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Preface

Mankind, under the grace of God, hungers for spiritual peace, esthetic
achievements, family security, justice, and liberty, none directly satisfied by

industrial productivity. But productivity allows the sharing of the plentiful rather
than fighting over scarcity; it provides time for spiritual, esthetic, and family
matters. It allows society to delegate special skills to institutions of religion,

justice, and the preservation of liberty.
HARLAN MILLS

DPMA and Human Productivity

As computer professionals, we strive to build systems that work and are 
useful; as software engineers, we are faced with the task of creating com-
plex systems in the presence of constrained computing and human 
resources. Object-oriented (OO) technology has evolved as a means of 
managing the complexity inherent in many different kinds of systems. The 
object model has proven to be a very powerful and unifying concept.

Changes to the Second Edition

Since the publication of the second edition of Object-Oriented Analysis and 
Design with Applications, we have seen major technological advances. This list 
includes some highlights, among many others.

■ High-bandwidth, wireless connectivity to the Internet is widely available.
■ Nanotechnology has emerged and has started to provide valuable products.
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■ Our robots are cruising the surface of Mars. 
■ Computer-generated special effects have enabled the film industry to recre-

ate any world imaginable with complete realism.
■ Personal hovercraft are available.
■ Mobile phones have become pervasive to the point of being disposable.
■ We have mapped the human genome.
■ Object-oriented technology has become well established in the mainstream 

of industrial-strength software development.

We have encountered the use of the object-oriented paradigm throughout the 
world. However, we still encounter many people who have not yet adopted the 
object paradigm of development. For both of these groups, this revision of this 
book holds much value.

For the person new to object-oriented analysis and design (OOAD), this book 
gives the following information:

■ The conceptual underpinnings of and evolutionary perspective on object 
orientation

■ Examples of how OOAD can be applied across the system development 
lifecycle

■ An introduction to the standard notation used in system and software devel-
opment, the Unified Modeling Language (UML 2.0)

For the experienced OOAD practitioner, the content herein provides value from a 
different perspective.

■ UML 2.0 is still new to even experienced practitioners. Here you will see 
the key changes in the notation.

■ More focus on modeling is provided, per feedback received about the previ-
ous edition.

■ You can gain a great appreciation for “why things are the way they are” in 
the object-oriented world, from the Concepts section of the book. Many 
people may never have been exposed to this information on the evolution of 
the OO concepts themselves. Even if you have been, you may not have 
grasped its significance when you were first learning the OO paradigm.

There are four major differences between this edition and the previous 
publication.

1. UML 2.0 has been officially approved. Chapter 5, Notation, will introduce 
UML 2.0. To enhance the reader’s understanding of this notation, we explic-
itly distinguish between its fundamental and advanced elements. 
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2. This edition introduces some new domains and contexts in the Applications 
chapters. For example, the application domains range broadly across vari-
ous levels of abstraction from high-level systems architecture to the design 
details of a Web-based system.

3. When the previous edition was published, C++ was relatively new, as was 
the very concept of OO programming. Readers tell us that this emphasis is 
no longer a primary concern. There is an abundance of OO programming 
and technique books and training available, not to mention additional pro-
gramming languages designed for OO development. Therefore, most of the 
coding discussions have been removed. 

4. Finally, in response to requests received from readers, this edition focuses 
much more on the modeling aspects of OOAD. The Applications section 
will show you how to use the UML, with each chapter emphasizing one 
phase of the overall development lifecycle.

Goals

This book provides practical guidance on the analysis and design of object-
oriented systems. Its specific goals are the following:

■ To provide a sound understanding of the fundamental concepts and histori-
cal evolution of the object model

■ To facilitate a mastery of the notation and process of object-oriented 
analysis and design

■ To teach the realistic application of object-oriented analysis and design 
within a variety of problem domains

The concepts presented all stand on a solid theoretical foundation, but this is 
primarily a pragmatic book that addresses the practical needs and concerns of 
software engineering practitioners, from the architect to the software developer.

Audience

This book is written for the computer professional as well as for the student.

■ For the practicing systems and software developer, we show you how to 
effectively use object-oriented technology to solve real problems.

■ In your role as an analyst or architect, we offer you a path from require-
ments to implementation, using object-oriented analysis and design. We 
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develop your ability to distinguish “good” object-oriented architectures 
from “bad” ones and to trade off alternate designs when the perversity of the 
real world intrudes. Perhaps most important, we offer you fresh approaches 
to reasoning about complex systems. 

■ For the program manager, we provide insight on topics such as allocation of 
resources of a team of developers, software quality, metrics, and manage-
ment of the risks associated with complex software systems.

■ For the student, we provide the instruction necessary for you to begin 
acquiring several important skills in the science and art of developing com-
plex systems.

This book is also suitable for use in undergraduate and graduate courses as well as 
in professional seminars and individual study. Because it deals primarily with a 
method of software development, it is most appropriate for courses in software 
engineering and as a supplement to courses involving specific object-oriented 
programming languages.

Structure

The book is divided into three major sections—Concepts, Method, and 
Applications—with considerable supplemental material woven throughout.

Concepts

Section I examines the inherent complexity of software and the ways in which 
complexity manifests itself. We present the object model as a means of helping us 
manage this complexity. In detail, we examine the fundamental elements of the 
object model such as: abstraction, encapsulation, modularity, and hierarchy. We 
address basic questions such as “What is a class?” and “What is an object?” 
Because the identification of meaningful classes and objects is the key task in 
object-oriented development, we spend considerable time studying the nature of 
classification. In particular, we examine approaches to classification in other dis-
ciplines, such as biology, linguistics, and psychology, and then apply these les-
sons to the problem of discovering classes and objects in software systems.

Method

Section II presents a method for the development of complex systems based on 
the object model. We first present a graphic notation (i.e., the UML) for object-
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oriented analysis and design, followed by a generic process framework. We also 
examine the pragmatics of object-oriented development—in particular, its place 
in the software development lifecycle and its implications for project management.

Applications

Section III offers a collection of five nontrivial examples encompassing a diverse 
selection of problem domains: system architecture, control systems, cryptanaly-
sis, data acquisition, and Web development. We have chosen these particular 
problem domains because they are representative of the kinds of complex prob-
lems faced by the practicing software engineer. It is easy to show how certain 
principles apply to simple problems, but because our focus is on building useful 
systems for the real world, we are more interested in showing how the object 
model scales up to complex applications. The development of software systems is 
rarely amenable to cookbook approaches; therefore, we emphasize the incremen-
tal development of applications, guided by a number of sound principles and 
well-formed models.

Supplemental Material

A considerable amount of supplemental material is woven throughout the book. 
Most chapters have sidebars that provide information on related topics. We 
include an appendix on object-oriented programming languages that summarizes 
the features of a few common languages. We also provide a glossary of common 
terms and an extensive classified bibliography that lists references to source mate-
rial on the object model. 

A Note about Tools

Readers always ask about the tools used to create the diagrams in the book. Pri-
marily, we have used two fine tools for the diagrams: IBM Rational Software 
Architect and Sparx Systems Enterprise Architect. Why not use just one? The 
reality of the marketplace is that no tool does everything. The longer you do 
OOAD, you will eventually find some atypical “corner case” that no tool sup-
ports. (In that case, you may have to resort to basic drawing tools to show what 
you want.) But don’t let those rare instances stop you from using robust OOAD 
tools such as those we mentioned. 
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Using This Book

This book may be read from cover to cover or it may be used in less structured 
ways. If you are seeking a deep understanding of the underlying concepts of the 
object model or the motivation for the principles of object-oriented development, 
you should start with Chapter 1 and continue forward in order. If you are prima-
rily interested in learning the details of the notation and process of object-oriented 
analysis and design, start with Chapters 5 and 6; Chapter 7 is especially useful to 
managers of projects using this method. If you are most interested in the practical 
application of object-oriented technology to specific problems, select any or all of 
Chapters 8 through 12.
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S e c t i o n  I

Concepts

Sir Isaac Newton secretly admitted to some friends:
He understood how gravity behaved, but not how it worked!

LILY TOMLIN
The Search for Signs of Intelligent Life in the Universe

In the early days of object technology, many people were initially intro-
duced to “OO” through programming languages. They discovered what 
these new languages could do for them and tried to practically apply the 
languages to solve real-world problems. As time passed, languages 
improved, development techniques evolved, best practices emerged, and 
formal object-oriented methodologies were created.

Today object-oriented development is a rich and powerful development 
model. This section takes a step back to look at the underpinning theory 
that supplies the foundation for all of the above and provides insight into 
why things work the way they do in the object-oriented paradigm.
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C h a p t e r  1

Complexity

A physician, a civil engineer, and a computer scientist were arguing about 
what was the oldest profession in the world. The physician remarked, 
“Well, in the Bible, it says that God created Eve from a rib taken out of 
Adam. This clearly required surgery, and so I can rightly claim that mine is 
the oldest profession in the world.” The civil engineer interrupted, and 
said, “But even earlier in the book of Genesis, it states that God created 
the order of the heavens and the earth from out of the chaos. This was the 
first and certainly the most spectacular application of civil engineering. 
Therefore, fair doctor, you are wrong: mine is the oldest profession in the 
world.” The computer scientist leaned back in her chair, smiled, and then 
said confidently, “Ah, but who do you think created the chaos?”

“The more complex the system, the more open it is to total breakdown” [5]. 
Rarely would a builder think about adding a new sub-basement to an 
existing 100-story building. Doing that would be very costly and would 
undoubtedly invite failure. Amazingly, users of software systems rarely 
think twice about asking for equivalent changes. Besides, they argue, it is 
only a simple matter of programming.

Our failure to master the complexity of software results in projects that are 
late, over budget, and deficient in their stated requirements. We often call 
this condition the software crisis, but frankly, a malady that has carried on 
this long must be called normal. Sadly, this crisis translates into the 
squandering of human resources—a most precious commodity—as well 
as a considerable loss of opportunities. There are simply not enough good 
developers around to create all the new software that users need. Further-
more, a significant number of the development personnel in any given 
organization must often be dedicated to the maintenance or preservation 
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of geriatric software. Given the indirect as well as the direct contribution of 
software to the economic base of most industrialized countries, and con-
sidering the ways in which software can amplify the powers of the individ-
ual, it is unacceptable to allow this situation to continue.

1.1 The Structure of Complex Systems

How can we change this dismal picture? Since the underlying problem springs 
from the inherent complexity of software, our suggestion is to first study how 
complex systems in other disciplines are organized. Indeed, if we open our eyes 
to the world about us, we will observe successful systems of significant complex-
ity. Some of these systems are the works of humanity, such as the Space Shuttle, 
the England/France tunnel, and large business organizations. Many even more 
complex systems appear in nature, such as the human circulatory system and the 
structure of a habanero pepper plant.

The Structure of a Personal Computer

A personal computer is a device of moderate complexity. Most are composed of 
the same major elements: a central processing unit (CPU), a monitor, a keyboard, 
and some sort of secondary storage device, usually either a CD or DVD drive and 
hard disk drive. We may take any one of these parts and further decompose it. For 
example, a CPU typically encompasses primary memory, an arithmetic/logic unit 
(ALU), and a bus to which peripheral devices are attached. Each of these parts 
may in turn be further decomposed: An ALU may be divided into registers and 
random control logic, which themselves are constructed from even more primitive 
elements, such as NAND gates, inverters, and so on.

Here we see the hierarchic nature of a complex system. A personal computer 
functions properly only because of the collaborative activity of each of its major 
parts. Together, these separate parts logically form a whole. Indeed, we can rea-
son about how a computer works only because we can decompose it into parts 
that we can study separately. Thus, we may study the operation of a monitor inde-
pendently of the operation of the hard disk drive. Similarly, we may study the 
ALU without regard for the primary memory subsystem.

Not only are complex systems hierarchic, but the levels of this hierarchy represent 
different levels of abstraction, each built upon the other, and each understandable 
by itself. At each level of abstraction, we find a collection of devices that collabo-
rate to provide services to higher layers. We choose a given level of abstraction to 
suit our particular needs. For instance, if we were trying to track down a timing 
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problem in the primary memory, we might properly look at the gate-level archi-
tecture of the computer, but this level of abstraction would be inappropriate if we 
were trying to find the source of a problem in a spreadsheet application. 

The Structure of Plants and Animals

In botany, scientists seek to understand the similarities and differences among 
plants through a study of their morphology, that is, their form and structure. 
Plants are complex multicellular organisms, and from the cooperative activity of 
various plant organ systems arise such complex behaviors as photosynthesis and 
transpiration.

Plants consist of three major structures (roots, stems, and leaves). Each of these 
has a different, specific structure. For example, roots encompass branch roots, 
root hairs, the root apex, and the root cap. Similarly, a cross-section of a leaf 
reveals its epidermis, mesophyll, and vascular tissue. Each of these structures is 
further composed of a collection of cells, and inside each cell we find yet another 
level of complexity, encompassing such elements as chloroplasts, a nucleus, and 
so on. As with the structure of a computer, the parts of a plant form a hierarchy, 
and each level of this hierarchy embodies its own complexity. 

All parts at the same level of abstraction interact in well-defined ways. For exam-
ple, at the highest level of abstraction, roots are responsible for absorbing water 
and minerals from the soil. Roots interact with stems, which transport these raw 
materials up to the leaves. The leaves in turn use the water and minerals provided 
by the stems to produce food through photosynthesis.

There are always clear boundaries between the outside and the inside of a given 
level. For example, we can state that the parts of a leaf work together to provide 
the functionality of the leaf as a whole and yet have little or no direct interaction 
with the elementary parts of the roots. In simpler terms, there is a clear separation 
of concerns among the parts at different levels of abstraction.

In a computer, we find NAND gates used in the design of the CPU as well as in 
the hard disk drive. Likewise, a considerable amount of commonality cuts across 
all parts of the structural hierarchy of a plant. This is God’s way of achieving an 
economy of expression. For example, cells serve as the basic building blocks in 
all structures of a plant; ultimately, the roots, stems, and leaves of a plant are all 
composed of cells. Yet, although each of these primitive elements is indeed a cell, 
there are many different kinds of cells. For example, there are cells with and with-
out chloroplasts, cells with walls that are impervious to water and cells with walls 
that are permeable, and even living cells and dead cells.
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In studying the morphology of a plant, we do not find individual parts that are 
each responsible for only one small step in a single larger process, such as photo-
synthesis. In fact, there are no centralized parts that directly coordinate the activi-
ties of lower-level ones. Instead, we find separate parts that act as independent 
agents, each of which exhibits some fairly complex behavior, and each of which 
contributes to many higher-level functions. Only through the mutual cooperation 
of meaningful collections of these agents do we see the higher-level functionality 
of a plant. The science of complexity calls this emergent behavior: The behavior 
of the whole is greater than the sum of its parts [6].

Turning briefly to the field of zoology, we note that multicellular animals exhibit 
a hierarchical structure similar to that of plants: Collections of cells form tissues, 
tissues work together as organs, clusters of organs define systems (such as the 
digestive system), and so on. We cannot help but again notice God’s awesome 
economy of expression: The fundamental building block of all animal matter is 
the cell, just as the cell is the elementary structure of all plant life. Granted, there 
are differences between these two. For example, plant cells are enclosed by rigid 
cellulose walls, but animal cells are not. Notwithstanding these differences, how-
ever, both of these structures are undeniably cells. This is an example of common-
ality that crosses domains.

A number of mechanisms above the cellular level are also shared by plant and 
animal life. For example, both use some sort of vascular system to transport nutri-
ents within the organism, and both exhibit differentiation by sex among members 
of the same species.

The Structure of Matter

The study of fields as diverse as astronomy and nuclear physics provides us with 
many other examples of incredibly complex systems. Spanning these two disci-
plines, we find yet another structural hierarchy. Astronomers study galaxies that 
are arranged in clusters. Stars, planets, and debris are the constituents of galaxies. 
Likewise, nuclear physicists are concerned with a structural hierarchy, but one on 
an entirely different scale. Atoms are made up of electrons, protons, and neutrons; 
electrons appear to be elementary particles, but protons, neutrons, and other parti-
cles are formed from more basic components called quarks. 

Again we find that a great commonality in the form of shared mechanisms unifies 
this vast hierarchy. Specifically, there appear to be only four distinct kinds of 
forces at work in the universe: gravity, electromagnetic interaction, the strong 
force, and the weak force. Many laws of physics involving these elementary 
forces, such as the laws of conservation of energy and of momentum, apply to 
galaxies as well as quarks.
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The Structure of Social Institutions

As a final example of complex systems, we turn to the structure of social institu-
tions. Groups of people join together to accomplish tasks that cannot be done by 
individuals. Some organizations are transitory, and some endure beyond many 
lifetimes. As organizations grow larger, we see a distinct hierarchy emerge. 
Multinational corporations contain companies, which in turn are made up of divi-
sions, which in turn contain branches, which in turn encompass local offices, and 
so on. If the organization endures, the boundaries among these parts may change, 
and over time, a new, more stable hierarchy may emerge. 

The relationships among the various parts of a large organization are just like 
those found among the components of a computer, or a plant, or even a galaxy. 
Specifically, the degree of interaction among employees within an individual 
office is greater than that between employees of different offices. A mail clerk 
usually does not interact with the chief executive officer of a company but does 
interact frequently with other people in the mail room. Here, too, these different 
levels are unified by common mechanisms. The clerk and the executive are both 
paid by the same financial organization, and both share common facilities, such 
as the company’s telephone system, to accomplish their tasks.

1.2 The Inherent Complexity of Software

A dying star on the verge of collapse, a child learning how to read, white blood 
cells rushing to attack a virus: These are but a few of the objects in the physical 
world that involve truly awesome complexity. Software may also involve ele-
ments of great complexity; however, the complexity we find here is of a funda-
mentally different kind. As Brooks points out, “Einstein argued that there must be 
simplified explanations of nature, because God is not capricious or arbitrary. No 
such faith comforts the software engineer. Much of the complexity that he must 
master is arbitrary complexity” [1].

Defining Software Complexity

We do realize that some software systems are not complex. These are the largely 
forgettable applications that are specified, constructed, maintained, and used by 
the same person, usually the amateur programmer or the professional developer 
working in isolation. This is not to say that all such systems are crude and inele-
gant, nor do we mean to belittle their creators. Such systems tend to have a very 
limited purpose and a very short life span. We can afford to throw them away and 
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replace them with entirely new software rather than attempt to reuse them, repair 
them, or extend their functionality. Such applications are generally more tedious 
than difficult to develop; consequently, learning how to design them does not 
interest us.

Instead, we are much more interested in the challenges of developing what we 
will call industrial-strength software. Here we find applications that exhibit a very 
rich set of behaviors, as, for example, in reactive systems that drive or are driven 
by events in the physical world, and for which time and space are scarce 
resources; applications that maintain the integrity of hundreds of thousands of 
records of information while allowing concurrent updates and queries; and sys-
tems for the command and control of real-world entities, such as the routing of air 
or railway traffic. Software systems such as these tend to have a long life span, 
and over time, many users come to depend on their proper functioning. In the 
world of industrial-strength software, we also find frameworks that simplify the 
creation of domain-specific applications, and programs that mimic some aspect of 
human intelligence. Although such applications are generally products of 
research and development, they are no less complex, for they are the means and 
artifacts of incremental and exploratory development. 

The distinguishing characteristic of industrial-strength software is that it is 
intensely difficult, if not impossible, for the individual developer to comprehend 
all the subtleties of its design. Stated in blunt terms, the complexity of such sys-
tems exceeds the human intellectual capacity. Alas, this complexity we speak of 
seems to be an essential property of all large software systems. By essential we 
mean that we may master this complexity, but we can never make it go away. 

Why Software Is Inherently Complex

As Brooks suggests, “The complexity of software is an essential property, not an 
accidental one” [3]. We observe that this inherent complexity derives from four 
elements: the complexity of the problem domain, the difficulty of managing the 
development process, the flexibility possible through software, and the problems 
of characterizing the behavior of discrete systems.

The Complexity of the Problem Domain

The problems we try to solve in software often involve elements of inescapable 
complexity, in which we find a myriad of competing, perhaps even contradictory, 
requirements. Consider the requirements for the electronic system of a multi-
engine aircraft, a cellular phone switching system, or an autonomous robot. The 
raw functionality of such systems is difficult enough to comprehend, but now add 
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all of the (often implicit) nonfunctional requirements such as usability, perfor-
mance, cost, survivability, and reliability. This unrestrained external complexity is 
what causes the arbitrary complexity about which Brooks writes. 

This external complexity usually springs from the “communication gap” that 
exists between the users of a system and its developers: Users generally find it 
very hard to give precise expression to their needs in a form that developers can 
understand. In some cases, users may have only vague ideas of what they want in 
a software system. This is not so much the fault of either the users or the develop-
ers of a system; rather, it occurs because each group generally lacks expertise in 
the domain of the other. Users and developers have different perspectives on the 
nature of the problem and make different assumptions regarding the nature of the 
solution. Actually, even if users had perfect knowledge of their needs, we cur-
rently have few instruments for precisely capturing these requirements. The com-
mon way to express requirements is with large volumes of text, occasionally 
accompanied by a few drawings. Such documents are difficult to comprehend, are 
open to varying interpretations, and too often contain elements that are designs 
rather than essential requirements. 

A further complication is that the requirements of a software system often change 
during its development, largely because the very existence of a software develop-
ment project alters the rules of the problem. Seeing early products, such as design 
documents and prototypes, and then using a system once it is installed and opera-
tional are forcing functions that lead users to better understand and articulate their 
real needs. At the same time, this process helps developers master the problem 
domain, enabling them to ask better questions that illuminate the dark corners of a 
system’s desired behavior.

The task of the software development team 
is to engineer the illusion of simplicity.
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Because a large software system is a capital investment, we cannot afford to scrap 
an existing system every time its requirements change. Planned or not, systems 
tend to evolve over time, a condition that is often incorrectly labeled software 
maintenance. To be more precise, it is maintenance when we correct errors; it is 
evolution when we respond to changing requirements; it is preservation when we 
continue to use extraordinary means to keep an ancient and decaying piece of 
software in operation. Unfortunately, reality suggests that an inordinate percent-
age of software development resources are spent on software preservation.

The Difficulty of Managing the Development Process

The fundamental task of the software development team is to engineer the illusion 
of simplicity—to shield users from this vast and often arbitrary external complex-
ity. Certainly, size is no great virtue in a software system. We strive to write less 
code by inventing clever and powerful mechanisms that give us this illusion of 
simplicity, as well as by reusing frameworks of existing designs and code. How-
ever, the sheer volume of a system’s requirements is sometimes inescapable and 
forces us either to write a large amount of new software or to reuse existing soft-
ware in novel ways. Just a few decades ago, assembly language programs of only 
a few thousand lines of code stressed the limits of our software engineering abili-
ties. Today, it is not unusual to find delivered systems whose size is measured in 
hundreds of thousands or even millions of lines of code (and all of that in a high-
order programming language, as well). No one person can ever understand such a 
system completely. Even if we decompose our implementation in meaningful 
ways, we still end up with hundreds and sometimes thousands of separate mod-
ules. This amount of work demands that we use a team of developers, and ideally 
we use as small a team as possible. However, no matter what its size, there are 
always significant challenges associated with team development. Having more 
developers means more complex communication and hence more difficult coordi-
nation, particularly if the team is geographically dispersed, as is often the case. 
With a team of developers, the key management challenge is always to maintain a 
unity and integrity of design. 

The Flexibility Possible through Software 

A home-building company generally does not operate its own tree farm from 
which to harvest trees for lumber; it is highly unusual for a construction firm to 
build an onsite steel mill to forge custom girders for a new building. Yet in the 
software industry such practice is common. Software offers the ultimate flexibil-
ity, so it is possible for a developer to express almost any kind of abstraction. This 
flexibility turns out to be an incredibly seductive property, however, because it 
also forces the developer to craft virtually all the primitive building blocks on 
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which these higher-level abstractions stand. While the construction industry has 
uniform building codes and standards for the quality of raw materials, few such 
standards exist in the software industry. As a result, software development 
remains a labor-intensive business.

The Problems of Characterizing the Behavior of 
Discrete Systems 

If we toss a ball into the air, we can reliably predict its path because we know that 
under normal conditions, certain laws of physics apply. We would be very surprised 
if just because we threw the ball a little harder, halfway through its flight it sud-
denly stopped and shot straight up into the air.1 In a not-quite-debugged software 
simulation of this ball’s motion, exactly that kind of behavior can easily occur.

Within a large application, there may be hundreds or even thousands of variables 
as well as more than one thread of control. The entire collection of these vari-
ables, their current values, and the current address and calling stack of each pro-
cess within the system constitute the present state of the application. Because we 
execute our software on digital computers, we have a system with discrete states. 
By contrast, analog systems such as the motion of the tossed ball are continuous 
systems. Parnas suggests, “when we say that a system is described by a continu-
ous function, we are saying that it can contain no hidden surprises. Small changes 
in inputs will always cause correspondingly small changes in outputs” [4]. On the 
other hand, discrete systems by their very nature have a finite number of possible 
states; in large systems, there is a combinatorial explosion that makes this number 
very large. We try to design our systems with a separation of concerns, so that the 
behavior in one part of a system has minimal impact on the behavior in another. 
However, the fact remains that the phase transitions among discrete states cannot 
be modeled by continuous functions. Each event external to a software system has 
the potential of placing that system in a new state, and furthermore, the mapping 
from state to state is not always deterministic. In the worst circumstances, an 
external event may corrupt the state of a system because its designers failed to 
take into account certain interactions among events. When a ship’s propulsion 

1. Actually, even simple continuous systems can exhibit very complex behavior because 
of the presence of chaos. Chaos introduces a randomness that makes it impossible to pre-
cisely predict the future state of a system. For example, given the initial state of two drops 
of water at the top of a stream, we cannot predict exactly where they will be relative to one 
another at the bottom of the stream. Chaos has been found in systems as diverse as the 
weather, chemical reactions, biological systems, and even computer networks. Fortunately, 
there appears to be underlying order in all chaotic systems, in the form of patterns called 
attractors.
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system fails due to a mathematical overflow, which in turn was caused by some-
one entering bad data in a maintenance system (a real incident), we understand 
the seriousness of this issue. There has been a dramatic rise in software-related 
system failures in subway systems, automobiles, satellites, air traffic control sys-
tems, inventory systems, and so forth. In continuous systems this kind of behavior 
would be unlikely, but in discrete systems all external events can affect any part of 
the system’s internal state. Certainly, this is the primary motivation for vigorous 
testing of our systems, but for all except the most trivial systems, exhaustive test-
ing is impossible. Since we have neither the mathematical tools nor the intellec-
tual capacity to model the complete behavior of large discrete systems, we must 
be content with acceptable levels of confidence regarding their correctness.

1.3 The Five Attributes of a Complex System

Considering the nature of this complexity, we conclude that there are five 
attributes common to all complex systems. 

Hierarchic Structure

Building on the work of Simon and Ando, Courtois suggests the following:

Frequently, complexity takes the form of a hierarchy, whereby a complex system 
is composed of interrelated subsystems that have in turn their own subsystems, 
and so on, until some lowest level of elementary components is reached. [7]

Simon points out that “the fact that many complex systems have a nearly decom-
posable, hierarchic structure is a major facilitating factor enabling us to under-
stand, describe, and even ‘see’ such systems and their parts” [8]. Indeed, it is 
likely that we can understand only those systems that have a hierarchic structure.

It is important to realize that the architecture of a complex system is a function of 
its components as well as the hierarchic relationships among these components. 
“All systems have subsystems and all systems are parts of larger systems. . . . The 
value added by a system must come from the relationships between the parts, not 
from the parts per se” [9].
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Relative Primitives

Regarding the nature of the primitive components of a complex system, our expe-
rience suggests that:

The choice of what components in a system are primitive is relatively arbitrary 
and is largely up to the discretion of the observer of the system.

What is primitive for one observer may be at a much higher level of abstraction 
for another.

Separation of Concerns

Simon calls hierarchic systems decomposable because they can be divided into 
identifiable parts; he calls them nearly decomposable because their parts are not 
completely independent. This leads us to another attribute common to all complex 
systems:

Intracomponent linkages are generally stronger than intercomponent linkages. 
This fact has the effect of separating the high-frequency dynamics of the compo-
nents—involving the internal structure of the components—from the low-
frequency dynamics—involving interaction among components. [10]

The architecture of a complex system is a function of its components as well 
as the hierarchic relationships among these components.
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This difference between intra- and intercomponent interactions provides a clear 
separation of concerns among the various parts of a system, making it possible to 
study each part in relative isolation.

Common Patterns

As we have discussed, many complex systems are implemented with an economy 
of expression. Simon thus notes that:

Hierarchic systems are usually composed of only a few different kinds of sub-
systems in various combinations and arrangements. [11]

In other words, complex systems have common patterns. These patterns may 
involve the reuse of small components, such as the cells found in both plants and 
animals, or of larger structures, such as vascular systems, also found in both 
plants and animals.

Stable Intermediate Forms

Earlier, we noted that complex systems tend to evolve over time. Specifically, 
“complex systems will evolve from simple systems much more rapidly if there 
are stable intermediate forms than if there are not” [12]. In more dramatic terms:

A complex system that works is invariably found to have evolved from a simple 
system that worked. . . . A complex system designed from scratch never works 
and cannot be patched up to make it work. You have to start over, beginning with 
a working simple system. [13]

As systems evolve, objects that were once considered complex become the primi-
tive objects on which more complex systems are built. Furthermore, we can never 
craft these primitive objects correctly the first time: We must use them in context 
first and then improve them over time as we learn more about the real behavior of 
the system.

1.4 Organized and Disorganized Complexity

The discovery of common abstractions and mechanisms greatly facilitates our 
understanding of complex systems. For example, with just a few minutes of orien-
tation, an experienced pilot can step into a multiengine jet aircraft he or she has 
never flown before and safely fly the vehicle. Having recognized the properties 
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common to all such aircraft, such as the functioning of the rudder, ailerons, and 
throttle, the pilot primarily needs to learn what properties are unique to that par-
ticular aircraft. If the pilot already knows how to fly a given aircraft, it is far easier 
to learn how to fly a similar one.

The Canonical Form of a Complex System

This example suggests that we have been using the term hierarchy in a rather 
loose fashion. Most interesting systems do not embody a single hierarchy; 
instead, we find that many different hierarchies are usually present within the 
same complex system. For example, an aircraft may be studied by decomposing it 
into its propulsion system, flight-control system, and so on. This decomposition 
represents a structural, or “part of” hierarchy. 

Alternately, we can cut across the system in an entirely orthogonal way. For 
example, a turbofan engine is a specific kind of jet engine, and a Pratt and 
Whitney TF30 is a specific kind of turbofan engine. Stated another way, a jet 
engine represents a generalization of the properties common to every kind of jet 
engine; a turbofan engine is simply a specialized kind of jet engine, with proper-
ties that distinguish it, for example, from ramjet engines. 

This second hierarchy represents an “is a” hierarchy. In our experience, we have 
found it essential to view a system from both perspectives, studying its “is a” hier-
archy as well as its “part of” hierarchy. For reasons that will become clear in the 
next chapter, we call these hierarchies the class structure and the object structure of 
the system, respectively.2

For those of you who are familiar with object technology, let us be clear. In this 
case, where we are speaking of class structure and object structure, we are not 
referring to the classes and objects you create when coding your software. We are 
referring to classes and objects, at a higher level of abstraction, that make up com-
plex systems, for example, a jet engine, an airframe, the various types of seats, an 
autopilot subsystem, and so forth. You will recall from the earlier discussion on 
the attributes of a complex system that whatever is considered primitive is relative 
to the observer.

In Figure 1–1 we see the two orthogonal hierarchies of the system: its class struc-
ture and its object structure. Each hierarchy is layered, with the more abstract 

2. Complex software systems embody other kinds of hierarchies as well. Of particular im-
portance is the module structure, which describes the relationships among the physical 
components of the system, and the process hierarchy, which describes the relationships 
among the system’s dynamic components.
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classes and objects built on more primitive ones. What class or object is chosen as 
primitive is relative to the problem at hand. Looking inside any given level reveals 
yet another level of complexity. Especially among the parts of the object struc-
ture, there are close collaborations among objects at the same level of abstraction.

Combining the concept of the class and object structures together with the five 
attributes of a complex system (hierarchy, relative primitives [i.e., multiple levels 
of abstraction], separation of concerns, patterns, and stable intermediate forms), 
we find that virtually all complex systems take on the same (canonical) form, as 
we show in Figure 1–2. Collectively, we speak of the class and object structures 
of a system as its architecture.

Notice also that the class structure and the object structure are not completely 
independent; rather, each object in the object structure represents a specific 
instance of some class. (In Figure 1–2, note classes C3, C5, C7, and C8 and the 
number of the instances 03, 05, 07, and 08.) As the figure suggests, there are usu-
ally many more objects than classes of objects within a complex system. By 
showing the “part of” as well as the “is a” hierarchy, we explicitly expose the 
redundancy of the system under consideration. If we did not reveal a system’s 
class structure, we would have to duplicate our knowledge about the properties of 
each individual part. With the inclusion of the class structure, we capture these 
common properties in one place. 

Also from the same class structure, there are many different ways that these 
objects can be instantiated and organized. No one particular architecture can 
really be deemed “correct.” This is what makes system architecture challenging—
finding the balance between the many ways the components of a system can be 
structured, the five attributes of complex systems, and the needs of the system user.

Figure 1–1 The Key Hierarchies of Complex Systems
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Our experience is that the most successful complex software systems are those 
whose designs explicitly encompass well-engineered class and object structures 
and embody the five attributes of complex systems described in the previous sec-
tion. Lest the importance of this observation be missed, let us be even more 
direct: We very rarely encounter software systems that are delivered on time, that 
are within budget, and that meet their requirements, unless they are designed with 
these factors in mind.

The Limitations of the Human Capacity for 
Dealing with Complexity

If we know what the design of complex software systems should be like, then 
why do we still have serious problems in successfully developing them? This 

Figure 1–2 The Canonical Form of a Complex System
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concept of the organized complexity of software (whose guiding principles we 
call the object model) is relatively new. However, there is yet another factor that 
dominates: the fundamental limitations of the human capacity for dealing with 
complexity.

As we first begin to analyze a complex software system, we find many parts that 
must interact in a multitude of intricate ways, with little perceptible commonality 
among either the parts or their interactions; this is an example of disorganized 
complexity. As we work to bring organization to this complexity through the pro-
cess of design, we must think about many things at once. For example, in an air 
traffic control system, we must deal with the state of many different aircraft at 
once, involving such properties as their location, speed, and heading. Especially 
in the case of discrete systems, we must cope with a fairly large, intricate, and 
sometimes nondeterministic state space. Unfortunately, it is absolutely impossible 
for a single person to keep track of all of these details at once. Experiments by 
psychologists, such as those of Miller, suggest that the maximum number of 
chunks of information that an individual can simultaneously comprehend is on 
the order of seven, plus or minus two [14]. This channel capacity seems to be 
related to the capacity of short-term memory. Simon additionally notes that pro-
cessing speed is a limiting factor: It takes the mind about five seconds to accept a 
new chunk of information [15].

We are thus faced with a fundamental dilemma. The complexity of the software 
systems we are asked to develop is increasing, yet there are basic limits on our 
ability to cope with this complexity. How then do we resolve this predicament?

1.5 Bringing Order to Chaos

Certainly, there will always be geniuses among us, people of extraordinary skill 
who can do the work of a handful of mere mortal developers, the software engi-
neering equivalents of Frank Lloyd Wright or Leonardo da Vinci. These are the 
people whom we seek to deploy as our system architects: the ones who devise 
innovative idioms, mechanisms, and frameworks that others can use as the archi-
tectural foundations of other applications or systems. However, “The world is 
only sparsely populated with geniuses. There is no reason to believe that the soft-
ware engineering community has an inordinately large proportion of them” [2]. 
Although there is a touch of genius in all of us, in the realm of industrial-strength 
software we cannot always rely on divine inspiration to carry us through. There-
fore, we must consider more disciplined ways to master complexity. 
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The Role of Decomposition

“The technique of mastering complexity has been known since ancient times: 
divide et impera (divide and rule)” [16]. When designing a complex software sys-
tem, it is essential to decompose it into smaller and smaller parts, each of which 
we may then refine independently. In this manner, we satisfy the very real con-
straint that exists on the channel capacity of human cognition: To understand any 
given level of a system, we need only comprehend a few parts (rather than all 
parts) at once. Indeed, as Parnas observes, intelligent decomposition directly 
addresses the inherent complexity of software by forcing a division of a system’s 
state space [17].

Algorithmic Decomposition 

Most of us have been formally trained in the dogma of top-down structured 
design, and so we approach decomposition as a simple matter of algorithmic 
decomposition, wherein each module in the system denotes a major step in some 
overall process. Figure 1–3 is an example of one of the products of structured 
design, a structure chart that shows the relationships among various functional 
elements of the solution. This particular structure chart illustrates part of the 
design of a program that updates the content of a master file. It was automatically 
generated from a data flow diagram by an expert system tool that embodies the 
rules of structured design [18]. 

Figure 1–3 Algorithmic Decomposition
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Object-Oriented Decomposition 

We suggest that there is an alternate decomposition possible for the same prob-
lem. In Figure 1–4, we have decomposed the system according to the key abstrac-
tions in the problem domain. Rather than decomposing the problem into steps 
such as Get formatted update and Add checksum, we have identified objects such as 
Master File and Checksum, which derive directly from the vocabulary of the prob-
lem domain.

Although both designs solve the same problem, they do so in quite different ways. 
In this second decomposition, we view the world as a set of autonomous agents 
that collaborate to perform some higher-level behavior. Get Formatted Update
thus does not exist as an independent algorithm; rather, it is an operation associ-
ated with the object File of Updates. Calling this operation creates another object, 
Update to Card. In this manner, each object in our solution embodies its own 
unique behavior, and each one models some object in the real world. From this 
perspective, an object is simply a tangible entity that exhibits some well-defined 
behavior. Objects do things, and we ask them to perform what they do by sending 
them messages. Because our decomposition is based on objects and not algo-
rithms, we call this an object-oriented decomposition.

Algorithmic versus Object-Oriented Decomposition 

Which is the right way to decompose a complex system—by algorithms or by 
objects? Actually, this is a trick question because the right answer is that both 
views are important: The algorithmic view highlights the ordering of events, and 
the object-oriented view emphasizes the agents that either cause action or are the 
subjects on which these operations act. 

Figure 1–4 Object-Oriented Decomposition
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Categories of Analysis and Design Methods
We find it useful to distinguish between the terms method and methodology.
A method is a disciplined procedure for generating a set of models that 
describe various aspects of a software system under development, using 
some well-defined notation. A methodology is a collection of methods 
applied across the software development lifecycle and unified by process, 
practices, and some general, philosophical approach. Methods are impor-
tant for several reasons. Foremost, they instill a discipline into the develop-
ment of complex software systems. They define the products that serve as 
common vehicles for communication among the members of a develop-
ment team. Additionally, methods define the milestones needed by man-
agement to measure progress and to manage risk.

Methods have evolved in response to the growing complexity of software 
systems. In the early days of computing, one simply did not write large pro-
grams because the capabilities of our machines were greatly limited. The 
dominant constraints in building systems were then largely due to hard-
ware: Machines had small amounts of main memory, programs had to con-
tend with considerable latency within secondary storage devices such as 
magnetic drums, and processors had cycle times measured in the hun-
dreds of microseconds. In the 1960s and 1970s the economics of comput-
ing began to change dramatically as hardware costs plummeted and 
computer capabilities rose. As a result, it was more desirable and now 
finally economical to automate more and more applications of increasing 
complexity. High-order programming languages entered the scene as 
important tools. Such languages improved the productivity of the individual 
developer and of the development team as a whole, thus ironically pressur-
ing us to create software systems of even greater complexity. 

Many design methods were proposed during the 1960s and 1970s to 
address this growing complexity. The most influential of them was top-down 
structured design, also known as composite design. This method was 
directly influenced by the topology of traditional high-order programming 
languages, such as FORTRAN and COBOL. In these languages, the fun-
damental unit of decomposition is the subprogram, and the resulting pro-
gram takes the shape of a tree in which subprograms perform their work by 
calling other subprograms. This is exactly the approach taken by top-down 
structured design: One applies algorithmic decomposition to break a large 
problem down into smaller steps.

Since the 1960s and 1970s, computers of vastly greater capabilities have 
evolved. The value of structured design has not changed, but as Stein 
observes, “Structured programming appears to fall apart when applications 
exceed 100,000 lines or so of code” [19]. Dozens of design methods have 
been proposed, many of them invented to deal with the perceived short-
comings of top-down structured design. The more interesting and successful 
design methods are cataloged by Peters [20], by Yau and Tsai [21], and in 
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However, the fact remains that we cannot construct a complex system in both 
ways simultaneously, for they are completely orthogonal views.3 We must start 

a comprehensive survey by Teledyne Brown Engineering [22]. Perhaps not 
surprisingly, many of these methods are largely variations on a similar 
theme. Indeed, as Sommerville suggests, most methods can be catego-
rized as one of three kinds [23]:

■ Top-down structured design
■ Data-driven design
■ Object-oriented design

Top-down structured design is exemplified by the work of Yourdon and 
Constantine [24], Myers [25], and Page-Jones [26]. The foundations of this 
method derive from the work of Wirth [27, 28] and Dahl, Dijkstra, and Hoare 
[29]; an important variation on structured design is found in the design 
method of Mills, Linger, and Hevner [30]. Each of these variations applies 
algorithmic decomposition. More software has probably been written using 
these design methods than with any other. Nevertheless, structured design 
does not address the issues of data abstraction and information hiding, nor 
does it provide an adequate means of dealing with concurrency. Structured 
design does not scale up well for extremely complex systems, and this method 
is largely inappropriate for use with object-based and object-oriented pro-
gramming languages.

Data-driven design is best exemplified by the early work of Jackson [31, 32] 
and the methods of Orr [33]. In this method, mapping system inputs to out-
puts derives the structure of a software system. As with structured design, 
data-driven design has been successfully applied to a number of complex 
domains, particularly information management systems, which involve direct 
relationships between the inputs and outputs of the system but require little 
concern for time-critical events.

The underlying concept of object-oriented analysis is that one should 
model software systems as collections of cooperating objects, treating indi-
vidual objects as instances of a class within a hierarchy of classes. Object-
oriented analysis and design directly reflects the topology of high-order 
programming languages such as Smalltalk, Object Pascal, C++, the Com-
mon Lisp Object System (CLOS), Ada, Eiffel, Python, Visual C#, and Java.

3. Langdon suggests that this orthogonality has been studied since ancient times. As he 
states, “C. H. Waddington has noted that the duality of views can be traced back to the an-
cient Greeks. A passive view was proposed by Democritus, who asserted that the world was 
composed of matter called atoms. Democritus’ view places things at the center of focus. On 
the other hand, the classical spokesman for the active view is Heraclitus, who emphasized 
the notion of process” [34].
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decomposing a system either by algorithms or by objects and then use the result-
ing structure as the framework for expressing the other perspective.

Our experience leads us to apply the object-oriented view first because this 
approach is better at helping us organize the inherent complexity of software sys-
tems, just as it helped us to describe the organized complexity of complex systems 
as diverse as computers, plants, galaxies, and large social institutions. As we will 
discuss further in Chapter 2, object-oriented decomposition has a number of 
highly significant advantages over algorithmic decomposition. Object-oriented 
decomposition yields smaller systems through the reuse of common mechanisms, 
thus providing an important economy of expression. Object-oriented systems are 
also more resilient to change and thus better able to evolve over time because 
their design is based on stable intermediate forms. Indeed, object-oriented decom-
position greatly reduces the risk of building complex software systems because 
they are designed to evolve incrementally from smaller systems in which we 
already have confidence. Furthermore, object-oriented decomposition directly 
addresses the inherent complexity of software by helping us make intelligent 
decisions regarding the separation of concerns in a large state space. 

The Applications section of this book demonstrates these benefits through several 
applications, drawn from a diverse set of problem domains. The sidebar in this 
chapter, Categories of Analysis and Design Methods, further compares and con-
trasts the object-oriented view with more traditional approaches to design.

The Role of Abstraction

Earlier, we referred to Miller’s experiments, from which he concluded that an 
individual can comprehend only about seven, plus or minus two, chunks of infor-
mation at one time. This number appears to be independent of information con-
tent. As Miller himself observes, “The span of absolute judgment and the span of 
immediate memory impose severe limitations on the amount of information that 
we are able to receive, process and remember. By organizing the stimulus input 
simultaneously into several dimensions and successively into a sequence of 
chunks, we manage to break . . . this informational bottleneck” [35]. In contempo-
rary terms, we call this process chunking or abstraction.

As Wulf describes it, “We (humans) have developed an exceptionally powerful 
technique for dealing with complexity. We abstract from it. Unable to master the 
entirety of a complex object, we choose to ignore its inessential details, dealing 
instead with the generalized, idealized model of the object” [36]. For example, 
when studying how photosynthesis works in a plant, we can focus on the chemical 
reactions in certain cells in a leaf and ignore all other parts, such as the roots and 
stems. We are still constrained by the number of things that we can comprehend 
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at one time, but through abstraction, we use chunks of information with increas-
ingly greater semantic content. This is especially true if we take an object-oriented 
view of the world because objects, as abstractions of entities in the real world, 
represent a particularly dense and cohesive clustering of information. Chapter 2 
examines the meaning of abstraction in much greater detail.

The Role of Hierarchy

Another way to increase the semantic content of individual chunks of information 
is by explicitly recognizing the class and object hierarchies within a complex soft-
ware system. The object structure is important because it illustrates how different 
objects collaborate with one another through patterns of interaction that we call 
mechanisms. The class structure is equally important because it highlights com-
mon structure and behavior within a system. Thus, rather than study each individ-
ual photosynthesizing cell within a specific plant leaf, it is enough to study one 
such cell because we expect that all others will exhibit similar behavior. Although 
we treat each instance of a particular kind of object as distinct, we may assume 
that it shares the same behavior as all other instances of that same kind of object. 
By classifying objects into groups of related abstractions (e.g., kinds of plant cells 
versus animal cells), we come to explicitly distinguish the common and distinct 
properties of different objects, which further helps us to master their inherent 
complexity [37].

Identifying the hierarchies within a complex software system is often not easy 
because it requires the discovery of patterns among many objects, each of which 
may embody some tremendously complicated behavior. Once we have exposed 
these hierarchies, however, the structure of a complex system, and in turn our 
understanding of it, becomes vastly simplified. Chapter 3 considers in detail the 
nature of class and object hierarchies, and Chapter 4 describes techniques that 
facilitate our identification of these patterns.

1.6 On Designing Complex Systems

The practice of every engineering discipline—be it civil, mechanical, chemical, 
electrical, or software engineering—involves elements of both science and art. As 
Petroski eloquently states, “The conception of a design for a new structure can 
involve as much a leap of the imagination and as much a synthesis of experience 
and knowledge as any artist is required to bring to his canvas or paper. And once 
that design is articulated by the engineer as artist, it must be analyzed by the engi-
neer as scientist in as rigorous an application of the scientific method as any 
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scientist must make” [38]. Similarly, Dijkstra observes, “the programming 
challenge is a large-scale exercise in applied abstraction and thus requires the 
abilities of the formal mathematician blended with the attitude of the competent 
engineer” [39].

Engineering as a Science and an Art

The role of the engineer as artist is particularly challenging when the task is to 
design an entirely new system. Especially in the case of reactive systems and sys-
tems for command and control, we are frequently asked to write software for an 
entirely unique set of requirements, often to be executed on a configuration of tar-
get processors constructed specifically for this system. In other cases, such as the 
creation of frameworks, tools for research in artificial intelligence, or information 
management systems, we may have a well-defined, stable target environment, but 
our requirements may stress the software technology in one or more dimensions. 
For example, we may be asked to craft systems that are faster, have greater capac-
ity, or have radically improved functionality. In all these situations, we try to use 
proven abstractions and mechanisms (the “stable intermediate forms,” in Simon’s 
words) as a foundation on which to build new complex systems. In the presence 
of a large library of reusable software components, the software engineer must 
assemble these parts in innovative ways to satisfy the stated and implicit require-
ments, just as the painter or the musician must push the limits of his or her 
medium.

The Meaning of Design

In every engineering discipline, design encompasses the disciplined approach we 
use to invent a solution for some problem, thus providing a path from require-
ments to implementation. In the context of software engineering, Mostow sug-
gests that the purpose of design is to construct a system that:

■ Satisfies a given (perhaps informal) functional specification
■ Conforms to limitations of the target medium
■ Meets implicit or explicit requirements on performance and resource usage
■ Satisfies implicit or explicit design criteria on the form of the artifact
■ Satisfies restrictions on the design process itself, such as its length or cost, 

or the tools available for doing the design [40]

As Stroustrup suggests, “the purpose of design is to create a clean and relatively 
simple internal structure, sometimes also called an architecture. . . . A design is 
the end product of the design process” [41]. Design involves balancing a set of 
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competing requirements. The products of design are models that enable us to rea-
son about our structures, make trade-offs when requirements conflict, and in gen-
eral, provide a blueprint for implementation.

The Importance of Model Building 

The building of models has a broad acceptance among all engineering disciplines, 
largely because model building appeals to the principles of decomposition, 
abstraction, and hierarchy [42]. Each model within a design describes a specific 
aspect of the system under consideration. As much as possible, we seek to build 
new models upon old models in which we already have confidence. Models give 
us the opportunity to fail under controlled conditions. We evaluate each model in 
both expected and unusual situations, and then we alter them when they fail to 
behave as we expect or desire.

We have found that in order to express all the subtleties of a complex system, we 
must use more than one kind of model. For example, when designing a personal 
computer, an electrical engineer must take into consideration the component-level 
view of the system as well as the physical layout of the circuit boards. This com-
ponent view forms a logical picture of the design of the system, which helps the 
engineer to reason about the cooperative behavior of the components. The board 
layout represents the physical packaging of these components, constrained by the 
board size, available power, and the kinds of components that exist. From this 
view, the engineer can independently reason about factors such as heat dissipation 
and manufacturability. The board designer must also consider dynamic as well as 
static aspects of the system under construction. Thus, the electrical engineer uses 
diagrams showing the static connections among individual components, as well 
as timing diagrams that show the behavior of these components over time. The 
engineer can then employ tools such as oscilloscopes and digital analyzers to val-
idate the correctness of both the static and dynamic models.

The Elements of Software Design Methodologies 

Clearly, there is no magic, no “silver bullet” [43] that can unfailingly lead the 
software engineer down the path from requirements to the implementation of a 
complex software system. In fact, the design of complex software systems does 
not lend itself at all to cookbook approaches. Rather, as noted earlier in the fifth 
attribute of complex systems, the design of such systems involves an incremental 
and iterative process.

Still, sound design methods do bring some much-needed discipline to the devel-
opment process. The software engineering community has evolved dozens of dif-
ferent design methodologies, which we can loosely classify into three categories 
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(see the Categories of Analysis and Design Methods sidebar). Despite their differ-
ences, all of these have elements in common. Specifically, each includes the 
following:

■ Notation The language for expressing each model
■ Process The activities leading to the orderly construction of the system’s 

models
■ Tools The artifacts that eliminate the tedium of model building and 

enforce rules about the models themselves, so that errors and 
inconsistencies can be exposed

A sound design method is based on a solid theoretical foundation yet offers 
degrees of freedom for artistic innovation.

The Models of Object-Oriented Development 

Is there a “best” design method? No, there is no absolute answer to this question, 
which is actually just a veiled way of asking the earlier question: What is the best 
way to decompose a complex system? To reiterate, we have found great value in 
building models that are focused on the “things” we find in the problem space, 
forming what we refer to as an object-oriented decomposition.

Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition. By applying object-oriented design, we create software 
that is resilient to change and written with economy of expression. We achieve a 
greater level of confidence in the correctness of our software through an intelli-
gent separation of its state space. Ultimately, we reduce the risks inherent in 
developing complex software systems. 

In this chapter, we have made a case for using object-oriented analysis and design 
to master the complexity associated with developing software systems. Addition-
ally, we have suggested a number of fundamental benefits to be derived from 
applying this method. Before we present the notation and process of object-ori-
ented design, however, we must study the principles on which object-oriented 
development is founded, namely, abstraction, encapsulation, modularity, hierar-
chy, typing, concurrency, and persistence.

Summary

■ Software is inherently complex; the complexity of software systems often 
exceeds the human intellectual capacity.
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■ The task of the software development team is to engineer the illusion of 
simplicity.

■ Complexity often takes the form of a hierarchy; it is useful to model both 
the “is a” and the “part of” hierarchies of a complex system.

■ Complex systems generally evolve from stable intermediate forms.
■ There are fundamental limiting factors of human cognition; we can address 

these constraints through the use of decomposition, abstraction, and 
hierarchy.

■ Complex systems can be viewed by focusing on either things or processes; 
there are compelling reasons for applying object-oriented decomposition, in 
which we view the world as a meaningful collection of objects that collabo-
rate to achieve some higher-level behavior.

■ Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition; object-oriented design uses a notation and process 
for constructing complex software systems and offers a rich set of models 
with which we may reason about different aspects of the system under 
consideration.
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C h a p t e r  2

The Object Model

Object-oriented technology is built on a sound engineering foundation, 
whose elements we collectively call the object model of development or 
simply the object model. The object model encompasses the principles of 
abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and 
persistence. By themselves, none of these principles are new. What is 
important about the object model is that these elements are brought 
together in a synergistic way.

Let there be no doubt that object-oriented analysis and design is funda-
mentally different than traditional structured design approaches: It 
requires a different way of thinking about decomposition, and it produces 
software architectures that are largely outside the realm of the structured 
design culture. 

2.1 The Evolution of the Object Model

Object-oriented development did not spontaneously generate itself from the ashes 
of the uncounted failed software projects that used earlier technologies. It is not a 
radical departure from earlier approaches. Indeed, it is founded in the best ideas 
from prior technologies. In this section we will examine the evolution of the tools 
of our profession to help us understand the foundation and emergence of object-
oriented technology.
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As we look back on the relatively brief yet colorful history of software engineer-
ing, we cannot help but notice two sweeping trends:

1. The shift in focus from programming-in-the-small to programming-in-the-
large

2. The evolution of high-order programming languages

Most new industrial-strength software systems are larger and more complex than 
their predecessors were even just a few years ago. This growth in complexity has 
prompted a significant amount of useful applied research in software engineering, 
particularly with regard to decomposition, abstraction, and hierarchy. The devel-
opment of more expressive programming languages has complemented these 
advances. 

The Generations of Programming Languages

Wegner has classified some of the more popular high-order programming lan-
guages in generations arranged according to the language features they first intro-
duced [2]. (By no means is this an exhaustive list of all programming languages.)

■ First-generation languages (1954–1958)
FORTRAN I Mathematical expressions
ALGOL 58 Mathematical expressions
Flowmatic Mathematical expressions
IPL V Mathematical expressions

■ Second-generation languages (1959–1961)
FORTRAN II Subroutines, separate compilation
ALGOL 60 Block structure, data types
COBOL Data description, file handling
Lisp List processing, pointers, garbage collection

■ Third-generation languages (1962–1970)
PL/1 FORTRAN + ALGOL + COBOL
ALGOL 68 Rigorous successor to ALGOL 60
Pascal Simple successor to ALGOL 60
Simula Classes, data abstraction

■ The generation gap (1970–1980)
Many different languages were invented, but few endured. However, the fol-
lowing are worth noting:

C Efficient; small executables
FORTRAN 77 ANSI standardization
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Let’s expand on Wegner’s categories. 

■ Object-orientation boom (1980–1990, but few languages survive)
Smalltalk 80 Pure object-oriented language
C++ Derived from C and Simula
Ada83 Strong typing; heavy Pascal influence
Eiffel Derived from Ada and Simula

■ Emergence of frameworks (1990–today)
Much language activity, revisions, and standardization have occurred, lead-
ing to programming frameworks.

Visual Basic Eased development of the graphical user interface 
(GUI) for Windows applications

Java Successor to Oak; designed for portability
Python Object-oriented scripting language
J2EE Java-based framework for enterprise computing
.NET Microsoft’s object-based framework
Visual C# Java competitor for the Microsoft .NET 

Framework
Visual Basic .NET Visual Basic for the Microsoft .NET Framework

In successive generations, the kind of abstraction mechanism each language sup-
ported changed. First-generation languages were used primarily for scientific and 
engineering applications, and the vocabulary of this problem domain was almost 
entirely mathematics. Languages such as FORTRAN I were thus developed to 
allow the programmer to write mathematical formulas, thereby freeing the pro-
grammer from some of the intricacies of assembly or machine language. This first 
generation of high-order programming languages therefore represented a step 
closer to the problem space and a step further away from the underlying machine. 

Among second-generation languages, the emphasis was on algorithmic abstrac-
tions. By this time, machines were becoming more and more powerful, and the 
economics of the computer industry meant that more kinds of problems could be 
automated, especially for business applications. Now, the focus was largely on 
telling the machine what to do: read these personnel records first, sort them next, 
and then print this report. Again, this new generation of high-order programming 
languages moved us a step closer to the problem space and further away from the 
underlying machine. 

By the late 1960s, especially with the advent of transistors and then integrated cir-
cuit technology, the cost of computer hardware had dropped dramatically, yet pro-
cessing capacity had grown almost exponentially. Larger problems could now be 
solved, but these demanded the manipulation of more kinds of data. Thus, third-
generation languages such as ALGOL 60 and, later, Pascal evolved with support 
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for data abstraction. Now a programmer could describe the meaning of related 
kinds of data (their type) and let the programming language enforce these design 
decisions. This generation of high-order programming languages again moved 
our software a step closer to the problem domain and further away from the 
underlying machine. 

The 1970s provided us with a frenzy of activity in programming language 
research, resulting in the creation of literally a couple of thousand different pro-
gramming languages and dialects. To a large extent, the drive to write larger and 
larger programs highlighted the inadequacies of earlier languages; thus, many 
new language mechanisms were developed to address these limitations. Few of 
these languages survived (have you seen a recent textbook on the languages Fred, 
Chaos, or Tranquil?); however, many of the concepts that they introduced found 
their way into successors of earlier languages. 

What is of the greatest interest to us is the class of languages we call object-based
and object-oriented. Object-based and object-oriented programming languages 
best support the object-oriented decomposition of software. The number of these 
languages (and the number of “objectified” variants of existing languages) 
boomed in the 1980s and early 1990s. Since 1990 a few languages have emerged 
as mainstream OO languages with the backing of commercial programming tool 
vendors (e.g., Java, C++). The emergence of programming frameworks (e.g., 
J2EE, .NET), which provide a tremendous amount of support to the programmer 
by offering components and services that simplify the common and often mun-
dane programming tasks, has greatly boosted productivity and demonstrated the 
elusive promise of component reuse.

The Topology of First- and Early Second-
Generation Programming Languages 

Let’s consider the structure of each generation of programming languages. In Fig-
ure 2–1, we see the topology of most first- and early second-generation program-
ming languages. By topology, we mean the basic physical building blocks of the 
language and how those parts can be connected. In this figure, we see that for lan-
guages such as FORTRAN and COBOL, the basic physical building block of all 
applications is the subprogram (or the paragraph, for those who speak COBOL). 

Applications written in these languages exhibit a relatively flat physical structure, 
consisting only of global data and subprograms. The arrows in this figure indicate 
dependencies of the subprograms on various data. During design, one can logi-
cally separate different kinds of data from one another, but there is little in these 
languages that can enforce these design decisions. An error in one part of a pro-
gram can have a devastating ripple effect across the rest of the system because the 
global data structures are exposed for all subprograms to see. 
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When modifications are made to a large system, it is difficult to maintain the 
integrity of the original design. Often, entropy sets in: After even a short period of 
maintenance, a program written in one of these languages usually contains a tre-
mendous amount of cross-coupling among subprograms, implied meanings of 
data, and twisted flows of control, thus threatening the reliability of the entire sys-
tem and certainly reducing the overall clarity of the solution.

The Topology of Late Second- and Early 
Third-Generation Programming Languages

By the mid-1960s, programs were finally being recognized as important interme-
diate points between the problem and the computer [3]. “The first software 
abstraction, now called the ‘procedural’ abstraction, grew directly out of this 
pragmatic view of software. . . . Subprograms were invented prior to 1950, but 
were not fully appreciated as abstractions at the time. . . . Instead, they were orig-
inally seen as labor-saving devices. . . . Very quickly though, subprograms were 
appreciated as a way to abstract program functions” [4]. 

The realization that subprograms could serve as an abstraction mechanism had 
three important consequences. First, languages were invented that supported a 
variety of parameter-passing mechanisms. Second, the foundations of structured 
programming were laid, manifesting themselves in language support for the nest-
ing of subprograms and the development of theories regarding control structures 
and the scope and visibility of declarations. Third, structured design methods 
emerged, offering guidance to designers trying to build large systems using sub-
programs as basic physical building blocks. Thus, it is not surprising, as Figure 2–2 
shows, that the topology of late second- and early third-generation languages is 
largely a variation on the theme of earlier generations. This topology addresses 

Figure 2–1 The Topology of First- and Early Second-Generation 
Programming Languages

Subprograms

Data
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some of the inadequacies of earlier languages, namely, the need to have greater 
control over algorithmic abstractions, but it still fails to address the problems of 
programming-in-the-large and data design.

The Topology of Late Third-Generation 
Programming Languages 

Starting with FORTRAN II, and appearing in most late third-generation program 
languages, another important structuring mechanism evolved to address the grow-
ing issues of programming-in-the-large. Larger programming projects meant 
larger development teams, and thus the need to develop different parts of the same 
program independently. The answer to this need was the separately compiled 
module, which in its early conception was little more than an arbitrary container 
for data and subprograms, as Figure 2–3 shows. Modules were rarely recognized 
as an important abstraction mechanism; in practice they were used simply to 
group subprograms that were most likely to change together. 

Most languages of this generation, while supporting some sort of modular struc-
ture, had few rules that required semantic consistency among module interfaces. 
A developer writing a subprogram for one module might assume that it would be 
called with three different parameters: a floating-point number, an array of ten 
elements, and an integer representing a Boolean flag. In another module, a call to 
this subprogram might incorrectly use actual parameters that violated these 
assumptions: an integer, an array of five elements, and a negative number. Simi-
larly, one module might use a block of common data that it assumed as its own, 
and another module might violate these assumptions by directly manipulating this 

Figure 2–2 The Topology of Late Second- and Early Third-Generation 
Programming Languages
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data. Unfortunately, because most of these languages had dismal support for data 
abstraction and strong typing, such errors could be detected only during execution 
of the program.

The Topology of Object-Based and Object-
Oriented Programming Languages 

Data abstraction is important to mastering complexity. “The nature of abstrac-
tions that may be achieved through the use of procedures is well suited to the 
description of abstract operations, but is not particularly well suited to the 
description of abstract objects. This is a serious drawback, for in many applica-
tions, the complexity of the data objects to be manipulated contributes substan-
tially to the overall complexity of the problem” [5]. This realization had two 
important consequences. First, data-driven design methods emerged, which pro-
vided a disciplined approach to the problems of doing data abstraction in algorith-
mically oriented languages. Second, theories regarding the concept of a type 
appeared, which eventually found their realization in languages such as Pascal.

The natural conclusion of these ideas first appeared in the language Simula and 
was improved upon, resulting in the development of several languages such as 
Smalltalk, Object Pascal, C++, Ada, Eiffel, and Java. For reasons that we will 
explain shortly, these languages are called object-based or object-oriented. Figure 
2–4 illustrates the topology of such languages for small to moderate-sized 
applications.

Figure 2–3 The Topology of Late Third-Generation Programming Languages

Subprograms

Data

Modules
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The physical building block in such languages is the module, which represents a 
logical collection of classes and objects instead of subprograms, as in earlier lan-
guages. To state it another way, “If procedures and functions are verbs and pieces 
of data are nouns, a procedure-oriented program is organized around verbs while 
an object-oriented program is organized around nouns” [6]. For this reason, the 
physical structure of a small to moderate-sized object-oriented application 
appears as a graph, not as a tree, which is typical of algorithmically oriented lan-
guages. Additionally, there is little or no global data. Instead, data and operations 
are united in such a way that the fundamental logical building blocks of our sys-
tems are no longer algorithms, but instead are classes and objects.

By now we have progressed beyond programming-in-the-large and must cope 
with programming-in-the-colossal. For very complex systems, we find that 
classes, objects, and modules provide an essential yet insufficient means of 
abstraction. Fortunately, the object model scales up. In large systems, we find 
clusters of abstractions built in layers on top of one another. At any given level of 
abstraction, we find meaningful collections of objects that collaborate to achieve 
some higher-level behavior. If we look inside any given cluster to view its imple-
mentation, we unveil yet another set of cooperative abstractions. This is exactly 
the organization of complexity described in Chapter 1; this topology is shown in 
Figure 2–5.

Figure 2–4 The Topology of Small to Moderate-Sized Applications Using 
Object-Based and Object-Oriented Programming Languages
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2.2 Foundations of the Object Model

Structured design methods evolved to guide developers who were trying to build 
complex systems using algorithms as their fundamental building blocks. Simi-
larly, object-oriented design methods have evolved to help developers exploit the 
expressive power of object-based and object-oriented programming languages, 
using the class and object as basic building blocks.

Actually, the object model has been influenced by a number of factors, not just 
object-oriented programming. Indeed, as further discussed in the sidebar, Founda-
tions—The Object Model, the object model has proven to be a unifying concept 
in computer science, applicable not just to programming languages but also to the 
design of user interfaces, databases, and even computer architectures. The reason 
for this widespread appeal is simply that an object orientation helps us to cope 
with the complexity inherent in many different kinds of systems.

Figure 2–5 The Topology of Large Applications Using Object-Based and 
Object-Oriented Programming Languages
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Object-oriented analysis and design thus represents an evolutionary development, 
not a revolutionary one; it does not break with advances from the past but builds 
on proven ones. Unfortunately, most programmers are not rigorously trained in 
OOAD. Certainly, many good engineers have developed and deployed countless 
useful software systems using structured design techniques. However, there are 
limits to the amount of complexity we can handle using only algorithmic decom-
position; thus we must turn to object-oriented decomposition. Furthermore, if we 
try to use languages such as C++ and Java as if they were only traditional, algo-
rithmically oriented languages, we not only miss the power available to us, but we 
usually end up worse off than if we had used an older language such as C or 
Pascal. Give a power drill to a carpenter who knows nothing about electricity, and 
he would use it as a hammer. He will end up bending quite a few nails and smash-
ing several fingers, for a power drill makes a lousy hammer.

Because the object model derives from so many disparate sources, it has unfortu-
nately been accompanied by a muddle of terminology. A Smalltalk programmer 
uses methods, a C++ programmer uses virtual member functions, and a CLOS 
programmer uses generic functions. An Object Pascal programmer talks of a type
coercion; an Ada programmer calls the same thing a type conversion; a C# or Java 
programmer would use a cast. To minimize the confusion, let’s define what is 
object-oriented and what is not. 

The phrase object-oriented “has been bandied about with carefree abandon with 
much the same reverence accorded ‘motherhood,’ ‘apple pie,’ and ‘structured pro-
gramming’”[7]. What we can agree on is that the concept of an object is central to 
anything object-oriented. In the previous chapter, we informally defined an object 
as a tangible entity that exhibits some well-defined behavior. Stefik and Bobrow 
define objects as “entities that combine the properties of procedures and data 
since they perform computations and save local state” [8]. Defining objects as 
entities begs the question somewhat, but the basic concept here is that objects 
serve to unify the ideas of algorithmic and data abstraction. Jones further clarifies 
this term by noting that “in the object model, emphasis is placed on crisply char-
acterizing the components of the physical or abstract system to be modeled by a 
programmed system. . . . Objects have a certain ‘integrity’ which should not—in 
fact, cannot—be violated. An object can only change state, behave, be manipu-
lated, or stand in relation to other objects in ways appropriate to that object. 
Stated differently, there exist invariant properties that characterize an object and 
its behavior. An elevator, for example, is characterized by invariant properties 
including [that] it only travels up and down inside its shaft. . . . Any elevator sim-
ulation must incorporate these invariants, for they are integral to the notion of an 
elevator” [32].
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Foundations—The Object Model

As Yonezawa and Tokoro point out, “The term ‘object’ emerged almost 
independently in various fields in computer science, almost simultaneously 
in the early 1970s, to refer to notions that were different in their appear-
ance, yet mutually related. All of these notions were invented to manage 
the complexity of software systems in such a way that objects represented 
components of a modularly decomposed system or modular units of knowl-
edge representation” [9]. Levy adds that the following events have contrib-
uted to the evolution of object-oriented concepts:

■ Advances in computer architecture, including capability systems and hard-
ware support for operating systems concepts

■ Advances in programming languages, as demonstrated in Simula, Smalltalk, 
CLU, and Ada

■ Advances in programming methodology, including modularization and infor-
mation hiding [10]

We would add to this list three more contributions to the foundation of the 
object model:

■ Advances in database models
■ Research in artificial intelligence
■ Advances in philosophy and cognitive science

The concept of an object had its beginnings in hardware over twenty years 
ago, starting with the invention of descriptor-based architectures and, later, 
capability-based architectures [11]. These architectures represented a 
break from the classical von Neumann architectures and came about 
through attempts to close the gap between the high-level abstractions of 
programming languages and the low-level abstractions of the machine 
itself [12]. According to its proponents, the advantages of such architec-
tures are many: better error detection, improved execution efficiency, fewer 
instruction types, simpler compilation, and reduced storage requirements. 
Computers can also have an object-oriented architecture. 

Closely related to developments in object-oriented architectures are 
object-oriented operating systems. Dijkstra’s work with the THE multipro-
gramming system first introduced the concept of building systems as lay-
ered state machines [18]. Other pioneering object-oriented operating 
systems include the Plessey/System 250 (for the Plessey 250 multiproces-
sor), Hydra (for CMU’s C.mmp), CALTSS (for the CDC 6400), CAP (for the 
Cambridge CAP computer), UCLA Secure UNIX (for the PDP 11/45 and 
11/70), StarOS (for CMU’s Cm*), Medusa (also for CMU’s Cm*), and iMAX 
(for the Intel 432) [19]. 

Perhaps the most important contribution to the object model derives from 
the class of programming languages we call object-based and object-
oriented. The fundamental ideas of classes and objects first appeared in 
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the language Simula 67. The Flex system, followed by various dialects of 
Smalltalk, such as Smalltalk-72, -74, and -76, and finally the current ver-
sion, Smalltalk-80, took Simula’s object-oriented paradigm to its natural 
conclusion by making everything in the language an instance of a class. In 
the 1970s languages such as Alphard, CLU, Euclid, Gypsy, Mesa, and 
Modula were developed, which supported the then-emerging ideas of data 
abstraction. Language research led to the grafting of Simula and Smalltalk 
concepts onto traditional high-order programming languages. The unifica-
tion of object-oriented concepts with C has lead to the languages C++ and 
Objective C. Then Java arrived to help programmers avoid common pro-
gramming errors often seen when using C++. Adding object-oriented pro-
gramming mechanisms to Pascal has led to the languages Object Pascal, 
Eiffel, and Ada. Additionally, many dialects of Lisp incorporate the object-
oriented features of Simula and Smalltalk. Appendix A discusses some of 
these and other programming language developments in greater detail.

The first person to formally identify the importance of composing systems 
in layers of abstraction was Dijkstra. Parnas later introduced the idea of 
information hiding [20], and in the 1970s a number of researchers, most 
notably Liskov and Zilles [21], Guttag [22], and Shaw [23], pioneered the 
development of abstract data type mechanisms. Hoare contributed to these 
developments with his proposal for a theory of types and subclasses [24].

Although database technology has evolved somewhat independently of 
software engineering, it has also contributed to the object model [25], pri-
marily through the ideas of the entity-relationship (ER) approach to data 
modeling [26]. In the ER model, first proposed by Chen [27], the world is 
modeled in terms of its entities, the attributes of these entities, and the rela-
tionships among these entities. 

In the field of artificial intelligence, developments in knowledge representa-
tion have contributed to an understanding of object-oriented abstractions. 
In 1975, Minsky first proposed a theory of frames to represent real-world 
objects as perceived by image and natural language recognition systems 
[28]. Since then, frames have been used as the architectural foundation for 
a variety of intelligent systems.

Lastly, philosophy and cognitive science have contributed to the advance-
ment of the object model. The idea that the world could be viewed in terms 
of either objects or processes was a Greek innovation, and in the seven-
teenth century, we find Descartes observing that humans naturally apply 
an object-oriented view of the world [29]. In the twentieth century, Rand 
expanded on these themes in her philosophy of objectivist epistemology 
[30]. More recently, Minsky has proposed a model of human intelligence in 
which he considers the mind to be organized as a society of otherwise 
mindless agents [31]. Minsky argues that only through the cooperative 
behavior of these agents do we find what we call intelligence.
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Object-Oriented Programming 

What, then, is object-oriented programming (OOP)? We define it as follows:

Object-oriented programming is a method of implementation in which programs 
are organized as cooperative collections of objects, each of which represents an 
instance of some class, and whose classes are all members of a hierarchy of 
classes united via inheritance relationships.

There are three important parts to this definition: (1) Object-oriented program-
ming uses objects, not algorithms, as its fundamental logical building blocks (the 
“part of” hierarchy we introduced in Chapter 1); (2) each object is an instance of 
some class; and (3) classes may be related to one another via inheritance relation-
ships (the “is a” hierarchy we spoke of in Chapter 1). A program may appear to be 
object-oriented, but if any of these elements is missing, it is not an object-oriented 
program. Specifically, programming without inheritance is distinctly not object-
oriented; that would merely be programming with abstract data types.

By this definition, some languages are object-oriented, and some are not. Strous-
trup suggests that “if the term ‘object-oriented language’ means anything, it must 
mean a language that has mechanisms that support the object-oriented style of 
programming well. . . . A language supports a programming style well if it pro-
vides facilities that make it convenient to use that style. A language does not sup-
port a technique if it takes exceptional effort or skill to write such programs; in 
that case, the language merely enables programmers to use the techniques” [33]. 
From a theoretical perspective, one can fake object-oriented programming in non-
object-oriented programming languages like Pascal and even COBOL or assem-
bly language, but it is horribly ungainly to do so. Cardelli and Wegner thus say:

[A] language is object-oriented if and only if it satisfies the following requirements:

■ It supports objects that are data abstractions with an interface of named 
operations and a hidden local state.

■ Objects have an associated type [class].
■ Types [classes] may inherit attributes from supertypes [superclasses]. [34]

For a language to support inheritance means that it is possible to express “is a” 
relationships among types, for example, a red rose is a kind of flower, and a 
flower is a kind of plant. If a language does not provide direct support for inherit-
ance, then it is not object-oriented. Cardelli and Wegner distinguish such lan-
guages by calling them object-based rather than object-oriented. Under this 
definition, Smalltalk, Object Pascal, C++, Eiffel, CLOS, C#, and Java are all 
object-oriented, and Ada83 is object-based (support for object orientation was 
later added to Ada95). However, since objects and classes are elements of both 
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kinds of languages, it is both possible and highly desirable for us to use object-
oriented design methods for both object-based and object-oriented programming 
languages.

Object-Oriented Design 

The emphasis in programming methods is primarily on the proper and effective 
use of particular language mechanisms. By contrast, design methods emphasize 
the proper and effective structuring of a complex system. What, then, is object-
oriented design (OOD)? We suggest the following:

Object-oriented design is a method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physical as 
well as static and dynamic models of the system under design.

There are two important parts to this definition: object-oriented design (1) leads 
to an object-oriented decomposition and (2) uses different notations to express 
different models of the logical (class and object structure) and physical (module 
and process architecture) design of a system, in addition to the static and dynamic 
aspects of the system.

The support for object-oriented decomposition is what makes object-oriented 
design quite different from structured design: The former uses class and object 
abstractions to logically structure systems, and the latter uses algorithmic abstrac-
tions. We will use the term object-oriented design to refer to any method that 
leads to an object-oriented decomposition. 

Object-Oriented Analysis 

The object model has influenced even earlier phases of the software development 
lifecycle. Traditional structured analysis techniques, best typified by the work of 
DeMarco [35], Yourdon [36], and Gane and Sarson [37], with real-time exten-
sions by Ward and Mellor [38] and by Hatley and Pirbhai [39], focus on the flow 
of data within a system. Object-oriented analysis (OOA) emphasizes the building 
of real-world models, using an object-oriented view of the world:

Object-oriented analysis is a method of analysis that examines requirements from 
the perspective of the classes and objects found in the vocabulary of the problem 
domain.

How are OOA, OOD, and OOP related? Basically, the products of object-oriented 
analysis serve as the models from which we may start an object-oriented design; 
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the products of object-oriented design can then be used as blueprints for com-
pletely implementing a system using object-oriented programming methods.

2.3 Elements of the Object Model

Jenkins and Glasgow observe that “most programmers work in one language and 
use only one programming style. They program in a paradigm enforced by the 
language they use. Frequently, they have not been exposed to alternate ways of 
thinking about a problem, and hence have difficulty in seeing the advantage of 
choosing a style more appropriate to the problem at hand” [40]. Bobrow and 
Stefik define a programming style as “a way of organizing programs on the basis 
of some conceptual model of programming and an appropriate language to make 
programs written in the style clear” [41]. They further suggest that there are five 
main kinds of programming styles, listed here with the kinds of abstractions they 
employ:

1. Procedure-oriented Algorithms
2. Object-oriented Classes and objects
3. Logic-oriented Goals, often expressed in a predicate calculus
4. Rule-oriented If–then rules
5. Constraint-oriented Invariant relationships

There is no single programming style that is best for all kinds of applications. For 
example, rule-oriented programming would be best suited for the design of a 
knowledge base, and procedure-oriented programming would be best for the design 
of computation-intense operations. From our experience, the object-oriented style 
is best suited to the broadest set of applications; indeed, this programming 
paradigm often serves as the architectural framework in which we employ other 
paradigms.

Each of these styles of programming is based on its own conceptual framework. 
Each requires a different mindset, a different way of thinking about the problem. 
For all things object-oriented, the conceptual framework is the object model. 
There are four major elements of this model:

1. Abstraction
2. Encapsulation
3. Modularity
4. Hierarchy

By major, we mean that a model without any one of these elements is not object-
oriented.
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There are three minor elements of the object model:

1. Typing
2. Concurrency
3. Persistence

By minor, we mean that each of these elements is a useful, but not essential, part 
of the object model.

Without this conceptual framework, you may be programming in a language such 
as Smalltalk, Object Pascal, C++, Eiffel, or Ada, but your design is going to smell 
like a FORTRAN, Pascal, or C application. You will have missed out on or other-
wise abused the expressive power of the object-oriented language you are using 
for implementation. More importantly, you are not likely to have mastered the 
complexity of the problem at hand.

The Meaning of Abstraction

Abstraction is one of the fundamental ways that we as humans cope with com-
plexity. Dahl, Dijkstra, and Hoare suggest that “abstraction arises from a recogni-
tion of similarities between certain objects, situations, or processes in the real 
world, and the decision to concentrate upon these similarities and to ignore for the 
time being the differences” [42]. Shaw defines an abstraction as “a simplified 
description, or specification, of a system that emphasizes some of the system’s 
details or properties while suppressing others. A good abstraction is one that 
emphasizes details that are significant to the reader or user and suppresses details 
that are, at least for the moment, immaterial or diversionary” [43]. Berzins, Gray, 
and Naumann recommend that “a concept qualifies as an abstraction only if it can 
be described, understood, and analyzed independently of the mechanism that will 
eventually be used to realize it” [44]. Combining these different viewpoints, we 
define an abstraction as follows:

An abstraction denotes the essential characteristics of an object that distinguish it 
from all other kinds of objects and thus provide crisply defined conceptual 
boundaries, relative to the perspective of the viewer.

An abstraction focuses on the outside view of an object and so serves to separate 
an object’s essential behavior from its implementation. Abelson and Sussman call 
this behavior/implementation division an abstraction barrier [45] achieved by 
applying the principle of least commitment, through which the interface of an 
object provides its essential behavior, and nothing more [46]. We like to use an 
additional principle that we call the principle of least astonishment, through which 
an abstraction captures the entire behavior of some object, no more and no less, 
and offers no surprises or side effects that go beyond the scope of the abstraction.
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Deciding on the right set of abstractions for a given domain is the central problem 
in object-oriented design. Because this topic is so important, the whole of Chapter 4 
is devoted to it.

“There is a spectrum of abstraction, from objects which closely model problem 
domain entities to objects which really have no reason for existence” [47]. From 
the most to the least useful, these kinds of abstractions include the following:

■ Entity abstraction An object that represents a useful model of a 
problem domain or solution domain entity

■ Action abstraction An object that provides a generalized set of 
operations, all of which perform the same 
kind of function

■ Virtual machine abstraction An object that groups operations that are all 
used by some superior level of control, or 
operations that all use some junior-level set 
of operations

■ Coincidental abstraction An object that packages a set of operations 
that have no relation to each other

Abstraction focuses on the essential characteristics of some object, 
relative to the perspective of the viewer.
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We strive to build entity abstractions because they directly parallel the vocabulary 
of a given problem domain.

A client is any object that uses the resources of another object (known as the 
server). We can characterize the behavior of an object by considering the services 
that it provides to other objects, as well as the operations that it may perform on 
other objects. This view forces us to concentrate on the outside view of an object 
and leads us to what Meyer calls the contract model of programming [48]: the 
outside view of each object defines a contract on which other objects may depend, 
and which in turn must be carried out by the inside view of the object itself (often 
in collaboration with other objects). This contract thus establishes all the assump-
tions a client object may make about the behavior of a server object. In other 
words, this contract encompasses the responsibilities of an object, namely, the 
behavior for which it is held accountable [49].

Individually, each operation that contributes to this contract has a unique signa-
ture comprising all of its formal arguments and return type. We call the entire set 
of operations that a client may perform on an object, together with the legal order-
ings in which they may be invoked, its protocol. A protocol denotes the ways in 
which an object may act and react and thus constitutes the entire static and 
dynamic outside view of the abstraction.

Central to the idea of an abstraction is the concept of invariance. An invariant is 
some Boolean (true or false) condition whose truth must be preserved. For each 
operation associated with an object, we may define preconditions (invariants 
assumed by the operation) as well as postconditions (invariants satisfied by the 
operation). Violating an invariant breaks the contract associated with an abstrac-
tion. If a precondition is violated, this means that a client has not satisfied its part 
of the bargain, and hence the server cannot proceed reliably. Similarly, if a post-
condition is violated, this means that a server has not carried out its part of the 
contract, and so its clients can no longer trust the behavior of the server. An 
exception is an indication that some invariant has not been or cannot be satisfied. 
Certain languages permit objects to throw exceptions so as to abandon processing 
and alert some other object to the problem, which in turn may catch the exception 
and handle the problem.

As an aside, the terms operation, method, and member function evolved from 
three different programming cultures (Ada, Smalltalk, and C++, respectively). 
They all mean virtually the same thing, so we will use them interchangeably.

All abstractions have static as well as dynamic properties. For example, a file 
object takes up a certain amount of space on a particular memory device; it has a 
name, and it has contents. These are all static properties. The value of each of 
these properties is dynamic, relative to the lifetime of the object: A file object 
may grow or shrink in size, its name may change, its contents may change. In a 
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procedure-oriented style of programming, the activity that changes the dynamic 
value of objects is the central part of all programs; things happen when subpro-
grams are called and statements are executed. In a rule-oriented style of program-
ming, things happen when new events cause rules to fire, which in turn may 
trigger other rules, and so on. In an object-oriented style of programming, things 
happen whenever we operate on an object (i.e., when we send a message to an 
object). Thus, invoking an operation on an object elicits some reaction from the 
object. What operations we can meaningfully perform on an object and how that 
object reacts constitute the entire behavior of the object.

Examples of Abstraction 

Let’s illustrate these concepts with some examples. We defer a complete treat-
ment of how to find the right abstractions for a given problem to Chapter 4.

On a hydroponics farm, plants are grown in a nutrient solution, without sand, 
gravel, or other soils. Maintaining the proper greenhouse environment is a deli-
cate job and depends on the kind of plant being grown and its age. One must 
control diverse factors such as temperature, humidity, light, pH, and nutrient con-
centrations. On a large farm, it is not unusual to have an automated system that 
constantly monitors and adjusts these elements. Simply stated, the purpose of an 
automated gardener is to efficiently carry out, with minimal human intervention, 
growing plans for the healthy production of multiple crops.

One of the key abstractions in this problem is that of a sensor. Actually, there are 
several different kinds of sensors. Anything that affects production must be mea-
sured, so we must have sensors for air and water temperature, humidity, light, pH, 
and nutrient concentrations, among other things. Viewed from the outside, a tem-
perature sensor is simply an object that knows how to measure the temperature at 
some specific location. What is a temperature? It is some numeric value, within a 
limited range of values and with a certain precision, that represents degrees in the 
scale of Fahrenheit, Centigrade, or Kelvin, whichever is most appropriate for our 
problem. What is a location? It is some identifiable place on the farm at which we 
desire to measure the temperature; presumably, there are only a few such loca-
tions. What is important for a temperature sensor is not so much where it is 
located but the fact that it has a location and identity unique from all other tem-
perature sensors. Now we are ready to ask: What are the responsibilities of a tem-
perature sensor? Our design decision is that a sensor is responsible for knowing 
the temperature at a given location and reporting that temperature when asked. 
More concretely, what operations can a client perform on a temperature sensor? 
Our design decision is that a client can calibrate it, as well as ask what the current 
temperature is. (See Figure 2–6. Note that this representation is similar to the rep-
resentation of a class in UML 2.0. You will learn the actual representation in 
Chapter 5.)



48 SECTION I CONCEPTS

The abstraction we have described thus far is passive; some client object must 
operate on an air Temperature Sensor object to determine its current tem-
perature. However, there is another legitimate abstraction that may be more or 
less appropriate depending on the broader system design decisions we might 
make. Specifically, rather than the Temperature Sensor being passive, we 
might make it active, so that it is not acted on but rather acts on other objects 
whenever the temperature at its location changes a certain number of degrees 
from a given setpoint. This abstraction is almost the same as our first one, except 
that its responsibilities have changed slightly: A sensor is now responsible for 
reporting the current temperature when it changes, not just when asked. What 
new operations must this abstraction provide? 

This abstraction is a bit more complicated than the first (see Figure 2–7). A client 
of this abstraction may invoke an operation to establish a critical range of temper-
atures. It is then the responsibility of the sensor to report whenever the tempera-
ture at its location drops below or rises above the given setpoint. When the 
function is invoked, the sensor provides its location and the current temperature, 
so that the client has sufficient information to respond to the condition.

Figure 2–6 Abstraction of a Temperature Sensor

Figure 2–7 Abstraction of an Active Temperature Sensor

Abstraction: Temperature Sensor

Important Characteristics:

            temperature
            location

Responsibilities:

 report current temperature
 calibrate

Abstraction: Active Temperature Sensor

Important Characteristics:

            temperature
            location
            setpoint

Responsibilities:

            report current temperature
            calibrate
            establish setpoint
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How the Active Temperature Sensor carries out its responsibilities is a 
function of its inside view and is of no concern to outside clients. These then are 
the secrets of the class, which are implemented by the class’s private parts 
together with the definition of its member functions.

Let’s consider a different abstraction. For each crop, there must be a growing plan 
that describes how temperature, light, nutrients, and other conditions should change 
over time to maximize the harvest. A growing plan is a legitimate entity abstrac-
tion because it forms part of the vocabulary of the problem domain. Each crop has 
its own growing plan, but the growing plans for all crops take the same form. 

A growing plan is responsible for keeping track of all interesting actions associ-
ated with growing a crop, correlated with the times at which those actions should 
take place. For example, on day 15 in the lifetime of a certain crop, our growing 
plan might be to maintain a temperature of 78°F for 16 hours, turn on the lights 
for 14 of these hours, and then drop the temperature to 65°F for the rest of the 
day. We might also want to add certain extra nutrients in the middle of the day, 
while still maintaining a slightly acidic pH. From the perspective outside of each 
growing-plan object, a client must be able to establish the details of a plan, 
modify a plan, and inquire about a plan, as shown in Figure 2–8. (Note that 
abstractions are likely to evolve over the lifetime of a project. As details begin to 
be fleshed out, a responsibility such as “establish plan” could turn into multiple 
responsibilities, such as “set temperature,” “set pH,” and so forth. This is to be 
expected as more knowledge of client requirements is gained, designs mature, 
and implementation approaches are considered.)

Our decision is also that we will not require a growing plan to carry out its plan: 
We will leave this as the responsibility of a different abstraction (e.g., a Plan
Controller). In this manner, we create a clear separation of concerns among 
the logically different parts of the system, so as to reduce the conceptual size of 
each individual abstraction. For example, there might be an object that sits at the 

Figure 2–8 Abstraction of a Growing Plan

Abstraction: Growing Plan

Important Characteristics:

 name

Responsibilities:

 establish plan
 modify plan
 clear plan

Related Candidate Abstractions: Crop, Conditions, Plan Controller
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boundary of the human/machine interface and translates human input into plans. 
This is the object that establishes the details of a growing plan, so it must be able 
to change the state of a Growing Plan object. There must also be an object 
that carries out the growing plan, and it must be able to read the details of a plan 
for a particular time.

As this example points out, no object stands alone; every object collaborates with 
other objects to achieve some behavior.1 Our design decisions about how these 
objects cooperate with one another define the boundaries of each abstraction and 
thus the responsibilities and protocol of each object.

The Meaning of Encapsulation

Although we earlier described our abstraction of the Growing Plan as a time/
action mapping, its implementation is not necessarily a literal table or map data 
structure. Indeed, whichever representation is chosen is immaterial to the client’s 
contract with the Growing Plan, as long as that representation upholds the 
contract. Simply stated, the abstraction of an object should precede the decisions 
about its implementation. Once an implementation is selected, it should be treated 
as a secret of the abstraction and hidden from most clients. 

1. Stated another way, with apologies to the poet John Donne, no object is an island (al-
though an island may be abstracted as an object).

Objects collaborate with other objects to achieve some behavior.
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Abstraction and encapsulation are complementary concepts: Abstraction focuses 
on the observable behavior of an object, whereas encapsulation focuses on the 
implementation that gives rise to this behavior. Encapsulation is most often 
achieved through information hiding (not just data hiding), which is the process 
of hiding all the secrets of an object that do not contribute to its essential charac-
teristics; typically, the structure of an object is hidden, as well as the implementa-
tion of its methods. “No part of a complex system should depend on the internal 
details of any other part” [50]. Whereas abstraction “helps people to think about 
what they are doing,” encapsulation “allows program changes to be reliably made 
with limited effort” [51].

Encapsulation provides explicit barriers among different abstractions and thus 
leads to a clear separation of concerns. For example, consider again the structure 
of a plant. To understand how photosynthesis works at a high level of abstraction, 
we can ignore details such as the responsibilities of plant roots or the chemistry of 
cell walls. Similarly, in designing a database application, it is standard practice to 
write programs so that they don’t care about the physical representation of data 
but depend only on a schema that denotes the data’s logical view [52]. In both of 
these cases, objects at one level of abstraction are shielded from implementation 
details at lower levels of abstraction.

“For abstraction to work, implementations must be encapsulated” [53]. In prac-
tice, this means that each class must have two parts: an interface and an imple-
mentation. The interface of a class captures only its outside view, encompassing 
our abstraction of the behavior common to all instances of the class. The imple-
mentation of a class comprises the representation of the abstraction as well as the 
mechanisms that achieve the desired behavior. The interface of a class is the one 
place where we assert all of the assumptions that a client may make about any 
instances of the class; the implementation encapsulates details about which no 
client may make assumptions. 

Encapsulation hides the details of the implementation of an object.
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To summarize, we define encapsulation as follows:

Encapsulation is the process of compartmentalizing the elements of an abstrac-
tion that constitute its structure and behavior; encapsulation serves to separate the 
contractual interface of an abstraction and its implementation.

Britton and Parnas call these encapsulated elements the “secrets” of an abstrac-
tion [54].

Examples of Encapsulation 

To illustrate the principle of encapsulation, let’s return to the problem of the 
Hydroponics Gardening System. Another key abstraction in this problem domain 
is that of a heater. A heater is at a fairly low level of abstraction, and thus we 
might decide that there are only three meaningful operations that we can perform 
on this object: turn it on, turn it off, and find out if it is running. 

All a client needs to know about the class Heater is its available interface (i.e., 
the responsibilities that it may execute at the client’s request—see Figure 2–9). 

Turning to the inside view of the Heater, we have an entirely different perspec-
tive. Suppose that our system engineers have decided to locate the computers that 
control each greenhouse away from the building (perhaps to avoid the harsh envi-
ronment) and to connect each computer to its sensors and actuators via serial 
lines. One reasonable implementation for the Heater class might be to use an 
electromechanical relay that controls the power going to each physical heater, 
with the relays in turn commanded by messages sent along these serial lines. For 
example, to turn on a heater, we might transmit a special command string, fol-
lowed by a number identifying the specific heater, followed by another number 
used to signal turning the heater on.

Separation of Concerns

We do not make it a responsibility of the Heater abstraction to maintain a 
fixed temperature. Instead, we choose to give this responsibility to another 
object (e.g., the Heater Controller), which must collaborate with a 
temperature sensor and a heater to achieve this higher-level behavior. We 
call this behavior higher-level because it builds on the primitive semantics 
of temperature sensors and heaters and adds some new semantics, 
namely, hysteresis, which prevents the heater from being turned on and off 
too rapidly when the temperature is near boundary conditions. By deciding 
on this separation of responsibilities, we make each individual abstraction 
more cohesive.
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Suppose that for whatever reason our system engineers choose to use memory-
mapped I/O instead of serial communication lines. We would not need to change 
the interface of the Heater, yet the implementation would be very different. The 
client would not see any change at all as the client sees only the Heater inter-
face. This is the key point of encapsulation. In fact, the client should not care what 
the implementation is, as long as it receives the service it needs from the Heater.

Let’s next consider the implementation of the class GrowingPlan. As we men-
tioned earlier, a growing plan is essentially a time/action mapping. Perhaps the 
most reasonable representation for this abstraction would be a dictionary of time/
action pairs, using an open hash table. We need not store an action for every hour, 
because things don’t change that quickly. Rather, we can store actions only for 
when they change, and have the implementation extrapolate between times.

In this manner, our implementation encapsulates two secrets: the use of an open 
hash table (which is distinctly a part of the vocabulary of the solution domain, not 
the problem domain) and the use of extrapolation to reduce our storage require-
ments (otherwise we would have to store many more time/action pairs over the 
duration of a growing season). No client of this abstraction need ever know about 
these implementation decisions because they do not materially affect the out-
wardly observable behavior of the class.

Intelligent encapsulation localizes design decisions that are likely to change. As a 
system evolves, its developers might discover that, in actual use, certain opera-
tions take longer than is acceptable or that some objects consume more space than 
is available. In such situations, the representation of an object is often changed so 
that more efficient algorithms can be applied or so that one can optimize for space 
by calculating rather than storing certain data. This ability to change the represen-
tation of an abstraction without disturbing any of its clients is the essential benefit 
of encapsulation.

Figure 2–9 Abstraction of a Heater

Abstraction: Heater

Important Characteristics:

            location
            status

Responsibilities:

 turn on
 turn off
 provide status

Related Candidate Abstractions: Heater Controller, Temperature Sensor
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Hiding is a relative concept: What is hidden at one level of abstraction may repre-
sent the outside view at another level of abstraction. The underlying representa-
tion of an object can be revealed, but in most cases only if the creator of the 
abstraction explicitly exposes the implementation, and then only if the client is 
willing to accept the resulting additional complexity. Thus, encapsulation cannot 
stop a developer from doing stupid things; as Stroustrup points out, “Hiding is for 
the prevention of accidents, not the prevention of fraud” [56]. Of course, no pro-
gramming language prevents a human from literally seeing the implementation of 
a class, although an operating system might deny access to a particular file that 
contains the implementation of a class. 

The Meaning of Modularity

“The act of partitioning a program into individual components can reduce its 
complexity to some degree. . . . Although partitioning a program is helpful for this 
reason, a more powerful justification for partitioning a program is that it creates a 
number of well-defined, documented boundaries within the program. These 
boundaries, or interfaces, are invaluable in the comprehension of the program” 
[57]. In some languages, such as Smalltalk, there is no concept of a module, so 
the class forms the only physical unit of decomposition. Java has packages that 
contain classes. In many other languages, including Object Pascal, C++, and Ada, 
the module is a separate language construct and therefore warrants a separate set 
of design decisions. In these languages, classes and objects form the logical structure 
of a system; we place these abstractions in modules to produce the system’s phys-
ical architecture. Especially for larger applications, in which we may have many 
hundreds of classes, the use of modules is essential to help manage complexity.

Modularity packages abstractions into discrete units.
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“Modularization consists of dividing a program into modules which can be com-
piled separately, but which have connections with other modules. We will use the 
definition of Parnas: ‘The connections between modules are the assumptions 
which the modules make about each other’” [58]. Most languages that support the 
module as a separate concept also distinguish between the interface of a module 
and its implementation. Thus, it is fair to say that modularity and encapsulation 
go hand in hand. 

Deciding on the right set of modules for a given problem is almost as hard a prob-
lem as deciding on the right set of abstractions. Zelkowitz is absolutely right 
when he states that “because the solution may not be known when the design 
stage starts, decomposition into smaller modules may be quite difficult. For older 
applications (such as compiler writing), this process may become standard, but 
for new ones (such as defense systems or spacecraft control), it may be quite dif-
ficult” [59]. 

Modules serve as the physical containers in which we declare the classes and 
objects of our logical design. This is no different than the situation faced by the 
electrical engineer designing a computer motherboard. NAND, NOR, and NOT 
gates might be used to construct the necessary logic, but these gates must be 
physically packaged in standard integrated circuits. Lacking any such standard 
software parts, the software engineer has considerably more degrees of freedom—
as if the electrical engineer had a silicon foundry at his or her disposal. 

For tiny problems, the developer might decide to declare every class and object in 
the same package. For anything but the most trivial software, a better solution is 
to group logically related classes and objects in the same module and to expose 
only those elements that other modules absolutely must see. This kind of modu-
larization is a good thing, but it can be taken to extremes. For example, consider 
an application that runs on a distributed set of processors and uses a message-
passing mechanism to coordinate the activities of different programs. In a large 
system, such as a command and control system, it is common to have several hun-
dred or even a few thousand kinds of messages. A naive strategy might be to 
define each message class in its own module. As it turns out, this is a singularly 
poor design decision. Not only does it create a documentation nightmare, but it 
makes it terribly difficult for any users to find the classes they need. Furthermore, 
when decisions change, hundreds of modules must be modified or recompiled. 
This example shows how information hiding can backfire [60]. Arbitrary modu-
larization is sometimes worse than no modularization at all.

In traditional structured design, modularization is primarily concerned with the 
meaningful grouping of subprograms, using the criteria of coupling and cohesion. 
In object-oriented design, the problem is subtly different: The task is to decide 
where to physically package the classes and objects, which are distinctly different 
from subprograms. 
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Our experience indicates that there are several useful technical as well as non-
technical guidelines that can help us achieve an intelligent modularization of 
classes and objects. As Britton and Parnas have observed, “The overall goal of the 
decomposition into modules is the reduction of software cost by allowing mod-
ules to be designed and revised independently. . . . Each module’s structure should 
be simple enough that it can be understood fully; it should be possible to change 
the implementation of other modules without knowledge of the implementation 
of other modules and without affecting the behavior of other modules; [and] the 
ease of making a change in the design should bear a reasonable relationship to the 
likelihood of the change being needed” [61]. There is a pragmatic edge to these 
guidelines. In practice, the cost of recompiling the body of a module is relatively 
small: Only that unit need be recompiled and the application relinked. However, 
the cost of recompiling the interface of a module is relatively high. Especially 
with strongly typed languages, one must recompile the module interface, its body, 
all other modules that depend on this interface, the modules that depend on these 
modules, and so on. Thus, for very large programs (assuming that our develop-
ment environment does not support incremental compilation), a change in a single 
module interface might result in much longer compilation time. Obviously, a 
development manager cannot often afford to allow a massive “big bang” recompi-
lation to happen too frequently. For this reason, a module’s interface should be as 
narrow as possible, yet still satisfy the needs of the other modules that use it. Our 
style is to hide as much as we can in the implementation of a module. Incremen-
tally shifting declarations from a module’s implementation to its interface is far 
less painful and destabilizing than ripping out extraneous interface code.

The developer must therefore balance two competing technical concerns: the 
desire to encapsulate abstractions and the need to make certain abstractions visi-
ble to other modules. “System details that are likely to change independently 
should be the secrets of separate modules; the only assumptions that should 
appear between modules are those that are considered unlikely to change. Every 
data structure is private to one module; it may be directly accessed by one or more 
programs within the module but not by programs outside the module. Any other 
program that requires information stored in a module’s data structures must 
obtain it by calling module programs” [62]. In other words, strive to build mod-
ules that are cohesive (by grouping logically related abstractions) and loosely 
coupled (by minimizing the dependencies among modules). From this perspec-
tive, we may define modularity as follows:

Modularity is the property of a system that has been decomposed into a set of 
cohesive and loosely coupled modules.

Thus, the principles of abstraction, encapsulation, and modularity are synergistic. 
An object provides a crisp boundary around a single abstraction, and both encap-
sulation and modularity provide barriers around this abstraction.



CHAPTER 2 THE OBJECT MODEL 57

Two additional technical issues can affect modularization decisions. First, since 
modules usually serve as the elementary and indivisible units of software that can 
be reused across applications, a developer might choose to package classes and 
objects into modules in a way that makes their reuse convenient. Second, many 
compilers generate object code in segments, one for each module. Therefore, 
there may be practical limits on the size of individual modules. With regard to the 
dynamics of subprogram calls, the placement of declarations within modules can 
greatly affect the locality of reference and thus the paging behavior of a virtual 
memory system. Poor locality happens when subprogram calls occur across seg-
ments and lead to cache misses and page thrashing that ultimately slow down the 
whole system.

Several competing nontechnical needs may also affect modularization decisions. 
Typically, work assignments in a development team are given on a module-by-
module basis, so the boundaries of modules may be established to minimize the 
interfaces among different parts of the development organization. Senior design-
ers are usually given responsibility for module interfaces, and more junior devel-
opers complete their implementation. On a larger scale, the same situation applies 
with subcontractor relationships. Abstractions may be packaged so as to quickly 
stabilize the module interfaces as agreed upon among the various companies. 
Changing such interfaces usually involves much wailing and gnashing of teeth—
not to mention a vast amount of paperwork—so this factor often leads to conser-
vatively designed interfaces. Speaking of paperwork, modules also usually serve 
as the unit of documentation and configuration management. Having ten modules 
where one would do sometimes means ten times the paperwork, and so, unfortu-
nately, sometimes the documentation requirements drive the module design deci-
sions (usually in the most negative way). Security may also be an issue. Most 
code may be considered unclassified, but other code that might be classified 
secret or higher is best placed in separate modules.

Juggling these different requirements is difficult, but don’t lose sight of the most 
important point: Finding the right classes and objects and then organizing them 
into separate modules are largely independent design decisions. The identification 
of classes and objects is part of the logical design of the system, but the identifica-
tion of modules is part of the system’s physical design. One cannot make all the 
logical design decisions before making all the physical ones, or vice versa; rather, 
these design decisions happen iteratively. 

Examples of Modularity 

Let’s look at modularity in the Hydroponics Gardening System. Suppose we 
decide to use a commercially available workstation where the user can control the 
system’s operation. At this workstation, an operator could create new growing 
plans, modify old ones, and follow the progress of currently active ones. Since one 
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of our key abstractions here is that of a growing plan, we might therefore create a 
module whose purpose is to collect all of the classes associated with individual 
growing plans (e.g., FruitGrowingPlan, GrainGrowingPlan). The 
implementations of these GrowingPlan classes would appear in the implemen-
tation of this module. We might also define a module whose purpose is to collect 
all of the code associated with all user interface functions. 

Our design will probably include many other modules. Ultimately, we must 
define some main program from which we can invoke this application. In object-
oriented design, defining this main program is often the least important decision, 
whereas in traditional structured design, the main program serves as the root, the 
keystone that holds everything else together. We suggest that the object-oriented 
view is more natural, for, as Meyer observes, “Practical software systems are 
more appropriately described as offering a number of services. Defining these 
systems by single functions is usually possible, but yields rather artificial 
answers. . . . Real systems have no top” [63].

The Meaning of Hierarchy

Abstraction is a good thing, but in all except the most trivial applications, we may 
find many more different abstractions than we can comprehend at one time. 
Encapsulation helps manage this complexity by hiding the inside view of our 
abstractions. Modularity helps also, by giving us a way to cluster logically related 
abstractions. Still, this is not enough. A set of abstractions often forms a hierar-
chy, and by identifying these hierarchies in our design, we greatly simplify our 
understanding of the problem. 

We define hierarchy as follows:

Hierarchy is a ranking or ordering of abstractions.

The two most important hierarchies in a complex system are its class structure 
(the “is a” hierarchy) and its object structure (the “part of” hierarchy).

Examples of Hierarchy: Single Inheritance 

Inheritance is the most important “is a” hierarchy, and as we noted earlier, it is an 
essential element of object-oriented systems. Basically, inheritance defines a rela-
tionship among classes, wherein one class shares the structure or behavior defined 
in one or more classes (denoting single inheritance and multiple inheritance, 
respectively). Inheritance thus represents a hierarchy of abstractions, in which a 
subclass inherits from one or more superclasses. Typically, a subclass augments 
or redefines the existing structure and behavior of its superclasses.
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Semantically, inheritance denotes an “is a” relationship. For example, a bear “is 
a” kind of mammal, a house “is a” kind of tangible asset, and a quick sort “is a” 
particular kind of sorting algorithm. Inheritance thus implies a generalization/
specialization hierarchy, wherein a subclass specializes the more general structure 
or behavior of its superclasses. Indeed, this is the litmus test for inheritance: If B
is not a kind of A, then B should not inherit from A.

Consider the different kinds of growing plans we might use in the Hydroponics 
Gardening System. An earlier section described our abstraction of a very general-
ized growing plan. Different kinds of crops, however, demand specialized grow-
ing plans. For example, the growing plan for all fruits is generally the same but 
is quite different from the plan for all vegetables, or for all floral crops. Because 
of this clustering of abstractions, it is reasonable to define a standard fruit-
growing plan that encapsulates the behavior common to all fruits, such as the 
knowledge of when to pollinate or when to harvest the fruit. We can assert that 
FruitGrowingPlan “is a” kind of GrowingPlan.

Abstractions form a hierarchy.
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In this case, FruitGrowingPlan is more specialized, and GrowingPlan
is more general. The same could be said for GrainGrowingPlan or 
VegetableGrowingPlan, that is, GrainGrowingPlan “is a” kind of 
GrowingPlan, and VegetableGrowingPlan “is a” kind of GrowingPlan.
Here, GrowingPlan is the more general superclass, and the others are special-
ized subclasses.

As we evolve our inheritance hierarchy, the structure and behavior that are com-
mon for different classes will tend to migrate to common superclasses. This is 
why we often speak of inheritance as being a generalization/specialization hierar-
chy. Superclasses represent generalized abstractions, and subclasses represent 
specializations in which fields and methods from the superclass are added, modi-
fied, or even hidden. In this manner, inheritance lets us state our abstractions with 
an economy of expression. Indeed, neglecting the “is a” hierarchies that exist can 
lead to bloated, inelegant designs. “Without inheritance, every class would be a 
free-standing unit, each developed from the ground up. Different classes would 
bear no relationship with one another, since the developer of each provides meth-
ods in whatever manner he chooses. Any consistency across classes is the result 
of discipline on the part of the programmers. Inheritance makes it possible to 
define new software in the same way we introduce any concept to a newcomer, by 
comparing it with something that is already familiar” [64].

There is a healthy tension among the principles of abstraction, encapsulation, and 
hierarchy. “Data abstraction attempts to provide an opaque barrier behind which 
methods and state are hidden; inheritance requires opening this interface to some 
extent and may allow state as well as methods to be accessed without abstraction” 
[65]. For a given class, there are usually two kinds of clients: objects that invoke 
operations on instances of the class and subclasses that inherit from the class. 
Liskov therefore notes that, with inheritance, encapsulation can be violated in one 
of three ways: “The subclass might access an instance variable of its superclass, 
call a private operation of its superclass, or refer directly to superclasses of its 
superclass” [66]. Different programming languages trade off support for encapsu-
lation and inheritance in different ways. C++ and Java offer great flexibility. 
Specifically, the interface of a class may have three parts: private parts, which 
declare members that are accessible only to the class itself; protected parts, which 
declare members that are accessible only to the class and its subclasses; and pub-
lic parts, which are accessible to all clients.

Examples of Hierarchy: Multiple Inheritance 

The previous example illustrated the use of single inheritance: the subclass 
FruitGrowingPlan had exactly one superclass, the class GrowingPlan.
For certain abstractions, it is useful to provide inheritance from multiple superclasses.
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For example, suppose that we choose to define a class representing a kind of 
plant. Our analysis of the problem domain might suggest that flowering plants 
and fruits and vegetables have specialized properties that are relevant to our appli-
cation. For example, given a flowering plant, its expected time to flower and time 
to seed might be important to us. Similarly, the time to harvest might be an impor-
tant part of our abstraction of all fruits and vegetables. One way we could capture 
our design decisions would be to make two new classes, a Flower class and a 
FruitVegetable class, both subclasses of the class Plant. However, what if 
we need to model a plant that both flowered and produced fruit? For example, 
florists commonly use blossoms from apple, cherry, and plum trees. For this 
abstraction, we would need to invent a third class, FlowerFruitVegetable,
that duplicated information from the Flower and FruitVegetable classes.

A better way to express our abstractions and thereby avoid this redundancy is to 
use multiple inheritance. First, we invent classes that independently capture the 
properties unique to flowering plants and to fruits and vegetables. These two classes 
have no superclass; they stand alone. These are called mixin classes because they 
are meant to be mixed together with other classes to produce new subclasses. 

For example, we can define a Rose class (see Figure 2–10) that inherits from 
both Plant and FlowerMixin. Instances of the subclass Rose thus include 
the structure and behavior from the class Plant together with the structure and 
behavior from the class FlowerMixin.

Similarly, a Carrot class could be as shown in Figure 2–11. In both cases, we 
form the subclass by inheriting from two superclasses.

Now, suppose we want to declare a class for a plant such as the cherry tree that 
has both flowers and fruit. This would be conceptualized as shown in Figure 2–12.

Figure 2–10 The Rose Class, Which Inherits from Multiple Superclasses
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Multiple inheritance is conceptually straightforward, but it does introduce some 
practical complexities for programming languages. Languages must address two 
issues: clashes among names from different superclasses and repeated inherit-
ance. Clashes will occur when two or more superclasses provide a field or opera-
tion with the same name or signature as a peer superclass. 

Figure 2–11 The Carrot Class, Which Inherits from Multiple Superclasses

Figure 2–12 The CherryTree Class, Which Inherits from Multiple 
Superclasses
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Repeated inheritance occurs when two or more peer superclasses share a common 
superclass. In such a situation, the inheritance lattice will be diamond-shaped, so 
the question arises, does the leaf class (i.e., subclass) have one copy or multiple 
copies of the structure of the shared superclass? (See Figure 2–13.) Some lan-
guages prohibit repeated inheritance, some unilaterally choose one approach, and 
others, such as C++, permit the programmer to decide. In C++, virtual base 
classes are used to denote a sharing of repeated structures, whereas nonvirtual 
base classes result in duplicate copies appearing in the subclass (with explicit 
qualification required to distinguish among the copies). 

Multiple inheritance is often overused. For example, cotton candy is a kind of 
candy, but it is distinctly not a kind of cotton. Again, the litmus test for inherit-
ance applies: If B is not a kind of A, then B should not inherit from A. Ill-formed 
multiple inheritance lattices should be reduced to a single superclass plus aggre-
gation of the other classes by the subclass, where possible.

Examples of Hierarchy: Aggregation 

Whereas these “is a” hierarchies denote generalization/specialization relation-
ships, “part of” hierarchies describe aggregation relationships. For example, con-
sider the abstraction of a garden. We can contend that a garden consists of a 
collection of plants together with a growing plan. In other words, plants are “part 
of” the garden, and the growing plan is “part of” the garden. This “part of” rela-
tionship is known as aggregation.

Figure 2–13 The Repeated Inheritance Problem
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Aggregation is not a concept unique to object-oriented development or object-
oriented programming languages. Indeed, any language that supports record-like 
structures supports aggregation. However, the combination of inheritance with 
aggregation is powerful: Aggregation permits the physical grouping of logically 
related structures, and inheritance allows these common groups to be easily 
reused among different abstractions. 

When dealing with hierarchies such as these, we often speak of levels of abstrac-
tion, a concept first described by Dijkstra [67]. In terms of its “is a” hierarchy, a 
high-level abstraction is generalized, and a low-level abstraction is specialized. 
Therefore, we say that a Flower class is at a higher level of abstraction than a 
Plant class. In terms of its “part of” hierarchy, a class is at a higher level of 
abstraction than any of the classes that make up its implementation. Thus, the class 
Garden is at a higher level of abstraction than the type Plant, on which it builds.

Aggregation raises the issue of ownership. Our abstraction of a garden permits 
different plants to be raised in a garden over time, but replacing a plant does not 
change the identity of the garden as a whole, nor does removing a garden neces-
sarily destroy all of its plants (they are likely just transplanted). In other words, 
the lifetime of a garden and its plants are independent. In contrast, we have 
decided that a GrowingPlan object is intrinsically associated with a Garden
object and does not exist independently. Therefore, when we create an instance of 
Garden, we also create an instance of GrowingPlan; when we destroy the 
Garden object, we in turn destroy the GrowingPlan instance. 

The Meaning of Typing

The concept of a type derives primarily from the theories of abstract data types. 
As Deutsch suggests, “A type is a precise characterization of structural or behav-
ioral properties which a collection of entities all share” [68]. For our purposes, we 
will use the terms type and class interchangeably.2 Although the concepts of a 
type and a class are similar, we include typing as a separate element of the object 

2. A type and a class are not exactly the same thing; some languages distinguish these two 
concepts. For example, early versions of the language Trellis/Owl permitted an object to 
have both a class and a type. In Smalltalk, objects of the classes SmallInteger,
LargeNegativeInteger, and LargePositiveInteger are all of the same 
type, Integer, although not of the same class [69]. For most mortals, however, separat-
ing the concepts of type and class is utterly confusing and adds very little value. It is suffi-
cient to say that a class implements a type.
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model because the concept of a type places a very different emphasis on the 
meaning of abstraction. Specifically, we state the following:

Typing is the enforcement of the class of an object, such that objects of different 
types may not be interchanged, or at the most, they may be interchanged only in 
very restricted ways.

Typing lets us express our abstractions so that the programming language in 
which we implement them can be made to enforce design decisions. 

A given programming language may be strongly typed, weakly typed, or even 
untyped, yet still be called object-oriented. For example, Eiffel is strongly typed, 
meaning that type conformance is strictly enforced: Operations cannot be called 
on an object unless the exact signature of that operation is defined in the object’s 
class or superclasses. 

The idea of conformance is central to the notion of typing. For example, consider 
units of measurement in physics [71]. When we divide distance by time, we 
expect some value denoting speed, not weight. Similarly, dividing a unit of force 
by temperature doesn’t make sense, but dividing force by mass does. These are 
both examples of strong typing, wherein the rules of our domain prescribe and 
enforce certain legal combinations of abstractions.

Strong typing prevents mixing of abstractions.
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Strong typing lets us use our programming language to enforce certain design 
decisions and so is particularly relevant as the complexity of our system grows. 
However, there is a dark side to strong typing. Practically, strong typing intro-
duces semantic dependencies such that even small changes in the interface of a 
base class require recompilation of all subclasses. 

There are two general solutions to these problems. First, we could use a type-safe 
container class that manipulates only objects of a specific class. This approach 
addresses the first problem, wherein objects of different types are incorrectly min-
gled. Second, we could use some form of runtime type identification; this addresses 
the second problem of knowing what kind of object you happen to be examining 
at the moment. In general, however, runtime type identification should be used 
only when there is a compelling reason because it can represent a weakening of 
encapsulation. As we will discuss in the next section, the use of polymorphic 
operations can often (but not always) mitigate the need for runtime type 
identification.

As Tesler points out, there are a number of important benefits to be derived from 
using strongly typed languages:

■ Without type checking, a program in most languages can ‘crash’ in mysterious 
ways at runtime.

■ In most systems, the edit-compile-debug cycle is so tedious that early error 
detection is indispensable.

■ Type declarations help to document programs.
■ Most compilers can generate more efficient object code if types are declared. [72]

Untyped languages offer greater flexibility, but even with untyped languages, as 
Borning and Ingalls observe, “In almost all cases, the programmer in fact knows 
what sorts of objects are expected as the arguments of a message, and what sort of 
object will be returned” [73]. In practice, the safety offered by strongly typed lan-
guages usually more than compensates for the flexibility lost by not using an 
untyped language, especially for programming-in-the-large.

Examples of Typing: Static and Dynamic Typing 

The concepts of strong and weak typing and static and dynamic typing are 
entirely different. Strong and weak typing refers to type consistency, whereas 
static and dynamic typing refers to the time when names are bound to types. Static 
typing (also known as static binding or early binding) means that the types of all 
variables and expressions are fixed at the time of compilation; dynamic typing 
(also known as late binding) means that the types of all variables and expressions 
are not known until runtime. A language may be both strongly and statically 
typed (Ada), strongly typed yet supportive of dynamic typing (C++, Java), or 
untyped yet supportive of dynamic typing (Smalltalk). 



CHAPTER 2 THE OBJECT MODEL 67

Polymorphism is a condition that exists when the features of dynamic typing and 
inheritance interact. Polymorphism represents a concept in type theory in which a 
single name (such as a variable declaration) may denote objects of many different 
classes that are related by some common superclass. Any object denoted by this 
name is therefore able to respond to some common set of operations [74]. The 
opposite of polymorphism is monomorphism, which is found in all languages that 
are both strongly and statically typed.

Polymorphism is perhaps the most powerful feature of object-oriented program-
ming languages next to their support for abstraction, and it is what distinguishes 
object-oriented programming from more traditional programming with abstract 
data types. As we will see in the following chapters, polymorphism is also a cen-
tral concept in object-oriented design.

The Meaning of Concurrency

For certain kinds of problems, an automated system may have to handle many dif-
ferent events simultaneously. Other problems may involve so much computation 
that they exceed the capacity of any single processor. In each of these cases, it is 
natural to consider using a distributed set of computers for the target implementa-
tion or to use multitasking. A single process is the root from which independent 
dynamic action occurs within a system. Every program has at least one thread of 
control, but a system involving concurrency may have many such threads: some 
that are transitory and others that last the entire lifetime of the system’s execution. 
Systems executing across multiple CPUs allow for truly concurrent threads of 

Concurrency allows different objects to act at the same time.
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control, whereas systems running on a single CPU can only achieve the illusion of 
concurrent threads of control, usually by means of some time-slicing algorithm.

We also distinguish between heavyweight and lightweight concurrency. A heavy-
weight process is one that is typically independently managed by the target oper-
ating system and so encompasses its own address space. A lightweight process 
usually lives within a single operating system process along with other light-
weight processes, which share the same address space. Communication among 
heavyweight processes is generally expensive, involving some form of interpro-
cess communication; communication among lightweight processes is less expen-
sive and often involves shared data.

Building a large piece of software is hard enough; designing one that encom-
passes multiple threads of control is much harder because one must worry about 
such issues as deadlock, livelock, starvation, mutual exclusion, and race condi-
tions. “At the highest levels of abstraction, OOP can alleviate the concurrency 
problem for the majority of programmers by hiding the concurrency inside reus-
able abstractions” [76]. Black et al. therefore suggest that “an object model is 
appropriate for a distributed system because it implicitly defines (1) the units of 
distribution and movement and (2) the entities that communicate” [77].

Whereas object-oriented programming focuses on data abstraction, encapsulation, 
and inheritance, concurrency focuses on process abstraction and synchronization 
[78]. The object is a concept that unifies these two different viewpoints: Each 
object (drawn from an abstraction of the real world) may represent a separate 
thread of control (a process abstraction). Such objects are called active. In a sys-
tem based on an object-oriented design, we can conceptualize the world as con-
sisting of a set of cooperative objects, some of which are active and thus serve as 
centers of independent activity. Given this conception, we define concurrency as 
follows:

Concurrency is the property that distinguishes an active object from one that is 
not active.

Examples of Concurrency 

Let’s consider a sensor named ActiveTemperatureSensor, whose behavior 
requires periodically sensing the current temperature and then notifying the client 
whenever the temperature changes a certain number of degrees from a given setpoint. 
We do not explain how the class implements this behavior. That fact is a secret of 
the implementation, but it is clear that some form of concurrency is required.

In general, there are three approaches to concurrency in object-oriented design. 
First, concurrency is an intrinsic feature of certain programming languages, 
which provide mechanisms for concurrency and synchronization. In this case, we 
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may create an active object that runs some process concurrently with all other 
active objects. 

Second, we may use a class library that implements some form of lightweight 
processes. Naturally, the implementation of this kind is highly platform-dependent, 
although the interface to the library may be relatively portable. In this approach, 
concurrency is not an intrinsic part of the language (and so does not place any 
burdens on nonconcurrent systems) but appears as if it were intrinsic, through the 
presence of these standard classes.

Third, we may use interrupts to give us the illusion of concurrency. Of course, this 
requires that we have knowledge of certain low-level hardware details. For exam-
ple, in our implementation of the class ActiveTemperatureSensor, we 
might have a hardware timer that periodically interrupts the application, during 
which time all such sensors read the current temperature and then invoke their 
callback function as necessary.

No matter which approach to concurrency we take, one of the realities about 
concurrency is that once you introduce it into a system, you must consider how 
active objects synchronize their activities with one another as well as with objects 
that are purely sequential. For example, if two active objects try to send messages 
to a third object, we must be certain to use some means of mutual exclusion, so 
that the state of the object being acted on is not corrupted when both active 
objects try to update its state simultaneously. This is the point where the ideas of 
abstraction, encapsulation, and concurrency interact. In the presence of concur-
rency, it is not enough simply to define the methods of an object; we must also 
make certain that the semantics of these methods are preserved in the presence of 
multiple threads of control.

The Meaning of Persistence

An object in software takes up some amount of space and exists for a particular 
amount of time. Atkinson et al. suggest that there is a continuum of object exist-
ence, ranging from transitory objects that arise within the evaluation of an expres-
sion to objects in a database that outlive the execution of a single program. This 
spectrum of object persistence encompasses the following:

■ Transient results in expression evaluation
■ Local variables in procedure activations
■ Own variables [as in ALGOL 60], global variables, and heap items whose 

extent is different from their scope
■ Data that exists between executions of a program
■ Data that exists between various versions of a program
■ Data that outlives the program [79]
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Traditional programming languages usually address only the first three kinds of 
object persistence; persistence of the last three kinds is typically the domain of 
database technology. This leads to a clash of cultures that sometimes results in 
very strange architectures: Programmers end up crafting ad hoc schemes for stor-
ing objects whose state must be preserved between program executions, and data-
base designers misapply their technology to cope with transient objects [80]. 

An interesting variant of Atkinson et al.’s “Data that outlives the program” is the 
case of Web applications where the application may not be connected to the data 
it is using through the entire transaction execution. What changes may happen to 
data provided to a client application or Web service while disconnected to the 
data source, and how should resolution of the two be handled? Frameworks like 
Microsoft’s ActiveX Data Object for .NET (ADO.NET) have arisen to help 
address such distributed, disconnected scenarios.

Unifying the concepts of concurrency and objects gives rise to concurrent object-
oriented programming languages. In a similar fashion, introducing the concept of 
persistence to the object model gives rise to object-oriented databases. In practice, 
such databases build on proven technology, such as sequential, indexed, hierarchi-
cal, network, or relational database models, but then offer to the programmer the 
abstraction of an object-oriented interface, through which database queries and 
other operations are completed in terms of objects whose lifetimes transcend the 
lifetime of an individual program. This unification vastly simplifies the develop-
ment of certain kinds of applications. In particular, it allows us to apply the same 
design methods to the database and nondatabase segments of an application.

Persistence saves the state and class of an object across time or space.
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Some object-oriented programming languages provide direct support for persis-
tence. Java provides Enterprise Java Beans (EJBs) and Java Data Objects. Small-
talk has protocols for streaming objects to and from storage (which must be 
redefined by subclasses). However, streaming objects to flat files is a naive solu-
tion to persistence that does not scale well. Persistence may be achieved through a 
modest number of commercially available object-oriented databases [81]. A more 
typical approach to persistence is to provide an object-oriented skin over a rela-
tional database. Customized object-relational mappings can be created by the 
individual developer. However, that is a very challenging task to do well. Frame-
works are available to ease this task, such as the open source framework Hiber-
nate [85]. Commercial object-relational mapping software is available. This 
approach is most appealing when there is a large capital investment in relational 
database technology that would be risky or too expensive to replace. 

Persistence deals with more than just the lifetime of data. In object-oriented data-
bases, not only does the state of an object persist, but its class must also transcend 
any individual program, so that every program interprets this saved state in the 
same way. This clearly makes it challenging to maintain the integrity of a data-
base as it grows, particularly if we must change the class of an object.

Our discussion thus far pertains to persistence in time. In most systems, an object, 
once created, consumes the same physical memory until it ceases to exist. How-
ever, for systems that execute on a distributed set of processors, we must some-
times be concerned with persistence across space. In such systems, it is useful to 
think of objects that can move from machine to machine and that may even have 
different representations on different machines. 

To summarize, we define persistence as follows:

Persistence is the property of an object through which its existence transcends 
time (i.e., the object continues to exist after its creator ceases to exist) and/or 
space (i.e., the object’s location moves from the address space in which it was 
created).

2.4 Applying the Object Model

As we have shown, the object model is fundamentally different from the models 
embraced by the more traditional methods of structured analysis, structured 
design, and structured programming. This does not mean that the object model 
abandons all of the sound principles and experiences of these older methods. 
Rather, it introduces several novel elements that build on these earlier models. 
Thus, the object model offers a number of significant benefits that other models 
simply do not provide. Most importantly, the use of the object model leads us to 
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construct systems that embody the five attributes of well-structured complex sys-
tems noted in Chapter 1: hierarchy, relative primitives (i.e., multiple levels of 
abstraction), separation of concerns, patterns, and stable intermediate forms. In 
our experience, there are five other practical benefits to be derived from the appli-
cation of the object model.

Benefits of the Object Model

First, the use of the object model helps us to exploit the expressive power of 
object-based and object-oriented programming languages. As Stroustrup points 
out, “It is not always clear how best to take advantage of a language such as C++. 
Significant improvements in productivity and code quality have consistently been 
achieved using C++ as ‘a better C’ with a bit of data abstraction thrown in where 
it is clearly useful. However, further and noticeably larger improvements have 
been achieved by taking advantage of class hierarchies in the design process. This 
is often called object-oriented design and this is where the greatest benefits of 
using C++ have been found” [82]. Our experience has been that, without the 
application of the elements of the object model, the more powerful features of 
languages such as Smalltalk, C++, Java, and so forth are either ignored or greatly 
misused.

Second, the use of the object model encourages the reuse not only of software but 
of entire designs, leading to the creation of reusable application frameworks [83]. 
We have found that object-oriented systems are often smaller than equivalent non-
object-oriented implementations. Not only does this mean less code to write and 
maintain, but greater reuse of software also translates into cost and schedule 
benefits. However, reuse does not just happen. If reuse is not a primary goal of 
your project, it is unlikely that it will be achieved. Plus, designing for reuse may 
cost you more when initially implementing the reusable component. The good 
news is that the initial cost will be recovered in the subsequent uses of that 
component.

Third, the use of the object model produces systems that are built on stable inter-
mediate forms, which are more resilient to change. This also means that such 
systems can be allowed to evolve over time, rather than be abandoned or com-
pletely redesigned in response to the first major change in requirements.

Chapter 7, Pragmatics, explains further how the object model reduces the risks 
inherent in developing complex systems. This fourth benefit accrues primarily 
because integration is spread out across the lifecycle rather than occurring as one 
major event. The object model’s guidance in designing an intelligent separation of 
concerns also reduces development risk and increases our confidence in the cor-
rectness of our design.
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Finally, the object model appeals to the workings of human cognition. As Robson 
suggests, “Many people who have no idea how a computer works find the idea of 
object-oriented systems quite natural” [84]. 

Open Issues

To effectively apply the elements of the object model, we must next address sev-
eral open issues.

■ What exactly are classes and objects?
■ How does one properly identify the classes and objects that are relevant to a 

particular application?
■ What is a suitable notation for expressing the design of an object-oriented 

system?
■ What process can lead us to a well-structured object-oriented system?
■ What are the management implications of using object-oriented design?

These issues are the themes of the next five chapters.

Summary

■ The maturation of software engineering has led to the development of 
object-oriented analysis, design, and programming methods, all of which 
address the issues of programming-in-the-large. 

■ There are several different programming paradigms: procedure-oriented, 
object-oriented, logic-oriented, rule-oriented, and constraint-oriented.

■ An abstraction denotes the essential characteristics of an object that distin-
guish it from all other kinds of objects and thus provide crisply defined con-
ceptual boundaries, relative to the perspective of the viewer.

■ Encapsulation is the process of compartmentalizing the elements of an 
abstraction that constitute its structure and behavior; encapsulation serves to 
separate the contractual interface of an abstraction and its implementation.

■ Modularity is the property of a system that has been decomposed into a set 
of cohesive and loosely coupled modules.

■ Hierarchy is a ranking or ordering of abstractions.
■ Typing is the enforcement of the class of an object, such that objects of dif-

ferent types may not be interchanged or, at the most, may be interchanged 
only in very restricted ways.
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■ Concurrency is the property that distinguishes an active object from one that 
is not active.

■ Persistence is the property of an object through which its existence tran-
scends time and/or space.
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C h a p t e r  3

Classes and Objects

Both the engineer and the artist must be intimately familiar with the 
materials of their trade. Oils versus watercolors, steel versus aluminum, 
bolts versus nails, object versus classes—each of these materials serves 
similar functions (e.g., bolts and nails are both fasteners), yet each has 
its own specific properties and uses. The architect may not know the most 
efficient way to drive a nail (that is a specific skill of the carpenter), but the 
architect must understand when it is appropriate to use nails or bolts or 
glue or welds. To ignore such fundamental considerations can yield disas-
trous results.

When we use object-oriented methods to analyze or design a complex 
software system, our basic building blocks are classes and objects. Since 
we have thus far provided only informal definitions of these two elements, 
in this chapter we turn to a detailed study of the nature of classes, objects, 
and their relationships, and along the way we provide several rules of 
thumb for crafting quality abstractions and mechanisms.

3.1 The Nature of an Object

The ability to recognize physical objects is a skill that humans learn at a very 
early age. A brightly colored ball will attract an infant’s attention, but typically, if 
you hide the ball, the child will not try to look for it; when the object leaves her 
field of vision, as far as she can determine, it ceases to exist. It is not until near the 
age of one that a child normally develops what is called the object concept, a skill 
that is of critical importance to future cognitive development. Show a ball to a 
one-year-old and then hide it, and she will usually search for it even though it is 
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not visible. Through the object concept, a child comes to realize that objects have 
a permanence and identity apart from any operations on them [1]. 

What Is and What Isn’t an Object

In Chapter 1, we informally defined an object as a tangible entity that exhibits 
some well-defined behavior. From the perspective of human cognition, an object 
is any of the following:

■ A tangible and/or visible thing
■ Something that may be comprehended intellectually
■ Something toward which thought or action is directed

We add to our informal definition the idea that an object models some part of real-
ity and is therefore something that exists in time and space. In software, the term 
object was first formally applied in the Simula language; objects typically existed 
in Simula programs to simulate some aspect of reality [2]. 

Real-world objects are not the only kinds of objects that are of interest to us dur-
ing software development. Other important kinds of objects are inventions of the 
design process whose collaborations with other such objects serve as the mecha-
nisms that provide some higher-level behavior [3]. Jacobson et al. define control 
objects as “the ones that unite courses of events and thus will carry on communi-
cation with other objects” [62]. This leads us to the more refined definition of 
Smith and Tockey, who suggest that “an object represents an individual, identifi-
able item, unit, or entity, either real or abstract, with a well-defined role in the 
problem domain” [4]. 

Consider for a moment a manufacturing plant that processes composite materials 
for making such diverse items as bicycle frames and airplane wings. Manufactur-
ing plants are often divided into separate shops: mechanical, chemical, electrical, 
and so forth. Shops are further divided into cells, and in each cell we have some 
collection of machines, such as die stamps, presses, and lathes. Along a manufac-
turing line, we might find vats containing raw materials, which are used in a 
chemical process to produce blocks of composite materials, and which in turn are 
formed and shaped to produce bicycle frames, airplane wings, and other end 
items. Each of the tangible things we have mentioned thus far is an object. A lathe 
has a crisply defined boundary that separates it from the block of composite mate-
rial it operates on; a bicycle frame has a crisply defined boundary that distin-
guishes it from the cell of machines that produced the frame itself.

Some objects may have crisp conceptual boundaries yet represent intangible 
events or processes. For example, a chemical process in a manufacturing plant 
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may be treated as an object because it has a crisp conceptual boundary, interacts 
with certain other objects through a well-ordered collection of operations that 
unfolds over time, and exhibits a well-defined behavior. Similarly, consider a 
CAD/CAM system for modeling solids. Where two solids such as a sphere and a 
cube intersect, they may form an irregular line of intersection. Although it does 
not exist apart from the sphere or cube, this line is still an object with crisply 
defined conceptual boundaries.

Some objects may be tangible yet have fuzzy physical boundaries. Objects such 
as rivers, fog, and crowds of people fit this definition.1 Just as the person holding 
a hammer tends to see everything in the world as a nail, so the developer with an 
object-oriented mindset begins to think that everything in the world is an object. 
This perspective is a little naive because some things are distinctly not objects. 
For example, attributes such as beauty or color are not objects, nor are emotions 
such as love and anger. On the other hand, these things are all potentially proper-
ties of other objects. For example, we might say that a man (an object) loves his 
wife (another object), or that a particular cat (yet another object) is gray.

An object has state, exhibits some well-defined behavior, 
and has a unique identity.

1. This is true only at a sufficiently high level of abstraction. To a person walking through 
a fog bank, it is generally futile to distinguish “my fog” from “your fog.” However, consid-
er a weather map: A fog bank over San Francisco is a distinctly different object than a fog 
bank over London.
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Thus, it is useful to say that an object is something that has crisply defined bound-
aries, but this is not enough to guide us in distinguishing one object from another, 
nor does it allow us to judge the quality of our abstractions. Our experience there-
fore suggests the following definition.

An object is an entity that has state, behavior, and identity. The structure and 
behavior of similar objects are defined in their common class. The terms instance
and object are interchangeable.

We will consider the concepts of state, behavior, and identity in more detail in the 
sections that follow.

State

Consider a vending machine that dispenses soft drinks. The usual behavior of 
such objects is that when someone puts money in a slot and pushes a button to 
make a selection, a drink emerges from the machine. What happens if a user first 
makes a selection and then puts money in the slot? Most vending machines just sit 
and do nothing because the user has violated the basic assumptions of their oper-
ation. Stated another way, the vending machine was in a state (of waiting for 
money) that the user ignored (by making a selection first). Similarly, suppose that 
the user ignores the warning light that says, “Correct change only,” and puts in 
extra money. Most machines are user-hostile; they will happily swallow the 
excess money.

In each of these circumstances, we see how the behavior of an object is influenced 
by its history: The order in which one operates on the object is important. The 
reason for this event- and time-dependent behavior is the existence of state within 
the object. For example, one essential state associated with the vending machine 
is the amount of money currently entered by a user but not yet applied to a selec-
tion. Other important properties include the amount of change available and the 
quantity of soft drinks on hand. 

From this example, we may form the following low-level definition.

The state of an object encompasses all of the (usually static) properties of the 
object plus the current (usually dynamic) values of each of these properties.

Another property of a vending machine is that it can accept money. This is a static 
(i.e., fixed) property, meaning that it is an essential characteristic of a vending 
machine. In contrast, the actual quantity of money accepted at any given moment 
represents the dynamic value of this property and is affected by the order of oper-
ations on the machine. This quantity increases as a user inserts money and then 
decreases when a product is vended. We say that values are “usually dynamic” 
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because in some cases values are static. For example, the serial number of a vend-
ing machine is a static property and value.

A property is an inherent or distinctive characteristic, trait, quality, or feature that 
contributes to making an object uniquely that object. For example, one essential 
property of an elevator is that it is constrained to travel up and down and not 
horizontally. Properties are usually static because attributes such as these are 
unchanging and fundamental to the nature of the object. We say “usually static” 
because in some circumstances the properties of an object may change. For exam-
ple, consider an autonomous robot that can learn about its environment. It may 
first recognize an object that appears to be a fixed barrier, only to learn later that 
this object is in fact a door that can be opened. In this case, the object created by 
the robot as it builds its conceptual model of the world gains new properties as 
new knowledge is acquired.

All properties have some value. This value might be a simple quantity, or it might 
denote another object. For example, part of the state of an elevator might have the 
value 3, denoting the current floor on which the elevator is located. In the case of 
the vending machine, its state encompasses many other objects, such as a collec-
tion of soft drinks. The individual drinks are in fact distinct objects; their proper-
ties are different from those of the machine (they can be consumed, whereas a 
vending machine cannot), and they can be operated on in distinctly different 
ways. Thus, we distinguish between objects and simple values: Simple quantities 
such as the number 3 are “atemporal, unchangeable, and non-instantiated,” 
whereas objects “exist in time, are changeable, have state, are instantiated, and 
can be created, destroyed, and shared” [6].

The fact that every object has state implies that every object takes up some 
amount of space, be it in the physical world or in computer memory. 

We may say that all objects within a system encapsulate some state and that all of 
the state within a system is encapsulated by objects. Encapsulating the state of an 
object is a start, but it is not enough to allow us to capture the full intent of the 
abstractions we discover and invent during development (refer to Example 3–1, 
which shows how a simple abstraction may evolve). For this reason, we must also 
consider how objects behave.

Example 3–1

Consider an abstraction of an employee record. Figure 3–1 depicts this 
abstraction using the Unified Modeling Language notation for a class. (For 
more on the UML notation, see Chapter 5.)

Each part of this abstraction denotes a particular property of our abstraction of 
an employee. This abstraction is not an object because it does not represent a 
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specific instance. When made specific, we may have, for example, two distinct 
objects: Tom and Kaitlyn, each of which takes up some amount of space in 
memory (see Figure 3–2).

None of these objects shares its space with any other object, although each of 
them has the same properties; thus, their states have a common representation.

It is good engineering practice to encapsulate the state of an object rather 
than expose it. For example, we might change the abstraction (class) as 
shown in Figure 3–3.

Figure 3–1 Employee Class with Attributes

Figure 3–2 Employee Objects Tom and Kaitlyn

Figure 3–3 Employee Class with Protected Attributes and Public Operations
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This abstraction is slightly more complicated than the previous one, but it is 
superior for a number of reasons. Specifically, its internal representation is 
hidden (protected, indicated by #) from all other outside clients. If we change 
its representation, we will have to recompile some code, but semantically, no 
outside client will be affected by this change (in other words, existing code will 
not break). 

Also, we have captured certain decisions about the problem space by explic-
itly stating some of the operations (responsibilities) that clients may perform 
on objects of this class. In particular, we grant all clients the (public, indicated 
by +) right to retrieve the name, social security number, and department of an 
employee. We will discuss visibility (i.e., public, protected, private, and pack-
age) later in this chapter.

Behavior

No object exists in isolation. Rather, objects are acted on and themselves act on 
other objects. Thus, we may say the following:

Behavior is how an object acts and reacts, in terms of its state changes and mes-
sage passing.

In other words, the behavior of an object represents its outwardly visible activity.

An operation is some action that one object performs on another in order to elicit 
a reaction. For example, a client might invoke the operations append and pop to 
grow and shrink a queue object, respectively. A client might also invoke the oper-
ation length, which returns a value denoting the size of the queue object but 
does not alter the state of the queue itself. 

In Java, operations that clients may perform on an object are typically declared as 
methods. In languages such as C++, which derive from more procedural ances-
tors, we speak of one object invoking the member function of another. In pure 
object-oriented languages such as Smalltalk, we speak of one object passing a 
message to another. Generally, a message is simply an operation that one object 
performs on another, although the underlying dispatch mechanisms are different. 
For our purposes, the terms operation and message are interchangeable.

Message passing is one part of the equation that defines the behavior of an object; 
our definition for behavior also notes that the state of an object affects its behavior 
as well. Consider again the vending machine example. We may invoke some 
operation to make a selection, but the vending machine will behave differently 
depending on its state. If we do not deposit change sufficient for our selection, the 
machine will probably do nothing. If we provide sufficient change, the machine 
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will take our change and then give us our selection (thereby altering its state). 
Thus, we may say that the behavior of an object is a function of its state as well as 
the operation performed on it, with certain operations having the side effect of 
altering the object’s state. This concept of side effect thus leads us to refine our 
definition of state.

The state of an object represents the cumulative results of its behavior.

Most interesting objects do not have state that is static; rather, their state has prop-
erties whose values are modified and retrieved as the object is acted on. The 
behavior of an object is embodied in the sum of its operations. Next we will dis-
cuss operations, how they relate to an object’s roles, and how they enable objects 
to meet their responsibilities. 

Operations

An operation denotes a service that a class offers to its clients. In practice, we 
have found that a client typically performs five kinds of operations on an object.2

The three most common kinds of operations are the following:

■ Modifier: an operation that alters the state of an object
■ Selector: an operation that accesses the state of an object but does not alter 

the state
■ Iterator: an operation that permits all parts of an object to be accessed in 

some well-defined order

Two other kinds of operations are common; they represent the infrastructure nec-
essary to create and destroy instances of a class.

■ Constructor: an operation that creates an object and/or initializes its state
■ Destructor: an operation that frees the state of an object and/or destroys the 

object itself

In C++, constructors and destructors are declared as part of the definition of a 
class, whereas in Java there are constructors, but no destructors. In Smalltalk, 
such operations are typically part of the protocol of a metaclass (i.e., the class of a 
class).

2. Lippman suggests a slightly different categorization: manager functions, implementer 
functions, helping functions (all kinds of modifiers), and access functions (equivalent to se-
lectors) [7].
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Roles and Responsibilities 

Collectively, all of the methods associated with a particular object comprise its 
protocol. The protocol of an object thus defines the envelope of an object’s allow-
able behavior and so comprises the entire static and dynamic view of the object. 
For most nontrivial abstractions, it is useful to divide this larger protocol into log-
ical groupings of behavior. These collections, which thus partition the behavior 
space of an object, denote the roles that an object can play. A role is a mask that 
an object wears [8] and so defines a contract between an abstraction and its 
clients.

“Responsibilities are meant to convey a sense of the purpose of an object and its 
place in the system. The responsibilities of an object are all the services it pro-
vides for all of the contracts it supports” [9]. In other words, we may say that the 
state and behavior of an object collectively define the roles that an object may 
play in the world, which in turn fulfill the abstraction’s responsibilities.

Indeed, most interesting objects play many different roles during their lifetime. 
Consider the following examples [10].

■ A bank account may have the role of a monetary asset to which the account 
owner may deposit or withdraw money. However, to a taxing authority, the 
account may play the role of an entity whose dividends must be reported on 
annually.

Objects can play many different roles.
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■ To a trader, a share of stock represents an entity with value that may be 
bought or sold; to a lawyer, the same share denotes a legal instrument to 
which are attached certain rights.

■ In the course of one day, the same person may play the role of mother, doc-
tor, gardener, and movie critic.

The roles played by objects are dynamic yet can be mutually exclusive. In the 
case of the share of stock, its roles overlap slightly, but each role is static relative 
to the client that interacts with the share. In the case of the person, her roles are 
quite dynamic and may change from moment to moment.

As we will discuss further in later chapters, we often start our analysis of a prob-
lem by examining the various roles that an object plays. During design, we refine 
these roles by inventing the particular operations that carry out each role’s 
responsibilities.

Objects as Machines 

The existence of state within an object means that the order in which operations 
are invoked is important. This gives rise to the idea that each object is like a tiny, 

Objects play many different roles during their lifetimes.
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independent machine [11]. Indeed, for some objects, this event and time ordering 
of operations is so pervasive that we can best formally characterize the behavior 
of such objects in terms of an equivalent finite state machine. In Chapter 5, we 
will show a particular notation for hierarchical finite state machines that we may 
use for expressing these semantics.

Continuing the machine metaphor, we may classify objects as either active or pas-
sive. An active object is one that encompasses its own thread of control, whereas 
a passive object does not. Active objects are generally autonomous, meaning that 
they can exhibit some behavior without being operated on by another object. 
Passive objects, on the other hand, can undergo a state change only when explic-
itly acted on. In this manner, the active objects in our system serve as the roots of 
control. If our system involves multiple threads of control, we will usually have 
multiple active objects. Sequential systems, on the other hand, usually have 
exactly one active object, such as a main object responsible for managing an event 
loop that dispatches messages. In such architectures, all other objects are passive, 
and their behavior is ultimately triggered by messages from the one active object. 
In other kinds of sequential system architectures (such as transaction-processing 
systems), there is no obvious central active object, so control tends to be distrib-
uted throughout the system’s passive objects.

Identity

Khoshafian and Copeland offer the following definition for identity: “Identity is 
that property of an object which distinguishes it from all other objects” [12].

They go on to note that “most programming and database languages use variable 
names to distinguish temporary objects, mixing addressability and identity. Most 
database systems use identifier keys to distinguish persistent objects, mixing data 
value and identity.” The failure to recognize the difference between the name of 
an object and the object itself is the source of many kinds of errors in object-
oriented programming.

Example 3–2 demonstrates the importance of maintaining the identity of the 
objects you create and shows how easily the identity can be irrecoverably lost.

Example 3–2

Consider a class that denotes a display item. A display item is a common 
abstraction in all GUI-centric systems: It represents the base class of all 
objects that have a visual representation on some window and so captures 
the structure and behavior common to all such objects. Clients expect to be 
able to draw, select, and move display items, as well as query their selection 
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state and location. Each display item has a location designated by the coordi-
nates x and y.

Let us assume we instantiate a number of DisplayItem classes as indi-
cated in Figure 3–4a. Specifically, the manner in which we instantiate these 
classes sets aside four locations in memory whose names are item1,
item2, item3, and item4, respectively. Here, item1 is the name of a dis-
tinct DisplayItem object, but the other three names each denote a pointer 
to a DisplayItem object. Only item2 and item3 actually point to distinct 
DisplayItem objects (because in their declarations we allocated a new 
DisplayItem object); item4 designates no such object. Furthermore, the 
names of the objects pointed to by item2 and item3 are anonymous: We 
can refer to these distinct objects only indirectly, via their pointer value. 

Figure 3–4 Object Identity
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The unique identity (but not necessarily the name) of each object is preserved 
over the lifetime of the object, even when its state is changed. This is like the 
Zen question about a river: Is a river the same river from one day to the next, 
even though the same water never flows through it? For example, let’s move 
item1. We can access the object designated by item2, get its location, and 
move item1 to that same location.

Also, if we equate item4 to item3, we can now reference the object desig-
nated by item3 by using item4 also. Using item4 we can then move that 
object to a new location, say, X=38, Y=100. Figure 3–4b illustrates these 
results. Here we see that item1 and the object designated by item2 both 
have the same location state and that item4 now also designates the same 
object as does item3. Notice that we use the phrase “the object designated 
by item2” rather than saying “the object item2.” The first phrase is more pre-
cise, although we will sometimes use these phrases interchangeably.

Although item1 and the object designated by item2 have the same state, 
they represent distinct objects. Also, note that we have changed the state of 
the object designated by item3 by operating on it through its new indirect 
name, item4. This is a situation we call structural sharing, meaning that a 
given object can be named in more than one way; in other words, there are 
aliases to the object. Structural sharing is the source of many problems in 
object-oriented programming. Failure to recognize the side effects of operat-
ing on an object through aliases often leads to memory leaks, memory-
access violations, and, even worse, unexpected state changes. For example, 
if we destroyed the object designated by item3, then item4’s pointer value 
would be meaningless; this is a situation we call a dangling reference.

Consider also Figure 3–4c, which illustrates the results of modifying the value 
of the item2 pointer to point to item1. Now item2 designates the same 
object as item1. Unfortunately, we have introduced a memory leak: The 
object originally designated by item2 can no longer be named, either directly 
or indirectly, and so its identity is lost. In languages such as Smalltalk and 
Java, such objects will be garbage-collected and their storage reclaimed auto-
matically, but in languages such as C++, their storage will not be reclaimed 
until the program that created them finishes. Especially for long-running pro-
grams, memory leaks such as this are either bothersome or disastrous.3

3. Consider the effects of a memory leak in software controlling a satellite or a pacemaker. 
Restarting the computer in a satellite several million miles away from earth is quite incon-
venient. Similarly, the unpredictable occurrence of automatic garbage collection in a pace-
maker’s software is likely to be fatal. For these reasons, real-time system developers often 
steer away from the unrestrained allocation of objects on the heap.
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3.2 Relationships among Objects

An object by itself is intensely uninteresting. Objects contribute to the behavior of 
a system by collaborating with one another. “Instead of a bit-grinding processor 
raping and plundering data structures, we have a universe of well-behaved objects 
that courteously ask each other to carry out their various desires” [13]. For 
example, consider the object structure of an airplane, which has been defined as 
“a collection of parts having an inherent tendency to fall to earth, and requiring 
constant effort and supervision to stave off that outcome” [14]. Only the collabo-
rative efforts of all the component objects of an airplane enable it to fly.

The relationship between any two objects encompasses the assumptions that each 
makes about the other, including what operations can be performed and what 
behavior results. We have found that two kinds of object relationships are of par-
ticular interest in object-oriented analysis and design, namely:

1. Links
2. Aggregation

Links

The term link derives from Rumbaugh et al., who define it as a “physical or con-
ceptual connection between objects” [16]. An object collaborates with other 
objects through its links to these objects. Stated another way, a link denotes the 
specific association through which one object (the client) applies the services of 
another object (the supplier), or through which one object may navigate to 
another.

Figure 3–5 illustrates several different links. In this figure, a line between two 
object icons represents the existence of a link between the two and means that 
messages may pass along this path. Messages are shown as small directed lines 
representing the direction of the message, with a label naming the message itself. 
For example, in Figure 3–5 we show part of a simplified flow control system. 
This may be controlling the flow of water through a pipe in a manufacturing 
plant. You can see that the FlowController object has a link to a Valve
object. The Valve object has a link to the DisplayPanel object in which its 
status will be displayed. Only across these links may one object send messages to 
another. 

Message passing between two objects is typically unidirectional, although it may 
occasionally be bidirectional. In our example, the FlowController object 
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invokes operations on the Valve object (to change its setting) and the 
DisplayPanel (to change what it displays), but these objects do not them-
selves operate on the FlowController object. This separation of concerns is 
quite common in well-structured object-oriented systems. Notice also that 
although message passing is initiated by the client (such as FlowController)
and is directed toward the supplier (such as the Valve object), data may flow in 
either direction across a link. For example, when FlowController invokes 
the operation adjust on the Valve object, data (i.e., the setting to change to) 
flows from the client to the supplier. However, if FlowController invokes a 
different operation, isClosed, on the Valve object, the result (i.e., whether 
the valve is in the fully closed position) passes from the supplier to the client.

As a participant in a link, an object may play one of three roles.

1. Controller: This object can operate on other objects but is not operated on 
by other objects. In some contexts, the terms active object and controller are 
interchangeable.

2. Server: This object doesn’t operate on other objects; it is only operated on 
by other objects. 

3. Proxy: This object can both operate on other objects and be operated on by 
other objects. A proxy is usually created to represent a real-world object in 
the domain of the application.

In the context of Figure 3–5, FlowController acts as a controller object, 
DisplayPanel acts as a server object, and Valve acts as a proxy. Example 3–3 
illustrates how responsibilities can be properly separated across a group of collab-
orating objects.

Figure 3–5 Links
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Example 3–3

In many different kinds of industrial processes, certain reactions require a 
temperature ramp, wherein we raise the temperature of some substance, hold 
it at that temperature for a fixed period, and then let it cool to ambient temper-
ature. Different processes require different profiles: Some objects (such as 
telescope mirrors) must be cooled slowly, whereas other materials (such as 
steel) must be cooled rapidly. This abstraction of a temperature ramp has a 
sufficiently well-defined behavior that it warrants the creation of a class. Thus 
we provide the class TemperatureRamp, which is conceptually a time/tem-
perature mapping (see Figure 3–6).

Actually, the behavior of this abstraction is more than just a literal time/
temperature mapping. For example, we might set a temperature ramp that 
requires the temperature to be 250°F at time 60 (one hour into the tempera-
ture ramp) and 150°F at time 180 (three hours into the process), but then we 
would like to know what the temperature should be at time 120. This requires 
linear interpolation, which is therefore another behavior (i.e., interpolate) we 
expect of this abstraction.

One behavior we explicitly do not require of this abstraction is the control of a 
heater to carry out a particular temperature ramp. Rather, we prefer a greater 
separation of concerns, wherein this behavior is achieved through the collabo-
ration of three objects: a temperature ramp instance, a heater, and a tempera-
ture controller (see Figure 3–6). The operation process provides the central 
behavior of this abstraction; its purpose is to carry out the given temperature 
ramp for the heater at the given location. 

A comment regarding our style: At first glance, it may appear that we have 
devised an abstraction whose sole purpose is to wrap a functional decompo-
sition inside a class to make it appear noble and object-oriented. The opera-
tion schedule suggests that this is not the case. Objects of the class 
TemperatureController have sufficient knowledge to determine when a 
particular profile should be scheduled, so we expose this operation as an 
additional behavior of our abstraction. In some high-energy industrial pro-
cesses (such as steel making), heating a substance is a costly event, and it is 
important to take into account any lingering heat from a previous process, as 
well as the normal cool-down of an unattended heater. The operation sched-
ule exists so that clients can query a TemperatureController object to 
determine the next optimal time to process a particular temperature ramp.

Visibility

Consider two objects, A and B, with a link between the two. In order for A to send 
a message to B, B must be visible to A in some manner. During our analysis of a 
problem, we can largely ignore issues of visibility, but once we begin to devise 
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concrete implementations, we must consider the visibility across links because 
our decisions here dictate the scope and access of the objects on each side of a 
link. We will discuss this further later in this chapter.

Synchronization

Whenever one object passes a message to another across a link, the two objects 
are said to be synchronized. For objects in a completely sequential application, 
this synchronization is usually accomplished by simple method invocation. How-
ever, in the presence of multiple threads of control, objects require more sophisti-
cated message passing in order to deal with the problems of mutual exclusion that 
can occur in concurrent systems. As we described earlier, active objects embody 
their own thread of control, so we expect their semantics to be guaranteed in the 
presence of other active objects. However, when one active object has a link to a 
passive one, we must choose one of three approaches to synchronization.

1. Sequential: The semantics of the passive object are guaranteed only in the 
presence of a single active object at a time.

2. Guarded: The semantics of the passive object are guaranteed in the presence 
of multiple threads of control, but the active clients must collaborate to 
achieve mutual exclusion.

3. Concurrent: The semantics of the passive object are guaranteed in the pres-
ence of multiple threads of control, and the supplier guarantees mutual 
exclusion.

Aggregation

Whereas links denote peer-to-peer or client/supplier relationships, aggregation 
denotes a whole/part hierarchy, with the ability to navigate from the whole (also 
called the aggregate) to its parts. In this sense, aggregation is a specialized kind of 
association. For example, as shown in Figure 3–6, the object Temperature-
Controller has a link to the object TemperatureRamp as well as to 
Heater. The object TemperatureController is thus the whole, and 
Heater is one of its parts. The notation shown for an aggregation relationship 
will be further explained in Chapter 5.

By implication, an object that is a part of another object has a link to its aggregate. 
Across this link, the aggregate may send messages to its parts. Given the object 
TemperatureController, it is possible to find its corresponding Heater.
Given an object such as Heater, it is possible to navigate to its enclosing object 
(also called its container) if and only if this knowledge is a part of the state of 
Heater.
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Aggregation may or may not denote physical containment. For example, an air-
plane is composed of wings, engines, landing gear, and so on: This is a case of 
physical containment. On the other hand, the relationship between a shareholder 
and his or her shares is an aggregation relationship that does not require physical 
containment. The shareholder uniquely owns shares, but the shares are by no 
means a physical part of the shareholder. Rather, this whole/part relationship is 
more conceptual and therefore less direct than the physical aggregation of the 
parts that form an airplane.

There are clear trade-offs between links and aggregation. Aggregation is some-
times better because it encapsulates parts as secrets of the whole. Links are 
sometimes better because they permit looser coupling among objects. Intelligent 
engineering decisions require careful weighing of these two factors.

3.3 The Nature of a Class

The concepts of a class and an object are tightly interwoven, for we cannot talk 
about an object without regard for its class. However, there are important differ-
ences between these two terms. 

What Is and What Isn’t a Class

Whereas an object is a concrete entity that exists in time and space, a class repre-
sents only an abstraction, the “essence” of an object, as it were. Thus, we may 
speak of the class Mammal, which represents the characteristics common to all 
mammals. To identify a particular mammal in this class, we must speak of “this 
mammal” or “that mammal.”

Figure 3–6
Aggregation
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In everyday terms, Webster’s Third New International Dictionary defines a class 
as “a group, set, or kind marked by common attributes or a common attribute; a 
group division, distinction, or rating based on quality, degree of competence, or 
condition” [17].

In the context of object-oriented analysis and design, we define a class as follows:

A class is a set of objects that share a common structure, common behavior, and 
common semantics.

A single object is simply an instance of a class.

What isn’t a class? An object is not a class. Objects that share no common struc-
ture and behavior cannot be grouped in a class because, by definition, they are 
unrelated except by their general nature as objects.

It is important to note that the class—as defined by most programming languages—
is a necessary but insufficient vehicle for decomposition. Sometimes abstractions 
are so complex that they cannot be conveniently expressed in terms of a single 
class declaration. For example, at a sufficiently high level of abstraction, a GUI 
framework, a database, and an entire inventory system are all conceptually 

A class represents a set of objects that share a common 
structure and a common behavior.
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individual objects, none of which can be expressed as a single class.4 Instead, 
it is far better for us to capture these abstractions as a cluster of classes whose 
instances collaborate to provide the desired structure and behavior. Stroustrup 
calls such a cluster a component [18]. 

Interface and Implementation

Meyer [19] and Snyder [20] have both suggested that programming is largely a 
matter of “contracting”: The various functions of a larger problem are decom-
posed into smaller problems by subcontracting them to different elements of the 
design. Nowhere is this idea more evident than in the design of classes.

Whereas an individual object is a concrete entity that performs some role in the 
overall system, the class captures the structure and behavior common to all 
related objects. Thus, a class serves as a sort of binding contract between an 
abstraction and all of its clients. By capturing these decisions in the interface of a 
class, a strongly typed programming language can detect violations of this con-
tract during compilation. 

This view of programming as contracting leads us to distinguish between the out-
side view and the inside view of a class. The interface of a class provides its 
outside view and therefore emphasizes the abstraction while hiding its structure 
and the secrets of its behavior. This interface primarily consists of the declara-
tions of all the operations applicable to instances of this class, but it may also 
include the declaration of other classes, constants, variables, and exceptions as 
needed to complete the abstraction. By contrast, the implementation of a class is 
its inside view, which encompasses the secrets of its behavior. The implementa-
tion of a class primarily consists of the implementation of all of the operations 
defined in the interface of the class.

We can further divide the interface of a class into four parts:

1. Public: a declaration that is accessible to all clients
2. Protected: a declaration that is accessible only to the class itself and its sub-

classes

4. One might be tempted to express such abstractions in a single class, but the granularity 
for reuse and change is too coarse. Having a “fat” interface is bad practice because most 
clients will want to reference only a small subset of the services provided. Furthermore, 
changing one part of a huge interface obsolesces every client, even those that don’t care 
about the parts that changed. Nesting classes doesn’t eliminate these problems; it only de-
fers them.



CHAPTER 3 CLASSES AND OBJECTS 95

3. Private: a declaration that is accessible only to the class itself
4. Package: a declaration that is accessible only by classes in the same package

The detailed semantics of these forms of visibility can vary based on the imple-
mentation language used.

The constants and variables that form the representation of a class are known by 
various terms, depending on the particular language we use. For example, Small-
talk uses the term instance variable, Object Pascal and Java use the term field,
C++ uses the term data member. We will use these terms interchangeably to 
denote the parts of a class that serve as the representation of its instance’s state.

The state of an object must have some representation in its corresponding class 
and so is typically expressed as constant and variable declarations placed in the 
protected or private part of a class’s interface. In this manner, the representation 
common to all instances of a class is encapsulated, and changes to this representa-
tion do not functionally affect any outside clients.5

Visibility and Friendship

Different programming languages provide different mixtures of public, pro-
tected, private, and package parts, which developers can choose among to 
establish specific access rights for each part of a class’s interface and 
thereby exercise control over what clients can see and what they can’t see 
(i.e., visibility).

In particular, C++ allows a developer to make explicit distinctions among all 
four of these different parts.5 The C++ friendship mechanism permits a 
class to distinguish certain privileged classes that are given the rights to 
see the class’s protected and private parts. Friendships break a class’s 
encapsulation and so, as in life, must be chosen carefully. Java does not 
have friendship. Instead, Java has a somewhat similar type of visibility 
called package access, where all classes in the same package can access 
each other. Aside from friendship, public, protected, and private access 
operate in Java as they do in C++. By contrast, Ada permits declarations to 
be public or private but not protected. In Smalltalk, all instance variables 
are private, and all methods are public. In Object Pascal, both fields and 
operations are public and hence unencapsulated. 

5. The C++ struct is a special case, in the sense that a struct is a kind of class with 
all of its elements public.
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Class Lifecycle

We may come to understand the behavior of a simple class just by understanding 
the semantics of its distinct public operations in isolation. However, the behavior 
of more interesting classes (such as moving an instance of the class DisplayItem
or scheduling an instance of the class TemperatureController) involves 
the interaction of their various operations over the lifetime of each of their 
instances. As described earlier in this chapter, the instances of such classes act 
as little machines, and since all such instances embody the same behavior, 
we can use the class to capture these common event- and time-ordered semantics. 
As we discuss in Chapter 5, we may describe such dynamic behavior for certain 
interesting classes by using finite state machines.

3.4 Relationships among Classes

Consider for a moment the similarities and differences among the following 
classes of objects: flowers, daisies, red roses, yellow roses, petals, and ladybugs. 
We can make the following observations.

■ A daisy is a kind of flower.
■ A rose is a (different) kind of flower.
■ Red roses and yellow roses are both kinds of roses.
■ A petal is a part of both kinds of flowers.
■ Ladybugs eat certain pests such as aphids, which may be infesting certain 

kinds of flowers.

From this simple example we conclude that classes, like objects, do not exist in 
isolation. Rather, for a particular problem domain, the key abstractions are usu-
ally related in a variety of interesting ways, forming the class structure of our 
design [21].

We establish relationships between two classes for one of two reasons. First, a 
class relationship might indicate some sort of sharing. For example, daisies and 
roses are both kinds of flowers, meaning that both have brightly colored petals, 
both emit a fragrance, and so on. Second, a class relationship might indicate some 
kind of semantic connection. Thus, we say that red roses and yellow roses are 
more alike than are daisies and roses, and daisies and roses are more closely 
related than are petals and flowers. Similarly, there is a symbiotic connection 
between ladybugs and flowers: Ladybugs protect flowers from certain pests, 
which in turn serve as a food source for the ladybug.
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In all, there are three basic kinds of class relationships [22]. The first of these is 
generalization/specialization, denoting an “is a” relationship. For instance, a rose 
is a kind of flower, meaning that a rose is a specialized subclass of the more gen-
eral class, flower. The second is whole/part, which denotes a “part of” relation-
ship. Thus, a petal is not a kind of a flower; it is a part of a flower. The third is 
association, which denotes some semantic dependency among otherwise unre-
lated classes, such as between ladybugs and flowers. As another example, roses 
and candles are largely independent classes, but they both represent things that we 
might use to decorate a dinner table.

Association

Of these different kinds of class relationships, associations are the most general 
but also the most semantically weak. The identification of associations among 
classes is often an activity of analysis and early design, at which time we begin to 
discover the general dependencies among our abstractions. As we continue our 
design and implementation, we will often refine these weak associations by turn-
ing them into one of the other more concrete class relationships.

Semantic Dependencies 

As Example 3–4 suggests, an association only denotes a semantic dependency 
and does not state the direction of this dependency (unless otherwise stated, an 
association implies bidirectional navigation, as in our example), nor does it state 
the exact way in which one class relates to another (we can only imply these 
semantics by naming the role each class plays in relationship with the other). 
However, these semantics are sufficient during the analysis of a problem, at which 
time we need only to identify such dependencies. Through the creation of associ-
ations, we come to capture the participants in a semantic relationship, their roles, 
and their cardinality.

Example 3–4

For a vehicle, two of our key abstractions include the vehicle and wheels. As 
shown in Figure 3–7, we may show a simple association between these two 
classes: the class Wheel and the class Vehicle. (Arguably, an aggregation 
would be better.) By implication, this association suggests bidirectional navi-
gation. Given an instance of Wheel, we should be able to locate the object 
denoting its Vehicle, and given an instance of Vehicle, we should be able 
to locate all the wheels.
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Here we show a one-to-many association: Each instance of Wheel relates to 
one Vehicle, and each instance of Vehicle may have many Wheels
(noted by the *).

Multiplicity

Our example introduced a one-to-many association, meaning that for each 
instance of the class Vehicle, there are zero (a boat, which is a vehicle, has no 
wheels) or more instances of the class Wheel, and for each Wheel, there is 
exactly one Vehicle. This denotes the multiplicity of the association. In prac-
tice, there are three common kinds of multiplicity across an association:

1. One-to-one
2. One-to-many
3. Many-to-many

A one-to-one relationship denotes a very narrow association. For example, in 
retail telemarketing operations, we would find a one-to-one relationship between 
the class Sale and the class CreditCardTransaction: Each sale has 
exactly one corresponding credit card transaction, and each such transaction cor-
responds to one sale. Many-to-many relationships are also common. For example, 
each instance of the class Customer might initiate a transaction with several 
instances of the class SalesPerson, and each such salesperson might interact 
with many different customers. As we will discuss further in Chapter 5, there are 
variations on these three common forms of multiplicity.

Inheritance

Inheritance, perhaps the most semantically interesting of these concrete relation-
ships, exists to express generalization/specialization relationships. In our experi-
ence, however, inheritance is an insufficient means of expressing all of the rich 
relationships that may exist among the key abstractions in a given problem 
domain. An alternate approach to inheritance involves a language mechanism 
called delegation, in which objects delegate their behavior to related objects.

Figure 3–7 Association
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Example 3–5

After space probes are launched, they report back to ground stations with 
information regarding the status of important subsystems (such as electrical 
power and propulsion systems) and different sensors (such as radiation sen-
sors, mass spectrometers, cameras, micrometeorite collision detectors, and 
so on). Collectively, this relayed information is called telemetry data. Teleme-
try data is commonly transmitted as a bitstream consisting of a header, which 
includes a timestamp and some keys identifying the kind of information that 
follows, plus several frames of processed data from the various subsystems 
and sensors. This appears to be a straightforward aggregation of different 
kinds of data.

This critical data needs to be encapsulated. Otherwise, there is nothing to pre-
vent a client from changing the value of important data such as timestamp
or currentPower. Likewise, the representation of this data is exposed, so if 
we were to change the representation (e.g., by adding new elements or chang-
ing the bit alignment of existing ones), every client would be affected. At the very 
least, we would certainly have to recompile every reference to this structure. 
More importantly, such changes might violate the assumptions that clients had 
made about this representation and cause the logic in our program to break. 

Lastly, suppose our analysis of the system’s requirements reveals the need for 
several hundred different kinds of telemetry data, including electrical data that 
encompassed the preceding information and also included voltage readings 
from various test points throughout the system. We would find that declaring 
these additional structures would create a considerable amount of redun-
dancy, in terms of both replicated structures and common functions.

A subclass may inherit the structure and behavior of its superclass.
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A slightly better way to capture our decisions would be to declare one class for 
each kind of telemetry data. In this manner, we could hide the representation 
of each class and associate its behavior with its data. Still, this approach does 
not address the problem of redundancy.

A far better solution, therefore, is to capture our decisions by building a hierar-
chy of classes, in which specialized classes inherit the structure and behavior 
defined by more generalized classes, as shown in Figure 3–8.

As for the class ElectricalData, this class inherits the structure and behav-
ior of the class TelemetryData but adds to its structure (the additional voltage 
data), redefines its behavior (the function transmit) to transmit the addi-
tional data, and can even add to its behavior (the function currentPower, a 
function to provide the current power level).

Single Inheritance 

Simply stated, inheritance is a relationship among classes wherein one class 
shares the structure and/or behavior defined in one (single inheritance) or more 
(multiple inheritance) other classes. We call the class from which another class 
inherits its superclass. In Example 3–5, TelemetryData is a superclass of 
ElectricalData. Similarly, we call a class that inherits from one or more 
classes a subclass; ElectricalData is a subclass of TelemetryData.
Inheritance therefore defines an “is a” hierarchy among classes, in which a subclass 
inherits from one or more superclasses. This is in fact the litmus test for inheritance. 
Given classes A and B, if A is not a kind of B, then A should not be a subclass of B.
In this sense, ElectricalData is a specialized kind of the more generalized 
class TelemetryData. The ability of a language to support this kind of inherit-
ance distinguishes object-oriented from object-based programming languages.

Figure 3–8 ElectricalData Inherits from the Superclass 
TelemetryData
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A subclass typically augments or restricts the existing structure and behavior of 
its superclasses. A subclass that augments its superclasses is said to use inherit-
ance for extension. For example, the subclass GuardedQueue might extend the 
behavior of its superclass Queue by providing extra operations that make 
instances of this class safe in the presence of multiple threads of control. In con-
trast, a subclass that constrains the behavior of its superclasses is said to use inherit-
ance for restriction. For example, the subclass UnselectableDisplayItem
might constrain the behavior of its superclass, DisplayItem, by prohibiting 
clients from selecting its instances in a view. In practice, it is not always so clear 
whether or not a subclass augments or restricts its superclass; in fact, it is com-
mon for a subclass to do both.

Figure 3–9 illustrates the single inheritance relationships deriving from the super-
class TelemetryData. Each directed line denotes an “is a” relationship. For 
example, CameraData “is a” kind of SensorData, which in turn “is a” kind 
of TelemetryData.

This is identical to the hierarchy one finds in a semantic net, a tool often used by 
researchers in cognitive science and artificial intelligence to organize knowledge 
about the world [25]. Indeed, as we discuss further in Chapter 4, designing a suit-
able inheritance hierarchy among abstractions is largely a matter of intelligent 
classification.

We expect that some of the classes in Figure 3–9 will have instances and some will 
not. For example, we expect to have instances of each of the most specialized classes 
(also known as leaf classes or concrete classes), such as ElectricalData
and SpectrometerData. However, we are not likely to have any instances of 
the intermediate, more generalized classes, such as SensorData or even 
TelemetryData. Classes with no instances are called abstract classes. An 
abstract class is written with the expectation that its subclasses will add to its 
structure and behavior, usually by completing the implementation of its (typi-
cally) incomplete methods. 

There is a very real tension between inheritance and encapsulation. To a large 
degree, the use of inheritance exposes some of the secrets of an inherited class. 
Practically, this means that to understand the meaning of a particular class, you 
must often study all of its superclasses, sometimes including their inside views.

Inheritance means that subclasses inherit the structure of their superclass. Thus, 
in Example 3–5, the instances of the class ElectricalData include the data 
members of the superclass (such as id and timestamp), as well as those of the 
more specialized classes (such as fuelCell1Voltage, fuelCell2Voltage,
fuelCell1Amperes, and fuelCell2Amperes).
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Subclasses also inherit the behavior of their superclasses. Thus, instances of the 
class ElectricalData may be acted on with the operations currentTime
(inherited from its superclass), currentPower (defined in the class itself), and 
transmit (redefined in the subclass). 

Polymorphism 

For the class TelemetryData, the function transmit may transmit the iden-
tifier of the telemetry stream and its timestamp. But the same function for the 
class ElectricalData may invoke the TelemetryData transmit func-
tion and also transmit its voltage and current values.

This behavior is due to polymorphism. In a generalization, such operations are 
called polymorphic. Polymorphism is a concept in type theory wherein a name 
may denote instances of many different classes as long as they are related by 
some common superclass. Any object denoted by this name is thus able to 
respond to some common set of operations in different ways. With polymor-
phism, an operation can be implemented differently by the classes in the hierar-
chy. In this manner, a subclass can extend the capabilities of its superclass or 
override the parent’s operation, as ElectricalData does in Example 3–5.

Figure 3–9 Single Inheritance 
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The concept of polymorphism was first described by Strachey [29], who spoke 
of ad hoc polymorphism, by which symbols such as + could be defined to mean 
different things. We call this concept overloading. In C++, one may declare 
functions having the same names, as long as their invocations can be distin-
guished by their signatures, consisting of the number and types of their arguments 
(in C++, unlike Ada, the type of a function’s returned value is not considered in 
overload resolution). By contrast, Java does not permit overloaded operators. 
Strachey also spoke of parametric polymorphism, which today we simply call 
polymorphism.

Without polymorphism, the developer ends up writing code consisting of large 
case or switch statements.6 Without it, we cannot create a hierarchy of classes for 
the various kinds of telemetry data; rather, we have to define a single, monolithic 
variant record encompassing the properties associated with all the kinds of data. 
To distinguish one variant from another, we have to examine the tag associated 
with the record. 

To add another kind of telemetry data, we would have to modify the variant 
record and add it to every case statement that operated on instances of this record. 
This is particularly error-prone and, furthermore, adds instability to the design.

In the presence of inheritance, there is no need for a monolithic type since we 
may separate different kinds of abstractions. As Kaplan and Johnson note, “Poly-
morphism is most useful when there are many classes with the same protocols” 
[30]. With polymorphism, large case statements are unnecessary because each 
object implicitly knows its own type. 

Inheritance without polymorphism is possible, but it is certainly not very useful. 

Polymorphism and late binding go hand in hand. In the presence of polymor-
phism, the binding of a method to a name is not determined until execution. In 
C++, the developer may control whether a member function uses early or late 
binding. Specifically, if the method is declared as virtual, then late binding is 
employed, and the function is considered to be polymorphic. If this virtual decla-
ration is omitted, then the method uses early binding and thus can be resolved at 
the time of compilation. Java simply performs late binding without the need for 
an explicit declaration such as virtual. How an implementation selects a par-
ticular method for execution is described in the sidebar, Invoking a Method.

6. This is in fact the litmus test for polymorphism. The existence of a switch statement that 
selects an action based on the type of an object is often a warning sign that the developer 
has failed to apply polymorphic behavior effectively.
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Invoking a Method

In traditional programming languages, invoking a subprogram is a completely 
static activity. In Pascal, for example, for a statement that calls the subprogram 
P, a compiler will typically generate code that creates a new stack frame, 
places the proper arguments on the stack, and then changes the flow of 
control to begin executing the code associated with P. However, in languages 
that support some form of polymorphism, such as Smalltalk and C++, invok-
ing an operation may require a dynamic activity because the class of the 
object being operated on may not be known until runtime. Matters are even 
more interesting when we add inheritance to the situation. The semantics of 
invoking an operation in the presence of inheritance without polymorphism 
is largely the same as for a simple static subprogram call, but in the pres-
ence of polymorphism, we must use a much more sophisticated technique.

Consider the class hierarchy in Figure 3–10, which shows the base class 
DisplayItem along with three subclasses named Circle, Triangle, and 
Rectangle. Rectangle also has one subclass, named SolidRectangle.
In the class DisplayItem, suppose that we define the instance variable 
theCenter (denoting the coordinates for the center of the displayed item), 
along with the following operations as in our earlier example:

■ draw Draw the item.
■ move Move the item.
■ location Return the location of the item.

The operation location is common to all subclasses and therefore need 
not be redefined, but we expect the operations draw and move to be rede-
fined since only the subclasses know how to draw and move themselves.

Figure 3–10 DisplayItem Class Diagram
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The class Circle must include the instance variable theRadius and 
appropriate operations to set and retrieve its value. For this subclass, 
the redefined operation draw draws a circle of the given radius, centered 
on theCenter. Similarly, the class Rectangle must include the instance 
variables theHeight and theWidth, along with appropriate operations to 
set and retrieve their values. For this subclass, the operation draw
draws a rectangle with the given height and width, again centered on 
theCenter. The subclass SolidRectangle inherits all characteristics of 
the class Rectangle but again redefines the behavior of the operation draw.
Specifically, the implementation of draw for the class SolidRectangle
first calls draw as defined in its superclass Rectangle (to draw the outline 
of the rectangle) and then fills in the shape. The invocation of draw
demands polymorphic behavior. 

Suppose now that we have some client object that wishes to draw all of the 
subclasses. In this situation, the compiler cannot statically generate code 
to invoke the proper draw operation because the class of the object being 
operated on is not known until runtime. Let’s consider how various object-
oriented programming languages deal with this situation.

Because Smalltalk is a typeless language, method dispatch is completely 
dynamic. When the client sends the message draw to an item found in the 
list, here is what happens.

■ The item object looks up the message in its class’s message 
dictionary.

■ If the message is found, the code for that locally defined method is 
invoked.

■ If the message is not found, the search for the method continues in 
the superclass.

This process continues up the superclass hierarchy until the message is 
found or until we reach the topmost base class, Object, without finding the 
message. In the latter case, Smalltalk ultimately passes the message 
doesNotUnderstand to signal an error.

The key to this algorithm is the message dictionary, which is part of each 
class’s representation and is therefore hidden from the client. This dictio-
nary is created when the class is created and contains all the methods to 
which instances of this class may respond. Searching for the message is 
time-consuming; method lookup in Smalltalk takes about 1.5 times as long 
as a simple subprogram call. All production-quality Smalltalk implementa-
tions optimize method dispatch by supplying a cached message dictionary, 
so that commonly passed messages may be invoked quickly. Caching typi-
cally improves performance by 20% to 30% [31].

The operation draw defined in the subclass SolidRectangle poses a 
special case. We said that its implementation of draw first calls draw as
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Multiple Inheritance 

With single inheritance, each subclass has exactly one superclass. However, as 
Vlissides and Linton point out, although single inheritance is very useful, “it often 
forces the programmer to derive from one of two equally attractive classes. This 
limits the applicability of predefined classes, often making it necessary to dupli-
cate code. For example, there is no way to derive a graphic that is both a circle 
and a picture; one must derive from one or the other and reimplement the func-
tionality of the class that was excluded” [40]. 

defined in the superclass Rectangle. In Smalltalk, we specify a super-
class method by using the keyword super. Then, when we pass the mes-
sage draw to super, Smalltalk uses the same method-dispatch algorithm 
as mentioned earlier, except that the search begins in the superclass of the 
object instead of its class.

Studies by Deutsch suggest that polymorphism is not needed about 85% of 
the time, so message passing can often be reduced to simple procedure 
calls [32]. Duff notes that in such cases, the developer often makes implicit 
assumptions that permit an early binding of the object’s class [33]. Unfortu-
nately, typeless languages such as Smalltalk have no convenient means for 
communicating these implicit assumptions to the compiler. 

More strongly typed languages such as C++ do let the developer assert such 
information. Because we want to avoid method dispatch wherever possible 
but must still allow for the occurrence of polymorphic dispatch, invoking a 
method in these languages proceeds a little differently than in Smalltalk.

In C++, the developer can decide whether a particular operation is to be 
bound late by declaring it to be virtual; all other methods are considered 
to be bound early, and thus the compiler can statically resolve the method 
call to a simple subprogram call. 

To handle virtual member functions, most C++ implementations use the 
concept of a vtable, which is defined for each object requiring polymorphic 
dispatch, when the object is created (and thus when the class of the object 
is fixed). This table typically consists of a list of pointers to virtual functions. 
For example, if we create an object of the class Rectangle, then the 
vtable will have an entry for the virtual function draw, pointing to the closest 
implementation of draw. If, for example, the class DisplayItem included 
the virtual function Rotate, which was not redefined in the class Rectan-
gle, then the vtable entry for Rotate would point to the implementation of 
Rotate in the class DisplayItem. In this manner, runtime searching is 
eliminated: Referring to a virtual member function of an object is just an 
indirect reference through the appropriate pointer, which immediately 
invokes the correct code without searching [34]. 
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Consider for a moment how one might organize various assets such as savings 
accounts, real estate, stocks, and bonds. Savings accounts and checking accounts 
are both kinds of assets typically managed by a bank, so we might classify both of 
them as kinds of bank accounts, which in turn are kinds of assets. Stocks and 
bonds are managed quite differently than bank accounts, so we might classify 
stocks, bonds, mutual funds, and the like as kinds of securities, which in turn are 
also kinds of assets.

However, there are many other equally satisfactory ways to classify savings 
accounts, real estate, stocks, and bonds. For example, in some contexts, it may be 
useful to distinguish insurable items such as real estate and certain bank accounts 
(which, in the United States, are insured up to certain limits by the Federal 
Deposit Insurance Corporation). It may also be useful to identify assets that return 
a dividend or interest, such as savings accounts, checking accounts, and certain 
stocks and bonds.

Unfortunately, single inheritance is not expressive enough to capture this 
lattice of relationships, so we must turn to multiple inheritance.7 Figure 3–11 
illustrates such a class structure. Here we see that the class Security is a kind 
of Asset as well as a kind of InterestBearingItem. Similarly, the class 
BankAccount is a kind of Asset, as well as a kind of InsurableItem and 
InterestBearingItem.

Designing a suitable class structure involving inheritance, and especially 
involving multiple inheritance, is a difficult task. This is often an incremental and 
iterative process. Two problems present themselves when we have multiple inher-
itance: How do we deal with name collisions from different superclasses, and 
how do we handle repeated inheritance?

Name collisions are possible when two or more different superclasses use the 
same name for some element of their interfaces, such as instance variables and 
methods. For example, suppose that the classes InsurableItem and Asset
both have attributes named presentValue, denoting the present value of the 
item. Since the class RealEstate inherits from both of these classes, what does 

7. In fact, this is the litmus test for multiple inheritance. If we encounter a class lattice 
wherein the leaf classes can be grouped into sets denoting orthogonal behavior (such as in-
surable and interest-bearing items), and these sets overlap, this is an indication that, within 
a single inheritance lattice, no intermediate classes exist to which we can cleanly attach 
these behaviors without violating our abstraction of certain leaf classes by granting them 
behaviors that they should not have. We can remedy this situation by using multiple inher-
itance to mix in these behaviors only where we want them.
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it mean to inherit two operations with the same name? This in fact is the key 
difficulty with multiple inheritance: Clashes may introduce ambiguity in the 
behavior of the multiply inherited subclass.

There are three basic approaches to resolving this kind of clash. First, the lan-
guage semantics might regard such a clash as illegal and reject the compilation of 
the class. Second, the language semantics might regard the same name introduced 
by different classes as referring to the same attribute. Third, the language seman-

Figure 3–11 Multiple Inheritance 
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tics might permit the clash but require that all references to the name fully qualify 
the source of its declaration. 

The second problem is repeated inheritance, which Meyer describes as follows: 
“One of the delicate problems raised by the presence of multiple inheritance is 
what happens when a class is an ancestor of another in more than one way. If you 
allow multiple inheritance into a language, then sooner or later someone is going 
to write a class D with two parents B and C, each of which has a class A as a par-
ent—or some other situation in which D inherits twice (or more) from A. This sit-
uation is called repeated inheritance and must be dealt with properly” [41]. As an 
example, suppose that we define the (ill-conceived) MutualFund class as a sub-
class of the classes Stock and Bond. This class introduces repeated inheritance 
of the class Security, which is a superclass of both Stock and Bond (see
Figure 3–11).

There are various approaches to dealing with the problem of repeated inheritance. 
First, we can treat occurrences of repeated inheritance as illegal. Second, we can 
permit duplication of superclasses but require the use of fully qualified names to 
refer to members of a specific copy. Third, we can treat multiple references to the 
same class as denoting the same class. Different languages handle this approach 
differently.

The existence of multiple inheritance gives rise to a style of classes called mixins.
Mixins derive from the programming culture surrounding the language Flavors: 
One would combine (mix in) little classes to build classes with more sophisticated 
behavior. “A mixin is syntactically identical to a regular class, but its intent is dif-
ferent. The purpose of such a class is solely to . . . [add] functions to other flavors 
[classes]—one never creates an instance of a mixin” [44]. In Figure 3–11, the 
classes InsurableItem and InterestBearingItem are mixins. Neither 
of these classes can stand alone; rather, they are used to augment the meaning of 
some other class. Thus, we may define a mixin as a class that embodies a single, 
focused behavior and is used to augment the behavior of some other class via 
inheritance. The behavior of a mixin is usually completely orthogonal to the 
behavior of the classes with which it is combined. A class that is constructed pri-
marily by inheriting from mixins and does not add its own structure or behavior is 
called an aggregate class.

Aggregation

We also need aggregation relationships, which provide the whole/part relation-
ships manifested in the class’s instances. Aggregation relationships among 
classes have a direct parallel to aggregation relationships among the objects 
corresponding to these classes.
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As we show in Figure 3–12, the class TemperatureController denotes the 
whole, and the class Heater is one of its parts. This corresponds exactly to the 
aggregation relationship among the instances of these classes illustrated earlier in 
Figure 3–6.

Physical Containment 

In the case of the class TemperatureController, we have aggregation as 
containment by value, a kind of physical containment meaning that the Heater
object does not exist independently of its enclosing TemperatureController
instance. Rather, the lifetimes of these two objects are intimately connected: 
When we create an instance of TemperatureController, we also create an 
instance of the class Heater. When we destroy our TemperatureController
object, by implication we also destroy the corresponding Heater object. 

A less direct kind of aggregation is also possible, called composition, which is 
containment by reference. In this case, the class TemperatureController
still denotes the whole, and an instance of the class Heater is still one of its 
parts, although that part must now be accessed indirectly. Hence, the lifetimes of 
these two objects are not so tightly coupled as before: We may create and destroy 
instances of each class independently. 

Aggregation asserts a direction to the whole/part relationship. For example, the 
Heater object is a part of the TemperatureController object, and not 
vice versa. Of course, as we described in an earlier example, aggregation need not 
require physical containment. For example, although shareholders own stocks, a 
shareholder does not physically contain the owned stocks. Rather, the lifetimes of 
these objects may be completely independent, although there is still conceptually 
a whole/part relationship (each share is always a part of the shareholder’s assets). 
Representation of this aggregation can be very indirect. 

This is still aggregation, although not physical containment. Ultimately, the lit-
mus test for aggregation is this: If and only if there exists a whole/part relation-
ship between two objects, we must have an aggregation relationship between their 
corresponding classes.

Figure 3–12 Aggregation



CHAPTER 3 CLASSES AND OBJECTS 111

Multiple inheritance is often confused with aggregation. When considering inher-
itance versus aggregation, remember to apply the litmus test for each. If you can-
not honestly affirm that there is an “is a” relationship between two classes, 
aggregation or some other relationship should be used instead of inheritance. 

Dependencies

Aside from inheritance, aggregation, and association, there is another group of 
relationships called dependencies. A dependency indicates that an element on one 
end of the relationship, in some manner, depends on the element on the other end 
of the relationship. This alerts the designer that if one of these elements changes, 
there could be an impact to the other. There are many different kinds of depen-
dency relationships (refer to the Object Management Group’s latest UML specifi-
cation for the full list [45]). You will often see dependencies used in architectural 
models (one system component, or package, is dependent on another) or at the 
implementation level (one module is dependent on another).

3.5 The Interplay of Classes and Objects

Classes and objects are separate yet intimately related concepts. Specifically, 
every object is the instance of some class, and every class has zero or more 
instances. For practically all applications, classes are static; therefore, their exist-
ence, semantics, and relationships are fixed prior to the execution of a program. 
Similarly, the class of most objects is static, meaning that once an object is cre-
ated, its class is fixed. In sharp contrast, however, objects are typically created and 
destroyed at a furious rate during the lifetime of an application. 

Relationships between Classes and Objects

For example, consider the classes and objects in the implementation of an air traf-
fic control system. Some of the more important abstractions include planes, flight 
plans, runways, and air spaces. By their very definition, the meanings of these 
classes and objects are relatively static. They must be static, for otherwise one 
could not build an application that embodied knowledge of such commonsense 
facts as that planes can take off, fly, and then land, and that two planes should not 
occupy the same space at the same time. Conversely, the instances of these classes 
are dynamic. At a fairly slow rate, new runways are built, and old ones are deacti-
vated. Faster yet, new flight plans are filed, and old ones are filed away. With 
great frequency, new planes enter a particular air space, and old ones leave.
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The Role of Classes and Objects in Analysis 
and Design

During analysis and the early stages of design, the developer has two primary 
tasks:

1. Identify the classes that form the vocabulary of the problem domain
2. Invent the structures whereby sets of objects work together to provide the 

behaviors that satisfy the requirements of the problem

Collectively, we call such classes and objects the key abstractions of the problem, 
and we call these cooperative structures the mechanisms of the implementation.

During these phases of development, the developer must focus on the outside 
view of these key abstractions and mechanisms. This view represents the logical 
framework of the system and therefore encompasses the class structure and object 
structure of the system. In the later stages of design and then moving into imple-
mentation, the task of the developer changes: The focus is on the inside view of 
these key abstractions and mechanisms, involving their physical representation. 

3.6 On Building Quality Classes and Objects

Ingalls suggests that “a system should be built with a minimum set of unchange-
able parts; those parts should be as general as possible; and all parts of the system 
should be held in a uniform framework” [51]. With object-oriented development, 
these parts are the classes and objects that make up the key abstractions of the 
system, and the framework is provided by its mechanisms. 

In our experience, the design of classes and objects is an incremental, iterative 
process. Frankly, except for the most trivial abstractions, we have never been able 
to define a class exactly right the first time. It takes time to smooth the conceptual 
jagged edges of our initial abstractions. Of course, there is a cost to refining these 
abstractions, in terms of recompilation, understandability, and the integrity of the 
fabric of our system design. Therefore, we want to come as close as we can to 
being right the first time.

Measuring the Quality of an Abstraction

How can one know if a given class or object is well designed? We suggest five 
meaningful metrics:
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1. Coupling
2. Cohesion
3. Sufficiency
4. Completeness
5. Primitiveness

Coupling is a notion borrowed from structured design, but with a liberal interpre-
tation it also applies to object-oriented design. Stevens, Myers, and Constantine 
define coupling as “the measure of the strength of association established by a 
connection from one module to another. Strong coupling complicates a system 
since a module is harder to understand, change, or correct by itself if it is highly 
interrelated with other modules. Complexity can be reduced by designing systems 
with the weakest possible coupling between modules” [52]. A counterexample to 
good coupling is given by Page-Jones in his description of a modular stereo sys-
tem in which the power supply is located in one of the speaker cabinets [53]. 

Coupling with regard to modules still applies to object-oriented analysis and 
design, but coupling with regard to classes and objects is equally important. How-
ever, there is tension between the concepts of coupling and inheritance because 
inheritance introduces significant coupling. On the one hand, weakly coupled 
classes are desirable; on the other hand, inheritance—which tightly couples 
superclasses and their subclasses—helps us to exploit the commonality among 
abstractions.

The idea of cohesion also comes from structured design. Simply stated, cohesion 
measures the degree of connectivity among the elements of a single module (and 
for object-oriented design, a single class or object). The least desirable form of 
cohesion is coincidental cohesion, in which entirely unrelated abstractions are 
thrown into the same class or module. For example, consider a class comprising 
the abstractions of dogs and spacecraft, whose behaviors are quite unrelated. The 
most desirable form of cohesion is functional cohesion, in which the elements of 
a class or module all work together to provide some well-bounded behavior. 
Thus, the class Dog is functionally cohesive if its semantics embrace the behavior 
of a dog, the whole dog, and nothing but the dog.

Closely related to the ideas of coupling and cohesion are the criteria that a class or 
module should be sufficient, complete, and primitive. By sufficient, we mean that 
the class or module captures enough characteristics of the abstraction to permit 
meaningful and efficient interaction. To do otherwise renders the component use-
less. For example, if we are designing the class Set, it is wise to include an oper-
ation that removes an item from the set, but our wisdom is futile if we neglect an 
operation that adds an item. In practice, violations of this characteristic are 
detected very early; such shortcomings rise up almost every time we build a client 
that must use this abstraction. 
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By complete, we mean that the interface of the class or module captures all of the 
meaningful characteristics of the abstraction. Whereas sufficiency implies a mini-
mal interface, a complete interface is one that covers all aspects of the abstraction. 
A complete class or module is thus one whose interface is general enough to be 
commonly usable to any client. Completeness is a subjective matter, and it can be 
overdone. Providing all meaningful operations for a particular abstraction over-
whelms the user and is generally unnecessary since many high-level operations 
can be composed from low-level ones. For this reason, we also suggest that 
classes and modules be primitive. 

Primitive operations are those that can be efficiently implemented only if given 
access to the underlying representation of the abstraction. Thus, adding an item to 
a set is primitive because to implement this operation Add, the underlying repre-
sentation must be visible. On the other hand, an operation that adds four items to 
a set is not primitive because it can be implemented just as efficiently on the more 
primitive Add operation, without having access to the underlying representation. 
Of course, efficiency is also a subjective measure. An operation is indisputably 
primitive if we can implement it only through access to the underlying representa-
tion. An operation that could be implemented on top of existing primitive opera-
tions, but at the cost of significantly more computational resources, is also a 
candidate for inclusion as a primitive operation.

Choosing Operations

Crafting the interface of a class or module is plain hard work. Typically, we make 
a first attempt at the design of a class, and then, as we and others create clients, 
we find it necessary to augment, modify, and further refine this interface. Eventu-
ally, we may discover patterns of operations or patterns of abstractions that lead 
us to invent new classes or to reorganize the relationships among existing ones.

We often can identify patterns of abstraction, structure, or behavior.
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Functional Semantics 

Within a given class, it is our style to keep all operations primitive, so that each 
exhibits a small, well-defined behavior. We call such methods fine-grained. We 
also tend to separate methods that do not communicate with one another. In this 
manner, it is far easier to construct subclasses that can meaningfully redefine the 
behavior of their superclasses. The decision to contract out a behavior to one ver-
sus many methods may be made for two competing reasons: Lumping a particular 
behavior in one method leads to a simpler interface but larger, more complicated 
methods; spreading a behavior across methods leads to a more complicated inter-
face but simpler methods. As Meyer observes, “A good designer knows how to 
find the appropriate balance between too much contracting, which produces frag-
mentation, and too little, which yields unmanageably large modules” [54].

It is common in object-oriented development to design the methods of a class as a 
whole because all these methods cooperate to form the entire protocol of the 
abstraction. Thus, given some desired behavior, we must decide in which class to 
place it. Halbert and O’Brien offer the following criteria to be considered when 
making such a decision [55].

■ Reusability: Would this behavior be more useful in more than one context?
■ Complexity: How difficult is it to implement the behavior?
■ Applicability: How relevant is the behavior to the type in which it might be 

placed?
■ Implementation knowledge: Does the behavior’s implementation depend on 

the internal details of a type?

We usually choose to declare the meaningful operations that we may perform on 
an object as methods in the definition of that object’s class (or superclass). 

Time and Space Semantics 

Once we have established the existence of a particular operation and defined its 
functional semantics, we must decide on its time and space semantics. This 
means that we must specify our decisions about the amount of time it takes to 
complete an operation and the amount of storage it needs. Such decisions are 
often expressed in terms of best, average, and worst cases, with the worst case 
specifying an upper limit on what is acceptable. 

Earlier, we also mentioned that whenever one object passes a message to another 
across a link, the two objects must be synchronized in some manner. In the pres-
ence of multiple threads of control, this means that message passing is much more 
than a subprogram-like dispatch. In most of the languages we use, synchronization 
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among objects is simply not an issue because our programs contain exactly one 
thread of control, meaning that all objects are sequential. We speak of message 
passing in such situations as simple because its semantics are most akin to simple 
subprogram calls. However, in languages that support concurrency, we must con-
cern ourselves with more sophisticated forms of message passing, so as to avoid 
the problems created if two threads of control act on the same object in unre-
strained ways. As we described earlier, objects whose semantics are preserved in 
the presence of multiple threads of control are either guarded or synchronized 
objects.

Choosing Relationships

Choosing the relationships among classes and among objects is linked to the 
selection of operations. If we decide that object X sends message M to object Y,
then either directly or indirectly, Y must be accessible to X; otherwise, we could 
not name the operation M in the implementation of X. By accessible, we mean the 
ability of one abstraction to see another and reference resources in its outside 
view. Abstractions are accessible to one another only where their scopes overlap 
and only where access rights are granted (e.g., private parts of a class are accessi-
ble only to the class itself and its friends). Coupling is thus a measure of the 
degree of accessibility.

The Law of Demeter

One useful guideline in choosing the relationships among objects is called the 
Law of Demeter, which states that “the methods of a class should not depend in 
any way on the structure of any class, except the immediate (top-level) structure 
of their own class. Further, each method should send messages to objects belong-
ing to a very limited set of classes only” [56]. The basic effect of applying this 
law is the creation of loosely coupled classes, whose implementation secrets are 
encapsulated. Such classes are fairly unencumbered, meaning that to understand 
the meaning of one class, you need not understand the details of many other 
classes.

In looking at the class structure of an entire system, we may find that its inherit-
ance hierarchy is wide and shallow, narrow and deep, or balanced. Class struc-
tures that are wide and shallow usually represent forests of free-standing classes 
that can be mixed and matched [57]. Class structures that are narrow and deep 
represent trees of classes that are related by a common ancestor [58]. There are 
advantages and disadvantages to each approach. Forests of classes are more 
loosely coupled, but they may not exploit all the commonality that exists. Trees of 
classes exploit this commonality, so that individual classes are smaller than in for-
ests. However, to understand a particular class, it is usually necessary to under-
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stand the meaning of all the classes it inherits from or uses. The proper shape of a 
class structure is highly problem-dependent.

We must make similar trade-offs among inheritance, aggregation, and depen-
dency relationships. For example, should the class Car inherit, contain, or use the 
classes named Engine and Wheel? In this case, we suggest that an aggregation 
relationship is more appropriate than an inheritance relationship. Meyer states 
that between the classes A and B, “inheritance is appropriate if every instance of B
may also be viewed as an instance of A. The client relationship is appropriate 
when every instance of B simply possesses one or more attributes of A” [59]. 
From another perspective, if the behavior of an object is more than the sum of its 
individual parts, creating an aggregation relationship rather than an inheritance 
relationship between the appropriate classes is probably superior.

Mechanisms and Visibility 

Deciding on the relationship among objects is mainly a matter of designing the 
mechanisms whereby these objects interact. The question the developer must ask 
is simply this: Where does certain knowledge go? For example, in a manufactur-
ing plant, materials (called lots) enter manufacturing cells to be processed. As 
they enter certain cells, we must notify the room’s manager to take appropriate 
action. We now have a design choice: Is the entry of a lot into a room an operation 
on the room, an operation on the lot, or an operation on both? If we decide that it 
is an operation on the room, the room must be visible to the lot. If we decide that 
it is an operation on the lot, the lot must be visible to the room because the lot 
must know what room it is in. Lastly, if we consider this to be an operation on 
both the room and the lot, we must arrange for mutual visibility. We must also 
decide on some visibility relationship between the room and the manager (and not 
the lot and the manager); either the manager must know the room it manages, or 
the room must know of its manager.

Choosing Implementations

Only after we stabilize the outside view of a given class or object do we turn to its 
inside view. This perspective involves two different decisions: a choice of repre-
sentation for a class or object and the placement of the class or object in a module.

Representation

The representation of a class or object should almost always be one of the encap-
sulated secrets of the abstraction. This makes it possible to change the representa-
tion (e.g., to alter the time and space semantics) without violating any of the 
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functional assumptions that clients may have made. As Wirth wisely states, “The 
choice of representation is often a fairly difficult one, and it is not uniquely deter-
mined by the facilities available. It must always be taken in light of the operations 
that are to be performed upon the data” [60]. For example, given a class whose 
objects denote a set of flight-plan information, do we optimize the representation 
for fast searching or for fast insertion and deletion? We cannot optimize for both, 
so our choice must be based on the expected use of these objects. Sometimes it is 
not easy to choose, and we end up with families of classes whose interfaces are 
virtually identical but whose implementations are radically different, in order to 
provide different time and space behavior.

One of the more difficult trade-offs when selecting the implementation of a class 
is between computing the value of an object’s state versus storing it as a field. For 
example, suppose we have the class Cone, which includes the method Volume.
Invoking this method returns the volume of the object. As part of the representa-
tion of this class, we are likely to use fields for the height of the cone and the 
radius of its base. Should we have an additional field in which we store the vol-
ume of the object, or should the method Volume just calculate it every time [61]? 
If we want this method to be fast, we should store the volume as a field. If space 
efficiency is more important to us, we should calculate the value. Which represen-
tation is better depends entirely on the particular problem. In any case, we should 
be able to choose an implementation independently of the class’s outside view; 
indeed, we should even be able to change this representation without its clients 
caring.

Packaging 

Similar issues apply to the declaration of classes and objects within modules. The 
competing requirements of visibility and information hiding usually guide our 
design decisions about where to declare classes and objects. Generally, we seek to 
build functionally cohesive, loosely coupled modules. Many nontechnical factors 
influence these decisions, such as matters of reuse, security, and documentation. 
Like the design of classes and objects, module design is not to be taken lightly. As 
Parnas, Clements, and Weiss note with regard to information hiding, “Applying 
this principle is not always easy. It attempts to minimize the expected cost of soft-
ware over its period of use and requires that the designer estimate the likelihood 
of changes. Such estimates are based on past experience and usually require 
knowledge of the application area as well as an understanding of hardware and 
software technology” [63].
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Summary

■ An object has state, behavior, and identity.
■ The structure and behavior of similar objects are defined in their common 

class.
■ The state of an object encompasses all of the (usually static) properties of 

the object plus the current (usually dynamic) values of each of these 
properties.

■ Behavior is how an object acts and reacts in terms of its state changes and 
message passing.

■ Identity is the property of an object that distinguishes it from all other 
objects.

■ A class is a set of objects that share a common structure and a common 
behavior.

■ The three kinds of relationships include association, inheritance, and 
aggregation.

■ Key abstractions are the classes and objects that form the vocabulary of the 
problem domain.

■ A mechanism is a structure whereby a set of objects work together to pro-
vide a behavior that satisfies some requirement of the problem.

■ The quality of an abstraction may be measured by its coupling, cohesion, 
sufficiency, completeness, and primitiveness.
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C h a p t e r  4

Classification

Classification is the means whereby we order knowledge. In object-
oriented design, recognizing the sameness among things allows us to 
expose the commonality within key abstractions and mechanisms and 
eventually leads us to smaller applications and simpler architectures. 
Unfortunately, there is no golden path to classification. To the reader 
accustomed to finding cookbook answers, we unequivocally state that 
there are no simple recipes for identifying classes and objects. There is no 
such thing as the “perfect” class structure, nor the “right” set of objects. As 
in any engineering discipline, our design choices are a compromise 
shaped by many competing factors.

Fortunately, there exists a vast legacy of experience with classification in 
other disciplines. From more classical approaches, techniques of object-
oriented analysis have emerged that offer several useful recommended 
practices and rules of thumb for identifying the classes and objects rele-
vant to a particular problem. These heuristics are the focus of this chapter.

4.1 The Importance of Proper Classification

The identification of classes and objects is a challenging part of object-oriented 
analysis and design. Our experience shows that identification involves both dis-
covery and invention. Through discovery, we come to recognize the key abstrac-
tions and mechanisms that form the vocabulary of our problem domain. Through 
invention, we devise generalized abstractions as well as new mechanisms that 
specify how objects collaborate. Ultimately, discovery and invention are both 
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problems of classification, and classification is fundamentally a problem of find-
ing sameness. When we classify, we seek to group things that have a common 
structure or exhibit a common behavior. 

Intelligent classification is actually a part of all good science. As Michalski and 
Stepp observe, “An omnipresent problem in science is to construct meaningful 
classifications of observed objects or situations. Such classifications facilitate 
human comprehension of the observations and the subsequent development of a 
scientific theory” [2]. The same philosophy applies to engineering. In the domain 
of building architecture and city planning, Alexander notes that, for the architect, 
“his act of design, whether humble, or gigantically complex, is governed entirely 
by the patterns he has in his mind at that moment, and his ability to combine these 
patterns to form a new design” [3]. Not surprisingly, then, classification is rele-
vant to every aspect of object-oriented design. 

Classification helps us to identify generalization, specialization, and aggregation 
hierarchies among classes. By recognizing the common patterns of interaction 
among objects, we come to invent the mechanisms that serve as the soul of our 
implementation. Classification also guides us in making decisions about modular-
ization. We may choose to place certain classes and objects together in the same 
module or in different modules, depending on the sameness we find among these 
declarations. Coupling and cohesion also indicate a type of sameness. Classifica-
tion also plays a role in allocating processes to processors. We place certain pro-
cesses together in the same processor or different processors, depending on 
packaging, performance, or reliability concerns.

The Difficulty of Classification

In the previous chapter, we defined an object as something that has a crisply 
defined boundary. However, the boundaries that distinguish one object from 
another are often quite fuzzy. For example, look at your leg. Where does your 
knee begin, and where does it end? In recognizing human speech, how do we 
know that certain sounds connect to form a word and are not instead a part of any 
surrounding words? Consider also the design of a word processing system. Do 
characters constitute a class, or are whole words a better choice? How do we treat 
arbitrary, noncontiguous selections of text? Also, what about sentences, para-
graphs, or even whole documents: Are these classes of objects relevant to our 
problem?

The fact that intelligent classification is difficult is hardly new information. Since 
there are parallels to the same problems in object-oriented design, consider for a 
moment the problems of classification in two other scientific disciplines: biology 
and chemistry.
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Until the eighteenth century, the prevailing scientific thought was that all living 
organisms could be arranged from the most simple to the most complex, with the 
measure of complexity being highly subjective (not surprisingly, humans were 
usually placed at the top of this list). In the mid-1700s, however, the Swedish bot-
anist Carolus Linnaeus suggested a more detailed taxonomy for categorizing 
organisms, according to what he called genus and species.

A century later, Darwin proposed the theory that natural selection was the mecha-
nism of evolution, whereby present-day species evolved from older ones. Dar-
win’s theory depended on an intelligent classification of species. As Darwin 
himself states, naturalists “try to arrange the species, genera, and families in each 
class, on what is called the natural system. But what is meant by this system? 
Some authors look at it merely as a scheme for arranging together those living 
objects which are most alike, and for separating those which are most unlike” [4]. 
In contemporary biology, classification denotes “the establishment of a hierarchi-
cal system of categories on the basis of presumed natural relationships among 
organisms” [5]. The most general category in a biological taxonomy is the king-
dom, followed in order of increasing specialization, by phylum, subphylum, class, 
order, family, genus, and, finally, species. 

To a computer scientist, biology may seem to be a stodgily mature discipline, 
with well-defined criteria for classifying organisms. This is simply not the case. 
“Surprisingly, scientists have a better understanding of how many stars there are 

Classification is the means whereby we order knowledge.
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in the galaxy than how many species there are on Earth. Estimates of global spe-
cies diversity have varied from 2 million to 100 million species, with a best esti-
mate of somewhere near 10 million, and only 1.4 million have actually been 
named” [65]. Furthermore, different criteria for classifying the same organisms 
yield different results. Martin suggests that “it all depends on what you want clas-
sification to do. If you want it to reflect precisely the genetic relatedness among 
species, that will give you one answer. But if you want it instead to say something 
about levels of adaptation, then you will get another” [8]. The moral here is that 
even in scientifically rigorous disciplines, classification is highly dependent on 
the reason for the classification.

Similar lessons may be learned from chemistry [9]. In ancient times, all sub-
stances were thought to be some combination of earth, air, fire, and water. By 
today’s standards (unless you are an alchemist), these do not represent very good 
classifications. In the mid-1600s, the chemist Robert Boyle proposed that ele-
ments were the primitive abstractions of chemistry, from which more complex 
compounds could be made. It wasn’t until over a century later, in 1789, that the 
chemist Lavoisier published the first list of elements, containing some 23 items, 
some of which were later discovered not to be elements at all. The discovery of 
new elements continued and the list grew, but finally, in 1869, the chemist 
Mendeleyev proposed the periodic law that gave a precise criteria for organizing 
all known elements and could predict the properties of those yet undiscovered. 
The periodic law was not the final story in the classification of the elements. In 
the early 1900s, elements with similar chemical properties but different atomic 
weights were discovered, leading to the idea of isotopes of elements.

The lesson here is simple: As Descartes states, “The discovery of an order is no 
easy task. . . . yet once the order has been discovered there is no difficulty at all in 
knowing it” [10]. The best software designs look simple, but as experience shows, 
it takes a lot of hard work to design a simple architecture.

The Incremental and Iterative Nature of 
Classification

We have not said all this to defend lengthy software development schedules, 
although to the manager or end user, it does sometimes seem that software engi-
neers need centuries to complete their work. Rather, we have told these stories to 
point out that intelligent classification is intellectually hard work and that it best 
comes about through an incremental and iterative process. As Shaw has observed, 
in software engineering, “The development of individual abstractions often fol-
lows a common pattern. First, problems are solved ad hoc. As experience accu-
mulates, some solutions turn out to work better than others, and a sort of folklore 
is passed informally from person to person. Eventually, the useful solutions are 
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understood more systematically, and they are codified and analyzed. This enables 
the development of models that support automatic implementation and theories 
that allow the generalization of the solution. This in turn enables a more sophisti-
cated level of practice and allows us to tackle harder problems—which we often 
approach ad hoc, starting the cycle over again” [11].

The incremental and iterative nature of classification directly impacts the con-
struction of class and object hierarchies in the design of a complex software sys-
tem. In practice, it is common to assert a certain class structure early in a design 
and then revise this structure over time. At later stages in the design, once clients 
have been built that use this structure, we will obtain insights as to the quality of 
our classification. On the basis of this experience, we may decide to create new 
subclasses from existing ones (derivation). We may split a large class into several 
smaller ones (factorization), or create one larger class by uniting smaller ones 
(composition). Occasionally, we may even discover previously unrecognized 
commonality and proceed to devise a new class (abstraction) [12].

Why, then, is classification so hard? We suggest that there are two important rea-
sons. First, there is no such thing as a “perfect” classification, although certainly 
some classifications are better than others. As Coombs, Raiffa, and Thrall state, 
“There are potentially at least as many ways of dividing up the world into object 
systems as there are scientists to undertake the task” [13]. Any classification is 
relative to the perspective of the observer doing the classification. Second, intelli-
gent classification requires a tremendous amount of creative insight. Birtwistle, 
Dahl, Myhrhaug, and Nygard observe that “sometimes the answer is evident, 

Different observers will classify the same object in different ways.
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sometimes it is a matter of taste, and at other times, the selection of suitable com-
ponents is a crucial point in the analysis” [15]. This fact recalls the riddle, “Why 
is a laser beam like a goldfish? . . . because neither one can whistle” [16]. Only a 
creative mind can find sameness among such otherwise unrelated things.

4.2 Identifying Classes and Objects

The problem of classification has been the concern of countless philosophers, 
linguists, cognitive scientists, and mathematicians since before the time of Plato. 
It is reasonable to study their experiences and apply what we learn to object-
oriented design. 

Classical and Modern Approaches

Historically, there have been only three general approaches to classification:

1. Classical categorization
2. Conceptual clustering
3. Prototype theory [17]

Classical Categorization 

In the classical approach to categorization, “All the entities that have a given 
property or collection of properties in common form a category. Such properties 
are necessary and sufficient to define the category” [18]. For example, married 
people constitute a category: One is either married or not, and the value of this 
property is sufficient to decide to which group a particular person belongs. On the 
other hand, tall people do not form a category, unless we can agree to some abso-
lute criteria for what distinguishes the property of tall from short.

Classical categorization comes to us first from Plato, and then from Aristotle 
through his classification of plants and animals, in which he uses a technique 
much akin to the contemporary children’s game of Twenty Questions (Is it an 
animal, mineral, or vegetable? Does it have fur or feathers? Can it fly? Does it 
smell?) [20]. Later philosophers, most notably Aquinas, Descartes, and Locke, 
adopted this approach. As Aquinas stated, “We can name a thing according to the 
knowledge we have of its nature from its properties and effects” [21].

The classical approach to categorization is also reflected in modern theories of 
child development. Piaget observed that around the age of one, a child typically 



CHAPTER 4 CLASSIFICATION 127

develops the concept of object permanence; shortly thereafter, the child acquires 
skills in classifying these objects, first using basic categories such as dogs, cats, 
and toys [22]. Later, the child discovers more general categories (such as animals) 
and more specific ones (such as beagles) [23].

To summarize, the classical approach uses related properties as the criteria for 
sameness among objects. Specifically, one can divide objects into disjoint sets 
depending on the presence or absence of a particular property. Minsky suggests 
that “the most useful sets of properties are those whose members do not interact 
too much. This explains the universal popularity of that particular combination of 
properties: size, color, shape, and substance. Because these attributes scarcely 
interact at all with one another, you can put them together in any combination 
whatsoever to make an object that is either large or small, red or green, wooden or 
glass, and having the shape of a sphere or a cube” [24]. In a general sense, proper-
ties may denote more than just measurable characteristics; they may also encom-
pass observable behaviors. For example, the fact that a bird can fly but a fish 
cannot is one property that distinguishes an eagle from a salmon. 

The particular properties that should be considered in a given situation are highly 
domain-specific. For instance, the color of a car may be important for the pur-
poses of inventory control in an automobile manufacturing plant, but it is not at 
all relevant to the software that controls the traffic lights within a metropolitan 
area. This is in fact why we say that there are no absolute measures of classifica-
tion, although a given class structure may be better suited to one application than 
another. As James suggests, “No one scheme of classification, more than any 
other, represents the real structure or order of nature. Nature indifferently submits 
to any and all divisions which we wish to make among existing things. Some clas-
sifications may be more significant than others, but only by reference to our inter-
ests, not because they represent reality more accurately or adequately” [25].

Classical categorization permeates much of contemporary Western thought, but, 
as our earlier example of classifying tall and short people suggests, this approach 
is not always satisfactory. Kosko observes that “natural categories tend to be 
messy: Most birds fly, but some do not. Chairs can consist of wood, plastic, or 
metal and can have almost any number of legs, depending on the whim of the 
designer. It seems practically impossible to come up with a property list for any 
natural category that excludes all examples that are not in the category and 
includes all examples that are in the category” [26]. These are indeed fundamen-
tal problems for classical categorization, which conceptual clustering and proto-
type theory attempt to resolve.

Conceptual Clustering 

Conceptual clustering is a more modern variation of the classical approach and 
largely derives from attempts to explain how knowledge is represented. As Stepp 
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and Michalski state, “In this approach, classes (clusters of entities) are generated 
by first formulating conceptual descriptions of these classes and then classifying 
the entities according to the descriptions” [27]. For example, we may state a 
concept such as “a love song.” This is a concept more than a property, for the 
“love songness” of any song is not something that may be measured empirically. 
However, if we decide that a certain song is more of a love song than not, we 
place it in this category. Thus, conceptual clustering represents more of a probabi-
listic clustering of objects.

Conceptual clustering is closely related to fuzzy (multivalue) set theory, in which 
objects may belong to one or more groups, in varying degrees of fitness. Concep-
tual clustering makes absolute judgments of classification by focusing on the 
“best fit.”

A Problem of Classification

Figure 4–1 contains ten items, labeled A to J, each of which represents a 
train. Each train includes an engine (on the right) and from two to four cars, 
each shaped differently and holding different loads. Before reading further, 
spend the next few minutes arranging these trains into any number of 
groups you deem meaningful. For example, you might create three groups: 
one for trains whose engines have all black wheels, one for trains whose 
engines have all white wheels, and one for trains whose engines have 
black and white wheels.

This problem comes from the work by Stepp and Michalski on conceptual 
clustering [19]. As in real life, there is no “right” answer. In their experi-
ments, subjects came up with 93 different classifications. The most popular 
classification was by the length of the train, forming three groups (trains 
with two, three, and four cars). The second most popular classification was 
by engine wheel color, as we suggested. Of these 93 classifications, about 
40 of them were totally unique.

Our use of this example confirms Stepp and Michalski’s study. Most of our 
subjects have used the two most popular classifications, although we have 
encountered some rather creative groupings. For example, one subject 
arranged these trains into two groups: one group represented trains 
labeled by letters containing straight lines (A, E, F, H, and I ) and the other 
group represented trains labeled by letters containing curved lines. This is 
truly an example of nonlinear thinking: creative, albeit bizarre.

Once you have completed this task, let’s change the requirements (again, 
as in real life). Suppose that circles represent toxic chemicals, rectangles 
represent lumber, and all other shapes of loads represent passengers. Try 
classifying the trains again, and see how this new knowledge changes your 
classification.
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Among our subjects, the clustering of trains changed significantly. Most 
subjects classified trains according to whether or not they carried toxic 
loads. We conclude from this simple experiment that more knowledge 
about a domain makes it easier to achieve an intelligent classification.

Figure 4–1 A Problem of Classification

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.
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Prototype Theory 

Classical categorization and conceptual clustering are sufficiently expressive to 
account for most of the classifications we need in the design of complex software 
systems. However, there are still some situations in which these approaches to 
classification are inadequate. This leads us to prototype theory, which derives 
primarily from the work of Rosch and her colleagues in the field of cognitive 
psychology [28]. 

There are some abstractions that have neither clearly bounded properties nor con-
cepts. As Lakoff explains the problem, “Wittgenstein pointed out that a category 
like game does not fit the classical mold, since there are no common properties 
shared by all games. . . . Though there is no single collection of properties that all 
games share, the category of games is united by what Wittgenstein calls family 
resemblances. . . . Wittgenstein also observed that there was no fixed boundary to 
the category game. The category could be extended and new kinds of games 
introduced, provided that they resembled previous games in appropriate ways” 
[29]. This is why the approach is called prototype theory: a class of objects is rep-
resented by a prototypical object, and an object is considered to be a member of 
this class if and only if it resembles this prototype in significant ways.

Lakoff and Johnson apply prototype theory to the earlier problem of classifying 
chairs. They observe that “we understand beanbag chairs, barber chairs, and con-
tour chairs as being chairs, not because they share some fixed set of defining 
properties with the prototype, but rather because they bear a sufficient family 
resemblance to the prototype. . . . There need be no fixed core of properties of 
prototypical chairs that are shared by both beanbag and barber chairs, yet they are 
both chairs because each, in its different way, is sufficiently close to the proto-
type. Interactional properties are prominent among the kinds of properties that 
count in determining sufficient family resemblance” [30].

This notion of interactional properties is central to the idea of prototype theory. In 
conceptual clustering, we group things according to distinct concepts. In proto-
type theory, we group things according to the degree of their relationship to con-
crete prototypes.

Applying Classical and Modern Theories 

To the developer in the trenches fighting changing requirements amidst limited 
resources and tight schedules, our discussion may seem to be far removed from 
the battlefields of reality. Actually, these three approaches to classification have 
direct application to object-oriented design.
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In our experience, we identify classes and objects first according to the properties 
relevant to our particular domain. Here, we focus on identifying the structures and 
behavior that are part of the vocabulary of our problem space. Many such abstrac-
tions are usually available for the picking [31]. If this approach fails to yield a 
satisfactory class structure, we next consider clustering objects by concepts (or 
refining our initial domain-based classification by concepts). Here, we focus 
our attention on the behavior of collaborating objects. If either of these two 
approaches fails to capture our understanding of the problem domain, we con-
sider classification by association, through which clusters of objects are defined 
according to how closely each resembles some prototypical object.

More directly, these three approaches to classification provide the theoretical 
foundation of object-oriented analysis, which offers a number of pragmatic prac-
tices and rules of thumb that we may apply to identify classes and objects in the 
design of a complex software system.

Object-Oriented Analysis

The boundaries between analysis and design are fuzzy, although the focus of each 
is quite distinct. In analysis, the focus is to fully analyze the problem at hand and 
to model the world by discovering the classes and objects that form the vocabu-
lary of the problem domain. In design, we invent the abstractions and mecha-
nisms in our models that provide the design of the solution to be built.

In the following sections, we examine a number of proven approaches for analy-
sis that are relevant to object-oriented systems.

Classical Approaches 

A number of methodologists have proposed various sources of classes and 
objects, derived from the requirements of the problem domain. We call these 
approaches classical because they derive primarily from the principles of classi-
cal categorization.

For example, Shlaer and Mellor suggest that candidate classes and objects usually 
come from one of the following sources [32]:

■ Tangible things Cars, telemetry data, pressure sensors
■ Roles Mother, teacher, politician
■ Events Landing, interrupt, request
■ Interactions Loan, meeting, intersection
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From the perspective of database modeling, Ross offers a similar list [33]:

■ People Humans who carry out some function
■ Places Areas set aside for people or things
■ Things Physical objects, or groups of objects, that are 

tangible
■ Organizations Formally organized collections of people, resources, 

facilities, and capabilities having a defined mission, 
whose existence is largely independent of individuals

■ Concepts Principles or ideas not tangible per se; used to 
organize or keep track of business activities and/or 
communications

■ Events Things that happen, usually to something else at a 
given date and time, or as steps in an ordered 
sequence

Coad and Yourdon suggest yet another set of sources of potential objects [34]:

■ Structure “Is a” and “part of” relationships
■ Other systems External systems with which the application 

interacts
■ Devices Devices with which the application interacts
■ Events remembered A historical event that must be recorded
■ Roles played The different roles users play in interacting with the 

application
■ Locations Physical locations, offices, and sites important to the 

application
■ Organizational units Groups to which users belong

At a higher level of abstraction, Coad introduces the idea of subject areas, which 
are basically logical groups of classes that relate to some higher-level system 
function.

Behavior Analysis 

Whereas these classical approaches focus on tangible things in the problem 
domain, another school of thought in object-oriented analysis focuses on dynamic 
behavior as the primary source of classes and objects.1 These approaches are 

1. Shlaer and Mellor extended their earlier work to focus on behavior as well. In particular, 
they studied the lifecycle of each object as a means of understanding the boundaries [35].
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more akin to conceptual clustering: We form classes based on groups of objects 
that exhibit similar behavior.

Wirfs-Brock, Wilkerson, and Wiener, for example, emphasize responsibilities, 
which denote “the knowledge an object maintains and the actions an object can 
perform. Responsibilities are meant to convey a sense of the purpose of an object 
and its place in the system. The responsibilities of an object are all the services it 
provides for all of the contracts it supports” [36]. In this manner, we group things 
that have common responsibilities, and we form hierarchies of classes involving 
superclasses that embody general responsibilities and subclasses that specialize 
their behavior.

Rubin and Goldberg offer an approach to identifying classes and objects derived 
from system functions. As they suggest, “the approach we use emphasizes first 
understanding what takes place in the system. These are the system behaviors. We 
next assign these behaviors to parts of the system, and try to understand who ini-
tiates and who participates in these behaviors. . . . Initiators and participants that 
play significant roles are recognized as objects, and are assigned the behavioral 
responsibilities for these roles” [37].

Rubin’s concept of system behavior is closely related to the idea of function 
points, first suggested in 1979 by Albrech. A function point is “defined as one 
end-user business function” [38]. A business function represents some kind of 
output, inquiry, input, file, or interface. Although the information-system roots of 
this definition show through, the idea of a function point generalizes to all kinds 
of automated systems: A function point is any relevant outwardly visible and test-
able behavior of the system.

Domain Analysis

The principles we have discussed thus far are typically applied to the develop-
ment of single, specific applications. Domain analysis, on the other hand, seeks to 
identify the classes and objects that are common to all applications within a given 
domain, such as patient record tracking, bond trading, compilers, or missile avi-
onics systems. If you are in the midst of a design and stuck for ideas as to the key 
abstractions that exist, a narrow domain analysis can help by pointing you to the 
key abstractions that have proven useful in other related systems. Domain analy-
sis works well because, except for special situations, there are very few truly 
unique kinds of software systems.

The idea of domain analysis was first suggested by Neighbors. We define domain 
analysis as “an attempt to identify the objects, operations, and relationships [that] 
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domain experts perceive to be important about the domain” [39]. Moore and 
Bailin suggest the following steps in domain analysis.

■ Construct a strawman generic model of the domain by consulting with domain 
experts.

■ Examine existing systems within the domain and represent this understanding 
in a common format.

■ Identify similarities and differences between the systems by consulting with 
domain experts.

■ Refine the generic model to accommodate existing systems. [40]

Domain analysis may be applied across similar applications (vertical domain 
analysis), as well as to related parts of the same application (horizontal domain 
analysis). For example, when starting to design a new patient-monitoring system, 
it is reasonable to survey the architecture of existing systems to understand what 
key abstractions and mechanisms were previously employed and to evaluate 
which were useful and which were not. Similarly, an accounting system must pro-
vide many different kinds of reports. By considering these reports within the same 
application as a single domain, a domain analysis can lead the developer to an 
understanding of the key abstractions and mechanisms that serve all the different 
kinds of reports. The resulting classes and objects reflect a set of key abstractions 
and mechanisms generalized to the immediate report generation problem; there-
fore, the resulting design is likely to be simpler than if each report had been ana-
lyzed and designed separately.

Who exactly is a domain expert? Often, a domain expert is simply a user, such as 
a train engineer or dispatcher in a railway system, or a nurse or doctor in a hospi-
tal. A domain expert typically will not be a software developer; more commonly, 
he or she is simply a person who is intimately familiar with all the elements of a 
particular problem. A domain expert speaks the vocabulary of the problem 
domain.

Some managers may be concerned with the idea of direct communication 
between developers and end users (for some, even more frightening is the pros-
pect of letting an end user see a developer!). For highly complex systems, domain 
analysis may involve a formal process, using the resources of multiple domain 
experts and developers over a period of many months. Such a formal analysis is 
not necessary on all projects, particularly smaller projects. Often, all it takes to 
clear up a design problem is a brief meeting between a domain expert and an 
architect or developer. It is truly amazing to see what a little bit of domain knowl-
edge can do to enable intelligent design decisions. Indeed, we find it highly useful 
to have many such meetings throughout the design of a system. Domain analysis 
is rarely a monolithic activity; it is better focused if we consciously choose to ana-
lyze a little and then design a little.
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Use Case Analysis 

In isolation, the practices of classical analysis, behavior analysis, and domain 
analysis all depend on a large measure of personal experience on the part of the 
analyst. For the majority of development projects, this is unacceptable because 
such a process is neither deterministic nor predictably successful.

However, there is one practice that can be coupled with all three of these earlier 
approaches, to drive the process of analysis in a meaningful way. That practice is 
use case analysis, first formalized by Jacobson. Jacobson et al. define a use case 
as “A behaviourally related sequence of transactions performed by an actor in a 
dialogue with the system to provide some measurable value to the actor” [41].

Briefly, we can apply use case analysis as early as requirements analysis, at which 
time end users, other domain experts, and the development team enumerate the 
scenarios that are fundamental to the system’s operation. (We need not elaborate 
on these scenarios at first; we can simply enumerate them.) These scenarios col-
lectively describe the system functions of the application. Analysis then proceeds 
by a study of each scenario, possibly using storyboarding techniques similar to 
practices in the television and movie industry [42]. As the team walks through 
each scenario, they must identify the objects that participate in the scenario, the 
responsibilities of each object, and the ways those objects collaborate with other 
objects, in terms of the operations each invokes on the other. In this manner, the 
team is forced to craft a clear separation of concerns among all abstractions. As 
the development process continues, these initial scenarios are expanded to con-
sider exceptional conditions as well as secondary system behaviors. The results 
from these secondary scenarios introduce new abstractions or add, modify, or 
reassign the responsibilities of existing abstractions. Scenarios also serve as the 
basis of system tests.

CRC Cards

CRC cards emerged as a simple yet marvelously effective way to analyze 
scenarios.2 First proposed by Beck and Cunningham as a tool for teaching object-
oriented programming [44], CRC cards have proven to be a useful development 
tool that facilitates brainstorming and enhances communication among develop-
ers. A CRC card is nothing more than a 3 5 index card,3 on which the analyst 
writes—in pencil—the name of a class (at the top of the card), its responsibilities 

2. CRC stands for Class/Responsibilities/Collaborators. 

3. If your software development budget can handle it, buy 5 7 cards. Cards with lines are 
nice, and a sprinkling of colored cards shows that you are a very cool developer.
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(on one half of the card), and its collaborators (on the other half of the card). One 
card is created for each class identified as relevant to the scenario. As the team 
members walk through the scenario, they may assign new responsibilities to an 
existing class, group certain responsibilities to form a new class, or (most com-
monly) divide the responsibilities of one class into more fine-grained ones and 
perhaps distribute these responsibilities to a different class.

CRC cards can be spatially arranged to represent patterns of collaboration. As 
viewed from the dynamic semantics of the scenario, the cards are arranged to 
show the flow of messages among prototypical instances of each class; as viewed 
from the static semantics of the scenario, the cards are arranged to represent gen-
eralization/specialization or aggregation hierarchies among the classes.

Informal English Description 

A radical alternative to classical object-oriented analysis was first proposed by 
Abbott, who suggests writing an English description of the problem (or a part of a 
problem) and then underlining the nouns and verbs [45]. The nouns represent 
candidate objects, and the verbs represent candidate operations on them. 

Abbott’s approach is useful because it is simple and because it forces the devel-
oper to work in the vocabulary of the problem space. However, it is by no means a 
rigorous approach, and it definitely does not scale well to anything beyond fairly 
trivial problems. Human language is a terribly imprecise vehicle of expression, so 
the quality of the resulting list of objects and operations depends on the writing 
skill of its author. Furthermore, any noun can be verbed, and any verb can be 
nouned; therefore, it is easy to skew the candidate list to emphasize either objects 
or operations.

Structured Analysis

Some organizations have tried to use the products of structured analysis as a front 
end to object-oriented design. This technique appears appealing only because a 
large number of analysts are skilled in structured analysis, and computer-aided 
software engineering (CASE) tools exist that support the automation of these 
methods. Personally, we discourage the use of structured analysis as a front end to 
object-oriented design.

This approach starts with an essential model of the system, as described by data 
flow diagrams and the other products of structured analysis. These diagrams pro-
vide a reasonably formal model of the problem. From this model, we may pro-
ceed to identify the meaningful classes and objects in our problem domain in 
three different ways.
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McMenamin and Palmer suggest starting with an analysis of the data dictionary 
and proceeding to analyze the model’s context diagram. As they state, “With your 
list of essential data elements, think about what they tell you or what they 
describe. If they were adjectives in a sentence, for instance, what nouns would 
they modify? The answers to this question make up the list of candidate objects” 
[47]. These candidate objects typically derive from the surrounding environment, 
from the essential inputs and outputs, and from the products, services, and other 
resources managed by the system.

The next two techniques involve analyzing individual data flow diagrams. Given 
a particular data flow diagram (using the terminology of Ward and Mellor [48]), 
candidate objects may be derived from the following:

■ External entities
■ Data stores
■ Control stores
■ Control transformations

Candidate classes derive from two sources:

■ Data flows
■ Control flows

This leaves us with data transformations, which we assign either as operations on 
existing objects or as the behavior of an object we invent to serve as the agent 
responsible for this transformation.

Seidewitz and Stark suggest another technique, which they call abstraction 
analysis. Abstraction analysis focuses on the identification of central entities, 
which are similar in nature to central transforms in structured design. As they 
state, “In structured analysis, input and output data are examined and followed 
inwards until they reach the highest level of abstraction. The processes between 
the inputs and the outputs form the central transform. In abstraction analysis a 
designer does the same, but also examines the central transform to determine 
which processes and states represent the best abstract model of what the system 
does” [49]. After identifying the central entity in a particular data flow diagram, 
abstraction analysis proceeds to identify all the supporting entities by following 
the afferent and efferent data flows from the central entity and grouping the pro-
cesses and states encountered along the way. In practice, Seidewitz and Stark 
have found abstraction analysis a difficult technique to apply successfully, and as 
an alternative they recommend object-oriented analysis methods [50].

We must strongly emphasize that structured design, as normally coupled with 
structured analysis, is entirely orthogonal to the principles of object-oriented 
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design. Our experience indicates that using structured analysis as a front end to 
object-oriented design often fails when the developer is unable to resist the urge 
to fall back into the abyss of the structured design mindset. Another very real dan-
ger is the fact that many analysts tend to write data flow diagrams that reflect a 
design rather than an essential model of the problem. It is tremendously difficult 
to build an object-oriented system from a model that is so obviously biased 
toward algorithmic decomposition. This is why we prefer object-oriented analysis 
as the front end to object-oriented design: There is simply less danger of polluting 
the design with preconceived algorithmic notions.

If you must use structured analysis as a front end, for whatever honorable rea-
sons,4 we suggest that you stop writing data flow diagrams as soon as they start to 
smell of a design instead of an essential model. Also, it is a healthy practice to 
walk away from the products of structured analysis once the design is fully under 
way. Remember that the products of development, including data flow diagrams, 
are not ends in themselves; they should be viewed simply as tools along the way 
that aid the developer’s intellectual comprehension of the problem and its imple-
mentation. One typically writes a data flow diagram and then invents the mecha-
nisms that implement the desired behavior. Practically speaking, the very act of 
design changes the developer’s understanding of the problem. Thus, only the 
products of structured analysis that are at a sufficiently high level of abstraction 
should be retained. They capture an essential model of the problem and so lend 
themselves to any number of different designs.

4.3 Key Abstractions and Mechanisms

A key abstraction is a class or object that forms part of the vocabulary of the prob-
lem domain. The primary value of identifying such abstractions is that they give 
boundaries to our problem; they highlight the things that are in the system and 
therefore relevant to our design, and they suppress the things that are outside the 
system and therefore superfluous.

In the previous chapter, we used the term mechanism to describe any structure 
whereby objects collaborate to provide some behavior that satisfies a requirement 
of the problem. Whereas the design of a class embodies the knowledge of how 
individual objects behave, a mechanism is a design decision about how collec-
tions of objects cooperate. Mechanisms thus represent patterns of behavior.

Let us now discuss the identification and refinement of these key abstractions and 
mechanisms.

4. Political and historical reasons are distinctly not honorable.
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Identifying Key Abstractions

The identification of key abstractions is highly domain-specific. As Goldberg 
states, the “appropriate choice of objects depends, of course, on the purposes 
to which the application will be put and the granularity of information to be 
manipulated” [51].

As we mentioned earlier, the identification of key abstractions involves two pro-
cesses: discovery and invention. Through discovery, we come to recognize the 
abstractions used by domain experts; if the domain expert talks about it, the 
abstraction is usually important [52]. Through invention, we create new classes 
and objects that are not necessarily part of the problem domain but are useful arti-
facts in the design or implementation. For example, a customer using an auto-
mated teller speaks in terms of accounts, deposits, and withdrawals; these words 
are part of the vocabulary of the problem domain. A developer of such a system 
uses these same abstractions but must also introduce new ones, such as databases, 
screen managers, lists, queues, and so on. These key abstractions are artifacts of 
the particular design, not of the problem domain.

Refining Key Abstractions 

Once we identify a certain key abstraction as a candidate, we must evaluate it 
according to the metrics described in the previous chapter. As Stroustrup suggests, 
“Often this means that the programmer must focus on the questions: how are 
objects of this class created? Can objects of this class be copied and/or destroyed? 
What operations can be done on such objects? If there are no good answers to 
such questions, the concept probably wasn’t ‘clean’ in the first place, and it might 
be a good idea to think a bit more about the problem and the proposed solution 
instead of immediately starting to ‘code around’ the problems” [53].

Given a new abstraction, we must place it in the context of the existing class and 
object hierarchies we have designed. Practically speaking, this is neither a top-
down nor a bottom-up activity. As Halbert and O’Brien observe, “You do not 
always design types in a type hierarchy by starting with a supertype and then cre-
ating the subtypes. Frequently, you create several seemingly disparate types, real-
ize they are related, and then factor out their common characteristics into one or 
more supertypes. . . . several passes up and down are usually required to produce 
a complete and correct program design” [54]. This is not a license to hack, but an 
observation, based on experience, that object-oriented design is both incremental 
and iterative. Stroustrup makes a similar observation when he notes that “the most 
common reorganizations of a class hierarchy are factoring the common part of 
two classes into a new class and splitting a class into two new ones” [55]. 
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Placing classes and objects at the right levels of abstraction is difficult. Some-
times we may find a general subclass and so may choose to move it up in the class 
structure, thus increasing the degree of sharing. This is called class promotion
[56]. Similarly, we may find a class to be too general, thus making inheritance by 
a subclass difficult because of the large semantic gap. This is called a grainsize 
conflict [57]. In either case, we strive to identify cohesive and loosely coupled 
abstractions, so as to mitigate these two situations.

Naming Key Abstractions

Naming things properly—so that they reflect their semantics—is often treated 
lightly by most developers yet is important in capturing the essence of the 
abstractions we are describing. Software should be written as carefully as English 
prose, with consideration given to the reader as well as to the computer [58]. 
Consider for a moment all the names we may need just to identify a single object: 
We have the name of the object itself, the name of its class, and the name of the 
module in which that class is declared. Multiply this by thousands of objects and 
possibly hundreds of classes, and you have a very real problem.

We offer the following suggestions.

■ Objects should be named with proper noun phrases, such as theSensor
or just simply shape.

Classes and objects should be at the right level of abstraction: 
neither too high nor too low.
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■ Classes should be named with common noun phrases, such as Sensor or 
Shape.

■ The names chosen should reflect the names used and recognized by the 
domain experts, whenever possible.

■ Modifier operations should be named with active verb phrases, such as 
draw or moveLeft.

■ Selector operations should imply a query or be named with verbs of the 
form “to be,” such as extentOf or isOpen.

■ The use of underscores and styles of capitalization are largely matters of 
personal taste. No matter which cosmetic style you use, at least have your 
programs be self-consistent.

Identifying Mechanisms

Consider a system requirement for an automobile: Pushing the accelerator should 
cause the engine to run faster, and releasing the accelerator should cause the 
engine to run slower. How this actually comes about is absolutely immaterial to 
the driver. Any mechanism may be employed as long as it delivers the required 
behavior, and thus which mechanism is selected is largely a matter of design 
choice. More specifically, any of the following designs might be considered.

■ A mechanical linkage connects the accelerator directly to the fuel injectors.
■ An electronic mechanism connects a pressure sensor below the accelerator 

to a computer that controls the fuel injectors (a drive-by-wire mechanism).
■ No linkage exists. The gas tank is placed on the roof of the car, and gravity 

causes fuel to flow to the engine. Its rate of flow is regulated by a clip 
around the fuel line; pushing on the accelerator pedal eases tension on the 
clip, causing the fuel to flow faster (a low-cost mechanism).

Which mechanism a developer chooses from a set of alternatives is most often a 
result of other factors, such as cost, reliability, manufacturability, and safety.

Just as it is rude for a client to violate the interface of another object, so it is 
socially unacceptable for objects to step outside the boundaries of the rules of 
behavior dictated by a particular mechanism. Indeed, it would be surprising for a 
driver if stepping on an accelerator turned on the car’s lights instead of causing 
the engine to run faster.

Whereas key abstractions reflect the vocabulary of the problem domain, mecha-
nisms are the soul of the design. During the design process, the developer must 
consider not only the design of individual classes but also how instances of these 
classes work together. Again, the use of scenarios drives this analysis process. 
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Once a developer decides on a particular pattern of collaboration, the work is dis-
tributed among many objects by defining suitable methods in the appropriate 
classes. Ultimately, the protocol of an individual class encompasses all the opera-
tions required to implement all the behavior and all the mechanisms associated 
with each of its instances.

Mechanisms thus represent strategic design decisions, as does the design of a 
class structure. In contrast, however, the interface of an individual class is more of 
a tactical design decision. These strategic decisions must be made explicitly; 
otherwise, we will end up with a mob of relatively uncooperative objects, all 
pushing and shoving to do their work with little regard for other objects. The most 
elegant, lean, and fast programs embody carefully engineered mechanisms.

Mechanisms as Patterns

Mechanisms are actually one in a spectrum of patterns we find in well-structured 
software systems. At the low end of the food chain, we have idioms. An idiom is 
an expression peculiar to a certain programming language or application culture, 
representing a generally accepted convention for use of the language.5 For exam-

Mechanisms are the means whereby objects collaborate to 
provide some higher-level behavior.

5. One defining characteristic of an idiom is that ignoring or violating the idiom has imme-
diate social consequences: You are branded as a yahoo or, worse, an outsider, unworthy of 
respect.
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ple, in CLOS, no programmer would use underscores in function or variable 
names, although this is common practice in Ada [59]. Part of the effort in learning 
a programming language is learning its idioms, which are usually passed down 
as folklore from programmer to programmer. However, as Coplien points out, 
idioms play an important role in codifying low-level patterns. He notes that 
“many common programming tasks [are] idiomatic” and therefore identifying 
such idioms allows “using C++ constructs to express functionality outside the 
language proper, while giving the illusion of being part of the language” [60].

Whereas idioms are part of a programming culture, at the high end of the food 
chain, we have frameworks. A framework is a collection of classes that provides a 
set of services for a particular domain; a framework thus exports a number of 
individual classes and mechanisms that clients can use or adapt. Frameworks rep-
resent reuse in the large. They are often the product of commercial ventures, such 
as Microsoft’s .NET Framework, or open source efforts such as Apache Software 
Foundation’s Struts framework and the JUnit testing framework (Erich Gamma 
and Kent Beck), among many others.

Examples of Mechanisms

Consider the drawing mechanism commonly used in graphical user interfaces. 
Several objects must collaborate to present an image to a user: a window, a view, 
the model being viewed, and some client that knows when (but not how) to dis-
play this model. The client first tells the window to draw itself. Since it may 
encompass several subviews, the window next tells each of its subviews to draw 
themselves. Each subview in turn tells its model to draw itself, ultimately result-
ing in an image shown to the user. In this mechanism, the model is entirely decou-
pled from rendering of the window and view in which it is presented. This is the 
model-view-controller paradigm (MVC pattern) [61]. A similar mechanism is 
employed in almost every object-oriented graphical user interface framework.

Mechanisms thus represent a level of reuse that is higher than the reuse of indi-
vidual classes. For example, the MVC paradigm is used extensively in the Small-
talk user interface. The MVC paradigm in turn builds on another mechanism, the 
dependency mechanism, which is embodied in the behavior of the Smalltalk base 
class Model and thus pervades much of the Smalltalk class library.

Examples of mechanisms and patterns may be found in virtually every domain. 
For example, the structure of an operating system may be described at the highest 
level of abstraction according to the mechanism used to dispatch programs. In 
artificial intelligence, a variety of mechanisms have been explored for the design 
of reasoning systems. One of the most widely used paradigms is the blackboard 
mechanism, in which individual knowledge sources independently update a 
blackboard. There is no central control in such a mechanism, but any change to 
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the blackboard may trigger an agent to explore some new problem-solving path 
[63]. Coad has similarly identified a number of common mechanisms in object-
oriented systems, including patterns of time association, event logging, and 
broadcasting [64]. In each case, these mechanisms manifest themselves not as 
individual classes but as the structure of collaborating classes.

This completes our study of classification and of the concepts that serve as the 
foundation of object-oriented design. The next three chapters focus on notation, 
process, and pragmatics. 

Summary

■ The identification of classes and objects is a fundamental issue in object-
oriented analysis and design; identification involves both discovery and 
invention.

■ Classification is fundamentally a problem of clustering.
■ Classification is an incremental and iterative process, made difficult because 

a given set of objects may be classified in many equally proper ways.
■ The three approaches to classification include classical categorization (clas-

sification by properties), conceptual clustering (classification by concepts), 
and prototype theory (classification by association with a prototype).

■ Scenarios are a powerful tool of object-oriented analysis and can be used in 
approaches such as classical analysis, behavior analysis, domain analysis, 
and use case analysis.

■ Key abstractions reflect the vocabulary of the problem domain and may 
either be discovered from the problem domain or invented as part of the 
design.

■ Mechanisms denote strategic design decisions regarding the collaborative 
activity of many different kinds of objects.



145

S e c t i o n  I I

Method

Which innovation leads to a successful design and which to a failure is not
completely predictable. Each opportunity to design something new, either

bridge or airplane or skyscraper, presents the engineer with choices that may
appear countless. The engineer may decide to copy as many seemingly good
features as he can from existing designs that have successfully withstood the

forces of man and nature, but he may also decide to improve upon those
aspects of prior designs that appear to be wanting.

HENRY PETROSKI
To Engineer Is Human

For any technology to become successful in the marketplace, certain 
things need to happen. A critical mass of users, who have proven success 
using the technology, needs to develop. This attracts investment in that 
technology area by others. For that critical mass to develop, a common 
language is very beneficial so that knowledge in that technology domain 
can easily be taught, exchanged, and disseminated.

In order for the technology to do well in the mainstream market, a key part 
of the knowledge to be disseminated is how the technology can be suc-
cessfully used or developed (i.e., what is the process) and how this all can 
be done efficiently and effectively. That is what this section addresses: a 
common, standard language (the Unified Modeling Language), a process, 
and the pragmatics of object-oriented analysis and design.
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C h a p t e r  5

Notation

The act of drawing a diagram does not constitute analysis or design. A 
diagram simply captures a statement of a system’s behavior (for analysis), 
or the vision and details of an architecture (for design). If you follow the 
work of any engineer—software, civil, mechanical, chemical, architectural, 
or whatever—you will soon realize that the one and only place that a sys-
tem is conceived is in the mind of the designer. As this design unfolds over 
time, it is often captured on such high-tech media as whiteboards, nap-
kins, and the backs of envelopes [1].

5.1 The Unified Modeling Language

Having a well-defined and expressive notation is important to the process of 
software development. First, a standard notation makes it possible for an analyst 
or developer to describe a scenario or formulate an architecture and then unam-
biguously communicate those decisions to others. Draw an electrical circuit, and 
the symbol for a transistor will be understood by virtually every electrical engi-
neer in the world. Similarly, if an architect in New York City drafts the plans for a 
house, a builder in San Francisco will have little trouble understanding where to 
place doors, windows, and electrical outlets, given the details of the blueprints. 
Second, as Whitehead states in his seminal work on mathematics, “By relieving 
the brain of all unnecessary work, a good notation sets it free to concentrate on 
more advanced problems” [2]. Third, an expressive notation makes it possible to 
eliminate much of the tedium of checking the consistency and correctness of 
these decisions by using automated tools. As a report by the Defense Science 
Board states, “Software development is and always will be a labor-intensive tech-
nology. . . . Although our machines can do the dog-work and can help us keep 



148 SECTION II METHOD

track of our edifices, concept development is the quintessentially human activity. . . . 
The part of software development that will not go away is the crafting of concep-
tual structures; the part that can go away is the labor of expressing them” [3].

A Brief Historical Perspective

The Unified Modeling Language (UML) is the primary modeling language used 
to analyze, specify, and design software systems. As object-oriented program-
ming languages began to see use in the software industry, as cited in Chapter 2, 
object-oriented methodologies began to appear. From the late 1980s and well into 
the 1990s, numerous methodologies arose and were subsequently modified and 
refined. Many of these were strong in certain areas, weaker in others. This gave 
rise to methodologists adopting useful facets from other methodologies into their 
own. This reflected what the object-oriented practitioners were doing in the work-
ing world. While the practitioners may have been, for the most part, following a 
particular methodology, as other useful ideas entered the marketplace, they would 
weave these ideas into their daily work.

In the mid-1990s, Booch, Rumbaugh, and Jacobson joined forces at Rational 
Software Corporation and began to meld their respective methodologies to create 
what would be the first version of the UML. They then began to work with other 
methodologists and companies to propose a standard modeling language to the 
Object Management Group (OMG), a consortium that creates and maintains stan-
dards for the computer industry. In November 1997 the OMG adopted the UML 
as a standard. Since then the OMG has assumed the stewardship and ongoing 
development of the UML.

There have been numerous revisions of the UML since its adoption. UML 2.0 is 
the version discussed in this text. Many books have chronicled the detailed his-
tory of the development of the UML. For more information, see Appendix B, 
Further Reading.

Models and Multiple Views

As in many other disciplines (e.g., electronics, chemistry, architecture, music) 
that have their unique notations for representing the artifacts they create, the 
UML is used to model (i.e., represent) the system being built. Taken in total, the 
UML model that you build will represent, to a certain level of fidelity, the real 
system that will be constructed. However, it is impossible to capture all the subtle 
details of a complex software system in just one large diagram. The UML has 
numerous types of diagrams, each providing a certain view of your system. As 
Kleyn and Gingrich observe, “One must understand both the structure and the 
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function of the objects involved. One must understand the taxonomic structure of 
the class objects, the inheritance mechanisms used, the individual behaviors of 
objects, and the dynamic behavior of the system as a whole. The problem is 
somewhat analogous to that of viewing a sports event such as tennis or a football 
game. Many different camera angles are required to provide an understanding of 
the action taking place. Each camera reveals particular aspects of the action that 
could not be conveyed by one camera alone” [4].

For example, consider an application comprising several hundred classes. It is 
impossible and in fact unnecessary to produce a single diagram that shows all of 
these classes and all of their relationships. Rather, we would use several class dia-
grams, each of which presents one view of the model. One diagram might show 
the inheritance lattice of certain key classes; another might show the transitive 
closure of all classes used by one particular class. At times when the model is sta-
ble (what we speak of as a steady state), all such diagrams remain semantically 
consistent with one another and with the model. For example, if in a given inter-
action (which we describe in an object diagram), object A passes the message M to 
object B, then M must be defined for B’s class either directly or indirectly. In a cor-
responding class diagram, there must be an appropriate relationship between the 
classes of A and B, such that instances of A’s class can in fact invoke message M on 
instances of class B.

Across all diagrams, all entities with the same name are considered to be refer-
ences to the same model item. For example, if class C appears in two different 
diagrams for the same system, both are references to the same class C. The excep-
tion to this rule is for operations, whose names may be overloaded.

Diagram Taxonomy

UML diagrams can be classified into two groups: structure diagrams and behav-
ior diagrams (see Figure 5–1). This dichotomy parallels the discussion of com-
plexity in Chapter 1. System complexity is driven both by the number and 
organization of elements in the system (i.e., structure) and the manner in which 
all these elements collaborate to perform their function (i.e., behavior).

Structure Diagrams

These diagrams are used to show the static structure of elements in the system. 
They may depict such things as the architectural organization of the system, the 
physical elements of the system, its runtime configuration, and domain-specific 
elements of your business, among others. The UML structure diagrams include 
the following:
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■ Package diagram
■ Class diagram
■ Component diagram
■ Deployment diagram
■ Object diagram
■ Composite structure diagram

Structure diagrams are often used in conjunction with behavior diagrams to depict 
a particular aspect of your system. Each class may have an associated state 
machine diagram that indicates the event-driven behavior of the class’s instances. 
Similarly, in conjunction with an object diagram representing a scenario, we may 
provide an interaction diagram to show the time or event ordering of messages as 
they are evaluated.

Figure 5–1 The Diagrams of the UML
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Behavior Diagrams

The diagrams we have introduced thus far are largely static. However, events 
happen dynamically in all software-intensive systems: Objects are created and 
destroyed, objects send messages to one another in an orderly fashion, and in 
some systems, external events trigger operations on certain objects. Not surpris-
ingly, describing dynamic behavior in a static medium such as a sheet of paper is 
a difficult problem, but it confronts virtually every scientific discipline. In object-
oriented development, we express the dynamic behavioral semantics of a problem 
or its implementation through the following additional diagrams:

■ Use case diagram
■ Activity diagram
■ State machine diagram
■ Interaction diagrams

■ Sequence diagram
■ Communication diagram
■ Interaction overview diagram
■ Timing diagram

We will present the UML elements that comprise these diagrams later in this chapter.

The Use of Diagrams in Practice

The fact that the UML is a detailed specification does not mean that every aspect 
of it must be used at all times. In fact, a proper subset of this notation is sufficient 
to express the semantics of a large percentage of analysis and design issues. We 
will highlight this subset during our presentation of the notation in this chapter. 
Why, then, bother with the detail beyond this subset? Quite simply, such detail is 
necessary to express certain important tactical decisions (as we’ll show in the 
Applications section of this book). Additionally, some detail exists in the infra-
structure of the UML, of interest to tool vendors, which facilitates the creation of 
forward-engineering and reverse-engineering tools. Such internal details enable 
the integration of front-end CASE tools that support this notation together with 
software development environments that focus on manipulating the products of 
the object-oriented programming language.

As Weinberg notes, “In other design fields, such as architecture, the rough sketch 
is the most frequently used graphic device, and precise detailed drawings are 
rarely used at all until the creative part of the design work is finished” [5]. 
Remember, a notation is only a vehicle for capturing the reasoning about the 
behavior and architecture of a system; a notation is not an end in itself. Therefore, 
you should apply only those elements of the notation that are necessary to convey 
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the intended meaning, and nothing more. Just as it is dangerous to overspecify a 
set of requirements, so it is dangerous to overspecify a solution to a problem. For 
example, on a blueprint, an architect may show the general location of a light 
switch in a room, but its exact location will not be established until the construc-
tion manager and owner do an electrical walkthrough, after the house has been 
framed. It would be foolish to specify the precise three-dimensional coordinates 
of the light switch on the blueprint (unless, of course, this detail is functionally 
important to the owner; perhaps the owner’s family is significantly taller or 
shorter than average). Thus, if the analysts, designers, and implementers of a rela-
tively small software system are highly skilled and have already established a 
close working relationship, rough sketches may suffice (although it will still be 
necessary to leave a legacy of the architectural vision for the sake of the system’s 
maintainers). In practice, this is rarely the case. If, on the other hand, the system is 
large and software-intensive, or the implementers are not quite so skilled, or if the 
developers are separated by geography, time, or contract, more detail will be 
required during the development process. 

Conceptual, Logical, and Physical Models 

The models of your system may present various levels of detail as your system 
development progresses and matures over time. The conceptual model captures 
the system in terms of the domain entities that exist (or will exist) and their asso-
ciation with other such entities of your system. The conceptual level of modeling 
is performed using the terminology of your business domain and should be tech-
nology-agnostic. The logical view of a system takes the concepts created in the 
conceptual model and establishes the existence and meaning of the key abstrac-
tions and mechanisms that will determine the system’s architecture and overall 
design. The physical model of a system describes the concrete software and hard-
ware composition of the system’s implementation. Obviously, the physical model 
is technology-specific.

On a given project, over time, the system’s design will evolve from conceptual, 
through logical, to physical levels of maturity. Which diagrams are used at vari-
ous points in the development lifecycle varies. Some diagrams are used only early 
in the development lifecycle. Some are used, at varying levels of detail, through-
out the lifecycle. Usage can also vary depending on the type of system you are 
building. For example, a stockbroker’s investment trading system would use 
many more state machine diagrams and timing diagrams than a simple checkbook 
application would. 

For a given project, the products of analysis and design are expressed through 
these models. Collectively, these different models are semantically rich: They are 
expressive enough to allow a developer to capture all of the interesting strategic 
and tactical decisions that need to be made during the analysis of a system as well 
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as during the formulation of its architecture, and they are complete enough to 
serve as blueprints for implementation in almost any object-oriented program-
ming language.

The Role of Tools

The notation described in this chapter can be used manually, although for larger 
applications it cries out for automated tool support. Given automated support for 
any notation, one of the things that tools can do is help bad designers create 
ghastly designs much more quickly than they ever could without them. Great 
designs come from great designers, not from great tools. Tools simply empower 
the individual, freeing him or her to concentrate on the truly creative aspects of 
analysis or design. Thus, there are some things that tools can do well and some 
things that tools cannot do at all. 

Tools can provide consistency checking, constraint checking, completeness 
checking, and analysis, and they can help a developer browse through the prod-
ucts of analysis and design in unconstrained ways. For example, while looking at 
a component diagram, a developer might want to study a particular mechanism; 
he or she can use a tool to locate all the classes allocated to a particular compo-
nent. While looking at a sequence diagram describing a scenario, the developer 
might want to see the inheritance lattice. If this scenario involved an active object, 
the developer might use a tool to find the processor to which this thread of control 
is allocated and then view an animation of its class’s state machine on that proces-
sor. Freed from the tedium of keeping all the details of the analysis and design 
consistent, developers who use such tools can focus on the creative parts of the 
development process.

On the other hand, a tool cannot tell us that we ought to invent a new class so as to 
simplify our class structure; that takes human insight. We might consider trying to 
use some expert system as such a tool, but this requires (1) a person who is an 
expert both in object-oriented development and in the problem domain and (2) the 
ability to articulate classification heuristics, as well as a great deal of common-
sense knowledge. We don’t expect such comprehensive, all-knowing tools to 
replace designers in the near future; in the meantime, we have real systems to create.

The Products of Object-Oriented Development

Typically, the analysis of a system will include sets of use case and activity 
diagrams (to express the behavior of the system through scenarios), class 
diagrams (to express the roles and responsibilities of agents that provide the 
system’s behavior), and interaction and/or state machine diagrams (to show the 
event-ordered behavior of these agents). Similarly, the architecture of a system may 
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include sets of package diagrams, class diagrams, object diagrams, component 
diagrams, and deployment diagrams, as well as their corresponding dynamic views.

End-to-end connectivity exists among these diagrams, permitting us to trace 
requirements from implementation back to specification. Starting with a deploy-
ment diagram, a node may host an artifact that manifests a component that is 
defined in some component diagram. This component diagram may encompass 
the definition of a collection of classes whose definitions we will find in the 
appropriate class diagram. Finally, the definitions of individual classes point to 
our use cases and requirements because these classes in general directly reflect 
the vocabulary of the problem space.

Scaling Up and Scaling Down

We have found the UML applicable both to small systems consisting of just a 
dozen or so classes and to ones consisting of several thousand classes. As we will 
see in the next two chapters, this notation is particularly applicable to an incre-
mental, iterative approach to development. You do not create a diagram and then 
walk away from it, treating it as some sacred, immutable artifact. Rather, these 
diagrams evolve during the design process as new design decisions are made and 
more detail is established.

We have also found this notation to be largely language-independent. It applies to 
any of a wide spectrum of object-oriented programming languages.

The Syntax and Semantics of the UML

The purpose of the remainder of this chapter is to describe the syntax and seman-
tics of the UML for object-oriented analysis and design. We will provide a few 
small examples of this notation, using the problem of the Hydroponics Gardening 
System that we introduced in Chapter 2. This chapter does not explain the devel-
opment process during which UML diagrams are developed; that is the topic of 
Chapter 6.

To give a sense of their relationships, we present the UML 2.0 diagrams in an 
order in which one might typically develop them. We believe this to be more use-
ful than, for example, presenting all structure diagrams followed by all behavior 
diagrams. Specifically, the diagrams are presented in the following order:

■ Section 5.2: package diagrams
■ Section 5.3: component diagrams
■ Section 5.4: deployment diagrams



CHAPTER 5 NOTATION 155

■ Section 5.5: use case diagrams
■ Section 5.6: activity diagrams
■ Section 5.7: class diagrams
■ Section 5.8: sequence diagrams
■ Section 5.9: interaction overview diagrams
■ Section 5.10: composite structure diagrams
■ Section 5.11: state machine diagrams
■ Section 5.12: timing diagrams
■ Section 5.13: object diagrams
■ Section 5.14: communication diagrams

In Section III of this book, each chapter presents a different type of application 
and focuses on a certain set of diagrams that would be most appropriate for the 
application at the point in the overall lifecycle that we describe.

UML 2.0 Information Sources

The UML 2.0 notation is quite extensive and complex, as a review of the OMG 
UML 2.0 Specification clearly confirms. Effective practical use of the specifica-
tion requires turning to additional resources, such as this chapter. If, after reading 
the OMG UML 2.0 Specification and this chapter, you desire a further level of 
explanation or detail, we suggest reviewing The Unified Modeling Language 
Reference Manual, Second Edition. Appendix B lists other UML 2.0 resources.

5.2 Package Diagrams

While performing object-oriented analysis and design, you need to organize the 
artifacts of the development process to clearly present the analysis of the problem 
space and the associated design. The specific reasons will vary but will focus 
either on physically structuring the visual model itself or on clearly representing 
the model elements through multiple views. The benefits of organizing the 
OOAD artifacts include the following [42]:

■ Provides clarity and understanding in a complex systems development
■ Supports concurrent model use by multiple users
■ Supports version control
■ Provides abstraction at multiple levels—from systems to classes in a 

component
■ Provides encapsulation and containment; supports modularity
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The primary means to accomplish this organization is the UML package diagram, 
which provides us the ability to represent grouped UML elements.

The essential elements of a package diagram are packages, their visibility, and 
their dependencies. 

Essentials: The Package Notation

The UML package is one of the two primary notations used on a package dia-
gram. The other one is the dependency relationship, which we will describe later. 
The notation for the package is a rectangle with a tab on the top left. UML 2.0 
specifies that the name of the package is placed in the interior of the rectangle if 
the package contains no UML elements. If it does contain elements, the name 
should be placed within the tab. A tool-specific implementation of the naming 
guidelines appears in Figure 5–2, which provides a black-box perspective of the 
HydroponicsGardeningSystem package  that does not show its contained 
elements [45, 46].

When there are fewer elements to be shown because fewer exist or because we have 
a focused concern, we can use the appropriate notation (package, use case, class, 
component, and so on) to show these constituent pieces within the containing 
package. Figure 5–3 again shows the HydroponicsGardeningSystem
package, but with two of its contained elements represented as packages themselves. 
In the representation on the left, we show the Planning and Greenhouse

Figure 5–2 The Package Notation for HydroponicsGardeningSystem

Figure 5–3 The Package Notation for Contained Elements
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packages as physically contained packages inside the HydroponicsGardening-
System package. On the right appears an alternate notation for the containment 
relationship [47, 48].

Essentials: Visibility of Elements

Access to the services provided by a group of collaborating classes within a pack-
age—or more generically, to any elements within a package—is determined by 
the visibility of the individual elements, including nested packages. The visibility 
of the elements, defined by the containing package to be either public or private, 
applies both to contained elements and to those that are imported. The concept of 
importing elements will be discussed later in this section.

Visibility is defined from the perspective of the containing package, which pro-
vides the namespace for its contained elements. Because the package provides the 
namespace, every contained element has a unique name, at least among other ele-
ments of its type. As an example, this means that no two classes contained within 
the same namespace may have the same name [49, 50]. We will discuss this con-
cept further when we look at import and access. 

Elements with public visibility can be thought of as part of the package’s interface 
because these elements are visible to all other elements. Those elements with pri-
vate visibility are not visible outside the containing package. The definition of 
public and private visibility is provided here, along with the corresponding nota-
tion shown in parentheses [51, 52]: 

■ Public (+) Visible to elements within its containing package, including 
nested packages, and to external elements

■ Private (-) Visible only to elements within its containing package and to 
nested packages

On a visual diagram, this visibility notation is placed in front of the element 
name, as shown in Figure 5–4. The GardeningPlan class has public visibility 

Figure 5–4 The Visibility of Elements within Planning Package
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to permit other elements to access it, while the PlanAnalyst class has private 
visibility. 

Essentials: The Dependency Relationship

If an element has the appropriate visibility to afford access, a dependency rela-
tionship to it can be shown representing this access. This dependency relationship 
is the other primary notation on a package diagram, as we mentioned earlier when 
discussing the package notation itself. A dependency shows that an element is 
dependent on another element as it fulfills its responsibilities within the system. 

Dependencies between UML elements (including packages), as shown in Figure 
5–5, are represented as a dashed arrow with an open arrowhead. The tail of the 
arrow is located at the element having the dependency (client), and the arrowhead 
is located at the element that supports the dependency (supplier). Dependencies 
may be labeled to highlight the type of dependency between the elements by 

Figure 5–5 The Dependency Notation for 
HydroponicsGardeningSystem
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placing the dependency type—denoted by a keyword—within guillemets (« »),
for example, «import». Package-specific dependencies include import, access, 
and merge; dependencies between packages due to the relationships of contained 
elements include trace, derive, refine, permit, and use [53].

If multiple contained element dependencies exist between packages, these depen-
dencies are aggregated at the package level. A package-level dependency may be 
labeled with a keyword, denoting type, inside guillemets (« »); however, if the 
contained dependencies are of different types, the package-level dependency is 
not labeled. Figure 5–6 shows the dependencies of Figure 5–5 elevated to the con-
taining package level. Note that the two individual element dependencies between 
the Planning and CropTypes packages have been aggregated to the level of 
the containing package [54].

Essentials: Package Diagrams

So far, we’ve discussed what could be referred to as the constituent pieces of a 
package diagram:

■ Package notation
■ Element visibility
■ Dependency relationship

The package diagram is the UML 2.0 structure diagram that contains packages as 
the primary represented UML element and shows dependencies between the 
packages.

Figure 5–6 Aggregation of Contained Element Dependencies
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However, the package notation can be used to show the structuring and contain-
ment of many different model elements, such as classes, as shown earlier in Fig-
ures 5–4 and 5–5. It can also be used on UML diagrams that are not structure 
diagrams. We alluded to this earlier when we mentioned that a package can be 
used to organize use cases. This might be done for the sake of clarity in a very 
large system or to partition work. An example appears in Figure 5–7, where pack-
ages are used to group use cases of the HydroponicsGardeningSystem to 
facilitate their specification among two groups with different expertise—opera-
tions and support [55]. We’ll discuss actors and use cases in depth later in this 
chapter.

The elements grouped in a package should typically be related in some manner, 
such as the subsystems within a system, use cases related to a particular aspect of 

Figure 5–7 The Package Notation Used for Partitioning
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the system, or classes that collaborate to provide a usable subset of system func-
tionality [56].

What are the criteria for deciding how to package elements? There are many dif-
ferent ways to organize a system with packages—by architectural layer, by sub-
system, by user (for use cases), and so on. Good packages are loosely coupled and 
highly cohesive; that is, we should see more interaction among the elements 
within a package and less between the packages. We should also strive not to 
extend generalization hierarchies or aggregations across packages. Similarly, don’t 
break use case include or extend relationships across packages [57]—again, this 
will become clearer after our discussion of classes and use cases later in this chapter.

Every element contained within a namespace may be referred to with a qualified 
name in the format of package name::element name. Elements are permit-
ted to have the same name as long as they belong to different namespaces (reside 
in different packages) [58, 59]. This leads us into the advanced concepts of import 
and access. 

Advanced Concepts: Import and Access

Import and access are really two sides of the same coin—import is a public pack-
age import, whereas access is a private package import. What this really means is 
that in an import, other elements that have visibility into the importing package 
can see the imported items. But, when a package performs an access, no other ele-
ments can see those elements that have been added to the importing package’s 
namespace. These items are private; they are not visible outside the package that 
performed the access [60, 61].

At this point, you’re probably wondering why we would perform a package 
import or package access. Doing so gives us the ability to refer to the public ele-
ments of another namespace by using unqualified names; the importing package 
adds the names of the imported elements to its namespace. However, if any of the 
imported elements are of the same type and have the same name as an owned ele-
ment, they are not added to the importing namespace. Similarly, if any elements 
imported from multiple different namespaces are of the same type and have the 
same name, they are not added to the importing namespace [62, 63].

The import of a package’s elements can be broad or focused—all the elements 
or just selected ones may be imported. Look back at Figure 5–5, which shows 
the PlanAnalyst class with a dependency on the CropEncyclopedia
class. Because the Planning package does not import or access the 
CropTypes package, PlanAnalyst must use the qualified name 
HydroponicsGardeningSystem::CropTypes::CropEncyclopedia
to reference the CropEncyclopedia class.
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To indicate that the Planning package imports the CropTypes package, a 
dependency is shown from Planning to CropTypes and is labeled with 
«import», for a public package import, as shown in Figure 5–8. This means that 
both PlanAnalyst and PlanMetrics can access the CropEncyclopedia
and CropDatabase classes with their unqualified names. This is true for 
PlanMetrics because its namespace (Plans package) provides it access to 
the elements of outer packages within which it is nested. 

Figure 5–8 Package Import in the HydroponicsGardeningSystem
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Figure 5–8 also shows the Planning package performing a private import of the 
Plans package, as illustrated by the dependency labeled with «access». This 
is necessary to allow the PlanAnalyst class to access the GardeningPlan
and PlanMetrics classes with unqualified names. But, since an access depen-
dency is private, the Greenhouse package’s import of the Planning package 
doesn’t provide the Greenhouse package elements, such as the Gardener
class, with the ability to reference GardeningPlan and PlanMetrics with 
unqualified names. In addition, the elements of the Greenhouse package can’t 
even see the PlanAnalyst class because it has private visibility.

Looking inside the Greenhouse package, the Gardener class must use the 
qualified names of the elements within the StorageTank package because its 
namespace does not import the package. For example, it must use the name 
StorageTank::WaterTank to reference the WaterTank class. Taking this 
one more step, we look at the elements within the EnvironmentalController
package. They all have private visibility. This means they are not visible outside 
their namespace, that is, the EnvironmentalController package.

To summarize, an unqualified name (often called a simple name) is the name of 
the element without any path information telling us how to locate it within our 
model. This unqualified name can be used to access the following elements in a 
package [64, 65]:

■ Owned elements
■ Imported elements
■ Elements within outer packages

A nested package can use an unqualified name to reference the contents of its 
containing package, through all levels of nesting. However, if an element in an 
outer package is of the same type and has the same name as one within the inner 
package, a qualified name must be used. The access situation from a containing 
package’s perspective is quite different, though—the package is required to 
import its nested packages to reference their elements with unqualified names 
[66, 67].

5.3 Component Diagrams

A component represents a reusable piece of software that provides some mean-
ingful aggregate of functionality. At the lowest level, a component is a cluster of 
classes that are themselves cohesive but are loosely coupled relative to other clus-
ters. Each class in the system must live in a single component or at the top level of 
the system. A component may also contain other components.
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Components are a type of structured classifier whose collaborations and internal 
structure can be shown on a component diagram. A component, collaborating 
with other components through well-defined interfaces to provide a system’s 
functionality, may itself be comprised of components that collaborate to provide 
its own functionality. Thus, components may be used to hierarchically decompose 
a system and represent its logical architecture. This logical perspective of a com-
ponent is new with UML 2.0. Previously, a component was regarded as a physical 
item that was deployed within a system. Now, a component may be manifested by 
an artifact that is deployed on a node [68, 69].

The essential elements of a component diagram are components, their interfaces, 
and their realizations.

Essentials: The Component Notation

Since a component is a structured classifier, its detailed assembly can be 
shown with a composite structure using parts, ports, and connectors. 
Figure 5–9 shows the notation used to represent a component. Its name, 
EnvironmentalControlSystem in this case, is included within the 
classifier rectangle in bold lettering, using the specific naming convention defined 
by the development team. In addition, one or both of the component tags should 
be included: the keyword label «component» and the component icon shown in 
the upper right-hand corner of the classifier rectangle [70, 71].

On the boundary of the classifier rectangle, we have seven ports, which are 
denoted by small squares. Ports have public visibility unless otherwise noted. 
Components may also have hidden ports, which are denoted by the same small 
squares, but they are represented totally inside the boundary of the composite 
structure, with only one edge touching its internal boundary. Hidden ports may be 
used for capabilities such as test points that are not to be publicly available. Ports 

Figure 5–9 The Component Notation for EnvironmentalControlSystem
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are used by the component for its interactions with its environment, and they pro-
vide encapsulation to the structured classifier. These seven ports are unnamed but 
should be named, in the format of port name : Port Type, when needed for 
clarity. The port type is optional when naming a port [72, 73].

To the ports shown in Figure 5–9, we have connected interfaces, which define the 
component’s interaction details. The interfaces are shown in the ball-and-socket 
notation. Provided interfaces use the ball notation to specify the functionality that 
the component will provide to its environment; LightingControl is an 
example of a provided interface. Required interfaces use the socket notation to 
specify the services that the component requires from its environment; 
AmbientTemp is one of the required interfaces [74, 75].

This representation of EnvironmentalControlSystem is considered a 
black-box perspective since we see only the functionality required or provided by 
the component at its boundary. We are not able to peer inside and see the encapsu-
lated components or classes that actually provide the functionality.

A one-to-one relationship between ports and interfaces is not required; ports can 
be used to group interfaces, as shown in Figure 5–10. This may be done, for 
example, to provide clarity in a very complex diagram or to represent the inten-
tion of having one port through which certain types of interactions will take place. 
In Figure 5–10, the ambient measurements of light and temperature are received 
at one port. Similarly, the gardening plan and temperature ramp information 
provided by the staff of the Hydroponics Gardening System are received at a 
single port. Note that the interface names are separated by a comma when using 
this notation. On these complex ports, we could alternately show separate inter-
faces such that one port would contain two required interfaces, one named 
AmbientLight and the other named AmbientTemp, and the other port 
would contain a required interface named GardeningPlan and another one 
named TempRamp [76, 77].

Figure 5–10 The Component Notation with Interface Grouping
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Essentials: The Component Diagram

During development, we use component diagrams to indicate the logical layering 
and partitioning of our architecture. In them, we represent the interdependencies 
of components, that is, their collaborations through well-defined interfaces to pro-
vide a system’s functionality. Figure 5–11 shows the component diagram for 
EnvironmentalControlSystem. This white-box perspective shows the 
four encapsulated components that provide its functionality: Environmental-
Controller, LightingController, HeatingController, and 
CoolingController [78, 79].

As in Figure 5–9, the ball-and-socket notation is used to specify the required and 
provided interfaces of each of the components. The interfaces between the com-
ponents are called assembly connectors; they are also known as interface connec-
tors. Though the assembly connectors are shown in the ball-and-socket notation, 
we could have used a straight line to represent each connection. However, this 
would not be as informative. The interface between Environmental-
Controller and CoolingController is shown with a dependency to 
illustrate another form of representation. This dependency is actually redundant 
because the interface names are the same: CoolControl [80, 81].

Previously, we mentioned the reusable nature of components. For example, as long 
as another component fulfills the requirements of LightingController’s 

Figure 5–11 The Component Diagram for EnvironmentalControlSystem
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interfaces, it may replace LightingController within Environmental-
ControlSystem. This property of components means that we may more easily 
upgrade our system as needed. In fact, the entire contents of Environmental-
ControlSystem may be replaced, as long as its required and provided inter-
face requirements are met by its contained components.

Essentials: Component Interfaces

If we need to show more details about a component’s interfaces, we may provide 
an interface specification, as shown in Figure 5–12. In our case, the specification 
focuses on only two of the seven interfaces of EnvironmentalController:
CoolControl and AmbientTemp [82, 83].

EnvironmentalController realizes the CoolControl interface; this 
means that it provides the functionality specified by the interface. This functional-
ity is starting, stopping, setting the temperature, and setting the fan speed for any 
component using the interface, as shown by the contained operations. These oper-
ations may be further detailed with parameters and return types, if needed. The 
CoolingController component (shown in Figure 5–11) requires the func-
tionality of this interface.

Figure 5–12 also shows the dependency of the EnvironmentalController
component on the AmbientTemp interface. Through this interface, 
EnvironmentalController acquires the ambient temperature that it 
requires to fulfill its responsibilities within the EnvironmentalControl-
System component.

Figure 5–12 The Specification of Two Interfaces for 
EnvironmentalController
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In Figure 5–13, we show an alternate notation for the interfaces of 
EnvironmentalController. Here we see the three provided interfaces 
listed under the heading «provided interfaces». For the CoolControl
interface specified in Figure 5–12, we have provided the associated operations. 
Likewise, the required interfaces are shown under the heading «required
interfaces», along with three classes listed under the «realizations»
heading [84, 85]. We discuss the concept of realizations in the next section.

Essentials: Component Realizations

Figure 5–13 specifies that the EnvironmentalController component is 
realized by the classes Plan, Controller, and SensorInput. These three 
classes provide all of the functionality advertised by its provided interfaces. But, in 
doing so, they require the functionality specified by its required interfaces [86, 87].

This realization relationship between the EnvironmentalController com-
ponent and the Plan, Controller, and SensorInput classes is shown in 
Figure 5–14. Here, we see a realization dependency from each of the classes to 
EnvironmentalController. This same information may be represented 
with a containment relationship, as shown in Figure 5–15; each of the classes is 
physically contained by the EnvironmentalController component. The 
naming convention used for these internal classifiers is tool-specific. Also, note 
the associations between the classes and the specification of multiplicity [88].  

Figure 5–13 An Alternate Notation for EnvironmentalController’s 
Interfaces and Realizations 
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Advanced Concepts: A Component’s Internal 
Structure

The internal structure of a component may be shown by using an internal struc-
ture diagram; Figure 5–16 shows just such a diagram for the Environmental-
ControlSystem subsystem. In this example, we have changed its keyword 
label from «component», as shown in Figure 5–9, to «subsystem» because 
it is comprised of four components of some complexity that are logically related. 
Of course, this is a judgment call; the label could reasonably be left as 
«component». In addition, Figure 5–16 contains a notation that we haven’t 

Figure 5–14 The Realization Dependencies for EnvironmentalController

Figure 5–15 The Containment Representation of 
EnvironmentalController’s Realization
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encountered yet, the «delegate» label on the lines between the interfaces of 
the internal components and the ports on the edge of the Environmental-
ControlSystem. These connections provide the means to show which internal 
component fulfills the responsibility of the provided interfaces and which internal 
component needs the services shown in the required interfaces [89, 90].

Subsystems partition the logical model of a system. A subsystem is an aggregate 
containing other subsystems and other components. Each component in the sys-
tem must live in a single subsystem or at the top level of the system. In practice, a 
large system has one top-level component diagram, consisting of the subsystems 
at the highest level of abstraction. Through this diagram a developer comes to 
understand the general logical architecture of a system. 

Here we have more of a sense of EnvironmentalControlSystem as a 
reusable component (or subsystem, if you wish) than we did with Figure 5–11. 
We use ports at its boundary and show that the responsibility for fulfilling the 
“contract” of an interface has been delegated to one or more of the component’s 

Figure 5–16 The Internal Structure of EnvironmentalControlSystem
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contained parts. However, remember that these contained parts may require ser-
vices from the environment of the EnvironmentalControlSystem compo-
nent, such as a gardening plan to meet this contract. 

To be specific, :EnvironmentalController requires GardeningPlan,
which specifies the environmental needs (lighting, heating, and cooling) of the 
Hydroponics Gardening System. The needs of this required interface are delegated 
to an unnamed port, to which is attached the GardeningPlan interface. In this 
manner, we know that we must provide the EnvironmentalControlSystem
component with a gardening plan if we intend to use its services. We also recog-
nize that we must provide it with AmbientLight, AmbientTemp, and 
TempRamp services.

The connectors of EnvironmentalControlSystem provide its communication 
links to its environment, as well as the means for its parts to communicate internally. 
In Figure 5–16, the type of connectors new to our view of Environmental-
ControlSystem are the delegation connectors to which we’ve alluded. 
Through these connectors, the responsibilities (provided interfaces) of 
EnvironmentalControlSystem, as well as its requirements (required 
interfaces), are communicated. For example, the :LightingController
component opaquely provides the LightingControl services. A user of 
EnvironmentalControlSystem would not likely have this white-box 
perspective of the subsystem [91, 92].

5.4 Deployment Diagrams

A deployment diagram is used to show the allocation of artifacts to nodes in the 
physical design of a system. A single deployment diagram represents a view into 
the artifact structure of a system. During development, we use deployment dia-
grams to indicate the physical collection of nodes that serve as the platform for 
execution of our system.

The three essential elements of a deployment diagram are artifacts, nodes, and 
their connections.

Essentials: The Artifact Notation

An artifact is a physical item that implements a portion of the software design. It 
is typically software code (executable) but could also be a source file, a docu-
ment, or another item related to the software code. Artifacts may have relation-
ships with other artifacts, such as a dependency or a composition [20, 21].
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The notation for an artifact consists of a class rectangle containing the name of 
the artifact, the keyword label «artifact», and an optional icon that looks like 
a sheet of paper with the top right-hand corner folded over. Figure 5–17 shows the 
HeatingController.exe artifact, without the optional icon. 

The name of this artifact includes the extension .exe, indicating that it is an exe-
cutable (i.e., software code). The HeatingController.exe artifact has a 
dependency relationship to the HeatingController component, labeled 
with «manifest». This means that it physically implements the component, 
thereby connecting the implementation to the design. An artifact may manifest 
more than one component [22].

Essentials: The Node Notation

A node is a computational resource, typically containing memory and processing, 
on which artifacts are deployed for execution. Nodes may contain other nodes to 
represent complex execution capability; this is shown by nesting or using a com-
position relationship. There are two types of nodes: devices and execution envi-
ronments [23, 24].

A device is a piece of hardware that provides computational capabilities, such as a 
computer, a modem, or a sensor. An execution environment is software that pro-
vides for the deployment of specific types of executing artifacts; examples 
include «database» and «J2EE server». Execution environments are typ-
ically hosted by a device [25].

Figure 5–18 shows the three-dimensional cube icon that we use to represent a 
node, in this case, the PC and ApplicationServer nodes. The icon may be 
adorned with a symbol to provide additional visual specification of the node type. 
There are no particular constraints on node names because they denote hardware, 
not software, entities.

Figure 5–17 The Artifact Notation 
for HeatingController.exe
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Nodes communicate with one another, via messages and signals, through a com-
munication path indicated by a solid line. Communication paths are usually con-
sidered to be bidirectional, although if a particular connection is unidirectional, 
an arrow may be added to show the direction. Each communication path may 
include an optional keyword label, such as «http» or «TCP/IP», that pro-
vides information about the connection. We may also specify multiplicity for 
each of the nodes connected via a communication path.

In Figure 5–18, the communication between the PC and ApplicationServer
nodes is bidirectional. A communication path usually represents some direct 
hardware coupling, such as a USB cable, an Ethernet connection, or even a path 
to shared memory. However, the path could also represent more indirect cou-
plings, such as satellite-to-ground or mobile phone communications. In our case, 
it represents a bidirectional connection using TCP/IP protocols. We’ve specified 
the connection of one or more PC nodes to one ApplicationServer node.

Essentials: The Deployment Diagram

In Figure 5–19, we provide an example of a deployment diagram drawn primarily 
from the physical architecture of the Environmental Control System within the 
Hydroponics Gardening System. Here we see that our system architects have decided 
to decompose this portion of our system into a network of two nodes (PC and 
ApplicationServer) and two devices (LightMeter and Thermometer).
If you compare this deployment diagram to the component diagram of 
EnvironmentalControlSystem (presented earlier in Figure 5–11), you 
will see that it does not account for all of its interfaces; we omitted some to 

Figure 5–18 Notations
for Two Nodes
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somewhat simplify our example. In addition, we show each artifact implementing 
exactly one component.

Figure 5–19 The Deployment Diagram for EnvironmentalControlSystem
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The deployment of the EnvironmentalController.exe,
LightingController.exe, HeatingController.exe, and 
CoolingController.exe artifacts on the ApplicationServer node 
is indicated by containment. Another way to denote deployment is shown by 
the dependency from the GardeningPlanDeveloper.exe artifact to the PC
node labeled with «deploy». A third way to denote deployment is through tex-
tually listing the artifacts within the node icon; this is especially useful for larger 
or more complex deployment diagrams [26, 27].

We have three unnamed dependencies within Figure 5–19 between artifacts: from 
the LightingController.exe, HeatingController.exe, and 
CoolingController.exe artifacts to the EnvironmentalController
.exe artifact. These denote the dependencies between the components that they 
implement, rather than deployment onto a node. 

We also have another dependency, from the EnvironmentalController
.exe artifact to the GardeningPlanDeveloper.exe artifact. This relates 
back to the interface on the EnvironmentalController component, which 
requires a gardening plan. Here we see that the gardening plan will be developed 
by PlanAnalyst using the GardeningPlanDeveloper.exe artifact, 
which manifests the GardeningPlanDeveloper component. Note that 
PlanAnalyst may perform this task from either of two PC nodes.

The two devices, LightMeter and Thermometer, provide the ambient light 
and ambient temperature sensor readings required by the Environmental-
Controller.exe artifact in support of its provision of functionality to the sys-
tem. One item we have yet to discuss is the GardeningPlanDeveloper.xml
deployment specification, which has a dependency relationship to the 
GardeningPlanDeveloper.exe artifact. This deployment specification 
describes deployment properties of the artifact, such as its execution and transac-
tion specifics [28].

5.5 Use Case Diagrams

Evidence over the years has shown that some of the most common reasons soft-
ware projects fail center around poor or nonexistent communication between the 
key stakeholders. This is particularly critical when there is lack of alignment 
between the development organization and the line of business. The business peo-
ple may know that they have a certain problem that needs to be solved, but the 
development organization may receive only a general description of what the 
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business wants, with few specific requirements. Would you build your home that 
way? In one of the most pathological cases we’ve seen, people in one business 
organization viewed communicating with developers as demeaning and poten-
tially harmful to their business careers.

Sometimes development people will have specifications but will have no idea 
what the business’s goals are, that is, why they are building the system. Does the 
business, interested in being a low-cost provider, want the system to reduce costs? 
Or is the goal to provide high-quality, personalized service? Does the business 
want to be faster or to be innovative? If the development organization does not 
understand the business goals, when given a choice of approaches during design 
and implementation, developers could make technical decisions that directly con-
flict with the business goals.

There is a strong need for an approach to system development that allows the 
development organization to understand what the business wants while not being 
cumbersome to the business staff (after all, their primary job is to run the daily 
operation of the business). Use case diagrams give us that capability. Use case 
diagrams are used to depict the context of the system to be built and the function-
ality provided by that system. They depict who (or what) interacts with the sys-
tem. They show what the outside world wants the system to do.

Essentials: Actors

Actors are entities that interface with the system. They can be people or other sys-
tems. Actors, which are external to the system they are using, are depicted as styl-
ized stick figures. Figure 5–20 shows two actors for the Hydroponics Gardening 
System we discussed earlier.

One way to think of actors is to consider the roles the actors play. In the real 
world, people (and systems) may serve in many different roles; for example, a 
person can be a salesperson, a manager, a father, an artist, and so forth.

Figure 5–20 Actors
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Essentials: Use Cases

Use cases represent what the actors want your system to do for them. Figure 5–21 
depicts some use cases, shown as ovals, for the Hydroponics Gardening System. 
Use cases are not just any capability that your system may provide. A use case 
must be a complete flow of activity, from the actor’s point of view, that provides 
value to the actor. As defined by Jacobson et al. [16]:  

A use case is a specific way of using the system by using some part of the func-
tionality. . . . A use case is thus a special sequence of related transactions per-
formed by an actor and the system in a dialogue. . . . Each use case is a complete 
course of events in the system from a user’s perspective.

Essentials: The Use Case Diagram 

To show which actors use which use cases, you can create a use case diagram by 
connecting them via basic associations, shown by lines, as in Figure 5–22.

The associations in the use case diagram indicate which actors initiate which use 
cases. Here we see that only the Gardener actor can maintain the storage tanks, 
but all the actors may view reports.

Specifying Use Case Details

So how do we specify the details of the functionality provided by use cases? How 
do we specify the complete course of events? The optimal way is to use additional 
UML models (such as activity diagrams, which we will discuss later in this chap-
ter) and textual specifications. There are many different formats for use case spec-
ifications in the UML literature. Most include the following information at a 
minimum: the name of the use case; its purpose, in the form of a short descrip-
tion; the optimistic flow (i.e., the flow of events that will occur if everything goes 
right in the use case); and one or more pragmatic flows (i.e., those flows where 
things don’t occur as you intended).   

Figure 5–21 Use Cases
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Figure 5–22 A Use Case Diagram
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An Example Use Case Specification

Let us look at an example for the use case Maintain Storage Tanks.

Use Case Specification
Use case name: Maintain Storage Tanks

Use case purpose: This use case provides the ability to maintain the fill 
levels of the contents of the storage tanks. This use case allows the actor to 
maintain specific sets of water and nutrient tanks.

Optimistic flow:

A. Actor examines the levels of the storage tanks’ contents.

B. Actor determines that tanks need to be refilled.

C. Normal hydroponics system operation of storage tanks is suspended by 
the actor.

D. Actor selects tanks and sets fill levels.

For each selected tank, steps E through G are performed.

E. If tank is heated, the system disables heaters.

1. Heaters reach safe temperature.

F. The system fills tank.

G. When tank is filled, if tank is heated, the system enables heaters.

1. Tank contents reach operating temperature.

H. Actor resumes normal hydroponics system operation. 

Pragmatic flows:

Conditions triggering alternate flow:

Condition 1: There is insufficient material to fill tanks to the levels 
specified by the actor.

D1. Alert actor regarding insufficient material available to meet tank 
setting. Show amount of material available.

D2. Prompt actor to choose to end maintenance or reset fill levels.

D3. If reset chosen, perform step D.

D4. If end maintenance chosen, perform step H.

D5. Else, perform step D2.

Condition 2: . . . 
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Other useful information may also be added to the specification, such as precon-
ditions (what must be true prior to executing the use case), postconditions (what 
will be true after executing the use case), limitations, assumptions, and so forth. 
For example, in our hydroponics system, there is a limitation that the nutrient and 
water tanks for a given crop must be refilled, as a pair, during the same maintenance 
activity. This is a business operations decision (limitation) established in order to 
not disrupt the proportions of nutrient and water being provided to the crop.

Overall, a use case specification should not be very long—it should be only a few 
pages. If your specifications are very long, you should reconsider whether your 
use case is doing too much. It may be that it is actually more than one use case. 
Also, for practical reasons, you cannot include all possible things that could trig-
ger an alternate flow. Include the most important or critical alternates. Do not 
include every possible error condition, such as when the operator enters data in 
the wrong format (let the user interface handle that type of exception).

Advanced Concepts: «include» and 
«extend» Relationships

Two relationships used primarily for organizing use case models are both power-
ful and commonly misused: the «include» and «extend» relationships. 
These relationships are used between use cases. 

«include» Relationships

In our hydroponics example, we have an Update Crop Encyclopedia use 
case. During analysis, we determine that the Nutritionist actor using that 
use case will have to see what is in the crop encyclopedia prior to updating it. This 
is why the Nutritionist can invoke the View Reports use case. The 
same is true for the Gardener actor whenever invoking Maintain Storage 
Tanks. Neither actor should be executing the use cases blindly. Therefore, the 
View Report use case is a common functionality that both other use cases 
need. This can be depicted on the use case model via an «include» relation-
ship, as shown in Figure 5–23.

This diagram states, for example, that the Update Crop Encyclopedia use 
case includes the View Reports use case. This means that View Reports
must be executed when Update Crop Encyclopedia is executed. Update
Crop Encyclopedia would not be considered complete without View
Reports.
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Where an included use case is executed, it is indicated in the use case specifica-
tion as an inclusion point. The inclusion point specifies where, in the flow of the 
including use case, the included use case is to be executed.

«extend» Relationships

While developing your use cases, you may find that certain activities might be 
performed as part of the use case but are not mandatory for that use case to run 

Figure 5–23 A Use Case Diagram Showing «include» Relationships
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successfully. In our example, as the Gardener actor executes the Manage
Garden use case, he or she may want to look at some reports. This could be done 
by using the View Reports use case. However, View Reports is not 
required when Manage Garden is run. Manage Garden is complete in and 
of itself. So, we modify the use case diagram to indicate that the View Reports
use case extends the Manage Garden use case, as shown in Figure 5–24.

Figure 5–24 A Use Case Diagram Showing an <<extend>> Relationship
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Where an extending use case is executed, it is indicated in the use case specifica-
tion as an extension point. The extension point specifies where, in the flow of the 
including use case, the extending use case is to be executed. Note also that the 
extension points can be shown on the use case diagram, as indicated in Figure 5–25.

Figure 5–25 A Use Case Diagram Showing an Extension Point
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The Dangers of «include» and «extend» Relationships

While these two concepts are very useful for specifying common functionality 
(«include») and simplifying more complex use case flows («extend»), as we 
indicated earlier, these concepts are commonly misused during use case model-
ing. The primary cause is that some people are not clear about the semantic differ-
ences between «include» and «extend». Maksimchuk and Naiburg provide 
a concise summary of those differences [17], as summarized in Table 5–1.

Another common error we see with these relationships is violation of basic use 
case principles. Included and extending use cases are still use cases and must con-
form to the use case principles cited earlier; a use case represents a complete flow 
of activity of what the actor wants your system to do from the actor’s point of 
view that provides value to the actor. 

If you stick to these principles strongly, you will avoid yet another error: use of 
these relationships to “functionally decompose” use cases. This is the most preva-
lent problem we see regarding use case models, in which people break down use 
cases into smaller and smaller pieces, using «include» or «extend» to tie 
them all together. This problem is rooted in a software development culture where 
Structured Analysis/Structured Design (SA/SD) approaches were very prevalent. 
These approaches decomposed large development problems into smaller pieces. 
Doing this will quickly violate the use case principles noted in the previous para-
graph. You will quickly lose the advantages of the object model of development 
that we noted in the first four chapters of this book.

Table 5–1 Key Differences between «include» and «extend»
Relationshipsa

a. Reprinted with permission from Maksimchuk and Naiburg [17].

Included 
Use Case

Extending
Use Case

Is this use case optional? No Yes

Is the base use case complete without this use case? No Yes

Is the execution of this use case conditional? No Yes

Does this use case change the behavior of the base 
use case?

No Yes
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Advanced Concepts: Generalization

Generalization relationships, as described in Chapter 3, can also be used to relate 
use cases. As with classes, use cases can have common behaviors that other use 
cases (i.e., child use cases) can modify by adding steps or refining others. For 
example, Figure 5–26 shows the use cases for purchasing various tickets. 

Purchase Ticket contains the basic steps necessary for purchasing any tick-
ets, while the child use cases specialize Purchase Ticket for the specific 
kinds of tickets being purchased.

5.6 Activity Diagrams

In the previous section, we described the flow of a use case with text (the use case 
specification). Textual descriptions have several advantages: They are easy to cre-
ate and change (no complex tools are required), they can be created anywhere (all 
you need is paper and a pencil), they can be easily used and shared by business 
and development staff alike, and so forth. However, complex use cases, business 
processes, and algorithms can be difficult to comprehend when captured in text. 
A visual representation of complex flows is much more powerful. We can see 
potential problems visually that a stack of textual specifications could never reveal.

We know of one project for which a complex production process was documented 
in reams of formal specifications that were developed and maintained by a com-
pany serving as the program office for the project. These specifications were also 
reviewed by other companies, which served as the implementers of the process. 
Even with all this rigor and control, when a basic visual diagram was made of the 
product flow, multiple dead ends in the production process were quickly revealed.

Figure 5–26 A Use Case Generalization
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Activity diagrams provide visual depictions of the flow of activities, whether in a 
system, business, workflow, or other process. These diagrams focus on the activi-
ties that are performed and who (or what) is responsible for the performance of 
those activities.

The elements of an activity diagram are action nodes, control nodes, and object 
nodes. There are three types of control nodes: initial and final (final nodes have 
two varieties, activity final and flow final), decision and merge, and fork and join.1

Essentials: Actions

Actions are the elemental unit of behavior in an activity diagram. Activities can 
contain many actions which are what activity diagrams depict. Figure 5–27 shows 
an action that can be performed in our hydroponics example.

Note the rake symbol inside the action notation at its bottom right-hand corner. 
This denotes that this action is a callBehavior type action, which is one of 
the predefined actions in UML 2 that are “primitive actions that model manipula-
tion of objects and links as well as computation and communication among 
objects” [101]. The callBehavior type action calls an activity whose defini-
tion is composed of action nodes, control nodes, and object nodes. Consequently, 
the majority of actions used in our activity diagram modeling would be of this 
type, at least in higher-level activity diagrams. So, as a practical matter, we may 
want to use the rake symbol only when we have actually defined that activity to 
be called.

Essentials: Starting and Stopping

Since an activity diagram shows a process flow, that flow must start and stop 
somewhere. The starting point (the initial node) for an activity flow is shown as a  
solid dot, and the stopping point (the activity final node) is shown as a bull’s-eye. 

1. Conrad Bock’s series of five articles (“UML 2 Activity and Action Models”) provides 
a detailed look into this subject. See Section L of the Classified Bibliography.

Figure 5–27 The Notation for an Action
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Figure 5–28 depicts a simple activity diagram composed of one action, Check
Tank Levels.

Another type of final node is the flow final node, which is denoted by a circle 
with a nested “X” symbol. The flow final node, used to stop a single flow without 
stopping the entire activity, is depicted in the discussion of the merge node.

Essentials: Decision and Merge Nodes

Decision and merge nodes control the flow in an activity diagram. Each node is 
represented by a diamond shape with incoming and outgoing arrows. A decision 
node has one incoming flow and multiple outgoing flows. Its purpose is to direct 
the one incoming flow into one (and only one) of the node’s outgoing flows. The 
outgoing flows usually have guard conditions that determine which outgoing path 
is selected. Figure 5–29 shows the guard condition [all levels within 
tolerance] and the alternative [else]. There is no waiting or synchroniza-
tion at a decision node.

Merge nodes take multiple input flows and direct any and all of them to one out-
going flow. There is no waiting or synchronization at a merge node. In Figure 
5–30, whenever any of the three incoming flows reach the merge point (shown as 

Figure 5–28 Initial and Final Nodes for a Simple Activity Diagram

Figure 5–29 A Decision Node
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a diamond), each will be routed through it to the Log System Event action. 
Thus, multiple events will be logged. Figure 5–30 also shows the flow final node 
that we discussed earlier.

Essentials: Partitions

The elements in an activity diagram can be grouped by using partitions. The pur-
pose of a partition is to indicate where the responsibility lies for performing spe-
cific activities. In a business model, the partitions may be business units, 
divisions, or organizations. For systems, the partitions may be other systems or 
subsystems. In application modeling, the partitions may be objects in the applica-
tion. (However, this type of fine-grained interaction is more often shown in a 
sequence diagram, discussed later in this chapter.) Each partition may be named 
to indicate the responsible party. Figure 5–31 shows how the various activities 
that comprise the Maintain Storage Tanks use case of our Hydroponics 
Gardening System are partitioned to the Gardener, WaterTank, and 
NutrientTank.

Advanced Concepts: Forks, Joins, and 
Concurrency

Fork and join nodes are analogous to decision and merge nodes, respectively. The 
critical difference is concurrency. Forks have one flow in and multiple flows out, 
as do decision nodes. The difference is, where a decision node selects a single 
outbound flow, a single flow into a fork results in multiple outbound flows. All 

Figure 5–30 A Merge Node with a Flow Final Node
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Figure 5–31 An Activity Diagram with Partitions
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the outbound flows occur concurrently. In Figure 5–31, a single flow goes from 
the Set Fill Levels action into the fork, which is the first thick horizontal 
line. Thereafter, the NutrientTank flow (with the Fill action) and the 
WaterTank flow (with the Disable Heating, Fill, and Enable
Heating actions) both occur in parallel.

A join has multiple incoming flows and a single outbound flow, similar to merge 
nodes. However, with a join, all the incoming flows must be completed before the 
outbound flow commences. In Figure 5–31, the second thick horizontal line is a 
join. Both of the incoming flows, NutrientTank and WaterTank, must be 
complete before the outbound flow continues to the Resume Operations
action.

(Similar to the concept of a join, where there are multiple flows into an action, 
whether control or object flow, all flows must arrive at the action before it can 
begin. When an action completes, all flows [control and object] out of the action 
are begun.)

Advanced Concepts: Object Flows 

In some situations, it may be useful to see the objects that are manipulated during 
the execution of an activity. You can show the objects in an activity diagram by 
adding an object flow. (We do not recommend this for all your activity diagrams, 
however, because adding all the objects would likely make the diagrams too com-
plex and unwieldy.) Figure 5–32 shows an object flow added to our previous 
activity diagram. In the WaterTank partition, two object nodes (rectangles 
labeled :WaterTank) have been added to the flow. This shows that, after the 
heating is disabled, the water tank is below its low operational limit and that, after 
the Fill action, the water tank is full. The WaterTank object’s states of 
[below low limit] and [full] are shown under the object name.

Advanced Concepts: Additional Elements

Activity diagrams are among the UML diagrams that have very rich semantics. 
Other interesting elements may appear on activity diagrams (e.g., additional types 
of object nodes, interruptible regions, pins, and so on) but not nearly as frequently 
as those we discussed earlier. If you want to learn more about activity diagrams, 
read some of the UML references listed for this chapter in Appendix B.
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Figure 5–32 An Activity Diagram with Object Nodes
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5.7 Class Diagrams

A class diagram is used to show the existence of classes and their relationships in 
the logical view of a system. A single class diagram represents a view of the class 
structure of a system. During analysis, we use class diagrams to indicate the com-
mon roles and responsibilities of the entities that provide the system’s behavior. 
During design, we use class diagrams to capture the structure of the classes that 
form the system’s architecture.

The two essential elements of a class diagram are classes and their basic 
relationships.

Essentials: The Class Notation

Figure 5–33 shows the icon used to represent a class in a class diagram and an 
example from our Hydroponics Gardening System. The class icon consists of 
three compartments, with the first occupied by the class name, the second by the 
attributes, and the third by the operations. 

A name is required for each class and must be unique to its enclosing namespace. 
By convention, the name begins in capital letters, and the space between multiple 
words is omitted. Again by convention, the first letter of the attribute and opera-
tion names is lowercase, with subsequent words starting in uppercase, and spaces 
are omitted just as in the class name. Since the class is the namespace for its 
attributes and operations, an attribute name must be unambiguous in the context 
of the class. So must an operation name, according to the rules in the chosen 
implementation language. The format of the attribute and operation specifications 
is shown here [29]:

■ Attribute specification format:
visibility attributeName : Type [multiplicity] = 
DefaultValue {property string}

Figure 5–33 A General Class Icon and an Example for the 
Gardening System
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■ Operation specification format:
visibility operationName (parameterName : Type) : 
ReturnType {property string}

We will discuss the concept of visibility (public, private, protected, or package) in 
an upcoming subsection. The type, for both attributes and operations, is the name 
of a class or data type. We will also discuss multiplicity of an attribute a little 
later; for now, note from Figure 5–33 that in the TemperatureSensor class, 
the multiplicity of [0..60] on the measuredTemperature attribute indi-
cates an array of 0 to 60 temperature measurements. The default value for an 
attribute is the value to be given at creation time, if none was provided. The prop-
erty string listed in braces provides additional properties such as {list} shown 
after the measuredTemperature attribute in the TemperatureSensor
class. In this case, the keyword list means that the temperature measurements 
will be ordered and may be nonunique. This provides the means to see the time 
ordering of the measurements and to permit a repetition in measured temperature. 
In the format of an operation, the combination of parameterName : Type is 
repeated as needed to accommodate the number of arguments.

For certain class diagrams, it is useful to expose some of the attributes and opera-
tions associated with a class. We say “some” because for all but the most trivial 
class, it is clumsy and indeed unnecessary to show all such members in a diagram. 
In this sense, the attributes and operations that we show represent an elided view 
of the class’s entire specification, which serves as the single point of declaration 
for all of its members. If we need to show many such members, we may magnify 
the class icon; if we choose to show no such members at all, we may drop the sep-
arating lines and show only the class name.

As a general principle for the notation, the syntax for items such as attributes and 
operations may be tailored to use the syntax for the chosen implementation 
language. This simplifies the notation by isolating the peculiarities of various 
languages.

As we described in Chapter 3, an abstract class is one for which no instances may 
be created. Because such classes are so important to engineering good class inher-
itance trees, there is a special way to designate an abstract class, as shown in 
Figure 5–34. Specifically, we italicize the class name to show that we may have 
only instances of its subclasses. Similarly, to denote that an operation is abstract, 
we simply italicize the operation name; this means that this operation may be 
implemented differently by all instances of its subclasses. In the Hydroponics 
Gardening System, we have food items that have a specific vitamin content and 
caloric equivalent, but there is not a type of food called “food item.” Hence, the 
FoodItem class is abstract. Figure 5–34 also shows the subclass Tomato, which 
represents a concrete (instantiable) food item grown in the greenhouse [30]. We 
explain the meaning of the relationships among the classes in the next section. 
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Essentials: Class Relationships

Classes rarely stand alone; instead, they collaborate with other classes in a variety 
of ways. The essential connections among classes include association, generaliza-
tion, aggregation, and composition, whose icons we summarize in Figure 5–35. 
Each such relationship may include a textual label that documents the name of the 
relationship or suggests its purpose, or the association ends may have names—but 
typically both are not used at the same time. 

The association icon connects two classes and denotes a semantic connection. 
Associations are often labeled with noun phrases, such as Analyzes in Figure 
5–35, denoting the nature of the relationship. A class may have an association to 
itself (called a reflexive association), such as the collaboration among instances of 
the PlanAnalyst class. Note here the use of both the association end names 
and the association name to provide clarity. It is also possible to have more than 
one association between the same pair of classes. Associations may be further 
adorned with their multiplicity, as described in Chapter 3, using the syntax in the 
following examples:

■ 1 Exactly one
■ * Unlimited number (zero or more)
■ 0..* Zero or more
■ 1..* One or more
■ 0..1 Zero or one
■ 3..7 Specified range (from three through seven, inclusive)

The multiplicity adornment is applied to the target end of an association and 
denotes the number of links between each instance of the source class and 
instances of the target class. Unless explicitly adorned, the multiplicity of a rela-

Figure 5–34 Abstract Class Adornment
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tionship should be considered unspecified. It is best to always show multiplicity 
so there is no misunderstanding.

The remaining three essential class relationships are drawn as refinements of the 
more general association icon. Indeed, during development, this is exactly how 
relationships tend to evolve. We first assert the existence of a semantic connection 
between two classes and then, as we make tactical decisions about the exact 
nature of their relationship, often refine them into generalization, aggregation, or 
composition relationships.

The generalization icon denotes a generalization/specialization relationship 
(the “is a” relationship, described in Chapter 3) and appears as an association 
with a closed arrowhead. The arrowhead points to the superclass, and the opposite 
end of the association designates the subclass. The GrowingPlan class in 

Figure 5–35 Class Relationship Icons
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Figure 5–35 is the superclass and its subclass is the FruitGrowingPlan.
According to the rules of the chosen implementation language, the subclass inher-
its the structure and behavior of its superclass. Also according to these rules, a 
class may have one (single inheritance) or more (multiple inheritance) super-
classes; name clashes among the superclasses are also resolved according to the 
rules of the chosen language. Also, generalization relationships may not have 
multiplicity adornments.

As noted in Chapter 3, aggregation, as manifested in the “part of ” relationship, 
is a constrained form of the more general association relationship. The aggrega-
tion icon denotes a whole/part hierarchy and also implies the ability to navigate 
from the aggregate to its parts. It appears as an association with an unfilled dia-
mond at the end denoting the aggregate (the whole). The class at the other end 
denotes the class whose instances are part of the aggregate object. Reflexive and 
cyclic aggregation is possible. This whole/part hierarchy does not mean physical 
containment: A professional society has a number of members, but by no means 
does the society own its members. In Figure 5–35, we see that an individual 
EnvironmentalController class has the Light, Heater, and Cooler
classes as its parts. The multiplicity of * (zero or more) at the aggregate end of 
the relationship further highlights this lack of physical containment. 

The choice of aggregation is usually an analysis or architectural design decision; 
the choice of composition (physical containment) is usually a detailed, tactical 
issue. Distinguishing physical containment is important because it has semantics 
that play a role in the construction and destruction of an aggregate’s parts. The 
composition icon denoting a containment relationship appears as an association 
with a filled diamond at the end denoting the aggregate. The multiplicity at this 
end is 1 because the parts are defined as having no meaning outside the whole, 
which owns the parts; their lifetime is tied to that of the whole. The FoodItem
class in Figure 5–35 physically contains the VitaminContent and 
CaloricEquivalent classes.

Consider another example. In Figure 5–36, we see the class CropHistory, whose 
instances physically contain * instances of the class NutrientSchedule and 
* instances of the class ClimateEvent. Composition implies that the construc-
tion and destruction of these parts occurs as a consequence of the construction 
and destruction of the aggregate. By contrast, each instance of CropHistory
does not physically contain one instance of Crop. This means that the lifetimes 
of the two objects are independent, although the one is still considered a part of 
the other. 

The icons described thus far constitute the essential elements of all class dia-
grams. Collectively, they provide the developer with a notation sufficient to 
describe the fundamentals of a system’s class structure.
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Advanced Concepts: Template 
(Parameterized) Classes

The elements we have presented thus far constitute the essential parts of the class 
notation. However, there are often a number of strategic and tactical decisions that 
we must capture that require an extension of this basic notation. As a general rule, 
stick to the essential elements of the notation, and apply only those advanced 
concepts necessary to express analysis or design details that are essential to visu-
alizing or understanding the system.

Some object-oriented programming languages, C++ for example, provide for 
template (parameterized) classes. A template class denotes a family of classes 
whose structure and behavior are defined independent of the formal class parame-
ters. We must match these formal parameters with actual ones (the process of 
binding) to form a concrete class in this family; by concrete class, we mean one 
that may have instances.

Template classes are sufficiently different than plain classes to warrant a special 
adornment. As the example in Figure 5–37 shows, a template class is depicted as 
a simple class, but with a dashed-line box in the upper right-hand corner, which 
contains its formal parameters. A bound class is also shown as a simple class. The 
binding relationship between a template class and its bound class is shown as a 
dashed arrow, pointing to the template class, with the keyword «bind» attached. 
The actual parameters, bound to the formal parameters of the template, are shown 
along with the keyword in the form of <Formal Parameter Actual
Parameter>. In Figure 5–37, we see the PlanSet class being bound to the 
Set template class with the GardeningPlan class as the actual parameter 
replacing the formal parameter, Item.

Figure 5–36 Physical Containment
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A template class may not have any instances and may not itself be used as a tem-
plate. A bound class defines a new class distinct from all other concrete classes in 
the same family whose actual parameters differ.

Advanced Concepts: Visibility

In Section 5.2, Package Diagrams, we discussed the concept of visibility from the 
view of whether the elements contained by a package could be seen outside that 
package. A class also provides an enclosing namespace for its contained ele-
ments. Here, we will look at the visibility of class associations, attributes, and 
operations.

All interesting object-oriented programming languages provide a clear separation 
between the interface and implementation of a class. As we described in Chapter 
3, most also permit the developer to specify finer-grained access to the interface 
as well. For example, in C++, members may be public (accessible to all clients), 
protected (accessible only to subclasses, friends, or the class itself), or private 
(accessible only to the class itself or its friends). Also in C++, certain elements 
might be a part of a class’s implementation and thus inaccessible even to friends 
of the class; this is referred to as implementation visibility.

Figure 5–37 A Template Class and Its Bound Class
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We may specify visibility by adorning the appropriate element with the following 
symbols [43]:

■ Public (+) Visible to any element that can see the class
■ Protected (#) Visible to other elements within the class and to subclasses
■ Private (-) Visible to other elements within the class
■ Package (~) Visible to elements within the same package

We denote association visibility by placing these visibility symbols on the associ-
ation end names to indicate access to the target end from the source end of the 
association. For example, in Figure 5–38, we see that the association end names 
(database and crop) between the CropDatabase and GrainCrop classes 
are both public. This means that either class can access the other. In contrast, look 
at the visibility of the association end names between the GrainCrop class and 
the GrainYieldPredictor class; GrainCrop is private to the 
GrainYieldPredictor class.

Another advanced concept to note here is that of association directionality. 
During analysis we regard associations as bidirectional logical connections 
between analysis classes. During design we turn our focus to issues such as navi-
gability of an association. The unidirectional association from the GrainCrop
class to the GrainYieldPredictor class typically means that some method 
of GrainCrop uses the services of GrainYieldPredictor in its 
implementation.

Figure 5–38 Class Visibility
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These visibility symbols also apply to nested entities in all their forms. Specifi-
cally, in a class icon we may indicate the accessibility of attributes and operations 
by prefixing one of the visibility symbols to their names. For example, in Figure 
5–38, we see that the class Crop has one public attribute (scientificName),
one protected attribute (yield), and one private attribute (nutrientValue).

Advanced Concepts: Association End 
Names and Qualifiers

In the previous chapter, we described the importance of identifying the various 
roles an object plays in its collaboration with other objects. Briefly, the role of an 
abstraction is the face it presents to the world at a given moment. A role denotes 
the purpose or capacity wherein one class associates with another. As the example 
in Figure 5–39 shows, this role is depicted with an association end name (role 
name in UML 1), placed adjacent to the class offering the role. Here we see that 
the classes PlanAnalyst and Nutritionist are both contributors to the 
CropEncyclopedia class; this means that they both add information to the 
encyclopedia. The PlanAnalyst class is a user as well by virtue of looking up 
information in the encyclopedia. In each case, the client’s role identifies the par-
ticular behavior and protocol that it uses with its supplier while acting in that role. 
Note also the reflexive association for the class PlanAnalyst: Here we show 
that multiple instances of this class may collaborate with one another and that 
they have a particular protocol they use when collaborating, which is distin-
guished from their behavior in their association with, for instance, 
CropEncyclopedia.

Figure 5–39 Association End Names and Qualifiers
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Our example also shows an association between the classes CropEncyclopedia
and Crop, but with a different kind of adornment representing a qualifier, shown 
as a small rectangle at the CropEncyclopedia end of the association. A qual-
ifier is an attribute whose value uniquely identifies a single target object.

In this example, the class CropEncyclopedia uses the attribute 
scientificName as a qualifier to navigate to individual entries in the set 
of items managed by instances of CropEncyclopedia. In general, a qualifier 
must be an attribute of the object that is a part of the aggregate object at the target 
end of the association. Multiple qualifiers are possible, but qualifier values must 
be unique. Without a qualifier, the multiplicity on the Crop end of the association 
would be zero or more (*).

Advanced Concepts: Constraints

A constraint is the expression of some semantic condition that must be preserved. 
Stated another way, a constraint is an invariant of a class or relationship that must 
be preserved while the system is in a steady state. We emphasize steady state
because there may be transitory circumstances wherein the state of the system is 
changing (and thus is temporarily in a self-inconsistent state), during which time 
it is impossible to preserve all the system’s constraints. Constraints are guarantees 
that apply only when the state of the system is stable. Preconditions and postcon-
ditions are examples of constraints that apply while a system is in a steady state, 
that is, at the specific points in time when an operation is invoked and when it is 
completed [31].

During the process of designing the system, we must ensure that it will be able to 
meet the constraints placed on it. We will apply the constraints to a variety of 
model elements; typically, any model element may be constrained. We use an 
adornment for constraints that consists of an expression, surrounded by braces 
({ }), adjacent to the class or relationship for which the constraint applies. This 
expression can be represented in a natural language (textual) or in a more formal 
language such as a programming language or the UML Object Constraint Lan-
guage (OCL). One benefit of a more formal language is that some tools provide 
the means of verifying compliance with the constraint when using a formal lan-
guage. Usually we see development teams textually specifying a constraint, 
which requires them to have some agreed-upon style of specification [32].

The placement of a constraint in a visual diagram depends on the number of dia-
gram elements affected by the constraint. Table 5–2 provides general guidelines. 
However, of course, we are constrained by the particular tool we are using.
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Constraints applied to generalization associations indicate whether the classifiers 
in the relationship are complete and disjoint by the use of the four constraints—
complete or incomplete and disjoint or overlapping—as defined here [34].

■ Complete: An instance of the supertype is an instance of at least one of the 
subtypes.

■ Incomplete: An instance of the supertype is not an instance of at least one of 
the subtypes.

■ Disjoint: There are no common instances among the classifiers.
■ Overlapping: There are common instances among the classifiers.

Looking back to Figure 5–35, we see examples of these constraints. The 
{incomplete} constraint on the generalization of the Plan class indicates 
that there are more types of plans than just the growing plan and gardening plan. 
This means that an instance of the Plan class might not be an instance of either 
the GrowingPlan or GardeningPlan classes. The {disjoint} constraint 
indicates that a plan can’t be both a growing plan and a gardening plan, at least in 
the way we’ve defined our plans; that is, an instance of the GrowingPlan class 
can’t also be an instance of the GardeningPlan class.

We can see other types of constraints on a class diagram specifically related to 
the class itself. These include constraints on the class attributes, as discussed 
earlier regarding Figure 5–33, where we have the {list} constraint on the 
measuredTemperature attribute in the TemperatureSensor class. 

Table 5–2 Placement of Constraintsa

Number of Diagram 
Elements Constraint Placement

One 1.  In note attached to element by dashed line.

2.  Near element.

Two 1. In note attached to each element by dashed line.

2. Near dashed line connecting elements. Dashed line may 
have arrowhead on the end pointing to first position in 
the collection.

Three or more 1. In note attached to each element by dashed line.

2. For associations (including generalizations, aggrega-
tions, and compositions), attached to dashed line cross-
ing the associations.

a. Based on Rumbaugh, Jacobson, and Booch [33].
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This specifies that the temperature measurements will be ordered and might be 
nonunique.

As the example in Figure 5–40 indicates, we may apply constraints to individual 
classes, whole associations, and participants in an association. In this diagram, we 
see a cardinality constraint on the class EnvironmentalController, stat-
ing that there may be no more than seven instances of this class in the system. 

The Cooler class has a different kind of constraint. Here we see a statement of 
hysteresis in the cooler’s operation—a cooler may not be restarted sooner than 
five minutes after it was last shut down. We attach this constraint to the Cooler
class because we mean this to be an invariant preserved by instances of the class 
themselves.

In this diagram we also find two different kinds of association constraints. In the 
association between the EnvironmentalController and Light classes, 
we require that individual lights be uniquely indexed with respect to one another 
in the context of this association. We also have an exclusive-or constraint {xor}
that spans the controller’s association with the Heater and Cooler classes, 

Figure 5–40 Constraints
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stating the invariant that the EnvironmentalController class may not 
activate the heater and the cooler at the same time. We place this as a constraint 
on the association rather than as a constraint on Heater or Cooler because it is 
an invariant that cannot be preserved by heaters or coolers themselves.

Constraints are also useful for the expression of secondary classes, attributes, and 
associations. For example, consider the classes Adult and Child, both of 
which might be subclasses of the abstract class Person. For the Person class, 
we might provide the attribute dateOfBirth, and we might also include an 
attribute named age, perhaps because age is important in our model of the real 
world. However, the age attribute is secondary: It can be computed from 
dateOfBirth. Thus, in our model, we might include both attributes but include 
an attribute constraint that states this derivation. It is a tactical decision as to 
which attribute derives from the other, but our constraint can record whatever 
decision we make.

Similarly, we might have an association between the Adult and Child classes 
named Parent. We might also include another association named Caretaker
because it suits the purposes of our model (perhaps we are modeling the legal 
relationships between parent and child in the analysis of a social welfare system). 
Caretaker is secondary; it derives from the consequences of the Parent
association, and we might state this invariant as a constraint on the Caretaker
association.

Refinement of Class Relationships

Earlier, when discussing class relationship icons, we saw that generaliza-
tion, aggregation, and composition are refinements of the more general 
association relationship between classes. Specifically, when we looked at 
aggregation, Figure 5–35 presented the EnvironmentalController
class as the aggregate whole with the Light, Heater, and Cooler
classes as its pieces. Now, in Figure 5–40, we see the aggregations 
replaced by general association relationships. What’s going on here? Well, 
Figure 5–40 could represent an earlier analysis perspective of the relation-
ship between these classes. Later in our development efforts, as we made 
tactical decisions about the exact nature of the relationship, we could have 
refined the relationships into aggregations, as shown in Figure 5–35, where 
we possibly regard the EnvironmentalController class more as a 
subsystem comprised of the Light, Heater, and Cooler classes. We 
might then need to add an additional class to provide the actual control 
functionality within our subsystem, such as a Controller class.
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Advanced Concepts: Association Classes 
and Notes

The final advanced concept specific to class diagrams concerns itself with the 
problem of modeling properties of associations; the notational solution to this 
specific problem generalizes to diagram elements that may be applied to every 
diagram in the notation.

Consider the example shown in Figure 5–41. Here we see a many-to-many 
association between Crop and Nutrient, meaning that every crop depends 
on N nutrients, and each nutrient may be applied to N different crops. The 
NutrientSchedule class is really a property of this many-to-many relation-
ship, whose instances denote a specific mapping of a crop and its nutrients. To 
indicate this semantic fact, we draw a dashed line from the Crop-to-Nutrient
association (the attributed association) to its property, the NutrientSchedule
class (the association’s attribute). A given unique association may have at most 
one such attribute, which is called an association class, and the name of such an 
association must match the name of the class used as its attribute.

The very idea of attributing associations has a generalization. Specifically, during 
analysis and design, there are a myriad of seemingly random assumptions and 
decisions that each developer may collect; these insights are often lost because 
there is usually no convenient place to collect them, save for keeping them in the 
head of the developer—a decidedly unreliable practice. Thus, it is useful to add 
arbitrary notes to any element of any diagram, whose text captures these assump-
tions and decisions. In Figure 5–41, we have two such notes. The note attached to 

Figure 5–41 Association Classes and Notes
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the NutrientSchedule class tells us something about the expected unique-
ness of its instances. The other note, attached to the Nutrient class, captures 
our expectation of how the unitCost attribute will be populated.

For such notes we use a distinctive note-shaped icon and connect it to the element 
it affects by using a dashed line as before. Largely a tool issue, notes may contain 
any information, including plain text, fragments of code, or references to other 
documents. A note may be unconnected to any diagram element, meaning that it 
applies to the diagram as a whole.

5.8 Sequence Diagrams

A sequence diagram is used to trace the execution of a scenario in the same con-
text as a communication diagram. (Communication diagrams are discussed later 
in this chapter.) Indeed, to a large degree, a sequence diagram is simply another 
way to represent a communication diagram. 

Essentials: Objects and Interactions

In Figure 5–42, we provide a sequence diagram that duplicates most of the 
semantics of the communication diagram shown. The advantage of using a 
sequence diagram is that it is easier to read the passing of messages in relative 
order. Sequence diagrams are often better than object diagrams (to be discussed 
later in this chapter) for capturing the semantics of scenarios early in the develop-
ment lifecycle, before the protocols of individual classes have been identified. 
Early sequence diagrams tend to focus on events as opposed to operations 
because events help to define the boundaries of a system under development. The 
advantage of using an object diagram is that it scales well to many objects with 
complex invocations. Each diagram has compelling benefits.

Essentials: Lifelines and Messages

In sequence diagrams, the entities of interest (which are the same as for object 
diagrams) are written horizontally across the top of the diagram. A dashed verti-
cal line, called the lifeline, is drawn below each object. These indicate the exist-
ence of the object.

Messages (which may denote events or the invocation of operations) are shown 
horizontally. The endpoints of the message icons connect with the vertical lines 
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that connect with the entities at the top of the diagram. Messages are drawn from 
the sender to the receiver. Ordering is indicated by vertical position, with the first 
message shown at the top of the diagram, and the last message shown at the bot-
tom. As a result, sequence numbers aren’t needed.

Figure 5–42 A Sequence Diagram (Top) and Its Related Communication Diagram 
(Bottom)
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The notation used for messages (i.e., the line type and arrowhead type) indicates 
the type of message being used, as shown in Figure 5–43.

A synchronous message (typically an operation call) is shown as a solid line with 
a filled arrowhead. An asynchronous message has a solid line with an open arrow-
head. A return message uses a dashed line with an open arrowhead. A lost mes-
sage (a message that does not reach its destination) appears as a synchronous 
message that terminates at an endpoint (a black dot). A found message (a message 
whose sender is not known) appears as a synchronous message that originates at 
an endpoint symbol.

Advanced Concepts: Destruction Events 

A destruction event indicates when an object is destroyed. It is shown as an X at 
the end of a lifeline. See the Object2 lifeline in Figure 5–43 for an example. If 
this object is involved in a composition, the other involved objects may also be 
destroyed.

Sequence diagrams are conceptually very simple; however, you can add other ele-
ments to make them more expressive in the presence of certain complicated pat-
terns of interaction.

Figure 5–43 Notations for Types of Messages
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Advanced Concepts: Execution Specification

Simple sequence diagrams may not indicate the focus of control as messages are 
passed. For example, if object A sends messages X and Y to other objects, it may 
not be clear whether X and Y are independent messages from A or whether they 
have been invoked as part of the same enclosing message Z. As we show in Fig-
ures 5–42 and 5–43, to clarify such situations, we may adorn the vertical lines 
descending from each object in a sequence diagram with a box representing the 
relative time that the flow of control is focused in that object. For example, in Fig-
ure 5–44, we see that the anonymous instance of the GardeningPlan object is 
the ultimate focus of control, and its behavior of carrying out a climatic plan 
invokes other methods, which in turn call other methods that eventually return 
control back to the GardeningPlan object.

Figure 5–44 Execution Specification 

Scripts

Although not officially part of UML 2.0, you may see the use of descriptive 
text on sequence diagrams. For complex scenarios that involve conditions 
or iterations, sequence diagrams can be enhanced by the use of scripts. As 
we see in the example in Figure 5–45, a script may be written to the left of 
a sequence diagram, with the steps of the script aligning with the message 
invocations. 

Scripts may be written using free-form or structured English text or using 
the syntax of the chosen implementation language.



210 SECTION II METHOD

Advanced Concepts: Interaction Use

UML 2.0 has various constructs available to simplify complex sequence diagrams. 
The first we will discuss is the interaction use. An interaction use is merely a way 
to indicate on a sequence diagram that we want to reuse an interaction that is 
defined elsewhere. This is shown, as in Figure 5–46, as a frame labeled ref.

In this case, we have modified our earlier sequence diagram to introduce a login 
sequence, required before the PlanAnalyst uses the system. The frame, 
labeled ref, indicates that the Login sequence is inserted (i.e., copied) where 
this fragment is placed in this sequence. The actual login sequence would be 
defined on another sequence diagram.

Advanced Concepts: Control Constructs

Just as we saw fragments being used to simplify sequence diagrams, they can 
similarly be used to indicate flow control constructs on sequence diagrams. For 
example, Figure 5–47 shows the introduction of a loop in our sequence diagram.

Note that the frame is named with the interaction operator loop. The sequence 
execution within this frame is controlled by the condition [For each
Gardening Plan].

Now let us assume that we have many GardeningPlan objects, some active, 
some inactive (past plans that are now saved just for informational purposes). We 

Figure 5–45 Scripts and Sequence Diagrams
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Figure 5–46 An Interaction Use, Login

Figure 5–47 An Interaction Operator, loop
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would not want to loop through all those inactive plans. We just want to use the 
ones that are currently active. This can be done with an alt (short for “alterna-
tives”) interaction operator, as shown in Figure 5–48.

Here within the loop, an alternate choice is made, governed by the conditions 
[GardeningPlan is Active] and [GardeningPlan is Inactive].
These conditions select which part of the sequence is executed. The alt frame is 
divided into two regions, each with its own condition. When a condition is true, 
the behavior in that region of the frame is performed.

Numerous other interaction operators can be used in this manner to manipulate 
the control flow of a sequence diagram. Refer to Appendix B, Further Reading, to 
investigate all the other options.

Figure 5–48 An Interaction Operator, alt
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5.9 Interaction Overview Diagrams

Interaction overview diagrams are a combination of activity diagrams and interac-
tion diagrams that are intended to provide an overview of the flow of control 
between interaction diagram elements. Though any type of interaction diagram 
(sequence, communication, or timing) may be used, the sequence diagram will 
likely be the most prevalent. 

The essential elements of the interaction overview diagram are the frames, the 
flow of control elements, and the interaction diagram elements.

Essentials: Frames

The interaction overview diagram is typically surrounded by a frame; however, 
the frame is optional when the context is clear. In Figure 5–49, we see the sur-
rounding frame with the name sd MaintainTemperature lifelines 
:EnvironmentalController, :Heater, :Cooler in the compart-
ment in the upper left-hand corner. The meaning of this name is as follows:

■ sd: a tag that indicates this is an interaction diagram
■ MaintainTemperature: a name describing the purpose of the diagram
■ lifelines :EnvironmentalController, :Heater, 
:Cooler: an optional list of contained lifelines

This interaction overview diagram contains flow of control elements and three 
frames, EvaluateTemperature, Heat, and Cool, which we discuss in the 
next subsections.

Essentials: Flow of Control Elements

The flow of control within an interaction overview diagram is provided by a com-
bination of activity diagram elements to provide for both alternate and parallel 
paths. The alternate path control is provided by combinations of a decision node, 
where the appropriate path is chosen, and a corresponding merge node (as appro-
priate) to bring the alternate paths together.

This combination appears twice in Figure 5–49. First, a decision node is used to 
choose a path based on whether the temperature of the Hydroponics Gardening 
System is within bounds (therefore, requiring no action) or out of bounds, which 
requires either heating or cooling. The interaction constraint [lower bound < =
temp < = upper bound] is used to choose the appropriate path. The second 
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combination of a decision node and a merge node controls whether heating or 
cooling is applied by using the two interaction constraints, [temp < lower
bound] and [temp > upper bound].

Flow of control within parallel paths is provided by combinations of a fork node, 
to split into parallel paths, and a corresponding join node to bring the parallel 
paths together. One important concern with parallel paths is that tokens from all 
paths must arrive at the join node before the flow is allowed to continue. This 
requires us to ensure that, wherever an interaction constraint may block flow 
along a path, there is an alternate path for the token to proceed [35].

Figure 5–49 The Interaction Overview Diagram for MaintainTemperature
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Essentials: Interaction Diagram Elements

The interaction overview diagram contains two types of elements to provide the 
interaction diagram information, either an interaction or an interaction use. The 
interaction is any type of interaction diagram that provides the nested details of 
the interaction; these are typically sequence diagrams. They can be anonymous or 
named, as in Figure 5–49, which shows the Heat and Cool interactions.

The interaction use references an interaction diagram rather than providing its 
details. Figure 5–49 contains an example, the EvaluateTemperature inter-
action use. The details of EvaluateTemperature would show how concerns, 
such as the following, would be managed:

■ Periodicity of temperature readings
■ Protection of compressors by not restarting the :Cooler sooner than five 

minutes since shutdown
■ Temperature adjustments based on time of day
■ Temperature ranges for different crops

5.10 Composite Structure Diagrams

Composite structure diagrams provide a way to depict a structured classifier with 
the definition of its internal structure. This internal structure is comprised of parts 
and their interconnections, all within the namespace of the composite structure. 
Structured classifiers can be nested, so each part could be another structured clas-
sifier. In addition to representing a component, a structured classifier can also rep-
resent a class. Thus, the composite structure diagram is useful during design to 
decompose classes into their constituent parts and model their runtime collabora-
tions [36, 37].

The essential elements of a composite structure are its parts, ports, interfaces, and 
connectors.

Essentials: Composite Structure Parts

The composite structure diagram for the Hydroponics Gardening System’s 
WaterTank is shown in Figure 5–50. Its name is placed in the top compartment; 
the specific naming convention should be defined by the development team. 
WaterTank contains the Heater and Tank parts, which collaborate to provide 
its functionality, that of providing appropriately heated water for the gardeners 
to use. 
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The name of a composite structure part uses the format of role name : 
Class Name [multiplicity], where the role name defines the role played 
by a part within the composite structure. Though showing the multiplicity is 
optional, we include it in Figure 5–50 to make clear that WaterTank consists of 
one Heater and one Tank.

Essentials: Composite Structure Ports and 
Interfaces

The composite structure and its parts interface with their external environment 
through ports, denoted by a small square on the boundary of the part or composite 
structure. In Figure 5–50, we see that Heater and Tank both have ports through 
which they interact with each other to provide the functionality of WaterTank.
In addition, WaterTank has a port through which it receives electricity for the 
Heater and a port through which it provides the heated water from the Tank to 
its environment.

Using ports for all interactions provides encapsulation to the structured classifier. 
These ports have public visibility unless otherwise noted. Hidden ports are 
denoted by a small square that appears totally inside the composite structure, with 
only one edge touching its boundary. These ports may be used for capabilities 
such as test points that are not to be publicly available. The name and multiplicity 
of ports is optional, but they should be provided where needed for clarity. Port 
names are in the format port name : Port Type [multiplicity]. The 
port type is optional when naming a port [38, 39].

To these ports, we connect the interfaces that define the details of the composite 
structure’s interactions. These interfaces are commonly shown in the ball-and-
socket notation. A required interface uses the socket notation to denote the ser-
vices expected from its external environment, whereas the ball notation denotes 

Figure 5–50 The Composite Structure Diagram for WaterTank
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the services it offers through its provided interfaces. As part of WaterTank,
Heater receives electricity from the Hydroponics Gardening System, and Tank
provides heated water to the gardeners. 

Essentials: Composite Structure Connectors

Connectors within composite structure diagrams provide the communication 
links between the composite and its environment, as well as the means for its 
parts to communicate internally. In Figure 5–50 we have three connectors 
between its ports; the two that connect to the boundary of the composite are 
called delegation connectors, and the one between Heater and Tank is called 
an assembly connector (also known as an interface connector). Here we have 
Heater providing heat to Tank to fulfill its service need. Although Figure 5–50 
shows the assembly connector in the straight line notation of the delegation con-
nectors, we could have used the ball-and-socket notation to represent this connec-
tion. Naming the connectors is optional; those in Figure 5–50 are not named 
because clarity here doesn’t require names [40].

Advanced Concepts: Collaborations

A collaboration is a type of structured classifier that specifies the runtime interac-
tions of classifier instances. It differs from the composite structure in that it is not 
instantiated and does not actually own these instances but defines the roles that 
classifier instances must assume and the connectors over which they collaborate 
to provide the functionality of interest. Collaborations may be nested, and the 
concept of abstraction supports our focus at a level of detail pertinent to our par-
ticular concerns. The details of a collaboration may be expressed with the use of 
an interaction diagram [41, 44].

The collaboration’s primary use is to define templates, that is, patterns of roles 
joined by connectors. At runtime, classifier instances will be bound to these roles 
so they may cooperate to provide the functionality defined by the collaboration. 
For example, Figure 5–51 shows the TemperatureControl collaboration 
defining a pattern for controlling the temperature within the Hydroponics 
Gardening System. In this pattern, TemperatureController uses 
TemperatureRamp, which defines the precise temperature variations required 
over time to support the needs of a crop [93, 94].

The name of a collaboration, shown inside the dashed oval that encapsulates 
the collaboration, may be partitioned from the role definitions by a horizontal 
dashed line (not shown here). In this collaboration, we have two defined roles, 
TemperatureController and TemperatureRamp, joined by a connector. 
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Since the connector is unnamed, it will be realized by a temporary runtime means 
such as a property or an argument. If it were named, it would be realized by an 
instance of an actual association, that is, a link [95, 96].

Roles are labeled with a name and type in the format of role name : Role
Type [multiplicity]. The role name describes a particular classifier 
instance that may fulfill this role, and the role type is a constraint on this classifier 
instance. We have shown the role names, role types, and multiplicity for the 
TemperatureController and TemperatureRamp roles [97, 98].

A role defines the properties that a structured classifier must have to participate in 
the collaboration. The typing of a role by interfaces means that any classifier 
instance complying with the interface can fulfill the role, regardless of its internal 
design or implementation. The classifier instance may have functionality beyond 
that required in a particular role, thereby giving it the ability to fulfill multiple 
roles in a single collaboration or even roles in different collaborations at the same 
time [99, 100].

5.11 State Machine Diagrams

State machines are well known in industries that use real-time processing. State 
machine diagrams are used to design and understand time-critical systems, in 
which the consequences of improper timing are severe. Medical devices, financial 
trading systems, satellite command and control systems, and weapon systems are 
typical examples where state machine diagrams can play an important role in 
understanding how systems behave in reaction to key events.

Figure 5–51 The TemperatureControl Collaboration
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A state machine diagram expresses behavior as a progression through a series of 
states, triggered by events, and the related actions that may occur. Such state 
machines are also known as behavioral state machines. State machine diagrams 
are typically used to describe the behavior of individual objects. However, they 
can also be used to describe the behavior of larger elements of any system. 
(Remember from Chapter 1 that the selected level of abstraction in a complex 
system is relative to the observer.) State machine diagrams are cousins to activity 
diagrams. However, state machine diagrams focus on the states and transitions 
between those states versus the flow of activities.

Not every class has significant event-ordered behavior, so we supply state machine 
diagrams only for those classes that exhibit such behavior. We may also provide 
state machine diagrams that show the event-ordered behavior of the system as a 
whole. During analysis, we may use state machine diagrams to indicate the 
dynamic behavior of the system. During design, we use state machine diagrams to 
capture the dynamic behavior of individual classes or of collaborations of classes.

The two essential elements of a state machine diagram are states and state 
transitions.

Essentials: Initial, Final, and Simple States

The state of an object represents the cumulative results of its behavior. For exam-
ple, when a telephone is first installed, it is in the idle state, meaning that no 
previous behavior is of great interest and that the phone is ready to initiate or 
receive calls. When we pick up the handset, the phone is off-hook and in the dial-
ing state. In this state, we do not expect the phone to ring; we expect to be able to 
initiate a conversation with someone on another telephone. When the phone is on-
hook, if it rings and we pick up the handset, the phone is now in the receiving 
state, and we expect to be able to converse with the person who called.

At any given point in time, the state of an object encompasses all of its (usually 
static) properties, together with the current (usually dynamic) values of each of 
these properties. By properties, we mean the totality of the object’s attributes and 
relationships with other objects. We can generalize the concept of an individual 
object’s state to apply to the object’s class because all instances of the same class 
live in the same state space, which encompasses an indefinite yet finite number of 
possible (although not always desirable or expected) states.

When an object is in a given state, it can do the following:

■ Execute an activity
■ Wait for an event
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■ Fulfill a condition
■ Do some or all of the above

In every state machine diagram, there must be exactly one default initial state, 
which we designate by writing an unlabeled transition to the state from a special 
icon, shown as a filled circle. Less often, we need to designate a stop state. Usu-
ally, a state machine associated with a class or the system as a whole never 
reaches a stop state; the state machine just goes out of existence when the enclos-
ing object is destroyed. We designate a stop state by drawing an unlabeled state 
transition from the state to a special icon, shown as a filled circle inside a slightly 
larger unfilled circle. Initial and final states are technically called pseudostates.
Figure 5–52 depicts the elements for a duration timer in our hydroponics system. 
For simple states, the state name is shown in the rounded rectangle depicting the 
state. Here we have two simple states for our timer—Initializing and 
Timing. Simple states have no substates (we will discuss substates in an upcom-
ing subsection).

Essentials: Transitions and Events

The movements between states are called transitions. On a state machine dia-
gram, transitions are shown by directed arrows between states. Each state transi-
tion connects two states. Figure 5–53 shows a transition from the initial state to 
the state named Initializing, from Initializing to Timing, and from 
Timing to the final state. Moving between states is referred to as firing the tran-
sition. A state may have a state transition to itself, and it is common to have many 
different state transitions from the same state, although each such transition must 
be unique, meaning that there will never be any circumstances that would trigger 
more than one state transition from the same state.

Figure 5–52 Notations for Simple States

Figure 5–53 Transitions for the Duration Timer
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There are various ways to control the firing of a transition. A transition that has no 
annotation is referred to as a completion transition. This simply means that when 
the source state completes, the transition automatically fires, and the target state is 
entered. You can see this in Figure 5–53 between the Initializing state and 
the Timing state. When the duration timer is initialized, it immediately begins 
timing.

In other cases, certain events have to occur for the transition to fire. Such events 
are annotated on the transition. An event is some occurrence that may cause the 
state of a system to change. For example, in the Hydroponics Gardening System, 
the following events play a role in the system’s behavior.

■ A new crop is planted.
■ A crop becomes ready to harvest.
■ The temperature in a greenhouse drops because of inclement weather.
■ A cooler fails.
■ Time passes.

Each of the first four events is likely to trigger some action, such as starting or 
stopping the execution of a specific gardening plan, turning on a heater, or sound-
ing an alarm to the gardener. The passage of time is another issue: Although the 
passing of seconds or minutes may not be significant to our system (observable 
plant growth is generally on much longer scales of time), the passage of hours or 
days may be a signal to our system to turn lights on or off or to change the tem-
perature in the greenhouse, in order to create an artificial day necessary for plant 
growth. In Figure 5–54, we develop the duration timer state diagram. Here you 
see that the timer execution can be put into a Paused state and timing resumed 
through the occurrence of pause and resume events, respectively.

While transitions often show how an object moves between states, they may also 
be recursive, showing an exit from and reentry into the same state. 

The UML elements described thus far constitute the essential elements of all state 
transition diagrams. Collectively, they provide a notation sufficient to describe 
simple, flat, finite state machines, suitable for applications with a limited number 

Figure 5–54 Additional States and Transition Events for the Duration Timer
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of states. Systems that have a large number of states or that exhibit particularly 
complicated event-ordered behavior involving conditional transitions or transi-
tions based on previously entered states require the use of the more advanced con-
cepts for state transition diagrams. We will discuss these now.

Advanced Concepts: State Activities—Entry, 
Do, and Exit Activities 

Activities may be associated with states. In particular, we may specify some 
activity that is to be carried out at certain points in time with respect to a state.

■ Perform an activity upon entry of the state.
■ Do an activity while in the state.
■ Perform an activity upon exit of the state.

Figure 5–55 shows an example of this concept. Here we see that upon entering the 
Timing state, we start the timer (indicated by the icon of an arrow next to two 
parallel lines), and upon exiting this state (indicated by the icon of an arrow 
between two parallel lines), we stop the timer (note that these icons are tool spe-
cific). While in this state, we measure the time duration (indicated by the circular 
arrow). 

Advanced Concepts: Controlling Transitions

As we said earlier, there are ways to exercise finer control over state transitions 
than just having events on the transition. Conditions can be specified to control 
the transition. These conditions act as guards so that when an event occurs, the 

Figure 5–55 Entry, Do, and Exit Activities
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condition will either allow the transition (if the condition is true) or disallow the 
transition (if the condition is false). 

Another way to control transition behavior is to use effects. An effect is a behav-
ior (e.g., an activity, an action) that occurs when a specified event occurs. Thus, 
when a transition event occurs, the transition fires and the effect also occurs. Each 
of these refinements can be used in combination with the others. 

Let us expand our duration timer example to show the use of effects. One impor-
tant event that could happen in our hydroponics system is that a cooler could fail. 
Rather than just hope that this does not happen, we will change our basic timer to 
a duration timer used to measure the total operational time during which the 
cooler is running. The purpose is to alert us to perform maintenance on the cooler 
after it has been in operation for a certain period of time. We hope that regular 
maintenance will prevent a failure of the cooler. So we enhance our state machine 
diagram as shown in Figure 5–56.

In this diagram, you can see that the timeout transition has been replaced with a 
condition. This condition specifies that when the duration exceeds the mainte-
nance time, the timer transitions into the Sounding Alarm state, alerting us to 
the need for maintenance. The use of an event, condition, and effect in combina-
tion is shown on the transition from Sounding Alarm to Timing. Here, once 
the maintenance is complete, we want to clear the alarm condition and resume 
timing. There is a clear event, but it is guarded by the condition that the cooler 
must be back online first (before timing is resumed), shown in brackets. If the 

Figure 5–56 The Enhanced State Machine Diagram for the Duration Timer
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cooler is not online, the transition does not fire. If it is, the effect occurs (the dura-
tion timer is set to zero, as shown after the slash), the transition fires, and timing 
begins again. 

The order of evaluation in conditional state transitions is important. Given state S
with transition T on event E with condition C and effect A, the following order 
applies.

1. Event E occurs.
2. Condition C is evaluated.
3. If C evaluates true, then transition T is triggered, and effect A is invoked.

This means that if a condition evaluates false, the state transition may not be trig-
gered until the event occurs again and the condition is reevaluated. Side effects in 
evaluating the condition or in carrying out an exit action will not affect the trig-
gering of a state transition. For example, suppose that event E occurs, and condi-
tion C evaluates true, but then the execution of the exit action changes the world 
so that C no longer evaluates true. The state transition will still be triggered.

Advanced Concepts: Composite States and 
Nested States

Up to this point, we have been discussing simple states and transitions between 
them. In larger, more complex systems, state machine diagrams can get very 
large, tangled, and unwieldy. The ability to nest states gives depth to state 
machine diagrams; this is a key feature of state machine diagrams that mitigates 
the combinatorial explosion of states and state transitions that often occurs in 
complex systems.

In Figure 5–57, we have nested the states Timing, Sounding Alarm, and 
Paused. This nesting is depicted with a surrounding boundary known as a 
region. The enclosing boundary is called a composite state. Thus we now have a 
composite state named Operating that contains the nested states Timing,
Sounding Alarm, and Paused. Note also that this diagram is visually simpli-
fied in that there is now only one transition from the composite state Operating
to the final state. This means that when any of the nested states’ off events 
occur, the transition to the final state fires.

Nesting may be to any depth, and thus substates may be composite states to other 
lower-level substates. Given the composite state Operating with its three sub-
states, the semantics of nesting implies an XOR (exclusive OR) relationship. If 
the system is in the Operating state (the composite state), it must also be in 
exactly one of the three substates: Timing, Sounding Alarm, or Paused.
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For simplicity in drawing state transition diagrams with depth, we may zoom in 
or zoom out relative to a particular state. Zooming out elides substates, and zoom-
ing in reveals substates. When we zoom out of Figure 5–57, we get a state 
machine diagram that is much easier to understand (see Figure 5–58).

Advanced Concepts: Concurrency and 
Control

Concurrent behavior can be depicted in state machine diagrams by simply parti-
tioning a composite state into two or more sub-regions by using dotted lines. Each 
sub-region within the composite state represents behavior that will occur concur-
rently. Figure 5–59 shows a state with three concurrent sub-regions.  

Figure 5–57 Composite and Nested States

Figure 5–58 A Higher-Level View of the State Machine Diagram for the 
Duration Timer
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For our example, when the cooler is overdue for maintenance, the duration timer 
sounds an alarm. Earlier, in Figure 5–56, we showed this by having the state 
machine transition into the Sounding Alarm state. Let us say that, instead of 
just sounding the alarm, we want the system to also capture how long the cooler 
remains overdue for maintenance. We show this in Figure 5–60 by replacing the 
Sounding Alarm state with a composite state, Maintenance Overdue, that 
contains two concurrent states: Sounding Alarm and Timing Maintenance
Overdue (which captures how long the cooler has been overdue for mainte-
nance). Thus, when the transition into the Maintenance Overdue composite 
state occurs, both substates start and run concurrently, that is, the overdue mainte-
nance timer starts and the alarm sounds. (Note that we have removed the transi-
tion that allows the alarm to be turned off without bringing the cooler back online; 
see the off transition from the Sounding Alarm state in Figure 5–56.) 
This helps ensure the alarm will not just be silenced without performing the 
maintenance.

Control flow into and out of concurrent states can be depicted in various ways 
using the UML, each with its own precise meaning. You must be careful to make 
sure that how you diagram the flow correctly represents your intent. Let us exam-
ine this with a generic composite state, as shown in Figure 5–61.

You can transition into a composite state in various ways. For example, you can 
have a transition to the composite state, as shown in Figure 5–62. In this case, the 
concurrent submachines would all activate and begin to operate concurrently. 
Each individual sub-region would execute beginning at the default initial state 
(pseudostate) for that sub-region. While it is not necessary, we recommend 
overtly showing the initial states in the sub-region for clarity.

Figure 5–59 Concurrent Sub-Regions in a State Machine Diagram



Figure 5–60 The Composite Maintenance Overdue State with Concurrent Sub-
Regions

Figure 5–61 A Generic Composite State with Concurrent Sub-Regions

Figure 5–62 A Transition into a Composite State
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Another way to move into a composite state is to use a fork. A fork vertex is actu-
ally another pseudostate (like initial and final states) and is used to split an incom-
ing transition into two or more outgoing transitions. Figure 5–63 shows the use of 
a fork in this manner. The single incoming transition may have an event and or a 
guard condition on it. The multiple outgoing transitions may not. In our case, the 
fork splits the flow of control, and concurrent execution within the composite 
state would begin with substates A, B, and C, as these are the target substates of 
the multiple outgoing transitions from the fork.

Similar constructs can be used when exiting a compound, concurrent state. Figure 
5–64 shows a transition from the composite state to a subsequent state. The single 
completion transition from the composite state fires when all of the prior sub-
states (A, D, and C) are complete.

You can also use a join vertex (another pseudostate) to perform a similar merging 
of control. Figure 5–65 shows multiple transitions from the individual concurrent 
sub-regions to a vertical bar, where they are merged into one outgoing transition. 
This single outgoing transition may also have an event and a guard condition on 
it. In this case, transition to state S would occur when all the joined substates (A,
D, and C) are active, the event occurs, and the condition is satisfied.

The situation shown in Figure 5–65 is not equivalent to that shown in Figure 
5–66. In Figure 5–66, there is no merging of control as there is when joins are 
used. In this case, if any one of the transitions from substates A, D, or C fire, all 
the other concurrent substates will terminate.

Along those same lines, if some sub-regions do not explicitly participate in a 
join (see Figure 5–67), when the join transition fires, the nonparticipating          

Figure 5–63 A Fork into a Composite State



Figure 5–64 A Completion Transition Leaving a Composite State

Figure 5–65 A Join Leaving a Composite State

Figure 5–66 Individual Transitions Leaving a Composite State
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sub-regions will be forced to terminate. Conversely, if some sub-regions do not 
explicitly participate in a fork, the nonparticipating sub-regions will execute start-
ing at their initial states [18, 19].

Advanced Concepts: Submachine State

Along with simple and composite states, there is a third major type of state: a sub-
machine state. Submachine states are used to simplify state machine diagrams or 
to contain common behavior that may be reusable in various diagrams. For exam-
ple, refer back to Figure 5–56. Let us suppose that much more needs to be done 
when the maintenance time is exceeded than just sounding the alarm. Let us say 
that a second timer needs to run to count how much time the cooler has exceeded 
its maintenance cycle and that the system needs to record temperature, coolant 
pressure, on/off cycles, and humidity, making that information available as graphs 
showing the values over time. These new recording requirements could result in a 
quite complex state machine diagram.

In order to keep the diagrams simple, we could simply replace the Sounding
Alarm substate with a submachine state named Operating:Recording (see 
Figure 5–68). This submachine state represents an entirely separate state 
machine diagram that would depict all the detailed recording requirements just 
mentioned. In this manner, submachines enable us to organize complex state 
machine diagrams into understandable structures.

Figure 5–67 Partial Participation in Joins and Forks
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Advanced Concepts: Additional State 
Machine Diagram Elements

State machine diagrams may be the most semantically rich diagram type in the 
UML. They can be very, very complex. Many more elements than we have 
described can be used in state machine diagrams (e.g., entry and exit points, 
shallow and deep history, protocol state machines, and so forth). If you have the 
need or desire to explore these very dark corners of the UML, Appendix B, Fur-
ther Reading, provides some useful references.

5.12 Timing Diagrams

Anyone who has worked on logic circuit design, any electrical engineer, or even 
any electronic hobbyist will recognize timing diagrams. Similar diagrams have 
been used for decades in these and other industries where it’s critical to under-
stand the behaviors and timing of the system elements.

Timing diagrams are a type of interaction diagram. Their purpose is to show how 
the states of an element or elements change over time and how events change 
those states.

Figure 5–68 Using a Submachine State in the State Machine Diagram for the Duration 
Timer
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Essentials: More of the Same

Timing diagrams have many of the same elements that appear in other UML dia-
grams. They have one or more lifelines, one or more objects (or other UML clas-
sifier), two or more states, messages, and so forth. Refer to earlier discussions of 
these elements for a refresher on their semantics, if required.

Essentials: Layout

Timing diagrams take the UML elements and present them to the user in a differ-
ent organization. The general layout of a timing diagram is reminiscent of a 
sequence diagram laid on its side (see Figure 5–69). 

Timing diagrams have one or more lifelines (which look like a horizontal parti-
tion) for each object in the diagram. The lifeline name (i.e., the object name) is 
shown in the lifeline. The possible states of the object are listed inside the lifeline. 
Also, a timeline shows how the object changes from one state to another. Events 
that drive the state changes are shown along the timeline. The horizontal axis 
shows time and may also show tick marks to help the reader of the diagram better 
understand specific timing. For example, Figure 5–70 shows a simple timing dia-

Figure 5–69 A Generic Timing Diagram

Figure 5–70 A Timing Diagram for the Valve Object
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gram for a Valve object that is controlled to fill the WaterStorageTank
object in our Hydroponics Gardening System.

As you can see, Valve has two simple states: open and closed. Alone, this 
timing diagram provides little insight into the operation of the system. (In fact, 
this timing diagram can be considered incomplete.) When does the valve open 
and close? What events cause those changes in state?

Essentials: Events

Events (or other stimuli such as messages) that cause state changes are shown in the 
lifeline near the timeline of the object. In Figure 5–71, two events have been added, 
that is, TankLow and TankFull, which cause changes in the state of the valve. 

Essentials: Constraints

Constraints can be used to specify conditions or limits that restrict the change of 
state shown on a timing diagram. In Figure 5–72, we show a timing diagram with 

Figure 5–71 A Timing Diagram for Valve That Includes Events

Figure 5–72 A Timing Diagram for Two Objects That Includes a Constraint
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both the Valve and the Heater objects represented. This diagram shows the 
relationship between the state of Heater and the state of Valve.

Here we see a constraint on Heater that restricts how quickly the heater can be 
turned back on. (This type of constraint may be in place to prevent rapid or 
repeated switching of the heater’s heating elements on and off, which would typi-
cally reduce its operational life.) The constraint indicates that once the heater is 
turned off, at least three minutes must pass before the heater is turned back on.

Advanced Concepts: Alternate 
Representations

In cases where timing diagrams have many lifelines, or objects that have many 
states, instead of using a timeline as we did in the previous figures, we can use a 
more compact representation, as shown in Figure 5–73. States are shown within 
the hexagons, and the state changes occur between them.

Instead of the change of state being indicated as a rise and fall of a timeline, the 
state changes are merely shown progressing along the horizontal axis.

Advanced Concepts: Events versus 
Messages

As stated earlier, not only can events drive state changes, but other stimuli such as 
messages can, too. So which should be used when? The subtle difference in this 
case is that an event has a specific location in space and time, which is not true for 
messages.

For example, the two events shown earlier in Figure 5–71, TankLow and 
TankFull, physically occur in the actual storage tank. Instead of using these 
events, we could use messages to open or close the valve. Say that the gardener   

Figure 5–73 Using a Compact Representation Instead of Timelines on a 
Timing Diagram 
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decides to add more water to the water storage tank, even though the tank’s level 
is not physically low. The gardener simply wants to increase the amount of water 
in the tank. In this case, using a message would be better than using an event. Fig-
ure 5–74 shows two messages (openCmd and closeCmd) that command the 
valve to open, thus filling the tank, and close, to stop the filling, respectively.

Either messages or events can be used in UML diagrams to express a designer’s 
intent clearly. But when in doubt, the best course of action is to check the seman-
tics of the elements in question (i.e., messages versus events) and use them appro-
priately. UML diagrams are not just sketches. Each element has a specific 
meaning and an appropriate usage.

5.13 Object Diagrams

An object diagram is used to show the existence of objects and their relationships 
in the logical design of a system. Stated another way, an object diagram repre-
sents a snapshot in time of an otherwise transitory stream of events over a certain 
configuration of objects. Object diagrams are thus prototypical—each one repre-
sents the structural relationships that may occur among a given set of class 
instances. In this sense, a single object diagram represents a view of the object 
structure of a system. During analysis, object diagrams are often used to indicate 
the semantics of primary and secondary scenarios that provide a trace of the sys-
tem’s behavior. During design, object diagrams are often used to illustrate the 
semantics of mechanisms in the logical design of a system. Regardless of the 
development phase, object diagrams present concrete examples that assist in the 
visualization of the associated class diagrams.

The two essential elements of object diagrams are objects and their relationships.

Figure 5–74 Using Messages Instead of Events on a Timing Diagram 
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Essentials: Objects

Figure 5–75 shows the icon we use to represent an object in an object diagram. 
Similar to class diagrams, a horizontal line partitions the text inside the icon into 
two regions, one denoting the object’s name and the other providing an optional 
view of the object’s attributes and their values. Here, though, we see a tool-specific 
implementation that does not use a horizontal line to completely partition the two 
regions.

The name of an object may be written in any of the three following forms:

■ objectName Object name only
■ :ClassName Object class only
■ objectName :ClassName Object name and class

All forms of an object name are underlined to clearly distinguish them from a 
class name. If we never specify the class of an object, either explicitly by using 
the above syntax or implicitly through the object’s specification, the object’s class 
is considered anonymous. If we specify only a class name, the object is said to be 
anonymous; each such icon without an object name denotes a distinct anonymous 
object.

For some objects, it may be useful to expose a portion or all of their attributes. We 
say “some” because objects represent only a view of the object structure. The 
name of each of these attributes must refer to an attribute defined in the object’s 
class or any of its superclasses. The syntax includes the ability to specify a value 
for each attribute, as shown in Figure 5–75. We do not show class properties, such 
as operations, since they are shared by all instances of the class.

Essentials: Object Relationships

As explained in Chapter 3, objects interact through their links to other objects, as 
shown in Figure 5–76, which is an object diagram corresponding to the class dia-
gram of Figure 5–39. A link is an instance of an association, analogous to an 
object being an instance of a class.

Figure 5–75 A Generic Object Icon
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A link may exist between two objects if and only if there is an association 
between their corresponding classes. This class association may manifest itself in 
any way, meaning that the class relationship could be a plain association, a gener-
alization, an aggregation, or a composition. The existence of an association 
between two classes therefore denotes a path of communication (i.e., a link) 
between instances of the classes, whereby one object may send messages to 
another. All classes implicitly have an association to themselves, and hence it is 
possible for an object to send a message to itself.

Advanced Concepts: End Names and 
Qualifiers

We’ve discussed objects and their relationships, which constitute the essential 
parts of the notation for object diagrams. However, a number of particularly 
knotty development issues require slightly more than this basic notation. As we 
warned in our discussion on class diagrams, we must again emphasize that these 

Figure 5–76 Object Relationships
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advanced features should be applied only as necessary to capture the intended 
semantics of a scenario.

In an earlier section, we noted that associations in a class diagram may be adorned 
with a role denoting the purpose or capacity wherein one class associates with 
another. For certain object diagrams, it is useful to restate this role on the correspond-
ing link between two objects. Often, this adornment helps to explain why one 
object is operating on another. Figure 5–76 provides an example of this advanced 
feature. Here we see that a PlanAnalyst object (Susan) both uses information 
from and contributes information to an anonymous CropEncyclopedia
object, and does so while acting in the role of userContributor, as denoted 
by the end name on the link. When comparing Figure 5–76 to Figure 5–39 (from 
our class diagram discussion), we notice that we have two instances of the 
PlanAnalyst class; one is Susan, in the role of lead, collaborating with the 
other one, Roger, in the role of staff. Susan is also in the role of lead with 
respect to the relationship with Anthony (a Nutritionist object), who is 
assisting Susan.

In Figure 5–39, we saw a class adornment called a qualifier whose value uniquely 
identifies a single object, out of many, at the target end of an association. Specifi-
cally, the class CropEncyclopedia uses the attribute scientificName as 
a qualifier to navigate to individual entries in the set of items managed by 
instances of CropEncyclopedia. Here in Figure 5–76, our instance of crop is 
a commercialStrawberry, which was selected by using Fragaria × 
ananassa2 as the scientificName qualifier.

Using the same representation as for class diagrams, additional notations that we 
may represent on object diagrams include constraint, keyword label, navigation, 
and link name.

5.14 Communication Diagrams

If you are familiar with the earlier versions of the UML, you may recognize com-
munication diagrams by their pre-UML 2.0 name—collaboration diagrams. A 
communication diagram is a type of interaction diagram that focuses on how 
objects are linked and what messages they pass as they participate in a specific 
interaction.

2. Fragaria × ananassa is known by a number of common names, including commercial 
strawberry, garden strawberry, cultivated strawberry, and just plain strawberry.
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Essentials: Objects, Links, and Messages

A link may exist between two objects if and only if there is an association 
between their corresponding classes. The existence of an association between two 
classes denotes a path of communication (i.e., a link) between instances of the 
classes, whereby one object may send messages to another. 

Given object A with a link L to object B, A may invoke any operation that is appli-
cable to B’s class and accessible to A; the reverse is true for operations invoked by 
B on A. We will refer to the object that invokes the operation as the client and 
whichever object provides the operation as the supplier. In general, the sender of a 
message knows the receiver, but the receiver does not necessarily know the sender.

In the steady state, there must be consistency between the class structure and the 
object structure of a system. If we show an operation M being invoked across link 
L on object B, then B’s specification (or the specification of an appropriate super-
class) must contain the declaration of M.

Figure 5–77 shows an example of a communication diagram for the Hydroponics 
Gardening System. The intent of this diagram is to illustrate the interaction for the 
execution of a common system function, namely, the determination of a predicted 
net cost-to-harvest for a specific crop.

As shown in Figure 5–77, we may adorn a link with one or more messages. We 
indicate the direction of a message by adorning it with a directed line, pointing 
to the destination object. An operation invocation is the most common kind of 
message (the other type would be a signal). An operation invocation may include 
actual parameters that match the signature of the operation, such as the 
timeToHarvest message that appears in Figure 5–77.

Essentials: Sequence Expressions

Carrying out the predicted net cost-to-harvest system function requires the collab-
oration of several different objects. To show an explicit ordering of events, we 
prefix a sequence number (starting at 1) to a message. This sequence expression 
indicates the relative ordering of messages. Messages with lower sequence num-
bers are dispatched before messages with higher sequence numbers. The 
sequence numbers in Figure 5–77 specify the order of messages for that example.

Using a nested decimal numbering scheme (e.g., 4.1.5.2), we can show how some 
messages are nested within the next higher-level procedure call. Each integer term 
indicates the level of nesting within the interaction. Integer terms at the same level 
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indicate the sequence of the messages at that level. In Figure 5–77, message 1.3 
follows message 1.2, which follows message 1.1, and all are nested calls within 
the timeToHarvest call activation (i.e., message 1).

We see from this diagram that the action of the scenario begins with some 
PlanAnalyst object invoking the operation timeToHarvest() on 
PlanMetrics. Note that the object C is passed as an actual argument to this 
operation. Subsequently, PlanMetrics calls status() on a certain unnamed 
GardeningPlan object; our diagram includes a development note indicating 
that we must check that the given plan is in fact executing. The GardeningPlan
object in turn invokes the operation maturationTime() on the selected 
GrainCrop object, asking for the time the crop is expected to mature. After this 
selector operation completes, control then returns to the PlanAnalyst object, 
which then calls yield(), which in turn propagates this operation to the 
C:GrainCrop object. Control again returns to the PlanAnalyst object, 
which completes the scenario by invoking the operation netCost() on itself.

Figure 5–77 A Communication Diagram for the Hydroponics Gardening 
System
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(This diagram also indicates a link between the PlanAnalyst and 
GardeningPlan objects. Although no messages are passed, the presence of 
this link highlights the existence of a semantic dependency between the two 
objects.)

Figure 5–78 shows the same sequence of messages as in Figure 5–77. However, 
the nesting of the messages is different. Here, messages 1.1 and 1.2 are nested 
within the timeToHarvest message (1), and message 2.1 is nested within the 
yield message (2). The same functionality is provided, but the structure of con-
trol differs.

The sequence expression may also contain a name to indicate concurrent mes-
sages at a specific level of nesting. For example, using the names a and b, mes-
sages 7.2a and 7.2b would be concurrent within the activation of message 7.2. 
Each would have its own thread of control. 

Figure 5–78 A Variant of Figure 5–77, Showing Different Sequence Numbers
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Advanced Concepts: Messages and 
Synchronization

Albeit slightly contrived, the example in Figure 5–79 illustrates the different 
kinds of message synchronization that may appear in a communication diagram. 
The message startup() is an example of a simple call and is represented with 
a directed line with a solid arrowhead. This indicates a synchronous message. In 
the cases of the startup() and isReady() messages, the client must wait 
for the supplier to completely process the message before control can resume. 

In the case of the message turnOn(), the semantics are different. This is an 
example of an asynchronous message, indicated by the open arrowhead. Here the 
client sends the event to the supplier for processing, the supplier queues the mes-
sage, and the client then proceeds without waiting for the supplier. Asynchronous 
message passing is akin to interrupt handling.

Advanced Concepts: Iteration Clauses and 
Guards

Additional information can be added to the sequence expression to refine how 
execution occurs. An iteration clause optionally can be added to indicate a series 
of messages to be sent. The manner in which the iteration clause is specified is up 

Figure 5–79 Objects and Synchronization
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to the individual, although using pseudocode would seem a good choice. Figure 
5–80 shows an iteration clause added to the turnOn() message. The adornment 
is shown as an asterisk followed by the iteration clause in brackets. This example 
indicates that the turnOn message is to be sent sequentially, 1 to n times. If the 
messages were to be sent concurrently, the asterisk would be followed by a dou-
ble bar (i.e., *||[i=1..n]).

Guard conditions can also adorn messages. The notation is similar to an iteration 
clause, but without the asterisk. The guard condition is placed within brackets, as 
shown in Figure 5–80 for the startup message. This condition indicates that 
the message will be executed when the guard condition is true, in this case, when 
the temperature is below the minimum temperature desired. The manner in which 
the guard is expressed is up to the individual.

Summary

■ Designing is not the act of drawing a diagram; a diagram simply captures a 
design.

■ In the design of a complex system, it is important to view the design from 
multiple perspectives: namely, its conceptual, logical, and physical models 
and its structural and behavioral semantics.

Figure 5–80 Iteration Clause and Guard Adornments on a Communication 
Diagram
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■ The UML includes thirteen diagrams: package diagram, component diagram, 
deployment diagram, use case diagram, activity diagram, class diagram, 
sequence diagram, interaction overview diagram, composite structure dia-
gram, state machine diagram, timing diagram, object diagram, and commu-
nication diagram.

■ A package diagram provides the means to organize the artifacts of the 
development process to clearly present the analysis of the problem space 
and the associated design. The specific reasons will be varied but will either 
focus on physically structuring the visual model itself or on clearly repre-
senting the model elements through multiple views.

■ A component diagram shows the internal structure of components and their 
dependencies with other components. This diagram provides the representa-
tion of components, collaborating through well-defined interfaces, to pro-
vide system functionality.

■ A deployment diagram shows the allocation of artifacts to nodes in the 
physical design of a system. A single deployment diagram represents a view 
into the artifact structure of a system. During development, we use deploy-
ment diagrams to indicate the physical collection of nodes that serve as the 
platform for execution of our system.

■ A use case diagram depicts the context of the system to be built and the 
functionality provided by that system. Use case diagrams depict who (or 
what) interacts with the system. They show what the outside world wants 
the system to do.

■ An activity diagram provides the visual depiction of the flow of activities, 
whether in a system, business, workflow, or other process. These diagrams 
focus on the activities performed and who (or what) is responsible for the 
performance of those activities.

■ A class diagram shows the existence of classes and their relationships in the 
logical design of a system. During analysis, class diagrams indicate the 
common roles and responsibilities of the entities that provide the system’s 
behavior. During design, class diagrams capture the structure of the classes 
that form the system’s architecture.

■ A sequence diagram traces the execution of a scenario in the same context 
as an object diagram. To a large degree, a sequence diagram is simply 
another way to represent an object diagram.

■ An interaction overview diagram is a combination of activity diagrams and 
interaction diagrams intended to provide an overview of the flow of control 
between diagram elements. Though any type of interaction diagram may be 
used, the sequence diagram is most prevalent.

■ A composite structure diagram provides a way to depict a structured classi-
fier with the definition of its internal structure. This diagram is also useful 
during design to decompose classes into their constituent parts and model 
their runtime collaborations.
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■ A state machine diagram is used to design and understand time-critical sys-
tems. A state machine diagram expresses behavior as a progression through 
a series of states, triggered by events, and the related actions that may occur. 
These are also known as behavioral state machines.

■ A timing diagram is a type of interaction diagram. Its purpose is to show 
how the states of an element or elements change over time and how events 
change those states.

■ An object diagram shows the existence of objects and their relationships in 
the logical design of a system. A single object diagram represents a view of 
the object structure of a system and is typically used to represent a scenario.

■ A communication diagram is a type of interaction diagram that focuses on 
how objects are linked and the messages they pass, as they participate in a 
specific interaction. 



This page intentionally left blank 



247

C h a p t e r  6

Process

The amateur software engineer is always in search of magic, some sensa-
tional method or tool whose application promises to render software 
development trivial. It is the mark of the professional software engineer to 
know that no such panacea exists. Amateurs often want to follow cook-
book steps; professionals know that such approaches to development 
usually lead to inept design products, born of a progression of lies, and 
behind which developers can shield themselves from accepting responsi-
bility for earlier misguided decisions. The amateur software engineer 
either ignores documentation altogether or follows a process that is docu-
mentation-driven, worrying more about how these paper products look to 
the customer than about the substance they contain. The professional 
acknowledges the importance of creating certain documents but never 
does so at the expense of making sensible architectural innovations.

The process of object-oriented analysis and design cannot be described 
in a cookbook, yet it is sufficiently well defined as to offer a predictable and 
repeatable process for the mature software development organization. In 
this chapter, we examine the analysis and design process in detail (and 
the overall software development process in general) as we consider the 
purposes, products, steps, and measures of each of the analysis and 
design activities.
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6.1 First Principles

We begin our discussion of process by covering some first principles—those traits 
that tend to characterize successful projects.

Traits of Successful Projects

A successful software project is one in which the deliverables satisfy and possibly 
exceed the customer’s expectations, the development occurred in a timely and 
economical fashion, and the result is resilient to change and adaptation. By this 
measure, we have observed several traits1 that are common to virtually all of the 
successful object-oriented systems we have encountered and noticeably absent 
from the ones that we count as failures:

■ Existence of a strong architectural vision
■ Application of a well-managed iterative and incremental development 

lifecycle

Strong Architectural Vision

A strong architectural vision is something that is common to virtually all of the 
successful object-oriented systems we have encountered. So, what is architec-
ture? The IEEE Recommended Practice for Architectural Description of Software 
Intensive Systems (referred to as IEEE 1471) defines architecture as the “funda-
mental organization of a system embodied in its components, their relationships 
to each other, and to the environment, and the principles guiding its design and 
evolution” [42]. There are numerous other definitions for architecture in use 
today, but most definitions indicate that architecture is concerned with both struc-
ture and behavior, is concerned with significant decisions only, may conform to 
an architectural style, is influenced by its stakeholders and its environment, and 
embodies decisions based on rationale [41].

A system that has a sound architecture is one that has conceptual integrity, and as 
Brooks firmly states, “conceptual integrity is the most important consideration in 
system design” [1]. In some ways, the architecture of a system is largely irrele-

1. Some may argue that there are many other traits of successful projects, and we agree. 
However, in this chapter, we have chosen these traits to focus on as they have a direct effect 
on object-oriented analysis and design processes.
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vant to its end users. However, having a “clean internal structure” is essential to 
constructing a system that is understandable, can be extended and reorganized, 
and is maintainable and testable [2]. It is only through having a clear sense of a 
system’s architecture that it becomes possible to discover common abstractions 
and mechanisms. Exploiting this commonality ultimately leads to the construc-
tion of systems that are simpler and therefore smaller and more reliable. Neglect-
ing an architectural vision leaves us with the software equivalent of sludge.

Just as there is no right way to classify abstractions, there is no right way to craft 
the architecture of a given system. For any application domain, there are certainly 
some profoundly stupid ways, and occasionally some very elegant ways, to 
design the architecture of a solution. How then do you distinguish a good architec-
ture from a bad one? Fundamentally, good architectures tend to be object-oriented 
and structured by using components. This is not to say that all object-oriented 
architectures are good, or that only object-oriented architectures are good. How-
ever, as we discussed in Chapters 1 and 2, it can be shown that the application of 
the principles that underlie object-oriented decomposition tend to yield architec-
tures that exhibit the desirable properties of organized complexity.

Good software architectures tend to have several attributes in common.

■ They are constructed in well-defined layers of abstraction, each layer repre-
senting a coherent abstraction, provided through a well-defined and con-
trolled interface, and built on equally well-defined and controlled facilities 
at lower levels of abstraction.

■ There is a clear separation of concerns between the interface and implemen-
tation of each layer, making it possible to change the implementation of a 
layer without violating the assumptions made by its clients.

■ The architecture is simple: Common behavior is achieved through common 
abstractions and common mechanisms.

Architectures constructed in this way tend to be less complex and more robust 
and resilient. They also enable more effective reuse.

Agile processes tend to deemphasize the importance of establishing the architec-
ture up front. Instead, they describe concepts such as simple design, emergent 
design, refactoring, and “serendipitous” architecture [47]. In such processes, the 
architecture evolves over time. As we discuss in an upcoming section, Toward a 
Rational Development Process, the approach you choose depends on your con-
text. In any case, when in the lifecycle the architecture is developed and how it is 
developed does not downplay the importance of having an architectural vision. 
Without such a vision, the system is harder to evolve and maintain over time.
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Iterative and Incremental Lifecycle

For a few limited application domains, the problem being solved may already be 
well defined, with many different implementations currently fielded. Here, it is 
possible to almost completely codify the development process: The designers of a 
new system in such a domain already understand what the important abstractions 
are, they already know what mechanisms ought to be employed, and they gener-
ally know the range of behavior expected of such a system. Creativity is still 
important in such a process, but here the problem is sufficiently constrained as to 
already address most of the system’s strategic decisions. In such circumstances, it 
is possible to achieve radically high rates of productivity because most of the 
development risk has been eliminated [6]. The more you know about the problem 
to be solved, the easier it is to solve.

Most industrial-strength software problems are not like this. Most involve the bal-
ancing of a unique set of functional and performance requirements, and this task 
demands the full creative energies of the development team. Under such circum-
stances, it is impossible to provide a cookbook process. Software development, 
like any human activity that requires creativity and innovation, demands an itera-
tive and incremental process that relies on the experience, intelligence, and talent 
of each team member.2

Iterative and incremental development is where the functionality of the system is 
developed in a successive series of releases (iterative) of increasing completeness 
(incremental). A release may be external (available to the customer) or internal 
(not available to the customer). The selection of what functionality is developed 
in each iteration is driven by the mitigation of project risks, with the most critical 
risks being addressed first. The experience and results gained as a result of one 
iteration are applied to the next iteration. With each iteration, you gradually refine 
your strategic and tactical decisions, ultimately converging on a solution that 
meets the end user’s real (and usually unstated) requirements and yet is simple, 
reliable, and adaptable.

The iterative and incremental approach is at the heart of most modern software 
development methods, including agile methods like Extreme Programming (XP) 

2. The “Day in the Life” empirical study led by Booch reinforces these observations. This 
experiment was conducted on Tuesday, March 27, 2001, and it involved 50 developers 
from around the world. Booch studied a group of developers, observing what they did with 
their time and how they employed tools. From these studies, he noted that “Individuals and 
teams must cope with high degrees of uncertainty, ambiguity, and chaos, while at the same 
time, demanding creativity, predictability, and repeatability. . . . Development is a team 
sport. . . . The importance of team productivity will supersede the importance of individual 
programmer productivity” [40].
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and SCRUM. It is extremely well suited to the object-oriented paradigm and 
offers a number of benefits relative to risk management. As Gilb so aptly states, 
“evolutionary3 delivery is devised to give us early warning signals to impending 
unpleasant realities” [15].

The following are some advantages of an iterative development approach [45].

■ Requirements changes are accommodated. Each iteration focuses on a spe-
cific set of requirements.

■ There is no “big bang” integration effort at the end of the project. Each 
iteration involves the integration of the elements included in the release. 
Integration is progressive and continual.

■ Risks are addressed early. Early iterations mitigate key risks and allow for 
the identification of new risks earlier in the lifecycle, when they are more 
easily addressed.

■ Tactical changes to the product are possible. Changes can be made to the 
product and/or early releases of the product are possible in order to counter 
a competitor’s move.

■ Reuse is facilitated. Key components of the architecture are actually built 
early, so the identification of reusable elements, as well as the opportunity 
to reuse existing elements, is easier.

■ Defects can be found earlier and corrected. Testing is performed during 
every iteration, so defects can be found early and corrected in subsequent 
iterations instead of being found at the end of the project, when there may 
not be time to fix them (or the impact of fixing the defects is too big).

■ Project personnel are employed more effectively. Iterative development 
encourages a model in which team members play multiple roles during an 
iteration, as opposed to a pipeline organization in which analysts hand off to 
designers, who hand off to programmers, who hand off to testers, and so on. 
An iterative approach leverages the expertise of the team members and 
eliminates handoffs.

■ Team members learn along the way. Each iteration offers team members the 
opportunity to learn from past experiences (“practice makes perfect”). 
Issues in one iteration can be addressed in later iterations.

■ The development process can be refined and improved. Each iteration 
results in an assessment of what worked and what didn’t with regard to pro-
cess and organization. The results of these assessments can be used to 
improve the process for the next iteration.

3. In evolutionary development, the solution evolves over time instead of being defined 
and then frozen up front. Evolutionary development fits very well with incremental and it-
erative development because each iteration provides an opportunity to evolve the system 
by using feedback from the previous iteration.
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Now that we have looked at some traits that tend to distinguish successful 
projects, let’s take a look at the range of processes currently available and some 
strategies for arriving at a rational process.

Toward a Rational Development Process

Parnas and Clements once said, “we will never find a process that allows us to 
design software in a perfectly rational way” [9] because of the need for creativity 
and innovation during the development process. However, they went on to say, 
“the good news is that we can fake it. . . . [Because] designers need guidance, we 
will come closer to a rational process if we try to follow the process rather than 
proceed on an ad hoc basis. When an organization undertakes many software 
projects, there are advantages to having a standard procedure. . . . If we agree on 
an ideal process, it becomes much easier to measure the progress that the project 
is making.” As we noted earlier, it is important to have a well-managed incremen-
tal and iterative lifecycle: well-managed in the sense that the process can be con-
trolled and measured, yet not so rigid that it fails to provide sufficient degrees of 
freedom to encourage creativity and innovation. In this section, we discuss the 
range of process styles available today and provide some recommendations on 
how to select the process style that best meets the needs of your project and your 
organization.

In the software development community today, there is a plethora of software 
development processes to choose from—the Rational Unified Process (RUP), XP, 
SCRUM, Crystal, and so on. Which software development process you choose 
has a profound impact on how you plan and develop your software development 
projects and may even determine the success or failure of those projects. Thus, 
such a decision should not be taken lightly. The good news is that the choice of 
which process to use is not a binary decision. In fact, we like to think of all soft-
ware development processes as existing somewhere on a process continuum, with 
agile on one end and plan-driven on the other.4 The location of a specific process 
on the continuum is based on its key themes and its overall strategy.

With agile processes, the primary goal is to deliver a system to the customer that 
meets their current needs in the shortest amount of time. The process is just a 
means to an end. Thus, agile processes tend to have the following characteristics:

■ Lightweight and sparse, less ceremony (do only what is absolutely neces-
sary and no more)

4. Boehm and Turner provide a detailed discussion of the differences between agile and 
plan-driven processes [38].
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■ Reliant on the tacit knowledge of the team members (rather than on well-
documented processes)

■ Tactically focused rather than strategic (don’t build for the future as that 
future is unknown)

■ Iterative and incremental (deliver parts of the system in several cycles)
■ Heavily reliant on customer collaboration (customers are active participants 

in requirements definition and validation)
■ Self-organizing and managing (the teams figure out the best way to work)
■ Emergent as opposed to predetermined (the process evolves out of actually 

executing the process as opposed to being planned or defined up front)

Agile processes release the software development teams from following a strict 
set of steps and allow developers to concentrate their creative energies on the sys-
tem under development.

With plan-driven processes, in addition to delivering the desired system to the 
customer in an acceptable time frame, another important goal is the definition and 
validation of a predictable, repeatable software development process. The process 
is not just a means to an end but is considered an end in itself. In other words, in 
addition to the system requested by the customer, the software development pro-
cess itself and its artifacts are key results. Thus, plan-driven processes tend to 
have these characteristics:

■ More heavyweight, more ceremony (follow prescriptive activities resulting 
in well-documented artifacts)

■ Reliant on well-documented processes (as opposed to the tacit knowledge 
of the team members)

■ Strategically focused rather than tactically focused (establish a strong archi-
tectural framework that can accommodate future changes)

■ Reliant on a customer contract (develop and agree on a contract that 
describes up front what is to be built)

■ Managed and controlled (follow detailed plans with explicit milestones and 
verification points both within and across teams)5

■ Defined up front and then continually improved (include explicit process 
improvement procedures and infrastructure)

There is a common misconception that agile means no process and all creativity 
and that plan-driven means all process and no creativity. This is not an accurate 

5. Plan-driven processes are not necessarily iterative and incremental (a project can apply a 
strictly waterfall plan-driven process), but they can be (and we recommend that they should be).
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representation of either process style. Agile does not mean lack of process. Agile 
processes are designed to rapidly handle changes to both the application being 
developed and the process itself. Agile processes are not, by definition, more cre-
ative and innovative than plan-driven ones. Iterative and incremental plan-driven 
processes that allow time for prototyping provide plenty of room for creativity 
and innovation.

The choice of which software development process is right for your project is best 
determined by using a two-phase approach. You first figure out where you (your 
organization and your project) are on the process continuum, and then you select 
the process style that will serve as the overall guiding framework for your devel-
opment process. Then you customize and configure that process framework to 
include techniques from the other process styles so that the resulting development 
process achieves the balance between agile and plan-driven techniques that 
reflects your position on that continuum. For example, if you are closer to the 
agile end of the continuum, the overall framework or strategy that you will follow 
in your process will be agile. Then, depending on how far you are to the right 
(toward the plan-driven end), the more of the plan-driven techniques you will 
adopt, refine, and include in your process. It is also important to note that the style 
of process you use may vary depending on where you are in the lifecycle. Early 
lifecycle phases may require more agility, whereas later lifecycle phases may 
require more rigor.

To figure out where you are on the process continuum, compare the characteris-
tics of your project with the characteristics of the different process styles, and 
select the process style with the closest match. Table 6–1 lists the project charac-
teristics commonly associated with the process styles on each end of the 
continuum.

When deciding on how agile or how plan-driven you need to be, just as with soft-
ware development, let risk be a guiding factor. What are the risks faced by your 
project? Select a process style and supporting techniques that address those risks. 
Is it more risky to use the process or more risky to live without it? Always strive 
to reduce risk. No matter what process you choose, it should be treated as a recipe 
that can be adjusted to fit your project’s personal tastes, available ingredients, 
time available, and intended consumers. In the end, all projects need to meet cus-
tomer needs and be responsive to change in order to maintain relevancy. Thus, 
every project could benefit from a little agility (which enables flexibility and fos-
ters creativity and invention) as well as a little discipline (which provides predict-
ability, repeatability, and consistency). Using the terms of Parnas and Clements 
mentioned earlier, this is how you can fake a rational design process for building 
object-oriented systems.
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Once your process is defined, your process work is not done. The process should 
be refined throughout the development lifecycle as issues arise (ideally, after 
every iteration). Process activities that worked well should be retained, and those 
that did not should be eliminated. (And then, rinse and repeat.) Continual process 
improvement based on practical experience executing the process should be the 
goal.

The remainder of this chapter describes a framework for the software develop-
ment process that has been tuned to the construction of object-oriented systems. 
The software development process is described from two perspectives—the over-
all software development lifecycle (the macro process) and the analysis and 

Table 6–1 Agile and Plan-Driven Project Characteristics

Agile Plan-Driven

■ Project is small (5–10 peoplea).
■ Experienced teams with a wide range 

of abilities and skills take part.
■ Teams are self-starters, independent 

leaders, and others who are self-direct-
ing.

■ Project is an in-house project, and the 
team is co-located.

■ System is new, with lots of unknowns. 
■ Requirements must be discovered.
■ Requirements and environment are 

volatile, with high change rates.
■ End-user environment is flexible.
■ Relationship with customer is close 

and collaborative.
■ Customer is readily available, dedi-

cated, and co-located.
■ High trust environment exists within 

the development teams, between the 
development teams, and with the cus-
tomer.

■ Rapid value and high-responsiveness 
are required.

■ Project is large (more than 10 people).
■ Teams include varied capabilities and 

skill sets.
■ Teams are geographically distributed 

and/or outsourced. 
■ Project is of strategic importance (e.g., 

an enterprise initiative); scope crosses 
the organization.

■ System is well understood, with a 
familiar scope and feature set.

■ Requirements are fairly stable (low 
change rates) and can be determined in 
advance. 

■ System is large and complex, with 
critical safety or high reliability 
requirements.

■ Project stakeholders have a weak rela-
tionship with the development team.

■ External legal concerns (e.g., con-
tracts, liability, formal certification 
against specific industry standards) 
exist

■ Focus is on strong, quantitative pro-
cess improvement.

■ Definition and management of process 
are important. 

■ Predictability and stability of process 
are important.

a. For a discussion on team size for agile projects, see Boehm and Turner [38].
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design process (the micro process). The discussion of the macro process sets the 
context for the micro process, which is the true focus of this chapter. 

A key point in the definition of the macro and micro processes is the strong 
separation of concerns between them. The macro process is concerned with the 
overall software development lifecycle, and the micro process is concerned with 
specific analysis and design techniques—the techniques you use to get from 
requirements to implementation. The choice of lifecycle style (e.g., waterfall, iter-
ative, agile, plan-driven, and so on) affects the macro process, and the choice of 
analysis and design techniques (e.g., structured, object-oriented, and so on) 
affects the micro process. Thus, whether you choose an agile or a plan-driven pro-
cess as your macro process, the object-oriented analysis and design tips and tech-
niques described in the micro process section can be applied equally well.

6.2 The Macro Process: The Software 
Development Lifecycle

The macro process is the overall software development lifecycle that serves as the 
controlling framework for the micro process (which we’ll describe later in this 
chapter). It represents the activities of the entire development team, and as such, 
the macro process dictates a number of measurable products and activities that 
permit the development team to meaningfully assess risk and make early correc-
tions to the micro process, so as to better focus the team’s analysis and design 
activities.

As we noted earlier, there is a continuum of software development lifecycle styles 
currently available to choose from—from waterfall to iterative, from agile to 
plan-driven, and many possibilities in between. The selection of a lifecycle style 
directly affects the size and shape of the macro process (e.g., the definition and 
number of phases, the recommended iteration duration, the average number of 
iterations, and so on). 

In this section, we will describe an example of a plan-driven macro process that 
directly supports the two traits we discussed at the beginning of this chapter: a 
strong architectural focus and an iterative development lifecycle. The macro pro-
cess we describe is the RUP lifecycle [51]. This will provide a baseline against 
which we will compare other possible lifecycles. For a detailed comparison of the 
lifecycles for different agile methods, see Larman [46].
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Overview

The purpose of the macro process is to guide the overall development of the sys-
tem, ultimately leading to the production system. The scope of the macro process 
is from the identification of an idea to the first version of the software system that 
implements that idea. 

The development of subsequent versions of the system, whether for evolutionary 
or maintenance purposes, is accomplished by executing another instance of the 
macro process (another lifecycle). The size and shape of the maintenance lifecy-
cle is a variant of the initial development lifecycle. For more information on the 
maintenance lifecycle, see the Post-Transition Software Evolution and Mainte-
nance sidebar.

In an iterative and incremental macro process, which is the style we will concen-
trate on in this section, the macro process defines the system in an evolutionary 
way through successive refinements, ultimately leading to the production system. 
The primary product of such a process is a stream of executable releases (itera-
tions) representing successive refinements (increments) of the system. Secondary 
products include behavioral prototypes6 used to explore alternative designs or to 
further analyze the dark corners of the system’s functionality, as well as docu-
mentation used to record design decisions and rationale.7

The macro software development process can be described in terms of two 
dimensions, content and time—what is done and when it is done. The content 
dimension includes roles, tasks, and work products and can be described in terms 
of disciplines, or areas of concern, which logically group the content. The time 
dimension shows the lifecycle aspects of the process and can be described in 
terms of milestones, phases, and iterations. 

6. For more information on behavioral prototypes, see the Prototyping in the Software De-
velopment Process sidebar.

7. Many developers balk at “unnecessary documentation” because they don’t feel it bene-
fits them. However, it is important to note that the audience for documentation is rarely the 
current development team but is usually people external to the team (such as integrators, 
database administrators, project managers, operational support teams, technical help desk 
staff, and so on) or people who will join the team in the future. Thus, documentation should 
be created only if it will be read in the future. When it is developed, documentation should 
evolve along with the system rather than being treated as a separate milestone and should 
be a natural, semiautomatically generated artifact of the process. 
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Post-Transition Software Evolution and Maintenance

Once a software system has been delivered (post-transition), changes to 
the deployed system will most likely be needed. Those changes may be to 
provide new or improved features (evolution) or to fix discovered defects 
(maintenance). The issue of maintaining an operational system without 
breaking what is already there is a real concern.

Lehman and Belady have made some cogent observations regarding the 
maturation of a deployed software system.

■ A program that is used in a real-world environment necessarily must change 
or become less and less useful in that environment (the law of continuing 
change).

■ As an evolving program changes, its structure becomes more complex unless 
active efforts are made to avoid this phenomenon (the law of increasing 
complexity). [31]

Refinement of deployed software systems is especially important in agile 
development. In fact, one of the key principles of agile development is “to 
satisfy the customer through early and continuous delivery of valuable 
software” [35]. With agile processes, deployed systems are continually 
refactored to simplify their structure without breaking any existing imple-
mentations (e.g., all tests must still pass).

Changes to a deployed software system can be developed and delivered 
by reexecuting a lifecycle that is similar to the original software develop-
ment lifecycle, except that the size and shape of a maintenance lifecycle 
(i.e., what phases are needed and the number of iterations in each phase) 
depend on what needs to be accomplished in the release. Some mainte-
nance releases involve simple localized changes and no architectural inno-
vation (i.e., they include mainly a Transition phase), but others require 
some thinking with regard to scope and business value, as well as architec-
ture and risk (i.e., they include both Inception and Elaboration phases). 
Such maintenance releases are considered more major, and their lifecycles 
look something more like the complete end-to-end process. For a discus-
sion of maintenance lifecycles, see Kruchten [44].

The products of evolution and maintenance lifecycles are similar to those of 
the original release lifecycle, with the addition of a list of change requests. 
Immediately upon release of the production system, its developers and end 
users will probably already have a set of improvements or modifications 
they would like to carry out in subsequent production releases, which for 
business reasons did not make it into the initial production release. Addi-
tionally, as more users exercise the system, new bugs and patterns of use 
will be uncovered that the quality assurance team could not anticipate. 
(Users are amazingly creative when it comes to exercising a system in 
unexpected ways.) A change request list serves as the vehicle for collecting 
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The Macro Process Content Dimension—
Disciplines

The macro process involves the following disciplines, executed in the following 
relative order.

1. Requirements: Establish and maintain agreement with the customers and 
other stakeholders on what the system should do. Define the boundaries of 
(delimit) the system. 

2. Analysis and design: Transform the requirements into a design of the sys-
tem, which serves as a specification of the implementation in the selected 
implementation environment. This includes evolving a robust architecture 
for the system and establishing the common mechanisms that must be used 
by disparate elements of the system.

3. Implementation: Implement, unit test, and integrate the design, resulting in 
an executable system.

4. Test: Test the implementation to make sure that it fulfills the requirements 
(i.e., the requirements have been implemented appropriately). Validate 
through concrete demonstration that the software product functions as 
designed.

5. Deployment: Ensure that the software product (including the tested imple-
mentation) is available for its end users.

The following disciplines are executed throughout the lifecycle.

■ Project management: Manage the software development project, including 
planning, staffing, and monitoring the project, as well as managing the 
risks.

defects and enhancement requirements, so that they can be prioritized for 
future releases.

The activities performed after transition are similar to those required during 
the development of a system. However, in addition to the usual software 
development activities, post-transition release planning involves prioritizing 
the change requests, assessing their impact and cost of development, and 
assigning the changes to a release. Also, many operational problems must 
be resolved within 24 hours (or fewer!). Thus, patches must be delivered 
outside of the normal release mechanism. Configuring and testing such 
changes as well as integrating them into the current development release 
can be significant project activities.
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Prototyping in the Software Development Process

Prototyping serves multiple purposes in the software development process. 
Before discussing the role of prototyping, let’s first define what we mean by 
a prototype, specifically, a behavioral prototype. A behavioral prototype 
explores some isolated element of the system, such as a new algorithm, a 
user interface model, or a database schema. Its purpose is the rapid explo-
ration of design alternatives, so that areas of risk can be resolved early 
without endangering the production releases. Such prototypes are, by their 
very nature, incomplete and only marginally engineered, and they are 
meant to be thrown away after they have served their purposes. 

The first use of a behavioral prototype is usually during the early phases of 
the software development lifecycle when you are trying to understand what 
can be built and what technologies you can leverage to build it. For every 
significant new system, there should be some proof-of-concept, manifest-
ing itself in the form of a quick-and-dirty prototype. Obviously, for applica-
tions on a massive scale (such as ones that have national significance or 
multinational implications), the prototyping effort itself may be a large 
undertaking. That is to be expected and, in fact, encouraged. It is far better 
to discover during proof-of-concept that assumptions of functionality, per-
formance, size, or complexity were wrong, rather than later, when aban-
doning the current development path could prove to be financially or 
socially disastrous. 

Behavioral prototypes can also be used throughout the software develop-
ment lifecycle to better understand the semantics of the system’s behavior. 
Typically, a team uses behavioral prototypes to storyboard user interface 
semantics and present them to end users for early feedback, or to do per-
formance trade-offs for the implementation of specific mechanisms.

Any and all programming paradigms should support the development of 
proofs-of-concept in order to help teams better understand an idea and to 
uncover risks. However, it is often the case that, in the presence of a rea-
sonably rich object-oriented application framework, developing prototypes 
is often faster than alternative approaches. It is not unusual to see proofs-
of-concept developed in one language (such as Smalltalk) and the end 
product developed in another (such as Java).

Prototypes should not be allowed to directly evolve into the production sys-
tem, unless there is a strong compelling reason. Convenience for the sake 
of meeting a short-term schedule is distinctly not a compelling reason: This 
decision represents a false economy that optimizes for short-term develop-
ment and ignores the cost of ownership of the software. When developing 
prototypes, it is important to establish clear criteria for the goals and com-
pletion of each prototype. Upon completion, decide on an approach to inte-
grate the results of the prototyping effort into the current, or subsequent, 
releases.
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■ Configuration and change management: Identify the configuration items, 
control changes to those items, and manage configurations of those items.

■ Environment: Provide the software development environment, including 
both processes and tools that support the development team.

Figure 6–1 shows the relative order and iterative nature of the macro process dis-
ciplines. Each cycle through the disciplines constitutes an iteration of the macro 
process.

It is important to emphasize that while the disciplines tend to be executed in the 
order shown (requirements, then analysis and design, then implementation, and 
so on), the macro process does not have to be a waterfall process (though it can 
be). In a waterfall macro process, just one pass is made through the disciplines—
the requirements for the entire system are defined, followed by the analysis and 
design for the entire system, and so on. In an iterative and incremental macro pro-
cess, there are multiple passes through the disciplines, and the scope of the work 
performed in each discipline during each pass depends on where you are in the 
overall development process. This will become clearer when we discuss mile-
stones and phases.

Many elements of the macro process are simply sound software management 
practices and apply equally well to object-oriented as well as non-object-oriented 
systems. These include basic practices such as requirements management, config-
uration management, testing and quality assurance, code walkthroughs, and 
documentation.

Now that we have looked at the content dimension of the macro process, let’s turn 
our attention to the time dimension, which can be described in terms of mile-
stones, phases, and iterations.

The Macro Process Time Dimension—
Milestones and Phases

In an iterative and incremental macro process, the disciplines are repeated. How-
ever, there is more to an iterative development process than a stream of iterations. 

Figure 6–1 The Macro Development Process Disciplines
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There must be an overall framework in which the iterations are performed that 
represents the strategic plan for the project and drives the goals and objectives of 
each of the iterations. Such a framework can be provided by a series of well-
defined milestones, where objectives of each milestone are achieved by executing 
one or more iterations.8 At each milestone, an assessment is performed to deter-
mine whether the objectives have been met. A satisfactory assessment allows the 
project to continue with the next phase to achieve the next milestone. 

The milestones ensure that the iterations make progress and converge on a solu-
tion, rather than just iterating indefinitely. They should be viewed not as dates on 
a project schedule but as quality or maturity gateways, such that achieving these 
milestones means that a project has reached a specific level of maturity and an 
increased level of understanding of the evolving plans, specifications, and com-
pleted solutions. If the date originally set for one of these milestones is reached 
and the project is not at the indicated level of maturity and understanding, then 
the milestone date should slip—the date is the flexible part, not the milestone 
criteria.

Figure 6–2 shows how milestones and iterations fit together in an iterative and 
incremental macro process, as well as the phases that the milestones delineate. 

In the following subsections we describe each of these phases in detail.

Inception

This subsection covers the purpose, activities, work products, and milestone of 
the Inception phase.

Purpose The purpose of the Inception phase is to ensure that the project is 
both valuable and feasible (scope and business value). For any truly new piece of 
software, or even for the novel adaptation of an existing system, at some moment 
in the mind of the developer, the architect, the analyst, or the end user, an idea for 
some application springs forth. This idea may represent a new business venture, a 
new complementary product in an existing product line, or perhaps a new set of 
features for an existing software system. It is not the purpose of the Inception 
phase to completely define this idea. Rather, this phase’s purpose is to establish 
the vision for the idea and validate its assumptions. Even for the refinement of an 
existing system, there is still value in the Inception phase. In such cases, Inception 
is brief but still focuses on ensuring business value and technical feasibility.

8. A waterfall-based macro process also has milestones, but those milestones represent the 
completion of each of the disciplines for the entire system (e.g., requirements complete, 
analysis and design complete, and so on).
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Activities During the Inception phase, you establish and prioritize the core 
requirements of the system, obtain agreement with the customer on what is to be 
built, make sure you understand the key risks associated with building the system, 
and decide what development environment to use (both process and tools). 
Remember the earlier discussion on selecting a process that is most appropriate 
for the current context? Inception is when that decision is made, the development 
process is customized, and tools are selected to support the process. There is 
nothing inherently object-oriented about the Inception phase.

Work Products The primary work products of the Inception phase are a 
vision of what is to be built, behavioral prototypes, an initial risk list, the identifi-
cation of the key architectural mechanisms, and the development environment. 
The vision provides a clear description of what is to be built, including its scope, 
key features, and impacts on and relationships with existing systems, as well as 
any existing constraints that must be considered. The prototypes serve as proofs-
of-concept that the system is buildable. The risk list identifies critical items that 
must be mitigated early in the lifecycle to increase the probability of success. The 
architectural mechanisms define the general capabilities of the system that sup-
port the basic system functionality (e.g., user interface paradigms, error detection 
and handling, persistency, memory management, interprocess communication, 
transaction management and security, and so on). The development environment 
includes the development process to be followed and the development tools that 
will support the process.

Milestone: Scope Is Understood The Inception phase is successfully 
completed when there is a clear understanding of what is to be built (the overall 
scope and key requirements of the system), an understanding of the relative prior-
ity of those requirements, and a strong business reason for building the system. In 
addition, there is agreement between the customer and the development organiza-
tion on the scope of the system and the overall timeline for delivery.

Elaboration

This subsection covers the purpose, activities, work products, and milestone of 
the Elaboration phase.

Purpose Once the scope of what is to be built is understood and agreed to, 
attention turns to developing the overall architecture framework that will provide 
the foundation for all the iterations that follow. The intent is to identify architec-
tural flaws early and to establish common policies that yield a simpler architec-
ture. The Elaboration phase is when such architectural discovery takes place, 
choices are made, and the architecture evolves across multiple iterations. This 
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evolution is driven by the mitigation of the highest risks and the implementation 
of the requirements with the highest priority and the most architectural significance.

Activities The Elaboration phase involves making architectural decisions, 
establishing the architectural framework, implementing the framework, testing 
the framework, and refining the framework based on the results of the testing. The 
evolution of the architecture is largely a matter of trying to satisfy a number of 
competing constraints, including functionality, time, and space: One is always 
limited by the most restrictive constraint. For example, if the weight of the com-
puter is a critical factor (as it is in spacecraft design), the weight of individual 
memory chips must be considered, and in turn the amount of memory permitted 
by the weight allowance limits the size of the program that may be loaded. Relax 
any given constraint, and other design alternatives become possible; tighten any 
constraint, and certain designs become intractable. By evolving the architecture of 
a software system rather than taking a more monolithic approach to development, 
you can identify which constraints are really important and which are delusions. 
Early in the Elaboration phase, you typically do not know enough to understand 
where the performance bottlenecks will arise in the system. By actually building 
the key architectural elements and measuring the results via testing, the develop-
ment team can better understand how to tune the architecture over time.

Work Products During the Elaboration phase, the architecture is validated 
by creating a series of executable architectural releases that partially satisfy the 
semantics of the key end-user scenarios (the architecturally significant scenarios). 
These scenarios are those that exercise and test the main system elements and 
their collaborations, as well as those that investigate identified areas of risk. These 
architectural releases denote a vertical slice through the entire architecture, cap-
turing important (but incomplete) semantics of all significant system elements. 
Thus, the result of the Elaboration phase not only provides an architecture docu-
ment but also includes actual releases of the system that serve as tangible mani-
festations of the architecture design itself. An architectural release should be 
executable, thus allowing the architecture to be instrumented, studied, and evalu-
ated precisely. These architectural releases become the foundation of the evolving 
production system.

Milestone: Architecture Is Stable The Elaboration phase is successfully 
completed when the architecture has been validated (by actual testing and formal 
review) against all of the key system requirements, both functional and nonfunc-
tional, and when all risks have been sufficiently mitigated in order to predictably 
determine the cost and schedule for completing the development of the system. A 
key indicator that the architecture has stabilized (and that the Elaboration phase is 
successfully completed) is that the rate of change of key architectural interfaces 
and mechanisms has slowed considerably, if not been eliminated entirely. Measur-
ing the rate of change of architectural interfaces and mechanisms is the primary 
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measure of architectural stability [30]. Localized changes are to be expected 
throughout the software lifecycle, but if key architectural elements are being 
changed often, this indicates some architectural problems, which should be recog-
nized as an area of risk and an indication that Elaboration is still in process.

Construction

This subsection covers the purpose, activities, work products, and milestone of 
the Construction phase.

Purpose Once the architecture has stabilized, the focus shifts from under-
standing the problem and identifying key elements of the solution to the develop-
ment of a deployable product. The Construction phase is when you move from 
discovery into production, where production can be thought of as “a controlled 
methodological process of raising product quality to the point where the product 
can be shipped” [24].

Activities During the Construction phase, the development of the system is 
completed, based on the baselined architecture produced during the Elaboration 
phase.

Work Products During the iterations of the Construction phase, a series of 
executable releases are produced that satisfy the semantics of the remaining end-
user scenarios. These releases can be instrumented, studied, and evaluated pre-
cisely as they incrementally grow in scope and evolve into the production system.

Milestone: System Is Ready for End-User Testing The Construction 
phase is successfully completed when the functionality and quality of the releases 
are sufficient to deploy to the end user for some end-user testing. Some primary 
measures of goodness during this phase include to what degree you satisfied the 
requirements of the releases, as well as the quality of those releases. An important 
indication of quality during this phase includes defect-discovery rates. Defect-
discovery rates are a measure of how rapidly new errors are being detected [29]. 
By investing in quality assurance early in the development process, it is possible 
to establish measures of quality for each release, which the management team can 
use to identify areas of risk and also to calibrate the development team. After each 
release, the defect-discovery rate generally surges. A stagnant defect-discovery 
rate usually indicates undiscovered errors. An offscale defect-discovery rate is an 
indication that the architecture has not yet stabilized or that new elements in a 
given release are incorrectly designed or implemented. In either case, the system 
is not ready for end-user testing, and these measures should be used to adjust the 
focus of subsequent releases. 
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Transition

This subsection covers the purpose, activities, work products, and milestone of 
the Transition phase.

Purpose The Transition phase is when you ensure that the software is accept-
able to its end users.

Activities During the Transition phase, the product is provided to the user 
community for evaluation and testing (e.g., alpha testing, beta testing, and so on). 
The development team then incorporates the feedback received. The focus of 
Transition is on fine-tuning the product; addressing configuration, installation, 
and usability issues; and addressing issues raised by the early adopters. Support-
ing documentation also undergoes final development, as does any applicable 
training material. Any production-related issues, such as packaging and market-
ing materials, are also handled. The resulting product then undergoes acceptance 
testing. It is important to note that even though testing has been performed 
throughout the lifecycle, end-user testing and final acceptance testing is still 
important as such testing ensures that the developed product fulfills its acceptance 
criteria at both the development and target installation sites.

Work Products The work products produced during the Transition phase 
include the packaged product, any supporting documentation, training materials, 
and marketing materials.

Milestone: System Is Ready to Be Deployed The Transition phase is 
successfully completed when the functionality and quality of the releases are 
sufficient to make the product available to end users (the system has passed 
acceptance testing). The primary measure of goodness is similar to that in the 
Construction phase, a reduced rate of reported defects. However, in this phase, 
early adopters are reporting the defects.

Phases in Agile Methods

Agile methods also include the concept of phases. In this sidebar, we sum-
marize the phases defined in some of the available agile methods [46].

The XP lifecycle includes five phases.

1. Exploration: Determine feasibility, understand key “stories” for the first 
release, and develop exploratory prototypes.

2. Planning: Agree on the date and stories for the first release.
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Now that we have looked at some examples of macro process phases and mile-
stones, it is time to turn our attention to what occurs within each of the phases—
the iterations.

The Macro Process Time Dimension—
Iterations

As shown in Figure 6–3, in an iterative macro process, the milestones are 
achieved by executing one or more iterations, and those iterations may involve 
activities in any and all of the disciplines. However, the relative time spent in the 
different disciplines varies depending on what phase the iteration occurs in. If the 
iteration is in the Inception phase, more time would be spent on requirements; if 
the iteration is in the Elaboration phase, more time would be spent on analysis 
and design (specifically, architecture); if the iteration is in the Construction phase, 
more time would be spent on implementation and testing; and so on. Of course, 
some disciplines, such as configuration and change management, environment, 
and project management, are performed throughout the lifecycle. 

3. Iterations to release: Implement and test selected stories in a series 
of iterations. Refine the iteration plan.

4. Productionizing: Prepare supporting materials (documentation, train-
ing, marketing), and deploy the operational system.

5. Maintenance: Fix and enhance the deployed system. 

The SCRUM lifecycle includes four phases.

1. Planning: Establish the vision, set expectations, secure funding, and 
develop exploratory prototypes.

2. Staging: Prioritize and plan for the first iteration. Develop exploratory 
prototypes.

3. Development: Implement requirements in a series of sprints, and 
refine the iteration plan.

4. Release: Prepare supporting materials (documentation, training, mar-
keting), and deploy the operational system.

As you can see, the phases defined in both plan-driven and agile methods 
are quite similar. Specifically, all the methods we have described include 
phases for:

■ Envisioning, feasibility, and scoping
■ Release and iteration planning 
■ Implementing and testing
■ Productizing and deploying



CHAPTER 6 PROCESS 269

Figure 6–3 illustrates how the focus of a project shifts across successive itera-
tions. The size of the boxes within each of the disciplines illustrates the relative 
time spent performing the activities within that discipline. For a discussion on 
how the analysis and design activities change throughout an iterative and incre-
mental lifecycle, see the Analysis and Design and Iterative Development sidebar.

At the end of each iteration, a postmortem should be held to assess the iteration in 
terms of the state of the system being built, as well as in terms of the state of the 
development environment and team. Each iteration should be seen as an opportu-
nity to adjust the course of the project, either by adjusting the functionality 
mapped to subsequent iterations and/or by refining the environment to improve 
those areas that are not working well.

The concept of an iteration is pretty much the same across most software develop-
ment methods. What differs is the recommended duration for each iteration [46].

■ XP recommends that iterations be one or two weeks long, if possible.
■ SCRUM specifies that all iterations (sprints) should be 30 days long. 
■ RUP recommends that iterations be two to six weeks long.

As noted earlier, a key deliverable of the macro process is a series of sequential, 
evolutionary releases. Thus, we conclude this section on the macro process with a 
discussion of release planning.

Figure 6–3 The Shifting Focus of Iterations

Iteration 1

Requirements Analysis & 
Design

Implementation Test Deployment

Iteration 2

Requirements Analysis & 
Design

Implementation Test Deployment

Iteration 3

Requirements Analysis & 
Design

Implementation Test Deployment



270 SECTION II METHOD

Release Planning

During release planning, you define what the releases are and what they will con-
tain. The purpose of release planning is to identify a controlled series of releases, 
each growing in its functionality, ultimately encompassing the requirements of 
the complete production system. The primary input to release planning is the 
scope of what is to be built, as well as any constraining factors (e.g., cost, time, 
quality). The activities performed during release planning include establishing the 
project’s heartbeat, prioritizing requirements, allocating requirements to itera-
tions, tagging an iteration release as external or internal, and finally developing 
detailed iteration plans. The result of release planning is a development plan, 
which identifies the stream of releases, team activities, and risk assessments. Now 
let’s look at each of the release-planning activities in a little more detail.

The first step when planning the releases involves establishing the heartbeat of the 
project—deciding on the average duration for the iterations (i.e., deciding on the 

Analysis and Design and Iterative Development

In an iterative development lifecycle, analysis and design activities vary 
throughout the development lifecycle. 

The analysis activities are most visible during the earlier lifecycle phases 
(Inception and Elaboration) when you are focused on establishing the soft-
ware architecture. During these phases, you concentrate on analyzing 
those requirements considered architecturally significant. During the later 
phases, when you complete the implementation, you analyze any remain-
ing requirements, but this analysis is not as extensive as what you did dur-
ing architectural definition because most of the major system elements 
have already been discovered. The time you spend on analysis continues 
to taper off in the later phases, as the number of requirements not yet ana-
lyzed decreases and the focus shifts to implementation. However, you may 
need to perform some minimal analysis activities even during later phases 
if changes to the requirements are introduced based on feedback received 
when transitioning the system to the user, though this is unlikely.

Like the analysis activities, the design activities vary throughout the devel-
opment lifecycle. Design activities can start in the early phases when you 
are establishing the scope of the system if you decide, for example, that 
you will base your solution on a set of existing software elements. These 
activities then pick up in the early iterations of architectural definition, when 
you concentrate on designing the major (or architecturally significant) ele-
ments of the system. As you move into the later lifecycle phases, design 
activities taper off, and the focus is more on what you could categorize as 
being peripheral or supporting elements.
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spacing of the releases). The duration of an iteration is an important factor when 
deciding just how much you think you can accomplish in a single iteration. Itera-
tion release dates should be sufficiently separated to allow adequate development 
time and to synchronize releases with other development activities, such as docu-
mentation and field testing. For a small project involving six to twelve months of 
end-to-end development time, this might mean a release every two to six weeks. 
For a modest-sized project involving twelve to eighteen months of end-to-end 
development time, this might mean a release every two to three months. For more 
complex projects that require much greater development effort, this might mean a 
release every six months or so. More extended release schedules are suspect 
because they do not force closure of the micro process and may hide areas of risk 
that are being intentionally or unintentionally ignored.

Once you know about how long your iterations are going to be, the next step dur-
ing release planning is to prioritize the system requirements to be delivered, both 
functional and nonfunctional. These priorities will be used when determining 
what requirements are allocated to what iteration.

Requirements are prioritized based on a number of factors. These factors may 
include the following: 

■ Benefit to stakeholders (e.g., how important the requirement is to the end 
user, or how important it is to demonstrate a consistent part of the system 
functionality to the project’s sponsor)

■ Architectural impact and coverage (e.g., whether the requirement involves 
key aspects of the architecture such as access to databases, integration with 
legacy systems, and so on)

■ Risks mitigated by addressing the requirement (e.g., whether the requirement 
includes access to an external system whose interface is not well understood)

Depending on where you are in the development lifecycle, each of these factors 
may have a different weight. For example, what’s considered high priority during 
the Elaboration phase is different than what is considered high priority during the 
Construction phase (during Elaboration, architectural significance has more 
weight). It is important to note that requirements are not prioritized only once. 
Their relative priorities should be evaluated every iteration and adjusted where 
necessary, based on the current project status, new requirements, discovery of 
new risks, and mitigation of existing risks. Due to the multiple factors affecting 
priority, prioritizing requirements is best accomplished by a team that includes a 
user representative, a domain expert, an analyst, an architect, and quality assur-
ance personnel.

Once the requirements have been prioritized, the requirements are allocated to a 
series of iteration releases, with the highest-priority requirements allocated to the 
earlier iterations. Each iteration should have a planned capability that is demonstrable 
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and should have clear evaluation criteria that will be used to assess the success of 
the iteration. The content of an iteration release is determined by the scope of the 
iteration, which in turn is determined by where the iteration is in the software life-
cycle (i.e., what phase it is in). 

Each iteration results in a release that may be internal or external; the final release 
is an external release that represents the production system. The determination of 
whether a release is internal or external depends on the overall lifecycle phase. 
Early in the development process, the releases are generally internal. Major exe-
cutable releases are turned over by the development team to quality assurance 
personnel, who can begin to test the release against the scenarios established dur-
ing requirements, thereby gathering information on the completeness, correct-
ness, and robustness of the release. This early data gathering aids in identifying 
problems of quality, which are more easily addressed during evolution of the sub-
sequent release. Later in the development process, more releases tend to be exter-
nal, as executable releases are turned over to select end users (the alpha and beta 
customers) in a controlled manner. By “controlled,” we mean that the develop-
ment team carefully sets expectations for each release and identifies aspects that it 
wishes to have evaluated. In general, there may be more internal releases to the 
development team, with only a few executable releases turned over to external 
parties. The internal releases represent a sort of continuous integration of the sys-
tem and exist to force closure on some key system areas.

Note that the act of creating a release is relatively costly (especially for an exter-
nal release), so other constraining factors such as time, quality, and scope may 
place limits on the number and duration of the releases. In such cases, quality can 
be used as a bargaining chip when forced to deliver some fixed unit of cost, time, 
or scope. This is particularly significant for a fixed-price contract.

The final activity of release planning is the development of detailed iteration 
plans. During iteration planning, detailed project plans are developed for the cur-
rent iteration, and development resources needed to achieve the release are identi-
fied. Unlike the overall release plan (which is defined up front and identifies the 
key milestones, a proposed number of iterations, and a high-level understanding 
of their content), detailed iteration plans are developed just in time (when the iter-
ation is to begin). This allows project managers to account for the inevitable 
schedule adjustments needed as the development progresses. “Unjustifiable preci-
sion—in requirements or plans—has proven to be a substantial yet subtle recur-
ring obstacle to success. Most of the time, early precision is just plain dishonest 
and serves to provide a façade for more progress of more quality than actually 
exists” [50].

With iterative development, release planning is ongoing and risk-driven. After 
each iteration, the remaining development plan should be reexamined and 
adjusted, as necessary. Often, this involves some reprioritization of requirements, 
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small adjustments to dates, or migration of functionality from one iteration to 
another. Periodic risk assessments should be performed throughout the lifecycle 
and the development plan adjusted to tackle the risky things first so that those 
risks can be eliminated or reduced. This helps the team to manage future strategic 
and tactical trade-offs. Facing up to the presence of risks early in the development 
process makes it far easier to make pragmatic architectural trade-offs later.

6.3 The Micro Process: The Analysis and 
Design Process

In the previous section, we discussed the overall software development process 
(the macro process). In this section, we cover the analysis and design process (the 
micro process) by looking at what activities are performed and what work prod-
ucts are produced.

Overview

As shown in Figure 6–4, the analysis and design process is performed in the con-
text of an overall software development process. The macro process drives the 
scope of the micro process, provides inputs to the micro process, and consumes 
the outputs of the micro process. Specifically, the micro process takes the require-
ments provided by the macro process (and any analysis and design specifications 
produced by previous iterations of the micro process) and produces design speci-
fications (most notably, the architecture) that are implemented, tested, and 
deployed in the macro process.

Just as we described the macro process in terms of two dimensions, time and 
content, we will describe the micro process in terms of its two key dimensions—

Figure 6–4 The Micro Process within the Macro Process
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levels of abstraction and content (activities and work products). We then discuss 
how the activities performed and the work products produced are affected by the 
levels of abstraction.

Levels of Abstraction

In the micro process, the traditional phases of analysis and design are intention-
ally blurred and instead are performed at different levels of abstraction along a 
continuum. Analysis takes the system requirements and produces an initial solu-
tion, and design takes the results of analysis and produces a specification that can 
be efficiently implemented. The analysis is considered complete when it accu-
rately represents the system requirements, is consistent, and can serve as a good 
basis for design. The design is considered complete when it is detailed enough to 
be implemented and tested. As Mellor et al. state, “the purpose of analysis is to 
provide a description of a problem. The description must be complete, consistent, 
readable, and reviewable by diverse interested parties, [and] testable against real-
ity” [16]. In our terms, the purpose of analysis is to provide a model of the sys-
tem’s behavior.

Analysis focuses on behavior, not form. In analysis, you seek to model the world 
by identifying the elements that form the vocabulary of the problem domain and 
describing their roles, responsibilities, and collaborations. During analysis, it is 
inappropriate to pursue issues of representation or implementation. Rather, analy-
sis must yield a statement of what the system does, not how it does it. Any inten-
tional statements of “how” during analysis should be viewed as useful only for 
the purpose of exposing the behavior of the system and not as testable require-
ments of the design. Analysis is about understanding the problem to be solved a 
little better. Analysis is a critical part of the overall software development process 
and, if performed well, will result in a more robust and understandable design, 
with a clear separation of concerns and a balanced division of responsibility 
between system elements.

In design, you invent the elements that provide the behavior that the analysis ele-
ments require. You begin the design process as soon as you have some reasonably 
complete model of the behavior of the system. It is important to avoid premature 
designs, wherein development begins before analysis reaches closure. It is equally 
important to avoid delayed designing, wherein the organization thrashes while 
trying to complete a perfect and hence unachievable analysis model (a condition 
commonly referred to as analysis paralysis). During analysis, you should not 
expect to devise an exhaustive understanding of the system’s behavior. Indeed, it 
is neither possible nor desirable to carry out a complete analysis before allowing 
design to commence. The very act of building a system raises questions of behav-
ior that no reasonable amount of analysis can efficiently uncover. It is sufficient 
that you accomplish an analysis of all the primary behaviors of the system, with a 
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sprinkling of secondary behaviors considered as well to ensure that no essential 
patterns of behavior are missed.

Since architecture plays such an important part of the overall solution, we need to 
understand the separation of concerns when developing the architecture versus 
the individual components during analysis and design. Architecture is primarily 
concerned with the relationships between the parts of the systems (e.g., compo-
nents), their responsibilities, interfaces, and collaboration. In contrast, analysis 
and design of system components focus on the internals of those components and 
how they will satisfy the requirements levied on them that result from the archi-
tectural analysis and design. Figure 6–5 summarizes what should be the focus 
of analysis and design, when done from both architectural and component 
perspectives.

The architecture describes the structural decisions and essence of the system. 
Thus, the architectural concern is more strategic in nature, whereas component 
analysis and design are more tactical. What you focus on depends on whether you 
are concerned with the architecture or with the components that are part of that 
architecture.

Analysis and design are performed at multiple levels of abstraction throughout 
the development lifecycle. The number of levels cannot be specified a priori. This 
depends primarily on the size of your system. In fact, you may at times discover, 

Figure 6–5 The Varying Focus of Analysis and Design, Depending on Perspective
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for example, that the component you were trying to analyze is too large. You may 
have to take a step back and perform another round of architectural analysis on 
that component in order to partition it into further components (or subcompo-
nents) that are more manageable and can be better analyzed.

Now let’s look at the activities performed during the micro process and the work 
products they produce.

Activities

The micro process consists of the following set of activities, which are performed 
for a specific scope and at a specific level of abstraction. 

■ Identify the elements:9 Discover (or invent) the elements to work with. 
Define the object-oriented decomposition.

■ Define the collaborations between the elements: Describe how the identified 
elements collaborate to provide the system’s behavioral requirements.

■ Define the relationships between the elements: Define the relationships 
between the elements that support the element collaborations.

■ Define the semantics of the elements: Establish the behavior and attributes 
of the identified elements. Prepare the elements for the next level of 
abstraction.

These micro process activities are shown in Figure 6–6.

While these activities are shown as being performed sequentially, in practice they 
are performed in parallel. For example, you may identify the elements and their 

9. Throughout this chapter, we will use the term element to refer to the “things” we are 
working with at the current level of abstraction. Thus, an element may be an analysis class, 
a component, a design class, and so on. For more information on the elements identified 
during analysis and design, see Table 6–2.

Figure 6–6 The Micro Process Activities
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collaborations at the same time. You may also identify behaviors and attributes 
when defining the element collaborations. The ability to do this comes with expe-
rience. Think of performing the micro process in a series of passes through the 
activities for the current scope; however, you can minimize the number of passes 
as you become more experienced at applying the process.

We will discuss each of the micro process activities in more detail later in this 
chapter. Now let’s take a look at the products of the micro process.

Products

As you would expect, the primary products of the micro process reflect the differ-
ent analysis and design concerns.

■ The architecture description describes the system’s architecture, including 
descriptions of common mechanisms. The description includes the architec-
turally significant aspects of the analysis/design model. 

■ The analysis/design model includes the analysis and design elements of the 
software solution and their organization, as well as the realizations that 
describe how the system’s behavioral requirements are realized in terms of 
those elements.

As with the analysis/design model, choosing to what level of detail the architec-
ture is described depends on the system being developed and what type of devel-
opment process you have selected. Once documented, the architecture needs to be 
communicated to the development team. After all, it describes the system’s archi-
tectural vision, whose importance we discussed in an earlier subsection, Strong 
Architectural Vision. For recommendations on how to document the software 
architecture, see the Documenting the Software Architecture sidebar.

There are essential benefits to creating an analysis/design model as part of the 
micro process. First, maintaining an analysis/design model helps to establish a 
common and consistent vocabulary that can be used throughout the project. The 
analysis/design model serves as the central repository for the elements, their 
semantics, and their relationships as development progresses. Over time, the anal-
ysis/design model is refined by adding new elements, eliminating irrelevant ele-
ments, and consolidating similar elements. In this way, the team continues to 
evolve a consistent language of expression. Also, having a central repository for 
the elements in a system not only ensures that those elements are consistent but 
also can serve as an efficient vehicle for browsing through all the elements of a 
project in arbitrary ways. This feature is particularly useful when new members of 
the development team must quickly orient themselves to the solution already 
under development. An analysis/design model also permits architects to take a 
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global view of the project, which may lead to the discovery of commonalities that 
otherwise might be missed. As you can probably guess, the use of the UML to 
represent the analysis/design model enhances these benefits even more. Not only 
do you realize the typical benefit of “a picture is worth a thousand words,” but 
visually representing the analysis/design model helps to uncover inconsistencies 
between the elements. (For information on using the UML to represent object-
oriented analysis and design elements, see Chapter 5.)

The choice of whether to maintain separate analysis and design models depends 
on the system being developed and what type of development process you have 
chosen.10 A separate analysis model may be useful if the system being developed 
will live for decades, will have multiple variants, or is designed for multiple target 
environments, each with its own design architecture. In such cases, the analysis 
model is maintained as an abstraction (platform-independent representation) of 
the individual (platform-specific) design models. In fact, this is one of the founda-
tion principles of Model Driven Architecture (MDA) as espoused by the Object 
Management Group [48]. A separate analysis model may also be maintained to 
provide a conceptual overview of a complex system; however, a well-documented 
architecture can serve this same purpose. It can be very costly to maintain a high 
degree of fidelity between the analysis model and the design model. When decid-
ing whether a separate analysis model is needed, keep in mind the extra work 
required to ensure that the analysis and design models remain consistent and bal-
ance that cost against the benefits of having a separate model that provides a con-
ceptual view of the system. Alternatively, the analysis model can be considered a 
temporary artifact that evolves into a design model (in such cases, the analysis 
model is considered an “initial” design model).

10. For more information on the software development process, see the Toward a Rational 
Development Process section.

Documenting the Software Architecture 

Documenting the architecture of a system has considerable value to the 
architects themselves and to the system’s stakeholders. The value is not 
only in the resulting documentation but also in the documenting process 
itself. The architecture is the part of design that is shared across many 
stakeholders, not just the development team. Deployment designers, net-
work designers, application support and operations personnel, help desk 
staff, and even project managers will read the software architecture docu-
mentation, but few if any of these folks will read the detailed software 
design notes. The software architecture documentation provides an excel-
lent overview of the key aspects of the system and supports the confirma-
tion that the system meets its requirements. Documenting the architecture 
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forces you to consider very carefully the different aspects of the architec-
ture. In this sidebar, we provide some suggestions for how to think about 
and document the software architecture.

As we discussed earlier, architecture describes a set of key design decisions, 
rules, and patterns, as well as a set of constraints that define a framework 
in which the design and implementation of the system takes place. Soft-
ware architecture involves multiple perspectives, so the architecture 
description should also include multiple perspectives. As described in IEEE 
1471 [42], an architect can define his or her own viewpoints and views to 
communicate the architecture of the system, where a viewpoint describes:

■ One or more system models and views (projections) of those models
■ The stakeholders interested in the views
■ The stakeholders’ concerns that should be addressed through the 

views

The software architecture should be represented by using a set of relevant 
views defined by viewpoints, where a viewpoint serves as a guide for a 
view. These architectural views include those development artifacts that 
are considered architecturally significant from a particular viewpoint. 

The following is a simple set of views that can be used to describe a soft-
ware architecture. This set of views, first proposed by Kruchten [43], is 
known as the 4+1 architecture view model.

■ Requirements View (also known as the Use Case View): The 
Requirements View describes the architecturally significant require-
ments, both functional and nonfunctional. The architecturally signifi-
cant functional requirements tend to drive the definition of the 
architecturally significant use case scenarios that are analyzed early 
in the software lifecycle. The architecturally significant nonfunctional 
requirements include any system-wide architectural qualities (e.g., 
usability, resilience, performance, size, scalability, security, privacy, 
comprehensibility) and economic and technology constraints (e.g., 
use of off-the-shelf products, integration with legacy software, reuse 
strategy, required development tools, team structure and schedule), 
as well as regulatory constraints (e.g., adherence to specific stan-
dards and controls). It is these nonfunctional requirements that tend 
to be the most architecturally significant, and they drive the definition 
of the architectural mechanisms documented in the Logical View.

■ Logical View: The Logical View contains the architecturally significant 
analysis and design elements, their relationships, and their organiza-
tion into components, packages, and layers, as well as a few selected 
realizations that illustrate how these architecturally significant elements 
work together to provide the architecturally significant scenarios 
described in the Requirements View. The Logical View also describes 
the key mechanisms and patterns that shape the system structure. 
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■ Implementation View: The Implementation View describes the key 
implementation elements (executables, directories) and their relation-
ships. This view is important because the structure of the implemen-
tation has a major impact on concurrent development, configuration 
management, and integration and testing.

■ Process View: The Process View describes the independent threads 
of control in the system and what logical elements participate in these 
threads.

■ Deployment View: The Deployment View describes the various sys-
tem nodes (such as computers, routers, and virtual machines/con-
tainers) and the allocation of the architecturally significant logical, 
implementation, or process elements to these nodes.

The “4+1” name of this set of views refers to the debate over whether 
requirements should be considered an architectural view. The Require-
ments View is included in the architectural description in order to describe 
the subset of the requirements that shape the architecture and to allow the 
qualities of the architecture to be expressed. Thus, requirements are criti-
cal to the architecture, and it is recommended that you call out the architec-
turally significant ones as part of the architecture description and trace 
those requirements to the other architectural views.

As Booch, Rumbaugh, and Jacobson point out, each of the architectural 
views can stand alone so that different stakeholders can focus on the archi-
tectural areas that most concern them [39]. These five architectural views 
also interact with one another (e.g., nodes from the Deployment View hold 
elements from the Implementation View that, in turn, represent the physical 
realization of the elements from the Logical and Process Views).

An architect should feel free to add as many views as needed to describe 
the software architecture (e.g., a Data View or a User Experience View) 
and to remove views that do not apply. 

Numerous other architecture frameworks, both simple and complex, have 
the common characteristic of using views and viewpoints. Some of the 
more notable are the Zachman framework [32], the Department of Defense 
Architecture Framework (DoDAF) [33], and the Federal Enterprise Archi-
tecture (FEA) [34].

In some cases, depending on your project and the process you are using, it 
may make sense to collect all architectural information into an actual soft-
ware architecture document (SAD). The SAD becomes the primary artifact 
where the architecture of a system is described, and it contains references 
to all other architecturally significant artifacts. If someone wants to understand 
the architecture of a system, the SAD is the place to start. The SAD should 
show how the key architectural concerns are addressed, so it is best orga-
nized to follow the architectural views just discussed. The SAD should be 
reviewed with the entire team and updated as the architecture evolves.
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The Micro Process and Levels of Abstraction

The micro process applies equally to the project architect and to the application 
engineer, the difference being the level of abstraction considered. From the per-
spective of the architect, the micro process offers a framework for evolving the 
architecture and exploring alternative designs; from the perspective of the engi-
neer, the micro process offers guidance in making the myriad tactical decisions 
that are part of the daily fabrication and adaptation of the architecture. 

The details of what is performed during the micro process activities depend on the 
current concern (i.e., architectural or component; refer to Figure 6–5). The fol-
lowing list further describes the focus of the micro process activities for each of 
the concerns defined earlier.

■ When performing architectural analysis, the micro process activities focus 
on creating an initial version of the architecture that leverages any existing 
reference architectures or architectural frameworks, as well as identifying 
other existing assets that could be used as the building blocks. This includes 
the overall structure of the system, its key abstractions, and its mechanisms. 
In fact, it’s not a bad idea to develop a high-level understanding of each of 
the architectural views. The results of architectural analysis are used to 
drive architectural design.

■ During architectural design, the initial architecture developed from the 
architectural analysis is refined based on what was learned during architec-
tural analysis. The micro process activities focus on refining the identified 
analysis elements, the design elements, and their responsibilities and inter-
actions. The design elements defined at this level represent the key building 
blocks of the overall architectural framework, and their relationships deter-
mine the overall structure of the system. The analysis mechanisms are also 
refined into design mechanisms that leverage specific technologies, and the 
impact of concurrency and distribution on the architecture are considered 
much more closely. Reuse also plays an important role, as the opportunity 
and impact of incorporating existing design elements (and their associated 
implementation) are explored.

■ In component analysis, the micro process activities focus on identifying the 
analysis elements and their responsibilities and interactions. These analysis 
elements represent the first approximation of the system components that 
are then used during component design to identify the design elements. It is 
important to remember that the nature of the micro process analysis activi-
ties are to provide us with an analysis perspective of the component, and 
you should avoid the temptation to design the component at this stage, since 
this entails additional concerns that will be addressed during design.

■ During component design, the micro process activities focus on refining the 
design of the component by defining it in terms of design classes that can be 
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directly implemented by the selected implementation technology. During 
detailed design, you continue refining the design classes by working out the 
details of their content, behavior, and relationships. The refinement should 
stop when there is enough detail for the design classes to be implemented. 
This is followed by implementation, which is part of the macro process.

While it may appear that the micro process is a clean, full-breadth walk down a 
path from high-level abstractions to lower-level abstractions, that is not the really 
the case. 

As shown earlier in Figure 6–4, you start the micro process with a set of require-
ments from the macro process (e.g., use cases, scenarios, function points, user 
stories, and supplementary specifications).11 You then execute several iterations 
of the micro process, with each iteration taking its inputs that are at some level 
of abstraction and producing a realization of these inputs at the next level of 
abstraction. The end result of the micro process iterations is a detailed design 
realization of the original requirements that is fed back into the macro process for 
implementation.

During the micro process iterations, the selection of what elements to take to a 
lower level of abstraction at any point in time is opportunistic and risk-based. For 
example, when performing architectural design, for a certain scope, you may “go 
deep” (e.g., perform component design) for a set of elements that you don’t know 
much about, in order to reduce risk, and then pop back up again to continue your 
architecture design work. Let’s take a closer look at an example and see if we can 
clarify what we mean.

Imagine that we are in an Elaboration phase iteration of the macro process, and 
the architecturally significant requirements that are in scope for that iteration are 
ready to be taken through the analysis and design process (the micro process). 
The following scenario describes what may happen during the micro process.

1. Architectural analysis is performed for all of the architecturally significant 
scenarios. The result is a set of architecturally significant analysis elements.

2. Architectural design occurs, using all of the architectural analysis elements 
as input. During this iteration, a design element is discovered that is not that 
well understood, so component analysis and design is executed for that ele-
ment. As a result, some refinements are needed to the element at the archi-
tectural design level. The result of these iterations is a set of architecturally 
significant design elements.

11. No matter which type of requirements representation is used, it is important that the 
requirements accurately document what the system needs to do from the perspective of the 
user, including both functional and nonfunctional requirements. In this chapter, we use the 
term scenario to refer to this user-focused view of the requirements.
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3. Component analysis is performed for each of the architecturally significant 
scenarios, using the architectural design elements as input. The result of 
these iterations is a set of design elements that support the architecturally 
significant scenarios.

4. Component design is executed for each of the architecturally significant ele-
ments from component analysis.

5. Additional micro process iterations are executed at lower levels of abstrac-
tion (e.g., moving from the enterprise level to system, subsystem, compo-
nent, and subcomponent levels, and so forth).

The result of these iterations is a set of detailed design elements that are ready for 
implementation in the macro process. Figure 6–7 summarizes the relationship 
between the macro process, the micro process, and the micro process iterations.

Now that we have completed our discussion of the micro process and levels of 
abstraction, we can examine each of the micro process activities in more detail 
and discuss what is performed, what is produced, and how to assess the quality of 
what is produced. 

Identifying Elements

The identification of elements is a key activity when devising an object-oriented 
decomposition of a system. Thus, the purpose of this first micro process activity 
is to identify the key elements that will be used to describe the solution at a partic-
ular level of abstraction. We use the word identify rather loosely here. The activity 
is really an evolution of elements from one level of abstraction to the next. Identi-
fying elements at one level of abstraction involves evolving the previous level, 
which results in new and different elements. The elements identified at one level 
of abstraction are then used as the primary inputs to the identification of elements 
at the next level.

While performing this activity, it is important to maintain a delicate balance 
between identifying the elements and refining their semantics. This element iden-

Figure 6–7 Micro Process Iterations
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tification activity should focus just on identifying the elements and describing 
them at a high level (a brief description). The micro process activities that follow 
will progressively refine the semantics of the identified elements.

Products

The primary product of this micro process activity is the analysis/design model, 
which includes the identified elements and their basic description at a particular 
level of abstraction. Table 6–2 summarizes the elements identified during the dif-
ferent analysis and design activities.  

Table 6–2 Elements Identified During Analysis and Design Activities

Focus
Identified
Elements Purpose and Comments

Architectural
analysis

Key abstractions ■ To form the vocabulary of the problem domain. 
Identifying key abstractions up front reduces the possibility 
that key concepts will be defined in conflicting ways later, 
when elements are identified from individual requirements.

Architectural
partitions

■ To represent separate areas of concern within the system 
and to cluster analysis elements (i.e., components).

■ To represent the high-level logical organization of the 
system. Partitions can be based on an existing architec-
tural framework.
In a layered architecture, the architectural partitions are 
the layers.

Analysis
mechanisms

■ To represent the key services, infrastructure, and common 
policies you might need going forward. 
Some of these are foundational, meaning that they 
address domain-independent issues such as memory man-
agement, error detection and handling, persistence, inter-
process communication, transaction management, and 
security. Others are domain-specific and include idioms 
and mechanisms that are germane to that domain, such as 
control policies in real-time systems or transaction and 
database management in information systems.
Analysis mechanisms are described in broad terms that 
are not implementation-specific. 

■ To support consistency across the analysis activities (as 
opposed to having one analyst come up with one solution 
while another analyst comes up with a different solution).
Identifying common mechanisms early on mitigates the 
risk that a poor tactical design decision about common 
policies will be made that could negatively affect the 
overall architecture.
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Steps

In Chapter 4, we described specific classification techniques for identifying 
object-oriented elements (i.e., classical object-oriented analysis, behavior analy-
sis, domain analysis, use case analysis, CRC cards, informal English description, 
and structured analysis). As described in that chapter, the identification of 
object-oriented elements usually involves two activities: discovery and invention. 
During analysis, identification is mostly driven by discovery, whereas in design, 
invention plays a bigger part. During analysis, designers work in conjunction with 
domain experts to identify the elements. They must be good at discovering abstrac-
tions, capable of looking at the problem domain and finding meaningful analysis 
elements. During design, architects and designers identify elements and must be 
skilled in crafting new design elements that derive from the solution domain.

During design, some elements identified during analysis may turn out to be 
actual classes, and others may turn out to be simply attributes of, or synonyms for, 
other abstractions. In addition, some of the analysis elements you identify early in 
the lifecycle may be wrong, but that is not necessarily a bad thing. During analy-
sis, it is important to keep such decisions open to refinement as development 

Focus
Identified
Elements Purpose and Comments

Architectural
design

Architecturally
significant 
design elements 

■ To encapsulate business behavior and/or to provide access 
to and management of system data.

■ To represent specifications that can be efficiently imple-
mented by using specific implementation technologies.

Architectural
partitions

■ To refine the original architectural logical partitions 
defined during architectural analysis.

■ To cluster design elements.

Design
mechanisms

■ To refine the analysis mechanisms to specific 
technologies.

Component
analysis

Analysis
classesa

■ To represent the initial object-oriented composition of the 
desired solution that provides the desired behavior.

■ To describe separate elements with cohesive responsibility.

Component
design

Design classes ■ Same purposes as for architectural design, except here we 
work at a lower level of abstraction (i.e., component 
design elements vs. architectural design elements). These 
design elements are refined and specified to a level of 
detail that enables implementation.

a. Some may disagree with the use of the word classes in this context. However, the important idea is not what 
they are called but what they represent.
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progresses. Many of the tangible things and roles that you encounter early in the 
lifecycle will carry through all the way to implementation because they are so 
fundamental to your conceptual model of the problem. As you learn more about 
the problem, you will probably change the boundaries of certain elements by real-
locating responsibilities, combining similar elements, and—quite often—dividing 
larger elements into groups of collaborating ones, thus forming some of the 
mechanisms of your solution. In summary, analysis elements are often quite fluid 
and changeable, and they can evolve greatly before they solidify during design.

The overall approach for identifying elements is generally the same for all levels 
of abstraction; what differs is your starting point (what abstractions you already 
have), what you concentrate on (architecturally significant elements or not), and 
how far you go (whether you look inside a design element and identify the elements 
that comprise it). For example, when performing architectural design, you use the 
results of architectural analysis as a starting point, you concentrate on the archi-
tecturally significant design elements, and you may also consider the elements 
that comprise those architecturally significant elements to make sure that you 
understand each element’s behavior well enough to reduce risk. When performing 
component analysis and design, you use the results of architectural analysis and 
design as a starting point, and you identify any remaining design elements needed 
to specify the implementation, including more fine-grained design elements that 
comprise the more coarse-grained elements (e.g., the classes that will provide the 
behavior of a component). 

The identification of elements is then repeated recursively in order to invent more 
fine-grained abstractions that you can use to construct higher-level ones and to 
discover commonality among existing abstractions, which you can then exploit to 
simplify the system’s architecture. When identifying design elements, the design 
elements with the largest granularity are usually identified first because they 
define the core of the logical structure of the system and are composed of the 
smaller granularity elements. However, in reality, design elements at different lev-
els of granularity may be identified at the same time, though there are obvious 
sequential dependencies (e.g., you cannot identify classes that specify the imple-
mentation of a particular component until that component has been identified).

The following analysis classes are excellent candidates for being refined into 
design elements.

■ Analysis classes with a nontrivial set of responsibilities.
■ Groups of analysis classes that represent information that should be man-

aged together. Elements whose information should be managed together 
should belong to the same design element, and the responsibilities that 
involve manipulating that information should belong to that design element.

■ Groups of analysis classes that collaborate to provide a specific behavioral 
requirement or related behavioral requirements (e.g., the analysis classes 
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participating in the same or related realizations). Collaborating elements 
should belong to the same design element.

■ Groups of analysis classes that have the same responsibilities. Similar (or 
related) responsibilities should belong to the same design element.

In addition to looking at the analysis elements as inspiration for the design ele-
ments, the refinement of analysis elements into design elements is also driven by 
the application of selected architectural and/or design patterns (especially those 
that reflect your selected architectural style), as well as general design principles. 
Some examples of patterns include IBM’s patterns for eBusiness [52], architec-
ture patterns [53], and design patterns [55]. Some examples of design principles 
include the enterprise component design principles described in Cheesman and 
Daniels [54] and the best practices of developing business components described 
in Herzum and Sims [56]. 

When identifying elements, it is always wise to investigate similar systems at 
similar levels of abstraction. In this way, you benefit from the experience of other 
projects that had to make similar development decisions. In general, during the 
element identification step, it is important to identify the opportunity and the 
impact of incorporating (reusing) existing elements, making sure that the 
intended context for a potential reusable asset is consistent with your context.

The logical partitions identified during architectural analysis are usually based on 
the selection of a specific architectural pattern. These partitions are refined during 
design as design elements are identified and clustered. Some partitioning guide-
lines include clustering elements that support the same function. Functions that 
build on one another should fall into different partitions; functions that collabo-
rate to yield behaviors at a similar level of abstraction should fall into partitions, 
which represent peer services. These decisions have strategic implications. In 
some cases, this clustering is done from the top down, by taking a global view of 
the system and partitioning it into abstractions that denote major system services 
that are logically cohesive and/or likely to change independently. This architec-
ture may also be refined from the bottom up, as clusters of classes that are seman-
tically close are identified. As existing design partitions become bloated, or as 
new clusters become evident, you may choose to introduce a new design partition 
or reorganize the allocation of existing ones. Such refactoring is a key practice in 
agile processes.

The mechanisms identified during architectural analysis are considered place-
holders for the common policies and infrastructure that are needed to support all 
elements of the system. These analysis mechanisms are identified by looking at 
the key services that might be needed, and are characterized in broad terms. (For 
more information on how to identify mechanisms, see Chapter 4.) During archi-
tectural design, you make decisions on how the analysis mechanisms will be 
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designed and implemented. Thus, analysis mechanisms are refined into design 
mechanisms, and their descriptions become more detailed. Specifically, design 
mechanisms are described in terms of specific abilities provided by the selected 
implementation technology.

If elements are to be maintained at different levels of abstraction (i.e., separate 
analysis and design elements), as opposed to the elements at one level of detail 
just morphing into elements at the next level, it is wise, from the viewpoint of 
requirements management and change management, to maintain traceability 
between the different levels of abstraction. Establishing and maintaining trace-
ability is critical to effective and accurate impact assessment.

Milestones and Measures

You successfully complete the micro process activity of identifying elements for a 
specific scope at a specific level of abstraction when you have an ample set of 
abstractions, consistently named and described. Another measure of goodness is 
that you have a reasonably stable analysis/design model for that scope at that level 
of abstraction. In other words, the analysis/design model is not changing wildly 
each time you iterate through the micro process. For example, the discovery of 
architecturally significant design elements late in the project’s lifecycle indicates 
a flaw in requirements, analysis, or the discussed aspects of the design. A rapidly 
changing analysis/design model is a sign either that the development team has not 
yet achieved focus or that the architecture is in some way flawed. As development 
proceeds, you can track stability in lower-level parts of the architecture by follow-
ing the local changes in collaborative abstractions.

Defining Element Collaborations

The purpose of the second micro process activity, defining element collabora-
tions, is to describe how the identified elements work together to provide the sys-
tem’s behavioral requirements. In this activity, we refine the identified elements 
through an intelligent and measurable distribution of responsibilities.

Products

The primary products of this micro process activity are the realizations that 
indicate how the identified elements collaborate to perform the behavioral 
requirements that are in scope. Realizations describe how a set of behavioral 
requirements are realized in terms of elements at a specific level of abstraction 
collaborating with one another. Realizations reflect an explicit distribution of 
responsibilities among the collaborating elements and provide the link between 
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the behavioral requirements and the software solution. Realizations are initially 
described in terms of analysis elements and then later in terms of design elements. 

The realizations and the supporting element responsibilities are documented in 
the analysis/design model. The level of detail and the representation used depend 
on the level of abstraction with which you are working. During analysis, you 
might use freeform descriptions for the responsibilities. Usually a phrase or a sin-
gle sentence is sufficient; anything more suggests that a given responsibility is 
overly complex and ought to be divided into smaller parts. During design, you 
may create specifications for each element that state the named operations that 
form the protocol of each element. During detailed design, these operations are 
formally captured as interfaces with complete signatures in the selected imple-
mentation language. The collaborations themselves may be documented by using 
simple diagrams that show which elements collaborate with each other. UML 
interaction diagrams (specifically, sequence and communication diagrams) are 
very effective for representing these collaborations. In addition, for those ele-
ments whose states drive how they collaborate with other elements, you may 
include state machine diagrams that capture the key state changes. UML state 
machine diagrams are very effective for representing these state machines. For 
more information on specifying an element’s semantics, see the upcoming Detail-
ing Element Semantics section. For more information on using the UML, see 
Chapter 5.

Steps

Analyzing behavioral requirements is an excellent technique for allocating the 
work to be performed to the identified elements. The following steps describe an 
approach for defining the semantics of a set of elements at a specific level of 
abstraction.

1. Analyze the behavior, allocating responsibilities to the elements that partici-
pate in providing the behavior (i.e., the elements identified during the 
previous micro process step). Consider exceptional behavior as well as 
expected behavior. Where the lifecycle of certain elements is significant or 
essential, develop a state machine for the element. The result of this step is a 
realization of the behavior in terms of the participating elements and their 
collaborations.

2. Scavenge for patterns among the realizations, and express these patterns in 
terms of more abstract, generalized realizations.

This approach applies equally well at all levels of abstraction, whether you are 
analyzing the system’s behavior expressed as use cases/scenarios (analysis), ana-
lyzing a component’s behavior expressed as responsibilities/interfaces (design), 
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or analyzing the behavior of an architectural mechanism expressed in a textual 
description (analysis and design).

Now let’s look at each of these steps in a little more detail.

Behavior Analysis Behavior analysis can be used to understand how a set 
of behavioral requirements are provided by the elements of the solution. The pri-
mary product of scenario analysis is a set of realizations. A realization can be 
developed by using the techniques of use case analysis (highly recommended), 
behavior analysis, or CRC cards, as described in Chapter 4.

A typical order of events when analyzing a scenario can be summarized as follows.

1. Select a scenario or a set of scenarios from the behavioral requirements to 
be considered.

2. Identify the elements relevant to the scenario. (The elements themselves 
may have already been identified during the previous micro process activity.)

3. Walk through the scenario, assigning responsibilities to each element in 
order to accomplish the desired behavior. As needed, assign attributes that 
represent structural elements required to carry out certain responsibilities. 
Note: In this step it is important to focus on behavior, not structure. 
Attributes represent structural elements, so there is a danger, especially 
early in analysis, of binding implementation decisions too early by requir-
ing the presence of certain attributes. Attributes should be identified at this 
point only insofar as they are essential to building a conceptual model of the 
scenario.

4. As scenario analysis proceeds, reallocate responsibilities so that there is a 
reasonably balanced distribution of behavior. Where possible, reuse or 
adapt existing responsibilities. Splitting large responsibilities into smaller 
ones is a very common action; less often, but still possible, trivial responsi-
bilities are assembled into larger behaviors. The analysis of individual sce-
narios may result in disparate responsibilities being allocated to the same 
element. Split such elements into multiple elements, each with a consistent 
and cohesive set of responsibilities.

5. During design, concurrency and distribution must also be considered in 
these realizations; where there are opportunities for concurrency, you must 
specify the actors, agents, and servers, as well as the means of synchroniza-
tion among them. Along the way, you may discover the need to introduce 
new paths among objects and to eliminate or consolidate unused or redun-
dant ones.

When analyzing a scenario, you may find that the state (or lifecycle) of one or 
more of the elements plays a significant role in affecting the overall flow of the 
scenario. In such cases, it is worth the time to take a closer look at the externally 
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visible state changes that the element may experience and to make sure that the 
scenario flow can accommodate those state changes. An accurate way to capture 
the element’s key states and state transitions is to use a state machine diagram. 

Pattern Scavenging This step recognizes the importance of commonality. 
As you identify the semantics of your elements, you must be sensitive to patterns 
of behavior, which represent opportunities for reuse. 

A typical order of events for scavenging patterns may be the following.

1. Given the complete set of realizations at this level of abstraction, look for 
patterns of interaction among the participating elements. Such collabora-
tions may represent implicit idioms or mechanisms, which should be exam-
ined to ensure there are no gratuitous differences. Nontrivial patterns of 
collaboration should be explicitly documented as strategic decisions so that 
they can be reused rather than reinvented. This activity preserves the integ-
rity of the architectural vision.

2. Given the set of responsibilities generated at this level of abstraction, look 
for patterns of behavior. Common roles and responsibilities should be uni-
fied in the form of common elements with common responsibilities. 

3. When working at lower levels of abstraction, as concrete operations are 
being specified, look for patterns within operation signatures. Remove any 
gratuitous differences, and introduce common classes when such signatures 
are found to be repetitious.

When you find patterns of collaboration, express them in terms of more abstract, 
generalized realizations.

Milestones and Measures

You successfully complete the micro process activity of defining element collabo-
rations when you have a consistent set of elements and responsibilities that pro-
vide the required functional behavior of the system within a particular scope at a 
specific level of abstraction and that offer a sensible and balanced separation of 
responsibilities between those elements.

As a result of this activity, you should have developed and validated realizations 
that represent the fundamental behaviors considered in scope. By fundamental,
we mean behaviors that are central to the application’s purpose. Measures of 
goodness with regard to the realizations include completeness and simplicity. 
Each realization must accurately reflect the semantics of the individual elements 
participating in the realization. A good set of realizations will cover all primary 
scenarios and a statistically interesting set of secondary ones. We neither expect 
nor desire a realization for every scenario. It is sufficient to consider only primary 
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and some secondary scenarios. In addition, a good set of realizations will also dis-
cover patterns of behavior, ultimately yielding a solution structure that exploits all 
that is common among different scenarios.

With regard to the individual element responsibilities, keep in mind that the focus 
of this activity is on the collaboration and on the identification of “who does 
what.” At this point, it is enough to just capture the element responsibilities. At 
the higher levels of abstraction, you may use an informal statement of responsibil-
ities. At the lower levels of abstraction, you may want to use more precisely stated 
semantics, but don’t go into too much detail here as the explicit definition of the 
semantics of the individual elements is the purpose of the fourth micro process 
activity, as described in the upcoming Detailing Element Semantics section.

The following list gives a few simple and useful checkpoints for evaluating the 
results of this activity.

■ Elements should have balanced responsibilities. A single element should 
not be “doing it all.”

■ Elements should have consistent responsibilities. When an element’s 
responsibilities are disjoint, it should be split into two or more elements.

■ There should not be two elements with identical or very similar 
responsibilities.

■ The responsibilities defined for each element should support the flows in 
which the element participates.

■ Responsibilities that are neither simple nor clear suggest that the given 
abstraction is not yet well defined.

At this point, we have identified the elements and have defined how those ele-
ments collaborate to provide the required behavior. Now it is time for us to turn 
our attention to the relationships between the elements that enable and support 
those collaborations.

Defining Element Relationships

The purpose of the third micro process activity is to define the relationships 
between the elements that support the element collaborations defined in the previ-
ous micro process activity. Defining the element relationships establishes the 
shape of the solution. Specifically, at the architectural levels of abstraction, the 
relationships between the key elements and the key partitions define the overall 
structure of the system and form the basis for all other relationships between sys-
tem elements. Identifying the relationships is done to solidify the boundaries of 
each element and to clearly represent which elements collaborate with each other. 
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This activity formalizes the separation of concerns among elements that was ini-
tially established when defining the element collaborations.

Products

The primary products of this micro process activity are the relationships between 
the elements at the current level of abstraction. The defined relationships are 
added to the evolving analysis/design model. 

Even though these relationships will ultimately be expressed in a concrete form 
(namely, through programming languages), we recommend that you represent 
them visually, using either UML diagrams or freeform diagrams. Visual diagrams 
offer a broader view of the architecture and let you express relationships that are 
not enforced by the linguistics of programming languages. These diagrams help 
you visualize and reason about relationships that may cross entities that are con-
ceptually and physically distant. As a result of producing these diagrams, you 
may discover previously hidden patterns of interaction, which you could seek to 
exploit. This may also lead to a local tweaking of the inheritance lattice. 

It is not desirable, nor is it possible, to produce a comprehensive set of diagrams 
that express every conceivable view of the relationships among elements. Rather, 
we recommend that you focus on the interesting ones, where our measure of 
interesting encompasses any set of related elements whose relationships are an 
expression of some fundamental architectural decision or that express a detail 
necessary to complete a blueprint for implementation. One set of diagrams that 
you may want to consider developing are diagrams associated with the realiza-
tions produced as part of the previous micro process activity of defining element 
collaborations. Such diagrams would contain the elements participating in the 
realization, along with their relationships, and would represent the structural 
aspects of the realization. 

Steps

In general, there are two steps associated with defining element relationships:

1. Identification of associations, the initial identification of a semantic connec-
tion between elements

2. Refinement of associations into more semantically rich relationships (e.g., 
aggregations, dependencies, and so on)

The identification of associations is primarily an analysis and early design 
activity. During architectural analysis, you define the relationships between the 
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high-level architectural partitions and between the key abstractions. During archi-
tectural design, you perform this activity in order to specify the relationships 
between the key components, as well as the high-level clustering of design ele-
ments into design partitions. During component analysis, you perform this activ-
ity in order to specify the relationships among analysis elements (including 
associations and certain important inheritance and aggregation relationships). 

A typical order of events for identifying element associations might be the 
following.

1. Collect a set of elements that exist at a given level of abstraction or are asso-
ciated with a particular scenario/realization.

2. Consider the presence of a semantic relationship between any two elements, 
and establish an association if such a dependency exists. The need for navi-
gation from one element to another and/or the need to elicit some behavior 
from an element are both cause for introducing associations. If two ele-
ments must collaborate between each other, there should be a relationship 
between them. 

3. For each association, if not redundant with the element names, specify the 
role of each participant, as well as any relevant multiplicity or other kind of 
constraint. Include such details only if they are obvious, as refining of these 
relationships is the purpose of the next step.

4. Validate your decisions by walking through scenarios and ensuring that the 
associations in place are necessary and sufficient to provide the navigation 
and behavior among elements participating in each scenario.

As we explained in Chapter 3, associations are the most semantically weak rela-
tionship: They represent only some sort of general dependency. However, during 
analysis and early design, this is often sufficient, for it captures enough interest-
ing details about the relationship between two abstractions, yet prevents us from 
making premature statements of detailed design. 

The refinement of associations is both an analysis and a design activity. During 
analysis, you may evolve certain associations into other, more semantically precise 
and concrete relationships to reflect your increasing understanding of the problem 
domain. During design, you similarly transform associations as well as add new 
concrete relationships in order to provide a blueprint for implementation. Aggre-
gation, composition, and dependency are the main kinds of relationships of interest, 
together with additional properties such as names, roles, multiplicity, and so on. 

A typical order of events for refining the element relationships might be the 
following.

1. Look for a collection of elements already clustered by some set of associa-
tions (e.g., the elements participating in a specific realization), and consider 
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the semantics of each of those relationships, refining the type of relationship 
as necessary. Does the relationship represent a simple usage of another 
object? If so, the association should be refined into a dependency relation-
ship. Does the association represent a particular structural relationship 
between the respective elements? If so, the association should be refined 
into an aggregation or a composition relationship. Each of the existing rela-
tionships should be examined with the goal of identifying and documenting 
the nature of these relationships. 

2. Look for patterns of structure among the elements. If found, consider creat-
ing new elements that capture this common structure, and introduce them 
either through inheritance (place the classes in the context of an existing 
inheritance lattice, or fabricate a lattice if an appropriate one does not 
already exist) or through aggregation. 

3. Look for patterns of behavior among the elements. If found, consider the 
possibility of introducing common parameterized elements that perform the 
common behavior.

4. Consider the navigability of existing associations, and constrain them if 
possible. Use unidirectional relationships if bidirectional navigation is not a 
desired property.

5. As development proceeds, introduce details such as statements of role, mul-
tiplicity, and so on. It is not desirable to state every detail; just include infor-
mation that represents an important analysis or design position or that is 
necessary for implementation.

Milestones and Measures

You successfully complete the micro process activity of defining element relation-
ships when you have specified the relationships among the elements at a specific 
level of abstraction.

One thing to look for at this phase is the consistency of the relationships between 
the elements participating in a realization. Specifically, for each realization, the 
relationships between the participating elements and the required collaborations 
between elements must be consistent (if there is collaboration, there must be a 
relationship).

Measures of goodness include cohesion, coupling, and completeness. In review-
ing the relationships you identify during this activity, you seek to have logically 
cohesive and loosely coupled elements. In addition, you seek to identify all of the 
important relationships at a given level of abstraction, so that the next level of 
abstraction does not require you to introduce new significant relationships or per-
form unnatural acts to use the ones you have already specified. If you find that 
your elements and relationships are awkward to specify, that is an indication that 
you have not yet devised a meaningful set of relationships among your elements.
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Detailing Element Semantics

Up to this point, we have focused mainly on how the elements collaborate. Now 
we will take a closer look at the semantics of the individual elements from the 
bottom up, making sure that they are consistent and well understood.

The purpose of this fourth micro process activity is to clarify the behavior and 
attributes of each identified element at a specific level of abstraction, to define 
semantics that are consistent across all scenarios the element participates in, and 
to make sure that sufficient information is provided for each element in order to 
take that element to the next level of abstraction. In this activity, the element 
semantics are refined at the current level of abstraction in sufficient enough detail 
to enable the identification of elements at the next level of abstraction. For exam-
ple, during analysis, the purpose of detailing the element semantics is to refine the 
analysis elements’ semantics to include enough information to enable the identifi-
cation of design elements. During design, the purpose of detailing the element 
semantics is to refine the design elements’ semantics to include enough detail to 
support implementation.

The placement of this activity as the last activity in the micro process is inten-
tional: The micro process focuses first on behavior and collaboration between ele-
ments and defers decisions about the detailed semantics of the individual 
elements until as late as possible. This strategy avoids premature decisions that 
can ruin opportunities for smaller, simpler architectures and also allows for the 
freedom to change internal representations as needed for reasons of efficiency, 
while limiting the disruption to the existing architecture. Whereas the first three 
activities of the micro process focus on an outside view of the elements and how 
they collaborate, this final activity focuses on each of the elements individually, 
clearly specifying each element’s external view and providing additional details 
that will drive the development of the internal view.

Products

The primary product of this micro process activity is a refined analysis/design 
model that includes more detailed semantics for the elements. Both the level of 
detail and the representation used to document the element’s semantics depend on 
the level of abstraction you are working in.

During analysis, the results of this activity are relatively abstract. You are not so 
concerned about making representation decisions; rather, you are more interested 
in discovering new abstractions to which you can delegate responsibility. Detail-
ing the semantics at the analysis level may involve developing more detailed 
descriptions of those responsibilities in the form of activity diagrams that describe 
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the overall flow. For those elements whose responsibilities involve event-driven 
or state-ordered behavior, you may want to include state machines that capture 
the dynamic semantics of each element’s protocols.12

During design, and especially in later stages of detailed design, you must increas-
ingly make concrete decisions regarding representation. As you begin to refine 
the protocol of individual elements, you may name specific operations, ignoring 
their full signatures. As soon as practical, you may attach full signatures for each 
operation. During design, you may also specify that certain algorithms should be 
used. When working at the lower levels of abstraction, and as you make further 
bindings to the given implementation language (i.e., during detailed design), the 
detailed semantics may even include pseudocode or executable code. Once you 
produce formal class interfaces, you can begin to use programming tools to test 
and enforce the design decisions. The primary benefit of the more formal prod-
ucts of this step is that they force the developer to consider the pragmatics of each 
abstraction’s protocol. The inability to specify clear semantics is a sign that the 
abstractions themselves are flawed.

Steps

Detailing an element’s semantics involves the selection of the structures and algo-
rithms that describe the structure and the behavior of the element. A typical order 
of events for detailing an element’s semantics might be the following.

1. Enumerate the element’s roles and responsibilities. Collect and consolidate 
the results from the individual realizations produced earlier while defining 
element collaborations (the second micro process activity). Use these real-
izations to help you identify the responsibilities of the participating ele-
ments. Determine the responsibilities of an element by looking at all of the 
incoming collaborations to that element in the realizations. (The responsi-
bilities of an element are all the things that other elements can ask it to do.)

2. Describe each responsibility in more detail. Produce activity or sequence 
diagrams to describe overall flow, produce state machine diagrams to 
describe state behavior, and so on. Wherever possible, recommend a suit-
able algorithm for each responsibility/operation. During design, consider 
introducing helper operations to divide complex algorithms into less com-
plicated, reusable parts. Consider the trade-offs of storing versus calculating 
certain states of an element.

12. A protocol specifies that certain operations are to be invoked in a specific order. For 
all but the most trivial classes, operations rarely stand alone; each has preconditions that 
must be satisfied, often by invoking other operations.
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3. During design, consider inheritance. Select the appropriate abstract classes 
(or create new ones, if the problem is sufficiently general), and adjust the 
inheritance lattice as required. Consider the elements to which you might 
delegate responsibility. For an optimal fit, this may require a minor readjust-
ment of the responsibilities and/or protocol of the lower-level elements. If 
the element’s semantics cannot be provided through inheritance, instantia-
tion, or delegation, consider a suitable representation at the next level of 
abstraction (e.g., if you are at the design level, this may include primitives in 
the implementation language). Keep in mind the importance of operations 
from the perspective of the element’s clients, and select a representation that 
optimizes for the expected patterns of use. Remember that it is not possible 
to optimize for every use, however. As you gain empirical information from 
successive releases, you can identify which elements are not time and/or 
space efficient, and alter their implementation locally, with little concern 
that you will violate the assumptions clients make about your abstraction.

4. As responsibilities are defined for each element, consider the attributes that 
the element must have in order to fulfill these responsibilities.

5. During design, devise a sufficient set of operations that satisfy these respon-
sibilities. Where possible, try to reuse operations for conceptually similar 
roles and responsibilities. In the case of an individual class, responsibilities 
are documented as operations on the class; in the case of a component, 
responsibilities represent the services provided by the component and are 
documented as operations on the component’s interface.
■ Consider each operation in turn, and ensure that it is primitive. If not, iso-

late and expose its more primitive operations. Composite operations may 
be retained in the element itself (if the operation is sufficiently common, 
or for reasons of efficiency) or migrated to a common class (especially if 
the operation is likely to change often). Decomposing operations enables 
you to potentially find more commonality.

■ Consider the needs for construction, copying, and destruction [13]. It is 
better to have a common strategic policy for these behaviors, rather than 
allowing individual classes to follow their own idiom, unless there is a 
compelling reason to do so.

■ Consider the need for completeness. Add other primitive operations that 
are not necessarily required for the immediate clients but whose presence 
rounds out the element and therefore would probably be used by future 
clients. Realizing that it is impossible to have perfect completeness, lean 
more toward simplicity than complexity.

While detailing the responsibilities of the element, you may discover new ele-
ments that support the detailed descriptions (e.g., when more fully describing an 
element’s responsibility, you may find that you missed a key piece of information, 
so you might identify a new element to represent that information). Document 
those elements and their responsibilities, and repeat the steps just described for 
those elements.
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When defining the semantics of individual elements during analysis, commonal-
ity among elements may become apparent, and it may be very tempting to start 
defining very elaborate inheritance relationships among the elements in order to 
reflect common behavior and common structure. However, it is important to 
avoid looking for inheritance relationships too soon: Introducing inheritance pre-
maturely often leads to loss of type integrity. The use of inheritance is generally 
considered a design activity because at that point you have a more detailed under-
standing of the semantics of the design elements and thus are in a better position 
to place them in an inheritance lattice. During design, commonality encountered 
among classes can be represented in a generalization/specialization hierarchy. 
When defining this inheritance lattice, be sensitive to balance (the lattice should 
not be too tall or too short, neither too wide nor too skinny). Where patterns of 
structure or behavior appear among these classes, reorganize the lattice to maxi-
mize commonality (but not at the expense of simplicity). For additional consider-
ations when constructing an inheritance hierarchy, see Chapter 3.

In the early stages of development, before inheritance has been used, document-
ing the semantics of the individual elements is isolated. However, once you have 
inheritance lattices in place, documenting an element’s semantics must also 
address placement of operations in the hierarchy. When considering the opera-
tions associated with a given element, it is important to decide at what level in the 
inheritance hierarchy the operation is best placed. Operations that may be used by 
a set of peer classes should be refactored to a common superclass, possibly by 
introducing a new intermediate class. 

When detailing an element’s semantics, be sure to stay at the current level of 
abstraction. Identifying elements at the next level of abstraction occurs during the 
first activity in the next iteration of the micro process (or during implementation 
in the macro process).

Milestones and Measures

You successfully complete the micro process activity of detailing the element 
semantics when you have a more complete understanding of the semantics of the 
elements at a specific level of abstraction (i.e., you have provided enough detail to 
move to the next level of abstraction) and when you have specified those seman-
tics in a form that is consistent with that level of abstraction. As the last activity in 
the micro process, the ultimate objective is to have a set of crisp abstractions that 
are tightly cohesive and loosely coupled.

Evaluating the success of this activity involves looking at the semantics of the 
individual elements. As a result of this activity, you should have a reasonably suf-
ficient, primitive, and complete set of semantics for each element at a specific 
level of abstraction. You should have provided enough detail for each of the 
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elements to enable the identification of elements at the next level of abstraction. 
For example, during analysis, you successfully complete this activity when you 
have an informal statement of responsibilities and attributes of the analysis ele-
ments and you know enough to move to design. During design, you successfully 
complete this activity when you have more precisely stated semantics (e.g., oper-
ations and attributes) that are detailed enough to be implemented and tested 
(meaning their structure and use can be defined by the selected implementation 
language). This does not necessarily mean that the elements must be expressed in 
vivid detail, just that there is sufficient information for a competent implementer 
to be able to do their job.

The primary measure of goodness for this activity is simplicity. Element seman-
tics that are complex, awkward, or inefficient are an indication that the element 
itself is lacking or that you have chosen a poor representation.

This completes our discussion of the micro process activities and also completes 
this chapter on the software development process. It is our hope that you now 
have an appreciation for the separation of concerns between the overall software 
development lifecycle (the macro process) and the analysis and design activities 
(the micro process), as well as an understanding of how these processes support 
each other. It is crucial to the success of your software development project that 
you choose a specific development process and configure it to meet the specific 
needs of your project, at both the macro and the micro process levels.

Summary

■ Successful projects are usually characterized by the existence of a strong 
architectural vision and the application of a well-managed iterative and 
incremental development lifecycle.

■ Architecture describes the significant decisions that have been made with 
regard to both structure and behavior and usually reflects an architectural 
style. A strong architectural vision enables the construction of systems that 
are simpler, are more robust and resilient, enable more effective reuse, and 
are easier to maintain.

■ Iterative and incremental development occurs when the functionality of the 
system is delivered in a successive series of releases (either internal or 
external) of increasing completeness, with each release being an iteration. 
The selection of what functionality is developed in each iteration is driven 
by the mitigation of project risks; the most critical risks are addressed first. 
The iterative and incremental approach is at the heart of most modern soft-
ware development methods, including agile methods, as it is a very effective 
technique for managing risk and change. 
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■ All software development processes exist somewhere on a process contin-
uum, with agile methods on one end and plan-driven techniques on the 
other. The choice of the right software development process for a particular 
project is driven by the project’s (and the organization’s) characteristics and 
involves configuring a development process that reflects a balance between 
agile and plan-driven processes that matches the project’s position on that 
continuum.

■ In this chapter, the software development process framework is described 
from two perspectives—the overall software development lifecycle (the 
macro process) and the analysis and design process (the micro process). The 
choice of lifecycle style (e.g., waterfall, iterative, agile, plan-driven, and so 
on) affects the macro process, and the choice of analysis and design tech-
niques (e.g., structured, object-oriented, and so on) affects the micro pro-
cess. Whether you choose an agile or a plan-driven process as your macro 
process, the object-oriented analysis and design tips and techniques 
described in the micro process section can be applied equally well.

■ The purpose of the micro process is to take the requirements provided by 
the macro process (and possibly the analysis and design specifications pro-
duced by previous iterations of the micro process) and produce analysis and 
design specifications that are fed back into the macro process. Ultimately, 
the micro process produces specifications for the implementation that are 
built, tested, and deployed in the macro process. 

■ The micro process is comprised of four key activities (identify elements, 
define element collaborations, define element relationships, and detail ele-
ment semantics). Each iteration of the micro process involves iterating 
through these activities for a set of behavioral requirements at a specific 
level of abstraction. The basic steps and the resulting products are about the 
same for all levels of abstraction; what differs is the level of detail (lower 
levels of abstraction result in more detailed products).
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C h a p t e r  7

Pragmatics

Software development today is a multibillion-dollar, competitive, worldwide 
business, stretching from North America through Western and Eastern 
Europe and into Asia and the Pacific Rim. In spite of the tools available to 
support the major functions in object-oriented development—requirements 
management, configuration management, design, code, and test—there 
are still too many failures. Schedules are missed. Costs are overrun. 
Functionality is not provided. Tens to hundreds of millions of dollars are 
lost on single development efforts. An unfortunate example is the FBI’s 
Virtual Case File system, which was intended to be an important tool in 
fighting terrorism. After more than three years in development, in April 
2005 “the bureau had to scrap the US $170 million project, including $105 
million worth of unusable code” [1]. On March 16, 2006, the FBI awarded 
a $305 million contract to develop the Sentinel system to replace the Vir-
tual Case File system [2]. This is but one example of far too many failed 
software developments [3].

Compounding matters is the fact that designing software is not an exact 
science. Consider the design of a complex database using entity-
relationship modeling, one of the foundations of object-oriented design. 
As Hawryszkiewycz observes, “Although this sounds fairly straightforward, 
it does involve a certain amount of personal perception of the importance 
of various objects in the enterprise. The result is that the design process is 
not deterministic: different designers can produce different enterprise 
models of the same enterprise” [4].

We may reasonably conclude that no matter how sophisticated the devel-
opment method, no matter how well-founded its theoretical basis, we can-
not ignore the practical aspects of designing systems for the real world. 
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This means that we must consider sound management practices with 
regard to such issues as staffing, release management, and quality assur-
ance. To the technologist, these are intensely dull topics; to the profes-
sional software engineer, these are realities that must be faced if one 
wants to be successful in building complex software systems. Thus, this 
chapter focuses on the pragmatics1 of object-oriented development and 
examines the impact of the object model on various management practices.

7.1 Management and Planning

In the presence of an iterative and incremental lifecycle, it is of paramount impor-
tance to have strong project leadership that actively manages and directs a 
project’s activities. Too many projects go astray because of a lack of focus, and 
the presence of a strong management team mitigates this problem.

Risk Management

Ultimately, the responsibility of the software development manager is to manage 
nontechnical risks, while the technical risks are typically the responsibility of the 
project architect. Technical risks in object-oriented systems include problems 
such as the selection of an inheritance structure that offers the best compromise 
between usability and flexibility, or the choice of mechanisms that yield accept-
able performance while simplifying the system’s architecture. Nontechnical risks 
encompass issues such as supervising the timely delivery of software from a 
third-party vendor, or managing the relationship between the customer and the 
development team so as to facilitate the discovery of the system’s real require-
ments during analysis.

As we described in the previous chapter, the micro process of object-oriented 
development is inherently unstable and requires active planning to force closure. 
Fortunately, the macro process of object-oriented development is designed to lead 
to closure by providing a number of tangible products that management can study 
to ascertain the health of the project, together with controls that permit manage-
ment to redirect the team’s resources as necessary. The macro process’s evolu-
tionary approach to development means that there are opportunities to identify 
problems early in the lifecycle and meaningfully respond to these risks before 
they jeopardize the success of the project.

1. Webster’s New World College Dictionary defines pragmatic as “concerned with ac-
tual practice, not with theory or speculation; practical.”
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Many of the basic practices of software development management, such as task 
planning and walkthroughs, are unaffected by object-oriented technology. What 
is different about managing an object-oriented project, however, is that the tasks 
scheduled and the products reviewed are different than for non-object-oriented 
systems.

Task Planning

In any modest- to large-sized project, it is reasonable to have periodic team meet-
ings to discuss work completed and activities for the coming work period. Some 
minimal frequency of meetings is necessary to foster communication among team 
members; too many meetings destroy productivity and in fact are a sign that the 
project has lost its way. Object-oriented software development requires that indi-
vidual developers have unscheduled critical masses of time in which they can 
think, innovate, develop, and meet informally with other team members as neces-
sary to discuss detailed technical issues. The management team must plan for this 
unstructured time.

Team meetings provide a simple yet effective vehicle for fine-tuning schedules in 
the micro process, as well as for gaining insight into risks looming on the horizon. 
These meetings may result in small adjustments to work assignments, so as to 
ensure steady progress: No project can afford for any of its developers to sit idle 
while waiting for other team members to stabilize their part of the architecture. 
This is particularly true for object-oriented systems, wherein class and mecha-
nism design pervades the architecture. Development can come to a standstill if 
certain key classes are in flux.

On a broader scale, task planning involves scheduling the deliverables of the 
macro process. Between evolutionary releases, the management team must assess 
both the imminent and longer-term risks to the project, focus development 
resources as necessary to attack those risks,2 and then manage the next iteration of 
the micro process that yields a stable system satisfying the required use case sce-
narios scheduled for that release. Task planning at this level most often fails 
because of overly optimistic schedules [5]. Development that was viewed as a 
“simple matter of programming” expands to weeks or months of work; schedules 
are thrown out the window when developers working on one part of the system 
assume certain protocols from other parts of the system but are then blindsided by 
delivery of incompletely or incorrectly fabricated classes. Even more insidious, 
schedules may be mortally wounded by the appearance of performance problems 
that must be worked around, often by corrupting certain tactical design decisions.

2. Gilb notes that “if you do not actively attack the risks, they will actively attack you” [6].
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The key to not being at the mercy of overly optimistic planning is the calibration 
of the development team and its tools; this is a continuous process. Typically, task 
planning goes like this. First, the management team directs the energies of a 
developer to a specific part of the system, for example, the design of a set of 
classes for interfacing to a relational database. The developer considers the scope 
of the effort and returns with an estimate of time to complete, which management 
then relies on to schedule other developers’ activities. The problem is that these 
estimates are not always reliable because they usually represent best-case condi-
tions. One developer might quote one week of effort for some task, whereas 
another developer might quote one month for the same task. When the work is 
actually carried out, it might take both developers three weeks, the first developer 
having underestimated the effort (the common problem of most developers), and 
the second developer having set much more realistic estimates (usually because 
he or she understood the difference between actual work time versus calendar 
time, which often gets filled with a multitude of nonfunctional activities). In order 
to develop schedules in which the team can have confidence, it is therefore neces-
sary for the management team to devise multiplicative factors for each developer’s 
estimates. This is not an indication of management not trusting its developers: It 
is a simple acknowledgment of the reality that most developers are focused on 
technical issues, not planning issues. Management must help its developers learn 
to do effective planning, a skill that is typically acquired through battlefield expe-
rience. Adequate training and estimation guidelines are a necessity in the effort to 
reduce ineffective planning.

The process of object-oriented development explicitly helps to develop these cali-
bration factors. Its iterative and incremental lifecycle means that there are many 
intermediate milestones established early in the project, which management can 
use to gather data on each developer’s track record for setting and meeting sched-
ules. As evolutionary development proceeds, this means that management over 
time will gain a better understanding of the real productivity of each of its devel-
opers, and developers can gain experience in estimating their own work more 
accurately. The same lesson applies to tools: With the emphasis on early delivery 
of architectural releases, the process of object-oriented development encourages 
the early use of tools, which leads to the identification of their limitations before 
it is too late to change course.

Development Reviews

Development reviews are another well-established practice that every develop-
ment team should employ. As with task planning, the conduct of software devel-
opment reviews is largely unaffected by object-oriented technology. However, 
relative to non-object-oriented systems, what is reviewed is a different matter.
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Management must take steps to strike a balance between too many and too few 
development reviews. In all but the most safety-critical systems, it is simply not 
economical to review every aspect of the design. Therefore, management must 
direct the scarce resources of its team to review those aspects of the system that 
represent strategic development issues. For object-oriented systems, this suggests 
conducting formal reviews based on use case scenarios as well as the system’s 
architecture, with many more informal reviews focused on smaller tactical issues. 
The scenarios chosen should include the primary scenarios and those alternate 
scenarios where system response is critical.

As described in the previous chapter, use case scenarios are a primary product of 
the analysis phase of object-oriented development and serve to capture the 
desired behavior of the system in terms of the functionality it provides, from the 
users’ perspective. Formal reviews of use case scenarios are led by the team’s 
analysts (who have use case development expertise), together with domain 
experts or other end users, and are witnessed by other developers, including qual-
ity assurance personnel (testers). Such reviews are best conducted throughout the 
analysis phase, rather than waiting to carry out one massive review at the end of 
analysis, when it is already too late to do anything useful to redirect the analysis 
effort. Experience shows that even nondevelopers can understand use case scenar-
ios presented through text or visual diagrams such as activity or sequence dia-
grams.3 Ultimately, such reviews help to establish a common vocabulary among a 
system’s developers and its users. Letting other members of the development 
team witness these reviews exposes them to the real requirements of the system 
early in the development process.

Architectural reviews should focus on the overall structure of the system, includ-
ing its class structure and mechanisms. As with use case scenario reviews, archi-
tectural reviews should be conducted throughout the project, led by the project’s 
architect or other designers. Early reviews focus on sweeping architectural issues, 
whereas later reviews may focus on a certain component or specific pervasive 
mechanisms. The central purpose of such reviews is to validate designs early in 
the lifecycle. In so doing, we also help to communicate the vision of the architec-
ture. A secondary purpose of such reviews is to increase the visibility of the archi-
tecture so as to create opportunities for discovering patterns of classes or 
collaborations of objects, which may then be exploited over time to simplify the 
architecture.

Informal reviews should be carried out periodically, in accordance with the devel-
opment process, and generally involve the peer review of certain components or 
lower-level mechanisms. The purpose of such reviews is to validate these tactical 

3. We have encountered use of the notation in reviews involving such diverse non-
developer groups as astronomers, biologists, meteorologists, physicists, and bankers.
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decisions; their secondary purpose is to provide a vehicle for more senior devel-
opers to instruct junior members of the team.

7.2 Staffing

Staffing for object-oriented development is similar to that for traditional software 
development. The differences tend to be associated with the timing of these 
resources within the development cycle. For example, architects and designers 
play a critical role early in the process due to its iterative and incremental nature.

Resource Allocation

One of the more delightful aspects of managing object-oriented projects is that, in 
the steady state, there is usually a reduction in the total amount of resources 
needed and a shift in the timing of their deployment relative to more traditional 
methods, such as a single waterfall. The operative phrase here is in the steady 
state, with an experienced team. Generally speaking, the first object-oriented 
project undertaken by an organization will require more resources than for non-
object-oriented methods, primarily because of the learning curve inherent in 
adopting any new technology. The essential resource benefits of the object model 
will not show themselves until the second or third project, at which time the 
development team is more adept at object-oriented analysis and design, from 
architecture through class design and harvesting of common abstractions and 
mechanisms, and the management team is more comfortable with driving the iter-
ative and incremental development process.

For analysis, resource requirements do not typically change much when employ-
ing object-oriented methods. However, because the object-oriented process places 
an emphasis on architectural design, we tend to accelerate the deployment of 
architects and other designers to much earlier in the development process, some-
times even engaging them during later phases of analysis to begin architectural 
exploration. During later increments, fewer resources are typically required, 
mainly because the ongoing work tends to leverage common abstractions and 
mechanisms invented earlier during architectural design or previous increments. 
Testing may also require fewer resources, primarily because adding new function-
ality to a class or mechanism is achieved mainly by modifying a structure that is 
known to behave correctly in the first place. Thus, testing tends to begin earlier in 
the lifecycle and manifests itself as a cumulative rather than a monolithic activity. 
Integration usually requires fewer resources, compared with traditional methods, 
mainly because integration happens incrementally throughout the development 
lifecycle, rather than occurring in one “big bang” event. Thus, in the steady 
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state with an experienced team, the net of all the human resources required for 
object-oriented development is typically less than that required for traditional 
approaches. Furthermore, when we consider the cost of ownership of object-
oriented software, the total lifecycle costs are often less because the resulting 
product tends to be of far better quality and so is much more resilient to change.

Development Team Roles

It is important to remember that software development is ultimately a human 
endeavor. Developers are not interchangeable parts, and the successful deploy-
ment of any complex system requires the unique and varied skills of a focused 
team of people.

Experience suggests that the object-oriented development process requires a sub-
tly different partitioning of skills, compared with traditional methods. We have 
found the following three roles to be central to the technical development team for 
an object-oriented project:

1. Project architect
2. Component lead
3. Application engineer

The project architect is the visionary and is responsible for evolving and main-
taining the system’s architecture. For small to medium-sized systems, architec-
tural design is typically the responsibility of a few particularly insightful 
individuals. For larger projects, this may be the shared responsibility of a larger 
team. The project architect is not necessarily the most senior developer, but rather 
is the one best qualified to make strategic decisions, usually as a result of his or 
her extensive experience in building similar kinds of systems. Because of this 
experience, architects intuitively know the common architectural patterns relevant 
to a given domain and the performance issues that apply to certain architectural 
variants. In addition to analysis and design experience, architects should have 
programming experience and be well versed in the notation, process, and tools of 
object-oriented development because they must ultimately express their architec-
tural vision in terms of clusters of classes and collaborations of objects.

It is generally bad practice to hire an outside architect who, metaphorically speak-
ing, storms in on a white horse, proclaims some architectural vision, and then 
rides away while others suffer the consequences of these decisions. It is far better 
to actively engage an architect during analysis and then retain that architect 
throughout most if not all of the system’s evolution. Thus, the architect will 
become more familiar with the actual needs of the system and over time will be 
subject to the implications of his or her architectural decisions. In addition, by 
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keeping responsibility for architectural integrity in the hands of one person or a 
small team of developers, we increase our chances of developing a more resilient 
architecture.

Component leads are the primary abstractionists of the project. A component lead 
is responsible for the design of an entire component. In conjunction with the 
project architect, each lead must devise, defend, and negotiate the interface of a 
specific component and then direct its implementation. A component lead is 
therefore the ultimate owner of a cluster of classes and its associated mechanisms 
and is also responsible for its testing and release during the evolution of the system.

Component leads must be well versed in the notation and process of object-
oriented development. They may be better designers and programmers than the 
project architect but lack the architect’s broad experience. On the average, com-
ponent leads constitute about a third to a half of the development team.

Application engineers are the less senior developers in a project and usually carry 
out one of two responsibilities. Certain application engineers are responsible for 
the implementation of a component, under the supervision of its component lead. 
This activity may involve some class design but generally involves implementing 
and then unit testing the classes and mechanisms invented by other designers on 
the team. Other application engineers are then responsible for taking the classes 
designed by the architect and component leads and assembling them to carry out 
the use case scenarios of the system. In a sense, these engineers are responsible 
for writing small programs in the domain-specific language defined by the classes 
and mechanisms of the architecture. Another approach to accomplishing this 
work is to have the application engineers responsible for even more of the 
detailed class design while ensuring they have sufficient supervision and mentor-
ing from the component lead.

Application engineers are familiar with but not necessarily experts in the notation 
and process of object-oriented development; however, they are very good pro-
grammers who understand the idioms and idiosyncrasies of the given program-
ming languages. On the average, half or more of the development team consists of 
application engineers.

This breakdown of skills addresses the staffing problem faced by most software 
development organizations, which usually have only a handful of really good 
designers and many more less-experienced ones. The social benefit of this 
approach to staffing is that it offers a career path to the more junior people on the 
team: Specifically, junior developers work under the guidance of more senior 
developers in a mentor/apprentice relationship. As junior developers gain experi-
ence in using well-designed classes, over time they learn to design their own 
quality classes. The corollary to this arrangement is that not every developer 
needs to be an expert abstractionist but can grow in those skills over time.
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In larger projects, a number of other distinct development roles are required to 
carry out the work. Some of the roles listed here (such as the system administra-
tor) are indifferent to the use of object-oriented technology, although some of 
them are especially relevant to the object model (such as the reuse engineer). 

■ Project manager Responsible for the active management of the 
project’s deliverables, tasks, resources, and 
schedules

■ Analyst Responsible for evolving and interpreting the end 
user’s requirements; must be an expert in the 
problem domain, yet must not be isolated from 
the rest of the development team

■ Reuse engineer Responsible for managing the project’s repository 
of classes, components, and designs; through par-
ticipation in reviews and other activities, actively 
seeks opportunities for commonality and causes 
them to be exploited; acquires (e.g., through com-
mercial libraries), produces, and adapts classes 
and components for general use within the project 
or the entire organization

■ Quality assurance Responsible for measuring the products of the 
development process; generally directs system-
level testing of all prototypes and production 
releases

■ Integration manager Responsible for assembling compatible versions 
of released components in order to form a deliver-
able release; maintains the configurations of 
released products

■ Documenter Responsible for producing end-user documenta-
tion of the product and its architecture

■ Toolsmith Responsible for creating and adapting software 
tools that facilitate the production of the project’s 
deliverables

■ System administrator Responsible for managing the physical computing 
resources used by the project

Of course, not every project requires all of these roles. For small projects, many 
of these responsibilities may be shared by the same person; for larger projects, 
each role may represent an entire organization. For even larger projects, there 
may be additional roles such as an enterprise architect, a methodologist, a config-
uration management lead, and a business analyst. Some of these, such as the 
methodologist, might not be dedicated to just one project [29].
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Experience indicates that object-oriented development makes it possible to use 
smaller development teams, compared with traditional methods. Indeed, it is not 
impossible for a team of roughly 30–40 developers to produce several hundred 
thousand lines of production-quality code in a single year. However, we agree 
with Boehm, who observes that “the best results occur with fewer and better peo-
ple” [7]. Unfortunately, trying to staff a project with fewer people than traditional 
folklore suggests are needed may produce resistance. Such an approach infringes 
on the attempts of some managers to build empires. Other managers like to hide 
behind large numbers of employees because more people represent more power. 
Furthermore, if a project fails, there are more subordinates on whom to heap the 
blame.

Just because a project applies the most sophisticated design method or the latest 
fancy tool doesn’t mean a manager has the right to abdicate responsibility for hir-
ing designers who can think or to let a project run on autopilot [8].

7.3 Release Management

Release management concerns for object-oriented development are like those for 
traditional software development; they provide a foundation to support the devel-
opment process. The development team must manage the configuration of the 
system being developed while integrating and testing the pieces of developed 
software, from classes to components and finally to the entire software system.

Configuration Management and Version 
Control

Consider the plight of an individual developer, who might be responsible for 
implementing a particular component. He or she must have a working version of 
that component, that is, a version under development. In order to proceed with 
further development, at least the interfaces of all imported components must be 
available. As this working version becomes stable, it is released to an integration 
team, which is responsible for collecting a set of compatible components for the 
entire system. Eventually, this collection of components is frozen and baselined 
and made part of an internal release. This internal release thus becomes the cur-
rent operational release, visible to all active developers who need to further refine 
their particular part of its implementation. In the meantime, the individual devel-
oper can work on a newer version of his or her component. Thus, development 
can proceed in parallel, with stability made possible because of well-defined and 
well-guarded component interfaces.
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Implicit in this model is the idea that a cluster of classes, not the individual class, 
is the primary unit of version control. Experience suggests that managing ver-
sions of classes is too fine a granularity since no class stands alone. Rather, it is 
better to version related groups of classes. This does not mean that we don’t ver-
sion control classes, just that this is not our primary focus. Practically speaking, 
this means versioning components since groups of classes map to components. At 
higher levels within the software system, one would version subsystems com-
posed of multiple lower-level components.

At any given point in the evolution of a system, multiple versions of a particular 
component may exist: There might be a version for the current release under 
development, one for the current internal release, and one for the latest customer 
release. This intensifies the need for reasonably powerful configuration manage-
ment and version control tools.

Source code is not the only development product that should be placed under con-
figuration management. The same concepts apply to all the other products of 
object-oriented development, such as use case specifications, visual models, and 
software architecture documents.

Integration

Industrial-strength projects require the development of families of programs. At 
any given time in the development process, there will be multiple prototypes and 
production releases, as well as development and test scaffolding. Often, each devel-
oper will have his or her own executable view of the system under development.

As explained in the previous chapter, the nature of the iterative and incremental 
process of object-oriented development means that there should not be a single 
“big bang” integration event (although this may happen in projects that are in 
trouble). Instead, there will generally be many smaller integration events, each 
marking the creation of another prototype or architectural release. Each such 
release is generally incremental in nature, having evolved from an earlier stable 
release. As Davis et al. observe, “when using incremental development, software 
is deliberately built to satisfy fewer requirements initially, but is constructed in 
such a way as to facilitate the incorporation of new requirements and thus achieve 
higher adaptability” [9]. From the perspective of the ultimate user of the system, 
the macro process generates a stream of executable releases, each with increasing 
functionality, eventually evolving into the final production system. From the per-
spective of those inside the organization, many more releases are actually con-
structed, and only some are frozen and baselined to stabilize important system 
interfaces. This strategy tends to reduce development risk because it accelerates 
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the discovery of architectural and performance problems early in the development 
process.

For a modest-sized project, an organization may produce an internal release every 
two to three months. For more complex projects that require much greater devel-
opment effort, this might mean a release every six months or so, according to the 
needs of the project. In the steady state, a release consists of a set of compatible 
components along with their associated documentation. Building a release is pos-
sible whenever the major components of a project are stable enough and work 
together well enough to provide some new level of functionality.

Testing

The principle of continuous integration applies as well to testing, which should 
also be a continuous activity during the development process. In the context of 
object-oriented architectures, testing must encompass at least three dimensions.

1. Unit testing involves testing individual classes and mechanisms. It is the 
responsibility of the application engineer who implemented the structure.

2. Component testing, which involves integration testing a complete compo-
nent, is the responsibility of the component lead. Component tests can be 
used as regression tests for each newly released version of the component. 
Note that the term component is generic and can mean a single component 
in a small project or a collection of components, sometimes referred to as a 
subsystem, in a larger project.

3. System testing involves integration testing the system as a whole and is the 
responsibility of the quality assurance team. System tests are also typically 
used as regression tests by the integration team when assembling new 
releases.

Testing at each level should focus on the external behavior of the item being 
tested; a secondary purpose of testing is to push the limits of the system in order 
to understand how it fails under certain conditions.

7.4 Reuse

One of the most acclaimed benefits of object-oriented development is reuse, but it 
is one that requires management commitment to realize the benefits of reusing the 
many artifacts of the development process.
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Elements of Reuse

Any artifact of software development can be reused, including use case scenarios 
(for both requirements and testing), design, code, and documentation. As noted in 
Chapter 3, classes serve as the primary linguistic vehicle for reuse: Classes may 
be subclassed to specialize or extend the base class. Also, as explained in Chapter 
4, we can reuse patterns of classes, objects, and designs in the form of idioms, 
mechanisms, and frameworks. Reuse of collaborating classes, in the form of com-
ponents, typically offers the most benefit. Framework reuse and pattern reuse are 
at a higher level of abstraction than the reuse of individual classes and so provide 
greater leverage (but are harder to achieve). 

It is dangerous and misleading to quote figures for levels of reuse [10]. In suc-
cessful projects, we have encountered reuse factors as high as 70% (meaning that 
almost three-fourths of the software in the system was taken intact from some 
other source) and as low as 0%. The degree of reuse should not be viewed as a 
quota to achieve because potential reuse appears to vary wildly by domain and is 
affected by many nontechnical factors, including schedule pressure, the nature of 
subcontractor relationships, and security considerations.

Ultimately, any amount of reuse is better than none because reuse represents a 
savings of resources that would otherwise be used to reinvent some previously 
solved problem.

Institutionalizing Reuse

Reuse within a project or even within an entire organization doesn’t just hap-
pen—it must be institutionalized. This means that opportunities for reuse must be 
actively sought out and rewarded. Indeed, this is why we include pattern scaveng-
ing as an explicit activity in the micro process.

An effective reuse program is best achieved by making specific individuals 
responsible for leading the reuse activity, while making everyone responsible for 
participating. This activity involves identifying opportunities for commonality, 
usually discovered through architectural reviews, and exploiting these opportuni-
ties, usually by producing new components or adapting existing ones, and cham-
pioning their reuse among developers. This approach requires the explicit 
rewarding of reuse. Even simple rewards are highly effective in fostering reuse; 
for example, peer recognition of the author or reuser is often useful. 

In addition to developing assets to be reused, we can purchase commercial class 
and component libraries to assist us with our development. However, we must 
still develop an effective design, within the framework of the architecture, to use 
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these commercial library assets. It is not simply a matter of plugging together the 
classes or components [30].

Ultimately, reuse costs resources in the short term but pays off in the long term. A 
reuse activity will be successful only in an organization that takes a long-term 
view of software development and optimizes resources for more than just the cur-
rent project.

7.5 Quality Assurance and Metrics

Software quality assurance involves “the systematic activities providing evidence 
of the fitness for use of the total software product” [11]. Quality assurance seeks 
to give us quantifiable measures of goodness for the quality of a software system. 
Many such traditional measures are directly applicable to object-oriented systems.

Software Quality

Schulmeyer and McManus define software quality as “the fitness for use of the 
total software product” [12]. Software quality doesn’t just happen: It must be 
engineered into the system. Indeed, the use of object-oriented technology doesn’t 
automatically lead to quality software; it is still possible to design bad software 
with object-oriented analysis and design techniques and to write very bad soft-
ware using object-oriented programming languages.

This is why we place such an emphasis on software architecture in the process of 
object-oriented development. A simple, adaptable architecture is central to any 
quality software; its quality is made complete by carrying out simple and consis-
tent tactical design decisions that support the strategic design decisions.

As we described earlier, development reviews and other kinds of inspections are 
important practices even in object-oriented systems and provide insights into the 
software’s quality. Perhaps the most important quantifiable measure of goodness 
is the defect-discovery rate. During the evolution of the system, we track software 
defects according to their severity and location. The defect-discovery rate is 
thereby a measure of how quickly errors are being discovered, which we plot 
against time. As Dobbins observes, “the actual number of errors is less important 
than the slope of the line” [13]. A project that is under control will have a bell-
shaped curve, with the defect-discovery rate peaking at around the midpoint of 
the test period and then falling off to some, hopefully, very low rate. A project 
that is out of control will have a curve that tails off very slowly or not at all.
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One of the reasons that the macro process of object-oriented development works 
so well is that it permits the early and continuous collection of data about the 
defect-discovery rate. For each incremental release, we can perform a system test 
and plot the defect-discovery rate versus time. Even though early releases will 
have less functionality, we still expect to see a bell-shaped curve for every release 
in a healthy project.

Defect density is another relevant quality measure. Measuring defects per thou-
sand source lines of code (KSLOC) is the traditional approach and is still gener-
ally applicable to object-oriented systems. In healthy projects, defect density 
tends to “reach a stable value after approximately 10,000 lines of code have been 
inspected and will remain almost unchanged no matter how large the code volume 
is thereafter” [14].

In object-oriented systems, we have also found it useful to measure defect density 
in terms of the numbers of defects per class. With this measure, the 80/20 rule 
seems to apply: 80% of the software defects will be found in 20% of the system’s 
classes [15].

Object-Oriented Metrics

The British physicist Lord Kelvin, after whom the Kelvin temperature scale was 
named, said the following about measurement: “When you can measure what you 
are speaking about, and express it into numbers, you know something about it; 
but when you cannot measure it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind. It may be the beginning of 
knowledge, but you have scarcely in your thoughts advanced to the stage of sci-
ence.”4 Our concern with object-oriented metrics is specifying ones that provide 
meaningful measures to support the analysis and design of software systems.

Metrics to assist us in this endeavor fall into one of two categories, process met-
rics or product metrics. Process metrics, sometimes called project metrics, assist 
the management team in assessing progress with respect to the object-oriented 
development process being used. Examples of process metrics include the num-
ber of person-hours expended, the amount of work accomplished, and the number 
of project dollars spent—all compared to what was planned. We can also look at 
metrics more specific to object-oriented development, such as those recom-
mended by Lorenz and Kidd [16]:

4. Lord William Thomson Kelvin is said to have made this statement in Popular Lectures 
and Addresses during 1891–1894. He also supposedly said that “Heavier-than-air flying 
machines are impossible.” We will agree with his first statement.
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■ Application size
– Number of scenario scripts (NSS)
– Number of key classes (NKC)
– Number of support classes (NSC)
– Number of subsystems (NOS)

■ Staffing size
– Person-days per class (PDC)
– Classes per developer (CPD)

■ Scheduling
– Number of major iterations (NMI)
– Number of contracts completed (NCC)

We tend to measure development progress by counting the classes in the logical 
design, or the components in the physical design, that are completed and working. 
As we described in the previous chapter, another measure of progress is the stabil-
ity of key interfaces (that is, how often they change). At first, the interfaces of all 
key abstractions will change daily, if not hourly. Over time, the most important 
interfaces will stabilize first, the next most important interfaces will stabilize sec-
ond, and so on. Toward the end of the development lifecycle, only a few insignifi-
cant interfaces will need to be changed since most of the emphasis is on getting 
the already designed classes and components to work together. Occasionally, a 
few changes may be needed in a critical interface, but such changes are usually 
upwardly compatible. Even so, such changes are made only after careful thought 
about their impacts. These changes can then be incrementally introduced into the 
production system as part of the usual release cycle.

Our primary focus here is on product metrics (sometimes called design metrics) 
that help the development team assess the artifacts of their analysis and design 
efforts, rather than on process metrics. We have found that appropriate product 
metrics can help the architect and component leads assess the quality of the 
design. For example, they will be able to know whether design guidelines, such as 
the range for the depth of the inheritance tree, are being met. Acquiring and ana-
lyzing applicable quantitative measures against these metrics on a variety of 
projects over time will provide a historical database that can be used as a point of 
comparison for the measures being analyzed on current projects.

Chidamber and Kemerer suggest a number of language-independent design met-
rics that are directly applicable to object-oriented systems [17]:

■ Weighted methods per class (WMC)
■ Depth of inheritance tree (DIT)
■ Number of children (NOC)
■ Coupling between object classes (CBO)
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■ Response for a class (RFC)
■ Lack of cohesion in methods (LCOM)

Weighted methods per class gives the sum of the complexities of each of the 
methods of an individual class. If all the method complexities are considered to be 
equally complex, this becomes a measure of the number of methods per class. 
However, this measure is truly useful when we assign relative complexity values 
to each of the methods; however, for the sake of flexibility, Chidamber and 
Kemerer did not provide the means to define this complexity. In general, a class 
with significantly more methods than its peers is more complex, tends to be more 
application-specific, and often hosts a greater number of defects [17].

The depth of the inheritance tree and number of children are measures of the shape 
and size of the class structure. As we described in Chapter 3, well-structured 
object-oriented systems tend to be architected as forests of classes, rather than as 
one very large inheritance tree. The depth of the inheritance tree, measured from 
the subject class to its highest-level parent class, gives a measure of the impact to 
it from inheriting functionality. Therefore, a deeper inheritance tree increases the 
complexity of a class, due to the functionality it inherits. 

Looking down the inheritance tree, we see the number of children for the subject 
class. The more children a class has, the greater its impact on the software sys-
tem’s design, due to the reuse it produces [17].

Coupling between objects is a measure of their connectedness to other objects 
and thus is a measure of their class’s encumbrance. As with traditional measures 
of coupling, we seek to design loosely coupled objects, which have a greater 
potential for reuse. 

Response for a class is a measure of the methods that its instances can execute in 
response to a message call. In general, a class that has significantly more methods 
that can be invoked, compared with its peers, is more complex. 

Lack of cohesion in methods is a measure of the unity of the class’s abstraction. A 
class with low cohesion among its methods suggests an accidental or inappropri-
ate abstraction; such a class should generally be reabstracted into more than one 
class or its responsibilities delegated to other existing classes [17].

In his text on software quality engineering, Kan discusses examples of how to 
apply the product metrics proposed by Lorenz (and later by Lorenz and Kidd in 
1994) and those proposed by Chidamber and Kemerer. The eleven Lorenz design 
metrics include several object-oriented design guidelines and rules of thumb for 
their application. Kan found that the rules of thumb “are very useful. They were 
derived based on experiences from industry OO projects. They provide a thresh-
old for comparison and interpretation” [18].
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With respect to the Chidamber and Kemerer metrics (the CK metrics) applied in 
several studies, Kan found that “more empirical studies need to be accumulated 
before preferable threshold values of the CK metrics can be determined” [18]. In 
fact, Chidamber and Kemerer said that the threshold values should be determined 
for each development site. Kan did find that “In practical use, the metrics can be 
used to flag out-lying classes for special attention” [18]. 

More recently, Kemerer and Darcy provided several examples of the application 
of the CK metrics suite and offered observations about its practical application. 
From study of these applications, they made several observations about object-
oriented metrics [19].

■ Such metrics have been successfully applied in several domains.
■ They consistently demonstrated relationships to quality factors (e.g., cost, 

defects, reuse, and maintainability).
■ A generally useful set consists of size (WMC), coupling (CBO or RFC), 

and cohesion (LCOM).
■ The relationship between metrics and outcome predictions should be calcu-

lated for local influences.

There is still disagreement about how object-oriented design principles contribute 
to software quality; consequently, there is still much debate about what consti-
tutes an appropriate set of object-oriented metrics. We believe the metrics pre-
sented here provide a reasonable set of measures to assist the architect and 
component leads in assessing the quality of their object-oriented design.

7.6 Documentation

In addition to code, there are development artifacts that are critical to the com-
plete lifecycle of a software system. These artifacts, such as requirements and 
design, must be documented to support the development process and the opera-
tion and maintenance of the system.

Development Legacy

The development of a software system involves much more than writing its raw 
source code. Certain products of development offer ways to give the management 
team and users insight into the progress of the project. We also seek to leave 
behind a legacy of analysis and design decisions for the eventual maintainers of 
the system. The products of object-oriented analysis and design are visual models 
in which we create numerous views in the form of diagrams. These views include 
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sets of use case diagrams, activity diagrams, class diagrams, state machine dia-
grams, sequence diagrams, and component diagrams. Collectively, with appropri-
ate guidelines, we can use these diagrams to offer traceability back to the 
system’s requirements. Use case diagrams (along with use case specifications) 
show the high level functionality specified by the requirements, while the activity 
diagrams detail the use case scenarios. Class diagrams represent key abstractions 
that form the vocabulary of the problem domain. Classes with complex state-
related behavior are examined in state machine diagrams. Sequence diagrams 
show the collaboration of objects as they provide system functionality. Compo-
nent diagrams show the mapping of classes to components.

Documentation Contents

The documentation of a system’s architecture and implementation is important, 
but the production of such documents should never drive the development pro-
cess: Documentation is an essential, albeit secondary, product of the development 
process. It is also important to remember that documents are living products that 
should be allowed to evolve together with the iterative and incremental evolution 
of the project’s releases. Together with the design and generated code, delivered 
documents serve as the basis of most formal and informal reviews.

What must be documented? Obviously, end-user documentation must be pro-
duced, instructing the user on the installation and operation of each release.5 In 
addition, analysis documentation must be produced to capture the semantics of 
the system’s required functionality as viewed through use case scenarios. We 
must also generate architectural and implementation documentation, to communi-
cate the vision and details of the architecture to the development team and to pre-
serve information about all relevant strategic decisions, so the system can readily 
be adapted and evolved over time.

In general, the essential documentation (not necessarily on paper) of a system’s 
architecture and implementation should include the following:

■ Documentation of the high-level system architecture
■ Documentation of the key abstractions and mechanisms in the architecture
■ Documentation of scenarios that illustrate the as-built behavior of key 

aspects of the system

5.  It is an unwritten rule that for personal productivity software, a system that requires a 
user to constantly refer to a manual is user-hostile. Object-oriented user interfaces in par-
ticular should be designed so that their use is intuitive and self-consistent, in order to min-
imize or eliminate the need for end-user documentation.
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The worst possible documentation to create for an object-oriented system is a 
stand-alone description of the semantics of each method on a class-by-class basis. 
This approach tends to generate a great deal of useless documentation that no one 
reads or trusts, and it fails to document the more important architectural issues 
that transcend individual classes, namely, the collaborations among classes and 
objects—and especially among components. It is far better to document these 
higher-level structures in UML diagrams and then refer developers to the inter-
faces of certain important classes for tactical details.

7.7 Tools

Object-oriented development practices change the tools needed by the develop-
ment team during analysis and design. The development of complex object-
oriented systems changes the picture entirely: Trying to build a large software 
system with a minimal tool set is equivalent to building a multistory building with 
stone hand tools. Since object-oriented analysis and design highlights key 
abstractions and mechanisms, we need tools that can focus on richer semantics. In 
addition, the rapid development of releases defined by the macro process of 
object-oriented development requires tools that offer rapid turnaround for the 
analysis and design cycle.

It is important to choose tools that scale well. A tool that works for one developer 
designing a small stand-alone application will not necessarily scale to production 
releases of more complex applications. Indeed, for every tool, there will be a 
threshold beyond which the tool’s capacity is exceeded, causing its benefits to be 
greatly outweighed by its liabilities and clumsiness.

Kinds of Tools

We have identified three primary tools applicable to object-oriented analysis and 
design. The first is a visual modeling tool supporting the UML notation. Such a 
tool can be used during analysis to capture the semantics of use case scenarios, as 
well as early in the development process to capture strategic and tactical design 
decisions, maintain control over the design products, and coordinate the design 
activities of a team of developers. Indeed, visual modeling tools can be used 
throughout the lifecycle, as the design evolves into a production implementation. 
Such tools are also useful during systems maintenance. Specifically, we have 
found it possible to reverse-engineer many of the interesting aspects of an object-
oriented system, producing at least the class structure and component architecture 
of the system as built. Without this feature, designers may generate marvelous 
visual representations of the design, only to find that they are out of date once the 
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implementation proceeds because programmers fiddled with the implementation 
without updating the design. Reverse engineering makes it less likely that design 
documentation will ever get out of step with the actual implementation.

Next, especially for larger projects, one must have software configuration man-
agement and version control tools. Such tools support the development team as 
they collaborate and share assets throughout the entire software development life-
cycle. These assets include all artifacts of the analysis and design process, from 
use case diagrams through class and sequence diagrams that provide the design of 
the architecture and the components that collaborate within the architecture. As 
mentioned earlier, these components are the best unit of configuration manage-
ment, especially from a reuse perspective. 

The third tool we have found important with object-oriented analysis and design 
is a class library tool. Many languages have predefined class libraries or commer-
cially available class libraries. As a project matures, the library grows as domain-
specific reusable software classes and components are added over time. It does 
not take long for such a library to grow to enormous proportions, which makes it 
difficult for a developer to find a class or component that meets his or her needs. 
If the perceived cost (usually inflated) of finding a certain component is higher 
than the perceived cost (usually underestimated) of creating that component from 
scratch, all hope of reuse is lost. For this reason, it is important to have at least 
some minimal library tool that allows designers to locate classes and components 
according to different criteria and add useful classes and components to the 
library as they are developed.

These three tools often have integrations providing the development team with a 
more seamless access to their aggregate capabilities. Though the primary function 
of an integrated development environment (IDE) is to provide a programming 
environment, it may also provide a foundation through which visual modeling, 
configuration management and version control, and class library tools collaborate. 

Organizational Implications

This need for powerful tools creates a demand for two specific roles within the 
development organization: a reuse engineer and a toolsmith. Among other things, 
the duties of the reuse engineer are to maintain the class library for a project. 
Without active effort, such a library can become a vast wasteland of junk classes 
that no developer would ever want to walk through. Also, it is often necessary to 
be proactive to encourage reuse, and the reuse engineer can facilitate this process 
by scavenging the products of current design efforts. The duties of a toolsmith are 
to create domain-specific tools and tailor existing ones for the needs of a project. 
For example, a project might need common test scaffolding to test certain aspects 
of a user interface, or it might need a customized class browser. A toolsmith is in 
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the best position to craft these tools, usually from components already in the class 
library. Such tools can also be used for later development efforts. However, in the 
best of cases where an integrated tool suite is available, the role of toolsmith 
would not be needed. The system administrator could mange the integrated suite.

A manager already faced with scarce human resources may lament that powerful 
tools, as well as designated reuse engineers and toolsmiths, are an unaffordable 
luxury. We do not deny this reality for some resource-constrained projects. How-
ever, in many other projects, we have found that these activities go on anyway, 
usually in an ad hoc fashion. We advocate explicit investments in tools and people 
to make these ad hoc activities more focused and efficient; doing so adds real 
value to the overall development effort.

7.8 Special Topics

There are several topics of special concern to people practicing object-oriented 
analysis and design. Domain-specific issues include the development of effective 
user interfaces and the integration of legacy functionality, from data to entire sys-
tems. Another special concern to most everyone involved is how to effectively 
adopt object-oriented technologies.

Domain-Specific Issues

We have found that certain application domains warrant special architectural con-
sideration. One of these is the design of an effective user interface, which is still 
much more of an art than a science. For this domain, the use of prototyping is 
absolutely essential. Feedback must be gathered early and often from end users, 
so as to evaluate the gestures, error behavior, and other paradigms of user interac-
tion. The generation of use case scenarios is also effective in driving the analysis 
of the user interface.

Some applications involve a major database component; other applications may 
require integration with databases whose schemas cannot be changed, usually 
because large amounts of data already populate the database (the problem of leg-
acy data). For such domains, the principle of separation of concerns is directly 
applicable: It is best to encapsulate the access to all such databases inside the con-
fines of well-defined interface classes. This principle is particularly important 
when mixing object-oriented decomposition with relational database technology.

Consider also real-time systems. Real-time means different things in different 
contexts: It might denote subsecond response is user-centered systems and submicro-
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second response in data acquisition and control applications. It is important to 
realize that even for hard real-time systems, not every component of the system 
must (or can) be optimized. Indeed, for many complex systems, the greater risk is 
whether or not the system can be completed, not whether it will perform within its 
performance requirements. For this reason, we warn against premature optimiza-
tion. Focus on producing simple architectures, and the evolutionary generation of 
releases will illuminate the performance bottlenecks of the system early enough 
to take corrective action.

We refer to a legacy system as one for which there is a large capital investment 
that cannot economically or safely be abandoned. However, such systems may 
have intolerable maintenance costs, which require that they be replaced over time. 
Fortunately, coping with legacy systems is much like coping with databases: We 
encapsulate access to the facilities of the legacy system within the context of 
well-defined interface classes and, over time, migrate the coverage of the object-
oriented architecture to replace certain functionality currently provided by the 
legacy system. Of course, it is essential to begin with an architectural vision of 
how the final system will look, so that the incremental replacement of the legacy 
system will not end up as an inconsistent patchwork of software.

Adopting Object-Oriented Technology

As Stix and Mosley report, “As the information systems community responds to 
the market’s demand for object technologists, many cognitive issues need to be 
addressed. . . . two major challenges software practitioners are confronted with 
are: understanding objects and understanding how to design. Furthermore, the 
evidence gathered suggests that programming constructs and design are two inde-
pendent skill sets that must be learned concurrently to effectively implement and 
achieve the benefits of object technology” [20].

How do we develop this object-oriented design capability? We recommend the 
following ideas.

■ Provide formal training to developers and managers in: 
– The Unified Modeling Language
– The object-oriented analysis and design process to be used by the project
– The tools to be used by the project 
– The languages and libraries to be used by the project

■ Use object-oriented development in a low-risk project first, and allow the 
team to learn by: 
– Using experienced OOAD consultants as mentors for the project team
– Growing expertise within these team members and using them to seed 

other projects and act as mentors for the object-oriented approach
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■ Expose the developers and managers to examples of well-designed object-
oriented systems

In our experience, it takes only a few weeks for a professional developer to master 
the syntax and semantics of a new programming language. It may take several 
more weeks for the same developer to begin to appreciate the importance and 
power of classes and objects. However, we have seen a very different situation 
with the mastering of object-oriented design concepts and applications. Maksim-
chuk and Naiburg make this case from the perspective of what they refer to as the 
Training Trap: “A programming language might be object-oriented, but learning 
an object-oriented language does not mean you will learn the concepts for good 
object-oriented design using the UML” [21]. It may take as many as six months 
of experience for that developer to mature into a competent class designer. This is 
not necessarily a bad thing, for in any discipline, it takes time to master the art. 

We have found that learning by example is often an efficient and effective 
approach. Once an organization has accumulated a critical mass of applications 
developed in an object-oriented style, introducing new developers and managers 
to object-oriented development is far easier. Developers may start as analysts and 
grow into a design role as they become more skilled in object-oriented tech-
niques; or, they may start as designers, using the well-structured abstractions that 
already exist. Over time, developers who have studied and used these components 
under the supervision of more experienced people gain sufficient experience to 
develop a meaningful conceptual framework of the object model and become 
effective designers.

7.9 The Benefits and Risks of Object-Oriented 
Development

The benefits of object-oriented development have been touted for years and are 
quite real. However, without the successful application of an object-oriented 
development process, one will become more familiar with the risks.

The Benefits of Object-Oriented 
Development

The adopters of object-oriented technology usually embrace these practices for 
one of two reasons. First, they seek a competitive advantage, such as reduced 
time-to-market, greater product flexibility, or schedule predictability. Second, 
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they may have problems that are so complex that they don’t seem to have any 
other solution.

In Chapter 2, we suggested that the use of the object model leads us to construct 
systems that embody the five attributes of well-structured complex systems: hier-
archy, relative primitives (i.e., multiple levels of abstraction), separation of con-
cerns, patterns, and stable intermediate forms. The object model forms the 
conceptual framework for the notation and process of object-oriented develop-
ment, and thus these benefits are true of the method itself. In that chapter, we also 
noted the benefits that flow from the following characteristics of the object model 
(and thus from object-oriented development):

■ Appeals to the working of human cognition
■ Leads to systems that are more resilient to change
■ Encourages the reuse of software components
■ Reduces development risk
■ Exploits the expressive power of object-oriented programming languages

A number of case studies reinforce these findings; in particular, they point out 
that the object-oriented approach can reduce development time and the size of the 
resulting source code, better in some cases than in others [22, 23, 24].

The Risks of Object-Oriented Development

On the darker side of object-oriented development, we find the risks. An innova-
tive study of these risks is presented in an article by Hantos, where “Bertrand 
Meyer’s classic OO technology concepts are mapped into Barry Boehm’s Top 10 
methodology-neutral software risks to illustrate potential areas of exposure” [25]. 
From Meyer’s work [26], Hantos developed the following list of object-oriented 
concepts, to be mapped into Boehm’s risks [25]:

■ A unique way to define architecture and data structure instances
■ Information hiding through abstraction and encapsulation
■ Inheritance to organize related elements
■ Polymorphism to perform operations that can automatically adapt to the 

type of structure they operate on
■ Specialized analysis and design methods
■ Object-oriented languages
■ Environments that facilitate the creation of object-oriented systems
■ Design by contract, a powerful technique to circumvent module boundary 

and interface problems
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■ Memory management that can automatically reclaim unused memory
■ Distributed objects to facilitate the creation of powerful distributed systems
■ Object databases to move beyond the data-type limitations of relational 

database management systems

For the other side of his mapping, he took Boehm’s Top 10 Software Risks [27], 
along with an updated list from Boehm [28], to develop the following eight 
risks [25]:

1. Personnel shortfalls
2. Unrealistic schedules, budgets, or processes
3. Shortfalls in commercial off-the-shelf products, external components, or 

legacy software
4. Mismatches in requirements or user interface
5. Shortfalls in architecture, performance, or quality
6. Continuing stream of requirements changes
7. Shortfalls in externally performed tasks
8. Straining computer science

Hantos provides a detailed explanation of each of the eight risks and how the 
object-oriented concepts he listed either increase the particular risk within the 
software development project or help to mitigate it.

For a simple visual perspective of the results, he summarizes his study in a single 
mapping diagram; we see that Boehm’s classical software development risks per-
tain to object-oriented software development, as they do to other approaches. On 
the positive side, Hantos shows that several of the object-oriented development 
concepts described by Meyer help to mitigate software risks. Specifically, the 
concept of “architecture and instances” helps to mitigate the risks of a “continu-
ing stream of requirements changes” and of “shortfalls in externally performed 
tasks.” The concept of “abstraction and encapsulation” also helps to mitigate the 
risk of a “continuing stream of requirements changes [25].”

If we recall our study of these object-oriented concepts, we can understand their 
risk-mitigating effects. Requirements changes, especially ones continuing 
throughout a development project, have the potential to wreak havoc. But, by 
focusing on an appropriate logical and physical structuring (architecture) of the 
system classes and components, we can provide a compartmentalization of struc-
ture and behavior to reduce the ripple effect of requirements change throughout 
our system. Any system development shortfalls by the project team are similarly 
compartmentalized.
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Understanding the potential risks in a software development project—and how 
object-oriented concepts potentially contribute to or mitigate them—is essential 
as we develop risk management plans for our software development projects.

Summary

■ The successful development and deployment of a complex software system 
involves much more than just generating code.

■ Many of the basic practices of software development management, such as 
walkthroughs, are unaffected by object-oriented technology.

■ In the steady state, object-oriented projects typically require a reduction in 
resources during development; the roles required of these resources are sub-
tly different than for non-object-oriented systems.

■ In object-oriented analysis and design, using an iterative approach, there 
should never be a single “big bang” integration event; the unit of configura-
tion management for releases should be the component, not the individual 
class.

■ Reuse must be institutionalized to be successful.
■ Defect-discovery rate and defect density are useful measures for the quality 

of an object-oriented system. Other useful measures include various process 
and product metrics.

■ Documentation should never drive the development process.
■ Object-oriented development requires different tools than does non-

object-oriented systems development.
■ The transition by an organization to the use of the object model requires a 

change in mindset; it is critical that the development team understand 
object-oriented analysis and design techniques. Object-oriented software 
development is not just about programming.

■ There are many benefits to object-oriented technology as well as risks; good 
risk management can assist in realizing the former while minimizing the 
latter.
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S e c t i o n  I I I

Applications

To build a theory, one needs to know a lot about the basic phenomena of the
subject matter. We simply do not know enough about these, in the theory of
computation, to teach the subject very abstractly. Instead, we ought to teach

more about the particular examples we now understand thoroughly, and hope
that from this we will be able to guess and prove more general principles.

MARVIN MINSKY
“Form and Content in Computer Science”

Methods are a wonderful thing, but from the perspective of the practicing 
engineer, the most elegant notation or process ever devised is entirely 
useless if it does not help us build systems for the real world. The previous 
chapters have been but a prelude to this section of the book, in which we 
now apply object-oriented analysis and design to the pragmatic construc-
tion of software systems. We have chosen a set of applications from 
widely varying domains, encompassing navigation, command and control, 
cryptanalysis, data acquisition, and Web business application design, 
each of which involves its own unique set of problems.

We will present the application of object-oriented analysis and design 
techniques by successively moving through the phases in the macro pro-
cess in each of the five application chapters. The chapters progress from 
Inception through Elaboration to Construction. (Transition is for the most 
part beyond the scope of this book. However, we present some interesting 
post-transition considerations.) That is, each of the chapters will primarily 
emphasize a specific part of the macro lifecycle and the applicable analy-
sis and design (i.e., micro process) techniques. We believe this provides a 
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more interesting approach than simply focusing on a single problem 
through all the steps of object-oriented analysis and design. 

Each chapter focuses on the particular aspects of development shown 
here but also includes other aspects as necessary to provide context and 
a better understanding of the chapter’s primary focus. 

■ Chapter 8 (satellite-based navigation) focuses on system 
architecture

■ Chapter 9 (control system) focuses on system 
requirements

■ Chapter 10 (cryptanalysis) focuses on analysis
■ Chapter 11 (data acquisition) focuses on analysis to 

preliminary design
■ Chapter 12 (Web modeling) focuses on detailed design 

and implementation

Each of these chapters could expand to fill an entire book on its own. 
Thus, we cannot address every phase, every activity, and every step in the 
process. However, we strive to address those key aspects that are most 
interesting and important.

The relationship of the disciplines of object-oriented analysis and design 
and the specific diagrams that should be used is not rigid or prescriptive. 
Certain diagrams are typically seen more in one phase than another. Use 
case diagrams are seen much more often in the early phases of a project 
lifecycle. Some diagrams you will rarely, if ever, encounter on a real 
project. However, as you will see in the following chapters, certain types of 
diagrams are used throughout the project lifecycle. The difference is in the 
level of abstraction that the diagrams capture. For example, early in the 
lifecycle, component diagrams may capture very large, coarse elements 
(e.g., systems or subsystems). Later in the lifecycle, component diagrams 
can be used to capture fine-grained implementation elements (e.g., soft-
ware executables). You will see the refinement in the level of abstraction 
as you progress through the application chapters.
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C h a p t e r  8

System Architecture: 
Satellite-Based
Navigation

The object-oriented analysis and design principles and process presented 
earlier in this book, as well as the UML 2.0 notation discussed in Chapter 
5, apply just as well to the development of the highest-level system archi-
tecture as to the development of software. With system architecture, 
though, rather than developing the structure and design of classes, we are 
concerned with understanding the system requirements and using that 
knowledge to partition the larger system into its constituent segments. 
However, we must remember that the concerns at this level typically are 
quite abstract, huge in scope and impact, and uninvolved with implemen-
tation or technology details. If we understand this and take the right steps 
when designing the architecture, we’re more likely to create a system with 
long-term viability—it will be more operable, maintainable, and extensible, 
as it should be.

In this chapter, we show how we would approach the development of the 
system architecture for the hypothetical Satellite Navigation System (SNS) 
by logically partitioning the required functionality. To keep this problem 
manageable, we develop a simplified perspective of the first and second 
levels of the architecture, where we define the constituent segments and 
subsystems, respectively. In doing so, we show a representative subset of 
the process steps and artifacts developed, but not all of them. Showing a 
more complete perspective of the specification of any of these individual 
segments and their subsystems could easily require a complete book. 
However, the approach that we show could be applied more completely 
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across an architectural level (e.g., segment or subsystem) and through the 
multiple levels of the Satellite Navigation System’s architecture.

We chose this domain because it is technically complex and very interest-
ing, more so than a simple system invented solely as an example prob-
lem. Today there are two principal satellite-based navigation systems in 
existence, the U.S. Global Positioning System (GPS) and the Russian 
Global Navigation Satellite System (GLONASS). In addition, a third sys-
tem called Galileo is being developed by the European Union.

8.1 Inception

The first steps in the development of the system architecture are really systems 
engineering steps, rather than software engineering, even for purely or mostly 
software systems. Systems engineering is defined by the International Council on 
Systems Engineering (INCOSE) as “an interdisciplinary approach and means to 
enable the realization of successful systems” [1]. INCOSE further defines system 
architecture, which is our focus here, as “the arrangement of elements and sub-
systems and the allocation of functions to them to meet system requirements” [2].

Our focus here is to determine what we must build for our customer by defining 
the boundary of the problem, determining the mission use cases, and then deter-
mining a subset of the system use cases by analyzing one of the mission use 
cases. In this process, we develop use cases from the functional requirements and 
document the nonfunctional requirements and constraints. But before we jump 
into our requirements analysis, read the sidebar to get an introduction to the 
Global Positioning System.

Requirements for the Satellite Navigation 
System

The process of building systems to help solve our customer’s problems begins 
with determining what we must build. The first step is to use whatever documen-
tation of the problem or need our customer has given us. For our system, we have 
been given a vision statement and associated high-level requirements and 
constraints.
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1 2   

1. The Aerospace Corporation developed the GPS Primer—A Student Guide to the Global Positioning 
System, which is the source of this introductory information. Additional information can be found in 
the Aerospace Corporation’s Summer 2002 issue of Crosslink, which focuses on satellite navigation 
and the GPS.

2. You can find the Official Global GPS Cache Hunt Site at www.geocaching.com/.

An Introduction to the Global Positioning System

The Global Positioning System provides anyone possessing a GPS receiver with the 
ability to know his or her position on the earth regardless of the location, the time of 
day, or the weather.1 GPS satellites, in orbits at 11,000 nautical miles above the 
earth, are controlled and monitored from ground stations around the world. From the 
launch of the first GPS satellite in 1978 to the 24th in 1994, which completed the sys-
tem, GPS has been a boon to worldwide navigation [3].

Navigation has progressed from the ways the earliest people remembered and recog-
nized landmarks as they lived their daily lives to the many technological develop-
ments on the way to GPS today. Along this path, people have used maps of the earth 
and stars, compasses, sextants, chronometers, and current ground-based radio navi-
gation systems such as LORAN (long-range navigation) [4].

The GPS architecture consists of three segments: Control, User, and Space. The 
Control Segment is comprised of six ground stations, with the master control station 
located at Schriever Air Force Base in Colorado. The receivers that assist many of us 
in our navigation efforts constitute the User Segment, which receives position infor-
mation from the 24 satellites that comprise the constellation of the Space Segment [5].

GPS receivers calculate their distance from the satellites by using time and position 
data broadcast by the satellites. Specifically, “If we know our exact distance from a 
satellite in space, we know we are somewhere on the surface of an imaginary sphere 
with a radius equal to the distance to the satellite radius. If we know our exact dis-
tance from two satellites, we know that we are located somewhere on the line where 
the two spheres intersect. And, if we take a third and a fourth measurement from two 
more satellites, we can find our location. The GPS receiver processes the satellite 
range measurements and produces its position” [6].

The Global Positioning System has numerous uses, both military and civilian. Most 
people are familiar with its use by military personnel for navigation on land, at sea, 
and in the air. It is also used on weapon systems such as the cruise missile for pre-
cise real-time navigation in support of targeting. But it’s the civilian applications that 
have crept into many people’s lives. GPS is used by emergency services to quickly 
provide support to people in need. It was used during the construction of the English 
Channel Tunnel to ensure that separate teams digging from England and France met 
in the middle at the precise location. It’s even used in numerous personal activities 
such as driving, geocaching,2 and hiking [7].

www.geocaching.com/
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Vision:

■ Provide effective and affordable Satellite Navigation System services for 
our customers.

Functional requirements:

■ Provide SNS services
■ Operate the SNS
■ Maintain the SNS

Nonfunctional requirements:

■ Level of reliability to ensure adequate service guarantees
■ Sufficient accuracy to support current and future user needs
■ Functional redundancy in critical system capabilities
■ Extensive automation to minimize operational costs
■ Easily maintained to minimize maintenance costs
■ Extensible to support enhancement of system functionality
■ Long service life, especially for space-based elements

Constraints:

■ Compatibility with international standards
■ Maximal use of commercial-off-the-shelf (COTS) hardware and software

Obviously, this is a highly simplified statement of requirements, but it does pro-
vide the very basic specification for a satellite-based navigation system. In prac-
tice, detailed requirements for a system as large as this come about only after the 
viability of a solution is demonstrated, and then only after many hundreds of per-
son-months of analysis involving the participation of numerous domain experts 
and the eventual users and clients of the system. Ultimately, the requirements for 
a large system may encompass thousands of pages of documentation (and, hope-
fully, visual models), specifying not only the general behavior of the system but 
also intricate details such as the screen layouts to be used for human/machine 
interaction.

Defining the Boundaries of the Problem

Though minimal, the requirements and constraints do permit us to take an impor-
tant first step in the design of the system architecture for the Satellite Navigation 
System—the definition of its context, as shown in Figure 8–1. This context dia-
gram provides us with a clear understanding of the environment within which the 
SNS must function. Actors, representing the external entities that interact with the 
system, include people, other systems that provide services, and the actual envi-
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ronment. Dependency arrows show whether the external entity is dependent on 
the SNS or the SNS is dependent on it.

It is quite clear that the User, Operator, and Maintainer actors are dependent 
on the SNS for its services as they use its navigation information, operate it, and 
maintain it, respectively. Though the Satellite Navigation System will have the 
capability to generate its own power as a backup for ground-based systems, primary 
power services will be provided by an external system, the ExternalPower
actor. In a similar manner, we have an ExternalCommunications actor that 
provides purchased communications services to the SNS, as primary in some 
cases and backup to the internally provided system communications in other 
cases. We’ve prefixed the names for these two actors with “External” to clearly 
separate them from internal system power and communications services.

The remaining actor, Atmosphere/Space, may seem rather odd until we con-
sider that it is the transmission medium for communications between the Satellite 
Navigation System’s ground-based and space-based assets; therefore, it is a ser-
vice provider. Its state certainly affects the quality of these communications. 
Another way to regard this actor is from the perspective of the constraint “Com-
patibility with international standards.” Numerous national and international reg-
ulations and treaties govern satellite transmissions; thus, we have important 
reasons to specify this actor.

Figure 8–1 The Satellite Navigation System Context Diagram
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A critical point about our context diagram is the actual boundary of the system, 
that is, what is inside our system and what is not. Some may question our placing 
of the Operator and Maintainer actors outside the boundary of the 
SatelliteNavigationSystem package. By doing so, we’ve taken the 
viewpoint of a particular stakeholder, our customer, whose focus is that the sys-
tem be used to provide navigation information to the user. The customer’s focus is 
not on the broader corporate enterprise within which the SNS operates, unlike the 
User actor, who would likely regard the Operator and Maintainer as 
inside the system. Clearly, one’s perspective is the key point here. For example, if 
we were providing a complete turnkey system that included operation and main-
tenance services, we would place the Operator and Maintainer actors 
inside the boundary of the SatelliteNavigationSystem package.

We’ve seen numerous variations in the presentation of a context diagram, some 
very elaborate and some very simple. The more elaborate ones tend to provide 
detailed information about the information that flows, in both directions, between 
the actors and the system being developed. Where a system is being developed 
within a more mature environment, perhaps as a replacement for an existing sys-
tem, this type of information is known earlier in the development cycle, and thus 
some development teams choose to represent it here.

The particulars are much less important than having the development team choose 
a style, document it, and then follow it so clarity and understanding are ensured. 
However, we prefer our approach to presenting a context diagram because it sim-
ply and clearly conveys the high-level concept of the system being a container of 
functionality that interacts with entities in its external environment. In these inter-
actions, the system provides services to some entities and receives services from 
others. This is the critical understanding that is so important in the beginning of 
development.

In addition to the functional requirements, we’ve been given high-level nonfunc-
tional requirements that apply to portions of the functional capability or to the 
system as a whole. These nonfunctional requirements concern reliability, accu-
racy, redundancy, automation, maintainability, extensibility, and service life. 
Also, we see that there are some design constraints on the development of the 
SNS. We maintain the nonfunctional requirements and design constraints in a tex-
tual document called a supplementary specification; it is also used to maintain the 
functional requirements that apply to more than one use case. Another critical 
document that we must begin at this point is the glossary; it is important that the 
development team agrees on the definition of terms and then use them accordingly.

Even from these highly elided system requirements, we can make two observa-
tions about the process of developing the Satellite Navigation System.
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1. The architecture must be allowed to evolve over time.
2. The implementation must rely on existing standards to the greatest extent 

practical.

Obviously, we cannot carry out a complete analysis or design of the Satellite Nav-
igation System (or even the architecture) in a single chapter, much less a single 
book. Since our intent here is to explore how our notation and process scale up to 
the development of a system’s architecture, we focus on the problem of designing 
the first and second levels of the architecture, where we define the constituent 
segments and subsystems, respectively. We develop these architectural levels by 
logically partitioning the required functionality used by the Operator actor. As 
stated in the chapter introduction, we show only a representative subset of the 
process steps and artifacts developed.

After reviewing both the vision and the requirements, we (the architecture team) 
realize that the functional requirements provided to us are really containers (pack-
ages, in the UML) for numerous mission-level use cases that define the function-
ality that must be provided by the Satellite Navigation System. These mission use 
case packages provide us a high-level functional context for the SNS, as shown in 
Figure 8–2. These packages contain the mission use cases that show how the 
users, operators, and maintainers of the SNS interact with the system to fulfill 
their missions. Since we are using object-oriented analysis and design techniques 
and the UML 2.0 notation to perform a systems engineering rather than a soft-
ware engineering task, how we’ve used the notation in Figure 8–2 may be slightly 
unfamiliar. However, we believe it clearly presents the desired information and 
thus ensures understanding.

Determining Mission Use Cases

The vision statement for the system is rather open ended: a system to “Provide 
effective and affordable Satellite Navigation System services for our customers.” 
The task of the architect, therefore, requires judicious pruning of the problem 
space, so as to leave a problem that is solvable. A problem such as this one could 
easily suffer from analysis paralysis, so we must focus on providing navigation 
services that are of the most general use, rather than trying to make this a naviga-
tion system that is everything for everybody (which would likely turn out to pro-
vide nothing useful for anyone). We begin by developing the mission use cases 
for the SNS.

Large projects such as this one are usually organized around some small, centrally 
located team responsible for establishing the overall system architecture, with the 
actual development work subcontracted out to other companies or different teams 
within the same company. Even during analysis, system architects usually have in 
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mind some conceptual model that divides the elements of the implementation. 
Based on our experience in building satellite-based systems and in their operation 
and maintenance, we believe the highest-level logical architecture consists of four 
segments: Ground, Launch, Satellite, and User.

One may argue that this is design, not analysis, but we counter by saying that one 
must start constraining the design space at some point. Indeed, it is difficult to 
ascertain whether this logical architecture represents system requirements or a 
system design. Regardless of this issue, system architecture at this stage of devel-
opment is principally object-oriented. For example, the architecture shows com-
plex objects such as the Ground Segment and the Satellite Segment, each of 
which performs a major function in the system. This is just as we discussed in 
Chapter 4: In large systems, the objects at the highest levels of abstraction tend to 
be clustered along the lines of major system functions. How we identify and 
refine these objects during analysis is little different than how we do so during 
design.

Even before we have a conceptual architecture at the level of a package diagram 
like the one shown in Figure 8–3, we can begin our analysis by working with 
domain experts to articulate the primary mission use cases that detail the system’s 

Figure 8–2 Packages for the SNS Mission Use Cases 
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desired behavior. We say “even before” because, even though we have a notion of 
the architecture of the SNS, we should begin our analysis from a black-box per-
spective so as not to unnecessarily constrain its architecture. That is, we analyze 
the required functionality to determine the mission use cases for the SNS first, 
rather than for the individual SNS segments. Then, we allocate this use case func-
tionality to the individual segments, in what is termed a white-box perspective of 
the Satellite Navigation System.

In their Unified Modeling Language Reference Manual, Rumbaugh, Jacobson, 
and Booch state that “An activity diagram is helpful in understanding the high-
level execution behavior of a system, without getting involved in the internal 
details of message passing required by a collaboration diagram”[8].3 Therefore, 
activity diagrams are our primary tool in analyzing the mission use cases and 
thereby illustrating the expected behavior of the system. Some development 
teams use sequence or communication diagrams for this purpose, but we believe 
those diagrams are more suitable for design efforts at lower levels within our 
architectural hierarchy. In our analysis, we focus only on the success scenarios of 
our mission use cases; the numerous alternate scenarios are left to another day.

The term success scenario might not be a familiar one. The well-worn ATM 
example helps with this explanation. One use case for the ATM is Withdraw
Cash. This is typically what we want to do at one of these machines. In with-
drawing cash, we interact with the ATM through many different steps: swipe 
card, enter PIN, choose withdrawal, choose amount, and so on. None of these 
steps embodies the end goal (withdraw cash) to us, so they are not really use cases 

Figure 8–3 The SNS Logical Architecture

3. In UML 2.0, the collaboration diagram is called a communication diagram. 
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themselves. The Withdraw Cash use case (and all use cases) contains many 
different scenarios, each an individual path through the use case functionality. We 
first think about the one in which we successfully withdraw cash; hence, the term 
success scenario. This is also called the primary scenario. The alternate or sec-
ondary scenarios deal with the situations that typically branch off a primary 
scenario. For example, we’re proceeding down the primary scenario of 
Withdraw Cash and get to the point of selecting the amount of cash we want. 
The ATM responds that we’ve requested more than the withdrawal amount per-
mitted in one day. Oops! It requests that we select another amount, which we do, 
and then we get our cash (much less than originally desired, though). This is an 
illustration of a secondary scenario. It followed the path of a primary (success) 
scenario for several steps, veered off to deal with our amount problem, and then 
jumped back onto the primary scenario. 

Hopefully, we’ve cleared rather than muddied the waters with this explanation. 
One more point, though—with respect to real-time systems such as the Satellite 
Navigation System, it is important to understand that much of its functionality is 
embodied within the secondary scenarios. These can be thought of as the portion 
of the iceberg that is below the water level yet critical to the complete and safe 
operation of the system. That is, the secondary scenarios are hidden in the sense 
that they are usually given much less attention, but they can cripple a system just 
as the portion of the iceberg below the water level can sink a ship. In short, our 
analysis must include the secondary scenarios. The amount of system functional-
ity embodied in the secondary scenarios varies but is typically substantial in such 
systems. We won’t consider it here—however, we must in our actual system 
development efforts.

Now, getting back to the task at hand, we develop the mission use cases of the 
OperateSNS mission use case package. Based on our analysis of the overall 
operation of the SNS, we define four corresponding mission use cases:

■ Initialize Operations

■ Provide Normal Operations

■ Provide Special Operations

■ Terminate Operations

Our specification of these mission use cases depends primarily on the domain 
expertise of our development team. In addition to past experience, simulations 
and prototypes are often invaluable tools in this analysis process. Typically, 
though, our analysis employs activity diagram modeling such as that which we 
perform to develop the system use cases in the following subsection. Figure 8–4 
depicts the result of our analysis to develop the mission use cases for the 
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OperateSNS mission use case package. For the remainder of this chapter, our 
efforts focus on analyzing the Initialize Operations mission use case to 
determine the activities that the system must perform to provide the operator with 
the ability to initialize the operation of the Satellite Navigation System.

Determining System Use Cases

As stated previously, we develop an activity diagram of the Initialize
Operations mission use case functionality to determine the encapsulated sys-
tem use cases. In developing this activity diagram, we do not attempt to use our 
notion of the segments that comprise the SNS (refer back to Figure 8–3). We take 
this approach because we do not wish to constrain our analysis of SNS operations 
by presupposing possible architectural solutions to the problem at hand. We focus 
on the SNS as though it were a black box into which we could not peer and thus 

Figure 8–4 Refining the OperateSNS Mission Use Case Package 
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could see only what services it provides, not how it provides those services. We 
are interested in the control flow across the boundary between the operator and 
the Satellite Navigation System as we analyze the system’s high-level execution 
behavior. 

Since we are concerned with the activities being performed by the SNS, rather 
than the messaging that would be represented in a communication or sequence 
diagram, the activity diagram is relatively simple. If we wanted to define the 
system activities for the entire SNS, we would perform activity diagram–based 
analysis for each of its mission use cases to find the myriad of activities that 
the Satellite Navigation System must perform to meet its requirements. Try to 
imagine all the activities that must be performed 24 hours a day to operate 
such a system. However, here we are concentrating on the Initialize
Operations mission use case, for which we develop the activity diagram 
shown in Figure 8–5.

From this activity diagram, we develop the respective list of system use cases 
by making experienced systems engineering judgments. For example, we decide 
to combine the actions Prepare for Launch and Launch into one system 
use case, Launch Satellite. We determine that the remaining actions 
embody significant system functionality and therefore should each represent an 
individual system use case, giving us the system use cases for the Initialize
Operations mission use case, as shown in Table 8–1 on page 347.    

Figure 8–6 shows the system use cases of Table 8–1 in an updated use case dia-
gram. Here we have used the InitializeOperations package to contain 
the system use cases that we developed from the Initialize Operations
mission use case. The other three mission use cases that embody functionality for 
operating the SNS are shown with the keyword label of «mission use 
case». We find this modeling approach to be useful and clear; however, each 
development team needs to determine and document its chosen techniques.
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Figure 8–5 The Black-Box Activity Diagram for Initialize Operations
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Figure 8–6 System Use Cases for Initialize Operations
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8.2 Elaboration

Our attention turns to the system architecture that provides the foundation for 
realizing the requirements contained in the system use cases developed in the pre-
vious section. In the first two subsections, we introduce two architectural issues: 
the concerns when developing a good architecture and the activities performed 
when developing an architecture.

This discussion leads us into the subsequent two subsections (Validating the Pro-
posed System Architecture, followed by Allocating Nonfunctional Requirements 
and Specifying Interfaces), where we perform what might be termed a macro-
level analysis of the SNS system architecture. Our goal is to validate the proposed 
SNS architecture prior to analyzing the segments and specifying their architec-
tures of collaborating subsystems. We use the same use case analysis techniques 
employed earlier to develop the system use cases, but we analyze all the use cases 
at the same time, rather than individually. This shortcut is perfectly valid during 
our behavioral prototyping but is not valid when actually allocating system use 
case functionality to the individual segments. 

Table 8–1 System Use Cases for Initialize Operations

System Use Case Use Case Description

Launch Satellite Prepare the launcher and its satellite payload for launch, and 
perform the launch.

Fly to Separation 
Point

Fly the launcher to the point at which the satellite payload will 
be separated. This involves the use and separation of multiple 
launcher stages.

Activate Satellite Perform the activation of the satellite in preparation for its 
deployment from the launcher.

Separate Satellite Deploy the satellite from the launcher.

Move Satellite into 
Orbit

Use the satellite bus propulsion capability to position the satel-
lite into the correct orbital plane.

Perform Satellite 
Checkout

Perform the in-orbit checkout of the satellite’s capabilities.

Prepare for Operations Perform the final preparations prior to going operational.

Transmit Initial 
Position Information

Go operational and transmit initial position information to the 
users of the SNS.
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After the behavioral prototyping is complete, we stipulate the SNS architecture 
and its deployment in the next subsection. From there, we resume our actual sys-
tem architectural analysis effort to decompose the Satellite Navigation System’s 
architecture into its segments and their contained subsystems. 

Developing a Good Architecture

As we discussed in Chapter 6, there are numerous methods of developing the 
architecture of a system. Some ways are very elegant; unfortunately, some are 
profoundly stupid. How do we know the difference between a good architecture 
and a bad one?

Good architectures tend to exhibit object-oriented characteristics. This doesn’t 
mean, quite obviously, that as long as we use object-oriented techniques, we are 
assured of developing a good architecture. But, as we discussed in Chapters 1 and 2, 
applying the principles that underlie object-oriented decomposition tends to yield 
architectures that exhibit the desirable properties of organized complexity. Good
architectures, whether system or software, typically have several attributes in 
common.

■ They are constructed in well-defined layers of abstraction, each layer repre-
senting a coherent abstraction, provided through a well-defined and con-
trolled interface, and built on equally well-defined and controlled facilities 
at lower levels of abstraction.

■ There is a clear separation of concerns between the interface and implemen-
tation of each layer, making it possible to change the implementation of a 
layer without violating the assumptions made by its clients.

■ The architecture is simple: Common behavior is achieved through common 
abstractions and common mechanisms.

Simply (or not so simply) developing a good architecture for the Satellite Naviga-
tion System is not enough; we must effectively communicate this architecture to 
all of its stakeholders. The Creating Architectural Descriptions sidebar explains 
how we may go about this task.

Defining Architectural Development 
Activities

The analysis and design micro process presented in Chapter 6 defines a set of 
development activities that are performed at each abstraction level within a sys-
tem. The activities generally define the systems engineering tasks necessary to 
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develop the system architecture for the Satellite Navigation System and are pre-
sented here, reworded for our focus. 

■ Identify the architectural elements at the given level of abstraction to 
further establish the problem boundaries and begin the object-oriented 
decomposition.

■ Identify the semantics of the elements, that is, establish their behavior and 
attributes.

■ Identify the relationships among the elements to solidify their boundaries 
and collaborators.

■ Specify the interface of the elements and then their refinement in prepara-
tion for analysis at the next level of abstraction.

This set of activities makes quite clear that our primary concerns when develop-
ing the SNS architecture are the definition of its elements (segments and sub-
systems), their responsibilities, their collaborations, and their interfaces. These 
provide the architect with a framework for evolving the architecture and explor-
ing alternative designs. One point to keep in mind is that these activities are 

Creating Architectural Descriptions

In the Documenting the Software Architecture sidebar presented in Chap-
ter 6, we explained how documenting the architecture of a system has 
considerable value to the architects and to the other system stakeholders. 
We also discussed IEEE Standard 1471-2000, the IEEE Recommended 
Practice for Architectural Description of Software-Intensive Systems, and 
the 4+1 views proposed by Kruchten that present five views of software 
architecture: Use Case View, Logical View, Implementation View, Process 
View, and Deployment View.

Although IEEE Standard 1471-2000 focuses on software architecture, “it is 
equally applicable to any system; hence appropriate for use as a part of 
systems engineering to describe system architectures,” according to Maier, 
Emery, and Hilliard [9]. In addition, they state that “A particularly important 
application of ANSI/IEEE 1471-2000 in systems engineering may be to 
reconcile and harmonize the wide array of architecture frameworks now 
becoming popular” [10]. They go on to compare the viewpoints for several 
of the more commonly used architecture frameworks: 4+1, ISO RM-ODP, 
DoDAF, and Zachman.

Similarly, the 4+1 views proposed by Kruchten also apply to systems 
engineering, according to Krikorian, who presents “Augmented 4+1 views” 
in which Kruchten’s views are defined from the perspective of systems 
engineering, with appropriate activities and artifacts defined [11].
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typically performed in parallel, rather than sequentially. For example, identifying 
the relationships among elements might help us to better establish their behavior 
and attributes. In the following subsections, we define the segments of the Satel-
lite Navigation System, the functionality they provide, their collaborations with 
each other, and their interfaces.

Validating the Proposed System Architecture

We recommend that the system architects be given the opportunity to experiment 
with alternative system decompositions, so that we can have a fairly high level of 
confidence that our global design decisions are sound. This may involve model-
ing, simulation, or prototyping on a very large scale. These models, simulations, 
and prototypes can then be carried on through the maturation of this system, as 
vehicles for regression testing.

In this and the following subsection, we perform a macro-level analysis of the 
SNS system architecture to validate our assumptions and decisions before pro-
ceeding further. We want to ensure that any problems with the architecture are 
found now, rather than later. In the same manner that requirements changes are 
simpler and less expensive to accommodate earlier in the development lifecycle, 
so are architecture changes. We focus on the Initialize Operations
functionality because, for example, this has been a problematic area in previous 
developments.

We must add a note of caution here: Though the basic techniques we use in this 
section and the next are very similar to those used when developing the actual 
architecture of the system, we apply them very differently here. We focus on drill-
ing very quickly through several architectural levels to study some broader sys-
tem concerns that we have with respect to the Initialize Operations
mission use case. The models that we derive here are not used as part of our spec-
ification of the actual system architecture.

Far too often the initial architectural decisions are not validated because architec-
ture teams are not aware of the utility of this step or because of the rush to move 
on in the development. This being the case, teams often immediately proceed to 
decompose the system use cases to develop segment use cases that are allocated 
to the segment architecture teams. The segment architecture teams then repeat the 
process to define subsystem use cases. Eventually, the architecture teams may 
attempt to recompose these use cases up through the architectural levels to deter-
mine whether everything holds together at each architectural level. Unfortunately, 
if it does not, it is too late. Any fixes at this late stage would likely be much more 
difficult, time consuming, and costly. This is why performing a macro-level anal-
ysis before developing the segment use cases is advantageous. This same process 
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should be regarded as necessary by the segment architecture teams, for the very 
same reasons, when they begin their analyses.

The first step is to review the results of our previous work, assess where we stand, 
and plan the path forward. With our domain experts, we evaluate the SNS logical 
architecture (refer back to Figure 8–3) and the black-box activity diagram for the 
Initialize Operations mission use case (refer back to Figure 8–5), from 
both functional and nonfunctional perspectives. We believe that we’ve captured 
the functionality correctly, yet we are not sure about several of the nonfunctional 
requirements. We have the requirement to ensure that the SNS has functional 
redundancy in critical system capabilities. At this level in our system architecture, 
we are laying out the structure of the segments, not designing their internal archi-
tectures. So, here we must ensure redundancy across segments.

To meet this requirement for functional redundancy, we choose to make two stra-
tegic system architecture decisions. First, we will have backup hardware for mis-
sion-essential equipment within the SNS Ground Segment. This equipment will 
be run in a hot-swappable mode where both primary and backup are active at the 
same time. The backup will be able to quickly replace the primary in the event of 
a problem that renders the primary incapable of performing its mission. Second, 
we will use the same hot-swappable equipment approach with the SNS Launch 
Segment to ensure redundant functionality. With our Satellite Segment, we will 
take advantage of the fact that there is redundancy across the multiple satellites in 
the constellation and that there will be spare satellites either on orbit or ready to 
be launched. This is in addition to the functional redundancy within each satellite 
that its designers must provide to meet the SNS nonfunctional requirement. For 
the User Segment, the functional redundancy requirement will be met by simply 
providing a replacement for the entire User Segment. As with the Satellite Seg-
ment, the designers of this segment need to focus on internal segment redun-
dancy, as appropriate.

Beginning with the black-box activity diagram for Initialize Operations
presented earlier in Figure 8–5, we allocate the system functionality, shown in the 
SatelliteNavigationSystem partition, to one or more of its constituent 
segments: Ground, Launch, Satellite, or User. Our goal is to allocate segment use 
cases, derived from the system use cases, to each of the segments. This way we 
see SNS functionality provided by a collaborative effort of its segments. If we 
assign use cases appropriately, the individual segments exhibit core object-ori-
ented principles, as follows.

■ Abstraction: Segments provide crisply defined conceptual boundaries, rela-
tive to the perspective of the viewer.

■ Encapsulation: Segments compartmentalize their subsystems, which pro-
vide structure and behavior. Segments are black boxes to the other segments.



352 SECTION III APPLICATIONS

■ Modularity: Segments are organized into a set of cohesive and loosely cou-
pled subsystems.

■ Hierarchy: Segments exhibit a ranking or ordering of abstractions.

For a system with the complexity of SNS, this part of the analysis process could 
easily take months to complete to any reasonable level of detail.4 This is one of 
the reasons that we strongly suggest validating architectural decisions first by try-
ing a quick-and-dirty proof-of-concept (e.g., modeling, simulation, or prototyp-
ing) to see if this part of the analysis is on the right track. The architecture team 
should not attempt to generate a complete list of use cases (no amount of time is 
sufficient) but should study some percentage of the more architecturally signifi-
cant ones here. 

As we walk through each of the actions shown in Figure 8–5, we must continually 
ask ourselves a number of questions. Which segment, or segments, should be 
responsible for a certain action? Does a segment have sufficient knowledge to 
carry out an action directed to it, or must it delegate the behavior? Is the segment 
trying to do too much? Is it performing actions that are not really related in some 
manner? What could go wrong? That is to say, what happens if certain precondi-
tions are violated, or if postconditions cannot be satisfied?

Isn’t it interesting just how similar these questions are to those we’d be asking 
ourselves if we were performing software engineering? Remember what we said 
in the introduction to this chapter?

The object-oriented analysis and design principles and process presented earlier 
in this book, as well as the UML 2.0 notation discussed in Chapter 5, apply just 
as well to the development of the highest-level system architecture as to the 
development of software.

Earlier, we performed a black-box analysis of SNS system-level functionality. 
Now, we focus on the internal structure of the SNS—the segments that comprise 
this system and the functionality that each must provide collaboratively, so that 
the SNS is able to meet its requirements. We accomplish this task by performing a 
white-box analysis of the system use case functionality listed earlier in Table 8–1. 
We peer inside the SNS and determine how it provides the required services. 

There is something to be aware of before we proceed; a constraint such as “Shall 
use the Proteus-4 launcher” would certainly impact the allocation of functional 
responsibility that we intend to make. To carry this thought further, when the 

4. But beware of analysis paralysis: If the system analysis cycle takes longer than the win-
dow of opportunity for the business, then abandon hope, all ye who follow this path, for 
you will eventually be out of business.
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Satellite Segment design team is designing the architecture of its segment, the 
team would be impacted by a constraint such as “Shall use the Gamma II(B) sat-
ellite bus.”5 We explore this concern further in the Allocation of Functionality 
sidebar.6

5. A satellite bus provides infrastructure type services (e.g., power and communications) 
to onboard payloads that provide specialized capabilities, such as providing position 
information.

Allocation of Functionality

Eventually, we must translate the system requirements into requirements 
for the hardware, software, and manual operation elements of the Satellite 
Navigation System, so that different organizations, each with different 
skills, can proceed in parallel to attack their particular part of the problem. 
During these efforts, the architecture team is always promoting and pre-
serving the system’s architectural vision.

The allocation of functionality is a concern of the system architect through-
out the development because allocation can be done at any level in the 
abstraction, from the highest level in the system architecture to the lowest. 
The following list provides examples to illustrate this assertion.

■ System: We could allocate the functionality of the entire Satellite Nav-
igation System to another development effort. For example, a code-
velopment effort could be pursued with the European Space Agency 
in the development of Galileo.

■ Segment: A prime example of allocation at the segment level is sub-
contracting the entire launch effort. Numerous companies provide this 
type of service. This would mean, of course, that we would not be 
developing the Launch Segment but would be defining the interfaces 
to it with the subcontractor team.

■ Subsystem:6 We could envision allocation at this level in the SNS 
involving the utilization of a commercially available satellite bus sub-
system in the development of the Satellite Segment.

■ Component: This is the level within the SNS architecture at which we 
would most likely allocate requirements to hardware, software, or 
manual operations. For example, the User Interface Subsystem of the 
User Segment would likely consist of two components, one hardware 
(an LCD screen) and one software (used to control the User 
Segment).

6. In discussing the subsystem and component levels of the SNS architecture at this time, 
we have given a glimpse into the future. 
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Previously, we listed eight SNS system use cases in Table 8–1, which we devel-
oped from the actions in the SatelliteNavigationSystem partition of 
Figure 8–5. If we were actually developing the system architecture, rather than 
performing a quick look analysis as we are here, we would develop an individual 
activity diagram for each of these use cases and apportion the activity diagram 
actions across the segments such that they exhibit the four core object-oriented 
principles that we discussed previously. But, to give us a broader perspective of 
the functionality in this macro-level analysis, instead we analyze all eight system 
use cases on one activity diagram. This is easily accomplished because we aren’t 
trying to drive too much deeper into the details; rather, we are concerned with 
allocating portions of the use case functionality to the segments. 

With the realization of our four logical SNS segments in hand (refer back to Fig-
ure 8–3), we begin our work with the domain experts to allocate the functionality 
denoted in the actions. If we didn’t have a notion of the system architecture at this 
point, we could allocate the functionality to partitions with generic names such as 
SegmentOne, SegmentTwo, and SegmentThree. In each partition, we 
would then allocate the actions such that each of the segments is defined as a spe-
cialist in providing closely related capabilities, as it collaborates with the other 
segments to provide the Satellite Navigation System functionality—here, initial-
izing operations. This allocation would be continued during the analysis of multi-
ple use case scenarios to build a more complete picture of the segments’ 
functionality, thus supporting the choice of a meaningful name for each segment.

This approach is analogous to how we would want to design good classes, as we 
discussed in Chapter 3. There we said that one might measure the quality of an 
abstraction and suggested five metrics. Two of them—coupling and cohesion—
are central concerns with regard to the key abstractions of the Satellite Navigation 
System’s architecture, that is, its segments. We are specifying the SNS segments 
such that they are loosely coupled; we want them to stand “alone” with only the 
minimal number of connections necessary to support their collaboration to pro-
vide SNS functionality.

Cohesion is the other measure by which we may judge the quality of our chosen 
abstractions. Cohesion measures the degree of connectivity among the elements 
that comprise a single segment. The least desirable form of cohesion is coinciden-
tal cohesion, in which entirely unrelated abstractions are thrown into an SNS seg-
ment. The most desirable form of cohesion is functional cohesion, in which the 
elements of a segment all work together to provide some well-bounded behavior.

By stepping through a few of the actions in Figure 8–5 together, we’ll see how 
we arrived at the white-box activity diagram of Figure 8–7. The Launch
Satellite system use case consisted of two actions, Prepare for Launch
and Launch. It’s fairly obvious that the GroundSegment and LaunchSegment
should be providing this capability. The GroundSegment needs to perform its 



CHAPTER 8 SYSTEM ARCHITECTURE: SATELLITE-BASED NAVIGATION 355

preparations for launch and also command the LaunchSegment to do its 
preparations. After preparations are complete, the Operator orders the 
GroundSegment to launch, which then commands the LaunchSegment to 
do so. From the SNS system use case Launch Satellite, we have derived 
several actions each for the GroundSegment and the LaunchSegment. We 
continue this analysis process with the remaining system use cases in the 
Initialize Operations package to develop the complete activity diagram 
shown in Figure 8–7.

The white-box activity diagram for Initialize Operations presents the 
results of analyzing only a portion of the functionality contained within the 
OperateSNS mission use case package. What remains are all the preparatory 
activities that lead up to this point and all the activities that occur afterward, 
which are contained within the other three mission use cases: Provide
Normal Operations,Provide Special Operations, and Terminate
Operations. However, these are not our focus in this macro-level analysis. If 
they were, we would repeat our analysis techniques to specify this behavior and 
thereby develop a more complete picture of how the segments cooperate to pro-
vide the Satellite Navigation System’s operational capability.

This capability would include preparatory activities such as activating the Ground 
and Launch Segments, checking the integrity of the satellite, and mating the satel-
lite with the launcher. In addition to this capability, we would find that the Ground 
Segment performs many activities during normal operations, including the 
following:

■ Continuously monitoring and reporting system status 
■ Continuously evaluating satellite flight dynamics and managing station 

keeping
■ Monitoring for and reporting on alarms
■ Managing events, including initialization and termination
■ Optimizing satellite operations: estimating propellant and extending satel-

lite life 
■ Recovering from power failure
■ Managing satellite quality of service
■ Developing operational procedures (routine and emergency)

We wouldn’t be done at this point because the system functionality embodied in 
the MaintainSNS and ReceiveSNSServices mission use case packages of 
Figures 8–2 and 8–6 would also need to be analyzed to completely define the 
architecture of the Satellite Navigation System. However, we’ll continue here 
with our analysis of the Initialize Operations capability for our quick 
look.
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Figure 8–7 The White-Box Activity Diagram for Initialize Operations
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The next step is to define use cases for each of the SNS segments, from the activ-
ity diagram in Figure 8–7. We do this by focusing on one partition at a time and 
determining which actions encompass reasonable use case functionality, by them-
selves or in combinations. Let’s start with the GroundSegment partition. We 
decide that the first three actions—Prepare for Launch, Prepare
Ground Segment, and Command Launch—provide the functionality for a 
use case we name Control Launch. The next action, Command Flight, is 
significant in its scope, so we define a single use case named Control
Flight to enclose its behavior. We continue this approach for the entire 
GroundSegment partition and then repeat it for the LaunchSegment and 
SatelliteSegment partitions. Table 8–2 shows the resulting segment 
use cases and their constituent actions for the white-box Initialize
Operations activity diagram in Figure 8–7.

Table 8–2 Segment Use Cases for Initialize Operations

SNS Segment Segment Use Case Segment Use Case Action

GroundSegment Control Launch Prepare for Launch

Prepare Ground Segment

Command Launch

Control Flight Command Flight

Command Satellite 
Activation

Command Satellite 
Activation

Command Satellite 
Separation

Command Satellite 
Separation

Control Orbit 
Positioning

Command Orbit 
Positioning

Command Satellite 
Checkout

Command Satellite 
Checkout

Conduct Satellite 
Checkout

Conduct Operation 
Preparations

Command Operation 
Preparations

Conduct Operation 
Preparations

Command Operation Command Operation

{continued)
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Allocating Nonfunctional Requirements and 
Specifying Interfaces

During the analysis of the Initialize Operations functionality, we 
received an additional nonfunctional requirement on the Satellite Navigation Sys-
tem: “The time from the beginning of launch preparation to the beginning of the 
satellite transmitting navigation information shall be less than 7 days.” Why 
might we be given such a requirement? Perhaps our customer doesn’t want to use 
the approach of replacing malfunctioning satellites with on-orbit spares,7 prefer-
ring to be able to launch a replacement satellite and have it operational within a 
week of need. The task we face is apportioning the 7 days (168 hours) among the 
use cases shown in Table 8–2 and any additional ones, such as mating the satellite 

LaunchSegment Launch Prepare Launch Segment

Launch Launcher

Fly to Separation 
Point

Fly to Separation Point

Command Satellite 
Activation

Command Satellite 
Activation

Separate Satellite Separate Satellite

SatelliteSegment Activate Satellite Activate Satellite

Maneuver to Orbit Move into Orbit

Prepare for 
Operations

Perform Checkout

Perform Operation 
Preparations

Transmit Initial 
Position Information

Transmit Initial 
Position Information

Table 8–2 Segment Use Cases for Initialize Operations (Continued)

SNS Segment Segment Use Case Segment Use Case Action

7. Replacing a malfunctioning satellite can be accomplished by using a satellite that was 
previously launched into space as a spare. It sits in space, like a sports player on the bench 
waiting to fill in for an injured player.
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to the launcher, so that the entire timeline spans fewer than 168 hours, as our cus-
tomer specified.

A reasonable question at this point is “How do we do this?” Well, there are two 
primary issues here, apportioning the nonfunctional requirement and document-
ing the result. Allocating the appropriate portion of the performance requirement 
(168 hours) to each segment use case relies a great deal on domain expertise. In 
addition to using the experience of the domain experts and development teams, 
we employ other techniques such as simulation to determine the impact of alter-
nate allocation schemes. For our example, 48 of the 168 hours have been allo-
cated to the Initialize Operations segment use cases shown in Table 8–2. 
The remaining 120 hours have been allocated to all the preparatory activities, 
which include activating the Ground Segment, activating the Launch Segment, 
checking the satellite integrity, and mating the satellite with the launcher.

The second issue, how to document the results, depends largely on the require-
ments and visual-modeling tools that the team is using and, of course, on the 
development process. Many tools do provide a way to document the results, but 
the information is usually in a requirements database that has a reference to the 
activities in the visual model or is buried under a tab within a properties box for 
an activity. While this is useful for running reports and performing statistical 
analysis, it doesn’t provide the visual representation that we prefer, especially at 
this level in our development efforts. Here, we’ve chosen to use a table, specifi-
cally, Table 8–3, to clearly present the results of our effort to allocate the 48 hours 
across the segment use cases. These same techniques would be used to allocate 
other nonfunctional requirements across all the segment use cases that we would 
eventually specify.

The nonfunctional requirements allocated to a segment use case are then, at the 
next lower level in the architecture hierarchy, apportioned across its constituent 
subsystem use cases, employing the same techniques used at the segment level. 
Our techniques for allocating functional and nonfunctional requirements can be 
applied recursively from one level to the next in the architectural hierarchy—from 
the system to the segments, to their subsystems, and so forth.

We might then ask about potential requirements alluded to by the design con-
straints we’ve been given:

■ Compatibility with international standards
■ Maximal use of COTS hardware and software

The constraint “Compatibility with international standards” drove our specifica-
tion of the external actor Atmosphere/Space, as discussed earlier. We must 
interact with the national and international agencies that regulate the use of the 
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Table 8–3 Launch Time Allocations for Initialize Operationsa

SNS Segment Segment Use Case
Allocated Time 
(hours:minutes)

GroundSegment Control Launch 11:22

Control Flight 0:17

Command Satellite 
Activation

0:01

Command Satellite 
Separation

0:01

Control Orbit 
Positioning

0:05

Command Satellite 
Checkout

16:30

Conduct Operation 
Preparations

4:30

Command Operation 0:01

LaunchSegment Launch 11:30

Fly to Separation Point 0:17

Command Satellite 
Activation

0:01

Separate Satellite 0:04

SatelliteSegment Activate Satellite 0:03

Maneuver to Orbit 13:45

Prepare for Operations 21:29

Transmit Initial 
Position Information

0:03b

a. If you have real-world experience in these activities, please forgive our crude allocations. Our do-
main experts were at lunch. Though the allocated times add up to about 80 hours, the actual clock time 
expended is within the 48 hours intended. This is possible because a number of actions are performed 
in parallel, as shown in Figure 8–7.
b. These 3 minutes denote the time it takes the Satellite System to begin transmitting position infor-
mation, once commanded. Also, 40 minutes (of the 48 hours) have been allocated to the eight activi-
ties shown in the Operator partition in Figure 8–7.
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airwaves to determine, for example, the specific frequencies at which we may 
communicate with the Satellite Segment, as well as the frequencies at which it 
may transmit position information. This means that the Ground Segment, Launch 
Segment (at least during the flight phase), and Satellite Segment now must fulfill 
the external interface responsibilities of the Satellite Navigation System. We point 
out these issues because in the focus on functional capability, constraints (and 
nonfunctional requirements) may be considered far too late in the development 
cycle or sometimes even overlooked.

The subject of external interfaces is one other point that we have not really 
touched on here, due to our focus on developing the logical architecture of the 
Satellite Navigation System by analyzing its functionality. The techniques to 
develop and document interface specifications should be familiar to those who 
have done any type of system or software development. The Satellite Navigation 
System has interfaces with those actors shown in Figure 8–1: User, Operator,
Maintainer, ExternalPower, ExternalCommunications, and 
Atmosphere/Space. Clearly, we must perform some level of functional anal-
ysis prior to attempting the specification of the interfaces for the User, Operator,
and Maintainer actors. In addition, human/machine interface specialists 
would be critical team members in this task. Interfaces to ExternalPower and 
ExternalCommunications actors could be specified quite early because of 
the standards dictating the provision of power and communications. The final 
external interface, the one to the Atmosphere/Space actor, is largely speci-
fied by national and international governments and agencies through regulations 
and treaties that govern satellite transmissions.

Stipulating the System Architecture and Its 
Deployment

The notion of the SNS logical architecture that we presented earlier in Figure 8–3 
has withstood the test of our behavioral prototyping efforts. Consequently, Figure 
8–3 represents the logical view of the first-level SNS architecture, as does the 
component diagram shown in Figure 8–8. With UML 2.0, the component diagram 
may be used to hierarchically decompose a system, and thus it here represents the 
highest-level abstraction of the Satellite Navigation System architecture, that is, 
its segments and their relationships. Figure 8–8 illustrates two ways to represent 
the interface between segments, the ball-and-socket notation (LaunchSupport
interface) and the dashed dependency line connecting the required and provided 
interfaces (PositionInformation interfaces).

Looking back at Figure 8–1, we see that three of the system actors are not 
accounted for by the SNS interfaces shown in Figure 8–8: ExternalPower,
ExternalCommunications, and Atmosphere/Space. These actors 
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provide important services to the Satellite Navigation System; however, they are 
not central to our focus on developing its logical architecture.

Figure 8–9 shows the deployment of the components represented in Figure 8–8 
onto the architectural nodes of our system. These components are the segments of 
the SNS and are represented as UML 2.0 artifacts. We recognize that this is not a 
typical use of the notation; typically, we would deploy software artifacts (such as 
code, a source file, a document, or another item relating to the code) onto process-
ing nodes. However, this diagram clearly presents the information, and some non-
standard usage is unavoidable when using the UML 2.0 notation for systems 
engineering. The interfaces through which the Operator, Maintainer, and 
User actors interact with the Satellite Navigation System are contained within its 
segments, so we’ve chosen to illustrate these relationships with dependencies.

Previously, we decided that our approach to providing functional redundancy was 
to run backups for mission-essential equipment at both the GroundSegment
and LaunchSegment in a hot-swappable mode, where both primary and 
backup are active at the same time. In developing the SNS architecture, we’ve 
come to realize that a better approach to meeting the requirement for functional 
redundancy is to distribute the GroundSegment at two geographically dis-
persed sites and to do the same for the LaunchSegment. This protects us from 

Figure 8–8 The Component Diagram for the Satellite Navigation System 
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a complete loss of segment functionality due to natural disasters, for example. 
This design decision is represented by the multiplicities of 2 on the communica-
tion association between the GroundSite and LaunchSite nodes. Similar to 
what we originally proposed with backup equipment, we now have backup sites 
that are prepared to assume the role of primary when commanded. 

Another aspect of the SNS design that requires explanation is the Satellite-
Constellation node and the SatelliteSegment artifact(s) that it hosts. 
The SatelliteConstellation node is essentially the set of Satellite Navi-
gation System satellites and their locations in space as they provide position 
information to the UserSegment artifacts. The SatelliteConstellation
node provides support to its hosted SatelliteSegment artifacts, such as 
gravity (an external system actor that we overlooked?) to help keep the satellites 
in their proper orbit and both the atmosphere and outer space to provide a com-
munications medium for the satellites. The multiplicity of {1..*} on the 
SatelliteSegment artifact denotes that there is at least one satellite in the 
constellation. Our customer has not yet determined the coverage area for the 

Figure 8–9 The Deployment of SNS Segments
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Satellite Navigation System.8 When this is resolved, we will determine the actual 
number of satellites necessary to provide “effective and affordable Satellite Navi-
gation System services” for the SNS users.

Decomposing the System Architecture

Now that we’ve validated our assumptions and decisions surrounding the Satellite 
Navigation System’s architecture with respect to the Initialize Operations 
system use case, we can proceed with the specification of its segments and their 
subsystems. If we had encountered any problems, we would have modified the 
architecture as needed. Before we move on, we must emphasize one critical point 
with respect to the results of our macro-level analysis—our behavioral prototype 
must be discarded; it has served its intended purpose. In the same manner that 
prototype code is not the foundation for deliverable software, neither is our 
behavioral prototype the foundation for the Satellite Navigation System’s 
architecture.

The SNS logical architecture diagram shown earlier in Figure 8–3 is useful but 
incomplete because each segment in this diagram is far too large to be developed 
by a small team of developers. We must zoom inside each of the segments and 
further decompose them into their nested subsystems. This is accomplished by 
applying the same analysis techniques—but applied more completely—that we 
used to prototype the Satellite Navigations System’s architecture of segments for 
the Initialize Operations functionality, as depicted in the component 
diagram shown in Figure 8–8. These techniques are repeated through all the 
levels of abstraction in the Satellite Navigation System—from the system to the 
segments, to their subsystems, and so forth—to determine the use cases for each 
element at every level in the system’s architecture. As we do this, the nonfunc-
tional requirements are apportioned across the use cases, allocated to each ele-
ment at every level in the system decomposition. Our analysis techniques are 
presented here for completeness.

1. Perform black-box analysis for each system use case to determine its actions.
2. Perform white-box analysis of these system actions to allocate them across 

segments.

8. This indecision is definitely a major source of risk (technical and nontechnical) to the 
program. To help our customer nail down this critical requirement, we can use simulations 
to determine the optimal number of satellites for a desired coverage. For those interested in 
this subject area, the Summer 2002 edition of the Aerospace Corporation’s Crosslink pub-
lication (available at www.aero.org/publications/crosslink/summer2002/index.html) con-
tains two pertinent articles: “Orbit Determination and Satellite Navigation” and 
“Optimizing Performance Through Constellation Management.”

www.aero.org/publications/crosslink/summer2002/index.html
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3. Define segment use cases from these allocated system actions.
4. Perform black-box analysis for each segment use case to determine its 

actions.
5. Perform white-box analysis of these segment actions to allocate them across 

subsystems.
6. Define subsystem use cases from these allocated segment actions.

A perspective of the black-box and white-box system analysis approach that 
we’ve used is provided in the Similar Architectural Analysis Techniques sidebar.

Normally, when applying our analysis techniques, we would complete each step, 
across that entire architectural level of the system, before proceeding to the next 
step. In other words, for step 1 we would do the black-box analysis for all the sys-
tem use cases, before proceeding to step 2. Then we would do the white-box anal-
ysis of all the system actions before proceeding to step 3, and so on. 

However, due to the size constraints of a chapter in a book, our example of 
decomposing the system architecture continues to focus on only part of the entire 
system—the Launch Satellite system use case. We make note of this so 
that you do not read the steps we performed (listed below) and assume that you 
should drill down vertically from one system use case to system activities to seg-
ment use cases to segment activities to subsystems, and so on, and then repeat for 
the next system use case. That would be an ineffective approach. The steps num-
bered above are to be applied horizontally across each architectural level of the 
system to provide a complete, holistic view of the system that can be validated at 
any point along the way.

Similar Architectural Analysis Techniques

For many years, systems engineers have been using techniques—very 
similar to what we describe—to analyze system functionality and allocate 
portions of it to the elements of a system’s architecture. These techniques 
of black-box and white-box analysis have been used successfully to 
develop the complex architectural hierarchies for systems such as the 
Global Positioning System.

In their book The Object Advantage, Jacobson et al. present use cases and 
their application to the analysis of enterprise systems through the concepts 
of superordinate and subordinate use cases [12]. The IBM Rational Unified 
Process for Systems Engineering (RUP SE) essentially combines these 
approaches through systems engineering extensions to RUP. Systems 
engineers have been effectively employing the concepts of use cases and 
black-box/white-box analysis for a number of years.
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We continued our analysis—not shown here—by performing the following 
activities:

■ Performed black-box analysis for the Launch Satellite system use 
case to determine its actions

■ Performed white-box analysis of these system actions to allocate them 
across segments

■ Defined GroundSegment use cases from these allocated system actions
■ Performed black-box analysis for the GroundSegment’s Control
Launch use case to determine its actions

■ Performed white-box analysis of the GroundSegment’s Control
Launch actions to allocate them across its subsystems

Figure 8–10 presents the results of this analysis. We see the actions that each of 
the GroundSegment subsystems must perform as they collaborate to provide 
the GroundSegment functionality of controlling the launch. Through such 
analyses, we can develop the architecture of each of the Satellite Navigation Sys-
tem’s segments. The following pages present the resulting segment architectures.

The architecture of the GroundSegment is composed of five subsystems: 
ControlCenter,TT&C (tracking, telemetry, and command), SensorStation,
Gateway, and UserInterface, as shown in Figure 8–11. The Control-
Center subsystem essentially provides the command and control functionality 
for the whole of the Satellite Navigation System, with support from the TT&C
subsystem and the SensorStation subsystem. The TT&C subsystem pro-
vides the means to monitor and control the SatelliteSegment, while the 
SensorStation subsystem provides position information being provided by 
the SatelliteSegment and the environmental conditions. The Gateway
subsystem provides the means for the ControlCenter subsystem to commu-
nicate with the LaunchSegment and SatelliteSegment to control launch 
activities and satellite operations, respectively. Finally, the UserInterface
subsystem provides GroundSegment functionality access to the Operator
and Maintainer actors.

Figure 8–12 presents the logical architecture for the LaunchSegment, which is 
composed of three subsystems: LaunchCenter, Launcher, and Gateway.
The LaunchCenter subsystem provides the command and control functional-
ity for the LaunchSegment, similar to that provided by the ControlCenter
subsystem of the GroundSegment. The Launcher subsystem provides all the 
capability necessary to place the SatelliteSegment into its initial orbit. The 
Gateway subsystem here, as in the GroundSegment, enables the Launch-
Center to receive launch control support from the GroundSegment and to 
provide launch support to the Launcher.



Figure 8–10 The White-Box Activity Diagram for Control Launch
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The SatelliteSegment decomposes into two subsystems, as shown in 
Figure 8–13. The SatelliteBus subsystem provides the infrastructure sup-
port for the NavigationPayload subsystem. On its body structure, the 
SatelliteBus hosts equipment that provides power, attitude control, and 
propulsion, to name a few services. This equipment makes it possible for the 
NavigationPayload equipment (including a high-accuracy clock and posi-
tion signal generation) to provide the position information to the Satellite Naviga-
tion System users.

Figure 8–11 The Logical Architecture of the GroundSegment
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Figure 8–12 The Logical Architecture of the LaunchSegment

Figure 8–13 The Logical Architecture of the SatelliteSegment
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The UserSegment also decomposes naturally into several subsystems, shown 
in Figure 8–14. The Receiver subsystem receives the position information 
from the SatelliteSegment and provides this as position data to the 
Processor subsystem, which translates this to navigation information for use 
by the UserInterface subsystem. The UserInterface provides the 
means for the User to access and make use of the UserSegment navigation 
services through a variety of specialized user interfaces using, for example, push 
buttons, touch screens, and audible alerts. 

This design leaves us with four top-level segments, each encompassing several 
subsystems, to which we have allocated system functionality provided by combi-
nations of hardware, software, and manual operations. In some cases, these allo-
cations may be clear to the experienced system architect.

As we discussed in Chapter 7, these segments and their subsystems form the units 
for work assignments as well as the coarse units for configuration management 
and version control. Each segment or subsystem should be owned by one organi-
zation, team, or person, yet may be implemented by many more. The owner 
directs the detailed design and implementation of the element and manages its 
interface relative to other elements at the same level of abstraction. Thus, the 

Figure 8–14 The Logical Architecture of the UserSegment
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management of a very large development program is made possible by taking a 
very complex problem and decomposing it into successively smaller ones.

We have now met the goal of this chapter—we have shown that object-oriented 
analysis and design principles and process and the UML 2.0 notation apply just as 
well to the development of the highest-level system architecture as to the develop-
ment of software.

8.3 Construction

At the end of the Elaboration phase, as we pointed out in Chapter 6, a stable 
architecture of our system should have been developed. Any modifications to the 
system architecture that are required as a result of activities in the Construction 
phase are likely limited to those of lower-level architectural elements, not the seg-
ments and subsystems of the Satellite Navigation System that have been our con-
cern. In line with the stated intent of this chapter—to show the approach to 
developing the SNS system architecture by logically partitioning the required 
functionality to define the constituent segments and subsystems—we do not show 
any architectural development activities in this phase.

8.4 Post-Transition

The Satellite Navigation System’s original nonfunctional requirements included 
two that caused us to develop a flexible architecture: extensibility and long ser-
vice life. This long service life dictates, in addition to many other aspects, a 
design that is extensible to ensure the reliable provision of desired functionality. 
As there are more users of the Satellite Navigation System, and as we adapt this 
design to new implementations, they will discover new, unanticipated uses for 
existing mechanisms, creating pressure to add new functionality to the system. 
We now investigate how well our SNS design has met these requirements as we 
add new functionality and also change the system’s target hardware.

Adding New Functionality

Let’s consider an addition to our requirements, namely, the capability to also 
use the position information transmissions from other systems, such as GPS, 
GLONASS, and Galileo. This would add greatly to the availability and accuracy 
of the positioning capability of our system throughout the world. Fortunately, this 
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is accommodated with minimal change to the Satellite Navigation System since 
its impact is isolated to the User Segment. Also fortunate is the fact that our exist-
ing User Segment can be easily upgraded to provide this capability, by changing 
the Receiver subsystem and upgrading the firmware in the Processor sub-
system. Thus, adding this functionality has done very little to our existing design. 
This is indeed quite common in well-structured object-oriented systems: A signif-
icant addition to the requirements for the system can be dealt with fairly easily by 
building new applications on existing mechanisms.

What about an even more radical change? Suppose our customer wanted to intro-
duce the capability to support search and rescue (SAR) missions by receiving dis-
tress beacons with our Satellite Navigation System.9 How would this new 
requirement affect our architecture? After analysis, we see that the greatest 
impact is to the Satellite Segment, but there is also some impact to the Ground 
Segment. This is not unexpected. If we had thought ahead to this requirement, we 
would have added the capability to receive these specific signals (or perhaps a 
range of signals), and there would be no design impact to the Satellite Segment, 
just the operational impact of using the functionality. Otherwise, we would need 
to add an additional subsystem to the Satellite Segment that would provide this 
capability. With respect to the Ground Segment, the impact is merely being able 
to relay information about the reception of the distress beacon to the appropriate 
civil authorities. This would likely involve minor software or operational modifi-
cations to the ControlCenter and TT&C subsystems.

Again, this large change would have minimal impact to the overall SNS architec-
ture. Unfortunately, the difficulty of making modifications to space-based assets 
forces the system architects to be very far-reaching in their vision for the system. 
But even in the worst-case situation here, we would be able to add the SAR capa-
bility to Satellite Segment elements being developed in the future, with minimal 
impact on the existing architecture or functionality.

Changing the Target Hardware

Hardware technology is still moving at a faster pace than our ability to generate 
software. Furthermore, it is likely that a number of political and historical reasons 
will cause us to make certain hardware and software choices early in the develop-

9. The Galileo program is adding this type of capability from the outset to assist the 
Cospas-Sarsat Program (www.cospas-sarsat.org/) in its mission of supporting SAR mis-
sions throughout the world. In fact, the Galileo program believes that its contribution to this 
effort will provide near real-time acquisition of distress beacons and location to within sev-
eral meters. 

www.cospas-sarsat.org/
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ment process that we may later regret.10 For this reason, the target hardware for 
large systems becomes obsolete far earlier than does its software.

For example, after several years of operational use, we might decide we need to 
replace the entire ControlCenter subsystem of the Ground Segment. How 
might this affect our existing architecture? If we have kept our subsystem inter-
faces at a high level of abstraction during the evolution of our system, this hard-
ware change would affect our software in only minimal ways. Since we chose to 
encapsulate all design decisions regarding the specifics of the ControlCenter
subsystem, no other subsystem was ever defined to depend on the specific charac-
teristics of a given workstation, for example; the subsystem encapsulates all such 
hardware secrets. This means that the behavior of workstations is hidden in the 
ControlCenter subsystem. Thus, this subsystem acts as an abstraction fire-
wall, which shields all other clients from the intricacies of our particular comput-
ing technology.

In a similar fashion, a radical change in telecommunications standards would 
affect our implementation, but only in limited ways. Specifically, our design 
ensures that only the Gateway subsystem knows about network communica-
tions. Thus, even a fundamental change in networking would never affect any 
higher-level client; the Gateway subsystem shields them from the perversity of 
the real world.

None of the changes we have introduced rends the fabric of our existing architec-
ture. This is indeed the ultimate mark of a well-architected, object-oriented 
system.

10. For example, our project might have chosen a particular hardware or software product 
from a third-party vendor, only to later discover that the product didn’t live up to its prom-
ises. Even worse, we might find that the only supplier of a critical product went out of busi-
ness. In such cases, the project manager usually has one of two choices: (1) run screaming 
into the night, or (2) choose another product, and hope that the system’s architecture is re-
silient enough to accommodate the change. The use of object-oriented analysis and design 
helps us to achieve (2), although it is sometimes still very satisfying to carry out (1).
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C h a p t e r  9

Control System: Traffic 
Management

The economics of software development have progressed to the point 
where many more kinds of applications are now automated than ever 
before, ranging from embedded microcomputers that control a myriad 
of automobile functions to tools that eliminate much of the drudgery 
associated with producing an animated film to systems that manage 
the distribution of interactive video services to millions of consumers. The 
distinguishing characteristic of all these larger systems is that they are 
extremely complex. Building systems so that their implementation is small 
is certainly an honorable task, but reality tells us that certain large prob-
lems demand large implementations. For some massive applications, it is 
not unusual to find software development organizations that employ sev-
eral hundred programmers who must collaborate to produce millions of 
lines of code against a set of requirements that are guaranteed to be 
unstable during development. Such projects rarely involve the develop-
ment of single programs; they more often encompass multiple, coopera-
tive programs that must execute across a distributed target system 
consisting of many computers connected to one another in a variety of 
ways. To reduce development risk, such projects usually involve a central 
organization that is responsible for systems architecture and integration; 
the remaining work may be subcontracted to other companies or to other 
in-house organizations. Thus, the development team as a whole never 
assembles as one; it is typically distributed over space and—because of 
the personnel turnover common in large projects—over time.

Developers who are content with writing small, stand-alone, single-user, 
window-based tools may find the problems associated with building mas-
sive applications staggering—so much so that they view it as folly even to 
try. However, the actuality of the business and scientific world is such that 
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complex software systems must be built. Indeed, in some cases, it is folly 
not to try. Imagine using a manual system to control air traffic around a 
major metropolitan center or to manage the life-support system of a 
manned spacecraft or the accounting activities of a multinational bank. 
Successfully automating such systems not only addresses the very real 
problems at hand but also leads to a number of tangible and intangible 
benefits, such as lower operational costs, greater safety, and increased 
functionality. Of course, the operative word here is successfully. Building 
complex systems is plain hard work and requires the application of the 
best engineering practices we know, along with the creative insight of a 
few great designers.

This chapter tackles the development of such a problem.

9.1 Inception

To most people living in the United States, trains are an artifact of an era long 
past; in Europe and in many parts of Asia, the situation is entirely the opposite. 
Trains are an essential part of their transportation networks; tens of thousands of 
kilometers of track carry people and goods daily, both within cities and across 
national borders. In all fairness, trains do provide an important and economical 
means of transporting goods within the United States. Additionally, as major met-
ropolitan centers grow more crowded, light rail transport is increasingly provid-
ing an attractive option for easing congestion and addressing the problems of 
pollution from internal combustion engines.

Still, railroads are a business and consequently must be profitable. Railroad com-
panies must delicately balance the demands of frugality and safety and the pres-
sures to increase traffic against efficient and predictable train scheduling. These 
conflicting needs suggest an automated solution to train traffic management, 
including computerized train routing and monitoring of all elements of the train 
system. Such automated and semiautomated train systems exist today in Sweden, 
Great Britain, West Germany, France, Japan [1], Canada, and the United States. 
The motivation for each of these systems is largely economic and social: Lower 
operating costs and more efficient use of resources are the goals, with improved 
safety as an integral by-product.

In this section, we begin our analysis of the fictitious Train Traffic Management 
System (TTMS) by specifying its requirements and the system use cases that fur-
ther describe the required functionality.
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Requirements for the Train Traffic 
Management System 

Our experience with developing large systems has been that an initial statement of 
requirements is never complete, often vague, and always self-contradictory. For 
these reasons, we must consciously concern ourselves with the management of 
uncertainty during development, and therefore we strongly suggest that the devel-
opment of such a system be deliberately allowed to evolve over time in an incre-
mental and iterative fashion. As we pointed out in Chapter 6, the very process of 
development gives both users and developers better insight into what require-
ments are really important—far better than any paper exercise in writing require-
ments documents in the absence of an existing implementation or prototype. 
Also, since developing the software for a large system may take several years, 
software requirements must be allowed to change to take advantage of rapidly 
changing hardware technology.1 It is undeniably futile to craft an elegant software 
architecture targeted to a hardware technology that is guaranteed to be obsolete 
by the time the system is fielded. This is why we suggest that, whatever mecha-
nisms we craft as part of our software architecture, we should rely on existing 
standards for communications, graphics, networking, and sensors. For truly novel 
systems, it is sometimes necessary to pioneer new hardware or software technol-
ogy. This adds risk to a large project, however, which already involves a custom-
arily high risk. Software development clearly remains the technology of highest 
risk in the successful deployment of any large automated application, and our 
goal is to limit this risk to a manageable level, not to increase it.

This is a very large and highly complex system that in reality would not be speci-
fied by simple requirements. However, for this chapter, the requirements that fol-
low will suffice for the purposes of our analysis and design effort. In the real 
world, a problem such as this could easily suffer from analysis paralysis because 
there would be many thousands of requirements, both functional and nonfunc-
tional, with a myriad of constraints. Quite clearly, we would need to focus our 
efforts on the most critical elements and prototype candidate solutions within the 
operational context of the system under development.

1. In fact, for many such systems of this complexity, it is common to have to deal with many 
different kinds of computers. Having a well-thought-out and stable architecture mitigates much 
of the risk of changing hardware in the middle of development, an event that happens all too of-
ten in the face of the rapidly changing hardware business. Hardware products come and go, and 
therefore it is important to manage the hardware/software boundary of a system so that new 
products can be introduced that reduce the system’s cost or improve its performance, while at 
the same time preserving the integrity of the system’s architecture.
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The Train Traffic Management System has two primary functions: train routing 
and train systems monitoring. Related functions include traffic planning, failure 
prediction, train location tracking, traffic monitoring, collision avoidance, and 
maintenance logging. From these functions, we define eight use cases, as shown 
in the following list.

■ Route Train: Establish a train plan that defines the travel route for a par-
ticular train.

■ Plan Traffic: Establish a traffic plan that provides guidance in the 
development of train plans for a time frame and geographic region.

■ Monitor Train Systems: Monitor the onboard train systems for 
proper functioning.

■ Predict Failure: Perform an analysis of train systems’ condition to 
predict probabilities of failure relative to the train plan. 

■ Track Train Location: Monitor the location of trains using TTMS 
resources and the Navstar Global Positioning System (GPS). 

■ Monitor Traffic: Monitor all train traffic within a geographic region.
■ Avoid Collision: Provide the means, both automatic and manual, to 

avoid train collisions.
■ Log Maintenance: Provide the means to log maintenance performed on 

trains.

These use cases establish the basic functional requirements for the Train Traffic 
Management System, that is, they tell us what the system must do for its users. In 
addition, we have nonfunctional requirements and constraints that impact the 
requirements specified by our use cases, as listed here.

Nonfunctional requirements:
■ Safely transport passengers and cargo
■ Support train speeds up to 250 miles per hour
■ Interoperate with the traffic management systems of operators at the TTMS 

boundary
■ Ensure maximum reuse of and compatibility with existing equipment
■ Provide a system availability level of 99.99%
■ Provide complete functional redundancy of TTMS capabilities
■ Provide accuracy of train position within 10.0 yards
■ Provide accuracy of train speed within 1.5 miles per hour
■ Respond to operator inputs within 1.0 seconds
■ Have a designed-in capability to maintain and evolve the TTMS
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Constraints:
■ Meet national standards, both government and industry
■ Maximize use of commercial-off-the-shelf (COTS) hardware and software

Now that we have our core requirements defined, at least at a very high level, we 
must turn our attention to understanding the users of the Train Traffic Manage-
ment System. We find that we have three types of people who interact with the 
system: Dispatcher, TrainEngineer, and Maintainer. In addition, the 
Train Traffic Management System interfaces with one external system, Navstar
GPS. These actors play the following roles within the TTMS.

■ Dispatcher establishes train routes and tracks the progress of individual 
trains.

■ TrainEngineer monitors the condition of and operates the train.
■ Maintainer monitors the condition of and maintains train systems.
■ Navstar GPS provides geolocation services used to track trains.

Determining System Use Cases

Figure 9–1 shows the use case diagram for the Train Traffic Management System. 
In it, we see the system functionality used by each of the actors. We also see that 
we have «include» and «extend» relationships used to organize relation-
ships between several of the use cases. The functionality of the use case Monitor
Train Systems is extended by the use case Predict Failure. During the 
course of monitoring systems, a failure prediction analysis (condition:
{request Predict Failure}) can be requested for a particular system 
that is operating abnormally or may have been flagged with a yellow condition 
indicating a problem requiring investigation. This occurs at the Potential
Failure extension point.

The functionality of the Monitor Traffic use case is also extended, by that 
of the Avoid Collision use case. Here, when monitoring train traffic, an 
actor has optional system capability to assist in the avoidance of a collision—at 
the Potential Collision extension point. This assistance can support both 
manual and automatic interventions. Monitor Traffic always includes the 
functionality of the Track Train Location use case to have a precise pic-
ture of the location of all train traffic. This is accomplished by using both TTMS 
resources and the Navstar GPS.

We may specify the details of the functionality provided by each of these use 
cases in textual documents called use case specifications. We have chosen to 
focus on the two primary use cases, Route Train and Monitor Train 
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Figure 9–1 The Use Case Diagram for the Train Traffic Management System 
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Systems, in the following use case specifications. The format of the use case 
specification is a general one that provides setup information along with the pri-
mary scenario and one or more alternate scenarios.

It should be noted that these use case specifications focus on the boundary-level 
interaction between the users of the system and the Train Traffic Management 
System itself. This perspective is often referred to as a black-box view since the 
internal functioning of the system is not seen externally. This view is used when 
we are concerned with what the system does, not how the system does it.

Use case name: Route Train

Use case purpose: The purpose of this use case is to establish a train plan 
that acts as a repository for all the pertinent information associated with the 
route of one particular train and the actions that take place along the way.

Point of contact: Katarina Bach

Date modified: 9/5/06

Preconditions: A traffic plan exists for the time frame and geographic region 
(territory) relevant to the train plan being developed.

Postconditions: A train plan has been developed for a particular train to 
detail its travel route.

Limitations: Each train plan will have a unique ID within the system. Resources 
may not be committed for utilization by more than one train plan for a particu-
lar time frame.

Assumptions: A train plan is accessible by dispatchers for inquiry and modi-
fication and accessible by train engineers for inquiry.

Primary scenario:

A. The Train Traffic Management System (TTMS) presents the dispatcher 
with a list of options.

B. The dispatcher chooses to develop a new train plan.

C. The TTMS presents the template for a train plan to the dispatcher.

D. The dispatcher completes the train plan template, providing information 
about locomotive ID(s), train engineer(s), and waypoints with times.

E. The dispatcher submits the completed train plan to the TTMS. 

F. The TTMS assigns a unique ID to the train plan and stores it. The 
TTMS makes the train plan accessible for inquiry and modification.

G. This use case ends.
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Alternate scenarios:

Condition triggering an alternate scenario:

Condition 1: Develop a new train plan, based on an existing one.

B1. The dispatcher chooses to develop a new train plan, based on 
an existing one.

B2. The dispatcher provides search criteria for existing train plans.

B3. The TTMS provides the search results to the dispatcher.

B4. The dispatcher chooses an existing train plan.

B5. The dispatcher completes the train plan.

B6. The primary scenario is resumed at step E.

Condition triggering an alternate scenario:

Condition 2: Modify an existing train plan.

B1. The dispatcher chooses to modify an existing train plan.

B2. The dispatcher provides search criteria for existing train plans.

B3. The TTMS provides the search results to the dispatcher.

B4. The dispatcher chooses an existing train plan.

B5. The dispatcher modifies the train plan.

B6. The dispatcher submits the modified train plan to the TTMS.

B7. The TTMS stores the modified train plan and makes it accessi-
ble for inquiry and modification.

B8. This use case ends.

Use case name: Monitor Train Systems

Use case purpose: The purpose of this use case is to monitor the onboard 
train systems for proper functioning.

Point of contact: Katarina Bach

Date modified: 9/5/06

Preconditions: The locomotive is operating.

Postconditions: Information concerning the functioning of onboard train sys-
tems has been provided.

Limitations: None identified.
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Assumptions: Monitoring of onboard train systems is provided when the 
locomotive is operating. Audible and visible indications of system problems, in 
addition to those via video display, are provided.

Primary scenario:

A. The Train Traffic Management System (TTMS) presents the train engi-
neer with a list of options.

B. The train engineer chooses to monitor the onboard train systems.

C. The TTMS presents the train engineer with the overview status informa-
tion for the train systems.

D. The train engineer reviews the overview system status information.

E. This use case ends.

Alternate scenarios:

Condition triggering an alternate scenario:

Condition 1: Request detailed monitoring of a system.

E1. The train engineer chooses to perform detailed monitoring of a 
system that has a yellow condition.

E2. The TTMS presents the train engineer with the detailed system 
status information for the selected system.

E3. The train engineer reviews the detailed system status information.

E4. The primary scenario is resumed at step B..

Extension point—Potential Failure:

Condition 2: Request a failure prediction analysis for a system.

E3-1. The train engineer requests a failure prediction analysis for a 
system.

E3-2. The TTMS performs a failure prediction analysis for the 
selected system.

E3-3. The TTMS presents the train engineer with the failure predic-
tion analysis for the system.

E3-4. The train engineer reviews the failure prediction analysis.

E3-5. The train engineer requests that the TTMS alert the main-
tainer of the system that might fail.

E3-6. The TTMS alerts the maintainer of that system.

E3-7. The maintainer requests the failure prediction analysis for 
review.
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E3-8. The TTMS presents the maintainer with the failure prediction 
analysis.

E3-9. The maintainer reviews the analysis and determines that the 
yellow condition is not severe enough to warrant immediate 
action.

E3-10. The maintainer requests that the TTMS inform the train 
engineer of this determination.

E3-11. The TTMS provides the train engineer with the determination 
of the maintainer.

E3-12. The train engineer chooses to perform detailed monitoring of 
the selected system.

E3-13. The alternate scenario is resumed at step E3.

Even though the requirements for the Train Traffic Management System are very 
simplified, we still have not completely specified them, and they are somewhat 
vague. This is not unlike what we’ve encountered while developing large, com-
plex systems in the real world. As we’ve discussed previously, effectively manag-
ing ever-changing requirements is critical to having a successful development 
process, which we should all define as providing the right functionality, on time, 
and within budget. But don’t think that our goal is to stop requirements from 
changing; we can’t and we shouldn’t want to do this. We can understand this if we 
focus on the rapid pace of functional enhancements made to hardware technology 
that, usually along with decreased cost, provide ever more solutions to our soft-
ware development problems. Just look at the incredibly capable and complex 
software that can be run on today’s personal computers, with their processors 
running at multigigahertz speeds and sporting gigabytes of random access 
memory (RAM).

So, how do we accommodate changing requirements, especially over develop-
ment time frames that may encompass several years? We’ve found that using an 
iterative and incremental development process is one of the key means to manag-
ing the risks associated with changing requirements in such a large automated 
system. Another is designing an architecture that remains flexible throughout the 
development. Yet another is maximizing the use of COTS hardware and software, 
as one of the TTMS constraints directs us to do. As we proceed through this chap-
ter, our prime focus will be on developing an architecture that can accommodate 
change.
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9.2 Elaboration

Our attention now turns to developing the overall architecture framework for the 
Train Traffic Management System. We begin by analyzing the required system 
functionality that leads us into the definition of the TTMS architecture. From 
there, we begin our transition from systems engineering to the disciplines of hard-
ware and software engineering. We conclude this section by describing the key 
abstractions and mechanisms of the TTMS.

Analyzing System Functionality

Now that the requirements for the Train Traffic Management System have been 
specified, our focus turns to how the system’s aggregate parts provide this 
required functionality. This perspective is often referred to as a white-box view 
since the internal functioning of the system is seen externally. We use activity dia-
grams to analyze the various use case scenarios to develop this further level of 
detail.

Let’s begin by looking at Figure 9–2, which analyzes the primary scenario of the 
Route Train use case. This activity diagram is relatively straightforward and 
follows the course of the use case scenario. Here we see the interaction of the 
Dispatcher actor and the RailOperationsControlSystem, which 
we’ve designated as the primary command and control center for the TTMS, as 
the Dispatcher creates a new TrainPlan object.

When determining the constituent elements of the TTMS, we must of course con-
sider the requirements, both functional and nonfunctional, and the constraints. 
But we also have two competing technical concerns: the desire to encapsulate 
abstractions and the need to make certain abstractions visible to other elements. 
In other words, we must strive to design elements that are cohesive (by grouping 
logically related abstractions) and loosely coupled (by minimizing the dependen-
cies among elements). Therefore, we define modularity as the property of a sys-
tem that has been decomposed into a set of cohesive and loosely coupled 
elements.

In contrast to Figure 9–2, the activity diagram of Figure 9–3 is a bit more compli-
cated because we’ve illustrated the first alternate scenario of the Monitor
Train Systems use case, where the TrainEngineer chooses to perform a 
detailed monitoring of the LocomotiveAnalysisandReporting system,
which has a yellow condition. Here we see that the constituent elements of the 
TTMS providing this capability are the OnboardDisplay system, the 
LocomotiveAnalysisandReporting system, the EnergyManagement
system, and the DataManagement unit. 
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We see that the OnboardDisplay system is the interface between the 
TrainEngineer and the TTMS. As such, it receives the TrainEngineer’s 
request to monitor the train systems and then requests the appropriate data from 
each of the other three systems. The overview level of status information is pro-
vided to the TrainEngineer for review. At this point, the TrainEngineer
could remain at the overview level, which would end the primary scenario. In the 
alternate scenario, however, the TrainEngineer requests a more detailed 
review from the LocomotiveAnalysisandReporting system because it 
has presented a yellow condition indicating some type of problem that requires 
attention. In response, the OnboardDisplay system retrieves the detailed data 
from the system for presentation. After reviewing this information, the 
TrainEngineer returns to monitoring the overview level of system status 
information.

Figure 9–2 The Route Train Primary Scenario
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It is a matter of project convention whether we regard the activity diagram in 
Figure 9–3 as representing one (alternate) or two (primary and alternate) separate 
scenarios. The second alternate scenario we described earlier details the extension 
of the Monitor Train Systems use case functionality with that of the 
Predict Failure use case. This scenario could be appended to Figure 9–3 
to provide a more complete picture of system capability by detailing the actions 
whereby the TrainEngineer requests a failure prediction analysis (condition:
{request Predict Failure}) be run on the problematic system. In fact, 
we show this perspective in the Interaction Overview Diagram sidebar.

Figure 9–3 A Monitor Train Systems Alternate Scenario



388 SECTION III APPLICATIONS

Interaction Overview Diagram

Another way to depict the Monitor Train Systems use case—with its 
primary and alternate scenarios—is by using an interaction overview dia-
gram, as shown in Figure 9–4.

Figure 9–4 An Interaction Overview Diagram for Monitor Train 
Systems

True to its name, this diagram shows a higher-level overview of the com-
plete Monitor Train Systems use case functionality. This interaction 
overview diagram shows a flow among interaction occurrences, indicated 
by the three frames annotated with ref in their upper-left corners. In place 
of the reference to interaction diagrams, we could show the actual interac-
tions to provide the details for each of the scenarios: Perform Overview 
System Status Monitoring, Perform Detailed System Status 
Monitoring, and Perform Failure Prediction Analysis.
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Defining the TTMS Architecture

A much more thorough analysis of the functionality required by all the use case 
scenarios, including the impact of the nonfunctional requirements and constraints, 
leads us to a block diagram for the Train Traffic Management System’s major ele-
ments, as shown in Figure 9–5 [2]. The locomotive analysis and reporting system 

The interaction overview diagram can use any type of interaction—
sequence, communication, timing, or another interaction overview—to 
show this detail. As we see here, this diagram can be used to map the flow 
from one interaction to another, which can be useful if you have long, com-
plicated interactions.

Figure 9–5 The Train Traffic Management System
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includes several digital and analog sensors for monitoring locomotive conditions, 
including oil temperature, oil pressure, fuel quantity, alternator volts and amperes, 
throttle setting, engine RPM, water temperature, and drawbar force. Sensor val-
ues are presented to the train engineer via the onboard display system and to dis-
patchers and maintainers elsewhere on the network. Warning or alarm conditions 
are registered whenever certain sensor values fall outside of the normal operating 
range. A log of sensor values is maintained to support maintenance and fuel 
management.

The energy management system advises the train engineer in real time as to the 
most efficient throttle and brake settings. Inputs to this system include track pro-
file and grade, speed limits, schedules, train load, and power available, from 
which the system can determine fuel-efficient throttle and brake settings that are 
consistent with the desired schedule and safety concerns. Suggested throttle and 
brake settings, track profile and grade, and train position and speed are made 
available for display on the onboard display system.

The onboard display system provides the human/machine interface for the train 
engineer. Information from the locomotive analysis and reporting system, the 
energy management system, and the data management unit are made available for 
display. Soft keys exist to permit the engineer to select different displays.

The data management unit serves as the communications gateway between all 
onboard systems and the rest of the network, to which all trains, dispatchers, and 
other users are connected.

Train location tracking is achieved via two devices on the network: location 
transponders and the Navstar GPS. The locomotive analysis and reporting system 
can determine the general location of a train via dead reckoning, simply by count-
ing wheel revolutions. This information is augmented by information from loca-
tion transponders, which are placed every mile along a track and at critical track 
junctions. These transponders relay their identity to passing trains via their data 
management units, from which a more exact train location may be determined. 
Trains may also be equipped with GPS receivers, from which train location may 
be determined to within 10 yards.

A wayside interface unit is placed wherever there is some controllable device 
(such as a switch) or a sensor (such as an infrared sensor for detecting overheated 
wheel bearings). Each wayside interface unit may receive commands from a local 
ground terminal controller (e.g., to turn a signal on or off). Devices may be over-
ridden by local manual control. Each unit can also report its current setting. A 
ground terminal controller relays information to and from passing trains and to 
and from wayside interface units. Ground terminal controllers are placed along a 
track, spaced close enough so that every train is always within range of at least 
one terminal.
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Every ground terminal controller relays its information to a common network 
control system. Connections between the network control system and each 
ground terminal controller may be made via microwave link, landlines, or fiber 
optics, depending on the remoteness of each ground terminal controller. The net-
work control system monitors the health of the entire network and can automati-
cally route information in alternate ways in the event of equipment failure.

The network control system is ultimately connected to one or more dispatch cen-
ters, which comprise the rail operations control system and other users. At the rail 
operations control system, dispatchers can establish train routes and track the 
progress of individual trains. Individual dispatchers control different territories; 
each dispatcher’s control console may be set up to control one or more territories. 
Train routes include instructions for automatically switching trains from track to 
track, setting speed restrictions, setting out or picking up cars, and allowing or 
denying train clearance to a specific track section. Dispatchers may note the loca-
tion of track work along train routes for display to train engineers. Trains may be 
stopped from the rail operations control system (manually by dispatchers or auto-
matically) when hazardous conditions are detected (such as a runaway train, track 
failure, or a potential collision condition). Dispatchers may also call up any infor-
mation available to individual train engineers, as well as send movement author-
ity, wayside device settings, and plan revisions.

It should be apparent that track layouts and wayside equipment may change over 
time; in addition, the numbers of trains and their routes may change daily. The 
Train Traffic Management System must therefore be designed to permit incorpo-
ration of new sensor, network, and processor technology. Our nonfunctional 
requirement—to have a designed-in capability to maintain and evolve the 
TTMS—makes it very clear that we must design an architecture that has the flex-
ibility to evolve over time. In addition, both of our constraints tell us that the sys-
tem must rely on national standards (government and industry), while 
maximizing the use of COTS hardware and software.

From Systems Engineering to Hardware and 
Software Engineering

Up to this point in our development, we performed systems engineering, rather 
than hardware or software engineering activities, as we analyzed scenarios of the 
use cases that specify the primary functional requirements for the Train Traffic 
Management System. From this analysis, we were able to specify a block dia-
gram of its major elements to define a candidate TTMS system architecture. As 
we continue our development, the architecture of lower-level hardware and soft-
ware elements will evolve based on the concepts that our system architects likely 
have in mind. Eventually we decide what portions of the system functionality will 
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be fulfilled by hardware, software, or manual operations. At that point, develop-
ment becomes even more of a collaborative effort among the systems, hardware, 
software, and operational engineering teams. 

The block diagram in Figure 9–5 presents a candidate architecture developed 
using an object-oriented approach, the clear consequence of this being the com-
ponent nature of the architecture. We see the elements of the TTMS exhibiting 
cohesion and loose coupling while performing major functions in the system. As 
we further our analysis of the system’s functionality, we may continue to use 
activity diagrams (especially when working with domain experts), which provide 
a clear perspective of the work being done by each of the system’s elements as 
they collaborate in the system scenarios. More specific detail of the interactions is 
required as we proceed through the lower levels of the architectural hierarchy; 
consequently, we will more likely use sequence diagrams, class diagrams, and 
prototypes to examine the required system behavior.

In Figure 9–6, we provide a sequence diagram that captures one simple scenario 
for the automated processing of a daily train order and provides more detail into 
the inner workings of the Train Traffic Management System than does the activity 
diagram presented earlier in Figure 9–2. We assume this scenario begins essen-
tially at the conclusion of Figure 9–2, where a new train plan has been created. 
Here we see just the major events that transpire and the interactions of the system 
elements. Later in our development, we must begin to document element details 
such as attribute definitions, operation signatures, and association specifications.

After completing our systems engineering analysis of the TTMS functionality 
(through its architectural levels), we must allocate the system requirements to 
hardware, software, and even operational elements. We say “even operational” 

Figure 9–6 A Scenario for Processing Daily Train Orders



CHAPTER 9 CONTROL SYSTEM: TRAFFIC MANAGEMENT 393

because all too often we think that everything can and should be automated. 
Certainly, that is a typical goal, but we must understand that some functionality, 
especially in safety-critical areas, should employ (and must by law in some cases) 
a human-in-the-loop design. In some cases, the allocation of requirements to 
hardware or software is fairly obvious; for example, software is the right imple-
mentation vehicle for describing train schedules. For both the onboard display 
system and the displays in the rail operations control centers, one might use off-
the-shelf terminals or workstations. These allocation decisions are driven by 
many criteria, including reuse issues, commercially available items, and the expe-
rience and preferences of the system architects. When choosing commercially 
available items, such as the many sensors in the system, we have allocated those 
element design decisions to the engineers at the vendor companies. In general, 
though, we will lean toward software where we need the most flexibility and will 
choose hardware where performance is vital.

For the purposes of our problem, we assume that an initial hardware architecture 
has been chosen by the system architects. This choice need not be considered irre-
versible, but at least it gives us a starting point in terms of where to allocate soft-
ware requirements. As we proceed with analysis and then design, we need the 
freedom to trade off hardware and software: We might later decide that additional 
hardware is needed to satisfy some requirement or that certain functions can be 
performed better through software than hardware.

Figure 9–7 illustrates the target deployment hardware for the Train Traffic Man-
agement System, using the notation for deployment diagrams. This hardware 
architecture parallels the block diagram of the system shown earlier in Figure 9–5. 
Specifically, there is one computer on each train, encompassing the locomotive 
analysis and reporting system, the energy management system, the onboard dis-
play system, and the data management unit. Each location transponder is con-
nected to a transmitter, through which messages may be sent to passing trains; no 
computer is associated with a location transponder. On the other hand, each col-
lection of wayside devices (each of which encompasses a wayside interface unit 
and its switches) is controlled by a wayside computer that may communicate via 
its transmitter and receiver with a passing train or a ground terminal controller. 
Communications between transmitters and receivers may be made via microwave 
link, landlines, or fiber optics, as discussed earlier. Each ground terminal control-
ler ultimately connects to a local area network, one for each dispatch center 
(encompassing the rail operations control system). Because of the need for unin-
terrupted service, we have chosen to place two computers at each dispatch center: 
a primary computer and a backup computer that we expect will be brought online 
whenever the primary computer fails. During idle periods, the backup computer 
can be used to service the computational needs of other, lower-priority users.
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When operational, the Train Traffic Management System may involve hundreds 
of computers, including one for each train, one for each wayside interface unit, 
and two at each dispatch center. The deployment diagram shows the presence of 
only a few of these computers since the configurations of similar computers are 
completely redundant. 

The key to maintaining sanity during the development of any complex project is 
to engineer sound and explicit interfaces among the key elements of the system. 
This is particularly important when defining hardware and software interfaces. At 
the start, interfaces can be loosely defined, but they must quickly be formalized so 
that different parts of the system can be developed, tested, and released in paral-
lel. Well-defined interfaces also make it far easier to make hardware/software 
trade-offs as opportunities arise, without disrupting already completed parts of 
the system. Furthermore, we cannot expect all of the developers in a large, possi-
bly globally distributed, development organization to have a complete view and 
understanding of all parts of the system. We must therefore leave the specification 
of these key abstractions and mechanisms to our best architects.

Figure 9–7 The Deployment Diagram for the Train Traffic Management 
System
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Key Abstractions and Mechanisms

A study of the requirements for the Train Traffic Management System suggests 
that we really have four different subproblems to solve: 

1. Networking
2. Database
3. Human/machine interface
4. Real-time analog and digital device control

How did we come to identify these problems as those involving the greatest 
development risk?

The thread that ties this system together is a distributed communications network. 
Messages pass by radio from transponders to trains, between trains and ground 
terminal controllers, between trains and wayside interface units, and between 
ground terminal controllers and wayside interface units. Messages must also pass 
between dispatch centers and individual ground terminal controllers. The safe 
operation of this entire system depends on the timely and reliable transmission 
and reception of messages.

Additionally, this system must keep track of the current locations and planned 
routes of many different trains simultaneously. We must keep this information 
current and self-consistent, even in the presence of concurrent updates and que-
ries from around the network. This is basically a distributed database problem.

The engineering of the human/machine interfaces poses a different set of prob-
lems. Specifically, the users of this system are principally train engineers and dis-
patchers, none of whom are necessarily skilled in using computers. The user 
interface of an operating system such as UNIX or Windows might be acceptable 
to a professional software engineer, but it is often regarded as user-hostile by end 
users of applications such as the Train Traffic Management System. All forms of 
user interaction must therefore be carefully engineered to suit this domain-
specific group of users.

Lastly, the Train Traffic Management System must interact with a variety of sen-
sors and actuators. No matter what the device, the problems of sensing and con-
trolling the environment are similar and so should be dealt with in a consistent 
manner by the system.

Each of these four subproblems involves largely independent issues. Our system 
architects need to identify the key abstractions and mechanisms involved in each, 
so that we can assign experts in each domain to tackle their particular subproblem 
in parallel with the others. Note that this is not a problem of analysis or design: 
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Our analysis of each problem will impact our architecture, and our designs will 
uncover new aspects of the problem that require further analysis. Development is 
thus unavoidably iterative and incremental.

If we do a brief domain analysis across these four subproblem areas, we find that 
there are three common high-level key abstractions:

1. Trains: including locomotives and cars
2. Tracks: encompassing profile, grade, and wayside devices
3. Plans: including schedules, orders, clearances, authority, and crew 

assignments

Every train has a current location on the tracks, and each train has exactly one 
active plan. Similarly, the number of trains at each point on the tracks may be zero 
or one; for each plan, there is exactly one train, involving many points on the 
tracks.

Continuing, we may devise a key mechanism for each of the four nearly indepen-
dent subproblems:

1. Message passing
2. Train schedule planning
3. Displaying information
4. Sensor data acquisition

These four mechanisms form the soul of our system. They represent approaches 
to what we have identified as the areas of highest development risk. It is therefore 
essential that we deploy our best system architects here to experiment with alter-
native approaches and eventually settle on a framework from which more junior 
developers may compose the rest of the system.

9.3 Construction

Architectural design involves the establishment of the central class structure of 
the system, plus a specification of the common collaborations that animate these 
classes. Focusing on these mechanisms early directly attacks the elements of 
highest risk in the system and concretely captures the vision of the system’s archi-
tects. Ultimately, the products of this phase serve as the framework of classes and 
collaborations on which the other functional elements of the final system build.

In this section, we start by examining the semantics of each of this system’s four 
key mechanisms: message passing, train schedule planning, displaying informa-
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tion, and sensor data acquisition. This leads into a discussion of release manage-
ment, which supports our iterative and incremental development process. We 
conclude this section by analyzing how developing a system architecture supports 
the specification of the TTMS subsystems. 

Message Passing

By message, we do not mean to imply method invocation, as in an object-oriented 
programming language; rather, we are referring to a concept in the vocabulary of 
the problem domain, at a much higher level of abstraction. For example, typical 
messages in the Train Traffic Management System include signals to activate 
wayside devices, indications of trains passing specific locations, and orders from 
dispatchers to train engineers. In general, these kinds of messages are passed at 
two different levels within the TTMS:

1. Between computers and devices
2. Among computers

Our interest is in the second level of message passing. Because our problem 
involves a geographically distributed communications network, we must consider 
issues such as noise, equipment failure, and security.

We can make a first cut at identifying these messages by examining each pair of 
communicating computers, as shown in our previous deployment diagram (refer 
back to Figure 9–7). For each pair, we must ask three questions.

1. What information does each computer manage?
2. What information should be passed from one computer to the other?
3. At what level of abstraction should this information be? 

There is no determinate solution for these questions. Rather, we must use an iter-
ative approach until we are satisfied that the right messages have been defined 
and that there are no communications bottlenecks in the system (perhaps because 
of too many messages over one path, or messages being too large or too small).

It is absolutely critical at this level of design to focus on the substance, not the 
form, of these messages. Too often, we have seen system architects start off by 
selecting a bit-level representation for messages. The real problem with prema-
turely choosing such a low-level representation is that it is guaranteed to change 
and thus disrupt every client that depends on a particular representation. Further-
more, at this point in the design process, we cannot know enough about how these 
messages will be used to make intelligent decisions about time- and space-efficient 
representations.
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By focusing on the substance of these messages, we mean to urge a focus on the 
outside view of each class of messages. In other words, we must decide on the 
roles and responsibilities of each message and what operations we can meaning-
fully perform on each message.

The class diagram in Figure 9–8 captures our design decisions regarding some 
of the most important messages in the Train Traffic Management System. Note 
that all messages are ultimately instances of a generalized abstract class named 
Message, which encompasses the behavior common to all messages. Three 
lower-level classes represent the major categories of messages, namely, Train-
StatusMessage, TrainPlanMessage, and WaysideDeviceMessage.
Each of these classes is further specialized. Indeed, our final design might include 
dozens of such specialized classes, at which time the existence of these intermedi-
ate classes becomes even more important; without them, we would end up with 
many unrelated—and therefore difficult to maintain—components representing 
each distinct specialized class. As our design unfolds, we are likely to discover 
other important groupings of messages and so invent other intermediate classes. 
Fortunately, reorganizing our class hierarchy in this manner tends to have mini-
mal semantic impact on the clients that ultimately use the base classes.

As part of the architectural design, we would be wise to stabilize the interface of 
the key message classes early. We might start with a domain analysis of the more 
interesting base classes in this hierarchy, in order to formulate the roles and 
responsibilities of all such classes.

Once we have designed the interface of the more important messages, we can 
write programs that build on these classes to simulate the creation and reception 
of streams of messages. We can use these programs as a temporary scaffolding to 
test different parts of the system during development and before the pieces with 
which they interface are completed.

The class diagram in Figure 9–8 is unquestionably incomplete. In practice, we 
find that we can identify the most important messages first and let all others 
evolve as we uncover the less common forms of communication. Using an object-
oriented architecture allows us to add these messages incrementally without dis-
rupting the existing design of the system because such changes are generally 
upwardly compatible.

Once we are satisfied with this class structure, we can begin to design the mes-
sage-passing mechanism itself. Here we have two competing goals for the mecha-
nism: It must provide for the reliable delivery of messages and yet do so at a high 
enough level of abstraction so that clients need not worry about how message 
delivery takes place. Such a message-passing mechanism allows its clients to 
make simplifying assumptions about how messages are sent and received.
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Figure 9–9 provides a scenario that captures our design of the message-passing 
mechanism. As this diagram indicates, to send a message, a client first creates a 
new message m and then broadcasts it to its node’s message manager, whose 
responsibility is to queue the message for eventual transmission. Notice that our 
design uses four objects that are active (have their own thread of control), as indi-
cated by the extra vertical lines within the object notation: Client,messageMgr
:Queue, messageMgr' :Queue, and Receiver. Notice also that the mes-
sage manager receives the message to be broadcast as a parameter and then uses 
the services of a Transporter object to reduce the message to its canonical 
form and broadcast it across the network.

As this diagram suggests, we choose to make this an asynchronous operation—
indicated by the open-headed arrow—because we don’t want to make the client 
wait for the message to be sent across a radio link, which requires time for encod-
ing, decoding, and perhaps retransmission because of noise. Eventually, some 
Listener object on the other side of the network receives this message and pre-
sents it in a canonical form to its node’s message manager, which in turn creates a 
parallel message and queues it. A receiver can block at the head of its message 

Figure 9–8 The Message Class Diagram
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manager’s queue, waiting for the next message to arrive, which is delivered as a 
parameter to the operation nextMessage(), a synchronous operation.

Our design of the message manager places it at the application layer in the ISO 
Open Systems Interconnection (OSI) model for networks [3]. This allows all mes-
sage-sending clients and message-receiving clients to operate at the highest level 
of abstraction, namely, in terms of application-specific messages.

We expect the final implementation of this mechanism to be a bit more complex. 
For example, we might want to add behaviors for encryption and decryption and 
introduce codes to detect and correct errors, so as to ensure reliable communica-
tion in the presence of noise or equipment failures.

Figure 9–9 The Message-Passing Mechanism
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Train Schedule Planning

As we noted earlier, the concept of a train plan is central to the operation of the 
Train Traffic Management System. Each train has exactly one active plan, and 
each plan is assigned to exactly one train and may involve many different orders 
and locations on the track.

Our first step is to decide exactly what parts constitute a train plan. To do so, we 
need to consider all the potential clients of a plan and how we expect each of them 
to use that plan. For example, some clients might be allowed to create plans, oth-
ers might be allowed to modify plans, and still others might be allowed only to 
read plans. In this sense, a train plan acts as a repository for all the pertinent infor-
mation associated with the route of one particular train and the actions that take 
place along the way, such as picking up or setting out cars.

Figure 9–10 captures our strategic decisions regarding the structure of the 
TrainPlan class. We use a class diagram to show the parts that compose a train 
plan (much as a traditional entity-relationship diagram would do). Thus, we see 
that each train plan has exactly one crew and may have many general orders and 

Figure 9–10 The TrainPlan Class Diagram
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many actions. We expect these actions to be time ordered, with each action com-
posed of information such as time, a location, speed, authority, and orders. For 
example, a specific train plan might consist of the actions shown in Table 9–1.

As the diagram in Figure 9–10 indicates, the TrainPlan class has a 
UniqueId, whose purpose is to provide a number for uniquely identifying each 
TrainPlan instance. Because of the complexity of the information here, classes 
in this diagram that might otherwise be considered an attribute of a class are 
really stand-alone classes. For example, the UniqueID class is not merely an 
identification number; it contains various attributes and operations necessary to 
meet stringent national and international regulations. Another example is that 
crews have restrictions placed on their work—they may work only at certain loca-
tions or must adhere to speed restrictions in certain locations at particular times.

As we did for the Message class and its subclasses, we can design the most 
important elements of a train plan early in the development process; its details 
will evolve over time, as we actually apply plans to various kinds of clients.

The fact that we may have a plethora of active and inactive train plans at any one 
time confronts us with the database problem we spoke of earlier. The class dia-
gram in Figure 9–10 can serve as an outline for the logical schema of this data-
base. The next question we might therefore ask is simply, where are train plans 
kept?

In a more perfect world, with no communication noise or delays and infinite com-
puting resources, our solution would be to place all train plans in a single, central-
ized database. This approach would yield exactly one instance of each train plan. 
However, the real world is much more perverse, so this solution is not practical. 
We must expect communication delays, and we don’t have unlimited processor 
cycles. Thus, having to access a plan located in the dispatch center from a train 
would not at all satisfy our real-time and near real-time requirements.

However, we can create the illusion of a single, centralized database in our soft-
ware. Basically, our solution is to have a database of train plans located on the 

Table 9–1 Actions a Train Plan Might Contain

Time Location Speed Authority Orders

0800 Pueblo As posted See yardmaster Depart yard

1100 Colorado Springs 40 mph  Set out 30 cars

1300 Denver 45 mph  Set out 20 cars

1600 Pueblo As posted  Return to yard



CHAPTER 9 CONTROL SYSTEM: TRAFFIC MANAGEMENT 403

computers at the dispatch center, with copies of individual plans distributed as 
needed at sites around the network. For efficiency, then, each train computer 
could retain a copy of its current plan. Thus, onboard software could query this 
plan with negligible delay. If the plan changed, either as a result of dispatcher 
action or (less likely) by the decision of the train engineer, our software would 
have to ensure that all copies of that plan were updated in a timely fashion. 

The way this scenario plays out is a function of our train schedule planning mech-
anism, shown in Figure 9–11. The primary version of each train plan resides in a 
centralized database at a dispatch center, with zero or more mirror-image copies 
scattered about the network. Whenever some client requests a copy of a particular 
train plan (via the operation get(), invoked with a value of UniqueId as an 
argument), the primary version is cloned and delivered to the client as a parame-
ter, and the network location of the copy is recorded in the database. Now, sup-
pose that a client on a train needed to make a change to a particular plan, perhaps 
as a result of some action by the train engineer. Ultimately, this client would 
invoke operations on its copy of the train plan and so modify its state. These oper-
ations would also send messages to the centralized database, to modify the state 
of the primary version of the plan in the same way. Since we record the location 
in the network of each copy of a train plan, we can also broadcast messages to the 
centralized repository that force a corresponding update to the state of all remain-
ing copies. To ensure that changes are made consistently across the network, we 

Figure 9–11 Train Schedule Planning
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could employ a record-locking mechanism, so that changes would not be commit-
ted until all copies and the primary version were updated.

This mechanism applies equally well if some client at the dispatch center initiates 
the change, perhaps as a result of some dispatcher action. First, the primary ver-
sion of the plan would be updated, and then changes to all copies would be broad-
cast throughout the network, using the same mechanism. In either case, how 
exactly do we broadcast these changes? The answer is that we use the message-
passing mechanism devised earlier. Specifically, we would need to add to our 
design some new train plan messages and then build our train plan mechanism on 
this lower-level message-passing mechanism. 

Using commercial, off-the-shelf database management systems on the dispatch 
computers allows us to address any requirements for database backup, recovery, 
audit trails, and security.

Displaying Information

Using off-the-shelf technology for our database needs helps us to focus on the 
domain-specific parts of our problem. We can achieve similar leverage for our 
display needs by using standard graphics facilities. Using off-the-shelf graphics 
software effectively raises the level of abstraction in our system, so that develop-
ers never need to worry about manipulating the visual representation of display-
able objects at the pixel level. Still, it is important to encapsulate our design 
decisions regarding how various objects are represented visually.

For example, consider displaying the profile and grade of a specific section of 
track. Our requirements dictate that such a display may appear in two different 
places: at a dispatch center and onboard a train (with the display focusing only on 
the track that lies ahead of the train). Assuming that we have some class whose 
instances represent sections of track, we might take two approaches to represent-
ing the state of such objects visually. First, we might have some display manager 
object that builds a visual representation by querying the state of the object to be 
displayed. Alternately, we could eliminate this external object and have each dis-
playable object encapsulate the knowledge of how to display itself. We prefer this 
second approach because it is simpler and more in the spirit of the object model.

There is a potential disadvantage to this approach, however. Ultimately, we might 
have many different kinds of displayable objects, each implemented by different 
groups of developers. If we let the implementation of each displayable object pro-
ceed independently, we are likely to end up with redundant code, different imple-
mentation styles, and a generally unmaintainable mess. A far better solution is to 
do a domain analysis of all the kinds of displayable objects, determine what 
visual elements they have in common, and devise an intermediate set of class util-
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ities that provide display routines for these common picture elements. These class 
utilities in turn can build on lower-level, off-the-shelf graphics packages.

Figure 9–12 illustrates this design, showing that the implementation of all dis-
playable objects shares common class utilities. These utilities in turn build on 
lower-level Windows interfaces, which are hidden from all of the higher-level 
classes. Pragmatically, interfaces such as the Windows API cannot easily be 
expressed in a single class. Therefore, our diagram is a bit of a simplification: It is 
more likely that our implementation will require a set of peer class utilities for the 
Windows API as well as for the train display utilities.

The principal advantage of this approach is that it limits the impact of any lower-
level changes resulting from hardware/software trade-offs. For example, if we find 
that we need to replace our display hardware with more or less powerful devices, 
we need only reimplement the routines in the TrainDisplayUtility class. 
Without this collection of routines, low-level changes would require us to modify 
the implementation of every displayable object.

Sensor Data Acquisition

As our requirements suggest, the Train Traffic Management System includes 
many different kinds of sensors. For example, sensors on each train monitor the 
oil temperature, fuel quantity, throttle setting, water temperature, drawbar load, 

Figure 9–12 Class Utilities for Displaying
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and so on. Similarly, active sensors in some of the wayside devices report among 
other things the current positions of switches and signals. The kinds of values 
returned by the various sensors are all different, but the processing of different 
sensor data is all very much the same. Furthermore, most sensors must be sam-
pled periodically. If a value is within a certain range, nothing special happens 
other than notifying some client of the new value. If this value exceeds certain 
preset limits, a different client might be warned. Finally, if this value goes far 
beyond its limits, we might need to sound some sort of alarm and notify yet 
another client to take drastic action (e.g., when locomotive oil pressure drops to 
dangerous levels).

Replicating this behavior for every kind of sensor not only is tedious and error-
prone but also usually results in redundant code. Unless we exploit this common-
ality, different developers will end up inventing multiple solutions to the same 
problem, leading to the proliferation of slightly different sensor mechanisms and, 
in turn, a system that is more difficult to maintain. It is highly desirable, therefore, 
to do a domain analysis of all periodic, nondiscrete sensors, so that we might 
invent a common sensor mechanism for all kinds of sensors. We might use an 
architecture that encompasses a hierarchy of sensor classes and a frame-based 
mechanism that periodically acquires data from these sensors.

Release Management

Since we are using an incremental development approach, we will investigate the 
employment of release management techniques and further analyze the system’s 
architecture and the specification of its subsystems.

We start the incremental development process by first selecting a small number of 
interesting scenarios, taking a vertical slice through our architecture, and then 
implementing enough of the system to produce an executable product that at least 
simulates the execution of these scenarios.

For example, we might select just the primary scenarios of three use cases: 
Route Train, Monitor Train Systems, and Monitor Traffic.
Together, the implementation of these three scenarios requires us to touch almost 
every critical architectural interface, thereby forcing us to validate our strategic 
assumptions. Once we successfully pass this milestone, we might then generate a 
stream of new releases, according to the following sequence.

1. Create a train plan based on an existing one; modify a train plan.
2. Request detailed monitoring of a system with a yellow condition; request a 

failure prediction analysis; request maintainer review of a failure prediction 
analysis.
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3. Manually avoid a collision; request automated assistance in avoiding a colli-
sion; track train traffic using either TTMS resources or Navstar GPS.

For a 12- to 18-month development cycle, this probably means generating a rea-
sonably stable release every 3 months or so, each building on the functionality of 
the other. When we are done, we will have covered every scenario in the system.

The key to success in this strategy is risk management, whereby for each release 
we identify the highest development risks and attack them directly. For control 
system applications such as this one, this means introducing testing of positive 
control early (so that we identify any system control holes early enough that we 
can do something about them). As our sequence of releases suggests, this also 
means broadly selecting scenarios for each release from across the functional 
elements of the system, so that we are not blindsided by unforeseen gaps in our 
analysis.

System Architecture

The software design for very large systems must often commence before the tar-
get hardware is completed. Software design frequently takes far longer than hard-
ware design, and in any case, trade-offs must be made against each along the way. 
This implies that hardware dependencies in the software must be isolated to the 
greatest extent possible, so that software design can proceed in the absence of a 
stable target environment. It also implies that the software must be designed with 
the idea of replaceable subsystems in mind. In a command and control system 
such as the Train Traffic Management System, we might wish to take advantage 
of new hardware technology that has matured during the development of the sys-
tem’s software.

We must also have an early and intelligent physical decomposition of the system’s 
software, so that subcontractors working on different parts of the system can work 
in parallel. Often many nontechnical reasons drive the physical decomposition of 
a large system. Perhaps the most important of these concerns the assignment of 
work to independent teams of developers. Subcontractor relationships are usually 
established early in the life of a complex system, often before there is enough 
information to make sound technical decisions regarding proper subsystem 
decomposition.

How do we select a suitable subsystem decomposition? The highest-level objects 
are often clustered around functional lines. Again, this is not orthogonal to the 
object model because by the term functional, we do not mean algorithmic abstrac-
tions, embodying simple input/output mappings. We are speaking of scenarios 
that represent outwardly visible and testable behaviors, resulting from the cooper-
ative action of logical collections of objects. Thus, the highest-level abstractions 
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and mechanisms that we first identify are good candidates around which to orga-
nize our subsystems. We may assert the existence of such subsystems first and 
then evolve their interfaces over time.

The component diagram shown in Figure 9–13 represents our design decisions 
regarding the top-level system architecture of the Train Traffic Management Sys-
tem. Here we see a layered architecture that encompasses the functions of the four 
subproblems we identified earlier, namely, networking, database, the human/
machine interface, and real-time device control.

Subsystem Specification

If we focus on the outside view of any of these subsystems, we find that it has all 
the characteristics of an object. It has a unique, albeit static, identity; it embodies 
a significant amount of state; and it exhibits very complex behavior. Subsystems 
serve as the repositories of other subsystems and eventually classes; thus, they are 
best characterized by the resources they export through their provided interfaces, 
such as the NetworkServices provided by the NetworkFacilities sub-
system shown in Figure 9–13.

Figure 9–13 The Top-Level Component Diagram for the Train Traffic 
Management System 
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The component diagram in Figure 9–13 is merely a starting point for the specifi-
cation of the TTMS subsystem architecture. These top-level subsystems must be 
further decomposed through multiple architectural levels of nested subsystems. 
Looking at the NetworkFacilities subsystem, we decompose it into two 
other subsystems, a private RadioCommunication subsystem and a public 
Messages subsystem. The private subsystem hides the details of software con-
trol of the physical radio devices, while the public subsystem provides the func-
tionality of the message-passing mechanism we designed earlier.

The subsystem named Databases builds on the resources of the subsystem 
NetworkFacilities and implements the train plan mechanism we created 
earlier. We choose to further decompose this subsystem into two public sub-
systems, representing the major database elements in the system. We name these 
nested subsystems TrainPlanDatabase and TrackDatabase, respec-
tively. We also expect to have one private subsystem, DatabaseManager,
whose purpose is to provide all the services common to the two domain-specific 
databases.

In the Devices subsystem, we choose to group the software related to all way-
side devices into one subsystem and the software associated with all onboard 
locomotive actuators and sensors into another. These two subsystems are avail-
able to clients of the Devices subsystem, and both are built on the resources of 
the TrainPlanDatabase and Messages subsystems. Thus, we have 
designed the Devices subsystem to implement the sensor mechanism we 
described earlier.

Finally, we choose to decompose the top level UserApplications subsystem 
into several smaller ones, including the subsystems EngineerApplications
and DispatcherApplications, to reflect the different roles of the two main 
users of the Train Traffic Management System. The subsystem Engineer-
Applications includes resources that provide all the train-engineer/machine 
interaction specified in the requirements, including the functionality of the loco-
motive analysis and reporting system and the energy management system. We 
include the subsystem DispatcherApplications to encompass the soft-
ware that provides the functionality of all dispatcher/machine interactions. Both 
EngineerApplications and DispatcherApplications share com-
mon private resources, as provided from the subsystem Displays, which 
embodies the display mechanism we described earlier.

This design leaves us with four top-level subsystems, encompassing several 
smaller ones, to which we have allocated all of the key abstractions and mecha-
nisms we invented earlier. These subsystems are allocated to development teams 
that will design and implement them, maintaining adherence to the defined inter-
faces through which each subsystem will collaborate with other subsystems at the 
same level of abstraction. 
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This approach to decomposing a large and complex problem affords us different 
views of the system while it is being developed. A system release is thus com-
posed of compatible versions of each subsystem, and we may have many such 
releases: one for each developer, one for our quality assurance team, and perhaps 
one for early customer use. Individual developers can create their own stable 
releases into which they integrate new versions of the software for which they are 
responsible, before releasing it to the rest of the team.

The key to making this work is the careful engineering of subsystem interfaces. 
Once engineered, these interfaces must be rigorously guarded. How do we deter-
mine the outside view of each subsystem? We do so by looking at each subsystem 
as an object. Thus, we ask the same questions we ask of much more primitive 
objects: What state does this object embody, what operations can clients mean-
ingfully perform on it, and what operations does it require of other objects?

For example, consider the subsystem TrainPlanDatabase. It builds on three 
other subsystems (Messages, TrainDatabase, and TrackDatabase) and 
has several important clients, namely, the four subsystems, WaysideDevices,
LocomotiveDevices, EngineerApplications, and Dispatcher-
Applications. The TrainPlanDatabase embodies a relatively straight-
forward state, specifically, the state of all train plans. Of course, the twist is that 
this subsystem must support the behavior of the distributed train plan mecha-
nisms. Thus, from the outside, clients see a monolithic database, but from the 
inside, we know that this database is really distributed and must therefore be con-
structed on top of the message-passing mechanism found in the subsystem 
Messages.

What services does the TrainPlanDatabase provide? All the usual database 
operations seem to apply: adding records, deleting records, modifying records, 
and querying records. We would eventually capture all of these design decisions 
that make up this subsystem in the form of classes that provide the declarations of 
all these operations.

At this stage in the design, we would continue the design process for each sub-
system. Again, we expect that these interfaces will not be exactly right at first; we 
must allow them to evolve over time. Happily, as for smaller objects, our experi-
ence suggests that most of the changes we will need to make to these interfaces 
will be upwardly compatible, assuming that we did a good job up front in charac-
terizing the behavior of each subsystem in an object-oriented manner.
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9.4 Post-Transition

A safe and useful control system is a work in progress. This is not to say that we 
never get to the point where we have a stable system—in fact, we must with every 
delivery. Rather, the reality is that for systems that are central to a business such 
as rail transportation, the hardware and software must adapt as the rules of the 
business change; otherwise, our system becomes a liability rather than a competi-
tive asset. Though the dominant risk in changes to a system like the Train Traffic 
Management System is technical, there are political and social risks as well. By 
having a resilient object-oriented architecture, the development organization at 
least offers the company many degrees of freedom in being able to adapt nimbly 
to the changing regulatory environment and marketplace.

For the Train Traffic Management System, we can envision a significant addition 
to our requirements, namely, payroll processing. Specifically, suppose that our 
analysis shows that train company payroll is currently being supported by a piece 
of hardware that is no longer being manufactured and that we are at great risk of 
losing our payroll processing capability because a single serious hardware failure 
would put our accounting system out of action forever. For this reason, we might 
choose to integrate payroll processing with the Train Traffic Management Sys-
tem. At first, it is not difficult to conceive how these two seemingly unrelated 
problems could coexist; we could simply view them as separate applications, with 
payroll processing running as a background activity.

Further examination shows that there is actually tremendous value to be gained 
from integrating payroll processing. You may recall from our earlier discussion 
that, among other things, train plans contain information about crew assignments. 
Thus, it is possible for us to track actual versus planned crew assignments, and 
from this we can calculate hours worked, amount of overtime, and so on. By get-
ting this information directly, our payroll calculations will be more precise and 
certainly timelier.

What does adding this functionality do to our existing design? Very little. Our 
approach would be to add one more subsystem, representing the functionality of 
payroll processing, inside the UserApplications subsystem. At this location 
in the architecture, such a subsystem would have visibility to all the important 
mechanisms on which it could build. This is indeed quite common in well-
structured object-oriented systems: A significant addition in the requirements for 
the system can be dealt with fairly easily by building new applications on existing 
mechanisms.

An even more significant change would be to inject expert system technology into 
our system by building a dispatcher’s assistant that could provide advice about 
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appropriate traffic routing and emergency responses. What would be the impact to 
the system’s architecture?

Again, there would be very little impact. Our solution would be to add a new sub-
system between the subsystems TrainPlanDatabase and Dispatcher-
Applications because the knowledge base embodied by this expert system 
parallels the contents of the TrainPlanDatabase; furthermore, the sub-
system DispatcherApplications is the sole client of this expert system. 
We would need to invent some new mechanisms to establish the manner in which 
advice is presented to the ultimate user. For example, we might use a blackboard 
architecture.

One fascinating characteristic of architectures is that—if well engineered—they 
tend to reach a sort of critical mass of functionality and adaptability. In other 
words, if we have selected the right element functionality and structure, we will 
find that users soon discover means to evolve the system functionality in ways its 
designers never imagined or expected. As we discover patterns in the ways that 
clients use our system, it makes sense to codify these patterns by formally making 
them a part of the architecture. A sign of a well-designed architecture is that we 
can introduce these new patterns by reusing existing mechanisms and thus pre-
serving its design integrity. 
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C h a p t e r  1 0

Artificial Intelligence: 
Cryptanalysis

Sentient creatures exhibit a vastly complex set of behaviors that spring 
from the mind through mechanisms that we only poorly understand. For 
example, think about how you solve the problem of planning a route 
through a city to run a set of errands. Consider also how, when walking 
through a dimly lit room, you are able to recognize the boundaries of 
objects and avoid stumbling. Furthermore, think about how you can focus 
on one conversation at a party while dozens of people are talking simulta-
neously. None of these kinds of problems lends itself to a straightforward 
algorithmic solution. Optimal route planning is known to be an NP-
complete problem. Navigating through dark terrain involves deriving 
understanding from visual input that is (very literally) fuzzy and incom-
plete. Identifying a single speaker from dozens of sources requires that 
the listener distinguish meaningful data from noise and then filter out all 
unwanted conversations from the remaining cacophony.

Researchers in the field of artificial intelligence have pursued these and 
similar problems to improve our understanding of human cognitive pro-
cesses. Activity in this field often involves the construction of intelligent 
systems that mimic certain aspects of human behavior. Erman, Lark, and 
Hayes-Roth point out that:

intelligent systems differ from conventional systems by a number of 
attributes, not all of which are always present: 

• They pursue goals which vary over time.

• They incorporate, use, and maintain knowledge.

• They exploit diverse, ad hoc subsystems embodying a variety of 
selected methods.
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• They interact intelligently with users and other systems.

• They allocate their own resources and attention. [1]

Any one of these properties is sufficiently demanding to make the crafting 
of intelligent systems a very difficult task. When we consider that intelli-
gent systems are being developed for a variety of domains that affect both 
life and property, such as for medical diagnosis or aircraft routing, the task 
becomes even more demanding because we must design these systems 
so that they are never actively dangerous: Artificial intelligences rarely 
embody any kind of commonsense knowledge.

Although the field has at times been oversold by an overly enthusiastic 
press, the study of artificial intelligence has given us some very sound and 
practical ideas, among which we count approaches to knowledge repre-
sentation and the evolution of common problem-solving architectures for 
intelligent systems, including rule-based expert systems and the black-
board model [2]. In this chapter, we turn to the design of an intelligent sys-
tem that solves cryptograms using a blackboard framework in a manner 
that parallels the way a human would solve the same problem. As we will 
see, the use of object-oriented development is very well suited to this 
domain.

10.1 Inception

Our problem is one of cryptanalysis, the process of transforming ciphertext back 
to plaintext. In its most general form, deciphering cryptograms is an intractable 
problem that defies even the most sophisticated techniques. Happily, our problem 
is relatively simple because we limit ourselves to single substitution ciphers.

Cryptanalysis Requirements

Cryptography “embraces methods for rendering data unintelligible to unautho-
rized parties” [3]. Using cryptographic algorithms, messages (plaintext) may be 
transformed into cryptograms (ciphertext) and back again.

One of the most basic kinds of cryptographic algorithms, employed since the time 
of the Romans, is called a substitution cipher. With this cipher, every letter of the 
plaintext alphabet is mapped to a different letter. For example, we might shift 
every letter to its successor: A becomes B, B becomes C, Z wraps around to 
become A, and so on. Thus, the plaintext
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CLOS is an object-oriented programming language

may be enciphered to the cryptogram

DMPT jt bo pckfdu-psjfoufe qsphsbnnjoh mbohvbhf

Most often, the substitution of letters is jumbled. For example, A becomes G, B
becomes J, and so on. As an example, consider the following cryptogram:

PDG TBCER CQ TCK AL S NGELCH QZBBR SBAJG

Hint: The letter C represents the plaintext letter O.

It is a vastly simplifying assumption to know that only a substitution cipher was 
employed to encode a plaintext message; nevertheless, deciphering the resulting 
cryptogram is not an algorithmically trivial task. Deciphering sometimes requires 
trial and error, wherein we make assumptions about a particular substitution and 
then evaluate their implications. For example, we may start with the one- and 
two-letter words in the cryptogram and hypothesize that they stand for common 
words such as I and a, or it, in, is, of, or, and on. By substituting the other 
occurrences of these ciphered letters, we may find hints for deciphering other 
words. For instance, if there is a three-letter word that starts with o, the word 
might reasonably be one, our, or off.

We can also use our knowledge of spelling and grammar to attack a substitution 
cipher. For example, an occurrence of double letters is not likely to represent the 
sequence qq. Similarly, we might try to expand a word ending with the letter g
to the suffix ing. At a higher level of abstraction, we might assume that the 
sequence of words it is is more likely to occur than the sequence if is. Also, 
we might assume that the structure of a sentence typically includes a noun and a 
verb. Thus, if our analysis has identified a verb but no actor or agent, we might 
start a search for adjectives and nouns.

Sometimes we may have to backtrack. For example, we might have assumed that 
a certain two-letter word was or, but if the substitution for the letter r causes 
contradictions or blind alleys in other words, we might have to try the word of or 
on instead and consequently undo other assumptions we had based on this earlier 
substitution.

This leads us to the overarching requirement of our problem: to devise a system 
that, given a cryptogram, transforms it back to its original plaintext, assuming that 
only a simple substitution cipher was employed.
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Defining the Boundaries of the Problem

As part of our analysis, let’s walk through a scenario of solving a simple crypto-
gram. Spend the next few minutes solving the following problem, and as you pro-
ceed, record how you did it (no fair reading ahead!):

Q AZWS DSSC KAS DXZNN DASNN

As a hint, we note that the letter W represents the plaintext V.

Trying an exhaustive search is pretty much senseless. Assuming that the plaintext 
alphabet encompasses only the 26 uppercase English characters, there are 26! 
(approximately 4.03  1026) possible combinations. Thus, we must try something 
other than a brute force attack. An alternate technique is to make an assumption 
based on our knowledge of sentence, word, and letter structure and then follow 
this assumption to its natural conclusions. Once we can go no further, we choose 
the next most promising assumption that builds on the first one, and so on, as long 
as each succeeding assumption brings us closer to a solution. If we find that we 
are stuck, or we reach a conclusion that contradicts a previous one, we must back-
track and alter an earlier assumption.

Here is our solution, showing the results at each step.

1. According to the hint, we may directly substitute V for W.
Q AZVS DSSC KAS DXZNN DASNN

2. The first word is small, so it is probably either an A or an I; let’s assume 
that it is an A.

A AZVS DSSC KAS DXZNN DASNN

3. The third word needs a vowel, and it is likely to be the double letters. It is 
probably neither II nor UU, and it can’t be AA because we have already 
used an A. Thus, we might try EE.

A AZVE DEEC KAE DXZNN DAENN

4. The fourth word is three letters long and ends in an E; it is likely to be the 
word THE.

A HZVE DEEC THE DXZNN DHENN

5. The second word needs a vowel, but only an I, O, or U (we’ve already used 
A and E). Only the I gives us a meaningful word.

A HIVE DEEC THE DXINN DHENN

6. There are few four-letter words that have a double E, including DEER,
BEER, and SEEN. Our knowledge of grammar suggests that the third word 
should be a verb, and so we select SEEN.

A HIVE SEEN THE SXINN SHENN
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7. This sentence is not making any sense (hives cannot see), so we probably 
made a bad assumption somewhere along the way. The problem seems to lie 
with the vowel in the second word, so we might consider reversing our ini-
tial assumption.

I HAVE SEEN THE SXANN SHENN

8. Let’s attack the last word. The double letters can’t be SS (we’ve used an S,
and besides, SHESS doesn’t make any sense), but LL forms a meaningful 
word.

I HAVE SEEN THE SXALL SHELL

9. The fifth word is part of a noun phrase and so is probably an adjective 
(STALL, for example, is rejected on this account). Searching for words that 
fit the pattern S?ALL yields SMALL.

I HAVE SEEN THE SMALL SHELL

Thus, we have reached a solution.

We may make the following observations about this problem-solving process.

■ We applied many different sources of knowledge, such as knowledge about 
grammar, spelling, and vowels.

■ We recorded our assumptions in one central place and applied our sources 
of knowledge to these assumptions to reason about their consequences.

■ We reasoned opportunistically. At times, we reasoned from general to spe-
cific rules (if the word is three letters long and ends in E, it is probably 
THE), and at other times, we reasoned from the specific to the general 
(?EE? might be DEER, BEER, or SEEN, but since the word must be a verb 
and not a noun, only SEEN satisfies our hypothesis).

From these problem-solving observations, we can identify some key abstractions. 
Key abstractions are analysis elements of our solution that begin to establish the 
initial architectural framework. The three bullets identify multiple knowledge 
sources, a central place for assumptions or hypotheses, and a control component 
that opportunistically controls the problem solving.

What we have described is a problem-solving approach known as a blackboard 
model. The blackboard model was first proposed by Newell in 1962 and later 
incorporated by Reddy and Erman into the Hearsay and Hearsay II projects, both 
of which dealt with the problems of speech recognition [4]. The blackboard 
model proved to be useful in this domain, and the framework was soon applied 
successfully to other domains, including signal interpretation, the modeling of 
three-dimensional molecular structures, image understanding, and planning [5]. 
Blackboard frameworks have proven to be particularly noteworthy with regard to 
the representation of declarative knowledge and are space and time efficient when 
compared with alternate approaches [6].
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The blackboard framework is an architectural pattern that can be applied as a 
result of the analysis of our problem-solving algorithm. The framework can be 
represented in terms of classes and mechanisms that describe how instances of 
those classes collaborate.

The Architecture of the Blackboard 
Framework

Englemore and Morgan explain the blackboard model by analogy to the problem 
of a group of people solving a jigsaw puzzle:

Imagine a room with a large blackboard and around it a group of people each 
holding over-size jigsaw pieces. We start with volunteers who put on the black-
board (assume it’s sticky) their most “promising” pieces. Each member of the 
group looks at his pieces and sees if any of them fit into the pieces already on the 
blackboard. Those with the appropriate pieces go up to the blackboard and 
update the evolving solution. The new updates cause other pieces to fall into 
place, and other people go to the blackboard to add their pieces. It does not mat-
ter whether one person holds more pieces than another. The whole puzzle can be 
solved in complete silence; that is, there need be no direct communication among 
the group. Each person is self-activating, knowing when his pieces will contrib-
ute to the solution. No a priori established order exists for people to go up to the 
blackboard. The apparent cooperative behavior is mediated by the state of the 
solution on the blackboard. If one watches the task being performed, the solution 
is built incrementally (one piece at a time) and opportunistically (as an opportu-
nity for adding a piece arises), as opposed to starting, say, systematically from the 
left top corner and trying each piece. [7]

As Figure 10–1 indicates, the blackboard framework consists of three elements: a 
blackboard, multiple knowledge sources, and a controller that mediates among 
these knowledge sources [8]. Notice how the following description describes the 
key abstractions identified from the problem space. According to Nii, “the pur-
pose of the blackboard is to hold computational and solution-state data needed by 
and produced by the knowledge sources. The blackboard consists of objects from 
the solution space. The objects on the blackboard are hierarchically organized 
into levels of analysis. The objects and their properties define the vocabulary of 
the solution space” [9]. 

As Englemore and Morgan explain, “The domain knowledge needed to solve a 
problem is partitioned into knowledge sources that are kept separate and indepen-
dent. The objective of each knowledge source is to contribute information that 
will lead to a solution to the problem. A knowledge source takes a set of current 
information on the blackboard and updates it as encoded in its specialized knowl-
edge. The knowledge sources are represented as procedures, sets of rules, or logic 
assertions” [10].
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Knowledge sources, or KSs for short, are domain-specific. In speech recognition 
systems, knowledge sources might include agents that can reason about pho-
nemes, morphemes, words, and sentences. In image recognition systems, knowl-
edge sources would include agents that know about simple picture elements, such 
as edges and regions of similar texture, as well as higher-level abstractions repre-
senting the objects of interest in each scene, such as houses, roads, fields, cars, 
and people. Generally speaking, knowledge sources parallel the hierarchical 
structure of objects on the blackboard. Furthermore, each knowledge source uses 
objects at one level as its input and then generates and/or modifies objects at 
another level as its output. For instance, in a speech recognition system, a knowl-
edge source that embodies knowledge about words might look at a stream of 
phonemes (at a low level of abstraction) to form a new word (at a higher level of 
abstraction). Alternately, a knowledge source that embodies knowledge about 
sentence structure might hypothesize the need for a verb (at a high level of 
abstraction); by filtering a list of possible words (at a lower level of abstraction), 
this knowledge source can verify the hypothesis.

These two approaches to reasoning represent forward-chaining and backward-
chaining, respectively. Forward-chaining involves reasoning from specific asser-
tions to a general assertion, and backward-chaining starts with a hypothesis, then 
tries to verify the hypothesis from existing assertions. This is why we say that 
control in the blackboard model is opportunistic: Depending on the circum-
stances, a knowledge source might be selected for activation that uses either for-
ward- or backward-chaining.

Knowledge sources usually embody two elements, namely, preconditions and actions. 
The preconditions of a knowledge source represent the state of the blackboard in 
which the knowledge source shows an interest. For example, a precondition for a 

Figure 10–1 A Blackboard Framework
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knowledge source in an image recognition system might be the discovery of a 
relatively linear region of picture elements (perhaps representing a road). Trigger-
ing a precondition causes the knowledge source to focus its attention on this part 
of the blackboard and then take action by processing its rules or procedural 
knowledge.

Under these circumstances, polling is unnecessary: When a knowledge source 
thinks it has something interesting to contribute, it notifies the blackboard con-
troller. Figuratively speaking, it is as if each knowledge source raises its hand to 
indicate that it has something useful to do; then, from among eager knowledge 
sources, the controller calls on the one that looks the most promising.

Analysis of Knowledge Sources

Let’s return to our specific problem and consider the knowledge sources that can 
contribute to a solution. As is typical with most knowledge-engineering applica-
tions, the best strategy is to sit down with an expert in the domain and record the 
heuristics that this person applies to solve the problems in the domain. For our 
present problem, this might involve trying to solve a number of cryptograms and 
recording our thinking process along the way.

Our analysis suggests that 13 knowledge sources are relevant; they appear with 
the knowledge they embody in the following list:

■ Common prefixes Common word beginnings such as re, anti, and un
■ Common suffixes Common word endings such as ly, ing, es, and ed
■ Consonants Nonvowel letters
■ Direct substitution Hints given as part of the problem statement
■ Double letters Common double letters, such as tt, ll, and ss
■ Letter frequency Probability of the appearance of each letter 
■ Legal strings Legal and illegal combinations of letters, such as qu

and zg, respectively
■ Pattern matching Words that match a specified pattern of letters
■ Sentence structure Grammar, including the meanings of noun and verb 

phrases
■ Small words Possible matches for one-, two-, three-, and four-

letter words
■ Solved Whether or not the problem is solved, or if no further 

progress can be made
■ Vowels Nonconsonant letters
■ Word structure The location of vowels and the common structure of 

nouns, verbs, adjectives, adverbs, articles, conjunc-
tives, and so on
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From an object-oriented perspective, each of these 13 knowledge sources repre-
sents a candidate class in our architecture: Each instance embodies some state (its 
knowledge), each exhibits certain class-specific behavior (a suffix knowledge 
source can react to words suspected of having a common ending), and each is 
uniquely identifiable (a small-word knowledge source exists independent of the 
pattern-matching knowledge source).

We may also arrange these knowledge sources in a hierarchy. Specifically, some 
knowledge sources operate on sentences, others on letters, still others on contigu-
ous groups of letters, and the lowest-level ones on individual letters. Indeed, this 
hierarchy reflects the objects that may appear on the blackboard: sentences, 
words, strings of letters, and letters.

10.2 Elaboration

We are now ready to design a solution to the cryptanalysis problem using the 
blackboard framework we have described. This is a classic example of reuse-in-
the-large, in that we are able to reuse a proven architectural pattern as the founda-
tion of our design.

The architecture of the blackboard framework suggests that among the highest-
level objects in our system are a blackboard, several knowledge sources, and a 
controller. Our next task is to identify the domain-specific classes and objects that 
specialize these general key abstractions.

Blackboard Objects 

The blackboard is an elaborate structure of multiple levels of abstractions. The 
abstractions are captured as objects that appear hierarchically on a blackboard 
structure. The hierarchical object structure parallels the different levels of abstrac-
tions of the knowledge sources. The knowledge sources use the blackboard as a 
global source of input data, partial solutions, alternatives, final solutions, and con-
trol information. 

To begin the design of the blackboard’s hierarchical structure, we identify the fol-
lowing classes:

■ Sentence A complete cryptogram
■ Word A single word in the cryptogram
■ CipherLetter A single letter of a word
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Knowledge sources must also share knowledge about the assumptions each 
makes, so we include the following class of blackboard objects:

■ Assumption An assumption made by a knowledge source

Finally, it is important to know what plaintext and ciphertext letters in the alpha-
bet have been used in assumptions made by the knowledge sources, so we include 
the following class:

■ Alphabet The plaintext alphabet, the ciphertext alphabet, and the 
mapping between the two

Is there anything in common among these five classes? We answer with a 
resounding yes: Each one of these classes represents objects that may be placed 
on a blackboard, and that very property distinguishes them from, for example, 
knowledge sources and controllers. Thus, we invent the BlackboardObject
class as the superclass of every object that may appear on a blackboard. Figure 
10–2 shows our preliminary design of the Blackboard abstraction.

Looking at the BlackboardObject class from its outside view, we may 
define two applicable operations:

■ register Add the object to the blackboard.
■ resign Remove the object from the blackboard.

Why do we define register and resign as operations on instances of 
BlackboardObject, instead of on the Blackboard itself? This situation is 
not unlike telling an object to draw itself in a window. The litmus test for deciding 
where to place these kinds of operations is whether or not the class itself has 
sufficient knowledge or responsibility to carry out the operation. In the case of 

Figure 10–2 The Preliminary Blackboard Class Diagram Design



CHAPTER 10 ARTIFICIAL INTELLIGENCE: CRYPTANALYSIS 423

register and resign, this is indeed the case: The BlackboardObject is 
the only abstraction with detailed knowledge of how to attach or remove itself 
from the Blackboard (although it certainly does require collaboration with the 
BlackboardObject). In fact, it is an important responsibility of this abstrac-
tion that each BlackboardObject be self-aware as it is attached to the 
Blackboard because only then can it begin to participate in opportunistically 
solving the problem on the Blackboard.

Dependencies and Affirmations 

Individual sentences, words, and cipher letters have another thing in common: 
Each has certain knowledge sources that depend on it. A given knowledge source 
may express an interest in one or more of these objects, and therefore, a sentence, 
word, or cipher letter must maintain a reference to each such knowledge source, 
so that when an assumption about the object changes, the appropriate knowledge 
sources can be notified that something interesting has happened. To provide this 
mechanism, we introduce a simple abstract class: Dependent.

To design the Dependent class, we include an object that represents a collec-
tion of knowledge sources:

■ references Collection of knowledge sources

In addition, the following operations are defined for this class:

■ add Add a reference to the knowledge source.
■ remove Remove a reference to the knowledge source.
■ numberOfDependents Return the number of dependents.
■ notify Broadcast an operation of each dependent.

The operation notify has the semantics of a passive iterator, meaning that when 
we invoke it, we can supply an operation that we wish to perform on every depen-
dent in the collection.

Dependency is an independent property that can be mixed in with other classes. 
For example, a CipherLetter is a BlackboardObject as well as a 
Dependent, so we can combine these two abstractions to achieve the desired 
behavior. Using an abstract class in this way increases the reusability and separa-
tion of concerns in our architecture.

CipherLetter and Alphabet have another property in common: Instances 
of both of these classes may have assumptions made about them (and remember 
that an Assumption object is also a kind of BlackboardObject). For 
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example, a certain knowledge source might assume that the ciphertext letter K
represents the plaintext letter P. As we get closer to solving our problem, we 
might make the unchangeable assertion that G represents J. Thus we need to 
include a class that maintains the assumptions and assertions about the associated 
object. This class we will identify as Affirmation.

In our architecture, we will make affirmations only about individual letters, as in 
CipherLetter and Alphabet. As our earlier scenario implied, cipher letters 
represent single letters about which statements might be made, and alphabets 
comprise many letters, each of which might have different statements made about 
them. Defining Affirmation as an independent class thus captures the com-
mon behavior across these two disparate classes.

We define the following operations for instances of the Affirmation class:

■ make Make a statement.
■ retract Retract a statement.
■ ciphertext Given a plaintext letter, return its ciphertext equivalent.
■ plaintext Given a ciphertext letter, return its plaintext equivalent.

Further analysis suggests that we should clearly distinguish between the two roles 
played by a statement: An assumption, which represents a temporary mapping 
between a ciphertext letter and its plaintext equivalent, and an assertion, which is 
a permanent mapping, meaning that the mapping is defined and therefore not 
changeable. During the solution of a cryptogram, knowledge sources will make 
many assumptions, and as we move closer to a final solution, these mappings 
eventually become assertions. To model these changing roles, we will refine the 
previously identified class Assumption and introduce a new subclass named 
Assertion, both of whose instances are managed by instances of the class 
Affirmation as well as placed on the blackboard. We begin by completing the 
signature of the operations make and retract to include an Assumption or
Assertion argument, and then add the following selectors:

■ isPlainLetterAsserted A selector: Is the plaintext letter 
defined?

■ isCipherLetterAsserted A selector: Is the ciphertext letter 
defined?

■ plainLetterHasAssumption A selector: Is there an assumption 
about the plaintext letter?

■ cipherLetterHasAssumption A selector: Is there an assumption 
about the ciphertext letter?
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Assumption objects are a kind of BlackboardObject because they repre-
sent state that is of general interest to all knowledge sources. Member objects will 
need to be declared to represent the following properties:

■ target The blackboard object about which the assumption 
was made

■ creator The knowledge source that created the assumption
■ reason The reason the knowledge source made the 

assumption
■ plainLetter The plaintext letter about which the assumption is 

being made
■ cipherLetter The assumed value of the plaintext letter

The need for each of these properties is largely derived from the very nature of an 
assumption: A particular knowledge source makes an assumption about a plain-
text/ciphertext mapping and does so for a certain reason (usually because some 
rule was triggered). The need for the first member, target, is less obvious. We 
include it because of the problem of backtracking. If we ever have to reverse an 
assumption, we must notify all blackboard objects for which the assumption was 
originally made, so that they in turn can alert the knowledge sources they depend 
on (via the dependency mechanism) that their meaning has changed.

Next, we declare the subclass of Assumption named Assertion. The classes 
Assumption and Assertion share the following operation, among others:

■ isRetractable A selector: Is the mapping temporary?

All Assumption objects answer true to the predicate isRetractable,
whereas all Assertion objects answer false. Additionally, once made, an asser-
tion can neither be restated nor retracted.

Figure 10–3 provides a class diagram that illustrates the collaboration of the 
Dependent and Affirmation classes. Pay particular attention to the roles 
each abstraction plays in the various associations. For example, a Knowledge-
Source is the creator of an Assumption and is also the referencer of 
a CipherLetter. Because a role represents a different view than an abstraction 
presents to the world, we would expect to see a different protocol between knowl-
edge sources and assumptions than between knowledge sources and letters.
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Figure 10–3 Dependency and Affirmation Classes
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10.3 Construction

Let’s continue our design of the Sentence, Word, and CipherLetter
classes, followed by the Alphabet class, by doing a little isolated class design.

Designing the Blackboard Objects

A sentence is quite simple: It is a BlackboardObject as well as a Dependent,
and it denotes a list of words that compose the sentence. 

We make the superclass Dependent abstract1 (Figure 10–4) because we expect 
there may be other Sentence subclasses that try to inherit from Dependent as 
well. By marking this inheritance relationship abstract, we cause such subclasses 
to share a single Dependent superclass. 

In addition to the operations register and resign defined by its superclass 
BlackboardObject, plus the four operations defined in Dependent, we 
add the following two sentence-specific operations:

■ value Return the current value of the sentence.
■ isSolved Return true if there is an assertion for all words in the 

sentence.

At the start of the problem, value returns a string representing the original cryp-
togram. Once isSolved evaluates as true, the operation value may be used to 
retrieve the plaintext solution. Accessing value before isSolved is true will 
yield partial solutions.

1. In UML 2.0, an abstract class is represented with the class name in italics. A keyword 
{abstract} may also be placed in the property list. 

Figure 10–4 The Sentence Class Design with the Abstract Dependent Class
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Just like the Sentence class, a Word is a kind of BlackboardObject as 
well as a kind of Dependent. Furthermore, a Word denotes a list of letters. To 
assist the knowledge sources that manipulate words, we include a reference from 
a word to its sentence, as well as from a word to the previous and next words in 
the sentence. 

As we did for the Sentence operations, we define the following two operations 
for the class Word:

■ value Return the current value of the word.
■ isSolved Return true if there is an assertion for every letter in the word.

We may next define the class CipherLetter. An instance of this class is a kind 
of BlackboardObject and a kind of Dependent. In addition to its inherited 
behaviors, each CipherLetter object has a value (such as the ciphertext letter 
H) together with a collection of assumptions and assertions regarding its corre-
sponding plaintext letter. We can use the class Affirmation to collect these 
statements. Figure 10–5 illustrates the addition of the design of CipherLetter
and Word in our architecture framework.

Notice that we include the selectors value and isSolved, similar to our 
design of Sentence and Word. We must also eventually provide operations for 
the clients of CipherLetter to access its assumptions and assertions in a safe 
manner.

One comment about the member object affirmations: We expect this to be a col-
lection of assumptions and assertions ordered according to their time of creation, 
with the most recent statement in this collection representing the current assump-
tion or assertion. The reason we choose to keep a history of all assumptions is to 
permit knowledge sources to look at earlier assumptions that were rejected, so 
that they can learn from earlier mistakes. This decision influences our design 
decisions about the Affirmation class, to which we add the following 
operations:

■ mostRecent A selector: returns the most recent assumption or assertion
■ statementAt A selector: returns the nth statement

Now that we have refined its behavior, we can next make a reasonable implemen-
tation decision about the Affirmation class. Specifically, we can include the 
protected member object statements, which is defined as a collection of 
assumptions.

Consider next the class named Alphabet. This class represents the entire plain-
text and ciphertext alphabet, plus the mappings between the two. This informa-
tion is important because each knowledge source can use it to determine which 
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mappings have been made and which are yet to be done. For example, if we 
already have an assertion that the ciphertext letter C is really the letter M, then an 
alphabet object records this mapping so that no other knowledge source can apply 
the plaintext letter M. For efficiency, we need to query about the mapping both 
ways: Given a ciphertext letter, return its plaintext mapping, and given a plaintext 
letter, return its ciphertext mapping. Figure 10–6 illustrates the addition of the 
design of the Alphabet class.

Figure 10–5 The Design of the CipherLetter and Word Classes
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Just as for the CipherLetter class, we also include a protected member object 
affirmations and provide suitable operations to access its state.

Now we are ready to define the Blackboard class. This class has the simple 
responsibility of collecting instances of the BlackboardObject class and its 
subclasses. Thus we may design Blackboard as a type of instance of a 
DynamicCollection. We have chosen to inherit from rather than contain an 

Figure 10–6 The Design of the Alphabet Class
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instance of the DynamicCollection class because Blackboard passes our 
test for inheritance: A Blackboard is indeed a kind of collection.

The Blackboard class provides operations such as add and remove, which it 
inherits from the Collection class. Our design includes five operations spe-
cific to the blackboard.

■ reset Clean the blackboard.
■ assertProblem Place an initial problem on the blackboard.
■ connect Attach the knowledge source to the blackboard.
■ isSolved Return true if the sentence is solved.
■ retrieveSolution Return the solved plaintext sentence.

The second operation is needed to create a dependency between a blackboard and 
its knowledge sources.

In Figure 10–7, we summarize our design of the classes that collaborate with 
Blackboard. In this diagram, notice that we show the Blackboard class as 
both instantiating and inheriting from the template class DynamicCollection.
This diagram also clearly shows why introducing the Dependent class as an 
abstract class was a good design decision. Specifically, Dependent represents a 
behavior that encompasses only a partial set of BlackboardObject subclasses. 
By making Dependent abstract, we increase its chances of being reused.

Designing the Knowledge Sources

In a previous section, we identified 13 knowledge sources relevant to this prob-
lem. Just as we did for the Blackboard objects, we can design a class structure 
encompassing these knowledge sources and thereby elevate all common charac-
teristics to more abstract classes.

Designing Specialized Knowledge Sources 

Assume for the moment the existence of an abstract class called Knowledge-
Source, whose purpose is much like that of the class BlackboardObject.
Rather than treat each of the 13 knowledge sources as a direct subclass of this 
more general class, it is useful to first perform a domain analysis and see if there 
are any clusters of knowledge sources. Indeed, there are such groups: Some 
knowledge sources operate on whole sentences, others on whole words, others on 
contiguous strings of letters, and still others on individual letters. We may capture 
these design decisions by creating the following subclasses:
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■ SentenceKnowledgeSource Rules associated with sentences
■ WordKnowledgeSource Rules associated with words
■ LetterKnowledgeSource Rules associated with letters
■ StringKnowledgeSource Rules associated with strings

For each of these classes, we may provide another level of specification. For 
example, the subclasses of the class SentenceKnowledgeSource include 
the following:

■ SentenceStructureKnowledgeSource Rules specific to 
sentence structure

■ SolvedKnowledgeSource Solved cryptogram 
sentence

Figure 10–7 The Refined Blackboard Class Diagram Design



CHAPTER 10 ARTIFICIAL INTELLIGENCE: CRYPTANALYSIS 433

Similarly, the subclasses of the intermediate class WordKnowledgeSource
include these:

■ WordStructureKnowledgeSource Rules specific to word 
structure

■ SmallWordKnowledgeSource Rules specific to small 
words

■ PatternMatchingKnowledgeSource Rules for matching 
patterns of words

The last class requires some explanation. In our earlier list of the 13 knowledge 
sources, we said that the purpose of a pattern-matching knowledge source was to 
propose words that fit a certain pattern. We can use regular expression pattern-
matching symbols such as:

■ Any item ?

■ Not item ~

■ Closure item *

■ Start group {

■ Stop group }

With these symbols, we might give an instance of this class the pattern ?E~{A E 
I O U}, thereby asking it to give us from its dictionary all the three-letter words 
starting with any letter, followed by an E, and ending with any letter except a 
vowel. All instances of this class share a dictionary of words, and each instance 
has its own regular expression pattern-matching agent. The detailed behavior of 
this class is not important to us at this point in our design, so we will defer the 
invention of the remainder of its interface and implementation.

Continuing, we may declare the following subclasses of the class String-
KnowledgeSource:

■ CommonPrefixKnowledgeSource Rules specific to prefixes
■ CommonSuffixKnowledgeSource Rules specific to suffixes
■ DoubleLetterKnowledgeSource Rules for double letters, e.g., 

oo, ll, and so on
■ LegalStringKnowledgeSource Rules specific to what makes 

legal strings

Lastly, we can introduce the following subclasses of the class 
LetterKnowledgeSource:
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■ DirectSubstitutionKnowledgeSource Rules specific to 
substitution of letters

■ VowelKnowledgeSource Rules specific for 
vowels

■ ConsonantKnowledgeSource Rules specific for 
consonants

■ LetterFrequencyKnowledgeSource Rules specific to fre-
quency of letters

Figure 10–8 illustrates the hierarchical structure of KnowledgeSource.

Figure 10–8 The Generalization Hierarchy of the KnowledgeSource Class 
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Generalizing the Knowledge Sources 

Analysis suggests that only two primary operations apply to all these specialized 
classes:

■ reset Restart the knowledge source.
■ evaluate Evaluate the state of the blackboard.

The reason for this simple interface is that knowledge sources are relatively 
autonomous entities: We point one to an interesting Blackboard object and 
then tell it to evaluate its rules according to the current global state of the 
Blackboard. As part of the evaluation of its rules, a given knowledge source 
might do any one of several things.

■ Propose an assumption about the substitution cipher.
■ Discover a contradiction among previous assumptions, and cause the 

offending assumption to be retracted.
■ Propose an assertion about the substitution cipher.
■ Tell the controller that it has some interesting knowledge to contribute.

These are all general actions that are independent of the specific kind of knowl-
edge source. To generalize even further, these actions represent the behavior of an 
inference engine. Therefore, we create the class InferenceEngine that, given 
a set of rules, evaluates those rules either to generate new rules (forward-chaining) 
or to prove some hypothesis (backward-chaining). When designing the construc-
tor for InferenceEngine, the basic responsibility is to create an instance of 
this class and populate it with a set of rules, which it then uses for evaluation.

In fact, this class has only one critical operation that it makes visible to knowl-
edge sources:

■ evaluate Evaluate the rules of the inference engine.

This then is how knowledge sources collaborate: Each specialized knowledge 
source defines its own knowledge-specific rules and delegates responsibility for 
evaluating these rules to the InferenceEngine class. More precisely, we may 
say that the operation KnowledgeSource::evaluate ultimately invokes 
the operation InferenceEngine::evaluate, the results of which are used 
to carry out any of the four actions we listed earlier. In Figure 10–9, we illustrate 
a common scenario of this collaboration.

The sequence diagram illustrates the following steps in this scenario:

1. Select a KnowledgeSource for action.
2. Evaluate the KnowledgeSource against the state of the Blackboard.
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3. Take some action, such as retracting an Assumption.
4. Notify all dependent KnowledgeSource objects that the assumption has 

been retracted.
5. Tell the Controller that the KnowledgeSource has a new hint to 

offer in solving the blackboard problem.

What exactly is a rule? A rule might be composed for the common suffix knowl-
edge source using a pattern-matching algorithm that recognizes a common suffix 
pattern such as *I??. Given a string of letters matching the regular expression 
pattern *I??, the candidate suffixes may include ING, IES, and IED.

In terms of its class structure, we may thus say that a knowledge source is a kind 
of inference engine. Additionally, each knowledge source must have some associ-
ation with a blackboard object, for that is where it finds the objects on which it 
operates. Finally, each knowledge source must have an association to a controller, 
with which it collaborates by sending hints of solutions; in turn, the controller 
might trigger the knowledge source from time to time. Figure 10–10 illustrates 
these design decisions.

We also introduce the collection pastAssumptions, so that the knowledge 
source can keep track of all the assumptions and assertions it has ever made, in 
order to learn from its mistakes.

Instances of the Blackboard class serve as a repository of Blackboard
objects. For a similar reason, we need a KnowledgeSources class, denoting 
the entire collection of knowledge sources for a particular problem. 

Figure 10–9 A Scenario for Evaluating Knowledge Source Rules
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One of the responsibilities of this class is that when we create an instance of 
KnowledgeSources, we also create the 13 individual KnowledgeSource
objects. We may perform three operations on instances of this class:

■ restart Restart the knowledge sources.
■ startKnowledgeSource Give a specific knowledge source its initial 

conditions.
■ connect Attach the knowledge source to the black-

board or to the controller.

Figure 10–11 provides the refined design of the class structure of the 
KnowledgeSource classes, according to these design decisions.

Figure 10–10 The Preliminary Design of KnowledgeSource
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Designing the Controller

Consider for a moment how the controller and individual knowledge sources 
interact. At each stage in the solution of a cryptogram, a particular knowledge 
source might discover that it has a useful contribution to make and so gives a hint 
to the controller. Conversely, the knowledge source might decide that its earlier 
hint no longer applies and so may remove the hint. Once all knowledge sources 
have been given a chance, the controller selects the most promising hint and acti-
vates the appropriate knowledge source by invoking its evaluate operation.

How does the controller decide which knowledge source to activate? We may 
devise a few suitable rules.

Figure 10–11 The Refined Design of the KnowledgeSource Class Diagram
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■ An Assertion has a higher priority than an Assumption.
■ The SolvedKnowledgeSource provides the most useful hints.
■ The PatternMatchingKnowledgeSource provides higher-priority 

hints than the SentenceStructureKnowledgeSource.

A controller thus acts as an agent responsible for mediating among the various 
knowledge sources that operate on a blackboard.

The controller must have an association to its knowledge sources, which it can 
access through the appropriately named class KnowledgeSources. Addition-
ally, the controller must have as one of its properties a collection of hints, ordered 
in accordance with the above rules of prioritization. In this manner, the controller 
can easily select for activation the knowledge source with the most interesting 
hint to offer.

Engaging in a little more isolated class design, we offer the following operations 
for the Controller class.

■ reset Restart the controller.
■ addHint Add a knowledge source hint.
■ removeHint Remove a knowledge source hint.
■ processNextHint Evaluate the next-highest-priority hint.
■ isSolved A selector: Return true if the problem is solved.
■ unableToProceed A selector: Return true if the knowledge sources 

are stuck.
■ connect Attach the controller to the knowledge source.

The controller is in a sense driven by the hints it receives from various knowledge 
sources. As such, finite state machines are well suited for capturing the dynamic 
behavior of this class.

For example, consider the state transition diagram shown in Figure 10–12. Here 
we see that a controller may be in one of five major states: Initializing,
Selecting, Evaluating, Stuck, and Solved. The controller’s most 
interesting activity occurs between the Selecting and Evaluating states. 
While selecting, the controller naturally transitions from the state Creating
Strategy to Processing Hint and eventually to Selecting KS. If a 
knowledge source is in fact selected, then the controller transitions to the 
Evaluating state, wherein it first is in Updating Blackboard. It transi-
tions to Connecting if objects are added and to Backtracking if assump-
tions are retracted, at which time it also notifies all dependents.

The controller unconditionally transitions to Stuck if it cannot proceed and to 
Solved if it finds a solved blackboard problem.



440 SECTION III APPLICATIONS

Integrating the Blackboard Framework

Now that we have defined the key abstractions for our domain, we may continue 
by putting them together to form a complete application. We will proceed by 
implementing and testing a vertical slice through the architecture and then by 
completing the system one mechanism at a time.

Integrating the Topmost Objects 

Figure 10–13 is a composite structure diagram that captures our design of the top-
most object in the system, paralleling the structure of the generic blackboard 

Figure 10–12 The Controller State Machine



CHAPTER 10 ARTIFICIAL INTELLIGENCE: CRYPTANALYSIS 441

framework shown earlier in Figure 10–1. In Figure 10–13, we show the physical 
containment of blackboard objects by the collection theBlackboard and 
knowledge sources by the collection theKnowledgeSources, using a short-
hand style identical to that for showing nested classes.

In this diagram, we introduce an instance of a new class that we call 
Cryptographer. The intent of this class is to serve as an aggregate encom-
passing the blackboard, the knowledge sources, and the controller. In this manner, 
our application might provide several instances of this class and thus have several 
blackboards running simultaneously.

We define two primary operations for the Cryptographer class:

■ reset Restart the blackboard.
■ decipher Solve the given cryptogram.

The behavior we require as part of this class’s constructor is to create the depen-
dencies between the blackboard and its knowledge sources, as well as between 

Figure 10–13 The Cryptanalysis Composite Structure Diagram
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the knowledge sources and the controller. The reset method is similar, in that it 
simply resets these connections and returns the blackboard, the knowledge 
sources, and the controller back to a stable initial state.

Although we will not show its details here, the signature of the decipher oper-
ation includes a string, through which we provide the ciphertext to be solved. In 
this manner, the root of our main program becomes embarrassingly simple, as is 
common in well-designed object-oriented systems.

The implementation of the decipher operation is, not surprisingly, slightly 
more complicated. Basically, we must first invoke the assertProblem opera-
tion to set up the problem on the blackboard. Next, we must start the knowledge 
sources by bringing their attention to this new problem. Finally, we must loop, 
telling the controller to process the next hint at each new pass, either until the 
problem is solved or until all the knowledge sources are unable to proceed. 
Figure 10–14 illustrates the flow of control using a sequence diagram.

We would be best advised to complete enough of the relevant architectural inter-
faces so that we could complete this algorithm and execute it. Although at this 
point it would have minimal functionality, its implementation as a vertical slice 

Figure 10–14 The decipher Sequence Diagram
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through the architecture would force us to validate certain key architectural 
decisions.

Continuing, let’s look at two of the key operations used in decipher, namely, 
assertProblem and retrieveSolution. The assertProblem
operation is particularly interesting because it must generate an entire set of 
Blackboard objects. In the form of a simple pseudocode script, our algorithm 
is as follows.

trim all leading and trailing blanks from the string
return if the resulting string is empty
create a sentence object
add the sentence to the blackboard
create a word object (this will be the leftmost word in the 

sentence)
add the word to the blackboard
add the word to the sentence
for each character in the string, from left to right
  if the character is a space
    make the current word the previous word
      create a word object
      add the word to the blackboard
      add the word to the sentence
    else
      create a cipher-letter object
      add the letter to the blackboard
      add the letter to the word

The purpose of design is simply to provide a blueprint for implementation. This 
script supplies a sufficiently detailed algorithm, so we need not show its complete 
implementation.

The operation retrieveSolution is far simpler; we simply return the value 
of the sentence on the blackboard. Calling retrieveSolution before 
isSolved evaluates true will yield partial solutions.

Implementing the Assumption Mechanism 

At this point, we have implemented the mechanisms that allow us to set and 
retrieve values for Blackboard objects. The next major function point involves 
the mechanism for making assumptions about Blackboard objects. This is a 
particularly significant issue because assumptions are dynamic (meaning that 
they are routinely created and destroyed during the process of forming a solu-
tion), and their creation or retraction triggers controller events.
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Figure 10–15 illustrates the primary scenario of when a knowledge source 
states an assumption. As this communication diagram shows, once the 
KnowledgeSource creates an Assumption, it notifies the Blackboard,
which in turn makes the Assumption for its Alphabet and then for each 
BlackboardObject to which the Assumption applies. Using the depen-
dency mechanism, the affected BlackboardObject in turn might notify any 
dependent KnowledgeSource.

In its most naive implementation, retracting an assumption simply undoes the 
work of this mechanism. For example, to retract an assumption about a cipher let-
ter, we just pop its collection of assumptions, up to and including the assumption 
we are retracting. In this manner, the given assumption and all assumptions that 
built on it are undone.

A more sophisticated mechanism is possible. For example, suppose that we made 
an assumption that a certain one-letter word is really just the letter I (assuming 
we need a vowel). We might make a later assumption that a certain double-letter 
word is NN (assuming we need a consonant). If we then find we must retract the 
first assumption, we probably don’t have to retract the second one. This approach 
requires us to add a new behavior to the Assumption class so that it can keep 
track of what assumptions are dependent on others. We can reasonably defer this 
enhancement until much later in the evolution of this system because adding this 
behavior has no architectural impact.

Adding New Knowledge Sources

Now that we have the key abstractions of the blackboard framework in place, and 
once the mechanisms for stating and retracting assumptions are working, our next 

Figure 10–15 The Assumption Mechanism
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step is to implement the InferenceEngine class since all knowledge sources 
depend on it. As we mentioned earlier, this class has only one really interesting 
operation, namely, evaluate. We will not show its details here because this 
particular method reveals no new important design issues.

Once we are confident that our inference engine works properly, we may incre-
mentally add each knowledge source. We emphasize the use of an incremental 
process for two reasons.

1. For a given knowledge source, it is not clear what rules are really important 
until we apply them to real problems.

2. Debugging the knowledge base is far easier if we implement and test 
smaller related sets of rules, rather than trying to test them all at once.

Fundamentally, implementing each knowledge source is largely a problem of 
knowledge engineering. For a given knowledge source, we must confer with an 
expert (perhaps a cryptologist) to decide which rules are meaningful. As we test 
each knowledge source, our analysis may reveal that certain rules are useless, oth-
ers are either too specific or too general, and perhaps some are missing. We may 
then choose to alter the rules of a given knowledge source or even add new 
sources of knowledge.

As we implement each knowledge source, we may discover the existence of com-
mon rules as well as common behavior. For example, we might notice that the 
WordStructureKnowledgeSource and the SentenceStructure-
KnowledgeSource classes share a common behavior, in that both must know 
how to evaluate rules regarding the legal ordering of certain constructs. The 
former knowledge source is interested in the arrangement of letters; the latter is 
interested in the arrangement of words. In either case, the processing is the same. 
Thus, it is reasonable for us to alter the knowledge source class structure by 
developing a new abstract class, called StructureKnowledgeSource, in 
which we place this common behavior.

This new knowledge source class hierarchy highlights the fact that evaluating a 
set of rules is dependent on both the kind of knowledge source as well as the kind 
of blackboard object. For example, given a specific knowledge source, it might 
use forward-chaining on one kind of Blackboard object and backward-
chaining on another. Furthermore, given a specific Blackboard object, how 
it is evaluated will depend on which knowledge source is applied.



446 SECTION III APPLICATIONS

10.4 Post-Transition

In this section, we consider an improvement to the functionality of the cryptanal-
ysis system and observe how our design weathers the change.

System Enhancements

In any intelligent system, it is important to know what the final answer is to a 
problem, but it is often equally important to know how the system arrived at this 
solution. Thus, we desire our application to be introspective: It should keep track 
of when knowledge sources were activated, what assumptions were made and 
why, and so on, so that we can later question it, for example, about why it made 
an assumption, how it arrived at another assumption, and when a particular 
knowledge source was activated.

To add this new functionality, we need to do two things. First, we must devise a 
mechanism for keeping track of the work that the controller and each knowledge 
source perform, and second, we must modify the appropriate operations so that 
they record this information. Basically, the design calls for the knowledge sources 
and the controller to register what they did in some central repository.

Let’s start by inventing the classes needed to support this mechanism. First, we 
might define the class Action, which serves to record what a particular knowl-
edge source or controller did. Figure 10–16 presents the design of the Action
class as it fits into our architectural design.

For example, if the controller selected a particular knowledge source for activa-
tion, it would create an instance of this class, set the who argument to itself, set 
the what argument to the knowledge source, set the why argument to some 
explanation (perhaps including the current priority of the hint), and set when this 
occurred.

The first part of our task is done, and the second part is almost as easy. Consider 
for a moment where important events take place in our application. As it turns 
out, five primary kinds of operations are affected:

1. Methods that state an assumption
2. Methods that retract an assumption
3. Methods that activate a knowledge source
4. Methods that cause rules to be evaluated
5. Methods that register hints from a knowledge source
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Actually, these events are largely constrained to two places in the architecture: as 
part of the controller’s finite state machine and as part of the assumption mecha-
nism. Our maintenance task, therefore, involves touching all the methods that 
play a role in these two places, a task that is tedious but by no means rocket 
science. Indeed, the most important discovery is that adding this new behavior 
requires no significant architectural change.

To complete our work here, we must also implement a class that can answer who, 
what, when, and why questions from the user. The design of such an object is not 
terribly difficult because all the information it needs to know may be found as the 
state of instances of the class actions.

Figure 10–16 Additional Functionality Provided through the Action Class Design
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Changing the Requirements

Once we have a stable implementation in place, many new requirements can be 
incorporated with minimal changes to our design. Let’s consider three kinds of 
new requirements:

1. The ability to decipher languages other than English
2. The ability to decipher using transposition ciphers as well as single substitu-

tion ciphers
3. The ability to learn from experience

The first change is fairly easy because the fact that our application uses English is 
largely immaterial to our design. Assuming the same character set is used, it is 
mainly a matter of changing the rules associated with each knowledge source. 
Actually, changing the character set is not that difficult either because even the 
Alphabet class is not dependent on what characters it manipulates.

The second change is much harder, but it is still possible in the context of the 
blackboard framework. Basically, our approach is to add new sources of knowl-
edge that embody information about transposition ciphers. Again, this change 
does not alter any existing key abstraction or mechanism in our design; rather, it 
involves the addition of new classes that use existing facilities, such as the 
InferenceEngine class and the assumption mechanism.

The third change is the hardest of all, mainly because machine learning is on the 
fringes of our knowledge in artificial intelligence. As one approach, when the 
controller discovers it can no longer proceed, it might ask the user for a hint. By 
recording this hint, along with the actions that led up to the system being stuck, 
the blackboard application can avoid a similar problem in the future. We can 
incorporate this simplistic learning mechanism without vastly altering any of our 
existing classes; as with all the other changes, this one can build on existing 
facilities.
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C h a p t e r  1 1

Data Acquisition: Weather 
Monitoring Station

For many scientific systems, the automatic collection of data is usually 
acquired through the use of sensors or devices. This data acquisition typi-
cally involves the processing of signals and waveforms to obtain the 
desired information. The components of a data acquisition system include 
the appropriate sensors that convert any measured parameter to an elec-
trical signal, which is acquired by data acquisition hardware. Control soft-
ware is developed that interprets the signals for analysis and display.

Using object-oriented techniques to design a data acquisition system 
allows us to isolate the hardware that measures and collects the data from 
the application that then analyzes the information. A robust architecture 
can be defined to allow for sensors and devices to be added or replaced 
without disturbing the architecture of the control application. Applying 
interfaces that act as a skin overlaying the hardware allows for isolation of 
the measuring devices from the application that processes the informa-
tion. In this chapter, we provide an example of a data acquisition system, 
in our case, a Weather Monitoring System. The Weather Monitoring Sys-
tem uses sensors and devices that measure the weather conditions that 
are analyzed and displayed. This example illustrates an object-oriented 
solution to a real-time control processing application that provides a 
reusable component architecture that can isolate the hardware from 
the application.



450 SECTION III APPLICATIONS

11.1 Inception

Our Weather Monitoring System is a simple application, encompassing only a 
handful of classes. Indeed, at first glance, the object-oriented novice might be 
tempted to tackle this problem in an inherently non-object-oriented manner by 
considering the flow of data and the various input/output mappings involved. 
However, as we shall see, even a system as small as this one lends itself well to an 
object-oriented architecture, and in so doing exposes some of the basic principles 
of the object-oriented development process.

Requirements for the Weather Monitoring 
Station

This system shall provide automatic monitoring of various weather conditions. 
Specifically, it must measure the following:

■ Wind speed and direction
■ Temperature
■ Barometric pressure
■ Humidity

The system shall also provide these derived measurements:

■ Wind chill
■ Dew point temperature
■ Temperature trend
■ Barometric pressure trend

The system shall have a means of determining the current time and date, so that it 
can report the highest and lowest values of any of the four primary measurements 
during the previous 24-hour period.

The system shall have a display that continuously indicates all eight primary and 
derived measurements, as well as the current time and date. Through the use of a 
keypad, the user may direct the system to display the 24-hour high or low value of 
any one primary measurement, together with the time of the reported value.

The system shall allow the user to calibrate its sensors against known values and 
to set the current time and date.
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Defining the Boundaries of the Problem

We begin our analysis by considering the hardware on which our software must 
execute. This is inherently a problem of systems analysis, involving manufactura-
bility and cost issues that are far beyond the scope of this text. To bound our prob-
lem and thus allow us to expose the issues of its software analysis and design, we 
will make the following strategic assumptions.

■ The processor (i.e., CPU) may take the form of a PC or a handheld device.
■ Time and date are supplied by a clock.
■ Temperature, barometric pressure, and humidity are measured via remote 

sensors.
■ Wind direction and speed are measured from a boom encompassing a wind 

vane (capable of sensing wind from any of 16 directions) and cups (which 
advance a counter for each revolution).

■ User input is provided through a keypad.
■ The display is an off-the-shelf LCD graphic device. 
■ A timer interrupts the computer every 1/60 second.

Figure 11–1 provides a deployment diagram that illustrates this hardware plat-
form.

We have chosen to throw some hardware at this problem so that we might better 
focus on the system’s software. Obviously, we could require more software by 
doing less in hardware (e.g., by eliminating some of the hardware for the user 
input and graphics device), but in this particular application, changing the hard-
ware/software boundary is largely immaterial to our object-oriented architecture. 
Indeed, one of the characteristics of an object-oriented system is that it tends to 
speak in the vocabulary of its problem space and so represents a virtual machine 
that parallels our abstraction of the problem’s key entities. Changing the details of 
the system’s hardware impacts only our abstraction of the lower layers of the system.

The details of hardware interfaces can be easily insulated from our software 
abstractions by wrapping a class around each such interface. For example, we 
might devise a simple class for accessing the current time and date. We begin 
by doing a little isolated class analysis, in which we consider what roles and 
responsibilities this abstraction should encompass.1 Thus, we might decide that 

1. Actually, instead of first setting out to design a new class from scratch, we should start 
by looking for an existing class that already satisfies our needs. A time and data class is cer-
tainly a good candidate for reuse. However, for the purposes of this chapter, we will assume 
that no such class could be found.
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this class is responsible for keeping track of the current time in hours, minutes, 
and seconds, as well as the current month, day, and year. Our analysis might 
decide to turn these responsibilities into two services, denoted by the operations 
currentTime and currentDate, respectively. The operation currentTime
returns a string in the following format:

13:56:42

showing the current hour, minute, and second. The operation currentDate
returns a string in the following format:

6-10-93

showing the current month, day, and year.

Further analysis suggests that a more complete abstraction would allow a client to 
chose either a 12- or 24-hour format for the time, which we may provide in the 
form of an additional modifier named setFormat.

By specifying the behavior of this abstraction from the perspective of its public 
clients, we have devised a clear separation between its interface and implementa-
tion. The basic idea here is to build the outside view of each class as if we had 
complete control over its underlying platform, then implement the class as a 
bridge to its real inside view. Thus, the implementation of a class at the system’s 
hardware/software boundary serves to bolt the outside view of the abstraction to 
its underlying platform, which is often constrained by system decisions that are 
out of the hands of the software engineer. Of course, the gap between an abstrac-

Figure 11–1 The Deployment Diagram for the Weather Monitoring System 
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tion’s outside and inside views must not be so wide as to require a thick and inef-
ficient implementation to glue the two views together.

One responsibility of our time and date class must therefore include setting the 
date and time. Carrying out this responsibility requires a new set of services to set 
the time and date, which we provide via the operations setHour, setMinute,
setSecond, setDay, setMonth, and setYear.

We may summarize our abstraction of a time/date class as follows.

Class name: 
TimeDate

Responsibility:
Keep track of the current time and date.

Operations:
currentTime
currentDate
setFormat
setHour
setMinute
setSecond
setMonth
setDay
setYear

Attributes:
time
date

Instances of this class have a dynamic lifecycle, which we can express in the state 
transition diagram shown in Figure 11–2. Here we see that upon initialization, an 
instance of this class resets its time and date attributes and then uncondition-
ally enters the Running state, where it begins in 24-hour mode. Once in the 
Running state, receipt of the operation setFormat toggles the object between 
12- and 24-hour mode. No matter what its nested state, however, setting the time 
or date causes the object to renormalize its attributes. Similarly, requesting its 
time or date causes the object to calculate a new string value.

We have specified the behavior of this abstraction in enough detail that we can 
offer it for use in scenarios with other clients we might discover during analysis. 
Before we consider these scenarios, let’s specify the behavior of the other tangi-
ble objects in our system.
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The class Temperature Sensor serves as an analog to the hardware temper-
ature sensors in our system. Isolated class analysis yields the following first cut at 
this abstraction’s outside view.

Class name: 
Temperature Sensor

Responsibility:
Keep track of the current temperature.

Operations:
currentTemperature
setLowTemperature
setHighTemperature

Attribute:
temperature

The operation currentTemperature is self-explanatory. The other two oper-
ations derive directly from our requirements, which obligate us to provide a 
mechanism for calibrating each sensor. For the moment, we will assume that each 
temperature sensor value is represented by a fixed-point number, whose low and 
high points can be calibrated to fit known actual values. We translate intermediate 
numbers to their actual temperatures by simple linear interpolation between these 
two points, as illustrated in Figure 11–3.

The careful reader may wonder why we have proposed a class for this abstraction, 
when our requirements imply that there is exactly one temperature sensor in the 
system. That is indeed true, but in anticipation of reusing this abstraction, we 
choose to capture it as a class, thereby decoupling it from the particulars of this 
one system. In fact, the number of temperature sensors monitored by a particular 

Figure 11–2 The TimeDate Lifecycle
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system is largely immaterial to our architecture, and by devising a class, we make 
it simple for other programs in this family of systems to manipulate any number 
of sensors.

We can express our abstraction of the barometric pressure sensor in the following 
specification.

Class name: 
Pressure Sensor

Responsibility:
Keep track of the current barometric pressure.

Operations:
currentPressure
setLowPressure
setHighPressure

Attribute:
pressure

A review of the system’s requirements reveals that we may have missed one 
important behavior for this and the previous class, Temperature Sensor.
Specifically, our requirements compel us to provide a means for reporting the 
temperature and pressure trends. For the moment (because we are doing analysis, 
not design), we will be content to focus on the nature of this behavior and, most 
important, on deciding which abstraction we should make responsible for this 
behavior.

For both the Temperature Sensor and the Pressure Sensor, we can 
express the trends as floating-point numbers between –1 and 1, representing the 

Figure 11–3 Temperature Sensor Calibration
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slope of a line fitting a number of values over some interval of time.2 Thus, we 
may add the following responsibility and its corresponding operation to both of 
these classes.

Responsibility:
Report the temperature or pressure trend as the slope of a line fitting the past 
values over the given interval.

Operation:
trend

Because this behavior is common to both the Temperature Sensor and 
Pressure Sensor classes, our analysis suggests the invention of a common 
superclass, which we will call Trend Sensor, responsible for providing this 
common behavior.

For completeness, we should point out that there is an alternative view of the 
world that we might have chosen in our analysis. Our decision was to make this 
common behavior a responsibility of the sensor class itself. We could have 
decided to make this behavior a part of some external agent that periodically 
queried the particular sensor and calculated its trend, but we rejected this 
approach because it was unnecessarily complex. Our original specification of the 
Temperature Sensor and Pressure Sensor classes suggested that each 
abstraction had sufficient knowledge to carry out this trend-reporting behavior, 
and by combining responsibilities (albeit in the form of a superclass), we end up 
with a simple and conceptually cohesive abstraction.

Our abstraction of the humidity sensor can be expressed in the following 
specification.

Class name: 
Humidity Sensor

Responsibility:
Keep track of the current humidity, expressed as a percentage of saturation 
from 0% to 100%.

Operations:
currentHumidity
setLowHumidity
setHighHumidity

2. A value of 0 means that the temperature or pressure is stable. A value of 0.1 denotes a 
modest rise; a value of –0.3 denotes rapidly declining values. A value approaching –1 or 1 
suggests an environmental cataclysm, which is beyond the scope of the scenarios our sys-
tem is expected to handle properly.
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Attribute:
humidity

The Humidity Sensor has no responsibility for calculating its trend and is 
therefore not a subclass of Trend Sensor.

A review of the system’s requirements suggests some behavior common to the 
classes Temperature Sensor, Pressure Sensor, and Humidity
Sensor. In particular, our requirements compel us to provide a means of reporting 
the highest and lowest values of each of these sensors during a 24-hour period. 
We defer deciding how to carry out this responsibility because that is an issue of 
design, not analysis. However, because this behavior is common to all three sen-
sor classes, our analysis suggests the invention of a common superclass, which we 
call Historical Sensor, responsible for providing this common behavior.

Class name: 
Historical Sensor

Responsibility:
Report the highest and lowest values over a 24-hour period.

Operations:
highValue
lowValue
timeOfHighValue
timeOfLowValue

Humidity Sensor is a direct subclass of Historical Sensor, as is 
Trend Sensor, which serves as an intermediate abstract class, bridging 
our abstractions of Historical Sensor and the concrete classes 
Temperature Sensor and Pressure Sensor.

Our abstraction of the wind-speed sensor can be expressed in the following 
specification.

Class name: 
WindSpeed Sensor

Responsibility:
Keep track of the current wind speed.

Operations:
currentSpeed
setLowSpeed
setHighSpeed

Attribute:
speed
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Our requirements suggest that we cannot detect the current wind speed directly; 
rather, we must calculate its value by taking the number of revolutions of the cups 
on the boom, dividing by the interval over which those revolutions were counted, 
and then applying a scaling value appropriate to the particular boom assembly. 
Needless to say, this calculation is one of the secrets of this class; clients could 
care less how currentSpeed is calculated, as long as this operation satisfies its 
contract and delivers meaningful values.

A quick domain analysis of the last four concrete classes (Temperature
Sensor, Pressure Sensor, Humidity Sensor, and WindSpeed
Sensor) reveals yet another behavior in common: Each of these classes knows 
how to calibrate itself by providing a linear interpolation against two known data 
points. Rather than replicating this behavior in all four classes, we instead choose 
to make this behavior the responsibility of an even higher superclass, which we 
call Calibrating Sensor, whose specification includes the following.

Class name: 
Calibrating Sensor

Responsibility:
Provide a linear interpolation of values, given two known data points.

Operations:
currentValue
setHighValue
setLowValue

Calibrating Sensor is an immediate superclass of Historical Sensor.3

Our final concrete sensor for wind direction is a bit different because it requires 
neither calibration nor history. We may express our abstraction of this entity in the 
following specification.

Class name: 
WindDirection Sensor

Responsibility:
Keep track of the current wind direction, in terms of points along a compass 
rose.

Operation:
currentDirection

3. This hierarchy passes our litmus test for inheritance: a Temperature Sensor is a 
kind of Trend Sensor, which is also a kind of Historical Sensor, which in turn 
is a kind of Calibrating Sensor.
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Attribute:
direction

To unify our sensor abstractions, we generate the abstract base class Sensor,
which serves as the immediate superclass to both the classes WindDirection
Sensor and Calibrating Sensor. Figure 11–4 illustrates this complete 
hierarchy.

Although not part of the sensor hierarchy, our abstraction of the keypad for user 
input has a simple specification.

Class name: 
Keypad

Responsibility:
Keep track of the last user input.

Operation:
lastKeyPress

Attribute:
key

Notice that this class has no knowledge of the meaning of any particular key: 
Instances of this class know only that one of several keys was pressed. We dele-
gate responsibility for interpreting the meaning of these keys to a different class, 
which we will identify when we apply these concrete boundary classes to our 
scenarios.

Our abstraction of an LCD Device class serves to insulate our software from 
the particular hardware we might use. To decouple our software from the particu-
lar graphics hardware we might use, our analysis leads us to prototype some com-
mon displays for the Weather Monitoring System, and then determine our 
interface needs.

Figure 11–5 provides such a prototype. Here, we have omitted the required dis-
play of wind chill and dew point, as well as such details as how to display the 24-
hour high or low value of primary measurements. Nonetheless, some patterns 
emerge: We need to display only text (in two different sizes and two different 
styles), circles, and lines (of varying thickness). Additionally, we note that some 
elements of our display are static (such as the label TEMP), while others are 
dynamic (such as the wind direction). We choose to display both static and 
dynamic elements via software. In this manner, we lessen the burden on our hard-
ware by eliminating the need for special labels on the LCD itself, but we require 
slightly more of our software.
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Figure 11–4 The Hierarchy of the Sensor Class 
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We can translate these requirements into the following class specification.

Class name: 
LCD Device

Responsibility:
Manage the LCD device and provide services for displaying certain graph-
ics elements.

Operations:
drawText
drawLine
drawCircle
setTextSize
setTextStyle
setPenSize

As with the class Keypad, the class LCD Device has no knowledge of the 
meaning of the elements it manipulates. Instances of this class know only how to 
display text and lines; they do not know what these figures represent. This separa-
tion of concerns leaves us with loosely coupled abstractions (which is what we 
desire), but it does require that we find some agent responsible for mediating 
between the raw sensors and the display. We defer the invention of this new 
abstraction until we study some scenarios applicable to this system.

The final boundary class we need to consider is that of the timer. We will make 
the simplifying assumption that there is exactly one timer per system, whose 
behavior is to interrupt the computer every 1/60 of a second and, in so doing, to 
invoke an interrupt service routine. This is a particularly grungy detail, and it 
would be best if we could hide this implementation detail from the rest of our 
software abstractions. We can do so by devising a class that uses a callback func-
tion and exports only static members (so that we constrain our system to have 
exactly one timer).

Figure 11–5 The Display for the Weather Monitoring System 
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Figure 11–6 provides a sequence diagram that illustrates a use case for this 
abstraction. Here we see how the timer and its client collaborate: The client 
begins by supplying a callback function, and every 1/60 of a second, the timer 
calls that function. In this manner, we decouple the client from knowing about 
how to intercept timed events, and we decouple the timer from knowing what to 
do when such an event occurs. The primary responsibility that this protocol places 
on the client is simply that the execution of its callback function must always take 
less than 1/60 of a second; otherwise, the timer will miss an event.

By intercepting time events, the Timer class serves as an active abstraction, 
meaning that it is at the root of a thread of control. We may express our abstrac-
tion of this class in the following specification.

Class name: 
Timer

Responsibility:
Intercept all timed events and dispatch a callback function accordingly.

Operation:
setCallback()

Scenarios

Now that we have established the abstractions at the boundaries of our system, we 
continue our analysis by studying several scenarios of its use. We begin by enu-

Figure 11–6 The Timer Interaction Diagram
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merating a number of primary use cases (Figure 11–7), as viewed from the point 
of view of the clients of this system:

■ Monitoring basic weather measurements, including wind speed and direc-
tion, temperature, barometric pressure, and humidity

■ Monitoring derived measurements, including wind chill, dew point, temper-
ature trend, and barometric pressure trend

■ Displaying the highest and lowest values of a selected measurement
■ Setting the time and date
■ Calibrating a selected sensor
■ Powering up the system

We add to this list two secondary use cases:

■ Power failure
■ Sensor failure

11.2 Elaboration

Let’s examine a number of these scenarios in order to illuminate the behavior—
but not the design—of the system.

Figure 11–7 Primary Use Cases for the Weather Monitoring System
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Weather Monitoring System Use Cases

Monitoring basic weather measurements is the principal function point of the 
Weather Monitoring System. One of our system constraints is that we cannot take 
measurements any faster than 60 times a second. Fortunately, most interesting 
weather conditions change much more slowly. Our analysis suggests that the fol-
lowing sampling rates are sufficient to capture changing conditions:

■ Wind direction: every 0.1 second
■ Wind speed: every 0.5 seconds
■ Temperature, barometric pressure, and humidity: every 5 minutes

Earlier, we decided that the classes representing each primary sensor should have 
no responsibility for dealing with timed events. Our analysis therefore requires 
that we devise an external agent that collaborates with these sensors to carry out 
this scenario. For the moment, we will defer our specification of the behavior of 
this agent (how it knows when to initiate a sample is an issue of design, not anal-
ysis). The interaction diagram shown in Figure 11–8 illustrates this scenario. Here 
we see that when the agent begins sampling, it polls each sensor in turn but inten-
tionally skips certain sensors in order to sample them at a slower rate. By polling 
each sensor rather than letting each sensor act as a thread of control, the execution 
of our system is more predictable because our agent can control the flow of 
events. Because this name reflects its place in the behavior of the system, we will 
make this agent an instance of the class Sampler.

We must continue this scenario by asking which of these objects in the interaction 
diagram is then responsible for displaying the sampled values on the one instance 
of our LCD Device class. Ultimately, we have two choices: We can have each 
sensor be responsible for displaying itself (the common pattern used in MVC-like 
architectures), or we can have a separate object be responsible for this behavior. 
For this particular problem, we choose the latter option because it allows us to 

Figure 11–8 A Scenario for Monitoring Basic Measurements
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encapsulate all our design decisions about the layout of our display in one class.4

Thus, we add the following class specification to our products of analysis.

Class name: 
Display Manager

Responsibility:
Manage the layout of items on the LCD device.

Operations:
drawStaticItems
displayTime
displayDate
displayTemperature
displayHumidity
displayPressure
displayWindChill
displayDewPoint
displayWindSpeed
displayWindDirection
displayHighLow

The operation drawStaticItems exists to draw the unchangeable parts of 
the display, such as the compass rose used for indicating the wind direction. 
We will also assume that the operations displayTemperature and 
displayPressure are responsible for displaying their corresponding 
trends (therefore, as we move into implementation, we must provide a suitable 
signature for these operations).

Figure 11–9 provides a class diagram illustrating the abstractions that must col-
laborate to carry out this scenario. Note that we also indicate the role that each 
abstraction plays in its association with other classes.

There is one important side effect from our decision to include the class Display
Manager.5 Specifically, internationalizing our software, that is, adapting it to 

4. The dominant problem here is where we display each item, not how each item looks. 
Because this is a decision that is likely to change, it is best for us to encapsulate in one class 
all the knowledge about where to display each item on the LCD device. Changing our assump-
tions about front panel layout therefore requires that we touch only one class instead of many.

5.  Is this an analysis decision or a design decision? The question can be argued in either 
direction, although such arguments are largely academic in the face of having to deliver 
production software. If a decision advances our understanding of the system’s desired be-
havior and in addition leads us to an elegant architecture, we don’t really care what it is called.
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different countries and languages, becomes much easier given this design deci-
sion because the knowledge about how elements are named and thus labeled on 
the display (such as TEMP and WIND) is part of the secrets of this one class.

Internationalization leads us to consider an issue about which the requirements 
are silent: Should the system display temperature in Centigrade or Fahrenheit? 
Similarly, should the system display wind speed in kilometers per hour (kph) or 
miles per hour (mph)? Ultimately, our software should not constrain us. Because 
we seek end-user flexibility, we must add an operation setMode to both the 
Temperature Sensor and WindSpeed Sensor classes. We must also 
add a new responsibility to each of these classes, which makes their instances 
construct themselves in a known stable state. Finally, we must modify the signa-
ture of the operation Display Manager::drawStaticItems accordingly, 
so that when we change units of measurement, the display manager can update 
the front panel display if needed.

This discovery leads us to add one more scenario for consideration in our analy-
sis, namely:

■ Setting the unit of measurement for temperature and wind speed

We will defer considering this scenario until we study the other use cases that deal 
with user interaction.

Monitoring the derived measurements for temperature and pressure trends can be 
achieved through the protocol we have already established for the Temperature
Sensor and Pressure Sensor classes. However, to complete this scenario 
for all derived measurements, we are now led to discover two new classes, which 

Figure 11–9 The Sampler and Display Manager Classes
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we call Wind Chill and Dew Point, responsible for calculating their respec-
tive values. Neither of these abstractions represents sensors because they do not 
denote any tangible device in the system. Rather, each one acts as an agent that 
collaborates with two other classes to carry out its responsibilities. Specifically, 
theWind Chill conspires with the Temperature Sensor and WindSpeed
Sensor, and the Dew Point conspires with the Temperature Sensor and 
Humidity Sensor. In turn, Wind Chill and Dew Point collaborate with 
Sampler, using the same mechanism as Sampler uses to monitor all the pri-
mary weather measurements. Figure 11–10 illustrates the classes involved in this 
scenario; basically, this class diagram is just a slightly different view of the sys-
tem than the one shown in Figure 11–9.

Why do we define Wind Chill and Dew Point as classes, instead of just car-
rying out their calculation through a simple nonmember function? The answer is 
that this situation passes our litmus test for object-oriented abstractions: Instances 
of both Wind Chill and Dew Point provide some behavior (namely, the cal-
culation of their respective values) and encapsulate some state (each must main-
tain an association with a particular instance of two different concrete sensors), 
and each has a unique identity (each particular wind-speed sensor/temperature 
sensor association must have its own Wind Chill object). By “objectifying” 
these seemingly algorithmic abstractions, we also end up with a more reusable 
architecture: Both Wind Chill and Dew Point can be lifted from this partic-
ular application because each presents a clear contract to its clients, and each 
offers a clear separation of concerns relative to all the other abstractions.

Moving on, we next consider the various scenarios that relate to user interaction 
with the Weather Monitoring System. Deciding on the proper user gestures for 

Figure 11–10 Classes for Derived Measurements
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interacting with an embedded controller such as this one is still as much of an art 
as is designing a graphical user interface. A full treatment of how to devise such 
user interfaces is beyond the scope of this text, but the basic message for the soft-
ware analyst is that prototyping works and indeed is fundamental in helping to 
mitigate the risks involved in user interface design. Furthermore, by implement-
ing our decisions in terms of an object-oriented architecture, we make it relatively 
easy to change these user interface decisions without rending the fabric of our 
design.

Consider some possible use case scenarios of user interaction.

Use case name: 
Display Max and Min Value of Measurements

Description:
This use case displays the maximum and minimum values of a selected 
measurement.

Basic flow:
1. The use case begins when the user presses the SELECT key.
2. The system displays SELECTING.
3. The user presses any one of the keys WIND, TEMP, PRESSURE, or HUMIDITY;

any other key press (except RUN) is ignored.
4. The system flashes the corresponding label.
5. The user presses the UP or DOWN key to select display of the highest or 

lowest 24-hour value, respectively; any other key press (except RUN) is 
ignored.

6. The system displays the selected value, together with its time of 
occurrence.

7. Control passes back to step 3 or step 5.
Note that the user may press the RUN key to commit or abandon the 
operation, at which time the flashing display, the selected value, and the 
SELECTING message are removed.

This scenario leads us to enhance the Display Manager class by adding both 
the operations flashLabel (which causes the identified label to flash or stop 
flashing, according to an appropriate operation argument) and displayMode
(which displays a text message on the LCD device).

Setting the time and date follows a similar scenario.

Use case name: 
Set Date and Time

Description:
This use case sets the date and time.
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Basic flow:
1. The use case begins when the user presses the SELECT key.
2. The system displays SELECTING.
3. The user presses either of the keys TIME or DATE; any other key press 

(except RUN and the keys listed in step 3 of the previous scenario) is 
ignored.

4. The system flashes the corresponding label; the display also flashes the 
first field of the selected item (namely, the hours field for the time and 
the month field for the date).

5. The user presses the LEFT or RIGHT keys to select another field (selection 
wraps around); the user presses the UP or DOWN keys to raise or lower the 
value of the selected field.

6. Control passes back to step 3 or step 5.
Note that the user may press the RUN key to commit or abandon the oper-
ation, at which time the flashing display and the SELECTING message are 
removed, and the time or date are reset.

Calibrating a particular sensor follows a related pattern of user gestures.

Use case name: 
Calibrate Sensor

Description:
This use case is used to calibrate the sensors.

Basic flow:
1. The use case begins when the user presses the CALIBRATE key.
2. The system displays CALIBRATING.
3. The user presses any one of the keys WIND, TEMP, PRESSURE, or HUMIDITY;

any other key press (except RUN) is ignored.
4. The system flashes the corresponding label.
5. The user presses the UP or DOWN keys to select the high or low calibration 

point.
6. The display flashes the corresponding value.
7. The user presses the UP or DOWN keys to adjust the selected value.
8. Control passes back to step 3 or step 5.

Note that the user may press the RUN key to commit or abandon the oper-
ation, at which time the flashing display and the CALIBRATING message
are removed, and the calibration function is reset.

While calibrating, instances of the Sampler class must be told to not sample the 
selected item; otherwise, erroneous information would be displayed to the user. 
This scenario therefore requires that we introduce two new operations for the 
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Sampler class, namely, inhibitSample and resumeSample, both of 
which have a signature that specifies a particular measurement.

Our last primary scenario involving the user interface concerns setting units of 
measurement.

Use case name: 
Set Unit of Measurement

Description:
This use case sets the unit of measurement for temperature and wind speed.

Basic flow:
1. The use case begins when the user presses the MODE key.
2. The system displays MODE.
3. The user presses either of the keys WIND or TEMP; any other key press 

(except RUN) is ignored.
4. The system flashes the corresponding label.
5. The user presses the UP or DOWN keys to toggle the current unit of mea-

surement.
6. The system updates the unit of measurement for the selected item.
7. Control passes back to step 3 or step 5.

Note that the user may press the RUN key to commit or abandon the oper-
ation, at which time the flashing display and the MODE message are 
removed, and the current unit of measurement for the item is set. 

A study of these scenarios leads us to decide on an arrangement for buttons on the 
keypad (a system decision), which we illustrate in Figure 11–11.

Each of these user interface scenarios involves some form of modality or event-
ordered behavior and so is well suited to expression through the use of state tran-
sition diagrams. Because these scenarios are so tightly coupled, we choose to 
devise a new class, InputManager, which is responsible for carrying out the 
following contractual specification.

Figure 11–11 The User Keypad for the Weather Monitoring System 
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Class name: 
InputManager

Responsibility:
Manage and dispatch user input.

Operation:
processKeyPress

The sole operation, processKeyPress, animates the state machine that lives 
behind instances of this class.

As shown in Figure 11–12, the outermost state machine diagram for this class 
encompasses four states: Running, Calibrating, Selecting, and Mode.
These states correspond directly to the earlier scenarios. We transition to the 
respective states based on the first key press intercepted while Running, and we 
return to the Running state when the last key press is again Run. Each time we 
enter Running, we clear the message on the display.

We have expanded the Mode state to show how we might more formally express 
the dynamic semantics of our scenario. As we first enter this state, our entry 
action is to display an appropriate message on the display. We begin in the 
Waiting state and transition out of this state if we intercept a user key press of 
the TEMP or WIND keys, which causes us to enter a nested state of Processing,

Figure 11–12 The State Machine Diagram for InputManager
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or a user key press of RUN, which transitions us back to the outermost Running
state. Each time we enter Processing, we flash the appropriate item; in subse-
quent entries to this state, we enter the previously entered nested state, Temp or 
Wind.

While in the Temp or Wind state, we may intercept one of five key presses: UP or 
DOWN (which toggles the corresponding mode), TEMP or WIND (which reenters the 
appropriate nested state), or RUN (which ejects us from the outer Mode state).

The Selecting and Calibrating states similarly expand out to reveal more 
nested states. We will not show their expanded state machine diagrams here 
because their presentation does not reveal anything particularly interesting about 
the problem at hand.6

Our final primary scenario involves powering up the system, which requires that 
we bring all of its objects to life in an orderly fashion, ensuring that each one 
starts in a stable initial state. We may write a script for our analysis of this sce-
nario as follows.

Use case name: 
Power On

Description:
Power up the system.

Basic flow:
1. This use case begins when power is applied.
2. Each sensor is constructed; historical sensors clear their history, and 

trend sensors prime their slope-calculating algorithms.
3. The user input buffer is initialized, causing garbage key presses (due to 

noise on power up) to be discarded.
4. The static elements of the display are drawn.
5. The sampling process is initiated.

Postconditions:
The past high/low values of each primary measurement is set to the value 
and time of their first sample.
The temperature and pressure trends are flat.
The InputManager is in the Running state.

6. Of course, for a production product, a comprehensive analysis would complete the ex-
position of this state transition diagram. We can defer this task here because it is more te-
dious than not and in fact does not reveal anything we do not already know about the system 
under construction.
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Notice the use of postconditions in our script to specify the expected state of the 
system after this scenario completes. As we shall see, there is no one agent in the 
system that carries out this scenario; rather, this behavior results from the collabo-
ration of a number of objects, each of which is given the responsibility to bring 
itself to a stable initial state.

This completes our study of the Weather Monitoring System’s primary scenarios. 
To be utterly complete, we might want to walk through the various secondary sce-
narios. At this point, however, we have exposed a sufficient number of the sys-
tem’s function points, and we want to proceed with architectural design, so that 
we might begin to validate our strategic decisions.

Every software system needs to have a simple yet powerful organizational philos-
ophy (think of it as the software equivalent of a sound bite that describes the sys-
tem’s architecture), and the Weather Monitoring System is no exception. The next 
step in our development process is to articulate this architectural framework, so 
that we might have a stable foundation on which to evolve the system’s function 
points.

The Architecture Framework

In data acquisition and process control domains, we might follow many possible 
architectural patterns, but the two most common alternatives involve either the 
synchronization of autonomous actors or time-frame-based processing.

In the first pattern, our architecture encompasses a number of relatively indepen-
dent objects, each of which serves as a thread of control. For example, we might 
invent several new sensor objects that build on more primitive hardware/software 
abstractions, with each such object responsible for taking its own sample and 
reporting back to some central agent that processes these samples. This architec-
ture has its merits; it may be the only meaningful framework if we have a distrib-
uted system in which we must collect samples from many remote locations. This 
architecture also allows for more local optimization of the sampling process (each 
sampling actor has the knowledge to adjust itself to changing conditions, perhaps 
by increasing or decreasing its sampling rate as conditions warrant).

However, this architectural pattern is generally not well suited to hard real-time 
systems, wherein we must have complete predictability over when events take 
place. Although the Weather Monitoring System is not hard real-time, it does 
require some modicum of predictable, ordered behavior. For this reason, we turn 
to an alternative pattern, that of time-frame-based processing.

As we illustrate in Figure 11–13, this model takes time and divides it into several 
(usually fixed-length) frames, which we further divide into subframes, each of 
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which encompasses some functional behavior. The activity from one frame to 
another may be different. For example, we might sample the wind direction every 
10 frames but sample the wind speed only every 30 frames.7 The primary merit of 
this architectural pattern is that we can more rigorously control the order of 
events.

Figure 11–14 provides a class diagram that expresses this architecture for the 
Weather Monitoring System. Here we find most of the classes we discovered ear-
lier during analysis, the main difference being that we now show how all the key 
abstractions collaborate with one another. As is typical in class diagrams for pro-
duction systems, we do not (and cannot) show every class and every relationship. 
For example, we have omitted the class hierarchy regarding all of the sensors.

We have invented one new class in this architecture, namely, the class Sensors,
whose responsibility is to serve as the collection of all the physical sensors in the 
system. Because at least two other agents in the system (Sampler and Input-
Manager) must associate with the entire collection of sensors, bundling them in 
one container class allows us to treat our system’s sensors as a logical whole.

11.3 Construction

The central behavior of this architecture is carried out by a collaboration of the 
Sampler and Timer classes. We would be wise during architectural design to 
concretely prototype these classes so that we can validate our assumptions.

The Frame Mechanism

We begin by refining the interface of the class Timer, which dispatches a call-
back function. Figure 11–15 shows the class design.  

Figure 11–13 Time-Frame Processing

7. For example, if each frame is allocated to be 1/60 second, 30 frames represents 0.5 
second.
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Timer is an unusual class, but remember that it holds some unusual secrets. We 
use the first operation setCallback to attach a callback function to the timer. 
We launch the timer’s behavior by invoking startTiming, after which time the 
one Timer entity dispatches the callback function every 1/60 of a second. Notice 
that we introduce an explicit starting operation because we cannot rely on any 
particular implementation-dependent ordering in the elaboration of declarations.

Before we turn to the Sampler class, we introduce a new declaration that 
names the various sensors in this particular system. The enumeration class 

Figure 11–14 The Architecture of the Weather Monitoring System 

Figure 11–15 The Design of the Timer Class 
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SensorName contains enumeration literals for all the sensors in our system. 
Figure 11–16 shows the interface of the Sampler class.

We have introduced the modifier setSamplingRate and its selector 
samplingRate so that clients can dynamically alter the behavior of the 
sampling objects.

To tie the Timer and Sampler classes together, we just need a little bit of C++ 
glue code. First we declare an instance of Sampler and a nonmember function.

Sampler sampler;

void acquire(Tick t)
{
  sampler.sample(t);
}

Now we can write a fragment of our main function, which simply attaches the 
callback function to the timer and starts the sampling process.

main() {

  Timer::setCallback(acquire);
  Timer::startTiming();

  while(1) {
    ;
  }

  return 0;

}

This is a fairly typical main program for object-oriented systems: It is short 
(because the real work is delegated to key objects in the system), and it involves a 

Figure 11–16 The Interface of the Sampler Class
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dispatch loop (which in this case does nothing because we have no background 
processing to complete).8

To continue this thread of the system’s architecture, we next provide an interface 
for the Sensors class (Figure 11–17). For the moment, we assume the existence 
of the various concrete sensor classes.

This is basically a collection type class, and for this reason we make Sensors a 
subclass of the foundation class Collection.9 We make Collection a pro-
tected superclass because we don’t want to expose most of its operations to cli-
ents of the Sensors class. Our declaration of Sensors provides only a sparse 
set of operations because our problem is sufficiently constrained that we know 
sensors are only added and never removed from the collection.

We have invented a generalized sensor collection class that can hold multiple 
instances of the same kind of sensor, with each instance within its class distin-
guished by a unique ID, numbered starting at zero.

We specify in the Sampler class the associations with the Sensors and 
Display Manager classes and revise our declaration of the one instance of 
the Sampler class (Figure 11–18).

The construction of the Sampler object connects this agent with the specific 
collection of sensors and the particular display manager used in the system.

8. This is yet another common architectural pattern: Dispatch loops serve to intercept ex-
ternal or internal events and then dispatch them to the appropriate agents.

9. The Collection class is an abstract superclass that provides common operations for 
a collection of items supplied by language libraries.

Figure 11–17 The Interface of the Sensors class
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Now we can implement the Sampler class’s key operation, sample.

void Sampler::sample(Tick t)
{
  for (SensorName name = Direction; name <= Pressure; name++)
    for (unsigned int id = 0; id  < 

repSensors.numberOfSensors(name); id++)

      if (!(t % samplingRate(name)))

        repDisplayManager.display(repSensors.sensor(name,
 id).currentValue(), name, id);

}

The action of this member function is to iterate through each kind of sensor and, 
in turn, each unique sensor of that kind in the collection. For each sensor it 
encounters, sample checks to see whether it is time to sample its value and, if 
so, references the sensor from the collection, takes its current value, and delivers 
this value to the display manager associated with the Sampler instance.10

The semantics of this operation relies on the polymorphic behavior of the opera-
tion currentValue defined for the base class Sensor. This operation also 
relies on the operation display defined for the class Display Manager.

Figure 11–18 The Design of the Sampler Class 

10. An alternate approach would be to have each sensor provide a member function that 
returns its sampling rate and another member function that draws the sensor on the LCD. 
This design would make the implementation of the Sampler class simpler and more ex-
tensible, although it would shift more responsibilities to the sensor classes.
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Now that we have refined this element of our architecture, we present a new class 
diagram in Figure 11–19 that highlights this frame mechanism.

Now that we have validated our architecture by walking through several scenar-
ios, we can continue with the incremental development of the system’s function 
points.

Release Planning

We start this process by proposing a sequence of releases, each of which builds on 
the previous release.

■ Develop a minimal functionality release, which monitors just one sensor.
■ Complete the sensor hierarchy.
■ Complete the classes responsible for managing the display.
■ Complete the classes responsible for managing the user interface.

We could order these releases in just about any manner, but we choose this one, 
which progresses from highest to lowest risk, thereby forcing our development 
process to directly attack the hard problems first.

Developing the minimal functionality release forces us to take a vertical slice 
through our architecture and implement small parts of just about every key 
abstraction. This activity addresses the highest risk in the project, namely, 

Figure 11–19 The Frame Mechanism
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whether we have the right abstractions with the right roles and responsibilities. 
This activity also gives us early feedback because we can now play with an exe-
cutable system. Forcing early closure like this has a number of technical and 
social benefits. On the technical side, it forces us to begin to bolt the hardware 
and software parts of our system together, thereby identifying any impedance 
mismatches early. On the social side, it allows us to get early feedback about the 
look and feel of the system, from the perspectives of real users.

Because completing this release is largely a manner of tactical implementation, 
we will not bother with exposing any more of its structure. We will now turn to 
elements of later releases because they reveal some interesting insights about the 
development process.

The Sensor Mechanism

In inventing the architecture for this system, we have already seen how we had to 
iteratively and incrementally evolve our abstraction of the sensor classes, which 
we began during analysis. In this evolutionary release, we expect to build on the 
earlier completion of a minimal functional system and finish the details of this 
class hierarchy.

At this point in our development cycle, the class hierarchy we first presented 
in Figure 11–4 remains stable, although, not surprisingly, we had to adjust the 
location of certain polymorphic operations in order to extract greater commonal-
ity. Specifically, in an earlier section we noted the requirement for the 
currentValue operation, declared in the abstract base class Sensor. We 
may complete our design of the Sensor class (Figure 11–20).

Notice that through the class constructor, we gave the instances of this class 
knowledge of their name and ID. This is essentially a kind of runtime type identi-
fication, but providing this information is unavoidable here because, per the 
requirements, each sensor instance must have a mapping to a particular interface. 
We can hide the secrets of this mapping by making this interface a function of a 
sensor name and ID.

Figure 11–20 The Design of the Sensor Class 
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Now that we have added this new responsibility, we can go back and simplify the 
signature of DisplayManager::display to take only a single argument, 
namely, a reference to a Sensor object. We can eliminate the other arguments to 
this function because the Display Manager can now ask the Sensor object 
its name and ID.

Making this change is advisable because it simplifies certain cross-class inter-
faces. Indeed, if we fail to keep up with small, rippling changes such as this one, 
our architecture will eventually suffer as the protocols among collaborating 
classes become inconsistently applied.

The declaration of the immediate subclass Calibrating Sensor builds on 
the base class Sensor (Figure 11–21).

Calibrating Sensor introduces two new operations (setHighValue and 
setLowValue) and implements the previously defined function currentValue.

Next, consider the declaration of the subclass Historical Sensor, which 
builds on the class Calibrating Sensor (Figure 11–22).

Historical Sensor has four operations whose implementation requires col-
laboration with the TimeDate class for the time of the high or low values. Note 
that Historical Sensor is still an abstract class because we have not yet 
completed the definition of the abstract function rawValue, which we defer to 
be a concrete subclass responsibility.    

Figure 11–21 The Design of the Calibrating Sensor Class 

Figure 11–22 The Design of the Historical Sensor Class 
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The class Trend Sensor inherits from Historical Sensor and adds one 
new responsibility (Figure 11–23). 

Trend Sensor introduces one new function. As with some of the other opera-
tions that some other intermediate classes have added, we declare trend as con-
crete because we do not desire that subclasses change their behavior.

Ultimately, we reach concrete subclasses such as Temperature Sensor (Fig-
ure 11–24).

Notice that the signature of this class’s constructor is slightly different than its 
superclass’s, simply because at this level of abstraction, we know the specific 
name of the class. Also, notice that we have introduced the operation current-
Temperature, which follows from our earlier analysis. This operation is 
semantically the same as the polymorphic function currentValue, but we 
choose to include both of them because the operation currentTemperature
is slightly more type-safe.

Once we have successfully completed the implementation of all classes in this 
hierarchy and integrated them with the previous release, we may proceed to the 
next level of the system’s functionality.

The Display Mechanism

Implementing the next release, which completes the functionality of the classes 
DisplayManager and LCD Device, requires virtually no new design work, 
just some tactical decisions about the signature and semantics of certain func-

Figure 11–23 The Design of the Trend Sensor Class 

Figure 11–24 The Design of the Temperature Sensor Class 
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tions. Combining the decisions we made during analysis with our first architec-
tural prototype, wherein we made some important decisions about the protocol 
for displaying sensor values, we can derive the concrete interface shown in 
Figure 11–25.

None of these operations are abstract because we neither expect nor desire any 
subclasses.

Notice that this class exports several primitive operations (such as 
displayTime and refresh) but also exposes the composite operation 
display, whose presence greatly simplifies the action of clients that must inter-
act with instances of Display Manager.

Display Manager ultimately uses the resources of the LCD Device class, 
which, as we described earlier, serves as a skin over the underlying hardware. In 
this manner, Display Manager raises our level of abstraction by providing a 
protocol that speaks more directly to the nature of the problem space.

The User Interface Mechanism

The focus of our last major release is the tactical design and implementation of 
the classes Keypad and InputManager. Similar to the LCD Device class, 
the Keypad class serves as a skin over the underlying hardware, which thereby 
relieves the InputManager of the nasty details of talking directly to the hard-
ware. Decoupling these two abstractions also makes it far easier to replace the 
physical input device without destabilizing our architecture.

Figure 11–25 The Design of the Display Manager Interface 
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We start with a declaration that names the physical keys in the vocabulary of our 
problem space. An enumeration class, Key, is defined as shown in Figure 11–26.

We use the k prefix to avoid name clashes with literals defined in SensorName.

Continuing, we may capture our abstraction of the Keypad class as shown in 
Figure 11–27.

The protocol of this class derives from our earlier analysis. We have added the 
operation inputPending so that clients can query if user input exists that has 
not yet been processed.

The class InputManager has a similarly sparse interface (Figure 11–28).  

Figure 11–26 The Design of the Key Enumeration Class 

Figure 11–27 The Design of the Keypad Class 
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As we will see, most of the interesting work of this class is carried out in the 
implementation of its finite state machine.

As we illustrated earlier in Figure 11–14, instances of the Sampler,
InputManager, and Keypad classes collaborate to respond to user input. To 
integrate these three abstractions, we must subtly modify the interface of the 
Sampler class to include a new object, repInputManager (Figure 11–29).

Through this design decision, we establish an association among instances of the 
Sensors, Display Manager, and InputManager classes at the time we 
construct an instance of Sampler. This design asserts that instances of Sampler
must always have a collection of sensors, a display manager, and an input 
manager. 

We must also incrementally modify the implementation of the function 
Sampler::sample.

void Sampler::sample(Tick t)
{
  repInputManager.processKeyPress();
  for (SensorName name = Direction; name <= Pressure; name++)
    for (unsigned int id = 0; id <
       repSensors.numberOfSensors(name); id++)
      if (!(t % samplingRate(name)))
        repDisplayManager.display(repSensors.sensor(name,
        id));
}

Figure 11–28 The Design of the InputManager Interface 

Figure 11–29 The Revised Design of the Sampler Interface 
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Here we have added an invocation to processKeyPress at the beginning of 
every time frame.

The processKeyPress operation is the entry point to the finite state machine 
that drives the instances of this class. Ultimately, there are two approaches we can 
take to implement this or any other finite state machine: We can explicitly repre-
sent states as objects (and thereby depend on their polymorphic behavior), or we 
can use enumeration literals to denote each distinct state.

For modest-sized finite state machines such as the one embodied by the 
InputManager class, it is sufficient for us to use the latter approach. Thus, we 
might first introduce the names of the class’s outermost states (Figure 11–30).

Next, we introduce some protected helper functions (Figure 11–31).

Finally, we can begin to implement the state transitions we first introduced in Fig-
ure 11–12.

void InputManager::processKeyPress()
{
  if (repKeypad.inputPending()) {
    Key key = repKeypad.lastKeyPress();
    switch (repState) {
      case Running:
        if (key == kSelect)
          enterSelecting();
        else if (key == kCalibrate)
          enterCalibrating();
        else if (key == kMode)

Figure 11–30 The Design of the InputState Enumeration Class 

Figure 11–31 InputManager with the InputState Class Design
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          enterMode();
        break;
      case Selecting:
        ...
        break;
      case Calibrating:
         ...
        break;
      case Mode:
          ...
          break;
      }
  }
}

The implementation of this function and its associated helper functions thus par-
allels the state transition diagram shown in Figure 11–12.

11.4 Post-Transition

The complete implementation of this basic Weather Monitoring System is of 
modest size, encompassing only about 20 classes. However, for any truly useful 
piece of software, change is inevitable. Let’s consider the impact of two enhance-
ments to the architecture of this system.

Our system thus far provides for the monitoring of many interesting weather con-
ditions, but we may soon discover that users want to measure rainfall as well. 
What is the impact of adding a rain gauge?

Happily, we do not have to radically alter our architecture; we must merely aug-
ment it. Using the architectural view of the system from Figure 11–14 as a base-
line, to implement this new feature, we must do the following.

■ Create a new class, RainFall Sensor, and insert it in the proper 
place in the sensor class hierarchy (a RainFall Sensor is a kind of 
Historical Sensor).

■ Update the enumeration SensorName.
■ Update the Display Manager so that it knows how to display values of 

this sensor.
■ Update the InputManager so that it knows how to evaluate the newly-

defined key RainFall.
■ Properly add instances of this class to the system’s Sensors collection.



488 SECTION III APPLICATIONS

We must deal with a few other small tactical issues needed to graft in this new 
abstraction, but ultimately, we need not disrupt the system’s architecture or its key 
mechanisms.

Let’s consider a totally different kind of functionality. Suppose we desire the abil-
ity to download a day’s record of weather conditions to a remote computer. To 
implement this feature, we must make the following changes.

■ Create a new class, SerialPort, responsible for managing a port used 
for serial communication.

■ Invent a new class, Report Manager, responsible for collecting the 
information required for the download. Basically, this class must use the 
resources of the collection class Sensors together with its associated con-
crete sensors.

■ Modify the implementation of Sampler::sample to periodically ser-
vice the serial port.

It is the mark of a well-engineered object-oriented system that making this 
change does not rend our existing architecture but, rather, reuses and then aug-
ments its existing mechanisms.
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C h a p t e r  1 2

Web Application: 
Vacation Tracking System

For many businesses today, the independence of workers has been ever 
increasing. It is not uncommon for workers to divide their time across mul-
tiple projects and to report to multiple project managers. As a result, man-
agers have fewer informal interactions with their workers and find it 
increasingly difficult to be aware of and manage their workers’ vacation 
time. Thus, in the example explored in this chapter, our fictitious company 
has decided to develop and deploy a flexible vacation time management 
application for managers and employees alike to use to manage their 
vacation time.

The decision by a large enterprise organization to implement this and sim-
ilar functionality is never made in isolation. It is unlikely that this proposed 
system is the first that this organization has ever created. This desired 
functionality must be considered in the context of any existing systems 
(and perhaps even with other proposed systems). As a result, many archi-
tectural decisions will already be made a priori, and in our situation, the 
decision to deliver this functionality as a Web application not only is well 
suited to the task but also will be considered an extension to the organiza-
tion’s existing intranet, thus providing a convenient and natural entry point 
for its users.

In the following sections, we discuss a summary of the architecturally sig-
nificant and interesting aspects of this system. Given the space limitations 
of this book, we express only those aspects and content necessary to 
impart a general feel and understanding of the application. In the real 
world, an accurate and complete discussion of such a system would 
require significantly more content, models, and examples. However, here 
we cover the key or central principles of object orientation as they apply to 
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this sort of Web application development, and we discuss several interest-
ing issues unique to the Web application development process. 

12.1 Inception

The system’s requirements are presented by a summary of the vision document, 
key features, the use case model, key use case specifications, and architecturally 
significant line item requirements. 

The Requirements

The vision for this project can be summarized easily.

A Vacation Tracking System (VTS) will provide individual employees with the 
capability to manage their own vacation time, sick leave, and personal time off, 
without having to be an expert in company policy or the local facility’s leave 
policies.

The most important goal of this system is to give individual employees the capa-
bility and responsibility to manage this particular aspect of their employment 
agreements with the company. The underlying motivations for this desire include 
the need to streamline the functions of the human resources (HR) department, to 
minimize noncore, business-related activities of management, and to give a sense 
of empowerment to the employees. These objectives will be met only if the sys-
tem developed is easy to use, intuitive, and intelligent. An overriding design goal 
can therefore be stated simply.

The system must be easy to use.

Anyone reading this with even the most minimal experience developing commer-
cial software as part of a team effort will be rolling their eyes at such a vague 
requirement. Something so blatantly general and subjective should never be 
recorded as an official requirement, right? Not necessarily so. While it is clear 
that this simple line item is not a hard and traceable requirement, it does represent 
an honest feature of the desired system. It is so important that unless it at least 
appears to have been met by the developers and ultimately accepted by the end 
users alike, the delivered application will fail. 

High-level and potentially vague features like this sometimes need to be part of 
the official requirements set, not so they can be objectively verified and tracked 
through testing, but rather so they can be used to support and justify other, more 
concrete requirements or design decisions. As an example, consider the require-
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ments for a Web application that at some point requires the end user to submit to 
the system some formatted text (e.g., bold, italics, lists, paragraphs, and so on). 
The architects have two potential solutions. They can require the end user to 
incorporate special codes into the body of the text, as many popular bulletin board 
systems do today, or they can use a custom-built or commercially available Java 
applet that provides WYSIWYG formatting. The technical complexity and risk of 
such an applet are significant, yet the end-user advantages are also equally clear. 
If one of the primary system features or design goals was ease of use, the use of 
this applet could be justified. However, if ease of use was simply a desired rather 
than critical requirement, introducing the potential complexity and risk of the 
applet could not be justified.

The main goal of this application is to improve the internal business processes of 
this organization, at least with respect to the time it takes to manage vacation time 
requests. In the past, all vacation time had to be approved by an immediate man-
ager and then checked by a clerk in the HR department before it was authorized. 
Sometimes this manual process could take days. An automated system will speed 
up this process and will require at most one manual approval by the immediate 
manager (some high-level employees may not require manager approval).

This system has the potential to save time and money mostly in the HR depart-
ment, which is essentially taken out of the individual time request process and 
replaced by a rules-based validation system. HR personnel are still responsible 
for entering and updating employee vacation data in the system; however, they 
will no longer be a link in the chain for requesting and validating each time 
request.

The system will provide the following key features:

■ Implements a flexible rules-based system for validating and verifying leave 
time requests

■ Enables manager approval (optional)
■ Provides access to requests for the previous calendar year, and allows 

requests to be made up to a year and a half in the future
■ Uses e-mail notification to request manager approval and notify employees 

of request status changes
■ Uses existing hardware and middleware
■ Is implemented as an extension to the existing intranet portal system, and 

uses the portal’s single-sign-on mechanisms for all authentication
■ Keeps activity logs for all transactions
■ Enables the HR and system administration personnel to override all actions 

restricted by rules, with logging of those overrides
■ Allows managers to directly award personal leave time (with system-set 

limits)
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■ Provides a Web service interface for other internal systems to query any 
given employee’s vacation request summary

■ Interfaces with the HR department legacy systems to retrieve required 
employee information and changes

The Use Case Model

The top-level use case model contains four actors and eight use cases, as shown in 
Figure 12–1. The granularity of the use cases is reasonably coarse. For example, 
the use case Manage Time describes functionality, invoked by the Employee,
that includes viewing, creating, and canceling vacation time requests. A use case 
is not a description of a single functional requirement but rather a description of 
something that provides significant value to the actor invoking it, in the form of 
scenarios. Just being able to view a vacation time request, for example, provides 
minimal value, but being able to manage your own vacation time does provide 
significant value.

An interesting observation about use cases of Web-centric systems is that they 
tend to be expressed very strictly in terms of stimulus and response. That is, a use 
case scenario is typically expressed as a list of actor actions and immediate system 

Figure 12–1 The Top-Level Use Case Model
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responses. Also, there is typically a high degree of correlation of system 
responses to actual and individually named Web pages or screens. This is in con-
trast to non-Web applications, where content in the scenarios of activity focuses 
more on the information and use gestures being exchanged than on the identifica-
tion of discrete user interface units, such as Web pages in a Web-centric system. 

The system contains the following actors.

■ Employee: The main user of this system. An employee uses this system to 
manage his or her vacation time. 

■ Manager: An employee who has all the abilities and goals of a regular 
employee, but with the added responsibility of approving vacation requests 
for immediate subordinates. A manager may award subordinates comp 
time, subject to certain limits set in the system.

■ Clerk: A member of the HR department who has sufficient rights to view 
employees’ personal data and is responsible for ensuring that employees’ 
information in all HR systems is up to date and correct. An HR clerk can 
add or remove nearly any record in the system. In the real world, HR clerks 
may or may not be employees; however, if they are employees, they use two 
separate login IDs to manage these two different roles.

■ System Admin: A role responsible for the smooth running of the sys-
tem’s technical resources (e.g., Web server, database) and for collecting and 
archiving all log files.

The main use cases are as follows.

■ Manage Time: Describes how employees request and view vacation time 
requests.

■ Approve Request: Describes how a manager responds to a subordi-
nate’s request for vacation time. 

■ Award Time: Describes how a manager can award a subordinate extra 
leave time (comp time).

■ Edit Employee Record: Describes how an HR clerk edits an employee’s 
information in the system. This includes setting all the leave time allow-
ances and the maximum time that can be awarded by the manager.

■ Manage Locations: Describes how an HR clerk manages location 
records and their rules.

■ Manage Leave Categories: Describes how an HR clerk manages 
leave categories and their rules.

■ Override Leave Records: Describes how an HR clerk may override 
any rejection of leave time requests made by the rules in the system.

■ Back Up System Logs: Describes how the system administrator backs 
up the system’s logs. 
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12.2 Elaboration

Sometimes it is not always clear when analysis starts or when requirements gath-
ering and understanding during the Inception phase end. This is also why iterative 
development processes are so popular and the practicality of the waterfall process 
so often questioned. It is important, however, to have the most important and 
architecturally significant use cases described and discussed first. All the details 
need not be complete, but the architecturally significant ones should be addressed 
before a particular use case can undergo refinement.

In the ideal world, analysis of a system should be independent of an implement-
ing architecture. The reality, however, is that prior knowledge of the implementing 
architecture may contribute to the shape of the analysis.

This can be especially true when the application under development is a Web 
application because in most cases the decision to adopt a Web-centric architecture 
is something that is known at Inception. In our case here, the idea that the solution 
will ultimately be delivered as a Web-centric application appears in the detailed 
requirements. For example, the statement in the main flow of the Manage Time
use case (discussed later), “The employee should have access to a visual calendar 
to help select and compare selected dates,” is prompted in part by the knowledge 
that most Web browsers do not have a common date picker or calendar widget. In 
the specification of a native Windows client application, this assumption of such a 
capability might not have been explicitly brought out since such controls are in 
common use on Windows-based native client applications. The use case writer in 
this case is explicitly identifying an area where the system needs to be user 
friendly. A more subtle and pervasive indication that knowledge of the architec-
ture is known during the process of use case writing is the constant reference to 
“navigating to Web pages” and “submitting” information, concepts linked tightly 
with Web-centric architectures.

Sadly, there is no commonly agreed-upon way to quantitatively represent an arbi-
trary architecture. Here, we will use the 4+1 architecture view model [3], as 
described in Chapter 6.

The following brief descriptions of a Web application’s architecture are not meant 
to be a complete discussion of Web-centric architectures; however, we do cover 
enough significant aspects here to help explain design decisions made later.

The Deployment View

A Web application, being a specialization of a client/server application, has mini-
mally two main nodes, the server and the client browser. The server is a node that 
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has a known address on a network and is configured to listen for HTTP requests 
on a specific port, typically port 80. A client browser application makes a request, 
at the behest of the user, for an HTML-formatted resource on the server. The 
server, most likely, will be concurrently running a number of services, including 
other Web applications, possibly a database server, an application server, and so 
on. In Figure 12–2, the Client and Server nodes are clearly identified. 

In the Deployment View of the key components, execution environments Tom-
cat and Cloudscape are treated as nested nodes of the server. The Tomcat
node is a Web application execution environment based on the Java environment. 
The Tomcat node itself is shown here deploying the artifact VTSWeb.war, a 
Web application archive file. The Cloudscape execution environment is a data-
base server capable of executing SQL files and shown here deploying an artifact 
called VTS.sql.

The Client node in Figure 12–2 is shown deploying the Firefox.exe arti-
fact, which is an executable HTML browser application. The Client node has a 
communication link to the Server node. This communication link may be any-
thing from a dialup ISP to broadband or wireless. The important and logical 
aspect to concentrate on is that the client communicates to the nested Web and 
database servers via this communication link. 

Figure 12–2 The Deployment View of the Components in a Web-Centric 
System
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This representation of a Web-centric system is simplistic. In larger systems, the 
deployment diagrams showing the topography of all the nodes, components, serv-
ers, and communication links can be complex, resulting in the need for a good 
visualization and documentation system such as the UML. Figure 12–3 is an 
abstract deployment diagram showing how an intelligent router can be used with 
a Web server farm and how an entire set of applications can be run from applica-
tion servers. The details of such strategies can be quite complex, but the general 
strategy of scaling an application by adding additional processing nodes is cer-
tainly viable in Web applications.

The Logical View

The typical Web application has at least four logical components: the browser 
running on the client, the Web or application container, a separate component for 
the application logic itself, and a database server component. In Figure 12–4, the 
Firefox.exe component is a commonly available multiplatform browser, and 
Tomcat is a popular Web container based on the Java Server Pages (JSP) specifi-
cation. The VTSWeb component represents the business application, and 
Cloudscape is a simple portable database server. The most important logical 
point of this diagram is that the client browser is never in direct contact with the 
database or even the business application component. All access to server-side 
resources is mediated by the Web container. This makes the Web container an 
important component to consider when thinking about security requirements.

Web servers are designed to listen to certain ports, usually port 80, and respond to 
GET and POST requests. GET and POST are commands defined in the HTTP pro-
tocol. They are essentially two simple ways to request information from a Web 
server. The POST method is a little more extensible and used more often when 
data or files supplied by the user are sent to the server. The determination of 
which command to use is embedded in the HTML-formatted page being rendered 
by the browser. Usually the information returned by a browser request is an 
HTML-formatted document, which can be visually rendered in the browser, but 

Figure 12–3 A Deployment Diagram for a Web Application Server Farm with Parallel 
and Redundant Processing Nodes
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the server could return streamed data in any form, leaving the client responsible to 
save or delegate the processing of the information to another locally installed 
application.

Figure 12–5 shows logical classes representing elements in both the client and 
server tiers of the application. On the client, a browser is responsible for request-
ing Web pages (or more generically, resources) with simple HTTP GET or POST
commands. These services can be provided by the operating system or may be 
implemented in the browser itself (in which case the browser calls on lower-level 
network APIs). The Web container is constantly listening on certain ports (e.g., 
port 80) for incoming HTTP requests. An HTTP request is packaged by the 
browser and sent to the Web container. It contains a resource identifier that points 
to a specific Web page or references a Web application. The request can have 
accompanying it a set of key-value pairs (parameters), all represented as strings.1

Some HTTP requests are packaged with more complex form data that the user 
supplies just before the page request is submitted.

When the Web container receives a request for a resource, it must first determine 
the file or application resource to invoke. The container invokes the proper 
resource, and if the resource indicates that it is dynamic and should be processed, 
the Web container executes it. During processing, the HTTP request information 
(parameters and form data) is examined, and the application performs the neces-
sary business logic. Often this logic is executed in a separate application server 
(e.g., an EJB container), which potentially accesses another database server.

Logically, a Web application is made up of Web pages, controllers, and entities 
(the three basic stereotypes found in an analysis model). Static Web pages (no 

Figure 12–4 The Logical View of the Primary Components of a Web 
Application

1. The gory details of parameter and post data formatting can be found at the World Wide 
Web Consortium Web site (www.w3.org). Fortunately, most of these details are managed 
by the Web application framework on which we choose to implement the application.

www.w3.org
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processing) may just reside in a file system, while Web pages that contain busi-
ness logic processing must be loaded and executed in the context of a container. 
Controller objects are often embedded in components, and persistent entities are 
managed by databases.

The Process View

There are minimally two, but usually more, processes involved in a typical Web 
application. The client and server operate asynchronously, except during the han-
dling of HTTP requests. Additional database, authentication, and messaging serv-
ers are often part of a typical Web application. They may coexist on a single 
server node or be distributed across multiple nodes. The process layout of a Web 
application has the same flexibility as any client/server architecture, with only the 
one requirement that client nodes must run some form of Web browser client soft-
ware to initiate communication with the server-side application.

As intimated earlier, the most important thing to understand about Web applica-
tion architectures is that they work in a connectionless mode. That is, the client 
and server are never connected longer than it takes to process the one GET or 
POST request. Once a server resource (i.e., HTML-formatted Web page) is 
requested by a browser and the server responds with that resource, the connection 

Figure 12–5 The High-Level Logical View of the Objects Involved in a 
Web Application
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Client State Management

One of the most interesting problems that Web applications face is that of 
managing client state on the server in a connectionless environment. Since 
every request and response made between client and server is completed 
with a new and unique connection, it is difficult for a server to keep track of the 
sequence of requests of any one particular client.

Managing state is important for many applications since a single use case 
scenario often involves navigating through a number of different Web pages. 
If there were no state management mechanism, you would have to continually 
supply all previous information entered for each new Web page. Even for the 
simplest applications this can get tedious. Imagine having to reenter the con-
tents of your shopping cart from scratch every time you visit it, or entering your 
user name and password for every screen you visit while checking your Web-
based e-mail.

The most commonly implemented solution to this problem, originally proposed 
by the World Wide Web Consortium (W3C), is the HTTP State Management 
Mechanism or, as it is more popularly known, cookies. A cookie is a piece of 
data that a Web server can ask a Web browser to hold on to and to return 
every time the browser makes a subsequent request for a HTTP resource 
from that server. Typically, the size of the data is small, between 100 and 
1000 bytes. Web application frameworks manage client state by generating a 
unique identifier each time a browser first interacts with the application and 
places this ID in a cookie for the browser. This ID is used as a key into a map 
on the server that contains all the state information for that particular client.

URL redirection is an alternative approach to cookies for managing client 
state. In this approach, every hyperlink and form places the ID on the end of 
the URL submitted to the server during the next page request. The ID per-
forms the same role as a cookie, but as a parameter of a URL it can be used 
with browsers that have explicitly turned off their cookie feature. The downside 
to this approach is that every page in a Web site must be dynamic, and the 
user cannot wander outside of the application in the middle of a use case sce-
nario, lest the particular session between the client and server be broken.

The two other approaches for managing client state serialize the entire state 
into the URL parameters or into cookies. These are not commonly used for a 
number of reasons, the least of which is that they are inherently less secure 
since the client’s state is sent over the wire back to the browser, whereas in 
the previous approaches the state is managed solely on the server. Also, 
when all state values are placed in cookies, they are limited by size (4K) and 
can have at most 20 cookies per domain. All state data must be encoded into 
simple text (no white space, semicolons, and so on). This also implies that you 
can’t easily capture client state with higher-level objects in the session state. 



500 SECTION III APPLICATIONS

between client and server is broken. Figure 12–6 shows a client making a simple 
GET request to the server (Tomcat). The server determines from the request 
which Web application and resource to invoke. A Web page inside the application 
is instantiated or invoked, and this represents the main trigger for the execution of 
business logic. Nearly all business logic in a Web application is invoked during 
the process of handling a GET or POST request. When the logic is finished, the 
application is responsible for preparing a response page (i.e., the next Web page 
in the scenario). It is important to realize that once the request for a Web resource 
is fulfilled, the application stops working for that particular client. 

The implications are that it is not at all obvious how a server application can keep 
track of one particular client’s request history and hence the relative internal state 
of the client. For example, without exploiting certain features of HTTP or imple-
menting certain architectural mechanisms, a server application would have diffi-
culty managing even a simple shopping cart or the state of a particular user 
walking through a multistepped wizard. Fortunately, most Web application envi-
ronments provide many useful utilities and mechanisms for managing client state.

Another implication of this architecture is that the server does not know whether 
the user has abandoned the application in the middle of some business process. It 
is entirely likely that on occasion a remote user might become disconnected from 
the network and hence be unable to finish a particular business process that was 
started. In a more classic client/server application, the server might receive a noti-
fication that the client has been prematurely disconnected, but in a Web applica-
tion, there are no notifications sent to the server when a user becomes 
disconnected or simply decides to just shut down the browser.

Figure 12–6 A Basic Sequence Diagram of an HTTP GET Request
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Web application designs therefore must be very mindful of what resources are 
opened and accessed between Web page requests. For example, one cardinal rule 
of Web application design is to never open a transaction in one page and close it 
in another. The time between Web page requests from a single client is usually on 
the order of seconds and could at any time abruptly stop. Managing transactions 
and locks on this order of magnitude is surely going to bring an application server 
to its knees.

The Implementation View

Figure 12–7 shows an overview of the implementation model for the Vacation 
Tracking System and describes the system’s tiers and packages. In this diagram, 
the main Web tier component, VTSWeb.war, is shown containing Web page 
artifacts (JSP and HTML files) as well as a set of Java classes in the web and sdo
packages. This code is used to process and invoke the EJB logic in the business 
tier. The package com.acme.vts is shown, in the background, as the main 
namespace for all the Java components. The Deployment View would describe in 
more detail the deployment of the components in the tiers, and the Logical View 
would describe in more detail the nature and responsibility of the components.

The Use Case View

The Deployment, Logical, Process, and Implementation Views are tied together 
by implementing the basic stimulus/response use case. A client makes an HTTP 

Figure 12–7 The Implementation Model Overview
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request to a server for a Web page. The server examines the request and deter-
mines which application or resource needs to be loaded and executed. Some 
resources result in business logic processing, while others simply display static 
data. When the processing is complete, the application is responsible for compos-
ing a response, usually in the form of an HTML Web page that can be rendered in 
place of the previous Web page. This response page contains new information and 
options for the user to invoke or request. By assembling an entire collection of 
these Web pages, each specialized to display and accept information that is part of 
the application, an entire business process can be implemented.

In this chapter, we focus on one architecturally representative use case: Manage
Time. This use case by far is the most frequently invoked and the one most 
viewed by all the actors of the system. As a result, it is critical to implement this 
use case effectively and to ensure that it meets all of the overall design goals, 
including the ease-of-use feature.

Many different templates can be used for use case specifications. The format used 
in this chapter shows more robust steps in the flows. This avoids the stimulus/
response style flow that Web applications can create. Also, this style of use case 
specification is good for situations when there are complex or robust alternate 
flows. The style or format that you ultimately use is up to you and the level of for-
mality to which your organization adheres.

The following example gives a summary of the written specification for the 
Manage Time use case.

Use case name: Manage Time

Actor: Employee

Goal: The employee wishes to submit a new request for vacation time.

Preconditions: The employee is authenticated by the portal framework and 
identified as an employee of the company with privileges to manage his or her 
own vacation time. 

Main flow:

1. The employee begins by selecting a link from the intranet portal to the 
VTS.

2. The VTS uses the employee’s credentials to look up the current status 
of all the employee’s vacation time requests and outstanding balances. 
Information is displayed for the previous 6 months and up to 18 months 
in the future.

3. The employee wants to create a new request. The employee selects 
one of the categories of vacation time with a positive balance to use.

4. The VTS prompts the employee for the date(s) and time for which to 
request vacation time. The employee should have access to a visual 
calendar to help select and compare chosen dates.
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5. The employee selects the desired dates and hours per date (e.g., four 
hours might indicate a half-day vacation time request). The employee 
enters a short title and description (no more than a paragraph in length) 
so that the manager will have more information with which to approve 
this request. When all the information is entered, the employee submits 
the request.

6. If the submitted information is incomplete or incorrect or does not pass 
validation, the Web page is redisplayed, with the errors highlighted and 
documented.

7. The employee has an opportunity to change the information or cancel 
the request. 

8. If the information is complete and passes validation, the employee is 
returned to the main VTS home page. If the employee’s vacation time 
requests require manager approval, an e-mail is immediately sent to 
the manager(s) authorized to approve the employee’s requests. 

9. The vacation time request is placed in a state of pending approval.

10. The manager responds to the e-mail by clicking on a link embedded in 
the e-mail or by explicitly logging into the intranet portal and navigating 
to the main VTS home page. 

11. The manager may be required to supply necessary authentication cre-
dentials to gain access to the portal and VTS application.

12. The VTS home page lists the manager’s own vacation time requests 
and outstanding balances but also has a separate section listing 
requests pending approval by subordinate employees. The manager 
selects each of these one at a time to individually approve or deny.

13. The VTS displays the details of the requested time and prompts the 
manager to approve or disapprove the request. If the request is disap-
proved, the manager is required to enter an explanation. Once the man-
ager submits the result, the internal state of the request is changed to 
approved or rejected.

14. Whether a request is approved or rejected, an e-mail notification is 
immediately sent to the employee who made the request. The man-
ager’s screen returns to the main VTS home page, and the manager 
may approve other outstanding requests, make a request for him- or 
herself, or simply leave the VTS application.

Alternate flow: Withdraw Request

Goal: The employee wants to withdraw an outstanding request for vacation time.

Preconditions: An employee has made a vacation time request, and that 
request has yet to be approved or denied by an authorized manager. See also 
main flow preconditions.

1. The employee navigates to the VTS home page through the intranet 
portal application, which identifies and authenticates the employee with 
the privileges necessary for using the VTS.
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2. The VTS home page contains a summary of vacation time requests, 
outstanding balances per category of time, and the current status of all 
active vacation time requests for the previous 6 months and up to 18 
months in the future.

3. The employee selects a vacation time request to withdraw, one that is 
currently pending approval. 

4. The VTS prompts the employee to confirm the request to withdraw the 
previously submitted vacation time request.

5. The employee confirms the desire to withdraw, and the request is 
removed from the manager’s list of pending approvals. 

6. The system sends a notification e-mail to the manager. 

7. The system updates the request state to withdrawn.

Alternate flow: Cancel Approved Request

Goal: The employee wants to cancel an approved vacation time request.

Preconditions: The employee has a vacation time request that has been 
approved and is scheduled for some time in the future or the recent past (pre-
vious 5 business days). See also main flow preconditions.

1. The employee navigates to the VTS home page through the intranet 
portal application, which identifies and authenticates the employee with 
the privileges necessary for using the VTS.

2. The VTS home page contains a summary of vacation time requests, 
outstanding balance per category of time, and the current status of all 
active vacation time requests for the previous 6 months and up to 18 
months in the future.

3. The employee selects a vacation time request to cancel, one that is in 
the future (or recent past) and has been approved.

4. If the request is in the future, the employee is prompted to confirm the 
cancellation. If the request is in the recent past, the employee is 
prompted to confirm the cancellation and provide a short explanation. If 
the employee approves the cancellation and provides the required infor-
mation, an e-mail notification is sent to the manager, and the state of 
the request is changed to canceled. The time allowances used to make 
the request are returned to the employee. The employee can also abort 
the cancellation, effecting no changes to the current requests.

5. The employee is returned to the main VTS home page. The summaries 
are updated to reflect any changes made to the employee’s outstanding 
vacation time requests.

Alternate flow: Edit Pending Request

Goal: The employee wants to edit the description or title of a pending request.
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Preconditions: An employee has made a vacation time request, and that 
request has yet to be approved or denied by an authorized manager. See also 
main flow preconditions.

1. The employee navigates to the VTS home page through the intranet 
portal application, which identifies and authenticates the employee with 
the privileges necessary for using the VTS.

2. The VTS home page contains a summary of vacation time requests, 
outstanding balances per category of time, and the current status of all 
active vacation time requests for the previous 6 months and up to 18 
months in the future.

3. The employee selects a request to edit, one that is pending approval.

4. The VTS displays an editable view of the request. The employee is 
allowed to change the title, comments, or dates. The employee can also 
choose to delete or withdraw this request.

5. The employee changes request information and submits the changes to 
the system.

6. If the employee withdraws the request, the VTS prompts for confirma-
tion before withdrawing the request. If changes are made only to the 
information, the changes are accepted, and the screen returns to the 
main VTS home page. If there are errors or problems with the informa-
tion changes, the VTS redisplays the editing page and highlights and 
explains all problems.

This use case description contains quite a bit of information about the proposed 
VTS and how it is expected to be used by a typical employee. It is for the most 
part a functional description of the system from the viewpoint of the Employee
actor. Indeed, this is exactly what a use case is supposed to be. Unfortunately, this 
description is insufficient to even begin analysis with. What is needed are the non-
functional requirements and much more information about the domain. Nonfunc-
tional requirements typically include requirements on the environment, 
performance, scalability, security, and so on. Domain knowledge can be in the 
form of discrete requirements, for example:

■ All employees work eight-hour days.
■ Each employee’s vacation time requests are subject to the restrictions of 

each employee’s primary work location in addition to overall company pol-
icies and restrictions.

■ Vacation time request validation rules are defined and owned by the HR 
department.

These types of requirements or knowledge may be found embedded in use case 
specifications, or they can be captured as discrete line item requirements. This 
type of domain knowledge may also be referenced by commonly accessible 
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documents. For example, the detailed policies and rules for validating a vacation 
time request are part of a company’s employee manual and most likely available 
through a variety of sources (e.g., intranet, forms, documents, new employee 
orientation presentations, and so on). A project’s requirements set would simply 
reference these existing documents rather than try to duplicate them.

12.3 Construction

The most important task when analyzing a potential Web application, as with 
most types of software applications, is the identification of the system’s entities 
and processes. The entities and processes of an application represent concepts in 
the business domain and are ideally independent of an architecture, but not neces-
sarily so. In a Web application, one critical set of artifacts is the navigation map 
and Web page definitions. Roughly speaking, these elements correspond to the 
classic analysis stereotypes of entity, controller, and boundary. We’ll begin with a 
Web-centric model: the User Experience (UX) model.

The User Experience Model

The UX model [1, 2] is one example of capturing the user interface elements of a 
Web application at a sufficient level of abstraction so as to express a concrete nav-
igational map between the Web pages in the system, while ignoring the styles 
(fonts, sizes, colors, and so on) and other user interface specifics that are best 
developed later in the process. Figure 12–8 shows a high-level fragment of a UX 
model that describes the screens used to implement our primary use case. In this 
model and diagram there are two key stereotypes, «Screen» and «Form». A 
«Screen» stereotyped class represents a complete unit of user interface dis-
played to an end user or, roughly speaking, a Web page. Some screens contain 
HTML form elements, which are used to submit user-entered information back to 
the server. These stereotyped classes are always contained by a screen and when 
submitted result in navigation to another screen in the system. Directed associa-
tion relationships indicate navigational pathways through the screens.

While Figure 12–8 is most useful for understanding the navigational flow through 
the screens of the system, it provides little in the way of screen content. More 
detailed diagrams that contain screen content are also useful at this level of 
abstraction. Figure 12–9 shows the content of the VTSHome screen. Attributes of 
a «Screen» stereotyped class indicate discrete data values, typically strings or 
simple types easily rendered in HTML. The employee name and current
date attributes are probably used in a header or at the top of the screen. The 
message attribute is used to display an informative or error message after an 
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action has taken place. For example, when the employee completes a new vaca-
tion time request and returns to the home screen, the message might say some-
thing like “Your request requires the approval of your manager, who has been 
notified by e-mail.”

Often content in a screen is multivalued and complex. To accurately represent this 
type of content, we define another class stereotype, «Content», that when 
applied to a class identifies a coherent bundle of information. Content items are 
often used as line items in a list. In Figure 12–9, the classes Request and 
PendingApproval are modeled as content items contained by the home 
screen. The screen potentially displays multiple instances of each. Content 

Figure 12–8 A High-Level User Experience Model

Figure 12–9 A Detailed View of the VTSHome Class
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classes define attributes that are like the attributes of a screen, things that can be 
easily rendered in HTML. It is not important at this high level of the model to 
worry about actual data types. What is important is to simply define them with a 
name and short description.

It is interesting to note that even at this early point in user experience design, 
some decisions are being made that will have a significant impact on the final 
design. By specifying the content of the VTSHome page not only to contain the 
summary of current vacation requests for the employee but also to have this same 
page used by the manager to view pending approvals, we are implying that this 
screen is the home page for both employees and managers. Nowhere in the use 
case specifications nor the nonfunctional requirements was it stated that employ-
ees and managers should use the same home screen. Such an assumption is not 
without reason since managers are also employees and can do all the things (with 
respect to the VTS) that employees can. Decisions like this are exactly what the 
UX model is intended to document. Ultimately, the final design will determine 
the implementation; however, from the logical (and user experience) point of 
view, employees and managers share the same home screen. 

The Analysis and Design Models

In analysis, we want to capture the entities and processes of the system. Since we 
know that this system will be implemented as a Web application, we are less con-
cerned with boundaries because they are explored in the UX model. The analysis 
model is a first attempt at identifying the elements that will make up the solution 
space but using the vocabulary of the domain. This means that most of the ele-
ments of the analysis model will have names that correspond to things and activi-
ties that are described in the requirements and are recognizable by the domain and 
end users.

One easy way to get started is to do a simple noun-verb analysis of the use case 
specifications and related requirements documents. Important nouns tend to rep-
resent classes in the model, while action phrases (verbs) tend to be represented by 
operations on those classes. Attributes and relationships represent natural intrin-
sic properties of the classes captured in the model. Figure 12–10 represents an ini-
tial start, focusing on the main domain classes and concepts represented in our 
primary use case. 

There are several important points to consider in this class diagram. First is the 
idea that vacation time requests are separate and distinct from vacation time 
grants. A grant in this context represents available time for the employee to draw 
on when requesting time off. Grants are administered by the HR department and 
determined by company policy. In the context of this use case, however, their pri-
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mary responsibility is to create new vacation time requests. Their persistent prop-
erties are the number of hours that can be requested per calendar year and when 
the grant expires (if at all).

Another important decision captured in this diagram is the idea that a manager 
is an employee. While it may sound obvious to everyone familiar with the popu-
lar usage of these common business terms, such assumptions cannot always be 
made when developing software. The class diagram goes further to say that an 
employee can have multiple managers. This is not meant to be a statement on the 
company hierarchy and organization, but rather in this context it means that an 
approval of an employee’s request for vacation time may come from multiple 
sources. For example, in some companies, high-ranking executives have dedi-
cated personal assistants. A personal assistant may be delegated to make vacation 
time decisions for the executive.

Other inherent properties of an employee are the name and primary work loca-
tion. Note that at this level of abstraction and required usage, an employee name 
need only be managed with a single string data type. Other applications that man-
age employee information will most likely require separate values for the title and 
the first, last, and middle names, but in this application those distinctions are not 
required since the only place the employee name is used is in the display of the 
home screen. As a general rule, unless the problem absolutely requires a complex 
solution, don’t propose one.

Figure 12–10 An Analysis Model Class Diagram Supporting the Primary Use Case
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Another interesting and important aspect of most analysis models is the lack of 
identifier definitions. In nearly every implementation of a system with persistent 
entities, the concept of a unique ID is present. For example, most companies 
assign an employee ID to each employee. This ID uniquely defines that particular 
employee and is often reused if the employee leaves and then returns to the com-
pany. The need for the ID is clear given that there is no guarantee of the unique-
ness of names. Yet in our model, there are no ID attributes defined. That is 
because in most analysis models, it can be safely assumed that IDs and other 
properties necessary to implement the analysis with the architecture will be added 
as required. Unless there is a very specific business need for information like this, 
there is no need to specify it during analysis. For example, suppose we had in our 
proposed system another actor called Auditor, who was responsible for brows-
ing all the vacation time requests and checking for regulatory compliance; that 
actor would in fact need and expect employee IDs to cross-reference with other 
employee data. In this case, it would be important to explicitly specify this 
attribute of an employee.

Some interesting elements in the model can be elaborated with a state machine. 
For example, the Request class has a defined state machine, as shown in Figure 
12–11. As far as state machines go, it is not that interesting; however, it is signifi-
cant. It tells us that state is important for a Request and that it is well defined. In 
the diagram shown in Figure 12–11, we see three transitional states and four final 
states defined. The paths through these states are very simple and in this diagram 
are unlabeled.

Figure 12–11 The State Machine for the Request Class
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By far the most difficult part of the analysis was creating the elements related to 
ensuring that any requested vacation time passed all the rules and restrictions of 
the company and primary work location. Not much is stated in the use case speci-
fications about these rules; instead, the requirements simply reference internal 
company documents as current examples. The requirements do state that there is 
to be a rules-based system managed by the HR department. This statement alone 
indicates that the approach must be flexible and manageable by users whose skill 
sets are not in computers or algorithms. This is important because one obvious 
and very flexible mechanism for implementing a general-purpose rules-based 
system is to enable the capture and interpretation of a flexible scripting language 
like JavaScript as a rule. Most algorithms, complex or simple, could be imple-
mented with JavaScript and easily interact with persistent entities and objects. 
The principal problem with this is, of course, that the typical HR clerk, being 
charged with the responsibility of maintaining these aspects of the system, does 
not typically have JavaScript writing as a primary skill.

Long before we choose an implementation solution or even a strategy, we need 
to first identify the higher-level abstract elements that belong in the model. For 
now we can create a single class called Restriction and place on it all the 
responsibility for validating a vacation time request against the company and 
location-specific policies. A deeper understanding of the rules and regulations for 
vacation time is needed. Unfortunately, not much about the inherent structure of a 
rule is documented in the use case specifications, and only specific instances of 
the rules are captured in the company documents. Therefore, analysis leads us to 
study in detail and look for patterns in the current set of rules. Analysis activities 
like this often require interaction with domain experts.

After a careful examination of the rules implemented in company policy, and after 
speaking with the domain experts in the HR department, we can assemble a sum-
mary of the major rule types.

■ An employee can’t take more than X consecutive days of leave for Y type of 
grant.

■ Vacation time of type X cannot be taken when directly adjacent to a com-
pany or location-specific holiday.

■ Vacation time of type X is limited to Y hours per week or month.
■ Vacation time may not be granted when there are only X number of employ-

ees scheduled to work from the list Y of employees.
■ Vacation time may not be granted on these dates: X.
■ Vacation time of this type is limited to certain days of the week: {M, T, W, 

Th, F, Sat, Sun}.

This more detailed understanding of potential rules for vacation time request 
approval will lead to some important changes to our model. It is clear that 
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implementing restrictions is varied and requires specific, individually set infor-
mation. In our attempt to formulate a solution strategy, we will create specializa-
tions of the now abstract Restriction class, one for each type of rule in the 
system, as shown in Figure 12–12. 

Each specialization is required to implement the validate(), method 
which accepts a Request object as a parameter. From the Request object a 
validate algorithm can navigate to most of the information it needs 
(Employee, Grant, Location) to validate the request. Given the varied 
nature of restriction types, not all of the existing information is sufficient to make 
a validation. Therefore, each specialization will manage a set of properties or 
relationships to objects that cannot be derived or navigated to via the Grant
object. For example, the CoworkerRestriction class will need to manage 
the list of coworkers as well as identify the minimum number of employees 
allowed to be scheduled for work (Figure 12–13). Rules like this are often associ-
ated with safety issues (e.g., there must always be at least one employee on duty 
who is trained in first aid).

The abstract validate() method initially returned just a simple Boolean indi-
cating a pass or fail evaluation of the request. But if  we look at the requirements 
a little closer, we see that the user needs to be notified with an explanation if he or 
she tries to submit an invalid vacation time request. Since the rules for validation 

Figure 12–12 The Restriction Class Hierarchy

Figure 12–13 The CoworkerRestriction Class and Properties
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are now encapsulated in each of the Restriction specializations, it seems 
appropriate that these classes provide a mechanism to return this information to 
any calling process. Also, since more than one violation can occur, the results of a 
validation should be accessed as a collection. The result of these requirements 
leads us to the creation of a new class, ValidationResult (Figure 12–14), 
which is returned by the validate() method. 

The ValidationResult class is actually quite simple. It defines two meth-
ods: validated(), which returns a simple Boolean indicating a validated 
request, and getErrors(), a method that returns a collection of string mes-
sages, each corresponding to a detected problem with the request. At the analysis 
level, it is sufficient to keep the class this simple. Let the activities design resolve 
the details of implementation. The important point here is that it must be possible 
for a process to validate a vacation time request, make each error result available, 
and provide a simple means of determining validity.

Another observation of the rules system that is evolving here is that restrictions 
may not be associated with a particular Grant or Employee object, but rather, 
are broadly applied to a Location or Category of grants. Thus our earlier 
analysis model must change (Figure 12–15). Establishing these relationships 
makes it easier for the HR department to apply a broad class of common rules 
without having to duplicate them for each employee. While it is clear this infor-
mation can be navigated to during validation, the motivation for design change is 

Figure 12–14 The ValidationResult Class

Figure 12–15 Independent and Direct Relationships among Restriction,
Location, Grant, and Category
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based on the overriding desire to make the system easier to use, and in this case 
the ease of use will be improved significantly for the HR personnel. 

Now that the restrictions and rules are better defined, it may be time to revisit 
some of the HR use cases because now we know more information about the type 
and nature of information that will need to be managed by the HR department 
with respect to an employee’s vacation time. Although beyond the scope of this 
simple chapter, a set of Web page screens that prompt for the unique and specific 
values required by each concrete type of restriction could be envisioned. In such a 
mechanism, it would be necessary for Restriction objects to publish their 
required parameters (i.e., the X and Y placeholders in our rules summary) so that 
the HR clerk could provide the values in a user interface. A helper class, 
RestrictionParameterDescriptor, is defined to encapsulate each of 
these values. Concrete implementations of Restriction are responsible for 
providing an array of these parameter descriptor objects. The descriptors could be 
used to prompt the HR clerk when defining new restrictions for an employee, 
location, or category. Finally, the abstract Restriction class should be able to 
accept and provide individual parameter values. This is accomplished through 
simple put and get parameter methods, keyed off of the parameter name. Fig-
ure 12–16 illustrates both classes.

At various points during analysis, it is useful to test the ideas being put forth in 
the model. However, since we are still independent of an actual concrete architec-
ture for which we can write code, we must analyze our model a little more 
abstractly. We do this by executing thought experiments on the elements of our 
model, specifically, trying to understand in moderate detail how specific scenarios 
will play out given the structures and behaviors documented in the model. The 
area of our model dealing with restrictions is a good example of the need to verify 
that at least the typical and most important use cases can be implemented this way 
with realistic data.

A useful pair of tools that the UML provides us is object diagrams and communi-
cation diagrams. Our task here is to evaluate the ability of our model to validate a 
new vacation time request. We want to ensure that the behavior can be accom-
plished according to the requirements and with the set of defined classes and 

Figure 12–16 Making Restrictions Easier to Manage Programmatically and through a 
User Interface



CHAPTER 12 WEB APPLICATION: VACATION TRACKING SYSTEM 515

objects of our model. In this thought experiment, we use these diagrams to under-
stand how a new request for an employee named Jim who works in the North 
Factory might be executed. 

Figure 12–17 shows the object diagram of a set of objects for our hypothetical 
employee, Jim, who wants to use a vacation time grant given as a bonus for com-
pleting his work on time. The figure indicates with dependencies other object 
instances that can be accessed or navigated to. The instances have real-life names, 
appropriate for the scenario, and are followed by a colon and the type or class of 
object they are. This diagram has been annotated with a few freeform rectangles 
to help emphasize and make clear the three sources of restrictions: Grant,
Location, and Category.

Figure 12–17 An Object Diagram Describing a Request Validation 
Collaboration



516 SECTION III APPLICATIONS

In Figure 12–18, we use a communication diagram to examine the communica-
tion paths for a Request validation. The lines represent communication paths 
between object instances, not structural relationships like those found in class dia-
grams. We examine the behavior of this collaboration by looking at the numbered 
messages that travel over the communication paths. The main coordinator of the 
behavior is the Request instance, which does most of the work in this scenario. 
The general flow is to get and validate the various restrictions for the Location,
Category, and so forth by calling the validate() operation on each of the 
restrictions. If a restriction fails validation, its message is appended to the valida-
tion result instance.

One interesting flow to follow is that of the CoworkerRestriction. In order 
for a CoworkerRestriction to validate, it needs to know not only which 
EmployeeGroup it represents but also which Employee to check compliance 
for. A quick look at the validate() signature reveals that the Request object 
is passed in as parameter, and from it we can navigate to the Employee. How-
ever, these restrictions also need access to the vacation plans of all the other 

Figure 12–18 A Communication Diagram Describing a Request Validation 
Collaboration
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employees in the group to ensure that at least one employee of the group is sched-
uled for the location at the request time. So far, our model has not adequately 
expressed how this can be accomplished. Therefore, as a result of this thought 
experiment, we need to revisit the model and make sure that these types of restric-
tions can get the information they need to validate a request.

As discussed in Chapter 6, the beginning and ending of analysis is not a milestone 
event. Analysis activities often take place throughout the entire development life-
cycle, but for the most part they are concentrated at that time when most of the 
requirements are at least understood. When the analysis model has sufficiently 
matured, it is time to begin design. This is clearly a vague determination, but that 
is the reality for most project efforts. The decision to start design activities is 
often made on criteria that are very local, for example, the history of the project 
team and organization or the maturity of the architecture.

Now we convert the analysis into a design that can eventually be executed as 
software. Some design models are identical to executable models (or implementa-
tion models), while others are sufficiently abstract as to still require a certain 
amount of skill and effort during implementation. Web applications in general 
have a mix of these. Most business tier elements (entities and controllers) map 
quite closely to the resulting code in the system. Most presentation models, how-
ever, require significant effort during implementation before they are ready for the 
final system.

In this chapter’s discussion of the VTS’s design, we don’t have the space to cover 
even a brief overview of all the interesting aspects and issues of design in Web-
centric applications. Instead, we will discuss just a few of the most important design 
points, in particular those that are most unique to Web application architectures.

In addition to the basic architectural components of the Web, this project’s archi-
tect has decided to use the following components and technologies:

■ Client tier: Any HTML 3.2 capable browser
■ Presentation tier: Java Server Pages (JSP), Servlets, and Java Server Faces 

(JSF)
■ Business tier: Enterprise Java Beans (EJB) 2.x (specifically, Container Man-

aged Persistence [CMP] beans for entities, and session beans for control-
lers), and Service Data Objects (SDO)

■ Security: Central Authentication Service (CAS)2

The decision was made to use Java-based products in the overall architecture. 
This is not because Java-based solutions match up with the stated requirements 

2. For more information, see www.ja-sig.org/products/cas/.

www.ja-sig.org/products/cas/
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better than any other existing technology, but rather because they happen to match 
up better with the organization’s current skill sets and tooling, in addition to being 
well suited to the task. This organization has built several Java-based enterprise 
applications with the core J2EE technologies successfully in the past. These tech-
nologies are familiar, and the tooling required to build and test these types of 
applications already exists on the developer’s workstations. In our situation, there 
is no compelling reason why the architect should switch entire technology frame-
works. There are only two reasons why an architect should even consider such a 
significant change.

1. Recent experiences demonstrated serious problems with the technology or 
an inability to meet the needs of the development team, maintenance team, 
and end users. 

2. The technology itself is no longer being supported or is evolving so signifi-
cantly as to make it appear like a new technology.

In the client and presentation tiers, the primary design goals are to implement an 
intuitive user interface that has a quick response and is easy to navigate. The 
interface should not have any dependencies on specific browser versions or fea-
tures, or to put it more accurately, this application should behave properly on all 
standard HTML 3.2–capable browsers. Even though the current version of HTML 
at the time of this writing is version 4.01, the decision to support version 3.2 (and 
later) is driven not so much by the availability or popularity of browsers but by 
minimum required functionality. It has been determined that all of the features 
necessary to implement this application can be accomplished with the older ver-
sion of the HTML specification. Therefore, since there is no real need to require 
new browsers and exclude the older versions, the application can support a 
broader selection of client configurations.

In addition to the core presentation technologies, JSP and Servlets, the architect 
has decided to use JSF components to assist in the development of the user inter-
face. JSF is an API and custom tag library that contains a number of components 
for displaying forms in HTML interfaces, accepting and validating input, and 
assisting in page navigation. An interesting point to note here is a decision not to 
use the Apache Struts framework. Struts is an older model-view-controller 
(MVC) framework that is still very popular in JSP applications. Struts and JSF 
have been shown to work very well together, even if some of their functionality 
overlaps. While Struts does provide some of the functionality of JSF, its main 
strong point is its controller features. Struts is especially useful when a Web 
application implements long (i.e., many Web pages) business processes. It has 
been determined that our application’s business processes are relatively short, and 
the value that the Struts framework would bring is not significant enough to war-
rant the extra layer of complexity required to implement it.
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The business tier, where most if not all of the application’s logic is executed, will 
run inside a J2EE Web and EJB container. The decision of whether or not the Web 
and EJB container will run on the same machine, whether they are clustered, or 
other such configuration information, is not a consideration of the design, except 
for the fact that such decisions can be made. One advantage of choosing a J2EE-
based architecture is the ability to make such deployment choices late, as the sys-
tem is initially deployed, or to effect these changes as a result of changing 
demand. The important thing to remember during the design and implementation 
activities is to not create or code anything that would prevent the normal ability of 
the J2EE container to shift or deploy components. Such development practices 
are often implemented in coding or design guidelines that the development team 
must follow.

The decision was made to use the CMP mechanism for storing all persistent 
data. There are many reasons to use this mechanism and many reasons why some-
one might not want to. Other options for persistence include the use of Plain Old 
Java Objects (POJOs) and a relational object persistence layer like Hibernate, 
Castor, or the Apache ObJectRelationalBridge (OJB). These options tend to be 
lighter in weight and more efficient, especially when the application is running on 
a single node. The decision was made to use the built-in CMP mechanism of the 
existing container for persistence since the performance needs of this application 
are not significant enough to warrant another technology or extra layer. Addition-
ally, the use of SDO for managing the flow of data between the presentation and 
business tiers was adopted to make it easier to manage entity data.

One piece of this application’s architecture that is not easily discarded is the use 
of the CAS for implementing single-sign-on. The idea of single-sign-on is that, 
while in the same browser, an end user need provide authentication credentials 
only once to access a whole range of related or unrelated Web applications. It was 
determined early while creating the vision that the VTS was to be an extension of 
the existing intranet portal system for the company, and that system currently uses 
CAS for authentication management. Therefore, the new VTS application will 
also have to use CAS to identify and authenticate end users.

Entities

The most important part of designing and implementing entities is identifying 
them. In any given analysis model, any objects with attributes, and even some 
without any defined attributes, may be designed as entities. The trick is to choose 
only those classes in the model that really need to be designed as persistent entities. 
For example, some analysis classes, even those with defined attributes, may merely 
be transient classes or value classes. For example, the ValidationResult
class is used only as a return value to the validate method. Validations are not 
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logged or recorded in this system, so the ValidationResult class does not 
need to be persistent. When a request is validated, an instance of this class is 
returned for the caller to examine the results of the validation. When finished, the 
results are no longer needed or referenced. Therefore, the ValidationResult
class can remain a simple POJO.

The VTS will use CMP beans to manage all of its persistent entities. CMP has 
come a long way since it was first introduced. Initially there were a number of 
problems, specifically with relationships and in performance. However, today’s 
newer specification and improved EJB containers have addressed many of these 
issues, making CMP a preferred mechanism for managing entities. 

Recently, several design patterns have developed around CMP beans. It is gener-
ally recommended to use CMP beans to define only local interfaces. A local inter-
face can be accessed only by another bean in the same container. Marshalling data 
across locally connected beans is much more efficient than doing so over an infra-
structure that can support cross-node communication. These objects are instead 
accessed by a façade object that has local connections to the CMP but also pub-
lishes remote interfaces that can be accessed by other session beans and remote 
clients.

SDO is used to marshal data into and out of the presentation tier. These objects 
are created and managed by the façade objects in the business tier. SDO is the 
result of a recent collaboration between BEA and IBM, two big J2EE container 
vendors, and represents a general agreement to certain best practices when han-
dling data in EJB applications.

Another important design pattern for CMP beans is that they should be designed 
with minimal, if any, business-level behavior. In fact, it is easiest to consider a 
CMP definition as little more than a thin wrapping around a database table. All 
business-level behavior is instead placed in session bean façade objects, which are 
responsible for orchestrating the state in the various CMP beans to accomplish a 
unit of business behavior. This has a direct effect on how analysis entities are 
designed and implemented.

We can begin understanding how all these design-level patterns and conventions 
get realized in code by looking at the Category class. This class is relatively 
simple because it defines only two persistent properties plus a relationship to 
instances of the Grant class. Fortunately, Category does not define any sig-
nificant behavior at the analysis level. If it did, we would need to remove it from 
the entity and place it in one of the façade objects. What we are starting with here 
is a very simple entity.

Design entities are represented by «Entity Bean» stereotyped classes. These 
classes define their persistent attributes; primary key attributes are further stereo-
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typed. The methods of an «Entity Bean» class are segregated into local and 
remote (although in this case Category does not define any remote methods, 
according to our design practices), as well as instance and class level. Each of 
these corresponds to the actual interface used to define them. In the Category
class, we need two interfaces, CategoryLocal and CategoryLocalHome,
to define the local methods that can be invoked on instances of the bean and on 
the home or factory object responsible for creating or finding instances. Figure 
12–19 shows a UML-like diagram3 of the Category entity bean with a relation-
ship to the Grant entity.4

Working with a single model element for each entity makes it easier to understand 
their relationships; however, in the implementation, any given entity is in fact 
implemented with a number of separate and distinct classes, interfaces, or config-
uration files. Our Category class, for example, requires two separate interfaces 
(CategoryLocal and CategoryLocalHome) and one implementation class 
(CategoryBean), is packaged with other beans in a Java Archive (JAR) file, 
contributes to the EJB deployment descriptor file, and results in the definition of a 
table in the database (Figure 12–20). The important thing to realize is that there is 
typically a large fan-out of model elements as you migrate from analysis to design 
and implementation. One analysis element will often map to many elements in 
the implementation, all requiring coordination. Listing 12–1 shows a fragment   

3. This diagram is a customized view of an entity bean, which in a J2EE system includes 
the implementation class as well as its interfaces and some configuration information. Also, 
the use of getters and setters (methods that provide access to object properties) is not an ob-
ject-oriented convention but rather one dictated by the use of Java and the J2EE framework.

4. Since this is a design model targeting a J2EE architecture, it is not inappropriate to use 
platform-specific notations.

Figure 12–19 A Design Model Representation of the Category Class
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of the EJB deployment descriptor containing elements related to the Category
entity.

Listing 12–1 A Fragment of the EJB Deployment Descriptor Containing 
Elements Related to the Category Entity
<ejb-jar id="ejb-jar_ID" version="2.1"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
  <display-name>VTSEJB</display-name>
  ...
    <entity id="Category">
      <ejb-name>Category</ejb-name>
      <local-home>com.acme.vts.CategoryLocalHome</local-home>
      <local>com.acme.vts.CategoryLocal</local>
      <ejb-class>com.acme.vts.CategoryBean</ejb-class>
      <persistence-type>Container</persistence-type>
      <prim-key-class>java.lang.Integer</prim-key-class>
      <reentrant>false</reentrant>

Figure 12–20 Design Model Elements for the Category Class
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      <cmp-version>2.x</cmp-version>
      <abstract-schema-name>Category</abstract-schema-name>
      <cmp-field id="CMPAttribute_1107874632507">
        <field-name>id</field-name>
      </cmp-field>
      <cmp-field id="CMPAttribute_1107874633048">

<field-name>name</field-name>
      </cmp-field>
      <cmp-field id="CMPAttribute_1107874633068">
        <field-name>description</field-name>
      </cmp-field>
      <primkey-field>id</primkey-field>
      <query>
        <description></description>
        <query-method>

<method-name>findAll</method-name>
          <method-params/>
        </query-method>
        <ejb-ql>select object(o) from Category o</ejb-ql>
      </query>
    </entity>
  ...
  </ejb-jar>

Following through with our design guidelines, we define a façade5 object for the 
Category class. The goal of a session façade is to simplify the interface to do 
common tasks of a business entity. This often involves the coordination of meth-
ods in several objects. The session façade provides a simpler interface to find, cre-
ate, modify, and delete entities. Fortunately for us, our development IDE provides 
automation to easily create session façades for entity beans. The resulting façade 
object is called CategoryFacade and, like the entity bean representation, 
defines functionality at both the remote and local levels and the instance and fac-
tory levels. In the model, a stereotyped «facade» dependency indicates the 
semantic connection between the design model–generated façade object and the 
design model representation of the entity. The façade class provides a number of 
utility methods for creating, finding, updating, and removing Category entities. 
This essentially acts as a single source manager of instances of this class. Figure 
12–21 illustrates such a façade object.

Service Data Objects

Another characteristic of this particular façade implementation is the use of a rel-
atively new and emerging standard, SDO. Simply put, SDO is a mechanism for 
accessing and manipulating data in a manner that is disconnected from the data 

5. See the Session Façade pattern as described in Core J2EE Patterns [4].
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source. This provides a useful means for marshalling data in a system. SDO uses 
disconnected data graphs and enables clients to retrieve the data graph from a 
source, manipulate it, and then apply the changes back to the original data source. 

The use of SDO makes for a more consistent interface to bean data across the 
entire application. When the façade classes were generated, the corresponding set 
of SDO objects was also generated. Each SDO object that is created defines two 
interfaces: a root object (for the data graph) and an entity interface. The root 
object represents the conceptual root of the data graph. See Figure 12–22.

The façade object uses the SDO object as the main parameter for its create, 
retrieve, update, and delete (CRUD) methods. It also provides a method to update 
any changes made to an entire graph of SDO objects. Typical usage of this façade 
would be by another session bean acting as a business logic controller, perhaps 
fulfilling a request on behalf of a Web page. Let’s take as a sample scenario the 
need to update and create vacation time request categories. The responsibility for 
this particular task falls on the HR clerk role. Such a business logic controller 
would need to be able to get all the existing categories (usually only a dozen or 
so)6 to list on a Web page. It would then allow the user to select one for editing or 

Figure 12–21 A Façade Object Governing Access to Entity Beans

6. Arbitrary use of the getAllObjects() methods in the façade classes could lead to 
unexpected and serious performance issues when the system is tested in a real-life situation. 
Imagine the performance cost of putting into an array the collection of all the customer ad-
dresses in any medium-sized business.
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removal. The business logic controller can easily delete a category with a refer-
ence to the SDO or its primary key value. Changing the values of a category is 
similarly handled by changing the values in the SDO and then telling the façade 
to use its local value to update the persistent entity in the database.

Primary Key Generation

A pervasive issue in all object-relational database systems is the generation of pri-
mary keys for entity beans. The availability of natural primary key values like 
social security numbers or Universal Product Codes (UPCs) are highly dependent 
on the domain and can’t always be assumed to be available. This means that the 
application must define and implement a strategy for creating primary keys for 
new entities that have no natural key attributes. In our system, the entities Grant,
Restriction, and Request are examples of business objects that have no 
single attributes that could be safely used as primary key values. 

In traditional database systems, a key could be manufactured as a composite of 
several properties and foreign key values; however, most EJB designs are more 
efficient with a single primary key value of a primitive type like integer or string. 
This means that we need to have a strategy for creating primary keys for our enti-
ties. Ideally, the same strategy and mechanism could be used for all our entity 
types that need generated key values.

In this application, we are have selected the Sequence Blocks strategy for primary 
key generation as described by Marinescu [5]. This strategy refines a very simple 
approach that essentially creates a new type of CMP entity responsible for man-

Figure 12–22 SDO Objects Used by the CategoryFacadeLocal Class
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aging the next available integer value that can be used as a key for a particular 
type of entity. The primary problem with this approach is performance, especially 
in a system where new entities are created often. These performance issues are 
addressed by managing access to the entity with a session bean that reserves a 
large block of potential key values. Thus access to the CMP entity holding the 
keys is slightly reduced, depending on the size of keys reserved by the session 
beans.

Incorporating this strategy in our application leads to the creation of another 
entity and session bean with local access by the other entity façade objects (Fig-
ure 12–23). The SequenceEntity bean has only two attributes: the sequence 
name (i.e., the name of the entity type requiring a generated primary key) and the 
next available integer value that can be safely used as a primary key. Because this 
strategy reserves blocks of key values at a time, it is entirely likely and possible 
that there will be gaps in the sequence of integer values actually used. Thus, no 
application using this strategy should make any assumptions about the order or 
distribution of the primary key values. 

The key generator is used by the other façade objects when there is a need to cre-
ate a completely new instance of an entity. This is accomplished by updating the 
createCategory() method on the façade object to check for an incoming 
Category SDO with a null id field. If the id field is null, the façade is respon-
sible for generating a fresh key for this category. Failure to do so will result in an 
exception being thrown. 

Getting a new primary key value is as simple as getting access to the Sequence-
Session bean and then calling the getNextSequenceNumber() method 
with the name of the entity as a parameter. The code for the createCategory
method is shown in Listing 12–2. The doApplyChanges() method is an SDO 

Figure 12–23 Entity and Session Beans for Primary Key Generation
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framework implementation method, and generally speaking, the source code is 
unavailable.

Listing 12–2 Code for the createCategory Method 
public void createCategory(Category data) 

  throws CreateException {
    try {
      if( data.getId() == null ) {
        InitialContext ctx = new InitialContext();
        SequenceSessionLocalHome home = 

   (SequenceSessionLocalHome)
 ctx.lookup("java:comp/env/ejb/SequenceSession");

        SequenceSessionLocal sequence = home.create();
        int id = sequence.getNextSequenceNumber("Category");
        data.setId( new Integer(id) );
      }
      doApplyChanges(data);
    } catch (Exception ex) {
      throw new CreateException(
          "System error while creating \"Category\".", ex);
    }
  }

With this update to all the façade’s create methods and the use of the 
SequenceSession and SequenceEntity beans, new instances of entities 
can be created without the worry of deriving or computing the required primary 
key of each instance (Figure 12–24).

Figure 12–24 The CategoryFacade Session Bean Using the 
SequenceSession Bean to Create New Categories



528 SECTION III APPLICATIONS

Finders

Another important consideration in EJB entity design is the identification of 
finder methods. These are methods responsible for searching for specific entity 
instances that match a given set of criteria. The criteria can be as simple as all 
instances of vacation time request categories (which typically will result in a list 
of no more than a dozen instances). The finder may also implement a more com-
plex search, for example, finding all employees whose requests for leaves of 
absence against a particular category of leave were rejected between March 1 and 
June 23 of the previous year. Regardless of details, the important point about find-
ers is that the filtering of matching entities occurs on the server, ideally on the 
database server. Typically, this is the most efficient means of filtering large collec-
tions of entities. The only other option is to get all instances of an entity and then, 
after it has been potentially passed over the wire and reinstantiated in another pro-
cess, iterate over all the instances and perform the matching tests. This is not the 
most efficient way to filter large collections.

The idea behind a finder is closely related to that of a SQL SELECT statement. 
EJB finders are expressed in a separate language, the EJB Query Language (EJB 
QL), which is very similar to SQL but not equivalent. For example, the following 
EJB QL statement will return all the Grant entity instances that are not associ-
ated with any restrictions.

select object(o) from Grant o where o.restrictions is not 
empty

Finders can also be parameterized. In the next example, the finder query returns 
all DateExclusionRestriction instances that exclude the supplied date. 
Parameters are referenced in the query with a question mark followed by the 
parameter index in the argument list. 

select object(o) from DateExclusionRestriction o where o.date 
is ?1

Ultimately, these queries are captured in the main EJB configuration file ejb-
jar.xml and associated with the Java method declared in the home interface.

Controllers

Even in Web applications there are many approaches to the concept of business 
logic control. Many Web-centric applications use the model-view-controller 
(MVC) approach. Currently the most popular framework for implementing strict 
MVC in J2EE Web applications is the Apache Struts framework. This framework 
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provides a small runtime component along with a set of JSP tag libraries for 
implementing the user interface and for making it easier to coordinate with the 
control framework. The MVC design pattern is a widely used and interpreted pat-
tern. There are countless ways to implement the basic pattern even in the context 
of Web-centric applications. The Struts design and implementation was perhaps 
the first widely accepted implementation of this pattern for Java-based Web 
applications.

While the idea of implementing a strict MVC paradigm in the presentation tier 
sounds reasonable, on closer investigation of the system-level use cases, it is 
unclear where such control is necessary. In the overwhelming majority of use 
case scenarios, the functionality required is little more than basic CRUD opera-
tions on entities. Orchestrating and coordinating complex business operations, 
something for which an MVC paradigm is well suited, is just not part of our sim-
ple application.

The architect of this system has decided not to use an overt MVC paradigm like 
that supplied by Struts but instead to rely on the inherent coordination and control 
supplied as part of the Web pages. For some architects, the decision to not adopt 
an MVC and/or Struts control framework can be surprising, as many consider 
MVC critical to all Web-centric applications. We, however, consider the use of 
middleware, components, or even strategies that are not immediately necessary to 
the successful release of the application, or not obviously apparent in any existing 
documentation or future plans for the system, not to be worth the risk.7

With this decision made, all of the control constructs will be either in EJB session 
objects in the business tier, in beans in the server tier, or embedded as tags in the 
Web pages.

The Web Pages and the User Interface 

The design of the Web pages is really separated into two major concerns: (1) the 
pages themselves, their hyperlinks, and their form fields and (2) their layout. For 
the first concern, the system architect and information architect collaborate to 
determine exactly what conceptual pages are required, what should be in them, 
and how they can be navigated through to accomplish the business goals of the 

7. By this same reasoning, some might wonder why the decision was made to adopt EJBs 
for persistence, when it can be argued that a much simpler and more efficient persistence 
strategy could also be employed. This decision, like many made in a real-life development 
project, is often based as equally on technical merit as on organization history and experience.
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system. Web pages are typically implemented as JSP pages and contain a mix of 
presentation data and relationships to business processing beans. The second 
concern, however, is all about aesthetics and user understanding. The layout of a 
Web page defines where information appears in the page, not what information 
should be there. It focuses on the organization of the page so that what the page 
presents can be most efficiently understood and worked with by the end users. 
The remainder of this chapter is devoted to the first concern, as the second one is 
more about art and visual creativity than traditional analysis and design.

Web page design begins with the UX model. The UX model more often than not 
describes a very good starting candidate for Web page names, content, and links. 
Generally speaking, UX «screen» classes map to individual JSP pages. Pure 
HTML Web pages can be part of a Web application when there is no dynamic 
content inside the page; however, even in these situations JSP pages are preferred 
since some client-side state management solutions require the dynamic rewriting 
of all URL hyperlinks, which can be done only with dynamic pages (see the 
Client State Management sidebar earlier in this chapter). 

Depending on the Web tooling being used, the UX model can usually be easily 
transformed into a site layout or design model (Figure 12–25), where «screen»
elements map to JSP pages and associations map to navigation links, either sim-
ple hyperlinks or forms where the user supplies additional data.

When designing the presentation tier, there are two main considerations: how to 
populate the page’s dynamic content and how to invoke the business logic pro-
cesses during page transitions. This application’s architecture is J2EE, and the 
architect has specified the use of JSF to help integrate page construction with 
these two tasks. JSF helps simplify the construction of dynamic Web pages. It 
defines a number of custom tags that are embedded with HTML in JSP pages that 
are used to invoke methods on business objects and extract data to place in HTML 
elements that are eventually rendered on the client screen. In addition to the JSF 
tags, the Java Server Pages Standard Template Library (JSTL) also provides a 
number of useful tags to work with data in JSP pages.

Figure 12–25 The Site Layout Represented in a Design Tool
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Populating Dynamic Content

Populating a Web page with dynamic content requires a connection between a 
Java session bean in the presentation tier and a session bean in the business tier. 
This should be defined as a remote reference to enable the potential separation of 
tiers onto different nodes. To populate the VTS home page, we need, in addition 
to other information, the current employee summary of requests. This summary 
comes from an Employee CMP bean and its related Request CMP beans. 
Since access to CMP beans is governed by generated façade objects, the session 
bean in the presentation tier needs a remote reference to the façade object. The 
façade will return SDO objects to the presentation tier session bean, which in turn 
processes them to produce a simple Java object that can be used directly in 
the JSP.

In Figure 12–26, the EmployeeSummarySession class is a session bean 
that executes in the presentation tier. Its primary job is to connect to the 

Figure 12–26 Design Elements in the Presentation and Business Tiers 
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EmployeeFacade and create a summary of an Employee object’s requests. 
This session bean will also collect and make available other employee-specific 
information that will be used in the VTS home page. The EmployeeSummary
class and its public inner class RequestSummary are POJOs used directly in 
the JSP pages via the JSTL and JSF tags. Part of the JSP source code for the VTS 
home page is shown in Listing 12–3.

Listing 12–3 JSP Source Code for the VTS Home Page 
<HTML>
<HEAD>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ page language="java" contentType="text/html; 
 charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<jsp:useBean id="vtsHome" class="vtsweb.actions.VtsHomeAction"/>
...
<TITLE>VTS Home Page</TITLE>
</HEAD>
<f:view>
  <BODY>
  ...
  <P>Request Summary</P>

  <c:forEach items="${vtsHome.employeeSummary}">
    <c:url var="delUrl" value="faces/reqed">
       <c:param name="id" value="${leaveRequest.id}" />
       <c:param name="action" value="delete" />
    </c:url>
    <c:url var="edUrl" value="faces/reqed">
      <c:param name="id" value="${leaveRequest.id}" />
      <c:param name="action" value="edit" />
    </c:url>
    <tr>
      <td>${leaveRequest.date}</td>
      <td>${leaveRequest.type}</td>
      <td>${leaveRequest.status}</td>
      <td><a href="${delUrl}">delete</a></td>
      <td><a href="${edUrl}">edit</a></td>
    </tr>

  </c:forEach>

  <P><BR>Outstanding Grants</P>
  ...
  </BODY>
</f:view>
</HTML>
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The VTS home page, like all of the JSP pages in our application, uses a number 
of custom tags in several different tag libraries. The three sets of tags that are used 
the most are the core JSF tags, the JSF HTML tags, and the JSTL tags. These are 
imported and associated with prefix identifiers at the beginning of the JSP source.

A JSP tag is used to bring in a reference to a presentation tier bean that is used for 
all access to business state and acts as a local controller for actions in the page. 
The bean is implemented as a POJO. It is referenced in the context of the JSP 
with the local reference vtsHome.

<jsp:useBean id="vtsHome" class=
    "vtsweb.actions.VtsHomeAction"/>

This bean can be used in JSF and JSTL custom tags to both extract business data 
and also invoke business methods. In our home page example, the JSTL 
forEach tag iterates over the employeeSummary collection of the bean, 
which contains instances of RequestSummary objects, each representing a 
specific vacation time request.

In general, it is a good practice to insulate JSP code and logic from the actual 
EJBs with a simple bean object that can be paired up with a specific page. This 
object is responsible for organizing and making available all the discrete values of 
data that can be placed in the JSP. This will also make it easier for the creative 
team members responsible for the final layout of the page, as they will not have to 
deal with the sometimes confusing technical requirements of managing EJBs.

Invoking Business Logic

Work is accomplished in Web applications primarily during page transitions. 
Logic is triggered by user requests to view or navigate to the next page. The next 
page may or may not be the actual page that the user requested. Depending on the 
outcome of the business logic, the desired page may get switched to a different 
page based on the current client’s state. For example, if a user submits a request 
for vacation time but forgets to fill in a required field, the system will not return to 
the main home page as the user might expect but will return to the editing page 
and most likely display a warning message indicating the need for the required 
information.

In a JSF application, the navigation paths are defined by a configuration file 
called faces-config.xml. This file, among other things, defines the man-
aged beans that can be referenced in JSP pages (e.g., VtsHomeAction). A nav-
igation rule defines the allowed transitions from one page to another, based on an 
outcome value. This outcome value is computed within one of the managed 
beans, and when returned, the faces framework will use it to determine which 
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page to load and construct as a response. Listing 12–4 shows the navigation rules 
in faces-config.xml.

Listing 12–4 Navigation Rules in faces-config.xml
<navigation-rule>
  <from-view-id>/reqed.jsp</from-view-id>
  <navigation-case>
    <from-outcome>failure</from-outcome>
    <to-view-id>/reqed.jsp</to-view-id>
  </navigation-case>
  <navigation-case>
    <from-outcome>success</from-outcome>
    <to-view-id>/vtshome.jsp</to-view-id>
  </navigation-case>
</navigation-rule>

The rule in Listing 12–4 states that when the button or hyperlink component on 
reqed.jsp is activated, the application will navigate from the reqed.jsp
page to the vtshome.jsp page if the outcome referenced by the button or 
hyperlink component’s tag is success. Otherwise, the application will return to 
reqed.jsp.

Hyperlinks or form buttons are placed inside the originating page with the use of 
the JSF HTML tags. In the following command button example, clicking on the 
button will cause the submit()method of the vtsHomeAction instance to be 
invoked because the action attribute references the submit method of the 
VtsHomeAction backing bean. The submit() method performs some pro-
cessing and returns a logical outcome that is passed to the default navigation han-
dler, which matches the outcome against a set of navigation rules defined in the 
configuration file. 

<h:commandButton value="Submit Changes" 
action="#{vtsHome.submit}"/>

The impact of this design is that all of the presentation tier’s logic is expressed in 
the managed or backing beans that execute in the Web server. These beans 
accomplish their tasks by creating normal remote EJB references to EJBs in the 
business tier, which could potentially be running on a different node in the system.

12.4 Transition and Post-Transition

Web-centric architectures, especially Internet-based ones, bring with them their 
own special implementation and testing concerns, in addition to the usual ones of 
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functionality and general performance. Web applications by their very nature 
exist in a heterogeneous environment that may be subject to change; the exact cli-
ent hardware and software configuration can’t be assumed. To help address these 
issues during design, special browser-specific technologies were purposely not 
used in our VTS application.

Implementing a Web application is, for the most part, the development of server-
side software. Nearly all the software written in a typical Web application exe-
cutes on the server side. Only when custom JavaScript is employed or specialized 
applets or client-side controls are developed will the developer really need to be 
concerned with the details of every client hardware and software configuration 
the application may encounter.

Even when you choose the technologies that are officially supported by the latest 
versions of the most popular browsers, there is no guarantee that they will per-
form the same way across browsers and client configurations. Such technologies 
and related issues include the following.

■ Java scripting: All browsers do not implement client-side scripting in exactly 
the same way. Several browsers extend the scripting language with new and 
proprietary features. Others interpret the specifications slightly differently 
or have unusual side effects not governed by the official specifications.

■ Style sheets: Style sheets and other layout-specific functionality depend on 
the availability of fonts and screen size. Just because you use style sheets 
doesn’t mean that your pages will render in the same way on all client con-
figurations.

■ Frames: The implementation of frames has been problematic since their 
introduction. Scrolling, sizing, and targeting issues constantly plague the 
use of frames in applications. If frames are used in an application, be sure to 
test them completely, not only with all targeted client configurations but 
also in scenarios that involve more than just the use of the application being 
tested.

■ Bandwidth: As our development tools become more sophisticated and it 
becomes easier to incorporate elaborate features into our Web pages, there 
is the chance that some end users will experience extremely slow page tran-
sitions due to the volume of HTML and/or the amount of scripting that must 
execute on the client. If the application under development is to be deployed 
to an anonymous user base over the Internet, special care must be taken to 
test and design the pages for low bandwidth and weak client configurations.

This set of issues becomes an ongoing challenge as technologies evolve over 
time.
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A p p e n d i x  A

Object-Oriented
Programming Languages

The use of object-oriented technology is not restricted to any particular language; 
rather, it applies to a wide spectrum of object-based and object-oriented program-
ming languages. As important as analysis and design are, however, we cannot 
ignore the details of coding, for ultimately our software architectures must be 
expressed in some programming language. Indeed, as Wulf has suggested, a pro-
gramming language serves three purposes [1].

■ It is a design tool.
■ It is a vehicle for human consumption.
■ It is a vehicle for instructing a computer.

This appendix is for the reader who may not be familiar with certain of the object-
oriented programming languages we mention in this book. Herein we provide a 
summary description of a number of the more important and popular languages, 
together with a common example that provides a basis for comparing the syntax, 
semantics, and idioms of three of the most popular object-oriented programming 
languages, namely Smalltalk, C++, and Java. 

A.1 Language Evolution

Currently, there are over 2,500 different high-order programming languages [2]. 
We see so many different languages because each was shaped by the particular 
requirements of its perceived problem domain. Furthermore, the existence of each 
new language enables developers to move on to more and more complex prob-
lems. With each previously unexplored application, language designers learn new 
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lessons that change their basic assumptions about what is important in a language 
and what is not. This evolution of languages also has been heavily influenced by 
progress in the theory of computing, which has led to a formal understanding of 
the semantics of statements, modules, abstract data types, and processes.

As we discussed in Chapter 2, different programming languages support different 
abstractions: mathematic, algorithmic, data, or object-oriented. The most recent 
advances in programming languages have been due to the influence of the 
object model. As we also discussed in Chapter 2, a language is considered object-
based if it directly supports data abstraction and classes. An object-oriented lan-
guage is one that is object-based but also provides support for inheritance and 
polymorphism.

The common ancestor of almost every contemporary object-based and object-ori-
ented programming language is Simula, developed in the 1960s by Dahl, 
Myrhurg, and Nygard [3]. Simula built on the ideas of ALGOL but added the 
concepts of encapsulation and inheritance. Perhaps even more important, Sim-
ula—as a language for describing systems and for developing simulations—
introduced the discipline of writing programs that mirror the vocabulary of their 
problem domain.

Figure A–1 is derived from Éric Lévénez’s Web site on computer language his-
tory [4] and shows the genealogy of the most influential and widely used object-
based and object-oriented programming languages. The lengths of the boxes indi-
cate development or significant usage activity for the languages in the general 
domain. The arrows indicate prominent influences in their development.

Determining the popularity of usage of any given programming language or even 
a family of languages is a daunting task, likely to raise the emotions of language 
zealots and the scrutiny of advanced and amateur statisticians alike. While popu-
larity alone is no indication of the quality of a programming language, it does hint 
at the general usefulness and widespread availability. 

The TIOBE Programming Community Index (TCP-Index) [5] is a new and novel 
way to determine a given programming language’s popularity by examining Inter-
net Web pages and news group searches. By using simple queries for each of the 
target languages, the relative percentage of pages deemed of interest are tabulated 
and compared with the results of previous examinations over the course of 
months and years. The result is an interesting indicator of the current popularity 
of any given language. At the time of this writing, the results shown in Table A–1 
were the most recent. As you can see, the top 10 languages are dominated by 
object-oriented languages, with C (a procedural language) barely holding on to 
the top position.
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In each of the following sections, we briefly discuss a prominent object-oriented 
language. Examples of code are based on a simple windowing shape problem. In 
this problem, classes are defined to represent types of shapes that can be drawn on 
a display. Figure A–2 shows a generic UML model of the classes involved.

Figure A–1 The Genealogy of Influential Computer Languages
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Each of the following examples attempts to demonstrate how key object-oriented 
features such as classes, inheritance, and polymorphism are expressed in the lan-
guage. There is no attempt to optimize the stated task for the given platform.

Table A–1 Internet-Based Determination of Currently Popular Programming 
Languages

Position Programming Language Ratings

1 C 19.37%

2 Java 18.57%

3 Perl 10.37%

4 C++ 9.72%

5 PHP 7.97%

6 (Visual) Basic 6.78%

7 Delphi/Kylix 2.89%

8 Python 2.80%

9 C# 2.78%

10 SQL 2.65%

11 JavaScript 1.39%

12 COBOL 1.38%

13 IDL 1.23%

14 SAS 1.09%

15 Lisp 0.86%

16 Fortran 0.82%

17 MATLAB 0.78%

18 Ada 0.68%

19 Pascal 0.49%

20 AWK 0.48%
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A.2 Smalltalk

Smalltalk was created by the members of the Xerox Palo Alto Research Center 
Learning Research Group as the software element of the Dynabook, a visionary 
project of Alan Kay. Simula was its primary influence, although Smalltalk also 
took some ideas from the language FLEX and the work of Seymore Papert and 
Wallace Feurzeig. Smalltalk represents both a language and a software develop-
ment environment. It is a pure object-oriented programming language in that 
everything is viewed as an object; even integers are classes. Next to Simula, 
Smalltalk is perhaps the most important object-oriented programming language 

Figure A–2 A Generic UML Class Diagram Used by Each Example
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because its concepts have influenced not only the design of almost every subse-
quent object-oriented programming language (even though Smalltalk itself is no 
longer in popular use) but also the look and feel of graphical user interfaces such 
as the Macintosh user interface, Windows, Motif, KDE, and Gnome, all of which 
are now largely taken for granted.

Smalltalk evolved over almost a decade of work and was the product of synergis-
tic group activity. Dan Ingalls was the lead architect during most of Smalltalk’s 
development, but there were also seminal contributions by Peter Deutsch, Glenn 
Krasner, and Kim McCall. In parallel, the elements of the Smalltalk environment 
were developed by James Althoff, Robert Flegal, Ted Kaehler, Diana Merry, and 
Steve Putz. Among other important roles that they played, Adele Goldberg and 
David Robson served as chroniclers of the Smalltalk project.

There are five identifiable early releases of Smalltalk: Smalltalk-72, -74, -76, -78, 
and -80. Smalltalk-72 and -74 did not provide support for inheritance, but they 
did lay much of the conceptual foundation of the language, including the ideas of 
message passing and polymorphism. Later releases of the language turned classes 
into first-class citizens, thus completing the view that everything in the environ-
ment could be treated as an object. Currently there are about 20 active versions of 
Smalltalk in existence [6], most of which are platform-specific (in terms of hard-
ware and system) ports of Smalltalk-80. While the user interface is usually dis-
tinct, the class libraries and overall functionality are similar across these versions.

Overview

Ingalls states that “the purpose of the Smalltalk project is to support children of 
all ages in the world of information. The challenge is to identify and harness met-
aphors of sufficient simplicity and power and to allow a single person to have 
access to, and creative control over, information which ranges from numbers and 
text through sounds and images” [7]. To this end, Smalltalk is built around two 
simple concepts: Everything is treated as an object, and objects communicate by 
passing messages.

Table A–2 summarizes Smalltalk’s features, relative to the seven elements of the 
object model. Although the table does not indicate it, multiple inheritance is pos-
sible by the redefinition of certain primitive methods [8].

Example

Consider the problem in which we have a heterogeneous list of shapes, in which 
each particular shape object might be a circle, a rectangle, or a solid rectangle. 
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Smalltalk has an extensive class library that already contains classes for circles 
and rectangles, so our solution in this language would be almost trivial; this 
demonstrates the importance of reuse. However, for the sake of comparison, let’s 
assume that we have only primitive classes for drawing lines and arcs. 

We begin by defining the class AShape as follows.

Object subclass: #AShape
      instanceVariableNames: 'theCenter'
      classVariableNames: ''
      poolDictionaries: ''
      category: 'Appendix'

initialize
      "Initialize the shape"

      thisCenter := Point new

Table A–2 Smalltalk Object-Oriented Feature Index

Elements of the 
Object Model Feature Included?

Abstraction Instance variables Yes

Instance methods Yes

Class variables Yes

Class methods Yes

Encapsulation Of variables Private

Of methods Public

Modularity Kinds of modules None

Hierarchy Inheritance Single

Generic units No

Metaclasses Yes

Typing Strongly typed No

Polymorphism Yes (single)

Concurrency Multitasking Indirectly (by classes)

Persistence Persistent objects No
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setCenter: aPoint
      "Set the center of the shape"

      theCenter := aPoint

center
      "Return the center of the shape"

      ^theCenter

draw
      "Draw the shape"

      self subclassResponsibility

We next define the subclass ACircle.

AShape subclass #ACircle
      instanceVariableNames: 'theRadius'
      classVariableNames: ''
      poolDictionaries: ''
      category: 'Appendix'

setRadius: anInteger
      "Set the radius of the circle"

      theRadius := anInteger

radius
      "Return the radius of the circle"

      ^theRadius

draw
      "Draw the circle"

      | anArc index |
      anArc := Arc new.
      Index := 1.
      [index <= 4]
            whileTrue:
                  [anArc

         center: theCenter
         radius: theRadius
         quadrant : index.
         anArc display.
        Index := index + 1]



APPENDIX A    OBJECT-ORIENTED PROGRAMMING LANGUAGES 545

Continuing, the subclass ARectangle may be defined as follows.

AShape subclass: #ARectangle
      instanceVariableNames: 'theHeight theWidth'
      classVariableNames: ''
      poolDictionaries: ''
      category: 'Appendix'

draw
      "Draw the rectangle"

      | aLine upperLeftCorner |
      aLine := Line new.
      upperLeftCorner := theCenter x – (theWidth / 2) @ 
(theCenter y – (theHeight / 2)).
      aLine beginPoint: upperLeftCorner
      aLine endPoint: upperLeftCorner x + theWidth @ 
upperLeftCorner y.
      aLine display.
      aLine beginPoint: aLine endpoint.
      aLine endpoint: upperLeftCorner x + theWidth @ 
(upperLeftCorner y + theHeight).
      aLine display.
      aLine beginPoint: aLine endPoint.
      aLine endPoint: upperLeftCorner x @ 
(upperLeftCorner y + theHeight).
      aLine display.
      aLine beginPoint: aLine endPoint.
      aLine endPoint: upperLeftCorner.
      aLine display.

setHeight: anInteger
      "Set the height of the rectangle"

      theHeight := anInteger

setWidth: anInteger
      "Set the width of the rectangle"

      theWidth := anInteger

height
      "Return the height of the rectangle"

      ^theHeight

width
      "Return the width of the rectangle"

      ^theWidth
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Lastly, we can also define the subclass ASolidRectangle.

ARectangle subclass #ASolidRectangle
     instanceVariableNames: ''
     classVariableNames: ''
     poolDictionaries: ''
     category: 'Appendix'

draw
     "Draw the rectangle"
     | upperLeftCorner lowerRightCorner |
     super draw.
     upperLeftCorner := theCenter x – (theWidth quo: 2) + 1 @
(theCenter y – (theHeight quo: 2) + 1).
     lowerRightCorner := upperLeftCorner x + theWidth – 1 @ 
(upperLeftCorner y + theHeight – 1).
     Display
           fill: (upperLeftCorner corner: lowerRightCorner)
           mask: Form gray

References

The most current reference is the ANSI Smalltalk Standard: Programming 
Language Smalltalk [20]. Other notable references include Smalltalk-80: The 
Language, by Goldberg and Robson [9]; Smalltalk-80: The Interactive Program-
ming Environment, by Goldberg [10]; and Smalltalk-80: Bits of History, Words of 
Advice, by Krasner [11]. LaLonde and Pugh [12] explore Smalltalk-80 in great 
depth, including both class libraries and application development.

A.3 C++

C++ was designed by Bjarne Stroustrup of AT&T Bell Laboratories. The immedi-
ate ancestor of C++ is a language called C with Classes, also developed by 
Stroustrup in 1980. In turn, C with Classes was heavily influenced by the lan-
guages C and Simula. C++ is largely a superset of C. However, in one sense, C++ 
is simply a better C, in that it provides type checking, overloaded functions, and 
many other improvements. Most importantly, however, C++ adds object-oriented 
programming features to C.

Early translator technology for C++ involved the use of a preprocessor for C, 
called cfront. Because this translator emitted C code as an intermediate represen-
tation, it was possible to port C++ to virtually every UNIX architecture quite 
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quickly. Now C++ translators and native compilers are available commercially for 
almost every kind of instruction set architecture.

There have been several major releases of the C++ language. Version 1.0 and its 
minor releases added basic object-oriented programming language features to C, 
such as single inheritance and polymorphism, plus type checking and overload-
ing. Version 2.0, released in 1989, improved on the previous versions in a variety 
of ways (such as the introduction of multiple inheritance), based on extensive 
experience with the language by a relatively large user community. Version 3.0, 
released in 1990, introduced templates (parameterized classes) and exception 
handling. The ANSI X3J16 C++ committee has adopted proposals for namespace 
control (consistent with our notion of class categories) and runtime type identifi-
cation. In addition to ANSI, C++ has been standardized by the BSI (British Stan-
dards Institute), the DIN (German national standards organization), and the ISO 
(International Standards Organization), as well as others. The ISO standard was 
finalized and adopted in 1997 and ratified in August 1998. The ISO is the current 
maintainer of the C++ standard.

Overview

Stroustrup states that “C++ was primarily designed so that the author and his 
friends would not have to program in assembler, C, or various modern high order 
languages. Its main purpose is to make writing good programs easier and more 
pleasant for the individual programmer. There never was a C++ paper design; 
design, documentation, and implementation went on simultaneously” [13]. C++ 
corrects many of the deficiencies of C and adds to the language support for 
classes, type checking, overloading, free store management, constant types, refer-
ences, inline functions, derived classes, and virtual functions [14].

We summarize the features of C++ in Table A–3, relative to the seven elements of 
the object model.

Table A–3 C++ Object-Oriented Feature Index

Elements of the 
Object Model Feature Included?

Abstraction Instance variables Yes

Instance methods Yes

Class variables Yes

Class methods Yes

continues



548 APPENDIX A    OBJECT-ORIENTED PROGRAMMING LANGUAGES

Example

Let’s reimplement the shape problem. The common style in C++ is to place the 
outside view of each class in header files. Thus, we may write the following.

Struct Point {
      int x;
      int y;
};

class Shape {
public:
      Shape();
      void setCenter(Point p);
      virtual void draw() = 0;
      Point center() const;
private:
      Point theCenter;
};

class Circle : public Shape {
public:
      Circle();
      void setRadius(int r);

Encapsulation Of variables Public, protected, private

Of methods Public, protected, private

Modularity Kinds of modules File

Hierarchy Inheritance Multiple

Generic units Yes

Metaclasses No

Typing Strongly typed Yes

Polymorphism Yes (single)

Concurrency Multitasking Indirectly (by classes)

Persistence Persistent objects No

Table A–3 C++ Object-Oriented Feature Index (Continued)

Elements of the 
Object Model Feature Included?



APPENDIX A    OBJECT-ORIENTED PROGRAMMING LANGUAGES 549

      virtual void draw();
      int radius() const;
private:
      int theRadius;
};

class Rectangle : public Shape {
public:
      Rectangle();
      void setHeight(int h);
      void setWidth(int w);
      virtual void Draw();
      int height() const;
      int width() const;
private:
      int theHeight;
      int theWidth;
};

class SolidRectangle : public Rectangle {
public:
      virtual void draw();
};

The definition of C++ does not include a class library. For our purposes, we assume 
that a programmatic interface to a generic graphical display (e.g., X Windows or 
Microsoft Windows) exists and that the global objects Display, Window, and 
GraphicsContext exist and can be linked to. Then we may complete the 
methods above in a separate file as follows.

Shape::Shape() {
      theCenter.x = 0;
      theCenter.y = 0;
};

void Shape::setCenter(Point p) {
      theCenter = p;
}

Point Shape::center() const {
      Return theCenter;
}

Circle::Circle() : theRadius(0) { }

void Circle::setRadius(int r) {
      theRadius = r;
}
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void Circle::draw() {
      int X = (center().x – theRadius);
      int Y = (center().y – theRadius);
      XDrawArc(Display, Window, GraphicsContext, 
X, Y,(theRadius * 2), 
(theRadius * 2), 0, (360 * 64));
};

int Circle::radius() const {
      return theRadius;
}

Rectangle::Rectangle() : theHeight(0), theWidth(0) { }

void Rectangle::setHeight(int h) {
      theHeight = h;
}

void Rectangle::setWidth(int w) {
      theWidth = w;
}

void Rectangle::draw() {
      int X = (center().x – (theWidth / 2));
      int Y = (center().y – (theHeight / 2));
      XDrawRectangle(Display, Window, GraphicsContext, 
X, Y, theWidth, theHeight);
};

int Rectangle::height() const {
      return theHeight;
};

int Rectangle::width() const {
      return theWidth;
};

void SolidRectangle::draw() {
      Rectangle::draw();
      int X = (center().x – (width() / 2));
      int Y = (center().y – (height() / 2));
      gc oldGraphicsContext – GraphicsContext;
      XSetForeground(Display, GraphicsContext, Gray);
      XDrawFilled (Display, Window, Graphics, X, Y, 
width(), height());
      GraphicsContext = oldGraphicsContext;

};
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References

The most popular reference for C++ continues to be The Annotated C++ Refer-
ence Manual by Ellis and Stroustrup [15], more commonly referred to as the 
“ARM.” The most recent reference is The C++ Standard: Incorporating Techni-
cal Corrigendum No. 1 by Stroustrup [16]. Stroustrup provides in-depth coverage 
of the language and its use in the context of object-oriented design in other works 
as well [17, 18].

A.4 Java

James Gosling and a few others in a small secluded group in Sun Microsystems 
created a small programming language called Oak after determining that C++ 
was just too difficult for what they wanted to do. 

They were building advanced software for digitally controlled consumer devices 
such as entertainment platforms and microwave ovens. After efforts to bring this 
technology to the digital cable television market failed, they realized that the 
newly emerging commercial Internet was a perfect match for what they had. They 
renamed the language as Java and started to market it as a general-purpose pro-
gramming language, one that could be easily marshaled throughout the Internet 
and executed in the context of an HTML browser.

The big break for Java came about in May 1995, when Sun Microsystems and 
Netscape announced Java technology was going to be incorporated into Netscape 
Navigator, the most commonly used browser on the Internet at the time. This 
effectively created an enormous market of potential users of this technology.

While early marketing efforts focused on Java’s applicability for the Internet and 
its platform independence, it was its server-side usage that truly solidified Java as 
a preferred object-oriented language. While Java’s graphics performance has 
always been criticized, most Java developers can be found today using Java on the 
server side (i.e., non-graphics-based components) to deliver Web pages and busi-
ness tier functionality. 

Even though Java has been around for only a little more than 10 years, it has seen 
phenomenal growth by any measure. The growth has come not only in the evolu-
tion of the language but also, more significantly, in its related technologies such 
as Enterprise Java Beans (EJBs), Java Server Pages (JSP), and Java 2 Micro Edi-
tion (J2ME). Java technology and standards continue to grow at a rapid yet orga-
nized pace. In 1998, Sun created the Java Community Process (JCP) to manage 
the development and revision of the Java technology specifications, reference 
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implementations, and test suites. The process outlines how the community evalu-
ates and acts on Java Specification Requests (JSRs) for new specifications or 
significant revisions to existing specifications. Nearly 100 specifications are 
currently being worked on.

Sun Microsystems continues to manage the overall development of the Java lan-
guage and its related technologies.

Overview

Java is more than a programming language; like Smalltalk, it is just as much an 
environment and runtime as it is a language. Java technology involves the use of 
virtual machines and a common byte code intermediary. Also like Smalltalk, it 
includes a rich class library that can be extended. Java technology is such a good 
match for the Internet because of its portability and its rich set of standard func-
tionality.

The language itself resembles C++ intentionally. The team at Sun started using 
C++ but found too many problems and decided to get around them by creating a 
new and more appropriate language.

We wanted to build a system that could be programmed easily without a lot of 
esoteric training and which leveraged today’s standard practice. Most program-
mers working these days use C, and most programmers doing object-oriented 
programming use C++. So even though we found that C++ was unsuitable, we 
designed Java as closely to C++ as possible in order to make the system more 
comprehensible. [19]

Java omits many features found in C++ such as multiple inheritance and operator 
overloading. One of Java’s most useful features is automatic garbage collection. 
Java developers are not required to perform their own memory management. 
Instead, they can create new instances of objects and be assured that when all ref-
erences to them have been removed, at some point that memory will be reclaimed. 
While not potentially as efficient as C++, this garbage collection does eliminate 
one very common source of programming errors.

Java attempts to enforce type safety wherever practical. However, because of the 
use of its rich class library, most notably its collection classes, strict type check-
ing like that found in C++ is just not practical. The latest specification, Java 2 ver-
sion 1.5, does include something new called Generics (JSR 14). Java Generics, 
also known as parameterized types, are like C++ templates and enable Java devel-
opers to create type-safe collections, among other things.

We summarize the features of Java in Table A–4, relative to the seven elements of 
the object model. 
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Example

Recreating our example for Java leads to the creation of a separate class file for 
each of the defined classes. First, we create the Point class.

package test;
public class Point {

      private int x = 0;
      private int y = 0;

      public Point(int x, int y) {
            this.x = x;
            this.y = y;
      }

Table A–4 Java Object-Oriented Feature Index

Elements of the 
Object Model Features Included?

Abstraction Instance variables Yes

Instance methods Yes

Class variables Yes

Class methods Yes

Encapsulation Of variables Public, protected, private, package

Of methods Public, protected, private, package

Modularity Kinds of modules File

Hierarchy Inheritance Single

Generic units Yes

Metaclasses No

Typing Strongly typed No

Polymorphism Yes (single)

Concurrency Multitasking Yes

Persistence Persistent objects No
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      public int getX() {
            return x;
      }

      public void setX(int x) {
            this.x = x;
      }

      public int getY() {
            return y;
      }

      public void setY(int y) {
            this.y = y;
      }
}

Next we define the Shape class.

package test;

public class Shape {

      private Point center;

      public Point getCenter() {
            return center;
      }

      public void setCenter(Point center) {
  this.center = center;

      }
}

We follow up with the Circle class.

package test;
import java.awt.Graphics;

public class Circle extends Shape {
      private int radius = 0;

      public void draw(Graphics g) {
            int x = (getCenter().getX() - radius);
            int y = (getCenter().getY() - radius);
            int d = radius * 2;
            g.drawOval(x, y, d, d);
      }
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      public int getRadius() {
            return radius;
      }

      public void setRadius(int radius) {
  this.radius = radius;

      }
}

Then we create the Rectangle class.

package test;
import java.awt.Graphics;

public class Rectangle extends Shape {

      private int height = 0;
      private int width = 0;

      public void draw(Graphics g) {
            int x = (getCenter().getX() - width/2);
            int y = (getCenter().getY() - height/2);

g.drawRect(x, y, width, height);
      }

      public int getHeight() {
            return height;
      }

      public void setHeight(int height) {
  this.height = height;

      }

      public int getWidth() {
            return width;
      }

      public void setWidth(int width) {
            this.width = width;
      }
}

We complete our example with the SolidRectangle class.

package test;
import java.awt.Color;
import java.awt.Graphics;
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public class SolidRectangle extends Rectangle {

      public void draw(Graphics g) {
            super.draw(g);

 int width = getWidth()-1;
 int height = getHeight()-1;

            int x = (getCenter().getX() - width/2);
            int y = (getCenter().getY() - height/2);
            g.setColor(Color.GRAY);

g.fillRect(x, y, width, height);
      }
}

References

Sun Microsystems Press (SMP) is a partnership between Sun Microsystems, 
Prentice Hall, and Addison-Wesley. SMP is an excellent source for very detailed 
books on all aspects and levels of Java technology. Since Java grew up and was 
propelled by the Internet, it is perhaps the best and most current source for Java 
information. Ken Arnold, James Gosling, and David Holmes are responsible for 
The Java Programming Language, Third Edition, a complete introduction to the 
Java language with insights into its basic design goals.
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A p p e n d i x  B

Further Reading

This appendix directs you to further reading for each chapter by referring to items 
listed in the Classified Bibliography. References here take the form [<label> 
<year>]. For example, Brooks [H 1975] refers to his 1975 book, The Mythical 
Man-Month, in section H (Software Engineering) of the bibliography.

Chapter 1

The challenges associated with developing complex software systems are articu-
lately described in two classic works by Brooks [H 1975, H 1987]. Glass [H 
1982], the Office of the Under Secretary of Defense for Acquisition (reporting on 
the Defense Science Board Task Force) [H 1987], and the U.S. Department of 
Defense [H 1982] provide further information on contemporary software prac-
tices. Empirical studies on the nature and causes of software failures may be 
found in van Genuchten [H 1991], Guindon et al. [H 1987], and Jones [H 1992].

Two of Simon’s works [A 1962, A 1982] are the seminal references on the archi-
tecture of complex systems; Courtois [A 1985] applies these ideas to the domain 
of software. Alexander’s seminal work [I 1979] provides a fresh approach to 
architecting physical structures. Peter [I 1986] and Petroski [I 1985] examine 
complexity in the context of social and physical systems, respectively. Similarly, 
Allen and Starr [A 1982] examine hierarchical systems in a number of domains. 
Flood and Carson [A 1988] offer a formal study of complexity as seen through 
the theory of systems science. Waldrop [A 1992] describes the emerging science 
of complexity and its study of complex adaptive systems, emergent behavior, and 
self-organization. The report by Miller [A 1956] provides empirical evidence for 
the fundamental limiting factors of human cognition.



558 APPENDIX B    FURTHER READING

There are a number of excellent references on the subject of software engineer-
ing. Ross, Goodenough, and Irvine [H 1980] and Zelkowitz [H 1978] are two of 
the classic papers summarizing the essential elements of software engineering. 
Extended works on the subject include Jensen and Tonies [H 1979], Sommerville 
[H 1989], Vick and Ramamoorthy [H 1984], Wegner [H 1980], Pressman [H 1992], 
Oman and Lewis [H 1990], Berzins and Luqi [H 1991], and Ng and Yeh [H 1990]. 
Other papers relevant to software engineering in general may be found in 
Yourdon [H 1979] and Freeman and Wasserman [H 1983]. Graham [F 1991] and 
Berard [H 1993] both present a broad treatment of object-oriented software 
engineering.

Gleick [I 1987] offers a very readable introduction to the science of chaos.

Chapter 2

The concept of the object model was first introduced by Jones [F 1979] and Will-
iams [F 1986]. Kay’s Ph.D. thesis [F 1969] established the direction for much of 
the work in object-oriented programming that followed.

Shaw [J 1984] provides an excellent summary regarding abstraction mechanisms 
in high-order programming languages. The theoretical foundation of abstraction 
may be found in the work of Liskov and Guttag [H 1986], Guttag [J 1980], and 
Hilfinger [J 1982]. Parnas [F 1979] is the seminal work on information hiding. 
The meaning and importance of hierarchy are discussed in the work edited by 
Pattee [J 1973].

Case studies of object-oriented applications may be found in Taylor [H 1990, C 
1992], Berard [H 1993], Love [C 1993], and Pinson and Weiner [C 1990].

Excellent collections of papers dealing with all topics of object-oriented technol-
ogy may be found in Peterson [G 1987], Schriver and Wegner [G 1987], and 
Khoshafian and Abnous [E 1990]. The proceedings of several yearly conferences 
on object-oriented technology are also excellent sources of material. 

Organizations responsible for establishing standards for object technology 
include the Object Management Group and the ANSI X3J7 committee.

The primary reference for C++ is Ellis and Stroustrup [G 1990]. Other useful ref-
erences include Stroustrup [G 2000], Lippman, LaJoie, and Moo [G 2005], and 
Coplien [G 1992].

A good introduction to the basics of the .NET Framework is Introducing .NET by 
Conrad et al. [G 2001].
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Chapter 3

MacLennan [G 1987] discusses the distinction between values and objects. The 
work by Meyer [J 1987] proposes the idea of programming as contracting.

Much has been written on the topic of class hierarchies, with particular emphasis 
on approaches to inheritance and polymorphism. The works by Albano [G 1983], 
Allen and Starr [A 1982], Brachman [J 1983], Hailpern and Nguyen [G 1987], 
and Wegner and Zdonik [J 1988] provide an excellent theoretical foundation for 
all the important concepts and issues. Cook and Palsberg [J 1989] and Touretzky 
[G 1986] provide formal treatments of the semantics of inheritance. Wirth [J 
1987] proposes a related approach for record type extensions, as used in the lan-
guage Oberon. Ingalls [G 1986] provides a useful discussion on the topic of mul-
tiple polymorphism. Grogono [G 1989] studies the interplay of polymorphism 
and type checking, and Ponder and Buch [G 1992] warn of the dangers of unre-
strained polymorphism. Practical guidance on the effective use of inheritance is 
offered by Meyer [G 1988] and Halbert and O’Brien [G 1988]. LaLonde and 
Pugh [J 1985] examine the problems of teaching the effective use of specializa-
tion and generalization.

The nature of an abstraction’s roles and responsibilities are further detailed by 
Rubin and Goldberg [B 1992] and Wirfs-Brock, Wilkerson, and Wiener [F 1990]. 
Measures of goodness for class design are also considered by Coad [F 1991].

Meyer [G 1986] examines the relationships between genericity and inheritance, 
as viewed by the language Eiffel. Stroustrup [G 1988a] proposes a mechanism for 
parameterized types in C++. 

An alternative to class-based hierarchies is provided by delegation, using exem-
plars. This approach is examined in detail by Stein [G 1987]. 

Chapter 4 

The problem of classification is timeless. In his work titled Statesman, Plato 
introduces the classical approach to categorization, through which objects with 
similar properties are grouped. In Categories, Aristotle picks up this theme and 
analyzes the differences between classes and objects. Several centuries later, 
Aquinas, in Summa Theologica, and then Descartes, in Rules for the Direction of 
the Mind, ponder the philosophy of classification. Contemporary objectivist phi-
losophers include Rand [I 1979].

Alternatives to the objectivist view of the world are discussed in Lakoff and 
Johnson [I 1980] and Goldstein and Alger [C 1992].
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Classification is an essential human skill. Theories regarding its acquisition dur-
ing early childhood development were pioneered by Piaget and are summarized 
by Maier [A 1969]. Lefrancois [A 1977] offers a very readable introduction to 
these ideas and provides an excellent discourse on children’s acquisition of the 
object concept.

Cognitive scientists have explored the problems of classification in great detail. 
Newell and Simon [A 1972] provide an unmatched source of material regarding 
human classification skills. More general information may be found in Simon 
[A 1982], Hofstadter [I 1979], Siegler and Richards [A 1982], and Stillings et al. 
[A 1987]. Lakoff [A 1987], a linguist, offers insights into the ways different 
human languages have evolved to cope with the problems of classification and 
what this reveals about the mind. Minksy [A 1986] approaches this subject from 
the opposite direction, starting with a theory regarding the structure of the mind.

Conceptual clustering, an approach to knowledge representation through classifi-
cation, is described in detail by Michalski and Stepp [A 1983, A 1986], Peckham 
and Maryanski [J 1988], and Sowa [A 1984]. Domain analysis, an approach to 
finding key abstractions and mechanisms by examining the vocabulary of the 
problem domain, is described in the comprehensive collection of papers by 
Prieto-Diaz and Arango [A 1991]. Iscoe [B 1988] has made several important 
contributions to this field. Additional information may be found in Iscoe, Browne, 
and Werth [B 1989], Moore and Bailin [B 1988], and Arango [B 1989].

Intelligent classification often requires looking at the world in innovative ways, 
and these skills can be taught (or, at least, encouraged). VonOech [I 1990] sug-
gests some paths to creativity. Coad [A 1993] has developed a board game (the 
Object Game) that fosters skills in class and object identification.

Much work is being carried out in the cataloging of patterns in software systems, 
giving rise to a taxonomy of idioms, mechanisms, and frameworks. Interesting 
references include Gamma et al. [1995], Coplien [G 1992], Coad [A 1992], 
Johnson [A 1992], Shaw [A 1989, A 1990, A 1991], and Wirfs-Brock [C 1991]. 
Alexander’s influential work [I 1979] applies patterns to the field of building 
architecture and city planning.

Mathematicians have attempted to devise empirical approaches to classification, 
leading to what is called measurement theory. Stevens [A 1946] and Coombs, 
Raiffa, and Thrall [A 1954] provide the seminal works on this topic.

The Classification Society of North America publishes a journal twice a year, 
containing a variety of papers on the problems of classification.
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Chapter 5

The Object Management Group has produced the UML Superstructure Specifica-
tion, version 2.0, which is the foundation for the books that have been written to 
introduce us to the use of this updated notation. It can be obtained from the UML 
Resource Page at www.uml.org/ [L 2004].

As we said earlier, the UML 2.0 is very rich and full featured; however, in your 
daily work it is likely that you will use only a fraction of the notation. If you are 
interested in exploring the darker corners of the UML, there are books that focus 
specifically on the details of the notation. We suggest Rumbaugh, Jacobson, and 
Booch [L 2005] and Booch, Rumbaugh, and Jacobson [L 2005] for an authorita-
tive discussion of this topic.

Blaha and Rumbaugh [L 2005] have updated their 1991 classic text on object-
oriented modeling and design with the UML 2.0 notation.

Bennett, Skelton, and Lunn [L 2005] give a practical introduction to the UML 2.0 
notation, along with examples, exercises, and review questions. This is a worth-
while update to their 2001 edition and is suitable for those new to UML or 
UML 2.0.

Fowler [L 2003] provides a concise presentation of the typical usages of UML 2.0.

Chapter 6

An early form of the process described in this chapter was first documented by 
Booch [F 1982]. Berard [F 1986] later elaborated on this work. Related 
approaches include GOOD (General Object-Oriented Design) by Seidewitz and 
Stark [F 1986a, F 1986b, F 1987, F 1988], MOOD (Multiple-view Object-Oriented 
Design) by Kerth [F 1988], and HOOD (Hierarchical Object-Oriented Design) by 
CRI, CISI Ingenierie, and Matra for the European Space Station [F 1987]. An 
additional related work is Stroustrup [G 1991], which suggests substantially simi-
lar processes. 

In addition to the works cited earlier for Chapter 2, a number of other methodolo-
gists have proposed specific object-oriented development processes, for which the 
bibliography provides an extensive set of references. Some of the more interest-
ing contributions come from Kruchten [F 2003], Alabios [F 1988], Boyd 
[F 1987], Buhr [F 1984], Cherry [F 1987, F 1990], deChampeaux, Balzer, et al. 
[F 1992], deChampeaux, Lea, and Faure [F 1992], Felsinger [F 1987a, F 1987b], 
Firesmith [F 1986, F 1993], Hines and Unger [G 1986], Jacobson [F 1985], 

www.uml.org/
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Jamsa [F 1984], Kadie [F 1986], Masiero and Germano [F 1988], Nielsen [F 1988], 
Nies [F 1986], Rajlich and Silva [F 1987], and Shumate [F 1987].

Comparisons of various object-oriented development processes may be found in 
Arnold et al. [F 1991], Boehm-Davis and Ross [H 1984], deChampeaux [B 1991a, 
B 1991b], Cribbs, Moon, and Roe [F 1992], Fowler [F 1992], Kelly [F 1986], 
Mannino [F 1987], Song [F 1992], and Webster [F 1988]. Brookman [F 1991] 
and Fichman and Kemerer [F 1992] provide a comparison of structured and 
object-oriented methods.

Empirical studies of software processes may be found in Curtis, Kellner, and 
Over [H 1992] as well as the Software Process Workshop [H 1988]. Another 
interesting reference is Guindon, Krasner, and Curtis [H 1987], which studies the 
exploratory processes used by developers early in the development process. Rech-
tin [H 1992] offers pragmatic guidance to the software architect who must drive 
the development process.

Parnas and Clements [H 1986] is the classical reference on how to fake a mature 
process.

Chapter 7

van Genuchten [H 1991] and Jones [H 1992] examine common software risks. 
Abdel-Hamid and Madnick [H 1991] study the dynamics of development teams. 

Gilb [H 1988] and Charette [H 1989] are useful references for software engineer-
ing management practices. For a realistic study of what really goes on during the 
development, when pragmatics chases theory out the window, see the works by 
Glass [H 1982], Lammers [H 1986], and Humphrey [H 1989]. DeMarco and 
Lister [H 1987], Yourdon [H 1989b], Rettig [H 1990], and Thomsett [H 1990] 
offer a number of recommendations to the development manager.

Schulmeyer and McManus [H 1992] provide an excellent general reference on 
software quality assurance. Chidamber and Kemerer [H 1991] and Walsh 
[H 1992, 1993] study quality assurance and metrics in the context of object-
oriented systems. Kemerer and Darcy [H 2005] provide examples of the applica-
tion of the Chidamber Kemerer (CK) metrics suite and provide observations 
about their practical application. 

Kan [H 2002] provides a comprehensive reference for software quality engineer-
ing and metrics with specific metrics and lessons learned for object-oriented 
projects. Lorenz and Kidd [H 1994] and Henderson-Sellers [H 1996] provide 
well-regarded texts on object-oriented metrics.
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Suggestions on how to transition individuals and organizations to the object 
model are described by Goldberg [C 1978], Goldberg and Kay [G 1977], and 
Kempf [G 1987].

Hantos [H 2005] provides an innovative perspective on object-oriented develop-
ment risks by mapping software risk information from Boehm [H 1989, H 2002] 
to the object-oriented concepts from Meyer [H 1995].

Chapter 8

The Aerospace Corporation publication GPS Primer—A Student Guide to the 
Global Positioning System provides an introduction to the Global Positioning 
System [C 2003]. 

The European Commission, Directorate-General for Energy and Transportation, 
has a comprehensive Web site discussing Galileo, the European Satellite Naviga-
tion System [C 2006].

IEEE-Std-1471-2000 provides a framework for architectural description of soft-
ware-intensive systems along with the definition of the content of the description 
[D 2000].

In their paper titled “ANSI/IEEE 1471 and Systems Engineering,” Maier, Emery, 
and Hilliard [D 2004] present a rationale for using this specification during sys-
tems engineering activities to describe system architecture.

Kruchten [D 1995] introduces the 4+1 view model of architecture to describe 
software using five views: logical, process, physical, development, and use case.

In his paper titled “Introduction to Object-Oriented Systems Engineering,” Parts 1 
and 2, Krikorian [D 2003] proposes that Kruchten’s 4+1 views apply to systems 
engineering and presents augmented 4+1 views defined for this use.

IEEE-Std-12207 consists of three parts, 12207.0, 12207.1, and 12207.2. IEEE-
Std-12207.0-1996 [H 1996] provides a basis for software practices usable in both 
national and international business. It gives clarifications, modifications, and 
additions to ISO/IEC 12207: 1995. IEEE-Std-12207.1-1997 [H 1997a] gives 
guidance on recording lifecycle data. IEEE-Std-12207.2-1997 [H 1997b] gives 
guidance on the implementation of the processes of IEEE-Std-12207.0-1996.

IEEE-Std-1220-2005 [H 2005] provides an approach to applying and managing 
the interdisciplinary tasks of the systems engineering process while engaged in 
product development. 
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The International Council on Systems Engineering (INCOSE) has produced a 
comprehensive guide to the activities performed by systems engineers [I 2006].

Chapter 9

Some of the design points for the Train Traffic Management System are based on 
those for the Advanced Train Control System, as described by Murphy [C 1988].

Message translation and verification occur in virtually all command and control 
systems. Plinta, Lee, and Rissman [C 1989] provide an excellent discourse on the 
issues and offer the design of a mechanism for passing messages in a type-safe 
way across processors in a distributed system.

Chapter 10

In the context of architectural patterns, Shaw [A 1991] discusses blackboard 
frameworks as well as other kinds of application frameworks.

Englemore and Morgan [C 1988] furnish a comprehensive treatment of black-
board systems, including their evolution, theory, design, and application. Among 
other topics, there are descriptions of two object-oriented blackboard systems, 
BB1, from Stanford, and BLOB, developed for the British Ministry of Defense. 
Other useful sources of information regarding blackboard systems may be found 
in Hayes-Roth [J 1985] and Nii [J 1986].

Detailed discussions concerning forward- and backward-chaining in rules-based 
systems may be found in Barr and Feigenbaum [J 1981], Brachman and Levesque 
[J 1985], Hayes-Roth, Waterman, and Lenat [J 1983], and Winston and Horn 
[G 1989].

Meyer and Matyas [I 1982] cover the strengths and weaknesses of various kinds 
of ciphers, along with algorithmic approaches to breaking them.

Considerations, benefits, and drawbacks of blackboard application frameworks 
are discussed in Corkill [D 1991] and Hunt [D 2002].

Chapter 11

The problems of process synchronization, deadlock, livelock, and race conditions 
are discussed in detail in Hansen [H 1977], Ben-Ari [H 1982], and Holt et al. 
[H 1978]. Mellichamp [H 1983], Glass [H 1983], and Foster [H 1981] offer gen-
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eral references on the issues of developing real-time applications. Concurrency 
as viewed by the interplay of hardware and software may be found in Lorin 
[H 1972].

Chapter 12

Garrett [M 2002] discusses high-level user-related design issues. Constantine and 
Lockwood [M 1999] also discuss user-related design issues emphasizing a use 
case and modeling approach. 

Monson-Haefel [M 2001] provides an engaging introduction to designing and 
programming with EJBs. 

Geary and Horstmann [M 2004] address user interface design in the context of 
implementing reusable components for Web applications.

Cavaness [M 2004] covers the Struts framework and the model-view-controller 
design pattern.
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Glossary

A
abstract class A class that has no instances. An abstract class is written with the 

expectation that its concrete subclasses will add to its structure and behav-
ior, typically by implementing its abstract operations.

abstract operation An operation that is declared but not implemented by an 
abstract class.

abstraction The essential characteristics of an object that distinguish it from all 
other kinds of objects and thus provide crisply defined conceptual bound-
aries relative to the perspective of the viewer; the process of focusing on the 
essential characteristics of an object. Abstraction is one of the fundamental 
elements of the object model.

access control The mechanism for control of access to a model element, for 
example, to the contents of a package or to the structure or behavior of a 
class. See also visibility.

action node One of the three types of nodes contained by an activity. It defines 
the behavioral steps of an activity. UML 2 defines the available type of 
actions, which include those to invoke the behavior of an operation or of an 
activity.

active object An object that encompasses its own thread of control.

activity A specification of behavior that contains action nodes, control nodes, 
and object nodes.

actor An actor defines a role that an external entity plays in its interactions with 
a system.
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aggregation A whole/part relationship where one object is composed of one or 
more other objects, each of which is considered a part of the whole. This 
relationship is a weak form of containment in that the lifetimes of the whole 
and its parts are independent.

algorithmic decomposition The process of breaking a system into parts, each of 
which represents some small step in a larger process. The application of 
structured design methods leads to an algorithmic decomposition, whose 
focus is on the flow of control within a system.

architectural mechanism A representation of a general system capability that 
interacts with, or supports, the basic system functionality. 

architecture The logical and physical structure of a system’s components and 
their relationships, forged by all the strategic and tactical design decisions 
applied during development.

association A relationship denoting a semantic connection between two classes.

attribute A part of a class whose value contributes to the state definition of a 
class. Collectively, the attributes of a class constitute its structure. 

B
base class The most generalized class in a class structure. Most applications have 

many such root classes. Some languages define a primitive base class, 
which serves as the ultimate superclass of all classes.

behavior How an object acts and reacts, in terms of its state changes and mes-
sage passing; the outwardly visible and testable activity of an object.

behavioral prototype An example that explores some element of the system, 
such as an aspect of an architecture, a new algorithm, a user interface 
model, or a database schema. Its purpose is the rapid exploration of design 
alternatives, so that areas of risk can be resolved early without endangering 
the production releases. 

binding Denotes the association of a name (such as a variable declaration) with a 
class.

C
cardinality The number of instances that a class may have; the number of 

instances that participate in a class relationship.

class A set of objects that share a common structure and a common behavior. 
The terms class and type are usually (but not always) interchangeable; a 
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class is a slightly different concept than a type, in that the former empha-
sizes the classification of structure and behavior.

class diagram Part of the notation of object-oriented design, used to show the 
existence of classes and their relationships in the logical design of a system. 
A class diagram may represent all or part of the class structure of a system.

class structure A graph whose vertices represent classes and whose arcs repre-
sent relationships among these classes. The class structure of a system is 
represented by a set of class diagrams.

client An object that uses the services of another object, either by operating on it 
or by referencing its state.

collaboration The process whereby several model elements cooperate to provide 
some higher-level behavior.

component A logical collection of classes that collaborate to provide a set of ser-
vices offered through the component’s provided interfaces. The services 
required by the component are requested through its required interfaces. A 
component may also consist of other components and may be nested to 
whatever level required.

composition A whole/part relationship where one object is composed of one or 
more other objects, each of which is considered a part of the whole. This 
relationship is a strong form of aggregation in that the lifetimes of the whole 
and its parts are dependent.

concrete class A class whose implementation is complete and thus may have 
instances.

concurrency The property that distinguishes an active object from one that is not 
active.

concurrent object An active object whose semantics are guaranteed in the pres-
ence of multiple threads of control.

constraint The expression of some semantic condition that must be preserved.

constructor An operation that creates an object and/or initializes its state.

control node One of the three types of nodes contained by an activity. It provides 
the starting, stopping, and action sequencing functionality of an activity.

container class A class whose instances are collections of other objects. Con-
tainer classes may denote homogeneous collections (all of the objects in the 
collection are of the same class) or heterogeneous collections (each of the 
objects in the collection may be of a different class, although all must gener-
ally share a common superclass). Container classes are most often defined 
as parameterized classes, with some parameter designating the class of the 
contained objects.
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CRC cards Class/Responsibilities/Collaborators; a simple tool for brainstorm-
ing about the key abstractions and mechanisms in a system.

D
data dictionary A comprehensive repository enumerating all the classes in a 

system.

delegation The act of one object forwarding to another object an operation to be 
performed on behalf of the first object.

destructor An operation that frees the state of an object and/or destroys the 
object itself.

device A piece of hardware that has no computational resources.

dynamic binding A binding in which the name/class association is not made 
until the object designated by the name is created at execution time.

E
encapsulation The process of compartmentalizing the elements of an abstraction 

that constitute its structure and behavior. Encapsulation separates the con-
tractual interface of an abstraction and its implementation.

event Some occurrence that may cause the state of a system to change.

F
field A repository for part of the state of an object; collectively, the fields of an 

object constitute its structure. The terms field, instance variable, member
object, and slot are interchangeable.

forward engineering The production of executable code from a logical or phys-
ical model.

framework A collection of classes that provide a set of services for a particular 
domain. A framework thus exports a number of individual classes and 
mechanisms that clients can use or adapt.

free subprogram A procedure or function that serves as a nonprimitive opera-
tion on an object or objects of the same or different classes. A free subpro-
gram is any subprogram that is not a method of an object.

friend A class or operation whose implementation may reference the private 
parts of another class, who alone can extend the offer of friendship.
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function An input/output mapping resulting from some object’s behavior.

function point In the context of a requirements analysis, a single, outwardly vis-
ible and testable activity.

G
generic function An operation on an object. A generic function of a class may 

be redefined in subclasses; thus, for a given object, it is implemented 
through a set of methods declared in various classes related via their inherit-
ance hierarchy. The terms generic function and virtual function are usually 
interchangeable.

guard A Boolean expression applied to an event. If true, the expression permits 
the event to cause the state of the system to change.

H
hierarchy A ranking or ordering of abstractions. The two most common hierar-

chies in a complex system include its class structure (including “is a” 
hierarchies) and its object structure (including “part of” hierarchies). Hier-
archies may also be found in the component and deployment architectures 
of a complex system.

I
identity The nature of an object that distinguishes it from all other objects.

implementation The inside view of a class or object, including the secrets of its 
behavior.

information hiding The process of hiding all the secrets of an object that do not 
contribute to its essential characteristics. Typically, the structure of an 
object is hidden, as well as the implementation of its methods.

inheritance A relationship among classes, wherein one class shares the structure 
or behavior defined in one (single inheritance) or more (multiple inherit-
ance) other classes. Inheritance defines an “is a” hierarchy among classes in 
which a subclass inherits from one or more generalized superclasses; a sub-
class typically specializes its superclasses by augmenting or redefining 
existing structure and behavior.

instance Something to which you can do things. An instance has state, behavior, 
and identity. The structure and behavior of similar instances are defined in 
their common class. The terms instance and object are interchangeable.
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instance variable A repository for part of the state of an object. Collectively, the 
instance variables of an object constitute its structure. The terms field,
instance variable, member object, and slot are interchangeable.

instantiation The process of filling in a template class or parameterized class to 
produce a class from which one can create instances.

interface The outside view of, for example, a class, object, component, or com-
posite structure, that emphasizes its abstraction while hiding its structure 
and the secrets of its behavior.

invariant The Boolean expression of some condition whose truth must be 
preserved.

iterator An operation that permits the parts of an object to be visited.

K
key abstraction A class or object that forms part of the vocabulary of the prob-

lem domain.

L
layer The collection of components at the same level of abstraction.

level of abstraction The relative ranking of abstractions in a class structure, 
object structure, component architecture, or deployment architecture. In 
terms of the “part of” hierarchy, a given abstraction is at a higher level of 
abstraction than others if it builds on the others; in terms of the “is a” hierar-
chy, a high-level abstraction is generalized, and a low-level abstraction is 
specialized.

link Between two objects, one instance of an association.

M
mechanism A structure whereby objects collaborate to provide some behavior 

that satisfies a requirement of the problem.

member function An operation on an object, defined as part of the declaration 
of a class; all member functions are operations, but not all operations are 
member functions. The terms member function and method are usually 
interchangeable. In some languages, a member function stands alone and 
may be redefined in a subclass; in other languages, a member function may 
not be redefined but serves as part of the implementation of a generic func-
tion or virtual function, both of which may be redefined in a subclass.
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member object A repository for part of the state of an object; collectively, the 
member objects of an object constitute its structure. The terms field,
instance variable, member object, and slot are interchangeable.

message An operation that one object performs on another. The terms message,
method, and operation are usually interchangeable.

metaclass The class of a class; a class whose instances are themselves classes.

method An operation on an object, defined as part of the declaration of a class. 
All methods are operations, but not all operations are methods. The terms 
message, method, and operation are usually interchangeable. In some 
languages, a method stands alone and may be redefined in a subclass; in 
other languages, a method may not be redefined but serves as part of the 
implementation of a generic function or a virtual function, both of which 
may be redefined in a subclass.

modularity The property of a system that has been decomposed into a set of 
cohesive and loosely coupled components.

monomorphism A concept in type theory, according to which a name (such as a 
variable declaration) may only denote objects of the same class.

O
object Something to which you can do things. An object has state, behavior, and 

identity; the structure and behavior of similar objects are defined in their 
common class. The terms instance and object are interchangeable.

object diagram Part of the notation of object-oriented design, used to show the 
existence of objects and their relationships in the logical design of a system. 
An object diagram may represent all or part of the object structure of a sys-
tem and primarily illustrates the semantics of mechanisms in the logical 
design. A single object diagram represents a snapshot in time of an other-
wise transitory event or configuration of objects.

object model The collection of principles that form the foundation of object-ori-
ented design; a software engineering paradigm emphasizing the principles 
of abstraction, encapsulation, modularity, hierarchy, typing, concurrency, 
and persistence.

object node One of the three types of nodes contained by an activity. It defines 
the data that flows between the actions of an activity.

object structure A graph whose vertices represent objects and whose arcs repre-
sent relationships among those objects. The object structure of a system is 
represented by a set of object diagrams.
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object-based programming A method of programming in which programs are 
organized as cooperative collections of objects, each of which represents an 
instance of some type, and whose types are all members of a hierarchy of 
types united via other than inheritance relationships. In such programs, 
types are generally viewed as static, whereas objects typically have a much 
more dynamic nature, somewhat constrained by the existence of static bind-
ing and monomorphism.

object-oriented analysis A method of analysis in which requirements are exam-
ined from the perspective of the classes and objects found in the vocabulary 
of the problem domain.

object-oriented decomposition The process of breaking a system into parts, each 
of which represents some class or object from the problem domain. The 
application of object-oriented design methods leads to an object-oriented 
decomposition, in which we view the world as a collection of objects that 
cooperate with one another to achieve some desired functionality.

object-oriented design A method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physi-
cal as well as static and dynamic models of the system under design. Specif-
ically, examples of this notation include class diagrams, object diagrams, 
component diagrams, and deployment diagrams.

object-oriented programming A method of implementation in which programs 
are organized as cooperative collections of objects, each of which represents 
an instance of some class, and whose classes are all members of a hierarchy 
of classes united via inheritance relationships. In such programs, classes are 
generally viewed as static, whereas objects typically have a much more 
dynamic nature, which is encouraged by the existence of dynamic binding 
and polymorphism.

operation Some work that one object performs on another in order to elicit a 
reaction. All of the operations on a specific object may be found in free sub-
programs and member functions or methods. The terms message, method,
and operation are usually interchangeable.

P
parameterized class A class that serves as a template for other classes, in which 

the template may be parameterized by other classes, objects, and/or opera-
tions. A parameterized class must be instantiated (its parameters filled in) 
before instances can be created. Parameterized classes are typically used as 
container classes. The terms template class and parameterized class are 
interchangeable.
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partition The components or subsystems that form a part of a given level of 
abstraction. Also, a structural division of an activity diagram that is com-
monly called a swimlane.

passive object An object that does not encompass its own thread of control.

persistence The property of an object by which its existence transcends time 
(i.e., the object continues to exist after its creator ceases to exist) and/or 
space (i.e., the object’s location moves from the address space in which it 
was created).

polymorphism A concept in type theory, according to which a name (such as a 
variable declaration) may denote objects of many different classes that are 
related by some common superclass; thus, any object denoted by this name 
can respond to some common set of operations in different ways.

postcondition An invariant satisfied by an operation.

precondition An invariant assumed by an operation.

private A declaration that forms part of the interface of a class or object. What is 
declared as private is not visible to any other classes or objects.

process The activation of a single thread of control.

processor A piece of hardware that has computational resources.

protected A declaration that forms part of the interface of a class or object but 
is not visible to any other classes or objects except those that represent 
subclasses.

protocol The ways in which an object may act and react, constituting the entire 
static and dynamic outside view of the object. The protocol of an object 
defines the envelope of the object’s allowable behavior.

public A declaration that forms part of the interface of a class or object and is 
visible to all other classes and objects that have visibility to it.

Q
qualifier An attribute whose value uniquely identifies a single target object.

R
reactive system An event-driven system. The behavior of a reactive system is 

not a simple input/output mapping.

real-time system A system whose essential processes must meet certain critical 
time deadlines. A hard-real-time system must be deterministic; missing a 
deadline may lead to catastrophic results.
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reference architecture A predefined architectural pattern or set of patterns, pos-
sibly partially or completely instantiated, designed and proven for use in 
particular business and technical contexts, together with supporting artifacts 
to enable their use. 

responsibility Some behavior for which an object is held accountable. A respon-
sibility denotes the obligation of an object to provide a certain behavior.

reverse engineering The production of a logical or physical model from execut-
able code.

role The purpose or capacity wherein one class or object participates in a rela-
tionship with another. The role of an object denotes the selection of a set of 
behaviors that are well defined at a single point in time; a role is the face an 
object presents to the world at a given moment.

S
scenario An outline of events that elicits some system behavior.

sequential object A passive object whose semantics are guaranteed only in the 
presence of a single thread of control.

server An object that never operates on other objects but is only operated on by 
other objects; an object that provides certain services.

service The behavior provided by a given part of a system.

signature The complete profile of an operation’s formal arguments and return 
type.

slot A repository for part of the state of an object. Collectively, the slots of an 
object constitute its structure. The terms field, instance variable, member
object, and slot are interchangeable.

state The cumulative results of the behavior of an object; one of the possible 
conditions in which an object may exist, characterized by definite quantities 
that are distinct from other quantities. At any given point in time, the state 
of an object encompasses all of the (usually static) properties of the object 
plus the current (usually dynamic) values of each of these properties.

state machine diagram Part of the notation of object-oriented design, used to 
show the state space of a given class, the events that cause a transition from 
one state to another, and the actions that result from a state change.

state space An enumeration of all the possible states of an object. The state 
space of an object encompasses an indefinite yet finite number of possible 
(although not always desirable or expected) states.



GLOSSARY 601

static binding A binding in which the name/class association is made when the 
name is declared (at compile time) but before the creation of the object that 
the name designates.

strategic design decision A design decision that has sweeping architectural 
implications.

strongly typed A characteristic of a programming language, according to which 
all expressions are guaranteed to be type-consistent.

structure The concrete representation of the state of an object. An object does 
not share its state with any other object, although all objects of the same 
class do share the same representation of their state.

structured design A method of design encompassing the process of algorithmic 
decomposition.

subclass A class that inherits from one or more classes (which are called its 
immediate superclasses).

subsystem A collection of components, some of which are visible to other sub-
systems and others of which are hidden.

superclass The class from which another class inherits (which is called its imme-
diate subclass).

synchronization The concurrency semantics of an operation. An operation may 
be simple (only one thread of control is involved), synchronous (two pro-
cesses rendezvous), balking (one process may rendezvous with another only 
if the second process is already waiting), timeout (one process may rendez-
vous with another but will wait for the second process only for a specified 
amount of time), or asynchronous (the two processes operate independently).

T
tactical design decision A design decision that has local architectural implica-

tions.

template class A class that serves as a template for other classes, in which the 
template may be parameterized by other classes, objects, and/or operations. 
A template class must be instantiated (its parameters filled in) before 
objects can be created. Template classes are typically used as container 
classes. The terms template class and parameterized class are interchange-
able.

thread of control A single process. The start of a thread of control is the root 
from which independent dynamic action within a system occurs; a given 
system may have many simultaneous threads of control, some of which may 
dynamically come into existence and then cease to exist. Systems executing 
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across multiple processors allow for truly concurrent threads of control, 
whereas systems running on a single processor can only achieve the illusion 
of concurrent threads of control.

transition The passing from one state to another state.

type The definition of the domain of allowable values that an object may possess 
and the set of operations that may be performed on the object. The terms 
class and type are usually (but not always) interchangeable; a type is a 
slightly different concept than a class, in that the former emphasizes the 
importance of conformance to a common protocol.

typing The enforcement of the class of an object, which prevents objects of dif-
ferent types from being interchanged or, at the most, allows them to be 
interchanged only in very restricted ways.

U
the Unified Modeling Language (UML) A language (notation) used during the 

conduct of object-oriented analysis and design to model aspects of a devel-
opment concern.

V
virtual function An operation on an object. A virtual function may be redefined 

by subclasses; thus, for a given object, it is implemented through a set of 
methods declared in various classes related via their inheritance hierarchy. 
The terms generic function and virtual function are usually interchangeable.

visibility The ability of one abstraction to see another and thus reference 
resources in its outside view. Abstractions are visible to one another only 
where their scopes overlap. Export control may further restrict access to vis-
ible abstractions. Examples of visibility include public, private, protected,
and package.
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Page numbers followed by an f or t indicate figures and tables.

A
Abstract class, 101, 193, 427
Abstraction analysis, 137
Abstractions

in architecture functionality, 351
encapsulations and, 51
examples of, 47–50
in hierarchy of complex systems, 4–5
key

defined, 112, 138
identifying, 139–41, 284t
naming, 140–41
refining, 139–40
in traffic management system, 395–96

levels of, in micro process, 274–76, 275f,
281–83

meaning of, 44–47
in programming language evolution, 31
by programming style, 43
quality of, measuring, 112–14
role of, 23–24, 200
software flexibility and, 10
static and dynamic properties of, 46–47
viewers perspective in, 44–45
in weather monitoring system, 467

Access, package, 161–63

Action abstraction, 45
Activity diagram

actions in, 186
black-box, 345f
decision and merge nodes in, 187–88
fork and join nodes in, 188, 190
object flows in, 190
partitions in, 188, 189f
for satellite navigation system, 341f, 346f
starting and stopping points in, 186–87
for traffic management system, 386f, 387f
white-box, 356f, 367f

Actors, in use case diagram, 176
Ad hoc approach, 125
Affirmation class, 424–25, 426f
Aggregation

choice of, 196
of classes, 109–11
hierarchy in, 63–64
of objects, 91–92, 92f
as physical containment, 110–11
vs. multiple inheritance, 110–11

Agile development process, 252–53, 255t
Algorithmic decomposition, 19

vs. object-oriented, 20–23
Alphabet class, 428–29
Alternatives interaction operator, 212



678 INDEX

Analysis categories, 21–22
Analysis/design model, 277–78

in vacation tracking system, 508–19
Analysis process. See also Micro process

abstraction levels in, 273–76
classes and objects in, 112
element identification in, 284t–285t
in iterative development, 270
object-oriented. See Object-oriented analysis

Analyst role, 311
Animals, complex structure of, 5–6
Apache Struts framework, 518, 528–29
Application engineers, 310
Architect, project, 309–10
Architectural design, 281, 285t
Architecture analysis, 281
Architecture description, 277
Architecture documentation, 278–80, 349
Architecture of system, 16

defined, 248
in design process, 248–49
in satellite navigation system

activity definition, 348–50
decomposing, 364–70
deployment of, 361–64
developing, 348
nonfunctional requirements, 358–61
validating, 350–57

time-frame-based processing in, 473–74
in traffic management system

defining, 389–91
system functionality and, 385–87

in vacation tracking system, 517–18
in weather monitoring system, 473–74, 475f
Web-centric, 494

Arithmetic/logic unit (ALU), 4
Artifact

defined, 171
notation for, 171–72
reuse of, 314–16

Artificial intelligence, 40. See also Cryptanalysis 
system

Assembly connectors, 166, 217
Assertion class, 425
Associations

among classes, 97–98
among elements, 293–94
classes and notes, 205–6
directionality, 199

end names and qualifiers, 200–201
one-to-many, 98f
visibility, 199

Assumption mechanism, 443–44
Astronomy, 6

B
Backward-chaining, 419
Bandwidth, 535
Behavior

in choice of class, 115
in element collaboration, 291
fundamental, 291
of objects, 81–82

Behavior analysis
description of, 132–33
process of, 290–91

Behavior characterization, 11–12
Behavior diagrams, 150f, 151
Behavioral prototype, 260
Biological classification, 123–24
Black-box activity diagram, 345f, 365
Blackboard framework

architecture of, 417, 418–20
assumption mechanism in, 443–44
integration of, 440–44
knowledge sources in, 418–20, 444–45

Blackboard objects
classes in, 421–23
designing, 427–31
topmost, 440–43

Block diagram, 389f, 392
Botany, 5
Boyle, Robert, 124
Business function, 133
Business logic, 533–34

C
C++, 546–51
C with Classes, 546
CAD/CAM system, 77
Canonical form of complex system, 15–17, 17f
Capability-based architectures, 39
Central processing unit (CPU), 4
Chaos, prediction and, 11n
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Chemical classification, 124
Chunking, 23
CK metrics, 320
Class diagram

association classes and notes, 205–6
association end names and qualifiers in, 

200–201
constraints in, 201–4, 203f
element visibility in, 198–200, 199f
notation in, 192–93
relationships in, 194–97, 195f
in schedule planning, 401f
template classes in, 197–98
in traffic management system, 398, 399f

Class library tool, 323
Class lifecycle, 96
Class promotion, 140
Class structure, 15–17, 17f
Class(es). See also specific classes

abstract, 101, 193, 427
affirmation, 424–25
alphabet, 428–29
assertion, 425
association among, 97–98
behavior in choice of, 115
in blackboard framework, 421–23
collection, 477
concrete, 101
defined, 92–94
dependencies among, 111, 423–26
design quality of, 112–14
identifying, 126–38
implementing, 94–95
inheritance among, 98–102
interface of, 94–95, 476
interplay of, with objects, 111–12
leaf, 101
relationships among, 96–97, 204
sources of, 131–32
template, 197–98
for time and date, 452–54
vs. type, 64n

Classical analysis, 131–32
Classical categorization, 126–27
Classification

approaches to
application of, 130–31
classical categorization, 126–27

conceptual clustering, 127–29
prototype theory, 130

defined, 121
difficulty of, 122–24
importance of, 121–22
incremental and iterative nature of, 124–26

Client state management, 499
CMP beans, 519, 520
Cohesion, 113, 354
Coincidental abstraction, 45
Collection class, 477
Commonality, in complex structures, 5
Communication diagram, 238–43

in vacation tracking system, 514–15, 516f
Communication gap, 9
Completeness, 114
Completion transition, 221
Complex systems

attributes of, 12–15
behavior characterization in, 11–12
canonical form of, 15–17, 17f
designing, 24–28
hierarchical nature of, 4–5
structure of, 4–7

Complexity
abstraction of, 23–24, 44
arbitrary, 7
external, 9
human limitations and, 17–18

Component analysis, 281
Component design, 281–82
Component diagram

defined, 163
interfaces in, 166–68, 167f
internal structure of, 169–71, 170f
notation for, 164–65, 164f
realizations in, 168, 169f
for satellite navigation system, 362f
for traffic management system, 408f

Component lead, 310
Composite design, 21
Composite state, 224, 225f
Composite state notation, 226
Composite structure diagram, 215–18

for cryptanalysis system, 441f
Composition, 110, 125
Computer languages. See Programming languages
Conceptual clustering, 127–29
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Conceptual model, 152
Concerns, separation of

in complex system, 13–14
encapsulation in, 52
in temperature measurement abstraction, 49

Concrete classes, 101
Concurrency

examples of, 68–69
heavyweight, vs. lightweight, 67
meaning of, 66–68
in state machine diagram, 225–30

Concurrent synchronization, 91
Configuration management, 312–13
Connectors, in composite structure diagram, 217
Constraint

association, 203
defined, 201
placement of, 202t

Construction phase
in cryptanalysis, 427
description of, 266
in satellite navigation system, 371
in traffic management system, 396–97
in vacation tracking system, 506
in weather monitoring system, 474

Constructor operation, 82
Context diagram, for satellite navigation system, 337f
Contract model of programming, 46
Control constructs, 210–12
Control flow notation, 226
Control objects, 76
Control system. See Traffic management system
Controller object, 89

in knowledge source activation, 438–39
in vacation tracking system, 528–29

Coupling, 113
CRC cards, 135–36
Cryptanalysis system

blackboard framework in
architecture of, 417, 418–20
assumption mechanism in, 443–44
integration of, 440–44
knowledge sources in, 418–20, 444–45

blackboard objects
classes in, 421–23
designing, 427–31

construction phase in, 427
controller design in, 438–39, 440f
defined, 414

dependencies in, 423–26, 426f
knowledge sources in

in blackboard framework, 418–20, 444–45
designing, 431–34
generalizing, 435–37
implementing, 445

post-transition phase in, 446–47
problem-solving process in, 416–18
requirements for, 414–15

changes in, 448
substitution cipher, 414–15
system enhancements, 446–47

D
Darwin, Charles, 123
Data abstraction, 35
Data acquisition system, 449. See also Weather 

monitoring system
Data-driven design, 22
Data member, 95
Decision nodes, 187–88
Decomposable hierarchic systems, 13
Decomposition

algorithmic, 19
vs. object-oriented, 20–23

object-oriented, 20
role of, 19–23
of system architecture, 364–70
in traffic management system, 409

Defect density, 317
Defect-discovery rates, 266
Delegation, 98
Delegation connectors, 171, 217
Demeter, Law of, 116–17
Dependency class, 111, 423–26, 426f
Dependency relationships, 424–25

in package diagrams, 158–59
Deployment diagrams

artifact notation in, 171–72
connections in, 173–75, 174f
node notation in, 172–73
in traffic management system, 394f
in vacation tracking system, 494–96, 495f

Derivation, 125
Descartes, René, 124
Descriptor-based architectures, 39
Design method categories, 21–22
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Design methodologies, 26–27
Design metrics, 318
Design model, in vacation tracking system, 

508–19, 521f, 522f
Design process. See also Micro process

abstraction levels in, 275–76
classes and objects in, 112
of complex systems, 24–28
element identification in, 284t–285t
in iterative development, 270
purpose of, 25–26

Destruction events, 208
Destructor operation, 82
Development legacy, 320–21
Development process. See also Object-oriented 

development
agile, 252–53, 255t

phases in, 267–68
architectural vision in, 248–49
choice of, 254
in design methodology, 27
iterative

advantages of, 251
analysis and design in, 270
duration for, 269
focus shifts in, 268f

macro
construction phase in, 266
disciplines in, 259, 261
elaboration phase in, 264–66
inception phase, 262–64
iterations in, 268–69
milestones and phases in, 261–68
purpose of, 257
release planning in, 270–73
transition phase in, 267

micro
abstraction levels in, 274–76, 275f, 280–83
activities in, 276–77
element collaborations in, 288–92
element identification in, 283–88
element relationships in, 292–95
macro process and, 273f
products of, 277–78
semantic detail in, 296–300

plan-driven, 253, 255t
prototyping in, 260
software architecture documentation, 278–80

Development reviews, 306–7

Development team roles, 309–12
Device, 172
Diagram notation

activity, 185–91
behavior, 150f, 151
class, 192–206
communication, 238–43
component, 163–71
composite structure, 215–18
deployment, 171–75, 174f
interaction, 150f
interaction overview, 213–15
object, 235–38
package, 156–63
sequence, 206–12
state machine, 218–31
structure, 149–50, 150f
timing, 231–35
use case, 175–85, 178f

Diagrams. See also specific types
connectivity among, 154
context, 337f
practical use of, 151–52
state transition, 440f

Discrete systems, behavior characterization in, 
11–12

Display mechanism, in weather monitoring system, 
482–83

Do activity, 222
Documentation, 320–22
Documenter, 311
Domain analysis, 133–34
Domain expert, 134
Domain-specific issues, 324–25
Drawing mechanism, 143
Duration timer, 223
Dynamic typing, 66

E
Early binding, 66
Elaboration phase

of cryptanalysis system, 421
description of, 264–66
of satellite navigation system, 347–48
of traffic management system, 385
of vacation tracking system, 494
of weather monitoring system, 463
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Elements
associations among, 293–94
collaborations among, 288–92

milestones in, 291–92
identification of, 283–88, 284t–285t

milestones in, 288
pattern scavenging, 291
protocols of, 297
relationships among, 292–95
semantics of, 296–300
visibility of, 157–58

Encapsulation
in architecture functionality, 351
examples of, 52–54
meaning of, 50–52
separation of concerns in, 52

Energy management system, 390
Engineering, 25
English description, in object-oriented analysis, 

136
Entities

finders in filtering, 528
persistent, 519–20
in vacation tracking system, 519–23

Entity abstraction, 45
Entity bean, 521

primary key generation for, 525
Entry activity, 222
Environmental control system

component notation in, 164f
deployment diagram for, 174f
internal structure of, 170f
specification of two interfaces for, 167f

Exclude relationships, 180–84
Execution environment, 172
Execution specification, 209
Exit activity, 222
Extend relationships, 181–83

F
Façade object, 523, 524f
Factorization, 125
Federal Bureau of Investigation, 303
Field, 95
Final node, 187
Final state, 219–20
Finder methods, 528

Fine-grained operations, 115
Finite state machine, 485–86
Firing the transition, 220
Fork node, 188, 190
Fork vortex, 228
Forward-chaining, 419
Found message, 208
4+1 architecture view model, 279–80
Frames

in interaction overview diagrams, 213
in weather monitoring system, 474–79
in web applications, 535

Frameworks, 143
Function points, 133
Functional semantics, of operation, 115
Functionality allocation, 353
Fuzzy set theory, 128

G
Global Positioning System (GPS), 334, 335
Glossary, 338
Grainsize conflict, 140
Guard conditions, 243
Guarded synchronization, 91

H
Hardware

post-transition changes to, 372–73
in weather monitoring system, 451, 452f

Heavyweight concurrency, 67
Hierarchical structure

aggregation, 63–64
in architecture functionality, 352
class and object in, 15–17
in complex system, 4–5, 12
inheritance in

multiple, 61–63
repeated, 62
single, 58–61

of knowledge source class, 434f
meaning of, 58–64
role of, 24
in weather monitoring sensor class, 460f

HTML browsers, 518
HTTP state management mechanism, 499
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Human intelligence, 40
Hydroponics gardening system

communication diagram for, 240f
composite structure diagram for, 216f
package import in, 162f
package notation for, 156f, 160f
transitions in, 221

Hyperlinks, 534

I
Identity

defined, 85
of object, 85–87, 86f

Idioms, 142–43
Implementation model

choosing, 117–18
of class, 94–95
mechanisms of, 112
in vacation tracking system, 501

Import package, 161–63
Inception phase

of cryptanalysis system, 414
description of, 263–64
of satellite navigation system, 334
of traffic management system, 376
in vacation tracking system, 490

Include relationships, 180–84
Incremental development approach, 250–52

integration events in, 313–14
Information display, 404–5
Informational capacity

abstraction in transcending, 23
of human, 18

Inheritance
element semantics and, 299
metrics of, 319
multiple

among classes, 106–9
name collisions in, 107–8
in object model, 61–63
vs. aggregation, 110–11

polymorphism and, 102–3
repeated, 62, 109
single

among classes, 100–102
defined, 100
in object model, 58–61

Initial node, 186
Initial state, 219–20
Instance variable, 95
Integrated development environment (IDE), 323
Integration events, 313–14
Integration manager role, 311
Intelligent system. See Cryptanalysis
Interaction operator loop, 210–12
Interaction overview diagram, 213–15

for traffic management system, 388f
Interaction use, 210
Interface

of class, 94–95
in vacation tracking system, 529–34
in weather monitoring system, 476f, 483–87

Interface connectors, 166, 217
Intermediate form stability, 14
Invariance, 46
Iteration clause, 242–43
Iteration release, 272
Iterative development

advantages of, 250–52
duration in, 269, 270–71
focus shifts in, 268f
integration events in, 313–14
in macro process, 268–69

Iterator operation, 82

J
Java, 551–56
Java scripting, 535
Java Server Pages (JSP), 517, 532
J2EE technologies, 518
Join node, 188, 190
Join vertex, 228
JSF, 518

K
Key abstractions

defined, 112, 138
identifying, 139–41, 284t
naming, 140–41
refining, 139–40
in traffic management system, 
395–96
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Knowledge sources
analysis of, 420–21
in blackboard framework, 418–20, 444–45
dependencies among, 423–26
designing, 431–34
generalizing, 435–37
implementing, 445
pattern-matching, 433

L
Late binding, 66

polymorphism and, 103
Lavoisier, Antoine, 124
Law of Demeter, 116–17
Leaf classes, 101
Legacy system, 325
Lifeline, 206, 232
Lightweight concurrency, 67
Links

in communication diagrams, 239
defined, 88
between objects, 88–91, 89f

Linnaeus, Carolus, 123
Logical model, 152

for satellite navigation system, 341f
in satellite navigation system, 368f
in vacation tracking system, 496–98, 497f

Lorenz design metrics, 319

M
Machines, objects as, 84–85
Macro process

construction phase in, 266
disciplines in, 259, 261
elaboration phase in, 264–66
inception phase, 262–64
iterations in, 268–69
milestones and phases in, 261–68
purpose of, 257
release planning in, 270–73
transition phase in, 267

Maintenance of software, 10, 258–59
Management, project, 304–8
Many-to-many relationships, 98
Matter, structure of, 6

Mechanisms
defined, 112, 138
examples of, 143–44
identifying, 140–44
in object structure, 24
as patterns, 142–43
in relationship choice, 117

Member function, 46
Mendeleyev, Dmitry, 124
Merge nodes, 187–88
Message dictionary, 105
Message passing

between objects, 88–89
in traffic management system, 397–400, 400f

Messages
in communication diagram, 239
defined, 81
found, 208
guard conditions in, 243
notation for, 206–7

Method
selection of, 104–6
as term, 46
vs. methodology, 21

Method-dispatch algorithm, 105–6
Metrics, object-oriented, 317–20
Milestones

in construction phase, 266
in elaboration phase, 265–66
in inception phase, 264
in micro process

element collaboration, 291–92
element identification, 288
element relationships, 295
element semantics, 299–300

in transition phase, 267
Minsky, Marvin, 331
Mission use case, 339–43
Mixin classes, 61, 109
Model building

importance of, 26
in micro process, 277
Unified Modeling Language and, 148–49

Model-view-controller paradigm, 143
Modeling language. See Unified Modeling 

Language
Modifier operation, 82
Modularity

in architecture functionality, 352
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defined, 56
examples of, 57–58
guidelines for, 56
meaning of, 54–57
size limitations in, 57

Monomorphism, 66
Multiple inheritance

among classes, 106–9
name collisions in, 107–8
in object model, 61–63
vs. aggregation, 110–11

Multiplicity among classes, 98
Multivalue set theory, 128
MVC pattern, 143

N
Name collisions, 107–8
Navigation. See Satellite Navigation System
Nearly decomposable hierarchic systems, 13
Nested state, 224, 225f
Node

defined, 172
notation for, 172–73

Notation. See also Diagram notation; Unified 
Modeling Language

in design methodology, 27
purpose of, 147–48

Noun-verb analysis, 508

O
Object-based programming languages, 32

topology of, 35–36, 36f, 37f
vs. object-oriented, 41

Object diagram, 235–38
in vacation tracking system, 514–15, 515f

Object flows, 190
Object Management Group (OMG), 148
Object model

application of, 71–72
benefits of, 71–72
elements of, 43–44
evolution of, 29–37, 39
foundations of, 37–43
as principle, 18
in programming language evolution, 538

Object nodes, 191f
Object-oriented analysis

approaches to
behavioral, 132–33
classical, 131–32
CRC cards, 135–36
domain analysis, 133–34
structured analysis, 136–38
use case analysis, 135

defined, 42–43
Object-oriented decomposition, 20

vs. algorithmic, 20–23
Object-oriented design

defined, 38, 42
models of, 27
in object-oriented decomposition, 42

Object-oriented development. See also
Development process

adoption of, 325–26
benefits of, 326–27
documentation in, 320–22
domain specific issues in, 324–25
failures in, 303
management of

development reviews, 306–8
risk management, 304–5
task planning, 305–6

metrics in, 317–20
quality assurance and in, 316–17
release management in, 312–14
reuse in, 314–16
risks of, 327–29
staffing in

development team roles, 309–12
resource allocation, 308–9

tools in, 322–24
Object-oriented metrics, 317–20
Object-oriented operating systems, 39
Object-oriented programming (OOP)

defined, 41
languages in support of, 41–42

Object structure, 15–17, 17f
Objects

aggregation of, 91–92, 92f
behavior of, 81–82
in communication diagrams, 239
control, 76
defined, 76–78
design quality of, 112–14
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Objects (continued)
façade, 523, 524f
identity of, 85–87, 126–38
interplay of, with classes, 111–12
links between, 88–91
as machines, 84–85
operation of, 82
relationships among, 88–92
roles and responsibilities of, 83–84
sources of, 131–32
state of, 78–81

One-to-one relationships, 98
One-to-many relationships, 98
Operations

choosing, 114–16
defined, 81
functional semantics of, 115
of objects, 82
as term, 46
time and space semantics of, 115–16

Organizational relationships, 7
Orthogonal hierarchies, 15, 22
Overloading, 103
Ownership, in aggregation, 63–64

P
Package diagrams

benefits of, 155–56
dependency relationships in, 158–59
element visibility in, 157–58
import and access, 161–63
notation for, 156–57, 156f
for satellite navigation system, 341f
in use case organization, 160f

Package export, 161–63
Package import, 161–63
Package interface, 94
Packaging, in relationship choice, 118
Parameter formatting, 497
Parameterized classes, 197–98
Partitions, 188, 189f
Pattern commonality, 14
Pattern-matching knowledge source, 433
Pattern scavenging, 291
Patterns

mechanisms as, 142–43
MVC, 143

Persistence, 69–71

Persistent data storage, 519
Personal computers, 4–5
Petroski, Henry, 145
Physical model, 152
Plan-driven process, 253, 255t
Plants, complex structure of, 5–6
Polymorphism

ad hoc, 103
defined, 102–3
late binding and, 103
method selection and, 104–6
in type theory, 66

Ports, in component notation, 164–65
Post data formatting, 497
Post-transition phase

in cryptanalysis system, 446–47
hardware changes in, 372–73
in satellite navigation system, 371–73
in traffic management system, 411–12
in vacation tracking system, 534–35
in weather monitoring system, 487–88

Postconditions, 46
in weather monitoring system, 472–73

Preconditions, 46
Preservation of software, 10
Primary keys, 525
Primitive components, 113
Primitiveness, 114
Principle of least astonishment, 44
Principle of least commitment, 44
Private interface, 94
Private visibility, 157
Problem domain, complexity of, 8–10
Process metrics, 317
Process view, in Web applications, 498–501
Product metrics, 318
Products

of construction phase, 266
of elaboration stage, 264
of element collaboration definition, 288–89
of element identification, 284
of element relationship definition, 293
of inception phase, 264
of micro process, 277–78
of semantic detailing, 296–97
of transition phase, 267

Programming-in-the-large, 34
Programming languages

C++, 546–51
decomposition in, 21
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evolution of, 30–32
genealogy of, 539f
idioms in, 142–43
Java, 551–56
object-based, 32

topology of, 35–36, 36f, 37f
vs. object-oriented, 41

object-oriented, 32
adoption of, 326
criteria for, 41
evolution of, 537–39, 539f
persistence support in, 70
topology of, 35–36, 36f, 37f
vs. object-based, 41

popularity index for, 538, 540t
Smalltalk, 541–42
topology of

defined, 32
first- and early second-generation, 32–33, 

33f
late second- and early third-generation, 

33–34, 34f
late third-generation, 34–35, 35f
object-based and object-oriented, 35–36, 

36f, 37f
Programming styles

contract model of, 46
main kinds of, 43

Project architect, 309–10
Project management, 304–8
Project manager role, 311
Project metrics, 317
Project staffing, 308–12
Property

in classical categorization, 127
defined, 79
of object, 78–79
value of, 79

Protected interface, 94
Protocol

defined, 46
of object, 83
semantics of, 297

Prototype theory, 130
Prototypes, 260

in weather monitoring system, 459
Proxy object, 89
Public interface, 94
Public visibility, 157

Q
Qualifier, 238
Quality assurance, 311, 316–17

R
Railroads. See Traffic management system
Real-time, 324–25
Realizations, component, 168, 169f
Reflexive association, 194
Relationships

among classes, 96–97
among elements, 292–95
among object, 88–92
choosing, 116–17
include and exclude, 180–84
independent and direct, 513f
one-to-one, 98
one-to-many, 98
many-to-many, 98
organizational, 7

Release planning
in macro process, 270–73
in object-oriented development, 312–14
for traffic management system, 406–7
for weather monitoring system, 479–80

Repeated inheritance, 62, 109
Representation, in implementation choice, 117–18
Requirement changes, 9–10
Requirements analysis, 135
Resource allocation, 308–9
Responsibilities

in behavior analysis, 133
of object, 83

Reuse, 314–16
Reuse engineer role, 311, 323
Risk management, 304–5
Role

defined, 83
in interaction overview diagram, 218

S
Satellite Navigation System (SNS)

architecture for
activity definition, 348–50
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Satellite Navigation System (SNS) (continued)
decomposing, 364–70
deployment of, 361–64
developing, 348
functionality allocation, 353
interface specifications, 358–61
logical, 341f
nonfunctional requirements, 358–61
validating, 350–57

component diagram for, 362f
context definition of, 336–39, 337f
launch time allocations for, 360f
package diagram for, 341f
post-transition phase, 371–73
requirements for, 334–36
use cases for

mission, 339–43
system, 343–47

Scenario, 281n
in weather monitoring system, 462–63

Schedule planning, 401–4
SCRUM lifecycle, 268
Segment use case, 357t–358t
Selector operation, 82
Semantic dependencies, 97–98
Semantics

of associations, 294
detailing, 297–99
of elements, 296–300

abstraction level in, 299
inheritance and, 299

functional, 115
time and space, 115–16
in Unified Modeling Language, 154–55
in weather monitoring system, 471f

Sensor data acquisition, 405–6
Sensor mechanism, in weather monitoring system, 

480–82
Separation of concerns

in complex system, 13–14
encapsulation in, 52
in temperature measurement abstraction, 49

Sequence block strategy, 525–26
Sequence diagram

control constructs in, 210–12
destruction events in, 208
execution specification in, 209
interaction use in, 210
in knowledge source evaluation, 436f

lifelines and messages in, 206–7
purpose of, 206
scripts in, 209, 210f
in traffic management system, 392f

Sequence expression, 239–41
Sequential sychronization, 91
Server object, 89
Service Data Objects (SDO), 520, 523–24, 525f
Set theory, 128
Short-term memory capacity, 18
Simple name, 163
Simple state, 219–20
Simula, 39, 538
Single inheritance

among classes, 100–102
defined, 100
in object model, 58–61

Smalltalk
development of, 541–42
feature index of, 543t
method dispatch in, 105
MVC paradigm in, 143
purpose of, 542

SNS. See Satellite Navigation System
Social institutions, structure of, 7
Software architecture documentation, 278–80
Software complexity

defining, 7–8
development process management in, 10
discrete system behavior characterization in, 

11–12
problem domain in, 8–10

Software development, 250–52. See also
Development process

Software evolution and maintenance, 10, 258–59
Software flexibility, 10–11
Software maintenance, 10
Software quality assurance, 316–17
Species diversity, 124
Staffing, 308–12
State

activity in, 222
client, management of, 499
composite, 224, 225f
defined, 219
nested, 224, 225f
notations for, 220–21
of object, 78–81

State machine, finite, 485–86
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State machine diagram
activities in, 222
concurrency in, 225–30
control in, 225–30
initial, final, and simple states in, 219–20
purpose of, 218–19
submachine state in, 230
transition control in, 222–24
transitions and events in, 220–22
in vacation tracking system, 510f
in weather monitoring system, 471f

State transition diagram, 440f
Static binding, 66
Static typing, 66
Steady state, 149
Strong typing, 66
Structure diagrams, 149–50, 150f
Structured analysis, 136–38
Structured design, 21–22
Style sheets, 535
Subclass

defined, 100
purpose of, 101–2

Submachine state, 230
Subprograms, in composite design, 21
Substitution cipher, 414–15
Subsystems

defined, 170
for traffic management system, 408–10

Success scenario, 341–42
Sufficiency, 113
Superclass

collection, 477
defined, 100
in weather monitoring system, 457–58

Supplementary specification, 338
Synchronization

in communication diagram, 242
between objects, 91

Synchronous message, 208
Syntax, of Unified Modeling Language, 154–55
System administrator, 311
System architecture. See also Satellite Navigation 

System
for traffic management system, 407–8

System functions, in behavior analysis, 133
System use cases, 343–47
Systems engineering, 334

T
Task planning, 305–6
Team meetings, 305
Team roles, 309–12
Technology adoption, 325–26
Telemetry data, 99
Temperature measurement

abstraction in, 47–50
in weather monitoring system, 454–55

Template classes, 197–98
Testing, 314
Thomas Aquinas, 126
Time and space semantics, of operation, 115–16
Time-frame-based processing, 473–74, 474f
Timing diagrams, 231–35
TIOBE Programming Community Index, 538, 540t
Tools

in design methodology, 27
kinds of, 322–23
organizational implications of, 323–24
role of, 153
visual. See Diagrams and diagram notation

Toolsmith, 311, 323–34
Top-down structured design, 21
Topology of programming languages

defined, 32
first- and early second-generation, 32–33, 33f
late second- and early third-generation, 33–34, 

34f
late third-generation, 34–35, 35f
object-based and object-oriented, 35–36, 36f,

37f
Traffic management system

architecture for
block diagram in, 389f, 392
defining, 389–91
deployment diagram in, 394f
hardware and software allocations, 391–94
sequence diagram in, 392f
system functionality and, 385–87

class diagram in, 398, 399f
construction phase in, 396–97
decomposition in, 408–10
elaboration phase of, 385
inception phase of, 376
information display in, 404–5
key abstractions in, 395–96
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Traffic management system (continued)
message passing in, 397–400
post-transition phase in, 411–12
release management in, 406–7
requirements for, 377–79
schedule planning in, 401–4
sensor data acquisition in, 405–6
software design for, 407–8
subsystem specification fin, 408–10
use cases determination, 378–84

Transition phase, 267
Transitions

completion, 221
controlling, 222–24
defined, 220

Type, vs. class, 64n
Type consistency, 66
Typing

benefits of, 65–66
meaning of, 64–66
static and dynamic, 65–66

U
Unified Modeling Language (UML)

background of, 148
classification of, 149–51, 150f
defined, 148
diagrams in. See Diagrams
evolution of, 154
models in, 148–49, 152–53
purpose of, 147–48
resources on, 155
subset use in, 151–52
syntax and semantics of, 154–55

Unqualified name, 163
URL redirection, 499
U.S. Global Positioning System (GPS), 334, 335
Use case model, 135

actors in, 176, 493
generalization in, 185
include and exclude relationships in, 180–84
noun-verb analysis in, 508
purpose of, 175–76
for satellite navigation system, 346f

mission, 339–43
segment, 357t–358t
system, 343–47

specifying details in, 177–80
success scenario and, 341–42
for traffic management system, 378–84, 380f
for vacation tracking system, 492–93, 501–6
for weather monitoring system, 464–73
Web-centric systems and, 492–93

User experience model, 506–8, 507f
User interface mechanism

in vacation tracking system, 529–34
in weather monitoring system, 483–87

UX model, 506, 530

V
Vacation tracking system. See also Web 

applications
analysis and design models in, 508–19
communication diagram in, 516f
construction phase in, 506
controllers in, 528–29
deployment view in, 494–96, 495f
elaboration phase in, 494
entities in, 519–23
finder methods in, 528
implementation view of, 501
logical view in, 496–98, 497f
object diagram in, 514–15, 515f
post-transition phase in, 534–35
primary key generation in, 525–27
process view in, 498–501
requirements of, 490–92
rule types in, 511
service data objects in, 523–24, 525f
state machine diagram in, 510f
technologies in, 517
use case model in, 492–93
user experience model in, 506–8

Version control, 312–13
Virtual case file system, 303
Virtual machine abstraction, 45
Visibility

in class diagram, 198–200, 199f
in class interface, 95
of elements, 157–58
between objects, 89–91
in package diagram, 157–58
in relationship choice, 117

von Neumann architectures, 39
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W
Weak typing, 66
Weather monitoring system

architectural framework of, 473–74, 475f
construction phase in, 474
display mechanism in, 482–83
elaboration phase of, 463
frame mechanism in, 474–79
hardware platform for, 451, 452f
post-transition phase in, 487–88
release planning for, 479–80
requirements for, 450
scenarios of use in, 462–63
sensor class hierarchy in, 460f
sensor mechanism in, 480–82
superclass in, 457–58
temperature sensors in, 454–55
time and date class in, 452–54
timer class in, 461–62, 462f
use cases in, 464–73
user interface mechanism in, 470f, 483–87

Web applications, 489–90. See also Vacation 
tracking system

architecture of, 494
business logic in, 533–34
changes in, 535
client state management in, 499
logical components in, 496
processes in, 498
server-side software in, 535
user interface in, 529–34

Web page design, 529–34
White-box activity diagram, 356f, 365, 367f

X
XP lifecycle, 267–68

Z
Zooming in and out, 225
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