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Preface

Multimedia is one of the most important aspects of the information era. Although there are
books dealing with various aspects of multimedia, a book comprehensively covering system,
processing, and application aspects of image and video data in a multimedia environment is
urgently needed. Contributed by experts in the field, this book serves this purpose.

Our goal is to provide in a single volume an introduction to a variety of topics in image and
video processing for multimedia. An edited compilation is an ideal format for treating a broad
spectrum of topics because it provides the opportunity for each topic to be written by an expert
in that field.

The topic of the book is processing images and videos in a multimedia environment. It covers
the following subjects arranged in two parts: (1) standards and fundamentals: standards, mul-
timedia architecture for image processing, multimedia-related image processing techniques,
and intelligent multimedia processing; (2) methodologies, techniques, and applications: im-
age and video coding, image and video storage and retrieval, digital video transmission, video
conferencing, watermarking, distance education, video on demand, and telemedicine.

The book begins with the existing standards for multimedia, discussing their impacts to
multimedia image and video processing, and pointing out possible directions for new standards.

The design of multimedia architectures is based on the standards. It deals with the way
visual data is being processed and transmitted at a more practical level. Current and new
architectures, and their pros and cons, are presented and discussed in Chapters 2 to 4.

Chapters 5 to 8 focus on conventional and intelligent image processing techniques relevant to
multimedia, including preprocessing, segmentation, and feature extraction techniques utilized
in coding, storage, and retrieval and transmission, media fusion, and graphical interface.

Compression and coding of video and images are among the focusing issues in multimedia.
New developments in transform- and motion-based algorithms in the compressed domain,
content- and object-based algorithms, and rate—distortion-based encoding are presented in
Chapters 9 to 12.

Chapters 13 to 15 tackle content-based image and video retrieval. They cover video modeling
and retrieval, retrieval in the transform domain, indexing, parsing, and real-time aspects of
retrieval.

The last chapters of the book (Chapters 16 to 19) present new results in multimedia ap-
plication areas, including transcoding for multipoint video conferencing, distance education,
watermarking techniques for multimedia processing, and telemedicine.

Each chapter has been organized so that it can be covered in 1 to 2 weeks when this book is
used as a principal reference or text in a senior or graduate course at a university.

It is generally assumed that the reader has prior exposure to the fundamentals of image and
video processing. The chapters have been written with an emphasis on a tutorial presentation
so that the reader interested in pursuing a particular topic further will be able to obtain a solid
introduction to the topic through the appropriate chapter in this book. While the topics covered
are related, each chapter can be read and used independently of the others.
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This book is primarily a result of the collective efforts of the chapter authors. We are
very grateful for their enthusiastic support, timely response, and willingness to incorporate
suggestions from us, from other contributing authors, and from a number of our colleagues
who served as reviewers.

Ling Guan

Sun-Yuan Kung

Jan Larsen
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Chapter 1

Emerging Standards for Multimedia Applications

Tsuhan Chen

1.1 Introduction

Due to the rapid growth of multimedia communication, multimedia standards have received
much attention during the last decade. This is illustrated by the extremely active development
in several international standards including H.263, H.263 Version 2 (informally known as
H.263+), H.26L, H.323, MPEG-4, and MPEG-7. H.263 Version 2, developed to enhance
an earlier video coding standard H.263 in terms of coding efficiency, error resilience, and
functionalities, was finalized in early 1997. H.26L is an ongoing standard activity searching
for advanced coding techniques that can be fundamentally different from H.263. MPEG-4, with
its emphasis on content-based interactivity, universal access, and compression performance,
was finalized with Version 1 in late 1998 and with Version 2 1 year later. The MPEG-7 activity,
which has begun since the first call for proposals in late 1998, is developing a standardized
description of multimedia materials, including images, video, text, and audio, in order to
facilitate search and retrieval of multimedia content. By examining the development of these
standards in this chapter, we will see the trend of video technologies progressing from pixel-
based compression techniques to high-level image understanding. At the end of the chapter,
we will also introduce H.323, an ITU-T standard designed for multimedia communication over
networks that do not guarantee quality of service (QoS), and hence very suitable for Internet
applications.

The chapter is outlined as follows. In Section 1.2, we introduce the basic concepts of
standards activities. In Section 1.3, we review the fundamentals of video coding. In Section 1.4,
we study recent video and multimedia standards, including H.263, H.26L, MPEG-4, and
MPEG-7. In Section 1.5, we briefly introduce standards for multimedia communication,
focusing on ITU-T H.323. We conclude the chapter with a brief discussion on the trend of
multimedia standards (Section 1.6).

1.2 Standards

Standards are essential for communication. Without a common language that both the
transmitter and the receiver understand, communication is impossible. In multimedia commu-
nication systems the language is often defined as a standardized bitstream syntax. Adoption of
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standards by equipment manufacturers and service providers increases the customer base and
hence results in higher volume and lower cost. In addition, it offers consumers more freedom
of choice among manufacturers, and therefore is welcomed by the consumers.

For transmission of video or multimedia content, standards play an even more important
role. Not only do the transmitter and the receiver need to speak the same language, but the
language also has to be efficient (i.e., provide high compression of the content), due to the
relatively large amount of bits required to transmit uncompressed video and multimedia data.

Note, however, that standards do not specify the whole communication process. Although
it defines the bitstream syntax and hence the decoding process, a standard usually leaves the
encoding processing open to the vendors. This is the standardize-the-minimum philosophy
widely adopted by most video and multimedia standards. The reason is to leave room for
competition among different vendors on the encoding technologies, and to allow future tech-
nologies to be incorporated into the standards, as they become mature. The consequence
is that a standard does not guarantee the quality of a video encoder, but it ensures that any
standard-compliant decoder can properly receive and decode the bitstream produced by any
encoder.

Existing standards may be classified into two groups. The first group comprises those
that are decided upon by a mutual agreement between a small number of companies. These
standards can become very popular in the marketplace, thereby leading other companies to
also accept them. So, they are often referred to as the de facto standards. The second set of
standards is called the voluntary standards. These standards are defined by volunteers in open
committees. These standards are agreed upon based on the consensus of all the committee
members. These standards need to stay ahead of the development of technologies, in order
to avoid any disagreement between those companies that have already developed their own
proprietary techniques.

For multimedia communication, there are several organizations responsible for the definition
of voluntary standards. One is the International Telecommunications Union-Telecommunica-
tion Standardization Sector (ITU-T), originally known as the International Telephone and
Telegraph Consultative Committee (CCITT). Another one is the International Standardization
Organization (ISO). Along with the Internet Engineering Task Force (IETF), which defines
multimedia delivery for the Internet, these three organizations form the core of standards
activities for modern multimedia communication.

Both ITU-T and ISO have defined different standards for video coding. These standards are
summarized in Table 1.1. The major differences between these standards lie in the operating bit
rates and the applications for which they are targeted. Note, however, that each standard allows
for operating at a wide range of bit rates; hence each can be used for all the applications in
principle. All these video-related standards follow a similar framework in terms of the coding
algorithms; however, there are differences in the ranges of parameters and some specific coding
modes.

1.3 Fundamentals of Video Coding

In this section, we review the fundamentals of video coding. Figure 1.1 shows the general
data structure of digital video. A video sequence is composed of pictures updated at a certain
rate, sometimes with a number of pictures grouped together (group of pictures [GOP]). Each
picture is composed of several groups of blocks (GOBs), sometimes called the slices. Each
GOB contains a number of macroblocks (MBs), and each MB is composed of four luminance
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Table 1.1 Video Coding Standards Developed by Various Organizations

Organization Standard Typical Bit Rate Typical Applications
ITU-T H.261 pXx 64 kbits/s, p =1... 30 ISDN Video Phone
ISO IS11172-2 1.2 Mbits/s CD-ROM
MPEG-1 Video
ISO IS 13818-2 4-80 Mbits/s SDTV, HDTV
MPEG-2 Video?
ITU-T H.263 64 kbits/s or below PSTN Video Phone
ISO IS 14496-2 24-1024 kbits/s A variety of
MPEG-4 Video applications
ITU-T H.26L <64 kbits/s A variety of
applications

4ITU-T also actively participated in the development of MPEG-2 Video. In fact,
ITU-T H.262 refers to the same standard and uses the same text as IS 13818-2.

blocks, 8 x 8 pixels each, which represent the intensity variation, and two chrominance blocks
(Cp and Cg), which represent the color information.

Group of Pictures (GOP)
A
' i,

Picture l

N
Y[y
GOB_r Slice vly
\ A
b i

| | Macroblock

FIGURE 1.1
Data structure of digital video.

The coding algorithm widely used in most video coding standards is a combination of the
discrete cosine transform (DCT) and motion compensation. DCT is applied to each block to
transform the pixel values into DCT coefficients in order to remove the spatial redundancy. The
DCT coefficients are then quantized and zigzag scanned to provide a sequence of symbols, with
each symbol representing a number of zero coefficients followed by one nonzero coefficient.
These symbols are then converted into bits by entropy coding (e.g., variable-length coding
[VLC]). On the other hand, temporal redundancy is removed by motion compensation (MC).
The encoder estimates the motion by matching each macroblock in the current picture with
the reference picture (usually the previous picture) to find the motion vector that specifies the
best matching area. The residue is then coded and transmitted with the motion vectors. We
now discuss these techniques in detail.
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1.3.1 Transform Coding

Transform coding has been widely used to remove redundancy between data samples. In
transform coding, a set of data samples is first linearly transformed into a set of transform
coefficients. These coefficients are then quantized and coded. A proper linear transform
should decorrelate the input samples, and hence remove the redundancy. Another way to look
at this is that a properly chosen transform can concentrate the energy of input samples into a
small number of transform coefficients, so that resulting coefficients are easier to code than
the original samples.

The most commonly used transform for video coding is the DCT [1, 2]. In terms of both
objective coding gain and subjective quality, the DCT performs very well for typical image
data. The DCT operation can be expressed in terms of matrix multiplication by:

Z =CTxc

where X represents the original image block and Z represents the resulting DCT coefficients.
The elements of C, for an 8 x 8 image block, are defined as
2 1 1/(2v/2 h =0
Cyun = ky, cos M where k, = /( \/_) when n
16 1/2 otherwise

After the transform, the DCT coefficients in Z are quantized. Quantization implies loss of
information and is the primary source of actual compression in the system. The quantization
step size depends on the available bit rate and can also depend on the coding modes. Except
for the intra-DC coefficients that are uniformly quantized with a step size of 8, an enlarged
“dead zone” is used to quantize all other coefficients in order to remove noise around zero.
Typical input—output relations for these two cases are shown in Figure 1.2.

quantized quantized
A
_r
original original
Typical quantization Typical quantization
operation without an operation with an
enlarged dead zone enlarged dead zone

FIGURE 1.2
Quantization with and without the “dead zone.”

The quantized 8 x 8 DCT coefficients are then converted into a one-dimensional (1D)
array for entropy coding by an ordered scanning operation. Figure 1.3 shows the zigzag scan
order used in most standards for this conversion. For typical video data, most of the energy
concentrates in the low-frequency coefficients (the first few coefficients in the scan order) and
the high-frequency coefficients are usually very small and often quantized to zero. Therefore,
the scan order in Figure 1.3 can create long runs of zero-valued coefficients, which is important
for efficient entropy coding, as we discuss in the next paragraph.
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FIGURE 1.3
Scan order of the DCT coefficients.

The resulting 1D array is then decomposed into segments, with each segment containing
either a number of consecutive zeros followed by a nonzero coefficient or a nonzero coefficient
without any preceding zeros. Let an event represent the pair (run, level), where “run” represents
the number of zeros and “level” represents the magnitude of the nonzero coefficient. This
coding process is sometimes called “run-length coding.” Then, a table is built to represent
each event by a specific codeword (i.e., a sequence of bits). Events that occur more often
are represented by shorter codewords, and less frequent events are represented by longer
codewords. This entropy coding process is therefore called VLC or Huffman coding. Table 1.2
shows part of a sample VLC table. In this table, the last bit “s” of each codeword denotes the
sign of the level, “0” for positive and “‘1” for negative. It can be seen that more likely events
(i.e., short runs and low levels), are represented with short codewords, and vice versa.

At the decoder, all the above steps are reversed one by one. Note that all the steps can be
exactly reversed except for the quantization step, which is where loss of information arises.
This is known as “lossy”” compression.

1.3.2 Motion Compensation

The transform coding described in the previous section removes spatial redundancy within
each frame of video content. It is therefore referred to as intra coding. However, for video
material, inter coding is also very useful. Typical video material contains a large amount of
redundancy along the temporal axis. Video frames that are close in time usually have a large
amount of similarity. Therefore, transmitting the difference between frames is more efficient
than transmitting the original frames. This is similar to the concept of differential coding and
predictive coding. The previous frame is used as an estimate of the current frame, and the
residual, the difference between the estimate and the true value, is coded. When the estimate
is good, it is more efficient to code the residual than the original frame.

Consider the fact that typical video material is a camera’s view of moving objects. Therefore,
it is possible to improve the prediction result by first estimating the motion of each region in
the scene. More specifically, the encoder can estimate the motion (i.e., displacement) of each
block between the previous frame and the current frame. This is often achieved by matching
each block (actually, macroblock) in the current frame with the previous frame to find the best
matching area,! as illustrated in Figure 1.4. This area is then offset accordingly to form the
estimate of the corresponding block in the current frame. Now, the residue has much less energy
than the original signal and therefore is much easier to code to within a given average error.
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Table 1.2 Part of a Sample
VLC Table

Run Level Code

1 11s

0100 s
0010 1s
0000 110s
00100110
0010 0001 s
0000 0010 10s
0000 0001 1101 s
0000 0001 1000 s
0000 0001 0011 s
0000 0001 0000 s
0000 0000 1101 0Os
0000 0000 1100 1s
0000 0000 1100 0s
0000 0000 1011 1s
Ol1s
0001 10s
00100101 s
0000 0011 00s
0000 0001 1011 s
0000 0000 1011 Os
0000 0000 1010 1s
0101 s
0000 100s
0000 0010 11s
0000 0001 0100 s
0000 0000 1010 Os
0011 1s
00100100 s
0000 0001 1100 s
0000 0000 1001 1s
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This process is called motion compensation (MC), or more precisely, motion-compensated
prediction [3, 4]. The residue is then coded using the same process as that of intra coding.

Pictures that are coded without any reference to previously coded pictures are called intra
pictures, or simply I pictures (or I frames). Pictures that are coded using a previous picture
as a reference for prediction are called inter or predicted pictures, or simply P pictures (or
P frames). However, note that a P picture may also contain some intra-coded macroblocks.
The reason is as follows. For a certain macroblock, it may be impossible to find a good enough
matching area in the reference picture to be used for prediction. In this case, direct intra coding
of such a macroblock is more efficient. This situation happens often when there is occlusion
or intense motion in the scene.

INote, however, that the standard does not specify how motion estimation should be done. Motion estimation can be a
very computationally intensive process and is the source of much of the variation in the quality produced by different
encoders.
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FIGURE 14
Motion compensation.

During motion compensation, in addition to bits used for coding the DCT coefficients of the
residue, extra bits are required to carry information about the motion vectors. Efficient coding
of motion vectors is therefore also an important part of video coding. Because motion vectors
of neighboring blocks tend to be similar, differential coding of the horizontal and vertical
components of motion vectors is used. That is, instead of coding motion vectors directly, the
previous motion vector or multiple neighboring motion vectors are used as a prediction for
the current motion vector. The difference, in both the horizontal and vertical components,
is then coded using a VLC table, part of which is shown in Table 1.3. Note two things in

Table 1.3 Partof a
VLC Table for Coding
Motion Vectors

MVD Code

—7 & 25 00000111
—6 & 26 0000 1001
—5& 27 0000 1011
—4 & 28 0000111

—3&29 00011
—2 &30 0011
—1 011

0 1

1 010
2& —30 0010

3&—29 00010

4 & —28 0000110
5 & —27 0000 1010
6 & —26 0000 1000
7 & —25 00000110

©2001 CRC PressLLC



this table. First, short codewords are used to represent small differences, because these are
more likely events. Second, one codeword can represent up to two possible values for motion
vector difference. Because the allowed range of both the horizontal component and the vertical
component of motion vectors is restricted to the range of —15 to 415, only one will yield a
motion vector with the allowable range. Note that the £15 range for motion vector values
may not be adequate for high-resolution video with large amounts of motion; some standards
provide a way to extend this range as either a basic or optional feature of their design.

1.3.3 Summary

Video coding can be summarized into the block diagram in Figure 1.5. The left-hand side
of the figure shows the encoder and the right-hand side shows the decoder. At the encoder, the
input picture is compared with the previously decoded frame with motion compensation. The
difference signal is DCT transformed and quantized, and then entropy coded and transmitted.
At the decoder, the decoded DCT coefficients are inverse DCT transformed and then added to
the previously decoded picture with loop-filtered motion compensation.

x(n = r(n) R
x (n)
r(m)
| +
— MC | I x (n)
X (n-1) ¢
| MV v
—»| ME [« Decoded Video Sequence
x(n) x (n-1) or x(n-1)
x(n): Current frame X (n): Prediction for x(n) x (n): Reconstructed Frame
r(n): Residue, x(n)-x (n) r (n): Decoded resi due DCT: Discrete Cosine Transform
MC : Motion Compensation ME: Motion Estimation Q: Quantizer
D: Delay IDCT: Inverse DCT 1Q: Inverse Quantizer
FIGURE 1.5

Block diagram of video coding.

1.4 Emerging Video and Multimedia Standards

Most early video coding standards, including H.261, MPEG-1, and MPEG-2, use the same
hybrid DCT-MC framework as described in the previous sections, and they have very specific
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functionalities and targeted applications. The new generation of video coding standards,
however, contains many optional modes and supports a larger variety of functionalities. We
now introduce the new functionalities provided in these new standards, including H.263, H.26L,
MPEG-4, and MPEG-7.

141 H.263

The H.263 design project started in 1993, and the standard was approved at a meeting of
ITU-T SG 15 in November 1995 (and published in March 1996) [5]. Although the original
goal of this endeavor was to design a video coding standard suitable for applications with bit
rates around 20 kbits/s (the so-called very-low-bit-rate applications), it became apparent that
H.263 could provide a significant improvement over H.261 at any bit rate. In essence, H.263
combines the features of H.261 with several new methods, including the half-pixel motion
compensation first found in MPEG-1 and other techniques. Compared to an earlier standard
H.261, H.263 can provide 50% or more savings in the bit rate needed to represent video at a
given level of perceptual quality at very low bit rates. In terms of signal-to-noise ratio (SNR),
H.263 can provide about a 3-dB gain over H.261 at these very low rates. In fact, H.263 provides
superior coding efficiency to that of H.261 at all bit rates (although not nearly as dramatic an
improvement when operating above 64 kbits/s). H.263 can also provide a significant bit rate
savings when compared to MPEG-1 at higher rates (perhaps 30% at around 1 Mbit/s).

H.263 represents today’s state of the art for standardized video coding. Essentially any bit
rate, picture resolution, and frame rate for progressive-scanned video content can be efficiently
coded with H.263. H.263 is structured around a “baseline” mode of operation, which defines
the fundamental features supported by all decoders, plus a number of optional enhanced modes
of operation for use in customized or higher performance applications. Because of its high
performance, H.263 was chosen as the basis of the MPEG-4 video design, and its baseline
mode is supported in MPEG-4 without alteration. Many of its optional features are now also
found in some form in MPEG-4.

In addition to the baseline mode, H.263 includes a number of optional enhancement features
to serve a variety of applications. The original version of H.263 had about four such optional
modes. The latest version of H.263, known informally as H.263+ or H.263 Version 2, extends
the number of negotiable options to 16 [5]. These enhancements provide either improved
quality or additional capabilities to broaden the range of applications. Among the new ne-
gotiable coding options specified by H.263 Version 2, five of them are intended to improve
the coding efficiency. These are the advanced intra coding mode, alternate inter VLC mode,
modified quantization mode, deblocking filter mode, and improved PB-frame mode. Three
optional modes are especially designed to address the needs of mobile video and other unre-
liable transport environments. They are the slice structured mode, reference picture selection
mode, and independent segment decoding mode. The temporal, SNR, and spatial scalability
modes support layered bitstream scalability, similar to those provided by MPEG-2.

There are two other enhancement modes in H.263 Version 2: the reference picture resam-
pling mode and reduced-resolution update mode. The former allows a previously coded picture
to be resampled, or warped, before it is used as a reference picture.

Another feature of H.263 Version 2 is the use of supplemental information, which may
be included in the bitstream to signal enhanced display capabilities or to provide tagging
information for external use. One use of the supplemental enhancement information is to
specify the chroma key for representing transparent and semitransparent pixels [6].

Each optional mode is useful in some applications, but few manufacturers would want to
implement all of the options. Therefore, H.263 Version 2 contains an informative specification
of three levels of preferred mode combinations to be supported. Each level contains a number
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of options to be supported by an equipment manufacturer. Such information is not a normative
part of the standard. It is intended only to provide manufacturers some guidelines as to which
modes are more likely to be widely adopted across a full spectrum of terminals and networks.

Three levels of preferred modes are described in H.263 Version 2, and each level supports
the optional modes specified in lower levels. In addition to the level structure is a discussion
indicating that because the advanced prediction mode was the most beneficial of the origi-
nal H.263 modes, its implementation is encouraged not only for its performance but for its
backward compatibility with the original H.263.

The first level is composed of

» The advanced intra coding mode

» The deblocking filter mode

« Full-frame freeze by supplementary enhancement information

» The modified quantization mode
Level 2 supports, in addition to modes supported in Level 1

« The unrestricted motion vector mode

* The slice structured mode

 The simplest resolution-switching form of the reference picture resampling mode
In addition to these modes, Level 3 further supports

 The advanced prediction mode

 The improved PB-frames mode

» The independent segment decoding mode

» The alternative inter VLC mode

14.2 H.26L

H.26L is an effort to seek efficient video coding algorithms that can be fundamentally dif-
ferent from the MC-DCT framework used in H.261 and H.263. When finalized, it will be
a video coding standard that provides better quality and more functionalities than existing
standards. The first call for proposals for H.26L was issued in January 1998. According to the
call for proposals, H.26L is aimed at very-low-bit-rate, real-time, low-end-to-end delay coding
for a variety of source materials. It is expected to have low complexity, permitting software
implementation, enhanced error robustness (especially for mobile networks), and adaptable
rate control mechanisms. The applications targeted by H.26L include real-time conversational
services, Internet video applications, sign language and lip-reading communication, video stor-
age and retrieval services (e.g., VOD), video store and forward services (e.g., video mail), and
multipoint communication over heterogeneous networks. The schedule for H.26L activities is
shown in Table 1.4.
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Table 1.4 Schedule for H.26L

Jan 1998 Call for proposals

Nov 1998  Evaluation of the proposals

Jan 1999 1st test model of H.26L (TML1)
Nov 1999  Final major feature adoptions
Aug 2001  Determination

May 2002 Decision

143 MPEG-4

MPEG-4 [7] was originally created as a standard for very low bit rate coding of limited-
complexity audiovisual material. The scope was later extended to supporting new function-
alities such as content-based interactivity, universal access, and high-compression coding of
general material for a wide bit-rate range. It also emphasizes flexibility and extensibility. The
concept of content-based coding of MPEG-4 is shown inz Figure 1.6 Each input picturds
decomposed into a number of arbitrarily shaped regions called video object planes (VOPs).
Each VOP is then coded with a coding algorithm that is similar to H.263. The shape of each
VOP is encoded using context-based arithmetic coding.

3

Sk &

Y

FIGURE 1.6
Object-layer-based video coding in MPEG-4.

Comparing MPEG-4 video coding with earlier standards, the major difference lies in the
representation and compression of the shape information. In addition, one activity that dis-
tinguishes MPEG-4 from the conventional video coding standards is the synthetic and natural
hybrid coding (SNHC). The target technologies studied by the SNHC subgroup include face
animation, coding and representation of 2D dynamic mesh, wavelet-based static texture cod-
ing, view-dependent scalability, and 3D geometry compression. These functionalities used to
be considered only by the computer graphics community. MPEG-4 SNHC successfully brings
these tools into the scope of a video standard, and hence bridges computer graphics and image
processing.
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1.44 MPEG-7

MPEG-7 is targeted to produce a standardized description of multimedia material includ-
ing images, text, graphics, 3D models, audio, speech, analog/digital video, and composition
information. The standardized description will enable fast and efficient search and retrieval
of multimedia content and advance the search mechanism from a text-based approach to a
content-based approach. Currently, feature extraction and the search engine design are con-
sidered to be outside of the standard. Nevertheless, when MPEG-7 is finalized and widely
adopted, efficient implementation for feature extraction and search mechanism will be very
important. The applications of MPEG-7 can be categorized into pull and push scenarios. For
the pull scenario, MPEG-7 technologies can be used for information retrieval from a database
or from the Internet. For the push scenario, MPEG-7 can provide the filtering mechanism
applied to multimedia content broadcast from an information provider.

As pointed out earlier in this chapter, instead of trying to extract relevant features, manually
or automatically, from original or compressed video, a better approach for content retrieval
should be to design a new standard in which such features, often referred to as meta-data,
are already available. MPEG-7, an ongoing effort by the Moving Picture Experts Group, is
working exactly toward this goal (i.e., the standardization of meta-data for multimedia content
indexing and retrieval).

MPEG-7 is an activity triggered by the growth of digital audiovisual information. The group
strives to define a “multimedia content description interface” to standardize the description of
various types of multimedia content, including still pictures, graphics, 3D models, audio,
speech, video, and composition information. It may also deal with special cases such as facial
expressions and personal characteristics.

The goal of MPEG-7 is exactly the same as the focus of this chapter (i.e., to enable efficient
search and retrieval of multimedia content). Once finalized, it will transform the text-based
search and retrieval (e.g., keywords), as is done by most of the multimedia databases nowadays,
into a content-based approach (e.g., using color, motion, or shape information). MPEG-7 can
also be thought of as a solution to describing multimedia content. If one looks at PDF (portable
document format) as a standard language to describe text and graphic documents, then MPEG-
7 will be a standard description for all types of multimedia data, including audio, images, and
video.

Compared with earlier MPEG standards, MPEG-7 possesses some essential differences. For
example, MPEG-1, 2, and 4 all focus on the representation of audiovisual data, but MPEG-7
will focus on representing the meta-data (information about data). MPEG-7, however, may
utilize the results of previous MPEG standards (e.g., the shape information in MPEG-4 or the
motion vector field in MPEG-1 and 2).

Figure 1.7 shows the scope of the MPEG-7 standard. Note that feature extraction is outside
the scope of MPEG-7, as is the search engine. This is owing to one approach constantly
taken by most of the standard activities (i.e., “to standardize the minimum”). Therefore, the
analysis (feature extraction) should not be standardized, so that after MPEG-7 is finalized,
various analysis tools can be further improved over time. This also leaves room for com-
petition among vendors and researchers. This is similar to MPEG-1 not specifying motion
estimation and MPEG-4 not specifying segmentation algorithms. Likewise, the query process
(the search engine) should not be standardized. This allows the design of search engines and
query languages to adapt to different application domains, and also leaves room for further
improvement and competition. Summarizing, MPEG-7 takes the approach of standardizing
only what is necessary so that the description for the same content may adapt to different users
and different application domains.

We now explain a few concepts of MPEG-7. One goal of MPEG-7 is to provide a stan-
dardized method of describing features of multimedia data. For images and video, colors or
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FIGURE 1.7
The scope of MPEG-7.

motion are example features that are desirable in many applications. MPEG-7 will define a
certain set of descriptors to describe these features. For example, the color histogram can be a
very suitable descriptor for color characteristics of an image, and motion vectors (commonly
available in compressed video bitstreams) form a useful descriptor for motion characteristics
of a video clip. MPEG-7 also uses the concept of description scheme (DS), which means
a framework that defines the descriptors and their relationships. Hence, the descriptors are
the basis of a description scheme. Description then implies an instantiation of a description
scheme. MPEG-7 not only wants to standardize the description, but it also wants the de-
scription to be efficient. Therefore, MPEG-7 also considers compression techniques to turn
descriptions into coded descriptions. Compression reduces the amount of data that need to be
stored or processed. Finally, MPEG-7 will define a description definition language (DDL) that
can be used to define, modify, or combine descriptors and description schemes. Summarizing,
MPEG-7 will standardize a set of descriptors and DSs, a DDL, and methods for coding the
descriptions. Figure 1.8 illustrates the relationship between these concepts in MPEG-7.

MPEG-7
Description Definition
Language (DDL)

<>

MPEG-7
Description Schemes (DS)
and Descriptors (D)

Descriptions

Coded

\Dcscriptions

FIGURE 1.8
Relationship between elements in MPEG-7.

The process to define MPEG-7 is similar to that of the previous MPEG standards. Since

1996, the group has been working on defining and refining the requirements of MPEG-7 (i.e.,
what MPEG-7 should provide). The MPEG-7 process includes a competitive phase followed
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by a collaborative phase. During the competitive phase, a call for proposals is issued and
participants respond by both submitting written proposals and demonstrating the proposed
techniques. Experts then evaluate the proposals to determine the strength and weakness of
each. During the collaborative phase, MPEG-7 will evolve as a series of experimentation
models (XMs), where each model outperforms the previous one. Eventually, MPEG-7 will
evolve into an international standard. Table 1.5 shows the timetable for MPEG-7 development.
At the time of this writing, the group is going through the definition process of the first XM.

Table 1.5 Timetable of MPEG-7

Call for test material Mar 1998
Call for proposals Oct 1998
Proposals due Feb 1999
First experiment model (XM) Mar 1999
Working draft (WD) Dec 1999
Committee draft (CD) Oct 2000
Final committee draft (FCD) Feb 2001
Draft international standard (DIS) July 2001
International standard (IS) Sep 2001

Once finalized, MPEG-7 will have a large variety of applications, such as digital libraries,
multimedia directory services, broadcast media selection, and multimedia authoring. Here are
some examples. With MPEG-7, the user can draw a few lines on a screen to retrieve a set
of images containing similar graphics. The user can also describe movements and relations
between a number of objects to retrieve a list of video clips containing these objects with
the described temporal and spatial relations. Also, for a given content, the user can describe
actions and then get a list of similar scenarios.

1.5 Standards for Multimedia Communication

In addition to video coding, multimedia communication also involves audio coding, control
and signaling, and the multiplexing of audio, video, data, and control signals. ITU-T specifies a
number of system standards for multimedia communication, as shown in Table 1.6 [8]. Due to
the different characteristics of various network infrastructures, different standards are needed.
Each system standard contains specifications about video coding, audio coding, control and
signaling, and multiplexing.

For multimedia communication over the Internet, the most suitable system standard in
Table 1.6 is H.323. H.323 [9] is designed to specify multimedia communication systems
on networks that do not guarantee QoS, such as ethernet, fast ethernet, FDDI, and token
ring networks. Similar to other system standards, H.323 is an umbrella standard that covers
several other standards. An H.323-compliant multimedia terminal has a structure as shown in
Figure 1.9. For audio coding, it specifies G.711 as the mandatory audio codec, and includes
G.722, G.723.1, G.728, and G.729 as optional choices. For video coding, it specifies H.261
as the mandatory coding algorithm and includes H.263 as an alternative. H.225.0 defines the
multiplexing of audio, video, data, and control signals, synchronization, and the packetization
mechanism. H.245 is used to specify control messages, including call setup and capability
exchange. In addition, T.120 is chosen for data applications. As in Figure 1.9, a receive path
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Table 1.6 ITU-T Multimedia Communication Standards

Network System Video Audio Mux Control
PSTN H.324  H.261/263 G.723.1 H.223 H.245
N-ISDN H.320 H.261 G.7xx H.221 H.242
B-ISDN/ATM  H.321 H.261 G.7xx H.221 Q.2931
H.310 H.261/H262 G.7xx, MPEG H.222.0/H.222.1 H.245
QoS LAN H.322 H.261 G.7xx H.221 H.242
Non-QoS LAN  H.323 H.261 G.7xx H.225.0 H.245

Note:G.Txx represents G.711, G.722, and G.728.

delay is used to synchronize audio and video (e.g., for lip synchronization) and to control
jitters.

. | Video Codec :
Video VOR-EH 1 761/H.263 B
Receive |
Audio I/Of—| Audio Codec Path .
Delay !
. H.225.0 {5, I 1'AfN g
Data Laver BB 1 nterface
Applications
: System Control
L H.245 Control 3
Control )
US‘?T - Call Control u
Interface RAS Control
H.225.0

FIGURE 1.9
H.323 terminal equipment.

In addition to terminal definition, H.323 also specifies other components for multimedia
communication over non-QoS networks. These include the gateways and gatekeepers. As
shown in Figure 1.10, the responsibility of a gateway is to provide interoperability between
H.323 terminals and other types of terminals, such as H.320, H.324, H.322, H.321, and H.310.
A gateway provides the translation of call signaling, control messages, and multiplexing mech-
anisms between the H.323 terminals and other types of terminals. It also needs to support
transcoding when necessary. For example, for the audio codec on an H.324 terminal to inter-
operate with the audio codec on an H.323 terminal, transcoding between G.723.1 and G.711
is needed. On the other hand, a gatekeeper serves as a network administrator to provide the
address translation service (e.g., translation between telephone numbers and IP addresses)
and to control access to the network by H.323 terminals or gateways. Terminals have to get
permission from the gatekeeper to place or accept a call. The gatekeeper also controls the
bandwidth for each call.
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FIGURE 1.10
Interoperability of H.323.

1.6 Conclusion

In this chapter, we described several emerging video coding and multimedia communication
standards, including H.263, H.26L, MPEG-4, MPEG-7, and H.323. Reviewing the develop-
ment of video coding, as shown in Figure 1.11, we can see that the progress of video coding
and multimedia standards is tied to the progress in modeling of the information source. The
finer the model, the better we can compress the signals, and with more content accessibility to

MODELS CODED INFORMATION EXAMPLES
Pixels Color of pixels PCM
Statistically Prediction error or Predictive Coding
dependent pixels transform coeffs Transform Coding
Moving blocks Motion vectors and Block-based coding
prediction error H.261/263, MPEG-1/2
Moving regions Shapes, motion, and Region-based coding
colors of regions H.263+ MPEG-4
Moving objects Shapes, motion, and Model-based coding
colors of objects MPEG-4
Facial models Action units MPEG-4
A/V objects Descriptive languages MPEG-7

FIGURE 1.11
Trend of video coding standards.

the user. At the same time, the price to pay includes higher complexity and less error resilience.
The complexity manifests itself not only in the higher computation power that is required, but
also in higher flexibility. For example, whereas H.261 is a well-defined and self-contained
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compression algorithm, MPEG-4 and MPEG-7 are toolboxes of a large number of different
algorithms.
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Chapter 2

An Efficient Algorithm and Architecture for
Real-Time Perspective Image Warping

Yi Kang and Thomas S. Huang

2.1 Introduction

Multimedia applications are among the most important embedded applications. HDTV, 3D
graphics, and video games are a few examples. These applications usually require real-time
processing. The perspective transform used for image warping in MPEG-4 is one of the most
demanding algorithms among real-time multimedia applications. An algorithm is proposed
here for a real-time implementation of MPEG-4 sprite warping; however, it can be useful in
general computer graphics applications as well.

MPEG-4 is anew standard for digital audio—video compression currently being developed by
the ISO (International Standardization Organization) and the IEC (International Electrotech-
nical Commission). It will attempt to provide greater compression, error robustness, interac-
tiveness, support of hybrid natural and synthetic scenes, and scalability. MPEG-4 will require
more computational power than existing compression standards, and novel architectures will
probably be necessary for high-complexity MPEG-4 systems. Whereas current video com-
pression standards transmit the entire frame in a single bitstream, MPEG-4 will separately
encode a number of irregularly shaped objects in the frame. The objects in the frame can then
be encoded with different spatial or temporal resolutions [1].

By studying the MPEG-4 functions, we find that there are two critical parts for real-time
implementation: one is motion estimation in the encoder and the other is sprite warping in
the decoder. The algorithm for motion estimation in MPEG-4 is similar to those in previous
standards. There has already been plenty of work on algorithms and architectures for real-time
motion estimation. However, there have been few discussions on real-time sprite warping. We
therefore focus on algorithm and architecture development for sprite warping.

Real-time sprite warping involves implementing a perspective transform, a bilinear inter-
polation, and high-bandwidth memory accesses. It is both computationally expensive and
memory intensive. This poses a serious challenge for designing real-time MPEG-4 architec-
tures. With the goal of real time and cost-effectiveness in mind, we first optimize our algorithm
to reduce the computation burden of the perspective transform by proposing the constant de-
nominator algorithm. This algorithm dramatically reduces divisions and multiplications in
the perspective transform by an order of magnitude. Based on the proposed algorithm, we
designed an architecture which implements the real-time sprite warping. To make our architec-
ture feasible for implementation under current technologies, we address the design of the data
path as well as the memory system according to the real-time requirement of computations and
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memory accesses in the sprite warping. Other related issues for implementation of real-time
sprite warping are also discussed.

2.2 A Fast Algorithm for Perspective Transform

The perspective transform is widely used in image and video processing, but it is com-
putationally expensive. The most expensive part is its huge number of divisions. It is well
known that a division unit has the highest cost and the longest latency among all basic data
path units. The number of divisions in the perspective transform would make its real-time
implementation formidable without any fast algorithm. This motivates us to explore a new
algorithm for real-time perspective transform. The constant denominator method reduces the
number of required division operations to O (N) while maintaining high accuracy. It also has
fewer multiplications and divisions.

2.2.1 Perspective Transform

Perspective transforms are geometric transformations used to project scenes onto view planes
along lines which converge to a point. The perspective transform which maps two-dimensional
images onto a two-dimensional view plane is defined by

, _ax+by+c
* Cgx+hy+1
/_dx+ey+f
Y= gx+hy+1

@2.1)
2.2)

where (x, y) is a coordinate in the reference image, (x’, y’) is the corresponding coordinate in
the transformed image, and a, b, ¢, d, e, f, g, and h are the transform parameters.

The perspective transform has many applications in computer-aided design, scientific visu-
alization, entertainment, advertising, image processing, and video processing [3]. One new
application for the perspective transform is MPEG-4. In MPEG-4 one of the additional func-
tionalities proposed to support is sprite coding [7]. A sprite is a reference image used to
generate different views of an object. The reference image is transmitted once, and future
images are produced by warping the sprite with the perspective transform. Because the trans-
form parameters a, b, ¢, d, e, f, g, and h are rational numbers, they are not encoded directly.
Instead, the image is encoded using four (x’, y’) pairs, since the transform parameters can
be determined from the reference and warped coordinates of four reference points using the
following system of equations:

(2] [xiyi1000-—xx|—yx;][a]
x5 X221 0 00—xx, —yoxy | | b
x4 x3y31 0 00 —x3x} —y3x5 || ¢
X} x4y41 0 00 —xgx) —yax) || d
i - 0 00xy 1 —x1y; —y1¥] e 2
¥, 0 00x2y 1 —xay5 —y2yh | | f
¥4 0 00x3y31—x3y—y3pi|]g
L vi ] L0 0 0xyyal —xayf —yayy | L7 ]
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High compression is therefore possible using sprite coding, especially for background sprites
and synthetic objects. After the original image is transmitted, the new view on the right can
be described using four points.

The warped image can be transmitted using fewer reference points. If three reference points
are transmitted, the affine transform is used for estimation. The affine transform is equivalent
to the perspective transform, with g and / equal to zero. Only two reference points are required
using an isotropic transformation, where g = h = 0,d = —b, and e = a. If only one reference
point is used, the transformation becomes simple translation, where g = h =0,a = e =1,
and b = d = 0. These simpler approximations provide less complexity, but generally provide
a less accurate estimate of the warped image.

To prevent holes or overlap in the warped sprite, backward perspective mapping is used.
Each point (x’, y) in the warped sprite is obtained from point (x, y) in the reference image.
The backward perspective mapping can be obtained from the adjoint and determinant of the
forward transform matrix [10]:

_ _(f —e)x’ + (b —ho)y' + (ec —bf) _ a'x' +by +¢
"~ (eg —dh)x' + (ah — bg)y' + (db —ae)  g'x' +h'y +1i’
y= (d— fe)x' + (cg —a)y' + (af —dc) _ dx' +ey + f
(eg — dh)x' + (ah — bg)y' + (db —ae)  g'x' +h'y +i’

2.4

2.5)

Though x" and y’ are integers, x and y generally are not. Bilinear interpolation is used to
approximate the pixel value at point (x, y) from the four nearest integer points.

The perspective transform is computationally expensive. Computation of x and y using
equations (2.4) and (2.5) requires one division, eight multiplications, and nine additions per
pixel. The division is especially expensive. Since the transform parameters are not integers,
floating point computations are typically used. For real-time hardware implementations using
high-resolution images, direct computation of the transform is too slow. An approximation
method must be used.

2.2.2 Existing Approximation Methods

The perspective transform can be approximated using polynomials to avoid the expensive
divisions needed to compute the rational functions in equations (2.4) and (2.5). Linear approx-
imation is the simplest and most widely used approximation technique. However, it usually
results in large errors due to the simplicity of the approximation [2, 4]. To achieve greater
accuracy, more complex methods such as quadratic approximation, cubic approximation, bi-
quadratic approximation, and bicubic approximation have been proposed [6, 10]. Additional
methods to reduce aliasing and simplify resampling have also been developed, such as the
two-pass separable algorithm [10].

The Chebyshev approximation is a well-known method in numerical computation that also
has been used to approximate the perspective transform [2]. Its main advantage over other
methods is that its error is evenly distributed [8]. The result thus visually appears closer to the
ideal result. The formula for the Chebyshev approximation is

N-1
)~ Y eTi(x) —0.5¢ (2.6)

k=0

where c;’s are the coefficients computed as

) N
=32 F T ) @7
k=1
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T (x) is the jth base function for the approximation, f(x) is the target function to approximate,
and N is the order of the approximation. N = 2 for the quadratic Chebyshev approximation;
N = 3 for the cubic Chebyshev approximation.

Biquadratic and bicubic Chebyshev methods have also been proposed to approximate the
perspective transform [2]. These methods first calculate the Chebyshev control points, then
use transfinite interpolation to approximate the rational functions using polynomials.

All of the above approximation methods require more multiplications and additions than
direct computation of the original rational functions. For complex approximations such as the
Chebyshev methods, the additional multiplications and additions offset the benefit of avoiding
division. Simpler approximations such as linear approximation require fewer additional oper-
ations, but often achieve poor quality. These methods also require an initialization procedure
to compute the approximation coefficients on every scan line. This increases the hardware
overhead.

In the following section, a new method to perform the perspective transform is proposed.
This new method does not increase the number of multiplications and additions, has a simple
initialization procedure, and decreases the number of divisions from O (N 2y to O(N).

2.2.3 Constant Denominator Method

Equations (2.4) and (2.5) both contain the same denominator: g’x’ + h’y’ + i’. Setting the
denominator equal to a constant value defines a line in the x’y’ plane.

k=g'x' +ny +i (2.8)

Furthermore, lines defined by different values of k are all parallel and all have slope equal to
—g'/h'. The constant k for the line with y’ intercept equal to ¢ can be calculated as

kg =g +i 29

By calculating the perspective transform along lines of constant denominator, the number of
divisions is reduced from one per pixel to one per constant denominator line.

The constant denominator method begins by calculating (d — fg), (cg — a), (af — dc),
(hf —e), (b—hc), (ec—bf),(eg—dh), (ah—bg),and (db—ae). These coefficients need only
be calculated once per frame. Next, (eg — dh) and (ah — bg) are used to calculate the slope
m of the constant denominator lines. There are four possible cases: m < —1, —1 <m <0,
0 <m < 1,and 1 < m. The case determines whether the constant denominator lines are
scanned in the horizontal or vertical direction.

Figure 2.1 illustrates a case where 0 < m < 1. The lines all have slope m = —g’/h’ and
represent constant values of g’x’ 4+ h’y’ +i’. The pixels are shaded to indicate which constant
denominator line they approximately fall on. The pixels for the initial line are determined by
starting at the origin and applying Bresenham’s Algorithm. Bresenham’s Algorithm requires
only incremental integer calculations [3]. The result is the table in Figure 2.1, which lists the
corresponding vertical position for every horizontal position on the constant denominator line
that passes through the origin. By storing the table as the difference of subsequent entries, the
number of bits required to store the table is the larger of the width or height of the image.

After the position of the constant denominator line has been determined, the actual warping
is performed. The reciprocal of the denominator is first calculated for the constant denominator
line which crosses the origin:

= (2.10)
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FIGURE 2.1
Lines of constant denominator with 0 < slope < 1.

This is the only division required for the first constant denominator line. This reciprocal
is then multiplied by d’, ¢/, f/, a’, b, and ¢’ to obtain the coefficients in equations (2.11)
and (2.12).

x=rax +rby +rcd (2.11)
y=rdx +re'y +rf’ (2.12)

The horizontal position x” is incremented from 0 to M — 1, where M is the width of the
image. For each value of x’, Ay’ is obtained from the line table. The current value of the x and
y coordinates, x, and y,, are calculated from the previous values of the x and y coordinates,
x,_1 and y,_1, using the following equations. If Ay’ =0,

Xp = Xp_1 +rd (2.13)
Yn = Yn—1+rd (2.14)
If Ay =1,
Xp = Xp—1 + [ra’ +rb'] (2.15)
Yn = Yn—1 + [rd" +re'] (2.16)

Only two additions are required to calculate x,, and y, for each pixel on the constant denomi-
nator line. No multiplications or divisions are required per pixel.

The next constant denominator line is warped by calculating r for point (x’, y") = (0, 1)
using the following equation:

IR
ki hWx14i W +ko

(2.17)

r =

One addition and one division are required to calculate . The line table is used to trace the
new line, and equations (2.13)—(2.16) are used to warp the pixels on the new line. Every constant
denominator line below the original line is warped, followed by the constant denominator lines
above the original line.
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Because x,, and y, are generally not integers, bilinear interpolation is used to calculate the
value of the warped pixel using the four pixels nearest to (x,, y,) in the original sprite. The
warped pixel P is calculated using the following three equations, as shown in Figure 2.2:

Por = Py + (P1 — Py) xdx (2.18)
Py3; = P+ (P3— Pp) xdx (2.19)
P = Py; + (Px3 — Po1) xdy (2.20)
Podx] - 5
dy';(xwyn )
p
o &3

FIGURE 2.2
Bilinear interpolation.

As shown above, the constant denominator method reduces the number of divisions required
to calculate (x, y) from one per pixel, using equations (2.4) and (2.5) directly, to one per
constant denominator line. For an image M pixels wide and N pixels high, the number of
divisions is reduced from M N using the direct method to, at most, M + N — 1. The number
of multiplications needed to calculate (x, y) is reduced from 8M N to 8(M + N — 1) + 17.
The drastic reduction in divisions and multiplications makes the constant denominator method
suitable for real-time sprite decoding.

In addition, the constant denominator method can be used to calculate the backward affine
transform when only three reference points are transmitted. In this case, r = 1 for every point
in the plane. No divisions and only 14 multiplications per frame are therefore required for the
affine transform.

2.2.4 Simulation Results

To compare the visual quality of the warping approximations, five methods were imple-
mented in C++: direct warping, constant denominator, quadratic, quadratic Chebyshev, and
cubic Chebyshev. The methods were then used to warp the checkerboard image, which is
a standard test image for computer graphics. The checkerboard image is useful because the
perspective transform should preserve straight lines. The parameters are settoa = 1.2, b =0,
c=—-100,d =0,e =12, f = -20, g = —.0082, and & = 0. The simulation shows that
straight lines in the original image are curved greatly by the quadratic and quadratic Chebyshev
methods. They are curved slightly by the cubic Chebyshev method. The constant denominator
method preserves the straight lines.

To generate test data for a wide range of cases, simulations were conducted varying g and
h over {—.1, —.01, —.001, —.0001, 0, .0001, .001, .01, .1}. Parameters a and e were set to 1,
and the remaining parameters were set to 0. An error image was calculated for each method
using the direct warping image as a reference, and the mean squared error (MSE) was computed
from each error image. The mean, median, and maximum values of mean squared error for
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each method are shown in Table 2.1. A histogram of the MSE for the four methods is shown
in Figure 2.3. The MSE is plotted on a logarithmic scale, and all MSEs less than 1 are plotted
at 1. One third of the simulations for the constant denominator method had MSEs below 1.
The largest error occurred for the case where g = 0.01 and 2 = —0.1. The other three methods
were significantly less accurate than the constant denominator method.

Error in the constant denominator method occurs because the pixels do not fall exactly on
constant denominator lines. Each pixel can lie a maximum of one-half pixel off the actual
constant denominator line if we treat each pixel as a square. An additional source of error is
from sprite resampling via the bilinear interpolation. Most of the error in Table 2.1 for the
constant denominator method is due to position computation because the direct warped image
with resampling is used as the error reference.

Table 2.1 Checkerboard Mean Squared Error

Table
Method Mean Median Max
Constant denominator 73 20 428
Quadratic 2,831 693 15,888
Quadratic Chebyshev 2,118 457 14,313

Cubic Chebyshev 1,822 392 14,116

30

20
Percentage
of Samples
0k
const.
denom.

Method

FIGURE 2.3
Checkerboard mean squared error histogram.

The constant denominator method was also tested on natural images. Simulation was done
forthea =1,b=0,c=0,d =0,e=1, f =0,g = —0.1, and 2 = 0.002 case using a
coastguard image. The MSE for the constant denominator method was 0.00043. The error is
so small that it can hardly be picked up by the eyes. Table 2.2 shows a performance comparison
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between the various approximation methods as g and % are varied between —0.1 and 0.1 for
the coastguard image.

Table 2.2 Coastguard Mean Squared Error Table

Method Mean Median Max

Constant denominator 73 20 428
Quadratic 2,831 693 15,888
Quadratic Chebyshev 2,118 457 14,313
Cubic Chebyshev 1,822 392 14,116

2.2.5 Sprite Warping Algorithm

We designed an algorithm to perform sprite warping using the perspective transform as
specified in MPEG-4. The sprite warping algorithm performs the following tasks:

« Step 1: Compute the eight perspective transform parameters a, b, ¢, d, e, f, g, and h
from the reference coordinates.

« Step 2: Compute the nine backward transform coefficients (d — fg), (cg —a), (af —dc),
(hf —e), (b — hc), (ec — bf), (eg — dh), (ah — bg), and (db — ae).

» Step 3: Use Bresenham’s Algorithm to calculate the line table for the first constant
denominator line.

 Step 4: Compute the constant r in equation (2.17) using restoring division [5]. Then
compute the coefficients in equations (2.11) and (2.12). This step is performed once per
constant denominator line.

« Step 5: Perform the backward transform for every pixel along the constant denominator
line described above.

« Step 6: Fetch the four neighboring pixels from memory for every warped pixel and
perform bilinear interpolation to obtain the new pixel value.

Step 1 entails solving the system of equations given in equation (2.3). Using LU decom-
position, the eight sprite warping parameters can be calculated using 36 divisions, 196 mul-
tiplications, and 196 additions. Steps 2 through 5 use the constant denominator method to
perform the perspective transform. The computation of the backward transform coefficients
in step 2 requires 14 multiplications and nine additions. Calculating the line table in step 3
requires three multiplications, one division, and either M or N additions, depending on the
slope of the line. These three steps are performed once per frame. Step 4 requires one division,
eight multiplications, and three additions for every constant denominator line. Step 5 requires
two additions for every pixel. After the warped coordinate has been computed, the bilinear
interpolation in step 6 requires three multiplications and six additions for every pixel.

For gray-scale sprites M pixels wide and N pixels high and with horizontal scanning, the
entire sprite warping process requires at most M + N + 36 divisions, 3M N + 8M + 8N + 205
multiplications, and 8M N 4 4M + 3N + 202 additions. Color sprites require additional
operations. For YUV images with 4:2:0 format, sprite warping requires at most a total of
1.5M + 1.5N + 35 divisions, 4.5MN + 12M + 12N + 200 multiplications, and 11.5M N +
6M +4.5N + 199 additions.
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The computation burden can be reduced by using fixed point instead of floating point op-
erations wherever possible. Steps 1, 2, and 4 are best suited for floating point operations.
However, since steps 1 and 2 are performed once per frame, and step 4 is performed once per
constant denominator line, they consume only a small fraction of the computational power.
Step 3 is also performed once per frame. The additions in step 3 can be performed in fixed
point.

Most of the computations are performed in steps 5 and 6, since these steps are performed
on each pixel. In step 3, a floating point coefficient is multiplied by the integer coordinate x’
or y'. Therefore, instead of using true floating point, the coefficients can be represented in
block floating point format. Fixed point operations can then be used for step 5. After (x, y) is
calculated for each pixel, it is translated to a long fixed point number. Thus, only fixed point
computation is required for the bilinear interpolation in step 6.

By using fixed point operations for steps 5 and 6, the number of floating point multiplications
is reduced to at most 12M + 12N + 196 and the number of floating point additions becomes
4.5M + 4.5N + 199. The number of floating point divisions remains 1.5M + 1.5N + 35.
Almost all of the operations are now fixed point. 4.5M N fixed point multiplications and
11.5MN + 1.5M fixed point additions at most are required for steps 3, 5, and 6. Table 2.3
lists the number of operations required for various full-screen sprites.

Table 2.3 Number of Operations per Second
Required for 30 Frames per Second

Sprite Size QCIF CIF ITU-R 601
Sprite width 176 352 720
Sprite height 144 288 576
Float. divide 15,000 30,000 59,000

Float. multiply 120,000 240,000 470,000

Float. add 49,000 92,000 180,000

Fixed multiply 3.4 million 14 million 56 million
Fixed add 8.8 million 35 million 140 million

2.3 Architecture for Sprite Warping

An MPEG-4 sprite warping architecture is described which uses the constant denomina-
tor method. The architecture exploits the spatial locality of pixel accesses and pipelines an
arithmetic logic unit (ALU) with an interpolation unit to perform high-speed sprite warping.
Several other implementation issues (e.g., boundary clipping and error accumulation) are also
discussed.

2.3.1 Implementation Issues

One issue inherent to the perspective transform is aliasing. Subsampling the sprite can
cause aliasing artifacts for perspective scaling. However, sprite warping is intended for video
applications where aliasing is less of a problem due to the motion blur. To address aliasing
in the constant denominator method, techniques such as adaptive supersampling could be
used. Supersampling would be performed when consecutive accesses to the sprite memory
are widely separated.
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Boundary clipping can also be a concern. Sprite warping can attempt to access reference
pixels beyond the boundaries of the reference sprite. If the simple point clipping method is
used, four comparisons per pixel are required. Instead, a hybrid point—line clipping method
can be used with the constant denominator method. For each constant denominator line, the
endpoints are first checked to see if they fall within the boundaries of the reference sprite. If
both endpoints are in the reference sprite, the line is warped. If only one endpoint is outside
the boundary, warping begins with this endpoint using point clipping. Once a point within the
boundary is warped, clipping is turned off, because the remaining points on the line are within
the sprite. If both endpoints lie outside the reference sprite, point clipping is used beginning
with one of the endpoints. Once a point inside the reference sprite is reached, warping switches
to the other endpoint. Point clipping is used until the next point with the sprite is reached,
when point clipping is turned off. Using this method, comparisons are only required when the
reference pixel is out of bounds. Because memory accesses and interpolations are not required
for the out-of-bound pixels, and clipping computations are not required for in-bound pixels,
the clipping procedure does not slow the algorithm.

Error accumulation in the fixed-point, iterative calculation of equations (2.13)—(2.16) must
also be considered. Sufficient precision of the fractional part of x, and y, must be used
to prevent error from accumulating to 1. The number of bits k required for the fractional
part depends on the height N and width M of the warped sprite according to the following
inequality:

k > logy,(MAX[M, N1) 221

The integral part of x,, and y, must contain enough bits to avoid overflow. Because (x,, y)
is a coordinate in the reference plane, they theoretically have infinite range. Practically, the
number of integral bits j is chosen according to the size of the reference sprite plus additional
bits to prevent overflow. If a is the number of overflow bits and the reference sprite is P x Q
pixels, then

J = logy(MAX[P, Q]) +a (2.22)

For example, if the reference and warped sprite are both 720 x 576 pixels and four overflow
bits are used, thena = 4, k = 10, j = 10, and 24 total bits are required for calculating x,, and

Yn-

2.3.2 Memory Bandwidth Reduction

Memory bandwidth is a concern for high-resolution sprites. Warped pixels are interpolated
from the four nearest pixels in the original sprite. Warping a sprite can therefore require four
reads and one write for every pixel in the sprite. An ITU-R 601 sprite requires 89 MB/s of
memory bandwidth at 30 frames per second.

Figure 2.4 illustrates the memory access pattern for sprite warping using the constant de-
nominator method. It shows lines of slope —g/ & in the original sprite which correspond to
the lines of constant denominator in the warped sprite. While the memory access lines in the
original sprite are parallel to each other, they are not evenly spaced, and memory accesses on
different lines do not have the same spacing. Points in the warped sprite can also map to points
outside the original sprite.

The total memory access time required to warp a sprite can be reduced by either decreasing
the time required for each memory access or decreasing the number of accesses. Unlike scan-
line algorithms which enjoy the advantage of block memory access in consecutive addresses,
the constant denominator method must contend with diagonal memory access patterns. How-
ever, spatial locality inherent in diagonal access can be exploited. Figure 2.4 shows the use
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of spatial locality to reduce the time per access. The original sprite is divided into rectangular
pages, which correspond to pages in the sprite memory. Consecutive accesses on a line will
frequently lie on the same page. Fast page mode can therefore be used to retrieve the data
quickly.

/l"age 1 /

/
/| Phage2 / /l’agefi /

ANV 1L /
yY T/ 1/ / )4
FIGURE 2.4

Example memory access pattern.

A cache can be used to reduce the number of accesses per pixel. Consecutive accesses on a
constant denominator line often reference common pixels in the original sprite. Consecutive
constant denominator lines frequently use many of the same pixels. By retaining pixel values
in a cache, accesses to main memory can be avoided.

Cache effectiveness is dependent on the spacing between memory accesses. In the upper
left area of the example in Figure 2.4, memory access lines are closely spaced. Pixels on
the upper left will be accessed many times, and a cache will save memory accesses. In the
lower right area, however, memory access lines are widely spaced. Pixels are not shared
between consecutive lines, and a cache will not be as effective. However, because the lines are
widely spaced, most of the pixels in the lower right area are not accessed from memory. Many
accesses will instead occur outside the boundaries of the sprite memory and will be resolved
by boundary clipping instead of being retrieved from memory or the cache. The worst-case
memory access situation therefore does not occur for widely spaced lines. The cache should
be designed for line spacings small enough such that most of the reference sprite pixels are
read four times.

A very small cache which holds only four pixels will reduce the number of memory reads
per sprite. By keeping the four pixels used to interpolate the previous point in the cache, the
worst-case number of memory reads per sprite will be reduced from four times the number of
warped pixels to three times the number of warped pixels. The worst case occurs when pixels
on diagonal lines are accessed. If consecutive accesses on the lines are widely spaced, then
the cache will be of no use. However, many pixels on the diagonal lines will not be accessed
and the total number of accesses to sprite memory will be small. This is therefore not the
worst case. Instead, the worst case occurs when consecutive pixels on the diagonal lines are
accessed. One pixel in the cache can be reused; the three remaining pixels must be read in
from memory.
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A larger cache will further reduce the memory bandwidth required. Figure 2.5 illustrates
the use of a cache with a three-line capacity. The cache is three-way set associative to remove
conflict cache misses. For lines with slope greater than 1 or less than —1, as in the figure,
there is one set for every y coordinate in the sprite, and pixels are tagged with the x coordinate.
Shallower lines have one set for every x coordinate and are tagged with the y coordinate.
The three-line cache reduces the worst-case number of reads to one per pixel. For an ITU-R
601 sprite, a three-line cache requires approximately 17 Kbit.

/
/

|:| Line A potential accesses [:l Line B potential accesses

. Line A and B common potential accesses

FIGURE 2.5
Cache operation example.

2.3.3 Architecture

The data path for a sprite warping architecture is shown in Figure 2.6. It contains two
processors: an ALU to perform steps 1 through 5 in the sprite warping process and an inter-
polation unit to perform step 6. Since steps 5 and 6 are the two steps executed per pixel, they
are assigned to different processors.

The ALU performs integer addition and multiplication. It reads reference coordinates from
the coordinate buffer and calculates the perspective transform coefficients, using the small
scratch memory for intermediate storage. The nine backward transform coefficients are then
stored in the floating point coefficient buffer. The ALU uses Bresenham’s Algorithm to com-
pute the incremental line table for the first constant denominator lines. The line table is stored
in the Bresenham shift register, which is simply a line of serially connected, 1-bit flip-flops.
For each line, the ALU computes the six coefficients in equations (2.11) and (2.12). For each
pixel, the coordinates of the corresponding pixel in the original frame are calculated and par-
titioned into an integer part (x;, y;) and a fractional part (dx, dy). The integer part is output
to the pixel cache while the fractional part is passed to the interpolation unit.

The pixel cache outputs pixels Py, P;, P>, and P3. These are the four pixels with coordinates
(x1, y1), (x141, y1)5 (x1, Yi41), and (x;41, yi+1), which are shown in Figure 2.2. If the pixels
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FIGURE 2.6
Sprite warping architecture.

are not in the cache, they are retrieved from memory. The pixels are transmitted serially to the
interpolation unit.

The interpolation unit is based on a design commonly used for half-pixel motion compen-
sation [9]. It is shown in detail in Figure 2.7. The unit reads a new pixel whenever the cache
signals that the value Pyo3 is ready. It receives dx and dy from the ALU and outputs a bilin-
early interpolated pixel after reading every fourth pixel. Py and P; are first linearly interpolated
using dx to compute Pg;. P> and Pj3 are then interpolated using dx to compute P,3. Finally,
the vertical fraction dy is used to linearly interpolate Py; and P»3 and obtain the bilinearly
interpolated pixel P. P is then output to the sprite memory.

If the four interpolation pixels are not in the cache, memory access time is critical. Table 2.4
lists the memory requirements for warping sprites with various resolutions. The memory
size listed is for a single sprite buffer. Since the warped sprite and original sprite are stored in
separate areas of sprite memory, two sprite buffers are required. To provide additional memory
bandwidth, the sprite buffers can be stored on separate memory chips. If a single warping unit
is used to warp k sprites, k + 1 sprite buffers are required.

Table 2.4 Memory Requirements for Sprite Warping
Sprite Format QCIF CIF ITU-R 601

Memory size 297 Kbits 1,188 Kbits 4,860 Kbits
Pixel reads/frame 152,000 608,000 2,488,000
Pixel writes/frame 38,000 152,000 622,080

Time/read at 30 fps 219 ns 54 ns 13 ns

Table 2.4 lists the worst-case number of pixel reads and writes required to warp a sprite.
The table also lists the average time per read that must be met if the sprite is to be warped at
30 frames per second. It assumes that the warped sprite and original sprite are contained in
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If the pixels are currently in the cache, they will be transmitted to the interpolation unit
quickly, and the computation time in the interpolation unit becomes critical. A new pixel
cannot be read in until the previous pixel has been linearly interpolated. Assuming the linear
interpolation time, finterpolate 18 1€ss than #p,ge pit (the time to read from memory on a page hit),
then the average read time is determined by

fread = Clinterpolate + (1 - C)[ptpage hit + (1 — p)tpage miss ] (2.24)

where c is the cache hit ratio, p is the page hit ratio, and fpage miss i the time to read from
memory on a page miss.
If no cache is used, equation (2.24) reduces to

fread = Plpage hit T (1 — P)lpage miss (2.25)

Assuming DRAM access times of 20 ns on a page hit and 85 ns on a page miss, the 219-ns
cycle time listed in Table 2.4 for QCIF sprites can be easily obtained without a cache. CIF
sprites can also be warped without a cache, because the 73-ns cycle time can be met for p > .5,
which is a very low page hit ratio. For both sprite sizes, the interpolation unit can be designed
to match the memory access time.

With a four-pixel cache, the average read time equation becomes

1 3
tread = Z interpolate + Z[ptpage hit + (1 — P)tpage miss (2.26)

where ¢ = % is the cache hit ratio for the worst case. The four-pixel cache can be used to
warp sprite sizes larger than CIF. It cannot warp ITU-R 601 sprites, because they require the
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short 13-ns cycle from Table 2.4. Instead, the three-line cache is used, where ¢ = %. For

tpage hit = 20 118 and fpage miss = 85 ns, equation (2.24) can then be rewritten as
3 1
fread = Ztimerpolate + Z[ptpage hit + (1 — P)ipage miss] = (28p — 17.3) nanoseconds (2.27)

which simplifies to
finterpolate < (21.67p — 11) nanoseconds (2.28)

This equation is satisfied by realistic interpolation times and page hit ratios. For example, an
8.5-ns interpolation time and a 0.9 page hit ratio, or a 6.3-ns linear interpolation time and a
0.8 page hit ratio, can be used for real-time warping of ITU-R 601 sprites with 0.35u m or
better VLSI technology.

2.4 Conclusion

We have presented a new fast algorithm for computing the perspective transform. The
constant denominator method reduces the number of divisions required from O (N 2)to O(N)
and also dramatically reduces multiplications in the computation. The speed of the constant
denominator method does not sacrifice the accuracy of the algorithm. Indeed, it has more than
35 times less error compared with other approximation methods. The algorithm primarily
targets real-time implementation of sprite warping. However, it is generally for speeding
up the perspective transform. Based on this algorithm, an architecture was proposed for
the implementation of sprite warping for MPEG-4. Our architecture is feasible under current
VLSI technology. We also analyzed the real-time requirement of the architecture and addressed
several other implementation issues.
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Chapter 3

Application-Specific Multimedia Processor
Architecture

Yu Hen Hu and Surin Kittitornkun

3.1 Introduction

Multimedia signal processing concerns the concurrent processing of signals generated from
multiple sources, containing multiple formats and multiple modalities. A key enabling technol-
ogy for multimedia signal processing is the availability of low-cost, high-performance signal
processing hardware including programmable digital signal processors (PDSPs), application-
specific integrated circuits (ASICs), reconfigurable processors, and many other variations.

The purposes of this chapter are (1) to survey the micro-architecture of modern multimedia
signal processors, and (2) to investigate the design methodology of dedicated ASIC imple-
mentation of multimedia signal processing algorithms.

3.1.1 Requirements of Multimedia Signal Processing (MSP) Hardware
Real-Time Processing

With real-time processing, the results (output) of a signal processing algorithm must be
computed within a fixed, finite duration after the corresponding input signal arrives. In other
words, each computation has a deadline. The real-time requirement is a consequence of the
interactive nature of multimedia applications. The amount of computations per unit time,
also known as the throughput rate, required to achieve real-time processing varies widely
for different types of signals. If the required throughput rate cannot be met by the signal
processing hardware, the quality of service (QoS) will be compromised. Real-time processing
of higher dimensional signals, such as image, video, or 3D visualization, requires an ultra-high
throughput rate.

Concurrent, Multithread Processing

A unique feature of MSP hardware is the need to support concurrent processing of multiple
signal streams. Often more than one type of signal (e.g., video and sound) must be pro-
cessed concurrently as separate task threads in order to meet deadlines of individual signals.
Synchronization requirements also impose additional constraints.
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Low-Power Processing

Multimedia signal processing devices must support mobile computing to facilitate ominous
accessibility. Low-power processing is the key to wireless mobile computing. Technologies
(TTL vs. CMOS, power supply voltages) are the dominating factor for power consumption.
However, architecture and algorithm also play a significant role in system-wide power con-
sumption reduction.

3.1.2 Strategies: Matching Micro-Architecture and Algorithm

To achieve the performance goal (real-time processing) under the given constraint (low
power consumption), we must seek a close match between the multimedia signal processing
algorithm formulation and the micro-architecture that implements such an algorithm. On the
one hand, micro-architecture must be specialized in order to custom fit to the given algorithm.
On the other hand, alternative algorithm formulations must be explored to exploit its inherent
parallelism so as to take advantage of the power of parallel micro-architecture.

Specialization

Specialized hardware can be customized to execute the algorithm in the most efficient
fashion. It is suitable for low-cost, embedded applications where large-volume manufacturing
reduces the average design cost. Hardware specialization can be accomplished at different
levels of granularity. Special function units such as an array multiplier or multiply-and-
accumulator (MAC) have been used in programmable DSPs. Other examples include a bit
reversal unit for fast Fourier transform and so forth.

Another approach of specialization is to use a special type of arithmetic algorithm. For
example, CORDIC arithmetic unit is an efficient alternative when elementary functions such as
trigonometric, exponential, or logarithmic functions are to be implemented. Another example
is the so-called distributed arithmetic, where Boolean logic functions of arithmetic operations
are replaced with table-lookup operations using read-only memory.

Ata subsystem level, specialized hardware has also been developed to realize operations that
are awkward to be realized with conventional word-based micro-architecture. For example,
the variable-length entropy-coding unit is often realized as a specialized subsystem.

Specialized hardware consisting of multiple function units to exploit parallelism is also
needed to handle computation-intensive tasks such as motion estimation, discrete cosine trans-
form, and so forth. At the system level, specialized hardware has also been developed to serve
large-volume, low-cost, and embedded consumer applications, such as the MPEG decoder
chip.

Parallelism

Parallelism is the key to achieving a high throughput rate with low power consumption.
To reduce power consumption, power supply voltage must be reduced. Lower power supply
voltage implies lower switching speed. As such, to meet the real-time processing throughput
constraint, more function units must be activated together, taking advantage of the potential
parallelism in the algorithm.

Many MSP algorithms can be formulated as nested iterative loops. For this family of
algorithms, they can be mapped algebraically into regular, locally interconnected pipelined
processing arrays such as the systolic array. Examples include discrete cosine transform, full
search motion estimation, discrete wavelet transform, and discrete Fourier transform.

In addition to the systolic array, parallelism can be exploited in different formats. A vector-
based parallel architecture is capable of performing vector operations efficiently. A specific
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vector-parallel architecture is known as the subword parallelism. It appears as the multimedia
extension (MMX) instructions in general-purpose microprocessors.

Some algorithms do not have a regular structure such as nested iterative loops. However,
since MSP applications often deal with indefinite streams of signals, it is also possible to
develop pipelined special-purpose hardware to exploit the parallelism. Examples include fast
discrete cosine transform (DCT) algorithms.

For programmable DSP processors, instruction-level parallelism (ILP) has dominated mod-
ern superscalar microprocessor architecture. A competing ILP approach is known as the very
long instruction word (VLIW) architecture. The main difference between ILP and VLIW
is that ILP architecture relies on a hardware-based instruction issuing unit to exploit the po-
tential parallelism inherent in the instruction stream during the run time, whereas the VLIW
micro-architecture relies heavily on a compiler to exploit ILP during the compile time.

3.2 Systolic Array Structure Micro-Architecture
3.2.1 Systolic Array Design Methodology

Systolic array [1, 2] is an unconventional computer micro-architecture first proposed by
H.T. Kung [3]. It features a regular array of identical, simple processing elements operated
in a pipelined fashion. It can be visualized that data samples and intermediate results are
processed in a systolic array in a manner analogous to how the blood is pumped by the heart —
a phenomenon called systole circulation — which is how this architecture received its name.

A systolic array exhibits characteristics of parallelism (pipelining), regularity, and local
communication. If an algorithm can be described as a nested “do” loop with simple loop body,
specifically known as a regular iterative algorithm, then it can be mapped algebraically onto
a systolic array structure.

A number of multimedia signal processing algorithms can be implemented using systolic
arrays. Examples include two-dimensional DCT (2D DCT), video block motion estimation,
and many others. To illustrate systolic array design methodology, consider the convolution of
a finite length sequence {h(n); 0 < n < M — 1} with an infinite sequence {x(n); n =0, 1, ...

min(n,M—1)

w= Y. hx(n—k n=01,... (3.1
k=0

This algorithm is usually implemented with a two-level nested do loop:

Algorithm 1:

For n = 0, 1, 2,
y(n) =0
For k = 0 to min(n,M-1),
y(n) = y(n)+h(k)*x(n-k)
end
end

It can be implemented using a systolic array containing M processing elements as depicted
in Figure 3.1. In Figure 3.1, the narrow rectangular box represents delay, and the square
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box represents a processing element (PE). Moreover, every PE is identical and performs its
computation in a pipelined fashion. The details of a PE are shown in Figure 3.2. In this
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FIGURE 3.2
A processing element of the convolution systolic array.

figure, the circle represents arithmetic operations. The above implementation corresponds to
the following algorithm formulation:

Algorithm 2:

s(n,0) = x(n); g(n,0) = 0; n=20, 1, 2,
g(n,k+1) =g(n,k)+h(k)*s(n,k); n=0, 1, 2,...; k =0 to M-1,
s(n,k+1) = s(n,k); n=20, 1, 2, ; k=0 to M-1,
g(n+l,k+1) = g(n,k+1); n=20,1, 2,...; k=0 to M-1,
s(n+2,k+1) = s(n,k+1); n=20,1, 2,...; k=0 to M-1,
y(n) = g(n+M,M) ; n=20, 1, 2,

In the above formulation, # is the time index and k is the processing element index. It can
be verified manually that such a systolic architecture yields correct convolution results at the
sampling rate of x (n).

Given an algorithm represented as a nested do loop, a systolic array structure can be obtained
by the following three-step procedure:

1. Deduce a localized dependence graph of the computation algorithm. Each node of the
dependence graph represents computation of the innermost loop body of an algorithm
represented in a regular nested loop format. Each arc represents an inter-iteration de-
pendence relation. A more detailed introduction to the dependence graph will be given
later in this chapter.

2. Project each node and each arc of the dependence graph along the direction of a pro-
jection vector. The resulting geometry gives the configuration of the systolic array.
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3. Assign each node of the dependence graph to a schedule by projecting them along a
scheduling vector.

To illustrate this idea, let us consider the convolution example above. The dependence
graph of the convolution algorithm is shown in Figure 3.3. In this figure, the input x(n) is
from the bottom. It will propagate its value (unaltered) along the northeast direction. Each of
the coefficients {h(k)} will propagate toward the east. The partial sum of y(n) is computed
at each node and propagated toward the north. If we project this dependence graph along the
[1 0] direction, with a schedule vector [1 1], we obtain the systolic array structure shown on
the right-hand side of the figure. To be more specific, each node at coordinate (n, k) in the
dependence graph is mapped to processing element k in the systolic array. The coefficient
h(k) is stored in each PE. The projection of the dependence vector [1 1] associated with the
propagation of x (n) is mapped to a physical communication link with two delays (labeled by
2D in the right-hand portion of the figure). The dependence vector [0 1] is mapped to the
upward communication link in the systolic array with one delay. Figure 3.1 is identical to the
right side of Figure 3.3 except more details are given.

kYO y() y(2) y3) y@) y5) y©6) ¥

h(3) /
h(2) DA 2D
h(1) o 2D
h(0) SISV SV SIS SV n D 2D
x(0) x(I) x(2) x(3) x(4) x(5) x(6) x(7)
FIGURE 3.3

Dependence graph of convolution (left) and systolic array projection (right).

The systolic design methodology of mapping a dependence graph into a lower dimensional
systolic array is intimately related to the loop transformation methods developed in parallel
program compilers. A detailed description of loop transform can be found in [4].

3.2.2 Array Structures for Motion Estimation

Block motion estimation in video coding standards such as MPEG-1, 2, and 4, and H.261
and H.263 is perhaps one of the most computation-intensive multimedia operations. Hence it
is also the most implemented algorithm.

We will briefly explain block-based motion estimation using Figure 3.4. A basic assumption
of motion estimation is that there is high temporal correlation between successive frames
in video streams; hence, the content of one frame can be predicted quite well using the
contents of adjacent frames. By exploiting this temporal redundancy, one need not transmit
the predictable portion of the current frame as long as these reference frame(s) have been
successfully transmitted and decoded. Often, it is found that the effectiveness of this scheme
can be greatly enhanced if the basic unit for comparison is reduced from the entire frame to a
much smaller “block.” Often the size of a block is 16 x 16 or 8 x 8 (in the unit of pixels). This
is illustrated on the right-hand side of Figure 3.4. Let us now focus on the “current block™ that
has a dotted pattern in the current frame. In the reference frame, we identify a search area that
surrounds a block having the same coordinates as the current block. The hypothesis is that
within this search area, there is an area equal to the size of the current block which best matches

©2001 CRC PressLLC



mation

vector

curtent black

search ared

reference frame current frame

FIGURE 3.4
Block motion estimation.

(is similar to) the current block. Then, instead of transmitting all the pixels in the current block
of the current frame, all we need is to specify the displacement between the current block
location and the best matched blocking area on the reference frame. Then we cut-and-paste
this area from the reference frame to the locations of the current block on a reconstructed
current frame at the receiving end. Since the reference frame has been transmitted, the current
block at the current frame can be reconstructed this way without transmitting any bit in addition
to the displacement values, provided the match is perfect.

The displacement we specified above is called the motion vector. It inherits this name
from the motion estimation task in computer vision researches. However, there, the motion
estimation is performed on individual pixels, and the objective is to identify object motion
in sequential image frames. Since each pixel within the search area can be the origin of a
matching block, its coordinates become a candidate for a motion vector. If every pixel within
the search area is tested in order to find the best matching block, it is called a full-search block-
matching method. Obviously, a full search block-matching algorithm offers the best match.
But the computation cost is also extremely high. On the other hand, the matching operations
can be written in a regular six-level nested do loop algorithm. Thus, numerous systolic array
or other dedicated array architectures have been proposed. We note that there are also many
fast block-matching algorithms proposed to skip pixels in the search area in order to reduce
computation without significantly compromising matching quality. Unfortunately, most of
these fast search algorithms are too complicated for a systolic array implementation. In this
section, we will survey systolic array structures for the implementation of only the full-search
block-matching motion estimation algorithm. First, we review some notations and formulas
of this algorithm.

FBMA (Full-Search Block-Matching Algorithm)

Assume a current video frame is divided into Nj x N, blocks in the horizontal and vertical
directions, respectively, with each block containing N x N pixels. The most popular similarity
criterion is the mean absolute difference (MAD), defined as

N—-1N-1
1
MADGn, n) = =5 > D Ik ) =yl +m, j+n) (3.2)
i=0 j=0
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where x (i, j) and y(i + m, j + n) are the pixels of current frame and previous frame, respec-
tively. The motion vector (MV) corresponding to the minimum MAD within the search area
is given by

MV = arg{min MAD(m, n)} —p<m,n<p, (3.3)

where p is the search range parameter. We focus on the situation where the search area is a
region in the reference frame consisting of (2p + 1)? pixels.

In the FBMA, MAD distortions between the current block and all (2p + 1)2 candidate
blocks are to be computed. The displacement that yields the minimum MAD among these
(2p + 1)? positions is chosen as the motion vector corresponding to the present block. For the
entire video frame, this highly regular FBMA can be described as a six-level nested do loop
algorithm, as shown below.

Algorithm 3: Six-level nested do loop of full-search
block-matching motion estimation

Do h=0 to Nh-1
Do v=0 to Nv-1
MV (h,v)=(0,0)

Dmin (h, v) =00

Do m=-p to p (-1)
Do n=-p to p (-1)
MAD (m,n) =0
Do i=hN to hN+N-1
Do j=vN to vN+N-1
MAD (m,n)= MAD(m,n)+|x(i,3)-y(i+m,j+n) |
End do j
End do 1
If Dmin(h,v) > MAD(m,n)
Dmin (h, v)=MAD (m, n)
MV (h,v) =(m,n)
End if
End do n
End do m
End do v
End do h

The frame rate for a particular resolution standard (e.g., MPEG-2, H.261) can be used as a
performance metric. Assuming that time to compute an MV of one block of N x N pixels is
Tolock, then the time to compute the whole video frame is

Tframe = Nh Nv Tblock s (34)
and the frame rate Firame 1S determined by

1
Trame )

Frrame = (35)
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Motion Estimation Subsystem Architecture

A generic block diagram of a motion estimation subsystem consists of a processing array,
local (on-chip) memory, and a control unit as shown in Figure 3.5.

The control unit provides the necessary clock timing signals and flags to indicate the begin-
ning and completion in processing the current block. The local memory unit not only acts as
an on-chip cache but also facilitates data reordering. The size of the local memory depends on
the specific systolic mapping performed. Based on the geometry of the processing array (in
conjunction with local memory), existing motion estimation array structures can be roughly
classified into four categories:

* 2D array

« linear array

* tree-type structure (TTS)
* hybrid

We will briefly survey each of these array structures.

2D Array Micro-Architecture

The AB2 architecture [5] shown in Figure 3.6 and its sibling AS2 (not shown) were among
the first motion estimation array structures. Subsequently, AB2 has been modified [6] to scan
the search area data sequentially in raster scan order using shift registers. This reduces the
need for a large number of input—output (I/O) pins. However, the overall processing element
utilization is rather inefficient. An improved AB2-based architecture is presented by [7]. The
movement of search area data is carefully studied so that it can exploit a spiral pattern of data
movement. On average, this processor array is able to compute two MADs in every cycle.
However, it requires a PE that is twice as complicated. This can reduce the computation latency
at the expense of more complicated PE architecture. These earlier array structures are often
derived in an ad hoc manner without employing a formal systolic array mapping strategy.

A modular semisystolic array derived by performing the systolic mapping of a six-level
nested do loop algorithm on an array is presented in [8]. First, we transform the three pairs
of indices (v, h), (m, n), (i, j) of the six-level nested do loop in Algorithm 3 to a three-level
nested do loop with indices (b, [, k), where b, [, and k represent block, search vector, and
pixel, respectively, of the entire frame. A systolic multiprojection technique [1] is then used
to project the 3D dependence graph (DG) into a linear array. Next, exploiting the fact that the
neighboring search area shares many reference frame pixels, this linear array is further folded
into a spiral 2D array as shown in Figure 3.7. In this configuration, the search area pixel y
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AB2 architecture [S]. AD: absolute difference, A: addition, M: memory.

is broadcast to each processing element in the same column, and the current frame pixel x
is propagated along the spiral interconnection links. The constraint of N = 2p is imposed
to achieve a low I/O pin count. A simple PE is composed of only two eight-bit adders and a
comparator, as shown in Figure 3.7.

In [9] the six-level nested do loop is transformed into a two-level nested do loop, which is
then mapped into a linear array and then folded into a 2D spiral array. The resulting design has
better scalability to variable block sizes and search ranges and does not need data broadcasting.
In [10], another 2D array structure is proposed. It uses multiprojection directly to transform
the dependence graph corresponding to the six-level nested do loop into a 2D fully pipelined
systolic array. Two levels of on-chip caches are required to handle the data movements.
Furthermore, it has been shown that the previous motion estimation array architecture [6]
is a special case of this 2D array structure. In the architectures proposed in [11] and [12],
attention is paid to data movement before and after the motion estimation operations. Data
broadcasting is used to yield a semisystolic array [11]. Two sets of shift register arrays are
used to switch back and forth between two consecutive current blocks to ensure 100% PE
utilization (Figure 3.8).

Linear Array Architecture

A linear array configuration uses fewer processing elements but has a lower data throughput
rate. It is suitable for applications with a lower frame rate and lower resolution such as
videoconferencing and/or videophone. The AB1 [5] depicted in Figure 3.9 is an example of
linear array architecture.

The performance of a linear array architecture can be enhanced using data broadcasting to
reduce the pipelining latency in a systolic array where data are propagated only to its nearest
neighboring PE. In [13], it is suggested to broadcast either the current block pixels or the search
area pixels so that PEs that need these data can be computed earlier. Obviously, when the array
size grows, long global interconnection buses will be needed to facilitate data broadcasting.
This may increase the critical path delay and hence slow down the applicable clock frequency.

A hybrid SIMD (single instruction, multiple data) systolic array, consisting of four columns
of 16 PEs, has been proposed by [14]. It is essentially the collection of four independent 16 x
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1 linear arrays; hence, it should be considered as a variant of linear array architecture. More
recently, a linear array structure was reported in [15]. It is based on slicing and tiling of a 4D
DG onto a single 2D plane in order to make the projection easier. Global buses are needed to
broadcast search area data. Additional input buffers are required to reorder the input sequence
into a format suitable for the processing array. On the other hand, modules can be linearly
cascaded for better parallelism or to handle bigger block size as well as a larger search range.

Tree-Type Structure (TTS) Architecture

TTS is suitable for not only FBMA but also irregular block-matching algorithms such as
the three-step hierarchical search. Since each tree level shown in Figure 3.10 can be viewed
as a parallel pipeline stage, the latency is shorter. Nevertheless, the computation time is still
comparable to those of 1D or 2D array architectures. The problem associated with TTS is the
memory bandwidth bottleneck due to the limited number of input pins. This can be alleviated
by a method called 1/M-cut subtree, as proposed in [16], to seek a balance between memory
bandwidth and hardware complexity.

Hybrid Architecture

Several hybrid architectures proposed in the literature are now briefly reviewed.

In [17], two types (type 1 and type 2) of hybrid architectures are proposed. In these ar-
chitectures, search area data y are injected into a 2D array with tree adders in a meander-like
pattern. The type-1 architecture is similar to the AB2 array [5] shown in Figure 3.6. It imposes
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FIGURE 3.8

Diagram of an individual processing element. Reg: register, Com: compare, AD: abso-
lute difference, A: addition, DFF: D flip-flop.
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y y y

FIGURE 3.9
ABI1 architecture [S]. AD: absolute difference, M: memory, -0-: delay.

the constraint that N = 2p + 1. The type-2 architecture is analogous to the AS2 array in [5].
These array architectures have registers on both the top and bottom of the processing array to
support meander-like movement of search area data.

In [17], a hybrid TTS/linear structure has been suggested. This architecture consists of a
parallel tree adder to accumulate all the partial sums calculated by a linear array of PEs. To
achieve the same throughput as a 2D array, clock frequency must be increased n times from the
2D array, where n is the degree of time-sharing. A register ring is added to accumulate SAD
after a tree adder, as reported in [18, 19]. Another hybrid architecture [20] utilizes a linear
array of N 1/2-cut subtrees with systolic accumulation instead of a single 1/32-cut subtree, as
shown in [16].

Performance Comparison
We use the following features to compare different motion estimation array architectures:
 Area and complexity

* Number of I/O ports and memory bandwidth
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FIGURE 3.10
Tree-type structure [16]. D: absolute difference, A: addition, M: memory.

 Throughput rate of motion vectors

Scalability to larger block size and search range
 Operating clock frequency

* Dynamic power consumption

+ PE utilization

Area and complexity can be represented by the number of PEs, the micro-architecture of
an individual PE, and the number of on-chip memory units such as latches, pipeline registers,
shift registers, etc. Motion vector computation throughput rate can be determined by block
computation time. The memory bandwidth is proportional to the number of I/O ports required
by the processing array. I/O ports include current block, search area data, and motion vector
output ports. A multiple-chip solution provides the ability to support a bigger block size and
search range.

With today’s technology, a single-chip solution or subsystem solution is more practical and
cost-efficient. A few architectures can truly scale well but require a large number of fan-outs
as a result of broadcasting. Block-level PE utilization is taken into consideration rather than
the frame level. Power consumption becomes more and more important to support mobile
communication technology. The block size of N = 16 and search range of p = 8 are used as
common building blocks. In Tables 3.1 and 3.2, the performance parameters are formulated
as functions of N and p.

For simulated or fabricated layouts, important parameters such as maximum operating fre-
quency, die size, transistor count, and power consumption can be used to evaluate the perfor-
mance of each architecture in Table 3.2. For example, the bigger the die size, the more likely
lower yield becomes, leading to the higher list price. Within a certain amount of broadcasting,
the higher the transistor count, the more power is consumed. Otherwise, power consumed by
the inherent capacitance and inductance of long and wide interconnection may become more
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apparent. This can affect the battery time of a digital video camcorder and/or multimedia
mobile terminal.

3.3 Dedicated Micro-Architecture
3.3.1 Design Methodologies for Dedicated Micro-Architecture

A dedicated micro-architecture is a hardware implementation specifically for a given algo-
rithm. It achieves highest performance through both specialization and parallelism.
Implementation of Nonrecursive Algorithms

Any computing algorithm can be represented by a directed graph where each node represents
a task and each directed arc represents the production and consumption of data. In its most
primitive form, such a graph is called a data flow graph. Let us consider an algorithm with the
following formulation.

Algorithm 4:

tmpO= c4* (-x(3)+x(4));
y(3) = 1c6*(x(3) + tmpo);
y(7) = ic2*(-x(3) + tmpo);

It can be translated into a data flow diagram as shown in Figure 3.11. In this algorithm,
three additions and three multiplication operations are performed. There are two input data
samples, x (3) and x(4), and two output data samples, y (3) and y (7). c4, ic2, and
icé are precomputed constant coefficients which are stored in memory and will be available
whenever needed. To implement this algorithm, one must have appropriate hardware devices
to perform addition and multiplication operations. Moreover, each device will be assigned to
perform a specific task according to a schedule. The collection of task assignment and schedule
for each of the hardware devices then constitutes an implementation of the algorithm.

N
y(3)

x(3)

y(7)

FIGURE 3.11
An example of a data flow diagram.
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Table 3.1 Architecture Comparison for Search Range p = N/2 = 8

Architecture Search PE Computation Time 1/O Ports Memory Units
Range (cycles) (8 bits) (8 bits)

Komarek and Pirsch [5]
ASI —p/+p 2p +1 N(N +2p)2p +1) 3 10p +6
AB1 -p/+p N NN +2p)2p+1) 2N +1 2N + 1
AS2 —-p/+p NQp+1) N(N +2p) N(N+2P) 3(N+P)3BN+2)+1
AB2 -p/+p N? (N+2p)2p+1) 2N +1 2N24+ N +1
Vos and Stegherr [17]
(2D)
2D array (type 1) -p/+p N? N? 4 TN% +2Np
Linear array -p/+p N NQ@2p+1)? 4 3N%+2Np
Yang et al. [13] -p/+p—1 N 2p(N? +2p) 4 4N
Hsieh and Lin [6] -p/+p N? (N +2p)*+5 3 3N’ 4+ (N -1D@2p—1)
Jehng et al. [16] —p/+p N?/16 322p + 1)? 4 N?/16 4 1
Wu and Yeh [14] —p/+p 4N 2N(@2N + p) 4 N2
Nam et al. [18] & —-p/+p—1 N (2p)*N + N +log, N 4 8N +1
Nam and Lee [19]
Chang et al. [15] —-p+1/+p 2N (2p)*N 6 9N +4p
Yeo and Hu [8] -p/+p-—1 N? N? 4 2N?
Pan et al. [7] —p+1/+p—1 2N? (N +2p)(p+3) N+3 2N? 44N +1
Chen et al. [20] —p/+p 2N?+2  @Qp+2N/M)2p+1) 3 2N% +2N 42
Lee and Lu [11] —p/+p—-1 N? 2p)? 4 5N? +2(N — 1)(N +2p)
You and Lee [12] —-p/+p—1 kv (2pN)?*/kv 10 (N +2p)?
Chen and Kung [10] —p/+p N? N? 3 2N? 4 (N +2p)?
STi3220 [21] -p/+p—1 N? N? +46 5 2N?
Kittitornkun and Hu [9] —p/+p Qp+1)? N? 4 32p + 1)? + N?

Note: The number of PE corresponds to the number of arithmetic units that perform absolute difference (AD), addition (A), and

comparison (M).




Table 3.2 Parameter Comparison of Fabricated or Simulated Layouts

Architecture Techno. Max Freq 1/O Die size Transistor Power
(nm) (MHz) Pads (mmz) Count Consum. (W)

Yang et al. [13] 1.2 25 116 3.15 x 3.13 52,000 Na.
Hsieh and Lin [6] 1.0 120 Na. Na. Na. Na.
Wu and Yeh [14] 0.8 23 65 540 x 433 86,000 Na.
Chang et al. [15] 0.8 Na. 100 6.44 x 526 102,000 Na.
Vos and Schobinger [22] 0.6 72 Na. 228 1,050,000 Na.
Nam and Lee [19] 0.8 50 Na. Na. Na. Na.
Chen et al. [20] 0.8 30 97 12.0 x 4.3 Na. Na.
Lee and Lu [11] 0.8 100 84 9.5 x 172 310,000 1.95

@ 50 MHz
Sti3220 [21] Na. 20 144 Na. Na. 2.4

@ 20 MHz

Na.: not available.

Assume that four hardware devices, two adders and two multipliers, are available. The delay
for an addition is one time unit, whereas for a multiplication it is two time units. Furthermore,
assume that after the execution of each task, the result will be stored in a temporary storage
element (e.g., a register) before it is used as the input by a subsequent task. A possible
implementation of Algorithm 4 is illustrated in Table 3.3.

Table 3.3 TImplementation # 1 of Algorithm 4

devices\time units 1
adder #1

adder #2

multiplier #1

multiplier #2

In this table, each column represents one time unit, and each row represents a particular
device. The numerical number in each shaded box corresponds to the particular task in the
data flow graph. Blanked cells indicate that the corresponding device is left idle. Note that
task 2 cannot be commenced before task 1 is completed. This relationship is known as data
dependence. Also note that in time unit 4, tasks 3 and 5 are executed in both adders in parallel.
This is also the case in time units 5 to 6 where tasks 4 and 6 are executed in the two multipliers in
parallel. Thus, with a sufficient number of hardware devices, it is possible to exploit parallelism
to expedite the computation.

Suppose now that only one adder and one multiplier are available; then an implementation
will take longer to execute. An example is given in Table 3.4. Note that the total execution
time is increased from 6 to 8 time units. However, only half the hardware is needed.

Let us consider yet another possible implementation of Algorithm 4 when there is a stream
of data samples to be processed by the hardware.
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Table 3.4 Implementation # 2 of Algorithm 4

devices\time units

adder

multiplier

Algorithm 5:

for i =1 to . . .,

tmp0 (1) = c4*(x(3,1)+x(4,1));
y(3,1) = ic6*(x(3,1) + tmpO(1));
y(7,1) = ic2*(x(3,1) + tmpO0 (1)) ;
end

Algorithm 5 contains an infinite loop of the same loop body as Algorithm 4. Since the
output of loop 1 (tmp0(i),y(3,1), y(7,1)) does not depend on the output of other
iterations, the corresponding DG of Algorithm 5 will contain infinitely many copies of the DG
of a single iteration shown in Figure 3.11. Since the DGs of different iteration index i are
independent, we need to focus on the realization of the DG of a single iteration. Then we may
duplicate the implementation of one iteration to realize other iterations. In particular, if the
input data samples x (3,1) and x (4, 1) are sampled sequentially as i increases, multiple
iterations of the this algorithm can be implemented using two adders and three multipliers
(Table 3.5).

Table 3.5 Multi-Iteration Implementation # 1 of Algorithm 5

devices\time units 1 2 3 4 5 6 8 9 10
adder #1

adder #2

multiplier #1

multiplier #2

multiplier #3

Note: Cells with the same texture or shade belong to tasks of the same iteration.

In this implementation, each type of box shading corresponds to a particular iteration in-
dex i. This implementation differs from the previous two implementations in several ways:
(1) Multiple iterations are realized on the same set of hardware devices. (2) Each adder or
multiplier performs the same task or tasks in every iteration. In other words, each task is
assigned to a hardware device statically, and the schedule is periodic. Also, note that execu-
tion of tasks of successive iterations overlap. Thus, we have an overlap schedule. (3) While
each iteration will take seven time units in total to compute, every successive iteration can
be initiated every two time units. Hence, the throughput rate of this implementation is two
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time units per iteration. The average duration between the initiation of successive iterations is
known as the initiation interval.

Comparing these three implementations, clearly there are trade-offs between the amount of
resource utilized (number of hardware devices, for example) and the performance (the total
delay, in this case) achieved. In general, this can be formulated as one of two constrained
optimization problems:

 Resource-constrained synthesis problem — Given the maximum amount of resources,
derive an implementation of an algorithm A such that its performance is maximized.

 Performance-constrained synthesis problem — Given the desired performance objec-
tive, derive an implementation of an algorithm A such that the total cost of hardware
resources is minimized.

The resource-constrained synthesis problem has an advantage in that it guarantees a solu-
tion as long as the available hardware resource is able to implement every required task in
algorithm A. On the other hand, given the desired performance objective, an implementation
may not exist regardless of how many hardware resources are used. For example, if the per-
formance objective is to compute the output y (3) and y (7) within four time units after input
data x (3) and x (4) are made available, then it is impossible to derive an implementation to
achieve this goal.

Implementation of Recursive Algorithms

Let us consider the following example:

Algorithm 6:

for i = 1 to .
y(i) = a*y(i-1) + x (i)
end

This is a recursive algorithm since the execution of the present iteration depends on the output
from the execution of a previous iteration. The data flow graph of this recursive algorithm
is shown in Figure 3.12. The dependence relations are labeled with horizontal arrows. The

FIGURE 3.12
Data flow graph of Algorithm 6.

thick arrows indicate inter-iteration dependence relations. Hence, the execution of the ith
iteration will have to wait for the completion of the (i — 1)th iteration. The data flow graph
can be conveniently expressed as an iterative computation dependence graph (ICDG) that
contains only one iteration, but label the inter-iteration dependence arc with a dependence
distance d, which is a positive integer. This is illustrated in Figure 3.13. We note that for a
nonrecursive algorithm, even if it has an infinite number of iterations (e.g., Algorithm 4), its
complete data flow graph contains separate copies of the DG of each iteration. These DGs
have no inter-iteration dependence arc linking them.

©2001 CRC PressLLC



FIGURE 3.13
ICDG of Algorithm 6.

A challenge in the implementation of a recursive algorithm is that one must consider the inter-
iteration dependence relations. Many design theories have been developed toward this goal [4],
[23]-[25]. The focus of study has been on the feasibility of performance-constrained synthesis.
Given a desired throughput rate (initiation interval), one wants to derive an implementation
that can achieve the desired performance using the minimum number of hardware modules.

Suppose that multiplication takes two clock cycles and addition takes one clock cycle. It is
easy to see that y (i) cannot be computed until three clock cycles after y (1) is computed. In
other words, the minimum initiation interval is (2+1) = 3 clock cycles. In a more complicated
ICDG that contains more than one tightly coupled cycle, the minimum initiation interval can
be found according to the formula

> Tik)

Im _ Max__¢

in = —Z Aj(k)
J

where 7; (k) is the computation time of the ith node of the kth cycle in the ICDG and A (k) is
the jth inter-iteration dependence distance in the kth cycle. Let us now consider the example
in Figure 3.14. There are two cycles in the ICDG in this figure. The initiation interval can be

FIGURE 3.14
An ICDG containing two cycles.

calculated as follows:
Imin =max{3+1+2+2)/(1+4+2),3+2+2)/2} =max{8/3,7/2} = 3.5

If the desired initiation interval is larger than the minimum initiation interval, one may consider
any efficient implementation of a single iteration of the ICDG, and then simply duplicate that
implementation to realize computations of different iterations. For example, in the case of
Algorithm 6, one may use a single adder and a multiplier module to implement the algorithm
if, say, the desired throughput rate is one data sample per four clock cycles. The corresponding
implementation is quite straightforward (Table 3.6).

Here we assume that x (1) is available at every fourth clock cycle: 4, 8, 12, .... Thus the
addition operation can take place only at these clock cycles. The shaded boxes in the adder
row of Table 3.6 are also labeled with the corresponding y (1) computed at the end of that
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Table 3.6 Implementation of Algorithm 6

clock cycles

Note: Initiation interval = four clock cycles.

clock cycle. The multiplication can then be performed in the immediate next two clock cycles.
However, the addition must wait until x (1) is ready.

Suppose now the desired throughput rate is increased to one sample per two clock cycles,
which is smaller than the minimum initiation interval of three clock cycles. What should
we do? The solution is to use an algorithm transformation technique known as the look-
ahead transformation. In essence, the look-ahead transformation is to substitute the iteration
expression of one iteration into the next so as to reduce the minimum initiation interval at the
expense of more computations per iteration. For example, Algorithm 6, after applying the
look-ahead transformation once, can be represented as:

Algorithm 7:
for i = 1 to

y(i) = a”2*y(i-2) + a*x(i-1) + x(1i)
end

The corresponding ICDG is displayed in Figure 3.15. The new minimum initiation interval

x(i—1) ° ° y(i)

a 2

SO G
' y(i—2)
a2

FIGURE 3.15
ICDG of Algorithm 7.

now becomes: (2 4+ 1)/2 = 1.5 < 2 clock cycles, as desired. Next, the question is how
to implement this transformed algorithm with dedicated hardware modules. To address this
question, another algorithm transformation technique called loop unrolling is very useful.
Specifically, we consider splitting the sequence {y (i) } into two subsequences {ye(i)} and
{yo(i)} such that

ve(i) = y(2i) and yo(i) =yQ2i+1).

Then the iterations in Algorithm 7 can be divided into two subiterations with ye(i) and yo(i):

Algorithm 8:

for 1 = 1 to
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a"2*ye(i-1) + a*x(2i-1) + x(21i)
yo(i) = a"2*yo(i-1) + a*x(21) + x(2i+1)

b
(0]
[

end
To implement Algorithm 8, we denote a new sequence
u@i)=x@)+axx@i—1)
Then one can see that Algorithm 8 corresponds to two independent subloops:
ye(i) = a® x ye(i — 1) + u(2i)
yo(i) = a’> x yo(i — 1) + u(2i + 1)

Each of these subloops will compute at a rate twice as slow as u (i) is computed. Since x (i) is
sampled at a rate of one sample per two clock cycles, ye(i) and yo(i) each will be computed
at a rate of one sample every four clock cycles. Hence, on average, the effective throughput
rate is one sample of y(i) every two clock cycles. A possible implementation is shown in
Table 3.7.

Table 3.7 Implementation of the Loop-Unrolled ICDG of Algorithm 8

clock cycles| 1 2 3 4 5 6 7 8 9 10 11

Multiplier #

In this implementation, u (i) is computed using the adder and multiplier #1. For example,
u(3) is computed after a * x(2) is computed and x(3) is available during the fifth clock cycle.
The two subloops share a common multiplier #2 and the same adder that is used to compute
u(i). Note that a®  ye(i) or a® * yo(i) is computed right after ye(i) or yo(i) is computed
in the adder. Also note that there are four clock cycles between when ye(1) and ye(2) are
computed. This is also the case between yo(1) and yo(2).

In the rest of this section, we survey a few multimedia algorithms and the corresponding
implementations.

3.3.2 Feed-Forward Direct Synthesis: Fast Discrete Cosine Transform (DCT)
Dedicated Micro-Architecture for 1D Eight-Point DCT
An N-point DCT is defined as:

N—1
y(k) = (k) 112:(:) cos %}'zfl)x(n) (3.6)

where ¢(0) = 1/+/N and c¢(k) = «/(2/N), 1 < k < N — 1. The inverse DCT can be rewritten
as:

N-—1
x(m) =Y cos %c(k)y(k) (.7
k=0
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For the case of N = 8, the DCT can be written as a matrix vector product [26]
Y= Csx

The 8 x 8 matrix Cg can be factored into the product of three matrices:

Cs = PsKgB
where Pg is a permutation matrix, and Kg is a block diagonal matrix
G
LG
2 G2
Gy

Kg =

. . _ | cos(3m/8) cos(m/8)
with G| = cos(w/4), G2 = |:_ cos(r/8) cos(37r/8):|’ and
cos(Smw/16) cos(9m/16) cos(3w/16) cos(m/16)
—cos(w/16) cos(5m/16) cos(9m/16) cos(3m/16)
—cos(3m/16) —cos(w/16) cos(5w/16) cos(97/16)
—cos(9/16) —cos(3w/16) —cos(w/16) cos(57/16)

Gy =

(3.8)

(3.9)

(3.10)

(3.11)

is an anticirculant matrix. Finally, B can be further factored into the product of three matrices
consisting of 0, 1, and —1 as its entries: B = B By B3. Based on this factorization, Feig and
Winograd [26] proposed an efficient eight-point DCT algorithm that requires 13 multiplication
operations and 29 additions. An implementation of this algorithm in Matlab™ m-file format

18 listed below.

Algorithm 9: Fast DCT Algorithm

function y=fdct (x0) ;

o o

o°

(c) copyright 1998, 1999 by Yu Hen Hu

o°

o

o

Note that the array index is changed from 0:7 to 1:8

These are constants which can be stored as parameters.

implementation of fast DCT algorithm by Feig and Winograd
IEEE Trans. SP, vol. 40, No. 9, pp. 2174-93, 1992.

Cl = 1/cos(pi/16); C2=1/cos (pi/8) ; C3 =1/cos(3*pi/16);
C4 = cos(pi/4);
C5 = 1/cos(5*pi/16); C6 = 1/cos(3*pi/8); C7 =1/cos(7*pi/16);

% Multiply by B3

Al = x0(1) + x0(8); A5 = x0(1) - x0(8);
A2 = x0(2) + x0(7); A6 = x0(2) - x0(7);
A3 = x0(3) + x0(6); A7 = x0(3) - x0(6);
A4 = x0(4) + x0(5); A8 = x0(4) - x0(5);

% Multiply by B2
A9 = Al + A4; Al0 = A2 + A3;
All = Al - A4; Al2

[
>
N
I
i
w
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% Multiply by Bl
Al3 = A9 + Al10; Al4 = A9 - Al0;
$ multiply by (1/2) Gi1

M1 = (1/2)*C4*A13; % y (1)

M2 = (1/2)*C4*Al4; % y(5)

$ multiply by (1/2) G2

Al5 = -Al2 + All; M3 = cos(pi/4)*Al5;
A20 = Al2 + M3; A21 = -Al2 + M3;
Mé = (1/4)*C6*A20; % y(3)

M7 = (1/4)*C2*A21; % y(7)

% Now multiply by (1/2)G4

% multiply by H 42

Al6é = A8 - A5; Al7 = -A7 + A5;

Al8 = A8 + A6; Al9 = -Al7 + AlS8;

% Multiply by 1, G1, G2

M4 = C4*Ale6; M5 = C4*Al19;

A22 = Al7 + M5; A23 = -Al7 + M5;

M8 = (1/2)*C6*nA22; M9 = (1/2)*C2*A23;
% Multiply by H 41, then by D"-1, and then 1/2 this is G4
then multiply by (1/2) to make it (1/2) G4

o°

A24 = - A7 + M4; A25 = A7 + M4;
A26 = A24 - M8; A27 = A25 + M9;

A28 = -A24 - M8; A29 = -A25 + M9;

M10 = -(1/4)*C5%*A26; % y(2)

M1l = -(1/4)*C1*A27; % y(4)

M12 = (1/4)*C3*A28; % y(8)

M13 = -(1/4)*C7*A29; % y(6)

y(1) = M1; y(2) = M10; y(3) = M6; y(4) = M11;

y(5) = M2; y(6) = M13; y(7) = M7; y(8) = M12;

To support high-throughput real-time image and video coding, a DCT algorithm must be
executed at a speed that matches the I/O data rate. For example, in HDTV applications, videos
are processed at a rate of 30 frames per second, with each frame 2048 x 4096 pixels. At a
4:1:1 ratio, there can be as many as

30 x (6/4) x 2048 x 4096 x (2 x 8)/64
=45 x 21+12+143-6 — 94 371, 840 ~ 94.5 million 8-point DCT operations

to be performed within one second. Hence, dedicated micro-architecture will be needed in
such an application.

The DG shown in Figure 3.16 completely describes the algorithm and dictates the ordering
of each operation that needs to be performed. In this figure, the inputs x (0) to x(7) are made
available at the left end and the results y(0) to y(7) are computed and made available at the right
end. Each shaded square box represents a multiplication operation, and each shaded circle
represents an addition. The open circles do not correspond to any arithmetic operations, but
are used to depict the routing of data during computation. Since the direction of dependence is
always from left to right, it is omitted in Figure 3.16 in the interests of clarity. From Figure 3.16,
it can be identified that the critical path is from any of the input nodes to M5, and from there
to any of the four output nodes y(1), y(3), ¥(5), and y(7). The total delay is five additions
and three multiplications.
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FIGURE 3.16
Dependence graph of the fast DCT algorithm.

Once a dependence graph is derived, one may directly map the DG into a dedicated hardware
implementation by (1) designating a hardware module to realize each computation node in the
DG, and (2) interconnecting these hardware modules according to the directed arcs in the DG.

Two types of hardware modules will be used here: an adder module, which takes one clock
cycle to perform an addition, and a multiplier module, which takes two clock cycles to compute
a multiplication. The mapping of the DG into a hardware module is a binding process where
each node of the DG is mapped onto one hardware module which can implement the function
to be performed on that node. A single hardware module may be used to implement one or
more nodes on the DG. As in the previous section, we assume the output of each hardware
module will be held in a register.

a. Performance-Constrained Micro-Architecture Synthesis

Suppose that one may use as many hardware modules as needed. Then, from a theoretical
point of view, one may always derive an implementation to achieve the desired throughput
rate. This is because successive eight-point DCT operations are independent of each other.
For each new arriving eight-point data sample, one can always assign a new set of hardware
modules and initiate the computation immediately. Hence the minimum initiation interval can
be made as small as possible. The only limiting factor would be the speed to redirect data
samples into appropriate hardware modules.

Next, suppose that in addition to the throughput rate, the latency (time between arrival of
data samples and when they are computed) is also bounded. The minimum latency, given
that a sufficient number of hardware modules are available, is equal to the time delay along
the critical path, which includes five addition operations and three multiplication operations.
Thus, the minimum latency is 5 x 1 + 3 x 2 = 11 clock cycles. The maximum latency is
equal to the total computing time, with every operation executed sequentially. Thus, the upper
bound of latency is 29 x 1 + 13 x 2 = 55 clock cycles.
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Table 3.8 shows an implementation that achieves a throughput rate of one 8-point DCT per
clock cycle and a latency of 11 clock cycles. Note that if the clock frequency is greater than
95 MHz, then this implementation can deliver the required throughput rate for HDTV main
profile performance.

The implementation is expressed in a warped format to save space. In this table, each item
Ai(l <i <29)orMj(1 < j < 13) refers to a separate hardware module and should take up
a separate raw in the implementation. In Table 3.8, each entry Ai or Mj gives the schedule of
the particular hardware module corresponding to the same set of eight data samples.

Table 3.8 A Dedicated Implementation of 8-Point DCT
Al | A9 | A13 | M1 | M1
A2 | A10 | Al4 | M2 | M2
A3 | AIl | A15 | M3 | M3 | A20 | M6 | M6

A4 | Al12 A21 | M7 | M7

A5 | Al6 | M4 | M4 | A24 A26 | M10 | M10
A6 | A17 A25 A27 | M11 | M11
A7 | A1I8 | A19 | M5 | M5 | A22 | M8 | M8 | A28 | M12 | M12
A8 A23 | M9 | M9 | A29 | M13 | M13

Note: Throughput = 1 DCT/clock cycle, latency = 11 clock cycles.

The implementation is shown in a compact format.

In this implementation, 29 full adders and 13 pipelined multipliers are used. By pipelined
multiplier, we require each multiplication to be accomplished in two successive stages, with
each stage taking one clock cycle. A buffer between these two stages will store the intermediate
result. This way, while stage 2 is completing the second half of the multiplication of the present
iteration, stage 1 can start computing the first half of the multiplication of data from the next
iteration. Thus, with two-stage pipelined operation, such a multiplier can achieve a throughput
rate of one multiplication per clock cycle.

On the other hand, if one type of multiplier module which cannot be broken into two pipelined
stages is used, then two multipliers must be used to realize each multiplication operation in
Table 3.6 in an interleaved fashion. This is illustrated in Figure 3.17. The odd number of the
data set will use multiplier #1 while the even number of the data set will use multiplier #2. As
such, on average, two multiplication operations can be performed in two clock cycles. This
translates into an effective throughput rate of one multiplication per clock cycle. However, the
total number of multiplier modules needed will increase to 2 x 13 = 26.

buffer
/_ multipler #1 é\
— stage | stage2 >

— multipler #2 >

pipelined multiplier interleaving 2 multipliers

FIGURE 3.17
Illustration of the difference between pipelined and interleaved multiplier implementa-
tion.
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Let us consider relaxing the performance constraints by lowering the throughput rate to one
8-point DCT per two clock cycles and allowing longer latency. One possible implementation,
in a compact format, is shown in Table 3.9.

Table 3.9 Eight-Point DCT Implementation

Al | A9 M1
A2 [AIQ0 JAI3 [Al4 M2
A3 |All M3 M6
Ad |Al12 | ALS A20 | A21 M7
A5 [Al6 M4 A24 | A22 MI10
A6 | Al17 A25 | A23 A26 | A27 M11
A7 | Al8 M5 M8 M12
A8 [Al9 M9 A28 | A29 M13

Note: Throughput rate: 1 DCT per 2 clock cycles; latency: 12 clock cycles; 15 adder modules and
13 multipliers are used.

In this implementation, we use only regular multiplier modules. If we use two-stage
pipelined multiplier modules, the number of multipliers can further be reduced to seven. In
order to minimize the number of adder modules, we choose to execute A26 and A27 (as well
as A28 and A29) sequentially. This change accounts for the additional clock cycle of latency.

b. Resource-Constrained Micro-Architecture Synthesis

In aresource-constrained synthesis problem, the number of hardware modules is given. The
objective is to maximize the performance (throughput rate) under this resource constraint. To
illustrate, let us consider the situation where only one adder module and one multiplier module
is available. In Table 3.10, the first row gives the clock-by-clock schedule for the adder module,

Table 3.10 TImplementation of 8-Point DCT with 1 Adder and 1 Multiplier

18119 24|25 22123 i|2 3|4 26 ?.7[28 29[9 IO|II 12|15 13[[4 20‘21

M4 M35 M8 M9 MI10 | MI11 | MI2 | MI13 M3 M1

and the second row gives the schedule for the multiplier module. The shaded area (M2, M6,
M?7) indicates that those multiplication operations belong to the previous data set. Thus, this
is an overlapped schedule. The initiation interval is 29 clock cycles — the minimum that can
be achieved with only one adder module. The execution of the adder and the multiplier are
completely overlapped. Hence, we can conclude that this is one of the optimal solutions that
maximize the throughput rate (1 DCT in 29 clock cycles), given the resource constraint (one
adder and one multiplier module).
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c. Practical Implementation Considerations

In the above synthesis examples, the complexity of inter-module communication paths
(buses) is not taken into account, nor do we factor in the amount of temporary storage elements
(registers) needed to facilitate such realization.

Furthermore, in practical hardware synthesis, not all modules have the same word length.
Due to the addition and multiplication operations, the dynamic range (number of significant
digits) will increase. The adder at a later stage of computing will need more bits. Therefore,
before commencing a hardware synthesis, it is crucial to study the numerical property of
this fast DCT algorithm and determine its quantization noise level to ensure that it meets the
requirements of the standard.

Generalization to 2D Scaled DCT

In image and video coding standards such as JPEG and MPEG, a 2D DCT is to be performed
on an 8 x 8 image pixel block X:

Y = CsXC{ (3.12)

This corresponds to a consecutive matrix—matrix product. An array structure can be developed
to realize this operation using a systolic array. However, it would require many multipliers.
In [26], a different approach is taken. First, we note that the above formulation can be converted
into a matrix—vector product between a 64 x 64 matrix formed by the kroenecker product of
the DCT matrix, Cg ® Cg, and a 64 x 1 vector X formed by concatenating columns of the X
matrix. The result is a 64 x 1 vector Y that gives each column of the Y matrix:

Y=(C®Cs)X (3.13)
The Cg matrix can be factorized, in this case, into the product as follows:
Cs = PgDgRg 1MgRg > (3.14)

where Pg is the same permutation matrix as in the 1D eight-point DCT algorithm. Dyg is an
8 x 8 diagonal matrix; Rg | is a matrix containing elements of 0, 1, and —1; and Rg > is the
product of three matrices, each of which contains 0, 1, and —1 elements only.

1
1
1
cos(mr/8)
1
cos(mr/8)
cos(3mw/16) cos(r/16)
— cos(/16) cos(37/16) |

(3.15)

For the kroenecker product Cg ® Cs, the factorization becomes

C3 ® Cg = (PgD3Rs, 1 MgRs2) ® (PsDgRg 1 MgRg 1)
= [(PsDs) ® (PsDg)] o [(Rs,1MsRs2) ® (Rs,1 MgRs2)] (3.16)
= (Py® Pg) e (D3 ® Dg) e (Rs,| ® Rg,1) @ (Mg ® Mg) e (Rg» ® Rg2)
Hence a fast 2D DCT algorithm can be developed accordingly. The hardware implementation

approach will be similar to that of 1D DCT. However, the complexity will be significantly
greater.
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One advantage of the factorization expression in (3.13) is that a scaled DCT can be per-
formed. Scaled DCT is very useful for JPEG image coding and MPEG intra-frame coding
standards. In these standards, the DCT coefficients will be multiplied element by element
to a quantization matrix to deemphasize visually unimportant frequency components before
applying scalar quantization. Thus, for each block, there will be 64 additional multiplication
operations performed before quantization can be applied. In effect, this quantization matrix
can be formulated as a 64 x 64 diagonal matrix W such that the scaled DCT coefficient vector

W=WY=We (Ps®Ps)e(Ds® Dg)e(Rs1®Rs1)e(Mz®Mg)e(Rg»® Rg2)X
(3.17)

A complicated flow chart of the above algorithm is given in the appendix of [26]. Due to space
limitations, it is not included here. The basic ideas of designing a dedicated micro-architecture
for 2D scaled DCT will be similar to 1D DCT.

3.3.3 Feedback Direct Synthesis: Huffman Coding

In this section, we turn our attention to the dedicated micro-architecture implementation of
a different class of recursive multimedia algorithms, known as the Huffman entropy coding
algorithm.

Huffman coding encodes symbols with variable-length binary streams without a separator
symbol. It is based on the probability of symbol appearances in the vocabulary. Often the
encoding table is designed off line. During encoding, each symbol is presented to the encoder
and a variable-length bitstream is generated accordingly. This is essentially a table-lookup
procedure. The decoding procedure is more complicated: For each bit received, the decoder
must decide whether it is the end of a specific code or it is in the middle of a code. In other
words, the decoder must be realized as a sequential machine. Due to the variable-length
feature, the number of cycles to decode a codeword varies. The throughput in this case is 1 bit
per clock cycle. Let us consider a Huffman decoding example. Assume the coding table is as
in Table 3.11. Then we may derive the Mealy model state diagram, as shown in Figure 3.18.

Table 3.11 A
Huffman Coding Table

Symbol Codeword

A 0

B 10
C 1100
D 1101
E 1110
F 1111

Usually the total number of states is the total number of symbols minus 1, and the longest
cycle in the state diagram equals the longest codewords. In practical applications, such as in
JPEG or MPEG, there are a large number of symbols and long codewords. For example, in the
JPEG AC Huffman table, there are 162 symbols, and many codewords are as long as 16 bits.

Implementation of Finite State Machine

A general structure of implementing finite state machine is shown in Figure 3.19. The
state variables are implemented with flip-flops. The combinational circuits can be realized
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FIGURE 3.18
State diagram of the Huffman coding algorithm.

Binary
—> 7( >
Combinational Symbol
Circuit
//
State variables

FIGURE 3.19
Finite state machine implementation of Huffman decoding algorithm.

with read-only memory (ROM), programmable logic array (PLA), or dedicated logic gates.
The design issues include: (1) how high the clock rate can go, and (2) how complicated the
combinational circuit design will be.

In the above example, there are five states (a, b, c, d, and e), which require at least three
state variables to represent. There are seven output symbols (A, B, C, D, E, F, and ) to
be encoded in an additional 3 bits. Thus, there are at least six outputs of the combinational
circuit. In other words, the combinational circuit consists of six Boolean functions sharing the
same set of four Boolean variables (3 state variables + 1 bit input). If a ROM is used, it will
have a size of 16 words with each word containing 6 bits. Let us consider yet another example
of the JPEG AC Huffman table. The JPEG AC Huffman code contains 161 symbols and has
a codeword length smaller than or equal to 16 bits. Since the Huffman tree has 161 nodes, it
requires at least eight state variables (28 = 256 > 161). Output symbol encoding will also
require 8 bits. If a ROM is used to realize the combinational circuit, then it will have a size of
2% x (8 4+ 8) =512 x 16 = 8K bits.

The above implementation using a finite state machine ensures a constant input rate in that
it consumes 1 bit each clock cycle. The number of symbols produced at the output varies.
However, on average, the number of clock cycles needed to produce a symbol is roughly equal
to the average codeword length L,,,. Asymptotically, L,y is a good approximation of the
entropy of the underlying symbol probability distribution. If the input throughput rate is to be
increased, we may scan more than 1 bit at each clock cycle provided the input data rate is at
least twice the decoder’s internal clock rate. This will not increase the number of states, but it
will make the state transition more complicated. For example, if each time 2 bits of input data
are scanned, the corresponding state diagram will be as in Figure 3.20.

The size of the state table doubles for each additional bit being scanned in a clock cycle.
If a ROM is used to realize the state table, the number of addresses will double accordingly.
Moreover, since there can be more than one symbol in the output during each clock cycle, the
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FIGURE 3.20
State diagram decoding 2 bits at a time.

word length of the ROM will also be increased accordingly. Hence it is a trade-off between
hardware complexity and throughput rate.

Lei et al. [27] have proposed a constant output rate Huffman decoding method using FSM
realization. This is accomplished by scanning L bits of input at a time, with M being the
maximum codeword length. Each time, exactly one codeword is decoded. The remaining
bits, which are not part of the decoded symbols, then will be realigned and decoded again.
Let us consider the following bitstream 00110010011100100. During decoding, the decoder
scans the first 4 bits (0011) and determines that the first symbol is A(0). Next, it shifts by
1 (since A is encoded by 1 bit) and decodes the second bit as A again. Next, after shifting
another bit, its window contains 1100, which is decoded as C. The next iteration, it will shift
4 bits instead of 1 bit because the entire 1100 is used. Therefore, during each clock cycle, one
symbol is decoded. However, the rate at which the input data stream is consumed depends on
the composition of the given sequence. This process is depicted in Figure 3.21. Each double
arrow line segment indicates the 4 bits being scanned in a clock cycle. O : A indicates that the
left-most bit 0 is being decoded to yield the symbol A. Of course, one can be more opportunistic
by allowing more than one symbol to be decoded in each L-bit window and thereby increase
the decoding rate, at the expense of additional hardware complexity.

o o1 1001001110010 0O0
4“—> (A

FIGURE 3.21
Illustration of constant symbol decoding rate Huffman decoder.

Concurrent VLC Decoding [28]

One way to further increase the coding speed is to exploit parallelism by decoding different
segments of a bitstream concurrently. Successive M-bit segments will be overlapped by an
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L-bit window, where M >> L and L is the maximum codeword length. Therefore, there
must be a split of two codewords within this window. In other words, in the successive M-
bitstreams, each can have at most L different starting bit positions within that L-bit window. By
comparing the potential starting bit position within this L-bit window of two M -bitstreams,
we can uniquely determine the actual starting point of each stream and therefore decouple
the successive streams to allow concurrent decoding. To illustrate, consider the bitstream in
Figure 3.22 and the partition into M = 10 bitstreams with an L = 4 bits overlapping window:

! x | HEEHEE l
1 001 100.1,1,1 00a°0.1°0110010
Bed 3 2 . |

Window #1 Window #2
FIGURE 3.22

Concurrent VLC decoding.

In this figure, the dashed lines within each window indicate the legitimate codeword splitting
positions. The upper dashed lines are identified from the upper stream segments and the lower
dashed lines are from the lower stream segments. If the upper and lower splitting points
overlap, it will be accepted as a likely codeword splitting point. To elaborate, let us consider
window #1, which is the trailing window of the first upper stream segment. We note that if the
splitting point is at the position to the left of the window, then the previous 4 bits (0110) do not
correspond to any 4-bit symbols. They do contain the codeword B (10) as the last 2 bits. But
then the first 2 bits (01) must be part of a 4-bit codeword. In fact, from the Huffman table, they
must be part of the codeword 1101. Unfortunately, the 2 bits to the left of the stream (0110)
are 10 (the first 2 bits from the left). Hence, we conclude that such a split is not valid. In other
words, for each potential split position, we must trace back to the remainder of the bitstream
segment to validate if there is a legitimate split. In practical implementation, for each stream
segment, and each potential codeword splitting position in the leading window, a Huffman
decoding will be performed. If the decoder encounters an illegitimate Huffman code along
the way, the splitting point is deemed infeasible and the next potential splitting point will be
tested. If a splitting point in the leading window is consistent up to a codeword that partially
falls within the trailing window, the corresponding split position at the trailing window will
be recorded together with the splitting point in the leading window of the same segment. The
legitimate splitting points in the same window of the successive stream segments then will
be regarded as true codeword splitting points. After these points are determined, concurrent
decoding of each stream segment will commence.

3.4 Concluding Remarks

In this chapter, we surveyed implementation strategies for application-specific multimedia
signal processors. Using the application of video coding as an example, we illustrated how
each design style is applied to synthesize dedicated realization under different constraints.
Current research efforts have been focused on low-power implementation and reconfigurable
architecture. With these new research efforts, there will be more alternatives for designers to
choose.
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Chapter 4

Superresolution of Images with Learned Multiple
Reconstruction Kernels

Frank M. Candocia and Jose C. Principe

4.1 Introduction

Superresolution is the term given to the signal processing operation that achieves a resolution
higher than the one afforded by the physical sensor. This term is prevalent within the radar
community and involves the ability to distinguish objects separated in space by less than the
resolution afforded by radar. In the domain of optical images the problem is akin to that of
perfect reconstruction[1, 2]. As such, this chapter will address the issue of image magnification
(also referred to as interpolation, zooming, enlargement, etc.) from a finite set of samples.
An example where magnification can aid multimedia applications is video teleconferencing,
where the bit rate constraints limit video throughput. Such restrictions typically result in the
transmission of a highly compressed and size-limited video sequence of low visual quality. In
this context, the task of superresolution thus becomes one of restoring lost information to the
compressed sequence of images so as to result in their magnification as well as providing a
sharper and/or less degraded image. Among the areas in which multimedia can benefit from
superresolution, the focus herein is on the image processing resulting in the superresolution of
still images. The benefits afforded by the proposed architecture will be examined and several
issues related to the methodology will be discussed.

Commonly, image magnification is accomplished through convolution of the image samples
with a single kernel — such as the bilinear, bicubic [3], or cubic B-spline kernels [4] — and
any postprocessing or subsequent image enhancement would typically be performed in an ad
hoc fashion. The mitigation of artifacts, due to either aliasing or other phenomena, by this
type of linear filtering is very limited. More recently, magnification techniques based on image
domain knowledge have been the subject of research. For example, directional methods [35, 6]
examine an image’s local edge content and interpolate in the low-frequency direction (along the
edge) rather than in the high-frequency direction (across the edge). Multiple kernel methods
typically select between a few ad hoc interpolation kernels [7]. Orthogonal transform methods
focus on the use of the discrete cosine transform (DCT) [8, 9] and the wavelet transform [10].
Variational methods formulate the interpolation problem as the constrained minimization of
a functional [11, 12]. An extended literature survey discussing these methods at great length
has been provided by Candocia [1].

The approach presented herein is novel and addresses the ill-posed nature of superresolution
by assuming that similar (correlated) neighborhoods remain similar across scales, and that this
apriori structure can be learned locally from available image samples across scales. Such local
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information extraction has been prominent in image compression schemes for quite some time,
as evidenced by JPEG- [13] and PCA- [14] based approaches, which typically compress the
set of nonoverlapping subblocks of an image. Recent compression approaches also exploit the
interblock correlation between subblocks [15, 16]. The goal is to divide the set of subblocks
into a finite number of disjoint sets that can individually be represented more efficiently than
the original set. Our approach is similar in spirit in that we exploit interblock correlation for
mapping similar overlapping neighborhoods to their high-resolution counterparts. However,
no one before us has proposed using this information to create constraints that can superresolve
images. We further show that a very simple local architecture can learn this structure effectively.
Moreover, our approach is shown to be equivalent to a convolution with a family of kernels
established from available images and “tuned” to their local characteristics, which represents
an extension to conventional sampling theory concepts.

The chapter is divided into sections as follows. Section 4.2 conceptually introduces the su-
perresolution that is discussed herein. Comments and observations are made and the method-
ology from which the local architecture arises is also described. Section 4.3 presents the
image acquisition model used for synthesizing our low-resolution images. Section 4.4 de-
scribes single and multikernel-based approaches to magnification. Section 4.5 details the local
architecture implementing the superresolution methodology. In Section 4.6, several results
are presented illustrating the architecture’s capability. Section 4.7 discusses several issues
regarding the methodology and Section 4.8 provides our conclusions.

4.2 An Approach to Superresolution

The superresolution approach presented here addresses the reconstruction of an image (from
a finite set of samples) beyond the limit imposed by the Shannon sampling theory [17, 18]. For
the sake of simplicity, our development uses one-dimensional (1D) signals, but the extensions
to two dimensions (2D) should be clear.

Let x(¢), where —oo < t < 0o, be a continuous signal with maximum frequency content
Q. rad/s. Thus, our analysis is based on band-limited signals. We can represent x(¢) as a
linear combination of a set of basis functions as

x(t) =Y x[nlk(t,n) 4.1

where the linear weighting is given by the samples in x[n] and k(¢, n) represents our set of
basis functions. Here x[n] = x(nTj), for integers n satisfying —oo < n < oo, and sampling
period 7. The equation describing the perfect reconstruction of a signal in sampling theory is

x(t) = Z x(nTy)sinc <Ti — n) 4.2)

n=—00 s

where, by definition, sin c(t) = % We see that our basis functions are given by k(f, n) =
sin c(TL — n) and the basis functions in this infinite set are orthogonal [19]; that is,

o t , t
sinc{ — —n|sinc| — —m | dt = Ty6[n — m] .
—c0 T T;

The perfect reconstruction can be obtained if the sampling period satisfies Ty < % where
T. = ?2—” For time signals, % is the critical sampling rate, also called the Nyquist rate.
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Therefore, every instance of x(¢) can be exactly resolved with an infinite set of samples
provided the density of samples is high enough. The sampling period 7, provides the limit to
which our signals can be perfectly reconstructed (resolved) from an orthogonal set of linear
projections and an infinite number of samples. Notice that the sin ¢ bases are the universal set
of linear projections capable of perfectly reconstructing band-limited signals in time (space).
This set of bases is universal in that all appropriately sampled infinite extent band-limited
signals can be reconstructed with them, irrespective of their content.

The case of finite extent data is more realistic, in particular for images. For finite extent
data, equation (4.2) can be expressed as

0= Y [xmT)wlnllsinc (£ —n) 4.3)

n=—oo

where w([n] describes samples of our window function

I, O<n<N-1
wln] = .
0; otherwise

and N is the extent of our window. Notice that the hat superscript in & has been used purposely
to denote the approximation afforded by a finite number of data samples. The finite data set
reduces the resolvability of the signal. We can see this by examining equation (4.3) in the
frequency domain. The continuous Fourier transform of equation (4.3) yields

. T, Q
@ =g X@ewl[] (Q—>

where ® is the periodic convolution operator, w = Q7 is the angular frequency in radians,
X (w) is the DTFT of x(nT;) and is periodic of period 27 in @ and 2T—7: in Q (similarly for

W()),and [[(R) = {1 |2] < %; 0 otherwise}. The effect of the windowing function w[n]
in equation (4.3) is to smear (distort) the true frequency spectrum X (€2), which results in a
decreased ability to properly resolve the signal x (¢). To illustrate this, consider adown-sampled
image of Lena in Figure 4.1a. This image is 128 x 128 samples in size. It is interpolated to
256 x 256 using equation (4.3) and is illustrated in Figure 4.1b. A visual comparison of the
interpolated image with the original 256 x 256 image in Figure 4.1c demonstrates that the
sin ¢ basis set limits the reconstruction performance. This is standard digital signal processing
knowledge: interpolating a digital representation does not improve frequency resolution. In
order to improve the frequency resolution, more samples (either longer windows or a higher
sampling frequency) of the original signal are necessary [18]. In image processing only a
higher sampling frequency will do the job since the window (the scene) is prespecified.

The objective of superresolution is to reconstruct x () more faithfully than the resolution
afforded by equation (4.3), that is, the resolution afforded from a finite set of observed data
obtained at a sampling rate T.

4.2.1 Comments and Observations

The conditions necessary for perfect signal reconstruction are: (1) there must be no noise
associated with the collected samples (e.g., no quantization error), (2) the sampling rate must be
higher than the Nyquist sampling rate of the signal, and (3) the signal must be of infinite extent.
We can immediately say that in image processing, perfect signal reconstruction is impossible
because an image has finite extent. In the practical sampling of optical images, the issue of
quantization error is usually not critical. The standard use of an 8-bit dynamic range usually
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(b)

FIGURE 4.1

Illustrating the resolution limit imposed by interpolating with the sin ¢ bases of the Shan-
non sampling theory. Artifacts are clearly visible in the sin ¢ interpolated image of (b).
(a) Lena* 128 x 128 image [obtained from (c)]; (b) image interpolated to 256 x 256;
(c) original (desired) Lena 256 x 256 image (*Copyright © 1972 by Playboy magazine).

yields highly acceptable and pleasing images. The issue of sampling frequency is much more
critical. The information of a natural scene has typically very high spatial frequency content.
The sharp contrast we perceive in order to delineate objects (object boundaries) as well as the
textural character of those objects are just two of the attributes inherent to the high-frequency
content of optical images. As such, the sampling frequency used in collecting optical images is
generally not large enough to fully describe a “continuous image” in the sense of the Shannon
theory. An interesting attribute of optical images is their highly structured nature. This structure
appears locally and can be used to characterize objects in these images; that is, portions of
objects can be described as smooth, edgy, etc. Information such as this is not considered in
the sampling theory.

Let us now make a few observations. Equation (4.2) specifies a set of basis functions which
are linearly weighted by the collected samples of the signal x (). If the samples are collected
at a sampling rate 7 that does not meet the critical sampling rate, the set of sin ¢ bases cannot
be linearly weighted according to equation (4.2) to perfectly reconstruct our data. However,
this does not preclude the existence of other sets of basis functions that could be linearly
combined by samples collected at a rate below the critical sampling rate and still yield the
signal’s perfect reconstruction. In fact, the perfect reconstruction of a signal according to the
Shannon sampling theory only establishes sufficient conditions for the perfect reconstruction
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from samples [17]. If some other knowledge about the signal corresponding to the observed
samples is available, then this can be used to develop bases for superresolving a signal.

The problem is that when these bases are no longer universal, they become signal dependent.
As a simple example, let’s consider the set of piecewise constant time functions where each
constant segment in the signals has duration 7" seconds (e.g., signals quantized in time). An
illustration of such a function is provided in Figure 4.2a. Note that this signal has infinite
frequency content due to its staircase nature.

T T x(1)
—-—p —p
T r
(a)
A
1
000 T T T T ooo %k
t‘ l]vI t

(b)

FIGURE 4.2

Simple example illustrating how perfect reconstruction is possible when a priori knowl-
edge of the relation between signal samples and its corresponding continuous function
is known. (a) Piecewise constant continuous function grossly undersampled according
to the Nyquist criterion; (b) recovering the continuous function in (a) from its samples
requires a simple convolution of the samples with a zero-order-hold kernel.

If our observed samples were obtained by sampling this function every T seconds, then
clearly the convolution of a zero-order-hold kernel with the observed samples would be optimal
for recovering the piecewise constant function. That is, it would yield perfect reconstruction
even though the function in question was grossly undersampled according to the Shannon
sampling theory. This convolution is pictured in Figure 4.2b.

The set of piecewise constant signals is not typically encountered in practice, so the basis
set resulting from the zero-order-hold kernel is of limited use. However, this very simple
example illustrates that superresolution could be based on a priori knowledge about the signal
given the observed samples — irrespective of the frequency content of the signal. Therefore,
superresolution is directly associated with methods to acquire extra information about the
signal of interest and derive from it appropriate bases.

Recently, optimal reconstruction of signals sampled below their Nyquist rate was proved
possible by modeling the signal statistics [20]. Ruderman and Bialek derived the optimal filter
(which happens to be linear) for reconstructing a signal x(¢), which is assumed band limited,
Gaussian, zero mean, and stationary. Their results also show that the signal statistics play no
role in perfect reconstruction when the Shannon sampling conditions are met.

The great lesson from this work is that a statistical description can be used to superresolve a
signal from a collected set of samples, irrespective of the relation between sampling frequency
and maximum frequency content. However, the analytic result is valid only for stationary
Gaussian signals. In practice, real-world signals are typically nonstationary and have very
complex statistics. The analytical intractability of determining the optimal filters for compli-
cated density functions, as commented by the authors, limits the practical use of this method.
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However, statistical information about signals can also be obtained with adaptive algorithms.
This is the avenue explored in this work.

4.2.2 Finding Bases for Image Representation

Superresolution of images will be possible if the interpolation system uses more efficiently
the information contained in the available image samples. This requires projections onto data-
specific sets of bases instead of the ones established by the sampling theorem. Naturally,
learning or adaptive system theories play a crucial role in this methodology of designing data-
specific projections. The manner in which these models are realized must be consistent with
the information character of images and how this relates to the superresolution problem.

The universality of the perfect reconstruction theories is an amazing result, but the price paid
is a strict limitation on the resulting resolution. The practical problem is to do the best we can
with the available samples in order to superresolve the images. To yield better reconstructed
images, we must find alternative sets of projections from which to reconstruct our images.
It has been shown that perfect reconstruction can be achieved if a priori signal knowledge is
available, but in practice this knowledge is absent. So a central problem is how to capture
statistical knowledge about the domain and effectively use it to design basis functions. In
determining the set of projections to use, we must either make assumptions regarding our data
or learn this a priori knowledge from the available data using nonparametric models. In our
work we are concerned with the latter.

We herein propose a novel technique for image superresolution by working across scales.
From the original image we create a low-resolution version through a down-sampling operation
on the original image. The high-resolution image becomes the desired response to a learning
system that receives the low-resolution image as input. At this point we have two options to
learn a statistical model: either we model the global image statistics or we seek local statistical
models. The highly structured and localized nature of images calls for the development of
local statistical models. In fact, local models arise naturally from the various structures in
images resulting from the objects in the imaged scene. The local models can be practically
implemented by learning the relation between low- and high-resolution versions of an image.
Two particular traits typical to images can be used in this modeling:

 There is much similarity in local structure throughout an image.
» This structure is maintained across scales.

We now discuss the implications of the existence of these traits in images.

Similarity in Local Structure

The first trait can be exemplified by considering an image of a face. Local neighborhoods in
the person’s cheeks and forehead are generally indistinguishable when viewed independently.
We have assumed that the effects of lighting and other “special” attributes (scars, moles,
birthmarks, etc.) are absent in this comparison. An easy method to test this observation is
to locate these similar image portions in an image and randomly swap them to form a new
image. If the new image resembles the original one then our observation is correct. Similarly,
all neighborhoods exhibiting a particular characteristic can be treated in practically the same
manner. These neighborhoods can be considered generated by the same statistical process. It
has been shown that the targets for the neighborhoods can be interpreted as the mean of each
statistical process — one for each model used [1].

Examples of this first trait abound in images. It has recently been exploited to increase
compression gains. The standard schemes for lossy image compression are based around the
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highly redundant information generally present in small image blocks that could be described
in a more efficient and compact manner. In the case of compression via principal component
analysis (PCA), a single representation is established for all of the blocks in the image. The
recent compression approaches exploit the first image trait by grouping the small blocks of
an image into clusters that are most similar (correlated) with one another. In this way, each
cluster can be described with an efficient representation of its own — separate from those
corresponding to other clusters. Overall, this results in a more efficient image representation
than that afforded by the approaches of the standard compression schemes.

Across-Scale Similarity

If a strong similarity exists between homologous and highly correlated regions of low- and
high-resolution images, then it is foreseeable that a simple transformation can associate these
neighborhoods across scales. Experimental analysis has shown that such similar information
exists locally across scales — a similarity we term scale interdependence. In testing for the
existence of such scale interdependence, experiments were performed. The experiments report
on the percentage of homologous neighborhoods that were similarly clustered from the low-
and high-resolution counterpart images that were analyzed. If a high percentage of these
neighborhoods is found, then a strong scale interdependence among neighborhoods is said to
exist. A detailed description and analysis of this simple experiment follows.

In brief, the experiment considers a low- and high-resolution version of an image, x;[n1, n>]
and xj[n1, na], respectively. The homologous structural neighborhoods of x;[n1, ny] and
xp[n1, na] are then clustered using vector quantization (VQ) [21] to form K disjoint groups. A
confusion matrix is constructed in which the most likely ordering for the K groups is sought.
Finally, a measure of across-scale similarity is obtained from the percentage of neighborhoods
similarly clustered for the most likely ordering obtained. The definition of a homologous
neighborhood will be stated shortly. Also, the definition of a structural neighborhood, as well
as why these neighborhoods were chosen, will be provided in Section 4.2.3. For now, just note
that a structural neighborhood is an affine mapped version of an image neighborhood.

The H; x Hp neighborhoods in the N1 x N> image x;[n1, n2] form the set of neighborhoods

X={x[my :m +H —1,my:mo+ Hy — 1]} |m1:0,...,N1—H1,m2:0 ..... No—Hy
The homologous neighborhoods in the high-resolution image are defined as the G| H| x G2 H
neighborhoods in the (M| = G1Ny) x (M2 = G, N;) image x;,[n1, n2], which forms the set

D = {xp [Gim1 : Gym1 + G H| — 1,

Gamy : Gomay 4 GaHy — 1]} }m1=0,...‘N17H1,m2=0,...,N27H2 :

Recall that x;[n1, n»] is simulated from xj[n, ny] through decimation by a factor of G| x G».
The manner in which we have simulated the across-scale neighborhoods yields regions of sup-
port that encompass the same physical region of the scene — with the low-resolution neigh-
borhood having fewer samples to describe this region. The corresponding image acquisition
model is to be presented.

Now the neighborhoods in X are clustered to form K disjoint groups X1, ..., Xk and the
neighborhoods in D are separately clustered to form K disjoint groups Dy, ..., Dg. If the
homologous neighborhoods in X and D form similar clusters in their respective images, then
the information content of the low- and high-resolution images must be similar in some sense.
To determine how well clustered information from the same image relates across scales, we
form a confusion matrix as shown in Figure 4.3.
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FIGURE 4.3

Confusion matrix for clustered homologous neighborhoods within their low- and high-
resolution images. The X ; are the disjoint sets of clustered neighborhoods in the low-
resolution image and the Dy are the disjoint sets of clustered neighborhoods in the high-
resolution image, where j,k =1,..., K.

The entry in location (j, k) of the matrix is the number of neighborhoods assigned to cluster
Xjand Dy, j,k=1,..., K. The interdependence across scales is determined as the maximum
number of homologous neighborhoods common to the clusters formed. Since the ordering
of the true clusters or “classes” between X; and Dy is not known, we can’t just examine
the contents of the confusion matrix’s diagonal. Instead, we must search for the most likely
ordering. This in turn yields a number that reveals a measure of how similar information in the
low- and high-resolution images was clustered. This number is easily found with the following
simple algorithm:

Step 1: Initialize N = 0.

Step 2: Find the largest number L in the confusion matrix and save its row and column
coordinates (r, ¢).

Step 3: Perform N <— N + L.

Step 4: Remove row r and column ¢ from the confusion matrix to form a new confusion
matrix with one less row and column.

Step 5: If the confusion matrix has no more rows and columns: STOP else Go to step 2.

The variable N represents the number of homologous neighborhoods common to similar
clusters from the low- and high-resolution images. The percentage of such clustered neigh-
borhoods is P = (Nl—H1+1§\gN2—H2+1) since there are a total of (N1 — Hy + 1)(N, — Hy + 1)
homologous neighborhoods to cluster in each image.

In Figure 4.4 this percentage is plotted as a function of the number of clusters. The high-
resolution image clustered is 256 x 256 and is pictured in Figure 4.1c (Lena). Two low-
resolution counterpart images have been used. One was obtained through (G| = 2) x (G2 = 2)
decimation of the high-resolution image (Figure 4.1a). The other image uses a DCT com-
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pressed version of the low-resolution image. The plots also report on two different neighbor-
hood sizes tested: H; x Hy =3 x3and H; x Hy =5 x 5.

Scale Interdependencies for the Lena Image
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FIGURE 4.4
Scale interdependency plot for the Lena image from Figure 4.1. Two low-resolution
images are used in determining the interdependency: a DCT compressed image (lower
two curves) and a noncompressed one (top two curves). The high-resolution image was
256 x 256 and the corresponding low-resolution images were 128 x 128. Two regions
of support (ROSs) are reported for computing the interdependency: 3 x 3 and 5§ x
5. A very high interdependency among homologous neighborhoods is seen between
the noncompressed low-resolution image and its high-resolution counterpart even when
considering K = 30 clusters.

Figure 4.4 illustrates that there is a very strong interdependence of homologous neighbor-
hoods across image scales when the low-resolution (noncompressed) image of Figure 4.1a is
used — even as the number of clusters increases toward K = 30. This is illustrated by the top
two curves in the plot. The interdependency decreases when the compressed low-resolution
image is used. This is shown by the bottom two curves on the plot. Note that the case of K = 1
always yields an interdependency of 1. This is because for K = 1, no clustering is actually
being performed. That is, all neighborhoods are assumed to belong to the same cluster. As
such, the “disjoint” sets (or single set in this case) have all the homologous neighborhoods in
common.

The interdependency generally decreases as the number of clusters increases. This is in-
tuitively expected because an increase in the number of clusters results in the clustering of
information increasingly specific to a particular image and scale. Because the frequency con-
tent between the low- and high-resolution counterpart images differs, the greater specialization
of information within an image is expected to result in less interdependency among them.
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4.2.3 Description of the Methodology

As already alluded to, the superresolution problem is one of determining an appropriate
mapping, which is applied to a set of collected samples in order to yield a “better” reconstructed
image. The manner in which this mapping is determined describes the resulting superresolution
process. The methodology presented herein accomplishes superresolution by exploiting the
aforementioned image traits in order to extract the additional information necessary (i.e.,
beyond the collected samples) to obtain a solution to the ill-posed superresolution problem [2].
Rather than assuming smoothness or relying on other typical constraints, we employ the fact
that a given class of images contains similar information locally and that this similarity holds
across scales. So the fundamental problem is to devise a superresolution scheme that will be
able to determine similarity of local information and capture similarities across scales in an
automated fashion.

Such a superresolution approach necessitates establishing

» which neighborhoods of an image are similar in local structure

 how these neighborhoods relate across scale.

To answer the question of which neighborhoods, the image space of local neighborhoods
will be partitioned. As already alluded to, this is accomplished via a VQ algorithm — for
which many are available. To determine how they relate, each Voronoi cell resulting from
the VQ will be linked to a linear associative memory (LAM) trained to find the best mapping
between the low-resolution neighborhoods in that cluster and their homologous high-resolution
neighborhoods, hence capturing the information across scales. In other words, the assumption
we make is that the information embodied in the codebook vectors and LAMs describes the
relation (mapping) between a low-resolution neighborhood and its high-resolution counterpart.
As such, our approach does not require the assumptions typically needed to obtain a reasonable
solution to the ill-posed superresolution problem.

The LAMs can be viewed as reconstruction kernels that relate the image information across
scales. We choose an adaptive scheme to design the kernels because we know how to design
optimal mappers given a representative set of training images. We further expect that, if the
local regions are small enough, the information will generalize across images. When a new
image is presented, the kernel that best reconstructs each local region is selected automatically
and the reconstruction will appear at the output.

One can expect that this methodology will yield better reconstruction than methods based
on the sampling theory. However, unlike the universal character of the sampling theory,
this superresolution method is specific to the character of images. That is, bases obtained
for one class of images may perform poorly when reconstructing another class. Because of
this, establishing the appropriate models with which to compare our data is important to the
successful superresolution of an image.

4.3 Image Acquisition Model

The image acquisition process is modeled in this section. We use this model to synthesize
a low-resolution counterpart to the original image. With this model, the regions of support of
our low- and high-resolution neighborhoods are homologous (i.e., they encompass the same
physical region of the imaged scene). The model herein was used to obtain the 128 x 128 image
of Figure 4.1a, which was sin ¢ interpolated in that figure. In the superresolution architecture,
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the low-resolution synthesis creates an input from which the information across scales can be
modeled (from the pair of images).

Let the function x,(¢, t1, t) represent a continuous, time-varying image impinging on a
sensor plane. The spatial plane is referenced by the #1, #; coordinate axes and time is referenced
by the variable . The imaging sensor plane is assumed to be a grid of N1 x N rectangular
sensor elements. These elements serve to sample the spatial plane within the camera’s field
of view. Each of these elements is said to have physical dimensions p; x p;. The output of
each element is proportional to the amount of light that impinges on each sensor during a given

time interval. The output of each sensor, given by x;[n1, no] wheren; =0, 1,..., Ny — 1 and
np =0,1,..., N» — 1, can then be expressed as
I ppi(ui+1)  pp2(na+1)
xi[ni, na] = / / / x(t, 1, ) dtrdty dt
0 Jpim pana

where the integration over time is one time unit in duration. The subscript / is used to denote
a low-resolution image.

To obtain a higher resolution image, a finer sensor grid encompassing the same field of view
used in obtaining x;[n1, n2] would have to be employed. Let the resolution in each spatial
dimension be increased — by a factor of G| and G in their respective spatial dimensions. The

physical size of the sensor elements now becomes g—‘l X 5—22 units of area. The high-resolution
image is then given by x;[m, mz], wherem; =0,1,... , M —landm; =0, 1,..., My —1,

and M; = G;N;(i = 1,2). The output for each of the M| x M, sensor elements for the
high-resolution image can be described by

G1Gy ppi(m+1)/Gr pp2(ma+1)/Ga
xp[my, ms] =f f / x(t, 11, ) dtr dty dt
0 pimi/Gy pamz/Go

Notice that the integration limits over time have been extended from one time unit to G1G>
time units in order to maintain the average intensity value for each pixel in the image.

The superresolution process is to estimate the high-resolution image xj,[m, m,] from the
low-resolution image x;[n1, na]. One can notice that the process of acquiring x;[n1, na] from
xp[m1, ma] is given by

1 Gi(n1+1)—1Gar(na+1)—1

xi[ny, na] = GiG > D xalmi,ma] (4.4)

mi=Gny my=Gyny

The decimation model in the above equation produces a low-resolution image by averaging
the pixels of G| x G7 nonoverlapping pixel neighborhoods in the high-resolution image.

4.4 Relating Kernel-Based Approaches

This section introduces kernel-based formalisms for the magnification of images. Conven-
tional approaches to magnification utilize a single kernel and interpolate between samples for
increasing the sample density of an image. The superresolution methodology presented herein
is related to the use of a family of kernels. Each kernel is tailored to specific information of
an image across scales.
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4.4.1 Single Kernel

A magnified image can be obtained by expanding the samples of a low-resolution image
x;[n1, n2] and convolving with a sampled interpolation kernel [22]. For an expansion rate of
G1 x Gy, where G1, G, are whole numbers greater than 1, the expanded image is given by

xl[”—‘ n_2:| n =0, £G;, £2G4, ...
Xelni, n2] = G’ G2 ] np =0, £G2, £2G,, ... @.5)
0 otherwise

and the corresponding interpolation kernel, obtained by sampling a continuous kernel, is de-
noted k[n1, ny]. The interpolated image Xj[n1, n] that estimates the true image xj[n, na]
is

Xnlng, n2l = xe[ny, nal = *k[ny, nal (4.6)

where #x* denotes 2D convolution. This form of interpolation is a linear filtering that processes
the image similarly throughout (i.e., it uses the same linear combination of image samples in
determining interpolated points — as does the Shannon sampling theory).

4.4.2 Family of Kernels

Reconstruction with a single kernel is a simple operation since the same function is applied
over and over again to every sample. This is not so when we have at our disposal many kernels.
Two fundamental questions must be answered to reconstruct signals with a family of kernels:
how to choose one member of the family and how to design it. We will formalize these issues
next.

The kernel family approach is a scheme in which the kernel used depends on the local
characteristics of the image [23]. This is formulated as

Xnlni, n2l = xelny, nal * %k j[n1, nal 4.7

The subscripts ¢ and /, which are functions of image location, select a kernel based on the
local image characteristics about the point of interest. The family of kernels is given by
{keilni,n2]l :c=1,...,C;l =1,...,L}. C represents the number of established local
image characteristics (features) from which to compare local neighborhood information and L
is the number of kernels created per feature. In summary, equation (4.7) describes a convolution
with a shift-varying kernel. It is a generalization of equation (4.6) and defaults to the standard
convolution of equation (4.6) when C, L = 1.

4.5 Description of the Superresolution Architecture

Figure 4.5 illustrates the proposed architecture for superresolving images using a family of
kernels. As we proceed, the relation between the architecture and equation (4.7) will be eluci-
dated. The purpose of data clustering is to partition the low-resolution image neighborhoods
into a finite number of clusters where the neighborhoods within each cluster are similar in
some sense. Once the clusters are established, a set of kernels can be developed that optimally
transforms each clustered neighborhood into its corresponding high-resolution neighborhood.
The subsections that follow discuss how the kernel family, implemented here as LAMs (see
Figure 4.5), is established and then used for optical image superresolution.
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FIGURE 4.5
Superresolution architecture for the kernel family approach. This paradigm performs
the equivalent operation of a convolution with a family of kernels.

4.5.1 The Training Data

Ideally, the low- and high-resolution data sets used to train the LAMs of Figure 4.5 would
each encompass the same scene and have been physically obtained by hardware with different,
but known, resolution settings. Such data collection is not common. Instead, the low-resolution
counterparts of the given images are obtained via decimation using the image acquisition model
discussed earlier. Once established, the training of the superresolution architecture proceeds
as described in Figure 4.6. Note that the decimation is represented by the || G; x G2 block
in the figure. The data preprocessing and high-resolution construction sections of this figure
will now be explained.
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FIGURE 4.6

Training architecture for the superresolution of images via the kernel family approach.

4.5.2 Clustering of Data

The neighborhoods considered consist of all the overlapping Hy x Hy neighborhoods of
the low-resolution image x;[n, ny]. The set of these N = (N1 — Hy + 1)(N> — Hy + 1)
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neighborhoods in the low-resolution image is given by

X:{xl[ml:m1+H1—1,m2:m2+H2—1]}

4.8)
m1=0,...,N1—H{,m»=0,...,N,— Hy

and can be represented by the matrix X € R7172XN whose columns are the set of vectors

{x,}f;l where X, is a “vectorized” 2D neighborhood. Each low-resolution neighborhood is
paired with its (2G| — 1) x (2G2 — 1) homologous high-resolution neighborhood. Specifically,
these high-resolution neighborhoods are described by

S {xh[G1m1+¢1+1:G1(m1+2)+¢1—1,}

Goymar+ ¢y +1:Ga(ma+2)+ ¢ — 1] (4.9)

m1=0,...,Ny—Hy,m»=0,...,Ny— H,

where ¢; = W, andi =1, 2.

Notice that the set of neighborhoods to be clustered here is different from the set used for
arriving at the across-scale similarity measure. The previous set of neighborhoods resulted
from the nonoverlapping neighborhoods in the low- and high-resolution counterpart images.
The set now consists of overlapping neighborhoods. The reason for the overlap is to obtain
multiple estimates of a high-resolution sample. In this way, the final high-resolution sample
can be estimated more reliably.

The neighborhoods in S can be represented by a matrix S € 9 similar to
the representation used in X. These low- and high-resolution neighborhoods are depicted in
Figure 4.7, where the shaded circles represent a low-resolution neighborhood. For the case
of G1 = G2 = 2 in Figure 4.7a, the shaded circles are used to construct the crossed circles
about the center of the low-resolution neighborhood. Note that if we elect not to construct the
center pixel, we will be interpolating locally about the observed image samples. If we elect
to construct the center pixel (along with the other crossed circles), we are allowing for the
ability to change a “noisy” observed sample. Figure 4.7b similarly illustrates this for the case
of G| = G, = 3.

In establishing our family of kernels, we have chosen to associate the structure between
the neighborhoods in X and S, not the observed samples themselves. The structure of a
neighborhood is defined as the neighborhood with its mean subtracted out; each neighborhood
thus becomes a vector whose component mean is zero. This kind of preprocessing allows us to
categorize neighborhoods sharing a particular characteristic (i.e., they could be smooth, edgy at
a particular orientation, etc.) as belonging to the same class regardless of the average intensity
of the neighborhood. The structure p, of neighborhood x; is obtained through multiplication
with the square matrix Z € WX (e p. = Zx, for a single neighborhood or P = ZX
for all the input neighborhoods), where

12G1-1)2Gy—1)x N

H\Hy, — 1 —1 —1

1 -1 H H, — 1

7 =
H\H,

(4.10)
: . -1
-1 -1 HH —1

The desired exemplars associated with P are contained in matrix D. Each column in D is
obtained by subtracting the mean of x, from its corresponding neighborhood s, in S. This
is done to compensate for the low-resolution neighborhood mean, which has been subtracted
from x, and must be added back after the high-resolution neighborhood structure is created.
Spleciﬁcally, D = S—AX, where A € R@C1-DQG2—DxHiH, jg 4 constant matrix with elements
Hl"lf!fle clusters are formed by performing a VQ on the space of structural neighborhoods in P.
This clustering is based on the interblock correlation among the neighborhoods in P [1]. The
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FIGURE 4.7

Local image neighborhoods and the pixels they superresolve. Each circle represents a
2D high-resolution image pixel. The shaded circles are the low-resolution image pixels
obtained via decimation of the high-resolution image. The gray pixel is the center of the
low-resolution neighborhood. Each H; x Hj low-resolution neighborhood constructs a
(2G1 — 1) x (2G> — 1) high-resolution neighborhood about the low-resolution neighbor-
hood’s center — these are depicted by the crossed circles. The numbers are a convention
used to distinguish between constructed pixels in this neighborhood. (a) Decimation
factor G| = G, = 2; (b) decimation factor G| = G, = 3.

VQ is accomplished using Kohonen’s self-organizing map [24] for reasons discussed later.
The VQ operation results in a set of C feature vectors {fc}f:1 , where usually C << N. The C
clusters K., c = 1,2, ..., C, formed by our neighborhood, and feature vectors are given by

— 1,

Ke={pr:|pr —f|, < |pr sb=12....Cib#cir=12,....,N} (411

4.5.3 Neighborhood Association

The superresolution methodology herein is piecewise local in nature — inherent to the fact
that we consider neighborhoods. A mapping is required to produce high-resolution image
samples from the low-resolution ones that are available. This mapping could be linear (or
affine) or nonlinear. A description of how these mappings have been implemented within the
methodology now follows.

The input—output relationship of a LAM [21] is an affine transformation described by

¥r = Wp, +b 4.12)

where W is a weight matrix that specifies the network connectivity of the LAM, b is a bias
vector, and p, is the input vector (neighborhood structure). Note that y, contains a vector
representation of a superresolved 2D neighborhood structure. The neighborhoods in P and D
are associated in the least square sense to determine the values of the W and b parameters.
These parameters can be obtained recursively via the least mean squares (LMS) algorithm
update equation [21]

Wrn+1)=Wn) +w®D-Y)PT (4.13)

where T denotes matrix transposition and p is the learning rate. They can equivalently be
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obtained in closed form via the pseudo-inverse [21]
w = DPT (PPT)7!. (4.14)

We have assumed in equations (4.13) and (4.14) that W is actually the augmented matrix [Wb]
and P is the augmented matrix [P” |v]”, where v is a column vector of ones of appropriate
dimensions.

Nonlinear associative memories (NLAMSs) can be used as a substitute for the LAMs of
Figures 4.5 and 4.6. The parameterized nonlinear relation between the input and output can
be achieved using a multilayer perceptron (MLP) [21] and is given by

yr = a (Wi}, {be}, pr) (4.15)

where, in general, (- ) is a nonlinear function of a set of weight matrices, bias vectors, and
the neighborhood structure, and k describes a layer in the MLP feed-forward configuration.
The NLAM parameters are readily obtained with back-propagation learning [21]. It is well
established as a supervised training method for neural networks. This method generalizes the
LMS training algorithm for linear networks to MLPs. The on-line weight update is similar to
that of the LMS algorithm. At each time step the weight matrix Wy, for layer k of the MLP,
is updated as follows

Wi(n + 1) = Wi(n) + nge(m)yl, (4.16)

where gy (n) is the local gradient and y, ;1 is the postneural activity of the previous layer
(hence the k — 1) due to input vector x,. Please note here that the subscript k describes the
weight layer of a feed-forward NLAM with several layers. We could describe the kth layer of
the cth NLAM by W, ;. The postneural activity of an NLAM at a given layer is recursively
defined as y, x = Wi(n)y, x—1. This is because the output of one layer serves as the input to
the next layer in the feed-forward configuration. Note that the postneural activity for layer O
at time step n is defined as just the input vector at that time step (i.e., ¥r0 = X;).
If layer £ is the output layer, then

gi(n) = (dr — yrx) @ ¢’ (yrk) (4.17)

where e represents the element-by-element multiplication of two matrices (or vectors) and
@'(-) is the first derivative of ¢( - ), a differentiable squashing function. If layer k is other than
the output layer, then

20 = (WL g n) 0 @' (314) - (4.18)

There are C NLAMs to be trained. Each corresponds to a particular cluster of the input data.
NLAM c associates the neighborhoods x, € K, with its corresponding samples in d,..

4.5.4 Superresolving Images

The construction of a high-resolution image, as depicted in Figure 4.5, results from trans-
forming the neighborhood structure of the low-resolution input image with the parameters
obtained in the training phase. The mean of the neighborhood is subsequently added back to
the transformation. When LAMs are used, the superresolution of a low-resolution neighbor-
hood x, can be expressed as

S, = W.Zx, + b, + Ax, for (p, =Zx,) € K, 4.19)
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where W, and b, are the weight matrix and bias vector, respectively, associated with the cth
LAM. As discussed before, there is a direct relation between equation (4.19) and equation (4.7).
Equation (4.19) constructs the high-resolution neighborhoods’ structure §,. The subscript r
refers to the neighborhood being constructed. The constructed pixels that overlap are averaged
and the high-resolution image is thus constructed. Averaging several high-resolution samples
improves the reliability of the final high-resolution sample. Equation (4.19) can be equivalently
expressed as

L

Xplny, na] = Z [xe[n1, nal # * (kegln1, nal + alni, nal)] - blny, na) (4.20)
I=1

where L = (2G| — 1)(2G2 — 1); x, is the expanded low-resolution image; the kernel was
created with the values W_.Z(l, :) and b.(/) (i.e., row [ of W.Z and b.); a is a constant kernel
with the same extent as k. ;, that averages a low-resolution neighborhood (its impulse response
samples equal ﬁ); and b[n1,ny] = bi[n1]b2[n2] is responsible for averaging multiple
estimates of superresolved samples. Specifically,

1 njmod G; =0
bi[ni] = ) (4.21)
otherwise

Il —

fori = 1, 2. Notice that the index [ refers to a specific convolution pass that is constructing the
corresponding enumerated crossed circle associated with each low-resolution neighborhood
in that pass. Please refer to Figure 4.7a for the case of G| = G, = 2.

The NLAM case differs only by the presence of the nested nonlinearities. The construction,
for an M layer MLP topology, is expressed as

Ss=¢ (WC,M<p ( ) (WCJZXr + bc,l)) + bC,M) + Ax, for (p, =7Zx,) € K, (4.22)

where W, ; and b, ; are the weight matrix and bias vector, respectively, at layer k of the cth
NLAM, and ¢ denotes the squashing function at each layer of the feed-forward structure.

4.6 Results

The results illustrated in this section make use of the Peppers image for training and the Lena
image for testing. The Lena image has already been illustrated; the Peppers image can be found
in several references (e.g., [1, 23]). The LAM-based results were compared against several
kernel-based interpolation results including the subpixel edge localization and interpolation
(SEL) technique [6], which fits an ideal step edge through those image regions where an edge
is deemed to exist and otherwise uses a bilinear interpolation. The parameters for the SEL
technique were the same as those reported in [6].

Table 4.1 reports on the peak signal-to-noise ratio (PSNR) resulting from kernel-based
interpolation of the Lena and Peppers 128 x 128 images by a factor of 2 in each dimension.
The PSNR is defined as PSNR = —10 log10(62 ) where

rms

IR )
Crms = 37 (wulmy.mal = Gylmy. mo)) 4.23)
M1M2 m1=0 my=0

and x;, and x, take values in [0, 1].
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Table 4.1 PSNR for Magnified Images
Zero Bilinear Bicubic  Cubic SEL Train® Test® Train”?  Test’
Order B-Spline
Lena 27.00 27.26 27.45 2743 2748 32,63 31.78 32.23 31.71

Peppers  27.48  27.51 27.74 27.74 27779 3458 3290 34.03 32.74

¢ Used 30 LAMs.

b Used 30 NLAMS.

Note: The interpolation factor was 2 in each image axis from the listed 128 x 128 images. The
training and test cases of the kernel family approach utilized 30 features and a 3 X 3 region of
support (ROS). In the test cases, the parameters obtained in training to reconstruct Lena were
used for the Peppers and vice versa.

The plot in Figure 4.8 illustrates the PSNR when superresolving the Lena 128 x 128 image
with varying numbers of LAMs by a factor of 2 in each dimension. The system parameters
(feature vectors, weights, and biases) were trained using the Peppers 256 x 256 image (i.e.,
a different image). The solid and dashed lines in Figure 4.8 denote training and test set
reconstruction performance, respectively, using regions of support (ROSs) 3 x 3 and 5 x 5.
In general, the PSNR of the training set increased as the number of LAMs increased. This is
intuitively expected because an increase in the number of LAMs yields a greater specialization
to particular image features, hence a more accurate image reconstruction. The feature set
extracted using a 5 x 5 ROS yields more macroscopic image characteristics than does a 3 x
3 ROS. This results in greater specialization of the characteristics particular to the image of
interest and generally to a more faithful image reconstruction on the training set.

In the test set, however, the larger ROS tended to show a drop in PSNR performance as the
degree of specialization to image features increased. This general trend was encountered in all
the tests we have run. It suggests that the similarity between features, as the system specializes
more (uses more LAMs), tends to occur at a more microscopic level. It can also be observed
that the kernel family approach yielded higher PSNR than those methods listed in Table 4.1.

A visual comparison of the results, utilizing the common approaches and the kernel family
approach for the Lena image, can be observed in Figure 4.9. The training and testing images
shown in each of these figures were created using 30 LAMs and an ROS of 3 x 3. They
correspond to those points in Figure 4.8 marked by a circle. In Figure 4.10 we see the 30 features
extracted from the Peppers 128 x 128 image that were used in reconstructing the test image of
Figure 4.9. Notice how “regular” and edgy these features are. The features extracted are image
dependent, and we would expect a different set to result from texture images, for example. The
number below each feature signifies the maximum gray-level difference between the largest
and smallest value present in each feature. Therefore, the feature with the “1” below it can be
considered a constant feature, that is, one that contains practically no structure. This feature
corresponds to those image portions that are very smooth. The features have not been scaled
here; instead, the constant feature (which is the zero vector) is represented by gray (128 in an
8-bit scale). Positive feature values become lighter and negative feature values are represented
by a proportionately darker shade of gray.

The superresolved training and testing images of Figure 4.9 were of similar quality. The ker-
nel family superresolved images appear crisper than those obtained with the other approaches
presented here. In Figure 4.11 we have shown the magnitude spectra of the reconstructed im-
ages corresponding to Figure 4.9. The spectra here are for the full reconstructed image, not just
the portion shown in the figure. It is evident from viewing these spectra that the LAM-based
approach is recovering information above half the sampling frequency and reproducing better
the high-frequency information characteristic of the original images. The SEL approach is
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FIGURE 4.8

Training and testing superresolution results for the Lena image considering two different
regions of support (ROSs). The solid lines correspond to training set results and the
dashed lines are test set results. The curves related to the training data result from
superresolving the Lena 128 x 128 image with the systems (features and LAMs) trained
to reconstruct the Lena 256 x 256 image from the Lena 128 x 128 image. The curves
related to testing result from superresolving the Lena 128 x 128 image with the systems
trained to reconstruct the Peppers 256 x 256 image from the Peppers 128 x 128 image.
Superresolved images corresponding to the two circled points are shown in Figure 4.9.

also able to reproduce high-frequency information. This is because, as mentioned earlier, the
SEL approach fits an ideal step edge through those image regions it deems are edges. The low
PSNR of the SEL approach can be attributed to its performance in smoothly varying image
regions. This is because, in these regions, the SEL approach uses the bilinear kernel for its
interpolation. In summary, the superresolved images of this work generally appear more crisp
than those obtained with the other approaches presented here. Edges seemed to be preserved
well with our approach, and the higher PSNR obtained with our methodology is evidence of the
accuracy of reconstruction in smoothly varying image regions relative to the other approaches
reported herein.

To test our hypothesis that the system captures well redundancy across scales, we illustrate in
Figure 4.12 the superresolution of the Lena 128 x 128 image using two successive G| = G =
2 reconstruction stages with the same codebook and LAMs. In other words, the resulting “test”
image of Figure 4.9 is fed through the system of Figure 4.5 twice with the same parameters
used in the first superresolution stage for a total superresolution factor of 4 in each dimension.
Notice that the LAM reconstructed image is crisper than the other expanded images. This
also supports our claim regarding the similarity of image neighborhoods across scales —
which we exploit for superresolution. Figure 4.13 illustrates a case of what can happen when
inappropriate sets of bases are used for the image reconstruction. In this figure, the Lena 128
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Original Zero Order Bilinear Bicubic

FIGURE 4.9

Visual comparison of the reconstruction results for the Lena* image. The 128 x 128 image was reconstructed to 256 x 256. A zoomed section (using
nearest neighbor replication) of the reconstructed results is displayed. The ‘““training” reconstruction utilized the 30 features and corresponding
LAMs obtained in training to reconstruct the Lena 256 x 256 image from the Lena 128 x 128 image with an ROS of 3 x 3. The “testing”
reconstruction utilized the 30 features and corresponding LAMs obtained in training to reconstruct the Peppers 256 x 256 image from the
Peppers 128 x 128 image with an ROS of 3 x 3. (* Copyright © 1972 by Playboy magazine. Reproduced by special permission . )
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FIGURE 4.10

Features extracted from the Peppers 128 x 128 image. They were used in superresolving
the Lena 128 x 128 image to a size of 256 x 256; these results are given in Figure 4.9.
Notice the largely edgy nature of these features. The features have not been scaled
here; instead, the constant feature is represented by gray (128 in an 8-bit scale). The
number below each feature represents the maximum 8-bit gray-level difference between
the largest and smallest value of that feature.

x 128 image is being reconstructed to 256 x 256. The desired image is given in Figure 4.13a.
The image reconstructed from the 30 features and LAMs obtained in training to reconstruct
the Peppers 256 x 256 image from the Peppers 128 x 128 image is given in Figure 4.13b, and
the image reconstructed from the 30 features and LAMs obtained in training to reconstruct the
Pentagon 256 x 256 image from the Pentagon 128 x 128 image is given in Figure 4.13c. The
Pentagon images have not been pictured here. The systems of the Peppers are appropriate for
the reconstruction of Lena. However, the systems of the Pentagon are not as appropriate. This
is seen particularly by the reconstruction performance about the right portion of the forehead
and hat in Figure 4.13c. Incorporating the correct a priori information into the reconstruction
process can be beneficial to superresolution, but introducing the wrong information can have
the opposite effect. In Figure 4.13d we compensate for the lack of proper bases by incorporating
the appropriate bases obtained from the Peppers image used in reconstructing Figure 4.13b.
The appropriate bases were simply “appended” to the inappropriate set from the Pentagon that
was used in this example. In this manner, we did not have to retrain a system from scratch in
order to produce an appropriately reconstructed image. Available bases for reconstruction can
simply be incorporated into an existing system to produce adequately reconstructed images.
This is possible because of the hard partitioning scheme our procedure is implementing.
Figure 4.14 illustrates results when NLAMs are used in place of the LAMs. Again, we
superresolve the Lena 128 x 128 image using 30 LAMs and an ROS of 3 x 3. The NLAMs
used a single hidden layer and had approximately the same number of free parameters as did
the LAMs. The LAM and NLAM results are very similar (both visually and in PSNR). In
this and several other tests we have run with superresolution factors of 2 and 3, the added
complexity and flexibility afforded by the NLAMs seems unwarranted. This makes sense
since many nonlinear mappings are reasonably well approximated locally by linear models.
Figure 4.15 illustrates the superresolution of a DCT-compressed Lena image from 256 x 256
to 512 x 512. The parameters used in our local architecture were those trained to superresolve
the compressed Peppers 256 x 256 image to the original peppers 512 x 512 image. The
system used 15 LAMs and an ROS of 5 x 5. The compressed images were obtained by inverse
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FIGURE 4.11

Magnitude spectra of the reconstructed Lena images in Figure 4.9. The spectra here are for the corresponding full reconstructed images, not just the
zoomed sections pictured in Figure 4.9. The spectra F[n, n,] of each image have been enhanced via the log scaling m log o (| Flny, nall).
The LAM and SEL approaches are better able to produce higher frequency information relative to the other methods compared.
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Example of reconstruction of Lena* 128 x 128 image by a factor of 16 (a factor of 4 along each image axis). The reconstruction was accomplished
using two successive stages of reconstruction, each by a factor of 4. The same features and LAMs were used in each stage. The training image
was reconstructed using the features and LLAMs trained to reconstruct the Lena 256 x 256 image from the Lena 128 x 128 image with an ROS
of 3 x 3. The test image was reconstructed using the features and LAMs trained to reconstruct the Peppers 256 x 256 image from the Peppers
128 x 128 image with an ROS of 3 x 3. (* Copyright 1972 by Playboy magazine. Reproduced by special permission.)




FIGURE 4.13

Compensating for the effects of reconstruction with “inappropriate” bases. The results
displayed show a portion of the Lena* 256 x 256 image reconstructed from the Lena 128
x 128 image. (a) Original. (b) Reconstructed with the 30 features and LAMs used in
reconstructing the Peppers 256 x 256 image from the Peppers 128 x 128 image; this
yielded a good reconstruction. (c) Reconstructed with the 30 features and LAMs used
in reconstructing the Pentagon 256 x 256 image from the Pentagon 128 x 128 image.
The inappropriate reconstruction is most noticeable in the right portion of the forehead
and on portions of the hat. (d) Reconstructed with 60 features and LAMs: 30 from the
Pentagon image used in (c¢) and 30 from the Peppers image used in (b). We did not have
to retrain our system in establishing an appropriate set of bases. We simply ‘“append”
the appropriate features and LAMs of the Peppers image to the existing set from the
Pentagon image to reconstruct an adequate image(*Copyright 1972 by Playboy magazine).

transforming each nonoverlapping 8 x 8 subblock of the original 256 x 256 images with only
the 3 x 3 low-frequency DCT coefficients — the others were set to zero. The compression
results in the loss of information within the borders of each subblock and the introduction
of edge artifacts along the borders of the compressed subblocks. Our system was able to
substantially suppress the blocking artifacts in the superresolved image with no explicit prior
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FIGURE 4.14

Comparing the reconstruction of Lena* using LAMs and NLAMs. The overall PSNR
performance of the LAM- and NLAM-based results were very similar. Here the Lena
128 x 128 image is reconstructed by a factor of two in each image axis. The 30 features
and LAMs (NLAMs, respectively) used in the reconstruction were those obtained from
training to reconstruct the Peppers 256 x 256 image from the Peppers 128 x 128 image
with an ROS of 3 x 3. (*Copyright 1972 by Playboy magazine. With permission.)

knowledge of the existence or location of artifacts. This suppression of artifacts is obviously
not possible with any of the kernel-based interpolation approaches.

Recall that the scale interdependence between the compressed image and its uncompressed
counterpart is significantly reduced relative to using a noncompressed low-resolution image.
This reduction in scale interdependence reduces the reliability of the multiple estimates ob-
tained for a high-resolution sample. This limits the extent to which our superresolution can
produce a sharp image. However, the averaging of multiple estimates by considering over-
lapping neighborhoods in the superresolution architecture is responsible for filtering out the
effects of blockiness. We can notice from Figures 4.9 and 4.12 that if strong scale interde-
pendencies exist, then our multiple estimates of an image sample are relatively reliable and
their averaging does not result in discernible low-pass filtering. This results in crisper images
compared to the kernel-based techniques.

4.7 Issues and Notes

Although the preliminary results are very promising, there are many issues requiring further
analysis. Noteworthy issues pertaining to the superresolution process herein are:

* The feature vectors and LAMs are established in a manner that is not driven directly by
the error rate of superresolution. This is potentially suboptimal. However, because the
function defining our input space partition (the clustering stage) is not differentiable,
this issue is not easily addressed. We have tested our approach using the hierarchical
mixture of experts [25], which trains to minimize the error rate [affine experts (LAMs)
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FIGURE 4.15

Results of superresolution on a compressed image with visible blocking artifacts. (a) 128
x 128 portion of compressed image to magnify. It is shown here as a 256 x 256 image
by using zero-order hold interpolation. (b) Cubic B-spline interpolated result. (c) Su-
perresolution using 15 LAMs and an ROS of 5 x 5. The architecture was trained to
reconstruct the original Peppers 512 x 512 image with its 256 x 256 down-sampled and
DCT-compressed image. (Photo: Copyright 1972 by Playboy magazine. )

and affine transformations for the gating structure were used], and our method trained
faster and consistently produced higher PSNRs in the reconstructed images [1].

 The topological mapping property of Kohonen’s self-organizing map (SOM) was not
used for the results presented here. We used the SOM because of its efficient train-
ing approach and its tendency for full codebook utilization. We have performed the
clustering with the Neural Gas algorithm [26] and have not noticed performance differ-
ences [1]. The incorporation of the topological information of the SOM to improve the
superresolution is the subject of future research.

 Nonlinear associative memories showed no improvement with respect to LAM perfor-
mance for the parameters utilized in these experiments. Since the neighborhood sizes
and the superresolution factors were small, a linear mapper seems to capture well the
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redundancy across scales. However, for larger superresolution factors the mapping will
tend to be more and more nonlinear, so NLAMs may yield a performance advantage.

« The superresolution approach herein also allows for noninteger (rational) magnification
factors. The size of the images associated (as well as what local samples are to be
constructed) determines this factor for the feature vectors and LAMs established. Thus
different feature and LAM sets must be established for different magnification factors.

 The low-resolution neighborhood size used is a trade-off between the amount of local
support considered and how much information is to be constructed. As a rule of thumb,
we suggest setting H; > 2G; — 1 but keeping H; (i = 1,2) reasonably small. The
number of free parameters is determined by the low-resolution support specified by H;.
Note that as G; increases, there is more missing information to construct; hence, more
low-resolution sample support is needed.

 The results presented here use a single image for training — the Peppers. However, mul-
tiple images can easily be (and have been [23]) used for training the system parameters
in Figure 4.5. Our experiments have revealed that there is much similar local structure
among images, which might not be apparent when images are casually viewed.

» The number of input vectors should be much larger than the dimensionality of the input
space for proper LAM training. This results in the solution of an overdetermined problem
rather than an underdetermined one.

 The system in Figure 4.5 lends itself to the incorporation of new or additional features
(and LAMS) and does not require retraining of the existing parameters. This allows for
quick amending of the bases used for reconstruction.

» The methodology presented for superresolution is general and has been used in the
superresolution of synthetic aperture radar (SAR) imagery [1, 27]. Due to the nature
of these signals, the processing accounts for local information in the frequency domain
— which necessarily implies the learning of nonlocal basis functions upon which our
collected samples are projected. This is in contrast to the local processing performed in
the spatial domain of the optical images in this chapter.

4.8 Conclusions

A local architecture has been presented for the superresolution of optical images. The proce-
dure was shown to be equivalent to convolution of the image with a family of kernels developed
from a training image. The ill-posed superresolution problem was addressed by determining
locally the optimal least-squares projections across scales for image neighborhoods of similar
character. The similarity between neighborhoods was characterized by their interblock corre-
lation. The key assumption of our approach was that this similarity of neighborhoods in the
low-resolution image also held across scales — an assumption that we’ve noticed experimen-
tally to be very reasonable. The use of LAMs for the local transformation is interesting in
that the relation between correlated neighborhoods’ structure across scales seems reasonably
modeled by an affine mapping. This simplifies the training and eases the need for establishing
more complicated nonlinear transformations.

Several interesting traits were demonstrated which favor the use of this architecture. These
include: the real-time implementation of the architecture due to its highly parallel nature, the
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incorporation of new bases into the reconstruction without having to retrain the system, and
the inherent ability to regulate errors made in the reconstruction through smoothing. This last
trait results from considering overlapping blocks from which multiple sample estimates can be
averaged if they are not reliable — this reduces the possibility of introducing artifacts into the
image. This bodes well when superresolving images exhibit “blockiness” due to compression.
Finally, the need for an analysis that mathematically supports the assumptions we’ve observed
to be reasonable is warranted and has been left for future research.
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Chapter 5

Image Processing Techniques for Multimedia
Processing

N. Herodotou, K.N. Plataniotis, and A.N. Venetsanopoulos

5.1 Introduction

Multimedia data processing refers to a combined processing of multiple data streams of
various types. Recent advances in hardware, software, and digital signal processing allow for
the integration of different data streams which may include voice, digital video, graphics, and
text within a single platform. A simple example may be the simultaneous use of audio, video,
and closed-caption data for content-based searching and browsing of multimedia databases or
the merging of vector graphics, text, and digital video. This rapid development is the driving
force behind the convergence of the computing, telecommunications, broadcast, and enter-
tainment technologies. The field is developing rapidly and emerging multimedia applications,
such as intelligent visual search engines, multimedia databases, Internet/mobile audiovisual
communication, and desktop video conferencing will all have a profound impact on modern
professional life, health care, education, and entertainment.

The full development and consumer acceptance of multimedia will create a host of new
products and services including new business opportunities for innovative companies. How-
ever, in order for these possibilities to be realized, a number of technological problems must
be considered. Some of these include, but are not limited to, the following:

1. Novel methods to process multimedia signals in order to meet quality of service re-
quirements must be developed. In the majority of multimedia applications, the devices
used to capture and display information vary considerably. Data acquired by optical,
electro-optical, or electronic means are likely to be degraded by the sensing environ-
ment. For example, a typical photograph may have excessive film grain noise, suffer
from various types of blurring (motion or focus blur), or have unnatural shifts in hue,
saturation, or brightness. Noise introduced by the recording media degrades the quality
of the resulting images. It is anticipated that the use of digital processing techniques,
such as filtering and signal enhancement, will improve the performance of the system.

2. Efficient compression and coding of multimedia signals, in particular, visual signals
with an emphasis on negotiable quality of service contracts, must be considered. Rich
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data types such as digital images and video signals have enormous storage and band-
width requirements. Techniques that allow images to be stored and transmitted in more
compact formats are of great importance. Multimedia applications are putting higher
demands on both the achieved image quality and compression ratios.

Quality is the primary consideration in applications such as DVD drives, interactive
HDTYV, and digital libraries. Existing techniques achieve compression ratios from 10:1
to 15:1, while maintaining reasonable image quality. However, higher compression
ratios can reduce the high cost of storage and transmission and also lead to the advent
of new applications (i.e., future display terminals with photo-quality resolution, or the
simultaneous broadcast of a larger number of visual programs).

3. Innovative techniques for indexing and searching multimedia data must be developed.
Multimedia information is difficult to handle in terms of both its size and the scarcity
of tools available for navigation and retrieval. A key problem is the effective repre-
sentation of this data in an environment in which users from different backgrounds can
retrieve and handle information without specialized training. Unlike alphanumeric data,
multimedia information does not have any semantic structure. Thus, conventional in-
formation management systems cannot be directly used to manage multimedia data.
Content-based approaches seem to be a natural choice where audio information along
with visual indices of color, shape, and motion are more appropriate descriptions. A
set of effective quality measures are also necessary in order to measure the success of
different techniques and algorithms.

In each of these areas, a great deal of progress has been made in the past few years, driven
in part by the availability of increased computing power and the introduction of new standards
for multimedia services. For example, the emergence of the MPEG-7 multimedia standard
demands an increased level of intelligence that will allow the efficient processing of raw
information; recognition of dominant features; extraction of objects of interest; and the in-
terpretation and interaction of multimedia data. Thus, effective multimedia signal processing
techniques can offer promising solutions in all of the aforementioned areas.

This chapter focuses on the intelligent processing of visual information within the research
domain of multimedia signal processing using color image processing techniques in con-
junction with fuzzy concepts. More specifically, the framework presented includes filtering,
segmentation, and meta-data concepts using adaptive techniques for a number of application
areas. The organization of the chapter is as follows. Section 5.2 reviews some of the key issues
of color imaging with an emphasis on the models needed to support the efficient representation
of color information among various devices in a multimedia system. Section 5.3 focuses on
the problem of color image filtering for the improvement and enhancement of image quality.
New filtering schemes are introduced to meet the challenging high quality of standards neces-
sary in the multimedia era. Color image processing applications demand digital filters that are
suitable for complex nonlinear problems, have a reduced complexity, are numerically robust,
and are computationally attractive. In Section 5.4, the problem of color image segmentation
is addressed for the purposes of audiovisual coding in object-based compression schemes.
The segmented regions can be used to form a nonuniform mesh structure which allows for a
more accurate motion estimation and compensation in contrast to the conventional block-based
methods. Section 5.5 explores the application of color segmentation and fuzzy analysis for
the automatic localization of the facial region in an image or video sequence. The extraction
process can be utilized for a more efficient coding or for indexing and retrieval in multimedia
databases. Lastly, some open technical issues and promising application trends are suggested
in the concluding section.

©2001 CRC PressLLC



5.2 Color in Multimedia Processing

Color is a key feature used to understand and recollect the contents within a scene. It
is found to be a highly reliable attribute for image retrieval because it is generally invariant
to translation, rotation, and scale changes [1]. Several color coordinate systems have come
into existence for establishing a numerical description of color. The representation of color
is based on the classical three-color theory whereby any color can be reproduced by mixing
an appropriate set of three primary colors [2]. In this way, the numerical representation of a
particular color can be specified by its three component vectors within the 3D color coordinate
system. The set of all colors form a vector space called the color space or color model.

Color information is commonly represented in the widely used RGB (red, green, blue)
Cartesian coordinate system. This basis is hardware oriented and is suitable for acquisition or
display devices but not particularly applicable in describing the perception of colors. In this
coordinate space, the RGB primaries are additive in that the individual contributions of each
primary are added to form the overall result. The YIQ (Y is the luminance and I and Q are the
chrominance components) and CMYK color models are also hardware-based systems and are
utilized for different application purposes. The former is used in color television broadcasting
and is a recoding of the RGB components for transmission efficiency and downward compati-
bility with the earlier monochrome TV standards. The CMYK color space, on the other hand,
is important in dealing with printing devices where subtractive primaries are relevant. Colors
are specified in this latter model by what is removed or subtracted from white light, rather than
by what is added to black.

The need to formulate a simple yet accurate perceptual color distance prompted the develop-
ment of a perceptually uniform color space [3]. The Commission Internationale de I’Eclairage
(CIE) standardized the perceptually uniform L*u*v* and L*a*b* coordinate systems, which are
derived by a nonlinear transformation of the RGB values. These color models define a uniform
metric space representation of color so that a perceptual color difference is represented by the
Euclidean distance. The L*a*b* cube-root color coordinate system was essentially developed
to provide a quantitative expression for the Munsell system of color classification [4]. The
following transformation equations can be used to convert a set of RGB vector values to the
L*a*b* space

X 0.490 0.310 0.2007 [ R
Yy | =] 017708130011 || G (5.1)
z 0.000 0.010 0.990 | | B
100\ 3
L* =25 — 16 (5.2)
Yo

|: X\ 3 Y\ 3
a* = 500 (-) _ (-) (5.3)
Xo Yo
|: Y\ 3 7\ 3
b = 200 <—) _ (-) (5.4)
Yo Zo

where the constraint 1 < 100Y < 100 must be satisfied, which is indeed the case for most
practical purposes [5]. The intermediate values [ XY Z 17 are the CIE XYZ tristimulus values,
and the [XoY0Zo]” triplet is the reference white. In equations (5.2)—(5.4), L* is correlated
with brightness, a* with the red-green content, and b* with the yellow-blue content within
the image. A similar set of nonlinear expressions can be found for the L*u*v* coordinate
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system. The computational complexity of the cube-root expressions above, however, may
render the perceptually uniform spaces unsuitable for real-time applications. Comprehensive
descriptions of the numerous color coordinate systems can be found in [5, 6, 7] along with
their appropriate transformation equations.

The HSV (hue, saturation, value) and the TekHVC (hue, value, chroma) color models belong
to a group of hue-oriented color coordinate systems that correspond more closely to the human
perception of color. These user-oriented color spaces are based on the intuitive appeal of the
artist’s tint, shade, and tone. The proprietary TekHVC model was developed by Tektronix
as a modification of the CIE L*u*v* perceptually uniform color space described earlier. The
HSYV coordinate system, originally proposed by Smith [8], is cylindrical and is conveniently
represented by the hexcone model shown in Figure 5.1.
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| !
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\ |
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FIGURE 5.1
HSYV hexcone color model.

The hue (H) is measured by the angle around the vertical axis and has a range of values
between 0 and 360° beginning with red at 0°. It gives us a measure of the spectral composition
of acolor. The saturation (S) is a ratio that ranges from O (i.e., on the V axis), extending radially
outward to a maximum value of 1 on the triangular sides of the hexcone. This component refers
to the proportion of pure light of the dominant wavelength and indicates how far a color is from
a gray of equal brightness. The value (V) also ranges between 0 and 1 and is a measure of the
relative brightness. At the origin, V=0 and this point corresponds to black. At this particular
value, both H and S are undefined and meaningless. As we traverse upward along the V axis we
perceive different shades of gray until the endpoint is reached (where V=1 and S=0), which
is considered to be white. At any point along the V axis the saturation component is zero and
the hue is undefined. This singularity occurs whenever R=G=B. The set of equations below
can be used to transform a point in the RGB coordinate system to the appropriate value in the
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HSV space:

1R _ _
H, = cos~! 73[R —=G) + (R —B)] 5.5)
VR =G)2+ (R—-B)(G—B)
H=H,, if B<G (5.6)
H=360°—H;, if B> G (5.7)
s Max (R,G,B) — Min (R,G,B) 68
Max (R,G,B)
v Max (R,G,B) 59
a 255 ’

In the expressions above, the Max and Min operators select the maximum and minimum values
of the operand, respectively, and R, G, and B range between 0 and 255. A fast algorithm used
here to convert the set of RGB values to the HSV color space is provided in [6].

5.3 Color Image Filtering

Filtering of multichannel images has received increased attention due to its importance in
processing color images. Numerous filtering techniques have been proposed to date for mul-
tichannel image processing. Nonlinear filters applied to images are required to preserve edges
and details and remove impulsive and Gaussian noise. On the other hand, vector processing
of multichannel images constitutes one of the most effective methods for filtering and edge
detection [9, 10]. Nonlinear filters based on order statistics (OS) have been extensively used in
the past to smooth and restore images corrupted by noise. Recently, a number of multichannel
filters which utilize correlation among multivariate vectors using distance measures have been
proposed for image filtering. Among them are the vector median filter (VMF) [11], the vector
directional filter (VDF) [12], the fuzzy vector filter (FVF) [13, 14, 15], and different versions
of the weighted mean filter [16, 17].

Apart from nonlinear multichannel filters based on order statistics, a number of fuzzy op-
erators have been developed lately for image processing [18, 19]. Local correlation in the
data is utilized by applying the fuzzy rules directly on the pixels that lie within the operational
window. The output of the fuzzy processing depends on the fuzzy rule and the defuzzification
process, which combines the effects of the different rules into an output value. However, there
is no optimal way to determine the number and type of fuzzy rules required for the fuzzy image
operation. Usually, a large number of rules are necessary and the designer has to compromise
between quality and number of rules, because for even a moderate processing window a large
number of rules are required [20].

The large number of filters available poses some difficulties to the practitioner, since most of
them are designed to perform well in a specific application and their performance deteriorates
rapidly under different operation scenarios. Thus, a nonlinear adaptive filter that performs
equally well in a wide variety of applications is of great importance. Our goal is to devise
a simple, computationally efficient and reliable filter structure, which will deliver acceptable
results without making any assumption about signal or noise characteristics. Fuzzy operators
are utilized to assist us in this task. Consequently, a second objective is to examine aggregation
operators, analyze their properties, and justify their applicability to the design of multichannel
filters.

©2001 CRC PressLLC



5.3.1 Fuzzy Multichannel Filters
The Filtering Structure

Let y(x) : Z! — Z™ represent a multichannel image and let WCZ! be a window of
finite size n (filter length). The noisy image pixels inside the window W are denoted as
xj, j=1,2,...,n. The general form of the filter class is given as a fuzzy weighted average
of the input vectors inside the window W. The uncorrupted multichannel signal is estimated
by determining the center of gravity of the cluster of vectors inside the processing window.
Therefore, the filter’s output at the window center is:

n
§=) &x;, (5.10)
=1
y= M . (5.1D
Z?:l W
where & = nw—’w
j=1%j

The weights of the filter are determined adaptively using transformations of a distance
criterion at each image position. These weighting coefficients are transformations of the sum
of distances between the center of the window (pixel under consideration) and all samples
inside the filter window. The transformation has the meaning of membership function with
respect to the specific window component. Thus, the fuzzy weights provide the degree to
which an input vector contributes to the output, making the filter structure data dependent.
From such a viewpoint, a fuzzy clustering approach is introduced to determine the cluster
center considering the ambiguity of the multichannel signal. The filter structure proposed
here combines distance concepts with data-dependent filters and fuzzy membership functions.
Through the normalization procedure, two constraints necessary to ensure that the output is
an unbiased estimator are satisfied, namely:

+ Each weight is a positive number, &; > 0.
» The summation of all the weights is equal to one, Z?:l & =1

In multichannel filtering it is desirable to perform smoothing on all vectors that are from
the same region as the vector at the window center. At edges and lines the filter must only
smooth pixels at the same side of the edge as the vector at the window center. The proposed
algorithm assigns to a given point inside the window some membership function defined on
the set of vectors and then uses these membership values to calculate the final output. The
fuzzy weights represent the confidence that the vectors under consideration come from the
same region. It is therefore reasonable to make the weights proportional to the difference, in
terms of a distance measure, between a given vector and its neighbors inside the operational
window. In this way, whenever the current pixel is close to an area with high detail, the vectors
with the relatively large distance values will be assigned smaller weights and will contribute
less to the final filter estimate. Thus, edge or line detection operations prior to filtering can be
avoided, with considerable savings in terms of computational effort.

The filtering structure presented can be considered as an R-ordering-based multichannel filter
because distances inside the operational window are used. However, unlike any R-ordering-
based filter, the distances are not used to rank the vectors. Rather, they are used to weight the
vectors such that negligible weights are assigned to outliers. The structure in (5.10) has the
familiar form of an adaptive filter, where the value of the noisy vector at the window center is
replaced by a weighted average value of all the points inside the operational window. It can also
be viewed as a generalization of existing linear or nonlinear averaging filters. Specifically, if the

©2001 CRC PressLLC



weighting coefficients are fixed, a linear shift invariant finite impulse response filter is devised.
Such a filter smoothes the signal but at the same time blurs signal boundaries (e.g., image edges).
In order to alleviate the problem, adaptive methodologies have been introduced, namely filter
structures with adaptively determined coefficients [21,22]. However, a priori knowledge about
the signal and the desired response is required. Then the coefficients of the adaptive filter can
be optimized for a specific noise distribution with respect to a specific error criterion. However,
such information is not available in realistic signal processing applications. Learning schemes
based on training signals are iterative processes with heavy computational requirements. Their
real-time implementation is usually not feasible. Other adaptive filters are based on different
forms of the Wiener filter with variable coefficients. These filters, however, are based on
the assumption that the input signal and the available desired response are stationary ergodic
processes. This is not true for many practical applications. Other approaches use local statistics
on part of the signal to adaptively calculate the weights [9, 23, 24]. In these designs noise
statistics are often assumed ergodic in order to justify the use of the sample mean and sample
noise covariance in the calculations, although it is known that assumption does not always
hold. In summary, these filters are more perplexing than useful for engineers faced with real
image processing problems. On the contrary, the nonlinear scheme proposed here is simple.
It is adaptive but its coefficients are not calculated using complex iterative procedures.

In the last 5 years weighted mean filters with adaptively determined coefficients have been
proposed for robust multichannel estimation. In [13], a filter structure which uses a sigmoidal
fuzzy transformation to adaptively calculate data-dependent weights was proposed. The mea-
sure suggested to calculate distances among the vectors under consideration was the angle
between the vectors. In [14] ordered weights based on the same distance criterion as above
were used to generate the final filter output. Similarly, a multichannel filter that uses the in-
verse of the Fuclidean distance to weight the vectors in the final output was proposed in [16].
This filter extends to multichannel signals the methodology introduced in [17] for univariate
input signals. However, weights based on multichannel distance measures can be constructed
in more than one way because there is no unique way to define the distance between two
multichannel signals. Depending on the distance criteria used and the transformations applied
to them, a number of different adaptive filters can be devised. Although it is not clear how
to select the appropriate distance-based weight, it is known from experimental results that its
form is of paramount importance for the performance of the filter. This work addresses the
problem of the selection of the appropriate weight form. Fuzzy connectives are utilized to
provide weight transformations that can be considered as a generalization of the transforms
already in use.

Before we introduce our methodology to construct a generalized weight function, we will
discuss common distance measures and their corresponding fuzzy transformations.

Distances and Fuzzy Weights

The most crucial step in the filter’s design is the development of the membership functions.
Despite past efforts, a unified form of fuzzy membership functions has not yet been derived [25].
In most cases, it is assumed that somehow they are available. Here, the weights &; in (5.10) are
determined using fuzzy membership functions based on selected distance criteria. The fuzzy
transformation is not unique. The different fuzzy functions must meet a number of desirable
characteristics but mainly are required to have a smooth finite output over the entire input
range. Several candidate functions can meet the above specification. According to [25], the
most commonly used shapes for membership functions are triangular, trapezoidal, piecewise
linear, and Gaussian-like functions. These functions are chosen by the designer arbitrarily,
based on experience, problem specifications, and computational constraints imposed by the
design. Because the choice of the membership function form is very much problem dependent,
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the only applicable a priori rule is that designers must confine themselves to those functions
that are continuous and monotonic [26].

We devote our attention to fuzzy transformations that are suitable for two important distance
measures extensively used for nonlinear filter design.

The objective in the design is to select an appropriate fuzzy transformation, so that the pixel
with the minimum distance will be assigned the maximum weight.

The first criterion used to judge similarity (distance) between two vectors is the so-called
vector angle criterion. This criterion considers the angle between two vectors as their distance.
The distance associated with the noisy vector x; inside the processing window of length n can
be defined as:

n
aj = ZA (xi, x;) (5.12)
=1
with
X»TX‘
A(x;,x;) =cos™! [ /=L (5.13)
(%)) (|x,-||x,-|

This similarity measure was introduced to measure distances between color vectors [12].
Because in the RGB color space, color is defined as relative values in the trichromatic channel
and not as a triplet of absolute intensity values, it was argued in [12] that the distance measure
must respond to relative intensity differences (chromaticity) and not absolute intensity differ-
ences (luminance). Thus, the orientation difference between two color vectors was selected as
their distance measure, because it correlates well with their spectral ratio difference.

A number of different shapes can be used to generate a membership function based on the
vector angle criterion. However, in the neural network and fuzzy systems literature [25], a
sigmoidal transformation is usually associated with inner product type distances. Therefore,
if the sum of angles is selected as the similarity measure, a sigmoidal membership function
should be utilized.

The fuzzy weight w; has the following form:

B

= AT op@) 619

wi;
where B and r are parameters to be determined. The value of r is used to adjust the weighting
effect of the membership function, and § is a weight scale threshold. Since, by definition,
the vector angle distance criterion delivers a positive number in the interval [0, nz] [12],
the output of the fuzzy transformation introduced above produces a membership value in the
interval [(IJFCXP’W, zﬁr]. However, even for a moderate size window, such as a 3x3 or
5x5 window, the lower limit of the above interval should safely be considered zero. As an
example, for a modest 3x3 window and with » = 1 and 8 = 2, the corresponding interval
is [1.4 x 10~!2, 1] and for a 5x5 window the interval becomes [1.5 x 1073, 1]. Therefore,
we can consider the above membership function as having values in the interval [0, 1]. It can
easily be seen through simple calculations that the above transformation satisfies the design
objectives.
The generalized Minkowski norm (L, metric) can also be used to measure the distances
between two multichannel vectors [14]. The L, is defined as:

dy(i, j) = (i [€4 —xj?)‘p>p (5.15)
k=1
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where m is the dimension of the vector x;. Using this norm the scalar distance measure
n
dp(i) =Y _dy(i. j) (5.16)
j=1

is associated with the noisy vector x; inside a filter window of length n. For such a distance
an appropriate membership function is the exponential (Gaussian-like) form:

wy; = exp [_dp;i)’:| , (5.17)

where r is a positive constant and 8 is a distance threshold. The actual values of the parameters
vary with the application. The above parameters correspond to the denominational and expo-
nential fuzzy generators controlling the amount of fuzziness in the fuzzy weight. It is obvious
that since the distance measure is always a positive number, the output of this fuzzy member-
ship function lies in the interval [0, 1]. The fuzzy transformation is such that the higher the
distance value, the lower the fuzzy weight becomes. It can easily be seen that the membership
function is one (maximum value) when the distance value is zero and becomes zero (minimum
value) when the distance value is infinite.

5.3.2 The Membership Functions

Both membership functions can be used to derive the fuzzy weights introduced in the fil-
ter structure of (5.10). However, the shape and the parameters of the functions were chosen
intuitively based on our experience and the distance criterion selected. More recently, mem-
bership functions have been designed using optimization procedures [25]. The general idea is
to tune the shape and the parameters of the membership function using a training signal. The
form of the fuzzy membership function is usually fixed ahead of time. Then a set of available
training pairs (input, membership values) is used to tune the parameters of the assumed mem-
bership function. The most commonly used procedure exploits the mean squared error (MSE)
criterion. In addition, since most of the used shapes are nonlinear, iterative schemes (e.g.,
back-propagation) are used in the calculations [26]. However, in an application such as image
processing, in order for the membership function to be tuned adaptively, the original image or
an image with properties similar to those of the original must be available. Unfortunately, this
is seldom the case in real-time image processing applications, where the uncorrupted original
image or knowledge about the noise characteristics is not available. Therefore, alternative
ways to obtain the “best” fuzzy transformation must be explored.

To this end, an approach is introduced here in which instead of “training” one membership
function, a bank of candidate membership functions are determined in parallel using different
distance measures. Then, a generalized nonlinear operator is used to determine the final
optimized membership function, which is employed to calculate the fuzzy weights. This
method of generating the overall function is closely related to the essence of computations
with fuzzy logic. By choosing the appropriate operator, the generalized membership function
can meet any specific objective requested by the design. As an example, if a minimum operator
is selected, the designer pays more attention to the objectives that are satisfied poorly by the
elemental functions and selects the overall value based on the worst of the properties. On the
contrary, when using a maximum operator the positive properties of the alternative membership
functions are emphasized. Finally, a mean-like operator provides a trade-off among different,
possibly incompatible, objectives.

Using the previous setting, the problem of determining the overall function is transformed
into a decision-making problem where the designer has to choose among a set of alternatives
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after considering several criteria. We discuss here only discrete solution spaces since distinct
membership function alternatives are available. Asin any decision problem, where satisfaction
of an objective is required, two steps can be defined, namely, (1) the determination of the
efficient solution, and (2) the determination of an optimal compromise solution.

The compromise solution can be defined as the one preferred by the designer to all other
solutions, taking into consideration the objective and all the constraints imposed by the design.
The designer can specify the nonlinear operator used to combine elemental functions in advance
and use this operator to single out the final value from the set of available different solutions.
This is the approach followed here. An aggregator (fuzzy connective), whose shape is defined
a priori, will be used to combine the different elemental functions in order to produce the final
weights at each position.

In fuzzy decision making, connectives or aggregators are defined as mappings from
[0,1]% — [0, 1] and are often requested to be monotonic with respect to each argument.
The subclass of aggregation operators which are continuous, neutral, and monotonic is called
the class of CNM operators [27]. An averaging operator is a member of the class of compen-
sative CNM operators but different from min or max operators. Averaging operators M can
be characterized under several natural properties, such as monotonicity and neutrality [28]. It
is widely accepted that an averaging operator verifies the following properties:

M :[0,11? — [0, 1]

(i) Idempotency: Vo, M (o, ¢, ..., ) = &

(i1) Neutrality: the order of arguments is unimportant
(iii) M is nondecreasing in each place

The above implies that the averaging operator lies between min and max. However, ag-
gregation operators are in general nonassociative or decomposable since associativity may
conflict with idempotence [29]. An example of averaging operators is the arithmetic mean,
the geometric mean, the harmonic mean, or the root-power mean. The problem of choosing
operators for logical combination of criteria is a difficult one. Experiments in decision making
indicate that aggregation among criteria is neither a conjunctive or disjunctive type of opera-
tion. Thus, compensatory connectives which mix both conjunctive and disjunctive behavior
were introduced in [30].

In this work a compensative operator, first introduced in [31], is utilized to generate the final
membership function. Following the results in [31], the operator is defined as the weighted
mean of a (logical AND) and a (logical OR) operator:

AQ), B = (AﬂB)l_y : (AUB)y (5.18)

where A, B are sets defined on the same space and represented by their membership functions.
Different t-norms and t-conorms can be used to express a conjunctive or a disjunctive attitude.
If the product of membership functions is utilized to determine intersection (logical AND) and
the possibilistic sum for union (logical OR), the form of the operator for several sets is as
follows [30]:

14

¢
1— ]_[ (1—wj) (5.19)
j=1

(1=y)

¢
Wei = H Wi
j=1

where wy; is the overall membership function for the sample at pixel i, w ; is the jth elemental
membership value, and y € [0, 1]. The weighting parameter y is interpreted as the grade of
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compensation, taking values in the range of [0, 1] [31]. In this work a constant value of 0.5 is
used for y.

The product and the possibilistic sum are not the only operators that can be used in (5.18). A
simple and useful #-norm function is the min operator. In this chapter, we also use this t-norm
to represent intersection. Subsequently, the max operator is the corresponding t-conorm [25].
In such a case, the compensative operator of (5.18) has the following form:

4 a=n y
We = (mirll wj,-) (maii wj,-> (5.20)
j:

Jj=

The form of the compensative operator is not unique. A number of other mathematical
models can be used to represent the AND aggregation. An alternative operator, which combines
the averaging properties of the arithmetic mean (member of the averaging operator class) with
a logical AND operator (conjunctive operator) was proposed also in [30].

(P m
wei = yminwji +(1-) ¢y wji (5.21)

where w,; is the overall membership function for the sample at pixel i and the parameter
y € [0, 1] is interpreted as the grade of compensation. In this equation the min t-norm stands
for the logical AND. Alternatively, the product of membership functions can be used instead
of the min operator in the above equation. The arithmetic mean is used to prevent higher
elemental weights with extreme values from dominating the final outcome. The operator is
computationally simple and possesses a number of desirable characteristics.

Compensatory operators are intuitively appealing but are based on ad hoc definitions and
properties, such as monotonicity, neutrality, or idempotency, that cannot always be verified.
However, despite these drawbacks, these methods are still appealing in that they can express
compensatory effects or interactions between design objectives. For this reason, we utilize
them in the next subsection to construct the overall fuzzy weights in our adaptive filter designs.

5.3.3 A Combined Fuzzy Directional and Fuzzy Median Filter

In our adaptive filter, we intend to assign higher weights to those samples that are more
centrally located (inside the filter window). However, as we have seen in Section 5.3.2 for
multichannel data, the concept of vector ordering has more than one interpretation and the
vector median inside the processing window can be defined in more than one way. Therefore,
the determination of the most centrally positioned vector heavily depends on the distance
measure used. Each distance measure described in Section 5.3.2 selects a different most
centrally located vector. Since multichannel ordering has no natural basis, it is anticipated
that we should expect better filtering results combining ranking criteria which utilize different
distances.

Let us assume that the adaptive multichannel filter of (5.10) must be used and the weights
w; Vi inside the operational window must be assigned. Consider the design objective: The x;
is centrally located as measured with the angle criterion and x; is centrally located using the
Minkowski distance. We intend to establish a fuzzy membership function for this statement.
The first step is to realize that this statement is a composition between two design objectives,
which can be realized using elemental membership functions, such as the ones discussed in
the previous section. Then, utilizing the compensative operator, the overall function can be
obtained. At this point, we must clarify the effect of the compensatory operator in our filter. In
the above design objective, the same degree of attractiveness can be reached by having a less
centrally located vector according to the Euclidean distance, but more central using the angle
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criterion and vice versa. That is, the higher value of “with the angle criterion” compensates
for the lower value of membership in “using the Minkowski distance.”

For the specific case of two elemental membership functions and equal exponents, the
compensative operator defined in (5.18) has the form of a weighted membership product.
Thus, depending on the f-norm or t-conorm used, the overall fuzzy function can be defined as:

wé = (wyw)™ (5.22)
where w¢; is the overall membership function for the sample at pixel i, or

wé = (wiwa)® (1= (1= wiy) (1= wy))))*’

(5.23)
It can easily be seen from (5.21) that using the min and max operators and for equal powers
the operator in (5.18) actually has the form of the geometric mean, a member of the averaging
operators family.

The alternative operator introduced in (5.21) has, for this specific case, the following form:

2
2
wh, = O.Sm_irll wji + 0.252 wji (5.24)
j= o
or
2
w? = 0.5(wy; % wy) + 0.252 wj (5.25)
j=1

In general, additional weighting factors which will absorb possible scale differences in
the definition of the elemental membership functions must be used. However, since the two
elemental functions used here take values in the interval [0, 1], no such weighting factor is
required.

The averaging operator defined in (5.22), and the two compensative operators defined
in (5.23) and (5.24), can be used to define the fuzzy weights in (5.10) provided that the
elemental fuzzy transforms of (5.14) and (5.17) have been used to construct the elemental
weights. However, in order for our results to be meaningful, the nonlinear operator applied
must satisfy some properties that will guarantee that its application will not alter in any manner
the elemental decisions about the weights. In the literature, there are a number of properties
that all the aggregation or compensative operators must satisfy. In this subsection we will
examine whether the operators we intend to use to calculate the adaptive weights satisfy these
properties [28].

The requisite properties are listed below:

1. Convexity:

» The mean operator in (5.22) is convex.

Proof:
0.5
we® = | min wy; max wg; (5.26)
k=12 k=1,
mkin Wi < wei” < max we; (5.27)
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 The operator introduced in (5.24) is convex.
Proof:

wfj = 0.75min wy; + 0.25max wy;
k k

Then, we can conclude that:

min wi; < wfi < max wg;
k k

(5.28)

(5.29)

2. Monotonicity: The property of monotonicity guarantees that the stronger piece of ev-
idence (larger elemental membership value) generates a stronger support in the final

membership function.

« The operator introduced in (5.22) is monotonous.
Proof:

ax

a
Wi z We;

0.5 0.5
where wgi* = (w1jwi;)", wfi = (wliwj,-) ,and Ywy; > Wii.

» The operator introduced in (5.24) is monotonous.

Proof:
For wi; and Ywy; > Wi, min (wy;, Wg;) > min (wy;, u)j,‘), SO using (5.24),
bx b
We; z We;

(5.30)

(5.31)

3. Idempotence: This property guarantees that the outcome of the overall function generates

the same value with each elemental value if all functions report the same result.

« The operator introduced in (5.22) is idempotent.
Proof:

)05 —

a __
wy; = (ww w

* The operator introduced in (5.24) is idempotent.
Proof:

w? =0.5w 4+ 025w + w) = w

(5.32)

(5.33)

It can easily be seen from (5.23) that this operator is not idempotent. However, the operator

is symmetric and satisfies the monotonicity requirement, namely,

ax a
We; z We;

where

wi = (wiiwe) ™ (1= (1= wi) (1= wi))*?
and

w, = (wiw) ™ (1= (1= wi) (1= w;i)))*
If Ywy; > wj;, then

(I —wy) < (1—wj)
(1= (A =wip) A —wei)) = (1= (1= wip) (1 —wj;)))
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(5.36)

(5.37)
(5.38)



Combining (5.34)—(5.38), we can conclude that the operator defined in (5.23) satisfies the
monotonicity requirement.

In addition, it is not hard to see that the operators introduced here are symmetric (neutral).
This property guarantees that the order of presentation for the elemental functions does not
affect the overall membership value.

In summary, we have proven that the compensatory operators we intend to use for the fuzzy
weights calculations in (5.10) correspond to an aggregation class which satisfies a number of
natural properties, such as neutrality and monotonicity.

The decision to utilize a fuzzy aggregator to construct the overall weight is not arbitrary. On
the contrary, it is anticipated that the operator will help us to accomplish the design objective.
The introduction of a combination of different distances in the weight determination procedure
is expected to enhance the filter performance. Each one of the above defined operators can
generate a final membership function, which is sensitive to relative changes in the elemental
membership values and helps us to accomplish our objective. A fuzzy filter, which utilizes
this form of membership function for its fuzzy weights, constitutes a fuzzy generalization of
a combined VMF and VDFE.

It must be emphasized that through this design the problem of determining the appropriate
membership function is transformed into the problem of combining a collection of possible
functions. This constitutes a problem of considerably reduced complexity, since admissible
membership functions may be known from physical considerations or design specifications.
The proposed adaptive design is a scalable one. The designer controls the complexity of the
final membership function by determining the number and form of the individual membership
functions. Depending on the problem specification and the computational constraints, the
designer can select the appropriate number of elemental functions to be used in the final
weighting function. The shape of the membership function (e.g., sigmoidal or exponential) is
not the only parameter that differentiates between possible elemental fuzzy transformations.
The designer may decide to use the same form for the elemental functions and assign different
parameter values to them (e.g., different r or 8). Then, an overall membership function can
be devised using an appropriate combination of the individual functions. The computational
efficiency of the proposed filter depends not only on the form of the membership function
selected or the operator used for aggregation, but on both of them.

This parallel, adaptive on-line determination of the membership function allows for a fast
design without time-consuming iterative processes. The filter’s output is calculated in one pass
without any recursion. Thus, our filter does not depend on a “good” initial estimate. On the
contrary, it is well known that iterative learning filters starting from certain initial value are
likely to be trapped in local optima with profound consequences to the filter’s performance.
Furthermore, in our design there is no requirement for the training signal needed to assist
learning in iterative adaptive designs. The final fuzzy membership function is determined
without any suboptimal local noise or signal statistic evaluation since such approaches usually
lead to biased solutions. Thus, our adaptive multichannel filters can be used in real-time image
applications, in contrast to other “trainable” multichannel filters, which are based on unrealistic
assumptions about the availability of training sequences.

5.3.4 Application to Color Images

The performance of the new filters introduced here is evaluated below (see also Table 5.1).
The evaluation is carried out using a color test image and their performance is measured against
popular vector processing filters, such as the VMF, the basic vector directional filter (BVDF),
the generalized vector directional filter (GVDF), the arithmetic mean filter (AMF), and the
hybrid filters of [33]. Since our objective is not to develop all the different adaptive filters
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based on fuzzy transformations of the distance but to demonstrate the improvement introduced
in terms of performance using a fuzzy aggregator or compensator, we construct five different
filters based on the distance criteria and elemental transforms described previously. The
following notation is used for convenience.

Table 5.1 Filters Compared

Notation Filter Ref.
BVDF Basic vector directional filter [12, 32]
GVDF Generalized vector directional filter [12, 32]

AMF Arithmetic mean filter [32]
VMF Vector median filter [11]
HF Hybrid directional filter [32, 33]
AHF Adaptive hybrid directional filter [32, 33]
FVF1 Fuzzy vector directional filter [15, 32]
with weights determined through wy; = H%p(uj)
FVEF2 Fuzzy vector directional filter [15]
with weights determined through wy; = exp[—d), (j)0'5]
FVE3 Fuzzy vector directional filter [15]
with weights determined through w1, wa;, (5.13)
FVF4 Fuzzy vector directional filter [15]
with weights determined through w1, w2, (5.13)
FVF5 Fuzzy vector directional filter [15]

with weights determined through wy j, w2, (5.15)

The filters are applied to the widely used 512 x 480 RGB color image Lena. The test image
has been contaminated using various noise source models in order to assess the performance of
the filters under different scenarios. The test image is contaminated with correlated Gaussian
noise, and a percentage of the image samples are replaced by outliers, which have very high
or low signal values with equal probability (see Table 5.2).

Table 5.2 Noise Distributions
Number Noise Model
1 Gaussian (o = 30)
2 Impulsive (4%)
3 Gaussian (o = 15), impulsive (2%)
4 Gaussian (o = 30), impulsive (4%)

The normalized mean squared error (NMSE) has been used as a quantitative measure for
evaluation purposes. It is computed as:

PR B [ TN
NMSE = SR SENTEE , (5.39)
i=0 2_j—o 1y Pl

where N1 and N2 are the image dimensions, and y(i, j) and y(i, j) denote the original image
vector and the estimation at pixel (7, j), respectively. Table 5.3 summarizes the results obtained
for the Lena test image for a 3 x 3 processing window. The results obtained using a 5 x 5
filter window are given in Table 5.4. The GVDF uses the appropriate gray-scale operator at
the magnitude processing module to obtain the best possible result. It must be emphasized
that these modules are noise dependent. The designer must know a priori the actual noise
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characteristics. This is hardly the case in a real-time image processing situation. In contrast,
the FVF family does not require any information about noise characteristics. However, despite
the fact that the GVDF utilizes more information, we select the best filter from the GVDF
family for the comparisons below [12].

Table 5.3 NMSE (x 1072) for the Lena
Image (3 x 3 Window)

Filter Noise Model
1 2 3 4
None 4.2083 5.1694 3.6600 9.0724
BVDF 2.8962 0.3448 0.4630 1.1354
GVDF 14600 0.3000 0.6334 1.9820
AMF 0.6963 0.8186 0.6160  1.298
HF 1.3192  0.2182  0.5158 1.6912
AHF 1.0585 0.2017 0.4636 1.4355
FVF1 0.735 0.2481 0.401 1.039
FVF2 09812 0.1663* 0.3826 1.1744
FVF3 0.6940* 0.2161 0.3310  0.9130*
FVF4 0.7335 0.1908  0.3234* 0.9445
FVF5 0.7201 0.244 0.3511  0.9903

* Best filter performance in the corresponding row.

Table 5.4 NMSE (x102) for the RGB Lena
Image (5x5 Window)

Filter Noise Model
1 2 3 4
None 4.2083 5.1694 3.6600 9.0724
BVDF 2.800 0.7318  0.6850  1.3557
GVDF 1.0800 0.5400 0.4590 1.1044
AMF  0.5977* 0.6656  0.572 0.8896
HF 0.7700  0.3841 0.4890  1.1417
AHF 0.6762 0.3772 04367 0.7528
FVF1 0.7549  0.3087 0.4076  0.9550
FVF2 0.6718 0.3040 0.4031 0.7491
FVF3 0.6178 0.3042 0.3813* 0.7224
FVF4 0.6584 0.2984* 0.3817 0.7444
FVF5 0.6239 0.3069  0.387 0.7074*

* Best filter performance in the corresponding row.

From the results listed in the tables, it can be easily seen that our adaptive design with the
generalized membership function provides consistently good results in every type of noise
situation. The different fuzzy filters attenuate both impulsive and correlated Gaussian noise
with or without outliers present in the test image. It must be noted that if no assumption about
the noise characteristics is made, the fuzzy filter with the generalized membership weights
provides results better than the results obtained by any other filter under consideration. Results
also indicate that our fuzzy techniques are less sensitive to the window length, compared to
the GVDF or the VMFE. As an example, it can be seen that our adaptive fuzzy filters do not
suffer from VMF’s inefficiency in a nonimpulsive noise scenario and small filtering window.
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Finally, considering the number of computations, the computationally intensive part of the
fuzzy algorithm is the distance calculation part. However, this step is common in all multichan-
nel algorithms considered here. More than that, the different elemental membership functions
can be calculated in parallel, thus reducing the execution time and making our filters suitable
for real-time implementation with digital signal processors. The adaptation procedure used to
evaluate the generalized membership function does not introduce any additional computational
cost. To the best of our knowledge, the adaptation mechanism introduced in this work is the
only one capable of providing this form of parallel processing capability.

In conclusion, our adaptive design is simple, scalable, does not increase the numerical
complexity of the fuzzy algorithm, and delivers excellent results for complicated multichannel
signals, such as real color images. Moreover, as can easily be seen from the attached images,
the new filters preserve the chromaticity component, which is very important in the visual
perception of color images.

5.4 Color Image Segmentation

Image compression is essential in numerous multimedia applications due to the enormous
bandwidth and storage requirements, as mentioned previously. Conventional coding standards
such as H.261 and MPEG-1 and -2 fail to adequately model object motion within the scene
and also suffer from the familiar blocking artifacts. Furthermore, these schemes deal with
video exclusively at the frame level, thereby preventing the manipulation of individual objects
within the bitstream. Recently, however, greater attention has been paid to a newer generation
of coding schemes that are object based [34, 35]. These methods rely on the techniques of
image analysis and computer graphics to represent the image signals using their structural
features such as contours and regions. In this latter approach, the input video sequence must
first be segmented into an appropriate set of arbitrarily shaped regions [36]. Thus, the success
of any object-based method depends largely on this segmentation process. This not only
improves the coding efficiency, but it can also support various content-based functionalities.

In this section, we focus our attention on the color segmentation problem. A fast color
segmentation algorithm is presented that employs the perceptual HSV color space model to
partition an image into arbitrarily shaped regions. This is carried out by employing a recursive
1D histogram thresholding procedure. The proposed technique is robust, suitable for real-time
implementation (i.e., due to the 1D histogram approach), and very intuitive in describing the
color/intensity content of a region.

The hue component of the HSV color model can be effectively employed to segment the
color content within a scene. However, the hue attribute is ineffective and unreliable when the
saturation or value components are low. Therefore, we partition the image into the following
three primary regions so that an appropriate segmentation scheme can be applied within each
region: (1) an achromatic, (2) a chromatic, and (3) a transitional area. The achromatic regions
are characterized by low values of saturation and value and consist of the black, white, and
gray areas within the scene. Threshold values of S < 10% and V < 20% were used to define
the achromatic sector of the HSV space. A similar saturation threshold was selected in [37]
to partition the achromatic sector of the HVC space without enforcing an intensity restriction.
The intensity information, however, is important [38], and erroneous results may be obtained
if this latter restriction is not imposed [39]. The value component (i.e., the brightness) is
used to segment the achromatic regions of the image. The chromatic region (region 2), on
the other hand, is described by high values of saturation and value where the hue has great
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discriminating power and can be effectively used to segment the chromatic parts of the image.
Threshold values of S > 20% and V > 20% were selected in defining this second region.
Finally, the third region separates the chromatic and achromatic areas and is referred to as the
transition region. Thresholds of 10% < S < 20% and V > 20% were chosen for this latter
region. Slices of this solid correspond to annular rings in the HSV model. The hue component
in this transition region is once again unreliable. Pixel values within this region have very
little chroma and, thus, are better characterized by the value component. This partitioning
of the HSV hexcone model into the three primary regions is summarized in Table 5.5. A
simple two-region model has also been proposed for segmentation purposes in the similar HSI
space [40]. In this scheme, the original image is split into only two regions (chromatic and
achromatic) by using the average value of the peaks found in the saturation histogram as a
threshold value. There are two problems associated with this approach: (1) threshold values
may be over- or underestimated due to the averaging process, which may result in an incorrect
partition of the chromatic and achromatic regions, and (2) no intensity information is taken
into account, which may lead to erroneous results due to the low intensity value pixels.

Table 5.5 Partitioning of the HSV Hexcone Model

Region Bounding Thresholds Segmentation Cue
Achromatic S <10% V <20% Value
Transitional 10% <S <20% V > 20% Value
Chromatic S >20% V > 20% Hue

Once the image has been partitioned into the three primary regions above, then a histogram
thresholding procedure is carried out within each region using the appropriate cue.

5.4.1 Histogram Thresholding

Segmentation within the achromatic region is performed by using the histogram of the
value component. The value histogram is first formed and smoothened by the scale—space
filtering approach [41]. The largest peak is then selected and the valleys are subsequently
found on either side of this peak. Pixel values within the two valley points are classified as a
uniform area. A set of binary operations which include median filtering and region removal
are used to remove isolated pixels and small regions (i.e., less than a predefined threshold),
respectively. This process is repeated recursively until all the pixels within the achromatic
region are segmented into significant areas of uniformity (i.e., no more regions can be further
extracted from the histogram after the small region removal step).

The procedure just described is also carried out using the value histogram of the pixels within
the transitional region. Areas within this region appear to have some chroma component and,
therefore, are kept disjoint from the achromatic region.

Finally, the chromatic region is segmented by using the hue histogram of the chroma pixels,
as defined in Table 5.5. However, we have found that subdividing the chromatic area further
into subregions yields an improvement in the segmentation results. This division is carried out
at the valleys (i.e., between peaks) of the smoothened saturation histogram of the chromatic
region. In effect, this partitions the chromatic areas into varying levels of saturation for
improved results (i.e., two areas with the same hue but different saturation values are not
grouped together). Segmentation is performed within each of these chromatic subregions by
using the histogram of the hue component (i.e., as done with the value component above).
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5.4.2 Postprocessing and Region Merging

The recursive histogram procedure described in the previous subsection is applied to each
of the three primary regions, until no areas of uniformity can be further extracted. However,
a number of pixels will still remain unclassified as a result of this process (i.e., due to small
region removal, median filtering, etc.). These pixels are subsequently combined into the best
matching region (within a spatially local window) from the set of regions obtained in the initial
histogram extraction process as follows. The image is progressively scanned (in a raster scan
fashion) and a 3 x 3 window is formed for each unclassified pixel that borders at least one pixel
(in the 8th connected nearest neighbor sense) from an initially segmented area. The L, norm
is computed for each pixel in the window, with respect to the central pixel (i.e., the unclassified
pixel). The smallest value is taken and compared to a predefined threshold. If it is less than the
threshold value, then the central pixel is incorporated into the area where the corresponding
pixel (i.e., the one with the smallest L, norm) belongs. If it exceeds the threshold value, then
the central pixel is left unclassified. Pixel sites are revisited through a number of iterations
until all the unclassified pixels are grouped to an appropriate region. When no groupings are
made within a particular iteration, then the threshold values are increased so that the process
converges. The selection of the initial threshold value is quite small and is gradually relaxed
(i.e., increased) until all pixels are classified. This process is very fast because there are usually
a small number of pixels (typically at the borders of regions) requiring few iterations.

Once all of the pixels have been classified, a series of binary morphological operations are
used to refine the extracted regions [42]. A binary morphological opening operation is first
used to remove small spurs and thin channels, followed by a binary morphological closing
operation to fill in small holes and gaps.

At this stage, the segmentation of the image into a set of refined, uniform regions is complete.
However, an oversegmented region may result if the threshold for small region removal is set
too low. Region merging is used to overcome this situation by joining bordering regions with
a similar average hue value. Adjacent regions are merged if the Euclidean distance of the
average RGB values of two regions is less than a set threshold. Region merging is performed
in the RGB space due to the lack of an appropriate distance metric in the HSV color space.
Regions can be merged so that the smallest region is of some minimum size, or a specific
number of regions is obtained. Here, we select a fixed threshold based on experimental values
to reduce the computational complexity. Setting an appropriate threshold can also reduce the
regions so that they coincide with semantically meaningful objects.

5.4.3 Experimental Results

The performance of the proposed segmentation scheme was tested with a number of different
video sequences, and the results of the Carphone and Claire sequences are displayed below. In
Figure 5.2a and b, the results of the Carphone QCIF (176 x 144) sequence are shown. Part a
illustrates frame 80 of the original image, whereas part b shows the segmentation results after
region merging in which adjacent areas are joined and the number of regions is reduced. Small
regions were removed if their perimeter was less than 30 pixels. Setting a smaller threshold
generates many additional smaller regions, which may result in an oversegmented image. At
the same time, however, this may capture some additional detail present within the scene. The
postprocessing operations included a 5 x 5 binary median filter and a circular morphological
structuring element. In Figure 5.2c and d, the results of the Claire CIF (360 x 288) sequence are
displayed. Once again, an arbitrary set of regions is effectively extracted in this less detailed
scene.

The effectiveness of this segmentation scheme, and its potential for a more suitable content-
based representation, is encouraging for future object-based video coding environments. This
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(c) (d)

FIGURE 5.2

(a) Original frame 80 of the Carphone sequence. (b) Final segmentation of (a) after
region merging. (c) Original frame 100 of the Claire sequence. (d) Final segmentation of
(c) after region merging.

approach is being further enhanced to incorporate motion information so that regions can be
associated with semantically meaningful objects.

5.5 Facial Image Segmentation

The recognition of human faces is currently an active area of research in computer vi-
sion [43]-[46]. The task of recognizing human faces is essentially a two-step process: (1) the
detection and automatic location of the human face, and (2) the automatic identification of the
face based on the extracted features. Most of the research to date has been directed toward the
identification phase, with less emphasis being placed on the initial localization stage. However,
the first step is critical to the success of the second and the overall recognition system. Thus,
the importance of obtaining an accurate localization of the face is clear and vital in numerous
multimedia applications including human recognition for security purposes, human—computer
interfaces, and more recently, for video coding, multimedia databases, and video on demand.
Nevertheless, determining the location of a face of unknown size in a scene with a complex or
moving background still remains a difficult problem that is relatively unexplored.
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Several techniques based on shape and motion information have been proposed recently
for the automatic location of the facial region [47]-[49]. The former two are related to video
coding applications, whereas the latter is part of a facial recognition system. The shape-based
approach in [47] models the contours of the face as an ellipse. The location of the facial
region is determined by performing an ellipse fitting task to a thresholded binary edge image.
In [48], a generic 3D face model is adapted to the extracted facial outline from a videophone-
type scene for the case where only one person is talking against a stationary background.
In this application, a hierarchical localization scheme is utilized to isolate the facial area.
The technique is based on the shape of the extracted head-and-shoulders silhouette, which is
obtained using the thresholded frame differences. Finally, in [49], a motion detection algorithm
is used to segment the facial area from a complex background. The proposed method locates
the facial region by assuming that the object having the greatest motion in the video sequence
is the face to be detected. This assumption, however, may limit the success of the approach in
applications with nonstationary backgrounds (e.g., mobile videophones) and/or other moving
objects in the scene. The authors also acknowledge potential problems caused by noise or
other objects moving in the background and also suggest a modification in their technique to
better handle the case of tilted or turned faces.

5.5.1 Extraction of Skin-Tone Regions

The identification and tracking of the facial region is determined by utilizing a priori knowl-
edge of the skin tone distributions in the HSV color space outlined earlier. It has been found
that skin-colored clusters form within a rather well-defined region in chromaticity space [50],
and also within the HSV hexcone model [51], for a variety of different skin types. In the
HSV space in particular, the skin distribution was found to lie predominantly within the lim-
ited hue range between 0° and 50° (red—yellow), and in certain cases between 340° and 360°
(magenta—red) for darker skin types [39]. The saturation component suggests that skin colors
are somewhat saturated, but not deeply saturated, with varying levels of intensity.

The hue component is the most significant feature in defining the characteristics of the skin
clusters. However, as mentioned earlier, the hue can be unreliable when: (1) the level of
brightness (i.e., value) in the scene is low, or (2) the regions under consideration have low
saturation values [39]. The first condition can occur in areas of the image where there are
shadows, or generally under low lighting levels. In the second case, low values of saturation
are found in the achromatic regions of a scene. Thus, we must define appropriate thresholds
for the value and saturation components where the hue attribute is reliable. We have defined
the following polyhedron with appropriate threshold values that correspond to the skin-colored
clusters with well-defined saturation and value components, based on a large sample set [39]:

Thuel = 340° < H < Thyep = 360° (5.40)
Thues = 0°<H=< Thuea = 50° (5.41)

S > Teat1 = 20% (5.42)

V > Tya = 35% (5.43)

The extent of the above hue range is purposely designed to be quite wide so that a variety of
different skin types can be modeled. As a result of this, however, other objects in the scene
with skin-like colors may also be extracted. Nevertheless, these objects can be separated by
analyzing the hue histogram of the extracted pixels. The valleys between the peaks are used to
identify the various objects that possess different hue ranges (i.e., facial region and different
colored objects). Scale—space filtering [52] is used to smoothen the histogram and obtain
the meaningful peaks and valleys. This process is carried out by convolving the original hue
histogram, f,(x), with a Gaussian function g(x, t) of zero mean and standard deviation t as
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follows:

1 —(x —u)?
N exp [ 722 i| du (5.44)

where Fj(x, T) represents the smooth histogram. The peaks and valleys are determined by
examining the first and second derivatives of Fj, above. In the remote case that another object
matches the skin color of the facial area (i.e., separation is not possible by the scale—space filter),
the shape analysis module that follows provides the necessary discriminatory functionality.

A series of postprocessing operations which include median filtering and region
filling/removal is subsequently used to refine the regions obtained from the initial extraction
stage.

Fh(x,f)=fh(X)*g(x,f)=/ Jn(u)

5.5.2 Postprocessing

Median filtering is the first of two postprocessing operations that are performed after the
initial color extraction stage. The median operation is introduced in order to smoothen the
segmented object silhouettes and also eliminate any isolated misclassified pixels that may
appear as impulsive-type noise. Square filter windows of size 5x5 and 7x7 provide a good
balance between adequate noise suppression and sufficient detail preservation. This operation
is computationally inexpensive because it is carried out on the bilevel images (i.e., object
silhouettes).

The result of the median operation is successful in removing any misclassified noise-like
pixels; however, small isolated regions and small holes within object areas may remain after
this step. Thus, we follow the application of median filtering by region filling and removal.
This second postprocessing operation fills in small holes within objects which may occur due
to color differences (e.g., eyes and mouth of the facial skin region), extreme shadows, or any
unusual lighting effects (specular reflection). At the same time, any erroneous small regions
are also eliminated as candidate object areas.

We have found that the hue attribute is reliable when the saturation component is greater
than 20% and meaningless when it is less than 10% [39]. Similar results have also been
confirmed in the HVC color model [37]. Saturation values between 0 and 10% correspond
to the achromatic areas within a scene, whereas those greater than 20% correspond to the
chromatic ones. The range between 10 and 20% represents a sort of transition region from
the achromatic to the chromatic areas. We have observed that, in certain cases, the addition
of a select number of pixels within this 10 to 20% range can improve the results of the initial
extraction process. In particular, the initial segmentation may not capture smaller areas of
the face when the saturation component is decreased due to the lighting conditions. Thus,
pixels within this transition region are selected accordingly [39] and merged with the initially
extracted objects. A pixel within the transitional region is added to a particular object if its
distance is within a threshold of the closest object. A reasonable selection can be made if
the threshold is set to a factor between 1.0 and 1.5 of the distance from the centroid of the
object to its most distant point. The results from this step are once again refined by the two
postprocessing operations described earlier.

At this point, one or more of the extracted objects corresponds to the facial regions. In certain
video sequences, however, we have found gaps or holes around the eyes of the segmented facial
area. This occurs in sequences where the forehead is covered by hair and, as a result, the eyes
fail to be included in the segmentation. We utilize two morphological operators to overcome
this problem and at the same time smoothen the facial contours. A morphological closing
operation is first used to fill in small holes and gaps, followed by a morphological opening
operation to remove small spurs and thin channels [42]. Both of these operations maintain
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the original shapes and sizes of the objects. A compact structuring element such as a circle or
square without holes can be used to implement these operations and also help to smoothen the
object contours. Furthermore, these binary morphological operations can be implemented by
low-complexity hit-or-miss transformations [42].

The morphological stage is the final step prior to analysis of the extracted objects. The
results at this point contain one or more objects that correspond to the facial areas within the
scene. The block diagram in Figure 5.3 summarizes the proposed face localization procedure.
The shape and color analysis unit, described next, provides the mechanism to correctly identify
the facial regions.

Input image or Tnitiz Addition of

: - nitial Color > : -

: = z . Post-processing low Saturation
video sequence Extraction components

Post-processing e
L & SIMPL‘&_(.".‘IUI‘ —= Facial regions
Morphological Analysis

FIGURE 5.3
Overall scheme to extract the facial regions within a scene.

5.5.3 Shape and Color Analysis

The input to the shape and color analysis module may contain objects other than the facial
areas. Thus, the function of this module is to identify the actual facial regions from the set of
candidate objects. To achieve this, a number of expected facial characteristics such as shape,
color, symmetry, and location are used in the selection process. Fuzzy membership functions
are constructed in order to quantify the expected values of each characteristic. Thus, the value
of a particular membership function gives us an indication of the goodness of fit of the object
under consideration with the corresponding feature. An overall goodness of fit value can finally
be derived for each object by combining the measures obtained from the individual primitives.

In our segmentation and localization scheme we utilize a set of features that are suitable for
our application purposes. In facial image databases (employees, models, etc.) or videophone-
type sequences (video archives of newscasts, interviews, etc.), the scene consists of predom-
inantly upright faces that are contained within the image (i.e., not typically at the edges of
the image). Thus, we utilize features such as the location of the face, its orientation from the
vertical axis, and its aspect ratio to assist with the recognition task. These features can be
determined in a simple and fast manner, as opposed to measurements based on facial features
such as the eyes, nose, and mouth, which may be difficult to compute (i.e., in certain images
the features may be small or occluded). More specifically, we consider the following four
primitives in our face localization system:

1. Deviation from the average hue value of the different skin-type categories. The average
hue value for different skin types varies among humans and depends on the race, gender,
and age of the person. However, the average hue of different skin types falls within a
more restricted range than the wider one defined by equations (5.40) and (5.41) [39].
The deviation of an object’s expected hue value from this restricted range gives us an
indication of its similarity to skin tone colors.

2. Face aspect ratio. Given the geometry and shape of the human face, it is reasonable to
expect that the ratio of height to width falls within a specific range. If the dimensions
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of a segmented object fit the commonly accepted dimensions of the human face then it
can be classified as a facial area.

3. Vertical orientation. The location of an object in a scene depends largely on the viewing
angle of the camera and the acquisition devices. For the intended applications it is
assumed that only reasonable rotations of the head are allowed in the image plane. This
corresponds to a small deviation of the facial symmetry axis from the vertical direction.

4. Relative position of the facial region in the image plane. By similar reasoning to
(3) above, it is probable that the face will not be located right at the edges of the image
but, rather, within a central window of the image.

5.5.4 Fuzzy Membership Functions

A number of membership function models can be constructed and empirically evaluated. A
trapezoidal function model is utilized here for each primitive in order to keep the complexity
of the overall scheme to a minimum. This type of membership function attains the maximum
value only over a limited range of input values. Symmetric or asymmetrical trapezoidal shapes
can be obtained depending on the selected parameter values. The membership function can
assume any value in the interval [0, 1], including both of the extreme values. A value of 0
in the function above indicates that the event is impossible. On the contrary, the maximum
membership value of 1 represents total certainty. The intermediate values are used to quantify
variable degrees of uncertainty. The estimates for the four membership functions are obtained
by a collection of physical measurements of each primitive from a database of facial images
and sequences [39].

The hue characteristics of the facial region (for different skin-type categories) were used
to form the first membership function. This function is built using the discrete universe of
discourse [—20°, 50°] (i.e., —20° = 340°). The lower bound of the average hue observed in
the image database is approximately 8° (African-American distribution), whereas the upper
bound average value is around 30° (Asian distribution) [39]. A range is formed using these
values, where an object is accepted as a skin tone color with probability 1 if its average hue value
falls within these bounds. Thus, the membership function associated with the first primitive is
defined as follows:

G20 e oge<r<se
28
nx) =41 , if 8°<x<30° (5.45)
OO=X) it 300<x<50°
20

Experimentation with a wide variety of facial images has led us to the conclusion that the
aspect ratio (height/width) of the human face has a nominal value of approximately 1.5. This
finding confirms previous results reported in the open literature [49]. However, in certain
images we must also compensate for the inclusion of the neck area, which has similar skin
tone characteristics to the facial region. This has the effect of slightly increasing the aspect
ratio. Using this information along with the observed aspect ratios from our database, we can
tune the parameters of the trapezoidal function for this second primitive. The final form of the
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function is given by

=075 i 075<x<1.25
05
1 L if 1.25<x<1.75
HE) =1 225 x) (5.46)
7Y i 175<x<2.25
05
0 , otherwise

The vertical orientation of the face in the image is the third primitive used in our shape
recognition system. As mentioned previously, the orientation of the facial area (i.e., deviation
of the facial symmetry axis from the vertical axis) is more likely to be aligned toward the
vertical due to the type of applications considered. A reasonable threshold selection of 30°
can be made for valid head rotations also observed within our database. Thus, a membership
value of 1 is returned if the orientation angle is less than this threshold. The membership
function for this primitive is defined as follows:

1 , if 0°<x<30°

(x) = 0— (5.47)
# % _if 30°<x<90°

The last primitive used in our knowledge-based system refers to the relative position of the
face in the image. Due to the nature of the applications considered, we would like to assign
a smaller weighting to objects that appear closer to the edges and corners of the images. For
this purpose, we construct two membership functions. The first one returns a confidence value
for the location of the segmented object with respect to the x axis. Similarly, the second
one quantifies our knowledge about the location of the object with respect to the y axis. The
following membership function has been defined for the position of a candidate object with
respect to either the x or y axis:

G @) i gex<?
d 2
2 3d 5d
1 , if ?§x§7
nx) = (5.48)
M ,if %<x§3d
d
2
0 , otherwise

The membership function for the x axis is determined by letting d = %, where D, represents
the horizontal dimensions of the image (i.e., in the x direction). In a similar way, the y axis
membership function is found by letting d = %, where Dy, represents the vertical dimensions
of the image (i.e., in the y direction).

The individual membership functions expressed above must be appropriately combined to
form an overall decision. To this end, we utilize the fuzzy aggregators used in Section 5.3.2
to form the overall function used in the filter. In particular, the compensative operator (i.e.,
overall fuzzy membership function), which assumes the form of a weighted product as follows

m . 0.5
e = ((minMJ) <maxuj)) (5.49)
j=1 j=1
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was selected because it provides a good compromise of conjunctive and disjunctive behavior.
The aggregation operator defined in (5.49) is used to form the final decision based on the
designed primitives.

5.5.5 Meta-Data Features

Multimedia databases are composed of a number of different media types, such as images and
video that are binary by nature, and hence are unstructured. Anappropriate set of interpretations
must be derived for these media objects in order to allow for content-based functionalities which
include storage and retrieval. These interpretations, or meta-data, are generated by applying
a set of feature-extracting functions on the contained media objects [53]. These functions
are media dependent (i.e., audio, video, images) and are unique even within each media type
(i.e., satellite images, facial images). The following four steps are necessary in extracting the
features from image object types: (1) object locator design, (2) feature selection, (3) classifier
design, and (4) classifier training. The function of the object locator is to isolate the individual
objects of interest within the image through a suitable segmentation algorithm. In the second
step, specific features are selected to identify the different types of objects that might occur
within the images of interest. The classifier design stage is then used to establish a mathematical
basis for distinguishing the different objects based on the designed features. Finally, the last
step is used to train and update the classifier module by adjusting various parameters. In the
previous sections we have designed the object locator to automatically isolate and track the
facial area within a facial image database or a videophone-type sequence. Now, we propose
the use of a set of features that may be used in constructing a meta-data feature vector for the
classifier design and training stages.

Having determined the facial regions within the image, we can construct an n-dimensional
feature vector, f = (f1, f2,..., fu), that may be used for content-based storage and retrieval
purposes. We present several features that may be incorporated within a more detailed meta-
data feature vector. More specifically, we propose the use of hair and skin color and face
location and size as a preliminary set.

Hair color is a significant human characteristic that can be effectively employed in user
queries to retrieve particular facial images. We have determined a scheme to categorize black,
gray/white, brown, and blonde hair colors within the HSV space. First, the H, S, and V
component histograms of the hair regions are formed and smoothened using the scale—space
filter defined earlier. The peak values from each histogram are subsequently determined and
used to form the appropriate classification. The following regions were suitably found from
our large sample set for the various categories of hair color:

(1) Black Vp, < 15%

2) Gray Sp <20% NV, > 50%

(3) Brown Sp>20% N 15<V, <40%

(4) Blonde 20° <H, <50° NS, >20% N V, > 40%

where H), S, and V, denote the peaks of the corresponding histograms. Thus, dark or black
hair is characterized by low-intensity values and gray or white hair by low saturation and high-
intensity values. On the other hand, brown or blonde hair colors are typically well saturated
but differ in their intensity values. The expected value component of dark brown hair lies at
approximately V, ~ 20%, lighter brown at around V, ~ 35%, and blonde hair at higher
values, V, > 40%. Therefore, we can use this information to appropriately categorize the
facial regions extracted earlier. We use a suitably sized template above each facial area for the
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classification process as shown in Figure 5.4. The template consists of regions R + Ry + R3.
This provides a fast yet good approximation to the overall description.

R3 D/4

Facial Region

FIGURE 5.4
Template for hair color classification = R; + R, + Rs.

The next feature we propose to use is the average hue value of the facial area. We have
found that darker skin types tend to shift toward 0° (i.e., average hue = 8° for the darker skin-
type sample set), whereas lighter colored skin types move toward 30° [39]. In certain cases,
however, lighter skin types with a reddish appearance may also have a slightly reduced average
hue value (i.e., 15°). Nevertheless, the hue sector can be partitioned to discriminate between
lighter and darker skin types as follows: (1) darker colored skin, H < 15°, and (2) lighter, H
> 15°. This can give us a reasonable approximation; however, we believe that the saturation
and value components can improve upon these results.

Finally, the location and size of each facial area (i.e., centroid location and size relative to
the image) can provide very useful information in a retrieval system. These combined features
can give us an indication of whether the face is a portrait shot or if perhaps the body is included.
In addition to this, it can also provide information about the spatial relationships of a particular
facial region with other objects or faces within the scene. Further work is being done in this
latter area.

5.5.6 Experimental Results

The scheme outlined in Figure 5.3 was used to locate and track the facial region in a number
of still images and video sequences. The results from three videophone-type sequences (i.e.,
newscast or interview-type sequences) are presented below: (1) Carphone, (2) Miss America,
and (3) Akiyo.

The segmentation results in Figure 5.5 illustrate the robustness of the technique to the various
cases of object/background motion, lighting, and scale variations. A parameter selection
of T = 2 was made in the Gaussian function of equation (5.44) in order to smoothen the
histograms. This provided adequate smoothing and was found to be appropriate for the skin
tone distribution models [39]. A similar value [37] has also been suggested in the HVC space.
The shape and color analysis module was used to identify the facial regions from the set of
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FIGURE 5.5

Location and tracking of the facial region for the following video sequences: (a) Car-
phone, (b) Carphone frames 20-85, (¢) Miss America, (d) Miss America frames 20-120,
(e) Akiyo, and (f) Akiyo frames 20-110.

()

candidate objects. An object was classified as a facial region if its overall membership function,
We, exceeded a predefined threshold of 0.75. In the QCIF Carphone sequence of Figure 5.5a,
only one candidate region was extracted by the localization procedure in Figure 5.3, which
indeed corresponded to the facial area. In Figure 5.5¢c, a similar procedure was followed with
the CIF Miss America sequence. In this case, three objects of significant size were extracted,
and the results of these are summarized in Table 5.6.

Only the first object was selected, based on the aggregation of the membership function
values. The objects O, and O3 were rejected because they scored poorly in their mean hue
value and location and had reduced membership values in the orientation primitive. Finally, in
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Table 5.6 Miss America (Width x
Height =360x288): Shape and Color
Analysis
Attributes Objects
O 0O O3

Centroid location

X 177 245 244
H1 1 0 0
y 188 120 269
2 1 1 0.02
Orientation
6° 492 4774 44
U3 1 0.7 077
Object ratio
r 1.61 1.16 1.32
4 1 0.82 1
Mean hue
Hy, (°) 20 -6 -5
"5 1 0.5 054

Aggregation 1.0 0.0 0.0

Figure 5.5e, the facial region was successfully identified and tracked for the Akiyo sequence.
Two candidate objects were extracted in this case and, once again, the face was correctly
selected based on the aggregation values.

Once the facial region is identified, the proposed meta-data features can be computed ac-
cording to the methodology provided in the previous section. The feature values for each of
the image sequences are summarized in Table 5.7. The average hue value of the facial area
(i.e., skin) is in all three cases greater than 20°, which puts them in the lighter skin category,
as expected. Next, we observe the S, and V, values of the hair region obtained from our
constructed template. According to our classification scheme, the tabulated values indicate
that the facial image in the Carphone sequence has brown hair, whereas the other two have
black hair. These fuzzy descriptions are appropriate representations of the images shown in
Figure 5.5. Finally, the last two features give us an indication of the location and size of the
face within the scene. In all cases, the facial region is relatively close to the center of the image
(location is with respect to the top left corner) and is of significant size (i.e., a closeup).

5.6 Conclusions

The tremendous advances in both software and hardware have brought about the integration
of multiple media types within a unified framework. This has allowed the merging of video,
audio, text, and graphics with enormous possibilities for new applications. This integration
is at the forefront in the convergence of the computer, telecommunications, and broadcast
industries. The realization of these new technologies and applications, however, demands a
new way of processing audiovisual information. We have shifted from pixel-based models
(pulse code modulation) to statistically dependent pixel models (transform coding) to the
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Table 5.7 Proposed Meta-Data Feature Values

Meta-Data Carphone Miss America Akiyo
Skin color
H (°) 24 20 23
Hair color
S (%) 29 38 16
V (%) 30 15 12
Description Brown Black Black
Centroid location
Horizontal (%) 40 53 51
Vertical (%) 42 60 47
Image height/face height 1.7 1.5 1.8

current audiovisual object-based approaches (MPEG-7).

In this chapter we have focused on several aspects of the intelligent processing of visual
information using color imaging techniques and fuzzy concepts. We have applied this method-
ology to three problem areas, namely: (1) color image filtering, (2) color segmentation, and
(3) automatic face localization and meta-data generation.

Digital images and video signals suffer from several degradations and artifacts. These may
include sensor noise and lens aberrations from commercial camcorders or artifacts from the
digitization process from analog sources. In some cases this may be acceptable, but for high-
resolution multimedia applications they become objectionable. In Section 5.3 we presented a
new class of filters based on a fuzzy multichannel filtering structure. Our new adaptive design
was computationally efficient, scalable, nonrecursive, and did not require a training signal.
The application of our fuzzy filters to a number of noise-contaminated color images indicated
a performance that improved upon the conventional vector processing filters.

One of the challenges in the representation of visual information is to decompose a video
sequence into its elementary parts. Temporal segmentation refers to finding shot boundaries,
whereas spatial segmentation corresponds to the extraction of visual objects in each frame. In
Section 5.4 we have addressed the spatial segmentation problem using the visual cue of color.
The proposed color segmentation scheme utilized the perceptual HSV color model to effec-
tively partition a sequence into a set of arbitrarily shaped regions. The method was found to be
robust and of relatively low computational complexity due to the 1D histogram procedure and
the binary nature of the postprocessing operations involved. Thresholds for merging regions
and removing small areas were used to avoid the problems associated with oversegmented
results. The effectiveness of this technique and its potential for a suitable content-based repre-
sentation is encouraging for future object-based video coding environments. The incorporation
of motion information into the segmentation problem holds more promising results. Automatic
segmentation methods are challenged in their quest to extract semantically meaningful objects
as opposed to simple regions. The combination of spatial and temporal segmentation with
object tracking algorithms remains an active area of research. These solutions will enable true
object-based compression schemes and effective indexing and retrieval of the content.

The automatic extraction of facial images in digital pictures is vital in numerous multimedia
applications, including multimedia databases, video on demand, human—computer interfaces,
and video coding. In Section 5.5, a novel technique was introduced to locate and track the
facial area in videophone-type sequences. The proposed method essentially consisted of two
components: (1) a color processing unit and (2) a knowledge-based shape and color analysis
module. The color processing component utilized the HSV color space, while the shape module
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employed a number of fuzzy membership functions to correctly identify the facial region. The
suggested approach was robust with regard to different skin types and various types of object
or background motion within the scene. Having determined the facial regions within an image,
we then constructed a meta-data feature vector that could be used for content-based storage and
retrieval purposes. Meta-data features such as hair and skin color and face location and size
were utilized as a preliminary set. The results of our findings were encouraging in extracting
vital information from facial images. Efforts for content-based video description are an active
research topic. It is highly desirable to index multimedia data using visual features such as
color, texture, and shape; sound features such as audio and speech; and textual features such
as script and closed captioning. It is also of great interest to have the capabilities to browse
and search for this content using compressed data since most video data will likely be stored in
compressed formats. Another area of interest is in temporal segmentation, where it is important
to extract shots, scenes, or objects. Furthermore, higher level descriptions for the direction and
magnitude of dominant object motion and the entry and exit instances of objects of interest
are highly desirable. These are all future research areas to be investigated and fueled with the
upcoming MPEG-7 standard.

In this chapter we have examined the concepts of adaptive fuzzy systems and color processing
for several multimedia applications. More specifically, the algorithms and architectures were
examined; however, further analysis is warranted to address issues of real-time architectures
and realizations, modularity, software portability, and system robustness.
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Chapter 6

Intelligent Multimedia Processing

Ling Guan, Sun-Yuan Kung, and Jenq-Neng Hwang

6.1 Introduction

The way we access information, conduct business, communicate, educate, learn, and en-
tertain will be profoundly changed by the rapid development of multimedia technologies [17,
79, 124]. Multimedia technologies also represent a new opportunity for research interactions
among a variety of media such as speech, audio, image, video, text, and graphics. As digiti-
zation and encoding of images and video have become more affordable, computer and Web
database systems are starting to store voluminous image and video data. Consequently, mas-
sive amounts of visual information online have become closer to a reality. This promises a
quantum elevation of the level of tomorrow’s world in entertainment and business. However,
as the data acquisition technology advances rapidly, we have now substantially fallen behind
in terms of technologies for indexing and retrieval of visual information in large archives.

For example, it would be desirable to have a tool that efficiently searches the Web for a
desired picture (or video clip) and/or audio clip by using as a query a shot of multimedia
information [119, 135]. Nowadays, some popular queries might look like: “Find frames
with 30% blue on top and 70% green in bottom” or “Find the images or clips similar to this
drawing” In contrast to the above similarity-based queries, it has been argued that a so-called
“subject-based” query [135] might be more likely to be used — for example, “Find Reagan
speaking to the Congress.” The subject-based query offers a more user-friendly interface, but
it also introduces a greater technical challenge, which calls for advances in two distinctive
research frontiers [17]:

o Computer networking technology. Novel communication and networking technolo-
gies are critical for multimedia database systems to support interactive dynamic inter-
faces. A truly integrated media system must connect with individual users and content-
addressable multimedia databases. This will involve both logical connection to support
information sharing and physical connection via computer networks and data transfer.

* Information processing technology. To advance the technologies of indexing and re-
trieval of visual information in large archives, multimedia content-based indexing would
complement well the text-based search. Online and real-time visual information retriev-
ing and display systems would provide popular services to professionals such as business
traders, researchers and librarians as well as general users such as students and house-
wives. Such systems must successfully combine digital video and audio, text animation,
graphics, and knowledge about such information units and their interrelationships in real
time.
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This chapter addresses mainly emerging issues closely related to the research frontier on
information processing technology.

Because speech, image, and video are playing increasingly dominant roles in multimedia
information processing, content-based retrieval has a broad spectrum of applications. Hence,
quick and easy access of large speech, image, and video databases must be incorporated as an
integral part of many near-future multimedia applications. Future multimedia technologies will
need to handle information with an increasing level of intelligence (i.e., automatic extraction,
recognition, interpretation, and interactions of multimodal signals). This will lead to what can
be called intelligent multimedia processing (IMP) technology.

Indeed, the technology frontier of information processing is shifting from coding (MPEG-
1 [83], MPEG-2 [84], and MPEG-4 [85]) to automatic recognition — a trend precipitated by a
new member of the MPEG family, MPEG-7 [86, 87], which focuses on the “multimedia content
description interface.” Its research domain will cover techniques for object-based tracking and
segmentation, pattern detection and recognition, content-based indexing and retrieval, and
fusion of multimodal signals. For these, neural networks (NNs), sometimes in combination
with two other branches of computational intelligence (CI), fuzzy system (FS) and evolutionary
computation (EC), can offer a very promising horizon.

6.1.1 Neural Networks and Multimedia Processing

The main reason CI is perceived as a critical core technology for IMP hinges on its learning,
adaptation, reasoning, and evolution capability [4, 57], which enables machines to be taught
to interpret possible variations of the same object or pattern (e.g., scale, orientation, and
perspective).

More specifically, to build an IMP system, the emerging synthesis of various techniques is
required. Each technique plays a specific role in IMP systems. The main characteristics of NNs
are to recognize patterns and to classify input, and to adapt themselves to dynamic environments
by learning; but the mapping structure of an NN is a black box. The resulting NN behavior
is difficult to understand. An FS, on the other hand, can cope easily with human knowledge
and can perform inference, but it does not fundamentally incorporate the learning mechanism.
Neuro-fuzzy computing has developed for overcoming their respective disadvantages [46, 137].
In general, the neural network part is used for learning, whereas the fuzzy logic part is used
for representing knowledge. The learning is fundamentally performed as a necessary change
such as incremental learning, back-propagation, and unsupervised learning schemes. EC can
also tune NNs and FSs. Furthermore, EC has been used for the structure optimization of NNs
and FSs [46, 137]. However, evolution can be defined as a resultant change, not a necessary
change, because EC cannot predict and estimate the effect of the change. To summarize, an
IMP system can quickly adapt to a dynamically changing environment by NNs and FSs, and
the structure of the system can globally evolve by ECs. The capability concerning adaptation
and evolution can construct more advanced IMP systems.

Among the three branches of CI, NNs have been the most popular tool for IMP because

 Neural networks offer unsupervised clustering and/or supervised learning mechanisms
for recognition of objects which are deformed or have incomplete information. There-
fore, NNs can be “trained” to see or hear, to recognize objects or speech, or to perceive
human gestures.

» Neural networks are powerful pattern classifiers that appear to be most powerful and
appealing when explicit a priori knowledge of underlying probability distributions is un-
known, such that properly trained NN classifiers allow the nonparametric approximation
of the associated a posteriori class probabilities [101].
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 Neural networks offer a universal approximation capability, which allows accurate ap-
proximation of unknown systems based on sparse sets of noisy data. In this context,
some neural models have also effectively incorporated statistical signal processing and
optimization techniques.

» Temporal neural models, which are specifically designed to deal with temporal signals,
further expand the application domain in multimedia processing, particularly audio,
speech, and audiovisual integration and interactions.

A hierarchical network of neural modules will be vital to facilitate search mechanisms
used in a voluminous, or Web-wide, database. Typically, in a tree network structure,
kernels that are common to all the models form the root of the tree. The leaves of the
tree correspond to the individual neural modules, whereas the paths from root to leaf
connect the modules to their respective kernels.

Consequently, NNs have recently received increasing attention in many multimedia ap-
plications. Here we list just a few examples: (1) human perception: facial expression and
emotion categorization [105], human color perception [109], and multimedia data visualiza-
tion [3, 102]; (2) computer—human communication: face recognition [70], lipreading analy-
sis [19, 20, 65, 95], and human—-human and computer—human communication/interaction [89];
and (3) multimodal representation and information retrieval: hyperlinking of multimedia ob-
jects [64], queries and searches of multimedia information [75], 3D object representation and
motion tracking [118], and image sequence generation and animation [78]. More concrete
application examples will be discussed in the subsequent sections.

6.1.2 Focal Technical Issues Addressed in the Chapter

This chapter will focus on vital technical issues in the research frontier on information pro-
cessing technology, particularly those closely related to IMP. More specifically, this chapter
will demonstrate why and how CI, with neural networks in particular, offers as a core tech-
nology for: efficient representations for audiovisual information (Section 6.2.1); detection
and classification techniques (Section 6.2.2); fusion of multimodal signals (Section 6.2.3);
and multimodal conversion and synchronization (Section 6.2.4). Here let us first offer some
motivations as well as a brief explanation on the key technical points.

Efficient Representations for Audiovisual Information

An efficient representation of the information can facilitate many useful multimedia func-
tionalities, such as object-based indexing and access. To this end, it is vital to have sophisticated
preprocessing of the image or video data. For many multimedia applications, preprocessing
is usually carried out on the input signals to make the subsequent processing modeling and
classification tasks easier (e.g., segmentation of 2D or 3D images and video for content-based
coding and representation in the context of the MPEG or JPEG standards). The more sophisti-
cated the representation obtained by preprocessing, the less sophisticated the classifier would
need to be. Hence, a synergistic balance (and eventually interaction) between representation
and indexing needs to be explored.

An efficient representation of vast amounts of multimedia data can often be achieved by adap-
tive data clustering or model representation mechanisms, which happen to be the most promis-
ing strength of many well-established unsupervised neural networks [e.g., self-organizing
feature map (SOFM) and principal component analysis (PCA) neural network]. The evolution
from conventional statistical clustering and/or contour and shape modeling to these unsuper-
vised NNs will be highlighted in Section 6.2.1.
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Some of these NNs have been incorporated for various feature extraction, moving object
tracking, and segmentation applications. Illustrative samples for such preprocessing examples
are provided in Section 6.3.1.

Detection and Classification for Audiovisual Databases

As most digital text, audio, and visual archives exist on various servers throughout the world,
it becomes increasingly difficult to locate and access the information. It thus necessitates
automatic search tools for indexing and access. Detection and classification constitute a very
basic tool for most search and indexing mechanisms. Detection of a (deformable) pattern or
object has long been an important machine learning and computer vision problem. The task
involves finding a specific (but locally deformable) pattern in images (e.g., human faces). What
is critically needed are powerful search strategies to identify contents on speech or visual clues,
possibly without the benefit of textual information. These will have important commercial
applications, including automatic teller machine (ATM), access control, surveillance, and
video conferencing systems.

Several static supervised NNs (i.e., no feedback connections are used in the network),
which are useful for detection and classification, will be covered in Section 6.2.2. Built upon
these NNs, many NN content-based image search systems have been developed for various
applications. On the horizon are several promising tools which allow users to specify image
queries by giving examples, drawing sketches, selecting visual features (e.g., color, texture,
shape, and motion), and arranging the spatiotemporal structure of features. Some exemplar NN
systems will be presented in Section 6.3.4. They serve to demonstrate the fact that unsupervised
and supervised NN models are useful means for developing reliable search mechanisms.

Multimodal Media Fusion: Combine Multiple Sources

Multimedia signal processing is more than simply “putting together” text, audio, images,
and video. The correlation between audio and video can be utilized to achieve more efficient
coding and recognition. New application systems and thus new research opportunities arise in
the area of fusion and interaction among these media.

Humans perform most perception and recognition tasks based on joint processing of the
input multimodal data. The biological cognitive machines of humans handle multimodal
data through visual, auditory, and sensory mechanisms via some form of adaptive processing
(learning/retrieving) algorithms, which remain largely mysterious to us. Motivated by the
nature of biological information processing, fusion NN models which combine information
from multiple sensor and data sources are being pursued as a universal data processing engine
for multimodal signals. Linear fusion networks and nonlinear fusion networks are discussed
in Section 6.2.3.

Audio—video interaction can be used for personal authentication and verification. A vi-
sual/auditory fusion network for such an application is discussed in Section 6.3.2.

Multimodal Conversion and Synchronization

One of the most interesting interactions among different media is the one between audio and
video. In multimodal speech communication, audio—video interaction has a significant role,
as evidenced by the McGurk effect [74]. It shows that human perception of speech is bimodal
in that acoustic speech can be affected by visual cues from lip movements. For example, one
experiment showed that when a person sees a speaker saying /ga/, but hears the sound /ba/,
the person perceives neither /ga/ nor /ba/, but something close to /da/. In video conferencing
applications, it is conceivable that the video frame rate is severely limited by the bandwidth
and is by far very inadequate for lip synchronization perception. One solution is to warp the
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acoustic signal to synchronize it with the person’s mouth movements, which will be useful for
dubbing in a studio and other non-real-time applications.

There is a class of femporal neural models (i.e., feedback connections are used to keep
track of temporal correlation of signals) that can facilitate the conversion and synchronization
processes. Prominent temporal NN models and popular statistical approaches will be reviewed
in Section 6.2.4. Verbal communication has been efficiently achieved by combining speech
recognition and visual interpretation of lip movements (or even facial expressions or body lan-
guage). As another example, an NN-based lipreading system via audio and visual integration
will be presented in Section 6.3.3. Other potential applications include dubbing of movies,
segmentation of video scenes, and human—computer interfaces.

6.1.3 Organization of the Chapter

Section 6.2 reviews some of the key NNs, then highlights their usefulness to IMP applica-
tions. Built upon these NN models, exemplar IMP applications will be illustrated in Section 6.3.
Some open technical issues and promising application trends will be suggested in Section 6.4.

6.2 Useful Neural Network Approaches to Multimedia Data
Representation, Classification, and Fusion

We will discuss in this section a variety of statistical learning techniques adopted by NNs.
Through these techniques, machines may be taught to automatically interpret and represent
possible variations of the same object or pattern. Some of these NNs (e.g., the self-organization
feature map) can be perceived as a natural evolution from traditional statistical clustering and
parameter estimation techniques (e.g., vector quantization (VQ) and expectation maximiza-
tion). These NNs can also be incorporated into traditional pattern recognition techniques (e.g.,
active contour model) to enhance the performance.

6.2.1 Multimedia Data Representation

From the learning perspective, neural networks are grouped into unsupervised learning and
supervised learning networks. Static features extraction is often inadequate for an adaptive
environment where users may require adaptive and dynamic feature extraction tools. Unsu-
pervised neural techniques are very amenable to dynamic feature extraction. The SOFM is
one representative of an unsupervised NN, which combines the advantages of statistical data
clustering (such as vector quantization and PCA) and local continuity constraint (as imposed
in the active contour model search).

Self-Organizing Feature Map (SOFM)

The basic idea of constructing an SOFM is to incorporate into the competitive learning
(clustering) rule some degree of sensitivity with respect to the neighborhood or history. This
provides a way to avoid totally uncommitted neurons, and it helps enhance certain topological
properties which should be preserved in the feature mapping (or data clustering).

Suppose that an input pattern has n features and is represented by a vector X in an n-
dimensional pattern space. The network maps the input patterns to an output space. The
output space in this case is assumed to be 1D or 2D arrays of output nodes, which possess
a certain topological ordering. The question is how to cluster these data so that the ordered
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relationship can be preserved. Kohonen proposed to allow the centroids (represented by output
nodes of an SOFM) to interact laterally, leading to the self-organizing feature map [52, 53],
which was originally inspired by a biological model.

The most prominent feature is the concept of excitatory learning within a neighborhood
around the winning neuron. The size of the neighborhood slowly decreases with each iteration.
A version of the training rule is described below:

1. First, a winning neuron is selected as the one with the shortest Euclidean distance (nearest
neighbor),
Ix —will ,

between its weight vector and the input vector, where w; denotes the weight vector
corresponding to the ith output neuron.

2. Leti* denote the index of the winner and let /* denote a set of indices corresponding to
a defined neighborhood of winner i *. Then the weights associated with the winner and
its neighboring neurons are updated by

Aw; =n(x—wj),

for all the indices j € I*, and n is a small positive learning rate. The amount of updating
may be weighted according to a preassigned “neighborhood function,” A(j, i*).

Awj =nA (j,i%) (x—w;) , (6.1)

for all j. For example, a neighborhood function A(j, i*) may be chosen as
A (j, i*) = exp (— |r.,- —rjx |2 /202) (6.2)

where r ; represents the position of the neuron j in the output space. The convergence of
the feature map depends on a proper choice of 1. One plausible choice is that n = 1/1,
where ¢ denotes the iteration number. The size of neighborhood (or o) should decrease
gradually.

3. The weight update should be immediately succeeded by the normalization of w;.

In the retrieving phase, all the output neurons calculate the Euclidean distance between the
weights and the input vector and the winning neuron is the one with the shortest distance.

By updating all the weights connecting to a neighborhood of the target neurons, the SOFM
enables the neighboring neurons to become more responsive to the same input pattern. Conse-
quently, the correlation between neighboring nodes can be enhanced. Once such a correlation
is established, the size of a neighborhood can be decreased gradually, based on the desire of
having a stronger identity of individual nodes.

Application examples: There are many examples of successful applications of SOFMs. More
specifically, the SOFM network was used to evaluate the quality of a saw blade by analyzing
its vibration measurements, which ultimately determines the performance of a machining
process [7]. The major advantage of SOFMs is their unsupervised learning capability, which
makes them ideal for machine health monitoring situations (e.g., novelty detection in medical
images can then be performed online or classes can be labeled to give diagnosis [35]). A
good system configuration algorithm produces the required performance and reliability with
maximum economy. Actual design changes are frequently kept to a minimum to reduce the risk
of failure. As aresult, it is important to analyze the configurations, components, and materials
of past designs so that good aspects may be reused and poor ones changed. A generic method
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of configuration evaluation based on an SOFM has been successfully reported [88]. The
SOFM architecture with activation retention and decay in order to create unique distributed
response patterns for different sequences has also been successfully proposed for mapping
between arbitrary sequences of binary and real numbers, as well as phonemic representations
of English words [45]. By using a selective learnable SOFM, which has the special property
of effectively creating spatially organized internal representations and nonlinear relations of
various input signals, a practical and generalized method was proposed in which effective
nonlinear shape restoration is possible regardless of the existence of distortion models [34].
There are many other examples of successful applications (e.g., [24, 62, 111]).

The Self-Organizing Tree Map (SOTM)

The motivation for the self-organizing tree map (SOTM) [54] — SOFM with a hierarchical
structure is different from Kohonen’s motivation for the original SOFM — is a nonparametric
regression model, but it is an effective tool for accurate clustering/classification leading to
segmentation and other image/multimedia processing applications.

The SOFM is a good clustering method, but it has some undesirable properties when an input
vector distribution has a prominent maximum. The results of the best-match computations tend
to be concentrated on a fraction of nodes in the map. Therefore, the reference vectors lying in
zero-density areas may be affected by input vectors from the surrounding nonzero distribution
areas. Such phenomena are largely due to the nonparametric regression nature of the SOFM.

In order to overcome the aforementioned problems, tree-structured SOFMs were proposed.
A typical example is the SOTM [54]. The main characteristic of the SOTM is that it exhibits
better fitting of the input data.

In the SOTM, the relationships between the output nodes are defined adaptively during
learning. Unlike the SOFM, which has a user-predefined and fixed number of nodes in the
network, the number of nodes is determined automatically by the learning process based on
the distribution of the input data. The clustering algorithm starts from an isolated node and
coalesces the nearest patterns or groups according to a hierarchy control function from the root
node to the leaf nodes to form the tree. The proposed approach has the advantage of K -means,
with their ability to accurately locate cluster centers, and the SOFM’s topology-preserving
property. The SOTM also provides a better and faster approximation of prominently structured
density functions.

Using the definitions of the input vector x(¢) and the weight vector w;(¢), the SOTM
algorithm is summarized as follows:

1. Select the winning node j* with minimum Euclidean distance d,
dj= (x,wj+) = mind; (x, w;)
J
2. Ifdjx(x, wjx) < H(t) where H (¢) is the hierarchy control function, which controls the

number of levels of the tree and decreases with time, then assign x to the jth cluster and
update the weight vector w; according to the following learning rule:

Wi (t 4+ 1) = W= (1) + () [x(t) — W= (1)] (6.3)

where (1) = e~"/T) (with T} determining the rate of convergence) is the learning rate,
which decreases with time and satisfies 0 < n(¢) < 1.

Else form a new subnode with x as the weight vector.

3. Repeat by going back to step 1.
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The hierarchy control function H (1) = ¢(~*/T2) (with T, being a constant which regulates
the rate of decrease) controls the number of levels of the tree. It adaptively partitions the input
vector space into subspaces.

With the decrease of the hierarchy control function H (¢), a subnode forms a new branch.
The evolution process progresses recursively until it reaches the leaf node. The entire tree
structure preserves topological relations from the root node to the leaf nodes.

The SOTM is much better than the SOFM at preserving the topological relations of the input
dataset, as shown in the example. The learning of the tree map in Figure 6.1a is driven by
sample vectors uniformly distributed in the English letter “K.” The tree mapping starts from
the root node and gradually generates its subnodes as H () decreases. By properly controlling
the rate of decrease «(#), the final representation of the letter “K” is shown in Figure 6.1b. For
comparison, the SOFM is also used in this example, as shown in Figure 6.1c. The superiority
of the SOTM is apparent.

The other tree-structured SOFM models that share many similarities with the SOTM include
the self-generating neural networks [128], the hierarchical SOTM [51], and the self-partitioning
neural networks [104].

Application examples: The SOTM and the other tree-structured SOFMs have been used in
many image and multimedia applications. Self-generating neural networks have been applied
to visual communications [ 128], the hierarchical SOFM for range image segmentation [51], the
self-partitioning neural networks for target detection and recognition [104], and the SOTM for
quality cable TV transmission [54], image segmentation, and image/video compression [55].

Principal Component Analysis (PCA)

Principal component analysis (PCA) provides an effective way to find representative com-
ponents of a large set of multivariate data. The basic learning rules for extracting principal
components follow the Hebbian rule and the Oja rule [57, 94]. PCA can be implemented using
an unsupervised learning network with traditional Hebbian-type learning. The basic network
is one where the neuron is a simple linear unit with output a(¢) defined as follows:

a) =wn) x@) . (6.4)

To enhance the correlation between the input x(¢) and the output a(¢), it is natural to use a
Hebbian-type rule:

w(t+ 1) =w() + Bx(H)a(t) . 6.5)

The above Hebbian rule is impractical for PCA, taking into account the finite-word-length
effect, since the training weights will eventually overflow (i.e., exceed the limit of dynamic
range) before the first component totally dominates and the other components sufficiently
diminish. An effective technique to overcome the overflow problem is to keep normalizing the
weight vectors after each update. This leads to the Oja learning rule or, simply, the Oja rule:

Wit + 1) = W) + B [x(a) - wna?] . (6.6)

In contrast to the Hebbian rule, the Oja rule is numerically stable.

For the extraction of multiple principal components, a lateral network structure was pro-
posed [57]. The structure incorporates lateral connections into the network. The structure,
together with an orthogonalization learning rule, helps ensure the preservation of “orthogonal-
ity” between multiple principal components. A numerical analysis on their learning rates and
convergence properties has also been established.
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FIGURE 6.1

The SOTM for representation: (a) English letter “K;” (b) the representation of “K” by
the SOTM; (c) the representation of “K” by the SOFM. (Cont.).
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FIGURE 6.1
(Cont.) The SOTM for representation: (a) English letter “K;” (b) the representation of
“K” by the SOTM; (c) the representation of “K” by the SOFM.

Application examples: The lipreading system of Bregler and Konig [8], an early attempt in
using both audio and visual features, used PCA to guide the snake search (the so-called active
shape models [23]) on gray-scale video for the visual front end. There are two ways to perform
PCA: (1) contour-based PCA is directly based on the located points from the snake search
(form feature vectors using the located points and projected onto a few principal components);
(2) area-based PCA is directly based on the gray-level matrix surrounding the lips. Instead of
reducing the dimensionality of the visual features, as performed by the contour-based KLT,
one can reduce the variation of mouth shapes by summing fewer principal components to
form the contours. It was concluded that gray-level matrices contain more information for
classifying visemes. Another attempt in PCA-based lip motion modeling is to express the
PCA coefficients as a function of a limited set of articulatory parameters which describe the
external appearance of the mouth [66]. These articulatory parameters have been directly
estimated from the speech waveform based on a bank of (time-delay) NNs. A PCA-based
Eigenface technique for a face recognition algorithm was studied in [6]. Its performance
was compared with a computationally compatible “Fisherface” method based on tests on the
Harvard and Yale Face Databases.

6.2.2 Multimedia Data Detection and Classification

In many application scenarios [e.g., optical character recognition (OCR), texture analysis,
face detection] several prior examples of a targeted class or object are available for training,
whereas the a priori class probability distribution is unknown. These training examples may
be best exploited as valuable teacher information in supervised learning models. In general,
detection and classification based on supervised learning models by far outperform those via
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unsupervised clustering techniques. That is why supervised neural networks are generally
adopted for detection and classification applications.

Multilayer Perceptron

Multilayer perceptron (MLP) is one of the most popular NN models. In this model, each
neuron performs a linear combination on its inputs. The result is then nonlinearly transformed
by a sigmoidal function. In terms of structure, the MLP consists of several layers of hidden
neuron units between the input and output neuron layers. The most commonly used learning
scheme for the MLP is the back-propagation algorithm [106]. The weight updating for the
hidden layers is performed based on a back-propagated corrective signal from the output
layer. It has been shown that the MLP, given its flexible network/neuron dimensions, offers a
universal approximation capability. It was demonstrated in [129] that two-layer perceptrons
(i.e., networks with one hidden layer only) should be adequate as universal approximators of
any nonlinear functions.

Let us assume an L-layer feed-forward neural network (with N; units at the /th layer). Each
unit, say the ith unit at the (/4 1)th layer, receives the weighted inputs from other units at the /th
layer to yield the net input u; (/ 4+ 1). The net input value u; (/ 4 1), along with the external input
0; (I + 1), will determine the new activation value a; (I + 1) by the nonlinear activation function
fi(I + 1). From an algorithmic point of view, the processing of this multilayer feed-forward
neural network can be divided into two phases: retrieving and learning.

Retrieving phase: Suppose that the weights of the network are known. In response to the input
(test pattern) {a; (0),i = 1, ..., No}, the system dynamics in the retrieving phase of an L-layer
MLP network iterate through all the layers to generate the response {a; (L),i = 1,..., Np} at
the output layer.

N
wil+1) =Y wij + Daj() + 6;(1 + 1)
Jj=1
all+1D)=fiwuid+1)=fid+1) 6.7)

where 1 <i < Nj41,0 <[ <L —1, and f; is nondecreasing and differentiable (e.g., sigmoid
function [106]). For simplicity, the external inputs {6; (I + 1)} are often treated as special
modifiable synaptic weights {w; o(/ + 1)} which have clamped inputs ap(/) = 1.

Learning phase: The learning phase of this L-layer MLP network follows a simple gradient
descent approach. Given a pair of input/target training patterns, {a;(0),i = 1,..., No}, {¢;,
Jj =1,..., Np}, the goal is to iteratively (by presenting a set of training pattern pairs many
times) choose a set of {w;; (), ¥/} for all layers so that the squared error function E can be
minimized:

NL
_ 1 2
E=> Em ai (L)) (6.8)

To be more specific, the iterative gradient descent formulation for updating each specific weight
w;;j(I) given a training pattern pair can be written as

0E
dw;; ()

wij (1) <= w;;(1) —n (6.9)

where #If(l) can be computed effectively through a numerical chain rule by back-propagating
the error signal from the output layer to the input layer.
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Other popular learning techniques of MLPs include discriminative learning [49], the support
vector machine [36], and learning by evolutionary computation [137].

Due to the popularity of MLPs, it is not possible to exhaust all the numerous IMP applications
using them. For example, Sung and Poggio [114] used MLP for face detection and Huang [40]
used it as preliminary channels in an overall fusion network. More details about using MLPs
for multimodal signal will be discussed in the audiovisual processing section.

RBF and OCON Networks

Another type of feed-forward network is the radial basis function (RBF) network. Each
neuron in the hidden layer employs an RBF (e.g., a Gaussian kernel) to serve as the activation
function. The weighting parameters in the RBF network are the centers, the widths, and the
heights of these kernels. The output functions are the linear combination (weighted by the
heights of the kernels) of these RBFs. It has been shown that the RBF network has the same
universal approximation power as an MLP [98].

The conventional MLP adopts an all-class-in-one-network (ACON) structure, in which
all the classes are lumped into one supernetwork. The supernet has the burden of having
to simultaneously satisfy all the teachers, so the number of hidden units tends to be large.
Empirical results confirm that the convergence rate of ACON degrades drastically with respect
to the network size because the training of hidden units is influenced by (potentially conflicting)
signals from different teachers [57].

In contrast, it is natural for the RBF to adopt another type of network structure — the one-
class-in-one-network (OCON) structure — where one subnet is designated to one class only.
The difference between these two structures is depicted in Figure 6.2. Each subnet in the
OCON network specializes in distinguishing its own class from the others, so the number of
hidden units is usually small. In addition, OCON structures have the following features:

FIGURE 6.2
(a) An ACON structure; (b) an OCON structure.
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* Locally, unsupervised learning may be applied to determine the initial weights for in-
dividual subnets. The initial clusters can be trained by VQ or K-mean clustering tech-
niques. If the cluster probabilities are desired, the EM algorithm can be applied to
achieve maximum likelihood estimation for each class conditional likelihood density.

» The OCON structure is suitable for incremental training (i.e., network upgrading through
the addition/removal of memberships [57, 58]).

» The OCON network structure supports the notion of distributed processing. It is ap-
pealing to smart card biometric systems. An OCON-type classifier can store personal
discriminant codes in individual class subnets, so the magnet strip in the card needs to
store only the network parameters in the subnet that have been designated to the card
holder.

Application examples: In [11], Brunelli and Poggio proposed a special type of RBF net-
work called the “hyperBF” network for successful face recognition applications. In [72], the
associated audio information is exploited for video scene classification. Several audio fea-
tures have been found to be effective in distinguishing audio characteristics of different scene
classes. Based on these features, a neural net classifier can successfully separate audio clips
from different TV programs.

Decision-Based Neural Network

A decision-based neural network (DBNN) [58] has two variants: one is a hard-decision
model and the other is a probabilistic model. A DBNN has a modular OCON network structure:
one subnet is designated to represent one object class. For multiclass classification problems,
the outputs of the subnets (the discriminant functions) will compete with each other, and the
subnet with the largest output value will claim the identity of the input pattern.

Decision-Based Learning Rule The learning scheme of the DBNN is decoupled into two
phases: locally unsupervised and globally supervised learning. The purpose is to simplify the
difficult estimation problem by dividing it into several localized subproblems and, thereafter,
the fine-tuning process would involve minimal resources.

 Locally Unsupervised Learning: VQ or EM Clustering Method

Several approaches can be used to estimate the number of hidden nodes, or the initial
clustering can be determined based on VQ or EM clustering methods.

— In the hard-decision DBNN, the VQ-type clustering (e.g., K-mean) algorithm can
be applied to obtain initial locations of the centroids.

— For the probabilistic DBNN, called PDBNN, the EM algorithm can be applied
to achieve the maximum likelihood estimation for each class conditional likeli-
hood density. (Note that once the likelihood densities are available, the posterior
probabilities can be easily obtained.)

* Globally Supervised Learning

Based on this initial condition, the decision-based learning rule can be applied to further
fine-tune the decision boundaries. In the second phase of the DBNN learning scheme,
the objective of the learning process changes from maximum likelihood estimation
to minimum classification error. Interclass mutual information is used to fine-tune the
decision boundaries (i.e., the globally supervised learning). In this phase, DBNN applies
the reinforced—antireinforced learning rule [58], or discriminative learning rule [49], to
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adjust network parameters. Only misclassified patterns are involved in this training
phase.

» Reinforced—Antireinforced Learning Rules

Suppose that the mth training pattern x" is known to belong to class £2;, and that the
leading challenger is denoted as j = arg max dp(x"™, w 7). The learning rule is

Reinforced learning: Wl.(mH) = ngm) +nVe¢ (X('”), W,') ,

Antireinforced learning: Wﬁ-m—H) = W;m) —nVe (X(m), w j) .
Application examples: DBNN is an efficient neural network for many pattern classification
problems, such as OCR and texture classification [57] and face and palm recognition prob-

lems [68, 71]. A modular neural network based on DBNN and a model-based neural network
have recently been proposed for interactive human—computer vision.

Mixture of Experts

Mixture of experts (MOE) learning [44] has been shown to provide better performance due
to its ability to effectively solve a large complicated task by smaller and modularized trainable
networks (i.e., experts), whose solutions are dynamically integrated into a coherent one using
the trainable gating network. For a given input X, the posterior probability of generating class
y given x using K experts is computed by

K
P(ylx, @) =Y &P (yIx,0) , (6.10)

i=1

where y is a binary vector, ¢ is a parameter vector [v, 6;], g; is the probability for weighting
the expert outputs, v is a vector of the parameters for the gating network, 6; is a vector of the
parameters for the ith expert network (i = 1, ..., K), and P (y|x, 6;) is the output of the ith
expert network.

The gating network can be a nonlinear neural network or a linear neural network. To obtain
the linear gating network output, the softmax function is utilized [10]:

K
gi =exp(bi)/ ) exp (b)) (6.11)
j=1

where b; = ViT x, with v; denoting the weights of the ith neuron of the gating network.

The learning algorithm for the MOE is based on the maximum likelihood principle to
estimate the parameters (i.e., choose parameters for which the probability of the training set
given the parameters is the largest). The gradient ascent algorithm can be used to estimate the
parameters.

Assume that the training dataset is {x(’), y(’ )}, t =1,..., N. First, we take the logarithm
of the product of N densities of P(y|x, ¢):

_ O p (v )] ,
I(y, X, ) ZlZlog[gl P(yf|x’,9,)] (6.12)

Then, we maximize the log likelihood by gradient ascent. The learning rule for the weight
vector v; in a linear gating network is obtained as follows:

Avi=pY (h§’> — gi(t)) x® (6.13)
t
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where p is a learning rate and h; = g; P(y|x, 6;)/ >, 8; P(yIx, 6;).

The MOE [44] is a modular architecture in which the outputs of a number of “experts,”
each performing classification tasks in a particular portion of the input space, are combined
in a probabilistic way by a “gating” network which models the probability that each portion
of the input space generates the final network output. Each local expert network performs
multi-way classification over K classes by using either a K -independent binomial model, with
each model representing only one class, or one multinomial model for all classes.

Application example: The MOE model was applied to a time series analysis with well-
understood temporal dynamics, and produced significantly better results than single networks.
It also discovered the regimes correctly. In addition, it allowed the users to characterize the
subprocesses through their variances and avoid overfitting in the training process [76]. A
Bayesian framework for inferring the parameters of an MOE model based on ensemble learn-
ing by variational free energy minimization was successfully applied to sunspot time series
prediction [126]. By integrating pretrained expert networks with constant sensitivity into an
MOE configuration, the trained experts are able to divide the input space into specific sub-
regions with minimum ambiguity, which produces better performance in automated cytology
screening applications [42]. By applying a likelihood splitting criterion to each expert in the
HME, Waterhouse and Robinson [125] first grew the HME tree adaptively during training;
then, by considering only the most probable path through the tree, they pruned branches away,
either temporarily or permanently, in case of redundancies. This improved HME showed sig-
nificant speedups and more efficient use of parameters over the standard fixed HME structure
for both simulation problems and real-world applications, as in the prediction of parameter-
ized speech over short time segments [127]. The HME architecture has also been applied to
text-dependent speaker identification [16].

A Network of Networks

A network of networks (NoN) is a multilevel neural network consisting of nested clusters
of neurons capable of hierarchical memory and learning tasks. The architecture has a fractal-
like structure, in that each level of organization consists of interconnected arrangements of
neural clusters. Individual elements in the model form level zero cluster organization. Local
groupings among the elements via certain types of connections produce level one clusters.
Other connections link level one clusters to form level two clusters, while the coalescence of
level two clusters yields level three clusters, and so on [115]. A typical NoN is schematically
depicted in Figure 6.3. The structure of the NoN makes it a natural choice for massive parallel
processing and a hierarchical search engine.

Training of the NoN is very flexible. Mean field theory [116] and Hebbian learning algo-
rithms [2] were among the first to be used in the NoN.

Recently, EP was proposed to discover clusters in the NoN in the context of adaptive seg-
mentation/image regularization [131]. First a population of potential processing strategies is
generated and allowed to compete under a k-pdf error measure E ;‘, df> of data quality which is
defined as the following weighted probability density error measure:

N
Elyr = /0 w(k) (p k) — pr(k))” dk (6.14)

where the variable k is defined in [131], E is a factor which characterizes the correlation of
each item in the dataset with a prescribed neighboring subset, pi (k) is the probability density
function of k within the dataset to be processed, p;’ (k) characterizes the density function of a
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FIGURE 6.3

Schematic representation of a biologically inspired network: (a) the overall network;
(b) a simplified connection model within one part of the network in (a) (the black dot at
the top left corner, for example), which itself is a three-level NoN.
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model dataset with certain desired properties, and w (k) is the weighting coefficient defined as

1
max (p}' (k), px(k))?

w(k) = (6.15)

to compensate for the generally smaller contribution of the tail region to the total probability.
In the context of image processing, it was shown in [131] that a small k represents a smooth
image region, a medium k represents an area with one or two dominant edges, and a large
k represents a texture area. Optimization is carried out on (6.14) in order to identify the
clusters in terms of the following regularization parameter assignment function A(o"), which
is a decreasing sigmoid function of the local data standard deviation o:

)\max - )\min

)\.(O’) = —1 n eﬁ(a—a)

+ Amin (6 16)
where Apin and Apax are the minimum and the maximum regularization parameters used, o
represents the offset of the sigmoidal function from the origin, and 8 controls the steepness
of the function. Apart from the assignment of the local regularization parameters, this func-
tion indirectly achieves segmentation if we identify image pixels with similar associated A
values as a single cluster. Concatenating them with their respective strategy parameters [29]
Omin® OAmax » Oa» Op INtO an eight-tuple, we define the following regularization strategy S, as
the pth potential optimizer in the population:

Sp = ()Lmin,p’ }‘max,p, Qp, ﬂpy Ohmin> P OAmax,p> O, p>s Uﬂ,p) (6.17)

We generate a population P consisting of u instances of S, in the first generation and apply
the mutation operation [29] to each of these u parents to generate i descendants. In this and
subsequent generations, the potential optimizers undergo a competition process from which
the emerged winners are incorporated into the new population in the next generation.

Application example: The first engineering application of the NoN was in signal catego-
rization by Anderson et al. [1]. Guan studied the NoN and proposed a hierarchical adaptive
image processing based on it [32]. He later developed a low-level vision model to recursively
perform segmentation and edge extraction [33].

6.2.3 Hierarchical Fuzzy Neural Networks as Linear Fusion Networks

In many multimedia applications, it is useful to have a versatile multimedia fusion subsystem,
where information from various sensors are laterally combined to yield improved classification.
Neural networks offer a natural solution for sensor or media fusion. This is because of their
capability for nonlinear and nonparametric estimation in the absence of complete knowledge
on the underlying models or sensor noises.

The problem of combining the classification power of several classifiers is of great im-
portance to various applications. First, for several recognition problems, numerous types of
media could be used to represent and recognize patterns. In addition, for those applications
that deal with high-dimensional feature data, it makes sense to divide the feature vector into
several lower-dimensional vectors before integrating them for a final decision (i.e., divide and
conquer).

Most of the current information fusion models are based on a linear combination of outputs
weighted by some proper confidence parameters. This is largely motivated by the following
statistical and computational reasons:

* It can make use of the popular Bayesian formulation.
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« It can facilitate adoption of EM training of the confidence parameters.

Channel Fusion

Two channel fusion models were proposed to deal with information from different media
sources: class-dependent channel fusion and data-dependent channel fusion.

* The class-dependent channel fusion scheme deploys one PDBNN for each sensor chan-
nel. Each PDBNN receives only the patterns from its corresponding sensor. The class
and channel conditional likelihood densities (p(x|w;, C;)) are estimated. The outputs
from different channels are combined in the weighted sum fashion. The weighting pa-
rameters, P(Cj|w;), represent the confidence of the channel C producing the correct
answer for the object class w;. P(Cj|w;) can be trained by the EM algorithm; after that,
its value is fixed during the identification process (recall that the values of the weighting
parameters in the HME are functions of the input pattern). Figure 6.4a illustrates the

PDBNN 1 PDBNN 2

—

FIGURE 6.4

A media fusion network: linear fusion of probabilistic DBNN classifiers. (a) For the
applications where there are several sensor sources, the class-dependent channel fusion
scheme can be applied for classification. P(C;|w;) is a trainable parameter. Its value is
fixed during the retrieving phase.

structure of the class-dependent channel fusion scheme. The class-dependent channel
fusion scheme considers the data distribution as the mixture of the likelihood densities
from various sensor channels. This is a simplified density model. If the feature di-
mension is very large and the number of training examples is relatively small, the direct
estimation approaches can hardly obtain good performance due to the curse of dimen-
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(Cont.) A mediafusion network: linear fusion of probabilistic DBNN classifiers. (b) Data-
dependent channel fusion scheme. In this scheme, the channel weighting parameters are
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functions of the input pattern x (P (C;|x)).

sionality. For this kind of problem, since the class-dependent fusion scheme greatly
reduces the number of parameters, it could achieve better estimation results.

 Another fusion scheme is the data-dependent channel fusion. Figure 6.4b shows the
structure of this scheme. Like the class-dependent fusion method, each sensor channel
has a PDBNN classifier. The outputs of the PDBNNSs are transformed into the posterior
probabilities by the softmax functions [10]. In this fusion scheme, the channel weighting
P(Cj|x) is a function of the input pattern x. Therefore, the importance of an individual

channel may vary if the input pattern is different.

Fuzzy Systems and Modular Neural Networks

The basic idea behind a fuzzy inference system is to incorporate the human “expert’s experi-
ence” into system design. The input—output relationship is described by a collection of fuzzy
inference rules involving linguistic variables. The typical architecture of a fuzzy system is
composed of four components:

* A fuzzifier, which maps crisp numbers into suitable linguistic values

* A fuzzy rule base, which stores the knowledge of the human experts and the empirical

observations

» An inference engine, which deduces the desired output by performing approximate

reasoning
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* A defuzzifier, which extracts a crisp value from a fuzzy set as a representative value.

Fuzzy logic systems, in contrast to neural networks, offer a structural framework with high-
level fuzzy rule thinking and reasoning. Fuzzy systems base their decisions on inputs in the
form of linguistic variables defined by membership functions, which are formulas used to
determine the fuzzy set to which a value belongs and the degree of membership in that set.
The variables are then matched with the preconditions of the linguistic rules to calculate the
firing strengths of the rules, and the response of each rule is obtained through fuzzy implication.
Following a compositional rule of inference, the response of each rule is weighted according
to the rule firing strength.

It has recently become popular for a fuzzy system to utilize Gaussian membership functions
and a centroid defuzzification scheme to calculate the output. This is in part due to the
capability of this combination to approximate any real continuous functions on a compact set
to an arbitrary accuracy, provided sufficient fuzzy logic rules are available [56, 123]. In the
neural network literature, it has also been established that neural networks with normalized
RBFs as the hidden node functions are also universal approximators [98]. Therefore, neural
networks, especially those with modular structures, and fuzzy systems are similar in terms of
approximation capabilities.

They also bear very sharp structural resemblance. A good example is to compare the fuzzy
inference engine and the MOE modular neural networks. Stretching the similarity further, the
intersection of fuzzy systems and neural networks actually defines a large family of learning
networks. In the following it can be shown that this family of models can be built upon a
common mathematical formulation and system architecture. In terms of learning capabilities,
neural networks with RBFs as hidden nodes are basically equivalent to fuzzy systems using
Gaussian membership function, product inference, and fuzzy rules with singleton consequents.
It has been shown that an RBF MOE network and a fuzzy inference system are essentially
equivalent as long as the gating network of the MOE generates the fuzzy membership values
according to the membership function and the And operation in the fuzzy If-Then rule.

Bearing the above analysis in mind, Kung et al. [60] demonstrated that a hierarchical fuzzy
neural network designed by combining the expert-level partitioning strategies of the MOE and
the class-level partitioning of the DBNN offers an attractive processing structure for linear
channel fusion. In particular, they proposed to adopt expert-in-class hierarchical structure
(ECHS) for class-dependent channel fusion and class-in-expert hierarchical structure (CEHS)
for data-dependent channel fusion.

Hierarchical Fuzzy Neural Networks for Class-Dependent Channel Fusion

The architecture of the ECHS is exactly the same as for the class-dependent channel fusion
model illustrated in Figure 6.4a. The inner blocks comprise expert-level modules, whereas
the outer blocks are on the class level. A typical example of this type of network is the
hierarchical DBNN [59], which describes the class discriminant function as a mixture of
multiple probabilistic distribution. That is, the discriminant function of the class w, in the
hierarchical DBNN is a class conditional likelihood density which can be described as follows:

K

p (x(®)]wi) =Y P (Cilwn) p (x(1)|wi, Ck)
k=1

where p(x(?)|w;i, Cx) is the discriminant function of subnet i in channel k, and p(x(¢)|w;)

is the combined discriminant function for class w;. The channel confidence P(Cy|w;) can
be learned by the following procedure. Define oy = P(Cy|w;). At the beginning, assign
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In an ECHS, each expert processes only the local features from its corresponding class. The
outputs from different experts are linearly combined. The weighting parameters, P (Ci|w;),
represent the confidence of expert E; producing the correct answer for the object class w;.
Once they are trained, their values remain constant during the retrieving phase. By definition,
Zf: 1 P(Cklw;) = 1, where K is the number of experts in the subnet w;. So it has the
property of a probability function. Note that, within this expert-level (or rule-level) hierarchy,
each hidden node in one class must be used to model a certain local expert with a varying
degree of confidence, which reflects its ability to interpret a given input vector. The locally
unsupervised and globally supervised schemes described in the previous section can be adopted
to train the OCON network.

Hierarchical Fuzzy Neural Networks for Data-Dependent Channel Fusion

The architecture of the CEHS is exactly the same as for the data-dependent channel fusion
model illustrated in Figure 6.4b. The inner blocks comprise class modules, whereas the outer
blocks are the expert modules. Each expert has its own hierarchical DBNN classifier. The
outputs of the hierarchical DBNNs are transformed into the posterior probabilities by softmax
functions. In this fusion scheme, the expert weighting P (E|x) is a function of input pattern
x. Therefore, the importance of an individual expert may vary with different input patterns
observed.

The network adopts the posterior probabilities of electing a class given x(¢) (i.e., P (w; [x(?),
Cy)), instead of the likelihood of observing x(¢) given aclass (i.e., p(x(¢)|w;, Ck)), to model the
discriminant function of each cluster. For this version of hierarchical fuzzy neural networks,
a new confidence P(Cy|x(?)) is assigned, which stands for the confidence on expert k£ when
the input pattern is x(¢#). Accordingly, the probability model is modified to become

K
P (wi|x(1)) = Z P (Ci|x(1)) P (w;x(1), Ci) ,
k=1

where P(w;|x(t), Cx) = P(w;|Cx)p(x(t)|w;, Cr)/px(t)|Ck), and the confidence P (Ci|x)
can be obtained by the following equation:

P(Cr)p(x|Cy)
> P(CHpx®IC)

where p(x(7)|Cy) can be computed as p(x(1)|Cx) = > ; P(w;|Cr) p(x(t)|w;, Cx) and P(Cy)
can be learned by equation (6.18) with p(x(¢)|w;, Cy) replaced by p(x(¢)|Cx). The term
P(Cy) can be interpreted as “the general confidence” we have in channel k. Unlike in the
class-dependent approach, the fusion weights need to be computed for each testing pattern
during the retrieving phase. Notice that this data-dependent fusion scheme can be considered
a combination of PDBNN and MOE [44].

P (Ci|x(0)) =

Application example: The class-dependent channel fusion scheme has been observed to
have very good classification performance on vehicle recognition and face recognition prob-
lems [67]. The experiment in [67] used six car models from different view angles to create the
training and testing database. Approximately 30 images (each 256 x 256 pixels) were taken
for each car model from various viewing directions. There were 172 examples in the dataset.
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Two classifier channels were built from two different feature extraction methods: one used
intensity information and the other edge information. With the fusion of these two channels
(with 94% and 85% recognition rates), the recognition rate reached 100%.

The fusion model was compared with a single network classifier. The input vectors of
these two networks were formed by concatenating the intensity vector with the edge vector.
Therefore, the input vector dimension became 144 x 2 = 288. The RBF-typed DBNN was
used as the classifier. The experimental result showed that the performance was worse than
for the fusion network (about 95.5% recognition rate).

6.2.4 Temporal Models for Multimodal Conversion and Synchronization

The class of neural networks that are most suitable for applications in multimodal conversion
and synchronization is the so-called femporal neural network. Unlike the feed-forward type
of artificial neural network, temporal networks allow bidirectional connections between a pair
of neuron units, and sometimes feedback connections from a unit to itself. Let us elaborate
further on this difference. From the perspective of connection patterns, neural networks can be
grouped into two categories: feed-forward networks, in which the associated network graphs
have no loops, and recurrent networks, where loops occur because of the existence of the
feedback connections. Feed-forward networks are static; that is, a given input can produce
only one set of output values rather than a sequence of data. Thus, they carry no memory. In
contrast, many temporal neural networks employ some kind of recurrent network structure.
Such an architectural attribute enables temporal information to be stored in the networks.

A simple extension to the existing feed-forward structure to deal with temporal sequence
data is the partially recurrent network (sometimes called the simple recurrent network). The
connection in a simple recurrent network (SRN) is mainly of the feed-forward type, but a
carefully chosen set of feedback connections is also included. In most cases the feedback
connections are fixed and not trainable. This judicious incorporation of recurrence allows the
network to remember cues from the past without appreciably complicating the overall training
procedure. The most widely used SRNs are Elman’s network and Jordan’s network [28,
47]. The time-delay neural network (TDNN) is a further extension to cope with the shift-
invariance property required in speech recognition. It is achieved by making time-shifted
copies of the hidden units and linking them to the output layer [122]. Several fully recurrent
neural network architectures with the corresponding learning algorithms are real-time recurrent
learning (RTRL) networks [130] and back-propagation through time (BPTT) networks [39,
106]. The computational requirements of these and several variants are very high. Among
all the recurrent networks, BPTT’s performance is the best unless online learning is required,
in which case the RTRL is required instead. But for many applications involving temporal
sequence data, an SRN or a TDNN may suffice and is much less costly than RTRL or BPTT.

Time-Delay Neural Network

Figure 6.5 shows the TDNN architecture [122] for a three-class temporal sequence recog-
nition task. A TDNN is basically a feed-forward multilayer (four layers) neural network with
time-delay connections at the hidden layer to capture varying amounts of contexts. The basic
unit in each layer computes the weighted sum of its inputs and then passes this sum through a
nonlinear sigmoid function to the higher layer. The TDNN classifier shown in Figure 6.5 has
an input layer with 12 units, a hidden layer with 8 units, and an output layer with 3 units (one
output unit represents one class).

When a TDNN is used for speech recognition, the speech utterance is partitioned frame by
frame (e.g., 30 ms frame with 15 ms advance). Each frame is transformed into 12 coefficients,
and every three frames with successive time delay 0, 1, and 2 are used as inputs to the 8 time
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FIGURE 6.5
The architecture of a time-delay neural network (TDNN).

delay hidden units [i.e., each neuron in the first hidden layer now receives input (via 3 x 12
weighted connections) from the coefficients in the 3-frame window]. The 8-unit hidden layer
is delayed 5 times to form a 40-unit layer. At the second hidden layer, each unit looks at all
5 copies of the delayed 8-unit hidden blocks of the first hidden layer. Finally, the output is
obtained by integrating the information from the second hidden layer over time. This procedure
can be formalized using the following equations:

T
ve=r—2 2 b0 (6.19)

t=7
7 4 12 2
=812 csz[ZZwudx" " ‘“+9]+9H L (620)

j=01=0 i=1d=0
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where T is the total number of frames, X is the input, {bg)} are the outputs of the c class at the
second layer at different time instances, and S(-) is the sigmoid function. The tapped delay
line structure of the input layer implies the adoption of the shift invariant assumption (i.e., the
absolute time of a particular event is not important).

Like an MLP, a TDNN is also trained by the back-propagation learning rule [122]. Suppose
the input to the TDNN is a vector X; then the updating of the weights, w, can be described by

E
Weswongg

where
C

E= E(w), ) = 3 3 (6~ ye0)”
c=1
Therefore, through this training procedure, the local short duration features in speech signal
can be formed at the lower layer and more complex longer duration features formed at the
higher layer. The learning procedure ensures that each of the units in each layer has its weights
adjusted in a way that improves the network’s overall performance [41].

After the TDNN has learned its internal representation, it performs recognition by passing
input speech over the TDNN neurons and selecting the class that has the highest output value.
Section 6.3.3 presents an example employing such a TDNN model to audiovisual synchro-
nization in the lipreading application.

6.3 Neural Networks for IMP Applications

Neural networks have played a very important role in the development of multimedia ap-
plication systems [17, 43, 92, 124]. Their usefulness ranges from low-level preprocessing to
high-level analysis and classification. A complete multimedia system consists of many of the
following information processing stages, for which neural processing offers an efficient and
unified core technology:

* Visualization, Tracking, and Segmentation

— Neural networks have been found useful for some visualization applications, such
as optimal image display [61] and color constancy and induction [25].

— Feature-based tracking is crucial to motion analysis and the motion/shape recon-
struction problem. Neural networks can be applied to motion tracking schemes
for feature- and object-level tracking [18].

— Segmentation is a very critical task for both image and video processing. Object
boundary detection methods can use a hierarchical technique by adopting pyramid
representation of images for computation efficiency [14, 73]. Active contour (e.g.,
snake) could also take advantage of the NN’s adaptive learning capability for
continuous and fast tracking of the region of interest (ROI) [21]. Both unsupervised
and supervised neural networks may be adopted for object boundary detection
methods, based on a variety of cues including motion, intensity, edge, color, and
texture.
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* Detection and Recognition

— Neural networks can be applied to machine learning and computer vision problems
with applications to detection and recognition of a specific object class. Examples
are online OCR applications [12, 30], signature verification [5], currency recogni-
tion [117], and structure from motion [63].

— Neural networks can facilitate detection or recognition of high-level features such
as human faces in pictures or a certain object shape under inspection.

— Multimodality recognition and authentication will have useful applications in net-
work security and access control.

» Multimodal Coding, Conversion, and Synchronization

— Multimodal coding, conversion, and synchronization will remain a challenging
research task. Static MLP networks for multimodal facial image coding driven by
speech and phonemes were already studied in [82].

— Temporal NN models (e.g., TDNN) for multimodality synchronization, integrating
audio and visual signals for lipreading, will be elaborated in Section 6.3.3.

* Video and Image Content Indexing and Browsing

It is important for a system to possess the ability to fast access audiovisual objects,
manipulate them, and present them in a highly flexible way. For video content selection,
the ability to extract and utilize proper information content inherent in video clips may
lead to efficient search schemes for many disciplines:

— object-based and subject-based video indexing and databases
— video skimming and browsing

— content-based retrieval

Again, neural processing presents a promising approach for these tasks.

Interactive Human—Computer Communications

Teaching a computer to understand human behavior and imitate human action can have
profound impact on successful multimedia systems. The process needs investigation in
the following two areas:

— multimodal human—computer interaction

— interactive human—computer vision

In this area, neural networks also offer attractive solutions.

6.3.1 Image Visualization and Segmentation

The task of feature extraction is critical to search schemes, because an efficient representation
of the information can facilitate many subsequent multimedia functionalities, such as feature-
based or object-based indexing and access. Efficient representation of multimedia data can be
achieved by neural clustering mechanisms. The general objectives are (1) to extract the most
salient features to make classification tasks easier, and (2) to extract representation of media
information needed at various levels of abstraction.
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Although perfect segmentation and tracking of 3D video objects may not always be required,
it is desirable to have such capability in telemedicine and biomedically related applications.
Using the local energy surface as a principal feature, an SOFM can provide sufficient D
resolution of surface details of specific objects through the process of 3D segmentation. The
technique has been applied to the segmentation and visualization of specimen chromosomes
in microscopy images and the CAT images of human brains [93, 103].

6.3.2 Personal Authentication and Recognition

Neural networks have been recognized as an established and mature tool for many pattern
classification problems. In particular, they have been successfully applied to face recognition
applications. By combining face information with other biometric features such as speech,
this feature fusion approach offers improved accuracy as well as some degree of fault tolerance
(i.e., it could tolerate temporary failure of one of the bimodal channels).

Face Detection and Recognition

For many visual monitoring and surveillance applications, it is important to determine human
eye positions from an image or an image sequence containing a human face. Once the human
eye positions are determined, all of the other important facial features, such as positions of
nose and mouth, can easily be determined. The basic facial geometry information, such as the
distance between two eyes, nose and mouth size, etc., can further be extracted. This geometry
information can then be used for a variety of tasks, such as the recognition of a face from a
given face database.

There are many successful neural network examples for face detection and recognition.
Brunelli and Poggio have adopted an RBF network for face recognition [11]. Pentland et
al. [80, 96, 120] used eigenface subspace to determine the classes of face patterns. Eigenface
and Fisherface recognition algorithms were studied and compared in [6]. Cox et al. [26]
proposed a mixture—distance VQ network for face recognition and reached a 95% rate in a
large (685 persons) database. In [67, 69], neural networks were successfully applied to the
detection of human faces and the location of eyes on the face.

6.3.3 Audio-to-Visual Conversion and Synchronization

There already exist a few application examples that apply temporal neural models to con-
version and/or synchronization. Included in this subsection is an example using TDNN for
lipreading applications.

Audio and Visual Integration for Lipreading Applications

Although the theory of automatic speech recognition (ASR) is well advanced, it is still not
widely adopted in practical applications due to the contamination of the speech signals with
background noise in adverse environments such as offices, automobiles, aircraft, and factories.
To improve the performance of the speech recognition system, the following approaches can be
used: (1) compensate for the noise in the acoustic speech signals prior to or during the recog-
nition process [81], or (2) use multimodal information sources, such as semantic knowledge
and visual features, to assist acoustic speech recognition. The latter approach is supported by
the evidence that humans rely on other knowledge sources, such as visual information, to help
constrain the set of possible interpretations [133].

Due to the maturity of digital video technology, it is now feasible to incorporate visual infor-
mation in the speech understanding process (lipreading). These new approaches offer effective
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integration of visually derived information into the state-of-the-art speech recognition systems
so as to gain an improved performance in noise without suffering degraded performance on
clean speech [108]. Other important evidence to support the use of lipreading in human speech
perception is offered by the auditory—visual blend illusion or the McGurk effect [74].

Three mechanisms concerning the means by which the two disparate (audio and visual)
streams of information are integrated have been proposed [113]. First, vision is used to direct
the attention, which commonly occurs in situations such as crowded rooms where several
people are talking at once. Second, visual information provides redundancy to the audio
information. Finally, visual information complements the audio information, especially when
listening conditions are poor. Most current research efforts concentrate on the third mechanism
of integration. A complete audiovisual lipreading system can be decomposed into the following
three major components [108]:

1. Audiovisual information preprocessing: explicit feature extraction from audio and visual
data

2. Pattern recognition strategy: hidden Markov modeling, pattern matching with dynamic
or linear time warping, and various forms of neural networks

3. Integration strategy: decision from audio and visual signal recognition

Audiovisual Information Preprocessing

Audio information processing has been well documented in speech recognition litera-
ture [99]. Briefly, digitized speech is commonly sampled at 8 KHz. The sampled speech
is pre-emphasized, then partitioned into frames with a fixed time interval (say, 32 ms long)
and with some overlap (say, 16 ms). For each frame, an N-dimensional feature vector is
extracted (e.g., 12-order LPC cepstral coefficients, 12-order delta cepstral coefficients, 12-
order delta—delta coefficients, a log—energy coefficient, a delta—log—energy coefficient, and a
delta—delta—log—energy coefficient).

There are two major types of visual features useful for lipreading: contour-based and area-
based features. The active contour model [50] is a good example of an approach based on
contour-based features, which have been applied to locating object contours in many image
analysis problems [21, 22]. PCA of a gray-level image matrix, a typical area-based method,
has been successfully used for principal feature extraction in pattern recognition problems [77,
120]. Most early systems used explicit contour feature extraction. Petajan [97] extracted
contour features from binary thresholded mouth images. This approach was also used by
Goldschen [31]. Deformable template approaches to obtain contour features, such as snake,
have been the dominant method for contour feature extraction [8, 37, 100]. Chiou and Hwang
made the first attempt in using neural networks to guide the search of the deformable template
for lipreading applications [20]. These methods attempt to directly measure physical aspects
of the mouth that are invariant to changes in lighting, camera distance, and orientation. Area-
based techniques have primarily been based on neural networks [112, 136]. These area-based
features are directly derived from the gray-level matrix surrounding the lips and allow the
extraction of more detailed information in the vicinity of the mouth, including the cheek and
chin. However, purely area-based approaches tend to be very sensitive to changes in position,
camera distance, rotation, and the identity of the speaker.

Pattern Recognition Strategies

Most lipreading systems have used similar pattern recognition strategies as adopted in tradi-
tional speech recognition approaches, such as dynamic time warping [97] and hidden Markov
models [20, 107]. Neural network architectures have also been extensively explored, such as
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the static feed-forward back-propagation networks used by Yuhas et al. [136], the TDNNs
used by Stork et al. [112], the multistage TDNNs used in [27], and the HMM recognizer,
which uses neural networks for performing the observation probabilities calculation [9].

The speech data used in Yuhas’ experiments were captured from a male speaker under a
well-lit condition. It is based on an NTSC video with 30 frames per second. Nine different
phonemes were recognized. A reduced subimage (20 x 25) centered around the mouth was
automatically identified for visual features, which were then converted into the corresponding
“clean” audio short-term cepstrum magnitude envelope (STSAE) by a feed-forward back-
propagation network. The resulting cepstrum were weight averaged, with the noisy cepstrum
directly derived from the audio signals. The weighting between the visual converted STSAE
and the audio STSAE was determined based on the environment’s SNR. Another feed-forward
neural network collected the sequence of the combined STSAE as the inputs and performed
the recognition of vowels.

The work presented by Stork et al. [112] used a TDNN for recognizing the combined audio
and video speech data for five speakers. In their experiments, a video-only (VO) TDNN was
used to recognize the visual speech inputs, which were acquired every 10 ms. From the 10-
ms visual frame, five features (noise—chin separation, vertical separation of mouth opening,
horizontal separations estimated from upper and lower lips, and horizontal separation of mouth
opening) were estimated and combined by the VO TDNN to produce the classification posterior
probabilities P(C|V), where C represents one of the 10 spoken letters. Similarly, an audio-
only (AO) TDNN was used to recognize the audio speech inputs, which again were acquired
every 10 ms. From the 10-ms audio frame, 14 mel-scale coefficients (from 0 to 5 KHz)
were estimated and used by the AO TDNN to produce the classification posterior probabilities
P(C|A). The resulting classification posterior probability P(C|V, A) is approximated as

P(C|V,A) x P(C|V)P(C|A) .

It was shown in [112] that this combined VO and AO TDNN network, a single video—audio
(VA) TDNN, receives the concatenated video and audio features (19 dimensions) as inputs,
thus illustrating the importance of adopting separate modules for different media types.

The See Me, Hear Me project [27] developed at Carnegie Mellon University extended the
idea of using two separate (VO and AO) TDNNS in performing continuous letter recognition
encountered in the continuous spelling tasks. The audio features consist of 16 mel-scale Fourier
coefficients obtained at a 10-ms frame rate. The visual features were formed from the PCA
transform with reduced dimensionality (only 32 out of 24 x 16 smoothed eigenlips). The two
TDNNs were used for recognizing the phoneme (out of 62) and viseme (out of 42), which
were then combined statistically for recognition of the continuous letter sequence based on the
dynamic time warping algorithm.

The project presented in [8] also combined acoustic and visual features for effective lipread-
ing. Instead of using neural networks as the temporal sequence classifier, this project adopted
the HMMs and used an MLP to calculate the observation probabilities { P (phoneme|audio,
visual)}. The system combined the 10-order PCA transform coefficients (and/or the delta fea-
tures) from the gray-level eigenlip matrix (instead of the PCA from the snake points) from the
video data and nine of the acoustic features from audio data [38]. They used a discriminatively
trained MLP to compute the observation probabilities (the likelihood of the input speech data
given the state of a subword model) needed by the Viterbi algorithm. Theoretically, the MLP
provides the posterior probabilities, instead of the likelihood, which can be easily converted
to likelihood according to Bayes’ rule using the prior probability information. This bimodal
hybrid speech recognition system has already been applied to a multispeaker spelling task,
and work is in progress to apply it to a speaker-independent spontaneous speech recognition
system, the “Berkeley Restaurant Project (BeRP).”
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Decision Integration

As discussed in the previous subsection, audio and visual features can be combined into
one vector before pattern recognition; then the decision is solely based on the result of the
pattern recognizer. In the case of some lipreading systems, which perform independent visual
and audio evaluation, some rule is required to combine the two evaluation scores into a single
one. Typical examples have included the use of heuristic rules to incorporate knowledge of
the relative confusability of phonemes in the evaluation of two modalities [97]; others have
used a multiplicative combination of independent evaluation scores for each modality. These
postintegration methods possess the advantages of conceptual and implementational simplicity
as well as giving the user the flexibility to use just one of the subsystems if desired.

6.3.4 Image and Video Retrieval, Browsing, and Content-Based Indexing

Digital video processing has recently become an important core information processing tech-
nology. The MPEG-4 audiovisual coding standards tend to allow content-based interactivity,
universal accessibility, and a high degree of flexibility and extensibility. To accommodate
voluminous multimedia data, researchers have long suggested the content-based indexing and
retrieval paradigm. Content-based intelligent processing is so critical because it encompasses
various application domains including video coding, compaction, object-oriented representa-
tion of video, content-based retrieval in the digital library, video mosaicing, video composition
(a combination of natural and synthetic scenes), and so forth [15].

Subject-Based Retrieval for Image and Video Databases

A neural network—based tagging algorithm has been proposed for subject-based retrieval for
image and video databases [135]. Object classification for tagging is performed offline using
DBNN. A hierarchical multiresolution approach is used which helps cut down the search space
of looking for a feature in an image. The classification is performed in two phases, first using
color, and then texture features are applied to refine the classification (both via DBNN). The
general indexing scheme and tagging procedure are depicted in Figure 6.6. The system [135]
allows the customer to search the image database by supplying the semantic subject. The
images are not manipulated directly in the online phase. Each image is classified into a series
of predefined subjects offline using color and texture features and neural network techniques.
Queries are answered by searching the tag database. Unlike previous approaches, which
directly manipulate images online using templates or low-level image parameters, this system
tags the images offline, which greatly enhances performance.

Compared to most of the other existing content-based retrieval systems, which only support
similarity-based retrieval, this system supports subject-based retrieval by using descriptions
of visual objects as search keys. The difference between subject-based and similarity-based
retrieval lies in the necessity for identifying visual objects in the images. Therefore, previous
low-level models are not suitable for subject-based retrieval. Novel models are needed for
subject-based retrieval that could be utilized in film- and TV program-oriented digital video
databases. Neural networks provide a natural effective technology for intelligent information
processing.

The tagging procedure includes four steps. In the first step, each image is cut into 25 equal
size blocks. Each block may contain single or multiple objects. In the second step, color
information is employed for an initial classification where each block is classified into one
of the following families: black family, gray family, white family, red family, yellow family,
green family, cyan family, blue family, or magenta family in the HSV color space. In the next
step, texture features are applied to refine the classification using DBNN if the result of color
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FIGURE 6.6
A subject-based indexing system: (a) visual search methodology; (b) tagging procedure;
(c) tagging illustration.

classification is a non-singleton set of subject categories. Each block may be further classified
into one of the following categories: sky, foliage, fleshtone, blacktop, white object, ground,
light, wood, unknown, and unsure. Finally, an image tag generated from the lookup table
using the object recognition results is saved in the tag database. The experimental results of
the Web-based implementation shows that this model is very efficient for a large film- or TV
program-oriented digital video database.
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Transform Domain—Based Retrieval for Digital Image and
Video Library (DIVL)

Transform domain—based retrieval offers an attractive alternative to content-based retrieval.
With the increasing popularity of the use of compressed images and videos, an intuitive ap-
proach for lowering computational complexity and increasing the efficiency of image and video
retrieval systems is to perform retrieval directly in the compressed domain. The advantages
of this approach are that no extra time is required to calculate features and no extra space is
required to store them. Chapter 14 of this book presents a method of using energy histograms
of the low-frequency DCT coefficients as features for the retrieval of images and videos com-
pressed in the DCT domain. One of the attractive features of this approach is that the DCT
coefficients obtained from coding are representative features of the images, and there is no
need to process the images to obtain features as required by most other content-based methods.
It is observed that the method is sufficient for performing high-level retrieval on medium-size
DIVLs, and it represents a promising solution to efficient retrieval. However, when the size
of the DIVLs gets larger (i.e., when the number of images are in the range of millions), any of
the current retrieval methods based on matching, including those in the compressed domain,
would inevitably slow down considerably. Real-time processing becomes a critical issue. The
intuitive solution is to introduce a preprocessing scheme to cut down the amount of matching
performed. Neural networks offer attractive solutions to this problem.

One proposal consists of the following four basic steps for the preprocessing stage:

1. Average the corresponding DCT coefficients in all the 8 x 8 DCT transformed blocks.
This operation results in an 8 x 8 feature matrix representing the image.

2. Cluster the images in a DIVL into categories by the SOFM or the SOTM, to ensure more
precise clustering by using the most significant coefficients in the feature matrix, which
are normally the low-frequency coefficients.

3. A general regression neural network (GRNN) [110] or a PCA network is then used to
identify the coefficients that are most effective to distinguish between the categories.

4. The features selected in step 3 are used to train a classification machine.

When the DIVL receives a query, the classification machine first determines the specific
category to which the query belongs, prior to matching.

Further considerations must be taken into account to ensure reliable performance. Averaging
the DCT coefficients in a large image may result in too much loss of information. One way
to preserve information is to adopt a divide-and-conquer strategy. In particular, each image is
partitioned into N subimages, and then the GRNN is used to identify the most effective features
for categorizing the subimages at the same geographical location in the various images. Then
we can regard the problem as a multisensor fusion problem where we consider those features
extracted from the same subimage as arising from the same sensor. Afterward, the modular
structured fusion network or the FNN can be applied to this task. In this model, there are N
experts, with each of them specializing in representing one particular subimage. Each expert
is a DBNN consisting of M neurons, which measures the similarity of that subimage to a
particular category.

The matching process will only be performed with those images in a particular category as
predicted by the FNN. To minimize the possibility of matching images in a wrong category
due to misclassification by the FNN, the ranking of the similarity should be checked. If the
differences between the top two or three categories are small, matching should be carried out
in all of these categories, instead of the top category only.
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A prototype system has been built based on steps 1, 3, and 4 of the above principle and
tested on a small database (3000 images). Ten categories were identified in the database. It
was observed that a correct matching rate of 95% was achieved if only the top-ranked categories
were searched. The rate was further increased to 99.5% if the three top-ranked categories were
searched [121].

The aforementioned DIVL architecture is hierarchical and clustered. Such architecture is
well adapted for searching, but it would be difficult to encode new information in this hierarchy
due to the following facts: (1) the strictly top-down links in the architectures make it hard to
merge and split clusters or change the borders of the clusters when new data is entered into
the database, and (2) a global training has to be performed to accommodate new information.
The hierarchically structured NoN and SOTM offer potential solutions to this problem due to
the coexistence of both top-down and lateral links in these networks.

For these two networks, each data cluster (class of images) is represented by a particular
subnetwork. It has been shown in both the NoN [2] and the SOTM [54] that the clusters
are not isolated from one another, but are sparsely connected. Therefore, the structure of the
networks dynamically changes according to the availability of new information. Split and
merge, or change of borders, is executed smoothly and continuously. In addition, because
of the modularized architecture, retraining is restricted to some limited subarchitecture of the
network (e.g., the cluster directly affected and a number of surrounding clusters).

Face-Based Video Indexing and Browsing

A video indexing and browsing scheme based on human faces has been proposed by S.H. Lin
etal. [69]. The scheme is implemented by applying face detection and recognition techniques.
In many video applications, browsing through a large amount of video material to find the rele-
vant clips is an extremely important task. The video database indexed by human faces provides
users with the facility to efficiently acquire video clips featuring the person of interest. For ex-
ample, a film-study student may conveniently extract the clips of his/her favorite actor/actress
from a movie archive to study a performance, and a TV news reporter may quickly find in a
news database the clips containing images of some politician in order to edit the evening news.

The scheme contains three steps. The first step of the face-based video browser is to segment
the video sequence by applying a scene change detection algorithm. Scene change detection
gives an indication of when a new shot starts and ends. Each segment created by scene
change detection can be considered as a story unit of this sequence. After video sequence
segmentation, a probabilistic DBNN face detector [69] is invoked to find the segments (shots)
that most possibly contain human faces. From every video shot, we take its representative
frame and feed it into a face detector. Those representative frames from which the detector
gives high face detection confidence scores are annotated and serve as the indices for browsing.

This scheme can also be very helpful to algorithms for constructing hierarchies of video
shots for video browsing purposes. One such algorithm [134], for example, proposes using
global color and luminance information as similarity measures to cluster video shots in an
attempt to build video shot hierarchies. Their similarity metrics enable very fast processing of
videos. However, in their demonstration, some shots featuring the same anchorman fail to be
grouped together due to insufficient image content understanding. For this type of application,
we believe that the existence of similar objects, and human objects in particular, should provide
a good similarity measure. As reported in [13], this scheme successfully classifies these shots
to the same group.
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6.3.5 Interactive Human—Computer Vision

The importance of interaction between humans and computers in multimedia systems can
never be underestimated. We would like computers to be capable of understanding human
intention and expression from audio, visual gestures, body movements, and so forth, as well as
to imitate these actions. The multimodality research described in the previous sections is useful
to tackle the understanding problem. For imitating human action, interactive human—computer
vision (IHCV) may provide the solution.

Developing vision algorithms that can adapt processes designed to track, predict, and de-
scribe specific human—computer interactions in ways that are useful to the specific user in a
given task is very important in multimedia systems. It enables augmented behaviors, such as
augmented reality as an aid to human performance, by taking over tasks or making them easier.

In doing so, we do not necessarily require that these computational algorithms exactly cor-
respond to how the brain enables perceptual and cognitive processes. Rather, these algorithms
are designed to be useful to the user insofar as they reflect the actions or behavior, or provide
important information to the user over the course of execution. These algorithms dynamically
adapt to the behaviors of individual users to evolve into ever more useful and reliable systems.

IHCV is a learning problem. We develop learning algorithms that are expressive enough
to track, predict, and describe how humans extract features and interpret images in different
tasks. For example, we could have an iconic description of structures such as edges, textures,
contours, etc. We can also have a symbolic description of structures such as mathematical
formulas.

Two different examples of scene annotation that involve the IHCV approach are

» Tracking/prediction of human edge/feature labeling: Different tasks and image proper-
ties require the recognition of different types of edges/features.

 Learning to recognize human symbol drawing (e.g., equations): The recognition per-
formance is invariant to size, orientation, position, and specific distortions.

To summarize, the objective of using MNNSs in the task is to track what humans do and predict
new cases.

In [132], a new approach to extract iconic structures was proposed. The iconic structures
in images are those referred to as edges, textures, contours, etc. In IHCV, the issue that
must be addressed properly is the adaptive extraction of those structures considered important
for human perception. Typically, the factors to be considered are the varying illumination
conditions of the background and the prototypes of the features representing the structures
under a particular level of background illumination.

The DBNNSs proposed by Kung and Taur [58] are particularly suited for such tasks. The
motivation for using this architecture is that, in feature extraction, it would be more natural
to adopt multiple sets of decision parameters and apply the appropriate set of parameters as a
function of the local context, instead of adopting a single set of parameters across the whole
image as in the traditional approaches.

The modular decision-based architecture thus constitutes a natural representation of the
above adaptive decision process if we designate each subnetwork to represent a different
background illumination level, and each unit in the subnetwork to represent different prototypes
of features under the corresponding illumination level. When analyzing an input feature vector,
a two-stage decision procedure is performed by a DBNN:

 Within a subnetwork, the units representing different prototypes under the corresponding
illumination condition compete with one another. The unit giving the strongest output
claims the identity of the input feature vector.
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 The subnets then compete with one another, and the one with the largest output value
will claim the identity of the input feature vector.

One very attractive feature of the DBNN is its robustness against noise and interference.
Since the DBNN learns the average background information, the noise and interference are
filtered out as random signals. Such robustness has been clearly demonstrated in edge detec-
tion [132].

6.4 Open Issues, Future Research Directions, and Conclusions

In this chapter, we have focused on the main attributes of neural networks relevant to their
application to intelligent multimedia applications. Space limitations prohibit more exhaustive
coverage of the subjects. More illustrative examples can be found in [92, 124] and numerous
signal processing journals.

Although NNs have been quite successful in many applications of IMP, critical research
topics remain to be solved. From the commercial system perspective, there are many promising
application-driven research problems. These include analysis of multimodal scene change
detection, facial expressions and gestures, fusion of gesture/emotion and speech/audio signals,
automatic captioning for the hearing-impaired or second-language TV audiences, multimedia
telephone, and interactive multimedia services for audio, speech, image, and video contents.

From a long-term research perspective, there is a need to establish a fundamental and co-
herent theoretical ground for intelligent multimedia technologies. A powerful preprocessing
technique, capable of yielding salient object-based video representation, would provide a
healthy footing for online object-oriented visual indexing. This suggests that a synergistic
balance and interaction between representation and indexing must be carefully investigated.
Another fundamental research subject requiring immediate attention is the modeling and eval-
uation of perceptual quality in multimodal human communication. For content-based visual
query, incorporating user feedback in the interactive search process will also be a challenging
but rewarding topic.

At the beginning of the chapter, we pointed out that integrating the three branches of compu-
tational intelligence may offer excellent design strategies for multimedia systems due to their
synergistic power. The hierarchical FNN is one good example. However, such synergies have
not been extensively explored in intelligent multimedia research. Investigation into this field
will bring about new methodologies and techniques for future multimedia systems.

In conclusion, future telecommunication will place a major emphasis on media integration
for human communication. Multimedia systems can achieve their potential only when they are
truly integrated in three key ways: integration of content, integration with human users, and
integration with other media systems [91]. Therefore, the following technologies will emerge
to lead the future multimedia research [90]:

1. Technologies for generating any kind of cyberspace

2. Technologies for warping into cyberspace

3. Technologies for manipulating objects in cyberspace

4. Technologies for communicating with residents of cyberspace

To sum up, the research and application opportunities in intelligent multimedia processing
are truly boundless. We must now explore further their vast benefits and enormous potential.
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Chapter 7

On Independent Component Analysis for
Multimedia Signals

Lars Kai Hansen, Jan Larsen, and Thomas Kolenda

7.1 Background

Blind reconstruction of statistically independent source signals from linear mixtures is rel-
evant to many signal processing contexts [1, 6, 8, 9, 22, 24, 36]. With reference to principal
component analysis (PCA), the problem is often referred to as independent component analysis
(ICA).!

The source separation problem can be formulated as a likelihood formulation (see, e.g.,
[7, 32, 35, 37]). The likelihood formulation is attractive for several reasons. First, it allows
a principled discussion of the inevitable priors implicit in any separation scheme. The prior
distribution of the source signals can take many forms and factorizes in the source index
expressing the fact that we look for independent sources. Second, the likelihood approach
allows for direct adaptation of the plethora of powerful schemes for parameter optimization,
regularization, and evaluation of supervised learning algorithms. Finally, for the case of linear
mixtures without noise, the likelihood approach is equivalent to another popular approach
based on information maximization [1, 6, 27].

The source separation problem can be analyzed under the assumption that the sources either
are time independent or possess a more general time-dependence structure. The separation
problem for autocorrelated sequences was studied by Molgedey and Schuster [33]. They
proposed a source separation scheme based on assumed nonvanishing temporal autocorrelation
functions of the independent source sequences evaluated at a specific time lag. Their analysis
was developed for sources mixed by square, nonsingular matrices. Attias and Schreiner derived
a likelihood-based algorithm for separation of correlated sequences with a frequency domain
implementation [2]-[4]. The approach of Molgedey and Schuster is particularly interesting as
regards computational complexity because it forms a noniterative, constructive solution.

Belouchrani and Cardoso presented a general likelihood approach allowing for additive
noise and nonsquare mixing matrices. They applied the method to separation of sources taking
discrete values [7], estimating the mixing matrix using an estimate—maximize (EM) approach
with both a deterministic and a stochastic formulation. Moulines et al. generalized the EM
approach to separation of autocorrelated sequences in the presence of noise, and they explored
a family of flexible source priors based on Gaussian mixtures [34]. The difficult problem

IThere are a number of very useful ICA Web pages providing links to theoretical analysis, implementations, and
applications. Follow links from the page http://eivind.imm.dtu.dk/staff/lkhansen/ica.html.
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of noisy, overcomplete source models (i.e., more sources than acquired mixture signals) was
recently analyzed by Lewicki and Sejnowski within the likelihood framework [28, 31].

In this chapter we study the likelihood approach and entertain two different approaches
to the problem: a modified version of the Molgedey—Schuster scheme [15], based on time
correlations, and a novel iterative scheme generalizing the mixing problem to separation of
noisy mixtures of time-independent white sources [16]. The Molgedey—Schuster scheme
is extended to the undercomplete case (i.e., more acquired mixture signals than sources),
and further inherent erroneous complex number results are alleviated. In the noisy mixture
problem we find a maximum posterior estimate for the sources that, interestingly, turns out
to be nonlinear in the observed signal. The specific model investigated here is a special case
of the general framework proposed by Belouchrani and Cardoso [7]; however, we formulate
the parameter estimation problem in terms of the Boltzmann learning rule, which allows for a
particular transparent derivation of the mixing matrix estimate.

The methods are applied within several multimedia applications: separation of sound, image
sequences, and text.

7.2 Principal and Independent Component Analysis

PCA is a very popular tool for analysis of correlated data, such as temporal correlated image
databases. With PCA the image database is decomposed in terms of “eigenimages” that often
lend themselves to direct interpretation. A most striking example is face recognition, where
so-called eigenfaces are used as orthogonal preprocessing projection directions for pattern
recognition. The principal components (the sequence of projections of the image data onto the
eigenimages) are also uncorrelated and, hence, perhaps the simplest example of independent
components [9]. The basic tool for PCA is singular value decomposition (SVD).

Define the observed M x N signal matrix, representing a multichannel signal, by

X ={Xnn}={om()} =[x(1), xQ2),...,x(N)] (1.1)

where M is the number of measurements and N is the number of samples. x,(n), n =
1,2,..., N is the mth signal and x(n) = [x{(n), x2(n), - -- , xp(n)]". In the case of image
sequences, M is the number of pixels.

For the fixed choice of P < M, the SVD of X reads?

P P
X=UDV' =) uiDijv]. Xpn=) UniDiiVni (72)
i=1 i=1

where M x P matrix U = {Uy;} = [u1,u2,...,up]land N x P matrix V = {V,;} =
[v, v2, ..., vp] represent the orthonormal basis vectors (i.e., eigenvectors of the symmetric
matrices XX | and X T X, respectively). D = {D;;}isa P x P diagonal matrix of singular
values. Interms of independent sources, SVD can identify a set of uncorrelated time sequences,
the principal components: D; ;v;, enumerated by the source index i = 1,2, ..., P. That is,
we can write the observed signal as a weighted sum of fixed eigenvectors (eigenimages) u; .
However, considering the likelihood for the time-correlated source density, we are often
interested in a slightly more general separation of image sources that are independent in time

2Us~ually, SVD expresses X = ﬁﬁVT where g isMx M, Dis M x N, and vV iiN x N. U is the first P columns
of U, D is the P x P upper-left submatrix of D, and V is the first P columns of V.
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but not necessarily orthogonal in space (i.e., we would like to be able to perform a more general
decomposition of the signal matrix),

P
X=AS. Xpn=)_ AniSin (7.3)
i=1

where A is a general mixing matrix of dimension M x P and S is a source data matrix with
dimension P x N consisting of P < M independent sources. Finding A, S is often referred
to as ICA (see, e.g., [6, 9]).

7.3 Likelihood Framework for Independent Component Analysis

Reconstruction of statistically independent components/sources from linear mixtures is rel-
evant to many information processing contexts (see, e.g., [27] for an introduction and a recent
review). We will derive a solution to the source separation based on the likelihood formulation
(see, e.g., [7, 32, 37]). An additional benefit from working in the likelihood framework is
that it is possible to discuss the generalizability of the ICA representation; in particular, we
use the generalization error as a tool for optimizing the complexity of the representation (see
also [14, 17]).

The noisy mixing model takes the form

X=AS+E (7.4)

where £ is the M x N noise signal matrix. The noise is supposed to obey a specific zero
mean, parameterized stationary probability distribution. The source signals are assumed to be
stationary and mutually independent — that is, p(s; (k)s;j(n)) = p(s;(k))p(s;(n)), Vi, j €
[1; M], Vn, k € [1; N]. The properties of the source signals are introduced by a parameterized
prior probability density p(S|¥), where ¥ is the parameter vector. The likelihood of the
parameters of the noise distribution, the parameters of the source distribution, and those of the
mixing matrix is given by

L(A,0,.¥)=p(X|A,0.¢) = /P(X — AS|0)p(SI¥)dS (7.5)
where p(X — AS|0) = p(€|0) is the noise distribution parameterized by the vector #. We will

assume that the noise can be modeled by i.i.d. Gaussian sequences with a common variance
0 = o2,

1 1 M N
p(Elo?) = Gy P <—m Z ngn(n)) ) (7.6)
m=1 n=1

We will consider two different assumptions about the independent source distributions leading
to different algorithms.

For the time-independent white source problem, the parameter-free source distribution
of [32] is deployed:

P N P
1
p(S) = E p(si) = NP exp (— Z Z log cosh s; (n)) 7.7

n=1i=1
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where ST = {s1,82,---,splands; = [5;(1), 5;(2), -- ~s,-(N)]T. In the time-correlated case,
it is assumed that the sources are stationary, independent, possess time autocorrelation, have
zero mean, and are Gaussian distributed:>

P P

1 1
pSI¥) =[] r6ilvn =] ST T ww il <—§s,7r;‘s,~) (1.8)

i=1 i=1

where ¥ = [Y1,--- ,¥pland Iy, = E[sl-sl.T] = Toeplitz([y;, (0), ..., y5, (N — 1)])4 is the
N x N Toeplitz autocorrelation matrix consisting of autocorrelation function values, y;, (m) =
Elsi(n)si(n +m)],m = 0,1,..., N — 1. The autocorrelation matrix Iy, is supposed to be
parameterized by ¥;.

7.3.1 Generalization and the Bias-Variance Dilemma

The parameters of our blind separation model are estimated from a finite random sample,
and therefore they also are random variables which inherit noise from the dataset on which
they were trained. Within the likelihood formulation, the generalization error of a specific set
of parameters is given by the average negative log-likelihood?

G(A,0,¢) = / —logL(A,0,v¢) - p.(X)dX

= /[—log/P(X — AS10)p(S|¥)dS] - p(X)dX (7.9)

where p.(X) is the true distribution of data. The generalization error is a principled tool for
model selection. In the context of blind separation, the optimal number of sources retained
in the model is of crucial interest. We face a typical bias-variance dilemma [13]. If too few
components are used, a structured part of the signal will be lumped with the noise, hence
leading to a high generalization error because of “lack of fit.” On the other hand, if too many
sources are used, we expect “overfit” because the model will use the additional degrees of
freedom to fit nongeneric details into the training data. The generalization error in (7.9) can
be estimated using a test set of data independent of the training set.®

7.3.2 Noisy Mixing of White Sources

The specific model investigated here is a special case of the general framework proposed
by Belouchrani and Cardoso [7]; however, we formulate the parameter estimation problem in
terms of the Boltzmann learning rule, which allows for a particular transparent derivation of
the mixing matrix estimate.

Let us first address the problem of estimating the sources if the mixing parameters are known
(i.e., for given A and o). Note that MacKay [32] showed that the gradient descent scheme

3By assuming stationarity, we implicitly neglect transient behavior due to initial conditions.
4Toeplitz(~) transforms a vector into a Toeplitz matrix.
SNote the close connection between generalization error and the Kullback—Leibler information (KL), as

Pa(X)
KL( p+(X) : p(X|A, 0, = log —————p«(X)dX
(p(X) : p(XIA.0.9)) /OgP(XlA,a,Ilf)p( )

= G(A,O,W)+f10g(P*(X))p*(X)dX

0That is, we evaluate (7.9) on the test data by using ps«(X) = (X — Xtest) Where § is the Dirac delta function and
Xiest are the test data.
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for the likelihood problem, for vanishing noise variance, is equivalent to the Bell-Sejnowski
rule [6]. Here we want to consider the more general noisy case. We use Bayes’ formula
p(S1X) x p(X]|S)p(S) to obtain the posterior distribution of the sources

2 (n) — Z Z log cosh s; (n))

i=1 n=1

P N
(X — AS);,, — Y logcosh Sl-,n) .(7.10)

i=1n=1

p(SIX, A, 0?) x exp(

:exp(

The maximum a posteriori (MAP) source estimate is found by maximizing this expression
w.rt. 87, leading to the following nonlinear equation to solve iteratively for the MAP estimate
S9

II MZ I MZ

~ATAS+A X —0%tanh §=0. (7.11)

There are two problems with equation (7.11). First, the equation is nonlinear — although only
weakly nonlinear for low noise levels.® Second, AT A may be ill conditioned or even singular.
A useful rewriting that takes care of potential ill-conditioning of the system matrix leads to the
iterative scheme,

SUth _ (ATA 4 021) (ATX e (§(j) — tanh <§("“’))> (7.12)

where j denotes the iteration number and I is the identity matrix. This form suggests an
approximate solution for low noise levels

sV _ g0 4 ;21 (S(O) — tanh S(O)) ,

SO - H'ATX, H=ATA+0o1I, (7.13)

exposing the fact that the presence of additive noise turns the otherwise linear separation
problem into a nonlinear one. A nonlinear source estimate is also found in Lewicki and
Sejnowski’s analysis of the overcomplete problem [31].

Since the likelihood is of the hidden Gibbs form we can use a generalized Boltzmann learning
rule to find the gradients of the likelihood of the parameters A, o>. These averages can be
estimated in a mean field approximation [16, 38] leading to recursive rules for A and o2,

-1

A=x5' (§§T + ﬁI) , (7.14)
1
= —Tr (X - A8)" (X - AS) (7.15)

where § is a regularization constant representing the lumped effect of neglected fluctuations
in the mean field approach. g is estimated by

"Note in the case of zero noise, the posterior expression leads to the expression given in [32], and the solution is
obtained by the Bell-Sejnowski algorithm [6].

8This expression is the gradient of the exponent of the posterior distribution. A globally convergent iterative solution
can be assured if solving by gradient ascent VS = n - dlog p(S|X, A, 02)/35, with a sufficiently small step size, 7.
Here, however, we aim for a fast approximate solution for S.
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| PN ,
B=70 ( —P—gjgtanh S,-,,,) ) (7.16)

(See [16].)

Fluctuation corrections (hence the magnitude of 8) can be derived in the low noise limit,
based on a Gaussian approximation of the likelihood [16].

The overall algorithm then consists of iterating (7.13), (7.14)—(7.16), (7.12), (7.14)—(7.16),
etc. Convergence of the algorithm is discussed in [16].

7.3.3 Separation Based on Time Correlation

Molgedey and Schuster [33] have proposed a simple noniterative source separation scheme
based on assumed nonvanishing (time) autocorrelation functions of the independent sources
that can be Gaussian distributed.” Their idea was developed for sources mixed by square,
nonsingular A matrices. Here we generalize their approach in three ways:

» Handling the undercomplete case of more mixture signals than sources (i.e., P < M).
In particular, the algorithm is well suited for cases where P < M.

« Alleviating inherent erroneous complex valued results.

 Allowing for simultaneous use of more cross-correlation matrix function values main-
taining the simple noniterative solution.

Define the M x M cross-correlation function matrix for the mixture signals
C:@=Efxmx"a+ ) ={ijelliM: xmx;+0) @17

wheret = 0, £1, £2, - - - isatime lag and E{-} is the expectation operator. Note for 7 = 0 we
get the usual cross-correlation matrix, Cy (0) = E{x n)x T (n)}, which is positive semidefinite.
Assume the noise-free model (7.3), x (n) = As(n), wheres(n) = [s1(n), ..., sp(n)]",x(n) =
[x1(n), ..., xp(n)]" and further that the M x P mixing matrix has rank(A) = P < M. Since
C,(0) = AC4(0)A T where C,(0) is the P x P cross-correlation matrix for the source signals,
and rank(A) = P, then rank(C, (0)) = P. An eigenvalue decomposition of Cy (0) reads

Cx(0)=QLQ" (7.18)
where Q = [q1, q2, ..., qu] is the orthogonal matrix (Q—r Q = 1) of eigenvectors ¢; and
L = diag(ly, ..., Iy) is the diagonal matrix of eigenvalues [y < I < ... < [p < 0O and
Ilpy1 = lpyp = --- = Iy = 0. Consider projection onto the P-dimensional full rank
subspace,

F=0'x (7.19)
where Q = [q1,42,...,qp] is the M x P projection matrix and X is the P x 1 projected

mixture signal vector. Now define quotient matrix

K = Cz(0)C: ' (0). (7.20)

N: most, one source is allowed to be white.
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Since Cxz(t) = QTACS (AT é, the quotient matrix can be expressed as!0
~T —1 ~T \—1
K=(0Q A)Cs(r)C ' (0)(Q A) (7.21)

According to Appendix A, the quotient matrix has the eigenvalue decomposition K = ®A &~
where A is a diagonal matrix of real eigenvalues and @ are the associated real eigenvectors.
Define a permutation matrix!! P = lej,,....ej,] where e; = {§;;,i € [I; P]} are P-
dimensional unit column vectors and [ji, j2, ..., jp] is @ permutation of the numbers [1; P].

Note that PP = I. Further, define a diagonal scaling matrix E = diag([&], ..., &p]) with
& # 0. Comparing with (7.21) shows that eigenvalue decomposition of K can be used to
identify the mixing matrix A, as shown by:

K=(0"A)C(r)C;'(0)(0'A) ' =@=PPE"'AZ 'PPED! (7.22)

where P is a permutation matrix and Z a diagonal scaling matrix as defined in Section 7.2.
Consequently,

0'A=ozP, (7.23)
Ci(r)C;7'(0) = PETIAETP. (7.24)

Here we use the fact that C(7) is diagonal due to independence of the source signals.
Consider measurements of the cross-correlation function matrix for 7' different t’s and
define the extended quotient matrix:

T
Kot = Y _aj- Cx(r))C5 ' (0) (7.25)
j=1

where o are scalar weights. Then eigenvalue decomposition of Kexy = @A @~ ! leads to
~T —
0 A=0ZEP, (7.26)
T
D aj C(rC'(0) = PETAET'P. (7.27)
j=1

The generalized Molgedey—Schuster algorithm for identification of mixing and source signals
up to scaling and permutations is thus summarized in the following steps:

1. Perform eigenvalue decomposition: Cx(0) = QLQ'.
2. Compute projected mixing signals, ¥ = éTx.
3. Choose aj and 7 for j = 1,2,..., T and compute the extended quotient matrix Kex;.
4. Perform eigenvalue decomposition: Kex; = ®A i S
5. Up to scaling and permutations, the mixing matrix and sources are identified as:
A= 0% (7.28)
S = (ATA)_l ATx=010"x. (7.29)

10Note that QTA has a full rank equal to P.
yp gives a permutation of W’s columns, whereas PW gives a permutation of the rows.
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Estimation of Mixing Matrix and Source Signals

The procedure described above is based on true cross-correlation function matrices which
in practice are estimated from available data. Consider the estimate

Co(r) = ;v (X,XT—l—XXT) (7.30)

where X; = {x,,(n+7)} is the time-shifted data matrix. Here we consider a cyclic permutation
by t time steps (i.e., X; = {x,,((n 4+ 7)n5)} where () denotes the argument modulo N).
Equation (7.30) respects the fact that the true correlation matrix function Cy () is symmetric.

Consider the SVD of X = UDV T in (7.2) with P selected so that D consists of positive
singular values only. When X is formed by cyclic permutation, XX ' = X, X ; hence,
X, =U DVT where V7 is the cyclic permutation of V. The P x N projected mlxture signal
matrix is X = UTX = DV and X, = DV, as U is an estimate of Q. The estimated
quotient matrix is according to (7.20), given by

K = Cx(1)C5 ' (0)
— (%X k%)) (R%T)

X
) (V,TV+VTVT) (DVTVD) l

—_ 1

— N

_ T T —1
- 2D(VT V4V VI)D . (7.31)

The generalized Molgedey—Schuster ICA algorithm can be summarized in the following steps:

1. Perform SVD: X = UDV T with P selected so that all singular values in D are positive.
There is an option for regularization by discarding some of the smallest singular values,
causing a reduction of P.

2. Perform eigenvalue decomposition of the estimated quotient matrix!2

K

%D (Vv +vTv)p!
]

PAD . (7.32)

3. Estimate the mixing matrix and source signals:

o, (7.33)
“'pvT. (7.34)

Z
il
o)

4. Cross-correlation matrix functions of the source signals are estimated as

C,0)=N"'SS' =N"'. & 'D*® ", (7.35)
Cs(7) = AC4(0) . (7.36)

The fact that ® is nonorthogonal in general implies that 6’s (0) and 65 (t) are not diagonal.
That is, finite sequence source signals cannot be expected to be uncorrelated. Unlike PCA, this
scheme and other ICA schemes do not automatically produce a set of uncorrelated features.

2When T > 1 the term (V' V + VT V) is replaced by Z]T.:l aj(Vr-;V +VTV).
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7.3.4 Likelihood

The major advantage of the Molgedey—Schuster algorithm is its noniterative nature; however,
it is not directly guaranteed to minimize the likelihood. Still, the likelihood is a convenient
tool for understanding the nature of the modeling. Deploying one t (7" = 1) is consistent with
parameterizing the source distribution p(S|¥) in (7.8) using one parameter per source. As
more T’s are deployed, a more flexible parameterization of the likelihood applies.

The likelihood can be computed in a simple way using Fourier techniques. This also enables
computation of validation/generalization error, and consequently a principled way to select
optimal 7’s aiming at achieving minimum generalization error. However, that discussion is
beyond the scope of this chapter.

7.4 Separation of Sound Signals

In this example the aim is to demonstrate how ICA is applied to separation of sound signals.
This could be thought of as a special case of blind signal separation in connection with the
cocktail party problem illustrated in Figure 7.1.

1

FIGURE 7.1

In the cocktail party problem, speech from a group of people is recorded by a number
of microphones. Without prior knowledge of the dynamics in the voices, how they are
mixed, or presence of additional noise sources, the goal is to separate the voices of the
individual speakers into different output channels.

voice |

voice 2
# Blind signal separation

voice 3

voice 4

OO 00O
RZRZRZR

The present example deals with speech from three persons that are assumed statistically inde-
pendent. The sampling frequency of the signals is 11,025 Hz and they consist of 50,000 samples
each. A linear instantaneous mixing with a fixed known 3 x 3 mixing matrix is deployed and
enables a quantitative evaluation of the ICA separation. The source and mixing signals are
shown in Figure 7.2. In general these assumptions would not hold in real-world applications
due to echo, noise, delay, and various nonlinear effects. In such cases more elaborate source
separation is needed, as described, for example, in [2]-[4], [10]. In order to evaluate the results
of the separation, we consider the so-called system matrix defined as

SM = (EES(O)VZ)_1 PA (1.37)

where A is the estimated mixing matrix, P is a permutation matrix, and Cg(0) is the cross-
correlation matrix of the estimated source signals. If the separation is successful, the system
matrix equals the identity matrix.
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FIGURE 7.2

The original source sound signals s (1), s2(n), and s3(n) consist of 50,000 samples and
are assumed to be statistically independent. The mixture signals x| (n), x2(n), and x3(n)
are linear instantaneous combinations of the source signals.

7.4.1 Sound Separation using PCA

The PCA described in Section 7.2 is often used because it is simple and relatively fast.
Moreover, it offers the possibility of reducing the number of sources by ranking sources
according to power (variance). The result of the PCA separation is shown in Figure 7.3 and
the corresponding system matrix in Table 7.1. Obviously the result is poor when comparing
estimated sources to the original sources in Figure 7.2. This is also confirmed by inspecting
the system matrix in Table 7.1.

0.62

0.62

1 0.62

1 0.62

1 0.62

1 0.62

FIGURE 7.3
Separated sound source signals using PCA. Right panels show error signals, ¢; (n) =
si(n) =i (n).
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Table 7.1 System Matrix for the PCA
Separation of Sound Signals

0.56 0.98 0.62
SM = | 028 0.72 0.23
0.18 0.50 0.06

7.4.2 Sound Separation using Molgedey—Schuster ICA

The main advantage of the Molgedey—Schuster ICA algorithm is that it is noniterative and
consequently very fast. A standard T = 1 ICA was employed, and the choice 7 = 1 gave the
best performance. In Figure 7.4 the estimated sound signals from the separation are shown.
Comparison with original source signals in Figure 7.2 indicates very good separation. The
system matrix in Table 7.2 and an additional listening test also confirm this result.

1
A 0.04
81 0 61 0
0.04
1
1
A 0.04
82 0 62 0
0.04
1
1
A 0.04
83 0 63 0
0.04
1
n n
FIGURE 7.4

Separated sound source signals using Molgedey—Schuster ICA. Right panels show error
signals, ¢; (n) = s;(n) —5; (n).

Table 7.2 System Matrix for the
Molgedey—Schuster ICA Separation of Sound
Signals

1.00 0.02 0.03
SM=| 002 1.00-0.01
—0.03 —0.03 —1.00
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7.4.3 Sound Separation using Bell-Sejnowski ICA

The very commonly used Bell-Sejnowski ICA [6] is equivalent to maximum likelihood with
assumptions like those presented in Section 7.3.2 in the case of zero noise. Bell-Sejnowski
ICA iteratively computes an estimate of the mixing matrix by updating proportionally to the
natural gradient of the likelihood. The step size (gradient parameter) was initially 10~ and a
line search was employed using bisection. The algorithm was terminated when the negative
log-likelihood was below 10712, Due to the iterative nature, this al gorithm is much more time
consuming than the Molgedey—Schuster algorithm.

InFigure 7.5 and Table 7.3 the results of the separation are shown. Clearly, the system matrix
is closer to the identity matrix than that of Molgedey—Shuster, at the expense of increased
computational burden.

1
5 0.01
31 0 e1 0
0.01
1
1
A 0.01
32 0 82 0
0.01
1
1
A 0.01
33 0 83 0
0.01
1
n n
FIGURE 7.5

Separated sound source signals using Bell-Sejnowski ICA. Right panels show error sig-
nals, e; (n) = s;(n) —5; (n).

Table 7.3 System Matrix for the Bell-Sejnowski
ICA Separation of Sound Signals

1.00 —0.01 0.01
SM = | 0,00 1.00—0.01
0.01 0.01 1.00

7.4.4 Comparison

Table 7.4 lists the norm of the system matrix deviation from the identity matrix as well as
computation time.

Obviously, PCA was outperformed by both ICA algorithms due to very restricted separation
capabilities. Both ICA algorithms performed very well. The major difference is computation
time; MS-ICA was more than 200 times faster than BS-ICA. The advantage of the BS-ICA
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Table 7.4 Norm of the System Matrix’s Deviation from the
Identity Matrix and Computation Time in Seconds

|SM — I Computation Time (s)
PCA 1.21 0.25
MS-ICA? 0.05 0.25
BS-ICA®, 22 iterations 0.05 56.10
BS—ICAb, 56 iterations 0.01 152.18

4 MS-ICA, Molgedey—Schuster ICA.
b Bs-1CA, Bell-Sejnowksi ICA for 22 and 56 iterations, respectively.

algorithm is that the system matrix can be significantly closer to unity provided sufficient
computation time. A hybrid of MS-ICA and BS-ICA in which MS-ICA is used to initialize
BS-ICA seems obvious.

Listening to the separated signals, it was hardly impossible to tell the difference between
the ICA results.

7.5 Separation of Image Mixtures

Applying ICA to images has been carried out in a number of applications ranging from face
recognition to localizing activated areas in the brain (see, e.g., [5, 16, 19, 20, 29, 30]).

In this section we illustrate some of the basic features using ICA in contrast to or in com-
bination with PCA for image segmentation. From a sequence of images, the objective is to
extract sequence images where common features have been separated into different images. In
the present case ICA is based on raw images; however, in principle, the segmentation can also
be done from features extracted from the images. The simple dataset as shown in Figure 7.6 is
used in this example. There are P = 4 original source images of N = 9100 (91 by 100) pixels
rearranged into the P x N source matrix S so that each row represents an image. The M x N
signal matrix X with M = 6 is generated by using the following M x P mixing matrix

1 1 01
-1 1 01
1 1-2 1
A= 112 ] (7.38)
1-1 0 1
—-1-1 0 1

7.5.1 Image Segmentation using PCA

The result of applying PCA to the face dataset is shown in Figure 7.7. The number of
nonzero eigenvalues is correctly determined to be 4. Notice that the eyebrow and mouth
positions operate in pairs; when the mouth is “smiling” it cannot be “sad” and likewise for the
eyebrows. PCA is able to detect this behavior but mixes both eyebrows and mouth pieces in
sources 2 and 3. Further, only the nose is present in source 1. This is a typical effect in PCA
because its decomposition is based on finding the directions with the most variance, which is
not always well suited for the data.
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FIGURE 7.6

The artificial face dataset used for image segmentation. The top row shows the P = 4
sources of N = 9100 pixels, which is multiplied with the mixing A in the middle row to
generate the signal matrix X with M = 6 components in the bottom row.
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FIGURE 7.7

Applying PCA to the artificial face data. The sources V are shown in the top row and
the corresponding mixing matrix estimate is shown in the bottom row. Unfortunately,
PCA mixes the eyebrows and mouth pieces in sources 2 and 3. Further, only the nose is
present in source 1.

7.5.2 Image Segmentation using Molgedey—Schuster ICA

ICA on images can be performed either to the signal matrix X or the transpose X '. In the
first case N = number of pixels and M = number of images in sequence corresponding to
assuming independence of pixels in the sources. In this case the sources are images and the
mixing matrix is the time sequence. In the second case N = number of images in sequence
and M = number of pixels corresponding to assuming independence driving time sequence
sources. Thus, the mixing matrix corresponds to (eigen)images. This is summarized in
Table 7.5.
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Table 7.5 Two Ways of Performing ICA on Image Sequences

Signal Matrix
X X'
M No. of images in sequence No. of pixels
N No. of pixels No. of images in sequence
S Images Time sequence
A Time sequence Images
Assumption Pixel independence Time independence

The result when assuming pixel independence (i.e., using X as signal matrix) is shown in
Figure 7.8. The result when assuming time independence (i.e., using X | as signal matrix) is
shown in Figure 7.9.

20 20 20
¢ m . il
A o 0 0 0l mm™™
- 1IN 1L nn
20 20 20
123456 123456 123456 123456
FIGURE 7.8
MS-ICA on the artificial face data with the pixel-independence assumption (i.e., X is the
signal matrix). The estimated sources (eigenimages) are shown in the top row and the
associated mixing matrix (time sequences) in the bottom row. Unlike PCA in Figure 7.7,
MS-ICA does not mix eyebrows and mouths (i.e., the sources are almost perfect except
for a small problem with the nose component in source 1). Also, the mixing matrix A is
almost perfect in comparison with Figure 7.6.

7.5.3 Discussion

Real image applications often show preference toward ICA over PCA. This is mainly because
ICA is able to produce a nonorthogonal basis and is not constrained by the variance ranking
inherent in PCA. Using PCA as preprocessing to ICA in order to determine the number of
sources has proven successful [6]. Also, the PCA estimate of the mixing matrix can be used
as initialization for an iterative ICA scheme such as Bell-Sejnowski [6] and the algorithm of
Section 7.3.2. Performing ICA using the Molgedey—Schuster algorithm gives better results
than PCA, at comparable computational cost.

The choice of pixel independence vs. time independence is related to the problem at hand.
In the image segmentation problem above, pixel independence gave the best result; however,
other cases have shown preference to time independence (see, e.g., [15, 16]).
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FIGURE 7.9

MS-ICA on the artificial face data with the time-independence assumption (i.e., X ' as
signal matrix). The estimated sources (time sequences) are shown in the bottom row and
associated mixing matrix (eigenimages) in the top row. The mouth is present in both
eigenimages 2 and 3, thus producing a slightly worse result than that in Figure 7.8.

7.6 ICA for Text Representation
7.6.1 Text Analysis

The field of text analysis aims at searching for specific information and structure in text
data, which has emerged rapidly in recent years due to the Internet and other massive text
databases. The general ways of searching and grouping are usually Boolean'? search and
query14 subset selection. These methods are straightforward but are not, however, based on
statistical modeling. Due to the large amount of data, any statistical approach has been very
difficult, and only in recent years has a serious effort been carried out.

The general idea behind many text analysis algorithms is the so-called N-gram histogram.
The N-gram histogram is based on counting the simultaneous occurrence of N words or terms.
We consider merely 1-gram histograms as higher order histograms that often have large areas
of infinitesimal probability mass due to the infrequent occurrence of many word combinations.
In Figure 7.10 a 1-gram histogram is shown and is referred to as the term/document matrix.
The term/document matrix can contain features extracted from the documents and be used
as a signal matrix X for PCA and ICA. Recently PCA and ICA have been applied to text
analysis [21, 23, 25], and in the following we shall apply both PCA and ICA to the 1-gram
histogram using the MED dataset [11]. The MED dataset is a commonly studied collection
of medical abstracts. It consists of 1033 abstracts, of which 30 labels have been assigned to
696 of the documents. The goal is not to compare the performance of ICA to other unsupervised
methods, but rather to demonstrate its capability in text analysis. Consequently, we restrict
the study to 124 abstracts — that is, the first five groups/classes in the MED dataset that can
be characterized by the following verbal descriptions:

1. The crystalline lens in vertebrates, including humans.

13 A Boolean search operates from AND and OR operators.

14When a query is made, a subset of the data is selected. This can be done, for example, by a Boolean search — often
found by SQL statements.

© 2001 CRC PressLLC



100 - E
200 - : o
300 - - .
400 - 2 WS -

500 - A

terms

600f — - (1) (2) (3) (4) G —
700 .-
800 -
900 |- : . : -
1000 - - - ) =
1100 |+ . 3 = -

1 l 1 1 1 = i

20 40 60 80 100 120
documents

FIGURE 7.10

The term/document matrix X is a 1-gram histogram. The rows represent different
words/terms appearing in a collection of text documents. In the present study we use
M = 1159 terms. Each column represents the histogram for a specific document or text
group. In the present example, N = 124 documents were used.

2. The relationship of blood and cerebrospinal fluid oxygen concentrations or partial pres-
sures. A method of interest is polarography.

3. Electron microscopy of lung or bronchi.
4. Tissue culture of lung or bronchial neoplasms.

5. The crossing of fatty acids through the placental barrier. Normal fatty acid levels in
placenta and fetus.

When constructing the histogram term/document matrix, words that occur in more than one
abstract were chosen as term words. In order to facilitate the analysis, commonly used words!?
were removed; 1159 terms remained in the matrix. In summary, the term/document matrix
X is M = 1159 by N = 124. The ICA algorithm used in this example is the noisy mixing
algorithm described in Section 7.3.2.

I5A stop word list was defined.
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7.6.2 Latent Semantic Analysis — PCA

A classical method for both search and grouping (clustering) is latent semantic analysis
(LSA), introduced by [11]. The principle of LSA is to build the term/document matrix and
find a better basis representation using PCA. Consider the SVD X = UDV T where U contains
the eigenvectors of the term covariance matrix XX . Likewise, V contains the eigenvectors of
the document covariance matrix X ' X. D is the diagonal matrix of increasing singular values
equal to the square root of the eigenvalues. Paraphrased, U provides relative coordinates for
the covariance between different terms and, likewise, V relative coordinates for the documents.
In Figure 7.11 the documents are represented by a 3D PCA basis. A clear data cluster structure
is noticed.
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FIGURE 7.11

PCA on the term/document matrix. The documents are plotted with different signatures
corresponding to the prelabeling into five classes. A clear cluster structure is noticed.

Using clustering techniques, the documents can now be clustered into groups of similar
meaning. This also enables the characterization of a new document by projecting onto the
identified PCA basis.

7.6.3 Latent Semantic Analysis — ICA

The objective of ICA in LSA is that it should serve as a clustering algorithm so that different
semantic groups are represented by separate independent components. The ICA algorithm
produces the mixing matrix A in which each column represents a histogram associated with a
specific semantic cluster. The source matrix S expresses how the documents contribute to the
semantic clusters.

Since we typically face problems with thousands of words in the terms list and possibly much
fewer documents, this is a so-called extremely ill-posed learning problem, which can be reme-
died without loss of generality by PCA projection. The PCA decomposes the term/document
matrix on eigen-histograms. These eigen-histograms are subject to an orthogonality constraint,
being eigenvectors to a symmetric real matrix. We are interested in a slightly more general
separation of sources that are independent as sequences, but not necessarily orthogonal in the
word histogram; that is, we would like to be able to perform a more general decomposition
of the data matrix, corresponding to the model in equation (7.4). Before performing the ICA
we can make use of the PCA for simplification of the ICA problem. The approach here is
similar to the so-called “cure for extremely ill-posed learning” [26] problem used to simplify
supervised learning in short image sequences. We first note that the likelihood, considered as
a function of the columns of A (histograms), can be split in two parts: part A1, orthogonal
to the subspace spanned by the M rows of X, and part A;, situated in the subspace spanned
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by the N columns of X. The first part is trivially minimized for any nonzero configuration of
sources by putting A; = 0. It simply does not “couple” to data. The remaining part A, can
be projected onto an N-dimensional hyperplane spanned by the documents. In this way we
reduce the high-dimensional separation problem to the separation of a square (projected) data
matrix of size N x N. We note that it often may be possible to further limit the dimensionality
of the PCA subspace, hence further reducing the histogram dimensionality M of the remaining
problem. Using the “cure for extremely ill-posed learning” method, the problem is reduced to
an M = 124 by N = 124 problem without loss of generality. However, we expect that even
fewer components are needed for creating a generalizable model. In Figure 7.12 we show the
test and training set errors evaluated on training sets of 104 patterns randomly chosen among
the set of 124. The test set consists of the remaining 20 documents in each resample. The
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FIGURE 7.12

ICA analysis of the MED dataset. Training and test error as a function of the number
of sources, or number of components P. The training set consists of 104 documents
randomly chosen among the set of 124 possible, and the remaining 20 are used for test.
The test curve shows a shallow minimum for P = 4 components, reflecting the bias-
variance trade-off discussed in Section 7.3.1.

generalization error shows a shallow minimum for P = 4 independent components, reflecting
the bias-variance trade-off (Section 7.3.1) as a function of the complexity of the estimated mix-
ing matrix. In Figure 7.13 we show scatterplots in the most variant independent components.
Although the distribution of documents forms a rather well-defined group structure in the PCA
scatterplots, clearly the ICA scatterplots are much better axis aligned. We conclude that the
nonorthogonal basis found by ICA better “explains” the group structure. To further illustrate
this finding we have converted the ICA solution to a pattern recognition device by a simple
heuristic. We assign a group label based on the magnitude of the recovered source signal. In
Tables 7.6 and 7.7 we show that this device is quite successful in recognizing the group struc-
ture, although the ICA training procedure is completely unsupervised. For an ICA with three
independent components, two are recognized perfectly and three classes are lumped together.
The four-component ICA, which is the generalization optimal model, “recognizes” three of the
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FIGURE 7.13

ICA applied on the term/document matrix. The documents are plotted with different
signatures corresponding to the prelabeling into five classes. ICA projects the natural
clusters along the basic vectors, making them easy to separate.

five classes almost perfectly and confuses the two classes 3 and 4. Inspecting the groups, we
found that the two classes indeed are on very similar topics,'® and investigating classifications
for five or more ICA components did not resolve the ambiguity between them. The ability of
the ICA classifier to identify the topic structure is further illustrated in Figure 7.14, where we
show scatterplots coded according to ICA classifications. This shows that the ICA is better
than PCA-based LSI in identifying relevant latent semantic structure. Finally, we inspect the
histograms produced by ICA by back-projection using the PCA basis. Thresholding the ICA
histograms, we find the salient terms for the given component. These terms are keywords for
the given topic, as shown in Tables 7.6 and 7.7, and follow nicely the behavior of the confusion
matrices.

Table 7.6 Confusion Matrix for a Simple Classifier Constructed from
the Three-Component ICA

Class
1 2 3 4 5 Keywords
ICy 37 0 0 0 O Lens protein
IC; 0 16 1 1 0 Arterial blood cerebral oxygen rise

IC3; 0 0 21 22 26 Acid blood cell fatty free glucose insulin

Note: Two of the five MED classes are recovered, whereas the last independent
component contains a mixture of the remaining three classes.

7.7 Conclusion

This chapter discussed the use of ICA for multimedia applications. In particular, we applied
ICA to the separation of speech signals, segmentation of images, and text analysis/clustering.

16They both concern medical documents on diseases of the human lungs.
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ICA analysis of the MED dataset. The dataset consists of 124 documents in five topics.
The source signals recovered in the ICA have been converted to a simple classifier, and we
have coded these classes by different shades. From top to bottom we show scatterplots
in the principal component representation 1 vs. 2 and 3 vs. 2, with shading signifying
the classification proposed by the ICA with 2, 3, 4, and 5 independent components,
respectively.

A likelihood framework for ICA was presented and enables a unified view of different
algorithms. Furthermore, this enables formulation of the generalization error, defined as the
expected negative log-likelihood on independent examples. The generalization error is a
principled tool for model optimization (e.g., number of sources retained in the model).

We focused on two ICA algorithms: separation based on time correlation and noisy mixing
of white sources. In the first case we presented a generalized version of the Molgedey—
Schuster algorithm, allowing for handling of undercomplete problems, alleviating inherent
erroneous complex valued results, and allowing for simultaneous use of more cross-correlation
measurements while maintaining the simple noniterative nature of the algorithm. In the noisy
mixing case, a maximum a posteriori estimate for source estimation was employed, and the
mixing matrix and noise variance were estimated via Boltzmann learning.
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Table 7.7 Confusion Matrix for a Simple Classifier Constructed from the
Four-Component ICA

Class
1 2 3 4 5 Keywords
IC; 31 0 0 0 O Lens protein
IC;, 0 16 0 1 O Arterial blood cerebral oxygen rise
IC; 6 0 22 21 2 Alveolar cell lens lung
IC, 0 0 0 1 24 Acid blood fatty free glucose insulin

Note: Three of the five MED classes are recovered, whereas the remaining two classes are mixed.
The two unresolved classes are related because both make reference to the lung physiology.
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Appendix A: Property of the Quotient Matrix

THEOREM 7.1

The quotient matrix K = Cz(t)Cyz ! (0) has real eigenvalues and eigenvectors, and obtains
the eigenvalue decomposition K = ®A® .

PROOF Cx(7) is symmetric since it can be expressed as Cz(t) = QTACS (r)ATé.
Further, C3(0) is positive definite, as Cg(0) is positive definite. A similarity transform of K is
given by

-1/2 1/2

Kim = C; (0K C{(0) = ;2

S0 cx(0)c; ' 0) (7.39)

X

K, is thus symmetric with real eigenvalues and eigenvectors [18, Theorem 4.1.5], and obtains
the eigenvalue decomposition EAE T where E is the orthogonal (E"E = I) matrix of
eigenvectors and A is a diagonal matrix of eigenvalues. Since K and Ky, are similar, they
have the same eigenvalues, counting multiplicity [18, Corollary 1.3.4]. Finally, using the
similarity transform K = Y Z(O)KsimC;_ 12

P (0), K obtains the eigenvalue decomposition
K=®A® " where ® = C/>(0)E. |

1/2
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Chapter 8

Image Analysis and Graphics for Multimedia
Presentation

Tiilay Adali and Yue Wang

8.1 Introduction

The success of multimedia applications is highly dependent on the effective representation of
the information of interest from data that now come in a variety of forms. For the effective use
of computer-reconstructed images, two steps are key: analysis of images through extraction
of the key features of the image and the visualization of these features in a way that is suitable
for the application at hand.

Model-based image analysis aims at capturing the intrinsic character of images with few
parameters and is also instrumental in helping to understand the nature of the imaging process.
Key issues in image analysis include model selection, parameter estimation, imaging physics,
and the relationship of the image to the task (how the image is going to be utilized) [11, 28].
Stochastic model-based image analysis has been the most popular among the model-based
image analysis methods because, most often, imaging physics can be modeled effectively with
a stochastic model. For example, the suitability of standard finite normal mixture models has
been verified for a number of medical imaging modalities [33, 73, 77]. In the first part of
the chapter, we discuss a complete treatment of the stochastic model-based image analysis
that includes model and model order selection, parameter estimation, and final segmentation.
We focus on models that use finite normal mixtures and show examples in medical image
segmentation and computer-aided diagnosis.

Computer graphics can play a central role in helping multimedia meet its challenges. Rep-
resenting images in a form that matches our perceptual capabilities (mainly visual) and a
problem’s particular needs makes the process of getting information and digesting it easier
and more effective. More specifically, good use of visualization and computer graphics in the
multimedia environment can make a number of important tasks easier and more effective, such
as,

1. Analyzing information on the images
2. Monitoring image content and changes
3. Interacting with image databases

4. Collaborating with other sites/groups

5. Handling video e-mail or browsing on the Web
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In the second part of this chapter, we discuss how to use graphics modeling and visual-
ization technologies to achieve this task. We address methods for graphical modeling and
reconstruction and introduce deformable surface—spine models. We discuss applications in
reconstruction of synthetic and range datasets and of 3D surgical prostate models.

8.2 Image Analysis

Stochastic model-based image analysis is a technique for partitioning an image into dis-
tinctive meaningful regions based on the statistical properties of both the gray-level and the
context images. A good segmentation result depends on suitable model selection for the given
image. For medical images, such as magnetic resonance (MR), positron emission tomography
(PET), and radiographic images, model selection can be justified in terms of imaging physics,
or alternatively, a better understanding of the imaging physics can be used to select a suitable
model for a given imaging modality [33, 77]. Model selection refers to the determination of
both the local statistical distributions of each region and the number of image regions.

In image analysis, we can treat pixel and context modeling separately, assuming that each
pixel can be decomposed into a pixel image and a context image. Pixel image is defined as the
observed gray level associated with the pixel, and finite mixture models have been the most
popular pixel image models. In particular, standard finite normal mixtures (SFNMs) have
been very widely used in statistical image analysis, and efficient algorithms are available for
calculating the parameters of the model. Furthermore, by incorporating statistical properties
of context images, where context image is defined as the membership of the pixel associated
with different regions, a localized SFNM formulation can be used to impose local consistency
constraints on context images in terms of a stochastic regularization scheme [74]. The next
section describes the finite mixtures model and addresses identification of the model (i.e.,
estimation of the parameters of the model and the model order selection). In Section 8.2.2,
we discuss approaches to modeling context. Also, it is important to note that, even though
texture is an important property in the perception of images by humans, it is typically difficult
to describe. It can be identified in terms of five perceptual dimensions: coarseness, contrast,
directionality, line-likeness regularity, and roughness [60], and can be incorporated into the
graphical representation discussed in Section 8.3.

8.2.1 Pixel Modeling

Given a digital image consisting of N = N; x N, pixels, assume that this image contains
K regions and that each pixel is decomposed into a pixel image x and a context image /.
By ignoring information regarding the spatial ordering of pixels, we can treat context images
(i.e., pixel labels) as random variables and describe them using a multinomial distribution with
unknown parameter 7. Since this parameter reflects the distribution of the total number of
pixels in each region, m; can be interpreted as a prior probability of pixel labels determined
by the global context information. Thus, the relevant (sufficient) statistics are the pixel image
statistics for each component mixture and the number of pixels of each component. The
marginal probability measure for any pixel image (i.e., the finite mixtures distribution) can be
obtained by writing the joint probability density of x and / and then summing the joint density
over all possible outcomes of / (i.e., by computing p(x;) Y ; p(x;, [)), resulting in a sum of
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the following general form:

K
p) =) mpi(x), i=1,....N 8.1)
k=1

where x; is the gray level of pixeli. pg(x;)’sare conditional region probability density functions
(pdfs) with the weighting factor my, satisfying mx > 0, and Z/f: | Tk = 1. The generalized
Gaussian pdf given region k is defined by [89]

ap w 1
D (xi) = ZI"—II;oz)exP [— [Br(xi — i)l ], oa>0, Br= U_k |:

r@3/a)]"? -
r(l/a)] 8.2

where g is the mean, I'(+) is the gamma function, and S is a parameter related to the variance
ok by

1 [rG/m]"?
ﬁk_o_k[r(l/a)} : ®3)

When o > 1, the distribution tends to be a uniform pdf; for « < 1, the pdf becomes sharper;
for o = 2.0, one has the Gaussian pdf; and for @ = 1.0, the Laplacian pdf exists. Therefore, the
generalized Gaussian model is a suitable model to fit the histogram distribution of those images
whose statistical properties are unknown since the kernel shape can be controlled by selecting
different o values. The finite Gaussian mixture model (FGGM) for ¢« = 2 is commonly
referred to as the standard finite normal mixture model and has been the most frequently used
form. It can be written as

K
pr) = Y mg (wilwe o) i=1.2, N (8.4)
k=1

with

_ AV (xi — )’
# <x"ﬂk’o") = Voo P\ 207
k

where u; and okz are the mean and variance of the kth Gaussian kernel and K is the number
of Gaussian components.

The whole image can be well approximated by an independent and identically distributed
random field X. The corresponding joint pdf is

N K
Px) =[] mep (xi) (8.5)
i=1k=1
where x = [x1, x2, ..., xy]andx € X. Based on the joint probability measure of pixel images,
the likelihood function under finite mixture modeling can be expressed as L(r) = ]_[lN: 1 Pr(x)
wherer : {K, o, g, ik, ok, k = 1, ..., K} denotes the model parameter set.

8.2.2 Model Identification

Once the model is chosen, identification addresses the estimation of the local region pa-
rameters (7, Ui, ok, k = 1,..., K) and the structural parameters (K, ). In particular the
estimation of the order parameter, K, is referred to as model order selection.
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Parameter Estimation

With an appropriate system likelihood function, the objective of model identification is to
estimate the model parameters by maximizing the likelihood function, or equivalently mini-
mizing the relative entropy between the image histogram px (1) and the estimated pdf pp (),
where u is the gray level [2, 69]. There are a number of approaches to perform the maximum
likelihood (ML) estimation of finite mixture distributions [66]. The most popular method is
the expectation—-maximization (EM) algorithm [18, 53]. The EM algorithm first calculates
the posterior Bayesian probabilities of the data through the observations, obtains the current
parameter estimates (E step), and then updates parameter estimates using generalized mean
ergodic theorems (M step). The procedure cycles back and forth between these two steps.
The successive iterations increase the likelihood of the model parameters. A neural network
interpretation of this procedure is given in [49].

We can use relative entropy (the Kullback—Leibler distance) [31] for parameter estimation
[i.e., we can measure the information theoretic distance between the histogram of the pixel
images, denoted by py, and the estimated distribution pyr(u), which we define as the global
relative entropy (GRE)]:

o Px(u)
D (pxlIpr) = Z px(u) log ) (8.6)

It can be shown that, when relative entropy is used as the distance measure, distance mini-
mization is equivalent to the ML estimation of the model parameters [2, 69].

For the case of the FGGM model, the EM algorithm can be applied to the joint estimation
of the parameter vector and the structural parameter « as follows [18]:

EM Algorithm
1. For o = omin, - - - » ®max
e m = 0, given initialized r©®

e Estep: fori =1,...,N, k=1,..., K, compute the probabilistic membership

m) _ ﬂlgm)l?k (i)

= kT (8.7)
Tk w2 k)

e Mstep: fork =1, ..., K, compute the updated parameter estimates
1 NNy
(m+1) _ (m)
Tk =N Z ik
i=1
| N
(m+1) (m)
My = m Zzik Xi (8.8)
N7y i=1
I m (m+1)
2(m+1) _ m . m+1)2
Ok - (m+1) Zzik (x; — Hi )
N7 i=1

e When |GRE"™ (py||pr) — GRE™ D (py||pr)| < € is satisfied, go to step 2.
Otherwise, m = m + 1 so go to E step.

2. Compute GRE, and go to step 1.
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3. Choose the optimal F that corresponds to the minimum GRE.

The EM algorithm, however, in general, has the reputation of being slow, because it has
a first-order convergence in which new information acquired in the expectation step is not
used immediately [84]. Recently, a number of online versions of the EM algorithm have
been proposed for large-scale sequential learning (e.g., see [41, 47, 66, 69, 81]). Such a
procedure obviates the need to store all the incoming observations, changing the parameters
immediately after each data point, allowing for high data rates. Titterington [66] has developed
a stochastic approximation procedure that is closely related to the probabilistic self-organizing
mixture (PSOM) algorithm we are going to introduce here, and shows that the solution can be
made consistent. Other similar formulations have been proposed by Marroquin et al. [41] and
Weinstein et al. [81].

For the adaptive estimation of the SFNM model parameters, we can derive an incremental
learning algorithm by the simple stochastic gradient descent minimization of D(px||pr) [69,
73] given in (8.6) with the p, given by (8.4):

D = 1 4 a(r) (Xz+1 - M;@) Zgirl)kv ®9)
2
2(t+1 2 ’
oY = 62D 4 b(r) [(xm - M/E”) — 0 m} 2k
k=1....K (®:10

where a(¢) and b(¢t) are introduced as the learning rates, two sequences converging to zero,
ensuring unbiased estimates after convergence. For details about derivation and the approxi-
mations, see [69, 70]. Based on generalized mean ergodic theorem [17], updates can also be
obtained for the constrained regularization parameters, 77y, in the SFNM model. For simplicity,
given an asymptotically convergent sequence, the corresponding mean ergodic theorem (i.e.,
the recursive version of the sample mean calculation) should hold asymptotically. Thus, we
define the interim estimate of 7y by [71]:

t 1

aHD = H—ln,ﬁ’) + H_IZE;)“)" . @.11)
Hence the updates given by (8.9), (8.10), and (8.11) together with evaluation of (8.7) us-
ing (8.4) provide the incremental procedure for computing the SFNM component parameters.
Their practical use, however, requires strongly mixing conditions and a decaying annealing
procedure (learning rate decay) [17, 25, 51]. In finite mixtures parameter estimation, algorithm
initialization must be chosen carefully and appropriately. In [71], an adaptive Lloyd—Max his-
togram quantization (ALMHQ) algorithm is introduced for threshold selection which is also
well suited to initialization in ML estimation. It can be used for initializing the network
parameters, [k, O’kz, and 7, k, 1,2, ..., K.

Model Order Selection

Determination of the region parameter K directly affects the quality of the resulting model
parameter estimation and, in turn, affects the results of segmentation. In a statistical problem
formulation such as the one introduced in the previous section, the use of information theo-
retic criteria for the problem of model determination arises as a natural choice. Two popular
approaches are Akaike’s information criterion (AIC) [4] and Rissanen’s minimum description
length (MDL) [55]. Akaike proposed to select the model that gives the minimum AIC, which
is defined by

AIC (K,) = —2log (£ (FmL)) + 2K, (8.12)
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where Fy is the maximum likelihood estimate of the model parameter set r, and K’ is the
number of free adjustable parameters in the model [4, 33]. AIC selects the correct number of
image regions K¢y when

Ko = arg {1<Ir(11<11[1(max AIC(K)} . (8.13)

Rissanen addressed the problem from a quite different point of view. He reformulated the
problem explicitly as an information coding problem in which the best model fitness was
measured such that it assigned high probabilities to the observed data while at the same time
the model itself was not too complex to describe [55]. The model is selected by minimizing
the total description length defined by

MDL (K,) = —log (£ (fmL)) + 0.5K, log(N) . (8.14)

Similarly, the correct number of distinctive image regions K can be estimated as

Ko = arg { min MDL(K)} . (8.15)
1=K =Kmax

A more recent formulation of information theoretic criterion, the minimum conditional bias
and variance (MCBYV) criterion [69, 75], selects a minimum conditional bias and variance
model (i.e., if two models are about equally likely, MCBYV selects the one whose parameters
can be estimated with the smallest variance). The formulation is based on the fundamental
argument that the value of the structural parameter cannot be arbitrary or infinite, because
although such an estimate might be said to have low “bias,” the price to be paid is high
“variance” [23].

Since the joint maximum entropy is a function of K, and r, by taking the advantage of
the fact that model estimation is separable in components and structure, we define the MCBV
criterion as

Kq
MCBV(K) = —log (L (x|fmL)) + Y H (FemL) (8.16)
k=1

where — log(L(x|Fp)) is the conditional bias (a form of information theoretic distance) [17,
54] and Z,ﬁl H (FxML) is the conditional variance (a measure of model uncertainty) [51, 54]
of the model. Because both of these terms represent natural estimation errors about their true
models, they can be treated on an equal basis. A minimization of the expression in (8.16) leads
to the following characterization of the optimum estimation:

Ko = arg {1 Ir{nin MCBV(K)} . (8.17)
That is, if the cost of model variance is defined as the entropy of parameter estimates, the cost
of adding new parameters to the model must be balanced by the reduction they permit in the
ideal code length for the reconstruction error. A practical MCBYV formulation with code-length
expression is further given by [17, 75]

Kq
MCBV(K) = —log (E (x|f'ML)) + Z % log 27w e Var (f'kML) (8.18)
k=1

where the calculation of H (Fyyp) requires the estimation of the true ML model parameter
values. It is shown that, for a sufficiently large number of observations, the accuracy of the
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ML estimation tends quickly to be the best possible accuracy determined by the Cramer—
Rao lower bounds (CRLBs) [51]. Thus, the CRLBs of the parameter estimates are used in
the actual calculation to represent the “conditional” bias and variance [S0]. We have found
that, experimentally, the MCBV formulation for determining the value of K¢ exhibits very
good performance consistent with both the AIC and the MDL criteria. It should be noted,
however, that these are not the only plausible approaches to the problem of order selection; other
approaches such as cross-validation techniques may also be quite useful [20, 36, 42, 48, 80].

8.2.3 Context Modeling

Once the pixel model is estimated, the segmentation problem is the assignment of labels to
each pixel in the image. A straightforward way is to label pixels into different regions by max-
imizing the individual likelihood function py (x) (i.e., to perform ML classification). Usually,
this method may not achieve good performance because it does not use local neighborhood
information in the decision. The CBRL algorithm [27] is one approach that can incorporate the
local neighborhood information into the labeling procedure and thus improve the segmenta-
tion performance. The CBRL algorithm to perform/refine pixel labeling based on the localized
FGGM model can be defined as follows [37]:

Let di be the neighborhood of pixel i with an m x m template centered at pixel i. Anindicator
function is used to represent the local neighborhood constraints R;; (;,1;) = 1(l;,1;), where
l; and I; are labels of pixels i and j, respectively. Note that pairs of labels are now either
compatible or incompatible. Similar to the procedure in [27], one can compute the frequency
of neighbors of pixel i that have the same label values k as at pixel i

: 1
D = p(l = kly;) = o > I1(k 1) (8.19)

jedi,j#i

where ly; denotes the labels of the neighbors of pixel i. Since 71,5’.) is a conditional probability

of a region, the localized FGGM pdf of gray-level x; at pixel i is given by

(i 1ar) Zn(”pk () (8.20)

where py (x;) is givenin (8.2). Assuming gray values of the image are conditional independent,
the joint pdf of x, given the context labels 1, is

P(x|l) = H Zn pi (i) (8:21)

i=1k=1

wherel=(; :i=1,...,N).

Itis important to note that the CBRL algorithm can obtain a consistent labeling solution based
on the localized FGGM model (8.20). Since I represents the labeled image, it is consistent if
S;(l;) = S;(k),forallk =1,...,Kandfori =1,..., N [27], where

Sik) = pr (i) (8.22)

Now we can define

N
AQ) = Z (Z 1, k)S; (k)) (8.23)

i=1 k
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as the average measure of local consistency and

LCi=Y 1.k Sitk), i=1,....N (8.24)
k

represents the local consistency based on 1. The goal is to find a consistent labeling 1 that
can maximize (8.23). In the real application, each local consistency measure LC; can be
maximized independently. In [27], it has been shown that when R;;(l;,[;) = R;;i(l;,1;), if
A(l) attains a local maximum at I, then 1 is a consistent labeling.

Based on the localized FGGM model, lfo) can be initialized by an ML classifier,

1 =arg{m]?x pk(x,-)}, k=1,....K. (8.25)

Then, the order of pixels is randomly permutated and each label /; is updated to maximize LC;
— that is, classify pixel i into kth region if

l; = arg {m]?x n,ﬁi)pk(xi)} L k=1,....K (8.26)

where pi(x;) is given in (8.2) and n,ﬁi) is given in (8.19). By considering (8.25) and (8.26),
we can give a modified CBRL algorithm as follows [37]:
CBRL Algorithm

1. Given1©, m=0

2. Update pixel labels

e Randomly visit each pixel fori =1,..., N

e Update its label /; according to
ll.(’") = arg {m]?x n,ﬁi)(m)pk (x,-)}

n+1)€Bl(m))

3. When 21"

NN, < 1%, stop; otherwise, m = m + 1, and repeat step 2.

8.2.4 Applications
Simulated Data

To verify the steps of the statistical image analysis framework we discussed, let us first
consider a simulated image. Our example is the image shown in Figure 8.1a, which is made up
of four overlapping normal components. Each component represents one local region. Noise
levels are set to keep the same signal-to-noise ratio (SNR) between regions, where the SNR is
defined by

(Ap)?

SNR = 10log;( ~—
o

(8.27)

where Au is the mean difference between regions and o2 is the noise power. The AIC, MDL,
and MCBV curves as a function of the number of local clusters K are shown in Figure 8.1b.
According to the information theoretic criteria, the minima of these curves indicate the cor-
rect number of local regions. From this experimental figure, it is clear that the number of
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FIGURE 8.1

Experimental results of model selection, algorithm initialization, and final quantifica-
tion on the simulated image: (a) original image with four components; (b) curves of the
AIC/MDL/MCBYV criteria where the minimum corresponds to Ky = 4; (c) initial his-
togram learning by the ALMHQ algorithm; (d) final histogram learning by the PSOM
algorithm.

Table 8.1 True Parameter Values and the Estimates for the Simulated Image of
Figure 8.1

True Initial Final
1 2 3 4 1 2 3 4 1 2 3 4
0.25 0.125 0.5 0.125 0.234 0.234 0364 0.185 0.23 0.135 048 0.157
86 126 166 206 81 131 167 205 84 121 164 201
2400 400 400 400 235 158 157 177 354 365 373 463

Qx® 8 =

local regions suggested by these criteria are all correct. After the algorithm initialization by
ALMHQ [71], network parameters are finalized by the PSOM algorithm given in (8.9)—(8.11).
The GRE value (8.6) is used as an objective measure to evaluate the accuracy of quantifi-
cation. The results of the distribution learning by PSOM are shown in Figures 8.1c and d.
The GRE in the initial stage achieves a value of 0.0399 nats, and after the final quantification
by PSOM, is down to 0.008 nats. The numerical results are given in Table 8.1, where the
units of u and o2 simply represent the observed gray levels of the pixel images, whereas
is the probability measure. To simplify the representation, we omit their units as in [38, 56].
References [69, 70, 73] discuss these examples in more detail and present comparative results
for parameter estimation using EM and PSOM, noting the advantages of PSOM due to its
incremental nature.

Figure 8.2 shows the results of final image segmentation using the CBRL algorithm. We use
the ML classifier to initialize the image segmentation (i.e., to initialize the quantified image by
selecting the pixel label with the largest likelihood at each pixel) using equation (8.25). This
gives a suitable starting point for relaxation labeling [74]. CBRL is then used to fine tune the
image segmentation. Since the true scene is known in this experiment, the percentage of total
classification error is used as the criterion for evaluating the performance of the segmentation
technique. In Figure 8.2, the initial segmentation by the ML classification and the stepwise
results of three iterations in PCRN are presented. In this experiment, algorithm initialization
results in an average misclassification of 30%. It can be clearly seen that a dramatic improve-
ment is obtained after several iterations of the CBRL by using local constraints determined by
the context information. Also, note that the convergence is fast because after the first iteration
most misclassifications are removed. The final percentage of classification errors for Figure 8.2
is about 0.7935%.
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ML initialization First iteration in PCRN.

Second iteration in PCRN. Third iteration in PCRN.

FIGURE 8.2

Image segmentation by PCRN on simulated image (with initialization by ML classifica-
tion).

Brain MR Analysis

Quantitative analysis of brain tissues refers to the problem of estimating tissue quantities
from a given image and segmentation of the image into contiguous regions of interest to
describe the anatomical structures. The problem has recently received much attention largely
due to the improved fidelity and resolution of medical imaging systems. Because of its ability
to deliver high resolution and contrast, MR imaging (MRI) has been the dominant modality
for research on this problem [14, 16, 38, 56, 83]. Based on the statistical properties of MR
pixel images, use of an SFNM distribution is justified to model the image histogram, and it
is shown that the SFNM model converges to the true distribution when the pixel images are
asymptotically independent [73].

For this study, we use data consisting of three adjacent, T1-weighted MR images parallel to
the AC—PC line. Since the skull, scalp, and fat in the original brain images do not contribute
to the brain tissue, we edit the MR images to exclude nonbrain structures prior to tissue
quantification and segmentation, as explained in [70, 74]. This also helps us to achieve better
quantification and segmentation of brain tissues by delineation of other tissue types that are
not clinically significant [38, 56, 83]. The extracted brain tissues are shown in Figure 8.3.

Evaluation of different image analysis techniques is a particularly difficult task, and depend-
ability of evaluations by simple mathematical measures such as squared error performance is
questionable. Therefore, most of the time, the quality of the quantified and segmented im-
age usually depends heavily on subjective and qualitative judgments. Besides the evaluation
performed by radiologists, we use the GRE value to reflect the quality of tissue quantification.

Based on the pre-edited MR brain image, the procedure for analysis of tissue types in a slice
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FIGURE 8.3
Three sample MR brain tissues.

is summarized as follows:

1. For each value of K (number of tissue types), K = Kmin, - - - » Kmax, ML tissue quan-
tification is performed by the PSOM algorithm [equations (8.9)—(8.11)].

2. Scanthe valuesof K = Kyin, - - . , Kmax, anduse MCBYV (8.16) to determine the suitable
number of tissue types.

3. Select the result of tissue quantification corresponding to the value of K¢ determined in
step 2.

4. Initialize tissue segmentation by ML classification (8.25).
5. Finalize tissue segmentation by CBRL [implementing (8.26)].

The performance of tissue quantification and segmentation is then evaluated in terms of the
GRE value, convergence rate, computational complexity, and visual judgment.

The brain is generally composed of three principal tissue types: white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF), plus their combinations, called the partial volume
effect. We consider the pairwise combinations as well as the triple mixture tissue, defined as
CSF-white—gray (CWG). More important, since the MRI scans clearly show the distinctive
intensities at local brain areas, the functional areas within a tissue type need to be considered.
In particular, the caudate nucleus and putamen are two important local brain functional areas
because, in our complete image analysis framework, we allow the number of tissue types to vary
from slice to slice (i.e., we do consider adaptability to different MR images). We let K i, = 2
and Kmax = 9 and calculate AIC(K) [eq. (8.12)], MDL(K) [eq. (8.14)], and MCBV(K)
[eq. (8.16)] for K = Kmin, ..., Kmax- The results with these three criteria are shown in
Figure 8.4, which suggests that the three sample brain images chosen contain 6, 8, and 6 tissue
types, respectively. According to the model fitting procedure using information theoretic
criteria, the minima of these criteria indicate the most appropriate number of tissue types,
which is also the number of hidden nodes in the corresponding PSOM (mixture components
in SFNM). In the calculation of MCBYV using (8.18), as discussed, one can use the CRLBs to
represent the conditional variances of the parameter estimates, given by [50]:

1 —
Var (feuL) = M , (8.28)
0.2
Var (flemL) = N—y’;k and (8.29)
208(Nmy — 1)
Var (&fML) S Sl (8.30)
N2m;
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FIGURE 8.4
Results of model selection for slices 1-3 (Ko = 6, 8, 6, left to right).

Note that since the true parameter values in the above equations are not available, their ML
estimates are used to obtain the approximate CRLBs. From Figure 8.4, it is clear that, with
real MR brain images, the overall performance of the three information theoretic criteria is
fairly consistent. However, it is noted that AIC has a tendency to overestimate while MDL has
a tendency to underestimate the number of tissue types [68], and MCBYV provides a solution
between those of AIC and MDL, which can be a desirable choice in terms of providing a
balance between the bias and variance of the parameter estimates.

When performing the computation of the information theoretic criteria, we use PSOM to
iteratively quantify different tissue types for each fixed K. The PSOM algorithm is initialized
by the ALMHQ [71]. For slice 2, the results of final tissue quantification with Ko = 7, 8,9
are shown in Figure 8.5. Table 8.2 gives the numerical result of final tissue quantification for
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FIGURE 8.5

Histogram learning for slice 2 (K =7, 8, 9 from left to right).

slice 2 corresponding to Ky = 8, where a GRE value of 0.02 to 0.04 nats is achieved. These
quantified tissue types agree with those of a physician’s qualitative analysis results [69].

Table 8.2 Result of Parameter Estimation for Slice 2

Tissue Type 1 2 3 4 5 6 7 8

/4 0.0251  0.0373  0.0512 0.071  0.1046 0.1257 0.2098 0.3752
7 38.848  58.718  74.400 88.500 97.864 105.706  116.642  140.294
o? 78.5747 42282  56.5608 34.362 24.1167 23.8848  49.7323  96.7227

The CBRL tissue segmentation for slice 2 is performed with Ko = 7, 8, 9, and the algorithm
is initialized by ML classification [eq. (8.25)] [66]. CBRL updates are terminated after 5 to 10
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iterations since further iterations produced almost identical results. The segmentation results
are shown in Figure 8.6. It is seen that the boundaries of WM, GM, and CSF are successfully

FIGURE 8.6
Results of tissue segmentation for slice 2 with Ky = 7, 8, 9 (from left to right).

delineated. To see the benefit of using information theoretic criteria in determining the number
of tissue types, the decomposed tissue type segments are given in Figure 8.7 with Ko = 8. As
can be observed in Figures 8.6 and 8.7, the segmentation with eight tissue types provides a very
meaningful result. The regions with different gray levels are satisfactorily segmented, and the
major brain tissues are clearly identified. If the number of tissue types were “underestimated”
by one, tissue mixtures located within the putamen and caudate areas would be lumped into
one component, but the results would still be meaningful. When the number of tissue types
is “overestimated” by one, there is no significant difference in the quantification result, but
the white matter would be divided into two components. For Ko = 8, the segmented regions
represent eight types of brain tissues: CSF, CG, CWG, GW, GM, putamen area, caudate area,
and WM, as shown in Figure 8.7. These segmented tissue types again agree with the results
of a radiologist’s evaluation [69].

Mammogram Analysis

Another example application area for the image analysis framework we have introduced is
in segmentation and extraction of suspicious mass areas from mammographic images. With an
appropriate statistical description of various discriminate characteristics of both true and false
candidates from the localized areas, an improved mass detection may be achieved in computer-
aided diagnosis (Figure 8.8). Preprocessing can be an important tool for analysis depending
on the application. In this example, one type of morphological operation is derived to enhance
disease patterns of suspected masses by cleaning up unrelated background clutters, and then
image segmentation is performed to localize the suspected mass areas using the stochastic
relaxation labeling scheme [35, 37]. The mammograms for this study were selected from
the Mammographic Image Analysis Society (MIAS) database and the Brook Army Medical
Center (BAMC) database created by the Department of Radiology at Georgetown University
Medical Center. The areas of suspicious masses were identified by an expert radiologist based
on visual criteria and biopsy-proven results. The BAMC films were digitized with a laser film
digitizer (Lumiscan 150) at a pixel size of 100 x 100m and 4096 gray levels (12 bits). Before
the method was applied, the digital mammograms were smoothed by averaging 4 x 4 pixels
into 1 pixel. According to radiologists, the size of small masses is 3 to 15 mm in effective
diameter. A 3-mm object in an original mammogram occupies 30 pixels in a digitized image
with a 100-um resolution. After the image size is reduced by four times, the object will occupy
the range of about 7 to 8 pixels. An object the size of 7 pixels is expected to be detectable by
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FIGURE 8.7

Result of tissue type decomposition for slice 2 that represents eight types of brain tissues:
CSF, CG, CWG, GW, GM, putamen area, caudate area, and WM (left to right, top to
bottom).

any computer algorithm. Therefore, the shrinking step is applicable for mass cases and can
save computation time.

Consider the use of the FGGM model and the two information criteria — AIC and MDL
— to determine the mixture number K. Tables 8.3 and 8.4 show the AIC and MDL values
with different K and o of the FGGM model based on one original mammogram. As can be
seen, although with different ¢, all AIC and MDL values achieve the minimum when K = 8.
This indicates that AIC and MDL are relatively insensitive to the change of «. With this
observation, we can decouple the relation between K and o and choose the appropriate value
of one while fixing the value of the other. Figure 8.9a and b are two examples of AIC and MDL
curves with different K and fixed « = 3.0. Figure 8.9a is based on the original mammogram
and Figure 8.9b is based on the enhanced mammogram. As we can see in Figure 8.9a, both
criteria achieved the minimum when K = 8. It should be noted that although no ground truth
is available in this case, our extensive numerical experiments have shown a very consistent
performance of the model selection procedure and all the conclusions were strongly supported
by the previous independent work reported by [5]. Figure 8.9b indicates that K = 4 is the
appropriate choice for the mammogram enhanced by a dual morphological operation. This is
believed to be reasonable since the number of regions decreases after background correction.
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(c) (d)

FIGURE 8.8
Examples of mass enhancement: (a) original mammogram; (b) enhanced mammogram;
(c) different original mammogram; (d) enhanced result of (c).

The order is then fixed at K = 8, and the value of « is changed for estimating the FGGM
model parameters using the EM algorithm given in Section 8.2.2 with the original mammogram.
The GRE value between the histogram and the estimated FGGM distribution is used as a
measure of the estimation bias, and it is noted that the GRE achieved a minimum distance
when the FGGM parameter « = 3.0, as shown in Figure 8.10. A similar result was shown
when the EM algorithm was applied to the enhanced mammogram with K = 4 (Figure 8.11).
This indicated that the FGGM model might be better than the SFNM model (¢ = 2.0) for
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Table 8.3 Computed AICs for the FGGM Model with
Different o

K a=1.0 a=2.0 a=23.0 a=4.0

2 651250 650570 650600 650630
3 646220 644770 645280 646200
4 645760 644720 645260 646060
5 645760 644700 645120 646040
6 645740 644670 645110 645990
7 645640 644600 645090 645900
8  645550(min) 644570(min) 645030(min) 645850(min)
9 645580 644590 645080 645880
10 645620 644600 645100 645910

Table 8.4 Computed MDLs for the FGGM Model with

Different «

K a=1.0 a=2.0 a=23.0 a=40
2 651270 650590 650630 650660
3 646260 644810 645360 646350
4 645860 644770 645280 646150
5 645850 644770 645280 646100
6 645790 644750 645150 646090
7 645720 644700 645120 645930
8 645680(min) 644690(min) 645100(min) 645900(min)
9 645710 644710 645140 645930
10 645790 644750 645180 645960

Table 8.5 Comparison of Segmentation Error Resulting
from Noncontextual and Contextual Methods

Method
Soft classification Bayesian classification CBRL
GRE value 0.0067 0.4406 0.1578

mammographic images when the true statistical properties of the mammograms are generally
unknown, although the SFNM has been successfully used in a large number of applications
as well as in our previous example. Hence, the choice of the best model to describe the data
depends on the nature of the data for the given problem.

After the determination of all model parameters, every pixel of the image is labeled to a
different region (from 1 to K) based on the CBRL algorithm. Then, the brightest region,
corresponding to label K, plus a criterion of closed isolated area, is chosen as the candidate
region of suspicious masses. These results are noted to be highly satisfactory when compared
to outlines of the lesions [37]. Also, similar to the previous example, GRE values can be used
to assess the performance of the final segmentation. Table 8.5 shows our evaluation data from
three different segmentation methods when applied to these real images.
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The AIC and MDL curves with different number of regions K. (a) The results based
on the original mammogram, the optimal K = 8; (b) the results based on the enhanced
mammogram, the optimal K = 4.

8.3 Graphics Modeling

Reconstruction of a 3D surface from a set of processed images is an important problem in the
presentation and understanding of multimedia data. The data generated by imaging modalities
such as 2D/3D camera, medical imaging, and other imaging devices provide a series of image
slices of the object. The problem is then to infer a 3D representation of the object which will
allow visualization as well as analysis of the geometry parameters of the object. In general,
the 3D reconstruction process consists of three steps:

1. Extracting object contours from 2D cross-sectional images
2. Interpolating the intermediate contours between successive slices or among data points
3. Reconstructing surfaces or volumes from serial cross-sectional contours

Based on various image analysis algorithms, step 1 may be achieved through image seg-
mentation or edge detection, which was discussed in the first part of this chapter and earlier in
this book. In this section, we focus our discussions on steps 2 and 3.

Surface reconstruction is to form surfaces between contours of successive contours. If the
interslice distances between the successive contours is small, the 3D structure of the object can
be captured well by using surface reconstruction methods. However, if the contours are not
closely spaced, the empty space between contours should be filled before surface reconstruction
methods are applied. This procedure is usually referred to as contour interpolation. Many
interpolation methods have been developed for various applications. For example, a linear
interpolation algorithm is proposed in [82] to reconstruct prostatectomy specimens together
with an enhanced extrapolation algorithm to overcome the difficulties in branching shapes and
concave surfaces. This method is similar to the shape interpolation method described in [52]
but has limitations in working with hemispherical shapes or round objects, primarily because
of its linear characteristics. The elastic interpolation method given in [10] performs nonlinear
contour interpolation by generating a series of intermediate contours filling the gap between the
start and the goal contours. This method is based on Burr’s dynamic elastic contour model [8]
and can handle the branching situation very well by using union and/or intersection operators.
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FIGURE 8.10

The comparison of learning curves and histogram of the original mammogram with
different o; K = 8. The optimal « = 3.0. (a) « = 1.0, GRE = 0.0783; (b) « = 2.0, GRE
= 0.0369; (¢) « = 3.0, GRE = 0.0251; (d) « = 4.0, GRE = 0.0282.

Many researchers have proposed using the elastic contour interpolation method for inter-
polating intermediate contours from the initial contours. The interpolation method assigns
contours with the elastic property, and then, by applying forces onto them, deforms the start
contour to conform to the goal contour. For example, a deformable surface—spine model has
been proposed in [86, 87] to reconstruct the surface model from the interpolated contours. The
deformable surface—spine model is a coupled dynamic system, where the surface and spine
are confined in the following way: a deformable spine (axis) is determined from its contours,
then all the surface patches are contracted to the spine through expansion/compression forces
radiating from the spine while the spine itself is also confined to the surfaces. The surface
refinement is governed by a second-order partial differential equation from Lagrangian me-
chanics, and the refining process is accomplished when the energy of this dynamic deformable
surface—spine model reaches its minimum. A finite-element method is further used to solve the
dynamic Lagrangian equation by constructing 9-degree-of-freedom (dof) triangular elements
and 4-dof spine elements. In sum, both the elastic interpolation method and the deformable
surface—spine model can be jointly used for building 3D graphics models for visualization and
animation.

A contour on aplane z = z; can be defined as a linked list of vertices: C = {(xi,yi), 1 <i <
N}, or equivalently, defined as a concatenation of linked line segments where a line segment is
represented by its two end vertices (x;, y;) and (xj4+1, yi+1). Note that we drop z coordinates
in the above expressions to sirgplify the notations. Given a start contour C1 = {(x1;, y1;), 1 <
i < N1} and a goal contour Co» = {(x2;, y2i), | < i < N3}, to interpolate between the start
and goal contours, one must find a particular “force field” acting on the start contour and try to
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FIGURE 8.11

The comparison of learning curves and histogram of the enhanced mammogram with
different o; K = 4. The optimal « = 3.0. (a) « = 1.0, GRE = 0.0493; (b) « = 2.0, GRE
= 0.0126; (¢) « = 3.0, GRE = 0.0105; (d) « = 4.0, GRE = 0.0676.

deform it to conform to the goal contour. Thus, a three-step procedure is designed to achieve
this task as described below [39].

1. Finding the Closest Line Segment

Let Py; and Py(;41) denote a line segment on the first contour C1, and P; and Py(j41) a line
segment on the second contour C;. In order to find the closest line segment of each vertex,
a distance measure including the Euclidean distance and orientation property (the directional
incompatibility) is used.

The directional incompatibility ¢ (i, j) between a vertex P;; of C; and a line segment
between the vertices P»; and P ;1) of C is defined as

|(Pris1) — Ppi) x (P2(j+1) - Pz,)l

o, j) =
|Pris1y — Piil 1Pasn) — Pajl

(8.31)

The above equation tells us that ¢ (i, j) = sin6, where 6 is the angle between two vectors
P1(1+1) — P1, and Pz( J+ — Pz je. The Euclidean distance from a vertex Pll to a line segment
of P2(J+]) Pyjisn(, j) = |A X B|/|B| where 0 < 0 < m, A= P1, — PZ,, and B =
P2(1+1) — P2] Additionally, if Acosf < Oor Acosf > |B| a term “f B| has to be included

in n(i, j), where R = P1, - 2/, and P ; is either the point sz or P2(1+1) depending on

Wthh one 1s closer to Pl, Then, the total d1stance between a vertex Pll and a line segment of
P2(]+1) — ng is defined as the weighted sum, d(i, j) = ¢ (i, j) + w n(i, j), where w is the

© 2001 CRC PressLLC



(a) (b)

(c) (d)

FIGURE 8.12

(a) The suspected mass segmentation results based on the original mammogram, (b) the
results based on the enhanced mammogram, K = 4, « = 3.0. (c) and (d) are the results
based on another original mammogram and its enhanced image.

weight that in practice can be set to 1 in most cases. The closest line segment can be determined
by finding the point index J; giving minimum distance d (i, j) — thatis, min; (i, j) = d(, J;).

2. Determining Displacement and Force Field

The displacement vector associated with a vertex ﬁl ; and a line segment between the vertices
P>y, and Py(y,41) is defined as
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B F)/_-ﬁli, if Acos6 > |B|orAcos6 <0
Di(i, J;) = R (8.32)
l Asing 2 lB”,if0<Acos9<|B|,

where 132/ I is the point 132 J; or 132( Ji+1) depending on which is closer to ﬁli Similarly, by
reversing the roles of the start and the goal contours, the displacement vector Dz (j, I;) can be

determined at each vertex P2 of C2
A force field is then defined as a function of the “pushing” and “pulling” forces:

N . Ny . .7
Yl GuDiG, Ty 22y G2jDa(l, Ij)i| ’ 8.33)

ﬁ(x’ y) = y_l |: - N
Yt Gy 221 Gaj

where G1; and G»; are designed to provide the effect that close neighbors have more influence
than that of far neighbors, and they can be defined as Gaussian functions with covariance oy
defined as oy = o9 f —k where fisaconstant 1 < f < 2, and y can be regarded as a damping
coefficient. For a discussion of how these parameters affect the dynamic behavior of the elastic
contour model, see [39].

3. Generating Intermediate Contours

Consider a start contour C 1 and a goal contour c 2. One can compute the initial force field FO
according to the method described in step 2. Using F, FO, one defines the contour 75! from 7%
interactively by providing / [°=¢C 1; that is,

I = 1% 4 FF (o, i) (8.34)

8.3.1 Surface Reconstruction

Surface reconstruction is usually achieved by forming triangular patches between successive
pairs of contours, which is often referred to as the tiling problem or triangulation problem in
the literature. Solutions to the tiling problem can be categorized into two groups: (1) optimal
approaches in some given criterion and (2) primarily heuristic approaches. Optimal methods
provide the best triangulation in the sense of the given criterion and are often based on a graph
description where a path in the graph defines a possible solution. A cost function (criterion)
is assigned to each arc of the graph, and the optimal solution is obtained by finding the path
with minimum or maximum cost function in the graph. For example, one can use maximizing
volume as a cost function or use minimizing area instead. These two methods produce good
results in practice, although the second method is preferred over the first because there is no
need to deal separately with the convex and concave parts of objects. Heuristic approaches, on
the other hand, are computationally less expensive and they usually define triangular patches
one by one using only a local decision criterion. For instance, the triangular patches can be
sequentially determined by choosing the shorter edge of two possible edges defining a patch.
Most heuristic methods suffice when contours are similar in shape and orientation and are
mutually centered. However, if contours are very different in shape, orientation, and position,
heuristic methods can produce incorrect results.

In contrast to linear methods (tiling triangular patches), nonlinear surface reconstruction
methods have been intensively proposed and studied. For example, a uniform B-spline ap-
proach has been developed to represent sectional contours and to further interpolate the surface
between slices. A Hermite interpolation function with curvature sampling and a fast nearest
mapping algorithm between two cross-sections is also proposed to perform nonlinear surface
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reconstruction using physically based deformable modeling. A more elegant approach to
surface reconstruction using physical deformable models has been recently developed in the
computer vision community and is now widely used in many areas such as computer graphics
and animation, dynamics simulation, and modeling. We discuss this approach next.

8.3.2 Physical Deformable Models

Deformable models are based on variational principles of continuum mechanics. These dy-
namic principles are usually expressed in the form of dynamic differential equations. Elastic
models [63] simulate nonlinear elastic materials. They incorporate deformation energies that
are invariant with respect to rigid-body motions, impart no deformation, and grow monotoni-
cally with the magnitude of the deformation. The energy functionals are expressed as integral
measures of the instantaneous deformation of amodel away from its prescribed reference shape.
The deformation is quantified in a convenient way using the fundamental forms of differential
geometry (metrics, curvatures, etc.). Lagrange equations of motion balance the resulting elas-
tic forces against inertial forces due to the mass distribution of the model, frictional damping
forces, and externally applied forces. Elastically deformable models can efficiently model a
variety of smooth objects with different shapes. They can also dynamically respond to external
forces, which is very important in modeling human organs for the purpose of surgical planning
and simulation in particular. Several deformable models (e.g., controlled-continuity splines
under tension [61], symmetry-seeking models [64], and deformable superquadrics [61]), have
been developed and applied to surface reconstruction [64], shape and motion recovery [44],
and object recognition [57]. A dynamic finite-element surface model was proposed by Ter-
zopoulos to track moving anatomical structures (e.g., the left ventricle) in 4D cardiac images
for functional deformation analysis [59].

Inelastic models [91] are a powerful model-building medium. Unlike elastic models, which
immediately regain their natural, undeformed shapes, inelastic models are commonly associ-
ated with high-polymer solids such as modeling clay or silicon putty. Consequently, inelastic
models serve as a sort of freely sculptable computational plasticine. Free-form shapes may be
created by interactively applying simulated forces on the inelastic model to stretch, squash, and
mold it. Inelastic models tractably simulate three canonical inelastic behaviors — viscoelas-
ticity, plasticity, and fracture. These behaviors may be incorporated into any of the elastic
models described above by introducing internal processes that dynamically control resilience
and fragility as a function of deformation.

Stochastic models combine deterministic deformable behaviors with random processes.
This leads to the marriage of two well-known modeling techniques: splines and fractals. On
one hand, spline shapes are easily constrained and are suitable for modeling smooth, man-
made objects such as teapots, whereas fractals, although difficult to constrain, are suitable
for synthesizing the various irregular shapes found in nature, such as a mountainous terrain.
Constrained fractals are a class of deformable models that combine these seemingly opposed
features by exploiting the remarkable relationship between fractals and generalized energy-
minimizing splines, which may be derived through Fourier analysis. Constrained fractals
are generated by a stochastic relaxation algorithm that bombards a spline subject to shape
constraints with modulated white noise, letting the spline diffuse the noise into the desired
fractal spectrum as it settles into equilibrium. In general, elastically deformable models are
suitable to model relatively smooth objects, whereas inelastic models have the potential to
model complex (moderately irregular) objects. On the other hand, stochastic deformable
models are extremely important to model the various irregular shapes found in nature, such as
mountainous terrain.
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8.3.3 Deformable Surface-Spine Models

The surface and spine can be defined as geometric mappings from material (parametric)
coordinate domains into 3D Euclidean space %t>. The surface can be defined by the following
mapping M:

M: (u,v) — x(u,v,t) = xu,v,t), yu,v,t), z(u,v, 1)), (8.35)

where (u,v) € [O, 1]2 are the bivariate material coordinates; x(u, v,t), y(u, v,t), and
z(u, v, t) are the coordinates of a point on the surface in 93 and ¢ denotes the time-varying
property of the deformable surface. Similarly, the spine can be defined by the mapping m:

m: s+ X(s,1) = (x(s,1), y(s,1),z(s, 1)), (8.36)

where s € [0, 1] is the univariate material coordinate and x(s, t), y(s, t), and z(s, t) are the
coordinates of a point on the spine in 9.

The strain energy £ can be found to characterize the deformable material of either the surface
or the spine, which will be discussed in the next section as an instance of the spline function.
Then the continuum mechanical equation

92 x  8E
X x+ (x)

— — =f 8.37
a2 V% 5x (x) (8.37)

I

governs the nonrigid motion of the surface (spine) in response to an extrinsic force f(x), where

W is the mass density function of the deformable surface (spine) and y is the viscosity function

of the ambient medium. The third term on the left-hand side of the equation is the variational

derivative of the strain energy functional &£, the internal elastic force of the surface (spine).
The deformable energy of surface x(u, v, ) can be defined by

Lol ax | ox ox ax |2
gSLlI'fﬂCC(us v, 1) = wio |—| +2wi1 |—| X |—| +wo1 | —
o Jo ad ou dv v
2,12 2. |12 2,12
+ wyy |—=| +2w we |— dudv , 8.38
20|53 2|5 02 |53 ) u (8.38)

where the weights w1g, w11, and wo control the tensions of the surface and wag, w22, and wo;
control its rigidities (bending energy). The deformable energy of spine x(u, t) is given by

! dx
gspine(sst) Z/O <w1

ds

2
+ wy

2
X
) ds . (8.39)

ds?

The weight w; controls the tension along the spine (stretching energy), while w, controls its
rigidity (bending energy).

To couple the surface with the spine, one should enforce v = s, which maps the spine
coordinate into the coordinate along the length of the surface. Then connect the spine with the
surface by introducing the following forces on the surface and spine, respectively [64]:

f;lurface (u,s,1) =—(a/) (isurface - Xspine) (8.40)
f;inne (s,1) =a (isurface - Xspine) (8.41)

where a controls the strength of the forces; Xgyrface 1S the centroid of the coordinate curve (s

0Xsurface
ou

- _ 1 .
= constant) circling the surface and defined as Xgyrface = % fo Xsurface du, where [ is
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0Xgurfac . .
=y | du. In general, the above forces coerce the spine staying

the length given by [ = fol
on an axial position of the surface. Further, if necessary, we can encourage the surface to be
radially symmetric around the spine by introducing the following force:

. =b@FE—|rDF, (8.42)

surface

where b controls the strength of the force; r is the radial vector of the surface with respect
to the spine as r(u, s) = Xsurface — Xspine; the unit radial vector F(u,s) = r/|r|; and r(s) =
% fol r| % du, as the mean radius of the coordinate curve s = constant. Also, it is possible
to provide control over expansion and contraction of the surface around the spine. This can be
realized by introducing the following force:

e = crT, (8.43)

surface

where ¢ controls the strength of the expansion or contraction force. The surface will inflate if
¢ > 0 and deflate if ¢ < 0.

Summing the above coupling forces in the motion equation associated with surface and spine,
we obtain the following dynamic system describing the motion of the deformable surface—spine
model:

32 Xsurface 0Xsurface 8Esurface t
H 912 4 ot + 85X = sel)l(rface (8-44)
b
+ saurface + fsurface + scurface ’
el 2Xspine ol Xspine ) Sspine t
912 4 ot + 5X = f:;ine + gpine ’ (8.45)

where fsel’l‘r‘fac . is the external force applied on the surface and f:f;itn . is the external force applied
on the spine.

Both the finite difference method and the finite element method can be used to compute
the numerical solution to the surface Xgyrface and spine Xspine. The finite difference method
approximates the continuous function x as a set of discrete nodes in space. A disadvantage of
the finite difference approach is that the continuity of the solution between nodes is not made
explicitly. The finite-element method, on the other hand, provides continuous surface (or spine)
approximation by approximating the unknown function x in terms of combinations of the basis
functions. In the finite element method, we first tessellate the continuous material domain,
(u, v) for the surface and s for the spine in our case, into a mesh of m element subdomains
D;, and then we approximate x as a weighted sum of continuous basis functions N; (so-called
shape functions): x ~ x = Zi x;N;, where Xx; is a vector of nodal variables associated with
mesh node i. The shape functions N; are fixed in advance and the nodal variables x; are the
unknowns. The motion equation can then be discretized as

M82X+C8X+K F (8.46)
[—— _— X = , .
012 ot
where x = [xlT, e, xiT ey x,{ ], M is the mass matrix, C the damping matrix, K the stiff
matrix, and F the forcing matrix. M, C, and F can be obtained as follows:
M; = / / NI N du dv, (8.47)
E; ’
Cj= / / yNIN;dudv, (8.48)
Ej
Fj = / fE Nit;dudv . (8.49)
j
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To compute K, use the following equation:

K; = / / (N,{ﬂNb+N§aNs)dudv, (8.50)
Ej
where

(2N 92N a°N7”

Ny=|—, —, — 8.51

"7 ou? udv BUZ] ®>D
TN oaN77

N, = _,_] (8.52)
L du dv

o= wo2 w221| (8.53)
| W22 w20
—w()l 0 0

B=1| 0 wy O (8.54)
L 0 0 wp

The deformable surface consists of a set of connected triangular elements chosen for their
ability to model a large range of topological shapes. Barycentric coordinates in two dimensions
are the natural choice for defining shape functions over a triangular domain. Barycentric
coordinates (L1, L, L3) are defined by the following mapping with material coordinates
(u, v):

u Ui Uz u3 Ly
v|=|v vy v Ly |, (8.55)
1 1 1 1 Lj

where (11, v1), (42, v2), and (u3, v3) are the coordinates of three vertex locations of the trian-
gle.

We can use the 9-dof triangular element, which includes the position and its first parametric
partial derivatives at each triangle vertex, as shown in Figure 8.12a. The shape functions of
the first node in a 9-dof triangle are [91]:

Ni Ly +L3Ly+ L3L3 — L1L3 — LyL3
T
N =| M| =| e3(L2La+0.5L1LoL3) —c2 (L3L3 +0.5L1LaLs) | . (8.56)
N3 —bs (L%L2 + 0.5L1L2L3) + by (L%L3 + 0.5L1L2L3)

The triangle’s symmetry in Barycentric coordinates can be used to generate the shape function
for the second and third nodes in terms of the first. To generate Ng, use the above equations
butadd a 1toeachindexsothatl — 2,2 — 3,and 3 — 1. The Ng functions can be obtained
by adding another 1 to each index. Note that the shape functions for a 9-dof triangle do not
guarantee C! continuity between adjacent triangular elements. In [91], a 12-dof triangular
element can be made C! continuous by adding 1 dof on each edge of the triangle (see [9]
for details). An alternative to having a C! continuous triangular element is to use an 18-dof
element which includes the nodal location, with its first and second partial derivatives evaluated
at each node [43]. We use a 9-dof triangular element although the extension to 12- or 18-dof
triangular elements is straightforward.

The finite element of the spine has 4 dof between two nodes located at the ends of the
segment. The dof at each node correspond to its position and tangent. The spine segment can be
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approximated as the weighted sum of a set of Hermite polynomials: x &~ x (s) = Z?:o X; N;,
where N;,i =0, ..., 3 are given as follows:

No =1—=3(s/h)> +2(s/h)>,

Ny = h(s/h —2(s/h)* + (s/h)*),

N> =3(s/h)* — 2(s/ h)*,

N3 = h(—(s/h)* + (s/h)?) , (8.57)

where £ is the parametric element length.

8.3.4 Numerical Implementation

The deformable surface—spine model can be stabilized during the fitting process if its motion
is critically damped to minimize vibrations. Critical damping can be achieved by appropri-
ately balancing the mass and damping distributions. A simple way of eliminating vibration
while preserving useful dynamics is to set the mass density in equation (8.46) to zero, thus
reducing (8.46) to

ox
CE +Kx=F. (8.58)

This first-order dynamic system governs the model which has no inertia and comes to rest
as soon as all the forces balance. We integrate equation (8.58) using an explicit first-order
Euler method. The method begins with a simple forward difference approximation. Consider
extrapolation from time level ¢ to r + Ar by forward differencing at 7. The usual Taylor series
expansion at time ¢ has the form

(AD? d*x
21 32

X(t + At) =x(t) + At%(r) + @), £e(,1), (8.59)

which yields the forward difference approximation

dx  x(t+ Ar) —x(t
= X(t+ A —x@) (8.60)
at At

and is only O(At) accurate. Using this forward difference approximation and transposing

terms involving x(¢), we have
Cx(t + Ar) = (C — AtK)x(1) + AtF(¢) (8.61)

Thus, we obtain the updating formula for x from time ¢ to ¢ + At as follows:
X(1 + Ar) = (I — Azc—lK) x(1) + AtCTF (1) (8.62)

Itis well known that finite difference methods for initial-value systems yield expressions very
similar to the above results obtained by finite element schemes. A noteworthy distinction is that
the coefficient matrix C for finite differencing is diagonal in the usual difference approximation.
This leads, in the forward difference approximation, to more efficient algorithms for solving
the problem. In the finite element method, C is often sparse and ill conditioned, which causes
difficulty in the computation of C~!. To obtain C~!, then, computationally complex singular
decomposition methods have to be used. However, there is a physical solution in computational
mechanics, called the lumping procedure, which overcomes the difficulty with the sparseness
and ill-conditioning of matrix C. The idea can be interpreted physically as replacing the
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continuous material with the distributed mass by the concentrated material with lumped mass
(beads) at the nodes. In practice, there are several ways to perform such a lumping procedure,
such as using modified shape functions or different numerical integral methods. Among those,
the easiest way is keeping only the diagonal coefficients of C and discarding all the off-diagonal
coefficients, which is the approach in solving the above-mentioned dynamic equation of the
deformable surface—spine model.

8.3.5 Applications

In this section, we present applications of the algorithms we presented for graphical model-
ing, reconstruction, and representation with both discontinuity-embedded and smooth objects.
The discontinuity-embedded deformable model defines a dynamic finite element representa-
tion with both continuous and discontinuous components as described in the previous section.
First, we apply our new deformable model to reconstruct several synthetic and range datasets
to illustrate its performance in recovering depth discontinuities in the final reconstructed sur-
faces (see Figure 8.13). In order to extract the contours of the object, we use Canny’s edge
operator to detect and locate depth discontinuities in the datasets (see Figure 8.14). It is not
a trivial task in general to detect surface discontinuities; however, we assume such location
information of depth discontinuities can be provided as a priori knowledge in our experiments
(see Figure 8.15). We then initialize the discontinuity-embedded deformable model by a finite-
element tessellation where the discontinuity path is identified within each element. The dataset
acts as the external force to dynamically deform the model in order to fit the surface to the
dataset. The final reconstructed surface is obtained when the dynamic motion equation reaches
it equilibrium. Figure 8.16 shows the reconstructed object surface.

FIGURE 8.13
Range image of a simply synthetic object, where the dataset contains both smooth and
discontinuous surfaces.

In Figures 8.17-8.21, we present the synthetic step data and the reconstruction results by
the elastically deformable model and our discontinuity-embedded deformable model. As we
can see, the elastically deformable model smooth over the depth discontinuity whereas the
discontinuity-embedded deformable model recovers the depth discontinuity explicitly. With
the discontinuity location information prescribed, the discontinuity-embedded deformable
model incorporates a discontinuity component into its representation and dynamically con-
forms to the data in both continuous and discontinuous parts. The example is a tool syn-
thetic dataset illustrated in Figure 8.17. With the location of the depth discontinuity, the
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FIGURE 8.14

Frame representation of the synthetic object, where the boundaries can be extracted by
various methods.

FIGURE 8.15

Gradient vector field of the synthetic object after an appropriate pre-processing step.

FIGURE 8.16

The reconstructed surface of the synthetic object, by incorporating the information re-
garding both continuous and discontinuous representations.
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FIGURE 8.17
The contours of an object with deformable characteristics.

FIGURE 8.18
The reconstructed frame of the object by incorporating only the term representing the
deformation property with smoothness constraint.

FIGURE 8.19
The reconstructed surface of the object showing a clear mismatch from the original
contours.
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FIGURE 8.20
The reconstructed frame of the object by incorporating both the terms representing the
deformation and discontinuity properties.

FIGURE 8.21
The reconstructed surface of the object showing a very satisfactory representation of the
original object.

discontinuity-embedded deformable model is capable of recovering the jump height on the
depth discontinuity (see Figure 8.20). As we see in the reconstructed surfaces by the elasti-
cally deformable model, the depth discontinuities are oversmoothed and hard to identify and
localize (see Figures 8.18 and 8.19). The loss of discontinuities will obviously affect the
outcome of those high-level processes such as object recognition. The depth discontinuities
are well recovered by our discontinuity-embedded deformable model, as seen in Figure 8.21.
With such a discontinuity-preserving surface reconstruction, high-level processes can easily
extract the object boundary information to achieve the ultimate goal-object recognition. Since
the discontinuity-embedded deformable model includes the conventional continuous compo-
nent represented as in the elastically deformable model, all the advantages of the elastically
deformable model are kept in the discontinuity-embedded deformable model for representing
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complex-structured smooth objects. Furthermore, the discontinuity-embedded deformable
model can achieve more accurate representation of surfaces with discontinuities than that of
the elastically deformable model.

We also applied our method to the reconstruction of the prostate model. A typical slice image
of the surgical prostate is shown in Figure 8.22, with the contours of the prostate capsule as

FIGURE 8.22
The contours of a three-dimensional prostate mode