, The convection term has an in-
separable connection with the diffusion term, and therefore, the two terms

7
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need to be handled as one wnit. Thiz is why the words “convection and
diffusion™ form the title of this chepter; viier tcrms can also he present, but
orly in the background,

It thould be remembered that the word diffusion i@ used hers i i
gencralized sense. It is not restricted only to the diffusion of 2 clemical
species cawsed by congentration gradients, The diffusion Tux due to the
pradlent of the general variable ¢ is —1° dgfixg, which, Tor specific meanings
of ¢, would represent chemical-species diffusion Aux, heat flux, wiscousg
stress, ele, The pgeneral differentis] cquation (2.15) contains the ferm
(o) (T dfie), which is desipnated as the ditfusion term. Actually, this
expression denotes the sum of three terms for the thiee coordinate diredHons;
yet it is convenient to refer to them collectively as the diffusion term. The
zame s true of the convection term, which is (Oaxg) (o),

Qne leature of the convection-diffesion situation may e ogoted st this
point, Since the given Mow fleld must satisly the continuity equation

B

i)
s g
o : {aul =0, {3.1)

the general differential equation

it ¢ i i
= + ——f{pug) = —— [ 221 4x ;
ar OO g oue = o (1 : f) {5.2)
tan also be written as
ey di ) e 3 3
_— + — =— ') + 5, 3
e B, o (l axf) A [3.3)

From this form of the equation, it follaws that, for given distributions of g,
up, Iy and 5, any solution & and its variant (¢ plus 3 constant) would both
satisly Eq. (5.3). Under these circumstances, the basic rufe sbout the sum of
the coefficients (Rule 4) continues to apply.

5.2 STEADY ONE-DIMENSIONAL é
CONVECTION AND DIFFUSION

As in the last chapler, much can be learned from consideration of the simplest
possible case. Here we shall consider s steady one-dimensicnal situation in
which only the convection and diffusion terms are present. The ZOVErning
differential equation iz

d o iy
s =— [P 5.4
3 (i) . é ) (5.4}

UONVECTION AN MY FUREON g1

where w represents the wvelocity in the x direction, Also, the continuity
cquation beconwes

— (pu) =10 ur £ = constant . (5.5)

For deriving the Jiscretization equation, we shall uss the three-grid-point
cluster shown in Fig. 5.1, Although the actual location of the controlaalume
faces ¢ and w would not infTnence our final formulation, it v convenient
assume that ¢ is located mfdway between Pand £, and w midway between W
and P,

5.2-1 A Prelitninary Derivation

miegration of Eq. (54) over the control volume shown in Fig. 5.1 gives

e - = (r 22} _ (pd¢ ;
{pud), — (pug),, = (l d:r), (f' Lzr)w' {56}

We saw in the losi chiapler haw (2 fepresent Lhe term 10 dfedx [rom a
plecewiselinear profile for @ Fao the convection terr, the sarme choice of
profile would at firet seent natural, The resolt i

S =3t o)  and G =1 (0p+ ow) (5:7)
The facior % arises from the assumption of the interfaces being midway; some

other nterpolation Tagtors. would  haye appeared  for differcntly located
interfaces. Mow, Eq, (5.6) can be written as

(U] (B + ¢p) — 3pu), (dp + Giy) = ngl:*frj_ 2 r"(f;’;; 1
(5.8)

where the walwes of I, and [N, ar¢ to be ohiained by the prescription
presented in Section 4.2.3. (This applics throughout the beok, although such
references to previsus seclions may not he repeated.)

Control volume

W i) [, £
=) : fr———=
A
W a
L- — lonby ﬁl-; laxls 4-!

Figure .1 Typical prid-poimt cluster for this onc-dimensional problem,
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To zroange the equation more compactly, we define fwo pew symbols /7
amd £, as Tollows:

== pus, b= [5.43)

I
i
el have the same dimenstons; F indicates the streppth ol the convestion (or
s wtile D s the diffusion conductance, 1 oshould be noted that, wheréas
71 Abways remding posliive, & can take either positive or ieeative vilucs
on. the ‘dircctionr of the Ouid 1Jow. With the new syiphols, the
Worguation Seconiy

Lopiodi

Opip =T +Tpfp (510
o
F
ag :DE—._I.E ; {(5.11a)
.?Hf=ﬂw+% ' {3.01h})
gp =D, # ‘:i Lot R %
= ﬂ.E ‘:_ Ty t+ {f'e — Fatow (5.L1c)

Discussion. (1) Since by continuity F.=F,, we do pet the property
Ip = @g T dyy. Further, it is intercsting 1o noic from Eq. (3.1 1c)} that the
dlprelizalion equation has this property ondy 6 the Dow Neld satisfies
continuity, just as Eq. (3.3} tan be denved from Eg. (5.2) only if the
cuglinuilty equation is satisfied. (2) The discretiztion equation {3.10) repre-
senits the jmplications of the piecewise-ncar perufile Tor ¢, Tlas luep s alwo
known a5 the cemrral-difference scheme and is the natwral outcome of a
Tevlor-series formulation, (33 It &5 instroctive 1o cungider a simple example in

whiigh
b,.=0,=1 and F.o=F,=4,

Further, i the values of ¢z and ¢y are given, we can obtain $p from Eq.
(5100, Consider two sets of values:

{7 ITgp = 200 and ¢y = 100, the result js ¢p = 50!
th) 1 gy = 100 and gy = 200, the tésult is gp = 250

CEINVIECIT IO AN (LTS 53

Since e, in reality, cannot fall outside the sange of 10D-200 established by
its neighbors, these results sre clearly unrcalistic. (4) Indeed, we could have
anficipated dbese uanrealistic results, becawse Fgs. (5.01) indicate that the
cocilicicnts could, w Hmes, become negative. When 1A exceeds 20, then,
depending on whether & is positive ur negative, there is a possiblity of g OF
dw becoming megative. This will be a violatiun of one of the basic Tules, with
a possible disastrous outcome. (5) Also, the negative cocfficients would imply
that @p, which equals'Eagy, is less than Llaypl, which fails to satisfhy the
Scarborough criterion. Then, a polot-hy-point solution of the discretization
equations may diverge, This is why all the cacly attempts to sblve convective
problems by the central-dilference scheme were limited to low Reynolds
numbers (ie., to low values of FfD) (8) For the vase of zero diffusion (that
ks, =0}, the scheme leads to ap = 0. Then, Eq. (5.10) becomes unsuitsble
for solution by a point-by-point method, and by most other ierative methods,

Since the [forepoing preliminay formulation has resulted in an wie
acceptable discretization equation, we must seck better formulations. Some
such pessibilities are described in the (ollowing subssctions.

3.2-2 The Upwind Scheme

A well-known reinedy for the difficulties encountered s the upwind scheme,
which Iz alse known as the upwind-difference scheme, the upstream-difference
scheme, the donorcell method, ety was first put forward by Courant,
Isaaczon, and Rees (1952) and substmsXtly refuvented by Gentry, Martin,
and Daly (1966), Barakat and Clark (1966), and Runchal and Wolfshtein
[ 1969),

The upwind scheme recognizes that the wesk point in the preliminary
formulation is the wssumiplion that the convected property ¢, al the interface
B the average ol ¢x and ¢p, and it proposes 3 better prescription. The
formulation of the diffusion term js left unchanged, but the convection term
i calculated from the following assumption:

The valiec of ¢ at an interface i eiual ta the value of @ at the grid peint
on the wpwing side of the face,

Thus,

de = i F.>0, (5.124)

and ve=¢s i F<o. (5.128)

The value of ¢, can he defined similarky.
The conditional statements (5.12) can be more compactly written if we
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define a new operator® We shall define 4, B] to denote the preater of 4
and B. Then, the upwind scheme implies

Fode = dpllF 0 — o 1-F.. 0] . {5.13)

When [Cy. (5.7) is meplaced by this concept, the discrotization equation
becomes

aptp = dpdp T apidy | (5.14}

where
ag =D, + [=F..00 . (5.15a)
=0, + [F,. 0] . (5.158)

Ir

dp ﬂ! + EFE- D]] + -Dw T [I_-Fl.;u BH

ag Fap t(F—F.) £5.15c)

Discussion. (1) 1t is evident from Eqgs, (5.135) that no negative cocfficients
would grise. Thus, the solutions will always be physically realistic, and the
Scarboroush eritérion will be satisficd. (2) What is, bowever, the rationale for
the main &qdcﬂying the vpwind scheme? More fnsight will be obtained in
the mext subscction, bul, in the meantime, 2 lucid physical pictore of the
upwind scheme would offer some satisfaction. The seheme 5 sometimes said
ta be based on the “ank-and-tube™ mode! (Gosman, Pun, Runchal, Spalding,
and Wolfshiein, 1969). As shown in Fie. 5.2, the control volumes can be
tiought o be stirred tanks that are connected in series by short tubes. The
flow through the tubes represents convection, while the conduction through
the tank walls represents diffusion. Since the tanks are stirred, fach contains a
uniform temperature fluid. Then, it is appropriate to suppose that the Muid
flowing in cach comnecting tube has the temperature that prevails Tn the tank

*This new operator A, B[R iv cguivalonl Lo AMAMLCA, B) in ale compuler
lanpuage FORTRAN,

Frgure 5.2 Tank-apd-tube model,

CONVECTION AND DIFFUSION g5

on the upstream side, Nomnally, the fluid in ihe tube would not know
anything about the tank toward which it s heading, but would carry the Full
legacy of the tank from which it has come. This is the essence of the upwind
sgheme,

5.2-1 The Exact Solution

Forinnitely, the governing equation (5.4) can be solved exactly if 1" is taken
tn b constant [ore is already constant, as given by Eq. (5.5)]. If 2 domain
0= x = Lois used, with the howndary conditions

AMox=0 a=ad,. (5.162)

P R &=y, {3.16H)
the solution of Eq. {(5.4) i3

s _ cxp (Fxil) =1

= 5
& iy P =T {3:17)

where £ i5 4 Peclet nrumber defined by
F lmrr‘j' _ {S.]ﬁ]’

It can be seen that £ s the ratio of the strengrhs of convection and diffusion,

The nature of the exact solution (5.17) can be understood from Fig, 5.3
where the ¢~~x variation has been plotted for different valwes of the Peclet
number. In the limit of zero Peclet number, we get the pore-diffusion {or
conduction} problem, and the ¢ ~x variation is lincar. When the (low is in
the positive x dircction (ie., for positive values of P), the values of @ in the
domain scem to be more influenced by the upstream value ¢g. For a large
positive value of P, the value of § remains very clote to the upstream value ¢y
over much of the domain, The picture is reversed for negative values of £
When the fluid flows in the negative x direction, ¢; becomes the upsiresm
valae, which doeminzies the values of ¢ in the domain. For a large negative P,
the value of ¢ over most of the region is very nearly equal to ¢y .

friplicalions, For constructing the discredzation cquation, we can now
obtain guidance from Fig. 5.3 regarding the appropriste @ ~ ¢ profile between
grid points. (1) It is easy to see why our preliminary derivation failed to give
a satisfactory formulation. The ¢~z profile is far from being linear except
fur small valves of [P (2) When [Plis large, the value of ¢ at x = L/2 fthe
interfzce) bs nearly equal to the value of @ at the upwind boundary. This is
precisely the assumption made in the upwind scheme; but there it is used Tor

it A Vi e S widai
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Frgure 5.3 Fazot solutivn for the
one-dicneasionst covectioas-difiu-
siom grubilem,

novmeees i 00, ned justodor lerge valoes, (3) When |F] s lerge, oy is neardy
il of x =LA This, the diffusion @8 gmost abzent. The opwind schewe
coweys enlouiates the diffusion term from a linear o~ profile and thus
cezrestimates diffusion at larpe valucs of |2,

i the discretization equation were to be obtained dizectly from the éxact
zotution shown in Fip. 5.3, the resulting scheme wegsgl not have any of these
drefects. Lot us proceed to derive such a schome, T2 we shall name the
waneaiial scheme. It is based on ihe formulation ficst presenled by Spalding
f1372) and s one of the schemes proposed and cmployed by Raithby and
Tomanee (1974).

% 2.4 The Exponential Scheme
i: 3% usefal to gonsider 2 total flux J ihat is made up of the convection Hux
gz und the diffusion fJux ~T difax, Thus,
dg
J= -r—.
aug e (5.19)
With this deliniticn, Eg. (5.4) becomes

ek U (5.20)

wiich, when Integrated over the conteol volume shown in Fig. 5.1, gives

ey e A B e = e

e A §

CONVICTIORN AN ULFEUS 0N a7
Jo=J,=0. (5.21)

Now e exact selution (5.07) can be used a5 a profile between points £ and
E, with ¢p and ¢ replacing dg and ¢y, and the distance {(8x). replaeing L.
The substitution of tlis profile into Eq. (5.19) would give the expression for
Ja

- L
Jo=F, (¢.,, bt r) ; (5.22

where

) (Gx).  F,
Iy = w—i’:’j—} = ﬂ—: . (5.23)
and F, and D, are as defined™ by Bq, (5.9). It should be noted that Jo docs
not depend on the locatien of the inferface between points P and F. OF
calrse, an exact solution that obeys Eq. {5.20) must exhibit this behavior,
Finally, substitution of Ey, (5.22) and a similar expression for £, into Eq.
(5.20) leads to

gp — By LT e e = i
Fa (ﬁf e exp il — 1) Fu (ﬁ“' # Py ") =0, (524

which can be cast into our standard form

gpdp = apdy tapdw (3.23)
where
dp = -'—-'F!—_ y (3.26a)
exp (Fe/D,) — |
oSOl
dp=ag tay +(F, - F,}. {5.26¢)

"Here e is to be obtained in the sume manner a5 k; was derived in Ex, (4.9}, This
may scem like a neat way in which the exact solution for constant T is boldly modified
o ageept a nonuniform 1% Although there would be no ohjection to such a practice, the
prescription fur kg pives by Eq, (4.9) {which wi derived for the cunduction iltuation)
happerts o bBe the exact formubs Tor g even in the convection-diffusion case (see
Problem 5.5},

B T o T T e ey e R 1 o i e
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These coeflicient expressions define the exponential schenve, When used
for the steady onc-dimensional problem, this scheme is guaranteed to produce
the exact solution for any value of the Peclet number and For any number of
grid points, Despite its highly desirable behavior, it is not widely used becanse
(1) exponentials are expensive to compute, and (2) since the scheme is not
exact for two- or three-dimensional sitations, nomen sourges, ebe,, the extra
expense of computing the exponentials does not seem (0 be justified.

What we really need is an casy-to-compute scheme that has the qualitative
behavior of the exponential scheme. Two such schemes will now be pressnted;
the second of these is recommended (o7 use.

5.2-5 The Hybrid Scheme

The hybrid scheme was developed by Spalding (1972): it also appesss in the
book by Patankar and Spaiding (19700 under the nzme “high-lateral-itux
modification.™

To appreciate the connection between thie exponontial scheme and the
hybrid scheme, we shall plot the coefficient gg, or rather its dimensionless
form ap{D,., a5 a function of the Peclet number .. From Eq, (5.26) we

deduce that

i P¢

Be ST o

the grid point £ is the downsrregm meighbor, anid its influenc seen 1o
decrease as P, increases. When F, ig nepative, £ is the upstream oSBbor and
fizs a Jarge inMeence. Cerezin specifie properties of the exact varation of
a2 /D, (shown by the salid line in Fig, 54) can be seen to be:

The vanation of gz /0, with P. is shown in Fiz, 5.4. For positive va!!s of e,

1. For Py —+em

D, =8 {5.284)
2. For Py = —eo,
98 +—p,; {5.285)
e
3. AL P, =1, the tangent Is
BE £y
SRS = 528
o, 2 f‘ )

e e e b B g Pt = 11 7% i e e i b et e el = e
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Figure 5.4 Variatlon of 1he coefTicient g with Peclet number,

The fhree strajght lines representing these limiting cases are also shown in Fig.
5.4, They can be seen to form an envelope of, and fepresent a reasonable
approximation to. the exact curve, The Bybrid scheme is indecd made ug of
these three straight lines, so that

For £, < =2,
dp o
% E =—=F., ] [5.72%0

Far =2 = F. = 2,

E =] .—&
D, 5 (5.298)
For £ 2= 2,
L
oo {5.28¢0)

These gxpressivng can be combined into a compact form by the use of the
special symbol | || which stands for the largest of the quantities contained
within it. Thus,

P [[ﬂﬂ., 1— % : n] : (5.300)

ar dg = [_Fm g % 1 {ﬂ i (5.308)
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The gignificauce of the hybnd schieme can be understoud by observing
that (1} it s identical with ihe centrab-difference schems for the Pecler-
cumber range —25 P, %2, ad (2) outside this range it redoces o the
upwind scheme in which the diffusion has been set equal to veru. Thus, the
shortcomings of the upwind scheme listed at the end of Scction 3.2-3 are not
chared by the hybrid scheme. The name hybrid is pudicative of 2 combination
of she central-difference and wpwind schemes, but it is best to consider the
hwbrid scheme as the three-line approximation to the exact eurve, as shown in
Fie. 5.4,

The convechon-diffusion discretization equation for the hybrd scheme
can now be written as

apgp = dpfe T (5.31)
where
Fe
dg = _Fz~ -Dr o i"t ] {5-3'23’]
5 fress
dy = u}'w, Dw % T [:E|] {5.325}
gp = ap tay H{F—Fy) . (532¢)

[i should be rememberéd that this Toconolation s valid (oo @ny arbiiracy
racation of the imierfaces between the grid points and iz mor limited to
widway interfaces.

5.2-6 The Power-Law Schemc

1t can be seen from Fig. 5.4 that the departure of the hyleid scheme from the
exact carve is rather large at Fp = +2; glso, il seems father premature to set
the diffusion effects equal to zero as soon as |FPp| execeds 20 A Bofer
pprodimation o the exact gurve is given by the powerdaw schome, which is
dzseribed in Patanksr {197%a). Although somewhat more complicated than the
bwbrd scheme, the poweplaw expressions are not peiticulacly expensive to
compute; and they provide an extremely good represeatation of the
sxponential behavior.
The powerlaw cxpressions fur ag can be writlen 2

Far Fa =10,

2E 2ol (5.33a)

COMWECTION AND ETFFULSH g1

For—10 = P, < 0,

ﬂ‘-'.*i =(l +01P) — P, {5.330)
For 0= P, = 1,
JE = () —0r)E, (5.33c)
D,
For 4 = [
G
2 g, (5.334)

o,

Comparing these expressions with Egs. (5.29), we observe that, for [P, > 10,
the power-law scheme becomes identical with the hybrid scheme, A compact
Fore for Tgs, (5.33) can be written as

og = D ”} (‘ = g_glF_l) ]] +fo.-%] . (5.34)

The closeness of the powerdlaw scheme to the exact cxponential scheme
can be judged [rom Table 5.1; the difference between the two schemes is too

Table 5.1 Comparison of coefficient values
given by power-daw and exponential schemes

Valuos of apfB,
P Power-law schems Expanential scheme
-2 200 ';J
-1 100G ELi]
—3 5.031 5.034
-4 4,073 4.075
= ER X157
-3 230 2313
=k 1.5%0 1,542
-5 1.274 1.271
i} H i
0.5 07733 0,7707
1 05905 05820
1 03277 3130
3 L1681 1572
4 007774 0.07463
5 N.03125 003392
1 i 000045
H 1] 4.0 % 107

B e

om
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small for a useful graphical comparison, As mentioned before, e power-law
scheme is the recommended convectlion-diffusion fermulation in this ook,
although the hybrid scheme shoubd serve just as well in many sititations,

£.2-7 A Generalized Formuulation

Ta obtain further insight into the convection-tiffusion formulafiog and to
construct & generdl framework into which the various schemes m‘:md 5it
far can be fitted, we shall now explora some general proper of the
coefficients involved. Let us consider the grid points § and 7+ 1 separated by
a distanee &, a5 shown in Fig. 3.5 We are inferested in representing fhe notal
flux J crossing an interface between these grid points. By use of Bq. (5.19),
W wrile

Vg g
b (5.35)

where P iz the Peclet number, gud /T, The value of & at the interface will be
some weighied averaze of ¢ and &4, while the gradient ddd{xi8) will he
same moeltiple of &y, = ¢p Thus, we propose

I* =Flogy + {1 —e)y ] — Bldoy B, (5.36)

where o and 8 are dimensionless multipliers that depend an P In this mannér,
J® can be expressed a5

I =8¢ ~ 44, . (3.3

whare 4 and 8 are dimensionless coefficients {hat arc functions of the Peclet
number £ (The coefflicicnt 4 s assuciated with the grid-point £+ 1, wdhch s
Ahead of the interface, while s conncered will the gnd point 7, which js
Belind the interface, as seen Trom the chosen coordinate dineciion,)

O

+

!
I
]
T
!
I
o —

x

Figure 5.5 Total flux S between two gid puints,

S b o b g Em b4t g b, bt L T s = g e
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Figure 5.6 Variatiom of A4 and £ with Pecler number,

Properiics of A ond B. Two propecties of the coelficionts 4 and & are
particularly useful in studying their dependence on the Peclet number. Firet,
we nobe that I ¢y and ¢4, are cqual, the diffusion Mux must be Zero, and J
would then simply be the convection flux prd;. Thus, under these conditions,
we have B

I =Pl = Poryy

& (5.38)

B=A4+F (5.39)

Combination of Eqs, (5.37) and (5.38) leads™ to

The second property of A and 8 is 2 kind of ssmmetoy between fhem. [F we
teverse the coordinate axis, then P will appear a5 —P, and A and £ will

mterchange their roles. Thus, the functions A(#) and B(F) must be releted by
A{—F} = B(P) (5.40a)
ar B(—F = A(P) . (5.404)

finplications af the properties. The exact variation of 4 and B with the
Peclet nuember P, which can be deduced from Eq. (5.22), is shown in Fig. 5.6,
where the sforcmentioned propertics can be ghserved. The vertical distanca
between the 4 and B curves can be seen to be equal tea P also, the (wo curves
exhibit symmetry zhout the P=0 location. The main implication of the two

L3
CAlernatively, from  Egs. (5.26) and (5.37), we chrain B=Pe<i and
A 7 Pa o §— Pyhese expressions lead to the selationship stated in Eq, {5.39).
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~ruperaes is that the complete AUF) and GO Tunetions v be specified onee
the Tunetivn AP for only positive values of P is kaown (e, the vurve shuwn
a5 3 thick lie in Fig. 5.6). This folluws since, for P,

Aify = BIFy—F [cwert £ 5.39)
= o i b foonn (5. 300]
=AU —r. (540

Thus, for gl values of P, positive andd oegatile, we cin winte
APy = AP+ P07, (542
and ther, hy use of Eq. (5.39), we gt
Bify = A(IFD + &, 00 - 1543)

les, wo shall record here, for future bse, the [oilewing Lwa rebafivons whlained
b combiriap Fas: {5.27) and {539

% B = Al — i) {5.04)
IV = Poiey = Bl —Wival - (545}
Twe oow apply the Mux relationship (3.37) 1o the fnterfaces ¢ and w

srd use Egs (5.42) and (3.43), we oblain the folluwing peneral convectjua-
aiffzinm fanulation:

eptp = apde+ o {5.40)
wers
g = DAL + [—Fe, O, {547a)
ay = D AUPW) + 1w 0] . {5:475)
gp=ap tay ¥ [F = Fa) . {547¢)

The yarious schemes derived so far can now be thought of as merely
sifferent clicices of the function A{PY). Txpressions fos AfF) for the
ihemes considered so far ase listed in Table 5.2 and shown graphacally in Fig.
5.7. The desee of satisfactoriness of each fupction can be judped by
comparison with the exact function.

i e T £ T ) e e e i i B

R R sy e T

CONVECT N AMNLE T § L G 2

Table 5.2 The Gnction A{£1) for differeat

schemes

b e Formala For A11F)
Central diffescice | — ISPt
Uprwionl 1

|ykrid [0, 1 -051FLg
Toer law [l — 0000

1P fexp Gl — 11

Fapmbential (essct)

5.2-8 Consequences of thifanous Schemes

Hafore leaving the ane-dimensional problem, we shall examine the values of dp
predicied by the variows schemes for given values of gz and gy Lot us sct,
witlout loss of senerality, the values ¢g =1 and $p = 0. Further, let the
Gictances (Ax). and (hx}. be equal; thew dp will be a function of F
f= ptbx/T). The values of ¢p given by the different schemes for various values
of P are shown in Fig. 5.8. {The results of the powerdaw scheme and the
exact solution are too close to be plotted as separate curves.) All schemes
cxcept the central-difference scheme give what may be termed a physically
realistic solution® the centraldifference scheme, on the other hand, produces
soante values that lie outside the O-1 range cstablished by the boundary values.

Since it i¢ the grd Peclet number that decides the behavior of the
numerical schemes, it gsin principle, possible to refine the pad (Le., to use
smaller 6x) until £ is 5 pough (<< 2) for the central-differcnce scheme to
yield reasonable solutions, In most practical problems, however, this strategy

1.0
L . Liprwand
a =
= s Exponential {exacth
I % Povr lave
- Hybirid
] '] 1 ] Il §
d 2 4 B ]
Central difference L

Figure 5.7 The function AP} for vagous schemes.
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T UG A ST - L ST R T R TRl ARE, T R s 3, e
1.2¢ A I E -
Al Central ditference Y il |
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- falso power law)

Exact

op B4R lalso power lowl 7
2 7
Dok .

H""brl'd \Central difference
—azf : 5 1
Il e A e O B T AU SR YN P T il SR ey (Y P |
-10 —5 o 5 10

Figure 5.8 Prediction of gp by the varous schemes for a range of Peclet niembers,

requires excessively fine grids, which are usually not feasible on cconaomic
grounds; I any case, we could not accept such a cemstraint while seeking
rrocedures that would give physically realistic solutions even fur coarse grids.

S

5.3 DISCRETIZATION EQUATION
FOR TWO DIMENSIONS

wow we have ali the ingredients needed for wriling 1he discretization equation
corresponding to the pgeneral differentizl egquation (5.2), At first, we shall
cerive only the two-dimensional form, but the same procedure would apply to
three dimensions.

Let us consider the control volume tshown in Fig. 5.9, [T we employ our
ong-dimensional practice of obtaining the total fAux J,, and assume that it
pravails over the control-volume face of area Ay X 1, we shall be jn a position
to write the complete discretization equation at once. This s glven in Section
5.3-2, to which the redder with no need Tor the finer details of the derivation
maw safely jump.

5.3-1 Details of the Dervation

One subtle detail of the derivation will now be given some attention. Even in
the one-dimensional situation we have scen that gp turned out to be ap +ap
anly when the continuity cquation was satisfied. Thus, our basic rule abuut
the sum of the neighbor coefficients {Rule 4} can be satisfied oply when we

A e e r———
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involve the continuity equation in the Jerivation, This practice is fllusteated in
the fullowing.
The two-dimensional form of Eq. {5.2) can be written as

3 &t . At
il Y + 2 —
AL S e (5.48)

where S, and 4y e the total {convection plus diffusion) Muxes defined by

iy

Sy S pugp—1T = (5.497)
™ 2
Tt Iy =pup—T £ . (5.495)

where u and o denote the velocity components i the x and v directions. The
integration of Fq. (5.48) over the control volume shown o Fig. 5.9 would
Eivie

(ppdp — ppgh) Av Ay N
ar i e

Ty =S = (Se + Spgp) Ax Ay, (5.50)

where the saurce torm bas been lincarized in the usual manner and, for the
unstcady [erm, pp and ¢p arc assumed to peevail over the whole control
volume. The “old™ values (ie., the valpcs at the beginning of the time step)

. Lo |

| |
1 g |

Figure 5,9 Contred volume for the two-dimensional sifuatio,
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o ¥ i 7 i R T
w7 arpoted Bv gpogEnd g In conformity with the Fully jmeplicil pracice, all

ey v dlad haee witholtt 3 superserip) ane to be reganded ax Qe “new™
s T quaneitizs Lo, Lo Joand Jdyome the dvreprrted ol Nuses ova
ted sndpelvelume faces; that s, fo stamds Top [0 o) over the mnbcifoce 2,
gzl g0 fam,
[ & similar manner, we can inlegrte the condinuity equation (5.1 ower
tive gentrol volume and obtain

a
b — Az A : . 5 }
“r_%_-_;. R UE S SO AP (3.51)

whete F., Fo, Fu, and 7o are the mass fow rates through the faces of the
contiol volmne. 1Ty &t point e is aken o peevail over the whole intetface ¢,

SR wTie

Fo = (ou), &y, (5.52a)
Srmiluzly,

e 2= Lot )y Aoty (5,258

EFy = (pu)y A, (5.52¢)

Fi= {va& {5.52d)

I we pow maltiply Eg. {5.31) by dp and substract it from Lq. (5.50), we
[T

: a, Ap Ar & : 3
(p = 08) FEm = 4 Ve = Fesbp) = Ui = Fude) + U —Futs)

— s — Feoph = (Se + Spaw) &5 &5 {5.53)

This mmipulation of Ens, (5.51) and (530} to obtain Eq. (533) i the
clizaticn znalogue of the combination of Egs. (5.01) and (5.2) to derive
- 535 An allerpative would have been 1o start the derivation of the
i reetizelivn equation from Ego {5.3); but thiz alternative 35 npot s cop-

WL T,

The sssumplion of uniformity over 3 conirolvolsme fzce enables us to
canaioy our ene-dimensional praceices Tor the two-dimensional situztion. At
iz point, we recall that Eqs. (5.44) and (5.45) provided a way of expressing
izrms such as Fu — Fedp and £ — Foadp We use this here in the following
AL

e S it R el s i Lt 1 i i s T 2

CUNYELTTOMN ANL DIVFUSION o9
do = Fattp = uplgp — i) (5.544)
di = Fute = Tpldy —¢pl , [5.545)

wheso :
ag = DAL + [ F., 0f (5.55q)
aw = LW A(PD) + [F,. O] . (5.558)

Here 0, and D, like their counterparts £, and ., contain the area ay of
the faces ¢ and w fsee Eqs, {5.58) in Section 5.3-2]. With similar SXpressions
for Jy —Fgp and J,— Fpp, we are in a position to write the final form of
the discretization ecquation, Beciuse of the nature of the expressiens in Egs.
(5.54), the rule aboul the sum of the neighbor coefficients is readily satisfied,

When the piven velocity and density fields do satisly the continuity
discretization equation, Uie furcgoing derivation aud a derivation based on Ey.
(5.50) alone will yield identical discretization equations. However, when the
given Now feld does nor satisly the contintity cquation, the two formulations
give different equations and lead to differeni solutions, We prefer the
formmlation that satisfies our basic rule, for the reasons Eiven in Chapter 3.

Tow could we encounter flow fields that do not satisly continuity? The
possilulity ariscs becawse often the fow field is not really given but is
iterutively calenlated, just as the temperature-dependent conductivity s up-
fi;m:d in 3 conduction problem. Before the final convergence s attajned, ihe
mpc_rfef:t flow field at intermediate stages of iteration may not satisly the
contiiuty equation, It is for this reasen that we have taken spevial care to
satisfy Rule 4,

3.3-2 The Final Discretization Equation

The two-dimensional discretization equation can now be written ag

dpdp =apip T apdw +aydy tagpr + b, f5.56)
where
ag = B A(IP)) + [-F.. 0] , (5.574)
ay = DAL + [F,, 0] , {5.575)
ay = Dy A(iPal) + [-F,. 0F , (5.57¢)

ag = DeA{IF) + [F, 0, (5.574)
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o _ Pp Ax Ay
dp = - 5 -2
s A {5.57¢)
b=5p Av Ay + apdp (5.57/)
dp=ag tay tay tag+ a?— — 8p Av Ap . {5.57¢)

Here f,b“p amd pg tefer 1o the known valwes at thme !, while all other values
(dp, de. Sy, dy, Gg, and $0 on} are the unknowa values at time ¢ + As. The
flow rates F., F, I, and £, have Deen defined i Egz, (5.52), The
corresponding conductances are dufined by

b, = ), (5.58a)
w = % . (5.588)
= {;_.,?: ; (5.58¢)
= [;E;.: v {5.58d)
and the Peclet numbers by
P o= DE: P,.= ;—: = 1% B g: « (5.59)

The function A(FD) can be selected from Table 5.2 for the desired scheme.
The power-law scheme is recommended, for wilch

AP = §0, {1 — 0.01P)°]) [5.60)

It can be appreciated that even at this stage the physical significance. of
the various coefficients in Fg. (5.56) is casy to understand, The neighbor
coefficients ag, ap, ay, and gy ropresent the convection and diffusion
influence st the four faces of the control volume, in terms of the flow rate
and the conductance D, The term apgp is the known ¢ content of the centrol
volume (2t time () divided by the time step. The romaining terms can he

sipmilarly Interpreted.

e i R, e
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5.4 DISCRETIZATION EQUATION
FOR THREE DIMENSIONS

At last, we have arrived at our destination. We set out to write a discretization
equation based on the general differentisl equation (5.2). Now, here it is in
three dimensions (with T and B representing the “lop™ and “bottom”
neighbors in the 7 direction):

dpfp Zappe T apdy Faydy Fagdp +apdr + agdg + b, (5.61)

whiere
g = DAL + [-F. 0], {5.624)
aw = D,4(P,0) + [F,, 00, (5.625)
ay = D A(IP) + [=F,, 0] . (5.625)
us = D AP + [F,, 08, (5.62d)
a7 = DA(P) + [—F,, 0 . (5.62¢)
ag = W’al} + fFe, 01, (5.620)
oo .-Jg Ax Ay Az ’
Bpr == 7 ’ (5-"523}
b= 8p Ar Ay Az + dpap , (5.62k)

qp=ﬂ5+qw+.ﬂ'ﬂ +E3+JT+EE+£I:."SPM$}'.&Z. {5.621’]
The flow rates and conductances are defined g

z[‘,&yﬁz

F. = {pu), Ay Az D,
e = (pu). Ay (), i

(5.634)

o P Ay Az
Fy = {pu),, Ay Az Dy =2 —— 5.63
6x)w 30380
. Pyeaie
Gy, '

Fo=(pv); 4z Ax Iy = F‘{;%I- . {5.63d)
3

Fu = fou), &2 Ax o, {5-6\35'}
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I = {ow)y Ly ay £ = I‘{;_L; el ' [5.63¢)
Lo 7

Fy = (awhy Av Ap Dy = Fn_;_*;f' 2 (5.63f)
{2

ihe Pecler numsber £ is to ke takes a5 the ratin of & 5nd 2 s, Fo= 800,
and su co, Toe funcrion A(LM) is fsted in Table 5.7 Tor various schemes. The
aswerdaw Fosnulation i

AP = §0, 00 — D.LPYE] - (5.64)

3.3 A ONE-WAY SPACE COORDINATE

In Chapter 2 we poted that coordinates can be elassified a3 one-way and
swo-way, and that the identification of a oneway coordinate offers some
crmipbtationz] sdvantages. Time §5 2 onc-way coordinate, and we have wsed i
ciosuchin Tomnulating @ miarching procedure i time. The convection-diffiesivn

fermvulation reveals that a space cvordinate can alsy become oneway.

5.5-1 What Makes a Space Coordinate One-Way

We nave seen from Fig, 54 or 5.6 that the coefficient of o duwnsiress
neighbor becomes small when the Peclet awmber js Jzrse, When the Peclot
aumber excedds [0, the poweardaw scheme will set the downstream-peighbor
coeflicicnt equal 10 zeto. (The hybrd scheme does this for o Pecler oumber
greater thap 2.} Suppose that, in the two-dimensional situation shown in Fie.
2.180; there is a2 high flow rate in the positive x ditection. Then, lor all e
grid points F glong a y-direction ling, the cocfficients oz will e zero, In other
words, gp will be dependent on g, $p, @n #g, bt not on g Thus, the x
coordinate will become a one-way coordinate since the ¢ value at any point
will be uninfleenced By any of the downstream walues. A marching solution
preicedere wiould then be possible in the x direction,

LEven when a space coordinate is nat ane-way over the whole caleulation
sz, is e aneway behiavior s often vselul in foroulating the boundary
cangiticmy, This Is discussed naxt,

5.2-1 Thez Quiflow Boundary Condition

ioyd the weatment of the boundary conditions in some detail in
Crapier 4. 0t hag been racitly assumed that the same treatment applies to the
~eection-diffusion prablem. However, at an “outflow™ boundary, ie., where
ez viuid Jegves the caleulation domain, one normally knows neither the value

b o i A o el g T e e 1
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Inflaw bowndany W & e
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Figure [0 Situation with a one-way spave coordinate.

af ¢ noe dts Mox, At the outlaw boundary shown in Fig. 5.11, for example,
one may not know the lemperature or the hear fTux, How can we then solve
the problem? The answer is surprisingly  simple: No boundary-condition
infermation is needed a4t an outflow boundary. Consider the prid shown in the
inset of Fig. $.11. For all grid points P next to the outilow boundary, the
caoefficient ag will be zero il the Peclet number is sufficiently large. Thus, the
coetflelents multiplying the Boundary values will &l be zero, and hepee na
boundery values will he needed. In oflier words, the region near the outflow
boundary exhibits, for large Peclet numbers, local one-way behavior; since the

Fi

[
7 Dutflenw boundary

-r+
—‘—F—
1+
B e

Figure 5.11 Example of e aeiflow boundary.
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boundury points are downsiream of (e caleulstion domain, they do m
influence the solution.

It is true that the above argument iz based on die Peclet number bejg
sufficiently large. But, in the absence of any other howndary-comdition
information, we can always assume the diffusion coeflicient T at an putlow
bouvndary to be smal and thus work with a large Teclet number. An
assumption such as this, which is a slight distortion of realicy, Iz what we
must resort to if we are to get meaninglul solutions in the absence of any
further information ahoul the owflow boundary, The resulling inaveuracy, if
there i any @ #ll, 15 the price we pay for the freedom 1o solate the
calculation domain from the oniverse that lies downstream of the outllow
boundary.

IT the neglect of the diffusion at an outfow boundary appears, for some
redson, to be scrious, then we should codclude that Wie anzlvst has placed
the ottflow boundary at ap inappropriste location. A repositioning of the
boundary would pormally make the outflow rreatment dceeprable. A partle-
wlarly bad choice of an oulflow-boundany location s the one (o wiach there 15 an
“inflow™ over 4 part of i1, An exzmple of this is shown in Fig. 5,12, For such o
bad cholee of the boundary, no meaningful solution can be obtained.

This may be a convenient place 1o review the boundzry-condidion
practices for convectlon-diffusion problems. Whenever there is no uid flow
across the boundary of the caleulation domain, the boundary Mux is purely a
diffusion Nox, and the practices described in Chapter 4 apply. For those parts
of the boundary where the Muid flows ffe the domain, wsoally the valoes of
@ are known (The problem is not properly specified if we do not know the
value of ¢ that 2 fluid stream brings with 1t.) The parts of the boundary
where the fluid fegver the caleulation domain form the octflow bodrtdary,
which whe hava already discussed.

Bad Good

Figure 5.12 Good and bad choices of the location of the eutflow Maundary. '
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5.6 FALSE DIFFUSION

M this section, we shal] discuss 2 topic  thal  has coused comsiderabie
contreversy,  confasion, and misunderstanding among  the practitioners of
manerical analysis. There §s something called *False diffusion,” which is quite
carthmonly  misinterpreted, but which, In jts proper meaning, represents g
magor weak poinl of most cunvection-diffusion formudations,

5.6-1 The Commaon Yiew of Falke Diffusion

L is very conunos to cncolnter, in the lierature, statements such as (1) thie
central-lifference schiome Ias secund-vpder accuracy, while the ppwind scheme
Is only fistorder accusate; or (2) the upwind scheme causes severe {alge
dilfusion. The fmplication is that the centeal-difference scheme i Bedter than
the upwind scheme,

[t 5 true thal Mrom a Tuylorseries expansion one can show that the
ventraldifference scheame has 3 Luacation érror of the order af [Ax), while
the upwind schewme has un error of the order of {Ax). Heowever, s:‘n:::e the
@ Variation arsing it the copvaetion-ditfasion problem i% exponential, a
truncited Taylor sermes ceases 1o e 4 good representation af it far anything
but exteomely small valges of Ax (e, rather, af the cerresponding Peclet
number). At larger values of Ax, wiich @ all one ean afford in most practical
problems, the Toylorserics analyveiy is misleading; there, a3 we have seen. it is
tht ppwind scheme that aives mere renseable resully than the L:E;||r:3|.
difference sclicme,

IT" we compare ihe coefficients for the cepdral-ditlercnce and wpwind
sch:fr::-:*s {Eqe. (5.11) anid (35.15)], it can be shown that the iepwind scheme fs
equivalent o replacing I in the central-dilTerence scheme With I"+ ppdzf2. In
atfier words, the upwind scheme secms ta avgment the true diffusion
coefficiont 1" by a fictitions (and hence false) diffusion coefficient pubxf2
This intraduetion of an aetifcial diffusion coeffcisnt 4 then considered to he
inaccurale, a wrong ropreseniation of reatity, and hence bad. Asain, the
trouble in the wrgument lies In assuming the central-difference scherr:\: as
sccurate pnd standard {or the undedying Taylorscries exparsion as reliable)
and then viewing the upwind schemne from this frame of relerence, [n this
mansier, one wonld discover some fafse diffusion even in the ¢xponentizl
scheme, which s the exact solution el On the other hand, the theory
presepted i this chupler leads to the conclusion that the so-called false
diffusion cosficient padx2 is indeed 3 desirable oddition ar large Paclet
numbers, Fur it aciuzlly tends to eormect the wreng jmplications that wouold
otherwise follow from the centralsdifMerence schema.

There & no dowbt that, for very small Peelet numbers, the central-
dilference wheme it mure accurate thap the upwind scheme, This has alrcady
been shown in 3 sumber of diagrams; ond owr favored schemes such as the
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weperelitial, the hybmd, and the powerlaw scheme indecd conform o the
coilmeldniorencs scheme cat very Jow DPeelet numbidérs. Do may  case, the
auestiun. of taise diffusion iz never seriows &t Jow Peclel numbers, because
then the reel dilfusion §s guite large Ty companson. 1t 35 [or farge Peclet
mlers. 1hel the matier of false diffuston steains fmportance. There  the
al-dierence scheme Rag little to offer, gmd a0 e uther schemics 1hat we
fove pepeiceted show almost identieal helievioe. 1L is Too Ahis reasen tluak owr
ponaring dsoisslon will concenlrate onovery lorge Peclet nunbers dod an
s unwind sencmg; however, the conclusions will be equally applicable 1o the
wooneating, Ao, and power-law scheomes.

5.6-2 The Proper View of False Diffusion

sving secn that the common view of false diifusion 15 indeed inisleading, we
aow jirn 1 what can be truly described as fatse diffusion, The first thing o
reconize i3 that false diffusion is & mulridinensiona! phenomenon) it has
shezluzely: no counteroart in steady one-dimepsionz] siteations, {Lhsieedy
onodimensional sitnations do suffer from a kind of false diffusion; we shall,
Pewever, confine ur atteption o steady situations.)

Ta viseatize what 18 comeetly meant by false diffusion, let us consider the
steztion shown in Fizo 5,03, Two parallel steeams of eqoal velocity but
umcauddl erperalures come o ocomtact. T the difrusion coelficient T is
nonzero, a mixing layer will form In which the remperature gradusily chianges
.r-:.ﬂ the higher viue to the lower one, and the cross-stecam width of this
rowill prow in the downstream direction, 1f, op the otheér hand, the
diffysion coefficient [ were zero, no mixing Jayer would Jorm and the
temperature discontinuisy would persist in the streamwise dircction. The best
situation [or observing false diffusion is the one in which the real diffusion iy
set ta 2era, [T the mumercal solotiop for the =0 case produces 3 smearcd
terigeratuce profile (which is charsctecistic of a nongero T), we can concluds
that the numérical scheme cniails false diffusicn.
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Fipure .04 Situation with 1tow alonpg e x direction,

For T'=0, the central-ditference schivme would lead 10 #p = 0. Therefare,
the wsnal terative methods for solving the alpebeaic equariuns cannot be used.
If an attempt is made to solve the cquations by a divect method, thea either 3
unigue solution is paot Tound or the setutions turn out to be highly onrealisic,

fegHicarions of the upwind scheme We shall vow try to solve the
problem shiown in Fig, 5138 by the upwind scheine for two orientations of
:].@,

1. Uniform flow in the x direcrion. Let s consider the situation shown
in Fig. 5.04. The flow is aligned in the x direction, and the ieft-hand
boundary has known teniperatureg with a sharp discontinuity. Since T is zero
and thete is po Now 0 the w ction, the coefficients oy and ag will be
zera, The coefitcicnt ag ol the wastream neighbor will altn be zero, Thus,
dp must be equal to gy, and this leads 1o

bp = by - (5.65)

As a result, the piven opstream value on each horizontal line will bocome
established at all points on that line. The temperature discontinuity in the
upstreann profle will thea be preserved. No [alse diffusion is, therefaore,
encountered here,

2. Uniform flow =t 457 1o the grid lines The situation changes sreatly
when the same prablem is sulved on o grid in which the grid lines are inciined
at 457 ta the fow direclion. Let us, for convenience, use a uniform grid with
Ax = Ap. The Aow velocities in the x and ¥ directions are equal, The result is
that the coelficients of the upstream neighbors, oy and g, become equal,
while those of the downsiream neighbors, ax and ay, tum out lo be zero.
Thiss, #¢ have

S, il o
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¢p =05 gy + 0.5 ¢ . [5.06)

For the grid shown in Fig. 515, the temperature discontinaily is represented
by sectting the left-boundary ttrnpcrntures' cagunl o 10, aned the Darom-
boundary temperatures equal o ero. The resulting solution at the interior
points is written adjacent to cach prid point. 11 there were mo false diffusion,
we would have obtained a value of 100 above the dizgonal thiough ke ower
left comer, and a value of zero below the dizgonal, Do the ather hand, the
actual solution obtained docs represent o sineaped temperature profile, much
like the one in Fig. 5.134.

Remarks. (1) The false diffusion occurs when the flow is obligue 1o 1he
grid lines and when there is a nonzero gradient of the dependent variable in
the direction pormal to the fow, (2) An approximate expression for the (alse
diffusion ceefficient for a two-dimensionz] situation has been piven By de
Vahl Davis and Mallinson (1972); 0t 15

Crge = _ii{ﬂxiﬂ}_‘i}_ ] (56T)
A A sin? 0+ A cos? 8)
where U is the resultant velovity, and @ is the angle (beétween O and 90°)
made by the velocity vector with the x direction. It s easy to see frum this
equation that no false diffusion is present when the cosultwnt Mow 5 along
ore of the sets of prid lings; on the other hand, the lalse difTusion is most
serious when the flow direction makes an angle of 457 with the grid lines, {31
The amount of false diffosion can be reduced by using smaller Ax and Ay
and, whenever possible, by orienting the grid such that the grid lines more or
iess align with the flow divection. (4) Since real diffusion is present in many
problems, it is thep sufficiznt to make the fulse difTusion small in comparisan
with the real diffusion, (3} The use of the centraldiffcrence scheme i no
remedy for false diffuston, As mentioned earlier, the central-difference scheme
gives hWighly unreafistic solutions when large Peclet numbers are involved. (&)
The basic cause of false diffusion is the practice of treating the Mol aciods
cach control-v¥olume face as locally one-dimensional, For the situa @8 shown
in the'inset of Fig. 5.05, the value of ¢ convected by the obliqhe fow (o ihe
grid point P actuzlly comes from the corner grd point SW. However, this
convection i represented as ihe effecl of two separate streams coming Trom
the geid points Woand 5, (7) Schemes that would give less false diffusion
should take aceount of the multidimensional nature of the Mow, Tt would also

="T'L may appear that the temperaiores along the lell gmd bottom bowndares of 1hc
orid in Fig. '5.15 are not really Enown Trom the problem specifumima of Fige 5138
Howeser, oace the exact solution fur-a problem is known, any domain over which fhe
eaact olotion 45 valid can be choasn, and The boundary walees can be prescribed from the
exact solution. This method of constrocting tesi problesns thay hive Enown exact
solufinns fies been used by Runchal {(197Z).
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Figure 5,15 Situgricn with Tow 31 457 to e grid fines,

he: mecessary to Invalve moré npeighbors in e discretization equation,
Although 3 few such schemes have been worked out [for example, Rajthby
(19760}] and have shown an impressive reduction §n false diffusicn, they arc
significantly more complicated and 5o far insulfiviently tested. For these
reasong, we shall not discuss them here, (8) A more detsiled discussion of
fulse diffision has been given by Raithby (19764},

57 CLOSURE

I this chapter, we have completed the construction of the general discretiza-
lion cquativa for the dependent variable ¢, The convection term was the only
addition that we made here, but it led to 1 number of interesting considera-
tinos, Our formulation ensures physically realistic beheviar and thus holds the
key to successful computation in the presence of fluid Now. The fow field
itself, of course, must also be caleulated in most cases. 1t s 10 this matter that
W lurm our attention in the sext chapier,

PROBLEMS

51 Ing steady twoudimensional situation, the varlabte & it guwerned Sy

div fow) = iy (F grad ) + 0 — b,

ety g
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,e=0
V 3
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#= 103
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Figure 3,16 Loundary condilions lur
» Troblens 5.1,

e g=1, '=1, a=10;, and 5 =2 The flaw fell is such that =1 wad =4
wiere. Tor the upiform grid shown o Fige 5,16, ar= av = 1. The values of & src
:rnfar the Towr Soumlarics. Adopting the controlvolume design sceurding e Practice
Beclion S.6-1, caloulate the values of &, , @y, &y, and &, b3 wse of;

i3 Tae cent=ldifference scheme

tav The upwing schéme

v The hykrid wchense

(i3 Tha power-law schems

5.2 Dalain tke exaet solution of the eyuation

d dip
% T (m —= ‘E_') =5,
waers pu, [, and & are all constant; the boundary conditions are &= @, of X =0, and
worgp oat x =L Use the exponential schenwe (o obtain @ nomerical splution of the
problem for veriows values of pwL/T and (3L2/U)Moz —oq ) Do you et perfect
cgootment with The exact solution? Why?
F3 A narallel-flow heat exchanger is governad by

aTh LA : dT, 14
mpth S 1T — ¥l and Meta d_; i ik T,

wher¢ m, ¢, and T siand for the mass flow rate, the specifie heat, and the teinperature,
respectivelys the subscripts 7 and ¢ denote ke hot and cold fTupds, respectively; £ is Lhe
overall heat traksfer cosflicient betwesn the two fuids; 4 s the totab heat transfee arca;
and L is the lenpth of the hest exchangsr. The inlet temperatures Tg g and T, ae
gven. Obtzin z numerical solution for the dimcnsionbess temperatures (Ty, — T plfaT
aml {To— T jpfaT as functions of »/L for the condilions mpcy =me. 2nd Lt/
gty =1. The temperature difference AT cquals Ty in— Tp i Dompare the sumeric
reealts with the exact sojution. {Although tie two coupled eguations tan Lo handled
sterulively by sequential solution for Ty and T, a direct sipuftancous sofution is oflen
adventageous fory such 2 case, This can be achicved by use of the alporithm for two
codpted vorjakles, wihich was outlined in Problem 4,17

wsldes the onedimensional distribution of a variable & governcd by convection aad
1. The Oow fBeld f created By the flow io a porcus-walled duct; s Jdénotes the

r-iistelion masy low rats slong the duct st any locstion x, snd rrp s the rate of mass
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leakage through be porous wallz pee unit fengtle of the duct, Dhviously, r.frnx..'rdx w—ntp.
The variable & is governml by

u’{m ] A dIzw—l_] ’
P R e

where A s the duct eross sevtivn, When mip is positive (Le., fuid s Jeuking owl), &y, s to
Lz akem s @ within the doct; w tr 15 metalive {Le., Nuid s lcaking into 1he duce),
i, d5 toe bre raken us @y, which is valise of g in (he winlient wyitside the duct. Fof a
ducd lengthe of I, tlse botnedary v are g =gy ab 2 — 0 el g=ghy At x =1 Assume
g and 12 do De eonstan b Uee thie coptrub-differcice amd powes-bivwe schemes to find (e
damuensionbess disiritrulion of @ for e following fwo cescs:

e} Atx =0, s/t = datx =1 my =0

) Alxr=8,m, = 0;atx = m 14 =40,

5.5 Write Eg. (5.4) by replacing v with o, where 5 ¢ delined as

Hence show fhiar, juest as Lg. £5.07) i the solwtion of Eq. (5.4) fur the case of uniform
F,ahe suladion for wonunilesm T given by
L -

eap fawn) - 1
Gy - exp oz} o1

where ny, @5 the value of g st &=L Note that gung Is the Peciet number, [T the
derivation on these lings s continued, we get Fr. £5.22), where Ps must ba Jefined as
Fe = lgulel55),. Assuming that a grid-point valvc of [ prevails throughout the conteol
volums  surrounding jt, we can express (brjle B lerms of the T and the distance
incronzznds {adwwn in Fip. 4.1), lence, we have

(Belee  (8m)ey
Eammte Tl B W e — T e I

P = pu)
L = p e
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SIX

CALCULATION OF THE FLOW FIELD

6.1 NEED FOR A SPECIAL PROCEDURE

6.1-1 The Main Difficulty

In Chapier 5, we formulated the procedure for solving the general differential
equation for ¢ in the presence of a mven Mow feld, However, excopt in some
very special circumstances, it is not possible to speeify the fow field; rather,
we must calculate the local velocity components and the density field from
the appropriate poverning equations. The velocity compeonents are governed by
the momentum equations, which are particular cases of the general differential
equation for @ (with ¢=u, T=p, and so on). Thus, we are tempted to
conclude that we already have develaped the method for solving the momen-
tum equations, therehy getting the velocity field. Where, then, iz the
difTiguliy?

Il the nonlincarity of the momentum equations appears to be a difficulty,
we only have to remind ourselves that, while treating heat conduction, we saw
how to handle nonbinearity by iterstion. In particular, the convection co-
elficient pu being a function of the dependent variable u of the momentum
equation is no different from the conductivity k being 2 function of the
temperature T, Btarling with a puessed velocity field, we could iteratively
solve the momentum cquations te arrive at the converged solution for the
velocily components.

The real difficulty in the caleulation of the welocity field lies in the
unknown pressure fiehl. The pressure pradient forms a part of the source term

113
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for & mpmentow cquation. Yel, (lere i no obvicus equation for dbianiog
artgghipe, Forooooreen pressuee field, (0 s (oo, there s 0 pacticalar Ty
in solving the mumeniwm eqoations. Bul, the way 1 delesnine the pressure
Geld seems mather obseure:

The pressure field is indivectly specified via the conlionity cuution. Whei
e gorrecd pressure feld s substiluled into the momenlum oqualions, the
testliing veloclty field savisfies the conlinuity equatimt. This indirect speciliva-
ifom, however, is not very useful for our purposss enless we alicurpt a ol
salullon of the whole sed of the discretizitdon equations resuling from Lie
mumentim and conlimuily  eguatioms. Simee we love preferred  Blerative
meihods of solving Qe discretization equations even [or 4 single depemndont
sariable the dizect salodon for the entire sof of veloclly colnponenls and
= sesegre seemns aub of the gquesifon,”

5 -2 Yorticloy-based Methods

T ditliculty associzted with the défenmination of poesstre has fod to
Srhods tman sliminat pressore from the govesning equdlions. Thes, i fwa
Coatensions, the eliminadon of pressure from the Led mremenlain sgustivng by
s Sliiezenlizbzn laads too@ varticlty-transporl equatian. [ This decvition is
iilined In Problem &.1,) This, when combined with the definision of =
srramy function for steady two-dimensional zitoations, (s the basis of lic
wisldmown “stream-Tunction/vorticity methed™ deseribed by, among athers,
uix [1963), Fromm and Hadow (1963), Pearson (1965), Barakat and Clark
[1%86), and Runchsl and Wollsheein (1969) and made easily sccessible
srauph the book by Gosman, Pun, Runchal, Spalding, and Wuolfshtein {19697
The stream-lunetion/vertigily method has seme sitractive fealures. The
pressure makes no appeanmce, ond, instead of dealing with the conimwty
gauation and two momentum equations, we need to solve only two cquations
to obimin the stream funeton apd the vorticity, Some of (he Boondary
conditfgns can bhe rether casily specified: When ap extornal frrotational Mow
Hes adfasent to the caloulation demain, the bowndary vorticily can cun-
veniently be get equal 1o zero, Thers are, however, sonie major disadvantages
o ihe siream-function/vorticity methad, The value of vorticity at & wall is
cifficult to specify and is often the cause of trouble in geiing a converged
sclution. The pressure, which has been so cleverly eliminated, frequently
bzppens 1o be an important desired result or even an intérmediale outcoine
segulred for (he caleulation of density and other fluid properbies. Then, the

*sume methods, expecially thuss dealing with compressitie Mows, regard the dens v
o a5 the gepeadent varisble of the contlpaily eqeation and then extracl the peessuee
lrom il via z1 sgoation of state. This approach is, however, inapplicable 1o cunsiant:
denzity op igmampressible Tows [n such sjtuaflons, i Iy the effogd of presiese an velocity,
and nal an dendly, that s of primary importance,

AT LA TN G L b Lok L L L5

effort of extracing jressre from Wrlicity offsets 1he conyndationsl suvings
vlitained urherwse, But, above all, tie major shoplesming of the method s
{hat it canmol cagsily be extended 1o (hree-dimensions? sitoations, For wlich 4
streaen Munwteaan aoes not exdst. Singe most practical proldems arg three-
dimensipgnal, o method (hat i intrinsieally restricted (o two dimensions suflers
from i sericus Jmitadion.

P fhree dispensicns, an approach based on vorlicity uses six dependeni
varinbles, namely, the three components of the vorticity vector and the three
componenls OF the velocity-potential vector [sce Axiz and Hellwms {1967}, for
exanple] . Thus, the cnnplexity is actually preater than that of treating the
Wiree velocily conponents and pressure directly, Also, the vorticity vector and
the velocity-potential veclor imvolve concepis that are harder to visualize and
interprel (han the meanings of the velocity components and pressure. [n
keeping with aur desire to formulate physically meaningful and illuminating
spproaches, we seek a method that uses the so<called primitive variables,
narnely the velocity components and pressure.,

Thus tee miajn task in this chapter is to convert the Indirect informmation
ol the comiinuity equation into a direct algorithm (or the caloulation of
pressure. A few miner difficulties arise, which we shall discuss before we bogin
this dask.

6.2 SOME RELATED DIFFICULTIES

&

IT we begin 40 construct the discretization form of the x-direction momentum
equation fer the one-dimensional situation shown in Fig. 6.1, the omdy mew
feature is the represenitation of the lerm —dp/dy wiegraled over the control
volunie. The resuliing contribution to the discretization cquation s the
pressure drop g, — 7., Which &5 the net pressure force exerted on the control
volume of onil crosssectional arca. To express g, —p, in terms of the
Erid-point pressures, we may assume a plecewise-linear profile for pressure.
Further, if’ the controlvolume faccs 2 and w are chosen to lj¢ midway®
between the respective prid points, we have

6.2-1 Represeniation of the Pressure-Gradient Ternm

+ I J e
P pe=EX LR PPVl _ PW P (6.1)

2 2 2

A N

This assumpiion & made here only Tor dlgebraic coavedicnce, Wlen the control
vilume faces ape o madway, the difficulijes being discussed here do not £0 away, but
appeat bn a tess clear form. Thus, e assumiption of fdway faccs 15 nod a2 caose af the
diffienltics, bt makes the discossion casy (o follow,
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_-_.l'.__._h Contral walwme
Figuee 6.1 Theee-grid-point cluster. ‘

This means that the momentum equation will contain the pressiere difTerence
between iwo alfernate grid points, and not between adjgcent omes. The
implication is that the pressure js, in effect, taken lrom a coarser prid than he
one actually employed, This would tend to diminish the accuracy of the
solution. But, there is another implication that is far more serious. It can be
best seen from Fig. 6.2, where a pressure field is proposcd in terms of the
grid-point valves of pressure, Such a zipzap field cannot be regarded as
reatistic; but, for any erid point P, the correspanding iy — e can be seen to
be ¢ero, since the alternate pressure values are cverywhere equal, Thus, the
devastating consequence is that such o wavy pressure field will be fefr like 1
wniform pressure ficld by the momentum equation,

The difficulty cam be seen more dramatically in a two-dimensional
situation. Just as the x-direction momentum is influenced by pyw —pg, the
vdirection momentum s zffected by pe — ppe; then the pressure pp has no
role to play, With this in mind, we can conclude that ghe pressure feld shown
in Fig. 6.3, which iz made up of four arbitrary values 2 sure arranged in g

s 100 SO0 100 BOo@ 100 S0C . :
— S - L o Flgure /.2 Zigzes pressure Fighl,

100 300 109G 300 100 300

109 |3p0  |100 |30G | 100 1300

10 |zo0 |10 (3o |10e 200
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'."? Figure 6.3 Checkethoard pressure
o ftelel.
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CALCULATION OF THE FLOW FIELD Iy
checkerboard  pattern, would produce no pressure foree in the x or ¥
direction. Thus, a highly nonuniform pressure field would be treated az g
uniform pressure field by the particular discrelized form of the mamentim
equations. Should such pressure felds srise during the iterative solution
procedure, there would be nothing to stop them from being preserved 1
convergence, since the momentum equations would be oblivious to their
presence,

It should be noted that the sotual numbers used in Figs. 6.2 and 6.3 do
not have any particular sipnificance; they simply indicate a rattern thal can be
constructed from any arbitrary numbers. It is essy to imagine that the
(bree-dimensional situmtion would allow an even muore complex pattern, which
the momentum equations would still interpret as a uniform pressure field,

If a certain smooth pressure field is obtained zs o solution, any number of
additional selutions can bhe constrocted by adding a2 checkerboard pressure
field to that solution. The mumentum cquations would remain unaffected by
this addition, since the checkerboard fReld implics zero pressure force, A
numerical method that allows such absurd solutions is certalnly undesirable.

6.2-2 Representation of the Continuity Equation

A slmilar Knd of difficulty arises whesn we try to construct the discretization
furm_ of the continuity equation. For the steady one-dimensional constants
density situation, the continuity equation is simply

dr

== (6.2)

If we integrale this over the contral volume shown in Fig. 6.1, we have
TR TR 1 I 5.3}

Once again, the use of 2 piecewise-linear profile for w and of the mridway
tications of the control-volume faces leads to

u_p+u£ _Hw+u_;-r
e Sl (6.4)

ot Mg mup =0, (6.5)

Thus, the discretized continuity eguation demands the equality of velacitias at
afterste grid points and not at adfacenil ones, 4 comsequence is that velocity
fields of the type shown in Fig. 6.4, which are not at all realistic, do satjsfy
the discretized continuity equation (6.5). In two- and three-dimensional
situations, similar palterns for all the velocity companents can he greated:

]
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Figure 6.4 Wavy velocity (Teld.

ey owill satisfy the continuity equation but can hardly he accepied a8
:zasonable or meaningful soluiions.

These difficultics toust be resolved before a numerical method involving
e velocity components and pressure ¢an be formulated. In the literatice,
some methods can be found that pay ne special attention to these difficullies.
There, the possible unrealisiic solutions arc avoided by some special treat-
mient at ihe houndaries, by overspecification of the buundary conditions, by
underrelatation with respect 1o a smoesth initial geess, of by good fertuge,
Hut most such methods would aceept pressure and velocily fields of the fype
shiown in Fipe B.2-6.4 as satisfactory selutjons, and, in absence of special
tricks, there is always the danger of arriving at such sohetions.

Before we proceed to describe a way out of these difficultics, n s
imtorestine 1o notc that the troublesome hurdles in numerical analysis seem 10
to associzted with the first deslvatives. The second derivative is always well
walaved and ereates oo difficultics, On the oiher hand, al the coniplications
snzozniered in Chapter 5 can be altributed to the first derivative representing
fis canvection teem: and here, the first derlvatives of pressure (in the
momentum equations) and of velocity {in the continuity cqu:ltusc
covsidorable nunmnce, 1-,:5;:_

2.3 A REMEDY: THE STAGGERED GRID

Tre difficultics deseribad so far can be rescived by recognizing that we do oot
tave to celeulate 2] the variables for the szme grid points, We can, il we wish,
cmzioy 2 different grid for each dependent vacdable. OF cousse, we would not
cwirsize this freedem if there were no hepefit (o be desived. But, in the cise
of the wvelocity components, there is a significant benefit lo be phitained by
srranging them on grids that arc différent from the grid wsed for all ather
varigbles. The benefit is that the difficulties deseribed in Section 6.2 will
totally disappear,

Such a Cisplaced or “staggered” grid for the velocity companents was first
ws2d by Hifow and Welch (1965) in their MAC method and hias been used in
sther methods developed by Harlow and co-workers. It forms the basis of the
3IVA procedure of Caretto, Cum, and Spalding (1972) and the SIMPLE
srocedure of Patankar and Spalding (19723).

In the staggersd grid, the velocity componenis are calculated for the
soines that lie on the faces of the control volumes. Thus, the x-direction
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¥ Fignre 6.5 Staggered locatians
x loru.

vehocity w0 is caleulated at the faces lat are normal to the & direction. The
lpcations for o are shown in Fig. 6.5 by short arrows, while the grid points
(hereafter called the mgier grid points) are showa by small cireles; the dashed
lines indicate the control-valume faces. [t will be noticed that, with respect 10
the maln 2rid points, the u locations are staggered only in the x direction. In
wther words, the tocation for w lies on the x-direction link joining two
adjacent main grid points, Whether the u location i exactly midway between
the grid points depends upon how the control volumes arc defined. The u
location must lie on the control-volume face, irrespective of whether the latier
luppens to be midway between the grid points.

It is easy to see how (he locations for the velocity components v oand w
are to he defined, In Fig. 6.6, a two-dimensional grid pattern s shown, with

Figure 6.6 Staggered locations for
teand ==, T = u; 0= other
variahles.

e el
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the locations for o and v placed on e tespective controlvolume faces, A
corresponding three-dimensional pattern can be imagined in a straightforwnsn
MREner.

An immediale consequence of the stapgered gid i that the mass Maw
rates across the controbvolume faces (the F's encovntered i Chapter 5) con
be czleulated withoul any fnlerpolation for (he relevanl velocity compunent,
Hewever, this feature, although it offers some convenience in setting up the
general discretization equation for ¢, is not an important advantage of the
stagpered grid,

The important advantages are pwoltld, For a sypical control volume
(zhown shaded n Fig. 6.6} it iz casv Lo see that the discretized continaity
egualion would contain the differences of adfpcent velocity components, and
that this would prevent a wavy velocity ficld, such as the one in Fig. 6.4,
from satisfying the conlinuily equation. In the stapgered prid, only “reason-
able™ welocity fields would have the possibility of being acceptable to the
continuily equation. The second important advantage of the staggered prid is
that the pressure difference between two adfocent grid points now becomes
the natiiral driving faree for the velocity component focated hetween (hese
grid points. Consequentlv, pressure fields such as those in Figs. 6.2 and 63
would po longer be felt as uniform pressure fields and conld not arise s
possible solutians.

The difficulties described in Section 6.2 can thus be attchuted 19 (he
practice of caleulating all vardables for the same gdid polots: with (Be
stagpered grid, these difficulties are entirely eliminated.

This freedom from difficulties has [ts vwn price, A compuier yrogram
based on the staggersd grid must carry all the Indexing and peometric
information about the locations of the velocity components and must perform
certaln rather tiresome interpolations. Put the benefits of the siaggered grid
are well worth the additienal trouble,

6.4 THE MOMENTUM EQUATIONS

We goain remind the reader that, il the pressure field is given, the solution of
the momentem equations can be obtained by emploving the formulation
completed In Chapter 5 for the pgeneral wvariable ¢ In the momentum
equation, ¢ stands for the relevant velocity companent, and 1" and § are to be
given thelr spproprizie meanings. The adoption of the staggered prid does
mhake the discretized moméntom eqbzlions semewhat different from the
discretization equations for the other @' that are calculated lor the main grid
points. But this difference is one of detail and not of essence. Tt arises from
the use of staggered costrol volumes foe the momentn eglaljons.

A stapgered control volume for the x-momentuom equation s shown in
Fig. 6,7, 17 we focus attention on the locations for & only, there is nothing
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Figure 5.7 Control yolume for i,

ungsuel about this contrl wlume, [ts faces lie between the point ¢ ond the
corresponding Jocations for the neighbor o' The contral voltme is, however,
staggered in refation Lo the normal control volume around the mein grid point
F. The staggering is in the x direction only, such that the faces normal to
that direction pass through the main grd points #and £, This layout realizes
ome of the main advantages of the staggered grid; The difference Pp—Dg can
be wsed to caleulate the pressure force acting oa fhe eol velume Tor the
velocity u, %

The calculation of the diffosion coefficlent 2nd the mats Alow rate at the
faces of the o control volume shown in Fig, 6.7 would require an appropeiate
interpolation; but essentially the same formulation as described in Chapter 3
wauld be applicable. The resulting discretization equation can be written as

falty = D dgpttny + 8+ e —peld, . (5.6)

Hese the number of neighbor terms will depend on the dimensionality of the
prabiem, For the two-dimensional sitvation in Fig. 6.7, four & neighbors are
shown autside (he control volume; for & three-dimensional case, six neighbor
ws would be dncluded. The neizhhor ceelficients @y, aceousnt for (he
combined convection-diffusion Tafluence ut the control-volumie faces. The teinm
b is defined in the same mannec o5 in Tg. (5.57) or (5.62), but the presaie
grudient is not included fn the source-ferm quantities Sp and Sp. The pEEL-
sre gradient pives rise to the last term in Bgq. (6.5). Since tho pressure
field is glsv to be ultimately calculated, it would be inconvenient to bury the
pressures in the momentum soutce term, The term (pp =pe)d, B tha
pressure foree acting on the # control volume, A, being the aréa on which the
pressure difference scis. For two dimenslons, A, will be Ay X 1, while in the
three-dimensionsl case 4, will stand Tor Ay Az,

et v
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(S
x Fimere 6.8 Control volume for v

The momentum equations for the other directions zee handled in s similar
manner. Figure 6.8 shows the control volume for the p-dlrection muemenium
equation; it 15 staggered in the ¥ direction. The discretization cquation fur u,
cun be seen 10 be

dpty = Z Tak Vit e+ U’I‘ — F.*.'}-“n . {f"-'r.:l

i (pp—mEyddy 5 the appropriate pressure [wree. For the  three-
dimenstona] cuse, = osimdsr eguation for the velocity component w cap be
dorliea.
Tha momentum equations cen be solved only when the pressure feld is
sivon or iz somehow cstimated. Unless 1he correct pressure field is eonployed,
heogescliing veiocity Jeld will not sutisfy the contiowity eguation. Such an
..,neue;. velacity field based on a gwessed pressurc ficld p% will be denated
e ou® 0%, Wt This “starred™ velocity field will result from the selution of

e fallowing disceetization equations;

delte = I apyiiy + b+ (pp — PRI, (6.8)
nbn = E Gaubas + b + (PF — pN)dn . (6.9)
gy = Zagpvng + 81 (0p — 874, (610}

In thess eguations, the velocity components and pressure have been piven the

A i o L P BB e sy
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superscript *® The looation £, 0 can be poted, fics on the 2-lirection grid fine
belween the god poinis P and T,

6.5 TIE PRESSURE AND VELOCITY CORRECTIONS

Qur wim 15 to find a way of improving the guessed pressure p® such thar the
eesulting starred welocity field will progressively get closer o satisfving the
continuity equaticon, lel s propose that the ot pressure s obtuned
lrun

p=pt4p (G.11)
where p' will be called the pressure correction. Next, we need to know how

the wlueiny components respond to this change in pressure. The cor-
- ' i ¢ ¢ . - '
tespunding velocity carrcolions u', o', w' can be sniroduced in a similar manner:

w=un" 4+ p=u"+u W= " {(6.12)
Il we salract Eq. (6.8} from Eq. (6.6), we have
'”f“:’ =Z anbu;b + ‘P}‘ = F;E;'Ac . (6.13)

AL this point, we shall boldly decide to drop the term Za,uu'y from the
equation. An extensive discussion of this action will be presented in Section
6.%-2. For the time being, it is best 10 pay no aitention to this mave oe Lo
regand it simply-as a computational convenience. The result is

detly = (pp— prid, (6.14)
or He = do{pp — pg), (6.15)
whore ’
A
==t
2 (6.16)

Equation (6.15) will be called the velociiy-correction formula, which can lso
be wiifien as

e = uf + dy(ph— pr). (6.17)

This shows how the stareed velocity uF is to be mrrectcd in responsc to the
pressure correctjions to pmducc o
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The correction formulas Tor the velocity, components in other directions
can be wnlten similarly:

CALCULATION OF THY FLOW FIELD 125
shall assume that the densily pp prevails over the contral volume. Also, a
velocily component such a3 w, located on a control-volume face will be

supposed to govern the mass Nlow rate for the whole face. In conformity with
the fully implicit practice, the mew values of velocity and density (ie., those
3 ' . at time ¢ + A} will be assumed lo prevail over the time step, the ofd density
wr = wi +d,(gp — pip - {6.19) | pp (ie., the one at time r) will appear only through the term 3p/31,

With these decisions, the inttegrated Form of Eq. (6.20) becomes

Un =g +dylpp —py) , (6.18)

Thus, we now have all the preparation needed for obtaining a discretization
equation for p'. It is to this task thal we now turn. fop —op) Ax Ay Az

ity

* Howde = (o), Ay Az

6.6 THE PRESSURE-CORRECTION EQUATION T+ [(ew)n — fov)e] Az Ax + [(pw), — foudp] Ax Ay = 0. (6.21)
IF we now substitute for all the velocily components the expressions gven by
the velocity-correction formulas [such as Eqgs. (6.17)(6.19)], we obtain, after
rearrangement, the following discretization equatlon Tor B

We shall now tuen the continuity egquation imo an eguation for the pressure
correction. For the purpose of this derivation, we shall assume that ibe
density p does not directly depend on pressure. Later, the implications of this
gssumption will be discussed. The derivation is given here for the ihree.
dimenstonzl situation; the ome- and two-dimensionsl forms can casily be

Spip =apBp +awpiy +taypl + agoy +appy + appPg +b. (6.22)

ohtgined, |
The continuity equation is where E
A = Ped, Ay Az | P '.

3 a;pu; o H;puj % a(;];w} = (6.20) i (6.23a) |

& = & | aw = Prudy & Az, (6.235) |

We shall integrate this over the ghaded control volume shown in Fig. 6.9, i T - ‘
{Only a two-dimensional view iz shown for convenience.) The same control ! g o ! (6.23c) iy
volume, it will be remembered, was wsed for deriving the diseretization ', o= ot Ae Ak
eguation for the general variable ¢, For the integration of the term dpfor, we ; A : (6.234) i
; &y = p,d, Ar Ay | (6.23¢) :

' 2 = ppdy Ax Ay,

,i (5.230) E_

: Zp=ag Yoy tay tagtaptay, (6.235) |

(0 — pp) Ax A Az i = i

o o0k A fp e ), [(pu")e — (pu™)] AV Az A

+ [fau”)y — (pu")n] Az Ax + [(pw®), — (ow™),] Ax Ay (6.23%)

Since the values of the density p will normally be availahle only at the main
zrid points, the interfice densitics such as £y may be caleulated by any

j‘. converient interpolation. Whatever the method of interpolation, the value of

Figure 5.9 Control wlume Tor the _ Pet Mist be consistently used for the two control volumes to which the
contingity equation, interface helongs (see basic Pule 1 in Chapter 3, i
3
£
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e begeen from Bq. (6.234) that tha term & i e peessuiescopreotiog
poessentially (the pegutive of) the Jeft-band side of e dmcredsed
suthpiion (6.21) 2valuated it terms of the stareed velocihvs. 1 4 &
aeTd, At rsins ozl the siarred velecitios, in conjunction with Wie svailable
velue of (op—pp), do satisfy the conlinvity equation, tnd T prossuee
cesteetion s neadad. The term & Hius represents 2 “muss source.” which e
sressire corrcetions (theough wheir associated velocity corrections) must
arnihdlate,
L naw we have Formadated all the eguations needed fuc obtsining the
ity compocents and pressure, W are noa peseion to take anooveratl Lok
Lz entire selution algosithim.

(4 18 A R e

siEtlraile

5.7 THE SIMPLE ALGORITHM

Tht procediss ihat we are developing for the calewatian ol the flow (el fs
tier given Uic name SIMPLE, which stands for Senu-Foplicit Sfoihud Tor
Fresgure-Linked Egualions, Wo shall diseuss the signiticance of ihe name a
itile laler, The procedure bas been deserived in Patenkar and Spibding (1472,
Csreteo, Goyman, Putankar, and Spalling (1972), and Parnkar (2973)

.71 Sequence of Operations
The important operations, in the order of their cxecution, yre:

1. Goess the pressure field p7.

- Bulve the momeniun cgdaiions, such as Bys. (0.8)-(6.00) o shrain u®,
o @

|

3 Salve e p' EGUaiinm.

& Crlealate pofrom Sg; (611) by adding p' 1w p®,

3 Cileclute o v w from thelr starred values osing lhe veluaiy-curreation
lew (6, TI-(6 190

“ib dseroilezfion equation for other o% {such as tesnperalure,

vmzentrerion, and torbulenee quandiiesy if they inflieence the Mow feld

poiegin i peoperlies, source terms etes (1T 4 pariloular & daes ol

e fow Jeld, @ ois betler to caleulane {1 after o coaroeried

taz [low fleld bas been ohrained)

secied piossare pas 2 new guessed pressure 57, colurn (0 slep

b2 whels procedure undil 2 converged solutian is whizined.

4.7-2 Discussion of the Pressure-Correction Equation

vl be reedled that in Section 6.5 we decided 1o drop the erm Z Gppdiny
=noeur way toothe velocitycomection formula {(6.17), It 45 now tme to

e S i, e e Ty i e AR 4 b
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explin e wstivieron Joc s and o ol thi wlingee lirg is entailed
[y lars o) Jog,

LW pxpressions such a5 @upipy Wore retiined, Ly worald have (o be
exprossed in o tesmis of thie pressure cosrcctions and (he velowily vorrestmns a1
the neighbars ol tg,. These neighbars would, i turp, bring their ncighbors,
ind so o Uimately, the velocityscorrection Tormuli wirlth) invalve the
pressure comection al all pdd points i the aleulating domain, and the
tesulting pressdre-carrection equation would hecome Unimaniigeahle, We woudd,
in eflect, be wring toward the direct solution of (e whole iy of numentum
apd  continully  equaiions—a rowle dhar we deetded 1 jo follow. The
omistion of jhe X anhu;,,h term enables uUs o cast tho p' fapliatkon In {he same
loom s the peneral @ equation, and lo allupt @ sequentia), vnevgriahle-n-a-
tiaue, solutin procedare,

2. The words servirmplicB9n (e name SIMPLE live been used 1o
m:kru:wlmlgc the omissmon of the ferm Ednhu:gh-' This wrm repiesents. an
J'rudi';cc! ur implleit influence of the pressure carrection on veluciiy: pressure
correclions ul mearby locations can alter the teiphibuarmg '-'wh-cflic; and |hug
casg u velocity corroction . ar e paint umder censiderating, we do @iy
include 1hes inuence and Uins work with a scheme that s oply parilv, and
i totally, implicit, I ey

4 The omission of any term would, of course, he unacceplable if it
mexant that the ulttimate solution weald oo be the Irue solulion of |he
disceatteed furms of the momentum and continiily equalivms. 1 sa happens
that the cunvergad solutiog g by SIMPLT does mog cunialn- any. erpof
cesilting from the omission ok wbtley. In the conveigeld solution, we
acquire @ pressiee ficld such that the corresponding sinrred velurcity f1eld :ines
satisly the contipumny equation. The detajls of |he censtrliclion of the p'
c.quutiurt thea bécome derclevant [o the correctncss of (he vimivergzed solu-
L1, A
: 4.0t is wseful to focus aitention ou the vperalions duripg the “fingl™
neratiom alter whicli we are aoing Lo declare convergence. We have, as g result
of all the previous iterations, come 1o POssEss @ cerfain pressurg ;‘H:Id Lsi
this a5 5%, we sofve the momenlim equations to pet «¥ 0" * Fr{; SLH-E
velocity ficld. we caleulate the mass source b lor the j’!r(.‘.{isLlri;~Cl‘.lrr:1Cl[me
equation. Since (his is Eoing to be the final ileration, the value of & wil] mg
uu.t 1o be practically wero for all the control valumes, Then, 2" =y ar]l:ori,,j
points will e an accertable solulivn of Eq. (6.22). and Iht.: Starred -.r.gj,xﬁ-

and pressure will themselves be the rerreet velocities and prossure, Thys ;-lfs
fact 1hat the mass source b is kero everywhere i sufficien) cvjdcn‘-':e 1ha}. =
have acquired the correct pressure ficld, and the aclual soluijon of :hcmi
::qua!mn.:is tut netded dudng the final ileration. Obviotsly, the copve ,:JE[
w!uu_un i then uninflucnced by any approximations made in deriving :J-llf '
BQUAlion—yn equation that we really did not use i the finad iteration 5
3. The mass suurce b this serves as 3 useful indicator of the uu:l';vcrgen(:t
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of the Mufd-New solution, The iterstions shuuld be continucd uneil the vale
of b everywhere becomes sufficiently smalk.

6. With this understanding, the prossurecortectivn equation i be sl
to be merely an intermediate alpodthm that Teads ug 1o e curreed pressue
field, bor that has oo ditect effect op 1he Anal selation. As long as we gel
converged solution, all Formulations of the o' cqnation will glve the same Mino!
solution.

7. The rare of convergence of the proceduie will, however, depend on the
particular funmwlation of the P equalion. I o many teems are mnitiel,
divergence may resull.

B, The pressurecorrection equation derived |h Section 6.6 i< also prone
to divergence unless some underrelaxation i5 wsed. Many different wnder-
relaxation practices gan be devised, A menerafly suecessful practice ¢on he
deseribed as follows: We undeprelax w0, o7, w™ (with respeet 1o the previves
iteration velues of &, b w) while selving the momentum equarins [with a
relaxation facior o, introduced in Eg, (4.35). set equal 1o about 053] further,
wa add only a fraction of p" 10 p* o other words, Bistead of using Eq.

{611}, we employ
. '
p=ptta,p, (6.24)

dih &g gel oqual ta about 0.8. The task uf Eg. {6.22% i 1o calcalate g which

will be wused a5 p" in the next iterstlon, we can, in the ineerest of
coovergetce, take any liberties in adjusting ¥, (The values of the refaxation
factors that gre meationed here, namely =05 and a, = 0,8, have béen
found do0 he salisfactory in oa large number of Nuid-Tow  computations.
However, it s not implied that these values are the optimum ones or will cvan
produce convergence for all problems. 1 should be recogniced that matiers
such as the optimum relagation-factor values e usually problem-denzndent.
Although experience from previcus computations s halpful, new problems
somelimes reguire differsnt relaxation practices.)

9, It will be noticed rhat during each steration the velocities are not lefl
in their starred condition but are corrected using the velucily-cormeclion
formulas, The resulting velocity field exaetly satisfies the discrétized con-
Linuity equation, frrespective of the face that the underlying pressure coerec-
tions are only approgimate. Thus, the computations proceed to converpence
viz & series of comridudl-sefinfping velogity felds, This fFature of SIMPLE has
meny advantages. A continuity-satisfying velociy ligld s likely o be more
reasonable than the stareed velocities. The use of ynderrelaxation willy respect
to these teasomable velocities helps n heeping ihe dtarred el 5 ulsty
reasonghle, and the mass solirces small, Furthermore, the silutlon G other
i equations in every irerztion can be bascd on ¢ flow feld that satisfles a mss
halznce, To rezlize thése adventapes, one peecaution is necessary: The welocity
correglions should not be underrelaxed,
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[h Tn the dertvinion of the p° equation, we considered the density g
knowny the effect of pressure on deosity was not included. This can ba
regarded ais u further dpproxioation in the p' cquation and justified jn a
siniler manner. After all, ihifs i (e essence of any iterative method, which
focoses attention on o few significant influences in (e equation and repards
many other quantities a5 dentalively knows but to be recaleulated for ihe
next Herplion. The density g i5, in general, to be caleulated from an
approfirinie equation of state. This may fivolve a dependence on temperiature,
cuncenlration, ahd cyen pressace. As long as g converged solution can he
oblained, our approximate p' equgtion is sufficient. For highly compressible
(especially supersonie) flows, however, the dependence of density on pressure
g s significant that there is a strong possibility of diversence. For such
sitieativns, it B desirable 1o derive 4 “¢ompressible” form of the P equation.
This derivation has been set aside as an exercise (Problem 6.4},

L It cen be observed that the 5’ equition is very mucir like |he
discretipation equation for heat conduetion. ln ke velocity-correction Tormuly
16.15), tha velocity correction u; can he rezarded as a heat Mux czused by the
lemperature ditference gh—pk. d

1Z. The conductenlike nature of the o equatean mpkies that it foes nol
exhibit ene-way behavior in any space coordigate, Tt §s woll Bogrwn thar (he
influence of pressure B3 two-way o elliplie, The woreavay  behavidr n
boundary-layer Dows is aclueved by making an additioaa EESUmLEO N phiou|
the pressure field; for exampl pressure yasdtion pormal dooa owall s
ignored in a wall boundary laycmr Supersvaic ows de exhibil On-wy
behavitr in that the downstreasn pressure diocs oot alter the Upstreim
conditions, Computationally, we should wse the compressible form of {he f.X
equation (Froblem 6.6) for supersonic (luws. The coelficlents in (his form are
sdmilar In those & pur convection-difTusion formulation, and then {hey do
umiply oue-way heliavior under sppropriste Mach-number conditions,

It ts interesting 14 note such close correspondence betwern theoretically
established behavior and computational implications,

6.7-3 Boundary Condilions
for the Pressure-Correction Equation

The momentum equations ace special cases of the pemecal o eguation, snd
therefore our general boundary-condition treatment applies to them as well.
Iuwover, since the p equation is not one of the basie eqlalions, some
comisenls on the haadiing of {1 boundary conditions are appriprizte,

Normally, there are two kinds of conditions at 3 boundary. Either the
oressure ot the bolndary s given (and the welocity is unknown) or the
velocity componenl nermal to the houndary is specified.

(itven pressire af the boundaey. 17 the guessed pressuse Geld p*
arnped such that w2 boupdmy ot = Bgpgre Hien the value of g al (he

e
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Baundary

Given

Figure 5,10 Bourdary controd wiliue Tur
tler cundinubey oyquation.

soopwinty wi] be ozero. This is then akin 1w the siven-lemperature busapdary
comifiion o s hesteomduction problent.

Crivenr noroe! velociey at the bowndary. IT the grdd s designed such that
the boundany eoincides with o controfvolume face, the situation will luok like
Die ane shown [n Fig. 6,10, The velogity ugie given. In the desivation of the
&' equation for the control volume shmm.m:uw rate aoross the boundary

izcs should nar be expressed in terms of wy and a3 corresponding correlion,

It in terms of w, itself. Then, pr will not appear, or @ will be recon e
7' equation, Thus, po infarmation about pr will be necded.

6.7-4 The Relative Nature of Pressure

The faréeeing Jdeseription of the p' boundary conditions leads to a subtle but
imipartant ssuz. Let us consider s cowsfane-density steady sitdation, in which
the normal velocites are given al «ff boundary locations: Sinte no boundary
pregsure i3 specifled and oll the boundary coefficients such as ag will be zero,
the &' pguation is left without any means of establishing the ahsolute value af
&' The coeificients of the p' equation are such that ap=Tay, [sec Eqg,
{6.232]] ; this means that p’ and p' + C(C is an arbitrary constuni} would hoth
zavizfy the o caodalion,

The stustion, howsever, gresents no real difficulty. For such a problem (in
which the density is Unzflecled by pressure], the absolute value of pressore—
and hzice of pressure cormection—is nol relevant 3t afl; only differencer in
sefizise e rmeeningful, and these are not alered by an achitrary consianl
4 1 the n' field. Pregsure is then & réfarive varizhble, not an absolute enc.
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Il he absolute waluc of p' is not umique, would (he compuiations
converge al -all? Forldnaicly, an iteralive method of sobving the algebraic
caualions does converge to a solution, the absulute value of which is dechded
by the imutial guess. A direet method, however, would encounter a singular
mattix and refusz o give a solution. The temedy then is wo arbitearily assipn
lhe walue of ¢ in one control volume and solve the F° equations for the
romaiing contral volumes, The same technique can be used in an [tecative
method, But letring ' seek its own level gves faster convergence than insisling
on a definite value 2t a certain pofat (sco Problem 4.9).

Another way of looking at the indcterminate p' field is 1o note that the
continuity cquations for all the control ¥olumes do not represent a lnearly
independent sel. Since, in a propery specificd problem, the gives boundary
velocities mmust satisfy overall mass conservation, ihe continuity equation for
the last contmyl volume docs nol convey any information that is not already
conkained in the cantinuily equalions for all other control volumes. Thus,
even if une of the controlvelume equations is discarded (and the value of p'
is prescribed there), the resulting corrected welocity Tield would satisfy
continuity for aff control volumes,

In many problems, the value of the shiolute pressure is much larger than
the lucal differences mn pressure that are encountered. If the sbsolute values of
pressure were ised for p, round<off corors would arise in calculating diffee-
ences like pp —pe. Tt is, therefore, best t6 sei @ =0 as a reference value 113
suitable grid point and to calewdate all other values of p 1s pressures refative lo
the referesice value. Similacly, before the p' equation is solved during each
seration, it is wsehal to start from p' =0 as the puess for all points, so that
the solution far p° docs not acquire a large absolute wvalue,

When the pressure al some boundary points is specified, or when the
density depends on presiusé, the indeterminancy of the pressure Jevel does not
arfse,

6.8 A REVISED ALGORITHM: SIMPLER

The SIMPLE algorithin has been extensively used and has served well. Fur
example, all the Nuid-fow caleulations lo be presented in Chapter 3 were
perfurmed Using (his algorithm. However, in altempts 10 improve its rate of
convergence, o revised version has been worked out, It is called SIMPLER,
which stands for SIMPLE Revised (Patankar, 1979a).

6.51 Motivation

The approximation introduced in the derivation of the B equation (the
omission of the term Eagyupg) leads to rather exageeraléd pressure correce
tions, amd hence underrelaxation becomes essential. Since the influsnce of the

b il aaa hana
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neighbor-point velocity corrections is removed from the velocity-correction
formula, the pressure correction has the entire burden of correcling the
velocities, and this results inlo 2 rather severe presurecorrection Neld, In
most cases, it is reasonable 1o suppose that the pressurecorrection equation
does a fairly good job of correcling the velocitier, but a ruther poor job of
corregling the presoure,

To appreclate this argument, let us consider a very simple problem, one in
which there is one-dimensional constant-density (Tow wath the velocily piven
at the inlet boundary. I is easy to see thal the velocity in this problem is
governed only by continuity, and hence the conlinuity-setislying velocity [eld
ohtained at the end of the first ileration will itsell be the final answer, The
predicted pressure, however, will be far from the final solution, owing ta the
spproximate nature of the p’ equation. It would take many ilcrations befare o
converged pressure field were established, although the correct velogity field is
obtained very early in the process,

If we employ the pressure-correction equation only for the task of
correcting the velocities and provide some ather means of ublaining an
improved pressure field, we construct a more efficient algorithm. This is the
essence of SIMPLER,

£6.8-2 The Pressure Equation ‘

%Aﬂ gquation for obtaining the pressure field cum be derived as follows: The

momentem equation {6.6) is first written as

RO NS R
St T P b d (e —pe) - (6.25)

e =
]

where d, has Been defined in Eg. {6.16), Nuw we define a pseudoveloeity i,
by

" &
e Dl b (6.26)
[F

11 can be noted that &, it composed of the neighbor welociiies i, and
contains no pressure. Bguation {6.25) now hecomes

Uy = g T dolpp— pg) (6.27)
Simitarkv, we con write

ty = vy +dalpp — o). (6.28)

wr =wp +dplpp ~ py. (629)
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Il is easy 1o see the simiarity between these equations and Egs. (6.17)-(6,19).
Mlere, i, £, W appear in place of #*, v™, w®, and the pressuce p itsell takes the
place of p'. 1t then follows that, if the derivation In Section 6.6 were worked
out wilth the wew velocity-pressure relations containing fi, §, W, an equation
fer pressere would result. This can be written as

fpfp =dePfe *awpw Y anPy Fasog b appr +appg + 8, {6.30)

whete o, @, ay, 35, 97, 9p, and zp are given by Tos. (6.23a0)-{6.23g), and &
is given by

Hie : -
o SEEHALS O Bty it

* [{ou)y = (pb)a] &2 Ax + [(e), — (pW),] ax Ay. (6310

It should he noted that the expression for & is the only difference between
the pressure equation (6.30) and the pressure-correction equation (6.22),
Expression (6.31) for & uses the pscudovelocities 2, {, w, while & for the p'
equation was calculated in terms of the starred velocities,

Although the pressure equation and the pressure-correction equation are
almast identical, there is one major difference: No lpproximations have been
introduced in the derivation of the pressure equation, Thus, if 4 correct
velocity field were weed to caleulsre the pseudovelocities, the ‘pre:surc
equation would at once give the correct pressure,

6.8-3 The SIMPLER Algorithm

The revised algorithm comsists of solving the pressure equation Lo gbiain the
pressure field and solving the pressure-correction tquation only to correct the
velocities. The stquence of operations can be stated a5

1, Start with a guessed velocity feld.

2 Fa1fuiale the coefficiznts for the momentum equations and hence cxloylate
G, v w from equations such as Eq. (6.26) by substituting the values of the
neighlror velacities w,,,,

3. Calewlate the coeffcients for the pressure equation (6.30), and solve it to
ohtzin the pressure field.

4, T:e:lling Lhis pressure field a5 p*, solve the momerntum equations to ohtain
T el

3. Calculate the mass source b [Eq. (6,23h)] and hence solve the p' equation.

6, Comect the velocity feld by use of Engs. {6.17)-(6.19), but do ner correct
the pressure.

7. Bolve the discretization cquations for other ¢'% if necessary,

8. Retwrn to step 2 and repeat until COTNVETEENCE.




irni-4 Discussion

i1t 05 easy o see that, for the one-dimensional probletn discussed i Scciion
.81, the SIMPLER algorithm would atl enee give a vunverged solution. In
pesitrul, dinge the pressure-correction egquation produces reasonsble velocity
fells, and the pressure equation works out the dircel consequenice (without
spproximaticn) of 2 given velocidy field, convergence to Lhe final solution
el be miuch faster.

2 Lsv SIMPLE, 2 puwessed pressure feld plays so bmportant rale. On the

thep hard, SIMPLER does mot wse puessed pressuces, bl oxlrsdls o pressuge
1oz piven veloetly feld.

3, If the ziven velocity field happens W obe the corrder velogity field, then
the presmurs equation i SIMPLER wifl produce the correct pressure feld, and
koo will be no nesd for any furcher iteradions. 10, oo the ot Dard, the
saine correcl velocily feld and a puessed pressure Geld were used 1oostart the
STHPLE procedure, the situation would acteally deteriocate at firse. The vse
ot the puessed peessure would lead too starced velocities that would be
Zifferent from the given coreet velocitics. Then, the approximations in the pf
cqeation wiell produce incorrect velocity and pressure fields al the end of
e Tirsl fleration. Convergence would fake many fterations, despie the Tacl
it we did have the correct veloeity fefd at the beginning.

4, Begouse of the close similarily belween the pressure equation mid
‘he  mresyare-correction  equation, the discussion in Section 6.7-3 aboul
Loundary conditions for the p' equation i5 alse relevant o the pressure
cguation. Purthermaore, the relative nature of the pressure discussed in Section
7,73 could have been described by reference to the pressure cquation.

3. Although SIMPLER has been (ound to give faster convergence than
SIMPLE, it should be recognized that one iterztion of SIMPLER involves
mare computaiional effort. First, the pressure cqualion must be solved in
addition to all the equatlons solved in SIMPLE; and second, the calculation af
¥, G, w rmpresents sn effort for which there s no gounterpart in SIMPLE,
Howaver, since SIMPLER requires fewer Iterations for convergence, the
additional effact per iteration i3 more than compensated by the overall saving
af efTort,

1

4.9 CLOSURE

In this chapter, ‘we have completed the final step in constructing vur
numerical method. A number of miscellaneows, but imporlant, fopics still
ramzin to be discussed. Although these could have been included in the first
atd ghipiers, they can be betler apprectaled at this stage, when the reader has
4 complete vjew of the proceduce. The next chapter is devoted to these

a0
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PROBELEMS

A twe-limensicnal Mow will geastant density aad viscosity s poverned by

i an at e Wl T
#— 4 o — + pi— -y + =

T ax ar grt LT ar
i 3o Au E LTI LI ap
i R = T I o LT ] ks
of Ax ¥ &x hl e
au 1
aid — £ (154
T

Eluninaie @ from the fiest two eguations by diflerentiziiog 1he Tirst with TEspeet o ) snd
e sepund with respect fo ¥ agd sebitrocting ene from (he ofber. Express the resulting
cymdjen wilth w as the dependent varsthle, wheee why the vorticily, s delined by
Wi = Y - dufikx. Show that the cosult ds

g e dud gt a’
B— o g — = [ 4 T HY
ar ax 13 e ap?
B2 Delne g stream [unction @ as
hu] [
L= ey aned —b=u_
X o

Sl that @ wdeatically satisfios the contlnwily equation given in Probiem 6.0 Further,
ese the deflnition of win 'roblem 6.0 1o show that

aty Aty
r it e
X uy

6.3 I_n the steady, onc-dimensional, constani-density situstion shown Int Fig. 6.11, the
1-r:l1:|c_|.::.r # i caleulated for lacations 4, B and O, while the pressure P is calculaied Tor
ocations |, & and 3, Thoe welocity-carreciion formula is

b=+ =y,

where the lowtions 7 znd f+ | Be on cither side of the Iecation for w, The value of & is
2 everywhere. The boumdary condirions are wy = 10 and g} =0, If, 21 2 kiven sfage m
the itcration process, the rmomentum cquitions gve :.ri.: 8 and u-E-: i1, calculate tha
f.xrm.-s of g} and o, Explain huw you would obtain (he valoes af gy and g% if the
right-hand boundary vandition were given as = 10 instead af pf =10, :

6.4 A one-dimeasiomal flow theeugh 2 parous material is woverned by cuju +dpfdr =0
whore' © i a constant. The continuily equation i dfudi/dx = {, where 4 is the cfﬂ!r:'tiv;

—

A

— —
0 O
1 & 2 c

L]
3

Figure .11 Situation for Problems 6.3 and 6.4.
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area for the flow., Use the SIMPLE procedure Tor the prid shawn in Fig. 611 pwhere yui
may ignore paint A) o calculate p,, ug, and i fram the following data:

Xy —X, Xy X, =12

eg = 0.5 el Ap=35 Ap =4 1y = K ryoT R
A5 an indtial puess, set wg = we = [5and p, = 120,
6.5 The one-dimensional flow in the nozzle shown in Fig 6.12 cin be Jde 1 by

d a d g, i
= fpresy =10 and b {peed e = -1 T

where A s (he cross=sectional arez. The given conditions are

o= 1 everywhere Ay =3 Ag=1 o= 28 p, =0,

Astume thet the Nuid upsireatn of point | has neglizible momentum, Formulate the
discretization equations for u and p', and hener olnain the values of wy, ug, and p.
(Ute the initial guesses pud =5, o that wy =3 and uy=35, and p, = 25 Employ
appropriate underredaxation if necessary.)

6.6 Consider the steady, one-dimensiomal, compremsible flaw for which 1he continuity
equation is digw)fdx = 0. With reference to Fig, 8.1, write the discretization form of this
equation in terms of g, g, e, and uy, Futther, assume the density-correction formula
o=p" 2 Kp', which can be derived from the appropriate equatien of slate, Amuming o
piecewise-linzar profile for p°, derive the discrefization equation for pressure correction,
Hint; use the approximalion

gr = (0" F ' hu™ L0t = o et + aut o

Mate that the resulting coefficients have a convective part and 3 diffusive part, sod that
these jz a possibility that the coefficients may Become negative when the Mach puember is
large. Can you suggest an upwindlike scheme to prevent the coefficicnts from becoming
nematjve?

6.7 A portion of a water-supply system is shown in Fig 6.13. The fow rate @ in a pipe

e
iy
|
0w

Figare 6,12 Grid points for Prob-
lem 6.5,
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Figure 6.13 Water-supply system considered in Prablem £.7,

is given by 1= C Ap, where Ap is the pressure drap over the lenpth af the pipe, and C i
the hvdraulic conductance, We have the following data:

8 =215 p, =770 p,=40 7o AD Pr =10

Oy =04 Cg=Cp=Cp=10.2 Coe=Cg=0l.

Find @y, EQ. @4 o Do Pp. and O by the following procedure: Gless By and g
_Elfhta[n O values based on the pucssed pressures, Construct the  pressure-correction
equations and solve for oy and p. Correct the gucsaed pressuresand the 0F values, Do
you need to iterate? Why?

5
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CHAPTER

SEVEN

FINISHING TOUCHES

7.1 THE ITERATIVE NATURE
OF THE PROCEDURE

The %ﬁm procedure described in this book is aimed at solving coupled
nonlinesT equations by an iterative scheme. At this point, we shall take an
overall look at the iterative process,

. The iteration technique plays two different roles:

a. Our equations are, in gcnenfonb‘.nem and interlinked. We cast them inta
nominally linear form and &aleulate the coefficients from the previous.
iteration values of the varables,

&. The nominally linear algebraic equations for one dependent variable at a
time are solved by an iterative method (such as the line-by-line method)
rather than by & direci method,

2. The iterative solution of the algebraic cquations need not be taken to
complete convergence, because we are, at any Intermediste stage, working
with only tentative cocfficients. After the dizcretization equations have been
iterated to a certain extent, one must return to the recalewdation of the
coeffigients. A sense of proportion is appropriate here. Alter having spent a
certain amount of effort on caleulating the coefficients, we must extract a
faiely good solution of the algebraic cquations, but refmin from doing an
excessive amount of work with coefficient values that we know well to be
only tentative. A direct solution methed wsed for multidimensional problems
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osually results in & disproperiionately taree s amounl of work spent g (he
equation-solving activity,

3. A slmilar conslderation has been wsed in Chapter & in cheosing o
sequential, rather than simultancous, procedure for caleulating Muid How. The
momentum equations and  the pressure-correction equation zre selved se
quentially. The aliernative, which is commonly adopted in most finite-clement
methods For fluid fow, i5 10 obtain 2 simultaneons solution of the linearized
forms of the continvity equation aond afl the momentum equations, Such o
simultanieous solution by a direct method reyuires large ameunts of eomputer
time and stofage. Since the momentum equarions are nunlincar, these large
amounts of ¢Torl must be spent at every iterstion. Further, the continuity
and momentum cgustions may ol be the only eguativns governing the
sitgation. These egustions are often coupled with the epergy cquation
(thrapgh fluid properties and buoyaocy forees), with the equations Tor
turbulence parameters (through the turbulent viscosity), with the equations
for chemical-species concentfation, and so on, Obvivwesly, it would not be
praciicable 1o attempt 2 simultancous seluliem of 2l these cquations: these
additional eguations would normally be solved in a seqoentisl manmer, Undes
these circumstances, the expenditure of large ameants o somputing elTort Mo
the simultancous sulutlon of the continglty and moementum cqootions searms
out of propartion.

4. In the numericsl methed presented 0 s book, there i5 no Munda-
mental difference between solving o steadystate problem and petforming one
time step in an unsteady problem. [n @ steady problem, we start with guessed
values for the varables ¢ end proceed o obtain the steady-state solution, For
an Unsteady situation, the probilem s this: Given the values of ¢ af Hme ¢ and
3 muess for &oat ¢+ Ar, find the ealues of f al ¢+ A As i the steady-skate
problem, we must perform 2 number of ferations at cach rime step for
upsteady problem. Further, smany such time steps must he sequentially
exzcuted to cover the desired time period.

5. Thus, the solution of an unsteady problem seems to imolve an effort
that is equivalent to the task of selving a succession of steady-state problems.
This is partizlly true, but there is ope consolation. For reasonable values il
Ar, the known & values at time ¢ can be used a5 8 guess foe the unkaown
values abl time r+ Af Since this is g relatively good guess (compared with a
rather arbitrary guess, which ome must make in 2 steady.state situation}), only
3 few iteretions are nommally meeded to obtaln 2 converged solution for the
time step, Sometimes, the numbet of iterations per tims step can be as small
zs one, Thus, when 2 methed for a nonlinear unsteady problem is claimed (o
ba momiterstive, it is, in fzct, accepting the solution at the cnd of ane Iteration
z¢ 5 sulliciently converged solution for that time step. Such methods mos
eriplay rather small time steps, whereas the use of multiple {terations for s

tirme step would sllow larger values of AL

. Such a unedteratlon-pertimestep method iz sometimes used fo ahitain
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the steady-state sofution at the crd of muny time steps. Soch time sleps g
truly ierations, with (he unsteady term i the equations providing o kind ol
underrelaxation.

7. A computer progeany that employs iteration witldn a time step should
provide storage for the values of @ at tinie £ and For the § values an £+ Af, A
steady-state proprine, ont the other hanil, requices storage Tor oaly one set of ¢
values, which are continually overwritten until conversence is attained,

B, The iterative technique greatly simplifies the construction of the
niitnérical method and provides 2 way in which, at least in pringiple, one can
fandle any nonlfoearity and interdinkage, OF course, the techimigoe & of oo
value if 3 converged solution connot be reached, Bt is wseful ar this stage tl:.'l
exmmine the prospects of convergedig,

a. The four basic rulas (introduced in Section 3.4} have enabled us to obrain
such discretization equarions as would, for fixed values of the coslficients
ensure convergence of the point-hy-paint or line-by-line solution pm-cedurc.'

b, I the coefficients do not remaln fixed but change rather slowly, it scems
teasonable that we shall still phtain convergence. A proper lfnr:nr;.zaf_{ﬂn af
the source teem gnd an approprate underrelavation of the Jcpcndénl
vardalles woupld, in general, slow down the changes in the variables and
hence in the coelficients,

oo In addition to the dependent variakles, otlier quantities can be under.

eelaxed with advantage. For example, the demsity p is often the main fink %

hjEl'l.'-L‘.rn the flow equations and the equatfons for temperature, concentra
tion, ete, An underrelaxation of o via

= 0pep (1T —o)p 0 (7.1}

would cause the velocity leld to respond rather slowly to the chanpes in
temperature and poncentrztion. A diffusion coeflicient T can be under-
relaxed to restmin, for exatmple, the influence of the wrbolence faantilies
on the velogity leld. The present value of T js then caleulated fram

"=alhe + (1 — o}l - L)
Hl:rcl. 2 in Eq. (T.1), o stands for the reloxation lector. Underrelasation
tequires o 10 hie pasitive but less than 1. The interlinkage berween differsnt
varialles olten comes through the source term (for example, the buoyancy

force in 2 momentum equation depends on temperature). We may decide
to underrclax the sourer term via

.5'(_. = R Pl P + ” = &}Sf'rﬂld - {?,3}

Everi the buundare conditions can br underrclaxed, For example, a hot
*
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wall ur a ratating dise need not assime its final {femperre ur totational
speed right [rom the ficst ileration; the boundary value may be slowly
adjusted, during the courmse of the dterations, 1o ulilmately achleve the
desived value, Thus,

B = 09 g T {1 — @ty apa - (7.4}

O course, the valoe of e appearig o By (70574} need aot be the

summe, o 15 10 necessary 1o wse the same value Tor @ For every pod point,
d. 1omusl be remembered that there is oo pencral puarantee ihat, for all
arlieasinies and Inteclinkazes, we will adways get 5 comerged solulion.
The snoorrgiaxation procedurcs that are introdoced here have been Gotend
to b helpled In niany cascs, but special wadenpeiaxation practices may be
neeiand for special probleves. o the absence of in unconditional puwzitee,
e evertludess darive hope from the fack thar, For a lirce oumber of
ar conaplex proliams, it has becn possible 1o get ceaverped sebuticns. A
gk o such spludons will be presented in Chaprer %, hut many o1ler
srablams hzve atso been solved and published.

9. As wo have noted, an dterative process is said o Tove canverped when
fusthes jterations will not produce any change in the values of e dependent
variables, Tn practice, the iterative proccss is terminated whon some a'bitery
ceavergencs  criterion is- satisfied. An  appropriate coavergence criitérion
depends on the > of the problem and on the objectives of the
coftputation. A coninon frocedure 35 lo examine the most significant
quznfities siven by the soletion (such as tho maximum velocity, lodal shiesr
fores, o cesrain pressuee drop, or overall Beat Mux) and to require that the
vieratiors be continued only until the zelative change in these quantitics
owlnl bty sugcessive jterations i gréater than 3 cortain small puanber. Often
e relative change in the grid-point values of all the dependent variables is
usil o formelate the convergence crteron. This type of crterion ¢an
somctimes be muisleading, When heavy underrelaxation s used, the change in
Jdepondent vardables betwesn successive iterations B Intentionally slowed
. this may create an lusion of convergeace altheugh the compoted
selunan may be far fram Belng converzed, A more mesningful method of
isonioang convergence is to examine how perfectly the disceefizetion
squatipns are satisfied by the current values of the dependent variables. For
gach grid point, 4 residead B can be caléolated ftom

R =Tapguy + b—uptp . (7.5)

Obviously, when the discretization eguation is satisficd, R will be zero. A
siitylle convergence coterion 5 to reguire that the largest value of [R] be less
than & cerfain small oumber. Incidentally, as mentioned in Section 6.7.2, the
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gaantity foin B, (6.22), which s the residual ul the continuity equation, can
be wsed a5 ene of the indicators of the convergenee of the iterative process.

7.2 SOURCE-TERM LINEARIZATION
In Secetion” 4.2-3, the concept the Hncarization of the source terr was
intreduced, - One ol the bagic iles (Rule 3) required that when the soutce
tern s lipcarized s

§=585p +S5pdp (7.6)

the guantity Sp must not be positive, Now, we retlen to the topic of
sotree-terme lncarization 10 emphasize thist often source terms are the cause
of divercence of iterations and that proper linearization of the source term
frequenily holds the key to the sttainment of @ converzed salution.

7.2-1 Discussion

LIt is impodtant fu watch for wnintentiona] volations of the negative-Sp
weguirement, For example, in #82 coardinares, the momentum egquation far g
candainy a source term —g Ko Fylr. It is templing to cxpress this 3s §o= 0 and
8p=—alyfr. However, if ¥, happens to be negative, this gives a positive value
af Fp. A proper formalstion would be

A ”:—,-:;V, ' ':'] Fa (7 1z
—[E’:"‘ 'ﬂ] ! [F.74)

where | | deneies the farger of the quantities lisicd withii,

2. It is alwiys possible to make Sp equal to zero, and o et S =48
Huwever, this is olten nat desirable, The effoct of 1 large nepative 5p is much
like that of underrelsxation and is conducive to convergence. As deseribed in
Jection 4.2-5, grobably the best lincarization js one that makes the straight
Ime §=5-+8pgp a2 tmpent to the true §~¢ curve. To wse 3 smaller
magnitude of $p is to fail to adcquately anticipate the decresse i 5 with an
mercase in @, To use & larger magnitude of Sp is to be too cautious (which
miay at times he a good policy) apd probably slow down the convergence,

3. Because the seurce terms are often farge, it is always useflul to consider
ihe cxtreme case in which the source term alone dominates the discretization
equation. For such 3 case, we may write the discretization equation as

Sp

11
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So+Spdp =0, (1.8)
which leads {o the solution

dp==3¢, (7.9)
Se
Here, ¢p denotes the limiting value of g in the source-dominated situation,
[n Fia, 7.1, these ideas are graphically represented. 17 1he value 5% pertains 1o
d current value @p, the solulion of the discretization equation will be the
value §p, which corresponds to the point where the 5 4 Spgye line mects the
ahscissa, Il Sz has o larger magnitude, ¢p will be cluser to @f. A small
magnitude of Sp would imply a larger chunge in ¢p fromn gp to gp The
underrelaxation effect of 5p iz thus obvious.

4. Sometimes, the source-dominated situation can be used 1o design the
linearization such that ¢e remains within redsonable limits. Suppose that, Tor
the current value gp, we desire that the next-iteration value of pp be close o
a given value gp. This can be arranged throush the linearieztion

e {7.10a)
&p — @p
,,i.*

T P (7.104
2 dp _‘% :

The desired valug ap should be determined from physical considerations. Fur
example, let & stand for the mass fraction ey of o chemical specics. By

Figure 7.1 5Solution in the
sous cedomingled situation.
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defivition, my, must Lie between 0 and L. At a0 curcent value myi, il §% 15
positive, my will increase and we may set 7y as 1. For negative 8*, A1, may be
sei equal to zer. We may wish to be even more conservative and reguire that
in ene feration sy could move only haifway toward the physical limit. Thus,
ity would be set as (] + 1)/2 for positive 5%, and as w2 for negative §*,
Because all these considerations are based on the source-dominated limit, the
next-iteration value will not be exactly q_t:p, since the other terms in the
equation also influence it. Further, we are not controlling the ultimate
solution for ¢p, but simply its progress through the stccessive iterations. We
seck to avoid rapid changes and physically unrealistic values from arising
during the iterative process.

5. Mormally, one is shle 1o assign a known valoe of & only at the
boundary points. [Towever, any desired value of ¢ can be arranped to be the
salution at an drersed grid point by setting Sz and Sp for that point as

SC = iﬂn¢P.ﬁﬂirEd i (?.] lﬂ}
Sp=—10% (7.115)

where [0 denotes a number large cnough to make the other terms i the
discretization equation negligible. The consequence fs that

So+Sptp=0 (7.13)
5

dp = _.ETQ = P desied - 7.13)
IP

This precedure can e used to represent internal obstacles or isfands in the
caleulation dumain by inserting “internal™ boundary conditions,

7.2-2 Source Lincarization
for Always-Positive Variables®

From the physieal significance of certain dependent vardables, we can conclude
that their values always remain positive. Examples of such “always-positive™
variables are mass {ractions of chemical specios, turbulence kinetic CTEIEY,
tuthulence |ength scale, and tadiation fluxes in o flux model of radistion,

*For many readers, this seemingly minor topic may lurn out to contain the mast
valuable information in chis book. In practical compuatations, it & quite commen o
encounter ereoneous resuliz soch a5 peputive mass fractiont and negative 1urbulonce
kinctic eneqzy, These have such 3 devastating effect on (he rest of the calculation and on
the suscess of twe flerstions that they must bo prevented at all costs, I‘ortunately,
preventfon is possible and easy.
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Simze such cuantitics usually lave buth positive amd siepstive soarce oo
(le., generation snd destrugtion), the wet source terst can olten becomo
neoative, I this iz not properly handled, the abwavs-nosifive variible may
1EOUIIE AN erronecus negative value,

Fhe basic mite shout positive voelTicients (Wule 2 i Seerion 3.4) is crucinl
to cnsuting physically realistic retulis, A Turther eequirement Tor always-
positive varables is that S must abways be positive (and, ol coumse, Sp always
negative). Strict adhereiice 1o this requiremcent gedranices 1hat oo segtive
voites of ¢ will arise,

There are many ways of cnsuring that Sp s positive, A simple proserips
roeniois a2 follows: Suppose that

g=5 —3; =l §>0, {(7.04)

whzre 5y ds the positive part of the source ternt, and —54 s the nepalive part,

Bl
i 5
T=8 =22 dp. (7.5
i
Ep=in {71 Gir)
Iéh rd Spo=i STE , (7.16h)
g

wisez 5 s the enprent valuz of B

7.3 IRREGULAR GEOMETRIES

nave doveloped gur nemercal anethed by using 2 ogrd [ Carresian
et Singe practical problems do mat always (it neatly into such a
inate system, it is necessary 1o distuss how the method can be applicd

srogikady chaped domans.
¥ AR

7.3-1 Orthogonal Curvilinear Coordinates

Dur wer of Cartestan eoordinates has bren motiviied mainly by coenvenience
suge of presentation, There s, however, no casential dilficulty in working
wdi the same numericel method in eylindriesl or spharical courdinates o even
i zzneral orthogonal corvilinear coordinates. This was briefly fliustrated in

Section 4.6-2 for the r} coordinaies. More penerally, one can employ an

e el 1 L T T i T
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Figure 7.2 Condrul volume in an o3 thopunal
curvilinger prid,

orthogonal curvilinear prid as shown in Fig. 7.2, In such a2 grid, the calculation
of wvarious lengths, areas, and volunms i not as straightforward as jnoa
Curtesian grid, but otherwise a1l the practices developed for Cartesian grids are
direcely applicable.

The ortfiogoual property o the erid is, however, essential tor the
application of the method. Since we caleulate o diffusion flux 2cross g
control-volume fave in terins of the ¢ values at two grid points, it i3 crucial
that the firee is normal to the fine joining the (wa grid points,

For an arbitrarily shaped domain, the construction of an orthogonal
cupvilinesr coordlnate system is itself a4 substantial task. Some procedures for
daing this are now availsble [for example, Putter and Tuttle (1973)]. If the
grid cap be conveniently and economically comstructed, then the use of
orihogonal curvilmesr coordinates i a viable method for handling irregubar
Becinelries.

7.3-2 Regular Grid with Blocked-off Regions

Sometimes a computer program written for a regular grid (such as the
Cartesian prid) can be bmprovised to handle an ieregularly shaped calculation
domain. This is done by rendering inactive, or “blocking-off," some of the
control valumes of the regular grd so that the reraiting active control
volumes form the desired irregular domain. Sume examples are shown in Fig.
7.3, where the shaded arcas denote the inactive control volumes. It iy obvioue
that the iveguler boundary must be approximated by a serfes of rectangular
steps, but ulien surpmsingly pond answers can be obitained from 3 rather crude
representation of the beundary,

The blocking-off aperation consists of establishing known values of the
relevant ¢ in the Inactive control volumes, If the inactive rezion TEPrEsChls &

it R R 2T
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Figure 7.3 Blocked-off regions in a regular grid,

stationary selid boundary, the velocity components o that region must be s
egqual to zero. IT the region is to be regarded as an isothermal houndary, the
known temperature must be established in the Inactive control volumes.

There are two ways in which the desired values can be set in the inactive
control volumes. One method it the use of large source terms, o5 deseribed in
Seciion 7.2-1. As alternative is avallable through our use of harmonté-mean
s for the controlwvolume faces {Patankar, 1978}, whach was expluined in
Section 4.2-3. Since large discontinuities of [ can be correcily handled, a very
farge value of [ in the inactive zone would epsure that the valuz prescribed ut
the f{noiminal} boundary of the zone prevails over the entire inactive zomg.
Yer, the solution in the active zone will be unaffecicd by these large values of
[. In particular, the velocities in the inactive zone can be sei to rero by the
use of a very large viscosity for the zone and 2 zero value of velocity at the
nominal boundary.,

It should be noted that, by these means, only rather simple boundary
conditions can be handled at an irregular beundary. More complex boundary
conditions would require modification of {he source terms for the aclive
control volumes adjacent to the true boundary. Also, the biocking-off method
is somewhat wasteful of computer time and storage, since trivial computations
must be performed for the inactive zone, and the results have to gstored.

NP R ———
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Motwithstending these considerations, the convenience of using a regular-arid
computer program for any arbitrary geometry offers o sipnilicant sdvantage,

A Turther spin-off of the harmonic-mean s is the ability to handle
conjugaie heat transfor problems, which will be discussed next,

7.3-3 Conjugate Heat Transfer

Let us consider the situation shown in Fig. 7.4. The Muid flows through a
duct with an internal fin, The duct wall and the fin have Gnite thickness and
moderate comductivity, The thermal boundary condition is known al the
owfer sutface of the wall as, lor instance, a prescribed temperature far that
surface. The situation presents o comjugate heat tramsfer problem in that
conduction in the solid and convection in the (ujd must both be considered,
with o proper matching at the fluid-solid interface. The calculation of separate
solutivns for the sofid and Muid regions would require an involved iterative
procedure for matching the interface copdition. The harmonic-mean practice
for T offers o much essier alternative that has been Heseribed in Patankar
{1978).

In this procedure, the problem is solved by using 3 caleulation domaln
that ingludes both ihe Nuid and solid regions, with the owter sirface of the
wall colnciding with the Woundary of the domain. Thus, the boundary
conditions  for both the velocity and temperature flelds can azsily be
supplied at the outes surface of the wall. The calculatigs, procedure Tests on
our ability ta handle a large step change in the value o 1en the velocity
equatians are salved, [ for the grid peoints that &) in the Ruid region is made
equal to the viscusity of the fluid, while for the geid points lving in the salid
region I7 s set equal to a very large number. This would ensure that the zero
velocily specified 2t the outer surfaee of the wall would prevail througheut
the =alid region, and thus the fuid region would experience the correct
boundary condition,

| SN = = e |

Figure 7.4 Clrvpate hem| (ransfer problent.
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oloyiag the lroe conductivities of the sulid sed of qbs fluld e vieir
pgioms. The problem b5 solved a8 o convecivn-comuuciian

Fur sulving the mempeodtee vipuidion, we speciiy e 10 [ell by e

Liackive

soblem theougheet the endee caleddation domaing hul, sice the yeloeries

in tr solitd are sero, the Peclet olmber thers wolld also e o, and, an
effecs, 3 purt-conduction calculation would be porformied in the solid region.
The tesulting solution would thus give us remperature distributions 1o
solidl and int the Muid, and they would have been awtomatically matched al the
solid-faid interface, As far as owr colculation js conceined, tlis nberface i
smptd an Interior Iocation, which is treated fike apy otler interface belweon
twao conired volumes.

7.4 SUGGESTIONS FOR COMPUTER-PROGRAM
PREPARATION AND TESTING

T perfurm practical computations, the nwnerical method must be embodicd
.5 cumputer program. 11 takes an organized and dedicuted effarl to prodoce
i afficient and error-free program. After & computer progiant has been
davelaped and tested, it bacomes a vahuable rocd for the analyst. It opens up a
whole new world of possibilities for solving complex practical problems with
Jve gaza, The Falfowing suggestions nre offcred for the benefit ol the
cors whia wish 18 govelop computer programs Dor their needs.

[ The [T step in the design of 2 computer program 15 (o deende on the
coppe and limitstions of the program. Will v handle lwo o three
Zimensions, Caricelan or oylindrcal coprdinates, wrifoom o nanuriform
orads, cosstant or vadsale denslty, steady or apstoady prablems? Too
mich repemdily cuakes the propram velumoaus and inconvemicnt
:pply to simple probléms, Too Gitde generality resiricts its wse 10 @ very
fow physical sitmanons, Initially, it s probably best 1o develop a rather
costpicted version of the progmm with, however, a flexible framework s
shat the scope of the program can be sasily enlarged.

[ i+ weful to distinguish betwsen general operations (such as the calopls-
don of tha coelficitnts and the solution of the discretiestion eguations)
and prokiem-dependent epemtivns (such as the specification of T, 5S¢, g,
and the boundary conditions for the relévant variables). The gzeneral
nperations should be programmed first and then tested with dilferent
aroklem sneciications.

When = compater program is developed, it must be thoroughly tested, A
stograms Wiat contains eorors §s Re a faully instrument; It is lmrealiabla
and misleading, 1t is posible to construct errordréd computer prugrams,
11 which the analyst-peogiammer can take pride.

Vol s helpfsl 1o test separate parts of the program belore the entire
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denbly B opur 1o work, Fee eganiple, e subrouting Tor solving tho
discietleativm  equations can be independeatly  tesied by supplying
arbitrary walues for the eoellicients.

S Mest of e Diitis] resting can be bused Gn only coarse prids Tlis saves
computer fime, and, sinee the resultiop Nelds of @ contain only 2 few
nueabats, It 15 ¢asy o egamine and ingerpret theimn. Ao times, some of the
surpmging resulls can be checked by manaw] ealéwlation. Even (he
coarse-grid solutions are expecied o be physically roalistlc, since ihis
criterion ltas been the puiding prnciple in this book.

. The econtrol-volume approach epsurcs that the solution satisfes uverall
conservation vver the calculation domain, Such vverall batances provide a
usefpl st of the computer programe, Tn verifying overall balipces, we
must use the same profile assumptions as were used In constructing the
dgereiregtion  cquutions, Then, for a well-converped solition, overall
censervation must be perfectly satisflied for any nuomber of grid points.
Adteenatively, the owverall balance may be taken =s an indicatjan of the
satisfoctoriness of the convergence of iterations.

T. To confirm the internal consistenicy of the computer program, 3 number
af tests can be yndertaken. One of tliem is to check that the converged
sclution i lependent of the initial guesses and the relaxation faclors.

B, 'Dhie oqaeilation uf the coondinate system refative fo the phiysical pratlem
1, of course, arbitrary. The correctness of the computer progeam can he
checked by solving the same problem by interchanging, Tor example, the
& and y dircctions.

9. When  the boundary conditions impl%l the solution will be
symmetrical about a line {or a plane), it is sufficient to perform the
compilation Tor only one-hall of the domaln lying on ooe side of the
symmeiry line. For example, the flow in a parsilel-plate channel can be
computed by using a colerfation domain that extends from one plate to
the center line between the plates. While testing the COmpPUter program,
howsver, we can chovse the whale demain (from one plate to the ather)
#5 the caleulation domain and check whether the computed sobution does
exhibit the cxpected symmetry,® and whether the solution in each haif is
ideatical 1o the ope obtzined by wsing half the region as the calcularion
domain.

10, Sippose that the solution for 2 given problem i determined by the valyes

of certain dimensionless parameters. For example, the Reynolds numbier
Re =pUMy may be the govorning parameter, ‘The solution for s

i-mr: a1 SCE sildations in whicl even wish symumetrical boundiry conditjons the
sulttion may nod be symmetricsl For example; jots in ducts (which e used in fMurdje
devices) or sudden ealargenents in duct flows often Tesult fn unsymmetrial Oaw
catierns. Clwiously, such special situations arc not to be used in Lesting the program for
YISy,
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specilic value of Re can be obtained by setting, in the computer
program, ]

p=1 D=1 u=1 L= Re,

or =1 D= = p=He,
Re

or o= 10 =35 = D=2
p=1 5

or any other combination. The dinensionfess outcome of the computed
solution must be identical for al] these combinations, This critetion can
be used ta verily the correctness of the computer program.

The principle of superposition, which is valid for lincar heat conduction
problems, can be used to test the consistency of the computer program.
According to the superposition principle, the solutions for two rather
simple problems can be added to comstruct the solution for a more
complex problem. The cormputer program can be used directly to obtain
the solutions for all three problems, and then it can be verified that the
solution for the complex problem is indeed the sum of the solutions for
the two other problems.

. Limiting behavior under appropriate conditions provides o useful test of

the computer progr A threedimensional computer program can he
employed to solve o-dimensional problém o confirm that the
computed solution is indeed two-dimensional. Computations For g duct
flow should exhibit the expected fully developed behavior rjt far-
downstream region. A program for viscous flow should p the
inviscid solutions when the viscosity 5 sct equal to zero.

. The tests deseribed so far have been aimed at checking the qualitative

behavior of the computed results. Quantitative checks are also Necessary,
net only 1o confimm the correctness of the program but also to indicate
the accuracy obtainable twith a certain grid fineness, Comparison with
available exact solutions provides 2 useful way of testing the accuracy of
the numerical solution. 1t should be verified that a5 the grid is refined the
error in the computed solution diminiches. Since most standard exact
solutions either deal with mther simple problems or require the caleula-
tion of infinite series involving special functions and cigenvalues, o
method fur constructing exact solutions is desirable. A convenient method
is to progose a solution for ¢, to provide the distribotions of I, p, and o,
and then to ohtain an expression for § in Eq. (2.13) by substituting the
other quantities into the equation. With this expression fur § a5 the gven
source term (and with the given variations of T, g, and u), the propesed
solutien for ¢ can be regarded 25 the exact solution. Indesd, any domain
over which ¢ is defined can be chosen as the calculation domain, and the
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values of ¢ obrained from the exaet solution at the boundaries of this
domain can be wsed as the required boundary condftions,

14. Finally, published numerical solutions can be ssd to verify the correet-
ness of a new computer program, For this purpose, the results of some of
the ilustrative applications presented in Chapter O will be yseful,

g
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CHAPTER

EIGHT

SPECIAL TOPICS

In this book su far, a peneral method has Been developed for the calculation
af fluid flow, heat transfer, and related phenomena, Although one-dimensional
and two-dimensional situations were used for ease of derivation and visuzliza.
tion, the wltimate treatment has dealt with the unsteady three-dirmensional
situation. Alse, although the concept of a one-way space coordinate has been
intraduced, all the derivations have been based on two-way (ie., elliptic)
behavior for all the space coordipates.

The idea of 2 one-way spage coordinate is, however, a very useful one,
and special procedurcs that advantage of one-way behavior have great
practical vtility. A few such ;ﬁedums will be outlined in this chapter, Also,
a fnite-element method that uses many of the principles devcloped In this
book will be briefly introduced. This will serve to cmphasize the basic
similarity between the finite-difference and finite-element approaches, which
arc often presented a5 entirely different methods.

This ¢hapter is not intended as an exhaustive treatment of the topics
chosen. The purpose of the chapter is 1o draw the attention of the reader to
these special topics, which are closely refated to the main theme of the book.
With the background of this book and the cited references, the reader should
be able to work out the required algebraic details.

8.1 TWO-DIMENSIONAL PARABOLIC FLOW

When 3 steady two-dimensional flow has one une-way space coordinate, It is
called a two-dimensional pargbolic flow. Such 3 Mow has a predominant velocity
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in the one-way coordinate, and hence the convection abwuys doninates the
diffusion in that coordinate, It i this feafure Mt impards the oncway
character to the stréamwise direction. Obviously, no reverse Mow in that
direction would be acceptable, A further requirement grises from the infTue) o
of pressure. 1t was indicated In Section 6.7-2 that pressure normally excrls
two-way (or elliptic) inflluences. Far the sireamwise covrdinate to he treated
2% one-way, the pressdre vadations in the crossstream dircetion must ba
regarded as negligible,

Examples of iwodimensional parabolic flows are plane o axisyumetric
cases of boundary layers on walls, duct Mows, jels, wakes, and mixing&iyers.
The solation for such sitwations 15 obtaiped by starting with oW
distributtor of ¢ at an upstream station amd marcling in the streannwvise
direction. For every forward step, the distribution of & ip He crossstream
coordinate is caleulated at one shreamwise station. Thus, computationally oeoly
1 oné-dimeénsional peoblem needs to be handled, Tor which the TOMA can be
used to zolve the discratization eyuations,

The solution ol the momentus and continuily equatluns presents nu
special problem, The sireamwise pressure gradient is asstined W be Known,
Wirth this pressure gradient, the streamwise momentuny equation j5 solved 1o
yield the streammwise velocity. The crosssfeeam welocity is then ealeulated
from the continuity equation. The pressere gradient Tur external Muws comes
from the pressure field in the extemd drrotational stream outside e
boundary layer. For confined flows, overll mass conservation zcross the ducl
cross section is used to adjust the streamwise pressure gradient. Mo counters-
part of SIMPLE or SIMPLER is needed Tor two-dimensional pargholic Nows.

Complete details znd computer programs for lwo-dimengonal parabolic
situations are available in Patarkar and Spalding (1970) and Spalding (19770
The caleulation method descobed therein uses a dimensionless stream Tunclion
az the erossstream coordinate, which provides a convenient way of expaniding
and contracting the width of the caleulation domain in confermity with
changes in the Udekness of the boundary laver,

E.2 THREE-DIMENSIONAL PARABOLIC FLOW

If in a steady three-dimensional flow thers exists une one-way coordinate, the
Maw can be chamcterized 2t a three.dimensional pambalic Mow, Again, the
conditions under which z space coordinate becomes unc-way are {he existenco
of a predominant unidirectional velocity in that covndinate; henge, nepliglie
diffusion and abzence of reverse flow! in that direction: and neweligible pressuse
variations in the crossstream pline.

Examples of three-dimenslonsl parsbolic siwations are similar to thelr
two-dimensional pounterparts. The boundary Jayer over a skewed airfoil, the
flow in = dust of rectangular cross section, and 2 gl amdieg Fome a
soncircular orifice are alt three-dimensional parabolic Nows.
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Although the apparent différence between the two- 4nd ihree-dimensional
parabilic siteations @5 dight, the solution procedure noeded Jor three.
Almensional parabolic problems s Tar more complex than that Tor twe
dimensional parsbolic Nows. (The SIMPLE procecime, it is worth noting, was
fiest formulated in connection with  threc-dimensional parabolic fows in
Putankar and Spalding, 19722.) The resson is thar, afler the strearmwise
velocity faz been caleulated from the Streamwise momentum eguarion, the
fwa crossstream velocities cannot be obtained from the continuity equation
alone. To determine how the Row distributes itself in the two cross-stream
tircetiong, both cross-siream momenti equations must be solved. The
h'.ru-dinlcnsionnl‘parahu]ic procedie, an the ather liand, doos not employ the
CrossEireqm momen tum equation.

Breause of the direct refercnce Lo crossstresm momentuim eqiations, an
assumption ahoyt pressure, which goes onnoticed i the procedure for
r_wo-qﬂmcnsfﬂnal parabolic flows, comes o the forefront in e (hrae
gimensional parabolic procedusze. This assumpfion fs thar the sireamwiss
welocity s dnflupnced by 2 erosesectivnal mesn pressure B, while the
ums:'.atrenrn velocities are “driven™ by a pressere vagation B over the reoss
:ﬁrj;.;rf:m pressure “decoupling” s éssentia] to the wse of 3 parabalic

For external Aows. the streamwise variation of 2 i ubigined from the
shrrounding Irrﬂlatiun%m. In confined fMlaws, the B variation i adjusted
to satisfy overall mass colGervation over the duct cross section. In s gvern
forward step, once the streamwise velocity hos been obtzined with the
approprate sweamwise gradient of A, the problem of calewtating the rwo
crosssiteam velacities and the cross-sectlonal pressure distribution fe slmoet
identical 1 a two-dimensional elliptic problesm, which can be solved by the
ust of SIMPLE or SIMPLER. The details can be found in Patankar and
Spalding (1973a), which can be casily interpreted with the background
pronided by thizs book.

8.3 PARTIALLY PARABOLIC FLOWS

In sorme practical situations there exists a predominant Now diréction, and yel
the Crosstraam pressure variation iz nor negligible. Thos, the praseure
decoupling employed in the parabolic procedures je not appropriate for such
Tows. I gll other respeets, the solution can be obrafned by marching from
the opstream end of the domain (o the downstream end, bt the downstream
¢flects are ‘mansmitted upstream via pressore. Such Siludons are catled

*TJ-«. Croseseclinnz: prossyre pocould be regarded as a periurbation over the mesn
ArgTsare: 5. For the Puw po ke teeated a5 parabolit, the pressure Perimbation over 4 cross
seetinm should osmoll s thal, in (e sireamwite mementom equation, nio spnifcagy
vrrar B introdiced by 1l se of the ik pressure Fanstead of the uctu.-ﬂ' Tocal pn_-ssur.c.

e
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ngriieily pohedic Highly curved ducts, a jot iaoo cross steear, lucts with a
tenid ehanos of cinss section, and rotating passages ace exapples of partially
nasabolie stuationg, The basic concept of this class of Nows was prasented by
Fretap and Spalding (1475, 1976), and has beem applied to o [ilm-cooling
sizuztion by Beegeles, Gosinan, and Launder (1976, |973)

[n the partiafly parabotic calediation procedure, the prossume Teld s
siored far the entite calculation domain, whike o other variables are siored
fms Galy ong of fwo marching slations, Fog o pgiven pressure Neld, the
smurching procedure s employed just as in the [ully parabolic situation, whiic
s Loproved pressure field is obtained from g pressusecoceection equation or
4 Tressuie equation. Mamy repetitions of the marching proceduie are peeded
Lovere a canvarged solution §s Obtajned.

Comparced with the fully clliplic procedure, the fully parabolic procedurc
offers savings in Both computer time and compuiter stomge. The partiails
pazzbelic propedure saves storage, but the savings in compuler thine may not
m appreciable.

8.4 THE FINITE-ELEMENT METHOD

2.4-1 Motvation

Thne discrotization method described in this book las, becawse of it e ol
regular grids, the appearance of 2 {inite-difference method, In stross analysis,
the finite-element method is much more commonby used than the finitc-
difference mmethod; and, cven in heat transfer and fuid dow, applications of
ihe finite-element methad have started appearing in increasing numbers,

The finite-element method subdivides the calculation domain  into
glomiants, such 25 the triangular elements shown in Fig. 8.1, The discretication
sgeations are usually derived by the use of a variational principle when onc
zxists or by the Galerkin method, which is a special case of the meothod of
wrizhied residupls, In the derivation, a “shape function™ or prefile assumpdion
5 crilie Row the dependent variable & varics over an cleméni

A4 bxplainsd In Saction 3.2, the control-valume locmelation is 2oother

pezial cnis ol the metbind of weighted residusds. We afse have used shzpe
fupctinns 1o descnbe the vwaAdtion of @ between dwo pid points. It ose
Pepgens thet these shape [eactivns have been Jocally one-dimensional; it is
e o this feature that the grd Yines are regquined to fomm an erthogonal

e fe

Fromm chiy wewneint, the fnic-element methed should sot be considerc.d
=x oz apsicaliy differesl method. its extra power lies oniy in ity ahilily 10 ws2
7 drepular grid. Afthough we have discussed in Scction 7.3 sorne ways ol
zaz0ting wur diserclization method to ircegular geometrics, there is no doubt

the trizngular grids shown in Fig 8.1 provide more flexibifity in fitting

SREECIAL TOMCS 5%

Figure 8,1 Exaples of demzm diseretj-
uticn by Sriangular clements.

irregulir domains and g providing tocal grid refinement. The development of
A satisfactory [imite-clement method for heat transfer snd iluid Now seems
highly desiralile.

5.4-2 Difliculties

Although this potential of the Gnitctlement method has becn recognized for
guite some time, cortpin difficulties have, wnlll recently, blogked progress:

|. The Foremuost difficeliy concerns the upwind nature of convection. A
straightforward application of the standard fnite-element method would
give a Formulation that is very sicular 1o the centrab-difference scheme; and
we know too well that such s formulation can lead to physically unrealistic
rosults, Something like the upwind or the cxponential scheme B neaded,
but it is not clear how to adapt such 4 formulation to irrexular gids.

2. The use of stageared grids was possible because the grid lines were laid out
along coordinate directions, and the velocty components in these direc
tions could be appropriately displaced. The need for something Hke a
stappered prid iy present in the trizngular geid too; iF 2l the variables were
to be calcwlated for the some prid points, difficulties similar to thote
discussed in Soction 6.2 would certaindy arisa.

3. Most of the published applications of the flnite-element method to Auid
New employ a direct simultancuus solution of the ¢ontinuity equation and
all the momentum cquetions to yield the selocily components and
pressure, Since direct solutions are expensive, it is desirable to formulate a

T T . R e =
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SIMPLElike sequential -rather than shmullancous-solinion ol the moien-
{um and conlinuity equations,

4. For most NMuid-Mow-heat-transfer practitionecs, the OGnile-element method
still has a veil of mystery about it. The varlational formulation, or even the
Galerkin approach, docs not have an easy physical inferpretation, In
conformity with the philoesophy adopted in this book, it is desirghle 1o
produce a3 wversion of the lnite-clement method in which the physical
meaning of the discretizafion equations can be readity understond,

8.4-3 A Control-Volume-hased
Finite-Element Method

The tegent work of Balia and Parankar (1979, 1979%) has been suciessiul in
removing the aforementionad difficuliies, and 2 Imide-tlement methad that i
clasely related 1o the diserctization method described nr his ook has bBeen
formulated, The actual formolation was worked oot for g twa-dimensional
situation, but care was tzken to ensure that the exteasion fo three dimensions
¢an be made without the need lor any Tucther noveltios. A brief description of
tie salient features of the method now Tnllows,

1. For the triangelar urid the dependent vartahles are caloulared for grid
paints fhat lie at the vertices of the triangles. The discretization eguations are
Formed by the contrebvolumic method: ic, the dilferential equation is
imzergrated over the tvpical control solome shown in Fig. 8.2, The cumtrol
volumes are construcied by joining the centroid of each triangle o the
midpaints of the sides of that triangle. This construction of the condgul
volume was carlier proposed by Winglow (1967). It can be seen ftom Fig. 8.2
that the iiangular elements adjacent to the grd point P oazcommuodate
purtions of the control volume and the corresponding control-volume Faces.
The diseratization cquation is formed by adding the contiibotions of these
glarnents to the integral copservation for the control volume.

anpular prid.

Fimree 8.2 Curarol el Far the §r-

N e
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2. A shape Tunction deseribing the variation of ¢ over an eloment is
reeded to caleulate the Mux across the control-volume faces that fall within
the efement. The standard shape function for the triangular element is

d=g+bhxtep, (8.1}

where the constants a, & ¢ are cxpressed in terms of the three grid-point
values of ¢ For convection-diffusion problems, this shape function would give
results much like the central-difference scheme in finite-difference mcthods,
Since these results do becomte physically unrealistic when the Peclet number is
large, the shape function given by Eg. (8.1) is uracceptable, The alternative
proposed by Baliga and Patankar (19793) is the shape funcrion

= o PUA
=B A+HLAP-~F— A 1 (82

where £ is the rosultant velacity fn tie element, X js the coordinate puinting
in the direction of the resultant velocity, and ¥ in the direction nomal
tua it Fhe constanits A, & Care found in terms of the threa vidues of @ at the
vertices of the triangle.

On the basis of the discussion af convection and JifTusion it Chapter 3
the rativmale for the wse of the exponcntial function in Eq. {B.2) should I:Ir;
yuite ohvious. Fur low Peclet numbers, Eq, (8.2) reduces to Eq. (8.1}, which
i the appropriate shipe function for conduction prablemss. It is throueh the
shape Tunction (8:2) that the spirit of the cxponential wclieme has Besn
introduced Into the finite-eiement method.

In fact, the exponential shape fmetion has achicved gomething anore,
Whereas the formulation in Chapter 5 uses locally one-dimensional renresenta-
tion, Eq. (8.2} works with the resubtantvelocity direction. E‘nnmque:uIy, thia
finite-clemeat method based on Eg. {8.2) produces much less fakse diffusion
than docs the formuolation in Chapter 5.

3. The issue of the staggered zrid is handled by calculating the pressure

L m KD

b
¥ Figues 8.3 Macrotriangles and

Gy subirianples.
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i
3

an 4 ogrid that is different from the grid used for wll the other vmiables: The
arcanure s caloulared at the vertices of “macratriangles,” which we shown in
5.5 by smell circles. Each mucrotriangle is divided it Mour subtriangles.
maltriangles form the geid for the velocity components and all other
VAHIBTLIE DNCEDE Prussune.

1, A sequendis] solution algurithm in e spiric of SIMPLER 35 Tormu-
brtpil. The pressure cquation and the pressure-correciion equation are derivedl
Crevtn e eartinndty eguestion written for 2 control velame defied Ty the

Ein

Sl g et

Tne . wiovalumesbased finite-element methoad owliined heee has uader-
v relatively Httle testing, and certainky numerons rellacments gan be nuade:
Howeyer, the method gsepresenss a logical and effective extensean of our
diseretization method to triangular grids.

Serd SR e - e

CHAPTER

NINE

ILLUSTRATIVE APPLICATIONS

T this last chapter, we shall look at a few applications of the numerieal
method deseribed in this bovk. The methed has been extensively tested and
applicd to a varicty of practicghsituations. A review paper (Patankar, 1975)
written in the early days of MPLE procedure contains a number af
examples that were available at that time. Since then, many more applications
have appeared in the literafure, A partial list of the publishcd applications of
the methad now follows.

Two-dimensional clliptic situations involving Muid flow and heat transfer
have heen computed by Lilly {(19768), Abdel-Wahed, Patankar, and Sparrow
{1978}, Moon and Rudinger (1977), Majumdar and Spalding (1977), Patankar,
Liv, znd Sparrow (1977), Durst and Rastogi (1977), Sparrow, Patankar, and
Ramadhyani (1977), McGuirk and Rodi (1978}, Patankar, Ramadhyani, and
Sparrow (1978}, Gancsan, Spalding, and Murthy (1978), Patankar, Sparrow,
and Tvanovié (1978), Sparrow, Patankar, and Shahrestani (1978), Sparrow,
Natiga, and Patankar {1978), and Patankar, lvanovié, and Sparrow {1979),

lssa and Lockwood {1977} have modified the basic calewlation method to
handle both subsonic and supersonic regions in a single domain. Turbulent
rezcting flow in two-dimnensionazl furnaces has been computed by Khalil,
Epalding, and Whitelaw (1975). Patankar and Spalding (1972b, 1974b) have
used the thoee-dimenstonal elliptic procedure for siteations invelving
turbulence, combustion, and radiation, Other thres-dimensional elliptic
problems heve been solved by Caretto, Gosman, Patapkar, and Spalding
{1972}, Patankar and Spalding (1974a, 1978), and Patankar, Basu, and Alpay
(1977, :
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The method for three-dimensional parebofic Mows has been applied (o
complex practical problems hy Patankar, Rastopi, and Whitelaw (1973),
Patankar; FPratap, and Spalding (1974, 1975), Patankar, Hafiinejpd, swl
Spalding (19753); McGuirk and Rodi (1977); Majumdar, Pratap, and Spalding
(1977), Rostogt and Rodi {1978), and Deloode and Patankar (1975).

A complete discussion of all these applications will not be attempted
here, The aim of this chapter is to give the reader a f22| for some applicationy
and {heén leave the rest to the imagination. Since vnly a few applications
would - serve  this purpose, i was copvenicnd o choose them from the
problems sofved by the author and his co-warkers.,

It is intevesting o note that ali the applications presented hiere lave heen
worked out by the use of only three peneral-purpuse compater programs. The
three computer programs differ only in their dimencionality and parabelic-
elliptic nature, The programs dre respectively designed for (1} two-dimensional
elliptic situations, (2} threesdimensional parabolic situations, and (3) three-
dimensional elliplic situations, It is possible to arrange each program to handle
either the Cartesian or cylindrical coordinate system. OF course, the adepla-
tion of any of the programs to a particular problem requires the incorporation
of appropriate mathematical models for the relevant phvsical processes {zuch
as turbulencs or chemical reaction) and the iptroduction of the problem
specifications (such as peometry, fluid propeeties, and haundary conditinns),
Although this adaptation often represents @ sipnificant effort, the use of

pzneral-purpose computer programs still provides a great convenience. %

Among the eight examples prasented jn this chapter, those in Scctions
9.4-9.6 invelve turhulent flow. The standard k-e model of rurbulence
{Launder and Spalding, 1974) is used in Sections 9.5 and 9.6, while a special
version of the mixingdenath model s employed in Section 9.4, The stéam-
generator problem in Section 9.8 employs the concept of distributed
rezistances for flow aver a tube bundle. The remaining sections deal wirh
lamingr-Now situations.

From the computational point of view, 1 two-dimensional elliptic problem
is involved in the sitwations trested in Sections 9.2-%.4 and 9.7; the problems
in Sections 9.1 and 9.6 émplay the threedimenpsional parabolic procedurs; and
Sectfons 9.5 #nd 9.8 illustrate the application of the theeeddimensional elliptic
procedure. All the situatlons are steady-$tate exeept the one i Section 9.3,
where 3 moving-heundary unsteady problem is handled.

9.1 DEVELOPING FLOW IN A CURVED PIPE

The axisymmetric flow [n 2 steaight chicular pips 5 two-dimensional in
character. The Mow Ia a curved pips, however, exhibits 3 three-dimensional
nature, The teasan is that the centrifugal ferce actiog noomal 10 the main
direction of flow cauvses ¢ secondary flow pattern i the pipe cross section

ILLUSTRATIVE AFFLICATIONS LA5

Canter of
curvature
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Vigurs 9.1 Secondacy Aow patbern jn the crems sestion of 1 cprved plpe |lrom Patankar,

Pratagy, and Spalding {1 974}).

(Fig. .10, As a rosult, the point of maximum aviz velneity thifts to the
nuiside.

The developing laminar flow in a curved pipe was calculated by Patankar,
Pratip, and Spalding (1974). A Tepreseritative  sample .of the resulis is
presented in Fig. 9.2, in which the axial welocity profiles on two difTersnt
drameters are shown at successive lueations along a bend, which is situated
downstream of a straight section of the pipe. The velocity profile thus starts
45 2 parabolic one and gradually distorts to fts fully developed shape In the
curved pipe. The computed results ars compared with the experimental data of
Austin (1971); the agreement can be soen to be quite good.

The paper presents many more results for flow and for heat transfer znd
compares them with experimentsl data. In a later study (Patankar, Pratap. and
Spalding, 1975), the twrbalens flow in curved pipes was computed by the ise
of 1 two-equation Lurbulence made], .

9.2 COMBINED CONVECTION
IN A HORIZONTAL TUBE

Patankar, Ramadhyani, and Sparrow {1578) have carried vut « computationsl
study of the fully developed laminar flow and heat transfer in a horizonial
tube thai i5 subjected to nonumiform circumferential heating, Two heating
conditians, which ere in cvidence in the insers of Fig. 9.3, were considersd, !r;
e, the tube wes onifvrmly heatad ovee the top ha!t and snlated over the
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Fuiure 9.3 Avermgd Nueclt aomberd for the horizontal mobe with sonunitprm, heating
Pirm Pataikar, Rémmd hvani; and Sparrow (1978 .
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Wz wrr b ‘\“ / _.,.’ E & z '\. J bottom, in the ather, the h_(.‘IlLE-'J‘ and insulated portions were reversed.
;; =3 = S s e g NEZ o P The nenaniform heating gives rise to 3 buoyaney-induged sccondary {low,
4 £agT | 2 E i_j".‘_ z 5 ; which leads o signiffcantly higher Nusselt numbers than those for pure forced
} : a5 _ T2 = convectivn. The coffcct s garticularly pronounced for the hottom-heating casc
: *] | / | I 4 ( z and for the larger Frandl number, as shawn by the averape Nusselt numbers
& & e i o @ @ & o g Iy plocted in Fig. 8.3. The abscissa iz a multiple of the modified Grashofl num-
- h = g = R o . 2 bor Gr*
& g E Further insiaht into these results can be obtained from the isatherms and
T 4

streamlines over the tube cross section, The results Tor botlomn heatipg ape
prosented in Fig, 9.4 for three different values of Gr'. In each cross-seciional
mepresentation, the dsctherms are plotied on the left, and the stréamlines on
the right. The secondary flow caused by the nonuniform heating can be
cloarly secn. AL the highest Grazshof number, the streamline pattern is rather
complicated, therc being 3 tendency to farm & “thermal™ above the lowest
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puint in the cross section. The iseilierms (ot this case exhibit a kind of stably
stratified structure in the top balf, end to follow the contour of the tube in
the bottem half, and indicate the rising thermal at the very bottom of the tube,

9.3 MELTING AROUND A VERTICAL PIPE

e}

We shall now consider the siteation shown in Fig. 8.5, A vertical pipe carrying
a hot fluid is embedded in a solid that is at its fusion temperature. With only
conduction heat transfer acting at the beginming, the melt layer has a uniform
thickness, But natural convection soon becomes Influential and causes the
Muid zt the top o be hotter than that at the bottom. This results in ihe
inclined interface as shown, with the largest thickness of the melt layer at the
top.

A numerical solution for the situation described was obtained by
Sparraw, Patapkar, and Ramadhyani (1977 A grid In a transformed co-
ordinate system was emploved, which slways fitted the everchanging and
irregular shape of the melt region. In the unsteady solution, the interfzce was
regarded a5 temporarily stationary during each time step; its position was
readjusted belore starting the next 1ime step to aceount for the interface heat
transfar. ! .

The time-dependent varfution of the heat transfer rate at the pipe surfaee
ts shown in Fig. 9.6, For our pucposes here, it is best to ignore the varjous
parameters in the flgure and coneentrate on the trends. At early times, the
situation i poverned by conduction, which causes a decrease in hezt transfer
as the fncreasing thickness of the melt layer offers o greater resistance. This is

|
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i Figure 9.5 Melting pruhiem [from Sparrow, Patankar, and Ramadhyani (1977}].
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felmived hy an inersdse in the heat rmnsfer rate that s brooght ghout by the
aotin ol patueal conveetion. AL latog tmes, e cate of heat ransfer is soen
G owads againg by now, the melt region is 3o darge thal heat §s carrded only
by the seoiroudating Maw, which fisall experiences goowing resisfanve alomg the
ten wall
The rletucal convection in the mell reginn and the shape ol Wie Intedfacn
Jin bE seen T Fig B.F for Whred cfpeesentalive cases, fore whoch the stredmline
viocRrne ace shawn. For the early-thne case, the conductloa-dominated melt

~iirerns and interface shapes that result feem significant naiaral sonvection,

2.4 TURBULENT FLOW AND HEAT TRANSFER
[N TNTERNALLY FINNED TUBES

A circular twbe with Jopgitudinal interoal fins s considersd 1o be @n elfoetive
devica for heat transfer enhancement. The fully developed Mow and beat
Irasisfer in such a fube wers computed by the bse of a mixingdength model
farmiulated for the gross-sectional geometry shown in Fig. 9.8. Complete
deesiic of the model and the resulting solutions are given in Patankar,

FE LS PRATTEY L AT B AT 17

Pvanowle, ol Spacrow (1979) It 6 sulficient v pode here thal the vdel
gaictlutes the sl mixing leogth based en the digtandes o o point from Lol
the Bn surfecd dnld e tube wall, opd thut the turbident yiscosity Is
mluenced | by he velociey pradients tn batl he eadisl aod sircuinfezential
iidcts. The vkedel jmoorporates o siggle adjustable comstant, which was
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Figure 3.7 Represeniative fhiw patleins, The carly situation is stiow iy (@), while 15) amd
ey tesult Tram vigooous natural convecijon [Trom Sparrow, Patankar, and Ramadhvani
“?TTH. ;
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Figere 9.8 Cross-sectionsl goome-
try of an indernally Minned  fube
[Trum  Patankar, [vanovlé, and
Spatrow {1979)].

chosen ro give good agresment with the experimenta] data fur alr Iuw
reported by Carnavas (1377).

Figure 9.9 shows the comparison of the predicted values of the Nusselt
number amd the frietion factor with experimental data o o2 way, the
satisfactory agreement shown is nat surprising, because the gdjustable consrant
in the mode]l was derived from the same axperimental data. On the viher Tand,
that the adjusiment of a sirgle constant is able to give good predictivns fur hoth
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Figure 9.9 Comparisua of predictod valuss of the Nusselt number azd Trictinn factor wil
the exprrimeatal data of Carnaves (1977) [from Palankar, Ivanovié, and Sparrow (1979
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Nu and § over a range of Reynolds numbers and for different numbers and
heights of fins is-a sgrificant achievement of the model,

9.5 A DEFLECTED TURBULENT JET

A turbulent jet issuing from a circular orifice can be analyzed 235 1 two-
dimensional parsbolic flow. However, when the jet iz deflected by a stream
normal to its axfs, an interesting three-dimensional elliptic situation arfses, as
sthematically shown in Fig. 9.10. Chimney plumes, flow under 2 V/STOL
alrcralt, and some film-cooling situations involve the deflected-jet confizumtion,

Patankar, Busu, and Alpay (1977) obtained 3 numerical solution for the
threcdimenslonal velocity field of the deflected jor on the basic of the ke
model of turbulence, Thus, in addition to the momentum and continuity
cquations, two differential equations for the turbulence quantities, namely the
furbulence kinetic enermy & and ifs dissipation rate e, were =zolved, The
standard values of the empirical constamis in the k-¢ model, as recommended
by launder and Spalding (1974}, were used; they were not adjusted to
[rrocure better agreciment with experimental datg, A

The predicted position of the jet conter lime ic shown in Fig. 9.11 for
various ratios of rthe jet velocity te the mainstream veloclly, Also shown are

5

Figure 9.10 Deflected-jet situation [from Patunkar, Basy, and Alpay (1977)].
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G sadedinental dota of Ramsey and Goldstzio (1970), Kelfer znd Bainds
(19630, and Jordinson (1953), Within the experimental scuttor, the agreement
of the numerical predictions with the data can be judged as satisfacrory.

in Fie. 9.12, we compare the coinputed welucity profiles with the
mugsured dres from Ramsey and Goldstein (19703 These are the profiles of
the =-direction velocity along the central yz plane foc four different values of

- the ratie of the jet velocity to the mainstroam veledidy is 2. Again, the

2
zzreement 1s easenahble,

to

26 A HYPERMIXING JET WITHIN
A THRUST-AUGMENTING EJECTOR

A thrust-sugmenting ejector s an arrangement for increasing the thrust of 2
primary iet by entraining secondary air from the atmosphers. It has possible
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Figure .02 Profiles of the zdisection velocity [irom Palonkar, Basu, and Alpay (1977 |-
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applications in Y/STOL aircralt. Ordinary jets from shot woeeles require long
mixing ducts to prodoce any sipnificant threst augmentatlon. Since such leng
ducts zre unsuitable for practical gireraft applications, a hypermixing nozzle is
used to accelerate the mixing process, 1ere we summarize the computational
investigation of a hypermixingjet ejector reported by Delvode and Patankar
(1978).

The geometry of the hypermixing nozzle and the resulting Mow field are
shown in Fig. 9.13. The nozzle exit is divided into several sepments, The Mow
issuing from these sepments s given an upward or downwand velucity
component in an alternating fashion; 1his i shown schematically in the inser
of Fig, 9.13. These aherpate velogity components lead 1o the Tormation of
streamwise vortices, indicated by the arrows on b crossstream plane in the
flaure, Also shown are the profiles of the velocity In the muein Mow direction.
The velocity maxima in front of adjacent sepments can be scen to lic
respectively above and below the center line, while in front of the dividing
line between two segments the velocity profile has twao penks,

Figure 9,13 Geometry and 1he Mow field of a hy permixing jat [from Defoody and Patankar
{191a).

ILLUSTRATIVE AMPLICATIONS |

Ejector weall

Hypermixing :"Hf:i‘;r_ Symmetry
1 pigne

elemanta
(mid-rlemans]

Frgure 9.14 Confyurat] ; g
(1978)), [ on chosch for numerical prediction [fom Delouds and Pt

For the situation chosen for computer analysis, the hypermixing jot was

praced in a diffuser as shown in Fig. 9.14. The cumputation was performed b
a marching procedure for the three-dimensional parabolic low, The ke mndr:]r
of turbulence, with the stamdard values of canstanis from Launder and
Spalding (1974), was used.
. :The comparison of precicted ind measured veloclly profiles s shown
in Fig. 9.15. All the qualitative legrares of the flow field—such a2 the double
peak between the elements, the appearance of a second poak ar t]':e
mid_-elcm-:nr location, and the merging of the two pezks at a fardownsiream
pﬂsijtiun—are carrectly predicted; the quantitative agreemnent i3 also fairfy
good.

The pressure rise through the diffuser is consdersd 5§ convenient
measute of the theust avsmentation zchieved, The predicted pressure rise
through the gjectar is compared with the axperimental data in Fig. 9.16. Once
again, the agreement can be regarded as reasonable. e
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Figure 9.15 Comparison of predicted and measwred velotity profikes. (o) =t
(&t x't = 25;: (¢) xft = 45 [from DeJoods and Patankar (1978)].
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97 A PERIODIC FULLY
DEVELOPED DUCT FLOW

Let us now consider the caleulation of the fluld flow and heat transfer for the
configueation shown in Fig. %.17. The situation is characterized by the
repetition of an identical geometrical module, such as the transverse plates
shown, Such configurations are common in heal exchangers and in heat
transfer abgmenlation devices. [t is casy o see that i the catire region,
consisting of a large number of modules, were used as a caleulation domain,
the required computer storage and computer time would be truly excessive. A
practical alternative is provided by recognizing that, beyond a certain develop-
mefit length, the velogity ficld will repeat itself module alter module, and the
temperature fleld also will exhibit 3 kind of similarity. It is, thercfore, possible
to calculate the Mlow and heat transfer directly for the typical module shown

-]

Figure 9.17 Transverse-platc array [{rom Patankar, Liu, and Sparrow (8T,
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by dashed lincs in Fig. 9.17, without having to deal with the entrance-region
problem. ’

The caleulation for the module may &t fizst sighy appear o be hurdened
with a difficulty: We do oot bave known values of velocity, tepperature, et
at the upstream and downsiream boundarics of the module, Tuat furthes
thought elimiates the difficulty. When the Nuid leaves the modole, it enfors
an identical next module. Therefore, the sitwation |s conceptually the ¢ a5
if the Muid leaving the module were (somehow) to reender the seeme e i
the upstream end, T this view, the upstream and dewnstream boundarics da
not form boundary [ocations at all: all streamwise stations zre as if arranged in
an cnodless loop,

Thiz concoptual framework s sulficient to formulate the numerigal
solution, which is described in detail by Patankar, Liv, and Sparrow (1977), A
representative solution for the module shown in Fig. 9,17 i presented in Fig
9.18 in the form of the streamlines. 1t can bie noted that thc Mew has G take
& rather toruous path 1o get around the tiansverse plates. This leads o the
targe recirculation zone on the dowmnstream sile of cach plate. The heat
transfer cafeulation for the same situation with a Prandt] number of 0.7 leads
to the Nusselt murmbers plotted in Flg. 2019 The lugher Nussell numbers on

0.50

036
0,35

0.14

i
|
1 T
Figure 9,18 Predicied Aow field for a Reynolds number of 1040 | Crem Parankar, Lid, aad
Eparcow (1977)1-
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Figure 919 Predicied Musselt numbers [from Parankar, Liy, and Sparrow (] 21711,

the frone face oof the plates art caused by the impinging Mow there, while the
slow recirculation sone on the back face gives much lower values. The increase
in the Musselt number with the Reynolds number is, in itsell, enlike the case

%o conventional thermally developed duct Oows, for which the Nusselt nusber

dependent of the Reynolds number.

9.8 THERMAL-HYDRAULIC ANALYSIS
OF A STEAM GENERATOR

This last example is included liere to illustrate two main points: that vseful
computations for realistic largescale industrial equipment can now be mads,
and that the “distributed-resistance™ concept can be effectively employed to
analyze configurations swch as heat exchangers, steam generators, condenszers,
ared coaling towers.

The distributed-resistance concept is applicable to cases in which a fluid
Mows tlrowgh g enclosure that is filled with pumerows solid objects such as
rods, tubes, or slats. The situgtion is then treated mueh ke flow in porous
media, with dislributed sinks of momentum and sources ar sinks of heat
produced by the solid objects, The distributed resistance can be obtained fram
tetailed computations swch as the ore in Section 9.7 ar directly from
empirical correlations for the approprate configuration.

The thermal-hydraulic analysts of a stéam generator, which is described by
Patankar and Spalding (1978), was carried out for the conflguration shown in
Fig. 9.20. The cyfindrical shell is uniformly filled with tubes {which are not

e e ey
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a Fip 9.20) The lut tobe (il dses apward i one half el the steam
senerator, lurns through the U bend at rhe top, and Nows downwand in the
ciler hall, An economizer is howsed in the Jower part of the geimator foc e
pursuse of bringing the feedwater up to the saturation Teenperature.

The numedeal solution was caried ouat to obtain the three velocity
conoodicnis, the pressure, the enthalpy for the shelb uid, and the enthalpy
(or seinperature) of the tube fuid. For the situagon considered, the fube (asd
remancd {n the liguid phese throughout, and its mass fow rate was koown
frenn tha Inlet conditions.

The computed velocity field on the central vertical plane is shown in Fig,
.21, The atraws denote the velociey vectors m both magnitude and direction,
The peneral magnitude of the velocly can be seen to increase as the Auid riscs
in the stenn generaior: this is in response to the lower values of density in the
uppar part. The welocity field in the lower left-hand coricr of the faurc
indicates the wp-zag flaw path theough the ccunomizer.

Fipure 9.22 shows the steam-quality distribution on the cenmtrzl vertical
plang. The lower left-hand corner is blank because the fluid in the coconamier
it rostly subcooled water, In general, the qualities oo the right side {ie., the
“hot'" side) are greater than those on the left side. This disparity is scen ta
cxist zll the way to the exit.

Exit
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ligure 2,21 Shellside welacity  vectors
on the vertical pline of symmetcy [from
Parankar g Spalding (1978)].

Figure 9.22 Contours of steam guality
on the verlical plans of symmeiry [from
Patapkar and Spalding {1978}].
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Figure .20 Steam-gencrator Coniigura-
tion. (The tubes areé not shown; the
Tigure i noq deawnm o scale; the hari-

= ety g it
r;=:dw&ref-“..LTH_L : { i f\: zomial dimension is shown eniacged by a
nonts it et MM Al s B factor of about 2.} [From Patankar and

Spalding (1974).]

Hot-side ports

Cold side Haot side

9.9 CLOSING REMARKS

In this book, we have developed a numerical methed for heat tramsfer, fuid
flow, and related phenomens; evelved 2 philosophy of numerical computation
througls pliysical understanding and insight; and presented iflustrative examples
of agtual computations. Sufficient details of the method are given to enable
readers to wrile their own computer programs. The readers are also
equipped with meaningful criteriz with which to jedge other methods. The
purpose of the hook would be well served if each reader became an active
practitioner of, and possibly an innavator In, the exciting field of numerical
heat transier and fAuid fow.




NOMENCLATURE

e

comvection-filfusion coelficient, Bg. (5.37) also used to
denote area in Chapter § -
caelficient in the discretization equation

convection-diffusion coefficient, Eq. (5.37)

x-direction body force, Eq. (2.11)

constant term in the diseretization equaticin

specific heat

diffusion conductance, Eq. (3.9

coefficient of the pressure-difference term, Fy. (6.16)

Now rate through a control-volume face, Eq. (5.3

weighting factor, Eq. {4.34)

length ratio, Eq. (4.6)

generation rate of terbulence cnergy, Eq. (2.] 2}

specific enthalpy in Chapter 2; heat transfer coefficiant in
Chapter 4

inertia wsed for underrclaxation, Eq. (4.56)

total (convection + diffusion) flux

diffusion flux of chemical species |

normalized Nux, Eq. {5.35)

thermal  conductivity; 2lso used ' to denote the turbulence
kinctic energy, Eq. (2.12)

mass {raction of the chemical species [

Peclet aumber, Eq. (5.18); also uscd a5 a TDMA coefficlent in
Chapter 4

pressuro

pressure correction
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TOMA coetficieat

heat flux

residual, Eqs. {3.8) and (7.5}

rate of seneration of species { by chiemical reaction, L. (2.2)
radial eoordinate

weperal souree term, B, (2.13)

conataat patt of the linearized soorce lean, Eg. (3.70)
volumetreic tate of heat gencration, o, {2.5)
cocificient of Tp for dp)in the lincariced source expression,
En. {3.16)

LT perature

tirme

x-direction velogity

welueity vector

psendovelocity in the x direction, Eq. (6.26)

velocity based on the guessed pressure p”

viscous seures term in Eg. [2.110)

pudirection velocity

similar tafi, ut

wiighting function, Eq. (3.9)

z-direction velocity

similar to &, 4™

coordinates

relaxation factor, Eq. (4.53)

rclaxation factor for pressure, Eq. {6.24)

general diffusion coefficient, Eq. (2.13).

diffusion coefficient for species 1, Eq. (2.3)

time step

xdirection width of the control volumne

xdirection distance between two adjacent grid points
similar to Ax, &x

similar 1o Ax, §x

turbulence dissipation rate, Eq. {2.12}

viseosity

depsity

zeneral dependent variable, Eq. (2.13)

neighbar in the negative 2 direction, i.e., at the botom
contiol-valume face between Pand 8

neighbar in the positive x direction, Le., on the cast side
conirol-volume face between Pand £

neighbor in the positive y direction, i.g., on the nocth side
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1
nl
.fj

by

Superscripts

Special symbal
[AB.Cl

@

control-volume face between Fand v
peneral neighbor grid point

central grid point wnder consideration
neighbor in the negative y dircetion, e, on the south side
controlvolume face between P and &

neighbor in the positive z dicection, ic,, at the top
contrul-volume face between Fand T

neighhar in the negative » direction, e, on the west side
controlvolume face between Pand W

new value (at time+ + Ar)of the dependent varizble

old value (at time ¢ of the variable

previous-iteration value of a variable; slso velocities based on a
fuessed pressure

largestof A, B, C,. ..
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