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Preface

In 1948 Karl Terzaghi, in the preface to the First Edi-
tion, wrote:

Unfortunately the research activities in soil mechanics . ..
diverted the attention of many investigators and teachers
from the manifold limitations imposed by nature on the appli-
cation of mathematics to problems in earthwork engineering.
As a consequence, more and more emphasis has been placed
on refinements in sampling and testing and on those very
few problems that can be solved with accuracy. Yet, accurate
solutions can be obtained only if the soil strata are practically
homogeneous and continuous in horizontal directions. Fur-
thermore, since the investigations leading to accurate solu-
tions involve highly specialized methods of sampling and
testing, they are justified only in exceptional cases. On the
overwhelming majority of jobs no more than an approximate
forecast is needed, and if such a forecast cannot be made by
simple means it cannot be made at all. If it is not possible
to make an approximate forecast, the behavior of the soil
must be observed during construction, and the design may
subsequently have to be modified in accordance with the
findings. These facts cannot be ignored without defying the
purpose of soil mechanics. They govern the treatment of the
subject in this book.

In the half-century since these words were written,
research in sampling and testing has continued unabated,
and a vast literature has accumulated about the properties
of soils, much of it directed toward advancing one or
another school of thought concerning idealized concep-
tions of soil behavior. During the same time, remarkable
advances in electronic calculation have made theoretical
forecasts possible for problems involving complex
boundary and stratigraphic conditions. Thus it may no
longer be true that if a forecast cannot be made by simple
means it cannot be made at all. In exchange for this
progress, however, it has become increasingly important
that the choice of soil properties used in the analyses be
based on a fundamentally correct knowledge of soil
behavior.

Part I of this edition is essentially a digest of the find-
ings of research workers concerning the properties of soil

that are of interest to engineers. The digest presents the
findings from a fundamental point of view rather than as
representing any one school of thought. Because of the
many contributions of the research workers, this part of
the book has been expanded markedly over that of the
previous editions.

Part II, on the other hand, has been increased only
slightly, because the essential theoretical tools were
already available 50 years ago. The development of finite-
element and similar procedures, although changing the
mode of many calculations, has not altered this fact.
Moreover, the closed-form solutions of the classical theo-
ries of elasticity and plasticity permit the simple, rapid
approximate calculations that should always be made to
provide a “back of the envelope” estimate to permit judg-
ing the need for or the reasonableness of the results of
any more elaborate calculational procedure.

As in previous editions, Part III deals with the art of
getting satisfactory results in earthwork and foundation
engineering at a reasonable cost, in spite of the complexity
of the structure of natural soil formations and in spite of
the inevitable gaps in our knowledge of the soil condi-
tions. The semi-empirical approach described and advo-
cated in this Part has stood the test of time. It has become
the hallmark of the practice of geotechnical engineering.

The authors are indebted to Dr. M. T. Davisson, Mr. R.
M. Armstrong, and Prof. J. H. Long for their constructive
reviews of the chapters on pile and pier foundations. The
patient and expert typing of the many successive versions
of the text by Mrs. Paul C. Jesse and Mrs. Joyce M.
Snider are gratefully acknowledged. The new illustrations
for this edition were drawn by Mr. Ron Winburn. Mr.
Marawan Shahien provided invaluable assistance in
checking the manuscript and in preparing, revising, and
solving the problems. Figures and tables from journals,
proceedings, and books are reproduced with permission
from the respective publishers.

RALPH B. PEck
GHOLAMREZA MESRI
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Preface to First Edition

Soil mechanics originated several decades ago under the
pressure of necessity. As the practical problems involving
soils broadened in scope, the inadequacy of the scientific
tools available for coping with them became increasingly
apparent. Efforts to remedy the situation started almost
simultaneously in the United States and in Europe, and
within a short period they produced an impressive array
of useful information.

The initial successes in this field of applied science
were so encouraging that a new branch of structural analy-
sis appeared to be in the making. As a consequence, the
extent and profundity of the theoretical investigations
increased rapidly, and experimental methods were devel-
oped to a high degree of refinement. Without the results
of these painstaking investigations a rational approach to
the problems of earthwork engineering could not have
been attempted.

Unfortunately, the research activities in soil mechanics
had one undesirable psychological effect. They diverted
the attention of many investigators and teachers from the
manifold limitations imposed by nature on the application
of mathematics to problems in earthwork engineering.
As a consequence, more and more emphasis has been
placed on refinements in sampling and testing and on
those very few problems that can be solved with accuracy.
Yet, accurate solutions can be obtained only if the soil
strata are practically homogeneous and continuous in
horizontal directions. Furthermore, since the investiga-
tions leading to accurate solutions involve highly special-
ized methods of sampling and testing, they are justified
only in exceptional cases. On the overwhelming majority
of jobs no more than an approximate forecast is needed,
and if such a forecast cannot be made by simple means
it cannot be made at all. If it is not possible to make an
approximate forecast, the behavior of the soil must be
observed during construction, and the design may subse-
quently have to be modified in accordance with the
findings. These facts cannot be ignored without defying
the purpose of soil mechanics. They govern the treatment
of the subject in this book.

Part A deals with the physical properties of soils and
Part B with the theories of soil mechanics. These two
parts are very short, but they contain all that engineering
students and the average engineer need to know about
soil mechanics proper at the present time. The heart of
the book is Part C.

Part C deals with the art of getting satisfactory results
in earthwork and foundation engineering at a reasonable
cost, in spite of the complexity of the structure of natural
soil strata and in spite of the inevitable gaps in our knowl-
edge of the soil conditions. To achieve this goal the engi-
neer must take advantage of all the methods and resources
at his disposal—experience, theory, and soil testing
included. Yet all these resources are of no avail unless
they are used with careful discrimination, because almost
every practical problem in this field contains at least some
features without precedent.

Every discussion of practical problems in Part C starts
with a critical survey of conventional methods and pro-
ceeds step by step to whatever improvements have been
realized with the assistance of the results of research in
soil mechanics. Therefore, the experienced engineer is
advised to start reading the book at the beginning of this
part. He should use Parts A and B only for reference, to
get information about concepts with which he is not yet
familiar. Otherwise he would be obliged to digest a con-
siderable amount of material before he would be in a
position to realize its function in his field of interest.

The details of the methods for copying with the practi-
cal problems covered by Part C may change as experience
increases, and some of them may become obsolete in
a few years because they are no more than temporary
expedients. Yet the merits of the semiempirical approach
advocated in Part C are believed to be independent of
time. At the end of each article of Part C the reader will
find a list of references. In their choice priority was given
to those publications that are likely to foster the urge and
capacity for careful and intelligent field observations. In
connection with these references it should be emphasized
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xXit PREFACE TO FIRST EDITION

that some of the discussions and closures may contain
more important information than the articles themselves.

Since the field of soil engineering is too broad to be
covered adequately in a single volume, various important
topics such as highway, airport, and tunnel engineering
had to be excluded. Brief references conceming these
fields have been assembled in an appendix.

In its early stages, the manuscript was critically studied
by Professor C. P. Siess, whose comments were especially
helpful. The authors also appreciate the suggestions of
the several practicing engineers who read various portions
of the text. In particular, they are indebted to Mr. A. E.

Cummings, Mr. O. K. Peck, and Mr. F. E. Schmidt for
criticisms of Part C, to Dr. R. E. Grim for review of
Article 4, and to Dr. Ruth D. Terzaghi for assistance in
the preparation of Article 63.

Tables and figures taken in whole or in part from other
sources are acknowledged where they occur in the text.
The drawings are the work of Professor Elmer F. Heater.
For his co-operative interest and skilful work the authors
are indeed grateful.

KARL TERZAGHI
RALPH B. PECK



Introduction

Soil Mechanics in Engineering Practice, Third Edition,
is divided into the following three parts:

1. Physical Properties of Soils.
II. Theoretical Soil Mechanics.
II1. Problems of Design and Construction.

Part I deals with the physical and mechanical properties
of homogeneous specimens of undisturbed and remolded
soils. It discusses those properties which serve as conve-
nient criteria for distinguishing between different soils
and provides instructions for describing soils adequately.
It also deals with those soil properties that have a direct
bearing on the behavior of soil masses during and after
construction operations. Part I also deals with the tech-
niques for securing information about the soil conditions
at the chosen site by boring, sounding, sampling, and
testing. In spite of the great amount of time and labor
involved in such exploratory work, the results commonly
leave much room for interpretation.

Part II provides the reader with an elementary knowl-
edge of the theories required for solving problems involv-
ing the stability or bearing capacity of soils or the
interaction between soil and water. All these theories are
based on radically simplifying assumptions regarding the
mechanical and hydraulic properties of the soils. Never-
theless, when properly applied, the results obtained by
means of these approximate procedures are accurate
enough for most practical purposes.

Part III deals with the application of our present knowl-
edge of soil behavior and of the theories of soil mechanics
to design and construction in the field of foundation and
earthwork engineering,

The physical properties of soils could be discussed
quite properly in a general study of the engineering prop-
erties of materials, and the theories of soil mechanics
constitute a part of the general subject of theoretical
mechanics. However, design and construction in the field

of foundation and earthwork engineering, which consti-
tutes the third part of this book, is essentially an indepen-
dent subjectin its own right, because it involves methods of
reasoning and procedure that have no counterpart in other
fields of structural engineering. In all other fields, the engi-
neer is concerned with the effect of forces on structures
made of manufactured products such as steel and concrete
or carefully selected natural materials such as timber or
stone. Since the properties of these materials can be deter-
mined reliably, the problems associated with design can
almost always be solved by the direct application of theory
or the results of model tests.

On the other hand, every statement and conclusion,
pertaining to soils in the field involves many uncertainties.
In extreme cases the concepts on which a design is based
are no more than crude working hypotheses that may be
far from the truth. In such cases the risk of partial or total
failure can be eliminated only by using what may be called
the observational procedure. This procedure consists of
making appropriate observations soon enough during
construction to detect any signs of departure of the real
conditions from those assumed by the designer and of
modifying either the design or the method of construction
in accordance with the findings.

These considerations determine the subject matter and
method of presentation of Part III, which contains a discus-
sion of the general principles of the design of structures
such as retaining walls, earth dams, and foundations. The
behavior of all such structures depends chiefly on the phys-
ical soil properties and the subsoil conditions. Because our
knowledge of subsoil conditions is always incomplete,
uncertainties inevitably enter into the fundamental design
assumptions. These uncertainties require and receive con-
tinuous attention in the text. Similar discussions are not
required in textbooks pertaining to other fields of structural
design, because the reliability of the fundamental assump-
tions concerning the properties of the other common con-
struction materials can almost always be taken for granted.
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Symbols

A = porewater-pressure coefficient

A (m?) = area

A, = activity = [,/CF

A, (m? = base area of pile or pier

A, = area ratio of sampling spoon

a = exponent in empirical expression for component
of shear strength resulting from suction

amax(gal) = maximum ground surface acceleration pro-
duced by an earthquake

a, (1/kPa) = coefficient of compressibility

a,, (1/s) = compressibility with respect to time

a,s (1/kPa) = compressibility with respect to effective
vertical stress; coefficient of swellability
= Ae/Ao,

B = porewater-pressure coefficient = Au/Ap

B (m) = width

b (kPa) = constant in empirical expression for compo-
nent of shear strength resulting from suction

C (any dimension) = constant

C (1/kPa) = compressibility of soil skeleton

C (kN) = resultant cohesion

C¢ = coefficient of curvature = D3y/DyDg

Cy = uniformity coefficient = Dgy/Dyg

C, (kN) = total adhesion

C. = compression index = Ae/A log a,; creep ratio

C. = secant compression index from a point defined
by the recompression curve and preconsolidation
pressure

Ae/A log k

= recompression index

= swelling index

C; (1/kPa) = compressibility of soil solids

C,s = swelling strain index = Ae,/A log o,

Cs = swelling strain suction index = Ae,/A log u,

Cs« = secondary swelling index = Ae/A log ¢

Csso = secondary swelling strain index = Ae,/A log ¢

C, = weighted creep ratio (failure by piping)

C,, (1/kPa) = compressibility of water

C, = secondary compression index = Ae/A log ¢

Qo0
|

C, = postsurcharge secondary compression index

C. = postsurcharge secant secondary compression
index defined from ¢,

CF = clay fraction

CRP = constant rate of penetration

CRS = constant rate of strain oedometer test

¢ (kPa) = cohesion intercept

¢ (m/s) = compression wave velocity

¢’ (kPa) = cohesion intercept of Mohr-Coulomb failure
envelope in terms of effective stress at failure

c(m) = constant in Engineering News formula

¢, (m%/year) = coefficient of consolidation when flow
in the horizontal direction

¢n (kPa) = cohesion intercept mobilized at undrained
yield condition

¢,s (m*/year) = coefficient of expansion

¢, (kPa) = adhesion between soil and pile, pier, wall,
or sheeting

¢, (m*year) = coefficient of consolidation

D = discharge factor (in relation to vertical drains)

D (m) = depth; diameter; spacing between centers
of piles

D (mm) = grain size

Dy (mm) = effective grain size

D5y (mm) = mean grain size

Dp (m) = diameter of bottom of a tapered pile

D, (mm) = effective grain size

D¢ (m) = depth of foundation

Dy, (m) = depth of spread footings below basement
(measured from the basement floor)

D, = relative density of cohesionless soil

Dy (m) = diameter of top of a tapered pile

DS (m) = vertical drain spacing

DS = direct shear test

DSS = direct simple shear test

d (m) = diameter of pile; distance

d (mm) = grain size

dy, (m) = base diameter of drilled shaft

d; (m) = shaft diameter of drilled shaft
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XXVi SYMBOLS

E = efficiency of cutoff

E (kPa) = modulus of elasticity

E (volt) = difference in electric potential

E (kKN/m) = normal force on side of slice (stability
analysis)

E; (kPa) = initial tangent Young’s modulus

E; (kPa) = modulus of deformation computed from
pressuremeter measurement

E; (kPa) = drained Young’s modulus

E,, (kPa) = pressuremeter modulus

E, (kPa) = undrained Young’s modulus

EI (kPa-m*) or (kN-m?) = flexural stiffness of pile
or wall

EOP = end-of-primary consolidation

EOP g, (kPa) = preconsolidation pressure determined
from end-of-primary e vs log o, curve

ESSA = effective stress stability analysis

e = void ratio

ey = in situ void ratio under effective overburden
pressure gy,

e, = critical void ratio

emax = void ratio in loosest state

enin = void ratio in densest state

e, = void ratio at the end-of-primary consolidation

e,, = volume of water per unit volume of solid matter
(for saturated soil ¢,, = e)

F (kN) = reaction; resultant force

F = factor of safety

FS = factor of safety

f = coefficient of friction between soil and base of
structure

f; (kPa) = push cone penetrometer sleeve resistance

f; (kPa) = sum of friction and adhesion between soil
and pile or pier; yield strength of a tie

fo (1/s) = natural frequency (vibrations)

fi (1/s) = frequency of impulse (vibrations)

G, = air-space ratio (drainage)

G, = specific gravity of solid constituents

g (gal) = acceleration due to gravity

H (m) = thickness of stratum except when used in
connection with consolidating layer. In this event,
H = maximum drainage distance

H (m) = height of fall of hammer (pile driving)

H_. (m) = critical height of slope

h (m) = hydraulic head or total head

h,, (m) = average vertical spacing between struts

h. (m) = height of capillary rise; critical head for
failure by piping

h. (m) = actual hydraulic head at which piping occurs

h.. (m) = height of complete saturation of drained soil

h., (m) = greatest height to which the water level in
the reservoir could rise with reference to tailwater
level without producing failure by piping

h., (m) = critical head for failure by piping according
to computation based on line of creep method

h; (m) = total head loss through a system = headwater
elevation minus tailwater elevation

h, = relative vapor pressure

h,, = relative humidity

h,, (m) = piezometric head

Ah (m) = potential drop (hydraulics)

IL = incremental loading oedometer test

I; = liquidity index

I, = plasticity index

I, = vertical strain influence factor

i = hydraulic gradient

i, = critical hydraulic gradient

i, (volts/m) = potential gradient, electro-osmosis

i, (kN/m?) = pressure gradient

iy, iy, i; = hydraulic gradient in x-, y-, z-directions

K = ratio between intensities of effective horizontal
and effective vertical pressures at a given point in
a mass of soil

K, = coefficient of earth pressure at rest (value of K
for initial state of equilibrium)

K,, = coefficient of earth pressure at rest in normally
consolidated young deposits

K, = coefficient of active earth pressure

Kp = coefficient of passive earth pressure

Kps = coefficient of passive earth pressure during pas-
sive shearing

K (kPa) = bulk modulus of soil skeleton

K (kPa/m) = spring stiffness

K;, (kPa/m) = modulus of horizontal subgrade reaction

K, (kPa) = bulk modulus of soil solids

K, (kPa/m) = coefficient of subgrade reaction

K, (kPa) = bulk modulus of water

K, = slope of gy, vs o relation in the recompression
range

k (m/s) = coefficient of permeability

k; (m/s) = coefficient of permeability in direction paral-
lel to bedding planes

k; (m/s) = coefficient of permeability in direction per-
pendicular to bedding planes

k. (m/s) = coefficient of electro-osmotic permeability

k, (m/s) = coefficient of permeability in the hori-
zontal direction

ky, k, (kPa/m) = coefficients for computing pressure
of backfill against retaining wall

ky, (m/s) = in situ coefficient of permeability in hori-
zontal direction

ks, (m/s) = coefficient of permeability of soil in the
smear zone around vertical drain

k, (m/s) = coefficient of permeability in the vertical
direction

k,, (m/s) = in situ coefficient of permeability in verti-
cal direction

ky, ky, k, (m/s) = coefficient of permeability in x-, y-
, Z-directions

L (m) = length of line of creep; length; thickness of
a soil layer; length of footing



L, (m) = active zone depth = long-term postconstruc-
tion depth within which there is significant swelling
and heave

Lz (m) = length of a tie

Lgs (m) = depth of seasonal moisture fluctuation

L, (m) = preconstruction thickness of a compressible
layer with void ratio e,

[ (m) = length

l, (m) = maximum drainage length of vertical drain

M. (kN/m) = moment of cohesive forces

m = exponent in expression for drained shear strength
of overconsolidated clays; exponent in expression
for undrained shear strength of clays

m = reduction factor (earth pressures against bracing
in open cuts)

my (1/kPa) = coefficient of vertical compression =
Ae,/Aa, (my differs from coefficient of volume com-
pressibility in that the former includes settlement
resulting from the lateral deformation of soil.)

my (1/kPa) = average coefficient of vertical compres-
sion of soil within the depth of influence

m, = coefficient (stability analysis)

m, = exponent in the empirical expression for the
interrelationship between s,,, ay,, and o,

m, (1/kPa) = coefficient of volume compressibility

m,s (1/kPa) = coefficient of volume swellability

N = dimensionless factor (N,, N,, and N, = bearing
capacity factors; N, = stability factor in theory of
stability of slopes); number of blows on sampling
spoon during performance of standard penetration
test

N, = base stability number

N, = equivalent significant number of uniform shear-
stress pulses produced by earthquake or imposed in
the laboratory

N,; = number of equipotential drops (flow net)

Ny = number of flow channels (flow net)

N, = cone factor

Ngo = dynamic standard penetration test blow count

_ corresponding to a combined efficiency of 60%

Ngo = arithmetic mean of the Ngy-values within the
depth of influence of the footing Z;

{N))¢o = dynamic standard penetration test blow count
corresponding to a combined efficiency of 60% nor-
malized to effective overburden pressure of 100 kPa

Ng = flow value = tan® (45° + ¢'/2)

n = porosity; number of piles in group

n, = ratio between distance from bottom of lateral
support to point of application of earth pressure and
total height of lateral support

ng = depth factor (stability of slopes)

n, = ratio between maximum acceleration produced
by earthquake and acceleration of gravity

n, (kPa/m) = coefficient of horizontal subgrade
reaction

SYMBOLS XXVil

n, = initial porosity

OCR = overconsolidation ratio = ga,/0),
Oy max/Ovo

P = percent of grains smaller than given size

P = compression wave

P (kN or kN/m) = resultant pressure, normal force

P, (kN/m) = active earth pressure if arching is absent
(retaining walls; active Rankine state)

PCPT = push cone penetration test

PDA = pile driving analyzer

P, (kN/m) = active earth pressure if arching is present
(bracing in open cuts)

P, (kN) = resultant force of gravity on particle

Pp (kN/m) = passive earth pressure (May be subdi-
vided into [Pp];, which depends on unit weight of
the soil, and [Pp];, which depends on cohesion
and surcharge.)

P; (kN) = resultant of forces having seat on surface
of particle

P, (kN/m) = resultant water pressure

AP, (kN/m) = part of active earth pressure due to line
load ¢,

p (kPa) = pressure of normal stress; subgrade reaction

p' (kPa) = effective stress = (o] + 03)/2

P4 (kPa) = intensity of active earth pressure

pr (kPa) = limiting pressure reached in pressuremeter

p. (kPa) = pressure due to atmosphere

Dr (kPa) = capillary pressure

pq (KPa) = increase in pressure on retaining wall due
to surcharge g per unit of area

Ps1 (KN/m) = increase in pressure on retaining wall
due to surcharge g, per unit of length parallel to crest

ps (kPa) = swelling pressure

ps (mob) (kPa) = swelling pressure mobilized under
field conditions

psi (kPa) = swelling pressure at initial void ratio of
specimen

ps (kPa) = seepage pressure

QO (kN) = concentrated load; strut load

@ (kN) = permanent or dead load on the base of
the footing

Q (m®) = total discharge per unit of time

QML = quick maintained load

Q. (kN) = allowable load on pile

Q, (kN) = ultimate bearing capacity; ultimate static
resistance of pile

Q4 (kN or kN/m) = critical load on footing or pier
resting on dense or stiff soil (May be subdivided
into [Q]; due to weight of soil and [Q]; due to
cohesion and surcharge. Bearing capacity of circular
footing is denoted by O, and of square footing by
st')

Q; (kN or kN/m) = critical load on footing or pier
resting on loose or soft soil

Q. (kN) = dynamic resistance to penetration of pile



XXviii SYMBOLS

Qs (kN) = skin friction (total)

Q, (kN) = ultimate bearing capacity of pile group

Q, (kN) = ultimate bearing capacity resulting from
point resistance

Q, (kN) = side resistance of pile or pier

Q, (kN) = live load on footing including that due to
wind and snow

0O, (kN) = excess load on footing or raft, consisting
of net dead load Q,, and live load Q; load on pile,
consisting of Q exerted by building, and [Q]; + [Q];
due to negative skin friction

0. (kN) = ultimate uplift resistance of drilled shaft

q (kPa) = average gross bearing pressure over the
foundation

g (kPa) = shear stress = (g; — 03)/2

q (kPa) = uniformly distributed load; surcharge per
unit of area; uniformly distributed line load

g (m3/day) = seepage rate or flow rate

q, (kPa) = allowable soil pressure

q. (kPa) = the pressure at which the material passes
from the elastic into the semiplastic or plastic state

q. (kPa) = push cone penetrometer tip resistance

g. (kPa) = weighted mean of the measured g, values
of the sublayers within the thickness Z;

g4 (kPa) = ultimate bearing capacity

[g4]: = ultimate bearing capacity for dense or stiff
soil. Value for loose or soft soil denoted by {g,]>.
Bearing capacity of circular footing denoted by g,,,
and of square footing by gq,.

g, (kPa) = bearing capacity of soil beneath base of
pile or pier

g, (kPa) = cone tip resistance

g, (kPa) = unconfined compressive strength

g, (m*/day) = flow rate in vertical direction

q., (m*/day) = discharge capacity of vertical drain

R = ratio of size of filter material to size of material
to be protected

R (m) = radius of influence of well; radius of curvature
of deformed slope

R;= parameter used in hyperbolic stress strain equation

R, = total surcharge ratio

R; = effective surcharge ratio

r (m) = radius

r, = reduction factor to seismic shear stress computed
assuming rigid-body ground response

r, {m) = radius of soil discharging water into a verti-
cal drain

ry (m) = radius of friction circle (stability of slopes)

r, (m) = radius of mandrel used to install vertical
drain

r, (m) = radius of smear zone around vertical drain

r, = porewater pressure coefficient = w/o,

r,, (m) = radius of vertical drain

ro = radius of logarithmic spiral

S (kN/m) = total sliding resistance between base of
dam and subsoil

S (mm) = settlement; heave; penetration of pile under
hammer blow

S = shear wave

SML = slow maintained load

SPTC = soldier-pile tremie-concrete

S, (mm) = settlement at end of construction and appli-
cation of permanent live load

§. (mm) = temporary elastic compression of pile under
hammer blow

S, (mm) = settlement at end-of-primary consolidation

S, = degree of saturation

S, = degree of sensitivity

SQD = specimen quality designation

s (kPa) = shearing resistance; shear strength; drained
shear strength

sr(kPa) = average shearing resistance along the surface
of sliding located within a fill

s, (kPa) = undrained shear strength

s, (critical) (kPa) = undrained shear strength of lique-
fied sand

s, (mob) (kPa) = undrained shear strength mobilized
in full-scale field failures; undrained shear strength
miobilized during stage construction

s, (yield) (kPa) = undrained shear strength mobilized
at the triggering of liquefaction

5., (DSS) (kPa) = preconstruction undrained shear
strength measured by direct simple shear test

S.o (FV) (kPa) = preconstruction undrained shear
strength measured by field vane test

S. (TC) (kPa) = preconstruction undrained shear
strength measured by triaxial compression test

S. (TE) (kPa) = preconstruction undrained shear
strength measured by triaxial extension test

S0 (UC) (kPa) = preconstruction undrained shear
strength measured in unconfined compression
test

s, (UU) (kPa) = preconstruction undrained shear
strength from unconsolidated undrained compres-
sion test

5., (kPa) = preconstruction undrained shear strength

5.0 (mob) (kPa) = undrained shear strength mobilized
in full-scale field instabilities

T (kKN/m) = shear force on side of slice (stability
analysis)

T (degrees centigrade) = temperature

T, = construction time factor

T, = time factor for radial consolidation (vertical com-
pression with radial flow)

T, (kN/m) = surface tension of liquid

, = time factor for one-dimensional consolidation in

vertical direction

TC = triaxial compression test

TE = triaxial extension test



t (s) = time

t. (days) = construction time

r, (days) = postsurcharge time at which secondary
compression reappears

t,» (days) = time required to complete primary rebound
after removal of surcharge

t,s (days) = time required to complete primary consoli-
dation under surcharge

t, (days) = duration of primary consolidation

t; (days) = duration of surcharging

U = average degree of consolidation

U (kN/m) = total neutral pressure on base of dam;
total excess hydrostatic pressure

U, = average degree of consolidation assuming radial
flow only

U, = average degree of consolidation assuming vertical
flow only

UC = unconfined compression test

UU = unconsolidated undrained triaxial compres-
sion test

USSA = undrained strength stability analysis

u (kPa) = porewater pressure

u' (kPa) = excess porewater pressure

u, = pressure in air or vapor phase of soil

uy (kPa) = excess porewater pressure at the bottom of
oedometer specimen in a constant rate-of-strain
oedometer test

u; (kPa) = initial excess porewater pressure

u, (kPa) = preconstruction porewater pressure

u, (kPa) = suction; reference static or steady-state pore-
water pressure

uy (kPa) = postconstruction suction

u,, (kPa) = preconstruction suction

Au (kPa) = porewater pressure change caused by all-
around pressure or by shear stress

V (m?) = total volume

V, (m?) = total volume of voids

v (m/s) = discharge velocity

v, (m/s) = seepage velocity

Vi Vy v, (m/s) = discharge velocity component in x-,
y-, z-directions

W (kKN or kN/m) = weight

Wy (kN) = weight of ram of pile driver

Wp (kN) = weight of pile

Wp (kN) = weight of pile less the weight of dis-
placed soil

W, (kN) = effective weight of the soil (total weight
of soil reduced by hydrostatic uplift) that was located
above the base of the footing prior to excavation

w = water content in percent of dry weight

w; = liquid limit

w, = natural water content in percent of dry weight

w, = plastic limit

w, = shrinkage limit
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Z; (m) = depth of influence below which the vertical
strains under the foundation are negligible

z (m) = depth, position, or elevation head

Z. (m) = depth of tension cracks

o = angle

o = pressuremeter rheological coefficient

a = reduction factor on strength of clay adjacent to
shaft of pier

B (degrees) = slope angle

v (kN/m®) = total unit weight

v' (kN/m*) = submerged unit weight

v4 (kN/m?) = dry unit weight, unit weight of soil if
water is entirely replaced by air

Y. (KN/m?) = unit weight of water

vs (kN/m3) = average unit weight of solid constituents

Ysar (KN/m®) = unit weight in saturated state

A = change

A (kN/m) = energy lost in pile driving

& (degrees) = angle of wall friction; angle between
resultant stress on plane and normal to plane

8, (mm) = lateral movement

O max (Mm) = maximum lateral movement
= base of Naperian logarithms; unit strain

€. = compression strain index = Ae,/A log o,

€, = axial strain at failure

€z = reference strain

€, = vertical strain

€, = secondary compression strain index = Ae,/A log ¢

€ = axial strain rate

€, = reference axial strain rate

€, = axial strain rate imposed in a constant rate of
strain oedometer test

¢, = imposed axial strain rate producing zero excess
porewater pressure in a constant rate of strain oedo-
meter test

7 (kN/m?) = viscosity

8 (degrees) = angle; central angle

A = creep parameter

i = field vane correction factor for embankment and
foundation stability analysis; micron

Lyc = correction factor for unconfined compression
test on specimens from D to B quality

iy = field vane correction factor for slope stability
analysis

K, = time-to-failure correction factor for undrained
shear strength from laboratory tests

v = Poisson’s ratio

ps (Mg/m®) = density in dry state

p; (Mg/m®) = average density of solid constituents

Psar (Mg/m3®) = density in saturated state

p,, (Mg/m®) = density of water

o (kPa) = total normal stress

o' (kPa) = effective normal stress

o, (kPa) = major principal stress

o, (kPa) = intermediate principal stress
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o5 (kPa) = minor principal stress

oy (kPa) = effective major principal stress

o3 (kPa) = effective intermediate principal stress

o3 (kPa) = effective minor principal stress

o, = preconsolidation pressure or critical pressure
resulting from secondary compression

o1 (kPa) = effective major principal stress after con-
solidation and before undrained shear

o3, (kPa) = effective minor principal stress after con-
solidation and before undrained shear

0., (kPa) = in situ effective normal stress on a plane
with orientation «a to the horizontal

o, (kPa) = effective horizontal pressure

o, (kPa) = effective normal stress on a plane

o, (kPa) = preconsolidation pressure

o, (kPa) = preconsolidation pressure measured in iso-
tropic consolidation test

o, (kPa) = isotropic effective stress in an undis-
turbed specimen

o, (kPa) = total vertical stress

g, (kPa) = effective vertical stress

o,. (kPa) = vertical consolidation pressure

o,.r (kPa) = critical pressure at which the bearing
plate on unsaturated soils with metastable structure
plunged into the ground

o,r (kPa) = postconstruction total vertical stress

o, (kPa) = final effective vertical stress = o,, + A
o,

Omax (kPa) = maximum past pressure

0,, (kPa) = preconstruction total vertical stress

o., (kPa) = in situ effective vertical stress, effective
overburden pressure

g,, (kPa) = maximum effective vertical stress reached
before the removal of surcharge

Ao, (kPa) = axial stress imposed during the second
step of a triaxial test

T (kPa) = shear stress

T (seismic) (kPa) = equivalent uniform shear stress
pulse produced by an earthquake

7. (kPa) = shear stress carried by soil after consolida-
tion and before undrained shear

T, (kPa) = shear stress on horizontal planes

Tmax (kKP2) = maximum shear stress pulse produced by
an earthquake

7, (kPa) = shear stress applied under undrained condi-
tions followed by consolidation

T, (kPa) = shear stress on vertical planes

Teo (KPa) = in situ shear stress on a plane with orienta-
tion a to the horizontal

& = velocity potential (flow net)

&’ (degree) = effective-stress friction angle; angle of
internal friction; angle of shearing resistance

&b/, (degree) = constant-volume friction angle

&, (degree) = component of friction angle produced
by dilation

¢, (degree) = component of friction angle of granular
soils resulting from geometrical interference

b, (degree) = effective-stress friction angle mobilized
at undrained yield condition

¢, (degree) = component of friction angle of granular
soils resulting from particle rearrangement

¢, (degree) = secant friction angle for granular soils

¢, (degree) = angle of interparticle sliding friction

¥ = function defining flow lines

In a = Naperian (natural) logarithm of a

log a = logarithm of a to the base 10

ab = distance ab measured along a straight line

ab = distance ab measured along an arc

~ means approximately equal

15.3 indicates Eq. 3 in Article 15. The article number
appears at the top of each right-hand page.
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