BJECT-ORIENTED
ANALYSIS AND DESIGN
WITH APPLICATIONS

THIrRD EDITION

Eﬂl]le E
§ JACOBSON
% RUMBAUGH

e SERIES EDITORS

Object-Oriented
Analysis and Design
with Applications

Third Edition

The Addison-Wesley Object Technology Series

Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

Ahmed/Umrysh, Developing Enterprise Java Applications with J2EE™
and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building Better Sofiware
with Archetype Patterns and UML

Arlow/Neustadt, UML 2 and the Unified Process, Second Edition
Armour/Miller, Advanced Use Case Modeling: Software Systems
Bellin/Simone, The CRC Card Book

Bergstrtom/Raberg, Adopting the Rational Unified Process: Success with
the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools
Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented Project
Booch, Object-Oriented Analysis and Design with Applications, 2E
Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language User
Guide, Second Edition

Box et al., Effective COM: 50 Ways to Improve Your COM and MTS-
based Applications

Buckley/Pulsipher, The Art of ClearCase® Deployment

Carlson, Modeling XML Applications with UML: Practical
e-Business Applications

Clarke/Baniassad, Aspect-Oriented Analysis and Design
Collins, Designing Object-Oriented User Interfaces
Conallen, Building Web Applications with UML, 2E
Denney, Succeeding with Use Cases

D’Souza/Wills, Objects, Components, and Frameworks with UML: The
Catalysis(SM) Approach

Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for Real-Time
Systems

Eeles et al., Building J2EE™ Applications with the Rational Unified Process
Fowler, Analysis Patterns: Reusable Object Models

Fowler, UML Distilled, 3E: A Brief Guide to the Standard Object
Modeling Language

Fowler et al., Refactoring: Improving the Design of Existing Code

Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML

Gomaa, Designing Software Product Lines with UML

Heinckiens, Building Scalable Database Applications: Object-Oriented
Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Sofiware Architecture
Jacobson/Booch/Rumbaugh, The Unified Software Development Process
Jacobson/Ng, Aspect-Oriented Software Development with Use Cases

Jordan, C++ Object Databases: Programming with the ODMG
Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture™: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

Lal_onde, Discovering Smalltalk

Lau, The Art of Objects: Object-Oriented Design and Architecture
Leffingwell/Widrig, Managing Software Requirements, 2E: A Use Case
Approach

Manassis, Practical Software Engineering: Analysis and Design for the
.NET Platform

Marshall, Enterprise Modeling with UML: Designing Successful
Software through Business Analysis

McGregor/Sykes, A Practical Guide to Testing Object-Oriented Sofiware

Mellor/Balcer, Executable UML: A Foundation for Model-Driven
Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven Architecture
Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Sofiware with UML, 2E: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML
Pohl, Object-Oriented Programming Using C++, 2E

Pollice et al. Software Development for Small Teams: A RUP-Centric
Approach

Quatrani, Visual Modeling with Rational Rose 2002 and UML
Rector/Sells, ATL Internals
Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with UML:
A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language Reference
Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical Guide
Smith, IBM Smalltalk

Smith/Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software

Tkach/Fang/So, Visual Modeling Technique

Tkach/Puttick, Object Technology in Application Development, Second
Edition

Unhelkar, Process Quality Assurance for UML-Based Projects

Warmer/Kleppe, The Object Constraint Language, 2E: Getting Your
Models Ready for MDA

‘White, Software Configuration Management Strategies and Rational
ClearCase®: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor

For more information, check out the series web site at
www.awprofessional.com/csseries.

Cheesman/Daniels, UML Components: A Simple Process for Specifying
Component-Based Software

Szyperski, Component Sofiware, 2E: Beyond Object-Oriented
Programming

www.awprofessional.com/otseries
www.awprofessional.com/csseries

Object-Oriented
Analysis and Design
with Applications

Third Edition

Grady Booch

Robert A. Maksimchuk
Michael W. Engle
Bobbi J. Young, Ph.D.
Jim Conallen

Kelli A. Houston

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ® San Francisco
New York ¢ Toronto * Montreal « London ¢ Munich ¢ Paris « Madrid
Capetown » Sydney Tokyo * Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international @pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Object-oriented analysis and design with applications / Grady Booch...[et
al.]. — 3rd ed.
p. cm.

Rev. ed. of: Object-oriented analysis and design with applications / Grady
Booch, 2nd ed.

Includes bibliographical references and index.

ISBN 0-201-89551-X (hardback : alk. paper)

1. Object-oriented programming (Computer science) 1. Booch, Grady. II.

Booch, Grady. Object-oriented analysis and design with applications.

QA76.64.B66 2007
005.1'17—dc22 2007002589

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-201-89551-X
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, April 2007

http://www.awprofessional.com/safarienabled
www.awprofessional.com

To Jan
my friend, my lover, my wife

—Grady

This page intentionally left blank

Contents

Sidebars xi
Preface xiii
Acknowledgments xix
About the Authors xxi

Section | Concepts 1

Chapter 1 Complexity 3

1.1 The Structure of Complex Systems 4

1.2 The Inherent Complexity of Software 7

1.3 The Five Attributes of a Complex System 12
1.4 Organized and Disorganized Complexity 14
1.5 Bringing Order to Chaos 18

1.6 On Designing Complex Systems 24

Chapter 2 The Object Model 29

2.1 The Evolution of the Object Model 29
2.2 Foundations of the Object Model 37
2.3 Elements of the Object Model 43

2.4 Applying the Object Model 71

vii

viii CONTENTS

Chapter 3 Classes and Objects 75

3.1 The Nature of an Object 75

3.2 Relationships among Objects 88

3.3 The Nature of a Class 92

3.4 Relationships among Classes 96

3.5 The Interplay of Classes and Objects 111

3.6 On Building Quality Classes and Objects 112

Chapter 4 Classification 121

4.1 The Importance of Proper Classification 121
4.2 Identifying Classes and Objects 126
4.3 Key Abstractions and Mechanisms 138

Section Il Method 145

Chapter 5 Notation 147

5.1 The Unified Modeling Language 147
5.2 Package Diagrams 155

5.3 Component Diagrams 163

5.4 Deployment Diagrams 171

5.5 Use Case Diagrams 175

5.6 Activity Diagrams 185

5.7 Class Diagrams 192

5.8 Sequence Diagrams 206

5.9 Interaction Overview Diagrams 213
5.10 Composite Structure Diagrams 215
5.11 State Machine Diagrams 218

5.12 Timing Diagrams 231

5.13 Object Diagrams 235

5.14 Communication Diagrams 238

Chapter 6 Process 247

6.1 First Principles 248
6.2 The Macro Process: The Software Development Lifecycle 256
6.3 The Micro Process: The Analysis and Design Process 272

Chapter 7 Pragmatics 303

7.1 Management and Planning 304
7.2 Staffing 308

7.3 Release Management 312

7.4 Reuse 314

7.5 Quality Assurance and Metrics 316

CONTENTS ix

Section lll

7.6 Documentation 320

7.7 Tools 322

7.8 Special Topics 324

7.9 The Benefits and Risks of Object-Oriented Development 326

Applications 331

Chapter 8 System Architecture: Satellite-Based
Navigation 333

8.1 Inception 334

8.2 Elaboration 347
8.3 Construction 370
8.4 Post-Transition 371

Chapter 9 Control System: Traffic
Management 375

9.1 Inception 376

9.2 Elaboration 385
9.3 Construction 396
9.4 Post-Transition 411

Chapter 10 Artificial Intelligence:
Cryptanalysis 413

10.1 Inception 414
10.2 Elaboration 421
10.3 Construction 427
10.4 Post-Transition 446

Chapter 11 Data Acquisition: Weather Monitoring
Station 449

11.1 Inception 450
11.2 Elaboration 463
11.3 Construction 474
11.4 Post-Transition 487

Chapter 12 Web Application: Vacation Tracking
System 489

12.1 Inception 490

12.2 Elaboration 494

12.3 Construction 506

12.4 Transition and Post-Transition 534

X CONTENTS

Appendix A Object-Oriented Programming Languages 537

A.1 Language Evolution 537
A.2 Smalltalk 541

A3 C++ 546

A4 Java 551

Appendix B Further Reading 557
Notes 567

Glossary 591

Classified Bibliography 603
Index 677

Sidebars

Chapter 1
Categories of Analysis and Design Methods 21

Chapter 2
Foundations—The Object Model 39
Separation of Concerns 52
Chapter 3
Visibility and Friendship 95
Invoking a Method 104
Chapter 4
A Problem of Classification 128

Chapter 5

Refinement of Class Relationships 204
Scripts 209

Chapter 6

Post-Transition Software Evolution and Maintenance 258
Prototyping in the Software Development Process 260
Phases in Agile Methods 267

Analysis and Design and Iterative Development 269
Documenting the Software Architecture 278

xi

xii SIDEBARS

Chapter 8

An Introduction to the Global Positioning System 335
Creating Architectural Descriptions 349

Allocation of Functionality 353

Similar Architectural Analysis Techniques 365

Chapter 9

Interaction Overview Diagram 388

Chapter 12

Client State Management 499

Preface

Mankind, under the grace of God, hungers for spiritual peace, esthetic
achievements, family security, justice, and liberty, none directly satisfied by
industrial productivity. But productivity allows the sharing of the plentiful rather
than fighting over scarcity; it provides time for spiritual, esthetic, and family
matters. It allows society to delegate special skills to institutions of religion,
justice, and the preservation of liberty.

HARLAN MILLS
DPMA and Human Productivity

As computer professionals, we strive to build systems that work and are
useful; as software engineers, we are faced with the task of creating com-
plex systems in the presence of constrained computing and human
resources. Object-oriented (OO) technology has evolved as a means of
managing the complexity inherent in many different kinds of systems. The
object model has proven to be a very powerful and unifying concept.

Changes to the Second Edition

Since the publication of the second edition of Object-Oriented Analysis and
Design with Applications, we have seen major technological advances. This list
includes some highlights, among many others.

m High-bandwidth, wireless connectivity to the Internet is widely available.
m Nanotechnology has emerged and has started to provide valuable products.

xiii

xiv

PREFACE

m Our robots are cruising the surface of Mars.

Computer-generated special effects have enabled the film industry to recre-
ate any world imaginable with complete realism.

Personal hovercraft are available.
Mobile phones have become pervasive to the point of being disposable.
We have mapped the human genome.

Object-oriented technology has become well established in the mainstream
of industrial-strength software development.

We have encountered the use of the object-oriented paradigm throughout the
world. However, we still encounter many people who have not yet adopted the
object paradigm of development. For both of these groups, this revision of this
book holds much value.

For the person new to object-oriented analysis and design (OOAD), this book
gives the following information:

m The conceptual underpinnings of and evolutionary perspective on object
orientation

m Examples of how OOAD can be applied across the system development
lifecycle

m An introduction to the standard notation used in system and software devel-
opment, the Unified Modeling Language (UML 2.0)

For the experienced OOAD practitioner, the content herein provides value from a
different perspective.

m UML 2.0 is still new to even experienced practitioners. Here you will see
the key changes in the notation.

m More focus on modeling is provided, per feedback received about the previ-
ous edition.

® You can gain a great appreciation for “why things are the way they are” in
the object-oriented world, from the Concepts section of the book. Many
people may never have been exposed to this information on the evolution of
the OO concepts themselves. Even if you have been, you may not have
grasped its significance when you were first learning the OO paradigm.

There are four major differences between this edition and the previous
publication.

1. UML 2.0 has been officially approved. Chapter 5, Notation, will introduce
UML 2.0. To enhance the reader’s understanding of this notation, we explic-
itly distinguish between its fundamental and advanced elements.

PREFACE Xv

2. This edition introduces some new domains and contexts in the Applications
chapters. For example, the application domains range broadly across vari-
ous levels of abstraction from high-level systems architecture to the design
details of a Web-based system.

3. When the previous edition was published, C++ was relatively new, as was
the very concept of OO programming. Readers tell us that this emphasis is
no longer a primary concern. There is an abundance of OO programming
and technique books and training available, not to mention additional pro-
gramming languages designed for OO development. Therefore, most of the
coding discussions have been removed.

4. Finally, in response to requests received from readers, this edition focuses
much more on the modeling aspects of OOAD. The Applications section
will show you how to use the UML, with each chapter emphasizing one
phase of the overall development lifecycle.

Goals

This book provides practical guidance on the analysis and design of object-
oriented systems. Its specific goals are the following:

m To provide a sound understanding of the fundamental concepts and histori-
cal evolution of the object model

m To facilitate a mastery of the notation and process of object-oriented
analysis and design

m To teach the realistic application of object-oriented analysis and design
within a variety of problem domains

The concepts presented all stand on a solid theoretical foundation, but this is
primarily a pragmatic book that addresses the practical needs and concerns of
software engineering practitioners, from the architect to the software developer.

Audience

This book is written for the computer professional as well as for the student.

m For the practicing systems and software developer, we show you how to
effectively use object-oriented technology to solve real problems.

m In your role as an analyst or architect, we offer you a path from require-
ments to implementation, using object-oriented analysis and design. We

xvi

PREFACE

develop your ability to distinguish “good” object-oriented architectures
from “bad” ones and to trade off alternate designs when the perversity of the
real world intrudes. Perhaps most important, we offer you fresh approaches
to reasoning about complex systems.

m For the program manager, we provide insight on topics such as allocation of
resources of a team of developers, software quality, metrics, and manage-
ment of the risks associated with complex software systems.

m For the student, we provide the instruction necessary for you to begin
acquiring several important skills in the science and art of developing com-
plex systems.

This book is also suitable for use in undergraduate and graduate courses as well as
in professional seminars and individual study. Because it deals primarily with a
method of software development, it is most appropriate for courses in software
engineering and as a supplement to courses involving specific object-oriented
programming languages.

Structure

The book is divided into three major sections—Concepts, Method, and
Applications—with considerable supplemental material woven throughout.

Concepts

Section I examines the inherent complexity of software and the ways in which
complexity manifests itself. We present the object model as a means of helping us
manage this complexity. In detail, we examine the fundamental elements of the
object model such as: abstraction, encapsulation, modularity, and hierarchy. We
address basic questions such as “What is a class?” and “What is an object?”
Because the identification of meaningful classes and objects is the key task in
object-oriented development, we spend considerable time studying the nature of
classification. In particular, we examine approaches to classification in other dis-
ciplines, such as biology, linguistics, and psychology, and then apply these les-
sons to the problem of discovering classes and objects in software systems.

Method

Section II presents a method for the development of complex systems based on
the object model. We first present a graphic notation (i.e., the UML) for object-

PREFACE Xvii

oriented analysis and design, followed by a generic process framework. We also
examine the pragmatics of object-oriented development—in particular, its place
in the software development lifecycle and its implications for project management.

Applications

Section III offers a collection of five nontrivial examples encompassing a diverse
selection of problem domains: system architecture, control systems, cryptanaly-
sis, data acquisition, and Web development. We have chosen these particular
problem domains because they are representative of the kinds of complex prob-
lems faced by the practicing software engineer. It is easy to show how certain
principles apply to simple problems, but because our focus is on building useful
systems for the real world, we are more interested in showing how the object
model scales up to complex applications. The development of software systems is
rarely amenable to cookbook approaches; therefore, we emphasize the incremen-
tal development of applications, guided by a number of sound principles and
well-formed models.

Supplemental Material

A considerable amount of supplemental material is woven throughout the book.
Most chapters have sidebars that provide information on related topics. We
include an appendix on object-oriented programming languages that summarizes
the features of a few common languages. We also provide a glossary of common
terms and an extensive classified bibliography that lists references to source mate-
rial on the object model.

A Note about Tools

Readers always ask about the tools used to create the diagrams in the book. Pri-
marily, we have used two fine tools for the diagrams: IBM Rational Software
Architect and Sparx Systems Enterprise Architect. Why not use just one? The
reality of the marketplace is that no tool does everything. The longer you do
OOAD, you will eventually find some atypical “corner case” that no tool sup-
ports. (In that case, you may have to resort to basic drawing tools to show what
you want.) But don’t let those rare instances stop you from using robust OOAD
tools such as those we mentioned.

xviii

PREFACE

Using This Book

This book may be read from cover to cover or it may be used in less structured
ways. If you are seeking a deep understanding of the underlying concepts of the
object model or the motivation for the principles of object-oriented development,
you should start with Chapter 1 and continue forward in order. If you are prima-
rily interested in learning the details of the notation and process of object-oriented
analysis and design, start with Chapters 5 and 6; Chapter 7 is especially useful to
managers of projects using this method. If you are most interested in the practical
application of object-oriented technology to specific problems, select any or all of
Chapters 8 through 12.

Acknowledgments

This book is dedicated to my wife, Jan, for her loving support.

Through both the first and second editions, a number of individuals have

shaped my ideas on object-oriented development. For their contributions, I
especially thank Sam Adams, Mike Akroid, Glenn Andert, Sid Bailin, Kent Beck,
Dave Bernstein, Daniel Bobrow, Dick Bolz, Dave Bulman, Kayvan Carun, Dave
Collins, Damian Conway, Steve Cook, Jim Coplien, Brad Cox, Ward Cunningham,
Tom DeMarco, Mike Devlin, Richard Gabriel, William Genemaras, Adele
Goldberg, Ian Graham, Tony Hoare, Jon Hopkins, Michael Jackson, Ralph
Johnson, James Kempf, Norm Kerth, Jordan Kreindler, Doug Lea, Phil Levy,
Barbara Liskov, Cliff Longman, James MacFarlane, Masoud Milani, Harlan
Mills, Robert Murray, Steve Neis, Gene Ouye, Dave Parnas, Bill Riddel, Mary
Beth Rosson, Kenny Rubin, Jim Rumbaugh, Kurt Schmucker, Ed Seidewitz, Dan
Shiffman, Dave Stevenson, Bjarne Stroustrup, Dave Thomas, Mike Vilot, Tony
Wasserman, Peter Wegner, Iseult White, John Williams, Lloyd Williams, Niklaus
Wirth, Mario Wolczko, and Ed Yourdon.

A good part of the pragmatics of this book derives from my involvement with
complex software systems being developed around the world at companies such
as Alcatel, Andersen Consulting, Apple, AT&T, Autotrol, Bell Northern
Research, Boeing, Borland, Computer Sciences Corporation, Contel, Ericsson,
Ferranti, General Electric, GTE, Holland Signaal, Hughes Aircraft Company,
IBM, Lockheed, Martin Marietta, Motorola, NTT, Philips, Rockwell Interna-
tional, Shell Oil, Symantec, Taligent, and TRW. I have had the opportunity to
interact with literally hundreds of professional software engineers and their man-
agers, and I thank them all for their help in making this book relevant to real-
world problems.

Xix

XX

ACKNOWLEDGMENTS

A special acknowledgment goes to Rational for its support of my work. Thanks
also to Tony Hall, whose cartoons brighten what would otherwise be just another
stuffy technical book. Finally, thanks to my three cats, Camy, Annie, and Shadow,
who kept me company on many a late night of writing.

—Grady Booch

First I want to thank God, without whom none of this would be possible. I want to
thank my family, who, once again, had to deal with those long hours of my
absence while working on this project. Thanks to my parents, who gave me their
strong work ethic. Thanks to Mary T. O’Brien, who started it all by offering me
this opportunity, and thanks to Chris Guzikowski for helping drive this to comple-
tion. To my fellow writers, thank you for agreeing to join me on this journey and
for all your hard work and contributions toward this project. Last, but absolutely
not least, my heartfelt thanks to Grady for all his work those many years ago,
creating one of the original, foundational books on object-oriented analysis and
design.

—Bob Maksimchuk

I want to express my gratitude to my family for their love and support, which pro-
vide the foundation for all my endeavors. I wish to thank Grady for giving me the
opportunity to contribute to the third edition of his classic book. Finally, I want to
thank Bob Maksimchuk for guiding me in the process of becoming a writer.

—NMike Engle

I would like to dedicate my work to the memory of my mother, Jean Smith, who
encouraged me to take on this project. I also want to express my love and appreci-
ation to my family, Russell, Alyssa, and Logan, for their support and encourage-
ment. Thank you, Bob Maksimchuk and Mike Engle, for giving me the
opportunity to share in this endeavor.

—Bobbi J. Young

I would like to extend a very special thank you to my husband, Bob, and to my
two children, Katherine and Ryan, whose love and support are my true
inspiration.

—XKelli A. Houston

Thank you to our reviewers, especially Davyd Norris and Brian Lyons, and to the
many other people at Addison-Wesley who worked on this book, especially to
Chris Zahn, not only for his development work but also for providing continuity
on this long project.

About the Authors

Grady Booch is recognized internationally for his innovative work on software
architecture, software engineering, and modeling. He has been with IBM Rational
as its Chief Scientist since Rational’s founding in 1981. Grady was named an
IBM Fellow in March 2003.

Grady is one of the original developers of the Unified Modeling Language
(UML) and was also one of the original developers of several of Rational’s prod-
ucts. Grady has served as architect and architectural mentor for numerous com-
plex software-intensive projects around the world.

Grady is the author of six best-selling books, including the UML Users Guide and
the seminal Object-Oriented Analysis with Applications. Grady has published
several hundred technical articles on software engineering, including papers pub-
lished in the early 1980s that originated the term and practice of object-oriented
design. He has lectured and consulted worldwide.

Grady is a member of the Association for Computing Machinery (ACM), the
Institute of Electrical and Electronics Engineers (IEEE), the American Associa-
tion for the Advancement of Science (AAAS), and Computer Professionals for
Social Responsibility (CPSR). He is an IBM Fellow, an ACM Fellow, a World
Technology Network Fellow, and a Software Development Forum Visionary.
Grady was a founding board member of the Agile Alliance, the Hillside Group,
and the Worldwide Institute of Software Architects. He also serves on the advi-
sory board of Northface University.

Grady received his bachelor of science from the United States Air Force Academy

in 1977 and his master of science in electrical engineering from the University of
California at Santa Barbara in 1979.

xxi

xxii

ABOUT THE AUTHORS

Grady lives with his wife and cats in Colorado. His interests include reading, trav-
eling, singing, and playing the harp.

Robert A. Maksimchuk is a Research Director in the Unisys Chief Technology
Office. He focuses on emerging modeling technologies to advance the strategic
direction of the Unisys 3D-Visual Enterprise modeling framework. Bob brings an
abundance of systems engineering, modeling, and object-oriented analysis and
design expertise, in numerous industries, to this mission. He is the coauthor of the
books UML for Mere Mortals and UML for Database Design and has also written
various articles. He has traveled worldwide as a featured speaker in numerous
technology forums and led workshops and seminars on UML and object-oriented
development. Bob is a member of the Institute of Electrical and Electronics Engi-
neers (IEEE) and the International Council on Systems Engineering INCOSE).

Michael W. Engle is a Principal Engineer with the Lockheed Martin Corporation.
He has over 26 years of technical and management experience across the com-
plete system development lifecycle, from project initiation through operations
and support. Using his background as a systems engineer, software engineer, and
systems architect, Mike employs object-oriented techniques to develop innovative
approaches to complex systems development.

Bobbi J. Young, Ph.D., is a Director of Research for the Unisys Chief Technol-
ogy Office. She has many years of experience in the IT industry working with
commercial companies and Department of Defense contractors. Dr. Young has
been a consultant mentoring in program management, enterprise architecture,
systems engineering, and object-oriented analysis and design. Throughout her
career, she has focused on system lifecycle processes and methodologies, as well
as enterprise architecture. Dr. Young holds degrees in biology, computer science,
and artificial intelligence, and she earned a Ph.D. in management information
systems. She is also a Commander (retired) in the United States Naval Reserves.

Jim Conallen is a software engineer in IBM Rational’s Model Driven Develop-
ment Strategy team, where he is actively involved in applying the Object Manage-
ment Group’s (OMG) Model Driven Architecture (MDA) initiative to IBM
Rational’s model tooling. Jim is also active in the area of asset-based development
and the Reusable Asset Specification (RAS). Jim is a frequent conference speaker
and article writer. His areas of expertise include Web application development.

ABOUT THE AUTHORS xxiii

He developed the Web Application Extension for UML (WAE), an extension to
the UML that lets developers model Web-centric architectures with the UML at
appropriate levels of abstraction and detail. This work served as the basis for IBM
Rational Rose and Rational XDE Web Modeling functionality.

Jim has authored two editions of the book Building Web Applications with UML,
the first focusing on Microsoft’s Active Server Pages and the latest on J2EE tech-
nologies.

Jim’s experiences are also drawn from his years prior to Rational, when he was an
independent consultant, Peace Corps volunteer, and college instructor, and from
his life as a father of three boys. Jim has undergraduate and graduate degrees from
Widener University in computer and software engineering.

Kelli Houston is a Consulting IT Specialist at IBM Rational. She is the method
architect for IBM’s internal method authoring method and is part of the team
responsible for integrating IBM’s methods. In addition to her method architect
role, Kelli also leads the Rational Method Composer (RMC) Special Interest
Group (SIG) within IBM and provides consulting and mentoring services to cus-
tomers and internal IBM consultants on the effective use of RMC.

This page intentionally left blank

Section I

Concepts

Sir Isaac Newton secretly admitted to some friends:

He understood how gravity behaved, but not how it worked!
LiLY TOMLIN

The Search for Signs of Intelligent Life in the Universe

In the early days of object technology, many people were initially intro-
duced to “O0” through programming languages. They discovered what
these new languages could do for them and tried to practically apply the
languages to solve real-world problems. As time passed, languages
improved, development techniques evolved, best practices emerged, and
formal object-oriented methodologies were created.

Today object-oriented development is a rich and powerful development
model. This section takes a step back to look at the underpinning theory
that supplies the foundation for all of the above and provides insight into
why things work the way they do in the object-oriented paradigm.

This page intentionally left blank

Chapter 1

Complexity

A physician, a civil engineer, and a computer scientist were arguing about
what was the oldest profession in the world. The physician remarked,
“Well, in the Bible, it says that God created Eve from a rib taken out of
Adam. This clearly required surgery, and so | can rightly claim that mine is
the oldest profession in the world.” The civil engineer interrupted, and
said, “But even earlier in the book of Genesis, it states that God created
the order of the heavens and the earth from out of the chaos. This was the
first and certainly the most spectacular application of civil engineering.
Therefore, fair doctor, you are wrong: mine is the oldest profession in the
world.” The computer scientist leaned back in her chair, smiled, and then
said confidently, “Ah, but who do you think created the chaos?”

“The more complex the system, the more open it is to total breakdown” [5].
Rarely would a builder think about adding a new sub-basement to an
existing 100-story building. Doing that would be very costly and would
undoubtedly invite failure. Amazingly, users of software systems rarely
think twice about asking for equivalent changes. Besides, they argue, it is
only a simple matter of programming.

Ouir failure to master the complexity of software results in projects that are
late, over budget, and deficient in their stated requirements. We often call
this condition the software crisis, but frankly, a malady that has carried on
this long must be called normal. Sadly, this crisis translates into the
squandering of human resources—a most precious commodity—as well
as a considerable loss of opportunities. There are simply not enough good
developers around to create all the new software that users need. Further-
more, a significant number of the development personnel in any given
organization must often be dedicated to the maintenance or preservation

SECTION | CONCEPTS

1.1

of geriatric software. Given the indirect as well as the direct contribution of
software to the economic base of most industrialized countries, and con-
sidering the ways in which software can amplify the powers of the individ-
ual, it is unacceptable to allow this situation to continue.

The Structure of Complex Systems

How can we change this dismal picture? Since the underlying problem springs
from the inherent complexity of software, our suggestion is to first study how
complex systems in other disciplines are organized. Indeed, if we open our eyes
to the world about us, we will observe successful systems of significant complex-
ity. Some of these systems are the works of humanity, such as the Space Shuttle,
the England/France tunnel, and large business organizations. Many even more
complex systems appear in nature, such as the human circulatory system and the
structure of a habanero pepper plant.

The Structure of a Personal Computer

A personal computer is a device of moderate complexity. Most are composed of
the same major elements: a central processing unit (CPU), a monitor, a keyboard,
and some sort of secondary storage device, usually either a CD or DVD drive and
hard disk drive. We may take any one of these parts and further decompose it. For
example, a CPU typically encompasses primary memory, an arithmetic/logic unit
(ALU), and a bus to which peripheral devices are attached. Each of these parts
may in turn be further decomposed: An ALU may be divided into registers and
random control logic, which themselves are constructed from even more primitive
elements, such as NAND gates, inverters, and so on.

Here we see the hierarchic nature of a complex system. A personal computer
functions properly only because of the collaborative activity of each of its major
parts. Together, these separate parts logically form a whole. Indeed, we can rea-
son about how a computer works only because we can decompose it into parts
that we can study separately. Thus, we may study the operation of a monitor inde-
pendently of the operation of the hard disk drive. Similarly, we may study the
ALU without regard for the primary memory subsystem.

Not only are complex systems hierarchic, but the levels of this hierarchy represent
different levels of abstraction, each built upon the other, and each understandable
by itself. At each level of abstraction, we find a collection of devices that collabo-
rate to provide services to higher layers. We choose a given level of abstraction to
suit our particular needs. For instance, if we were trying to track down a timing

CHAPTER1 COMPLEXITY 5

problem in the primary memory, we might properly look at the gate-level archi-
tecture of the computer, but this level of abstraction would be inappropriate if we
were trying to find the source of a problem in a spreadsheet application.

The Structure of Plants and Animals

In botany, scientists seek to understand the similarities and differences among
plants through a study of their morphology, that is, their form and structure.
Plants are complex multicellular organisms, and from the cooperative activity of
various plant organ systems arise such complex behaviors as photosynthesis and
transpiration.

Plants consist of three major structures (roots, stems, and leaves). Each of these
has a different, specific structure. For example, roots encompass branch roots,
root hairs, the root apex, and the root cap. Similarly, a cross-section of a leaf
reveals its epidermis, mesophyll, and vascular tissue. Each of these structures is
further composed of a collection of cells, and inside each cell we find yet another
level of complexity, encompassing such elements as chloroplasts, a nucleus, and
so on. As with the structure of a computer, the parts of a plant form a hierarchy,
and each level of this hierarchy embodies its own complexity.

All parts at the same level of abstraction interact in well-defined ways. For exam-
ple, at the highest level of abstraction, roots are responsible for absorbing water
and minerals from the soil. Roots interact with stems, which transport these raw
materials up to the leaves. The leaves in turn use the water and minerals provided
by the stems to produce food through photosynthesis.

There are always clear boundaries between the outside and the inside of a given
level. For example, we can state that the parts of a leaf work together to provide
the functionality of the leaf as a whole and yet have little or no direct interaction
with the elementary parts of the roots. In simpler terms, there is a clear separation
of concerns among the parts at different levels of abstraction.

In a computer, we find NAND gates used in the design of the CPU as well as in
the hard disk drive. Likewise, a considerable amount of commonality cuts across
all parts of the structural hierarchy of a plant. This is God’s way of achieving an
economy of expression. For example, cells serve as the basic building blocks in
all structures of a plant; ultimately, the roots, stems, and leaves of a plant are all
composed of cells. Yet, although each of these primitive elements is indeed a cell,
there are many different kinds of cells. For example, there are cells with and with-
out chloroplasts, cells with walls that are impervious to water and cells with walls
that are permeable, and even living cells and dead cells.

SECTION | CONCEPTS

In studying the morphology of a plant, we do not find individual parts that are
each responsible for only one small step in a single larger process, such as photo-
synthesis. In fact, there are no centralized parts that directly coordinate the activi-
ties of lower-level ones. Instead, we find separate parts that act as independent
agents, each of which exhibits some fairly complex behavior, and each of which
contributes to many higher-level functions. Only through the mutual cooperation
of meaningful collections of these agents do we see the higher-level functionality
of a plant. The science of complexity calls this emergent behavior: The behavior
of the whole is greater than the sum of its parts [6].

Turning briefly to the field of zoology, we note that multicellular animals exhibit
a hierarchical structure similar to that of plants: Collections of cells form tissues,
tissues work together as organs, clusters of organs define systems (such as the
digestive system), and so on. We cannot help but again notice God’s awesome
economy of expression: The fundamental building block of all animal matter is
the cell, just as the cell is the elementary structure of all plant life. Granted, there
are differences between these two. For example, plant cells are enclosed by rigid
cellulose walls, but animal cells are not. Notwithstanding these differences, how-
ever, both of these structures are undeniably cells. This is an example of common-
ality that crosses domains.

A number of mechanisms above the cellular level are also shared by plant and
animal life. For example, both use some sort of vascular system to transport nutri-
ents within the organism, and both exhibit differentiation by sex among members
of the same species.

The Structure of Matter

The study of fields as diverse as astronomy and nuclear physics provides us with
many other examples of incredibly complex systems. Spanning these two disci-
plines, we find yet another structural hierarchy. Astronomers study galaxies that
are arranged in clusters. Stars, planets, and debris are the constituents of galaxies.
Likewise, nuclear physicists are concerned with a structural hierarchy, but one on
an entirely different scale. Atoms are made up of electrons, protons, and neutrons;
electrons appear to be elementary particles, but protons, neutrons, and other parti-
cles are formed from more basic components called quarks.

Again we find that a great commonality in the form of shared mechanisms unifies
this vast hierarchy. Specifically, there appear to be only four distinct kinds of
forces at work in the universe: gravity, electromagnetic interaction, the strong
force, and the weak force. Many laws of physics involving these elementary
forces, such as the laws of conservation of energy and of momentum, apply to
galaxies as well as quarks.

CHAPTER1 COMPLEXITY 7

1.2

The Structure of Social Institutions

As a final example of complex systems, we turn to the structure of social institu-
tions. Groups of people join together to accomplish tasks that cannot be done by
individuals. Some organizations are transitory, and some endure beyond many
lifetimes. As organizations grow larger, we see a distinct hierarchy emerge.
Multinational corporations contain companies, which in turn are made up of divi-
sions, which in turn contain branches, which in turn encompass local offices, and
so on. If the organization endures, the boundaries among these parts may change,
and over time, a new, more stable hierarchy may emerge.

The relationships among the various parts of a large organization are just like
those found among the components of a computer, or a plant, or even a galaxy.
Specifically, the degree of interaction among employees within an individual
office is greater than that between employees of different offices. A mail clerk
usually does not interact with the chief executive officer of a company but does
interact frequently with other people in the mail room. Here, too, these different
levels are unified by common mechanisms. The clerk and the executive are both
paid by the same financial organization, and both share common facilities, such
as the company’s telephone system, to accomplish their tasks.

The Inherent Complexity of Software

A dying star on the verge of collapse, a child learning how to read, white blood
cells rushing to attack a virus: These are but a few of the objects in the physical
world that involve truly awesome complexity. Software may also involve ele-
ments of great complexity; however, the complexity we find here is of a funda-
mentally different kind. As Brooks points out, “Einstein argued that there must be
simplified explanations of nature, because God is not capricious or arbitrary. No
such faith comforts the software engineer. Much of the complexity that he must
master is arbitrary complexity” [1].

Defining Software Complexity

We do realize that some software systems are not complex. These are the largely
forgettable applications that are specified, constructed, maintained, and used by
the same person, usually the amateur programmer or the professional developer
working in isolation. This is not to say that all such systems are crude and inele-
gant, nor do we mean to belittle their creators. Such systems tend to have a very
limited purpose and a very short life span. We can afford to throw them away and

SECTION | CONCEPTS

replace them with entirely new software rather than attempt to reuse them, repair
them, or extend their functionality. Such applications are generally more tedious
than difficult to develop; consequently, learning how to design them does not
interest us.

Instead, we are much more interested in the challenges of developing what we
will call industrial-strength software. Here we find applications that exhibit a very
rich set of behaviors, as, for example, in reactive systems that drive or are driven
by events in the physical world, and for which time and space are scarce
resources; applications that maintain the integrity of hundreds of thousands of
records of information while allowing concurrent updates and queries; and sys-
tems for the command and control of real-world entities, such as the routing of air
or railway traffic. Software systems such as these tend to have a long life span,
and over time, many users come to depend on their proper functioning. In the
world of industrial-strength software, we also find frameworks that simplify the
creation of domain-specific applications, and programs that mimic some aspect of
human intelligence. Although such applications are generally products of
research and development, they are no less complex, for they are the means and
artifacts of incremental and exploratory development.

The distinguishing characteristic of industrial-strength software is that it is
intensely difficult, if not impossible, for the individual developer to comprehend
all the subtleties of its design. Stated in blunt terms, the complexity of such sys-
tems exceeds the human intellectual capacity. Alas, this complexity we speak of
seems to be an essential property of all large software systems. By essential we
mean that we may master this complexity, but we can never make it go away.

Why Software Is Inherently Complex

As Brooks suggests, “The complexity of software is an essential property, not an
accidental one” [3]. We observe that this inherent complexity derives from four
elements: the complexity of the problem domain, the difficulty of managing the
development process, the flexibility possible through software, and the problems
of characterizing the behavior of discrete systems.

The Complexity of the Problem Domain

The problems we try to solve in software often involve elements of inescapable
complexity, in which we find a myriad of competing, perhaps even contradictory,
requirements. Consider the requirements for the electronic system of a multi-
engine aircraft, a cellular phone switching system, or an autonomous robot. The
raw functionality of such systems is difficult enough to comprehend, but now add

CHAPTER1 COMPLEXITY 9

all of the (often implicit) nonfunctional requirements such as usability, perfor-
mance, cost, survivability, and reliability. This unrestrained external complexity is
what causes the arbitrary complexity about which Brooks writes.

This external complexity usually springs from the “communication gap” that
exists between the users of a system and its developers: Users generally find it
very hard to give precise expression to their needs in a form that developers can
understand. In some cases, users may have only vague ideas of what they want in
a software system. This is not so much the fault of either the users or the develop-
ers of a system; rather, it occurs because each group generally lacks expertise in
the domain of the other. Users and developers have different perspectives on the
nature of the problem and make different assumptions regarding the nature of the
solution. Actually, even if users had perfect knowledge of their needs, we cur-
rently have few instruments for precisely capturing these requirements. The com-
mon way to express requirements is with large volumes of text, occasionally
accompanied by a few drawings. Such documents are difficult to comprehend, are
open to varying interpretations, and too often contain elements that are designs
rather than essential requirements.

A further complication is that the requirements of a software system often change
during its development, largely because the very existence of a software develop-
ment project alters the rules of the problem. Seeing early products, such as design
documents and prototypes, and then using a system once it is installed and opera-
tional are forcing functions that lead users to better understand and articulate their
real needs. At the same time, this process helps developers master the problem
domain, enabling them to ask better questions that illuminate the dark corners of a
system’s desired behavior.

The task of the software development team
is to engineer the illusion of simplicity.

10

SECTION | CONCEPTS

Because a large software system is a capital investment, we cannot afford to scrap
an existing system every time its requirements change. Planned or not, systems
tend to evolve over time, a condition that is often incorrectly labeled software
maintenance. To be more precise, it is maintenance when we correct errors; it is
evolution when we respond to changing requirements; it is preservation when we
continue to use extraordinary means to keep an ancient and decaying piece of
software in operation. Unfortunately, reality suggests that an inordinate percent-
age of software development resources are spent on software preservation.

The Difficulty of Managing the Development Process

The fundamental task of the software development team is to engineer the illusion
of simplicity—to shield users from this vast and often arbitrary external complex-
ity. Certainly, size is no great virtue in a software system. We strive to write less
code by inventing clever and powerful mechanisms that give us this illusion of
simplicity, as well as by reusing frameworks of existing designs and code. How-
ever, the sheer volume of a system’s requirements is sometimes inescapable and
forces us either to write a large amount of new software or to reuse existing soft-
ware in novel ways. Just a few decades ago, assembly language programs of only
a few thousand lines of code stressed the limits of our software engineering abili-
ties. Today, it is not unusual to find delivered systems whose size is measured in
hundreds of thousands or even millions of lines of code (and all of that in a high-
order programming language, as well). No one person can ever understand such a
system completely. Even if we decompose our implementation in meaningful
ways, we still end up with hundreds and sometimes thousands of separate mod-
ules. This amount of work demands that we use a team of developers, and ideally
we use as small a team as possible. However, no matter what its size, there are
always significant challenges associated with team development. Having more
developers means more complex communication and hence more difficult coordi-
nation, particularly if the team is geographically dispersed, as is often the case.
With a team of developers, the key management challenge is always to maintain a
unity and integrity of design.

The Flexibility Possible through Software

A home-building company generally does not operate its own tree farm from
which to harvest trees for lumber; it is highly unusual for a construction firm to
build an onsite steel mill to forge custom girders for a new building. Yet in the
software industry such practice is common. Software offers the ultimate flexibil-
ity, so it is possible for a developer to express almost any kind of abstraction. This
flexibility turns out to be an incredibly seductive property, however, because it
also forces the developer to craft virtually all the primitive building blocks on

CHAPTER1 COMPLEXITY 1

which these higher-level abstractions stand. While the construction industry has
uniform building codes and standards for the quality of raw materials, few such
standards exist in the software industry. As a result, software development
remains a labor-intensive business.

The Problems of Characterizing the Behavior of
Discrete Systems

If we toss a ball into the air, we can reliably predict its path because we know that
under normal conditions, certain laws of physics apply. We would be very surprised
if just because we threw the ball a little harder, halfway through its flight it sud-
denly stopped and shot straight up into the air.! In a not-quite-debugged software
simulation of this ball’s motion, exactly that kind of behavior can easily occur.

Within a large application, there may be hundreds or even thousands of variables
as well as more than one thread of control. The entire collection of these vari-
ables, their current values, and the current address and calling stack of each pro-
cess within the system constitute the present state of the application. Because we
execute our software on digital computers, we have a system with discrete states.
By contrast, analog systems such as the motion of the tossed ball are continuous
systems. Parnas suggests, “when we say that a system is described by a continu-
ous function, we are saying that it can contain no hidden surprises. Small changes
in inputs will always cause correspondingly small changes in outputs” [4]. On the
other hand, discrete systems by their very nature have a finite number of possible
states; in large systems, there is a combinatorial explosion that makes this number
very large. We try to design our systems with a separation of concerns, so that the
behavior in one part of a system has minimal impact on the behavior in another.
However, the fact remains that the phase transitions among discrete states cannot
be modeled by continuous functions. Each event external to a software system has
the potential of placing that system in a new state, and furthermore, the mapping
from state to state is not always deterministic. In the worst circumstances, an
external event may corrupt the state of a system because its designers failed to
take into account certain interactions among events. When a ship’s propulsion

1. Actually, even simple continuous systems can exhibit very complex behavior because
of the presence of chaos. Chaos introduces a randomness that makes it impossible to pre-
cisely predict the future state of a system. For example, given the initial state of two drops
of water at the top of a stream, we cannot predict exactly where they will be relative to one
another at the bottom of the stream. Chaos has been found in systems as diverse as the
weather, chemical reactions, biological systems, and even computer networks. Fortunately,
there appears to be underlying order in all chaotic systems, in the form of patterns called
attractors.

12

SECTION | CONCEPTS

1.3

system fails due to a mathematical overflow, which in turn was caused by some-
one entering bad data in a maintenance system (a real incident), we understand
the seriousness of this issue. There has been a dramatic rise in software-related
system failures in subway systems, automobiles, satellites, air traffic control sys-
tems, inventory systems, and so forth. In continuous systems this kind of behavior
would be unlikely, but in discrete systems all external events can affect any part of
the system’s internal state. Certainly, this is the primary motivation for vigorous
testing of our systems, but for all except the most trivial systems, exhaustive test-
ing is impossible. Since we have neither the mathematical tools nor the intellec-
tual capacity to model the complete behavior of large discrete systems, we must
be content with acceptable levels of confidence regarding their correctness.

The Five Attributes of a Complex System

Considering the nature of this complexity, we conclude that there are five
attributes common to all complex systems.

Hierarchic Structure

Building on the work of Simon and Ando, Courtois suggests the following:

Frequently, complexity takes the form of a hierarchy, whereby a complex system
is composed of interrelated subsystems that have in turn their own subsystems,
and so on, until some lowest level of elementary components is reached. [7]

Simon points out that “the fact that many complex systems have a nearly decom-
posable, hierarchic structure is a major facilitating factor enabling us to under-
stand, describe, and even ‘see’ such systems and their parts” [8]. Indeed, it is
likely that we can understand only those systems that have a hierarchic structure.

It is important to realize that the architecture of a complex system is a function of
its components as well as the hierarchic relationships among these components.
“All systems have subsystems and all systems are parts of larger systems. . . . The
value added by a system must come from the relationships between the parts, not
from the parts per se” [9].

CHAPTER1 COMPLEXITY 13

l\\ _'_._'_'_.-F._'_'_-'_'_-v
= [_,
OJEcT zgé;.‘?-s ViEwe e

77 TroRs i, MiGIYAY o
N

& PARTNERS

RRERIT

The architecture of a complex system is a function of its components as well
as the hierarchic relationships among these components.

Relative Primitives

Regarding the nature of the primitive components of a complex system, our expe-
rience suggests that:

The choice of what components in a system are primitive is relatively arbitrary
and is largely up to the discretion of the observer of the system.

What is primitive for one observer may be at a much higher level of abstraction
for another.

Separation of Concerns

Simon calls hierarchic systems decomposable because they can be divided into
identifiable parts; he calls them nearly decomposable because their parts are not
completely independent. This leads us to another attribute common to all complex
systems:

Intracomponent linkages are generally stronger than intercomponent linkages.
This fact has the effect of separating the high-frequency dynamics of the compo-
nents—involving the internal structure of the components—from the low-
frequency dynamics—involving interaction among components. [10]

14

SECTION | CONCEPTS

1.4

This difference between intra- and intercomponent interactions provides a clear
separation of concerns among the various parts of a system, making it possible to
study each part in relative isolation.

Common Patterns

As we have discussed, many complex systems are implemented with an economy
of expression. Simon thus notes that:

Hierarchic systems are usually composed of only a few different kinds of sub-
systems in various combinations and arrangements. [11]

In other words, complex systems have common patterns. These patterns may
involve the reuse of small components, such as the cells found in both plants and
animals, or of larger structures, such as vascular systems, also found in both
plants and animals.

Stable Intermediate Forms

Earlier, we noted that complex systems tend to evolve over time. Specifically,
“complex systems will evolve from simple systems much more rapidly if there
are stable intermediate forms than if there are not” [12]. In more dramatic terms:

A complex system that works is invariably found to have evolved from a simple
system that worked. . . . A complex system designed from scratch never works
and cannot be patched up to make it work. You have to start over, beginning with
a working simple system. [13]

As systems evolve, objects that were once considered complex become the primi-
tive objects on which more complex systems are built. Furthermore, we can never
craft these primitive objects correctly the first time: We must use them in context
first and then improve them over time as we learn more about the real behavior of
the system.

Organized and Disorganized Complexity

The discovery of common abstractions and mechanisms greatly facilitates our
understanding of complex systems. For example, with just a few minutes of orien-
tation, an experienced pilot can step into a multiengine jet aircraft he or she has
never flown before and safely fly the vehicle. Having recognized the properties

CHAPTER1 COMPLEXITY 15

common to all such aircraft, such as the functioning of the rudder, ailerons, and
throttle, the pilot primarily needs to learn what properties are unique to that par-
ticular aircraft. If the pilot already knows how to fly a given aircraft, it is far easier
to learn how to fly a similar one.

The Canonical Form of a Complex System

This example suggests that we have been using the term hierarchy in a rather
loose fashion. Most interesting systems do not embody a single hierarchy;
instead, we find that many different hierarchies are usually present within the
same complex system. For example, an aircraft may be studied by decomposing it
into its propulsion system, flight-control system, and so on. This decomposition
represents a structural, or “part of”” hierarchy.

Alternately, we can cut across the system in an entirely orthogonal way. For
example, a turbofan engine is a specific kind of jet engine, and a Pratt and
Whitney TF30 is a specific kind of turbofan engine. Stated another way, a jet
engine represents a generalization of the properties common to every kind of jet
engine; a turbofan engine is simply a specialized kind of jet engine, with proper-
ties that distinguish it, for example, from ramjet engines.

This second hierarchy represents an “is a” hierarchy. In our experience, we have
found it essential to view a system from both perspectives, studying its “is a” hier-
archy as well as its “part of”” hierarchy. For reasons that will become clear in the
next chapter, we call these hierarchies the class structure and the object structure of
the system, respectively.’

For those of you who are familiar with object technology, let us be clear. In this
case, where we are speaking of class structure and object structure, we are not
referring to the classes and objects you create when coding your software. We are
referring to classes and objects, at a higher level of abstraction, that make up com-
plex systems, for example, a jet engine, an airframe, the various types of seats, an
autopilot subsystem, and so forth. You will recall from the earlier discussion on
the attributes of a complex system that whatever is considered primitive is relative
to the observer.

In Figure 1-1 we see the two orthogonal hierarchies of the system: its class struc-
ture and its object structure. Each hierarchy is layered, with the more abstract

2. Complex software systems embody other kinds of hierarchies as well. Of particular im-
portance is the module structure, which describes the relationships among the physical
components of the system, and the process hierarchy, which describes the relationships
among the system’s dynamic components.

16

SECTION | CONCEPTS

Figure 1—1 The Key Hierarchies of Complex Systems

classes and objects built on more primitive ones. What class or object is chosen as
primitive is relative to the problem at hand. Looking inside any given level reveals
yet another level of complexity. Especially among the parts of the object struc-

ture, there are close collaborations among objects at the same level of abstraction.

Combining the concept of the class and object structures together with the five
attributes of a complex system (hierarchy, relative primitives [i.e., multiple levels
of abstraction], separation of concerns, patterns, and stable intermediate forms),
we find that virtually all complex systems take on the same (canonical) form, as
we show in Figure 1-2. Collectively, we speak of the class and object structures
of a system as its architecture.

Notice also that the class structure and the object structure are not completely
independent; rather, each object in the object structure represents a specific
instance of some class. (In Figure 1-2, note classes C3, C5, C7, and C8 and the
number of the instances 03, 05, 07, and 08.) As the figure suggests, there are usu-
ally many more objects than classes of objects within a complex system. By
showing the “part of”” as well as the “is a”” hierarchy, we explicitly expose the
redundancy of the system under consideration. If we did not reveal a system’s
class structure, we would have to duplicate our knowledge about the properties of
each individual part. With the inclusion of the class structure, we capture these
common properties in one place.

Also from the same class structure, there are many different ways that these
objects can be instantiated and organized. No one particular architecture can
really be deemed “correct.” This is what makes system architecture challenging—
finding the balance between the many ways the components of a system can be
structured, the five attributes of complex systems, and the needs of the system user.

CHAPTER1 COMPLEXITY 17

C%Q Canonical Form
U 1
! 1

Figure 1-2 The Canonical Form of a Complex System

Our experience is that the most successful complex software systems are those
whose designs explicitly encompass well-engineered class and object structures
and embody the five attributes of complex systems described in the previous sec-
tion. Lest the importance of this observation be missed, let us be even more
direct: We very rarely encounter software systems that are delivered on time, that
are within budget, and that meet their requirements, unless they are designed with
these factors in mind.

The Limitations of the Human Capacity for
Dealing with Complexity

If we know what the design of complex software systems should be like, then
why do we still have serious problems in successfully developing them? This

18

SECTION | CONCEPTS

1.5

concept of the organized complexity of software (whose guiding principles we
call the object model) is relatively new. However, there is yet another factor that
dominates: the fundamental limitations of the human capacity for dealing with
complexity.

As we first begin to analyze a complex software system, we find many parts that
must interact in a multitude of intricate ways, with little perceptible commonality
among either the parts or their interactions; this is an example of disorganized
complexity. As we work to bring organization to this complexity through the pro-
cess of design, we must think about many things at once. For example, in an air
traffic control system, we must deal with the state of many different aircraft at
once, involving such properties as their location, speed, and heading. Especially
in the case of discrete systems, we must cope with a fairly large, intricate, and
sometimes nondeterministic state space. Unfortunately, it is absolutely impossible
for a single person to keep track of all of these details at once. Experiments by
psychologists, such as those of Miller, suggest that the maximum number of
chunks of information that an individual can simultaneously comprehend is on
the order of seven, plus or minus two [14]. This channel capacity seems to be
related to the capacity of short-term memory. Simon additionally notes that pro-
cessing speed is a limiting factor: It takes the mind about five seconds to accept a
new chunk of information [15].

We are thus faced with a fundamental dilemma. The complexity of the software
systems we are asked to develop is increasing, yet there are basic limits on our
ability to cope with this complexity. How then do we resolve this predicament?

Bringing Order to Chaos

Certainly, there will always be geniuses among us, people of extraordinary skill
who can do the work of a handful of mere mortal developers, the software engi-
neering equivalents of Frank Lloyd Wright or Leonardo da Vinci. These are the
people whom we seek to deploy as our system architects: the ones who devise
innovative idioms, mechanisms, and frameworks that others can use as the archi-
tectural foundations of other applications or systems. However, “The world is
only sparsely populated with geniuses. There is no reason to believe that the soft-
ware engineering community has an inordinately large proportion of them” [2].
Although there is a touch of genius in all of us, in the realm of industrial-strength
software we cannot always rely on divine inspiration to carry us through. There-
fore, we must consider more disciplined ways to master complexity.

CHAPTER1 COMPLEXITY 19

ZANERVAN AN

The Role of Decomposition

“The technique of mastering complexity has been known since ancient times:
divide et impera (divide and rule)” [16]. When designing a complex software sys-
tem, it is essential to decompose it into smaller and smaller parts, each of which
we may then refine independently. In this manner, we satisfy the very real con-
straint that exists on the channel capacity of human cognition: To understand any
given level of a system, we need only comprehend a few parts (rather than all
parts) at once. Indeed, as Parnas observes, intelligent decomposition directly
addresses the inherent complexity of software by forcing a division of a system’s
state space [17].

Algorithmic Decomposition

Most of us have been formally trained in the dogma of top-down structured
design, and so we approach decomposition as a simple matter of algorithmic
decomposition, wherein each module in the system denotes a major step in some
overall process. Figure 1-3 is an example of one of the products of structured
design, a structure chart that shows the relationships among various functional
elements of the solution. This particular structure chart illustrates part of the
design of a program that updates the content of a master file. It was automatically
generated from a data flow diagram by an expert system tool that embodies the
rules of structured design [18].

Update
file

| } I | | }

Get master Get formatted Match Update Put unmatched Put new
area update master master area

/\ A‘ v v
Get OK Expand Get valid [| Reformat Put formatted Format
master care master output

Get old master Validate Edit Get sequenced Add Put new
record checksum card checksum master record
Get update Seq
card check

Figure 1-3 Algorithmic Decomposition

20

SECTION | CONCEPTS

Object-Oriented Decomposition

We suggest that there is an alternate decomposition possible for the same prob-
lem. In Figure 1-4, we have decomposed the system according to the key abstrac-
tions in the problem domain. Rather than decomposing the problem into steps
such as Get formatted update and Add checksum, we have identified objects such as
Master File and Checksum, which derive directly from the vocabulary of the prob-
lem domain.

Update
Get Formatted Update File of
\ MasterFile | ——— Updates
Get Put Create Match Get Reformat
Master

Update to

Is Valid Add
Record Card
Checksum

Figure 1-4 Object-Oriented Decomposition

Although both designs solve the same problem, they do so in quite different ways.
In this second decomposition, we view the world as a set of autonomous agents
that collaborate to perform some higher-level behavior. Get Formatted Update
thus does not exist as an independent algorithm; rather, it is an operation associ-
ated with the object File of Updates. Calling this operation creates another object,
Update to Card. In this manner, each object in our solution embodies its own
unique behavior, and each one models some object in the real world. From this
perspective, an object is simply a tangible entity that exhibits some well-defined
behavior. Objects do things, and we ask them to perform what they do by sending
them messages. Because our decomposition is based on objects and not algo-
rithms, we call this an object-oriented decomposition.

Algorithmic versus Object-Oriented Decomposition

Which is the right way to decompose a complex system—by algorithms or by
objects? Actually, this is a trick question because the right answer is that both
views are important: The algorithmic view highlights the ordering of events, and
the object-oriented view emphasizes the agents that either cause action or are the
subjects on which these operations act.

CHAPTER1 COMPLEXITY 21

Categories of Analysis and Design Methods

We find it useful to distinguish between the terms method and methodology.
A method is a disciplined procedure for generating a set of models that
describe various aspects of a software system under development, using
some well-defined notation. A methodology is a collection of methods
applied across the software development lifecycle and unified by process,
practices, and some general, philosophical approach. Methods are impor-
tant for several reasons. Foremost, they instill a discipline into the develop-
ment of complex software systems. They define the products that serve as
common vehicles for communication among the members of a develop-
ment team. Additionally, methods define the milestones needed by man-
agement to measure progress and to manage risk.

Methods have evolved in response to the growing complexity of software
systems. In the early days of computing, one simply did not write large pro-
grams because the capabilities of our machines were greatly limited. The
dominant constraints in building systems were then largely due to hard-
ware: Machines had small amounts of main memory, programs had to con-
tend with considerable latency within secondary storage devices such as
magnetic drums, and processors had cycle times measured in the hun-
dreds of microseconds. In the 1960s and 1970s the economics of comput-
ing began to change dramatically as hardware costs plummeted and
computer capabilities rose. As a result, it was more desirable and now
finally economical to automate more and more applications of increasing
complexity. High-order programming languages entered the scene as
important tools. Such languages improved the productivity of the individual
developer and of the development team as a whole, thus ironically pressur-
ing us to create software systems of even greater complexity.

Many design methods were proposed during the 1960s and 1970s to
address this growing complexity. The most influential of them was top-down
structured design, also known as composite design. This method was
directly influenced by the topology of traditional high-order programming
languages, such as FORTRAN and COBOL. In these languages, the fun-
damental unit of decomposition is the subprogram, and the resulting pro-
gram takes the shape of a tree in which subprograms perform their work by
calling other subprograms. This is exactly the approach taken by top-down
structured design: One applies algorithmic decomposition to break a large
problem down into smaller steps.

Since the 1960s and 1970s, computers of vastly greater capabilities have
evolved. The value of structured design has not changed, but as Stein
observes, “Structured programming appears to fall apart when applications
exceed 100,000 lines or so of code” [19]. Dozens of design methods have
been proposed, many of them invented to deal with the perceived short-
comings of top-down structured design. The more interesting and successful
design methods are cataloged by Peters [20], by Yau and Tsai [21], and in

22

SECTION | CONCEPTS

a comprehensive survey by Teledyne Brown Engineering [22]. Perhaps not
surprisingly, many of these methods are largely variations on a similar
theme. Indeed, as Sommerville suggests, most methods can be catego-
rized as one of three kinds [23]:

m Top-down structured design
m Data-driven design
m Object-oriented design

Top-down structured design is exemplified by the work of Yourdon and
Constantine [24], Myers [25], and Page-Jones [26]. The foundations of this
method derive from the work of Wirth [27, 28] and Dahl, Dijkstra, and Hoare
[29]; an important variation on structured design is found in the design
method of Mills, Linger, and Hevner [30]. Each of these variations applies
algorithmic decomposition. More software has probably been written using
these design methods than with any other. Nevertheless, structured design
does not address the issues of data abstraction and information hiding, nor
does it provide an adequate means of dealing with concurrency. Structured
design does not scale up well for extremely complex systems, and this method
is largely inappropriate for use with object-based and object-oriented pro-
gramming languages.

Data-driven design is best exemplified by the early work of Jackson [31, 32]
and the methods of Orr [33]. In this method, mapping system inputs to out-
puts derives the structure of a software system. As with structured design,

data-driven design has been successfully applied to a number of complex

domains, particularly information management systems, which involve direct
relationships between the inputs and outputs of the system but require little
concern for time-critical events.

The underlying concept of object-oriented analysis is that one should
model software systems as collections of cooperating objects, treating indi-
vidual objects as instances of a class within a hierarchy of classes. Object-
oriented analysis and design directly reflects the topology of high-order
programming languages such as Smalltalk, Object Pascal, C++, the Com-
mon Lisp Object System (CLOS), Ada, Eiffel, Python, Visual C#, and Java.

However, the fact remains that we cannot construct a complex system in both
ways simultaneously, for they are completely orthogonal views.® We must start

3. Langdon suggests that this orthogonality has been studied since ancient times. As he
states, “C. H. Waddington has noted that the duality of views can be traced back to the an-
cient Greeks. A passive view was proposed by Democritus, who asserted that the world was
composed of matter called atoms. Democritus’ view places things at the center of focus. On
the other hand, the classical spokesman for the active view is Heraclitus, who emphasized
the notion of process” [34].

CHAPTER1 COMPLEXITY 23

decomposing a system either by algorithms or by objects and then use the result-
ing structure as the framework for expressing the other perspective.

Our experience leads us to apply the object-oriented view first because this
approach is better at helping us organize the inherent complexity of software sys-
tems, just as it helped us to describe the organized complexity of complex systems
as diverse as computers, plants, galaxies, and large social institutions. As we will
discuss further in Chapter 2, object-oriented decomposition has a number of
highly significant advantages over algorithmic decomposition. Object-oriented
decomposition yields smaller systems through the reuse of common mechanisms,
thus providing an important economy of expression. Object-oriented systems are
also more resilient to change and thus better able to evolve over time because
their design is based on stable intermediate forms. Indeed, object-oriented decom-
position greatly reduces the risk of building complex software systems because
they are designed to evolve incrementally from smaller systems in which we
already have confidence. Furthermore, object-oriented decomposition directly
addresses the inherent complexity of software by helping us make intelligent
decisions regarding the separation of concerns in a large state space.

The Applications section of this book demonstrates these benefits through several
applications, drawn from a diverse set of problem domains. The sidebar in this
chapter, Categories of Analysis and Design Methods, further compares and con-
trasts the object-oriented view with more traditional approaches to design.

The Role of Abstraction

Earlier, we referred to Miller’s experiments, from which he concluded that an
individual can comprehend only about seven, plus or minus two, chunks of infor-
mation at one time. This number appears to be independent of information con-
tent. As Miller himself observes, “The span of absolute judgment and the span of
immediate memory impose severe limitations on the amount of information that
we are able to receive, process and remember. By organizing the stimulus input
simultaneously into several dimensions and successively into a sequence of
chunks, we manage to break . . . this informational bottleneck” [35]. In contempo-
rary terms, we call this process chunking or abstraction.

As Wulf describes it, “We (humans) have developed an exceptionally powerful
technique for dealing with complexity. We abstract from it. Unable to master the
entirety of a complex object, we choose to ignore its inessential details, dealing
instead with the generalized, idealized model of the object” [36]. For example,
when studying how photosynthesis works in a plant, we can focus on the chemical
reactions in certain cells in a leaf and ignore all other parts, such as the roots and
stems. We are still constrained by the number of things that we can comprehend

24

SECTION | CONCEPTS

1.6

at one time, but through abstraction, we use chunks of information with increas-
ingly greater semantic content. This is especially true if we take an object-oriented
view of the world because objects, as abstractions of entities in the real world,
represent a particularly dense and cohesive clustering of information. Chapter 2
examines the meaning of abstraction in much greater detail.

The Role of Hierarchy

Another way to increase the semantic content of individual chunks of information
is by explicitly recognizing the class and object hierarchies within a complex soft-
ware system. The object structure is important because it illustrates how different
objects collaborate with one another through patterns of interaction that we call
mechanisms. The class structure is equally important because it highlights com-
mon structure and behavior within a system. Thus, rather than study each individ-
ual photosynthesizing cell within a specific plant leaf, it is enough to study one
such cell because we expect that all others will exhibit similar behavior. Although
we treat each instance of a particular kind of object as distinct, we may assume
that it shares the same behavior as all other instances of that same kind of object.
By classifying objects into groups of related abstractions (e.g., kinds of plant cells
versus animal cells), we come to explicitly distinguish the common and distinct
properties of different objects, which further helps us to master their inherent
complexity [37].

Identifying the hierarchies within a complex software system is often not easy
because it requires the discovery of patterns among many objects, each of which
may embody some tremendously complicated behavior. Once we have exposed
these hierarchies, however, the structure of a complex system, and in turn our
understanding of it, becomes vastly simplified. Chapter 3 considers in detail the
nature of class and object hierarchies, and Chapter 4 describes techniques that
facilitate our identification of these patterns.

On Designing Complex Systems

The practice of every engineering discipline—be it civil, mechanical, chemical,
electrical, or software engineering—involves elements of both science and art. As
Petroski eloquently states, “The conception of a design for a new structure can
involve as much a leap of the imagination and as much a synthesis of experience
and knowledge as any artist is required to bring to his canvas or paper. And once
that design is articulated by the engineer as artist, it must be analyzed by the engi-
neer as scientist in as rigorous an application of the scientific method as any

CHAPTER1 COMPLEXITY 25

scientist must make” [38]. Similarly, Dijkstra observes, “the programming
challenge is a large-scale exercise in applied abstraction and thus requires the
abilities of the formal mathematician blended with the attitude of the competent
engineer” [39].

Engineering as a Science and an Art

The role of the engineer as artist is particularly challenging when the task is to
design an entirely new system. Especially in the case of reactive systems and sys-
tems for command and control, we are frequently asked to write software for an
entirely unique set of requirements, often to be executed on a configuration of tar-
get processors constructed specifically for this system. In other cases, such as the
creation of frameworks, tools for research in artificial intelligence, or information
management systems, we may have a well-defined, stable target environment, but
our requirements may stress the software technology in one or more dimensions.
For example, we may be asked to craft systems that are faster, have greater capac-
ity, or have radically improved functionality. In all these situations, we try to use
proven abstractions and mechanisms (the “stable intermediate forms,” in Simon’s
words) as a foundation on which to build new complex systems. In the presence
of a large library of reusable software components, the software engineer must
assemble these parts in innovative ways to satisfy the stated and implicit require-
ments, just as the painter or the musician must push the limits of his or her
medium.

The Meaning of Design

In every engineering discipline, design encompasses the disciplined approach we
use to invent a solution for some problem, thus providing a path from require-
ments to implementation. In the context of software engineering, Mostow sug-
gests that the purpose of design is to construct a system that:

Satisfies a given (perhaps informal) functional specification

Conforms to limitations of the target medium

Meets implicit or explicit requirements on performance and resource usage
Satisfies implicit or explicit design criteria on the form of the artifact

Satisfies restrictions on the design process itself, such as its length or cost,
or the tools available for doing the design [40]

As Stroustrup suggests, “the purpose of design is to create a clean and relatively
simple internal structure, sometimes also called an architecture. . . . A design is
the end product of the design process” [41]. Design involves balancing a set of

26

SECTION | CONCEPTS

competing requirements. The products of design are models that enable us to rea-
son about our structures, make trade-offs when requirements conflict, and in gen-
eral, provide a blueprint for implementation.

The Importance of Model Building

The building of models has a broad acceptance among all engineering disciplines,
largely because model building appeals to the principles of decomposition,
abstraction, and hierarchy [42]. Each model within a design describes a specific
aspect of the system under consideration. As much as possible, we seek to build
new models upon old models in which we already have confidence. Models give
us the opportunity to fail under controlled conditions. We evaluate each model in
both expected and unusual situations, and then we alter them when they fail to
behave as we expect or desire.

We have found that in order to express all the subtleties of a complex system, we
must use more than one kind of model. For example, when designing a personal
computer, an electrical engineer must take into consideration the component-level
view of the system as well as the physical layout of the circuit boards. This com-
ponent view forms a logical picture of the design of the system, which helps the
engineer to reason about the cooperative behavior of the components. The board
layout represents the physical packaging of these components, constrained by the
board size, available power, and the kinds of components that exist. From this
view, the engineer can independently reason about factors such as heat dissipation
and manufacturability. The board designer must also consider dynamic as well as
static aspects of the system under construction. Thus, the electrical engineer uses
diagrams showing the static connections among individual components, as well
as timing diagrams that show the behavior of these components over time. The
engineer can then employ tools such as oscilloscopes and digital analyzers to val-
idate the correctness of both the static and dynamic models.

The Elements of Software Design Methodologies

Clearly, there is no magic, no “silver bullet” [43] that can unfailingly lead the
software engineer down the path from requirements to the implementation of a
complex software system. In fact, the design of complex software systems does
not lend itself at all to cookbook approaches. Rather, as noted earlier in the fifth
attribute of complex systems, the design of such systems involves an incremental
and iterative process.

Still, sound design methods do bring some much-needed discipline to the devel-
opment process. The software engineering community has evolved dozens of dif-
ferent design methodologies, which we can loosely classify into three categories

CHAPTER1 COMPLEXITY 27

(see the Categories of Analysis and Design Methods sidebar). Despite their differ-
ences, all of these have elements in common. Specifically, each includes the
following:

m Notation The language for expressing each model

m Process The activities leading to the orderly construction of the system’s
models

m Tools The artifacts that eliminate the tedium of model building and
enforce rules about the models themselves, so that errors and
inconsistencies can be exposed

A sound design method is based on a solid theoretical foundation yet offers
degrees of freedom for artistic innovation.

The Models of Object-Oriented Development

Is there a “best” design method? No, there is no absolute answer to this question,
which is actually just a veiled way of asking the earlier question: What is the best
way to decompose a complex system? To reiterate, we have found great value in
building models that are focused on the “things” we find in the problem space,
forming what we refer to as an object-oriented decomposition.

Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition. By applying object-oriented design, we create software
that is resilient to change and written with economy of expression. We achieve a
greater level of confidence in the correctness of our software through an intelli-
gent separation of its state space. Ultimately, we reduce the risks inherent in
developing complex software systems.

In this chapter, we have made a case for using object-oriented analysis and design
to master the complexity associated with developing software systems. Addition-
ally, we have suggested a number of fundamental benefits to be derived from
applying this method. Before we present the notation and process of object-ori-
ented design, however, we must study the principles on which object-oriented
development is founded, namely, abstraction, encapsulation, modularity, hierar-
chy, typing, concurrency, and persistence.

Summary

m Software is inherently complex; the complexity of software systems often
exceeds the human intellectual capacity.

28

SECTION | CONCEPTS

The task of the software development team is to engineer the illusion of
simplicity.

Complexity often takes the form of a hierarchy; it is useful to model both
the “is a” and the “part of”” hierarchies of a complex system.

Complex systems generally evolve from stable intermediate forms.

There are fundamental limiting factors of human cognition; we can address
these constraints through the use of decomposition, abstraction, and
hierarchy.

Complex systems can be viewed by focusing on either things or processes;
there are compelling reasons for applying object-oriented decomposition, in
which we view the world as a meaningful collection of objects that collabo-
rate to achieve some higher-level behavior.

Object-oriented analysis and design is the method that leads us to an object-
oriented decomposition; object-oriented design uses a notation and process
for constructing complex software systems and offers a rich set of models
with which we may reason about different aspects of the system under
consideration.

2.1

Chapter 2

The Object Model

Object-oriented technology is built on a sound engineering foundation,
whose elements we collectively call the object model of development or
simply the object model. The object model encompasses the principles of
abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and
persistence. By themselves, none of these principles are new. What is
important about the object model is that these elements are brought
together in a synergistic way.

Let there be no doubt that object-oriented analysis and design is funda-
mentally different than traditional structured design approaches: It
requires a different way of thinking about decomposition, and it produces
software architectures that are largely outside the realm of the structured
design culture.

The Evolution of the Object Model

Object-oriented development did not spontaneously generate itself from the ashes
of the uncounted failed software projects that used earlier technologies. It is not a
radical departure from earlier approaches. Indeed, it is founded in the best ideas
from prior technologies. In this section we will examine the evolution of the tools
of our profession to help us understand the foundation and emergence of object-
oriented technology.

29

30

SECTION | CONCEPTS

As we look back on the relatively brief yet colorful history of software engineer-
ing, we cannot help but notice two sweeping trends:

1. The shift in focus from programming-in-the-small to programming-in-the-
large

2. The evolution of high-order programming languages

Most new industrial-strength software systems are larger and more complex than
their predecessors were even just a few years ago. This growth in complexity has
prompted a significant amount of useful applied research in software engineering,
particularly with regard to decomposition, abstraction, and hierarchy. The devel-
opment of more expressive programming languages has complemented these
advances.

The Generations of Programming Languages

Wegner has classified some of the more popular high-order programming lan-
guages in generations arranged according to the language features they first intro-
duced [2]. (By no means is this an exhaustive list of all programming languages.)

m First-generation languages (1954-1958)
FORTRANIT Mathematical expressions
ALGOL 58 Mathematical expressions
Flowmatic Mathematical expressions
IPL V Mathematical expressions

m Second-generation languages (1959-1961)
FORTRAN II Subroutines, separate compilation
ALGOL 60 Block structure, data types

COBOL Data description, file handling

Lisp List processing, pointers, garbage collection
m Third-generation languages (1962-1970)

PL/1 FORTRAN + ALGOL + COBOL

ALGOL 68 Rigorous successor to ALGOL 60

Pascal Simple successor to ALGOL 60

Simula Classes, data abstraction

m The generation gap (1970-1980)

Many different languages were invented, but few endured. However, the fol-
lowing are worth noting:

C Efficient; small executables
FORTRAN 77 ANSI standardization

CHAPTER 2 THE OBJECT MODEL 31

Let’s expand on Wegner’s categories.

m Object-orientation boom (1980-1990, but few languages survive)

Smalltalk 80 Pure object-oriented language

C++ Derived from C and Simula

Ada83 Strong typing; heavy Pascal influence
Eiffel Derived from Ada and Simula

m Emergence of frameworks (1990-today)

Much language activity, revisions, and standardization have occurred, lead-
ing to programming frameworks.

Visual Basic Eased development of the graphical user interface
(GUI) for Windows applications

Java Successor to Oak; designed for portability

Python Object-oriented scripting language

J2EE Java-based framework for enterprise computing

NET Microsoft’s object-based framework

Visual C# Java competitor for the Microsoft .NET
Framework

Visual Basic .NET Visual Basic for the Microsoft NET Framework

In successive generations, the kind of abstraction mechanism each language sup-
ported changed. First-generation languages were used primarily for scientific and
engineering applications, and the vocabulary of this problem domain was almost
entirely mathematics. Languages such as FORTRAN I were thus developed to
allow the programmer to write mathematical formulas, thereby freeing the pro-
grammer from some of the intricacies of assembly or machine language. This first
generation of high-order programming languages therefore represented a step
closer to the problem space and a step further away from the underlying machine.

Among second-generation languages, the emphasis was on algorithmic abstrac-
tions. By this time, machines were becoming more and more powerful, and the
economics of the computer industry meant that more kinds of problems could be
automated, especially for business applications. Now, the focus was largely on
telling the machine what to do: read these personnel records first, sort them next,
and then print this report. Again, this new generation of high-order programming
languages moved us a step closer to the problem space and further away from the
underlying machine.

By the late 1960s, especially with the advent of transistors and then integrated cir-
cuit technology, the cost of computer hardware had dropped dramatically, yet pro-
cessing capacity had grown almost exponentially. Larger problems could now be
solved, but these demanded the manipulation of more kinds of data. Thus, third-
generation languages such as ALGOL 60 and, later, Pascal evolved with support

32

SECTION | CONCEPTS

for data abstraction. Now a programmer could describe the meaning of related
kinds of data (their type) and let the programming language enforce these design
decisions. This generation of high-order programming languages again moved
our software a step closer to the problem domain and further away from the
underlying machine.

The 1970s provided us with a frenzy of activity in programming language
research, resulting in the creation of literally a couple of thousand different pro-
gramming languages and dialects. To a large extent, the drive to write larger and
larger programs highlighted the inadequacies of earlier languages; thus, many
new language mechanisms were developed to address these limitations. Few of
these languages survived (have you seen a recent textbook on the languages Fred,
Chaos, or Tranquil?); however, many of the concepts that they introduced found
their way into successors of earlier languages.

What is of the greatest interest to us is the class of languages we call object-based
and object-oriented. Object-based and object-oriented programming languages
best support the object-oriented decomposition of software. The number of these
languages (and the number of “objectified” variants of existing languages)
boomed in the 1980s and early 1990s. Since 1990 a few languages have emerged
as mainstream OO languages with the backing of commercial programming tool
vendors (e.g., Java, C++). The emergence of programming frameworks (e.g.,
J2EE, .NET), which provide a tremendous amount of support to the programmer
by offering components and services that simplify the common and often mun-
dane programming tasks, has greatly boosted productivity and demonstrated the
elusive promise of component reuse.

The Topology of First- and Early Second-
Generation Programming Languages

Let’s consider the structure of each generation of programming languages. In Fig-
ure 2-1, we see the topology of most first- and early second-generation program-
ming languages. By topology, we mean the basic physical building blocks of the
language and how those parts can be connected. In this figure, we see that for lan-
guages such as FORTRAN and COBOL, the basic physical building block of all
applications is the subprogram (or the paragraph, for those who speak COBOL).

Applications written in these languages exhibit a relatively flat physical structure,
consisting only of global data and subprograms. The arrows in this figure indicate
dependencies of the subprograms on various data. During design, one can logi-
cally separate different kinds of data from one another, but there is little in these
languages that can enforce these design decisions. An error in one part of a pro-
gram can have a devastating ripple effect across the rest of the system because the
global data structures are exposed for all subprograms to see.

CHAPTER 2 THE OBJECT MODEL 33

Data

‘D D 0 "D

Subprograms

Figure 2—1 The Topology of First- and Early Second-Generation
Programming Languages

When modifications are made to a large system, it is difficult to maintain the
integrity of the original design. Often, entropy sets in: After even a short period of
maintenance, a program written in one of these languages usually contains a tre-
mendous amount of cross-coupling among subprograms, implied meanings of
data, and twisted flows of control, thus threatening the reliability of the entire sys-
tem and certainly reducing the overall clarity of the solution.

The Topology of Late Second- and Early
Third-Generation Programming Languages

By the mid-1960s, programs were finally being recognized as important interme-
diate points between the problem and the computer [3]. “The first software
abstraction, now called the ‘procedural’ abstraction, grew directly out of this
pragmatic view of software. . . . Subprograms were invented prior to 1950, but
were not fully appreciated as abstractions at the time. . . . Instead, they were orig-
inally seen as labor-saving devices. . . . Very quickly though, subprograms were
appreciated as a way to abstract program functions” [4].

The realization that subprograms could serve as an abstraction mechanism had
three important consequences. First, languages were invented that supported a
variety of parameter-passing mechanisms. Second, the foundations of structured
programming were laid, manifesting themselves in language support for the nest-
ing of subprograms and the development of theories regarding control structures
and the scope and visibility of declarations. Third, structured design methods
emerged, offering guidance to designers trying to build large systems using sub-
programs as basic physical building blocks. Thus, it is not surprising, as Figure 2-2
shows, that the topology of late second- and early third-generation languages is
largely a variation on the theme of earlier generations. This topology addresses

34 SECTION | CONCEPTS

Data

1 /
" o [~ 0 [==D

Subprograms

Figure 2—2 The Topology of Late Second- and Early Third-Generation
Programming Languages

some of the inadequacies of earlier languages, namely, the need to have greater
control over algorithmic abstractions, but it still fails to address the problems of
programming-in-the-large and data design.

The Topology of Late Third-Generation
Programming Languages

Starting with FORTRAN II, and appearing in most late third-generation program
languages, another important structuring mechanism evolved to address the grow-
ing issues of programming-in-the-large. Larger programming projects meant
larger development teams, and thus the need to develop different parts of the same
program independently. The answer to this need was the separately compiled
module, which in its early conception was little more than an arbitrary container
for data and subprograms, as Figure 2-3 shows. Modules were rarely recognized
as an important abstraction mechanism; in practice they were used simply to
group subprograms that were most likely to change together.

Most languages of this generation, while supporting some sort of modular struc-
ture, had few rules that required semantic consistency among module interfaces.
A developer writing a subprogram for one module might assume that it would be
called with three different parameters: a floating-point number, an array of ten
elements, and an integer representing a Boolean flag. In another module, a call to
this subprogram might incorrectly use actual parameters that violated these
assumptions: an integer, an array of five elements, and a negative number. Simi-
larly, one module might use a block of common data that it assumed as its own,
and another module might violate these assumptions by directly manipulating this

CHAPTER 2 THE OBJECT MODEL

35

Modules

Data

|
|:||:|D

0O

[

0O

—

3

0O

1 Subprograms

___________ |

Figure 2-3 The Topology of Late Third-Generation Programming Languages

data. Unfortunately, because most of these languages had dismal support for data
abstraction and strong typing, such errors could be detected only during execution

of the program.

The Topology of Object-Based and Object-

Oriented Programming Languages

Data abstraction is important to mastering complexity. “The nature of abstrac-
tions that may be achieved through the use of procedures is well suited to the
description of abstract operations, but is not particularly well suited to the

description of abstract objects. This is a serious drawback, for in many applica-

tions, the complexity of the data objects to be manipulated contributes substan-
tially to the overall complexity of the problem” [5]. This realization had two

important consequences. First, data-driven design methods emerged, which pro-
vided a disciplined approach to the problems of doing data abstraction in algorith-

mically oriented languages. Second, theories regarding the concept of a type
appeared, which eventually found their realization in languages such as Pascal.

The natural conclusion of these ideas first appeared in the language Simula and

was improved upon, resulting in the development of several languages such as
Smalltalk, Object Pascal, C++, Ada, Eiffel, and Java. For reasons that we will

explain shortly, these languages are called object-based or object-oriented. Figure

2—4 illustrates the topology of such languages for small to moderate-sized

applications.

36

SECTION | CONCEPTS

ki

N
/ ki O ki
O \‘/D/
T~ \

Figure 2—4 The Topology of Small to Moderate-Sized Applications Using
Object-Based and Object-Oriented Programming Languages

The physical building block in such languages is the module, which represents a
logical collection of classes and objects instead of subprograms, as in earlier lan-
guages. To state it another way, “If procedures and functions are verbs and pieces
of data are nouns, a procedure-oriented program is organized around verbs while
an object-oriented program is organized around nouns” [6]. For this reason, the
physical structure of a small to moderate-sized object-oriented application
appears as a graph, not as a tree, which is typical of algorithmically oriented lan-
guages. Additionally, there is little or no global data. Instead, data and operations
are united in such a way that the fundamental logical building blocks of our sys-
tems are no longer algorithms, but instead are classes and objects.

By now we have progressed beyond programming-in-the-large and must cope
with programming-in-the-colossal. For very complex systems, we find that
classes, objects, and modules provide an essential yet insufficient means of
abstraction. Fortunately, the object model scales up. In large systems, we find
clusters of abstractions built in layers on top of one another. At any given level of
abstraction, we find meaningful collections of objects that collaborate to achieve
some higher-level behavior. If we look inside any given cluster to view its imple-
mentation, we unveil yet another set of cooperative abstractions. This is exactly
the organization of complexity described in Chapter 1; this topology is shown in
Figure 2-5.

CHAPTER 2 THE OBJECT MODEL 37

!
L9 8

— :

~, /
| DI_,| DI_,| D

.

Figure 2-5 The Topology of Large Applications Using Object-Based and
Object-Oriented Programming Languages

2.2 Foundations of the Object Model

Structured design methods evolved to guide developers who were trying to build
complex systems using algorithms as their fundamental building blocks. Simi-
larly, object-oriented design methods have evolved to help developers exploit the
expressive power of object-based and object-oriented programming languages,
using the class and object as basic building blocks.

Actually, the object model has been influenced by a number of factors, not just
object-oriented programming. Indeed, as further discussed in the sidebar, Founda-
tions—The Object Model, the object model has proven to be a unifying concept
in computer science, applicable not just to programming languages but also to the
design of user interfaces, databases, and even computer architectures. The reason
for this widespread appeal is simply that an object orientation helps us to cope
with the complexity inherent in many different kinds of systems.

38

SECTION | CONCEPTS

Object-oriented analysis and design thus represents an evolutionary development,
not a revolutionary one; it does not break with advances from the past but builds
on proven ones. Unfortunately, most programmers are not rigorously trained in
OOAD. Certainly, many good engineers have developed and deployed countless
useful software systems using structured design techniques. However, there are
limits to the amount of complexity we can handle using only algorithmic decom-
position; thus we must turn to object-oriented decomposition. Furthermore, if we
try to use languages such as C++ and Java as if they were only traditional, algo-
rithmically oriented languages, we not only miss the power available to us, but we
usually end up worse off than if we had used an older language such as C or
Pascal. Give a power drill to a carpenter who knows nothing about electricity, and
he would use it as a hammer. He will end up bending quite a few nails and smash-
ing several fingers, for a power drill makes a lousy hammer.

Because the object model derives from so many disparate sources, it has unfortu-
nately been accompanied by a muddle of terminology. A Smalltalk programmer
uses methods, a C++ programmer uses virtual member functions, and a CLOS
programmer uses generic functions. An Object Pascal programmer talks of a type
coercion; an Ada programmer calls the same thing a type conversion; a C# or Java
programmer would use a cast. To minimize the confusion, let’s define what is
object-oriented and what is not.

The phrase object-oriented “has been bandied about with carefree abandon with
much the same reverence accorded ‘motherhood,” ‘apple pie, and ‘structured pro-
gramming’”’[7]. What we can agree on is that the concept of an object is central to
anything object-oriented. In the previous chapter, we informally defined an object
as a tangible entity that exhibits some well-defined behavior. Stefik and Bobrow
define objects as “entities that combine the properties of procedures and data
since they perform computations and save local state” [8]. Defining objects as
entities begs the question somewhat, but the basic concept here is that objects
serve to unify the ideas of algorithmic and data abstraction. Jones further clarifies
this term by noting that “in the object model, emphasis is placed on crisply char-
acterizing the components of the physical or abstract system to be modeled by a
programmed system. . . . Objects have a certain ‘integrity’ which should not—in
fact, cannot—be violated. An object can only change state, behave, be manipu-
lated, or stand in relation to other objects in ways appropriate to that object.
Stated differently, there exist invariant properties that characterize an object and
its behavior. An elevator, for example, is characterized by invariant properties
including [that] it only travels up and down inside its shaft. . . . Any elevator sim-
ulation must incorporate these invariants, for they are integral to the notion of an
elevator” [32].

CHAPTER 2 THE OBJECT MODEL 39

Foundations—The Object Model

As Yonezawa and Tokoro point out, “The term ‘object’ emerged almost
independently in various fields in computer science, almost simultaneously
in the early 1970s, to refer to notions that were different in their appear-
ance, yet mutually related. All of these notions were invented to manage
the complexity of software systems in such a way that objects represented
components of a modularly decomposed system or modular units of knowl-
edge representation” [9]. Levy adds that the following events have contrib-
uted to the evolution of object-oriented concepts:

m Advances in computer architecture, including capability systems and hard-
ware support for operating systems concepts

m Advances in programming languages, as demonstrated in Simula, Smalltalk,
CLU, and Ada

m Advances in programming methodology, including modularization and infor-
mation hiding [10]

We would add to this list three more contributions to the foundation of the
object model:

m Advances in database models
m Research in artificial intelligence
m Advances in philosophy and cognitive science

The concept of an object had its beginnings in hardware over twenty years
ago, starting with the invention of descriptor-based architectures and, later,
capability-based architectures [11]. These architectures represented a
break from the classical von Neumann architectures and came about
through attempts to close the gap between the high-level abstractions of
programming languages and the low-level abstractions of the machine
itself [12]. According to its proponents, the advantages of such architec-
tures are many: better error detection, improved execution efficiency, fewer
instruction types, simpler compilation, and reduced storage requirements.
Computers can also have an object-oriented architecture.

Closely related to developments in object-oriented architectures are
object-oriented operating systems. Dijkstra’s work with the THE multipro-
gramming system first introduced the concept of building systems as lay-
ered state machines [18]. Other pioneering object-oriented operating
systems include the Plessey/System 250 (for the Plessey 250 multiproces-
sor), Hydra (for CMU’s C.mmp), CALTSS (for the CDC 6400), CAP (for the
Cambridge CAP computer), UCLA Secure UNIX (for the PDP 11/45 and
11/70), StarOS (for CMU’s Cm*), Medusa (also for CMU’s Cm*), and iMAX
(for the Intel 432) [19].

Perhaps the most important contribution to the object model derives from
the class of programming languages we call object-based and object-
oriented. The fundamental ideas of classes and objects first appeared in

40

SECTION | CONCEPTS

the language Simula 67. The Flex system, followed by various dialects of
Smalltalk, such as Smalltalk-72, -74, and -76, and finally the current ver-
sion, Smalltalk-80, took Simula’s object-oriented paradigm to its natural
conclusion by making everything in the language an instance of a class. In
the 1970s languages such as Alphard, CLU, Euclid, Gypsy, Mesa, and
Modula were developed, which supported the then-emerging ideas of data
abstraction. Language research led to the grafting of Simula and Smalltalk
concepts onto traditional high-order programming languages. The unifica-
tion of object-oriented concepts with C has lead to the languages C++ and
Objective C. Then Java arrived to help programmers avoid common pro-
gramming errors often seen when using C++. Adding object-oriented pro-
gramming mechanisms to Pascal has led to the languages Object Pascal,
Eiffel, and Ada. Additionally, many dialects of Lisp incorporate the object-
oriented features of Simula and Smalltalk. Appendix A discusses some of
these and other programming language developments in greater detail.

The first person to formally identify the importance of composing systems
in layers of abstraction was Dijkstra. Parnas later introduced the idea of
information hiding [20], and in the 1970s a number of researchers, most
notably Liskov and Zilles [21], Guttag [22], and Shaw [23], pioneered the
development of abstract data type mechanisms. Hoare contributed to these
developments with his proposal for a theory of types and subclasses [24].

Although database technology has evolved somewhat independently of
software engineering, it has also contributed to the object model [25], pri-
marily through the ideas of the entity-relationship (ER) approach to data
modeling [26]. In the ER model, first proposed by Chen [27], the world is
modeled in terms of its entities, the attributes of these entities, and the rela-
tionships among these entities.

In the field of artificial intelligence, developments in knowledge representa-
tion have contributed to an understanding of object-oriented abstractions.
In 1975, Minsky first proposed a theory of frames to represent real-world
objects as perceived by image and natural language recognition systems
[28]. Since then, frames have been used as the architectural foundation for
a variety of intelligent systems.

Lastly, philosophy and cognitive science have contributed to the advance-
ment of the object model. The idea that the world could be viewed in terms
of either objects or processes was a Greek innovation, and in the seven-
teenth century, we find Descartes observing that humans naturally apply
an object-oriented view of the world [29]. In the twentieth century, Rand
expanded on these themes in her philosophy of objectivist epistemology
[30]. More recently, Minsky has proposed a model of human intelligence in
which he considers the mind to be organized as a society of otherwise
mindless agents [31]. Minsky argues that only through the cooperative
behavior of these agents do we find what we call intelligence.

CHAPTER 2 THE OBJECT MODEL 1

Object-Oriented Programming

What, then, is object-oriented programming (OOP)? We define it as follows:

Object-oriented programming is a method of implementation in which programs
are organized as cooperative collections of objects, each of which represents an
instance of some class, and whose classes are all members of a hierarchy of
classes united via inheritance relationships.

There are three important parts to this definition: (1) Object-oriented program-
ming uses objects, not algorithms, as its fundamental logical building blocks (the
“part of” hierarchy we introduced in Chapter 1); (2) each object is an instance of
some class; and (3) classes may be related to one another via inheritance relation-
ships (the “is a” hierarchy we spoke of in Chapter 1). A program may appear to be
object-oriented, but if any of these elements is missing, it is not an object-oriented
program. Specifically, programming without inheritance is distinctly not object-
oriented; that would merely be programming with abstract data types.

By this definition, some languages are object-oriented, and some are not. Strous-
trup suggests that “if the term ‘object-oriented language’ means anything, it must
mean a language that has mechanisms that support the object-oriented style of
programming well. . . . A language supports a programming style well if it pro-
vides facilities that make it convenient to use that style. A language does not sup-
port a technique if it takes exceptional effort or skill to write such programs; in
that case, the language merely enables programmers to use the techniques” [33].
From a theoretical perspective, one can fake object-oriented programming in non-
object-oriented programming languages like Pascal and even COBOL or assem-
bly language, but it is horribly ungainly to do so. Cardelli and Wegner thus say:

[A] language is object-oriented if and only if it satisfies the following requirements:

m [t supports objects that are data abstractions with an interface of named
operations and a hidden local state.

m Objects have an associated type [class].

m Types [classes] may inherit attributes from supertypes [superclasses]. [34]

For a language to support inheritance means that it is possible to express “is a”
relationships among types, for example, a red rose is a kind of flower, and a
flower is a kind of plant. If a language does not provide direct support for inherit-
ance, then it is not object-oriented. Cardelli and Wegner distinguish such lan-
guages by calling them object-based rather than object-oriented. Under this
definition, Smalltalk, Object Pascal, C++, Eiffel, CLOS, C#, and Java are all
object-oriented, and Ada83 is object-based (support for object orientation was
later added to Ada95). However, since objects and classes are elements of both

42

SECTION | CONCEPTS

kinds of languages, it is both possible and highly desirable for us to use object-
oriented design methods for both object-based and object-oriented programming
languages.

Object-Oriented Design

The emphasis in programming methods is primarily on the proper and effective
use of particular language mechanisms. By contrast, design methods emphasize
the proper and effective structuring of a complex system. What, then, is object-
oriented design (OOD)? We suggest the following:

Object-oriented design is a method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physical as
well as static and dynamic models of the system under design.

There are two important parts to this definition: object-oriented design (1) leads
to an object-oriented decomposition and (2) uses different notations to express
different models of the logical (class and object structure) and physical (module
and process architecture) design of a system, in addition to the static and dynamic
aspects of the system.

The support for object-oriented decomposition is what makes object-oriented
design quite different from structured design: The former uses class and object
abstractions to logically structure systems, and the latter uses algorithmic abstrac-
tions. We will use the term object-oriented design to refer to any method that
leads to an object-oriented decomposition.

Object-Oriented Analysis

The object model has influenced even earlier phases of the software development
lifecycle. Traditional structured analysis techniques, best typified by the work of
DeMarco [35], Yourdon [36], and Gane and Sarson [37], with real-time exten-
sions by Ward and Mellor [38] and by Hatley and Pirbhai [39], focus on the flow
of data within a system. Object-oriented analysis (OOA) emphasizes the building
of real-world models, using an object-oriented view of the world:

Object-oriented analysis is a method of analysis that examines requirements from
the perspective of the classes and objects found in the vocabulary of the problem
domain.

How are OOA, OOD, and OOP related? Basically, the products of object-oriented
analysis serve as the models from which we may start an object-oriented design;

CHAPTER 2 THE OBJECT MODEL 43

2.3

the products of object-oriented design can then be used as blueprints for com-
pletely implementing a system using object-oriented programming methods.

Elements of the Object Model

Jenkins and Glasgow observe that “most programmers work in one language and
use only one programming style. They program in a paradigm enforced by the
language they use. Frequently, they have not been exposed to alternate ways of
thinking about a problem, and hence have difficulty in seeing the advantage of
choosing a style more appropriate to the problem at hand” [40]. Bobrow and
Stefik define a programming style as “a way of organizing programs on the basis
of some conceptual model of programming and an appropriate language to make
programs written in the style clear” [41]. They further suggest that there are five
main kinds of programming styles, listed here with the kinds of abstractions they
employ:

1. Procedure-oriented Algorithms

2. Object-oriented Classes and objects

3. Logic-oriented Goals, often expressed in a predicate calculus
4. Rule-oriented If—then rules

5. Constraint-oriented Invariant relationships

There is no single programming style that is best for all kinds of applications. For
example, rule-oriented programming would be best suited for the design of a
knowledge base, and procedure-oriented programming would be best for the design
of computation-intense operations. From our experience, the object-oriented style
is best suited to the broadest set of applications; indeed, this programming
paradigm often serves as the architectural framework in which we employ other
paradigms.

Each of these styles of programming is based on its own conceptual framework.
Each requires a different mindset, a different way of thinking about the problem.
For all things object-oriented, the conceptual framework is the object model.
There are four major elements of this model:

1. Abstraction
2. Encapsulation
3. Modularity
4. Hierarchy

By major, we mean that a model without any one of these elements is not object-
oriented.

44

SECTION | CONCEPTS

There are three minor elements of the object model:

1. Typing
2. Concurrency
3. Persistence

By minor, we mean that each of these elements is a useful, but not essential, part
of the object model.

Without this conceptual framework, you may be programming in a language such
as Smalltalk, Object Pascal, C++, Eiffel, or Ada, but your design is going to smell
like a FORTRAN, Pascal, or C application. You will have missed out on or other-
wise abused the expressive power of the object-oriented language you are using
for implementation. More importantly, you are not likely to have mastered the
complexity of the problem at hand.

The Meaning of Abstraction

Abstraction is one of the fundamental ways that we as humans cope with com-
plexity. Dahl, Dijkstra, and Hoare suggest that “abstraction arises from a recogni-
tion of similarities between certain objects, situations, or processes in the real
world, and the decision to concentrate upon these similarities and to ignore for the
time being the differences” [42]. Shaw defines an abstraction as “a simplified
description, or specification, of a system that emphasizes some of the system’s
details or properties while suppressing others. A good abstraction is one that
emphasizes details that are significant to the reader or user and suppresses details
that are, at least for the moment, immaterial or diversionary” [43]. Berzins, Gray,
and Naumann recommend that “a concept qualifies as an abstraction only if it can
be described, understood, and analyzed independently of the mechanism that will
eventually be used to realize it” [44]. Combining these different viewpoints, we
define an abstraction as follows:

An abstraction denotes the essential characteristics of an object that distinguish it
from all other kinds of objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer.

An abstraction focuses on the outside view of an object and so serves to separate
an object’s essential behavior from its implementation. Abelson and Sussman call
this behavior/implementation division an abstraction barrier [45] achieved by
applying the principle of least commitment, through which the interface of an
object provides its essential behavior, and nothing more [46]. We like to use an
additional principle that we call the principle of least astonishment, through which
an abstraction captures the entire behavior of some object, no more and no less,
and offers no surprises or side effects that go beyond the scope of the abstraction.

CHAPTER 2 THE OBJECT MODEL 45

T

Kidney stomach .

intestine

Abstraction focuses on the essential characteristics of some object,
relative to the perspective of the viewer.

Deciding on the right set of abstractions for a given domain is the central problem
in object-oriented design. Because this topic is so important, the whole of Chapter 4

is devoted to it.

“There is a spectrum of abstraction, from objects which closely model problem
domain entities to objects which really have no reason for existence” [47]. From
the most to the least useful, these kinds of abstractions include the following:

m Entity abstraction

m Action abstraction

m Virtual machine abstraction

m Coincidental abstraction

An object that represents a useful model of a
problem domain or solution domain entity
An object that provides a generalized set of
operations, all of which perform the same
kind of function

An object that groups operations that are all
used by some superior level of control, or
operations that all use some junior-level set
of operations

An object that packages a set of operations
that have no relation to each other

46

SECTION | CONCEPTS

We strive to build entity abstractions because they directly parallel the vocabulary
of a given problem domain.

A client is any object that uses the resources of another object (known as the
server). We can characterize the behavior of an object by considering the services
that it provides to other objects, as well as the operations that it may perform on
other objects. This view forces us to concentrate on the outside view of an object
and leads us to what Meyer calls the contract model of programming [48]: the
outside view of each object defines a contract on which other objects may depend,
and which in turn must be carried out by the inside view of the object itself (often
in collaboration with other objects). This contract thus establishes all the assump-
tions a client object may make about the behavior of a server object. In other
words, this contract encompasses the responsibilities of an object, namely, the
behavior for which it is held accountable [49].

Individually, each operation that contributes to this contract has a unique signa-
ture comprising all of its formal arguments and return type. We call the entire set
of operations that a client may perform on an object, together with the legal order-
ings in which they may be invoked, its protocol. A protocol denotes the ways in
which an object may act and react and thus constitutes the entire static and
dynamic outside view of the abstraction.

Central to the idea of an abstraction is the concept of invariance. An invariant is
some Boolean (true or false) condition whose truth must be preserved. For each
operation associated with an object, we may define preconditions (invariants
assumed by the operation) as well as postconditions (invariants satisfied by the
operation). Violating an invariant breaks the contract associated with an abstrac-
tion. If a precondition is violated, this means that a client has not satisfied its part
of the bargain, and hence the server cannot proceed reliably. Similarly, if a post-
condition is violated, this means that a server has not carried out its part of the
contract, and so its clients can no longer trust the behavior of the server. An
exception is an indication that some invariant has not been or cannot be satisfied.
Certain languages permit objects to throw exceptions so as to abandon processing
and alert some other object to the problem, which in turn may catch the exception
and handle the problem.

As an aside, the terms operation, method, and member function evolved from
three different programming cultures (Ada, Smalltalk, and C++, respectively).
They all mean virtually the same thing, so we will use them interchangeably.

All abstractions have static as well as dynamic properties. For example, a file
object takes up a certain amount of space on a particular memory device; it has a
name, and it has contents. These are all static properties. The value of each of
these properties is dynamic, relative to the lifetime of the object: A file object
may grow or shrink in size, its name may change, its contents may change. In a

CHAPTER 2 THE OBJECT MODEL 47

procedure-oriented style of programming, the activity that changes the dynamic
value of objects is the central part of all programs; things happen when subpro-
grams are called and statements are executed. In a rule-oriented style of program-
ming, things happen when new events cause rules to fire, which in turn may
trigger other rules, and so on. In an object-oriented style of programming, things
happen whenever we operate on an object (i.e., when we send a message to an
object). Thus, invoking an operation on an object elicits some reaction from the
object. What operations we can meaningfully perform on an object and how that
object reacts constitute the entire behavior of the object.

Examples of Abstraction

Let’s illustrate these concepts with some examples. We defer a complete treat-
ment of how to find the right abstractions for a given problem to Chapter 4.

On a hydroponics farm, plants are grown in a nutrient solution, without sand,
gravel, or other soils. Maintaining the proper greenhouse environment is a deli-
cate job and depends on the kind of plant being grown and its age. One must
control diverse factors such as temperature, humidity, light, pH, and nutrient con-
centrations. On a large farm, it is not unusual to have an automated system that
constantly monitors and adjusts these elements. Simply stated, the purpose of an
automated gardener is to efficiently carry out, with minimal human intervention,
growing plans for the healthy production of multiple crops.

One of the key abstractions in this problem is that of a sensor. Actually, there are
several different kinds of sensors. Anything that affects production must be mea-
sured, so we must have sensors for air and water temperature, humidity, light, pH,
and nutrient concentrations, among other things. Viewed from the outside, a tem-
perature sensor is simply an object that knows how to measure the temperature at
some specific location. What is a temperature? It is some numeric value, within a
limited range of values and with a certain precision, that represents degrees in the
scale of Fahrenheit, Centigrade, or Kelvin, whichever is most appropriate for our
problem. What is a location? It is some identifiable place on the farm at which we
desire to measure the temperature; presumably, there are only a few such loca-
tions. What is important for a temperature sensor is not so much where it is
located but the fact that it has a location and identity unique from all other tem-
perature sensors. Now we are ready to ask: What are the responsibilities of a tem-
perature sensor? Our design decision is that a sensor is responsible for knowing
the temperature at a given location and reporting that temperature when asked.
More concretely, what operations can a client perform on a temperature sensor?
Our design decision is that a client can calibrate it, as well as ask what the current
temperature is. (See Figure 2—6. Note that this representation is similar to the rep-
resentation of a class in UML 2.0. You will learn the actual representation in
Chapter 5.)

48 SECTION | CONCEPTS

Abstraction: Temperature Sensor

Important Characteristics:

temperature
location

Responsibilities:

report current temperature
calibrate

Figure 2-6 Abstraction of a Temperature Sensor

The abstraction we have described thus far is passive; some client object must
operate on an air Temperature Sensor object to determine its current tem-
perature. However, there is another legitimate abstraction that may be more or
less appropriate depending on the broader system design decisions we might
make. Specifically, rather than the Temperature Sensor being passive, we
might make it active, so that it is not acted on but rather acts on other objects
whenever the temperature at its location changes a certain number of degrees
from a given setpoint. This abstraction is almost the same as our first one, except
that its responsibilities have changed slightly: A sensor is now responsible for
reporting the current temperature when it changes, not just when asked. What
new operations must this abstraction provide?

This abstraction is a bit more complicated than the first (see Figure 2—7). A client
of this abstraction may invoke an operation to establish a critical range of temper-
atures. It is then the responsibility of the sensor to report whenever the tempera-
ture at its location drops below or rises above the given setpoint. When the
function is invoked, the sensor provides its location and the current temperature,
so that the client has sufficient information to respond to the condition.

Abstraction: Active Temperature Sensor

Important Characteristics:

temperature
location
setpoint

Responsibilities:

report current temperature
calibrate
establish setpoint

Figure 2-7 Abstraction of an Active Temperature Sensor

CHAPTER 2 THE OBJECT MODEL 49

How the Active Temperature Sensor carries out its responsibilities is a
function of its inside view and is of no concern to outside clients. These then are
the secrets of the class, which are implemented by the class’s private parts
together with the definition of its member functions.

Let’s consider a different abstraction. For each crop, there must be a growing plan
that describes how temperature, light, nutrients, and other conditions should change
over time to maximize the harvest. A growing plan is a legitimate entity abstrac-
tion because it forms part of the vocabulary of the problem domain. Each crop has
its own growing plan, but the growing plans for all crops take the same form.

A growing plan is responsible for keeping track of all interesting actions associ-
ated with growing a crop, correlated with the times at which those actions should
take place. For example, on day 15 in the lifetime of a certain crop, our growing
plan might be to maintain a temperature of 78°F for 16 hours, turn on the lights
for 14 of these hours, and then drop the temperature to 65°F for the rest of the
day. We might also want to add certain extra nutrients in the middle of the day,
while still maintaining a slightly acidic pH. From the perspective outside of each
growing-plan object, a client must be able to establish the details of a plan,
modify a plan, and inquire about a plan, as shown in Figure 2—8. (Note that
abstractions are likely to evolve over the lifetime of a project. As details begin to
be fleshed out, a responsibility such as “establish plan” could turn into multiple
responsibilities, such as “set temperature,” “set pH,” and so forth. This is to be
expected as more knowledge of client requirements is gained, designs mature,
and implementation approaches are considered.)

Our decision is also that we will not require a growing plan to carry out its plan:
We will leave this as the responsibility of a different abstraction (e.g., a Plan
Controller). In this manner, we create a clear separation of concerns among
the logically different parts of the system, so as to reduce the conceptual size of
each individual abstraction. For example, there might be an object that sits at the

Abstraction: Growing Plan

Important Characteristics:
name

Responsibilities:

establish plan
modify plan
clear plan

Related Candidate Abstractions: Crop, Conditions, Plan Controller

Figure 2—8 Abstraction of a Growing Plan

50

SECTION | CONCEPTS

boundary of the human/machine interface and translates human input into plans.
This is the object that establishes the details of a growing plan, so it must be able
to change the state of a Growing Plan object. There must also be an object
that carries out the growing plan, and it must be able to read the details of a plan
for a particular time.

As this example points out, no object stands alone; every object collaborates with
other objects to achieve some behavior.! Our design decisions about how these
objects cooperate with one another define the boundaries of each abstraction and
thus the responsibilities and protocol of each object.

Objects collaborate with other objects to achieve some behavior.

The Meaning of Encapsulation

Although we earlier described our abstraction of the Growing Plan as a time/
action mapping, its implementation is not necessarily a literal table or map data
structure. Indeed, whichever representation is chosen is immaterial to the client’s
contract with the Growing Plan, as long as that representation upholds the
contract. Simply stated, the abstraction of an object should precede the decisions
about its implementation. Once an implementation is selected, it should be treated
as a secret of the abstraction and hidden from most clients.

1. Stated another way, with apologies to the poet John Donne, no object is an island (al-
though an island may be abstracted as an object).

CHAPTER 2 THE OBJECT MODEL 51

Encapsulation hides the details of the implementation of an object.

Abstraction and encapsulation are complementary concepts: Abstraction focuses
on the observable behavior of an object, whereas encapsulation focuses on the
implementation that gives rise to this behavior. Encapsulation is most often
achieved through information hiding (not just data hiding), which is the process
of hiding all the secrets of an object that do not contribute to its essential charac-
teristics; typically, the structure of an object is hidden, as well as the implementa-
tion of its methods. “No part of a complex system should depend on the internal
details of any other part” [50]. Whereas abstraction “helps people to think about
what they are doing,” encapsulation “allows program changes to be reliably made
with limited effort” [51].

Encapsulation provides explicit barriers among different abstractions and thus
leads to a clear separation of concerns. For example, consider again the structure
of a plant. To understand how photosynthesis works at a high level of abstraction,
we can ignore details such as the responsibilities of plant roots or the chemistry of
cell walls. Similarly, in designing a database application, it is standard practice to
write programs so that they don’t care about the physical representation of data
but depend only on a schema that denotes the data’s logical view [52]. In both of
these cases, objects at one level of abstraction are shielded from implementation
details at lower levels of abstraction.

“For abstraction to work, implementations must be encapsulated” [53]. In prac-
tice, this means that each class must have two parts: an interface and an imple-
mentation. The interface of a class captures only its outside view, encompassing
our abstraction of the behavior common to all instances of the class. The imple-
mentation of a class comprises the representation of the abstraction as well as the
mechanisms that achieve the desired behavior. The interface of a class is the one
place where we assert all of the assumptions that a client may make about any
instances of the class; the implementation encapsulates details about which no
client may make assumptions.

52

SECTION | CONCEPTS

To summarize, we define encapsulation as follows:

Encapsulation is the process of compartmentalizing the elements of an abstrac-
tion that constitute its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and its implementation.

Britton and Parnas call these encapsulated elements the “secrets” of an abstrac-
tion [54].

Examples of Encapsulation

To illustrate the principle of encapsulation, let’s return to the problem of the
Hydroponics Gardening System. Another key abstraction in this problem domain
is that of a heater. A heater is at a fairly low level of abstraction, and thus we
might decide that there are only three meaningful operations that we can perform
on this object: turn it on, turn it off, and find out if it is running.

Separation of Concerns

We do not make it a responsibility of the Heater abstraction to maintain a
fixed temperature. Instead, we choose to give this responsibility to another
object (e.g., the Heater Controller), which must collaborate with a
temperature sensor and a heater to achieve this higher-level behavior. We
call this behavior higher-level because it builds on the primitive semantics
of temperature sensors and heaters and adds some new semantics,
namely, hysteresis, which prevents the heater from being turned on and off
too rapidly when the temperature is near boundary conditions. By deciding
on this separation of responsibilities, we make each individual abstraction
more cohesive.

All a client needs to know about the class Heater is its available interface (i.e.,
the responsibilities that it may execute at the client’s request—see Figure 2-9).

Turning to the inside view of the Heater, we have an entirely different perspec-
tive. Suppose that our system engineers have decided to locate the computers that
control each greenhouse away from the building (perhaps to avoid the harsh envi-
ronment) and to connect each computer to its sensors and actuators via serial
lines. One reasonable implementation for the Heater class might be to use an
electromechanical relay that controls the power going to each physical heater,
with the relays in turn commanded by messages sent along these serial lines. For
example, to turn on a heater, we might transmit a special command string, fol-
lowed by a number identifying the specific heater, followed by another number
used to signal turning the heater on.

CHAPTER 2 THE OBJECT MODEL 53

Abstraction: Heater

Important Characteristics:

location
status

Responsibilities:

turn on
turn off
provide status

Related Candidate Abstractions: Heater Controller, Temperature Sensor

Figure 2-9 Abstraction of a Heater

Suppose that for whatever reason our system engineers choose to use memory-
mapped I/O instead of serial communication lines. We would not need to change
the interface of the Heater, yet the implementation would be very different. The
client would not see any change at all as the client sees only the Heater inter-
face. This is the key point of encapsulation. In fact, the client should not care what
the implementation is, as long as it receives the service it needs from the Heater.

Let’s next consider the implementation of the class GrowingPlan. As we men-
tioned earlier, a growing plan is essentially a time/action mapping. Perhaps the
most reasonable representation for this abstraction would be a dictionary of time/
action pairs, using an open hash table. We need not store an action for every hour,
because things don’t change that quickly. Rather, we can store actions only for
when they change, and have the implementation extrapolate between times.

In this manner, our implementation encapsulates two secrets: the use of an open
hash table (which is distinctly a part of the vocabulary of the solution domain, not
the problem domain) and the use of extrapolation to reduce our storage require-
ments (otherwise we would have to store many more time/action pairs over the
duration of a growing season). No client of this abstraction need ever know about
these implementation decisions because they do not materially affect the out-
wardly observable behavior of the class.

Intelligent encapsulation localizes design decisions that are likely to change. As a
system evolves, its developers might discover that, in actual use, certain opera-
tions take longer than is acceptable or that some objects consume more space than
is available. In such situations, the representation of an object is often changed so
that more efficient algorithms can be applied or so that one can optimize for space
by calculating rather than storing certain data. This ability to change the represen-
tation of an abstraction without disturbing any of its clients is the essential benefit
of encapsulation.

54

SECTION | CONCEPTS

Hiding is a relative concept: What is hidden at one level of abstraction may repre-
sent the outside view at another level of abstraction. The underlying representa-
tion of an object can be revealed, but in most cases only if the creator of the
abstraction explicitly exposes the implementation, and then only if the client is
willing to accept the resulting additional complexity. Thus, encapsulation cannot
stop a developer from doing stupid things; as Stroustrup points out, “Hiding is for
the prevention of accidents, not the prevention of fraud” [56]. Of course, no pro-
gramming language prevents a human from literally seeing the implementation of
a class, although an operating system might deny access to a particular file that
contains the implementation of a class.

The Meaning of Modularity

“The act of partitioning a program into individual components can reduce its
complexity to some degree. . . . Although partitioning a program is helpful for this
reason, a more powerful justification for partitioning a program is that it creates a
number of well-defined, documented boundaries within the program. These
boundaries, or interfaces, are invaluable in the comprehension of the program”
[57]. In some languages, such as Smalltalk, there is no concept of a module, so
the class forms the only physical unit of decomposition. Java has packages that
contain classes. In many other languages, including Object Pascal, C++, and Ada,
the module is a separate language construct and therefore warrants a separate set
of design decisions. In these languages, classes and objects form the logical structure
of a system; we place these abstractions in modules to produce the system’s phys-
ical architecture. Especially for larger applications, in which we may have many
hundreds of classes, the use of modules is essential to help manage complexity.

Modularity packages abstractions into discrete units.

CHAPTER 2 THE OBJECT MODEL 55

“Modularization consists of dividing a program into modules which can be com-
piled separately, but which have connections with other modules. We will use the
definition of Parnas: ‘The connections between modules are the assumptions
which the modules make about each other’” [58]. Most languages that support the
module as a separate concept also distinguish between the interface of a module
and its implementation. Thus, it is fair to say that modularity and encapsulation
go hand in hand.

Deciding on the right set of modules for a given problem is almost as hard a prob-
lem as deciding on the right set of abstractions. Zelkowitz is absolutely right
when he states that “because the solution may not be known when the design
stage starts, decomposition into smaller modules may be quite difficult. For older
applications (such as compiler writing), this process may become standard, but
for new ones (such as defense systems or spacecraft control), it may be quite dif-
ficult” [59].

Modules serve as the physical containers in which we declare the classes and
objects of our logical design. This is no different than the situation faced by the
electrical engineer designing a computer motherboard. NAND, NOR, and NOT
gates might be used to construct the necessary logic, but these gates must be
physically packaged in standard integrated circuits. Lacking any such standard
software parts, the software engineer has considerably more degrees of freedom—
as if the electrical engineer had a silicon foundry at his or her disposal.

For tiny problems, the developer might decide to declare every class and object in
the same package. For anything but the most trivial software, a better solution is
to group logically related classes and objects in the same module and to expose
only those elements that other modules absolutely must see. This kind of modu-
larization is a good thing, but it can be taken to extremes. For example, consider
an application that runs on a distributed set of processors and uses a message-
passing mechanism to coordinate the activities of different programs. In a large
system, such as a command and control system, it is common to have several hun-
dred or even a few thousand kinds of messages. A naive strategy might be to
define each message class in its own module. As it turns out, this is a singularly
poor design decision. Not only does it create a documentation nightmare, but it
makes it terribly difficult for any users to find the classes they need. Furthermore,
when decisions change, hundreds of modules must be modified or recompiled.
This example shows how information hiding can backfire [60]. Arbitrary modu-
larization is sometimes worse than no modularization at all.

In traditional structured design, modularization is primarily concerned with the
meaningful grouping of subprograms, using the criteria of coupling and cohesion.
In object-oriented design, the problem is subtly different: The task is to decide
where to physically package the classes and objects, which are distinctly different
from subprograms.

56

SECTION | CONCEPTS

Our experience indicates that there are several useful technical as well as non-
technical guidelines that can help us achieve an intelligent modularization of
classes and objects. As Britton and Parnas have observed, “The overall goal of the
decomposition into modules is the reduction of software cost by allowing mod-
ules to be designed and revised independently. . . . Each module’s structure should
be simple enough that it can be understood fully; it should be possible to change
the implementation of other modules without knowledge of the implementation
of other modules and without affecting the behavior of other modules; [and] the
ease of making a change in the design should bear a reasonable relationship to the
likelihood of the change being needed” [61]. There is a pragmatic edge to these
guidelines. In practice, the cost of recompiling the body of a module is relatively
small: Only that unit need be recompiled and the application relinked. However,
the cost of recompiling the interface of a module is relatively high. Especially
with strongly typed languages, one must recompile the module interface, its body,
all other modules that depend on this interface, the modules that depend on these
modules, and so on. Thus, for very large programs (assuming that our develop-
ment environment does not support incremental compilation), a change in a single
module interface might result in much longer compilation time. Obviously, a
development manager cannot often afford to allow a massive “big bang” recompi-
lation to happen too frequently. For this reason, a module’s interface should be as
narrow as possible, yet still satisfy the needs of the other modules that use it. Our
style is to hide as much as we can in the implementation of a module. Incremen-
tally shifting declarations from a module’s implementation to its interface is far
less painful and destabilizing than ripping out extraneous interface code.

The developer must therefore balance two competing technical concerns: the
desire to encapsulate abstractions and the need to make certain abstractions visi-
ble to other modules. “System details that are likely to change independently
should be the secrets of separate modules; the only assumptions that should
appear between modules are those that are considered unlikely to change. Every
data structure is private to one module; it may be directly accessed by one or more
programs within the module but not by programs outside the module. Any other
program that requires information stored in a module’s data structures must
obtain it by calling module programs” [62]. In other words, strive to build mod-
ules that are cohesive (by grouping logically related abstractions) and loosely
coupled (by minimizing the dependencies among modules). From this perspec-
tive, we may define modularity as follows:

Modularity is the property of a system that has been decomposed into a set of
cohesive and loosely coupled modules.

Thus, the principles of abstraction, encapsulation, and modularity are synergistic.
An object provides a crisp boundary around a single abstraction, and both encap-
sulation and modularity provide barriers around this abstraction.

CHAPTER 2 THE OBJECT MODEL 57

Two additional technical issues can affect modularization decisions. First, since
modules usually serve as the elementary and indivisible units of software that can
be reused across applications, a developer might choose to package classes and
objects into modules in a way that makes their reuse convenient. Second, many
compilers generate object code in segments, one for each module. Therefore,
there may be practical limits on the size of individual modules. With regard to the
dynamics of subprogram calls, the placement of declarations within modules can
greatly affect the locality of reference and thus the paging behavior of a virtual
memory system. Poor locality happens when subprogram calls occur across seg-
ments and lead to cache misses and page thrashing that ultimately slow down the
whole system.

Several competing nontechnical needs may also affect modularization decisions.
Typically, work assignments in a development team are given on a module-by-
module basis, so the boundaries of modules may be established to minimize the
interfaces among different parts of the development organization. Senior design-
ers are usually given responsibility for module interfaces, and more junior devel-
opers complete their implementation. On a larger scale, the same situation applies
with subcontractor relationships. Abstractions may be packaged so as to quickly
stabilize the module interfaces as agreed upon among the various companies.
Changing such interfaces usually involves much wailing and gnashing of teeth—
not to mention a vast amount of paperwork—so this factor often leads to conser-
vatively designed interfaces. Speaking of paperwork, modules also usually serve
as the unit of documentation and configuration management. Having ten modules
where one would do sometimes means ten times the paperwork, and so, unfortu-
nately, sometimes the documentation requirements drive the module design deci-
sions (usually in the most negative way). Security may also be an issue. Most
code may be considered unclassified, but other code that might be classified
secret or higher is best placed in separate modules.

Juggling these different requirements is difficult, but don’t lose sight of the most
important point: Finding the right classes and objects and then organizing them
into separate modules are largely independent design decisions. The identification
of classes and objects is part of the logical design of the system, but the identifica-
tion of modules is part of the system’s physical design. One cannot make all the
logical design decisions before making all the physical ones, or vice versa; rather,
these design decisions happen iteratively.

Examples of Modularity

Let’s look at modularity in the Hydroponics Gardening System. Suppose we
decide to use a commercially available workstation where the user can control the
system’s operation. At this workstation, an operator could create new growing
plans, modify old ones, and follow the progress of currently active ones. Since one

58

SECTION | CONCEPTS

of our key abstractions here is that of a growing plan, we might therefore create a
module whose purpose is to collect all of the classes associated with individual
growing plans (e.g., FruitGrowingPlan, GrainGrowingPlan). The
implementations of these GrowingPlan classes would appear in the implemen-
tation of this module. We might also define a module whose purpose is to collect
all of the code associated with all user interface functions.

Our design will probably include many other modules. Ultimately, we must
define some main program from which we can invoke this application. In object-
oriented design, defining this main program is often the least important decision,
whereas in traditional structured design, the main program serves as the root, the
keystone that holds everything else together. We suggest that the object-oriented
view is more natural, for, as Meyer observes, “Practical software systems are
more appropriately described as offering a number of services. Defining these
systems by single functions is usually possible, but yields rather artificial
answers. . . . Real systems have no top” [63].

The Meaning of Hierarchy

Abstraction is a good thing, but in all except the most trivial applications, we may
find many more different abstractions than we can comprehend at one time.
Encapsulation helps manage this complexity by hiding the inside view of our
abstractions. Modularity helps also, by giving us a way to cluster logically related
abstractions. Still, this is not enough. A set of abstractions often forms a hierar-
chy, and by identifying these hierarchies in our design, we greatly simplify our
understanding of the problem.

We define hierarchy as follows:
Hierarchy is a ranking or ordering of abstractions.

The two most important hierarchies in a complex system are its class structure
(the “is a” hierarchy) and its object structure (the “part of”” hierarchy).

Examples of Hierarchy: Single Inheritance

Inheritance is the most important “is a” hierarchy, and as we noted earlier, it is an
essential element of object-oriented systems. Basically, inheritance defines a rela-
tionship among classes, wherein one class shares the structure or behavior defined
in one or more classes (denoting single inheritance and multiple inheritance,
respectively). Inheritance thus represents a hierarchy of abstractions, in which a
subclass inherits from one or more superclasses. Typically, a subclass augments
or redefines the existing structure and behavior of its superclasses.

CHAPTER 2 THE OBJECT MODEL 59

Abstractions form a hierarchy.

Semantically, inheritance denotes an “is a” relationship. For example, a bear “is
a” kind of mammal, a house “is a” kind of tangible asset, and a quick sort “is a”
particular kind of sorting algorithm. Inheritance thus implies a generalization/
specialization hierarchy, wherein a subclass specializes the more general structure
or behavior of its superclasses. Indeed, this is the litmus test for inheritance: If B
is not a kind of A, then B should not inherit from A.

Consider the different kinds of growing plans we might use in the Hydroponics
Gardening System. An earlier section described our abstraction of a very general-
ized growing plan. Different kinds of crops, however, demand specialized grow-
ing plans. For example, the growing plan for all fruits is generally the same but
is quite different from the plan for all vegetables, or for all floral crops. Because
of this clustering of abstractions, it is reasonable to define a standard fruit-
growing plan that encapsulates the behavior common to all fruits, such as the
knowledge of when to pollinate or when to harvest the fruit. We can assert that
FruitGrowingPlan “is a” kind of GrowingPlan.

60

SECTION | CONCEPTS

In this case, FruitGrowingPlan is more specialized, and GrowingPlan
is more general. The same could be said for GrainGrowingPlan or
VegetableGrowingPlan, thatis, GrainGrowingPlan “is a” kind of
GrowingPlan, and VegetableGrowingPlan “is a” kind of GrowingPlan.
Here, GrowingP1lan is the more general superclass, and the others are special-
ized subclasses.

As we evolve our inheritance hierarchy, the structure and behavior that are com-
mon for different classes will tend to migrate to common superclasses. This is
why we often speak of inheritance as being a generalization/specialization hierar-
chy. Superclasses represent generalized abstractions, and subclasses represent
specializations in which fields and methods from the superclass are added, modi-
fied, or even hidden. In this manner, inheritance lets us state our abstractions with
an economy of expression. Indeed, neglecting the “is a” hierarchies that exist can
lead to bloated, inelegant designs. “Without inheritance, every class would be a
free-standing unit, each developed from the ground up. Different classes would
bear no relationship with one another, since the developer of each provides meth-
ods in whatever manner he chooses. Any consistency across classes is the result
of discipline on the part of the programmers. Inheritance makes it possible to
define new software in the same way we introduce any concept to a newcomer, by
comparing it with something that is already familiar” [64].

There is a healthy tension among the principles of abstraction, encapsulation, and
hierarchy. “Data abstraction attempts to provide an opaque barrier behind which
methods and state are hidden; inheritance requires opening this interface to some
extent and may allow state as well as methods to be accessed without abstraction”
[65]. For a given class, there are usually two kinds of clients: objects that invoke
operations on instances of the class and subclasses that inherit from the class.
Liskov therefore notes that, with inheritance, encapsulation can be violated in one
of three ways: “The subclass might access an instance variable of its superclass,
call a private operation of its superclass, or refer directly to superclasses of its
superclass” [66]. Different programming languages trade off support for encapsu-
lation and inheritance in different ways. C++ and Java offer great flexibility.
Specifically, the interface of a class may have three parts: private parts, which
declare members that are accessible only to the class itself; protected parts, which
declare members that are accessible only to the class and its subclasses; and pub-
lic parts, which are accessible to all clients.

Examples of Hierarchy: Multiple Inheritance

The previous example illustrated the use of single inheritance: the subclass
FruitGrowingPlan had exactly one superclass, the class GrowingPlan.
For certain abstractions, it is useful to provide inheritance from multiple superclasses.

CHAPTER 2 THE OBJECT MODEL 61

For example, suppose that we choose to define a class representing a kind of
plant. Our analysis of the problem domain might suggest that flowering plants
and fruits and vegetables have specialized properties that are relevant to our appli-
cation. For example, given a flowering plant, its expected time to flower and time
to seed might be important to us. Similarly, the time to harvest might be an impor-
tant part of our abstraction of all fruits and vegetables. One way we could capture
our design decisions would be to make two new classes, a Flower class and a
FruitVegetable class, both subclasses of the class P1ant. However, what if
we need to model a plant that both flowered and produced fruit? For example,
florists commonly use blossoms from apple, cherry, and plum trees. For this
abstraction, we would need to invent a third class, FlowerFruitVegetable,
that duplicated information from the Flower and FruitVegetable classes.

A better way to express our abstractions and thereby avoid this redundancy is to
use multiple inheritance. First, we invent classes that independently capture the
properties unique to flowering plants and to fruits and vegetables. These two classes
have no superclass; they stand alone. These are called mixin classes because they
are meant to be mixed together with other classes to produce new subclasses.

For example, we can define a Rose class (see Figure 2—10) that inherits from
both Plant and FlowerMixin. Instances of the subclass Rose thus include
the structure and behavior from the class Plant together with the structure and
behavior from the class FlowerMixin.

Similarly, a Carrot class could be as shown in Figure 2—-11. In both cases, we
form the subclass by inheriting from two superclasses.

Now, suppose we want to declare a class for a plant such as the cherry tree that
has both flowers and fruit. This would be conceptualized as shown in Figure 2—12.

Plant

isa

Rose

FlowerMixin

Figure 2—-10 The Rose Class, Which Inherits from Multiple Superclasses

SECTION | CONCEPTS

Plant

/
Carrot
\

Figure 2-11 The Ccarrot Class, Which Inherits from Multiple Superclasses
/

isa >
\

FruitVegetableMixin

FruitVegetableMixin

Plant

CherryTree FlowerMixin

Figure 2-12 The CherryTree Class, Which Inherits from Multiple
Superclasses

Multiple inheritance is conceptually straightforward, but it does introduce some
practical complexities for programming languages. Languages must address two
issues: clashes among names from different superclasses and repeated inherit-
ance. Clashes will occur when two or more superclasses provide a field or opera-
tion with the same name or signature as a peer superclass.

CHAPTER 2 THE OBJECT MODEL 63

A
Common
Superclass
D
B
B c 22777
Peer = | = A
Superclasses
(o
A
Subclass D
D
Subclass

Figure 2—13 The Repeated Inheritance Problem

Repeated inheritance occurs when two or more peer superclasses share a common
superclass. In such a situation, the inheritance lattice will be diamond-shaped, so
the question arises, does the leaf class (i.e., subclass) have one copy or multiple
copies of the structure of the shared superclass? (See Figure 2—13.) Some lan-
guages prohibit repeated inheritance, some unilaterally choose one approach, and
others, such as C++, permit the programmer to decide. In C++, virtual base
classes are used to denote a sharing of repeated structures, whereas nonvirtual
base classes result in duplicate copies appearing in the subclass (with explicit
qualification required to distinguish among the copies).

Multiple inheritance is often overused. For example, cotton candy is a kind of
candy, but it is distinctly not a kind of cotton. Again, the litmus test for inherit-
ance applies: If B is not a kind of A, then B should not inherit from A. Ill-formed
multiple inheritance lattices should be reduced to a single superclass plus aggre-
gation of the other classes by the subclass, where possible.

Examples of Hierarchy: Aggregation

Whereas these “is a” hierarchies denote generalization/specialization relation-
ships, “part of” hierarchies describe aggregation relationships. For example, con-
sider the abstraction of a garden. We can contend that a garden consists of a
collection of plants together with a growing plan. In other words, plants are “part
of” the garden, and the growing plan is “part of”’ the garden. This “part of” rela-
tionship is known as aggregation.

64

SECTION | CONCEPTS

Aggregation is not a concept unique to object-oriented development or object-
oriented programming languages. Indeed, any language that supports record-like
structures supports aggregation. However, the combination of inheritance with
aggregation is powerful: Aggregation permits the physical grouping of logically
related structures, and inheritance allows these common groups to be easily
reused among different abstractions.

When dealing with hierarchies such as these, we often speak of levels of abstrac-
tion, a concept first described by Dijkstra [67]. In terms of its “is a” hierarchy, a
high-level abstraction is generalized, and a low-level abstraction is specialized.
Therefore, we say that a Flower class is at a higher level of abstraction than a
Plant class. In terms of its “part of” hierarchy, a class is at a higher level of
abstraction than any of the classes that make up its implementation. Thus, the class
Garden is at a higher level of abstraction than the type Plant, on which it builds.

Aggregation raises the issue of ownership. Our abstraction of a garden permits
different plants to be raised in a garden over time, but replacing a plant does not
change the identity of the garden as a whole, nor does removing a garden neces-
sarily destroy all of its plants (they are likely just transplanted). In other words,
the lifetime of a garden and its plants are independent. In contrast, we have
decided that a GrowingPlan object is intrinsically associated with a Garden
object and does not exist independently. Therefore, when we create an instance of
Garden, we also create an instance of GrowingPlan; when we destroy the
Garden object, we in turn destroy the GrowingPlan instance.

The Meaning of Typing

The concept of a type derives primarily from the theories of abstract data types.
As Deutsch suggests, “A type is a precise characterization of structural or behav-
ioral properties which a collection of entities all share” [68]. For our purposes, we
will use the terms fype and class interchangeably.? Although the concepts of a
type and a class are similar, we include typing as a separate element of the object

2. Atype and a class are not exactly the same thing; some languages distinguish these two
concepts. For example, early versions of the language Trellis/Owl permitted an object to
have both a class and a type. In Smalltalk, objects of the classes SmallInteger,
LargeNegativelInteger, and LargePositiveInteger are all of the same
type, Integer, although not of the same class [69]. For most mortals, however, separat-
ing the concepts of type and class is utterly confusing and adds very little value. It is suffi-
cient to say that a class implements a type.

CHAPTER 2 THE OBJECT MODEL 65

model because the concept of a type places a very different emphasis on the
meaning of abstraction. Specifically, we state the following:

Typing is the enforcement of the class of an object, such that objects of different
types may not be interchanged, or at the most, they may be interchanged only in
very restricted ways.

Typing lets us express our abstractions so that the programming language in
which we implement them can be made to enforce design decisions.

A given programming language may be strongly typed, weakly typed, or even
untyped, yet still be called object-oriented. For example, Eiffel is strongly typed,
meaning that type conformance is strictly enforced: Operations cannot be called
on an object unless the exact signature of that operation is defined in the object’s
class or superclasses.

The idea of conformance is central to the notion of typing. For example, consider
units of measurement in physics [71]. When we divide distance by time, we
expect some value denoting speed, not weight. Similarly, dividing a unit of force
by temperature doesn’t make sense, but dividing force by mass does. These are
both examples of strong typing, wherein the rules of our domain prescribe and
enforce certain legal combinations of abstractions.

0.

@_ e

Strong typing prevents mixing of abstractions.

66

SECTION | CONCEPTS

Strong typing lets us use our programming language to enforce certain design
decisions and so is particularly relevant as the complexity of our system grows.
However, there is a dark side to strong typing. Practically, strong typing intro-
duces semantic dependencies such that even small changes in the interface of a
base class require recompilation of all subclasses.

There are two general solutions to these problems. First, we could use a type-safe
container class that manipulates only objects of a specific class. This approach
addresses the first problem, wherein objects of different types are incorrectly min-
gled. Second, we could use some form of runtime type identification; this addresses
the second problem of knowing what kind of object you happen to be examining
at the moment. In general, however, runtime type identification should be used
only when there is a compelling reason because it can represent a weakening of
encapsulation. As we will discuss in the next section, the use of polymorphic
operations can often (but not always) mitigate the need for runtime type
identification.

As Tesler points out, there are a number of important benefits to be derived from
using strongly typed languages:

m Without type checking, a program in most languages can ‘crash’ in mysterious
ways at runtime.

m In most systems, the edit-compile-debug cycle is so tedious that early error
detection is indispensable.

m Type declarations help to document programs.

m Most compilers can generate more efficient object code if types are declared. [72]

Untyped languages offer greater flexibility, but even with untyped languages, as
Borning and Ingalls observe, “In almost all cases, the programmer in fact knows
what sorts of objects are expected as the arguments of a message, and what sort of
object will be returned” [73]. In practice, the safety offered by strongly typed lan-
guages usually more than compensates for the flexibility lost by not using an
untyped language, especially for programming-in-the-large.

Examples of Typing: Static and Dynamic Typing

The concepts of strong and weak typing and static and dynamic typing are
entirely different. Strong and weak typing refers to type consistency, whereas
static and dynamic typing refers to the time when names are bound to types. Static
typing (also known as static binding or early binding) means that the types of all
variables and expressions are fixed at the time of compilation; dynamic typing
(also known as late binding) means that the types of all variables and expressions
are not known until runtime. A language may be both strongly and statically
typed (Ada), strongly typed yet supportive of dynamic typing (C++, Java), or
untyped yet supportive of dynamic typing (Smalltalk).

CHAPTER 2 THE OBJECT MODEL 67

Polymorphism is a condition that exists when the features of dynamic typing and
inheritance interact. Polymorphism represents a concept in type theory in which a
single name (such as a variable declaration) may denote objects of many different
classes that are related by some common superclass. Any object denoted by this
name is therefore able to respond to some common set of operations [74]. The
opposite of polymorphism is monomorphism, which is found in all languages that
are both strongly and statically typed.

Polymorphism is perhaps the most powerful feature of object-oriented program-
ming languages next to their support for abstraction, and it is what distinguishes
object-oriented programming from more traditional programming with abstract
data types. As we will see in the following chapters, polymorphism is also a cen-
tral concept in object-oriented design.

The Meaning of Concurrency

For certain kinds of problems, an automated system may have to handle many dif-
ferent events simultaneously. Other problems may involve so much computation
that they exceed the capacity of any single processor. In each of these cases, it is
natural to consider using a distributed set of computers for the target implementa-
tion or to use multitasking. A single process is the root from which independent
dynamic action occurs within a system. Every program has at least one thread of
control, but a system involving concurrency may have many such threads: some
that are transitory and others that last the entire lifetime of the system’s execution.
Systems executing across multiple CPUs allow for truly concurrent threads of

Concurrency allows different objects to act at the same time.

68

SECTION | CONCEPTS

control, whereas systems running on a single CPU can only achieve the illusion of
concurrent threads of control, usually by means of some time-slicing algorithm.

We also distinguish between heavyweight and lightweight concurrency. A heavy-
weight process is one that is typically independently managed by the target oper-
ating system and so encompasses its own address space. A lightweight process
usually lives within a single operating system process along with other light-
weight processes, which share the same address space. Communication among
heavyweight processes is generally expensive, involving some form of interpro-
cess communication; communication among lightweight processes is less expen-
sive and often involves shared data.

Building a large piece of software is hard enough; designing one that encom-
passes multiple threads of control is much harder because one must worry about
such issues as deadlock, livelock, starvation, mutual exclusion, and race condi-
tions. “At the highest levels of abstraction, OOP can alleviate the concurrency
problem for the majority of programmers by hiding the concurrency inside reus-
able abstractions” [76]. Black et al. therefore suggest that “an object model is
appropriate for a distributed system because it implicitly defines (1) the units of
distribution and movement and (2) the entities that communicate” [77].

Whereas object-oriented programming focuses on data abstraction, encapsulation,
and inheritance, concurrency focuses on process abstraction and synchronization
[78]. The object is a concept that unifies these two different viewpoints: Each
object (drawn from an abstraction of the real world) may represent a separate
thread of control (a process abstraction). Such objects are called active. In a sys-
tem based on an object-oriented design, we can conceptualize the world as con-
sisting of a set of cooperative objects, some of which are active and thus serve as
centers of independent activity. Given this conception, we define concurrency as
follows:

Concurrency is the property that distinguishes an active object from one that is
not active.

Examples of Concurrency

Let’s consider a sensor named Act iveTemperatureSensor, whose behavior
requires periodically sensing the current temperature and then notifying the client
whenever the temperature changes a certain number of degrees from a given setpoint.
We do not explain how the class implements this behavior. That fact is a secret of
the implementation, but it is clear that some form of concurrency is required.

In general, there are three approaches to concurrency in object-oriented design.
First, concurrency is an intrinsic feature of certain programming languages,
which provide mechanisms for concurrency and synchronization. In this case, we

CHAPTER 2 THE OBJECT MODEL 69

may create an active object that runs some process concurrently with all other
active objects.

Second, we may use a class library that implements some form of lightweight
processes. Naturally, the implementation of this kind is highly platform-dependent,
although the interface to the library may be relatively portable. In this approach,
concurrency is not an intrinsic part of the language (and so does not place any
burdens on nonconcurrent systems) but appears as if it were intrinsic, through the
presence of these standard classes.

Third, we may use interrupts to give us the illusion of concurrency. Of course, this
requires that we have knowledge of certain low-level hardware details. For exam-
ple, in our implementation of the class ActiveTemperatureSensor, we
might have a hardware timer that periodically interrupts the application, during
which time all such sensors read the current temperature and then invoke their
callback function as necessary.

No matter which approach to concurrency we take, one of the realities about
concurrency is that once you introduce it into a system, you must consider how
active objects synchronize their activities with one another as well as with objects
that are purely sequential. For example, if two active objects try to send messages
to a third object, we must be certain to use some means of mutual exclusion, so
that the state of the object being acted on is not corrupted when both active
objects try to update its state simultaneously. This is the point where the ideas of
abstraction, encapsulation, and concurrency interact. In the presence of concur-
rency, it is not enough simply to define the methods of an object; we must also
make certain that the semantics of these methods are preserved in the presence of
multiple threads of control.

The Meaning of Persistence

An object in software takes up some amount of space and exists for a particular
amount of time. Atkinson et al. suggest that there is a continuum of object exist-
ence, ranging from transitory objects that arise within the evaluation of an expres-
sion to objects in a database that outlive the execution of a single program. This
spectrum of object persistence encompasses the following:

m Transient results in expression evaluation

m Local variables in procedure activations

m Own variables [as in ALGOL 60], global variables, and heap items whose
extent is different from their scope

m Data that exists between executions of a program

m Data that exists between various versions of a program

m Data that outlives the program [79]

70

SECTION | CONCEPTS

Traditional programming languages usually address only the first three kinds of
object persistence; persistence of the last three kinds is typically the domain of
database technology. This leads to a clash of cultures that sometimes results in
very strange architectures: Programmers end up crafting ad hoc schemes for stor-
ing objects whose state must be preserved between program executions, and data-
base designers misapply their technology to cope with transient objects [80].

An interesting variant of Atkinson et al.’s “Data that outlives the program” is the
case of Web applications where the application may not be connected to the data
it is using through the entire transaction execution. What changes may happen to
data provided to a client application or Web service while disconnected to the
data source, and how should resolution of the two be handled? Frameworks like
Microsoft’s ActiveX Data Object for NET (ADO.NET) have arisen to help
address such distributed, disconnected scenarios.

Unifying the concepts of concurrency and objects gives rise to concurrent object-
oriented programming languages. In a similar fashion, introducing the concept of
persistence to the object model gives rise to object-oriented databases. In practice,
such databases build on proven technology, such as sequential, indexed, hierarchi-
cal, network, or relational database models, but then offer to the programmer the
abstraction of an object-oriented interface, through which database queries and
other operations are completed in terms of objects whose lifetimes transcend the
lifetime of an individual program. This unification vastly simplifies the develop-
ment of certain kinds of applications. In particular, it allows us to apply the same
design methods to the database and nondatabase segments of an application.

Persistence saves the state and class of an object across time or space.

CHAPTER 2 THE OBJECT MODEL 71

24

Some object-oriented programming languages provide direct support for persis-
tence. Java provides Enterprise Java Beans (EJBs) and Java Data Objects. Small-
talk has protocols for streaming objects to and from storage (which must be
redefined by subclasses). However, streaming objects to flat files is a naive solu-
tion to persistence that does not scale well. Persistence may be achieved through a
modest number of commercially available object-oriented databases [81]. A more
typical approach to persistence is to provide an object-oriented skin over a rela-
tional database. Customized object-relational mappings can be created by the
individual developer. However, that is a very challenging task to do well. Frame-
works are available to ease this task, such as the open source framework Hiber-
nate [85]. Commercial object-relational mapping software is available. This
approach is most appealing when there is a large capital investment in relational
database technology that would be risky or too expensive to replace.

Persistence deals with more than just the lifetime of data. In object-oriented data-
bases, not only does the state of an object persist, but its class must also transcend
any individual program, so that every program interprets this saved state in the
same way. This clearly makes it challenging to maintain the integrity of a data-
base as it grows, particularly if we must change the class of an object.

Our discussion thus far pertains to persistence in time. In most systems, an object,
once created, consumes the same physical memory until it ceases to exist. How-
ever, for systems that execute on a distributed set of processors, we must some-
times be concerned with persistence across space. In such systems, it is useful to
think of objects that can move from machine to machine and that may even have
different representations on different machines.

To summarize, we define persistence as follows:

Persistence is the property of an object through which its existence transcends
time (i.e., the object continues to exist after its creator ceases to exist) and/or
space (i.e., the object’s location moves from the address space in which it was
created).

Applying the Object Model

As we have shown, the object model is fundamentally different from the models
embraced by the more traditional methods of structured analysis, structured
design, and structured programming. This does not mean that the object model
abandons all of the sound principles and experiences of these older methods.
Rather, it introduces several novel elements that build on these earlier models.
Thus, the object model offers a number of significant benefits that other models
simply do not provide. Most importantly, the use of the object model leads us to

72

SECTION | CONCEPTS

construct systems that embody the five attributes of well-structured complex sys-
tems noted in Chapter 1: hierarchy, relative primitives (i.e., multiple levels of
abstraction), separation of concerns, patterns, and stable intermediate forms. In
our experience, there are five other practical benefits to be derived from the appli-
cation of the object model.

Benefits of the Object Model

First, the use of the object model helps us to exploit the expressive power of
object-based and object-oriented programming languages. As Stroustrup points
out, “It is not always clear how best to take advantage of a language such as C++.
Significant improvements in productivity and code quality have consistently been
achieved using C++ as ‘a better C* with a bit of data abstraction thrown in where
it is clearly useful. However, further and noticeably larger improvements have
been achieved by taking advantage of class hierarchies in the design process. This
is often called object-oriented design and this is where the greatest benefits of
using C++ have been found” [82]. Our experience has been that, without the
application of the elements of the object model, the more powerful features of
languages such as Smalltalk, C++, Java, and so forth are either ignored or greatly
misused.

Second, the use of the object model encourages the reuse not only of software but
of entire designs, leading to the creation of reusable application frameworks [83].
We have found that object-oriented systems are often smaller than equivalent non-
object-oriented implementations. Not only does this mean less code to write and
maintain, but greater reuse of software also translates into cost and schedule
benefits. However, reuse does not just happen. If reuse is not a primary goal of
your project, it is unlikely that it will be achieved. Plus, designing for reuse may
cost you more when initially implementing the reusable component. The good
news is that the initial cost will be recovered in the subsequent uses of that
component.

Third, the use of the object model produces systems that are built on stable inter-
mediate forms, which are more resilient to change. This also means that such
systems can be allowed to evolve over time, rather than be abandoned or com-
pletely redesigned in response to the first major change in requirements.

Chapter 7, Pragmatics, explains further how the object model reduces the risks
inherent in developing complex systems. This fourth benefit accrues primarily
because integration is spread out across the lifecycle rather than occurring as one
major event. The object model’s guidance in designing an intelligent separation of
concerns also reduces development risk and increases our confidence in the cor-
rectness of our design.

CHAPTER 2 THE OBJECT MODEL 73

Finally, the object model appeals to the workings of human cognition. As Robson
suggests, “Many people who have no idea how a computer works find the idea of
object-oriented systems quite natural” [84].

Open Issues

To effectively apply the elements of the object model, we must next address sev-
eral open issues.

What exactly are classes and objects?

How does one properly identify the classes and objects that are relevant to a
particular application?

What is a suitable notation for expressing the design of an object-oriented
system?

What process can lead us to a well-structured object-oriented system?
What are the management implications of using object-oriented design?

These issues are the themes of the next five chapters.

Summary

The maturation of software engineering has led to the development of
object-oriented analysis, design, and programming methods, all of which
address the issues of programming-in-the-large.

There are several different programming paradigms: procedure-oriented,
object-oriented, logic-oriented, rule-oriented, and constraint-oriented.

An abstraction denotes the essential characteristics of an object that distin-
guish it from all other kinds of objects and thus provide crisply defined con-
ceptual boundaries, relative to the perspective of the viewer.

Encapsulation is the process of compartmentalizing the elements of an
abstraction that constitute its structure and behavior; encapsulation serves to
separate the contractual interface of an abstraction and its implementation.
Modularity is the property of a system that has been decomposed into a set
of cohesive and loosely coupled modules.

Hierarchy is a ranking or ordering of abstractions.

Typing is the enforcement of the class of an object, such that objects of dif-
ferent types may not be interchanged or, at the most, may be interchanged
only in very restricted ways.

74 SECTION | CONCEPTS

m Concurrency is the property that distinguishes an active object from one that
is not active.

m Persistence is the property of an object through which its existence tran-
scends time and/or space.

3.1

Chapter 3

Classes and Objects

Both the engineer and the artist must be intimately familiar with the
materials of their trade. Oils versus watercolors, steel versus aluminum,
bolts versus nails, object versus classes—each of these materials serves
similar functions (e.g., bolts and nails are both fasteners), yet each has

its own specific properties and uses. The architect may not know the most
efficient way to drive a nail (that is a specific skill of the carpenter), but the
architect must understand when it is appropriate to use nails or bolts or
glue or welds. To ignore such fundamental considerations can yield disas-
trous results.

When we use object-oriented methods to analyze or design a complex
software system, our basic building blocks are classes and objects. Since
we have thus far provided only informal definitions of these two elements,
in this chapter we turn to a detailed study of the nature of classes, objects,
and their relationships, and along the way we provide several rules of
thumb for crafting quality abstractions and mechanisms.

The Nature of an Object

The ability to recognize physical objects is a skill that humans learn at a very
early age. A brightly colored ball will attract an infant’s attention, but typically, if
you hide the ball, the child will not try to look for it; when the object leaves her
field of vision, as far as she can determine, it ceases to exist. It is not until near the
age of one that a child normally develops what is called the object concept, a skill
that is of critical importance to future cognitive development. Show a ball to a
one-year-old and then hide it, and she will usually search for it even though it is

75

76

SECTION | CONCEPTS

not visible. Through the object concept, a child comes to realize that objects have
a permanence and identity apart from any operations on them [1].

What Is and What Isn’t an Object

In Chapter 1, we informally defined an object as a tangible entity that exhibits
some well-defined behavior. From the perspective of human cognition, an object
is any of the following:

m A tangible and/or visible thing
m Something that may be comprehended intellectually
m Something toward which thought or action is directed

We add to our informal definition the idea that an object models some part of real-
ity and is therefore something that exists in time and space. In software, the term
object was first formally applied in the Simula language; objects typically existed
in Simula programs to simulate some aspect of reality [2].

Real-world objects are not the only kinds of objects that are of interest to us dur-
ing software development. Other important kinds of objects are inventions of the
design process whose collaborations with other such objects serve as the mecha-
nisms that provide some higher-level behavior [3]. Jacobson et al. define control
objects as “the ones that unite courses of events and thus will carry on communi-
cation with other objects” [62]. This leads us to the more refined definition of
Smith and Tockey, who suggest that “an object represents an individual, identifi-
able item, unit, or entity, either real or abstract, with a well-defined role in the
problem domain” [4].

Consider for a moment a manufacturing plant that processes composite materials
for making such diverse items as bicycle frames and airplane wings. Manufactur-
ing plants are often divided into separate shops: mechanical, chemical, electrical,
and so forth. Shops are further divided into cells, and in each cell we have some
collection of machines, such as die stamps, presses, and lathes. Along a manufac-
turing line, we might find vats containing raw materials, which are used in a
chemical process to produce blocks of composite materials, and which in turn are
formed and shaped to produce bicycle frames, airplane wings, and other end
items. Each of the tangible things we have mentioned thus far is an object. A lathe
has a crisply defined boundary that separates it from the block of composite mate-
rial it operates on; a bicycle frame has a crisply defined boundary that distin-
guishes it from the cell of machines that produced the frame itself.

Some objects may have crisp conceptual boundaries yet represent intangible
events or processes. For example, a chemical process in a manufacturing plant

CHAPTER 3 CLASSES AND OBJECTS 77

may be treated as an object because it has a crisp conceptual boundary, interacts
with certain other objects through a well-ordered collection of operations that
unfolds over time, and exhibits a well-defined behavior. Similarly, consider a
CAD/CAM system for modeling solids. Where two solids such as a sphere and a
cube intersect, they may form an irregular line of intersection. Although it does
not exist apart from the sphere or cube, this line is still an object with crisply
defined conceptual boundaries.

An object has state, exhibits some well-defined behavior,
and has a unique identity.

Some objects may be tangible yet have fuzzy physical boundaries. Objects such
as rivers, fog, and crowds of people fit this definition.! Just as the person holding
a hammer tends to see everything in the world as a nail, so the developer with an
object-oriented mindset begins to think that everything in the world is an object.
This perspective is a little naive because some things are distinctly not objects.
For example, attributes such as beauty or color are not objects, nor are emotions
such as love and anger. On the other hand, these things are all potentially proper-
ties of other objects. For example, we might say that a man (an object) loves his
wife (another object), or that a particular cat (yet another object) is gray.

1. This is true only at a sufficiently high level of abstraction. To a person walking through
a fog bank, it is generally futile to distinguish “my fog” from “your fog.” However, consid-
er a weather map: A fog bank over San Francisco is a distinctly different object than a fog
bank over London.

78

SECTION | CONCEPTS

Thus, it is useful to say that an object is something that has crisply defined bound-
aries, but this is not enough to guide us in distinguishing one object from another,
nor does it allow us to judge the quality of our abstractions. Our experience there-
fore suggests the following definition.

An object is an entity that has state, behavior, and identity. The structure and
behavior of similar objects are defined in their common class. The terms instance
and object are interchangeable.

We will consider the concepts of state, behavior, and identity in more detail in the
sections that follow.

State

Consider a vending machine that dispenses soft drinks. The usual behavior of
such objects is that when someone puts money in a slot and pushes a button to
make a selection, a drink emerges from the machine. What happens if a user first
makes a selection and then puts money in the slot? Most vending machines just sit
and do nothing because the user has violated the basic assumptions of their oper-
ation. Stated another way, the vending machine was in a state (of waiting for
money) that the user ignored (by making a selection first). Similarly, suppose that
the user ignores the warning light that says, “Correct change only,” and puts in
extra money. Most machines are user-hostile; they will happily swallow the
excess money.

In each of these circumstances, we see how the behavior of an object is influenced
by its history: The order in which one operates on the object is important. The
reason for this event- and time-dependent behavior is the existence of state within
the object. For example, one essential state associated with the vending machine
is the amount of money currently entered by a user but not yet applied to a selec-
tion. Other important properties include the amount of change available and the
quantity of soft drinks on hand.

From this example, we may form the following low-level definition.

The state of an object encompasses all of the (usually static) properties of the
object plus the current (usually dynamic) values of each of these properties.

Another property of a vending machine is that it can accept money. This is a static
(i.e., fixed) property, meaning that it is an essential characteristic of a vending
machine. In contrast, the actual quantity of money accepted at any given moment
represents the dynamic value of this property and is affected by the order of oper-
ations on the machine. This quantity increases as a user inserts money and then
decreases when a product is vended. We say that values are “usually dynamic”

CHAPTER 3 CLASSES AND OBJECTS 79

because in some cases values are static. For example, the serial number of a vend-
ing machine is a static property and value.

A property is an inherent or distinctive characteristic, trait, quality, or feature that
contributes to making an object uniquely that object. For example, one essential
property of an elevator is that it is constrained to travel up and down and not
horizontally. Properties are usually static because attributes such as these are
unchanging and fundamental to the nature of the object. We say “usually static”
because in some circumstances the properties of an object may change. For exam-
ple, consider an autonomous robot that can learn about its environment. It may
first recognize an object that appears to be a fixed barrier, only to learn later that
this object is in fact a door that can be opened. In this case, the object created by
the robot as it builds its conceptual model of the world gains new properties as
new knowledge is acquired.

All properties have some value. This value might be a simple quantity, or it might
denote another object. For example, part of the state of an elevator might have the
value 3, denoting the current floor on which the elevator is located. In the case of
the vending machine, its state encompasses many other objects, such as a collec-
tion of soft drinks. The individual drinks are in fact distinct objects; their proper-
ties are different from those of the machine (they can be consumed, whereas a
vending machine cannot), and they can be operated on in distinctly different
ways. Thus, we distinguish between objects and simple values: Simple quantities
such as the number 3 are “atemporal, unchangeable, and non-instantiated,”
whereas objects “exist in time, are changeable, have state, are instantiated, and
can be created, destroyed, and shared” [6].

The fact that every object has state implies that every object takes up some
amount of space, be it in the physical world or in computer memory.

We may say that all objects within a system encapsulate some state and that all of
the state within a system is encapsulated by objects. Encapsulating the state of an
object is a start, but it is not enough to allow us to capture the full intent of the
abstractions we discover and invent during development (refer to Example 3-1,
which shows how a simple abstraction may evolve). For this reason, we must also
consider how objects behave.

Example 3—1

Consider an abstraction of an employee record. Figure 3—1 depicts this
abstraction using the Unified Modeling Language notation for a class. (For
more on the UML notation, see Chapter 5.)

Each part of this abstraction denotes a particular property of our abstraction of
an employee. This abstraction is not an object because it does not represent a

80 SECTION | CONCEPTS

Employee - m

MName:
Social Security Number:
Department:

Salary: -1 Attributes (important

characteristics)

Figure 3—1 Employee Class with Attributes

specific instance. When made specific, we may have, for example, two distinct
objects: Tom and Kaitlyn, each of which takes up some amount of space in
memory (see Figure 3-2).

Employee

- MName: =Tom

- Social Security Mumber:
- Department

- Salary

Employee

- MName: =HKaitlyn

- Social Security Mumber:
- Department

- Salary

Figure 3—2 Employee Objects Tom and Kaitlyn

None of these objects shares its space with any other object, although each of
them has the same properties; thus, their states have a common representation.

It is good engineering practice to encapsulate the state of an object rather
than expose it. For example, we might change the abstraction (class) as
shown in Figure 3-3.

Employee

HH H H

MNarme:

Social Security Number:
Department:

Salary:

Operations

+ o+

Get Employee Mame()

Get Employee Social Security Mumber() |

Get Employee Department()

{responsibilities)

Figure 3-3 Employee Class with Protected Attributes and Public Operations

CHAPTER 3 CLASSES AND OBJECTS 81

This abstraction is slightly more complicated than the previous one, but it is
superior for a number of reasons. Specifically, its internal representation is
hidden (protected, indicated by #) from all other outside clients. If we change
its representation, we will have to recompile some code, but semantically, no
outside client will be affected by this change (in other words, existing code will
not break).

Also, we have captured certain decisions about the problem space by explic-
itly stating some of the operations (responsibilities) that clients may perform
on objects of this class. In particular, we grant all clients the (public, indicated
by +) right to retrieve the name, social security number, and department of an
employee. We will discuss visibility (i.e., public, protected, private, and pack-
age) later in this chapter.

Behavior

No object exists in isolation. Rather, objects are acted on and themselves act on
other objects. Thus, we may say the following:

Behavior is how an object acts and reacts, in terms of its state changes and mes-
sage passing.

In other words, the behavior of an object represents its outwardly visible activity.

An operation is some action that one object performs on another in order to elicit
areaction. For example, a client might invoke the operations append and pop to
grow and shrink a queue object, respectively. A client might also invoke the oper-
ation length, which returns a value denoting the size of the queue object but
does not alter the state of the queue itself.

In Java, operations that clients may perform on an object are typically declared as
methods. In languages such as C++, which derive from more procedural ances-
tors, we speak of one object invoking the member function of another. In pure
object-oriented languages such as Smalltalk, we speak of one object passing a
message to another. Generally, a message is simply an operation that one object
performs on another, although the underlying dispatch mechanisms are different.
For our purposes, the terms operation and message are interchangeable.

Message passing is one part of the equation that defines the behavior of an object;
our definition for behavior also notes that the state of an object affects its behavior
as well. Consider again the vending machine example. We may invoke some
operation to make a selection, but the vending machine will behave differently
depending on its state. If we do not deposit change sufficient for our selection, the
machine will probably do nothing. If we provide sufficient change, the machine

82

SECTION | CONCEPTS

will take our change and then give us our selection (thereby altering its state).
Thus, we may say that the behavior of an object is a function of its state as well as
the operation performed on it, with certain operations having the side effect of
altering the object’s state. This concept of side effect thus leads us to refine our
definition of state.

The state of an object represents the cumulative results of its behavior.

Most interesting objects do not have state that is static; rather, their state has prop-
erties whose values are modified and retrieved as the object is acted on. The
behavior of an object is embodied in the sum of its operations. Next we will dis-
cuss operations, how they relate to an object’s roles, and how they enable objects
to meet their responsibilities.

Operations

An operation denotes a service that a class offers to its clients. In practice, we
have found that a client typically performs five kinds of operations on an object.”
The three most common kinds of operations are the following:

m Modifier: an operation that alters the state of an object
m Selector: an operation that accesses the state of an object but does not alter
the state

m Iterator: an operation that permits all parts of an object to be accessed in
some well-defined order

Two other kinds of operations are common; they represent the infrastructure nec-
essary to create and destroy instances of a class.

m Constructor: an operation that creates an object and/or initializes its state

m Destructor: an operation that frees the state of an object and/or destroys the
object itself

In C++, constructors and destructors are declared as part of the definition of a
class, whereas in Java there are constructors, but no destructors. In Smalltalk,
such operations are typically part of the protocol of a metaclass (i.e., the class of a
class).

2. Lippman suggests a slightly different categorization: manager functions, implementer
functions, helping functions (all kinds of modifiers), and access functions (equivalent to se-
lectors) [7].

CHAPTER 3 CLASSES AND OBJECTS 83

Roles and Responsibilities

Collectively, all of the methods associated with a particular object comprise its
protocol. The protocol of an object thus defines the envelope of an object’s allow-
able behavior and so comprises the entire static and dynamic view of the object.
For most nontrivial abstractions, it is useful to divide this larger protocol into log-
ical groupings of behavior. These collections, which thus partition the behavior
space of an object, denote the roles that an object can play. A role is a mask that
an object wears [8] and so defines a contract between an abstraction and its
clients.

Objects can play many different roles.

“Responsibilities are meant to convey a sense of the purpose of an object and its
place in the system. The responsibilities of an object are all the services it pro-
vides for all of the contracts it supports” [9]. In other words, we may say that the
state and behavior of an object collectively define the roles that an object may
play in the world, which in turn fulfill the abstraction’s responsibilities.

Indeed, most interesting objects play many different roles during their lifetime.
Consider the following examples [10].

m A bank account may have the role of a monetary asset to which the account
owner may deposit or withdraw money. However, to a taxing authority, the
account may play the role of an entity whose dividends must be reported on
annually.

84

SECTION | CONCEPTS

m To a trader, a share of stock represents an entity with value that may be
bought or sold; to a lawyer, the same share denotes a legal instrument to
which are attached certain rights.

m In the course of one day, the same person may play the role of mother, doc-
tor, gardener, and movie critic.

The roles played by objects are dynamic yet can be mutually exclusive. In the
case of the share of stock, its roles overlap slightly, but each role is static relative
to the client that interacts with the share. In the case of the person, her roles are
quite dynamic and may change from moment to moment.

Objects play many different roles during their lifetimes.

As we will discuss further in later chapters, we often start our analysis of a prob-
lem by examining the various roles that an object plays. During design, we refine
these roles by inventing the particular operations that carry out each role’s
responsibilities.

Objects as Machines

The existence of state within an object means that the order in which operations
are invoked is important. This gives rise to the idea that each object is like a tiny,

CHAPTER 3 CLASSES AND OBJECTS 85

independent machine [11]. Indeed, for some objects, this event and time ordering
of operations is so pervasive that we can best formally characterize the behavior
of such objects in terms of an equivalent finite state machine. In Chapter 5, we
will show a particular notation for hierarchical finite state machines that we may
use for expressing these semantics.

Continuing the machine metaphor, we may classify objects as either active or pas-
sive. An active object is one that encompasses its own thread of control, whereas
a passive object does not. Active objects are generally autonomous, meaning that
they can exhibit some behavior without being operated on by another object.
Passive objects, on the other hand, can undergo a state change only when explic-
itly acted on. In this manner, the active objects in our system serve as the roots of
control. If our system involves multiple threads of control, we will usually have
multiple active objects. Sequential systems, on the other hand, usually have
exactly one active object, such as a main object responsible for managing an event
loop that dispatches messages. In such architectures, all other objects are passive,
and their behavior is ultimately triggered by messages from the one active object.
In other kinds of sequential system architectures (such as transaction-processing
systems), there is no obvious central active object, so control tends to be distrib-
uted throughout the system’s passive objects.

Identity

Khoshafian and Copeland offer the following definition for identity: “Identity is
that property of an object which distinguishes it from all other objects” [12].

They go on to note that “most programming and database languages use variable
names to distinguish temporary objects, mixing addressability and identity. Most
database systems use identifier keys to distinguish persistent objects, mixing data
value and identity.” The failure to recognize the difference between the name of
an object and the object itself is the source of many kinds of errors in object-
oriented programming.

Example 3-2 demonstrates the importance of maintaining the identity of the
objects you create and shows how easily the identity can be irrecoverably lost.

Example 3-2

Consider a class that denotes a display item. A display item is a common
abstraction in all GUI-centric systems: It represents the base class of all
objects that have a visual representation on some window and so captures
the structure and behavior common to all such objects. Clients expect to be
able to draw, select, and move display items, as well as query their selection

SECTION | CONCEPTS

state and location. Each display item has a location designated by the coordi-
nates x and y.

Let us assume we instantiate a number of DisplayItem classes as indi-
cated in Figure 3—4a. Specifically, the manner in which we instantiate these
classes sets aside four locations in memory whose names are itemil,
item2, item3, and item4, respectively. Here, iteml is the name of a dis-
tinct DisplayItem object, but the other three names each denote a pointer
to a DisplayItem object. Only item2 and item3 actually point to distinct
DisplayItem objects (because in their declarations we allocated a new
DisplayItem object); item4 designates no such object. Furthermore, the
names of the objects pointed to by item2 and item3 are anonymous: We
can refer to these distinct objects only indirectly, via their pointer value.

)
0

item1
X=0 X=75 X=100
Y=0 Y=75 Y=100
.
item1
X=75 X=75 X=38
Y=75 Y=75 Y=100
.
item1
X=75 X=75 X=38
Y=75 Y=75 Y=100

Figure 3—4 Object Identity

CHAPTER 3 CLASSES AND OBJECTS 87

The unique identity (but not necessarily the name) of each object is preserved
over the lifetime of the object, even when its state is changed. This is like the
Zen question about a river: Is a river the same river from one day to the next,
even though the same water never flows through it? For example, let's move

iteml. We can access the object designated by item2, get its location, and
move iteml to that same location.

Also, if we equate item4 to item3, we can now reference the object desig-
nated by item3 by using item4 also. Using item4 we can then move that
object to a new location, say, X=38, Y=100. Figure 3—4b illustrates these
results. Here we see that iteml and the object designated by item2 both
have the same location state and that i tem4 now also designates the same
object as does item3. Notice that we use the phrase “the object designated
by item2” rather than saying “the object item2.” The first phrase is more pre-
cise, although we will sometimes use these phrases interchangeably.

Although iteml and the object designated by item2 have the same state,
they represent distinct objects. Also, note that we have changed the state of
the object designated by item3 by operating on it through its new indirect
name, item4. This is a situation we call structural sharing, meaning that a
given object can be named in more than one way; in other words, there are
aliases to the object. Structural sharing is the source of many problems in
object-oriented programming. Failure to recognize the side effects of operat-
ing on an object through aliases often leads to memory leaks, memory-
access violations, and, even worse, unexpected state changes. For example,
if we destroyed the object designated by item3, then item4’s pointer value
would be meaningless; this is a situation we call a dangling reference.

Consider also Figure 3—4c, which illustrates the results of modifying the value
of the 1tem2 pointer to point to iteml. Now item2 designates the same
object as iteml. Unfortunately, we have introduced a memory leak: The
object originally designated by item2 can no longer be named, either directly
or indirectly, and so its identity is lost. In languages such as Smalltalk and
Java, such objects will be garbage-collected and their storage reclaimed auto-
matically, but in languages such as C++, their storage will not be reclaimed
until the program that created them finishes. Especially for long-running pro-
grams, memory leaks such as this are either bothersome or disastrous.®

3. Consider the effects of a memory leak in software controlling a satellite or a pacemaker.
Restarting the computer in a satellite several million miles away from earth is quite incon-
venient. Similarly, the unpredictable occurrence of automatic garbage collection in a pace-
maker’s software is likely to be fatal. For these reasons, real-time system developers often
steer away from the unrestrained allocation of objects on the heap.

88

SECTION | CONCEPTS

3.2

Relationships among Objects

An object by itself is intensely uninteresting. Objects contribute to the behavior of
a system by collaborating with one another. “Instead of a bit-grinding processor
raping and plundering data structures, we have a universe of well-behaved objects
that courteously ask each other to carry out their various desires” [13]. For
example, consider the object structure of an airplane, which has been defined as
“a collection of parts having an inherent tendency to fall to earth, and requiring
constant effort and supervision to stave off that outcome” [14]. Only the collabo-
rative efforts of all the component objects of an airplane enable it to fly.

The relationship between any two objects encompasses the assumptions that each
makes about the other, including what operations can be performed and what
behavior results. We have found that two kinds of object relationships are of par-
ticular interest in object-oriented analysis and design, namely:

1. Links
2. Aggregation

Links

The term link derives from Rumbaugh et al., who define it as a “physical or con-
ceptual connection between objects” [16]. An object collaborates with other
objects through its links to these objects. Stated another way, a link denotes the
specific association through which one object (the client) applies the services of
another object (the supplier), or through which one object may navigate to
another.

Figure 3-5 illustrates several different links. In this figure, a line between two
object icons represents the existence of a link between the two and means that
messages may pass along this path. Messages are shown as small directed lines
representing the direction of the message, with a label naming the message itself.
For example, in Figure 3—5 we show part of a simplified flow control system.
This may be controlling the flow of water through a pipe in a manufacturing
plant. You can see that the FlowController object has a link to a Valve
object. The Valve object has a link to the DisplayPanel object in which its
status will be displayed. Only across these links may one object send messages to
another.

Message passing between two objects is typically unidirectional, although it may
occasionally be bidirectional. In our example, the FlowController object

CHAPTER 3 CLASSES AND OBJECTS 89

invokes operations on the Valve object (to change its setting) and the
DisplayPanel (to change what it displays), but these objects do not them-
selves operate on the FlowController object. This separation of concerns is
quite common in well-structured object-oriented systems. Notice also that
although message passing is initiated by the client (such as FlowController)
and is directed toward the supplier (such as the Valve object), data may flow in
either direction across a link. For example, when FlowController invokes
the operation adjust on the Valve object, data (i.e., the setting to change to)
flows from the client to the supplier. However, if FlowController invokes a
different operation, 1 sClosed, on the Valve object, the result (i.e., whether
the valve is in the fully closed position) passes from the supplier to the client.

As a participant in a link, an object may play one of three roles.

1. Controller: This object can operate on other objects but is not operated on
by other objects. In some contexts, the terms active object and controller are
interchangeable.

2. Server: This object doesn’t operate on other objects; it is only operated on
by other objects.

3. Proxy: This object can both operate on other objects and be operated on by
other objects. A proxy is usually created to represent a real-world object in
the domain of the application.

In the context of Figure 3-5, FlowController acts as a controller object,
DisplayPanel acts as a server object, and Valve acts as a proxy. Example 3-3
illustrates how responsibilities can be properly separated across a group of collab-
orating objects.

Valve
0.1; adjust T
FlowController DisplayPanel

Figure 3-5 Links

90

SECTION | CONCEPTS

Example 3-3

In many different kinds of industrial processes, certain reactions require a
temperature ramp, wherein we raise the temperature of some substance, hold
it at that temperature for a fixed period, and then let it cool to ambient temper-
ature. Different processes require different profiles: Some objects (such as
telescope mirrors) must be cooled slowly, whereas other materials (such as
steel) must be cooled rapidly. This abstraction of a temperature ramp has a
sufficiently well-defined behavior that it warrants the creation of a class. Thus
we provide the class TemperatureRamp, which is conceptually a time/tem-
perature mapping (see Figure 3-6).

Actually, the behavior of this abstraction is more than just a literal time/
temperature mapping. For example, we might set a temperature ramp that
requires the temperature to be 250°F at time 60 (one hour into the tempera-
ture ramp) and 150°F at time 180 (three hours into the process), but then we
would like to know what the temperature should be at time 120. This requires
linear interpolation, which is therefore another behavior (i.e., interpolate) we
expect of this abstraction.

One behavior we explicitly do not require of this abstraction is the control of a
heater to carry out a particular temperature ramp. Rather, we prefer a greater
separation of concerns, wherein this behavior is achieved through the collabo-
ration of three objects: a temperature ramp instance, a heater, and a tempera-
ture controller (see Figure 3—6). The operation process provides the central
behavior of this abstraction; its purpose is to carry out the given temperature
ramp for the heater at the given location.

A comment regarding our style: At first glance, it may appear that we have
devised an abstraction whose sole purpose is to wrap a functional decompo-
sition inside a class to make it appear noble and object-oriented. The opera-
tion schedule suggests that this is not the case. Objects of the class
TemperatureController have sufficient knowledge to determine when a
particular profile should be scheduled, so we expose this operation as an
additional behavior of our abstraction. In some high-energy industrial pro-
cesses (such as steel making), heating a substance is a costly event, and it is
important to take into account any lingering heat from a previous process, as
well as the normal cool-down of an unattended heater. The operation sched-
ule exists so that clients can query a TemperatureController object to
determine the next optimal time to process a particular temperature ramp.

Visibility

Consider two objects, A and B, with a link between the two. In order for A to send
a message to B, B must be visible to A in some manner. During our analysis of a
problem, we can largely ignore issues of visibility, but once we begin to devise

CHAPTER 3 CLASSES AND OBJECTS 91

concrete implementations, we must consider the visibility across links because
our decisions here dictate the scope and access of the objects on each side of a
link. We will discuss this further later in this chapter.

Synchronization

Whenever one object passes a message to another across a link, the two objects
are said to be synchronized. For objects in a completely sequential application,
this synchronization is usually accomplished by simple method invocation. How-
ever, in the presence of multiple threads of control, objects require more sophisti-
cated message passing in order to deal with the problems of mutual exclusion that
can occur in concurrent systems. As we described earlier, active objects embody
their own thread of control, so we expect their semantics to be guaranteed in the
presence of other active objects. However, when one active object has a link to a
passive one, we must choose one of three approaches to synchronization.

1. Sequential: The semantics of the passive object are guaranteed only in the
presence of a single active object at a time.

2. Guarded: The semantics of the passive object are guaranteed in the presence
of multiple threads of control, but the active clients must collaborate to
achieve mutual exclusion.

3. Concurrent: The semantics of the passive object are guaranteed in the pres-
ence of multiple threads of control, and the supplier guarantees mutual
exclusion.

Aggregation

Whereas links denote peer-to-peer or client/supplier relationships, aggregation
denotes a whole/part hierarchy, with the ability to navigate from the whole (also
called the aggregate) to its parts. In this sense, aggregation is a specialized kind of
association. For example, as shown in Figure 3—-6, the object Temperature-
Controller has a link to the object TemperatureRamp as well as to
Heater. The object TemperatureController is thus the whole, and
Heater is one of its parts. The notation shown for an aggregation relationship
will be further explained in Chapter 5.

By implication, an object that is a part of another object has a link to its aggregate.
Across this link, the aggregate may send messages to its parts. Given the object
TemperatureController, itis possible to find its corresponding Heater.
Given an object such as Heater, it is possible to navigate to its enclosing object
(also called its container) if and only if this knowledge is a part of the state of
Heater.

92 SECTION| CONCEPTS
TemperatureRamp
+ interpolate)
regulates temperature using
TemperatureController
- Heater
heater:
Figure 3—6 + schedulel)
Aggregation +_process()

3.3

Aggregation may or may not denote physical containment. For example, an air-
plane is composed of wings, engines, landing gear, and so on: This is a case of
physical containment. On the other hand, the relationship between a shareholder
and his or her shares is an aggregation relationship that does not require physical
containment. The shareholder uniquely owns shares, but the shares are by no
means a physical part of the shareholder. Rather, this whole/part relationship is
more conceptual and therefore less direct than the physical aggregation of the
parts that form an airplane.

There are clear trade-offs between links and aggregation. Aggregation is some-
times better because it encapsulates parts as secrets of the whole. Links are
sometimes better because they permit looser coupling among objects. Intelligent
engineering decisions require careful weighing of these two factors.

The Nature of a Class

The concepts of a class and an object are tightly interwoven, for we cannot talk
about an object without regard for its class. However, there are important differ-
ences between these two terms.

What Is and What Isn’t a Class

Whereas an object is a concrete entity that exists in time and space, a class repre-
sents only an abstraction, the “essence” of an object, as it were. Thus, we may
speak of the class Mammal, which represents the characteristics common to all
mammals. To identify a particular mammal in this class, we must speak of “this
mammal” or “that mammal.”

CHAPTER 3 CLASSES AND OBJECTS 93

In everyday terms, Webster’s Third New International Dictionary defines a class
as “a group, set, or kind marked by common attributes or a common attribute; a
group division, distinction, or rating based on quality, degree of competence, or
condition” [17].

In the context of object-oriented analysis and design, we define a class as follows:

A class is a set of objects that share a common structure, common behavior, and
common semantics.

A single object is simply an instance of a class.

s (F e

S XA S
N OO\

A class represents a set of objects that share a common
structure and a common behavior.

What isn’t a class? An object is not a class. Objects that share no common struc-
ture and behavior cannot be grouped in a class because, by definition, they are
unrelated except by their general nature as objects.

It is important to note that the class—as defined by most programming languages—
is a necessary but insufficient vehicle for decomposition. Sometimes abstractions
are so complex that they cannot be conveniently expressed in terms of a single
class declaration. For example, at a sufficiently high level of abstraction, a GUI
framework, a database, and an entire inventory system are all conceptually

94

SECTION | CONCEPTS

individual objects, none of which can be expressed as a single class.* Instead,
it is far better for us to capture these abstractions as a cluster of classes whose
instances collaborate to provide the desired structure and behavior. Stroustrup
calls such a cluster a component [18].

Interface and Implementation

Meyer [19] and Snyder [20] have both suggested that programming is largely a
matter of “contracting”: The various functions of a larger problem are decom-
posed into smaller problems by subcontracting them to different elements of the
design. Nowhere is this idea more evident than in the design of classes.

Whereas an individual object is a concrete entity that performs some role in the
overall system, the class captures the structure and behavior common to all
related objects. Thus, a class serves as a sort of binding contract between an
abstraction and all of its clients. By capturing these decisions in the interface of a
class, a strongly typed programming language can detect violations of this con-
tract during compilation.

This view of programming as contracting leads us to distinguish between the out-
side view and the inside view of a class. The interface of a class provides its
outside view and therefore emphasizes the abstraction while hiding its structure
and the secrets of its behavior. This interface primarily consists of the declara-
tions of all the operations applicable to instances of this class, but it may also
include the declaration of other classes, constants, variables, and exceptions as
needed to complete the abstraction. By contrast, the implementation of a class is
its inside view, which encompasses the secrets of its behavior. The implementa-
tion of a class primarily consists of the implementation of all of the operations
defined in the interface of the class.

We can further divide the interface of a class into four parts:

1. Public: a declaration that is accessible to all clients

2. Protected: a declaration that is accessible only to the class itself and its sub-
classes

4. One might be tempted to express such abstractions in a single class, but the granularity
for reuse and change is too coarse. Having a “fat” interface is bad practice because most
clients will want to reference only a small subset of the services provided. Furthermore,
changing one part of a huge interface obsolesces every client, even those that don’t care
about the parts that changed. Nesting classes doesn’t eliminate these problems; it only de-
fers them.

CHAPTER 3 CLASSES AND OBJECTS 95

3. Private: a declaration that is accessible only to the class itself
4. Package: a declaration that is accessible only by classes in the same package

The detailed semantics of these forms of visibility can vary based on the imple-
mentation language used.

Visibility and Friendship

Different programming languages provide different mixtures of public, pro-
tected, private, and package parts, which developers can choose among to
establish specific access rights for each part of a class’s interface and
thereby exercise control over what clients can see and what they can’t see
(i.e., visibility).

In particular, C++ allows a developer to make explicit distinctions among all
four of these different parts.® The C++ friendship mechanism permits a
class to distinguish certain privileged classes that are given the rights to
see the class’s protected and private parts. Friendships break a class’s
encapsulation and so, as in life, must be chosen carefully. Java does not
have friendship. Instead, Java has a somewhat similar type of visibility
called package access, where all classes in the same package can access
each other. Aside from friendship, public, protected, and private access
operate in Java as they do in C++. By contrast, Ada permits declarations to
be public or private but not protected. In Smalltalk, all instance variables
are private, and all methods are public. In Object Pascal, both fields and
operations are public and hence unencapsulated.

The constants and variables that form the representation of a class are known by
various terms, depending on the particular language we use. For example, Small-
talk uses the term instance variable, Object Pascal and Java use the term field,
C++ uses the term data member. We will use these terms interchangeably to
denote the parts of a class that serve as the representation of its instance’s state.

The state of an object must have some representation in its corresponding class
and so is typically expressed as constant and variable declarations placed in the
protected or private part of a class’s interface. In this manner, the representation
common to all instances of a class is encapsulated, and changes to this representa-
tion do not functionally affect any outside clients.

5. The C++ struct is a special case, in the sense that a st ruct is a kind of class with
all of its elements public.

96

SECTION | CONCEPTS

3.4

Class Lifecycle

We may come to understand the behavior of a simple class just by understanding
the semantics of its distinct public operations in isolation. However, the behavior
of more interesting classes (such as moving an instance of the class DisplayItem
or scheduling an instance of the class TemperatureController) involves
the interaction of their various operations over the lifetime of each of their
instances. As described earlier in this chapter, the instances of such classes act
as little machines, and since all such instances embody the same behavior,

we can use the class to capture these common event- and time-ordered semantics.
As we discuss in Chapter 5, we may describe such dynamic behavior for certain
interesting classes by using finite state machines.

Relationships among Classes

Consider for a moment the similarities and differences among the following
classes of objects: flowers, daisies, red roses, yellow roses, petals, and ladybugs.
We can make the following observations.

A daisy is a kind of flower.

A rose is a (different) kind of flower.

Red roses and yellow roses are both kinds of roses.
A petal is a part of both kinds of flowers.

Ladybugs eat certain pests such as aphids, which may be infesting certain
kinds of flowers.

From this simple example we conclude that classes, like objects, do not exist in
isolation. Rather, for a particular problem domain, the key abstractions are usu-
ally related in a variety of interesting ways, forming the class structure of our
design [21].

We establish relationships between two classes for one of two reasons. First, a
class relationship might indicate some sort of sharing. For example, daisies and
roses are both kinds of flowers, meaning that both have brightly colored petals,
both emit a fragrance, and so on. Second, a class relationship might indicate some
kind of semantic connection. Thus, we say that red roses and yellow roses are
more alike than are daisies and roses, and daisies and roses are more closely
related than are petals and flowers. Similarly, there is a symbiotic connection
between ladybugs and flowers: Ladybugs protect flowers from certain pests,
which in turn serve as a food source for the ladybug.

CHAPTER 3 CLASSES AND OBJECTS 97

In all, there are three basic kinds of class relationships [22]. The first of these is
generalization/specialization, denoting an “is a” relationship. For instance, a rose
is a kind of flower, meaning that a rose is a specialized subclass of the more gen-
eral class, flower. The second is whole/part, which denotes a “part of” relation-
ship. Thus, a petal is not a kind of a flowers; it is a part of a flower. The third is
association, which denotes some semantic dependency among otherwise unre-
lated classes, such as between ladybugs and flowers. As another example, roses
and candles are largely independent classes, but they both represent things that we
might use to decorate a dinner table.

Association

Of these different kinds of class relationships, associations are the most general
but also the most semantically weak. The identification of associations among
classes is often an activity of analysis and early design, at which time we begin to
discover the general dependencies among our abstractions. As we continue our
design and implementation, we will often refine these weak associations by turn-
ing them into one of the other more concrete class relationships.

Semantic Dependencies

As Example 3-4 suggests, an association only denotes a semantic dependency
and does not state the direction of this dependency (unless otherwise stated, an
association implies bidirectional navigation, as in our example), nor does it state
the exact way in which one class relates to another (we can only imply these
semantics by naming the role each class plays in relationship with the other).
However, these semantics are sufficient during the analysis of a problem, at which
time we need only to identify such dependencies. Through the creation of associ-
ations, we come to capture the participants in a semantic relationship, their roles,
and their cardinality.

Example 3—-4

For a vehicle, two of our key abstractions include the vehicle and wheels. As
shown in Figure 3—7, we may show a simple association between these two
classes: the class Wheel and the class Vehicle. (Arguably, an aggregation
would be better.) By implication, this association suggests bidirectional navi-
gation. Given an instance of Wheel, we should be able to locate the object
denoting its Vehicle, and given an instance of vehicle, we should be able
to locate all the wheels.

98

SECTION | CONCEPTS

Wheel Vehicle

Figure 3—7 Association

Here we show a one-to-many association: Each instance of wheel relates to
one Vehicle, and each instance of vehicle may have many Wheels
(noted by the *).

Multiplicity

Our example introduced a one-to-many association, meaning that for each
instance of the class Vehicle, there are zero (a boat, which is a vehicle, has no
wheels) or more instances of the class Wheel, and for each Wheel, there is
exactly one Vehicle. This denotes the multiplicity of the association. In prac-
tice, there are three common kinds of multiplicity across an association:

1. One-to-one
2. One-to-many
3. Many-to-many

A one-to-one relationship denotes a very narrow association. For example, in
retail telemarketing operations, we would find a one-to-one relationship between
the class Sale and the class CreditCardTransaction: Each sale has
exactly one corresponding credit card transaction, and each such transaction cor-
responds to one sale. Many-to-many relationships are also common. For example,
each instance of the class Customer might initiate a transaction with several
instances of the class SalesPerson, and each such salesperson might interact
with many different customers. As we will discuss further in Chapter 5, there are
variations on these three common forms of multiplicity.

Inheritance

Inheritance, perhaps the most semantically interesting of these concrete relation-
ships, exists to express generalization/specialization relationships. In our experi-
ence, however, inheritance is an insufficient means of expressing all of the rich
relationships that may exist among the key abstractions in a given problem
domain. An alternate approach to inheritance involves a language mechanism
called delegation, in which objects delegate their behavior to related objects.

CHAPTER 3 CLASSES AND OBJECTS 99

Example 3-5

After space probes are launched, they report back to ground stations with
information regarding the status of important subsystems (such as electrical
power and propulsion systems) and different sensors (such as radiation sen-
sors, mass spectrometers, cameras, micrometeorite collision detectors, and
so on). Collectively, this relayed information is called telemetry data. Teleme-
try data is commonly transmitted as a bitstream consisting of a header, which
includes a timestamp and some keys identifying the kind of information that
follows, plus several frames of processed data from the various subsystems
and sensors. This appears to be a straightforward aggregation of different
kinds of data.

This critical data needs to be encapsulated. Otherwise, there is nothing to pre-
vent a client from changing the value of important data such as timestamp
or currentPower. Likewise, the representation of this data is exposed, so if
we were to change the representation (e.g., by adding new elements or chang-
ing the bit alignment of existing ones), every client would be affected. At the very
least, we would certainly have to recompile every reference to this structure.
More importantly, such changes might violate the assumptions that clients had
made about this representation and cause the logic in our program to break.

Lastly, suppose our analysis of the system’s requirements reveals the need for
several hundred different kinds of telemetry data, including electrical data that
encompassed the preceding information and also included voltage readings
from various test points throughout the system. We would find that declaring
these additional structures would create a considerable amount of redun-
dancy, in terms of both replicated structures and common functions.

A subclass may inherit the structure and behavior of its superclass.

100

SECTION | CONCEPTS

A slightly better way to capture our decisions would be to declare one class for
each kind of telemetry data. In this manner, we could hide the representation
of each class and associate its behavior with its data. Still, this approach does
not address the problem of redundancy.

A far better solution, therefore, is to capture our decisions by building a hierar-
chy of classes, in which specialized classes inherit the structure and behavior
defined by more generalized classes, as shown in Figure 3-8.

ElectricalData
TelemetryData # fuelCell1Voltage:
; . # fuelCell2Voltage:
t t :
i::l]..'es S L] # fuelCelllAmperes:
j # fuelCell2Amperes:
+ transmit() B
- + transmit
+ currentTime() 5 cu.u'rentP(c):nwer()

Figure 3-8 ElectricalData Inherits from the Superclass
TelemetryData

As for the class ElectricalData, this class inherits the structure and behav-
ior of the class TelemetryData but adds to its structure (the additional voltage
data), redefines its behavior (the function transmit) to transmit the addi-
tional data, and can even add to its behavior (the function currentPower, a
function to provide the current power level).

Single Inheritance

Simply stated, inheritance is a relationship among classes wherein one class
shares the structure and/or behavior defined in one (single inheritance) or more
(multiple inheritance) other classes. We call the class from which another class
inherits its superclass. In Example 3-5, TelemetryData is a superclass of
ElectricalData. Similarly, we call a class that inherits from one or more
classes a subclass; ElectricalData is a subclass of TelemetryData.
Inheritance therefore defines an “is a” hierarchy among classes, in which a subclass
inherits from one or more superclasses. This is in fact the litmus test for inheritance.
Given classes A and B, if A is not a kind of B, then A should not be a subclass of B.
In this sense, ElectricalData is a specialized kind of the more generalized
class TelemetryData. The ability of a language to support this kind of inherit-
ance distinguishes object-oriented from object-based programming languages.

CHAPTER 3 CLASSES AND OBJECTS 101

A subclass typically augments or restricts the existing structure and behavior of
its superclasses. A subclass that augments its superclasses is said to use inherit-
ance for extension. For example, the subclass GuardedQueue might extend the
behavior of its superclass Queue by providing extra operations that make
instances of this class safe in the presence of multiple threads of control. In con-
trast, a subclass that constrains the behavior of its superclasses is said to use inherit-
ance for restriction. For example, the subclass UnselectableDisplayItem
might constrain the behavior of its superclass, DisplayItem, by prohibiting
clients from selecting its instances in a view. In practice, it is not always so clear
whether or not a subclass augments or restricts its superclass; in fact, it is com-
mon for a subclass to do both.

Figure 3-9 illustrates the single inheritance relationships deriving from the super-
class TelemetryData. Each directed line denotes an “is a” relationship. For
example, CameraData “is a” kind of SensorData, which in turn “is a” kind
of TelemetryData.

This is identical to the hierarchy one finds in a semantic net, a tool often used by
researchers in cognitive science and artificial intelligence to organize knowledge
about the world [25]. Indeed, as we discuss further in Chapter 4, designing a suit-
able inheritance hierarchy among abstractions is largely a matter of intelligent
classification.

We expect that some of the classes in Figure 3-9 will have instances and some will
not. For example, we expect to have instances of each of the most specialized classes
(also known as leaf classes or concrete classes), such as ElectricalData
and SpectrometerData. However, we are not likely to have any instances of
the intermediate, more generalized classes, such as SensorData or even
TelemetryData. Classes with no instances are called abstract classes. An
abstract class is written with the expectation that its subclasses will add to its
structure and behavior, usually by completing the implementation of its (typi-
cally) incomplete methods.

There is a very real tension between inheritance and encapsulation. To a large

degree, the use of inheritance exposes some of the secrets of an inherited class.
Practically, this means that to understand the meaning of a particular class, you
must often study all of its superclasses, sometimes including their inside views.

Inheritance means that subclasses inherit the structure of their superclass. Thus,
in Example 3-5, the instances of the class ElectricalData include the data
members of the superclass (such as 1d and t imestamp), as well as those of the
more specialized classes (such as fuelCelllVoltage, fuelCell2Voltage,
fuelCelllAmperes, and fuelCell2Amperes).

102

SECTION | CONCEPTS

TelemetryData

ElectricalData SensorData PropulsionData

SpectrometerData CameraData RadiationData

Figure 3-9 Single Inheritance

Subclasses also inherit the behavior of their superclasses. Thus, instances of the
class ElectricalData may be acted on with the operations currentTime
(inherited from its superclass), current Power (defined in the class itself), and
transmit (redefined in the subclass).

Polymorphism

For the class TelemetryData, the function transmit may transmit the iden-
tifier of the telemetry stream and its timestamp. But the same function for the
class ElectricalData may invoke the TelemetryData transmit func-
tion and also transmit its voltage and current values.

This behavior is due to polymorphism. In a generalization, such operations are
called polymorphic. Polymorphism is a concept in type theory wherein a name
may denote instances of many different classes as long as they are related by
some common superclass. Any object denoted by this name is thus able to
respond to some common set of operations in different ways. With polymor-
phism, an operation can be implemented differently by the classes in the hierar-
chy. In this manner, a subclass can extend the capabilities of its superclass or
override the parent’s operation, as ElectricalData does in Example 3-5.

CHAPTER 3 CLASSES AND OBJECTS 103

The concept of polymorphism was first described by Strachey [29], who spoke
of ad hoc polymorphism, by which symbols such as + could be defined to mean
different things. We call this concept overloading. In C++, one may declare
functions having the same names, as long as their invocations can be distin-
guished by their signatures, consisting of the number and types of their arguments
(in C++, unlike Ada, the type of a function’s returned value is not considered in
overload resolution). By contrast, Java does not permit overloaded operators.
Strachey also spoke of parametric polymorphism, which today we simply call
polymorphism.

Without polymorphism, the developer ends up writing code consisting of large
case or switch statements.® Without it, we cannot create a hierarchy of classes for
the various kinds of telemetry data; rather, we have to define a single, monolithic
variant record encompassing the properties associated with all the kinds of data.
To distinguish one variant from another, we have to examine the tag associated
with the record.

To add another kind of telemetry data, we would have to modify the variant
record and add it to every case statement that operated on instances of this record.
This is particularly error-prone and, furthermore, adds instability to the design.

In the presence of inheritance, there is no need for a monolithic type since we
may separate different kinds of abstractions. As Kaplan and Johnson note, “Poly-
morphism is most useful when there are many classes with the same protocols”
[30]. With polymorphism, large case statements are unnecessary because each
object implicitly knows its own type.

Inheritance without polymorphism is possible, but it is certainly not very useful.

Polymorphism and late binding go hand in hand. In the presence of polymor-
phism, the binding of a method to a name is not determined until execution. In
C++, the developer may control whether a member function uses early or late
binding. Specifically, if the method is declared as virtual, then late binding is
employed, and the function is considered to be polymorphic. If this virtual decla-
ration is omitted, then the method uses early binding and thus can be resolved at
the time of compilation. Java simply performs late binding without the need for
an explicit declaration such as virtual. How an implementation selects a par-
ticular method for execution is described in the sidebar, Invoking a Method.

6. This is in fact the litmus test for polymorphism. The existence of a switch statement that
selects an action based on the type of an object is often a warning sign that the developer
has failed to apply polymorphic behavior effectively.

104

SECTION | CONCEPTS

Invoking a Method

In traditional programming languages, invoking a subprogram is a completely
static activity. In Pascal, for example, for a statement that calls the subprogram
B, a compiler will typically generate code that creates a new stack frame,
places the proper arguments on the stack, and then changes the flow of
control to begin executing the code associated with . However, in languages
that support some form of polymorphism, such as Smalltalk and C++, invok-
ing an operation may require a dynamic activity because the class of the
object being operated on may not be known until runtime. Matters are even
more interesting when we add inheritance to the situation. The semantics of
invoking an operation in the presence of inheritance without polymorphism
is largely the same as for a simple static subprogram call, but in the pres-
ence of polymorphism, we must use a much more sophisticated technique.

Consider the class hierarchy in Figure 3—10, which shows the base class
DisplayItem along with three subclasses named Circle, Triangle, and
Rectangle. Rectangle also has one subclass, named SolidRectangle.
In the class DisplayItem, suppose that we define the instance variable
theCenter (denoting the coordinates for the center of the displayed item),
along with the following operations as in our earlier example:

m draw Draw the item.
E move Move the item.
m location Return the location of the item.

The operation 1location is common to all subclasses and therefore need
not be redefined, but we expect the operations draw and move to be rede-
fined since only the subclasses know how to draw and move themselves.

Displayltem

Circle Triangle Rectangle

T

SolidRectangle

Figure 3—10 DisplayItem Class Diagram

CHAPTER 3 CLASSES AND OBJECTS 105

The class Ccircle must include the instance variable theRadius and
appropriate operations to set and retrieve its value. For this subclass,
the redefined operation draw draws a circle of the given radius, centered
on theCenter. Similarly, the class Rectangle must include the instance
variables theHeight and theWidth, along with appropriate operations to
set and retrieve their values. For this subclass, the operation draw
draws a rectangle with the given height and width, again centered on
theCenter. The subclass SolidRectangle inherits all characteristics of
the class Rectangle but again redefines the behavior of the operation draw.
Specifically, the implementation of draw for the class SolidRectangle
first calls draw as defined in its superclass Rectangle (to draw the outline
of the rectangle) and then fills in the shape. The invocation of draw
demands polymorphic behavior.

Suppose now that we have some client object that wishes to draw all of the
subclasses. In this situation, the compiler cannot statically generate code
to invoke the proper draw operation because the class of the object being
operated on is not known until runtime. Let’s consider how various object-
oriented programming languages deal with this situation.

Because Smalltalk is a typeless language, method dispatch is completely
dynamic. When the client sends the message draw to an item found in the
list, here is what happens.

m The item object looks up the message in its class’s message
dictionary.

m If the message is found, the code for that locally defined method is
invoked.

m If the message is not found, the search for the method continues in
the superclass.

This process continues up the superclass hierarchy until the message is
found or until we reach the topmost base class, Object, without finding the
message. In the latter case, Smalltalk ultimately passes the message
doesNotUnderstand to signal an error.

The key to this algorithm is the message dictionary, which is part of each
class’s representation and is therefore hidden from the client. This dictio-
nary is created when the class is created and contains all the methods to
which instances of this class may respond. Searching for the message is
time-consuming; method lookup in Smalltalk takes about 1.5 times as long
as a simple subprogram call. All production-quality Smalltalk implementa-
tions optimize method dispatch by supplying a cached message dictionary,
so that commonly passed messages may be invoked quickly. Caching typi-
cally improves performance by 20% to 30% [31].

The operation draw defined in the subclass SolidRectangle poses a
special case. We said that its implementation of draw first calls draw as

106

SECTION | CONCEPTS

defined in the superclass Rectangle. In Smalltalk, we specify a super-
class method by using the keyword super. Then, when we pass the mes-
sage draw to super, Smalltalk uses the same method-dispatch algorithm
as mentioned earlier, except that the search begins in the superclass of the
object instead of its class.

Studies by Deutsch suggest that polymorphism is not needed about 85% of
the time, so message passing can often be reduced to simple procedure
calls [32]. Duff notes that in such cases, the developer often makes implicit
assumptions that permit an early binding of the object’s class [33]. Unfortu-
nately, typeless languages such as Smalltalk have no convenient means for
communicating these implicit assumptions to the compiler.

More strongly typed languages such as C++ do let the developer assert such
information. Because we want to avoid method dispatch wherever possible
but must still allow for the occurrence of polymorphic dispatch, invoking a
method in these languages proceeds a little differently than in Smalltalk.

In C++, the developer can decide whether a particular operation is to be
bound late by declaring it to be virtual; all other methods are considered
to be bound early, and thus the compiler can statically resolve the method
call to a simple subprogram call.

To handle virtual member functions, most C++ implementations use the
concept of a vtable, which is defined for each object requiring polymorphic
dispatch, when the object is created (and thus when the class of the object
is fixed). This table typically consists of a list of pointers to virtual functions.
For example, if we create an object of the class Rectangle, then the
vtable will have an entry for the virtual function draw, pointing to the closest
implementation of draw. If, for example, the class DisplayItem included
the virtual function Rotate, which was not redefined in the class Rectan-
gle, then the vtable entry for Rotate would point to the implementation of
Rotate in the class DisplayItem. In this manner, runtime searching is
eliminated: Referring to a virtual member function of an object is just an
indirect reference through the appropriate pointer, which immediately
invokes the correct code without searching [34].

Multiple Inheritance

With single inheritance, each subclass has exactly one superclass. However, as
Vlissides and Linton point out, although single inheritance is very useful, “it often
forces the programmer to derive from one of two equally attractive classes. This
limits the applicability of predefined classes, often making it necessary to dupli-
cate code. For example, there is no way to derive a graphic that is both a circle
and a picture; one must derive from one or the other and reimplement the func-
tionality of the class that was excluded” [40].

CHAPTER 3 CLASSES AND OBJECTS 107

Consider for a moment how one might organize various assets such as savings
accounts, real estate, stocks, and bonds. Savings accounts and checking accounts
are both kinds of assets typically managed by a bank, so we might classify both of
them as kinds of bank accounts, which in turn are kinds of assets. Stocks and
bonds are managed quite differently than bank accounts, so we might classify
stocks, bonds, mutual funds, and the like as kinds of securities, which in turn are
also kinds of assets.

However, there are many other equally satisfactory ways to classify savings
accounts, real estate, stocks, and bonds. For example, in some contexts, it may be
useful to distinguish insurable items such as real estate and certain bank accounts
(which, in the United States, are insured up to certain limits by the Federal
Deposit Insurance Corporation). It may also be useful to identify assets that return
a dividend or interest, such as savings accounts, checking accounts, and certain
stocks and bonds.

Unfortunately, single inheritance is not expressive enough to capture this

lattice of relationships, so we must turn to multiple inheritance.” Figure 3—11
illustrates such a class structure. Here we see that the class Security is a kind
of Asset as well as a kind of InterestBearingItem. Similarly, the class
BankAccount is a kind of Asset, as well as a kind of InsurableItemand
InterestBearingItem.

Designing a suitable class structure involving inheritance, and especially
involving multiple inheritance, is a difficult task. This is often an incremental and
iterative process. Two problems present themselves when we have multiple inher-
itance: How do we deal with name collisions from different superclasses, and
how do we handle repeated inheritance?

Name collisions are possible when two or more different superclasses use the
same name for some element of their interfaces, such as instance variables and
methods. For example, suppose that the classes InsurableItemand Asset
both have attributes named presentValue, denoting the present value of the
item. Since the class RealEstate inherits from both of these classes, what does

7. In fact, this is the litmus test for multiple inheritance. If we encounter a class lattice
wherein the leaf classes can be grouped into sets denoting orthogonal behavior (such as in-
surable and interest-bearing items), and these sets overlap, this is an indication that, within
a single inheritance lattice, no intermediate classes exist to which we can cleanly attach
these behaviors without violating our abstraction of certain leaf classes by granting them
behaviors that they should not have. We can remedy this situation by using multiple inher-
itance to mix in these behaviors only where we want them.

108 SECTION | CONCEPTS

InterestBearingltem

Asset
RealEstate
L
Insurableltem
/
BankAccount Security
SavingsAccount CheckingAccount Stock Bond

Figure 3—11 Multiple Inheritance

it mean to inherit two operations with the same name? This in fact is the key
difficulty with multiple inheritance: Clashes may introduce ambiguity in the
behavior of the multiply inherited subclass.

There are three basic approaches to resolving this kind of clash. First, the lan-

guage semantics might regard such a clash as illegal and reject the compilation of
the class. Second, the language semantics might regard the same name introduced
by different classes as referring to the same attribute. Third, the language seman-

CHAPTER 3 CLASSES AND OBJECTS 109

tics might permit the clash but require that all references to the name fully qualify
the source of its declaration.

The second problem is repeated inheritance, which Meyer describes as follows:
“One of the delicate problems raised by the presence of multiple inheritance is
what happens when a class is an ancestor of another in more than one way. If you
allow multiple inheritance into a language, then sooner or later someone is going
to write a class D with two parents B and C, each of which has a class A as a par-
ent—or some other situation in which D inherits twice (or more) from A. This sit-
uation is called repeated inheritance and must be dealt with properly” [41]. As an
example, suppose that we define the (ill-conceived) Mut ualFund class as a sub-
class of the classes Stock and Bond. This class introduces repeated inheritance
of the class Security, which is a superclass of both Stock and Bond (see
Figure 3-11).

There are various approaches to dealing with the problem of repeated inheritance.
First, we can treat occurrences of repeated inheritance as illegal. Second, we can
permit duplication of superclasses but require the use of fully qualified names to
refer to members of a specific copy. Third, we can treat multiple references to the
same class as denoting the same class. Different languages handle this approach

differently.

The existence of multiple inheritance gives rise to a style of classes called mixins.
Mixins derive from the programming culture surrounding the language Flavors:
One would combine (mix in) little classes to build classes with more sophisticated
behavior. “A mixin is syntactically identical to a regular class, but its intent is dif-
ferent. The purpose of such a class is solely to . . . [add] functions to other flavors
[classes]—one never creates an instance of a mixin” [44]. In Figure 3—11, the
classes InsurableItemand InterestBearingltem are mixins. Neither
of these classes can stand alone; rather, they are used to augment the meaning of
some other class. Thus, we may define a mixin as a class that embodies a single,
focused behavior and is used to augment the behavior of some other class via
inheritance. The behavior of a mixin is usually completely orthogonal to the
behavior of the classes with which it is combined. A class that is constructed pri-
marily by inheriting from mixins and does not add its own structure or behavior is
called an aggregate class.

Aggregation

We also need aggregation relationships, which provide the whole/part relation-
ships manifested in the class’s instances. Aggregation relationships among
classes have a direct parallel to aggregation relationships among the objects
corresponding to these classes.

110

SECTION | CONCEPTS

Temperature Controller Heater

Figure 3—12 Aggregation

As we show in Figure 3—12, the class TemperatureController denotes the
whole, and the class Heater is one of its parts. This corresponds exactly to the
aggregation relationship among the instances of these classes illustrated earlier in
Figure 3-6.

Physical Containment

In the case of the class TemperatureController, we have aggregation as
containment by value, a kind of physical containment meaning that the Heater
object does not exist independently of its enclosing TemperatureController
instance. Rather, the lifetimes of these two objects are intimately connected:
When we create an instance of TemperatureController, we also create an
instance of the class Heater. When we destroy our TemperatureController
object, by implication we also destroy the corresponding Heater object.

A less direct kind of aggregation is also possible, called composition, which is
containment by reference. In this case, the class TemperatureController
still denotes the whole, and an instance of the class Heater is still one of its
parts, although that part must now be accessed indirectly. Hence, the lifetimes of
these two objects are not so tightly coupled as before: We may create and destroy
instances of each class independently.

Aggregation asserts a direction to the whole/part relationship. For example, the
Heater object is a part of the TemperatureController object, and not
vice versa. Of course, as we described in an earlier example, aggregation need not
require physical containment. For example, although shareholders own stocks, a
shareholder does not physically contain the owned stocks. Rather, the lifetimes of
these objects may be completely independent, although there is still conceptually
a whole/part relationship (each share is always a part of the shareholder’s assets).
Representation of this aggregation can be very indirect.

This is still aggregation, although not physical containment. Ultimately, the lit-
mus test for aggregation is this: If and only if there exists a whole/part relation-
ship between two objects, we must have an aggregation relationship between their
corresponding classes.

CHAPTER 3 CLASSES AND OBJECTS 111

3.5

Multiple inheritance is often confused with aggregation. When considering inher-
itance versus aggregation, remember to apply the litmus test for each. If you can-
not honestly affirm that there is an “is a” relationship between two classes,
aggregation or some other relationship should be used instead of inheritance.

Dependencies

Aside from inheritance, aggregation, and association, there is another group of
relationships called dependencies. A dependency indicates that an element on one
end of the relationship, in some manner, depends on the element on the other end
of the relationship. This alerts the designer that if one of these elements changes,
there could be an impact to the other. There are many different kinds of depen-
dency relationships (refer to the Object Management Group’s latest UML specifi-
cation for the full list [45]). You will often see dependencies used in architectural
models (one system component, or package, is dependent on another) or at the
implementation level (one module is dependent on another).

The Interplay of Classes and Objects

Classes and objects are separate yet intimately related concepts. Specifically,
every object is the instance of some class, and every class has zero or more
instances. For practically all applications, classes are static; therefore, their exist-
ence, semantics, and relationships are fixed prior to the execution of a program.
Similarly, the class of most objects is static, meaning that once an object is cre-
ated, its class is fixed. In sharp contrast, however, objects are typically created and
destroyed at a furious rate during the lifetime of an application.

Relationships between Classes and Objects

For example, consider the classes and objects in the implementation of an air traf-
fic control system. Some of the more important abstractions include planes, flight
plans, runways, and air spaces. By their very definition, the meanings of these
classes and objects are relatively static. They must be static, for otherwise one
could not build an application that embodied knowledge of such commonsense
facts as that planes can take off, fly, and then land, and that two planes should not
occupy the same space at the same time. Conversely, the instances of these classes
are dynamic. At a fairly slow rate, new runways are built, and old ones are deacti-
vated. Faster yet, new flight plans are filed, and old ones are filed away. With
great frequency, new planes enter a particular air space, and old ones leave.

112

SECTION | CONCEPTS

3.6

The Role of Classes and Objects in Analysis
and Design

During analysis and the early stages of design, the developer has two primary
tasks:

1. Identify the classes that form the vocabulary of the problem domain

2. Invent the structures whereby sets of objects work together to provide the
behaviors that satisfy the requirements of the problem

Collectively, we call such classes and objects the key abstractions of the problem,
and we call these cooperative structures the mechanisms of the implementation.

During these phases of development, the developer must focus on the outside
view of these key abstractions and mechanisms. This view represents the logical
framework of the system and therefore encompasses the class structure and object
structure of the system. In the later stages of design and then moving into imple-
mentation, the task of the developer changes: The focus is on the inside view of
these key abstractions and mechanisms, involving their physical representation.

On Building Quality Classes and Objects

Ingalls suggests that “a system should be built with a minimum set of unchange-
able parts; those parts should be as general as possible; and all parts of the system
should be held in a uniform framework™ [51]. With object-oriented development,
these parts are the classes and objects that make up the key abstractions of the
system, and the framework is provided by its mechanisms.

In our experience, the design of classes and objects is an incremental, iterative
process. Frankly, except for the most trivial abstractions, we have never been able
to define a class exactly right the first time. It takes time to smooth the conceptual
jagged edges of our initial abstractions. Of course, there is a cost to refining these
abstractions, in terms of recompilation, understandability, and the integrity of the
fabric of our system design. Therefore, we want to come as close as we can to
being right the first time.

Measuring the Quality of an Abstraction

How can one know if a given class or object is well designed? We suggest five
meaningful metrics:

CHAPTER 3 CLASSES AND OBJECTS 113

Coupling
Cohesion
Sufficiency
Completeness
Primitiveness

MEFI S

Coupling is a notion borrowed from structured design, but with a liberal interpre-
tation it also applies to object-oriented design. Stevens, Myers, and Constantine
define coupling as “the measure of the strength of association established by a
connection from one module to another. Strong coupling complicates a system
since a module is harder to understand, change, or correct by itself if it is highly
interrelated with other modules. Complexity can be reduced by designing systems
with the weakest possible coupling between modules” [52]. A counterexample to
good coupling is given by Page-Jones in his description of a modular stereo sys-
tem in which the power supply is located in one of the speaker cabinets [53].

Coupling with regard to modules still applies to object-oriented analysis and
design, but coupling with regard to classes and objects is equally important. How-
ever, there is tension between the concepts of coupling and inheritance because
inheritance introduces significant coupling. On the one hand, weakly coupled
classes are desirable; on the other hand, inheritance—which tightly couples
superclasses and their subclasses—helps us to exploit the commonality among
abstractions.

The idea of cohesion also comes from structured design. Simply stated, cohesion
measures the degree of connectivity among the elements of a single module (and
for object-oriented design, a single class or object). The least desirable form of
cohesion is coincidental cohesion, in which entirely unrelated abstractions are
thrown into the same class or module. For example, consider a class comprising
the abstractions of dogs and spacecraft, whose behaviors are quite unrelated. The
most desirable form of cohesion is functional cohesion, in which the elements of
a class or module all work together to provide some well-bounded behavior.
Thus, the class Dog is functionally cohesive if its semantics embrace the behavior
of a dog, the whole dog, and nothing but the dog.

Closely related to the ideas of coupling and cohesion are the criteria that a class or
module should be sufficient, complete, and primitive. By sufficient, we mean that
the class or module captures enough characteristics of the abstraction to permit
meaningful and efficient interaction. To do otherwise renders the component use-
less. For example, if we are designing the class Set, it is wise to include an oper-
ation that removes an item from the set, but our wisdom is futile if we neglect an
operation that adds an item. In practice, violations of this characteristic are
detected very early; such shortcomings rise up almost every time we build a client
that must use this abstraction.

114

SECTION | CONCEPTS

By complete, we mean that the interface of the class or module captures all of the
meaningful characteristics of the abstraction. Whereas sufficiency implies a mini-
mal interface, a complete interface is one that covers all aspects of the abstraction.
A complete class or module is thus one whose interface is general enough to be
commonly usable to any client. Completeness is a subjective matter, and it can be
overdone. Providing all meaningful operations for a particular abstraction over-
whelms the user and is generally unnecessary since many high-level operations
can be composed from low-level ones. For this reason, we also suggest that
classes and modules be primitive.

Primitive operations are those that can be efficiently implemented only if given
access to the underlying representation of the abstraction. Thus, adding an item to
a set is primitive because to implement this operation Add, the underlying repre-
sentation must be visible. On the other hand, an operation that adds four items to
a set is not primitive because it can be implemented just as efficiently on the more
primitive Add operation, without having access to the underlying representation.
Of course, efficiency is also a subjective measure. An operation is indisputably
primitive if we can implement it only through access to the underlying representa-
tion. An operation that could be implemented on top of existing primitive opera-
tions, but at the cost of significantly more computational resources, is also a
candidate for inclusion as a primitive operation.

Choosing Operations

Crafting the interface of a class or module is plain hard work. Typically, we make
a first attempt at the design of a class, and then, as we and others create clients,
we find it necessary to augment, modify, and further refine this interface. Eventu-
ally, we may discover patterns of operations or patterns of abstractions that lead
us to invent new classes or to reorganize the relationships among existing ones.

We often can identify patterns of abstraction, structure, or behavior.

CHAPTER 3 CLASSES AND OBJECTS 115

Functional Semantics

Within a given class, it is our style to keep all operations primitive, so that each
exhibits a small, well-defined behavior. We call such methods fine-grained. We
also tend to separate methods that do not communicate with one another. In this
manner, it is far easier to construct subclasses that can meaningfully redefine the
behavior of their superclasses. The decision to contract out a behavior to one ver-
sus many methods may be made for two competing reasons: Lumping a particular
behavior in one method leads to a simpler interface but larger, more complicated
methods; spreading a behavior across methods leads to a more complicated inter-
face but simpler methods. As Meyer observes, “A good designer knows how to
find the appropriate balance between too much contracting, which produces frag-
mentation, and too little, which yields unmanageably large modules” [54].

It is common in object-oriented development to design the methods of a class as a
whole because all these methods cooperate to form the entire protocol of the
abstraction. Thus, given some desired behavior, we must decide in which class to
place it. Halbert and O’Brien offer the following criteria to be considered when
making such a decision [55].

m Reusability: Would this behavior be more useful in more than one context?

m Complexity: How difficult is it to implement the behavior?

m Applicability: How relevant is the behavior to the type in which it might be
placed?

m Implementation knowledge: Does the behavior’s implementation depend on
the internal details of a type?

We usually choose to declare the meaningful operations that we may perform on
an object as methods in the definition of that object’s class (or superclass).

Time and Space Semantics

Once we have established the existence of a particular operation and defined its
functional semantics, we must decide on its time and space semantics. This
means that we must specify our decisions about the amount of time it takes to
complete an operation and the amount of storage it needs. Such decisions are
often expressed in terms of best, average, and worst cases, with the worst case
specifying an upper limit on what is acceptable.

Earlier, we also mentioned that whenever one object passes a message to another
across a link, the two objects must be synchronized in some manner. In the pres-
ence of multiple threads of control, this means that message passing is much more
than a subprogram-like dispatch. In most of the languages we use, synchronization

116

SECTION | CONCEPTS

among objects is simply not an issue because our programs contain exactly one
thread of control, meaning that all objects are sequential. We speak of message
passing in such situations as simple because its semantics are most akin to simple
subprogram calls. However, in languages that support concurrency, we must con-
cern ourselves with more sophisticated forms of message passing, so as to avoid
the problems created if two threads of control act on the same object in unre-
strained ways. As we described earlier, objects whose semantics are preserved in
the presence of multiple threads of control are either guarded or synchronized
objects.

Choosing Relationships

Choosing the relationships among classes and among objects is linked to the
selection of operations. If we decide that object X sends message M to object Y,
then either directly or indirectly, Y must be accessible to X; otherwise, we could
not name the operation M in the implementation of X. By accessible, we mean the
ability of one abstraction to see another and reference resources in its outside
view. Abstractions are accessible to one another only where their scopes overlap
and only where access rights are granted (e.g., private parts of a class are accessi-
ble only to the class itself and its friends). Coupling is thus a measure of the
degree of accessibility.

The Law of Demeter

One useful guideline in choosing the relationships among objects is called the
Law of Demeter, which states that “the methods of a class should not depend in
any way on the structure of any class, except the immediate (top-level) structure
of their own class. Further, each method should send messages to objects belong-
ing to a very limited set of classes only” [56]. The basic effect of applying this
law is the creation of loosely coupled classes, whose implementation secrets are
encapsulated. Such classes are fairly unencumbered, meaning that to understand
the meaning of one class, you need not understand the details of many other
classes.

In looking at the class structure of an entire system, we may find that its inherit-
ance hierarchy is wide and shallow, narrow and deep, or balanced. Class struc-
tures that are wide and shallow usually represent forests of free-standing classes
that can be mixed and matched [57]. Class structures that are narrow and deep
represent trees of classes that are related by a common ancestor [58]. There are
advantages and disadvantages to each approach. Forests of classes are more
loosely coupled, but they may not exploit all the commonality that exists. Trees of
classes exploit this commonality, so that individual classes are smaller than in for-
ests. However, to understand a particular class, it is usually necessary to under-

CHAPTER 3 CLASSES AND OBJECTS 117

stand the meaning of all the classes it inherits from or uses. The proper shape of a
class structure is highly problem-dependent.

We must make similar trade-offs among inheritance, aggregation, and depen-
dency relationships. For example, should the class Caxr inherit, contain, or use the
classes named Engine and Wheel? In this case, we suggest that an aggregation
relationship is more appropriate than an inheritance relationship. Meyer states
that between the classes A and B, “inheritance is appropriate if every instance of B
may also be viewed as an instance of A. The client relationship is appropriate
when every instance of B simply possesses one or more attributes of A” [59].
From another perspective, if the behavior of an object is more than the sum of its
individual parts, creating an aggregation relationship rather than an inheritance
relationship between the appropriate classes is probably superior.

Mechanisms and Visibility

Deciding on the relationship among objects is mainly a matter of designing the
mechanisms whereby these objects interact. The question the developer must ask
is simply this: Where does certain knowledge go? For example, in a manufactur-
ing plant, materials (called lots) enter manufacturing cells to be processed. As
they enter certain cells, we must notify the room’s manager to take appropriate
action. We now have a design choice: Is the entry of a lot into a room an operation
on the room, an operation on the lot, or an operation on both? If we decide that it
is an operation on the room, the room must be visible to the lot. If we decide that
it is an operation on the lot, the lot must be visible to the room because the lot
must know what room it is in. Lastly, if we consider this to be an operation on
both the room and the lot, we must arrange for mutual visibility. We must also
decide on some visibility relationship between the room and the manager (and not
the lot and the manager); either the manager must know the room it manages, or
the room must know of its manager.

Choosing Implementations

Only after we stabilize the outside view of a given class or object do we turn to its
inside view. This perspective involves two different decisions: a choice of repre-
sentation for a class or object and the placement of the class or object in a module.

Representation

The representation of a class or object should almost always be one of the encap-
sulated secrets of the abstraction. This makes it possible to change the representa-
tion (e.g., to alter the time and space semantics) without violating any of the

118

SECTION | CONCEPTS

functional assumptions that clients may have made. As Wirth wisely states, “The
choice of representation is often a fairly difficult one, and it is not uniquely deter-
mined by the facilities available. It must always be taken in light of the operations
that are to be performed upon the data” [60]. For example, given a class whose
objects denote a set of flight-plan information, do we optimize the representation
for fast searching or for fast insertion and deletion? We cannot optimize for both,
so our choice must be based on the expected use of these objects. Sometimes it is
not easy to choose, and we end up with families of classes whose interfaces are
virtually identical but whose implementations are radically different, in order to
provide different time and space behavior.

One of the more difficult trade-offs when selecting the implementation of a class
is between computing the value of an object’s state versus storing it as a field. For
example, suppose we have the class Cone, which includes the method Volume.
Invoking this method returns the volume of the object. As part of the representa-
tion of this class, we are likely to use fields for the height of the cone and the
radius of its base. Should we have an additional field in which we store the vol-
ume of the object, or should the method Volume just calculate it every time [61]?
If we want this method to be fast, we should store the volume as a field. If space
efficiency is more important to us, we should calculate the value. Which represen-
tation is better depends entirely on the particular problem. In any case, we should
be able to choose an implementation independently of the class’s outside view;
indeed, we should even be able to change this representation without its clients
caring.

Packaging

Similar issues apply to the declaration of classes and objects within modules. The
competing requirements of visibility and information hiding usually guide our
design decisions about where to declare classes and objects. Generally, we seek to
build functionally cohesive, loosely coupled modules. Many nontechnical factors
influence these decisions, such as matters of reuse, security, and documentation.
Like the design of classes and objects, module design is not to be taken lightly. As
Parnas, Clements, and Weiss note with regard to information hiding, “Applying
this principle is not always easy. It attempts to minimize the expected cost of soft-
ware over its period of use and requires that the designer estimate the likelihood
of changes. Such estimates are based on past experience and usually require
knowledge of the application area as well as an understanding of hardware and
software technology” [63].

CHAPTER 3 CLASSES AND OBJECTS 119

Summary

m An object has state, behavior, and identity.

m The structure and behavior of similar objects are defined in their common
class.

m The state of an object encompasses all of the (usually static) properties of
the object plus the current (usually dynamic) values of each of these
properties.

m Behavior is how an object acts and reacts in terms of its state changes and
message passing.

m Identity is the property of an object that distinguishes it from all other
objects.

m A class is a set of objects that share a common structure and a common
behavior.

m The three kinds of relationships include association, inheritance, and
aggregation.

m Key abstractions are the classes and objects that form the vocabulary of the
problem domain.

m A mechanism is a structure whereby a set of objects work together to pro-
vide a behavior that satisfies some requirement of the problem.

m The quality of an abstraction may be measured by its coupling, cohesion,
sufficiency, completeness, and primitiveness.

This page intentionally left blank

4.1

Chapter 4

Classification

Classification is the means whereby we order knowledge. In object-
oriented design, recognizing the sameness among things allows us to
expose the commonality within key abstractions and mechanisms and
eventually leads us to smaller applications and simpler architectures.
Unfortunately, there is no golden path to classification. To the reader
accustomed to finding cookbook answers, we unequivocally state that
there are no simple recipes for identifying classes and objects. There is no
such thing as the “perfect” class structure, nor the “right” set of objects. As
in any engineering discipline, our design choices are a compromise
shaped by many competing factors.

Fortunately, there exists a vast legacy of experience with classification in
other disciplines. From more classical approaches, techniques of object-
oriented analysis have emerged that offer several useful recommended
practices and rules of thumb for identifying the classes and objects rele-
vant to a particular problem. These heuristics are the focus of this chapter.

The Importance of Proper Classification

The identification of classes and objects is a challenging part of object-oriented
analysis and design. Our experience shows that identification involves both dis-
covery and invention. Through discovery, we come to recognize the key abstrac-
tions and mechanisms that form the vocabulary of our problem domain. Through
invention, we devise generalized abstractions as well as new mechanisms that
specify how objects collaborate. Ultimately, discovery and invention are both

121

122

SECTION | CONCEPTS

problems of classification, and classification is fundamentally a problem of find-
ing sameness. When we classify, we seek to group things that have a common
structure or exhibit a common behavior.

Intelligent classification is actually a part of all good science. As Michalski and
Stepp observe, “An omnipresent problem in science is to construct meaningful
classifications of observed objects or situations. Such classifications facilitate
human comprehension of the observations and the subsequent development of a
scientific theory” [2]. The same philosophy applies to engineering. In the domain
of building architecture and city planning, Alexander notes that, for the architect,
“his act of design, whether humble, or gigantically complex, is governed entirely
by the patterns he has in his mind at that moment, and his ability to combine these
patterns to form a new design” [3]. Not surprisingly, then, classification is rele-
vant to every aspect of object-oriented design.

Classification helps us to identify generalization, specialization, and aggregation
hierarchies among classes. By recognizing the common patterns of interaction
among objects, we come to invent the mechanisms that serve as the soul of our
implementation. Classification also guides us in making decisions about modular-
ization. We may choose to place certain classes and objects together in the same
module or in different modules, depending on the sameness we find among these
declarations. Coupling and cohesion also indicate a type of sameness. Classifica-
tion also plays a role in allocating processes to processors. We place certain pro-
cesses together in the same processor or different processors, depending on
packaging, performance, or reliability concerns.

The Difficulty of Classification

In the previous chapter, we defined an object as something that has a crisply
defined boundary. However, the boundaries that distinguish one object from
another are often quite fuzzy. For example, look at your leg. Where does your
knee begin, and where does it end? In recognizing human speech, how do we
know that certain sounds connect to form a word and are not instead a part of any
surrounding words? Consider also the design of a word processing system. Do
characters constitute a class, or are whole words a better choice? How do we treat
arbitrary, noncontiguous selections of text? Also, what about sentences, para-
graphs, or even whole documents: Are these classes of objects relevant to our
problem?

The fact that intelligent classification is difficult is hardly new information. Since
there are parallels to the same problems in object-oriented design, consider for a
moment the problems of classification in two other scientific disciplines: biology
and chemistry.

CHAPTER 4 CLASSIFICATION 123

Until the eighteenth century, the prevailing scientific thought was that all living
organisms could be arranged from the most simple to the most complex, with the
measure of complexity being highly subjective (not surprisingly, humans were
usually placed at the top of this list). In the mid-1700s, however, the Swedish bot-
anist Carolus Linnaeus suggested a more detailed taxonomy for categorizing
organisms, according to what he called genus and species.

A century later, Darwin proposed the theory that natural selection was the mecha-
nism of evolution, whereby present-day species evolved from older ones. Dar-
win’s theory depended on an intelligent classification of species. As Darwin
himself states, naturalists “try to arrange the species, genera, and families in each
class, on what is called the natural system. But what is meant by this system?
Some authors look at it merely as a scheme for arranging together those living
objects which are most alike, and for separating those which are most unlike” [4].
In contemporary biology, classification denotes “the establishment of a hierarchi-
cal system of categories on the basis of presumed natural relationships among
organisms” [5]. The most general category in a biological taxonomy is the king-
dom, followed in order of increasing specialization, by phylum, subphylum, class,
order, family, genus, and, finally, species.

To a computer scientist, biology may seem to be a stodgily mature discipline,
with well-defined criteria for classifying organisms. This is simply not the case.
“Surprisingly, scientists have a better understanding of how many stars there are

Classification is the means whereby we order knowledge.

124

SECTION | CONCEPTS

in the galaxy than how many species there are on Earth. Estimates of global spe-
cies diversity have varied from 2 million to 100 million species, with a best esti-
mate of somewhere near 10 million, and only 1.4 million have actually been
named” [65]. Furthermore, different criteria for classifying the same organisms
yield different results. Martin suggests that “it all depends on what you want clas-
sification to do. If you want it to reflect precisely the genetic relatedness among
species, that will give you one answer. But if you want it instead to say something
about levels of adaptation, then you will get another” [8]. The moral here is that
even in scientifically rigorous disciplines, classification is highly dependent on
the reason for the classification.

Similar lessons may be learned from chemistry [9]. In ancient times, all sub-
stances were thought to be some combination of earth, air, fire, and water. By
today’s standards (unless you are an alchemist), these do not represent very good
classifications. In the mid-1600s, the chemist Robert Boyle proposed that ele-
ments were the primitive abstractions of chemistry, from which more complex
compounds could be made. It wasn’t until over a century later, in 1789, that the
chemist Lavoisier published the first list of elements, containing some 23 items,
some of which were later discovered not to be elements at all. The discovery of
new elements continued and the list grew, but finally, in 1869, the chemist
Mendeleyev proposed the periodic law that gave a precise criteria for organizing
all known elements and could predict the properties of those yet undiscovered.
The periodic law was not the final story in the classification of the elements. In
the early 1900s, elements with similar chemical properties but different atomic
weights were discovered, leading to the idea of isotopes of elements.

The lesson here is simple: As Descartes states, “The discovery of an order is no
easy task. . . . yet once the order has been discovered there is no difficulty at all in
knowing it” [10]. The best software designs look simple, but as experience shows,
it takes a lot of hard work to design a simple architecture.

The Incremental and Iterative Nature of
Classification

We have not said all this to defend lengthy software development schedules,
although to the manager or end user, it does sometimes seem that software engi-
neers need centuries to complete their work. Rather, we have told these stories to
point out that intelligent classification is intellectually hard work and that it best
comes about through an incremental and iterative process. As Shaw has observed,
in software engineering, “The development of individual abstractions often fol-
lows a common pattern. First, problems are solved ad hoc. As experience accu-
mulates, some solutions turn out to work better than others, and a sort of folklore
is passed informally from person to person. Eventually, the useful solutions are

CHAPTER 4 CLASSIFICATION 125

understood more systematically, and they are codified and analyzed. This enables
the development of models that support automatic implementation and theories
that allow the generalization of the solution. This in turn enables a more sophisti-
cated level of practice and allows us to tackle harder problems—which we often
approach ad hoc, starting the cycle over again” [11].

Different observers will classify the same object in different ways.

The incremental and iterative nature of classification directly impacts the con-
struction of class and object hierarchies in the design of a complex software sys-
tem. In practice, it is common to assert a certain class structure early in a design
and then revise this structure over time. At later stages in the design, once clients
have been built that use this structure, we will obtain insights as to the quality of
our classification. On the basis of this experience, we may decide to create new
subclasses from existing ones (derivation). We may split a large class into several
smaller ones (factorization), or create one larger class by uniting smaller ones
(composition). Occasionally, we may even discover previously unrecognized
commonality and proceed to devise a new class (abstraction) [12].

Why, then, is classification so hard? We suggest that there are two important rea-
sons. First, there is no such thing as a “perfect” classification, although certainly
some classifications are better than others. As Coombs, Raiffa, and Thrall state,
“There are potentially at least as many ways of dividing up the world into object
systems as there are scientists to undertake the task” [13]. Any classification is
relative to the perspective of the observer doing the classification. Second, intelli-
gent classification requires a tremendous amount of creative insight. Birtwistle,
Dahl, Myhrhaug, and Nygard observe that “sometimes the answer is evident,

126

SECTION | CONCEPTS

4.2

sometimes it is a matter of taste, and at other times, the selection of suitable com-
ponents is a crucial point in the analysis” [15]. This fact recalls the riddle, “Why

is a laser beam like a goldfish? . . . because neither one can whistle” [16]. Only a
creative mind can find sameness among such otherwise unrelated things.

Identifying Classes and Objects

The problem of classification has been the concern of countless philosophers,
linguists, cognitive scientists, and mathematicians since before the time of Plato.
It is reasonable to study their experiences and apply what we learn to object-
oriented design.

Classical and Modern Approaches

Historically, there have been only three general approaches to classification:

1. Classical categorization
2. Conceptual clustering
3. Prototype theory [17]

Classical Categorization

In the classical approach to categorization, “All the entities that have a given
property or collection of properties in common form a category. Such properties
are necessary and sufficient to define the category” [18]. For example, married
people constitute a category: One is either married or not, and the value of this
property is sufficient to decide to which group a particular person belongs. On the
other hand, tall people do not form a category, unless we can agree to some abso-
lute criteria for what distinguishes the property of tall from short.

Classical categorization comes to us first from Plato, and then from Aristotle
through his classification of plants and animals, in which he uses a technique
much akin to the contemporary children’s game of Twenty Questions (Is it an
animal, mineral, or vegetable? Does it have fur or feathers? Can it fly? Does it
smell?) [20]. Later philosophers, most notably Aquinas, Descartes, and Locke,
adopted this approach. As Aquinas stated, “We can name a thing according to the
knowledge we have of its nature from its properties and effects” [21].

The classical approach to categorization is also reflected in modern theories of
child development. Piaget observed that around the age of one, a child typically

CHAPTER 4 CLASSIFICATION 127

develops the concept of object permanence; shortly thereafter, the child acquires
skills in classifying these objects, first using basic categories such as dogs, cats,
and toys [22]. Later, the child discovers more general categories (such as animals)
and more specific ones (such as beagles) [23].

To summarize, the classical approach uses related properties as the criteria for
sameness among objects. Specifically, one can divide objects into disjoint sets
depending on the presence or absence of a particular property. Minsky suggests
that “the most useful sets of properties are those whose members do not interact
too much. This explains the universal popularity of that particular combination of
properties: size, color, shape, and substance. Because these attributes scarcely
interact at all with one another, you can put them together in any combination
whatsoever to make an object that is either large or small, red or green, wooden or
glass, and having the shape of a sphere or a cube” [24]. In a general sense, proper-
ties may denote more than just measurable characteristics; they may also encom-
pass observable behaviors. For example, the fact that a bird can fly but a fish
cannot is one property that distinguishes an eagle from a salmon.

The particular properties that should be considered in a given situation are highly
domain-specific. For instance, the color of a car may be important for the pur-
poses of inventory control in an automobile manufacturing plant, but it is not at
all relevant to the software that controls the traffic lights within a metropolitan
area. This is in fact why we say that there are no absolute measures of classifica-
tion, although a given class structure may be better suited to one application than
another. As James suggests, “No one scheme of classification, more than any
other, represents the real structure or order of nature. Nature indifferently submits
to any and all divisions which we wish to make among existing things. Some clas-
sifications may be more significant than others, but only by reference to our inter-
ests, not because they represent reality more accurately or adequately” [25].

Classical categorization permeates much of contemporary Western thought, but,
as our earlier example of classifying tall and short people suggests, this approach
is not always satisfactory. Kosko observes that “natural categories tend to be
messy: Most birds fly, but some do not. Chairs can consist of wood, plastic, or
metal and can have almost any number of legs, depending on the whim of the
designer. It seems practically impossible to come up with a property list for any
natural category that excludes all examples that are not in the category and
includes all examples that are in the category” [26]. These are indeed fundamen-
tal problems for classical categorization, which conceptual clustering and proto-
type theory attempt to resolve.

Conceptual Clustering

Conceptual clustering is a more modern variation of the classical approach and
largely derives from attempts to explain how knowledge is represented. As Stepp

128

SECTION | CONCEPTS

and Michalski state, “In this approach, classes (clusters of entities) are generated
by first formulating conceptual descriptions of these classes and then classifying
the entities according to the descriptions” [27]. For example, we may state a
concept such as “a love song.” This is a concept more than a property, for the
“love songness” of any song is not something that may be measured empirically.
However, if we decide that a certain song is more of a love song than not, we
place it in this category. Thus, conceptual clustering represents more of a probabi-
listic clustering of objects.

Conceptual clustering is closely related to fuzzy (multivalue) set theory, in which
objects may belong to one or more groups, in varying degrees of fitness. Concep-
tual clustering makes absolute judgments of classification by focusing on the
“best fit.”

A Problem of Classification

Figure 4—1 contains ten items, labeled A to J, each of which represents a
train. Each train includes an engine (on the right) and from two to four cars,
each shaped differently and holding different loads. Before reading further,
spend the next few minutes arranging these trains into any number of
groups you deem meaningful. For example, you might create three groups:
one for trains whose engines have all black wheels, one for trains whose
engines have all white wheels, and one for trains whose engines have
black and white wheels.

This problem comes from the work by Stepp and Michalski on conceptual
clustering [19]. As in real life, there is no “right” answer. In their experi-
ments, subjects came up with 93 different classifications. The most popular
classification was by the length of the train, forming three groups (trains
with two, three, and four cars). The second most popular classification was
by engine wheel color, as we suggested. Of these 93 classifications, about
40 of them were totally unique.

Our use of this example confirms Stepp and Michalski’'s study. Most of our
subjects have used the two most popular classifications, although we have
encountered some rather creative groupings. For example, one subject
arranged these trains into two groups: one group represented trains
labeled by letters containing straight lines (A, E, F, H, and /) and the other
group represented trains labeled by letters containing curved lines. This is
truly an example of nonlinear thinking: creative, albeit bizarre.

Once you have completed this task, let's change the requirements (again,
as in real life). Suppose that circles represent toxic chemicals, rectangles
represent lumber, and all other shapes of loads represent passengers. Try
classifying the trains again, and see how this new knowledge changes your
classification.

CHAPTER 4 CLASSIFICATION 129

Among our subjects, the clustering of trains changed significantly. Most
subjects classified trains according to whether or not they carried toxic
loads. We conclude from this simple experiment that more knowledge
about a domain makes it easier to achieve an intelligent classification.

Figure 4-1 A Problem of Classification

130

SECTION | CONCEPTS

Prototype Theory

Classical categorization and conceptual clustering are sufficiently expressive to
account for most of the classifications we need in the design of complex software
systems. However, there are still some situations in which these approaches to
classification are inadequate. This leads us to prototype theory, which derives
primarily from the work of Rosch and her colleagues in the field of cognitive
psychology [28].

There are some abstractions that have neither clearly bounded properties nor con-
cepts. As Lakoff explains the problem, “Wittgenstein pointed out that a category
like game does not fit the classical mold, since there are no common properties
shared by all games. . . . Though there is no single collection of properties that all
games share, the category of games is united by what Wittgenstein calls family
resemblances. . . . Wittgenstein also observed that there was no fixed boundary to
the category game. The category could be extended and new kinds of games
introduced, provided that they resembled previous games in appropriate ways”
[29]. This is why the approach is called prototype theory: a class of objects is rep-
resented by a prototypical object, and an object is considered to be a member of
this class if and only if it resembles this prototype in significant ways.

Lakoff and Johnson apply prototype theory to the earlier problem of classifying
chairs. They observe that “we understand beanbag chairs, barber chairs, and con-
tour chairs as being chairs, not because they share some fixed set of defining
properties with the prototype, but rather because they bear a sufficient family
resemblance to the prototype. . . . There need be no fixed core of properties of
prototypical chairs that are shared by both beanbag and barber chairs, yet they are
both chairs because each, in its different way, is sufficiently close to the proto-
type. Interactional properties are prominent among the kinds of properties that
count in determining sufficient family resemblance” [30].

This notion of interactional properties is central to the idea of prototype theory. In
conceptual clustering, we group things according to distinct concepts. In proto-
type theory, we group things according to the degree of their relationship to con-
crete prototypes.

Applying Classical and Modern Theories

To the developer in the trenches fighting changing requirements amidst limited
resources and tight schedules, our discussion may seem to be far removed from
the battlefields of reality. Actually, these three approaches to classification have
direct application to object-oriented design.

CHAPTER 4 CLASSIFICATION 131

In our experience, we identify classes and objects first according to the properties
relevant to our particular domain. Here, we focus on identifying the structures and
behavior that are part of the vocabulary of our problem space. Many such abstrac-
tions are usually available for the picking [31]. If this approach fails to yield a
satisfactory class structure, we next consider clustering objects by concepts (or
refining our initial domain-based classification by concepts). Here, we focus

our attention on the behavior of collaborating objects. If either of these two
approaches fails to capture our understanding of the problem domain, we con-
sider classification by association, through which clusters of objects are defined
according to how closely each resembles some prototypical object.

More directly, these three approaches to classification provide the theoretical
foundation of object-oriented analysis, which offers a number of pragmatic prac-
tices and rules of thumb that we may apply to identify classes and objects in the
design of a complex software system.

Object-Oriented Analysis

The boundaries between analysis and design are fuzzy, although the focus of each
is quite distinct. In analysis, the focus is to fully analyze the problem at hand and
to model the world by discovering the classes and objects that form the vocabu-
lary of the problem domain. In design, we invent the abstractions and mecha-
nisms in our models that provide the design of the solution to be built.

In the following sections, we examine a number of proven approaches for analy-
sis that are relevant to object-oriented systems.

Classical Approaches

A number of methodologists have proposed various sources of classes and
objects, derived from the requirements of the problem domain. We call these
approaches classical because they derive primarily from the principles of classi-
cal categorization.

For example, Shlaer and Mellor suggest that candidate classes and objects usually
come from one of the following sources [32]:

m Tangible things Cars, telemetry data, pressure sensors
m Roles Mother, teacher, politician
m Events Landing, interrupt, request
m Interactions Loan, meeting, intersection

132 SECTION | CONCEPTS

From the perspective of database modeling, Ross offers a similar list [33]:

People
Places
Things

Organizations

Concepts

Events

Humans who carry out some function

Areas set aside for people or things

Physical objects, or groups of objects, that are
tangible

Formally organized collections of people, resources,
facilities, and capabilities having a defined mission,
whose existence is largely independent of individuals
Principles or ideas not tangible per se; used to
organize or keep track of business activities and/or
communications

Things that happen, usually to something else at a
given date and time, or as steps in an ordered
sequence

Coad and Yourdon suggest yet another set of sources of potential objects [34]:

Structure
Other systems

Devices
Events remembered
Roles played

Locations

Organizational units

“Is a” and “part of”’ relationships

External systems with which the application
interacts

Devices with which the application interacts

A historical event that must be recorded

The different roles users play in interacting with the
application

Physical locations, offices, and sites important to the
application

Groups to which users belong

At a higher level of abstraction, Coad introduces the idea of subject areas, which
are basically logical groups of classes that relate to some higher-level system
function.

Behavior Analysis

Whereas these classical approaches focus on tangible things in the problem
domain, another school of thought in object-oriented analysis focuses on dynamic
behavior as the primary source of classes and objects.! These approaches are

1. Shlaer and Mellor extended their earlier work to focus on behavior as well. In particular,
they studied the lifecycle of each object as a means of understanding the boundaries [35].

CHAPTER 4 CLASSIFICATION 133

more akin to conceptual clustering: We form classes based on groups of objects
that exhibit similar behavior.

Wirfs-Brock, Wilkerson, and Wiener, for example, emphasize responsibilities,
which denote “the knowledge an object maintains and the actions an object can
perform. Responsibilities are meant to convey a sense of the purpose of an object
and its place in the system. The responsibilities of an object are all the services it
provides for all of the contracts it supports” [36]. In this manner, we group things
that have common responsibilities, and we form hierarchies of classes involving
superclasses that embody general responsibilities and subclasses that specialize
their behavior.

Rubin and Goldberg offer an approach to identifying classes and objects derived
from system functions. As they suggest, “the approach we use emphasizes first
understanding what takes place in the system. These are the system behaviors. We
next assign these behaviors to parts of the system, and try to understand who ini-
tiates and who participates in these behaviors. . . . Initiators and participants that
play significant roles are recognized as objects, and are assigned the behavioral
responsibilities for these roles” [37].

Rubin’s concept of system behavior is closely related to the idea of function
points, first suggested in 1979 by Albrech. A function point is “defined as one
end-user business function” [38]. A business function represents some kind of
output, inquiry, input, file, or interface. Although the information-system roots of
this definition show through, the idea of a function point generalizes to all kinds
of automated systems: A function point is any relevant outwardly visible and test-
able behavior of the system.

Domain Analysis

The principles we have discussed thus far are typically applied to the develop-
ment of single, specific applications. Domain analysis, on the other hand, seeks to
identify the classes and objects that are common to all applications within a given
domain, such as patient record tracking, bond trading, compilers, or missile avi-
onics systems. If you are in the midst of a design and stuck for ideas as to the key
abstractions that exist, a narrow domain analysis can help by pointing you to the
key abstractions that have proven useful in other related systems. Domain analy-
sis works well because, except for special situations, there are very few truly
unique kinds of software systems.

The idea of domain analysis was first suggested by Neighbors. We define domain
analysis as “an attempt to identify the objects, operations, and relationships [that]

134 SECTION | CONCEPTS

domain experts perceive to be important about the domain” [39]. Moore and
Bailin suggest the following steps in domain analysis.

m Construct a strawman generic model of the domain by consulting with domain
experts.

m Examine existing systems within the domain and represent this understanding
in a common format.

m Identify similarities and differences between the systems by consulting with
domain experts.

m Refine the generic model to accommodate existing systems. [40]

Domain analysis may be applied across similar applications (vertical domain
analysis), as well as to related parts of the same application (horizontal domain
analysis). For example, when starting to design a new patient-monitoring system,
it is reasonable to survey the architecture of existing systems to understand what
key abstractions and mechanisms were previously employed and to evaluate
which were useful and which were not. Similarly, an accounting system must pro-
vide many different kinds of reports. By considering these reports within the same
application as a single domain, a domain analysis can lead the developer to an
understanding of the key abstractions and mechanisms that serve all the different
kinds of reports. The resulting classes and objects reflect a set of key abstractions
and mechanisms generalized to the immediate report generation problem; there-
fore, the resulting design is likely to be simpler than if each report had been ana-
lyzed and designed separately.

Who exactly is a domain expert? Often, a domain expert is simply a user, such as
a train engineer or dispatcher in a railway system, or a nurse or doctor in a hospi-
tal. A domain expert typically will not be a software developer; more commonly,
he or she is simply a person who is intimately familiar with all the elements of a
particular problem. A domain expert speaks the vocabulary of the problem
domain.

Some managers may be concerned with the idea of direct communication
between developers and end users (for some, even more frightening is the pros-
pect of letting an end user see a developer!). For highly complex systems, domain
analysis may involve a formal process, using the resources of multiple domain
experts and developers over a period of many months. Such a formal analysis is
not necessary on all projects, particularly smaller projects. Often, all it takes to
clear up a design problem is a brief meeting between a domain expert and an
architect or developer. It is truly amazing to see what a little bit of domain knowl-
edge can do to enable intelligent design decisions. Indeed, we find it highly useful
to have many such meetings throughout the design of a system. Domain analysis
is rarely a monolithic activity; it is better focused if we consciously choose to ana-
lyze a little and then design a little.

CHAPTER 4 CLASSIFICATION 135

Use Case Analysis

In isolation, the practices of classical analysis, behavior analysis, and domain
analysis all depend on a large measure of personal experience on the part of the
analyst. For the majority of development projects, this is unacceptable because
such a process is neither deterministic nor predictably successful.

However, there is one practice that can be coupled with all three of these earlier
approaches, to drive the process of analysis in a meaningful way. That practice is
use case analysis, first formalized by Jacobson. Jacobson et al. define a use case
as “A behaviourally related sequence of transactions performed by an actor in a
dialogue with the system to provide some measurable value to the actor” [41].

Briefly, we can apply use case analysis as early as requirements analysis, at which
time end users, other domain experts, and the development team enumerate the
scenarios that are fundamental to the system’s operation. (We need not elaborate
on these scenarios at first; we can simply enumerate them.) These scenarios col-
lectively describe the system functions of the application. Analysis then proceeds
by a study of each scenario, possibly using storyboarding techniques similar to
practices in the television and movie industry [42]. As the team walks through
each scenario, they must identify the objects that participate in the scenario, the
responsibilities of each object, and the ways those objects collaborate with other
objects, in terms of the operations each invokes on the other. In this manner, the
team is forced to craft a clear separation of concerns among all abstractions. As
the development process continues, these initial scenarios are expanded to con-
sider exceptional conditions as well as secondary system behaviors. The results
from these secondary scenarios introduce new abstractions or add, modify, or
reassign the responsibilities of existing abstractions. Scenarios also serve as the
basis of system tests.

CRC Cards

CRC cards emerged as a simple yet marvelously effective way to analyze
scenarios.? First proposed by Beck and Cunningham as a tool for teaching object-
oriented programming [44], CRC cards have proven to be a useful development
tool that facilitates brainstorming and enhances communication among develop-
ers. A CRC card is nothing more than a 3x5 index card,® on which the analyst
writes—in pencil—the name of a class (at the top of the card), its responsibilities

2. CRC stands for Class/Responsibilities/Collaborators.

3. If your software development budget can handle it, buy 5x7 cards. Cards with lines are
nice, and a sprinkling of colored cards shows that you are a very cool developer.

136

SECTION | CONCEPTS

(on one half of the card), and its collaborators (on the other half of the card). One
card is created for each class identified as relevant to the scenario. As the team
members walk through the scenario, they may assign new responsibilities to an
existing class, group certain responsibilities to form a new class, or (most com-
monly) divide the responsibilities of one class into more fine-grained ones and
perhaps distribute these responsibilities to a different class.

CRC cards can be spatially arranged to represent patterns of collaboration. As
viewed from the dynamic semantics of the scenario, the cards are arranged to
show the flow of messages among prototypical instances of each class; as viewed
from the static semantics of the scenario, the cards are arranged to represent gen-
eralization/specialization or aggregation hierarchies among the classes.

Informal English Description

A radical alternative to classical object-oriented analysis was first proposed by
Abbott, who suggests writing an English description of the problem (or a part of a
problem) and then underlining the nouns and verbs [45]. The nouns represent
candidate objects, and the verbs represent candidate operations on them.

Abbott’s approach is useful because it is simple and because it forces the devel-
oper to work in the vocabulary of the problem space. However, it is by no means a
rigorous approach, and it definitely does not scale well to anything beyond fairly
trivial problems. Human language is a terribly imprecise vehicle of expression, so
the quality of the resulting list of objects and operations depends on the writing
skill of its author. Furthermore, any noun can be verbed, and any verb can be
nouned; therefore, it is easy to skew the candidate list to emphasize either objects
or operations.

Structured Analysis

Some organizations have tried to use the products of structured analysis as a front
end to object-oriented design. This technique appears appealing only because a
large number of analysts are skilled in structured analysis, and computer-aided
software engineering (CASE) tools exist that support the automation of these
methods. Personally, we discourage the use of structured analysis as a front end to
object-oriented design.

This approach starts with an essential model of the system, as described by data
flow diagrams and the other products of structured analysis. These diagrams pro-
vide a reasonably formal model of the problem. From this model, we may pro-
ceed to identify the meaningful classes and objects in our problem domain in
three different ways.

CHAPTER 4 CLASSIFICATION 137

McMenamin and Palmer suggest starting with an analysis of the data dictionary
and proceeding to analyze the model’s context diagram. As they state, “With your
list of essential data elements, think about what they tell you or what they
describe. If they were adjectives in a sentence, for instance, what nouns would
they modify? The answers to this question make up the list of candidate objects”
[47]. These candidate objects typically derive from the surrounding environment,
from the essential inputs and outputs, and from the products, services, and other
resources managed by the system.

The next two techniques involve analyzing individual data flow diagrams. Given
a particular data flow diagram (using the terminology of Ward and Mellor [48]),
candidate objects may be derived from the following:

External entities
Data stores

]
n
m Control stores
]

Control transformations

Candidate classes derive from two sources:

m Data flows
m Control flows

This leaves us with data transformations, which we assign either as operations on
existing objects or as the behavior of an object we invent to serve as the agent
responsible for this transformation.

Seidewitz and Stark suggest another technique, which they call abstraction
analysis. Abstraction analysis focuses on the identification of central entities,
which are similar in nature to central transforms in structured design. As they
state, “In structured analysis, input and output data are examined and followed
inwards until they reach the highest level of abstraction. The processes between
the inputs and the outputs form the central transform. In abstraction analysis a
designer does the same, but also examines the central transform to determine
which processes and states represent the best abstract model of what the system
does” [49]. After identifying the central entity in a particular data flow diagram,
abstraction analysis proceeds to identify all the supporting entities by following
the afferent and efferent data flows from the central entity and grouping the pro-
cesses and states encountered along the way. In practice, Seidewitz and Stark
have found abstraction analysis a difficult technique to apply successfully, and as
an alternative they recommend object-oriented analysis methods [50].

We must strongly emphasize that structured design, as normally coupled with
structured analysis, is entirely orthogonal to the principles of object-oriented

138

SECTION | CONCEPTS

4.3

design. Our experience indicates that using structured analysis as a front end to
object-oriented design often fails when the developer is unable to resist the urge
to fall back into the abyss of the structured design mindset. Another very real dan-
ger is the fact that many analysts tend to write data flow diagrams that reflect a
design rather than an essential model of the problem. It is tremendously difficult
to build an object-oriented system from a model that is so obviously biased
toward algorithmic decomposition. This is why we prefer object-oriented analysis
as the front end to object-oriented design: There is simply less danger of polluting
the design with preconceived algorithmic notions.

If you must use structured analysis as a front end, for whatever honorable rea-
sons,* we suggest that you stop writing data flow diagrams as soon as they start to
smell of a design instead of an essential model. Also, it is a healthy practice to
walk away from the products of structured analysis once the design is fully under
way. Remember that the products of development, including data flow diagrams,
are not ends in themselves; they should be viewed simply as tools along the way
that aid the developer’s intellectual comprehension of the problem and its imple-
mentation. One typically writes a data flow diagram and then invents the mecha-
nisms that implement the desired behavior. Practically speaking, the very act of
design changes the developer’s understanding of the problem. Thus, only the
products of structured analysis that are at a sufficiently high level of abstraction
should be retained. They capture an essential model of the problem and so lend
themselves to any number of different designs.

Key Abstractions and Mechanisms

A key abstraction is a class or object that forms part of the vocabulary of the prob-
lem domain. The primary value of identifying such abstractions is that they give
boundaries to our problem; they highlight the things that are in the system and
therefore relevant to our design, and they suppress the things that are outside the
system and therefore superfluous.

In the previous chapter, we used the term mechanism to describe any structure
whereby objects collaborate to provide some behavior that satisfies a requirement
of the problem. Whereas the design of a class embodies the knowledge of how
individual objects behave, a mechanism is a design decision about how collec-
tions of objects cooperate. Mechanisms thus represent patterns of behavior.

Let us now discuss the identification and refinement of these key abstractions and
mechanisms.

4. Political and historical reasons are distinctly not honorable.

CHAPTER 4 CLASSIFICATION 139

Identifying Key Abstractions

The identification of key abstractions is highly domain-specific. As Goldberg
states, the “appropriate choice of objects depends, of course, on the purposes
to which the application will be put and the granularity of information to be
manipulated” [51].

As we mentioned earlier, the identification of key abstractions involves two pro-
cesses: discovery and invention. Through discovery, we come to recognize the
abstractions used by domain experts; if the domain expert talks about it, the
abstraction is usually important [52]. Through invention, we create new classes
and objects that are not necessarily part of the problem domain but are useful arti-
facts in the design or implementation. For example, a customer using an auto-
mated teller speaks in terms of accounts, deposits, and withdrawals; these words
are part of the vocabulary of the problem domain. A developer of such a system
uses these same abstractions but must also introduce new ones, such as databases,
screen managers, lists, queues, and so on. These key abstractions are artifacts of
the particular design, not of the problem domain.

Refining Key Abstractions

Once we identify a certain key abstraction as a candidate, we must evaluate it
according to the metrics described in the previous chapter. As Stroustrup suggests,
“Often this means that the programmer must focus on the questions: how are
objects of this class created? Can objects of this class be copied and/or destroyed?
What operations can be done on such objects? If there are no good answers to
such questions, the concept probably wasn’t ‘clean’ in the first place, and it might
be a good idea to think a bit more about the problem and the proposed solution
instead of immediately starting to ‘code around’ the problems” [53].

Given a new abstraction, we must place it in the context of the existing class and
object hierarchies we have designed. Practically speaking, this is neither a top-
down nor a bottom-up activity. As Halbert and O’Brien observe, “You do not
always design types in a type hierarchy by starting with a supertype and then cre-
ating the subtypes. Frequently, you create several seemingly disparate types, real-
ize they are related, and then factor out their common characteristics into one or
more supertypes. . . . several passes up and down are usually required to produce
a complete and correct program design” [54]. This is not a license to hack, but an
observation, based on experience, that object-oriented design is both incremental
and iterative. Stroustrup makes a similar observation when he notes that “the most
common reorganizations of a class hierarchy are factoring the common part of
two classes into a new class and splitting a class into two new ones” [55].

140

SECTION | CONCEPTS

Placing classes and objects at the right levels of abstraction is difficult. Some-
times we may find a general subclass and so may choose to move it up in the class
structure, thus increasing the degree of sharing. This is called class promotion
[56]. Similarly, we may find a class to be too general, thus making inheritance by
a subclass difficult because of the large semantic gap. This is called a grainsize
conflict [57]. In either case, we strive to identify cohesive and loosely coupled
abstractions, so as to mitigate these two situations.

—/7LOOK AT THE
QUADRUPED RECUINING |~
ON THE VERANDA

Classes and objects should be at the right level of abstraction:
neither too high nor too low.

Naming Key Abstractions

Naming things properly—so that they reflect their semantics—is often treated
lightly by most developers yet is important in capturing the essence of the
abstractions we are describing. Software should be written as carefully as English
prose, with consideration given to the reader as well as to the computer [58].
Consider for a moment all the names we may need just to identify a single object:
We have the name of the object itself, the name of its class, and the name of the
module in which that class is declared. Multiply this by thousands of objects and
possibly hundreds of classes, and you have a very real problem.

We offer the following suggestions.

m Objects should be named with proper noun phrases, such as theSensor
or just simply shape.

CHAPTER 4 CLASSIFICATION 141

m Classes should be named with common noun phrases, such as Sensor or
Shape.

m The names chosen should reflect the names used and recognized by the
domain experts, whenever possible.

m Modifier operations should be named with active verb phrases, such as
draw or moveLeft.

m Selector operations should imply a query or be named with verbs of the
form “to be,” such as extentOf or isOpen.

m The use of underscores and styles of capitalization are largely matters of
personal taste. No matter which cosmetic style you use, at least have your
programs be self-consistent.

Identifying Mechanisms

Consider a system requirement for an automobile: Pushing the accelerator should
cause the engine to run faster, and releasing the accelerator should cause the
engine to run slower. How this actually comes about is absolutely immaterial to
the driver. Any mechanism may be employed as long as it delivers the required
behavior, and thus which mechanism is selected is largely a matter of design
choice. More specifically, any of the following designs might be considered.

m A mechanical linkage connects the accelerator directly to the fuel injectors.

m An electronic mechanism connects a pressure sensor below the accelerator
to a computer that controls the fuel injectors (a drive-by-wire mechanism).

m No linkage exists. The gas tank is placed on the roof of the car, and gravity
causes fuel to flow to the engine. Its rate of flow is regulated by a clip
around the fuel line; pushing on the accelerator pedal eases tension on the
clip, causing the fuel to flow faster (a low-cost mechanism).

Which mechanism a developer chooses from a set of alternatives is most often a
result of other factors, such as cost, reliability, manufacturability, and safety.

Just as it is rude for a client to violate the interface of another object, so it is
socially unacceptable for objects to step outside the boundaries of the rules of
behavior dictated by a particular mechanism. Indeed, it would be surprising for a
driver if stepping on an accelerator turned on the car’s lights instead of causing
the engine to run faster.

Whereas key abstractions reflect the vocabulary of the problem domain, mecha-
nisms are the soul of the design. During the design process, the developer must
consider not only the design of individual classes but also how instances of these
classes work together. Again, the use of scenarios drives this analysis process.

142

SECTION | CONCEPTS

Mechanisms are the means whereby objects collaborate to
provide some higher-level behavior.

Once a developer decides on a particular pattern of collaboration, the work is dis-
tributed among many objects by defining suitable methods in the appropriate
classes. Ultimately, the protocol of an individual class encompasses all the opera-
tions required to implement all the behavior and all the mechanisms associated
with each of its instances.

Mechanisms thus represent strategic design decisions, as does the design of a
class structure. In contrast, however, the interface of an individual class is more of
a tactical design decision. These strategic decisions must be made explicitly;
otherwise, we will end up with a mob of relatively uncooperative objects, all
pushing and shoving to do their work with little regard for other objects. The most
elegant, lean, and fast programs embody carefully engineered mechanisms.

Mechanisms as Patterns

Mechanisms are actually one in a spectrum of patterns we find in well-structured
software systems. At the low end of the food chain, we have idioms. An idiom is
an expression peculiar to a certain programming language or application culture,
representing a generally accepted convention for use of the language.’ For exam-

5. One defining characteristic of an idiom is that ignoring or violating the idiom has imme-
diate social consequences: You are branded as a yahoo or, worse, an outsider, unworthy of
respect.

CHAPTER 4 CLASSIFICATION 143

ple, in CLOS, no programmer would use underscores in function or variable
names, although this is common practice in Ada [59]. Part of the effort in learning
a programming language is learning its idioms, which are usually passed down
as folklore from programmer to programmer. However, as Coplien points out,
idioms play an important role in codifying low-level patterns. He notes that
“many common programming tasks [are] idiomatic” and therefore identifying
such idioms allows “using C++ constructs to express functionality outside the
language proper, while giving the illusion of being part of the language” [60].

Whereas idioms are part of a programming culture, at the high end of the food
chain, we have frameworks. A framework is a collection of classes that provides a
set of services for a particular domain; a framework thus exports a number of
individual classes and mechanisms that clients can use or adapt. Frameworks rep-
resent reuse in the large. They are often the product of commercial ventures, such
as Microsoft’s .NET Framework, or open source efforts such as Apache Software
Foundation’s Struts framework and the JUnit testing framework (Erich Gamma
and Kent Beck), among many others.

Examples of Mechanisms

Consider the drawing mechanism commonly used in graphical user interfaces.
Several objects must collaborate to present an image to a user: a window, a view,
the model being viewed, and some client that knows when (but not how) to dis-
play this model. The client first tells the window to draw itself. Since it may
encompass several subviews, the window next tells each of its subviews to draw
themselves. Each subview in turn tells its model to draw itself, ultimately result-
ing in an image shown to the user. In this mechanism, the model is entirely decou-
pled from rendering of the window and view in which it is presented. This is the
model-view-controller paradigm (MVC pattern) [61]. A similar mechanism is
employed in almost every object-oriented graphical user interface framework.

Mechanisms thus represent a level of reuse that is higher than the reuse of indi-
vidual classes. For example, the MVC paradigm is used extensively in the Small-
talk user interface. The MVC paradigm in turn builds on another mechanism, the
dependency mechanism, which is embodied in the behavior of the Smalltalk base
class Model and thus pervades much of the Smalltalk class library.

Examples of mechanisms and patterns may be found in virtually every domain.
For example, the structure of an operating system may be described at the highest
level of abstraction according to the mechanism used to dispatch programs. In
artificial intelligence, a variety of mechanisms have been explored for the design
of reasoning systems. One of the most widely used paradigms is the blackboard
mechanism, in which individual knowledge sources independently update a
blackboard. There is no central control in such a mechanism, but any change to

144

SECTION | CONCEPTS

the blackboard may trigger an agent to explore some new problem-solving path
[63]. Coad has similarly identified a number of common mechanisms in object-
oriented systems, including patterns of time association, event logging, and
broadcasting [64]. In each case, these mechanisms manifest themselves not as
individual classes but as the structure of collaborating classes.

This completes our study of classification and of the concepts that serve as the
foundation of object-oriented design. The next three chapters focus on notation,
process, and pragmatics.

Summary

The identification of classes and objects is a fundamental issue in object-
oriented analysis and design; identification involves both discovery and
invention.

Classification is fundamentally a problem of clustering.

Classification is an incremental and iterative process, made difficult because
a given set of objects may be classified in many equally proper ways.

The three approaches to classification include classical categorization (clas-
sification by properties), conceptual clustering (classification by concepts),
and prototype theory (classification by association with a prototype).
Scenarios are a powerful tool of object-oriented analysis and can be used in
approaches such as classical analysis, behavior analysis, domain analysis,
and use case analysis.

Key abstractions reflect the vocabulary of the problem domain and may
either be discovered from the problem domain or invented as part of the
design.

Mechanisms denote strategic design decisions regarding the collaborative
activity of many different kinds of objects.

Section II

Method

Which innovation leads to a successful design and which to a failure is not
completely predictable. Each opportunity to design something new, either
bridge or airplane or skyscraper, presents the engineer with choices that may
appear countless. The engineer may decide to copy as many seemingly good
features as he can from existing designs that have successfully withstood the
forces of man and nature, but he may also decide to improve upon those
aspects of prior designs that appear to be wanting.

HENRY PETROSKI
To Engineer Is Human

For any technology to become successful in the marketplace, certain
things need to happen. A critical mass of users, who have proven success
using the technology, needs to develop. This attracts investment in that
technology area by others. For that critical mass to develop, a common
language is very beneficial so that knowledge in that technology domain
can easily be taught, exchanged, and disseminated.

In order for the technology to do well in the mainstream market, a key part
of the knowledge to be disseminated is how the technology can be suc-
cessfully used or developed (i.e., what is the process) and how this all can
be done efficiently and effectively. That is what this section addresses: a
common, standard language (the Unified Modeling Language), a process,
and the pragmatics of object-oriented analysis and design.

145

This page intentionally left blank

5.1

Chapter 5

Notation

The act of drawing a diagram does not constitute analysis or design. A
diagram simply captures a statement of a system’s behavior (for analysis),
or the vision and details of an architecture (for design). If you follow the
work of any engineer—software, civil, mechanical, chemical, architectural,
or whatever—you will soon realize that the one and only place that a sys-
tem is conceived is in the mind of the designer. As this design unfolds over
time, it is often captured on such high-tech media as whiteboards, nap-
kins, and the backs of envelopes [1].

The Unified Modeling Language

Having a well-defined and expressive notation is important to the process of
software development. First, a standard notation makes it possible for an analyst
or developer to describe a scenario or formulate an architecture and then unam-
biguously communicate those decisions to others. Draw an electrical circuit, and
the symbol for a transistor will be understood by virtually every electrical engi-
neer in the world. Similarly, if an architect in New York City drafts the plans for a
house, a builder in San Francisco will have little trouble understanding where to
place doors, windows, and electrical outlets, given the details of the blueprints.
Second, as Whitehead states in his seminal work on mathematics, “By relieving
the brain of all unnecessary work, a good notation sets it free to concentrate on
more advanced problems” [2]. Third, an expressive notation makes it possible to
eliminate much of the tedium of checking the consistency and correctness of
these decisions by using automated tools. As a report by the Defense Science
Board states, “Software development is and always will be a labor-intensive tech-
nology. . . . Although our machines can do the dog-work and can help us keep

147

148

SECTION Il METHOD

track of our edifices, concept development is the quintessentially human activity. . . .
The part of software development that will not go away is the crafting of concep-
tual structures; the part that can go away is the labor of expressing them” [3].

A Brief Historical Perspective

The Unified Modeling Language (UML) is the primary modeling language used
to analyze, specify, and design software systems. As object-oriented program-
ming languages began to see use in the software industry, as cited in Chapter 2,
object-oriented methodologies began to appear. From the late 1980s and well into
the 1990s, numerous methodologies arose and were subsequently modified and
refined. Many of these were strong in certain areas, weaker in others. This gave
rise to methodologists adopting useful facets from other methodologies into their
own. This reflected what the object-oriented practitioners were doing in the work-
ing world. While the practitioners may have been, for the most part, following a
particular methodology, as other useful ideas entered the marketplace, they would
weave these ideas into their daily work.

In the mid-1990s, Booch, Rumbaugh, and Jacobson joined forces at Rational
Software Corporation and began to meld their respective methodologies to create
what would be the first version of the UML. They then began to work with other
methodologists and companies to propose a standard modeling language to the
Object Management Group (OMG), a consortium that creates and maintains stan-
dards for the computer industry. In November 1997 the OMG adopted the UML
as a standard. Since then the OMG has assumed the stewardship and ongoing
development of the UML.

There have been numerous revisions of the UML since its adoption. UML 2.0 is
the version discussed in this text. Many books have chronicled the detailed his-
tory of the development of the UML. For more information, see Appendix B,
Further Reading.

Models and Multiple Views

As in many other disciplines (e.g., electronics, chemistry, architecture, music)
that have their unique notations for representing the artifacts they create, the
UML is used to model (i.e., represent) the system being built. Taken in total, the
UML model that you build will represent, to a certain level of fidelity, the real
system that will be constructed. However, it is impossible to capture all the subtle
details of a complex software system in just one large diagram. The UML has
numerous types of diagrams, each providing a certain view of your system. As
Kleyn and Gingrich observe, “One must understand both the structure and the

CHAPTER5 NOTATION 149

function of the objects involved. One must understand the taxonomic structure of
the class objects, the inheritance mechanisms used, the individual behaviors of
objects, and the dynamic behavior of the system as a whole. The problem is
somewhat analogous to that of viewing a sports event such as tennis or a football
game. Many different camera angles are required to provide an understanding of
the action taking place. Each camera reveals particular aspects of the action that
could not be conveyed by one camera alone” [4].

For example, consider an application comprising several hundred classes. It is
impossible and in fact unnecessary to produce a single diagram that shows all of
these classes and all of their relationships. Rather, we would use several class dia-
grams, each of which presents one view of the model. One diagram might show
the inheritance lattice of certain key classes; another might show the transitive
closure of all classes used by one particular class. At times when the model is sta-
ble (what we speak of as a steady state), all such diagrams remain semantically
consistent with one another and with the model. For example, if in a given inter-
action (which we describe in an object diagram), object A passes the message M to
object B, then M must be defined for B’s class either directly or indirectly. In a cor-
responding class diagram, there must be an appropriate relationship between the
classes of A and B, such that instances of A’s class can in fact invoke message M on
instances of class B.

Across all diagrams, all entities with the same name are considered to be refer-
ences to the same model item. For example, if class C appears in two different
diagrams for the same system, both are references to the same class C. The excep-
tion to this rule is for operations, whose names may be overloaded.

Diagram Taxonomy

UML diagrams can be classified into two groups: structure diagrams and behav-
ior diagrams (see Figure 5-1). This dichotomy parallels the discussion of com-
plexity in Chapter 1. System complexity is driven both by the number and
organization of elements in the system (i.e., structure) and the manner in which
all these elements collaborate to perform their function (i.e., behavior).

Structure Diagrams

These diagrams are used to show the static structure of elements in the system.
They may depict such things as the architectural organization of the system, the
physical elements of the system, its runtime configuration, and domain-specific
elements of your business, among others. The UML structure diagrams include
the following:

150

SECTION Il METHOD

UML Diagrams

Structure Diagrams

Package
Diagram

Class
Diagram

Component
Diagram

Deployment
Diagram

Object
Diagram

Composite
Structure
Diagram

Behavior Diagrams

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Interaction Diagrams

Sequence Communication
Diagram Diagram

Interaction Timing
Overview Diagram
Diagram

Figure 5-1 The Diagrams of the UML

Package diagram
Class diagram
Component diagram
Deployment diagram
Object diagram

Structure diagrams are often used in conjunction with behavior diagrams to depict
a particular aspect of your system. Each class may have an associated state

machine diagram that indicates the event-driven behavior of the class’s instances.
Similarly, in conjunction with an object diagram representing a scenario, we may
provide an interaction diagram to show the time or event ordering of messages as

they are evaluated.

Composite structure diagram

CHAPTER5 NOTATION 151

Behavior Diagrams

The diagrams we have introduced thus far are largely static. However, events
happen dynamically in all software-intensive systems: Objects are created and
destroyed, objects send messages to one another in an orderly fashion, and in
some systems, external events trigger operations on certain objects. Not surpris-
ingly, describing dynamic behavior in a static medium such as a sheet of paper is
a difficult problem, but it confronts virtually every scientific discipline. In object-
oriented development, we express the dynamic behavioral semantics of a problem
or its implementation through the following additional diagrams:

Use case diagram
Activity diagram

State machine diagram
Interaction diagrams

m Sequence diagram

m Communication diagram

m Interaction overview diagram
m Timing diagram

We will present the UML elements that comprise these diagrams later in this chapter.

The Use of Diagrams in Practice

The fact that the UML is a detailed specification does not mean that every aspect
of it must be used at all times. In fact, a proper subset of this notation is sufficient
to express the semantics of a large percentage of analysis and design issues. We
will highlight this subset during our presentation of the notation in this chapter.
Why, then, bother with the detail beyond this subset? Quite simply, such detail is
necessary to express certain important tactical decisions (as we’ll show in the
Applications section of this book). Additionally, some detail exists in the infra-
structure of the UML, of interest to tool vendors, which facilitates the creation of
forward-engineering and reverse-engineering tools. Such internal details enable
the integration of front-end CASE tools that support this notation together with
software development environments that focus on manipulating the products of
the object-oriented programming language.

As Weinberg notes, “In other design fields, such as architecture, the rough sketch
is the most frequently used graphic device, and precise detailed drawings are
rarely used at all until the creative part of the design work is finished” [5].
Remember, a notation is only a vehicle for capturing the reasoning about the
behavior and architecture of a system; a notation is not an end in itself. Therefore,
you should apply only those elements of the notation that are necessary to convey

152

SECTION Il METHOD

the intended meaning, and nothing more. Just as it is dangerous to overspecify a
set of requirements, so it is dangerous to overspecify a solution to a problem. For
example, on a blueprint, an architect may show the general location of a light
switch in a room, but its exact location will not be established until the construc-
tion manager and owner do an electrical walkthrough, after the house has been
framed. It would be foolish to specify the precise three-dimensional coordinates
of the light switch on the blueprint (unless, of course, this detail is functionally
important to the owner; perhaps the owner’s family is significantly taller or
shorter than average). Thus, if the analysts, designers, and implementers of a rela-
tively small software system are highly skilled and have already established a
close working relationship, rough sketches may suffice (although it will still be
necessary to leave a legacy of the architectural vision for the sake of the system’s
maintainers). In practice, this is rarely the case. If, on the other hand, the system is
large and software-intensive, or the implementers are not quite so skilled, or if the
developers are separated by geography, time, or contract, more detail will be
required during the development process.

Conceptual, Logical, and Physical Models

The models of your system may present various levels of detail as your system
development progresses and matures over time. The conceptual model captures
the system in terms of the domain entities that exist (or will exist) and their asso-
ciation with other such entities of your system. The conceptual level of modeling
is performed using the terminology of your business domain and should be tech-
nology-agnostic. The logical view of a system takes the concepts created in the
conceptual model and establishes the existence and meaning of the key abstrac-
tions and mechanisms that will determine the system’s architecture and overall
design. The physical model of a system describes the concrete software and hard-
ware composition of the system’s implementation. Obviously, the physical model
is technology-specific.

On a given project, over time, the system’s design will evolve from conceptual,
through logical, to physical levels of maturity. Which diagrams are used at vari-
ous points in the development lifecycle varies. Some diagrams are used only early
in the development lifecycle. Some are used, at varying levels of detail, through-
out the lifecycle. Usage can also vary depending on the type of system you are
building. For example, a stockbroker’s investment trading system would use
many more state machine diagrams and timing diagrams than a simple checkbook
application would.

For a given project, the products of analysis and design are expressed through
these models. Collectively, these different models are semantically rich: They are
expressive enough to allow a developer to capture all of the interesting strategic
and tactical decisions that need to be made during the analysis of a system as well

CHAPTER5 NOTATION 153

as during the formulation of its architecture, and they are complete enough to
serve as blueprints for implementation in almost any object-oriented program-
ming language.

The Role of Tools

The notation described in this chapter can be used manually, although for larger
applications it cries out for automated tool support. Given automated support for
any notation, one of the things that tools can do is help bad designers create
ghastly designs much more quickly than they ever could without them. Great
designs come from great designers, not from great tools. Tools simply empower
the individual, freeing him or her to concentrate on the truly creative aspects of
analysis or design. Thus, there are some things that tools can do well and some
things that tools cannot do at all.

Tools can provide consistency checking, constraint checking, completeness
checking, and analysis, and they can help a developer browse through the prod-
ucts of analysis and design in unconstrained ways. For example, while looking at
a component diagram, a developer might want to study a particular mechanism;
he or she can use a tool to locate all the classes allocated to a particular compo-
nent. While looking at a sequence diagram describing a scenario, the developer
might want to see the inheritance lattice. If this scenario involved an active object,
the developer might use a tool to find the processor to which this thread of control
is allocated and then view an animation of its class’s state machine on that proces-
sor. Freed from the tedium of keeping all the details of the analysis and design
consistent, developers who use such tools can focus on the creative parts of the
development process.

On the other hand, a tool cannot tell us that we ought to invent a new class so as to
simplify our class structure; that takes human insight. We might consider trying to
use some expert system as such a tool, but this requires (1) a person who is an
expert both in object-oriented development and in the problem domain and (2) the
ability to articulate classification heuristics, as well as a great deal of common-
sense knowledge. We don’t expect such comprehensive, all-knowing tools to
replace designers in the near future; in the meantime, we have real systems to create.

The Products of Object-Oriented Development

Typically, the analysis of a system will include sets of use case and activity
diagrams (to express the behavior of the system through scenarios), class
diagrams (to express the roles and responsibilities of agents that provide the
system’s behavior), and interaction and/or state machine diagrams (to show the
event-ordered behavior of these agents). Similarly, the architecture of a system may

154

SECTION Il METHOD

include sets of package diagrams, class diagrams, object diagrams, component
diagrams, and deployment diagrams, as well as their corresponding dynamic views.

End-to-end connectivity exists among these diagrams, permitting us to trace
requirements from implementation back to specification. Starting with a deploy-
ment diagram, a node may host an artifact that manifests a component that is
defined in some component diagram. This component diagram may encompass
the definition of a collection of classes whose definitions we will find in the
appropriate class diagram. Finally, the definitions of individual classes point to
our use cases and requirements because these classes in general directly reflect
the vocabulary of the problem space.

Scaling Up and Scaling Down

We have found the UML applicable both to small systems consisting of just a
dozen or so classes and to ones consisting of several thousand classes. As we will
see in the next two chapters, this notation is particularly applicable to an incre-
mental, iterative approach to development. You do not create a diagram and then
walk away from it, treating it as some sacred, immutable artifact. Rather, these
diagrams evolve during the design process as new design decisions are made and
more detail is established.

We have also found this notation to be largely language-independent. It applies to
any of a wide spectrum of object-oriented programming languages.

The Syntax and Semantics of the UML

The purpose of the remainder of this chapter is to describe the syntax and seman-
tics of the UML for object-oriented analysis and design. We will provide a few
small examples of this notation, using the problem of the Hydroponics Gardening
System that we introduced in Chapter 2. This chapter does not explain the devel-
opment process during which UML diagrams are developed; that is the topic of
Chapter 6.

To give a sense of their relationships, we present the UML 2.0 diagrams in an
order in which one might typically develop them. We believe this to be more use-
ful than, for example, presenting all structure diagrams followed by all behavior
diagrams. Specifically, the diagrams are presented in the following order:

m Section 5.2: package diagrams
m Section 5.3: component diagrams
m Section 5.4: deployment diagrams

CHAPTER5 NOTATION 155

5.2

Section 5.5: use case diagrams

Section 5.6: activity diagrams

Section 5.7: class diagrams

Section 5.8: sequence diagrams

Section 5.9: interaction overview diagrams
Section 5.10: composite structure diagrams
Section 5.11: state machine diagrams
Section 5.12: timing diagrams

Section 5.13: object diagrams

Section 5.14: communication diagrams

In Section III of this book, each chapter presents a different type of application
and focuses on a certain set of diagrams that would be most appropriate for the
application at the point in the overall lifecycle that we describe.

UML 2.0 Information Sources

The UML 2.0 notation is quite extensive and complex, as a review of the OMG
UML 2.0 Specification clearly confirms. Effective practical use of the specifica-
tion requires turning to additional resources, such as this chapter. If, after reading
the OMG UML 2.0 Specification and this chapter, you desire a further level of
explanation or detail, we suggest reviewing The Unified Modeling Language
Reference Manual, Second Edition. Appendix B lists other UML 2.0 resources.

Package Diagrams

While performing object-oriented analysis and design, you need to organize the
artifacts of the development process to clearly present the analysis of the problem
space and the associated design. The specific reasons will vary but will focus
either on physically structuring the visual model itself or on clearly representing
the model elements through multiple views. The benefits of organizing the
OOAD artifacts include the following [42]:

Provides clarity and understanding in a complex systems development
Supports concurrent model use by multiple users
Supports version control

Provides abstraction at multiple levels—from systems to classes in a
component

m Provides encapsulation and containment; supports modularity

156

SECTION Il METHOD

The primary means to accomplish this organization is the UML package diagram,
which provides us the ability to represent grouped UML elements.

The essential elements of a package diagram are packages, their visibility, and
their dependencies.

Essentials: The Package Notation

The UML package is one of the two primary notations used on a package dia-
gram. The other one is the dependency relationship, which we will describe later.
The notation for the package is a rectangle with a tab on the top left. UML 2.0
specifies that the name of the package is placed in the interior of the rectangle if
the package contains no UML elements. If it does contain elements, the name
should be placed within the tab. A tool-specific implementation of the naming
guidelines appears in Figure 5-2, which provides a black-box perspective of the
HydroponicsGardeningSystem package that does not show its contained
elements [45, 46].

When there are fewer elements to be shown because fewer exist or because we have
a focused concern, we can use the appropriate notation (package, use case, class,
component, and so on) to show these constituent pieces within the containing
package. Figure 5-3 again shows the HydroponicsGardeningSystem
package, but with two of its contained elements represented as packages themselves.
In the representation on the left, we show the Planning and Greenhouse

HydroponicsGardeningSystem

Figure 5—-2 The Package Notation for HydroponicsGardeningSystem

HydroponicsGardeningSy | HydroponicsGardeningSystem
Planning Greenhouse
Planning Greenhouse

Figure 5-3 The Package Notation for Contained Elements

CHAPTER5 NOTATION 157

packages as physically contained packages inside the HydroponicsGardening-
System package. On the right appears an alternate notation for the containment
relationship [47, 48].

Essentials: Visibility of Elements

Access to the services provided by a group of collaborating classes within a pack-
age—or more generically, to any elements within a package—is determined by
the visibility of the individual elements, including nested packages. The visibility
of the elements, defined by the containing package to be either public or private,
applies both to contained elements and to those that are imported. The concept of
importing elements will be discussed later in this section.

Visibility is defined from the perspective of the containing package, which pro-
vides the namespace for its contained elements. Because the package provides the
namespace, every contained element has a unique name, at least among other ele-
ments of its type. As an example, this means that no two classes contained within
the same namespace may have the same name [49, 50]. We will discuss this con-
cept further when we look at import and access.

Elements with public visibility can be thought of as part of the package’s interface
because these elements are visible to all other elements. Those elements with pri-
vate visibility are not visible outside the containing package. The definition of
public and private visibility is provided here, along with the corresponding nota-
tion shown in parentheses [51, 52]:

m Public (+) Visible to elements within its containing package, including
nested packages, and to external elements

m Private (-) Visible only to elements within its containing package and to
nested packages

On a visual diagram, this visibility notation is placed in front of the element
name, as shown in Figure 5—4. The GardeningPlan class has public visibility

Planning I

+GardeningPlan -PlanAnalyst

Figure 5—4 The Visibility of Elements within P1anning Package

158

SECTION Il METHOD

to permit other elements to access it, while the PlanAnalyst class has private
visibility.

Essentials: The Dependency Relationship

If an element has the appropriate visibility to afford access, a dependency rela-
tionship to it can be shown representing this access. This dependency relationship
is the other primary notation on a package diagram, as we mentioned earlier when
discussing the package notation itself. A dependency shows that an element is
dependent on another element as it fulfills its responsibilities within the system.

Dependencies between UML elements (including packages), as shown in Figure
5-5, are represented as a dashed arrow with an open arrowhead. The tail of the
arrow is located at the element having the dependency (client), and the arrowhead
is located at the element that supports the dependency (supplier). Dependencies
may be labeled to highlight the type of dependency between the elements by

HydroponicsGardeningSystem |

Planning | CropTypes |
-PlanAnalyst +CropEncyclopedia
—————————————— -
+PlanMetrics +CropDatabase
f----f------]---
+GardeningPlan

I\

“
3

1
\
[

Greenhouse N\ I
LY

\ [

T Sy

+EnvironmentalController +Nutritionist

Figure 5-5 The Dependency Notation for
HydroponicsGardeningSystem

CHAPTER5 NOTATION 159

placing the dependency type—denoted by a keyword—within guillemets (« »),
for example, «importx». Package-specific dependencies include import, access,
and merge; dependencies between packages due to the relationships of contained
elements include trace, derive, refine, permit, and use [53].

If multiple contained element dependencies exist between packages, these depen-
dencies are aggregated at the package level. A package-level dependency may be
labeled with a keyword, denoting type, inside guillemets (« ») ; however, if the
contained dependencies are of different types, the package-level dependency is
not labeled. Figure 5—6 shows the dependencies of Figure 5-5 elevated to the con-
taining package level. Note that the two individual element dependencies between
the Planning and CropTypes packages have been aggregated to the level of
the containing package [54].

HydroponicsGardeningSystem |

Planning CropTypes

Greenhouse

Figure 5—6 Aggregation of Contained Element Dependencies

Essentials: Package Diagrams

So far, we’ve discussed what could be referred to as the constituent pieces of a
package diagram:

m Package notation
m Element visibility
m Dependency relationship

The package diagram is the UML 2.0 structure diagram that contains packages as
the primary represented UML element and shows dependencies between the
packages.

160

SECTION Il METHOD

However, the package notation can be used to show the structuring and contain-
ment of many different model elements, such as classes, as shown earlier in Fig-
ures 5—4 and 5-5. It can also be used on UML diagrams that are not structure
diagrams. We alluded to this earlier when we mentioned that a package can be
used to organize use cases. This might be done for the sake of clarity in a very
large system or to partition work. An example appears in Figure 5-7, where pack-
ages are used to group use cases of the HydroponicsGardeningSystem to
facilitate their specification among two groups with different expertise—opera-
tions and support [55]. We’ll discuss actors and use cases in depth later in this
chapter.

The elements grouped in a package should typically be related in some manner,
such as the subsystems within a system, use cases related to a particular aspect of

OperateHydroponicsGardeningSystem |

Manage Garden

_’-’.”."-

Gardener Maintain Storage
Tanks

SupportHydroponicsGardeningSystem

h-‘-““--_
,.,--""'"’—

— | T

Nutritionist Update Crop
Encyclopedia /
Plan Analyst

View Reports

Manage Growing
Plan

Figure 5—-7 The Package Notation Used for Partitioning

CHAPTER5 NOTATION 161

the system, or classes that collaborate to provide a usable subset of system func-
tionality [56].

What are the criteria for deciding how to package elements? There are many dif-
ferent ways to organize a system with packages—by architectural layer, by sub-
system, by user (for use cases), and so on. Good packages are loosely coupled and
highly cohesive; that is, we should see more interaction among the elements
within a package and less between the packages. We should also strive not to
extend generalization hierarchies or aggregations across packages. Similarly, don’t
break use case include or extend relationships across packages [57]—again, this
will become clearer after our discussion of classes and use cases later in this chapter.

Every element contained within a namespace may be referred to with a qualified

name in the format of package name: : element name. Elements are permit-
ted to have the same name as long as they belong to different namespaces (reside
in different packages) [58, 59]. This leads us into the advanced concepts of import
and access.

Advanced Concepts: Import and Access

Import and access are really two sides of the same coin—import is a public pack-
age import, whereas access is a private package import. What this really means is
that in an import, other elements that have visibility into the importing package
can see the imported items. But, when a package performs an access, no other ele-
ments can see those elements that have been added to the importing package’s
namespace. These items are private; they are not visible outside the package that
performed the access [60, 61].

At this point, you’re probably wondering why we would perform a package
import or package access. Doing so gives us the ability to refer to the public ele-
ments of another namespace by using unqualified names; the importing package
adds the names of the imported elements to its namespace. However, if any of the
imported elements are of the same type and have the same name as an owned ele-
ment, they are not added to the importing namespace. Similarly, if any elements
imported from multiple different namespaces are of the same type and have the
same name, they are not added to the importing namespace [62, 63].

The import of a package’s elements can be broad or focused—all the elements
or just selected ones may be imported. Look back at Figure 5-5, which shows
the PlanAnalyst class with a dependency on the CropEncyclopedia
class. Because the P1anning package does not import or access the
CropTypes package, PlanAnalyst must use the qualified name
HydroponicsGardeningSystem: : CropTypes: : CropEncyclopedia
to reference the CropEncyclopedia class.

162

SECTION Il METHOD

To indicate that the P1anning package imports the CropTypes package, a
dependency is shown from Planning to CropTypes and is labeled with
«imports, for a public package import, as shown in Figure 5-8. This means that
both PlanAnalyst and PlanMetrics can access the CropEncyclopedia
and CropDatabase classes with their unqualified names. This is true for
PlanMetrics because its namespace (Plans package) provides it access to

the elements of outer packages within which it is nested.

HydroponicsGardeningSystem |

Planning

-PlanAnalyst
CropTypes
aimport»
____________ =
Plans
+CropEncyclopedia
+GardeningPlan | | | ____ .
1
i
k=R -- i +CropDatabase
PlanMotics «aCccessy
A
'
i «import»
|
Greenhouse |
EnvironmentalController +Gardener
-Cooler
StorageTank
-Light +NutrientTank
-Heater +WaterTank

Figure 5-8 Package Import in the HydroponicsGardeningSystem

CHAPTER5 NOTATION 163

5.3

Figure 5-8 also shows the P1anning package performing a private import of the
Plans package, as illustrated by the dependency labeled with «access». This
is necessary to allow the P1lanAnalyst class to access the GardeningPlan
and PlanMetrics classes with unqualified names. But, since an access depen-
dency is private, the Greenhouse package’s import of the P1anning package
doesn’t provide the Greenhouse package elements, such as the Gardener
class, with the ability to reference GardeningPlan and PlanMetrics with
unqualified names. In addition, the elements of the Greenhouse package can’t
even see the PlanAnalyst class because it has private visibility.

Looking inside the Greenhouse package, the Gardener class must use the
qualified names of the elements within the StorageTank package because its
namespace does not import the package. For example, it must use the name
StorageTank: : WaterTank to reference the WaterTank class. Taking this
one more step, we look at the elements within the EnvironmentalController
package. They all have private visibility. This means they are not visible outside
their namespace, that is, the EnvironmentalController package.

To summarize, an unqualified name (often called a simple name) is the name of
the element without any path information telling us how to locate it within our
model. This unqualified name can be used to access the following elements in a
package [64, 65]:

m Owned elements
m Imported elements
m Elements within outer packages

A nested package can use an unqualified name to reference the contents of its
containing package, through all levels of nesting. However, if an element in an
outer package is of the same type and has the same name as one within the inner
package, a qualified name must be used. The access situation from a containing
package’s perspective is quite different, though—the package is required to
import its nested packages to reference their elements with unqualified names
[66, 67].

Component Diagrams

A component represents a reusable piece of software that provides some mean-
ingful aggregate of functionality. At the lowest level, a component is a cluster of
classes that are themselves cohesive but are loosely coupled relative to other clus-
ters. Each class in the system must live in a single component or at the top level of
the system. A component may also contain other components.

164

SECTION Il METHOD

Components are a type of structured classifier whose collaborations and internal
structure can be shown on a component diagram. A component, collaborating
with other components through well-defined interfaces to provide a system’s
functionality, may itself be comprised of components that collaborate to provide
its own functionality. Thus, components may be used to hierarchically decompose
a system and represent its logical architecture. This logical perspective of a com-
ponent is new with UML 2.0. Previously, a component was regarded as a physical
item that was deployed within a system. Now, a component may be manifested by
an artifact that is deployed on a node [68, 69].

The essential elements of a component diagram are components, their interfaces,
and their realizations.

Essentials: The Component Notation

Since a component is a structured classifier, its detailed assembly can be

shown with a composite structure using parts, ports, and connectors.

Figure 5-9 shows the notation used to represent a component. Its name,
EnvironmentalControlSystem in this case, is included within the
classifier rectangle in bold lettering, using the specific naming convention defined
by the development team. In addition, one or both of the component tags should
be included: the keyword label «component » and the component icon shown in
the upper right-hand corner of the classifier rectangle [70, 71].

On the boundary of the classifier rectangle, we have seven ports, which are
denoted by small squares. Ports have public visibility unless otherwise noted.
Components may also have hidden ports, which are denoted by the same small
squares, but they are represented totally inside the boundary of the composite
structure, with only one edge touching its internal boundary. Hidden ports may be
used for capabilities such as test points that are not to be publicly available. Ports

AmbientTemp GardeningPlan

L1 L g]
AmbientLight «component» TempRamg
EnvironmentalControlSystem

LightingControl HeatingControl CoolingControl

Figure 5-9 The Component Notation for EnvironmentalControlSystem

CHAPTER5 NOTATION 165

are used by the component for its interactions with its environment, and they pro-
vide encapsulation to the structured classifier. These seven ports are unnamed but
should be named, in the format of port name : Port Type, when needed for
clarity. The port type is optional when naming a port [72, 73].

To the ports shown in Figure 5-9, we have connected interfaces, which define the
component’s interaction details. The interfaces are shown in the ball-and-socket
notation. Provided interfaces use the ball notation to specify the functionality that
the component will provide to its environment; Light ingControl is an
example of a provided interface. Required interfaces use the socket notation to
specify the services that the component requires from its environment;
AmbientTemp is one of the required interfaces [74, 75].

This representation of EnvironmentalControlSystemis considered a
black-box perspective since we see only the functionality required or provided by
the component at its boundary. We are not able to peer inside and see the encapsu-
lated components or classes that actually provide the functionality.

A one-to-one relationship between ports and interfaces is not required; ports can
be used to group interfaces, as shown in Figure 5-10. This may be done, for
example, to provide clarity in a very complex diagram or to represent the inten-
tion of having one port through which certain types of interactions will take place.
In Figure 5-10, the ambient measurements of light and temperature are received
at one port. Similarly, the gardening plan and temperature ramp information
provided by the staff of the Hydroponics Gardening System are received at a
single port. Note that the interface names are separated by a comma when using
this notation. On these complex ports, we could alternately show separate inter-
faces such that one port would contain two required interfaces, one named
AmbientLight and the other named AmbientTemp, and the other port
would contain a required interface named GardeningPlan and another one
named TempRamp [76, 77].

AmbientLight, AmbientTemp GardeningPlan, TempRamg

E g

«component»
EnvironmentalControlSystem

g]

LightingControl HeatingControl CoolingControl

Figure 5-10 The Component Notation with Interface Grouping

166

SECTION Il METHOD

Essentials: The Component Diagram

During development, we use component diagrams to indicate the logical layering
and partitioning of our architecture. In them, we represent the interdependencies
of components, that is, their collaborations through well-defined interfaces to pro-
vide a system’s functionality. Figure 5-11 shows the component diagram for
EnvironmentalControlSystem. This white-box perspective shows the
four encapsulated components that provide its functionality: Environmental
Controller, LightingController, HeatingController, and
CoolingController [78, 79].

As in Figure 5-9, the ball-and-socket notation is used to specify the required and
provided interfaces of each of the components. The interfaces between the com-
ponents are called assembly connectors; they are also known as interface connec-
tors. Though the assembly connectors are shown in the ball-and-socket notation,
we could have used a straight line to represent each connection. However, this
would not be as informative. The interface between Environmental
Controller and CoolingController is shown with a dependency to
illustrate another form of representation. This dependency is actually redundant
because the interface names are the same: CoolControl [80, 81].

Previously, we mentioned the reusable nature of components. For example, as long
as another component fulfills the requirements of Light ingController’s

AmbientTemp GardeningPlan

I T

AmbientLight a
«components

— EnvironmentalController —(

l CoolCaontrol

LightControl {) S~

HeatControl

TempRamp

) "\I_/ CoolControl

g] g] &]

«components
LightingController

5

LightingControl

«component»
HeatingController

5

HeatingControl

«component»
CoolingController

!

CoolingControl

Figure 5-11 The Component Diagram for EnvironmentalControlSystem

CHAPTER5 NOTATION 167

interfaces, it may replace Light ingController within Environmental
ControlSystem. This property of components means that we may more easily
upgrade our system as needed. In fact, the entire contents of Environmental
ControlSystem may be replaced, as long as its required and provided inter-
face requirements are met by its contained components.

Essentials: Component Interfaces

If we need to show more details about a component’s interfaces, we may provide
an interface specification, as shown in Figure 5-12. In our case, the specification
focuses on only two of the seven interfaces of EnvironmentalController:
CoolControl and AmbientTemp [82, 83].

EnvironmentalController realizes the CoolControl interface; this
means that it provides the functionality specified by the interface. This functional-
ity is starting, stopping, setting the temperature, and setting the fan speed for any
component using the interface, as shown by the contained operations. These oper-
ations may be further detailed with parameters and return types, if needed. The
CoolingController component (shown in Figure 5-11) requires the func-
tionality of this interface.

Figure 5-12 also shows the dependency of the EnvironmentalController
component on the Ambient Temp interface. Through this interface,
EnvironmentalController acquires the ambient temperature that it
requires to fulfill its responsibilities within the EnvironmentalControl
System component.

winterface»
CoolControl

EELY <t--------------1 «components

stop() EnvironmentalController
setTemp()

setFanSpeed()

+ + + +

T
'
'
'
| ause»
'
'
'

V
winterface»
AmbientTemp

+ getAmbientTemp()

Figure 5—-12 The Specification of Two Interfaces for
EnvironmentalController

168

SECTION Il METHOD

«components
EnvironmentalController

«provided interfaces»
LightControl
HeatControl
CoolControl

start()

stop()
setTemp()
setFanSpeed()

«required interfaces»
AmbientLight
AmbientTemp

getAmbientTemp()
GardeningPlan
TempRamp

«realizations»
Plan
Controller
Sensorinput

Figure 5-13 An Alternate Notation for EnvironmentalController’s
Interfaces and Realizations

In Figure 5-13, we show an alternate notation for the interfaces of
EnvironmentalController. Here we see the three provided interfaces
listed under the heading «<provided interfacesx. Forthe CoolControl
interface specified in Figure 5-12, we have provided the associated operations.
Likewise, the required interfaces are shown under the heading «required
interfaces», along with three classes listed under the «realizations»
heading [84, 85]. We discuss the concept of realizations in the next section.

Essentials: Component Realizations

Figure 5-13 specifies that the EnvironmentalController component is
realized by the classes Plan, Controller, and SensorInput. These three
classes provide all of the functionality advertised by its provided interfaces. But, in
doing so, they require the functionality specified by its required interfaces [86, 87].

This realization relationship between the EnvironmentalController com-
ponent and the P1an, Controller, and SensorInput classes is shown in
Figure 5-14. Here, we see a realization dependency from each of the classes to
EnvironmentalController. This same information may be represented
with a containment relationship, as shown in Figure 5-15; each of the classes is
physically contained by the EnvironmentalController component. The
naming convention used for these internal classifiers is tool-specific. Also, note
the associations between the classes and the specification of multiplicity [88].

CHAPTER5 NOTATION

169

AmbientLight

.

AmbientTemp

;

GardeningPlan

;

LightControl TempRamp
«components
HeatControl EnvironmentalController CoolControl
SN S V3
s : » -~
JI H » -~
, H ~
arealizex arealizen wrealizes
P E N
Plan Controller Sensorinput

Figure 5—14 The Realization Dependencies for EnvironmentalController

AmbientLight

I I

AmbientTemp

GardeningPlan

I I

TempRamp

«components
EnvironmentalController

g]

EnvironmentalController:: EnvironmentalController:: EnvironmentalController::
Plan Controller Sensorinput
1 1
LightControl HeatControl CoolControl

Figure 5-15 The Containment Representation of
EnvironmentalController’s Realization

Advanced Concepts: A Component’s Internal

Structure

The internal structure of a component may be shown by using an internal struc-
ture diagram; Figure 5—16 shows just such a diagram for the Environmental

ControlSystem subsystem. In this example, we have changed its keyword

label from «components», as shown in Figure 5-9, to «subsystem» because
it is comprised of four components of some complexity that are logically related.
Of course, this is a judgment call; the label could reasonably be left as

«component». In addition, Figure 5-16 contains a notation that we haven’t

170

SECTION Il METHOD

encountered yet, the «<delegate» label on the lines between the interfaces of
the internal components and the ports on the edge of the Environmental
ControlSystem. These connections provide the means to show which internal
component fulfills the responsibility of the provided interfaces and which internal
component needs the services shown in the required interfaces [89, 90].

Subsystems partition the logical model of a system. A subsystem is an aggregate
containing other subsystems and other components. Each component in the sys-
tem must live in a single subsystem or at the top level of the system. In practice, a
large system has one top-level component diagram, consisting of the subsystems
at the highest level of abstraction. Through this diagram a developer comes to
understand the general logical architecture of a system.

Here we have more of a sense of EnvironmentalControlSystemasa
reusable component (or subsystem, if you wish) than we did with Figure 5-11.
We use ports at its boundary and show that the responsibility for fulfilling the
“contract” of an interface has been delegated to one or more of the component’s

AmbientTemp GardeningPlan
«subsystems»
EnvironmentalControlSystem
adelegates wdelegaten
T AmbientTemp TGardeningPlan
AmbientLight AmbientLight E TempRamp TempRamp
)—| }i— — «components —(H |—(
«delegaten» :EnvironmentalController «delegaten
LightControl @} CoolControl
HeatControl
wcomponents wcomponents wcomponents
:LightingController :HeatingController :CoolingController
LightingControl HeatingControl CoolingControl
wdelegates «delegaten «delegaten
LightingControl HeatingControl CoolingControl

Figure 5-16 The Internal Structure of EnvironmentalControlSystem

CHAPTER5 NOTATION 171

5.4

contained parts. However, remember that these contained parts may require ser-
vices from the environment of the EnvironmentalControlSystem compo-
nent, such as a gardening plan to meet this contract.

To be specific, : EnvironmentalController requires GardeningPlan,
which specifies the environmental needs (lighting, heating, and cooling) of the
Hydroponics Gardening System. The needs of this required interface are delegated
to an unnamed port, to which is attached the GardeningPlan interface. In this
manner, we know that we must provide the EnvironmentalControlSystem
component with a gardening plan if we intend to use its services. We also recog-
nize that we must provide it with AmbientLight, AmbientTemp, and
TempRamp services.

The connectors of Environmental ControlSystem provide its communication
links to its environment, as well as the means for its parts to communicate internally.
In Figure 5-16, the type of connectors new to our view of Environmental
ControlSystem are the delegation connectors to which we’ve alluded.
Through these connectors, the responsibilities (provided interfaces) of
EnvironmentalControlSystem, as well as its requirements (required
interfaces), are communicated. For example, the : LightingController
component opaquely provides the Light ingControl services. A user of
EnvironmentalControlSystem would not likely have this white-box
perspective of the subsystem [91, 92].

Deployment Diagrams

A deployment diagram is used to show the allocation of artifacts to nodes in the
physical design of a system. A single deployment diagram represents a view into
the artifact structure of a system. During development, we use deployment dia-
grams to indicate the physical collection of nodes that serve as the platform for
execution of our system.

The three essential elements of a deployment diagram are artifacts, nodes, and
their connections.

Essentials: The Artifact Notation

An artifact is a physical item that implements a portion of the software design. It
is typically software code (executable) but could also be a source file, a docu-
ment, or another item related to the software code. Artifacts may have relation-
ships with other artifacts, such as a dependency or a composition [20, 21].

172

SECTION Il METHOD

Figure 5-17 The Artifact Notation HeatingController
for HeatingController.exe

HeatingControI!er.exe':z‘]

«manifest»
1

{.--

g]

«components

The notation for an artifact consists of a class rectangle containing the name of
the artifact, the keyword label «<artifact», and an optional icon that looks like
a sheet of paper with the top right-hand corner folded over. Figure 5-17 shows the
HeatingController.exe artifact, without the optional icon.

The name of this artifact includes the extension . exe, indicating that it is an exe-
cutable (i.e., software code). The HeatingController. exe artifact has a
dependency relationship to the Heat ingController component, labeled
with «<manifestx». This means that it physically implements the component,
thereby connecting the implementation to the design. An artifact may manifest
more than one component [22].

Essentials: The Node Notation

A node is a computational resource, typically containing memory and processing,
on which artifacts are deployed for execution. Nodes may contain other nodes to
represent complex execution capability; this is shown by nesting or using a com-
position relationship. There are two types of nodes: devices and execution envi-
ronments [23, 24].

A device is a piece of hardware that provides computational capabilities, such as a
computer, a modem, or a sensor. An execution environment is software that pro-
vides for the deployment of specific types of executing artifacts; examples
include «database» and «J2EE server». Execution environments are typ-
ically hosted by a device [25].

Figure 5-18 shows the three-dimensional cube icon that we use to represent a
node, in this case, the PC and ApplicationServer nodes. The icon may be
adorned with a symbol to provide additional visual specification of the node type.
There are no particular constraints on node names because they denote hardware,
not software, entities.

CHAPTER5 NOTATION 173

PC Q

«TCP/IP»

ApplicationServer H

Figure 5-18 Notations
for Two Nodes

Nodes communicate with one another, via messages and signals, through a com-
munication path indicated by a solid line. Communication paths are usually con-
sidered to be bidirectional, although if a particular connection is unidirectional,
an arrow may be added to show the direction. Each communication path may
include an optional keyword label, such as «http» or «TCP/IP», that pro-
vides information about the connection. We may also specify multiplicity for
each of the nodes connected via a communication path.

In Figure 5-18, the communication between the PC and ApplicationServer
nodes is bidirectional. A communication path usually represents some direct
hardware coupling, such as a USB cable, an Ethernet connection, or even a path
to shared memory. However, the path could also represent more indirect cou-
plings, such as satellite-to-ground or mobile phone communications. In our case,
it represents a bidirectional connection using TCP/IP protocols. We’ve specified
the connection of one or more PC nodes to one ApplicationServer node.

Essentials: The Deployment Diagram

In Figure 5-19, we provide an example of a deployment diagram drawn primarily
from the physical architecture of the Environmental Control System within the
Hydroponics Gardening System. Here we see that our system architects have decided
to decompose this portion of our system into a network of two nodes (PC and
ApplicationServer) and two devices (LightMeter and Thermometer).
If you compare this deployment diagram to the component diagram of
EnvironmentalControlSystem (presented earlier in Figure 5-11), you
will see that it does not account for all of its interfaces; we omitted some to

174 SECTION Il METHOD

somewhat simplify our example. In addition, we show each artifact implementing
exactly one component.

«device» «devicen»
LightMeter Thermometer
v
. 1. -
«serial» «serial»
1 1
ApplicationServer j

HeatingController.exe D

LightingController.exe |:5“| CoolingController.exe ':5‘|

N
N

F

NV £

EnvironmentalController.exe [=)

1 o
by
«TCP/IP» AN
by
2 Q
PC g «deploy» GardeningPlanDeveloper.exe j
SCEEEEEEEEEEEEE
«ma_nifest»"' , /ﬂ /\
/’ - e

E ‘
s
s
«components

GardeningPlanDeveloper fdepoymentiepecy

GardeningPlanDeveloper.xml

PlanAnalyst
Figure 5-19 The Deployment Diagram for EnvironmentalControlSystem

CHAPTER5 NOTATION 175

5.5

The deployment of the EnvironmentalController.exe,
LightingController.exe, HeatingController.exe, and
CoolingController.exe artifacts on the ApplicationServer node

is indicated by containment. Another way to denote deployment is shown by

the dependency from the GardeningPlanDeveloper . exe artifact to the PC
node labeled with «deploys. A third way to denote deployment is through tex-
tually listing the artifacts within the node icon; this is especially useful for larger
or more complex deployment diagrams [26, 27].

We have three unnamed dependencies within Figure 5-19 between artifacts: from
the LightingController.exe, HeatingController.exe, and
CoolingController.exe artifactstothe EnvironmentalController
. exe artifact. These denote the dependencies between the components that they
implement, rather than deployment onto a node.

We also have another dependency, from the EnvironmentalController

. exe artifact to the GardeningPlanDeveloper . exe artifact. This relates
back to the interface on the EnvironmentalController component, which
requires a gardening plan. Here we see that the gardening plan will be developed
by PlanAnalyst using the GardeningPlanDeveloper . exe artifact,
which manifests the GardeningPlanDeveloper component. Note that
PlanAnalyst may perform this task from either of two PC nodes.

The two devices, LightMeter and Thermometer, provide the ambient light
and ambient temperature sensor readings required by the Environmental
Controller.exe artifact in support of its provision of functionality to the sys-
tem. One item we have yet to discuss is the GardeningPlanDeveloper.xml
deployment specification, which has a dependency relationship to the
GardeningPlanDeveloper.exe artifact. This deployment specification
describes deployment properties of the artifact, such as its execution and transac-
tion specifics [28].

Use Case Diagrams

Evidence over the years has shown that some of the most common reasons soft-
ware projects fail center around poor or nonexistent communication between the
key stakeholders. This is particularly critical when there is lack of alignment
between the development organization and the line of business. The business peo-
ple may know that they have a certain problem that needs to be solved, but the
development organization may receive only a general description of what the

176

SECTION Il METHOD

business wants, with few specific requirements. Would you build your home that
way? In one of the most pathological cases we’ve seen, people in one business
organization viewed communicating with developers as demeaning and poten-
tially harmful to their business careers.

Sometimes development people will have specifications but will have no idea
what the business’s goals are, that is, why they are building the system. Does the
business, interested in being a low-cost provider, want the system to reduce costs?
Or is the goal to provide high-quality, personalized service? Does the business
want to be faster or to be innovative? If the development organization does not
understand the business goals, when given a choice of approaches during design
and implementation, developers could make technical decisions that directly con-
flict with the business goals.

There is a strong need for an approach to system development that allows the
development organization to understand what the business wants while not being
cumbersome to the business staff (after all, their primary job is to run the daily
operation of the business). Use case diagrams give us that capability. Use case
diagrams are used to depict the context of the system to be built and the function-
ality provided by that system. They depict who (or what) interacts with the sys-
tem. They show what the outside world wants the system to do.

Essentials: Actors

Actors are entities that interface with the system. They can be people or other sys-
tems. Actors, which are external to the system they are using, are depicted as styl-
ized stick figures. Figure 5-20 shows two actors for the Hydroponics Gardening
System we discussed earlier.

One way to think of actors is to consider the roles the actors play. In the real
world, people (and systems) may serve in many different roles; for example, a
person can be a salesperson, a manager, a father, an artist, and so forth.

Gardener Plan Analyst

Figure 520 Actors

CHAPTER5 NOTATION 177

Essentials: Use Cases

Use cases represent what the actors want your system to do for them. Figure 5-21
depicts some use cases, shown as ovals, for the Hydroponics Gardening System.
Use cases are not just any capability that your system may provide. A use case
must be a complete flow of activity, from the actor’s point of view, that provides
value to the actor. As defined by Jacobson et al. [16]:

A use case is a specific way of using the system by using some part of the func-
tionality. . . . A use case is thus a special sequence of related transactions per-
formed by an actor and the system in a dialogue. . . . Each use case is a complete
course of events in the system from a user’s perspective.

Essentials: The Use Case Diagram

To show which actors use which use cases, you can create a use case diagram by
connecting them via basic associations, shown by lines, as in Figure 5-22.

The associations in the use case diagram indicate which actors initiate which use
cases. Here we see that only the Gardener actor can maintain the storage tanks,
but all the actors may view reports.

Specifying Use Case Details

So how do we specify the details of the functionality provided by use cases? How
do we specify the complete course of events? The optimal way is to use additional
UML models (such as activity diagrams, which we will discuss later in this chap-
ter) and textual specifications. There are many different formats for use case spec-
ifications in the UML literature. Most include the following information at a
minimum: the name of the use case; its purpose, in the form of a short descrip-
tion; the optimistic flow (i.e., the flow of events that will occur if everything goes
right in the use case); and one or more pragmatic flows (i.e., those flows where
things don’t occur as you intended).

Manage
Garden

Update Crop
Encyclopedia

Figure 5-21 Use Cases

178 SECTION Il METHOD

Manage
Garden

Maintain
Storage Tanks

Gardener

Nutritionist Pfan Analyst

Update Crop
Encyclopedia

Manage
Growing Plan

Figure 5-22 A Use Case Diagram

CHAPTER5 NOTATION 179

An Example Use Case Specification
Let us look at an example for the use case Maintain Storage Tanks.

Use Case Specification
Use case name: Maintain Storage Tanks

Use case purpose: This use case provides the ability to maintain the fill
levels of the contents of the storage tanks. This use case allows the actor to
maintain specific sets of water and nutrient tanks.

Optimistic flow:
A. Actor examines the levels of the storage tanks’ contents.
B. Actor determines that tanks need to be refilled.

C. Normal hydroponics system operation of storage tanks is suspended by
the actor.

D. Actor selects tanks and sets fill levels.

For each selected tank, steps E through G are performed.
E. If tank is heated, the system disables heaters.
1. Heaters reach safe temperature.
F. The system fills tank.
G. When tank is filled, if tank is heated, the system enables heaters.
1. Tank contents reach operating temperature.
H. Actor resumes normal hydroponics system operation.

Pragmatic flows:
Conditions triggering alternate flow:

Condition 1: There is insufficient material to fill tanks to the levels
specified by the actor.

D1. Alert actor regarding insufficient material available to meet tank
setting. Show amount of material available.

D2. Prompt actor to choose to end maintenance or reset fill levels.
D3. If reset chosen, perform step D.
D4. If end maintenance chosen, perform step H.
D5. Else, perform step D2.
Condition 2: . ..

180

SECTION Il METHOD

Other useful information may also be added to the specification, such as precon-
ditions (what must be true prior to executing the use case), postconditions (what
will be true after executing the use case), limitations, assumptions, and so forth.
For example, in our hydroponics system, there is a limitation that the nutrient and
water tanks for a given crop must be refilled, as a pair, during the same maintenance
activity. This is a business operations decision (limitation) established in order to
not disrupt the proportions of nutrient and water being provided to the crop.

Overall, a use case specification should not be very long—it should be only a few
pages. If your specifications are very long, you should reconsider whether your
use case is doing too much. It may be that it is actually more than one use case.
Also, for practical reasons, you cannot include all possible things that could trig-
ger an alternate flow. Include the most important or critical alternates. Do not
include every possible error condition, such as when the operator enters data in
the wrong format (let the user interface handle that type of exception).

Advanced Concepts: «include» and
«extend» Relationships

Two relationships used primarily for organizing use case models are both power-
ful and commonly misused: the «include» and «extend» relationships.
These relationships are used between use cases.

«include» Relationships

In our hydroponics example, we have an Update Crop Encyclopedia use
case. During analysis, we determine that the Nutritionist actor using that
use case will have to see what is in the crop encyclopedia prior to updating it. This
is why the Nutritionist can invoke the View Reports use case. The
same is true for the Gardener actor whenever invoking Maintain Storage
Tanks. Neither actor should be executing the use cases blindly. Therefore, the
View Report use case is a common functionality that both other use cases
need. This can be depicted on the use case model via an «include» relation-
ship, as shown in Figure 5-23.

This diagram states, for example, that the Update Crop Encyclopedia use
case includes the View Reports use case. This means that View Reports
must be executed when Update Crop Encyclopediaisexecuted. Update
Crop Encyclopedia would not be considered complete without View
Reports.

CHAPTER5 NOTATION 181

Manage
Garden

Maintain

Storage Tanks
Gardener T
«include»

View Reports
Nutritionist \N/ Pfan Analyst
«incliude»

Update Crop
Encyclopedia

Manage
Growing Plan

Figure 5-23 A Use Case Diagram Showing «include» Relationships

Where an included use case is executed, it is indicated in the use case specifica-
tion as an inclusion point. The inclusion point specifies where, in the flow of the
including use case, the included use case is to be executed.

«extend» Relationships

While developing your use cases, you may find that certain activities might be
performed as part of the use case but are not mandatory for that use case to run

182 SECTION Il METHOD

successfully. In our example, as the Gardener actor executes the Manage
Garden use case, he or she may want to look at some reports. This could be done
by using the View Reports use case. However, View Reports is not
required when Manage Garden is run. Manage Garden is complete in and
of itself. So, we modify the use case diagram to indicate that the View Reports
use case extends the Manage Garden use case, as shown in Figure 5-24.

Maintain

Storage Tanks

Gardener * '
' «extend»
: i
i i
o ;
«include» s
' e
’

View Reports
Nutritionist \W/ Ptan Analyst
«include»

Update Crop
Encyclopedia

Manage
Growing Plan

Figure 5-24 A Use Case Diagram Showing an <<extend>> Relationship

CHAPTER5 NOTATION 183

Where an extending use case is executed, it is indicated in the use case specifica-
tion as an extension point. The extension point specifies where, in the flow of the
including use case, the extending use case is to be executed. Note also that the

extension points can be shown on the use case diagram, as indicated in Figure 5-25.

Manage Garden

Extension points:
view reports

E\
“
“
~
~
S
~
[
[l
[
[l
1l
Il
[l
[l
[
'

Maintain
Storage Tanks

Gardener r «extend»
«include» R ’
View Reports
Nutritionist \N/ Plan Analyst
«include»

Update Crop

Encyclopedia

Manage

Growing Plan

Figure 5-25 A Use Case Diagram Showing an Extension Point

184

SECTION Il METHOD

The Dangers of «include» and «extend» Relationships

While these two concepts are very useful for specifying common functionality
(«include») and simplifying more complex use case flows («extend»), as we
indicated earlier, these concepts are commonly misused during use case model-
ing. The primary cause is that some people are not clear about the semantic differ-
ences between «include» and «extends. Maksimchuk and Naiburg provide
a concise summary of those differences [17], as summarized in Table 5-1.

Another common error we see with these relationships is violation of basic use
case principles. Included and extending use cases are still use cases and must con-
form to the use case principles cited earlier; a use case represents a complete flow
of activity of what the actor wants your system to do from the actor’s point of
view that provides value to the actor.

If you stick to these principles strongly, you will avoid yet another error: use of
these relationships to “functionally decompose” use cases. This is the most preva-
lent problem we see regarding use case models, in which people break down use
cases into smaller and smaller pieces, using «include» or «extend» to tie
them all together. This problem is rooted in a software development culture where
Structured Analysis/Structured Design (SA/SD) approaches were very prevalent.
These approaches decomposed large development problems into smaller pieces.
Doing this will quickly violate the use case principles noted in the previous para-
graph. You will quickly lose the advantages of the object model of development
that we noted in the first four chapters of this book.

Table 5-1 Key Differences between «include» and «extend»
Relationships?

Included Extending
Use Case Use Case
Is this use case optional? No Yes
Is the base use case complete without this use case? No Yes
Is the execution of this use case conditional? No Yes
Does this use case change the behavior of the base No Yes

use case?

a. Reprinted with permission from Maksimchuk and Naiburg [17].

CHAPTER5 NOTATION 185

Advanced Concepts: Generalization

Generalization relationships, as described in Chapter 3, can also be used to relate
use cases. As with classes, use cases can have common behaviors that other use
cases (i.e., child use cases) can modify by adding steps or refining others. For
example, Figure 5-26 shows the use cases for purchasing various tickets.

Purchase Ticket contains the basic steps necessary for purchasing any tick-
ets, while the child use cases specialize Purchase Ticket for the specific
kinds of tickets being purchased.

Purchase
Ticket

Purchase
Baseball
Ticket

Purchase
Theater Ticket

Purchase
Concert Ticket

Figure 5-26 A Use Case Generalization

5.6 Activity Diagrams

In the previous section, we described the flow of a use case with text (the use case
specification). Textual descriptions have several advantages: They are easy to cre-
ate and change (no complex tools are required), they can be created anywhere (all
you need is paper and a pencil), they can be easily used and shared by business
and development staff alike, and so forth. However, complex use cases, business
processes, and algorithms can be difficult to comprehend when captured in text.
A visual representation of complex flows is much more powerful. We can see
potential problems visually that a stack of textual specifications could never reveal.

We know of one project for which a complex production process was documented
in reams of formal specifications that were developed and maintained by a com-
pany serving as the program office for the project. These specifications were also
reviewed by other companies, which served as the implementers of the process.
Even with all this rigor and control, when a basic visual diagram was made of the
product flow, multiple dead ends in the production process were quickly revealed.

186

SECTION Il METHOD

Activity diagrams provide visual depictions of the flow of activities, whether in a
system, business, workflow, or other process. These diagrams focus on the activi-
ties that are performed and who (or what) is responsible for the performance of
those activities.

The elements of an activity diagram are action nodes, control nodes, and object
nodes. There are three types of control nodes: initial and final (final nodes have
two varieties, activity final and flow final), decision and merge, and fork and join.1

Essentials: Actions

Actions are the elemental unit of behavior in an activity diagram. Activities can
contain many actions which are what activity diagrams depict. Figure 5-27 shows
an action that can be performed in our hydroponics example.

Note the rake symbol inside the action notation at its bottom right-hand corner.
This denotes that this action is a callBehavior type action, which is one of
the predefined actions in UML 2 that are “primitive actions that model manipula-
tion of objects and links as well as computation and communication among
objects” [101]. The callBehavior type action calls an activity whose defini-
tion is composed of action nodes, control nodes, and object nodes. Consequently,
the majority of actions used in our activity diagram modeling would be of this
type, at least in higher-level activity diagrams. So, as a practical matter, we may
want to use the rake symbol only when we have actually defined that activity to
be called.

Check Tank
Levels

th

Figure 5-27 The Notation for an Action

Essentials: Starting and Stopping

Since an activity diagram shows a process flow, that flow must start and stop
somewhere. The starting point (the initial node) for an activity flow is shown as a
solid dot, and the stopping point (the activity final node) is shown as a bull’s-eye.

1. Conrad Bock’s series of five articles (“UML 2 Activity and Action Models”) provides
a detailed look into this subject. See Section L of the Classified Bibliography.

CHAPTER5 NOTATION 187

Check Tank
Levels

Figure 5-28 Initial and Final Nodes for a Simple Activity Diagram

Initial ActivityFina

Figure 5-28 depicts a simple activity diagram composed of one action, Check
Tank Levels.

Another type of final node is the flow final node, which is denoted by a circle
with a nested “X”” symbol. The flow final node, used to stop a single flow without
stopping the entire activity, is depicted in the discussion of the merge node.

Essentials: Decision and Merge Nodes

Decision and merge nodes control the flow in an activity diagram. Each node is
represented by a diamond shape with incoming and outgoing arrows. A decision
node has one incoming flow and multiple outgoing flows. Its purpose is to direct
the one incoming flow into one (and only one) of the node’s outgoing flows. The
outgoing flows usually have guard conditions that determine which outgoing path
is selected. Figure 5-29 shows the guard condition [all levels within
tolerance] and the alternative [else]. There is no waiting or synchroniza-
tion at a decision node.

Merge nodes take multiple input flows and direct any and all of them to one out-
going flow. There is no waiting or synchronization at a merge node. In Figure
5-30, whenever any of the three incoming flows reach the merge point (shown as

Check Tank
Levels

&

[all levels within tolerance]

Figure 5-29 A Decision Node

188

SECTION Il METHOD

Log System
Event

FlowFinal

Figure 5-30 A Merge Node with a Flow Final Node

a diamond), each will be routed through it to the Log System Event action.
Thus, multiple events will be logged. Figure 5-30 also shows the flow final node
that we discussed earlier.

Essentials: Partitions

The elements in an activity diagram can be grouped by using partitions. The pur-
pose of a partition is to indicate where the responsibility lies for performing spe-
cific activities. In a business model, the partitions may be business units,
divisions, or organizations. For systems, the partitions may be other systems or
subsystems. In application modeling, the partitions may be objects in the applica-
tion. (However, this type of fine-grained interaction is more often shown in a
sequence diagram, discussed later in this chapter.) Each partition may be named
to indicate the responsible party. Figure 5-31 shows how the various activities
that comprise the Maintain Storage Tanks use case of our Hydroponics
Gardening System are partitioned to the Gardener, WaterTank, and
NutrientTank.

Advanced Concepts: Forks, Joins, and
Concurrency

Fork and join nodes are analogous to decision and merge nodes, respectively. The
critical difference is concurrency. Forks have one flow in and multiple flows out,
as do decision nodes. The difference is, where a decision node selects a single
outbound flow, a single flow into a fork results in multiple outbound flows. All

CHAPTER5 NOTATION

189

Gardener

WaterTank

NutrientTank

[all

[else]

Suspend
Operations

[suspended]

Set Fill
Levels

Disable

levels within tolerance]

[at temperature]

Heating

[heater below safe temperature)

[full]

Enable

Heating

)

[full]

Resume
Operations

Figure 5-31 An Activity Diagram with Partitions

190

SECTION Il METHOD

the outbound flows occur concurrently. In Figure 5-31, a single flow goes from
the Set Fill Levels action into the fork, which is the first thick horizontal
line. Thereafter, the NutrientTank flow (with the Fil1 action) and the
WaterTank flow (with the Disable Heating, Fill, and Enable
Heating actions) both occur in parallel.

A join has multiple incoming flows and a single outbound flow, similar to merge
nodes. However, with a join, all the incoming flows must be completed before the
outbound flow commences. In Figure 5-31, the second thick horizontal line is a
join. Both of the incoming flows, NutrientTank and WaterTank, must be
complete before the outbound flow continues to the Resume Operations
action.

(Similar to the concept of a join, where there are multiple flows into an action,
whether control or object flow, all flows must arrive at the action before it can
begin. When an action completes, all flows [control and object] out of the action
are begun.)

Advanced Concepts: Object Flows

In some situations, it may be useful to see the objects that are manipulated during
the execution of an activity. You can show the objects in an activity diagram by
adding an object flow. (We do not recommend this for all your activity diagrams,
however, because adding all the objects would likely make the diagrams too com-
plex and unwieldy.) Figure 5-32 shows an object flow added to our previous
activity diagram. In the WaterTank partition, two object nodes (rectangles
labeled : WaterTank) have been added to the flow. This shows that, after the
heating is disabled, the water tank is below its low operational limit and that, after
the Fi1l1 action, the water tank is full. The WaterTank object’s states of
[below low limit] and [full] are shown under the object name.

Advanced Concepts: Additional Elements

Activity diagrams are among the UML diagrams that have very rich semantics.
Other interesting elements may appear on activity diagrams (e.g., additional types
of object nodes, interruptible regions, pins, and so on) but not nearly as frequently
as those we discussed earlier. If you want to learn more about activity diagrams,
read some of the UML references listed for this chapter in Appendix B.

CHAPTER5 NOTATION

191

Gardener

WaterTank

NutrientTank

fall

[else]

Suspend
Operations

[suspended]

Set Fill
Levels

evels within tolerance]

[at temperature]

Disable
Heating

[heater below safe temperature]

:WaterTank
[below low limit]

Fill [full)

)

:WaterTank
[full]

Heating

Resume
Operations

Figure 5-32 An Activity Diagram with Object Nodes

192

SECTION Il METHOD

5.7

Class Diagrams

A class diagram is used to show the existence of classes and their relationships in
the logical view of a system. A single class diagram represents a view of the class
structure of a system. During analysis, we use class diagrams to indicate the com-
mon roles and responsibilities of the entities that provide the system’s behavior.
During design, we use class diagrams to capture the structure of the classes that
form the system’s architecture.

The two essential elements of a class diagram are classes and their basic
relationships.

Essentials: The Class Notation

Figure 5-33 shows the icon used to represent a class in a class diagram and an
example from our Hydroponics Gardening System. The class icon consists of
three compartments, with the first occupied by the class name, the second by the
attributes, and the third by the operations.

TemperatureSensor
ClassName - -
calibrationTemperature: string
+ attributes: type - measuredTemperature: string = [0..60] {list}
+ operations() : return type + currentTemperature() : string
+ calibrate(actualTemperature: string) : void

Figure 5-33 A General Class Icon and an Example for the
Gardening System

A name is required for each class and must be unique to its enclosing namespace.
By convention, the name begins in capital letters, and the space between multiple
words is omitted. Again by convention, the first letter of the attribute and opera-
tion names is lowercase, with subsequent words starting in uppercase, and spaces
are omitted just as in the class name. Since the class is the namespace for its
attributes and operations, an attribute name must be unambiguous in the context
of the class. So must an operation name, according to the rules in the chosen
implementation language. The format of the attribute and operation specifications
is shown here [29]:

m Attribute specification format:
visibility attributeName : Type [multiplicity] =
DefaultValue {property string}

CHAPTER5 NOTATION 193

m Operation specification format:

visibility operationName (parameterName : Type)
ReturnType {property string}

We will discuss the concept of visibility (public, private, protected, or package) in
an upcoming subsection. The type, for both attributes and operations, is the name
of a class or data type. We will also discuss multiplicity of an attribute a little
later; for now, note from Figure 5-33 that in the TemperatureSensor class,
the multiplicity of [0..60] on the measuredTemperature attribute indi-
cates an array of 0 to 60 temperature measurements. The default value for an
attribute is the value to be given at creation time, if none was provided. The prop-
erty string listed in braces provides additional properties such as { 1ist } shown
after the measuredTemperature attribute in the TemperatureSensor
class. In this case, the keyword 1ist means that the temperature measurements
will be ordered and may be nonunique. This provides the means to see the time
ordering of the measurements and to permit a repetition in measured temperature.
In the format of an operation, the combination of parameterName : Typeis
repeated as needed to accommodate the number of arguments.

For certain class diagrams, it is useful to expose some of the attributes and opera-
tions associated with a class. We say “some” because for all but the most trivial
class, it is clumsy and indeed unnecessary to show all such members in a diagram.
In this sense, the attributes and operations that we show represent an elided view
of the class’s entire specification, which serves as the single point of declaration
for all of its members. If we need to show many such members, we may magnify
the class icon; if we choose to show no such members at all, we may drop the sep-
arating lines and show only the class name.

As a general principle for the notation, the syntax for items such as attributes and
operations may be tailored to use the syntax for the chosen implementation
language. This simplifies the notation by isolating the peculiarities of various
languages.

As we described in Chapter 3, an abstract class is one for which no instances may
be created. Because such classes are so important to engineering good class inher-
itance trees, there is a special way to designate an abstract class, as shown in
Figure 5-34. Specifically, we italicize the class name to show that we may have
only instances of its subclasses. Similarly, to denote that an operation is abstract,
we simply italicize the operation name; this means that this operation may be
implemented differently by all instances of its subclasses. In the Hydroponics
Gardening System, we have food items that have a specific vitamin content and
caloric equivalent, but there is not a type of food called “food item.” Hence, the
FoodItemclass is abstract. Figure 5-34 also shows the subclass Tomato, which
represents a concrete (instantiable) food item grown in the greenhouse [30]. We
explain the meaning of the relationships among the classes in the next section.

194

SECTION Il METHOD

Fooditem Tomato

1.23 1

VitaminContent CaloricEquivalent

Figure 5-34 Abstract Class Adornment

Essentials: Class Relationships

Classes rarely stand alone; instead, they collaborate with other classes in a variety
of ways. The essential connections among classes include association, generaliza-
tion, aggregation, and composition, whose icons we summarize in Figure 5-35.
Each such relationship may include a textual label that documents the name of the
relationship or suggests its purpose, or the association ends may have names—but
typically both are not used at the same time.

The association icon connects two classes and denotes a semantic connection.
Associations are often labeled with noun phrases, such as Analyzes in Figure
5-35, denoting the nature of the relationship. A class may have an association to
itself (called a reflexive association), such as the collaboration among instances of
the PlanAnalyst class. Note here the use of both the association end names
and the association name to provide clarity. It is also possible to have more than
one association between the same pair of classes. Associations may be further
adorned with their multiplicity, as described in Chapter 3, using the syntax in the
following examples:

=l Exactly one

m* Unlimited number (zero or more)

m0..* Zero or more

m1l..* One or more

m 0..1 Zero or one

m 3. Specified range (from three through seven, inclusive)

The multiplicity adornment is applied to the target end of an association and
denotes the number of links between each instance of the source class and
instances of the target class. Unless explicitly adorned, the multiplicity of a rela-

CHAPTER5 NOTATION 195

ASSOCIATION GEMERALIZATION

PlanAnalyst Plan
+staff *
+lead 0.1 | 1.2 {incomplete, disjoint}

Analyzes
1 GrowingPlan GardeningPlan
PlanMetrics
{incomplete}
FruitGrowingPlan
AGGREGATION COMPOSITION
EnvironmentalController Fooditem
: - 1 1
1 1.23 1
Light Cooler VitaminContent CaloricEquivalent

Heater

Figure 5-35 Class Relationship Icons

tionship should be considered unspecified. It is best to always show multiplicity
so there is no misunderstanding.

The remaining three essential class relationships are drawn as refinements of the
more general association icon. Indeed, during development, this is exactly how
relationships tend to evolve. We first assert the existence of a semantic connection
between two classes and then, as we make tactical decisions about the exact
nature of their relationship, often refine them into generalization, aggregation, or
composition relationships.

The generalization icon denotes a generalization/specialization relationship

(the “is a” relationship, described in Chapter 3) and appears as an association
with a closed arrowhead. The arrowhead points to the superclass, and the opposite
end of the association designates the subclass. The GrowingPlan class in

196

SECTION Il METHOD

Figure 5-35 is the superclass and its subclass is the FruitGrowingPlan.
According to the rules of the chosen implementation language, the subclass inher-
its the structure and behavior of its superclass. Also according to these rules, a
class may have one (single inheritance) or more (multiple inheritance) super-
classes; name clashes among the superclasses are also resolved according to the
rules of the chosen language. Also, generalization relationships may not have
multiplicity adornments.

As noted in Chapter 3, aggregation, as manifested in the “part of ” relationship,
is a constrained form of the more general association relationship. The aggrega-
tion icon denotes a whole/part hierarchy and also implies the ability to navigate
from the aggregate to its parts. It appears as an association with an unfilled dia-
mond at the end denoting the aggregate (the whole). The class at the other end
denotes the class whose instances are part of the aggregate object. Reflexive and
cyclic aggregation is possible. This whole/part hierarchy does not mean physical
containment: A professional society has a number of members, but by no means
does the society own its members. In Figure 5-35, we see that an individual
EnvironmentalController class has the Light, Heater, and Cooler
classes as its parts. The multiplicity of * (zero or more) at the aggregate end of
the relationship further highlights this lack of physical containment.

The choice of aggregation is usually an analysis or architectural design decision;
the choice of composition (physical containment) is usually a detailed, tactical
issue. Distinguishing physical containment is important because it has semantics
that play a role in the construction and destruction of an aggregate’s parts. The
composition icon denoting a containment relationship appears as an association
with a filled diamond at the end denoting the aggregate. The multiplicity at this
end is 1 because the parts are defined as having no meaning outside the whole,
which owns the parts; their lifetime is tied to that of the whole. The FoodItem
class in Figure 5-35 physically contains the VitaminContent and
CaloricEquivalent classes.

Consider another example. In Figure 5-36, we see the class CropHistory, whose
instances physically contain * instances of the class NutrientSchedule and
* instances of the class ClimateEvent. Composition implies that the construc-
tion and destruction of these parts occurs as a consequence of the construction
and destruction of the aggregate. By contrast, each instance of CropHistory
does not physically contain one instance of Crop. This means that the lifetimes
of the two objects are independent, although the one is still considered a part of
the other.

The icons described thus far constitute the essential elements of all class dia-
grams. Collectively, they provide the developer with a notation sufficient to
describe the fundamentals of a system’s class structure.

CHAPTER5 NOTATION 197

CropHistory

Crop ClimateEvent NutrientSchedule

Figure 5-36 Physical Containment

Advanced Concepts: Template
(Parameterized) Classes

The elements we have presented thus far constitute the essential parts of the class
notation. However, there are often a number of strategic and tactical decisions that
we must capture that require an extension of this basic notation. As a general rule,
stick to the essential elements of the notation, and apply only those advanced
concepts necessary to express analysis or design details that are essential to visu-
alizing or understanding the system.

Some object-oriented programming languages, C++ for example, provide for
template (parameterized) classes. A template class denotes a family of classes
whose structure and behavior are defined independent of the formal class parame-
ters. We must match these formal parameters with actual ones (the process of
binding) to form a concrete class in this family; by concrete class, we mean one
that may have instances.

Template classes are sufficiently different than plain classes to warrant a special
adornment. As the example in Figure 5-37 shows, a template class is depicted as
a simple class, but with a dashed-line box in the upper right-hand corner, which
contains its formal parameters. A bound class is also shown as a simple class. The
binding relationship between a template class and its bound class is shown as a
dashed arrow, pointing to the template class, with the keyword «bind» attached.
The actual parameters, bound to the formal parameters of the template, are shown
along with the keyword in the form of <Formal Parameter — Actual
Parameter>. In Figure 5-37, we see the P1anSet class being bound to the
Set template class with the GardeningPlan class as the actual parameter
replacing the formal parameter, Item.

198

SECTION Il METHOD

«bind»

<ltem -> GardeningPlan>

PlanSet

Figure 5-37 A Template Class and Its Bound Class

A template class may not have any instances and may not itself be used as a tem-
plate. A bound class defines a new class distinct from all other concrete classes in
the same family whose actual parameters differ.

Advanced Concepts: Visibility

In Section 5.2, Package Diagrams, we discussed the concept of visibility from the
view of whether the elements contained by a package could be seen outside that
package. A class also provides an enclosing namespace for its contained ele-
ments. Here, we will look at the visibility of class associations, attributes, and
operations.

All interesting object-oriented programming languages provide a clear separation
between the interface and implementation of a class. As we described in Chapter
3, most also permit the developer to specify finer-grained access to the interface
as well. For example, in C++, members may be public (accessible to all clients),
protected (accessible only to subclasses, friends, or the class itself), or private
(accessible only to the class itself or its friends). Also in C++, certain elements
might be a part of a class’s implementation and thus inaccessible even to friends
of the class; this is referred to as implementation visibility.

CHAPTER5 NOTATION 199

We may specify visibility by adorning the appropriate element with the following
symbols [43]:

m Public (+) Visible to any element that can see the class

m Protected (#) Visible to other elements within the class and to subclasses
m Private (-) Visible to other elements within the class

m Package (~) Visible to elements within the same package

We denote association visibility by placing these visibility symbols on the associ-
ation end names to indicate access to the target end from the source end of the
association. For example, in Figure 5-38, we see that the association end names
(database and crop) between the CropDatabase and GrainCrop classes
are both public. This means that either class can access the other. In contrast, look
at the visibility of the association end names between the GrainCrop class and
the GrainYieldPredictor class; GrainCrop is private to the
GrainYieldPredictor class.

Another advanced concept to note here is that of association directionality.
During analysis we regard associations as bidirectional logical connections
between analysis classes. During design we turn our focus to issues such as navi-
gability of an association. The unidirectional association from the GrainCrop
class to the GrainYieldPredictor class typically means that some method
of GrainCrop uses the services of GrainYieldPredictor inits
implementation.

Crop Fooditem
+ scientificName:
vyield:
nutrientValue:

CropDatabase GrainCrop VitaminContent CaloricEquivalent
+database +crop

1 -

-crop 1.7

+yield 1

GrainYieldPredictor

Figure 5-38 Class Visibility

200

SECTION Il METHOD

These visibility symbols also apply to nested entities in all their forms. Specifi-
cally, in a class icon we may indicate the accessibility of attributes and operations
by prefixing one of the visibility symbols to their names. For example, in Figure
5-38, we see that the class Crop has one public attribute (scientificName),
one protected attribute (yield), and one private attribute (nutrientValue).

Advanced Concepts: Association End
Names and Qualifiers

In the previous chapter, we described the importance of identifying the various
roles an object plays in its collaboration with other objects. Briefly, the role of an
abstraction is the face it presents to the world at a given moment. A role denotes
the purpose or capacity wherein one class associates with another. As the example
in Figure 5-39 shows, this role is depicted with an association end name (role
name in UML 1), placed adjacent to the class offering the role. Here we see that
the classes PlanAnalyst and Nutritionist are both contributors to the
CropEncyclopedia class; this means that they both add information to the
encyclopedia. The PlanAnalyst class is a user as well by virtue of looking up
information in the encyclopedia. In each case, the client’s role identifies the par-
ticular behavior and protocol that it uses with its supplier while acting in that role.
Note also the reflexive association for the class P1anAnalyst: Here we show
that multiple instances of this class may collaborate with one another and that
they have a particular protocol they use when collaborating, which is distin-
guished from their behavior in their association with, for instance,
CropEncyclopedia.

Mutritionist contributor +infoSource CropEncyclopedia
: 1
+assistant | = +infoSource]wm
1 1
Catalogs
Hiead) 0.1
PlanAnalyst . Crop

-userContributor

+staff * U +lead 0.1

CollaboratesWith

Figure 5-39 Association End Names and Qualifiers

CHAPTER5 NOTATION 201

Our example also shows an association between the classes CropEncyclopedia
and Crop, but with a different kind of adornment representing a qualifier, shown
as a small rectangle at the CropEncyclopedia end of the association. A qual-
ifier is an attribute whose value uniquely identifies a single target object.

In this example, the class CropEncyclopedia uses the attribute
scientificName as a qualifier to navigate to individual entries in the set

of items managed by instances of CropEncyclopedia. In general, a qualifier
must be an attribute of the object that is a part of the aggregate object at the target
end of the association. Multiple qualifiers are possible, but qualifier values must
be unique. Without a qualifier, the multiplicity on the Crop end of the association
would be zero or more (*).

Advanced Concepts: Constraints

A constraint is the expression of some semantic condition that must be preserved.
Stated another way, a constraint is an invariant of a class or relationship that must
be preserved while the system is in a steady state. We emphasize steady state
because there may be transitory circumstances wherein the state of the system is
changing (and thus is temporarily in a self-inconsistent state), during which time
it is impossible to preserve all the system’s constraints. Constraints are guarantees
that apply only when the state of the system is stable. Preconditions and postcon-
ditions are examples of constraints that apply while a system is in a steady state,
that is, at the specific points in time when an operation is invoked and when it is
completed [31].

During the process of designing the system, we must ensure that it will be able to
meet the constraints placed on it. We will apply the constraints to a variety of
model elements; typically, any model element may be constrained. We use an
adornment for constraints that consists of an expression, surrounded by braces
({ }), adjacent to the class or relationship for which the constraint applies. This
expression can be represented in a natural language (textual) or in a more formal
language such as a programming language or the UML Object Constraint Lan-
guage (OCL). One benefit of a more formal language is that some tools provide
the means of verifying compliance with the constraint when using a formal lan-
guage. Usually we see development teams textually specifying a constraint,
which requires them to have some agreed-upon style of specification [32].

The placement of a constraint in a visual diagram depends on the number of dia-
gram elements affected by the constraint. Table 5-2 provides general guidelines.
However, of course, we are constrained by the particular tool we are using.

202 SECTION Il METHOD

Table 5-2 Placement of Constraints?

Number of Diagram
Elements Constraint Placement

One 1. In note attached to element by dashed line.

2. Near element.

Two 1. In note attached to each element by dashed line.

2. Near dashed line connecting elements. Dashed line may
have arrowhead on the end pointing to first position in
the collection.

Three or more 1. In note attached to each element by dashed line.

2. For associations (including generalizations, aggrega-
tions, and compositions), attached to dashed line cross-
ing the associations.

a. Based on Rumbaugh, Jacobson, and Booch [33].

Constraints applied to generalization associations indicate whether the classifiers
in the relationship are complete and disjoint by the use of the four constraints—
complete or incomplete and disjoint or overlapping—as defined here [34].

m Complete: An instance of the supertype is an instance of at least one of the
subtypes.

m Incomplete: An instance of the supertype is not an instance of at least one of
the subtypes.

m Disjoint: There are no common instances among the classifiers.
m Overlapping: There are common instances among the classifiers.

Looking back to Figure 5-35, we see examples of these constraints. The
{incomplete} constraint on the generalization of the Plan class indicates
that there are more types of plans than just the growing plan and gardening plan.
This means that an instance of the P1an class might not be an instance of either
the GrowingPlan or GardeningPlan classes. The {disjoint} constraint
indicates that a plan can’t be both a growing plan and a gardening plan, at least in
the way we’ve defined our plans; that is, an instance of the GrowingPlan class
can’t also be an instance of the GardeningPlan class.

We can see other types of constraints on a class diagram specifically related to
the class itself. These include constraints on the class attributes, as discussed
earlier regarding Figure 5-33, where we have the {1ist} constraint on the
measuredTemperature attribute in the TemperatureSensor class.

CHAPTER5 NOTATION 203

This specifies that the temperature measurements will be ordered and might be
nonunique.

As the example in Figure 5-40 indicates, we may apply constraints to individual
classes, whole associations, and participants in an association. In this diagram, we
see a cardinality constraint on the class EnvironmentalController, stat-
ing that there may be no more than seven instances of this class in the system.

The Cooler class has a different kind of constraint. Here we see a statement of
hysteresis in the cooler’s operation—a cooler may not be restarted sooner than
five minutes after it was last shut down. We attach this constraint to the Cooler
class because we mean this to be an invariant preserved by instances of the class
themselves.

In this diagram we also find two different kinds of association constraints. In the
association between the EnvironmentalController and Light classes,
we require that individual lights be uniquely indexed with respect to one another
in the context of this association. We also have an exclusive-or constraint {xor }
that spans the controller’s association with the Heater and Cooler classes,

{system quantity = 0-7} H

EnvironmentalController

+controller

Activates _--| Activates

1 . +light

Heater Cooler Light

{uniquely

{restart time >= (shutdown time + 5 minutes)} Iﬁ indexed}

U_

Figure 5-40 Constraints

204

SECTION Il METHOD

Refinement of Class Relationships

Earlier, when discussing class relationship icons, we saw that generaliza-
tion, aggregation, and composition are refinements of the more general
association relationship between classes. Specifically, when we looked at
aggregation, Figure 5-35 presented the EnvironmentalController
class as the aggregate whole with the Light, Heater, and Cooler
classes as its pieces. Now, in Figure 5-40, we see the aggregations
replaced by general association relationships. What's going on here? Well,
Figure 5-40 could represent an earlier analysis perspective of the relation-
ship between these classes. Later in our development efforts, as we made
tactical decisions about the exact nature of the relationship, we could have
refined the relationships into aggregations, as shown in Figure 5-35, where
we possibly regard the EnvironmentalController class more as a
subsystem comprised of the Light, Heater, and Cooler classes. We
might then need to add an additional class to provide the actual control
functionality within our subsystem, such as a Controller class.

stating the invariant that the EnvironmentalController class may not
activate the heater and the cooler at the same time. We place this as a constraint
on the association rather than as a constraint on Heater or Cooler because it is
an invariant that cannot be preserved by heaters or coolers themselves.

Constraints are also useful for the expression of secondary classes, attributes, and
associations. For example, consider the classes Adult and Child, both of
which might be subclasses of the abstract class Person. For the Person class,
we might provide the attribute dateOfBirth, and we might also include an
attribute named age, perhaps because age is important in our model of the real
world. However, the age attribute is secondary: It can be computed from
dateOfBirth. Thus, in our model, we might include both attributes but include
an attribute constraint that states this derivation. It is a tactical decision as to
which attribute derives from the other, but our constraint can record whatever
decision we make.

Similarly, we might have an association between the Adult and Child classes
named Parent. We might also include another association named Caretaker
because it suits the purposes of our model (perhaps we are modeling the legal
relationships between parent and child in the analysis of a social welfare system).
Caretaker is secondarys; it derives from the consequences of the Parent
association, and we might state this invariant as a constraint on the Caretaker
association.

CHAPTER5 NOTATION 205

Advanced Concepts: Association Classes
and Notes

The final advanced concept specific to class diagrams concerns itself with the

problem of modeling properties of associations; the notational solution to this

specific problem generalizes to diagram elements that may be applied to every
diagram in the notation.

Consider the example shown in Figure 5—41. Here we see a many-to-many
association between Crop and Nutrient, meaning that every crop depends
on N nutrients, and each nutrient may be applied to N different crops. The
NutrientSchedule class is really a property of this many-to-many relation-
ship, whose instances denote a specific mapping of a crop and its nutrients. To
indicate this semantic fact, we draw a dashed line from the Crop-to-Nutrient
association (the attributed association) to its property, the NutrientSchedule
class (the association’s attribute). A given unique association may have at most
one such attribute, which is called an association class, and the name of such an
association must match the name of the class used as its attribute.

The very idea of attributing associations has a generalization. Specifically, during
analysis and design, there are a myriad of seemingly random assumptions and
decisions that each developer may collect; these insights are often lost because
there is usually no convenient place to collect them, save for keeping them in the
head of the developer—a decidedly unreliable practice. Thus, it is useful to add
arbitrary notes to any element of any diagram, whose text captures these assump-
tions and decisions. In Figure 5-41, we have two such notes. The note attached to

Crop * . Nutrient

pHLevel
unitCost

NutrientSchedule

unitCost: retrieve
from nutrient
database

Should select from
a common set of
schedules

Figure 5-41 Association Classes and Notes

206

SECTION Il METHOD

5.8

the NutrientSchedule class tells us something about the expected unique-
ness of its instances. The other note, attached to the Nutrient class, captures
our expectation of how the unitCost attribute will be populated.

For such notes we use a distinctive note-shaped icon and connect it to the element
it affects by using a dashed line as before. Largely a tool issue, notes may contain
any information, including plain text, fragments of code, or references to other
documents. A note may be unconnected to any diagram element, meaning that it
applies to the diagram as a whole.

Sequence Diagrams

A sequence diagram is used to trace the execution of a scenario in the same con-
text as a communication diagram. (Communication diagrams are discussed later
in this chapter.) Indeed, to a large degree, a sequence diagram is simply another
way to represent a communication diagram.

Essentials: Objects and Interactions

In Figure 542, we provide a sequence diagram that duplicates most of the
semantics of the communication diagram shown. The advantage of using a
sequence diagram is that it is easier to read the passing of messages in relative
order. Sequence diagrams are often better than object diagrams (to be discussed
later in this chapter) for capturing the semantics of scenarios early in the develop-
ment lifecycle, before the protocols of individual classes have been identified.
Early sequence diagrams tend to focus on events as opposed to operations
because events help to define the boundaries of a system under development. The
advantage of using an object diagram is that it scales well to many objects with
complex invocations. Each diagram has compelling benefits.

Essentials: Lifelines and Messages

In sequence diagrams, the entities of interest (which are the same as for object
diagrams) are written horizontally across the top of the diagram. A dashed verti-
cal line, called the lifeline, is drawn below each object. These indicate the exist-
ence of the object.

Messages (which may denote events or the invocation of operations) are shown
horizontally. The endpoints of the message icons connect with the vertical lines

CHAPTER5 NOTATION 207

: PlanAnalyst PlanMetrics

timeToHarvest(C)

: GardeningPlan

C:Crop C: Grain
Crop

status()

rnaturationTirmerl)

yield() |
. yield() J
[.
netCost(C) :
¢ 1.5 netCost(C)
:PlanAnalyst 1: timeToHarvest(C) —# :PlanMetrics
1.3 yield ¢ Plan rust be ¢
executing 1.1: status

C:GrainCrop

:GardeningPlan

]

T 1.4: yield

#— 1.2 maturationTirme

Figure 542 A Sequence Diagram (Top) and Its Related Communication Diagram

(Bottom)

that connect with the entities at the top of the diagram. Messages are drawn from
the sender to the receiver. Ordering is indicated by vertical position, with the first
message shown at the top of the diagram, and the last message shown at the bot-
tom. As a result, sequence numbers aren’t needed.

208

SECTION Il METHOD

Objectl Object?

Synchronous

Asynchronous

Lost
.

Found

Destroy

Figure 543 Notations for Types of Messages

The notation used for messages (i.e., the line type and arrowhead type) indicates
the type of message being used, as shown in Figure 5-43.

A synchronous message (typically an operation call) is shown as a solid line with
a filled arrowhead. An asynchronous message has a solid line with an open arrow-
head. A return message uses a dashed line with an open arrowhead. A lost mes-
sage (a message that does not reach its destination) appears as a synchronous
message that terminates at an endpoint (a black dot). A found message (a message
whose sender is not known) appears as a synchronous message that originates at
an endpoint symbol.

Advanced Concepts: Destruction Events

A destruction event indicates when an object is destroyed. It is shown as an X at
the end of a lifeline. See the Object?2 lifeline in Figure 5-43 for an example. If
this object is involved in a composition, the other involved objects may also be
destroyed.

Sequence diagrams are conceptually very simple; however, you can add other ele-
ments to make them more expressive in the presence of certain complicated pat-
terns of interaction.

CHAPTER5 NOTATION 209

Advanced Concepts: Execution Specification

Simple sequence diagrams may not indicate the focus of control as messages are
passed. For example, if object A sends messages X and Y to other objects, it may
not be clear whether X and Y are independent messages from A or whether they
have been invoked as part of the same enclosing message Z. As we show in Fig-
ures 5—42 and 5-43, to clarify such situations, we may adorn the vertical lines
descending from each object in a sequence diagram with a box representing the
relative time that the flow of control is focused in that object. For example, in Fig-
ure 544, we see that the anonymous instance of the GardeningPlan object is
the ultimate focus of control, and its behavior of carrying out a climatic plan
invokes other methods, which in turn call other methods that eventually return
control back to the GardeningPlan object.

: GardeningPlan : Environmental : Heater : Cooler
Controller

setClimate()

etTemperature()
b

heat()

'
!

cooll)

=

Figure 5-44 Execution Specification

Scripts

Although not officially part of UML 2.0, you may see the use of descriptive
text on sequence diagrams. For complex scenarios that involve conditions
or iterations, sequence diagrams can be enhanced by the use of scripts. As
we see in the example in Figure 5-45, a script may be written to the left of
a sequence diagram, with the steps of the script aligning with the message
invocations.

Scripts may be written using free-form or structured English text or using
the syntax of the chosen implementation language.

210

SECTION Il METHOD

: GardeningPlan : Envirenmental : Heater : Cooler
Controller
setClirmater)
Carry out climatic plan
getTernperaturel)
Determine current temperature [
heat{) . :
If too low then heat the greenhouse e :
cool :
elze cool the greenhouse 0. =

Log the climate change E}lofﬂ—_l

Figure 5—45 Scripts and Sequence Diagrams

Advanced Concepts: Interaction Use

UML 2.0 has various constructs available to simplify complex sequence diagrams.
The first we will discuss is the interaction use. An interaction use is merely a way
to indicate on a sequence diagram that we want to reuse an interaction that is
defined elsewhere. This is shown, as in Figure 5-46, as a frame labeled ref.

In this case, we have modified our earlier sequence diagram to introduce a login
sequence, required before the P1anAnalyst uses the system. The frame,
labeled ref, indicates that the Login sequence is inserted (i.e., copied) where
this fragment is placed in this sequence. The actual login sequence would be
defined on another sequence diagram.

Advanced Concepts: Control Constructs

Just as we saw fragments being used to simplify sequence diagrams, they can
similarly be used to indicate flow control constructs on sequence diagrams. For
example, Figure 5-47 shows the introduction of a loop in our sequence diagram.

Note that the frame is named with the interaction operator 1oop. The sequence
execution within this frame is controlled by the condition [For each
Gardening Plan].

Now let us assume that we have many GardeningPlan objects, some active,
some inactive (past plans that are now saved just for informational purposes). We

CHAPTER5 NOTATION

211

a PIanAnaIyst PlanMetrics & GardeningPIan G CI’OE C: Grain
CI’OE
| | |
Login 1 i i
timeToHarvest(C) _ ¢ : : :
status() : : ;
> | |
maturationTime() L
. : T
: yield(] : o
1 1 1 Ll
i i | VeI
! ! L
netCost(C) : : :
Figure 5-46 An Interaction Use, Login
o PIanAnaIyst PlanMetrics o GardeningPIan c: CI’OE C: Grain
CI’OE
ref e e e
Login 1 i i
timeToHarvest(C) _ ¢ : : :
loop status()
[For egch Gardening Plan] - :
maturationTime() o
. . : TH
: yield() : o
' yigld()
netCost(C) :

Figure 5-47 An Interaction Operator, 1oop

212 SECTION Il METHOD

: PlanAnalyst PlanMetrics : GardeningPlan C:Crop C: Grain
Crop
ref ; ; ;
Login ' ' '

timeToHarvest(C) _ |

loop Loop/
[Far eacn|Gardening Plan]
alt ot :
[GardgringPlan is Active] tae0 - E
\; maturationTirme() L
yield() -
yield()

[GardgningFlan is Inactive] : ; ; ;

nEtCost(C)

Figure 5-48 An Interaction Operator, alt

would not want to loop through all those inactive plans. We just want to use the
ones that are currently active. This can be done with an alt (short for “alterna-
tives”) interaction operator, as shown in Figure 5-48.

Here within the loop, an alternate choice is made, governed by the conditions
[GardeningPlan is Active] and [GardeningPlan is Inactive].
These conditions select which part of the sequence is executed. The alt frame is
divided into two regions, each with its own condition. When a condition is true,
the behavior in that region of the frame is performed.

Numerous other interaction operators can be used in this manner to manipulate
the control flow of a sequence diagram. Refer to Appendix B, Further Reading, to
investigate all the other options.

CHAPTER5 NOTATION 213

5.9 Interaction Overview Diagrams

Interaction overview diagrams are a combination of activity diagrams and interac-
tion diagrams that are intended to provide an overview of the flow of control
between interaction diagram elements. Though any type of interaction diagram
(sequence, communication, or timing) may be used, the sequence diagram will
likely be the most prevalent.

The essential elements of the interaction overview diagram are the frames, the
flow of control elements, and the interaction diagram elements.

Essentials: Frames

The interaction overview diagram is typically surrounded by a frame; however,
the frame is optional when the context is clear. In Figure 5-49, we see the sur-
rounding frame with the name sd MaintainTemperature lifelines
:EnvironmentalController, :Heater, :Cooler inthe compart-
ment in the upper left-hand corner. The meaning of this name is as follows:

m sd: a tag that indicates this is an interaction diagram
m MaintainTemperature: a name describing the purpose of the diagram

m lifelines :EnvironmentalController, :Heater,
:Cooler: an optional list of contained lifelines

This interaction overview diagram contains flow of control elements and three
frames, EvaluateTemperature, Heat, and Cool, which we discuss in the
next subsections.

Essentials: Flow of Control Elements

The flow of control within an interaction overview diagram is provided by a com-
bination of activity diagram elements to provide for both alternate and parallel
paths. The alternate path control is provided by combinations of a decision node,
where the appropriate path is chosen, and a corresponding merge node (as appro-
priate) to bring the alternate paths together.

This combination appears twice in Figure 5-49. First, a decision node is used to
choose a path based on whether the temperature of the Hydroponics Gardening
System is within bounds (therefore, requiring no action) or out of bounds, which
requires either heating or cooling. The interaction constraint [1ower bound < =
temp < = upper bound] is used to choose the appropriate path. The second

214

SECTION Il METHOD

sd MaintainTemy lifelines :Envirc IController, :Heater, :Cocler/

ref /
EvaluateTemperature

[lower bound < = temp = = upper bound]

[else]

[temp < lower bound] [temp > upper bound]

sd Heat / sd Cool /

:EnvironmentalController :Heater :EnvironmentalController :Cooler

coolicoclTime)

o

Figure 5-49 The Interaction Overview Diagram for MaintainTemperature

combination of a decision node and a merge node controls whether heating or
cooling is applied by using the two interaction constraints, [temp < lower
bound] and [temp > upper bound].

Flow of control within parallel paths is provided by combinations of a fork node,
to split into parallel paths, and a corresponding join node to bring the parallel
paths together. One important concern with parallel paths is that tokens from all
paths must arrive at the join node before the flow is allowed to continue. This
requires us to ensure that, wherever an interaction constraint may block flow
along a path, there is an alternate path for the token to proceed [35].

CHAPTER5 NOTATION 215

5.10

Essentials: Interaction Diagram Elements

The interaction overview diagram contains two types of elements to provide the
interaction diagram information, either an interaction or an interaction use. The
interaction is any type of interaction diagram that provides the nested details of
the interaction; these are typically sequence diagrams. They can be anonymous or
named, as in Figure 5-49, which shows the Heat and Cool interactions.

The interaction use references an interaction diagram rather than providing its
details. Figure 5-49 contains an example, the EvaluateTemperature inter-
action use. The details of EvaluateTemperature would show how concerns,
such as the following, would be managed:

m Periodicity of temperature readings

m Protection of compressors by not restarting the : Cooler sooner than five
minutes since shutdown

m Temperature adjustments based on time of day
m Temperature ranges for different crops

Composite Structure Diagrams

Composite structure diagrams provide a way to depict a structured classifier with
the definition of its internal structure. This internal structure is comprised of parts
and their interconnections, all within the namespace of the composite structure.
Structured classifiers can be nested, so each part could be another structured clas-
sifier. In addition to representing a component, a structured classifier can also rep-
resent a class. Thus, the composite structure diagram is useful during design to
decompose classes into their constituent parts and model their runtime collabora-
tions [36, 37].

The essential elements of a composite structure are its parts, ports, interfaces, and
connectors.

Essentials: Composite Structure Parts

The composite structure diagram for the Hydroponics Gardening System’s
WaterTank is shown in Figure 5-50. Its name is placed in the top compartment;
the specific naming convention should be defined by the development team.
WaterTank contains the Heater and Tank parts, which collaborate to provide
its functionality, that of providing appropriately heated water for the gardeners
to use.

216

SECTION Il METHOD

WaterTank

h : Heater [1] t: Tank [1]

—L —0O

Electricity

HeatedWater

Figure 5-50 The Composite Structure Diagram for WaterTank

The name of a composite structure part uses the format of role name

Class Name [multiplicity], where the role name defines the role played
by a part within the composite structure. Though showing the multiplicity is
optional, we include it in Figure 5-50 to make clear that WaterTank consists of
one Heater and one Tank.

Essentials: Composite Structure Ports and
Interfaces

The composite structure and its parts interface with their external environment
through ports, denoted by a small square on the boundary of the part or composite
structure. In Figure 5-50, we see that Heater and Tank both have ports through
which they interact with each other to provide the functionality of WaterTank.
In addition, WaterTank has a port through which it receives electricity for the
Heater and a port through which it provides the heated water from the Tank to
its environment.

Using ports for all interactions provides encapsulation to the structured classifier.
These ports have public visibility unless otherwise noted. Hidden ports are
denoted by a small square that appears totally inside the composite structure, with
only one edge touching its boundary. These ports may be used for capabilities
such as test points that are not to be publicly available. The name and multiplicity
of ports is optional, but they should be provided where needed for clarity. Port
names are in the format port name : Port Type [multiplicity].The
port type is optional when naming a port [38, 39].

To these ports, we connect the interfaces that define the details of the composite
structure’s interactions. These interfaces are commonly shown in the ball-and-
socket notation. A required interface uses the socket notation to denote the ser-
vices expected from its external environment, whereas the ball notation denotes

CHAPTER5 NOTATION 217

the services it offers through its provided interfaces. As part of WaterTank,
Heater receives electricity from the Hydroponics Gardening System, and Tank
provides heated water to the gardeners.

Essentials: Composite Structure Connectors

Connectors within composite structure diagrams provide the communication
links between the composite and its environment, as well as the means for its
parts to communicate internally. In Figure 5-50 we have three connectors
between its ports; the two that connect to the boundary of the composite are
called delegation connectors, and the one between Heater and Tank is called
an assembly connector (also known as an interface connector). Here we have
Heater providing heat to Tank to fulfill its service need. Although Figure 5-50
shows the assembly connector in the straight line notation of the delegation con-
nectors, we could have used the ball-and-socket notation to represent this connec-
tion. Naming the connectors is optional; those in Figure 5-50 are not named
because clarity here doesn’t require names [40].

Advanced Concepts: Collaborations

A collaboration is a type of structured classifier that specifies the runtime interac-
tions of classifier instances. It differs from the composite structure in that it is not
instantiated and does not actually own these instances but defines the roles that
classifier instances must assume and the connectors over which they collaborate
to provide the functionality of interest. Collaborations may be nested, and the
concept of abstraction supports our focus at a level of detail pertinent to our par-
ticular concerns. The details of a collaboration may be expressed with the use of
an interaction diagram [41, 44].

The collaboration’s primary use is to define templates, that is, patterns of roles
joined by connectors. At runtime, classifier instances will be bound to these roles
so they may cooperate to provide the functionality defined by the collaboration.
For example, Figure 5-51 shows the TemperatureControl collaboration
defining a pattern for controlling the temperature within the Hydroponics
Gardening System. In this pattern, TemperatureController uses
TemperatureRamp, which defines the precise temperature variations required
over time to support the needs of a crop [93, 94].

The name of a collaboration, shown inside the dashed oval that encapsulates

the collaboration, may be partitioned from the role definitions by a horizontal
dashed line (not shown here). In this collaboration, we have two defined roles,
TemperatureController and TemperatureRamp, joined by a connector.

218

SECTION Il METHOD

5.11

H controller : requiredTemp :
TemperatureController [1] TemperatureRamp [1..*]

Figure 5-51 The TemperatureControl Collaboration

Since the connector is unnamed, it will be realized by a temporary runtime means
such as a property or an argument. If it were named, it would be realized by an
instance of an actual association, that is, a link [95, 96].

Roles are labeled with a name and type in the format of role name : Role
Type [multiplicity].The role name describes a particular classifier
instance that may fulfill this role, and the role type is a constraint on this classifier
instance. We have shown the role names, role types, and multiplicity for the
TemperatureController and TemperatureRamp roles [97, 98].

A role defines the properties that a structured classifier must have to participate in
the collaboration. The typing of a role by interfaces means that any classifier
instance complying with the interface can fulfill the role, regardless of its internal
design or implementation. The classifier instance may have functionality beyond
that required in a particular role, thereby giving it the ability to fulfill multiple
roles in a single collaboration or even roles in different collaborations at the same
time [99, 100].

State Machine Diagrams

State machines are well known in industries that use real-time processing. State
machine diagrams are used to design and understand time-critical systems, in
which the consequences of improper timing are severe. Medical devices, financial
trading systems, satellite command and control systems, and weapon systems are
typical examples where state machine diagrams can play an important role in
understanding how systems behave in reaction to key events.

CHAPTER5 NOTATION 219

A state machine diagram expresses behavior as a progression through a series of
states, triggered by events, and the related actions that may occur. Such state
machines are also known as behavioral state machines. State machine diagrams
are typically used to describe the behavior of individual objects. However, they
can also be used to describe the behavior of larger elements of any system.
(Remember from Chapter 1 that the selected level of abstraction in a complex
system is relative to the observer.) State machine diagrams are cousins to activity
diagrams. However, state machine diagrams focus on the states and transitions
between those states versus the flow of activities.

Not every class has significant event-ordered behavior, so we supply state machine
diagrams only for those classes that exhibit such behavior. We may also provide
state machine diagrams that show the event-ordered behavior of the system as a
whole. During analysis, we may use state machine diagrams to indicate the
dynamic behavior of the system. During design, we use state machine diagrams to
capture the dynamic behavior of individual classes or of collaborations of classes.

The two essential elements of a state machine diagram are states and state
transitions.

Essentials: Initial, Final, and Simple States

The state of an object represents the cumulative results of its behavior. For exam-
ple, when a telephone is first installed, it is in the idle state, meaning that no
previous behavior is of great interest and that the phone is ready to initiate or
receive calls. When we pick up the handset, the phone is off-hook and in the dial-
ing state. In this state, we do not expect the phone to ring; we expect to be able to
initiate a conversation with someone on another telephone. When the phone is on-
hook, if it rings and we pick up the handset, the phone is now in the receiving
state, and we expect to be able to converse with the person who called.

At any given point in time, the state of an object encompasses all of its (usually
static) properties, together with the current (usually dynamic) values of each of
these properties. By properties, we mean the totality of the object’s attributes and
relationships with other objects. We can generalize the concept of an individual
object’s state to apply to the object’s class because all instances of the same class
live in the same state space, which encompasses an indefinite yet finite number of
possible (although not always desirable or expected) states.

When an object is in a given state, it can do the following:

m Execute an activity
m Wait for an event

220

SECTION Il METHOD

m Fulfill a condition
m Do some or all of the above

In every state machine diagram, there must be exactly one default initial state,
which we designate by writing an unlabeled transition to the state from a special
icon, shown as a filled circle. Less often, we need to designate a stop state. Usu-
ally, a state machine associated with a class or the system as a whole never
reaches a stop state; the state machine just goes out of existence when the enclos-
ing object is destroyed. We designate a stop state by drawing an unlabeled state
transition from the state to a special icon, shown as a filled circle inside a slightly
larger unfilled circle. Initial and final states are technically called pseudostates.
Figure 5-52 depicts the elements for a duration timer in our hydroponics system.
For simple states, the state name is shown in the rounded rectangle depicting the
state. Here we have two simple states for our timer—Initializing and
Timing. Simple states have no substates (we will discuss substates in an upcom-
ing subsection).

Iritial State Final State
. Initializing @
. ./
State State

Figure 5-52 Notations for Simple States

Essentials: Transitions and Events

The movements between states are called transitions. On a state machine dia-
gram, transitions are shown by directed arrows between states. Each state transi-
tion connects two states. Figure 5-53 shows a transition from the initial state to
the state named Initializing, from Initializingto Timing, and from
Timing to the final state. Moving between states is referred to as firing the tran-
sition. A state may have a state transition to itself, and it is common to have many
different state transitions from the same state, although each such transition must
be unique, meaning that there will never be any circumstances that would trigger
more than one state transition from the same state.

Initializing . @
./

Transition Transition Transition

Figure 5-53 Transitions for the Duration Timer

CHAPTER5 NOTATION 221

There are various ways to control the firing of a transition. A transition that has no
annotation is referred to as a completion transition. This simply means that when
the source state completes, the transition automatically fires, and the target state is
entered. You can see this in Figure 5-53 between the ITnitializing state and
the Timing state. When the duration timer is initialized, it immediately begins
timing.

In other cases, certain events have to occur for the transition to fire. Such events
are annotated on the transition. An event is some occurrence that may cause the
state of a system to change. For example, in the Hydroponics Gardening System,
the following events play a role in the system’s behavior.

A new crop is planted.

A crop becomes ready to harvest.

The temperature in a greenhouse drops because of inclement weather.
A cooler fails.

Time passes.

Each of the first four events is likely to trigger some action, such as starting or
stopping the execution of a specific gardening plan, turning on a heater, or sound-
ing an alarm to the gardener. The passage of time is another issue: Although the
passing of seconds or minutes may not be significant to our system (observable
plant growth is generally on much longer scales of time), the passage of hours or
days may be a signal to our system to turn lights on or off or to change the tem-
perature in the greenhouse, in order to create an artificial day necessary for plant
growth. In Figure 5-54, we develop the duration timer state diagram. Here you
see that the timer execution can be put into a Paused state and timing resumed
through the occurrence of pause and resume events, respectively.

While transitions often show how an object moves between states, they may also
be recursive, showing an exit from and reentry into the same state.

The UML elements described thus far constitute the essential elements of all state
transition diagrams. Collectively, they provide a notation sufficient to describe
simple, flat, finite state machines, suitable for applications with a limited number

Initializing

pause resume

)
Figure 5-54 Additional States and Transition Events for the Duration Timer

222

SECTION Il METHOD

of states. Systems that have a large number of states or that exhibit particularly
complicated event-ordered behavior involving conditional transitions or transi-
tions based on previously entered states require the use of the more advanced con-
cepts for state transition diagrams. We will discuss these now.

Advanced Concepts: State Activities—Entry,
Do, and EXxit Activities

Activities may be associated with states. In particular, we may specify some
activity that is to be carried out at certain points in time with respect to a state.

m Perform an activity upon entry of the state.
m Do an activity while in the state.
m Perform an activity upon exit of the state.

Figure 5-55 shows an example of this concept. Here we see that upon entering the
Timing state, we start the timer (indicated by the icon of an arrow next to two
parallel lines), and upon exiting this state (indicated by the icon of an arrow
between two parallel lines), we stop the timer (note that these icons are tool spe-
cific). While in this state, we measure the time duration (indicated by the circular
arrow).

4 Timing w
| start timer
B) measure duration ©
N |7l stop timer

.
IJausE< >@€»ume

J

Figure 5-55 Entry, Do, and Exit Activities

Advanced Concepts: Controlling Transitions

As we said earlier, there are ways to exercise finer control over state transitions
than just having events on the transition. Conditions can be specified to control
the transition. These conditions act as guards so that when an event occurs, the

CHAPTER5 NOTATION 223

condition will either allow the transition (if the condition is true) or disallow the
transition (if the condition is false).

Another way to control transition behavior is to use effects. An effect is a behav-
ior (e.g., an activity, an action) that occurs when a specified event occurs. Thus,
when a transition event occurs, the transition fires and the effect also occurs. Each
of these refinements can be used in combination with the others.

Let us expand our duration timer example to show the use of effects. One impor-
tant event that could happen in our hydroponics system is that a cooler could fail.
Rather than just hope that this does not happen, we will change our basic timer to
a duration timer used to measure the total operational time during which the
cooler is running. The purpose is to alert us to perform maintenance on the cooler
after it has been in operation for a certain period of time. We hope that regular
maintenance will prevent a failure of the cooler. So we enhance our state machine
diagram as shown in Figure 5-56.

In this diagram, you can see that the timeout transition has been replaced with a
condition. This condition specifies that when the duration exceeds the mainte-
nance time, the timer transitions into the Sounding Alarm state, alerting us to
the need for maintenance. The use of an event, condition, and effect in combina-
tion is shown on the transition from Sounding Alarmto Timing. Here, once
the maintenance is complete, we want to clear the alarm condition and resume
timing. There is a clear event, but it is guarded by the condition that the cooler
must be back online first (before timing is resumed), shown in brackets. If the

N clear [cooler onling]f set duration=0
initialize

Timing
ializi duration = rmaintenance time i
. Intializing AT start fmer [1 .. Sounding alarm

) measure duration

|#| stop timer

pause resLIme
Paused
.
off off
off off

Figure 5-56 The Enhanced State Machine Diagram for the Duration Timer

224

SECTION Il METHOD

cooler is not online, the transition does not fire. If it is, the effect occurs (the dura-
tion timer is set to zero, as shown after the slash), the transition fires, and timing
begins again.

The order of evaluation in conditional state transitions is important. Given state S
with transition T on event E with condition C and effect A, the following order
applies.

1. Event E occurs.
2. Condition C is evaluated.
3. If C evaluates true, then transition T is triggered, and effect A is invoked.

This means that if a condition evaluates false, the state transition may not be trig-
gered until the event occurs again and the condition is reevaluated. Side effects in
evaluating the condition or in carrying out an exit action will not affect the trig-
gering of a state transition. For example, suppose that event E occurs, and condi-
tion C evaluates true, but then the execution of the exit action changes the world
so that C no longer evaluates true. The state transition will still be triggered.

Advanced Concepts: Composite States and
Nested States

Up to this point, we have been discussing simple states and transitions between
them. In larger, more complex systems, state machine diagrams can get very
large, tangled, and unwieldy. The ability to nest states gives depth to state
machine diagrams; this is a key feature of state machine diagrams that mitigates
the combinatorial explosion of states and state transitions that often occurs in
complex systems.

In Figure 5-57, we have nested the states Timing, Sounding Alarm, and
Paused. This nesting is depicted with a surrounding boundary known as a
region. The enclosing boundary is called a composite state. Thus we now have a
composite state named Operat ing that contains the nested states Timing,
Sounding Alarm, and Paused. Note also that this diagram is visually simpli-
fied in that there is now only one transition from the composite state Operating
to the final state. This means that when any of the nested states’ of £ events
occur, the transition to the final state fires.

Nesting may be to any depth, and thus substates may be composite states to other
lower-level substates. Given the composite state Operat ing with its three sub-
states, the semantics of nesting implies an XOR (exclusive OR) relationship. If
the system is in the Operating state (the composite state), it must also be in
exactly one of the three substates: Timing, Sounding Alarm, or Paused.

CHAPTER5 NOTATION 225

Ciperating

clear [cocler online]f set duration=0

- Timing l’ . 1
H Intializing 7| start timer [duration > rnaintenance fime] Sounding Alarm

<) measure duration

|l stop tirmer

off . A

Figure 5-57 Composite and Nested States

initialize

Operating

off

off

®

Figure 5-58 A Higher-Level View of the State Machine Diagram for the
Duration Timer

For simplicity in drawing state transition diagrams with depth, we may zoom in
or zoom out relative to a particular state. Zooming out elides substates, and zoom-
ing in reveals substates. When we zoom out of Figure 5-57, we get a state
machine diagram that is much easier to understand (see Figure 5-58).

Advanced Concepts: Concurrency and
Control

Concurrent behavior can be depicted in state machine diagrams by simply parti-
tioning a composite state into two or more sub-regions by using dotted lines. Each
sub-region within the composite state represents behavior that will occur concur-
rently. Figure 5-59 shows a state with three concurrent sub-regions.

226 SECTION Il METHOD

(/_ Composite State \‘1
[Sub-Region A)

iR mEE R e e
I D s
9 S

Figure 5-59 Concurrent Sub-Regions in a State Machine Diagram

For our example, when the cooler is overdue for maintenance, the duration timer
sounds an alarm. Earlier, in Figure 5-56, we showed this by having the state
machine transition into the Sounding Alarm state. Let us say that, instead of
just sounding the alarm, we want the system to also capture how long the cooler
remains overdue for maintenance. We show this in Figure 5-60 by replacing the
Sounding Alarm state with a composite state, Maintenance Overdue, that
contains two concurrent states: Sounding Alarm and Timing Maintenance
Overdue (which captures how long the cooler has been overdue for mainte-
nance). Thus, when the transition into the Maintenance Overdue composite
state occurs, both substates start and run concurrently, that is, the overdue mainte-
nance timer starts and the alarm sounds. (Note that we have removed the transi-
tion that allows the alarm to be turned off without bringing the cooler back online;
see the of f transition from the Sounding Alarm state in Figure 5-56.)

This helps ensure the alarm will not just be silenced without performing the
maintenance.

Control flow into and out of concurrent states can be depicted in various ways
using the UML, each with its own precise meaning. You must be careful to make
sure that how you diagram the flow correctly represents your intent. Let us exam-
ine this with a generic composite state, as shown in Figure 5-61.

You can transition into a composite state in various ways. For example, you can
have a transition to the composite state, as shown in Figure 5-62. In this case, the
concurrent submachines would all activate and begin to operate concurrently.
Each individual sub-region would execute beginning at the default initial state
(pseudostate) for that sub-region. While it is not necessary, we recommend
overtly showing the initial states in the sub-region for clarity.

initialize
/\ dear [cooler online]f set duration=0 Maintenance Overdue

Timing N
Intializing - [duration > maintenance time] Timing Maintenance Cverdue
. S 7| start tirner

2 measure duration

|7l stop timer

Sounding Alarm

FEsLMEe

off

Figure 5-60 The Composite Maintenance Overdue State with Concurrent Sub-
Regions

,/_ My Composite State \\

Figure 5-62 A Transition into a Composite State

228

SECTION Il METHOD

Another way to move into a composite state is to use a fork. A fork vertex is actu-
ally another pseudostate (like initial and final states) and is used to split an incom-
ing transition into two or more outgoing transitions. Figure 5-63 shows the use of
a fork in this manner. The single incoming transition may have an event and or a
guard condition on it. The multiple outgoing transitions may not. In our case, the
fork splits the flow of control, and concurrent execution within the composite
state would begin with substates A, B, and C, as these are the target substates of
the multiple outgoing transitions from the fork.

Similar constructs can be used when exiting a compound, concurrent state. Figure
5-64 shows a transition from the composite state to a subsequent state. The single
completion transition from the composite state fires when all of the prior sub-
states (A, D, and C) are complete.

You can also use a join vertex (another pseudostate) to perform a similar merging
of control. Figure 5-65 shows multiple transitions from the individual concurrent
sub-regions to a vertical bar, where they are merged into one outgoing transition.
This single outgoing transition may also have an event and a guard condition on

it. In this case, transition to state S would occur when all the joined substates (2,
D, and C) are active, the event occurs, and the condition is satisfied.

The situation shown in Figure 5-65 is not equivalent to that shown in Figure
5-66. In Figure 5-66, there is no merging of control as there is when joins are
used. In this case, if any one of the transitions from substates A, D, or C fire, all
the other concurrent substates will terminate.

Along those same lines, if some sub-regions do not explicitly participate in a
join (see Figure 5-67), when the join transition fires, the nonparticipating

My Composite State

Figure 5-63 A Fork into a Composite State

r’/_ My Composite State \

Figure 5-64 A Completion Transition Leaving a Composite State

,/_ My Composite State \

Figure 5-65 A Join Leaving a Composite State

,/_ My Composite State _\\

u J

Figure 5-66 Individual Transitions Leaving a Composite State

230

SECTION Il METHOD

/— My Composite State \

Figure 5-67 Partial Participation in Joins and Forks

sub-regions will be forced to terminate. Conversely, if some sub-regions do not
explicitly participate in a fork, the nonparticipating sub-regions will execute start-
ing at their initial states [18, 19].

Advanced Concepts: Submachine State

Along with simple and composite states, there is a third major type of state: a sub-
machine state. Submachine states are used to simplify state machine diagrams or
to contain common behavior that may be reusable in various diagrams. For exam-
ple, refer back to Figure 5-56. Let us suppose that much more needs to be done
when the maintenance time is exceeded than just sounding the alarm. Let us say
that a second timer needs to run to count how much time the cooler has exceeded
its maintenance cycle and that the system needs to record temperature, coolant
pressure, on/off cycles, and humidity, making that information available as graphs
showing the values over time. These new recording requirements could result in a
quite complex state machine diagram.

In order to keep the diagrams simple, we could simply replace the Sounding
Alarm substate with a submachine state named Operating:Recording (see
Figure 5-68). This submachine state represents an entirely separate state
machine diagram that would depict all the detailed recording requirements just
mentioned. In this manner, submachines enable us to organize complex state
machine diagrams into understandable structures.

CHAPTER5 NOTATION 231

initiglize
——————— clear [cocler online)y set duration=0
Timing

Intialzing 7] start timer [duration = rmaintenance tirme] Operating:Recording
<€) measure duration

|2l stop timer

pause resume

off

off

Figure 568 Using a Submachine State in the State Machine Diagram for the Duration

5.12

Timer

Advanced Concepts: Additional State
Machine Diagram Elements

State machine diagrams may be the most semantically rich diagram type in the
UML. They can be very, very complex. Many more elements than we have
described can be used in state machine diagrams (e.g., entry and exit points,
shallow and deep history, protocol state machines, and so forth). If you have the
need or desire to explore these very dark corners of the UML, Appendix B, Fur-
ther Reading, provides some useful references.

Timing Diagrams

Anyone who has worked on logic circuit design, any electrical engineer, or even
any electronic hobbyist will recognize timing diagrams. Similar diagrams have
been used for decades in these and other industries where it’s critical to under-
stand the behaviors and timing of the system elements.

Timing diagrams are a type of interaction diagram. Their purpose is to show how
the states of an element or elements change over time and how events change
those states.

232

SECTION Il METHOD

Essentials: More of the Same

Timing diagrams have many of the same elements that appear in other UML dia-
grams. They have one or more lifelines, one or more objects (or other UML clas-
sifier), two or more states, messages, and so forth. Refer to earlier discussions of
these elements for a refresher on their semantics, if required.

Essentials: Layout

Timing diagrams take the UML elements and present them to the user in a differ-
ent organization. The general layout of a timing diagram is reminiscent of a
sequence diagram laid on its side (see Figure 5-69).

Timing diagrams have one or more lifelines (which look like a horizontal parti-
tion) for each object in the diagram. The lifeline name (i.e., the object name) is
shown in the lifeline. The possible states of the object are listed inside the lifeline.
Also, a timeline shows how the object changes from one state to another. Events
that drive the state changes are shown along the timeline. The horizontal axis
shows time and may also show tick marks to help the reader of the diagram better
understand specific timing. For example, Figure 5-70 shows a simple timing dia-

4 T timeline

|
]& eventr event s
state a
B stateb
. . @ —_
lifeline | = event q
g ..
" state x
L1 1 1 1 | TN I N N A |

tick marks j time
T

Figure 5-69 A Generic Timing Diagram

open

Valve

closed

1l

A
Figure 5-70 A Timing Diagram for the valve Object

CHAPTER5 NOTATION 233

gram for a Valve object that is controlled to fill the WaterStorageTank
object in our Hydroponics Gardening System.

As you can see, Valve has two simple states: open and closed. Alone, this
timing diagram provides little insight into the operation of the system. (In fact,
this timing diagram can be considered incomplete.) When does the valve open
and close? What events cause those changes in state?

Essentials: Events

Events (or other stimuli such as messages) that cause state changes are shown in the
lifeline near the timeline of the object. In Figure 5-71, two events have been added,
that is, TankLow and TankFul1l, which cause changes in the state of the valve.

Essentials: Constraints

Constraints can be used to specify conditions or limits that restrict the change of
state shown on a timing diagram. In Figure 5-72, we show a timing diagram with

TankLow TankFull

open

Valve

closed

Figure 5-71 A Timing Diagram for valve That Includes Events

TankLow TankFull
open
[}
=
(]
>
closed
on —_— —
Ly
14}
©
o off
T ; :
+—{> 3 minutes}—*!
N 1 [N [O |

T T T
Figure 5-72 A Timing Diagram for Two Objects That Includes a Constraint

234

SECTION Il METHOD

both the Valve and the Heater objects represented. This diagram shows the
relationship between the state of Heater and the state of Valve.

Here we see a constraint on Heater that restricts how quickly the heater can be
turned back on. (This type of constraint may be in place to prevent rapid or
repeated switching of the heater’s heating elements on and off, which would typi-
cally reduce its operational life.) The constraint indicates that once the heater is
turned off, at least three minutes must pass before the heater is turned back on.

Advanced Concepts: Alternate
Representations

In cases where timing diagrams have many lifelines, or objects that have many
states, instead of using a timeline as we did in the previous figures, we can use a
more compact representation, as shown in Figure 5-73. States are shown within
the hexagons, and the state changes occur between them.

Instead of the change of state being indicated as a rise and fall of a timeline, the
state changes are merely shown progressing along the horizontal axis.

states \ state changes
|
T

StorageTank

A

Figure 5-73 Using a Compact Representation Instead of Timelines on a
Timing Diagram

Advanced Concepts: Events versus
Messages

As stated earlier, not only can events drive state changes, but other stimuli such as
messages can, too. So which should be used when? The subtle difference in this
case is that an event has a specific location in space and time, which is not true for
messages.

For example, the two events shown earlier in Figure 5-71, TankLow and
TankFull, physically occur in the actual storage tank. Instead of using these
events, we could use messages to open or close the valve. Say that the gardener

CHAPTER5 NOTATION 235

5.13

open
[ih]
=
o
=
closed L
[
]
R openCmd (|| closeCmd
. online
]
c
@© .
T offline —
o]
o
N T O I I B

Figure 5-74 Using Messages Instead of Events on a Timing Diagram

decides to add more water to the water storage tank, even though the tank’s level
is not physically low. The gardener simply wants to increase the amount of water
in the tank. In this case, using a message would be better than using an event. Fig-
ure 5—74 shows two messages (openCmd and closeCmd) that command the
valve to open, thus filling the tank, and close, to stop the filling, respectively.

Either messages or events can be used in UML diagrams to express a designer’s
intent clearly. But when in doubt, the best course of action is to check the seman-
tics of the elements in question (i.e., messages versus events) and use them appro-
priately. UML diagrams are not just sketches. Each element has a specific
meaning and an appropriate usage.

Object Diagrams

An object diagram is used to show the existence of objects and their relationships
in the logical design of a system. Stated another way, an object diagram repre-
sents a snapshot in time of an otherwise transitory stream of events over a certain
configuration of objects. Object diagrams are thus prototypical—each one repre-
sents the structural relationships that may occur among a given set of class
instances. In this sense, a single object diagram represents a view of the object
structure of a system. During analysis, object diagrams are often used to indicate
the semantics of primary and secondary scenarios that provide a trace of the sys-
tem’s behavior. During design, object diagrams are often used to illustrate the
semantics of mechanisms in the logical design of a system. Regardless of the
development phase, object diagrams present concrete examples that assist in the
visualization of the associated class diagrams.

The two essential elements of object diagrams are objects and their relationships.

236

SECTION Il METHOD

Essentials: Objects

Figure 5-75 shows the icon we use to represent an object in an object diagram.
Similar to class diagrams, a horizontal line partitions the text inside the icon into
two regions, one denoting the object’s name and the other providing an optional
view of the object’s attributes and their values. Here, though, we see a tool-specific
implementation that does not use a horizontal line to completely partition the two
regions.

objectName :ClassName
attributeName1 = valueA
attributeName2 = valueB

Figure 5-75 A Generic Object Icon

The name of an object may be written in any of the three following forms:

B objectName Object name only
m :ClassName Object class only
m objectName :ClassName Object name and class

All forms of an object name are underlined to clearly distinguish them from a
class name. If we never specify the class of an object, either explicitly by using
the above syntax or implicitly through the object’s specification, the object’s class
is considered anonymous. If we specify only a class name, the object is said to be
anonymous; each such icon without an object name denotes a distinct anonymous
object.

For some objects, it may be useful to expose a portion or all of their attributes. We
say “some” because objects represent only a view of the object structure. The
name of each of these attributes must refer to an attribute defined in the object’s
class or any of its superclasses. The syntax includes the ability to specify a value
for each attribute, as shown in Figure 5-75. We do not show class properties, such
as operations, since they are shared by all instances of the class.

Essentials: Object Relationships

As explained in Chapter 3, objects interact through their links to other objects, as
shown in Figure 5-76, which is an object diagram corresponding to the class dia-
gram of Figure 5-39. A link is an instance of an association, analogous to an
object being an instance of a class.

CHAPTER5 NOTATION 237

anthony :Nutritionist -contributor

+assistant

+lead

susan :PlanAnalyst -userContributor

+lead

+staff +infoSource +infoSource

roger :PlanAnalyst -userContributor :CropEncyclopedia

+infoSource

[scientificName = Fragaria x ananassa [

Catalogs

ialStrawberry :Crop

Figure 5-76 Object Relationships

A link may exist between two objects if and only if there is an association
between their corresponding classes. This class association may manifest itself in
any way, meaning that the class relationship could be a plain association, a gener-
alization, an aggregation, or a composition. The existence of an association
between two classes therefore denotes a path of communication (i.e., a link)
between instances of the classes, whereby one object may send messages to
another. All classes implicitly have an association to themselves, and hence it is
possible for an object to send a message to itself.

Advanced Concepts: End Names and
Qualifiers

We’ve discussed objects and their relationships, which constitute the essential
parts of the notation for object diagrams. However, a number of particularly
knotty development issues require slightly more than this basic notation. As we
warned in our discussion on class diagrams, we must again emphasize that these

238

SECTION Il METHOD

5.14

advanced features should be applied only as necessary to capture the intended
semantics of a scenario.

In an earlier section, we noted that associations in a class diagram may be adorned
with a role denoting the purpose or capacity wherein one class associates with
another. For certain object diagrams, it is useful to restate this role on the correspond-
ing link between two objects. Often, this adornment helps to explain why one
object is operating on another. Figure 5-76 provides an example of this advanced
feature. Here we see that a P1lanAnalyst object (Susan) both uses information
from and contributes information to an anonymous CropEncyclopedia
object, and does so while acting in the role of userContributor, as denoted
by the end name on the link. When comparing Figure 5-76 to Figure 5-39 (from
our class diagram discussion), we notice that we have two instances of the
PlanAnalyst class; one is Susan, in the role of 1ead, collaborating with the
other one, Roger, in the role of staff. Susan is also in the role of 1ead with
respect to the relationship with Anthony (a Nutritionist object), who is
assisting Susan.

In Figure 5-39, we saw a class adornment called a qualifier whose value uniquely
identifies a single object, out of many, at the target end of an association. Specifi-
cally, the class CropEncyclopedia uses the attribute scientificName as
a qualifier to navigate to individual entries in the set of items managed by
instances of CropEncyclopedia. Here in Figure 5-76, our instance of crop is
a commercialStrawberry, which was selected by using Fragaria x
ananassa’ as the scientificName qualifier.

Using the same representation as for class diagrams, additional notations that we
may represent on object diagrams include constraint, keyword label, navigation,
and link name.

Communication Diagrams

If you are familiar with the earlier versions of the UML, you may recognize com-
munication diagrams by their pre-UML 2.0 name—collaboration diagrams. A
communication diagram is a type of interaction diagram that focuses on how
objects are linked and what messages they pass as they participate in a specific
interaction.

2. Fragaria x ananassa is known by a number of common names, including commercial
strawberry, garden strawberry, cultivated strawberry, and just plain strawberry.

CHAPTER5 NOTATION 239

Essentials: Objects, Links, and Messages

A link may exist between two objects if and only if there is an association
between their corresponding classes. The existence of an association between two
classes denotes a path of communication (i.e., a link) between instances of the
classes, whereby one object may send messages to another.

Given object A with a link L to object B, A may invoke any operation that is appli-
cable to B’s class and accessible to A; the reverse is true for operations invoked by
B on A. We will refer to the object that invokes the operation as the client and
whichever object provides the operation as the supplier. In general, the sender of a
message knows the receiver, but the receiver does not necessarily know the sender.

In the steady state, there must be consistency between the class structure and the

object structure of a system. If we show an operation M being invoked across link
L on object B, then B’s specification (or the specification of an appropriate super-
class) must contain the declaration of M.

Figure 5-77 shows an example of a communication diagram for the Hydroponics
Gardening System. The intent of this diagram is to illustrate the interaction for the
execution of a common system function, namely, the determination of a predicted
net cost-to-harvest for a specific crop.

As shown in Figure 5-77, we may adorn a link with one or more messages. We
indicate the direction of a message by adorning it with a directed line, pointing
to the destination object. An operation invocation is the most common kind of
message (the other type would be a signal). An operation invocation may include
actual parameters that match the signature of the operation, such as the
timeToHarvest message that appears in Figure 5-77.

Essentials: Sequence Expressions

Carrying out the predicted net cost-to-harvest system function requires the collab-
oration of several different objects. To show an explicit ordering of events, we
prefix a sequence number (starting at 1) to a message. This sequence expression
indicates the relative ordering of messages. Messages with lower sequence num-
bers are dispatched before messages with higher sequence numbers. The
sequence numbers in Figure 5-77 specify the order of messages for that example.

Using a nested decimal numbering scheme (e.g., 4.1.5.2), we can show how some
messages are nested within the next higher-level procedure call. Each integer term
indicates the level of nesting within the interaction. Integer terms at the same level

240

SECTION Il METHOD

¢ 1.5: netCost(C)

]

:PlanAnalyst

1: timeToHarvest(C) —m -PlanMetrics

1.3 yield * Plan must be ¢
executing 1.1: status
C:GrainCrop :GardeningPlan
u 4— 1.2 maturationTirme
? 1.4: yield

Figure 5-77 A Communication Diagram for the Hydroponics Gardening
System

indicate the sequence of the messages at that level. In Figure 5-77, message 1.3
follows message 1.2, which follows message 1.1, and all are nested calls within
the timeToHarvest call activation (i.e., message 1).

We see from this diagram that the action of the scenario begins with some
PlanAnalyst object invoking the operation timeToHarvest () on
PlanMetrics. Note that the object C is passed as an actual argument to this
operation. Subsequently, PlanMetrics calls status () on a certain unnamed
GardeningPlan object; our diagram includes a development note indicating
that we must check that the given plan is in fact executing. The GardeningPlan
object in turn invokes the operation maturationTime () on the selected
GrainCrop object, asking for the time the crop is expected to mature. After this
selector operation completes, control then returns to the PlanAnalyst object,
which then calls yield (), which in turn propagates this operation to the
C:GrainCrop object. Control again returns to the PlanAnalyst object,
which completes the scenario by invoking the operation netCost () on itself.

CHAPTER5 NOTATION 241

(This diagram also indicates a link between the P1lanAnalyst and
GardeningPlan objects. Although no messages are passed, the presence of
this link highlights the existence of a semantic dependency between the two
objects.)

Figure 5-78 shows the same sequence of messages as in Figure 5-77. However,
the nesting of the messages is different. Here, messages 1.1 and 1.2 are nested
within the t imeToHarvest message (1), and message 2.1 is nested within the
yield message (2). The same functionality is provided, but the structure of con-
trol differs.

The sequence expression may also contain a name to indicate concurrent mes-
sages at a specific level of nesting. For example, using the names a and b, mes-
sages 7.2a and 7.2b would be concurrent within the activation of message 7.2.
Each would have its own thread of control.

¢ 3 netCost(C)

]

:PlanfAnalyst

1. timeToHarvest(C) —m -PlanMetrics

20 yield ¢ Plan must be ¢
executing 1.1: status
C:GrainCrop :GardeningPlan
U 4— 1.2 maturationTime
? 2.1 yield

Figure 5-78 A Variant of Figure 5-77, Showing Different Sequence Numbers

242

SECTION Il METHOD

Advanced Concepts: Messages and
Synchronization

Albeit slightly contrived, the example in Figure 5-79 illustrates the different
kinds of message synchronization that may appear in a communication diagram.
The message startup () is an example of a simple call and is represented with
a directed line with a solid arrowhead. This indicates a synchronous message. In
the cases of the startup () and isReady () messages, the client must wait
for the supplier to completely process the message before control can resume.

In the case of the message turnOn (), the semantics are different. This is an
example of an asynchronous message, indicated by the open arrowhead. Here the
client sends the event to the supplier for processing, the supplier queues the mes-
sage, and the client then proceeds without waiting for the supplier. Asynchronous
message passing is akin to interrupt handling.

#— 2 startup
H:Heater L:Light

:EnvironmentalController

1: turnOn —

C:Cooler

#— 3 isReady

Figure 5-79 Objects and Synchronization

Advanced Concepts: Iteration Clauses and
Guards

Additional information can be added to the sequence expression to refine how
execution occurs. An iteration clause optionally can be added to indicate a series
of messages to be sent. The manner in which the iteration clause is specified is up

CHAPTER5 NOTATION 243

#— 2 [temperature < minirmurn ternperature]; statup
H:Heater L:Light

:EnvironmentalController

1. *li=1..n]:tumOn —=

C:Cooler

#— 3 isReady

Figure 5-80 lteration Clause and Guard Adornments on a Communication
Diagram

to the individual, although using pseudocode would seem a good choice. Figure
5-80 shows an iteration clause added to the turnOn () message. The adornment
is shown as an asterisk followed by the iteration clause in brackets. This example
indicates that the turnOn message is to be sent sequentially, 1 to n times. If the
messages were to be sent concurrently, the asterisk would be followed by a dou-
ble bar (i.e., *| | [1=1..n]).

Guard conditions can also adorn messages. The notation is similar to an iteration
clause, but without the asterisk. The guard condition is placed within brackets, as
shown in Figure 5-80 for the startup message. This condition indicates that
the message will be executed when the guard condition is true, in this case, when
the temperature is below the minimum temperature desired. The manner in which
the guard is expressed is up to the individual.

Summary

m Designing is not the act of drawing a diagram; a diagram simply captures a
design.

m In the design of a complex system, it is important to view the design from
multiple perspectives: namely, its conceptual, logical, and physical models
and its structural and behavioral semantics.

244

SECTION Il METHOD

The UML includes thirteen diagrams: package diagram, component diagram,
deployment diagram, use case diagram, activity diagram, class diagram,
sequence diagram, interaction overview diagram, composite structure dia-
gram, state machine diagram, timing diagram, object diagram, and commu-
nication diagram.

A package diagram provides the means to organize the artifacts of the
development process to clearly present the analysis of the problem space
and the associated design. The specific reasons will be varied but will either
focus on physically structuring the visual model itself or on clearly repre-
senting the model elements through multiple views.

A component diagram shows the internal structure of components and their
dependencies with other components. This diagram provides the representa-
tion of components, collaborating through well-defined interfaces, to pro-
vide system functionality.

A deployment diagram shows the allocation of artifacts to nodes in the
physical design of a system. A single deployment diagram represents a view
into the artifact structure of a system. During development, we use deploy-
ment diagrams to indicate the physical collection of nodes that serve as the
platform for execution of our system.

A use case diagram depicts the context of the system to be built and the
functionality provided by that system. Use case diagrams depict who (or
what) interacts with the system. They show what the outside world wants
the system to do.

An activity diagram provides the visual depiction of the flow of activities,
whether in a system, business, workflow, or other process. These diagrams
focus on the activities performed and who (or what) is responsible for the
performance of those activities.

A class diagram shows the existence of classes and their relationships in the
logical design of a system. During analysis, class diagrams indicate the
common roles and responsibilities of the entities that provide the system’s
behavior. During design, class diagrams capture the structure of the classes
that form the system’s architecture.

A sequence diagram traces the execution of a scenario in the same context
as an object diagram. To a large degree, a sequence diagram is simply
another way to represent an object diagram.

An interaction overview diagram is a combination of activity diagrams and
interaction diagrams intended to provide an overview of the flow of control
between diagram elements. Though any type of interaction diagram may be
used, the sequence diagram is most prevalent.

A composite structure diagram provides a way to depict a structured classi-
fier with the definition of its internal structure. This diagram is also useful
during design to decompose classes into their constituent parts and model
their runtime collaborations.

CHAPTER5 NOTATION 245

A state machine diagram is used to design and understand time-critical sys-
tems. A state machine diagram expresses behavior as a progression through
a series of states, triggered by events, and the related actions that may occur.
These are also known as behavioral state machines.

A timing diagram is a type of interaction diagram. Its purpose is to show
how the states of an element or elements change over time and how events
change those states.

An object diagram shows the existence of objects and their relationships in
the logical design of a system. A single object diagram represents a view of
the object structure of a system and is typically used to represent a scenario.
A communication diagram is a type of interaction diagram that focuses on
how objects are linked and the messages they pass, as they participate in a
specific interaction.

This page intentionally left blank

Chapter 6

Process

The amateur software engineer is always in search of magic, some sensa-
tional method or tool whose application promises to render software
development trivial. It is the mark of the professional software engineer to
know that no such panacea exists. Amateurs often want to follow cook-
book steps; professionals know that such approaches to development
usually lead to inept design products, born of a progression of lies, and
behind which developers can shield themselves from accepting responsi-
bility for earlier misguided decisions. The amateur software engineer
either ignores documentation altogether or follows a process that is docu-
mentation-driven, worrying more about how these paper products look to
the customer than about the substance they contain. The professional
acknowledges the importance of creating certain documents but never
does so at the expense of making sensible architectural innovations.

The process of object-oriented analysis and design cannot be described
in a cookbook, yet it is sufficiently well defined as to offer a predictable and
repeatable process for the mature software development organization. In
this chapter, we examine the analysis and design process in detail (and
the overall software development process in general) as we consider the
purposes, products, steps, and measures of each of the analysis and
design activities.

247

248

SECTION Il METHOD

6.1

First Principles

We begin our discussion of process by covering some first principles—those traits
that tend to characterize successful projects.

Traits of Successful Projects

A successful software project is one in which the deliverables satisfy and possibly
exceed the customer’s expectations, the development occurred in a timely and
economical fashion, and the result is resilient to change and adaptation. By this
measure, we have observed several traits' that are common to virtually all of the
successful object-oriented systems we have encountered and noticeably absent
from the ones that we count as failures:

m Existence of a strong architectural vision

m Application of a well-managed iterative and incremental development
lifecycle

Strong Architectural Vision

A strong architectural vision is something that is common to virtually all of the
successful object-oriented systems we have encountered. So, what is architec-
ture? The IEEE Recommended Practice for Architectural Description of Software
Intensive Systems (referred to as IEEE 1471) defines architecture as the “funda-
mental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and
evolution” [42]. There are numerous other definitions for architecture in use
today, but most definitions indicate that architecture is concerned with both struc-
ture and behavior, is concerned with significant decisions only, may conform to
an architectural style, is influenced by its stakeholders and its environment, and
embodies decisions based on rationale [41].

A system that has a sound architecture is one that has conceptual integrity, and as
Brooks firmly states, “conceptual integrity is the most important consideration in
system design” [1]. In some ways, the architecture of a system is largely irrele-

1. Some may argue that there are many other traits of successful projects, and we agree.
However, in this chapter, we have chosen these traits to focus on as they have a direct effect
on object-oriented analysis and design processes.

CHAPTER 6 PROCESS 249

vant to its end users. However, having a “clean internal structure” is essential to
constructing a system that is understandable, can be extended and reorganized,
and is maintainable and testable [2]. It is only through having a clear sense of a
system’s architecture that it becomes possible to discover common abstractions
and mechanisms. Exploiting this commonality ultimately leads to the construc-
tion of systems that are simpler and therefore smaller and more reliable. Neglect-
ing an architectural vision leaves us with the software equivalent of sludge.

Just as there is no right way to classify abstractions, there is no right way to craft
the architecture of a given system. For any application domain, there are certainly
some profoundly stupid ways, and occasionally some very elegant ways, to
design the architecture of a solution. How then do you distinguish a good architec-
ture from a bad one? Fundamentally, good architectures tend to be object-oriented
and structured by using components. This is not to say that all object-oriented
architectures are good, or that only object-oriented architectures are good. How-
ever, as we discussed in Chapters 1 and 2, it can be shown that the application of
the principles that underlie object-oriented decomposition tend to yield architec-
tures that exhibit the desirable properties of organized complexity.

Good software architectures tend to have several attributes in common.

m They are constructed in well-defined layers of abstraction, each layer repre-
senting a coherent abstraction, provided through a well-defined and con-
trolled interface, and built on equally well-defined and controlled facilities
at lower levels of abstraction.

m There is a clear separation of concerns between the interface and implemen-
tation of each layer, making it possible to change the implementation of a
layer without violating the assumptions made by its clients.

m The architecture is simple: Common behavior is achieved through common
abstractions and common mechanisms.

Architectures constructed in this way tend to be less complex and more robust
and resilient. They also enable more effective reuse.

Agile processes tend to deemphasize the importance of establishing the architec-
ture up front. Instead, they describe concepts such as simple design, emergent
design, refactoring, and “serendipitous” architecture [47]. In such processes, the
architecture evolves over time. As we discuss in an upcoming section, Toward a
Rational Development Process, the approach you choose depends on your con-
text. In any case, when in the lifecycle the architecture is developed and how it is
developed does not downplay the importance of having an architectural vision.
Without such a vision, the system is harder to evolve and maintain over time.

250

SECTION Il METHOD

Iterative and Incremental Lifecycle

For a few limited application domains, the problem being solved may already be
well defined, with many different implementations currently fielded. Here, it is
possible to almost completely codify the development process: The designers of a
new system in such a domain already understand what the important abstractions
are, they already know what mechanisms ought to be employed, and they gener-
ally know the range of behavior expected of such a system. Creativity is still
important in such a process, but here the problem is sufficiently constrained as to
already address most of the system’s strategic decisions. In such circumstances, it
is possible to achieve radically high rates of productivity because most of the
development risk has been eliminated [6]. The more you know about the problem
to be solved, the easier it is to solve.

Most industrial-strength software problems are not like this. Most involve the bal-
ancing of a unique set of functional and performance requirements, and this task
demands the full creative energies of the development team. Under such circum-
stances, it is impossible to provide a cookbook process. Software development,
like any human activity that requires creativity and innovation, demands an itera-
tive and incremental process that relies on the experience, intelligence, and talent
of each team member.”

Iterative and incremental development is where the functionality of the system is
developed in a successive series of releases (iterative) of increasing completeness
(incremental). A release may be external (available to the customer) or internal
(not available to the customer). The selection of what functionality is developed
in each iteration is driven by the mitigation of project risks, with the most critical
risks being addressed first. The experience and results gained as a result of one
iteration are applied to the next iteration. With each iteration, you gradually refine
your strategic and tactical decisions, ultimately converging on a solution that
meets the end user’s real (and usually unstated) requirements and yet is simple,
reliable, and adaptable.

The iterative and incremental approach is at the heart of most modern software
development methods, including agile methods like Extreme Programming (XP)

2. The “Day in the Life” empirical study led by Booch reinforces these observations. This
experiment was conducted on Tuesday, March 27, 2001, and it involved 50 developers
from around the world. Booch studied a group of developers, observing what they did with
their time and how they employed tools. From these studies, he noted that “Individuals and
teams must cope with high degrees of uncertainty, ambiguity, and chaos, while at the same
time, demanding creativity, predictability, and repeatability. . . . Development is a team
sport. . . . The importance of team productivity will supersede the importance of individual
programmer productivity” [40].

CHAPTER 6 PROCESS 251

and SCRUM. It is extremely well suited to the object-oriented paradigm and
offers a number of benefits relative to risk management. As Gilb so aptly states,
“evolutionary® delivery is devised to give us early warning signals to impending
unpleasant realities” [15].

The following are some advantages of an iterative development approach [45].

Requirements changes are accommodated. Each iteration focuses on a spe-
cific set of requirements.

There is no “big bang” integration effort at the end of the project. Each
iteration involves the integration of the elements included in the release.
Integration is progressive and continual.

Risks are addressed early. Early iterations mitigate key risks and allow for
the identification of new risks earlier in the lifecycle, when they are more
easily addressed.

Tactical changes to the product are possible. Changes can be made to the
product and/or early releases of the product are possible in order to counter
a competitor’s move.

Reuse is facilitated. Key components of the architecture are actually built
early, so the identification of reusable elements, as well as the opportunity
to reuse existing elements, is easier.

Defects can be found earlier and corrected. Testing is performed during
every iteration, so defects can be found early and corrected in subsequent
iterations instead of being found at the end of the project, when there may
not be time to fix them (or the impact of fixing the defects is too big).

Project personnel are employed more effectively. Iterative development
encourages a model in which team members play multiple roles during an
iteration, as opposed to a pipeline organization in which analysts hand off to
designers, who hand off to programmers, who hand off to testers, and so on.
An iterative approach leverages the expertise of the team members and
eliminates handoffs.

Team members learn along the way. Each iteration offers team members the
opportunity to learn from past experiences (“practice makes perfect”).
Issues in one iteration can be addressed in later iterations.

The development process can be refined and improved. Each iteration
results in an assessment of what worked and what didn’t with regard to pro-
cess and organization. The results of these assessments can be used to
improve the process for the next iteration.

3. In evolutionary development, the solution evolves over time instead of being defined
and then frozen up front. Evolutionary development fits very well with incremental and it-
erative development because each iteration provides an opportunity to evolve the system
by using feedback from the previous iteration.

252

SECTION Il METHOD

Now that we have looked at some traits that tend to distinguish successful
projects, let’s take a look at the range of processes currently available and some
strategies for arriving at a rational process.

Toward a Rational Development Process

Parnas and Clements once said, “we will never find a process that allows us to
design software in a perfectly rational way” [9] because of the need for creativity
and innovation during the development process. However, they went on to say,
“the good news is that we can fake it. . . . [Because] designers need guidance, we
will come closer to a rational process if we try to follow the process rather than
proceed on an ad hoc basis. When an organization undertakes many software
projects, there are advantages to having a standard procedure. . . . If we agree on
an ideal process, it becomes much easier to measure the progress that the project
is making.” As we noted earlier, it is important to have a well-managed incremen-
tal and iterative lifecycle: well-managed in the sense that the process can be con-
trolled and measured, yet not so rigid that it fails to provide sufficient degrees of
freedom to encourage creativity and innovation. In this section, we discuss the
range of process styles available today and provide some recommendations on
how to select the process style that best meets the needs of your project and your
organization.

In the software development community today, there is a plethora of software
development processes to choose from—the Rational Unified Process (RUP), XP,
SCRUM, Crystal, and so on. Which software development process you choose
has a profound impact on how you plan and develop your software development
projects and may even determine the success or failure of those projects. Thus,
such a decision should not be taken lightly. The good news is that the choice of
which process to use is not a binary decision. In fact, we like to think of all soft-
ware development processes as existing somewhere on a process continuum, with
agile on one end and plan-driven on the other.* The location of a specific process
on the continuum is based on its key themes and its overall strategy.

With agile processes, the primary goal is to deliver a system to the customer that
meets their current needs in the shortest amount of time. The process is just a
means to an end. Thus, agile processes tend to have the following characteristics:

m Lightweight and sparse, less ceremony (do only what is absolutely neces-
sary and no more)

4. Boehm and Turner provide a detailed discussion of the differences between agile and
plan-driven processes [38].

CHAPTER 6 PROCESS 253

m Reliant on the tacit knowledge of the team members (rather than on well-
documented processes)

m Tactically focused rather than strategic (don’t build for the future as that
future is unknown)

m [terative and incremental (deliver parts of the system in several cycles)

m Heavily reliant on customer collaboration (customers are active participants
in requirements definition and validation)

m Self-organizing and managing (the teams figure out the best way to work)

m Emergent as opposed to predetermined (the process evolves out of actually
executing the process as opposed to being planned or defined up front)

Agile processes release the software development teams from following a strict
set of steps and allow developers to concentrate their creative energies on the sys-
tem under development.

With plan-driven processes, in addition to delivering the desired system to the
customer in an acceptable time frame, another important goal is the definition and
validation of a predictable, repeatable software development process. The process
is not just a means to an end but is considered an end in itself. In other words, in
addition to the system requested by the customer, the software development pro-
cess itself and its artifacts are key results. Thus, plan-driven processes tend to
have these characteristics:

m More heavyweight, more ceremony (follow prescriptive activities resulting
in well-documented artifacts)

m Reliant on well-documented processes (as opposed to the tacit knowledge
of the team members)

m Strategically focused rather than tactically focused (establish a strong archi-
tectural framework that can accommodate future changes)

m Reliant on a customer contract (develop and agree on a contract that
describes up front what is to be built)

m Managed and controlled (follow detailed plans with explicit milestones and
verification points both within and across teams)®

m Defined up front and then continually improved (include explicit process
improvement procedures and infrastructure)

There is a common misconception that agile means no process and all creativity
and that plan-driven means all process and no creativity. This is not an accurate

5. Plan-driven processes are not necessarily iterative and incremental (a project can apply a
strictly waterfall plan-driven process), but they can be (and we recommend that they should be).

254

SECTION Il METHOD

representation of either process style. Agile does not mean lack of process. Agile
processes are designed to rapidly handle changes to both the application being
developed and the process itself. Agile processes are not, by definition, more cre-
ative and innovative than plan-driven ones. Iterative and incremental plan-driven
processes that allow time for prototyping provide plenty of room for creativity
and innovation.

The choice of which software development process is right for your project is best
determined by using a two-phase approach. You first figure out where you (your
organization and your project) are on the process continuum, and then you select
the process style that will serve as the overall guiding framework for your devel-
opment process. Then you customize and configure that process framework to
include techniques from the other process styles so that the resulting development
process achieves the balance between agile and plan-driven techniques that
reflects your position on that continuum. For example, if you are closer to the
agile end of the continuum, the overall framework or strategy that you will follow
in your process will be agile. Then, depending on how far you are to the right
(toward the plan-driven end), the more of the plan-driven techniques you will
adopt, refine, and include in your process. It is also important to note that the style
of process you use may vary depending on where you are in the lifecycle. Early
lifecycle phases may require more agility, whereas later lifecycle phases may
require more rigor.

To figure out where you are on the process continuum, compare the characteris-
tics of your project with the characteristics of the different process styles, and
select the process style with the closest match. Table 61 lists the project charac-
teristics commonly associated with the process styles on each end of the
continuum.

When deciding on how agile or how plan-driven you need to be, just as with soft-
ware development, let risk be a guiding factor. What are the risks faced by your
project? Select a process style and supporting techniques that address those risks.
Is it more risky to use the process or more risky to live without it? Always strive
to reduce risk. No matter what process you choose, it should be treated as a recipe
that can be adjusted to fit your project’s personal tastes, available ingredients,
time available, and intended consumers. In the end, all projects need to meet cus-
tomer needs and be responsive to change in order to maintain relevancy. Thus,
every project could benefit from a little agility (which enables flexibility and fos-
ters creativity and invention) as well as a little discipline (which provides predict-
ability, repeatability, and consistency). Using the terms of Parnas and Clements
mentioned earlier, this is how you can fake a rational design process for building
object-oriented systems.

CHAPTER 6 PROCESS 255

Table 6-1 Agile and Plan-Driven Project Characteristics

Agile Plan-Driven

m Project is small (5-10 people?). m Project is large (more than 10 people).

m Experienced teams with a wide range m Teams include varied capabilities and
of abilities and skills take part. skill sets.

m Teams are self-starters, independent m Teams are geographically distributed
leaders, and others who are self-direct- and/or outsourced.
ing. m Project is of strategic importance (e.g.,

m Project is an in-house project, and the an enterprise initiative); scope crosses
team is co-located. the organization.

m System is new, with lots of unknowns. ® System is well understood, with a

B Requirements must be discovered. familiar scope and feature set.

m Requirements and environment are m Requirements are fairly stable (low
volatile, with high change rates. change rates) and can be determined in

advance.

m System is large and complex, with
critical safety or high reliability
requirements.

m Project stakeholders have a weak rela-
tionship with the development team.

m External legal concerns (e.g., con-
tracts, liability, formal certification
against specific industry standards)
exist

m Focus is on strong, quantitative pro-
cess improvement.

m Definition and management of process
are important.

m Predictability and stability of process
are important.

m End-user environment is flexible.

m Relationship with customer is close
and collaborative.

m Customer is readily available, dedi-
cated, and co-located.

m High trust environment exists within
the development teams, between the
development teams, and with the cus-
tomer.

m Rapid value and high-responsiveness
are required.

a. For a discussion on team size for agile projects, see Boehm and Turner [38].

Once your process is defined, your process work is not done. The process should
be refined throughout the development lifecycle as issues arise (ideally, after
every iteration). Process activities that worked well should be retained, and those
that did not should be eliminated. (And then, rinse and repeat.) Continual process
improvement based on practical experience executing the process should be the
goal.

The remainder of this chapter describes a framework for the software develop-
ment process that has been tuned to the construction of object-oriented systems.
The software development process is described from two perspectives—the over-
all software development lifecycle (the macro process) and the analysis and

256

SECTION Il METHOD

6.2

design process (the micro process). The discussion of the macro process sets the
context for the micro process, which is the true focus of this chapter.

A key point in the definition of the macro and micro processes is the strong
separation of concerns between them. The macro process is concerned with the
overall software development lifecycle, and the micro process is concerned with
specific analysis and design techniques—the techniques you use to get from
requirements to implementation. The choice of lifecycle style (e.g., waterfall, iter-
ative, agile, plan-driven, and so on) affects the macro process, and the choice of
analysis and design techniques (e.g., structured, object-oriented, and so on)
affects the micro process. Thus, whether you choose an agile or a plan-driven pro-
cess as your macro process, the object-oriented analysis and design tips and tech-
niques described in the micro process section can be applied equally well.

The Macro Process: The Software
Development Lifecycle

The macro process is the overall software development lifecycle that serves as the
controlling framework for the micro process (which we’ll describe later in this
chapter). It represents the activities of the entire development team, and as such,
the macro process dictates a number of measurable products and activities that
permit the development team to meaningfully assess risk and make early correc-
tions to the micro process, so as to better focus the team’s analysis and design
activities.

As we noted earlier, there is a continuum of software development lifecycle styles
currently available to choose from—from waterfall to iterative, from agile to
plan-driven, and many possibilities in between. The selection of a lifecycle style
directly affects the size and shape of the macro process (e.g., the definition and
number of phases, the recommended iteration duration, the average number of
iterations, and so on).

In this section, we will describe an example of a plan-driven macro process that
directly supports the two traits we discussed at the beginning of this chapter: a
strong architectural focus and an iterative development lifecycle. The macro pro-
cess we describe is the RUP lifecycle [51]. This will provide a baseline against
which we will compare other possible lifecycles. For a detailed comparison of the
lifecycles for different agile methods, see Larman [46].

CHAPTER 6 PROCESS 257

Overview

The purpose of the macro process is to guide the overall development of the sys-
tem, ultimately leading to the production system. The scope of the macro process
is from the identification of an idea to the first version of the software system that
implements that idea.

The development of subsequent versions of the system, whether for evolutionary
or maintenance purposes, is accomplished by executing another instance of the
macro process (another lifecycle). The size and shape of the maintenance lifecy-
cle is a variant of the initial development lifecycle. For more information on the
maintenance lifecycle, see the Post-Transition Software Evolution and Mainte-
nance sidebar.

In an iterative and incremental macro process, which is the style we will concen-
trate on in this section, the macro process defines the system in an evolutionary
way through successive refinements, ultimately leading to the production system.
The primary product of such a process is a stream of executable releases (itera-
tions) representing successive refinements (increments) of the system. Secondary
products include behavioral prototypes® used to explore alternative designs or to
further analyze the dark corners of the system’s functionality, as well as docu-
mentation used to record design decisions and rationale.”

The macro software development process can be described in terms of two
dimensions, content and time—what is done and when it is done. The content
dimension includes roles, tasks, and work products and can be described in terms
of disciplines, or areas of concern, which logically group the content. The time
dimension shows the lifecycle aspects of the process and can be described in
terms of milestones, phases, and iterations.

6. For more information on behavioral prototypes, see the Prototyping in the Software De-
velopment Process sidebar.

7. Many developers balk at “unnecessary documentation” because they don’t feel it bene-
fits them. However, it is important to note that the audience for documentation is rarely the
current development team but is usually people external to the team (such as integrators,
database administrators, project managers, operational support teams, technical help desk
staff, and so on) or people who will join the team in the future. Thus, documentation should
be created only if it will be read in the future. When it is developed, documentation should
evolve along with the system rather than being treated as a separate milestone and should
be a natural, semiautomatically generated artifact of the process.

258

SECTION Il METHOD

Post-Transition Software Evolution and Maintenance

Once a software system has been delivered (post-transition), changes to
the deployed system will most likely be needed. Those changes may be to
provide new or improved features (evolution) or to fix discovered defects
(maintenance). The issue of maintaining an operational system without
breaking what is already there is a real concern.

Lehman and Belady have made some cogent observations regarding the
maturation of a deployed software system.

m A program that is used in a real-world environment necessarily must change
or become less and less useful in that environment (the law of continuing
change).

m As an evolving program changes, its structure becomes more complex unless
active efforts are made to avoid this phenomenon (the law of increasing
complexity). [31]

Refinement of deployed software systems is especially important in agile
development. In fact, one of the key principles of agile development is “to
satisfy the customer through early and continuous delivery of valuable
software” [35]. With agile processes, deployed systems are continually
refactored to simplify their structure without breaking any existing imple-
mentations (e.g., all tests must still pass).

Changes to a deployed software system can be developed and delivered
by reexecuting a lifecycle that is similar to the original software develop-
ment lifecycle, except that the size and shape of a maintenance lifecycle
(i.e., what phases are needed and the number of iterations in each phase)
depend on what needs to be accomplished in the release. Some mainte-
nance releases involve simple localized changes and no architectural inno-
vation (i.e., they include mainly a Transition phase), but others require
some thinking with regard to scope and business value, as well as architec-
ture and risk (i.e., they include both Inception and Elaboration phases).
Such maintenance releases are considered more major, and their lifecycles
look something more like the complete end-to-end process. For a discus-
sion of maintenance lifecycles, see Kruchten [44].

The products of evolution and maintenance lifecycles are similar to those of
the original release lifecycle, with the addition of a list of change requests.
Immediately upon release of the production system, its developers and end
users will probably already have a set of improvements or modifications
they would like to carry out in subsequent production releases, which for
business reasons did not make it into the initial production release. Addi-
tionally, as more users exercise the system, new bugs and patterns of use
will be uncovered that the quality assurance team could not anticipate.
(Users are amazingly creative when it comes to exercising a system in
unexpected ways.) A change request list serves as the vehicle for collecting

CHAPTER 6 PROCESS 259

defects and enhancement requirements, so that they can be prioritized for
future releases.

The activities performed after transition are similar to those required during
the development of a system. However, in addition to the usual software
development activities, post-transition release planning involves prioritizing
the change requests, assessing their impact and cost of development, and
assigning the changes to a release. Also, many operational problems must
be resolved within 24 hours (or fewer!). Thus, patches must be delivered
outside of the normal release mechanism. Configuring and testing such
changes as well as integrating them into the current development release
can be significant project activities.

The Macro Process Content Dimension—
Disciplines

The macro process involves the following disciplines, executed in the following
relative order.

1. Requirements: Establish and maintain agreement with the customers and
other stakeholders on what the system should do. Define the boundaries of
(delimit) the system.

2. Analysis and design: Transform the requirements into a design of the sys-
tem, which serves as a specification of the implementation in the selected
implementation environment. This includes evolving a robust architecture
for the system and establishing the common mechanisms that must be used
by disparate elements of the system.

3. Implementation: Implement, unit test, and integrate the design, resulting in
an executable system.

4. Test: Test the implementation to make sure that it fulfills the requirements
(i.e., the requirements have been implemented appropriately). Validate
through concrete demonstration that the software product functions as
designed.

5. Deployment: Ensure that the software product (including the tested imple-
mentation) is available for its end users.

The following disciplines are executed throughout the lifecycle.
m Project management: Manage the software development project, including

planning, staffing, and monitoring the project, as well as managing the
risks.

260

SECTION Il METHOD

Prototyping in the Software Development Process

Prototyping serves multiple purposes in the software development process.
Before discussing the role of prototyping, let’s first define what we mean by
a prototype, specifically, a behavioral prototype. A behavioral prototype
explores some isolated element of the system, such as a new algorithm, a
user interface model, or a database schema. Its purpose is the rapid explo-
ration of design alternatives, so that areas of risk can be resolved early
without endangering the production releases. Such prototypes are, by their
very nature, incomplete and only marginally engineered, and they are
meant to be thrown away after they have served their purposes.

The first use of a behavioral prototype is usually during the early phases of
the software development lifecycle when you are trying to understand what
can be built and what technologies you can leverage to build it. For every
significant new system, there should be some proof-of-concept, manifest-
ing itself in the form of a quick-and-dirty prototype. Obviously, for applica-
tions on a massive scale (such as ones that have national significance or
multinational implications), the prototyping effort itself may be a large
undertaking. That is to be expected and, in fact, encouraged. It is far better
to discover during proof-of-concept that assumptions of functionality, per-
formance, size, or complexity were wrong, rather than later, when aban-
doning the current development path could prove to be financially or
socially disastrous.

Behavioral prototypes can also be used throughout the software develop-
ment lifecycle to better understand the semantics of the system’s behavior.
Typically, a team uses behavioral prototypes to storyboard user interface
semantics and present them to end users for early feedback, or to do per-
formance trade-offs for the implementation of specific mechanisms.

Any and all programming paradigms should support the development of
proofs-of-concept in order to help teams better understand an idea and to
uncover risks. However, it is often the case that, in the presence of a rea-
sonably rich object-oriented application framework, developing prototypes
is often faster than alternative approaches. It is not unusual to see proofs-
of-concept developed in one language (such as Smalltalk) and the end
product developed in another (such as Java).

Prototypes should not be allowed to directly evolve into the production sys-
tem, unless there is a strong compelling reason. Convenience for the sake
of meeting a short-term schedule is distinctly not a compelling reason: This
decision represents a false economy that optimizes for short-term develop-
ment and ignores the cost of ownership of the software. When developing
prototypes, it is important to establish clear criteria for the goals and com-
pletion of each prototype. Upon completion, decide on an approach to inte-
grate the results of the prototyping effort into the current, or subsequent,
releases.

CHAPTER 6 PROCESS 261

C»’ Requirements }—»’ Analysis & Design H Implementation }—»’ Test }—»’ Deployment Q

Project Management

Configuration and Change Management

Environment

Figure 6—1 The Macro Development Process Disciplines

m Configuration and change management: Identify the configuration items,
control changes to those items, and manage configurations of those items.

m Environment: Provide the software development environment, including
both processes and tools that support the development team.

Figure 6-1 shows the relative order and iterative nature of the macro process dis-
ciplines. Each cycle through the disciplines constitutes an iteration of the macro
process.

It is important to emphasize that while the disciplines tend to be executed in the
order shown (requirements, then analysis and design, then implementation, and
so on), the macro process does not have to be a waterfall process (though it can
be). In a waterfall macro process, just one pass is made through the disciplines—
the requirements for the entire system are defined, followed by the analysis and
design for the entire system, and so on. In an iterative and incremental macro pro-
cess, there are multiple passes through the disciplines, and the scope of the work
performed in each discipline during each pass depends on where you are in the
overall development process. This will become clearer when we discuss mile-
stones and phases.

Many elements of the macro process are simply sound software management
practices and apply equally well to object-oriented as well as non-object-oriented
systems. These include basic practices such as requirements management, config-
uration management, testing and quality assurance, code walkthroughs, and
documentation.

Now that we have looked at the content dimension of the macro process, let’s turn
our attention to the time dimension, which can be described in terms of mile-
stones, phases, and iterations.

The Macro Process Time Dimension—
Milestones and Phases

In an iterative and incremental macro process, the disciplines are repeated. How-
ever, there is more to an iterative development process than a stream of iterations.

262

SECTION Il METHOD

There must be an overall framework in which the iterations are performed that
represents the strategic plan for the project and drives the goals and objectives of
each of the iterations. Such a framework can be provided by a series of well-
defined milestones, where objectives of each milestone are achieved by executing
one or more iterations.® At each milestone, an assessment is performed to deter-
mine whether the objectives have been met. A satisfactory assessment allows the
project to continue with the next phase to achieve the next milestone.

The milestones ensure that the iterations make progress and converge on a solu-
tion, rather than just iterating indefinitely. They should be viewed not as dates on
a project schedule but as quality or maturity gateways, such that achieving these
milestones means that a project has reached a specific level of maturity and an
increased level of understanding of the evolving plans, specifications, and com-
pleted solutions. If the date originally set for one of these milestones is reached
and the project is not at the indicated level of maturity and understanding, then
the milestone date should slip—the date is the flexible part, not the milestone
criteria.

Figure 6-2 shows how milestones and iterations fit together in an iterative and
incremental macro process, as well as the phases that the milestones delineate.

In the following subsections we describe each of these phases in detail.

Inception

This subsection covers the purpose, activities, work products, and milestone of
the Inception phase.

Purpose The purpose of the Inception phase is to ensure that the project is
both valuable and feasible (scope and business value). For any truly new piece of
software, or even for the novel adaptation of an existing system, at some moment
in the mind of the developer, the architect, the analyst, or the end user, an idea for
some application springs forth. This idea may represent a new business venture, a
new complementary product in an existing product line, or perhaps a new set of
features for an existing software system. It is not the purpose of the Inception
phase to completely define this idea. Rather, this phase’s purpose is to establish
the vision for the idea and validate its assumptions. Even for the refinement of an
existing system, there is still value in the Inception phase. In such cases, Inception
is brief but still focuses on ensuring business value and technical feasibility.

8. A waterfall-based macro process also has milestones, but those milestones represent the
completion of each of the disciplines for the entire system (e.g., requirements complete,
analysis and design complete, and so on).

System is System is

Scope is Architecture ready for end ready to be
understood is stable user testing deployed

Inception Elaboration Construction Transition

| Iter I | | Iter E1 | | Iter E2 | | Iter C1 | | Iter C2 | | Iter C2 + n | | Iter T1 | | Iter T1 +m
4 N\ >~ / \
4 \\ S~ / AN
4 \\ ™~ / \
4 \\ ™~ / N\
/ ~ \
\\ ~ /
4 >~ \

. \\ ~ _ / \
/ \\‘ ~ . / N
(‘lRequirememsl»lAnalysis & Design |——| Implementation |—>| Dep\oymentl--) (*lRequirementsl»lAnaIysis & Design |——| Implementation |—>| Dep\oymeml--) (‘lRequirememsl»lAnalysis & Design |—>| Impl ion |—>|E [|-->

Project Management Project Management Project Management
Configuration and Change Management Configuration and Change Management LI I] Configuration and Change Management
Environment Environment Environment
>
Time

Figure 62 Macro Process Milestones, Phases, and Iterations

264

SECTION Il METHOD

Activities During the Inception phase, you establish and prioritize the core
requirements of the system, obtain agreement with the customer on what is to be
built, make sure you understand the key risks associated with building the system,
and decide what development environment to use (both process and tools).
Remember the earlier discussion on selecting a process that is most appropriate
for the current context? Inception is when that decision is made, the development
process is customized, and tools are selected to support the process. There is
nothing inherently object-oriented about the Inception phase.

Work Products The primary work products of the Inception phase are a
vision of what is to be built, behavioral prototypes, an initial risk list, the identifi-
cation of the key architectural mechanisms, and the development environment.
The vision provides a clear description of what is to be built, including its scope,
key features, and impacts on and relationships with existing systems, as well as
any existing constraints that must be considered. The prototypes serve as proofs-
of-concept that the system is buildable. The risk list identifies critical items that
must be mitigated early in the lifecycle to increase the probability of success. The
architectural mechanisms define the general capabilities of the system that sup-
port the basic system functionality (e.g., user interface paradigms, error detection
and handling, persistency, memory management, interprocess communication,
transaction management and security, and so on). The development environment
includes the development process to be followed and the development tools that
will support the process.

Milestone: Scope Is Understood The Inception phase is successfully
completed when there is a clear understanding of what is to be built (the overall
scope and key requirements of the system), an understanding of the relative prior-
ity of those requirements, and a strong business reason for building the system. In
addition, there is agreement between the customer and the development organiza-
tion on the scope of the system and the overall timeline for delivery.

Elaboration

This subsection covers the purpose, activities, work products, and milestone of
the Elaboration phase.

Purpose Once the scope of what is to be built is understood and agreed to,
attention turns to developing the overall architecture framework that will provide
the foundation for all the iterations that follow. The intent is to identify architec-
tural flaws early and to establish common policies that yield a simpler architec-
ture. The Elaboration phase is when such architectural discovery takes place,
choices are made, and the architecture evolves across multiple iterations. This

CHAPTER 6 PROCESS 265

evolution is driven by the mitigation of the highest risks and the implementation
of the requirements with the highest priority and the most architectural significance.

Activities The Elaboration phase involves making architectural decisions,
establishing the architectural framework, implementing the framework, testing
the framework, and refining the framework based on the results of the testing. The
evolution of the architecture is largely a matter of trying to satisfy a number of
competing constraints, including functionality, time, and space: One is always
limited by the most restrictive constraint. For example, if the weight of the com-
puter is a critical factor (as it is in spacecraft design), the weight of individual
memory chips must be considered, and in turn the amount of memory permitted
by the weight allowance limits the size of the program that may be loaded. Relax
any given constraint, and other design alternatives become possible; tighten any
constraint, and certain designs become intractable. By evolving the architecture of
a software system rather than taking a more monolithic approach to development,
you can identify which constraints are really important and which are delusions.
Early in the Elaboration phase, you typically do not know enough to understand
where the performance bottlenecks will arise in the system. By actually building
the key architectural elements and measuring the results via testing, the develop-
ment team can better understand how to tune the architecture over time.

Work Products During the Elaboration phase, the architecture is validated
by creating a series of executable architectural releases that partially satisfy the
semantics of the key end-user scenarios (the architecturally significant scenarios).
These scenarios are those that exercise and test the main system elements and
their collaborations, as well as those that investigate identified areas of risk. These
architectural releases denote a vertical slice through the entire architecture, cap-
turing important (but incomplete) semantics of all significant system elements.
Thus, the result of the Elaboration phase not only provides an architecture docu-
ment but also includes actual releases of the system that serve as tangible mani-
festations of the architecture design itself. An architectural release should be
executable, thus allowing the architecture to be instrumented, studied, and evalu-
ated precisely. These architectural releases become the foundation of the evolving
production system.

Milestone: Architecture Is Stable The Elaboration phase is successfully
completed when the architecture has been validated (by actual testing and formal
review) against all of the key system requirements, both functional and nonfunc-
tional, and when all risks have been sufficiently mitigated in order to predictably
determine the cost and schedule for completing the development of the system. A
key indicator that the architecture has stabilized (and that the Elaboration phase is
successfully completed) is that the rate of change of key architectural interfaces
and mechanisms has slowed considerably, if not been eliminated entirely. Measur-
ing the rate of change of architectural interfaces and mechanisms is the primary

266

SECTION Il METHOD

measure of architectural stability [30]. Localized changes are to be expected
throughout the software lifecycle, but if key architectural elements are being
changed often, this indicates some architectural problems, which should be recog-
nized as an area of risk and an indication that Elaboration is still in process.

Construction

This subsection covers the purpose, activities, work products, and milestone of
the Construction phase.

Purpose Once the architecture has stabilized, the focus shifts from under-
standing the problem and identifying key elements of the solution to the develop-
ment of a deployable product. The Construction phase is when you move from
discovery into production, where production can be thought of as “a controlled
methodological process of raising product quality to the point where the product
can be shipped” [24].

Activities During the Construction phase, the development of the system is
completed, based on the baselined architecture produced during the Elaboration
phase.

Work Products During the iterations of the Construction phase, a series of
executable releases are produced that satisfy the semantics of the remaining end-
user scenarios. These releases can be instrumented, studied, and evaluated pre-
cisely as they incrementally grow in scope and evolve into the production system.

Milestone: System Is Ready for End-User Testing The Construction
phase is successfully completed when the functionality and quality of the releases
are sufficient to deploy to the end user for some end-user testing. Some primary
measures of goodness during this phase include to what degree you satisfied the
requirements of the releases, as well as the quality of those releases. An important
indication of quality during this phase includes defect-discovery rates. Defect-
discovery rates are a measure of how rapidly new errors are being detected [29].
By investing in quality assurance early in the development process, it is possible
to establish measures of quality for each release, which the management team can
use to identify areas of risk and also to calibrate the development team. After each
release, the defect-discovery rate generally surges. A stagnant defect-discovery
rate usually indicates undiscovered errors. An offscale defect-discovery rate is an
indication that the architecture has not yet stabilized or that new elements in a
given release are incorrectly designed or implemented. In either case, the system
is not ready for end-user testing, and these measures should be used to adjust the
focus of subsequent releases.

CHAPTER 6 PROCESS 267

Transition

This subsection covers the purpose, activities, work products, and milestone of
the Transition phase.

Purpose The Transition phase is when you ensure that the software is accept-
able to its end users.

Activities During the Transition phase, the product is provided to the user
community for evaluation and testing (e.g., alpha testing, beta testing, and so on).
The development team then incorporates the feedback received. The focus of
Transition is on fine-tuning the product; addressing configuration, installation,
and usability issues; and addressing issues raised by the early adopters. Support-
ing documentation also undergoes final development, as does any applicable
training material. Any production-related issues, such as packaging and market-
ing materials, are also handled. The resulting product then undergoes acceptance
testing. It is important to note that even though testing has been performed
throughout the lifecycle, end-user testing and final acceptance testing is still
important as such testing ensures that the developed product fulfills its acceptance
criteria at both the development and target installation sites.

Work Products The work products produced during the Transition phase
include the packaged product, any supporting documentation, training materials,
and marketing materials.

Milestone: System Is Ready to Be Deployed The Transition phase is
successfully completed when the functionality and quality of the releases are
sufficient to make the product available to end users (the system has passed
acceptance testing). The primary measure of goodness is similar to that in the
Construction phase, a reduced rate of reported defects. However, in this phase,
early adopters are reporting the defects.

Phases in Agile Methods

Agile methods also include the concept of phases. In this sidebar, we sum-
marize the phases defined in some of the available agile methods [46].

The XP lifecycle includes five phases.

1. Exploration: Determine feasibility, understand key “stories” for the first
release, and develop exploratory prototypes.

2. Planning: Agree on the date and stories for the first release.

268 SECTION Il METHOD

3. lterations to release: Implement and test selected stories in a series
of iterations. Refine the iteration plan.

4. Productionizing: Prepare supporting materials (documentation, train-
ing, marketing), and deploy the operational system.

5. Maintenance: Fix and enhance the deployed system.

The SCRUM lifecycle includes four phases.

1. Planning: Establish the vision, set expectations, secure funding, and
develop exploratory prototypes.

2. Staging: Prioritize and plan for the first iteration. Develop exploratory
prototypes.

3. Development. Implement requirements in a series of sprints, and
refine the iteration plan.

4. Release: Prepare supporting materials (documentation, training, mar-
keting), and deploy the operational system.

As you can see, the phases defined in both plan-driven and agile methods
are quite similar. Specifically, all the methods we have described include
phases for:

m Envisioning, feasibility, and scoping

m Release and iteration planning

m Implementing and testing

m Productizing and deploying

Now that we have looked at some examples of macro process phases and mile-

stones, it is time to turn our attention to what occurs within each of the phases—
the iterations.

The Macro Process Time Dimension—
Iterations

As shown in Figure 6-3, in an iterative macro process, the milestones are
achieved by executing one or more iterations, and those iterations may involve
activities in any and all of the disciplines. However, the relative time spent in the
different disciplines varies depending on what phase the iteration occurs in. If the
iteration is in the Inception phase, more time would be spent on requirements; if
the iteration is in the Elaboration phase, more time would be spent on analysis
and design (specifically, architecture); if the iteration is in the Construction phase,
more time would be spent on implementation and testing; and so on. Of course,
some disciplines, such as configuration and change management, environment,
and project management, are performed throughout the lifecycle.

CHAPTER 6 PROCESS 269

Iteration 1
1 1 =
Requirements Analysis & Implementation Test Deployment
Design
Iteration 2
1
Requirements Analysis & Implementation Test Deployment
Design
Iteration 3
1
Requirements Analysis & Implementation Test Deployment
Design

Figure 6-3 The Shifting Focus of Iterations

Figure 6-3 illustrates how the focus of a project shifts across successive itera-
tions. The size of the boxes within each of the disciplines illustrates the relative
time spent performing the activities within that discipline. For a discussion on
how the analysis and design activities change throughout an iterative and incre-
mental lifecycle, see the Analysis and Design and Iterative Development sidebar.

At the end of each iteration, a postmortem should be held to assess the iteration in
terms of the state of the system being built, as well as in terms of the state of the
development environment and team. Each iteration should be seen as an opportu-
nity to adjust the course of the project, either by adjusting the functionality
mapped to subsequent iterations and/or by refining the environment to improve
those areas that are not working well.

The concept of an iteration is pretty much the same across most software develop-
ment methods. What differs is the recommended duration for each iteration [46].

m XP recommends that iterations be one or two weeks long, if possible.
m SCRUM specifies that all iterations (sprints) should be 30 days long.
m RUP recommends that iterations be two to six weeks long.

As noted earlier, a key deliverable of the macro process is a series of sequential,
evolutionary releases. Thus, we conclude this section on the macro process with a
discussion of release planning.

270

SECTION Il METHOD

Analysis and Design and lterative Development

In an iterative development lifecycle, analysis and design activities vary
throughout the development lifecycle.

The analysis activities are most visible during the earlier lifecycle phases
(Inception and Elaboration) when you are focused on establishing the soft-
ware architecture. During these phases, you concentrate on analyzing
those requirements considered architecturally significant. During the later
phases, when you complete the implementation, you analyze any remain-
ing requirements, but this analysis is not as extensive as what you did dur-
ing architectural definition because most of the major system elements
have already been discovered. The time you spend on analysis continues
to taper off in the later phases, as the number of requirements not yet ana-
lyzed decreases and the focus shifts to implementation. However, you may
need to perform some minimal analysis activities even during later phases
if changes to the requirements are introduced based on feedback received
when transitioning the system to the user, though this is unlikely.

Like the analysis activities, the design activities vary throughout the devel-
opment lifecycle. Design activities can start in the early phases when you
are establishing the scope of the system if you decide, for example, that
you will base your solution on a set of existing software elements. These
activities then pick up in the early iterations of architectural definition, when
you concentrate on designing the major (or architecturally significant) ele-
ments of the system. As you move into the later lifecycle phases, design
activities taper off, and the focus is more on what you could categorize as
being peripheral or supporting elements.

Release Planning

During release planning, you define what the releases are and what they will con-
tain. The purpose of release planning is to identify a controlled series of releases,
each growing in its functionality, ultimately encompassing the requirements of
the complete production system. The primary input to release planning is the
scope of what is to be built, as well as any constraining factors (e.g., cost, time,
quality). The activities performed during release planning include establishing the
project’s heartbeat, prioritizing requirements, allocating requirements to itera-
tions, tagging an iteration release as external or internal, and finally developing
detailed iteration plans. The result of release planning is a development plan,
which identifies the stream of releases, team activities, and risk assessments. Now
let’s look at each of the release-planning activities in a little more detail.

The first step when planning the releases involves establishing the heartbeat of the
project—deciding on the average duration for the iterations (i.e., deciding on the

CHAPTER 6 PROCESS 271

spacing of the releases). The duration of an iteration is an important factor when
deciding just how much you think you can accomplish in a single iteration. Itera-
tion release dates should be sufficiently separated to allow adequate development
time and to synchronize releases with other development activities, such as docu-
mentation and field testing. For a small project involving six to twelve months of
end-to-end development time, this might mean a release every two to six weeks.
For a modest-sized project involving twelve to eighteen months of end-to-end
development time, this might mean a release every two to three months. For more
complex projects that require much greater development effort, this might mean a
release every six months or so. More extended release schedules are suspect
because they do not force closure of the micro process and may hide areas of risk
that are being intentionally or unintentionally ignored.

Once you know about how long your iterations are going to be, the next step dur-
ing release planning is to prioritize the system requirements to be delivered, both
functional and nonfunctional. These priorities will be used when determining
what requirements are allocated to what iteration.

Requirements are prioritized based on a number of factors. These factors may
include the following:

m Benefit to stakeholders (e.g., how important the requirement is to the end
user, or how important it is to demonstrate a consistent part of the system
functionality to the project’s sponsor)

m Architectural impact and coverage (e.g., whether the requirement involves
key aspects of the architecture such as access to databases, integration with
legacy systems, and so on)

m Risks mitigated by addressing the requirement (e.g., whether the requirement
includes access to an external system whose interface is not well understood)

Depending on where you are in the development lifecycle, each of these factors
may have a different weight. For example, what’s considered high priority during
the Elaboration phase is different than what is considered high priority during the
Construction phase (during Elaboration, architectural significance has more
weight). It is important to note that requirements are not prioritized only once.
Their relative priorities should be evaluated every iteration and adjusted where
necessary, based on the current project status, new requirements, discovery of
new risks, and mitigation of existing risks. Due to the multiple factors affecting
priority, prioritizing requirements is best accomplished by a team that includes a
user representative, a domain expert, an analyst, an architect, and quality assur-
ance personnel.

Once the requirements have been prioritized, the requirements are allocated to a
series of iteration releases, with the highest-priority requirements allocated to the
earlier iterations. Each iteration should have a planned capability that is demonstrable

272

SECTION Il METHOD

and should have clear evaluation criteria that will be used to assess the success of
the iteration. The content of an iteration release is determined by the scope of the
iteration, which in turn is determined by where the iteration is in the software life-
cycle (i.e., what phase it is in).

Each iteration results in a release that may be internal or external; the final release
is an external release that represents the production system. The determination of
whether a release is internal or external depends on the overall lifecycle phase.
Early in the development process, the releases are generally internal. Major exe-
cutable releases are turned over by the development team to quality assurance
personnel, who can begin to test the release against the scenarios established dur-
ing requirements, thereby gathering information on the completeness, correct-
ness, and robustness of the release. This early data gathering aids in identifying
problems of quality, which are more easily addressed during evolution of the sub-
sequent release. Later in the development process, more releases tend to be exter-
nal, as executable releases are turned over to select end users (the alpha and beta
customers) in a controlled manner. By “controlled,” we mean that the develop-
ment team carefully sets expectations for each release and identifies aspects that it
wishes to have evaluated. In general, there may be more internal releases to the
development team, with only a few executable releases turned over to external
parties. The internal releases represent a sort of continuous integration of the sys-
tem and exist to force closure on some key system areas.

Note that the act of creating a release is relatively costly (especially for an exter-
nal release), so other constraining factors such as time, quality, and scope may
place limits on the number and duration of the releases. In such cases, quality can
be used as a bargaining chip when forced to deliver some fixed unit of cost, time,
or scope. This is particularly significant for a fixed-price contract.

The final activity of release planning is the development of detailed iteration
plans. During iteration planning, detailed project plans are developed for the cur-
rent iteration, and development resources needed to achieve the release are identi-
fied. Unlike the overall release plan (which is defined up front and identifies the
key milestones, a proposed number of iterations, and a high-level understanding
of their content), detailed iteration plans are developed just in time (when the iter-
ation is to begin). This allows project managers to account for the inevitable
schedule adjustments needed as the development progresses. “Unjustifiable preci-
sion—in requirements or plans—has proven to be a substantial yet subtle recur-
ring obstacle to success. Most of the time, early precision is just plain dishonest
and serves to provide a fagade for more progress of more quality than actually
exists” [50].

With iterative development, release planning is ongoing and risk-driven. After
each iteration, the remaining development plan should be reexamined and
adjusted, as necessary. Often, this involves some reprioritization of requirements,

CHAPTER 6 PROCESS 273

6.3

small adjustments to dates, or migration of functionality from one iteration to
another. Periodic risk assessments should be performed throughout the lifecycle
and the development plan adjusted to tackle the risky things first so that those
risks can be eliminated or reduced. This helps the team to manage future strategic
and tactical trade-offs. Facing up to the presence of risks early in the development
process makes it far easier to make pragmatic architectural trade-offs later.

The Micro Process: The Analysis and
Design Process

In the previous section, we discussed the overall software development process
(the macro process). In this section, we cover the analysis and design process (the
micro process) by looking at what activities are performed and what work prod-
ucts are produced.

Overview

As shown in Figure 64, the analysis and design process is performed in the con-
text of an overall software development process. The macro process drives the
scope of the micro process, provides inputs to the micro process, and consumes
the outputs of the micro process. Specifically, the micro process takes the require-
ments provided by the macro process (and any analysis and design specifications
produced by previous iterations of the micro process) and produces design speci-
fications (most notably, the architecture) that are implemented, tested, and
deployed in the macro process.

Just as we described the macro process in terms of two dimensions, time and
content, we will describe the micro process in terms of its two key dimensions—

The Micro
Process:

“\ Analysis &
Design

" —»‘ Implementation }—>’ Test }—»’ Deployment

Project Management

Configuration and Change Management

Environment

Figure 6—4 The Micro Process within the Macro Process

274

SECTION Il METHOD

levels of abstraction and content (activities and work products). We then discuss
how the activities performed and the work products produced are affected by the
levels of abstraction.

Levels of Abstraction

In the micro process, the traditional phases of analysis and design are intention-
ally blurred and instead are performed at different levels of abstraction along a
continuum. Analysis takes the system requirements and produces an initial solu-
tion, and design takes the results of analysis and produces a specification that can
be efficiently implemented. The analysis is considered complete when it accu-
rately represents the system requirements, is consistent, and can serve as a good
basis for design. The design is considered complete when it is detailed enough to
be implemented and tested. As Mellor et al. state, “the purpose of analysis is to
provide a description of a problem. The description must be complete, consistent,
readable, and reviewable by diverse interested parties, [and] testable against real-
ity” [16]. In our terms, the purpose of analysis is to provide a model of the sys-
tem’s behavior.

Analysis focuses on behavior, not form. In analysis, you seek to model the world
by identifying the elements that form the vocabulary of the problem domain and
describing their roles, responsibilities, and collaborations. During analysis, it is
inappropriate to pursue issues of representation or implementation. Rather, analy-
sis must yield a statement of what the system does, not how it does it. Any inten-
tional statements of “how” during analysis should be viewed as useful only for
the purpose of exposing the behavior of the system and not as testable require-
ments of the design. Analysis is about understanding the problem to be solved a
little better. Analysis is a critical part of the overall software development process
and, if performed well, will result in a more robust and understandable design,
with a clear separation of concerns and a balanced division of responsibility
between system elements.

In design, you invent the elements that provide the behavior that the analysis ele-
ments require. You begin the design process as soon as you have some reasonably
complete model of the behavior of the system. It is important to avoid premature
designs, wherein development begins before analysis reaches closure. It is equally
important to avoid delayed designing, wherein the organization thrashes while
trying to complete a perfect and hence unachievable analysis model (a condition
commonly referred to as analysis paralysis). During analysis, you should not
expect to devise an exhaustive understanding of the system’s behavior. Indeed, it
is neither possible nor desirable to carry out a complete analysis before allowing
design to commence. The very act of building a system raises questions of behav-
ior that no reasonable amount of analysis can efficiently uncover. It is sufficient
that you accomplish an analysis of all the primary behaviors of the system, with a

CHAPTER 6 PROCESS 275

sprinkling of secondary behaviors considered as well to ensure that no essential
patterns of behavior are missed.

Since architecture plays such an important part of the overall solution, we need to
understand the separation of concerns when developing the architecture versus
the individual components during analysis and design. Architecture is primarily
concerned with the relationships between the parts of the systems (e.g., compo-
nents), their responsibilities, interfaces, and collaboration. In contrast, analysis
and design of system components focus on the internals of those components and
how they will satisfy the requirements levied on them that result from the archi-
tectural analysis and design. Figure 6-5 summarizes what should be the focus

of analysis and design, when done from both architectural and component
perspectives.

The architecture describes the structural decisions and essence of the system.
Thus, the architectural concern is more strategic in nature, whereas component
analysis and design are more tactical. What you focus on depends on whether you
are concerned with the architecture or with the components that are part of that
architecture.

Analysis and design are performed at multiple levels of abstraction throughout
the development lifecycle. The number of levels cannot be specified a priori. This
depends primarily on the size of your system. In fact, you may at times discover,

Discipline: Analysis Design

Concern:
— Focus: Fine-tune the

architecture articulated during
architectural analysis by
identifying the major design
elements of the system,
including the common
mechanisms that must be

Focus: Establish the initial
architectural framework of
Architectural the system that will guide
and provide context for
architectural design.

adhered to.
Focus: Understand the Focus: Refine the design
current set of requirements. elements to produce a
Component Produce an initial version of specification that can be
the solution by allocating the efficiently implemented using
requirements to elements of specific implementation
the solution. technologies.

Figure 6-5 The Varying Focus of Analysis and Design, Depending on Perspective

276

SECTION Il METHOD

for example, that the component you were trying to analyze is too large. You may
have to take a step back and perform another round of architectural analysis on
that component in order to partition it into further components (or subcompo-
nents) that are more manageable and can be better analyzed.

Now let’s look at the activities performed during the micro process and the work
products they produce.

Activities

The micro process consists of the following set of activities, which are performed
for a specific scope and at a specific level of abstraction.

m Identify the elements:’ Discover (or invent) the elements to work with.
Define the object-oriented decomposition.

m Define the collaborations between the elements: Describe how the identified
elements collaborate to provide the system’s behavioral requirements.

m Define the relationships between the elements: Define the relationships
between the elements that support the element collaborations.

m Define the semantics of the elements: Establish the behavior and attributes
of the identified elements. Prepare the elements for the next level of
abstraction.

These micro process activities are shown in Figure 6-6.

While these activities are shown as being performed sequentially, in practice they
are performed in parallel. For example, you may identify the elements and their

Detail Element
Semantics

Identify

. Elements
Micro

Process
Activities
Define Element
Collaborations

Define Element
Relationships

Figure 6-6 The Micro Process Activities

9. Throughout this chapter, we will use the term element to refer to the “things” we are
working with at the current level of abstraction. Thus, an element may be an analysis class,
a component, a design class, and so on. For more information on the elements identified
during analysis and design, see Table 6-2.

CHAPTER 6 PROCESS 277

collaborations at the same time. You may also identify behaviors and attributes
when defining the element collaborations. The ability to do this comes with expe-
rience. Think of performing the micro process in a series of passes through the
activities for the current scope; however, you can minimize the number of passes
as you become more experienced at applying the process.

We will discuss each of the micro process activities in more detail later in this
chapter. Now let’s take a look at the products of the micro process.

Products

As you would expect, the primary products of the micro process reflect the differ-
ent analysis and design concerns.

m The architecture description describes the system’s architecture, including
descriptions of common mechanisms. The description includes the architec-
turally significant aspects of the analysis/design model.

m The analysis/design model includes the analysis and design elements of the
software solution and their organization, as well as the realizations that
describe how the system’s behavioral requirements are realized in terms of
those elements.

As with the analysis/design model, choosing to what level of detail the architec-
ture is described depends on the system being developed and what type of devel-
opment process you have selected. Once documented, the architecture needs to be
communicated to the development team. After all, it describes the system’s archi-
tectural vision, whose importance we discussed in an earlier subsection, Strong
Architectural Vision. For recommendations on how to document the software
architecture, see the Documenting the Software Architecture sidebar.

There are essential benefits to creating an analysis/design model as part of the
micro process. First, maintaining an analysis/design model helps to establish a
common and consistent vocabulary that can be used throughout the project. The
analysis/design model serves as the central repository for the elements, their
semantics, and their relationships as development progresses. Over time, the anal-
ysis/design model is refined by adding new elements, eliminating irrelevant ele-
ments, and consolidating similar elements. In this way, the team continues to
evolve a consistent language of expression. Also, having a central repository for
the elements in a system not only ensures that those elements are consistent but
also can serve as an efficient vehicle for browsing through all the elements of a
project in arbitrary ways. This feature is particularly useful when new members of
the development team must quickly orient themselves to the solution already
under development. An analysis/design model also permits architects to take a

278

SECTION Il METHOD

global view of the project, which may lead to the discovery of commonalities that
otherwise might be missed. As you can probably guess, the use of the UML to
represent the analysis/design model enhances these benefits even more. Not only
do you realize the typical benefit of “a picture is worth a thousand words,” but
visually representing the analysis/design model helps to uncover inconsistencies
between the elements. (For information on using the UML to represent object-
oriented analysis and design elements, see Chapter 5.)

The choice of whether to maintain separate analysis and design models depends
on the system being developed and what type of development process you have
chosen.'” A separate analysis model may be useful if the system being developed
will live for decades, will have multiple variants, or is designed for multiple target
environments, each with its own design architecture. In such cases, the analysis
model is maintained as an abstraction (platform-independent representation) of
the individual (platform-specific) design models. In fact, this is one of the founda-
tion principles of Model Driven Architecture (MDA) as espoused by the Object
Management Group [48]. A separate analysis model may also be maintained to
provide a conceptual overview of a complex system; however, a well-documented
architecture can serve this same purpose. It can be very costly to maintain a high
degree of fidelity between the analysis model and the design model. When decid-
ing whether a separate analysis model is needed, keep in mind the extra work
required to ensure that the analysis and design models remain consistent and bal-
ance that cost against the benefits of having a separate model that provides a con-
ceptual view of the system. Alternatively, the analysis model can be considered a
temporary artifact that evolves into a design model (in such cases, the analysis
model is considered an “initial” design model).

Documenting the Software Architecture

Documenting the architecture of a system has considerable value to the
architects themselves and to the system’s stakeholders. The value is not
only in the resulting documentation but also in the documenting process
itself. The architecture is the part of design that is shared across many
stakeholders, not just the development team. Deployment designers, net-
work designers, application support and operations personnel, help desk
staff, and even project managers will read the software architecture docu-
mentation, but few if any of these folks will read the detailed software
design notes. The software architecture documentation provides an excel-
lent overview of the key aspects of the system and supports the confirma-
tion that the system meets its requirements. Documenting the architecture

10. For more information on the software development process, see the Toward a Rational
Development Process section.

CHAPTER 6 PROCESS 279

forces you to consider very carefully the different aspects of the architec-
ture. In this sidebar, we provide some suggestions for how to think about
and document the software architecture.

As we discussed earlier, architecture describes a set of key design decisions,
rules, and patterns, as well as a set of constraints that define a framework
in which the design and implementation of the system takes place. Soft-
ware architecture involves multiple perspectives, so the architecture
description should also include multiple perspectives. As described in IEEE
1471 [42], an architect can define his or her own viewpoints and views to
communicate the architecture of the system, where a viewpoint describes:

m One or more system models and views (projections) of those models
m The stakeholders interested in the views

m The stakeholders’ concerns that should be addressed through the
views

The software architecture should be represented by using a set of relevant
views defined by viewpoints, where a viewpoint serves as a guide for a
view. These architectural views include those development artifacts that
are considered architecturally significant from a particular viewpoint.

The following is a simple set of views that can be used to describe a soft-
ware architecture. This set of views, first proposed by Kruchten [43], is
known as the 4+1 architecture view model.

m Requirements View (also known as the Use Case View): The
Requirements View describes the architecturally significant require-
ments, both functional and nonfunctional. The architecturally signifi-
cant functional requirements tend to drive the definition of the
architecturally significant use case scenarios that are analyzed early
in the software lifecycle. The architecturally significant nonfunctional
requirements include any system-wide architectural qualities (e.g.,
usability, resilience, performance, size, scalability, security, privacy,
comprehensibility) and economic and technology constraints (e.g.,
use of off-the-shelf products, integration with legacy software, reuse
strategy, required development tools, team structure and schedule),
as well as regulatory constraints (e.g., adherence to specific stan-
dards and controls). It is these nonfunctional requirements that tend
to be the most architecturally significant, and they drive the definition
of the architectural mechanisms documented in the Logical View.

m Logical View: The Logical View contains the architecturally significant
analysis and design elements, their relationships, and their organiza-
tion into components, packages, and layers, as well as a few selected
realizations that illustrate how these architecturally significant elements
work together to provide the architecturally significant scenarios
described in the Requirements View. The Logical View also describes
the key mechanisms and patterns that shape the system structure.

280

SECTION Il METHOD

m Implementation View: The Implementation View describes the key
implementation elements (executables, directories) and their relation-
ships. This view is important because the structure of the implemen-
tation has a major impact on concurrent development, configuration
management, and integration and testing.

m Process View:. The Process View describes the independent threads
of control in the system and what logical elements participate in these
threads.

m Deployment View. The Deployment View describes the various sys-
tem nodes (such as computers, routers, and virtual machines/con-
tainers) and the allocation of the architecturally significant logical,
implementation, or process elements to these nodes.

The “4+1” name of this set of views refers to the debate over whether
requirements should be considered an architectural view. The Require-
ments View is included in the architectural description in order to describe
the subset of the requirements that shape the architecture and to allow the
qualities of the architecture to be expressed. Thus, requirements are criti-
cal to the architecture, and it is recommended that you call out the architec-
turally significant ones as part of the architecture description and trace
those requirements to the other architectural views.

As Booch, Rumbaugh, and Jacobson point out, each of the architectural
views can stand alone so that different stakeholders can focus on the archi-
tectural areas that most concern them [39]. These five architectural views
also interact with one another (e.g., nodes from the Deployment View hold
elements from the Implementation View that, in turn, represent the physical
realization of the elements from the Logical and Process Views).

An architect should feel free to add as many views as needed to describe
the software architecture (e.g., a Data View or a User Experience View)
and to remove views that do not apply.

Numerous other architecture frameworks, both simple and complex, have
the common characteristic of using views and viewpoints. Some of the
more notable are the Zachman framework [32], the Department of Defense
Architecture Framework (DoDAF) [33], and the Federal Enterprise Archi-
tecture (FEA) [34].

In some cases, depending on your project and the process you are using, it
may make sense to collect all architectural information into an actual soft-
ware architecture document (SAD). The SAD becomes the primary artifact
where the architecture of a system is described, and it contains references
to all other architecturally significant artifacts. If someone wants to understand
the architecture of a system, the SAD is the place to start. The SAD should
show how the key architectural concerns are addressed, so it is best orga-
nized to follow the architectural views just discussed. The SAD should be
reviewed with the entire team and updated as the architecture evolves.

CHAPTER 6 PROCESS 281

The Micro Process and Levels of Abstraction

The micro process applies equally to the project architect and to the application
engineer, the difference being the level of abstraction considered. From the per-
spective of the architect, the micro process offers a framework for evolving the

architecture and exploring alternative designs; from the perspective of the engi-
neer, the micro process offers guidance in making the myriad tactical decisions
that are part of the daily fabrication and adaptation of the architecture.

The details of what is performed during the micro process activities depend on the
current concern (i.e., architectural or component; refer to Figure 6-5). The fol-
lowing list further describes the focus of the micro process activities for each of
the concerns defined earlier.

m When performing architectural analysis, the micro process activities focus
on creating an initial version of the architecture that leverages any existing
reference architectures or architectural frameworks, as well as identifying
other existing assets that could be used as the building blocks. This includes
the overall structure of the system, its key abstractions, and its mechanisms.
In fact, it’s not a bad idea to develop a high-level understanding of each of
the architectural views. The results of architectural analysis are used to
drive architectural design.

m During architectural design, the initial architecture developed from the
architectural analysis is refined based on what was learned during architec-
tural analysis. The micro process activities focus on refining the identified
analysis elements, the design elements, and their responsibilities and inter-
actions. The design elements defined at this level represent the key building
blocks of the overall architectural framework, and their relationships deter-
mine the overall structure of the system. The analysis mechanisms are also
refined into design mechanisms that leverage specific technologies, and the
impact of concurrency and distribution on the architecture are considered
much more closely. Reuse also plays an important role, as the opportunity
and impact of incorporating existing design elements (and their associated
implementation) are explored.

m In component analysis, the micro process activities focus on identifying the
analysis elements and their responsibilities and interactions. These analysis
elements represent the first approximation of the system components that
are then used during component design to identify the design elements. It is
important to remember that the nature of the micro process analysis activi-
ties are to provide us with an analysis perspective of the component, and
you should avoid the temptation to design the component at this stage, since
this entails additional concerns that will be addressed during design.

m During component design, the micro process activities focus on refining the
design of the component by defining it in terms of design classes that can be

282

SECTION Il METHOD

directly implemented by the selected implementation technology. During
detailed design, you continue refining the design classes by working out the
details of their content, behavior, and relationships. The refinement should
stop when there is enough detail for the design classes to be implemented.
This is followed by implementation, which is part of the macro process.

While it may appear that the micro process is a clean, full-breadth walk down a
path from high-level abstractions to lower-level abstractions, that is not the really
the case.

As shown earlier in Figure 64, you start the micro process with a set of require-
ments from the macro process (e.g., use cases, scenarios, function points, user
stories, and supplementary specifications).!! You then execute several iterations
of the micro process, with each iteration taking its inputs that are at some level
of abstraction and producing a realization of these inputs at the next level of
abstraction. The end result of the micro process iterations is a detailed design
realization of the original requirements that is fed back into the macro process for
implementation.

During the micro process iterations, the selection of what elements to take to a
lower level of abstraction at any point in time is opportunistic and risk-based. For
example, when performing architectural design, for a certain scope, you may “go
deep” (e.g., perform component design) for a set of elements that you don’t know
much about, in order to reduce risk, and then pop back up again to continue your
architecture design work. Let’s take a closer look at an example and see if we can
clarify what we mean.

Imagine that we are in an Elaboration phase iteration of the macro process, and
the architecturally significant requirements that are in scope for that iteration are
ready to be taken through the analysis and design process (the micro process).
The following scenario describes what may happen during the micro process.

1. Architectural analysis is performed for all of the architecturally significant
scenarios. The result is a set of architecturally significant analysis elements.

2. Architectural design occurs, using all of the architectural analysis elements
as input. During this iteration, a design element is discovered that is not that
well understood, so component analysis and design is executed for that ele-
ment. As a result, some refinements are needed to the element at the archi-
tectural design level. The result of these iterations is a set of architecturally
significant design elements.

11. No matter which type of requirements representation is used, it is important that the
requirements accurately document what the system needs to do from the perspective of the
user, including both functional and nonfunctional requirements. In this chapter, we use the
term scenario to refer to this user-focused view of the requirements.

CHAPTER 6 PROCESS 283

3. Component analysis is performed for each of the architecturally significant
scenarios, using the architectural design elements as input. The result of
these iterations is a set of design elements that support the architecturally
significant scenarios.

4. Component design is executed for each of the architecturally significant ele-
ments from component analysis.

5. Additional micro process iterations are executed at lower levels of abstrac-
tion (e.g., moving from the enterprise level to system, subsystem, compo-
nent, and subcomponent levels, and so forth).

The result of these iterations is a set of detailed design elements that are ready for
implementation in the macro process. Figure 6—7 summarizes the relationship
between the macro process, the micro process, and the micro process iterations.

Now that we have completed our discussion of the micro process and levels of
abstraction, we can examine each of the micro process activities in more detail
and discuss what is performed, what is produced, and how to assess the quality of
what is produced.

Requirements Design Specifications

(from the macro process) ~ Detail Element Identify (to the macro process)
Semantics Elements
Micro
Process
Activities

Define Element
Collaborations

Define Element
Relationships

Figure 6—7 Micro Process Iterations

Identifying Elements

The identification of elements is a key activity when devising an object-oriented
decomposition of a system. Thus, the purpose of this first micro process activity
is to identify the key elements that will be used to describe the solution at a partic-
ular level of abstraction. We use the word identify rather loosely here. The activity
is really an evolution of elements from one level of abstraction to the next. Identi-
fying elements at one level of abstraction involves evolving the previous level,
which results in new and different elements. The elements identified at one level
of abstraction are then used as the primary inputs to the identification of elements
at the next level.

While performing this activity, it is important to maintain a delicate balance
between identifying the elements and refining their semantics. This element iden-

284 SECTION Il METHOD

tification activity should focus just on identifying the elements and describing
them at a high level (a brief description). The micro process activities that follow
will progressively refine the semantics of the identified elements.

Products

The primary product of this micro process activity is the analysis/design model,
which includes the identified elements and their basic description at a particular
level of abstraction. Table 6-2 summarizes the elements identified during the dif-
ferent analysis and design activities.

Table 6-2 Elements Identified During Analysis and Design Activities

Identified
Focus Elements Purpose and Comments
Architectural Key abstractions ® To form the vocabulary of the problem domain.
analysis Identifying key abstractions up front reduces the possibility

that key concepts will be defined in conflicting ways later,
when elements are identified from individual requirements.

Architectural
partitions

To represent separate areas of concern within the system
and to cluster analysis elements (i.e., components).

To represent the high-level logical organization of the
system. Partitions can be based on an existing architec-
tural framework.

In a layered architecture, the architectural partitions are
the layers.

Analysis
mechanisms

To represent the key services, infrastructure, and common
policies you might need going forward.

Some of these are foundational, meaning that they
address domain-independent issues such as memory man-
agement, error detection and handling, persistence, inter-
process communication, transaction management, and
security. Others are domain-specific and include idioms
and mechanisms that are germane to that domain, such as
control policies in real-time systems or transaction and
database management in information systems.

Analysis mechanisms are described in broad terms that
are not implementation-specific.

To support consistency across the analysis activities (as
opposed to having one analyst come up with one solution
while another analyst comes up with a different solution).
Identifying common mechanisms early on mitigates the
risk that a poor tactical design decision about common
policies will be made that could negatively affect the
overall architecture.

CHAPTER 6 PROCESS 285

Identified
Focus Elements Purpose and Comments
Architectural Architecturally m To encapsulate business behavior and/or to provide access
design significant to and management of system data.
design elements w To represent specifications that can be efficiently imple-
mented by using specific implementation technologies.
Architectural m To refine the original architectural logical partitions
partitions defined during architectural analysis.
m To cluster design elements.
Design m To refine the analysis mechanisms to specific
mechanisms technologies.
Component Analysis m To represent the initial object-oriented composition of the
analysis classes® desired solution that provides the desired behavior.
m To describe separate elements with cohesive responsibility.
Component Design classes m Same purposes as for architectural design, except here we
design work at a lower level of abstraction (i.e., component

design elements vs. architectural design elements). These
design elements are refined and specified to a level of
detail that enables implementation.

a. Some may disagree with the use of the word classes in this context. However, the important idea is not what
they are called but what they represent.

Steps

In Chapter 4, we described specific classification techniques for identifying
object-oriented elements (i.e., classical object-oriented analysis, behavior analy-
sis, domain analysis, use case analysis, CRC cards, informal English description,
and structured analysis). As described in that chapter, the identification of
object-oriented elements usually involves two activities: discovery and invention.
During analysis, identification is mostly driven by discovery, whereas in design,
invention plays a bigger part. During analysis, designers work in conjunction with
domain experts to identify the elements. They must be good at discovering abstrac-
tions, capable of looking at the problem domain and finding meaningful analysis
elements. During design, architects and designers identify elements and must be
skilled in crafting new design elements that derive from the solution domain.

During design, some elements identified during analysis may turn out to be
actual classes, and others may turn out to be simply attributes of, or synonyms for,
other abstractions. In addition, some of the analysis elements you identify early in
the lifecycle may be wrong, but that is not necessarily a bad thing. During analy-
sis, it is important to keep such decisions open to refinement as development

286

SECTION Il METHOD

progresses. Many of the tangible things and roles that you encounter early in the
lifecycle will carry through all the way to implementation because they are so
fundamental to your conceptual model of the problem. As you learn more about
the problem, you will probably change the boundaries of certain elements by real-
locating responsibilities, combining similar elements, and—quite often—dividing
larger elements into groups of collaborating ones, thus forming some of the
mechanisms of your solution. In summary, analysis elements are often quite fluid
and changeable, and they can evolve greatly before they solidify during design.

The overall approach for identifying elements is generally the same for all levels
of abstraction; what differs is your starting point (what abstractions you already
have), what you concentrate on (architecturally significant elements or not), and
how far you go (whether you look inside a design element and identify the elements
that comprise it). For example, when performing architectural design, you use the
results of architectural analysis as a starting point, you concentrate on the archi-
tecturally significant design elements, and you may also consider the elements
that comprise those architecturally significant elements to make sure that you
understand each element’s behavior well enough to reduce risk. When performing
component analysis and design, you use the results of architectural analysis and
design as a starting point, and you identify any remaining design elements needed
to specify the implementation, including more fine-grained design elements that
comprise the more coarse-grained elements (e.g., the classes that will provide the
behavior of a component).

The identification of elements is then repeated recursively in order to invent more
fine-grained abstractions that you can use to construct higher-level ones and to
discover commonality among existing abstractions, which you can then exploit to
simplify the system’s architecture. When identifying design elements, the design
elements with the largest granularity are usually identified first because they
define the core of the logical structure of the system and are composed of the
smaller granularity elements. However, in reality, design elements at different lev-
els of granularity may be identified at the same time, though there are obvious
sequential dependencies (e.g., you cannot identify classes that specify the imple-
mentation of a particular component until that component has been identified).

The following analysis classes are excellent candidates for being refined into
design elements.

m Analysis classes with a nontrivial set of responsibilities.

m Groups of analysis classes that represent information that should be man-
aged together. Elements whose information should be managed together
should belong to the same design element, and the responsibilities that
involve manipulating that information should belong to that design element.

m Groups of analysis classes that collaborate to provide a specific behavioral
requirement or related behavioral requirements (e.g., the analysis classes

CHAPTER 6 PROCESS 287

participating in the same or related realizations). Collaborating elements
should belong to the same design element.

m Groups of analysis classes that have the same responsibilities. Similar (or
related) responsibilities should belong to the same design element.

In addition to looking at the analysis elements as inspiration for the design ele-
ments, the refinement of analysis elements into design elements is also driven by
the application of selected architectural and/or design patterns (especially those
that reflect your selected architectural style), as well as general design principles.
Some examples of patterns include IBM’s patterns for eBusiness [52], architec-
ture patterns [53], and design patterns [55]. Some examples of design principles
include the enterprise component design principles described in Cheesman and
Daniels [54] and the best practices of developing business components described
in Herzum and Sims [56].

When identifying elements, it is always wise to investigate similar systems at
similar levels of abstraction. In this way, you benefit from the experience of other
projects that had to make similar development decisions. In general, during the
element identification step, it is important to identify the opportunity and the
impact of incorporating (reusing) existing elements, making sure that the
intended context for a potential reusable asset is consistent with your context.

The logical partitions identified during architectural analysis are usually based on
the selection of a specific architectural pattern. These partitions are refined during
design as design elements are identified and clustered. Some partitioning guide-
lines include clustering elements that support the same function. Functions that
build on one another should fall into different partitions; functions that collabo-
rate to yield behaviors at a similar level of abstraction should fall into partitions,
which represent peer services. These decisions have strategic implications. In
some cases, this clustering is done from the top down, by taking a global view of
the system and partitioning it into abstractions that denote major system services
that are logically cohesive and/or likely to change independently. This architec-
ture may also be refined from the bottom up, as clusters of classes that are seman-
tically close are identified. As existing design partitions become bloated, or as
new clusters become evident, you may choose to introduce a new design partition
or reorganize the allocation of existing ones. Such refactoring is a key practice in
agile processes.

The mechanisms identified during architectural analysis are considered place-
holders for the common policies and infrastructure that are needed to support all
elements of the system. These analysis mechanisms are identified by looking at
the key services that might be needed, and are characterized in broad terms. (For
more information on how to identify mechanisms, see Chapter 4.) During archi-
tectural design, you make decisions on how the analysis mechanisms will be

288

SECTION Il METHOD

designed and implemented. Thus, analysis mechanisms are refined into design
mechanisms, and their descriptions become more detailed. Specifically, design
mechanisms are described in terms of specific abilities provided by the selected
implementation technology.

If elements are to be maintained at different levels of abstraction (i.e., separate
analysis and design elements), as opposed to the elements at one level of detail
just morphing into elements at the next level, it is wise, from the viewpoint of
requirements management and change management, to maintain traceability
between the different levels of abstraction. Establishing and maintaining trace-
ability is critical to effective and accurate impact assessment.

Milestones and Measures

You successfully complete the micro process activity of identifying elements for a
specific scope at a specific level of abstraction when you have an ample set of
abstractions, consistently named and described. Another measure of goodness is
that you have a reasonably stable analysis/design model for that scope at that level
of abstraction. In other words, the analysis/design model is not changing wildly
each time you iterate through the micro process. For example, the discovery of
architecturally significant design elements late in the project’s lifecycle indicates
a flaw in requirements, analysis, or the discussed aspects of the design. A rapidly
changing analysis/design model is a sign either that the development team has not
yet achieved focus or that the architecture is in some way flawed. As development
proceeds, you can track stability in lower-level parts of the architecture by follow-
ing the local changes in collaborative abstractions.

Defining Element Collaborations

The purpose of the second micro process activity, defining element collabora-
tions, is to describe how the identified elements work together to provide the sys-
tem’s behavioral requirements. In this activity, we refine the identified elements
through an intelligent and measurable distribution of responsibilities.

Products

The primary products of this micro process activity are the realizations that
indicate how the identified elements collaborate to perform the behavioral
requirements that are in scope. Realizations describe how a set of behavioral
requirements are realized in terms of elements at a specific level of abstraction
collaborating with one another. Realizations reflect an explicit distribution of
responsibilities among the collaborating elements and provide the link between

CHAPTER 6 PROCESS 289

the behavioral requirements and the software solution. Realizations are initially
described in terms of analysis elements and then later in terms of design elements.

The realizations and the supporting element responsibilities are documented in
the analysis/design model. The level of detail and the representation used depend
on the level of abstraction with which you are working. During analysis, you
might use freeform descriptions for the responsibilities. Usually a phrase or a sin-
gle sentence is sufficient; anything more suggests that a given responsibility is
overly complex and ought to be divided into smaller parts. During design, you
may create specifications for each element that state the named operations that
form the protocol of each element. During detailed design, these operations are
formally captured as interfaces with complete signatures in the selected imple-
mentation language. The collaborations themselves may be documented by using
simple diagrams that show which elements collaborate with each other. UML
interaction diagrams (specifically, sequence and communication diagrams) are
very effective for representing these collaborations. In addition, for those ele-
ments whose states drive how they collaborate with other elements, you may
include state machine diagrams that capture the key state changes. UML state
machine diagrams are very effective for representing these state machines. For
more information on specifying an element’s semantics, see the upcoming Detail-
ing Element Semantics section. For more information on using the UML, see
Chapter 5.

Steps

Analyzing behavioral requirements is an excellent technique for allocating the
work to be performed to the identified elements. The following steps describe an
approach for defining the semantics of a set of elements at a specific level of
abstraction.

1. Analyze the behavior, allocating responsibilities to the elements that partici-
pate in providing the behavior (i.e., the elements identified during the
previous micro process step). Consider exceptional behavior as well as
expected behavior. Where the lifecycle of certain elements is significant or
essential, develop a state machine for the element. The result of this step is a
realization of the behavior in terms of the participating elements and their
collaborations.

2. Scavenge for patterns among the realizations, and express these patterns in
terms of more abstract, generalized realizations.

This approach applies equally well at all levels of abstraction, whether you are
analyzing the system’s behavior expressed as use cases/scenarios (analysis), ana-
lyzing a component’s behavior expressed as responsibilities/interfaces (design),

290

SECTION Il METHOD

or analyzing the behavior of an architectural mechanism expressed in a textual
description (analysis and design).

Now let’s look at each of these steps in a little more detail.

Behavior Analysis Behavior analysis can be used to understand how a set
of behavioral requirements are provided by the elements of the solution. The pri-
mary product of scenario analysis is a set of realizations. A realization can be
developed by using the techniques of use case analysis (highly recommended),
behavior analysis, or CRC cards, as described in Chapter 4.

A typical order of events when analyzing a scenario can be summarized as follows.

1.

Select a scenario or a set of scenarios from the behavioral requirements to
be considered.

Identify the elements relevant to the scenario. (The elements themselves
may have already been identified during the previous micro process activity.)

. Walk through the scenario, assigning responsibilities to each element in

order to accomplish the desired behavior. As needed, assign attributes that
represent structural elements required to carry out certain responsibilities.
Note: In this step it is important to focus on behavior, not structure.
Attributes represent structural elements, so there is a danger, especially
early in analysis, of binding implementation decisions too early by requir-
ing the presence of certain attributes. Attributes should be identified at this
point only insofar as they are essential to building a conceptual model of the
scenario.

As scenario analysis proceeds, reallocate responsibilities so that there is a
reasonably balanced distribution of behavior. Where possible, reuse or
adapt existing responsibilities. Splitting large responsibilities into smaller
ones is a very common action; less often, but still possible, trivial responsi-
bilities are assembled into larger behaviors. The analysis of individual sce-
narios may result in disparate responsibilities being allocated to the same
element. Split such elements into multiple elements, each with a consistent
and cohesive set of responsibilities.

During design, concurrency and distribution must also be considered in
these realizations; where there are opportunities for concurrency, you must
specify the actors, agents, and servers, as well as the means of synchroniza-
tion among them. Along the way, you may discover the need to introduce
new paths among objects and to eliminate or consolidate unused or redun-
dant ones.

When analyzing a scenario, you may find that the state (or lifecycle) of one or
more of the elements plays a significant role in affecting the overall flow of the
scenario. In such cases, it is worth the time to take a closer look at the externally

CHAPTER 6 PROCESS 291

visible state changes that the element may experience and to make sure that the
scenario flow can accommodate those state changes. An accurate way to capture
the element’s key states and state transitions is to use a state machine diagram.

Pattern Scavenging This step recognizes the importance of commonality.
As you identify the semantics of your elements, you must be sensitive to patterns
of behavior, which represent opportunities for reuse.

A typical order of events for scavenging patterns may be the following.

1. Given the complete set of realizations at this level of abstraction, look for
patterns of interaction among the participating elements. Such collabora-
tions may represent implicit idioms or mechanisms, which should be exam-
ined to ensure there are no gratuitous differences. Nontrivial patterns of
collaboration should be explicitly documented as strategic decisions so that
they can be reused rather than reinvented. This activity preserves the integ-
rity of the architectural vision.

2. Given the set of responsibilities generated at this level of abstraction, look
for patterns of behavior. Common roles and responsibilities should be uni-
fied in the form of common elements with common responsibilities.

3. When working at lower levels of abstraction, as concrete operations are
being specified, look for patterns within operation signatures. Remove any
gratuitous differences, and introduce common classes when such signatures
are found to be repetitious.

When you find patterns of collaboration, express them in terms of more abstract,
generalized realizations.

Milestones and Measures

You successfully complete the micro process activity of defining element collabo-
rations when you have a consistent set of elements and responsibilities that pro-
vide the required functional behavior of the system within a particular scope at a
specific level of abstraction and that offer a sensible and balanced separation of
responsibilities between those elements.

As aresult of this activity, you should have developed and validated realizations
that represent the fundamental behaviors considered in scope. By fundamental,
we mean behaviors that are central to the application’s purpose. Measures of
goodness with regard to the realizations include completeness and simplicity.
Each realization must accurately reflect the semantics of the individual elements
participating in the realization. A good set of realizations will cover all primary
scenarios and a statistically interesting set of secondary ones. We neither expect
nor desire a realization for every scenario. It is sufficient to consider only primary

292

SECTION Il METHOD

and some secondary scenarios. In addition, a good set of realizations will also dis-
cover patterns of behavior, ultimately yielding a solution structure that exploits all
that is common among different scenarios.

With regard to the individual element responsibilities, keep in mind that the focus
of this activity is on the collaboration and on the identification of “who does
what.” At this point, it is enough to just capture the element responsibilities. At
the higher levels of abstraction, you may use an informal statement of responsibil-
ities. At the lower levels of abstraction, you may want to use more precisely stated
semantics, but don’t go into too much detail here as the explicit definition of the
semantics of the individual elements is the purpose of the fourth micro process
activity, as described in the upcoming Detailing Element Semantics section.

The following list gives a few simple and useful checkpoints for evaluating the
results of this activity.

m Elements should have balanced responsibilities. A single element should
not be “doing it all.”

m Elements should have consistent responsibilities. When an element’s
responsibilities are disjoint, it should be split into two or more elements.

m There should not be two elements with identical or very similar
responsibilities.

m The responsibilities defined for each element should support the flows in
which the element participates.

m Responsibilities that are neither simple nor clear suggest that the given
abstraction is not yet well defined.

At this point, we have identified the elements and have defined how those ele-
ments collaborate to provide the required behavior. Now it is time for us to turn
our attention to the relationships between the elements that enable and support
those collaborations.

Defining Element Relationships

The purpose of the third micro process activity is to define the relationships
between the elements that support the element collaborations defined in the previ-
ous micro process activity. Defining the element relationships establishes the
shape of the solution. Specifically, at the architectural levels of abstraction, the
relationships between the key elements and the key partitions define the overall
structure of the system and form the basis for all other relationships between sys-
tem elements. Identifying the relationships is done to solidify the boundaries of
each element and to clearly represent which elements collaborate with each other.

CHAPTER 6 PROCESS 293

This activity formalizes the separation of concerns among elements that was ini-
tially established when defining the element collaborations.

Products

The primary products of this micro process activity are the relationships between
the elements at the current level of abstraction. The defined relationships are
added to the evolving analysis/design model.

Even though these relationships will ultimately be expressed in a concrete form
(namely, through programming languages), we recommend that you represent
them visually, using either UML diagrams or freeform diagrams. Visual diagrams
offer a broader view of the architecture and let you express relationships that are
not enforced by the linguistics of programming languages. These diagrams help
you visualize and reason about relationships that may cross entities that are con-
ceptually and physically distant. As a result of producing these diagrams, you
may discover previously hidden patterns of interaction, which you could seek to
exploit. This may also lead to a local tweaking of the inheritance lattice.

It is not desirable, nor is it possible, to produce a comprehensive set of diagrams
that express every conceivable view of the relationships among elements. Rather,
we recommend that you focus on the interesting ones, where our measure of
interesting encompasses any set of related elements whose relationships are an
expression of some fundamental architectural decision or that express a detail
necessary to complete a blueprint for implementation. One set of diagrams that
you may want to consider developing are diagrams associated with the realiza-
tions produced as part of the previous micro process activity of defining element
collaborations. Such diagrams would contain the elements participating in the
realization, along with their relationships, and would represent the structural
aspects of the realization.

Steps
In general, there are two steps associated with defining element relationships:

1. Identification of associations, the initial identification of a semantic connec-
tion between elements

2. Refinement of associations into more semantically rich relationships (e.g.,
aggregations, dependencies, and so on)

The identification of associations is primarily an analysis and early design
activity. During architectural analysis, you define the relationships between the

294

SECTION Il METHOD

high-level architectural partitions and between the key abstractions. During archi-
tectural design, you perform this activity in order to specify the relationships
between the key components, as well as the high-level clustering of design ele-
ments into design partitions. During component analysis, you perform this activ-
ity in order to specify the relationships among analysis elements (including
associations and certain important inheritance and aggregation relationships).

A typical order of events for identifying element associations might be the
following.

1. Collect a set of elements that exist at a given level of abstraction or are asso-
ciated with a particular scenario/realization.

2. Consider the presence of a semantic relationship between any two elements,
and establish an association if such a dependency exists. The need for navi-
gation from one element to another and/or the need to elicit some behavior
from an element are both cause for introducing associations. If two ele-
ments must collaborate between each other, there should be a relationship
between them.

3. For each association, if not redundant with the element names, specify the
role of each participant, as well as any relevant multiplicity or other kind of
constraint. Include such details only if they are obvious, as refining of these
relationships is the purpose of the next step.

4. Validate your decisions by walking through scenarios and ensuring that the
associations in place are necessary and sufficient to provide the navigation
and behavior among elements participating in each scenario.

As we explained in Chapter 3, associations are the most semantically weak rela-
tionship: They represent only some sort of general dependency. However, during
analysis and early design, this is often sufficient, for it captures enough interest-
ing details about the relationship between two abstractions, yet prevents us from
making premature statements of detailed design.

The refinement of associations is both an analysis and a design activity. During
analysis, you may evolve certain associations into other, more semantically precise
and concrete relationships to reflect your increasing understanding of the problem
domain. During design, you similarly transform associations as well as add new
concrete relationships in order to provide a blueprint for implementation. Aggre-
gation, composition, and dependency are the main kinds of relationships of interest,
together with additional properties such as names, roles, multiplicity, and so on.

A typical order of events for refining the element relationships might be the
following.

1. Look for a collection of elements already clustered by some set of associa-
tions (e.g., the elements participating in a specific realization), and consider

CHAPTER 6 PROCESS 295

the semantics of each of those relationships, refining the type of relationship
as necessary. Does the relationship represent a simple usage of another
object? If so, the association should be refined into a dependency relation-
ship. Does the association represent a particular structural relationship
between the respective elements? If so, the association should be refined
into an aggregation or a composition relationship. Each of the existing rela-
tionships should be examined with the goal of identifying and documenting
the nature of these relationships.

2. Look for patterns of structure among the elements. If found, consider creat-
ing new elements that capture this common structure, and introduce them
either through inheritance (place the classes in the context of an existing
inheritance lattice, or fabricate a lattice if an appropriate one does not
already exist) or through aggregation.

3. Look for patterns of behavior among the elements. If found, consider the
possibility of introducing common parameterized elements that perform the
common behavior.

4. Consider the navigability of existing associations, and constrain them if
possible. Use unidirectional relationships if bidirectional navigation is not a
desired property.

5. As development proceeds, introduce details such as statements of role, mul-
tiplicity, and so on. It is not desirable to state every detail; just include infor-
mation that represents an important analysis or design position or that is
necessary for implementation.

Milestones and Measures

You successfully complete the micro process activity of defining element relation-
ships when you have specified the relationships among the elements at a specific
level of abstraction.

One thing to look for at this phase is the consistency of the relationships between
the elements participating in a realization. Specifically, for each realization, the
relationships between the participating elements and the required collaborations
between elements must be consistent (if there is collaboration, there must be a
relationship).

Measures of goodness include cohesion, coupling, and completeness. In review-
ing the relationships you identify during this activity, you seek to have logically
cohesive and loosely coupled elements. In addition, you seek to identify all of the
important relationships at a given level of abstraction, so that the next level of
abstraction does not require you to introduce new significant relationships or per-
form unnatural acts to use the ones you have already specified. If you find that
your elements and relationships are awkward to specify, that is an indication that
you have not yet devised a meaningful set of relationships among your elements.

296

SECTION Il METHOD

Detailing Element Semantics

Up to this point, we have focused mainly on how the elements collaborate. Now
we will take a closer look at the semantics of the individual elements from the
bottom up, making sure that they are consistent and well understood.

The purpose of this fourth micro process activity is to clarify the behavior and
attributes of each identified element at a specific level of abstraction, to define
semantics that are consistent across all scenarios the element participates in, and
to make sure that sufficient information is provided for each element in order to
take that element to the next level of abstraction. In this activity, the element
semantics are refined at the current level of abstraction in sufficient enough detail
to enable the identification of elements at the next level of abstraction. For exam-
ple, during analysis, the purpose of detailing the element semantics is to refine the
analysis elements’ semantics to include enough information to enable the identifi-
cation of design elements. During design, the purpose of detailing the element
semantics is to refine the design elements’ semantics to include enough detail to
support implementation.

The placement of this activity as the last activity in the micro process is inten-
tional: The micro process focuses first on behavior and collaboration between ele-
ments and defers decisions about the detailed semantics of the individual
elements until as late as possible. This strategy avoids premature decisions that
can ruin opportunities for smaller, simpler architectures and also allows for the
freedom to change internal representations as needed for reasons of efficiency,
while limiting the disruption to the existing architecture. Whereas the first three
activities of the micro process focus on an outside view of the elements and how
they collaborate, this final activity focuses on each of the elements individually,
clearly specifying each element’s external view and providing additional details
that will drive the development of the internal view.

Products

The primary product of this micro process activity is a refined analysis/design
model that includes more detailed semantics for the elements. Both the level of
detail and the representation used to document the element’s semantics depend on
the level of abstraction you are working in.

During analysis, the results of this activity are relatively abstract. You are not so
concerned about making representation decisions; rather, you are more interested
in discovering new abstractions to which you can delegate responsibility. Detail-
ing the semantics at the analysis level may involve developing more detailed
descriptions of those responsibilities in the form of activity diagrams that describe

CHAPTER 6 PROCESS 297

the overall flow. For those elements whose responsibilities involve event-driven
or state-ordered behavior, you may want to include state machines that capture
the dynamic semantics of each element’s protocols.'?

During design, and especially in later stages of detailed design, you must increas-
ingly make concrete decisions regarding representation. As you begin to refine
the protocol of individual elements, you may name specific operations, ignoring
their full signatures. As soon as practical, you may attach full signatures for each
operation. During design, you may also specify that certain algorithms should be
used. When working at the lower levels of abstraction, and as you make further
bindings to the given implementation language (i.e., during detailed design), the
detailed semantics may even include pseudocode or executable code. Once you
produce formal class interfaces, you can begin to use programming tools to test
and enforce the design decisions. The primary benefit of the more formal prod-
ucts of this step is that they force the developer to consider the pragmatics of each
abstraction’s protocol. The inability to specify clear semantics is a sign that the
abstractions themselves are flawed.

Steps

Detailing an element’s semantics involves the selection of the structures and algo-
rithms that describe the structure and the behavior of the element. A typical order
of events for detailing an element’s semantics might be the following.

1. Enumerate the element’s roles and responsibilities. Collect and consolidate
the results from the individual realizations produced earlier while defining
element collaborations (the second micro process activity). Use these real-
izations to help you identify the responsibilities of the participating ele-
ments. Determine the responsibilities of an element by looking at all of the
incoming collaborations to that element in the realizations. (The responsi-
bilities of an element are all the things that other elements can ask it to do.)

2. Describe each responsibility in more detail. Produce activity or sequence
diagrams to describe overall flow, produce state machine diagrams to
describe state behavior, and so on. Wherever possible, recommend a suit-
able algorithm for each responsibility/operation. During design, consider
introducing helper operations to divide complex algorithms into less com-
plicated, reusable parts. Consider the trade-offs of storing versus calculating
certain states of an element.

12. A protocol specifies that certain operations are to be invoked in a specific order. For
all but the most trivial classes, operations rarely stand alone; each has preconditions that
must be satisfied, often by invoking other operations.

298

SECTION Il METHOD

3. During design, consider inheritance. Select the appropriate abstract classes
(or create new ones, if the problem is sufficiently general), and adjust the
inheritance lattice as required. Consider the elements to which you might
delegate responsibility. For an optimal fit, this may require a minor readjust-
ment of the responsibilities and/or protocol of the lower-level elements. If
the element’s semantics cannot be provided through inheritance, instantia-
tion, or delegation, consider a suitable representation at the next level of
abstraction (e.g., if you are at the design level, this may include primitives in
the implementation language). Keep in mind the importance of operations
from the perspective of the element’s clients, and select a representation that
optimizes for the expected patterns of use. Remember that it is not possible
to optimize for every use, however. As you gain empirical information from
successive releases, you can identify which elements are not time and/or
space efficient, and alter their implementation locally, with little concern
that you will violate the assumptions clients make about your abstraction.

4. As responsibilities are defined for each element, consider the attributes that
the element must have in order to fulfill these responsibilities.

5. During design, devise a sufficient set of operations that satisfy these respon-
sibilities. Where possible, try to reuse operations for conceptually similar
roles and responsibilities. In the case of an individual class, responsibilities
are documented as operations on the class; in the case of a component,
responsibilities represent the services provided by the component and are
documented as operations on the component’s interface.

m Consider each operation in turn, and ensure that it is primitive. If not, iso-
late and expose its more primitive operations. Composite operations may
be retained in the element itself (if the operation is sufficiently common,
or for reasons of efficiency) or migrated to a common class (especially if
the operation is likely to change often). Decomposing operations enables
you to potentially find more commonality.

m Consider the needs for construction, copying, and destruction [13]. It is
better to have a common strategic policy for these behaviors, rather than
allowing individual classes to follow their own idiom, unless there is a
compelling reason to do so.

m Consider the need for completeness. Add other primitive operations that
are not necessarily required for the immediate clients but whose presence
rounds out the element and therefore would probably be used by future
clients. Realizing that it is impossible to have perfect completeness, lean
more toward simplicity than complexity.

While detailing the responsibilities of the element, you may discover new ele-
ments that support the detailed descriptions (e.g., when more fully describing an
element’s responsibility, you may find that you missed a key piece of information,
so you might identify a new element to represent that information). Document
those elements and their responsibilities, and repeat the steps just described for
those elements.

CHAPTER 6 PROCESS 299

When defining the semantics of individual elements during analysis, commonal-
ity among elements may become apparent, and it may be very tempting to start
defining very elaborate inheritance relationships among the elements in order to
reflect common behavior and common structure. However, it is important to
avoid looking for inheritance relationships too soon: Introducing inheritance pre-
maturely often leads to loss of type integrity. The use of inheritance is generally
considered a design activity because at that point you have a more detailed under-
standing of the semantics of the design elements and thus are in a better position
to place them in an inheritance lattice. During design, commonality encountered
among classes can be represented in a generalization/specialization hierarchy.
When defining this inheritance lattice, be sensitive to balance (the lattice should
not be too tall or too short, neither too wide nor too skinny). Where patterns of
structure or behavior appear among these classes, reorganize the lattice to maxi-
mize commonality (but not at the expense of simplicity). For additional consider-
ations when constructing an inheritance hierarchy, see Chapter 3.

In the early stages of development, before inheritance has been used, document-
ing the semantics of the individual elements is isolated. However, once you have
inheritance lattices in place, documenting an element’s semantics must also
address placement of operations in the hierarchy. When considering the opera-
tions associated with a given element, it is important to decide at what level in the
inheritance hierarchy the operation is best placed. Operations that may be used by
a set of peer classes should be refactored to a common superclass, possibly by
introducing a new intermediate class.

When detailing an element’s semantics, be sure to stay at the current level of
abstraction. Identifying elements at the next level of abstraction occurs during the
first activity in the next iteration of the micro process (or during implementation
in the macro process).

Milestones and Measures

You successfully complete the micro process activity of detailing the element
semantics when you have a more complete understanding of the semantics of the
elements at a specific level of abstraction (i.e., you have provided enough detail to
move to the next level of abstraction) and when you have specified those seman-
tics in a form that is consistent with that level of abstraction. As the last activity in
the micro process, the ultimate objective is to have a set of crisp abstractions that
are tightly cohesive and loosely coupled.

Evaluating the success of this activity involves looking at the semantics of the
individual elements. As a result of this activity, you should have a reasonably suf-
ficient, primitive, and complete set of semantics for each element at a specific
level of abstraction. You should have provided enough detail for each of the

300

SECTION Il METHOD

elements to enable the identification of elements at the next level of abstraction.
For example, during analysis, you successfully complete this activity when you
have an informal statement of responsibilities and attributes of the analysis ele-
ments and you know enough to move to design. During design, you successfully
complete this activity when you have more precisely stated semantics (e.g., oper-
ations and attributes) that are detailed enough to be implemented and tested
(meaning their structure and use can be defined by the selected implementation
language). This does not necessarily mean that the elements must be expressed in
vivid detail, just that there is sufficient information for a competent implementer
to be able to do their job.

The primary measure of goodness for this activity is simplicity. Element seman-
tics that are complex, awkward, or inefficient are an indication that the element
itself is lacking or that you have chosen a poor representation.

This completes our discussion of the micro process activities and also completes
this chapter on the software development process. It is our hope that you now
have an appreciation for the separation of concerns between the overall software
development lifecycle (the macro process) and the analysis and design activities
(the micro process), as well as an understanding of how these processes support
each other. It is crucial to the success of your software development project that
you choose a specific development process and configure it to meet the specific
needs of your project, at both the macro and the micro process levels.

Summary

m Successful projects are usually characterized by the existence of a strong
architectural vision and the application of a well-managed iterative and
incremental development lifecycle.

m Architecture describes the significant decisions that have been made with
regard to both structure and behavior and usually reflects an architectural
style. A strong architectural vision enables the construction of systems that
are simpler, are more robust and resilient, enable more effective reuse, and
are easier to maintain.

m [terative and incremental development occurs when the functionality of the
system is delivered in a successive series of releases (either internal or
external) of increasing completeness, with each release being an iteration.
The selection of what functionality is developed in each iteration is driven
by the mitigation of project risks; the most critical risks are addressed first.
The iterative and incremental approach is at the heart of most modern soft-
ware development methods, including agile methods, as it is a very effective
technique for managing risk and change.

CHAPTER 6 PROCESS 301

m All software development processes exist somewhere on a process contin-
uum, with agile methods on one end and plan-driven techniques on the
other. The choice of the right software development process for a particular
project is driven by the project’s (and the organization’s) characteristics and
involves configuring a development process that reflects a balance between
agile and plan-driven processes that matches the project’s position on that
continuum.

m In this chapter, the software development process framework is described
from two perspectives—the overall software development lifecycle (the
macro process) and the analysis and design process (the micro process). The
choice of lifecycle style (e.g., waterfall, iterative, agile, plan-driven, and so
on) affects the macro process, and the choice of analysis and design tech-
niques (e.g., structured, object-oriented, and so on) affects the micro pro-
cess. Whether you choose an agile or a plan-driven process as your macro
process, the object-oriented analysis and design tips and techniques
described in the micro process section can be applied equally well.

m The purpose of the micro process is to take the requirements provided by
the macro process (and possibly the analysis and design specifications pro-
duced by previous iterations of the micro process) and produce analysis and
design specifications that are fed back into the macro process. Ultimately,
the micro process produces specifications for the implementation that are
built, tested, and deployed in the macro process.

m The micro process is comprised of four key activities (identify elements,
define element collaborations, define element relationships, and detail ele-
ment semantics). Each iteration of the micro process involves iterating
through these activities for a set of behavioral requirements at a specific
level of abstraction. The basic steps and the resulting products are about the
same for all levels of abstraction; what differs is the level of detail (lower
levels of abstraction result in more detailed products).

This page intentionally left blank

Chapter 7

Pragmatics

Software development today is a multibillion-dollar, competitive, worldwide
business, stretching from North America through Western and Eastern
Europe and into Asia and the Pacific Rim. In spite of the tools available to
support the major functions in object-oriented development—requirements
management, configuration management, design, code, and test—there
are still too many failures. Schedules are missed. Costs are overrun.
Functionality is not provided. Tens to hundreds of millions of dollars are
lost on single development efforts. An unfortunate example is the FBI's
Virtual Case File system, which was intended to be an important tool in
fighting terrorism. After more than three years in development, in April
2005 “the bureau had to scrap the US $170 million project, including $105
million worth of unusable code” [1]. On March 16, 2006, the FBI awarded
a $305 million contract to develop the Sentinel system to replace the Vir-
tual Case File system [2]. This is but one example of far too many failed
software developments [3].

Compounding matters is the fact that designing software is not an exact
science. Consider the design of a complex database using entity-
relationship modeling, one of the foundations of object-oriented design.
As Hawryszkiewycz observes, “Although this sounds fairly straightforward,
it does involve a certain amount of personal perception of the importance
of various objects in the enterprise. The result is that the design process is
not deterministic: different designers can produce different enterprise
models of the same enterprise” [4].

We may reasonably conclude that no matter how sophisticated the devel-

opment method, no matter how well-founded its theoretical basis, we can-
not ignore the practical aspects of designing systems for the real world.

303

304

SECTION Il METHOD

7.1

This means that we must consider sound management practices with
regard to such issues as staffing, release management, and quality assur-
ance. To the technologist, these are intensely dull topics; to the profes-
sional software engineer, these are realities that must be faced if one
wants to be successful in building complex software systems. Thus, this
chapter focuses on the pragmatics’ of object-oriented development and
examines the impact of the object model on various management practices.

Management and Planning

In the presence of an iterative and incremental lifecycle, it is of paramount impor-
tance to have strong project leadership that actively manages and directs a
project’s activities. Too many projects go astray because of a lack of focus, and
the presence of a strong management team mitigates this problem.

Risk Management

Ultimately, the responsibility of the software development manager is to manage
nontechnical risks, while the technical risks are typically the responsibility of the
project architect. Technical risks in object-oriented systems include problems
such as the selection of an inheritance structure that offers the best compromise
between usability and flexibility, or the choice of mechanisms that yield accept-
able performance while simplifying the system’s architecture. Nontechnical risks
encompass issues such as supervising the timely delivery of software from a
third-party vendor, or managing the relationship between the customer and the
development team so as to facilitate the discovery of the system’s real require-
ments during analysis.

As we described in the previous chapter, the micro process of object-oriented
development is inherently unstable and requires active planning to force closure.
Fortunately, the macro process of object-oriented development is designed to lead
to closure by providing a number of tangible products that management can study
to ascertain the health of the project, together with controls that permit manage-
ment to redirect the team’s resources as necessary. The macro process’s evolu-
tionary approach to development means that there are opportunities to identify
problems early in the lifecycle and meaningfully respond to these risks before
they jeopardize the success of the project.

1. Webster’s New World College Dictionary defines pragmatic as “concerned with ac-
tual practice, not with theory or speculation; practical.”

CHAPTER 7 PRAGMATICS 305

Many of the basic practices of software development management, such as task
planning and walkthroughs, are unaffected by object-oriented technology. What
is different about managing an object-oriented project, however, is that the tasks
scheduled and the products reviewed are different than for non-object-oriented
systems.

Task Planning

In any modest- to large-sized project, it is reasonable to have periodic team meet-
ings to discuss work completed and activities for the coming work period. Some
minimal frequency of meetings is necessary to foster communication among team
members; too many meetings destroy productivity and in fact are a sign that the
project has lost its way. Object-oriented software development requires that indi-
vidual developers have unscheduled critical masses of time in which they can
think, innovate, develop, and meet informally with other team members as neces-
sary to discuss detailed technical issues. The management team must plan for this
unstructured time.

Team meetings provide a simple yet effective vehicle for fine-tuning schedules in
the micro process, as well as for gaining insight into risks looming on the horizon.
These meetings may result in small adjustments to work assignments, so as to
ensure steady progress: No project can afford for any of its developers to sit idle
while waiting for other team members to stabilize their part of the architecture.
This is particularly true for object-oriented systems, wherein class and mecha-
nism design pervades the architecture. Development can come to a standstill if
certain key classes are in flux.

On a broader scale, task planning involves scheduling the deliverables of the
macro process. Between evolutionary releases, the management team must assess
both the imminent and longer-term risks to the project, focus development
resources as necessary to attack those risks,? and then manage the next iteration of
the micro process that yields a stable system satisfying the required use case sce-
narios scheduled for that release. Task planning at this level most often fails
because of overly optimistic schedules [5]. Development that was viewed as a
“simple matter of programming” expands to weeks or months of work; schedules
are thrown out the window when developers working on one part of the system
assume certain protocols from other parts of the system but are then blindsided by
delivery of incompletely or incorrectly fabricated classes. Even more insidious,
schedules may be mortally wounded by the appearance of performance problems
that must be worked around, often by corrupting certain tactical design decisions.

2. Gilb notes that “if you do not actively attack the risks, they will actively attack you” [6].

306

SECTION Il METHOD

The key to not being at the mercy of overly optimistic planning is the calibration
of the development team and its tools; this is a continuous process. Typically, task
planning goes like this. First, the management team directs the energies of a
developer to a specific part of the system, for example, the design of a set of
classes for interfacing to a relational database. The developer considers the scope
of the effort and returns with an estimate of time to complete, which management
then relies on to schedule other developers’ activities. The problem is that these
estimates are not always reliable because they usually represent best-case condi-
tions. One developer might quote one week of effort for some task, whereas
another developer might quote one month for the same task. When the work is
actually carried out, it might take both developers three weeks, the first developer
having underestimated the effort (the common problem of most developers), and
the second developer having set much more realistic estimates (usually because
he or she understood the difference between actual work time versus calendar
time, which often gets filled with a multitude of nonfunctional activities). In order
to develop schedules in which the team can have confidence, it is therefore neces-
sary for the management team to devise multiplicative factors for each developer’s
estimates. This is not an indication of management not trusting its developers: It
is a simple acknowledgment of the reality that most developers are focused on
technical issues, not planning issues. Management must help its developers learn
to do effective planning, a skill that is typically acquired through battlefield expe-
rience. Adequate training and estimation guidelines are a necessity in the effort to
reduce ineffective planning.

The process of object-oriented development explicitly helps to develop these cali-
bration factors. Its iterative and incremental lifecycle means that there are many
intermediate milestones established early in the project, which management can
use to gather data on each developer’s track record for setting and meeting sched-
ules. As evolutionary development proceeds, this means that management over
time will gain a better understanding of the real productivity of each of its devel-
opers, and developers can gain experience in estimating their own work more
accurately. The same lesson applies to tools: With the emphasis on early delivery
of architectural releases, the process of object-oriented development encourages
the early use of tools, which leads to the identification of their limitations before
it is too late to change course.

Development Reviews

Development reviews are another well-established practice that every develop-
ment team should employ. As with task planning, the conduct of software devel-
opment reviews is largely unaffected by object-oriented technology. However,
relative to non-object-oriented systems, what is reviewed is a different matter.

CHAPTER 7 PRAGMATICS 307

Management must take steps to strike a balance between too many and too few
development reviews. In all but the most safety-critical systems, it is simply not
economical to review every aspect of the design. Therefore, management must
direct the scarce resources of its team to review those aspects of the system that
represent strategic development issues. For object-oriented systems, this suggests
conducting formal reviews based on use case scenarios as well as the system’s
architecture, with many more informal reviews focused on smaller tactical issues.
The scenarios chosen should include the primary scenarios and those alternate
scenarios where system response is critical.

As described in the previous chapter, use case scenarios are a primary product of
the analysis phase of object-oriented development and serve to capture the
desired behavior of the system in terms of the functionality it provides, from the
users’ perspective. Formal reviews of use case scenarios are led by the team’s
analysts (who have use case development expertise), together with domain
experts or other end users, and are witnessed by other developers, including qual-
ity assurance personnel (testers). Such reviews are best conducted throughout the
analysis phase, rather than waiting to carry out one massive review at the end of
analysis, when it is already too late to do anything useful to redirect the analysis
effort. Experience shows that even nondevelopers can understand use case scenar-
ios presented through text or visual diagrams such as activity or sequence dia-
grams.? Ultimately, such reviews help to establish a common vocabulary among a
system’s developers and its users. Letting other members of the development
team witness these reviews exposes them to the real requirements of the system
early in the development process.

Architectural reviews should focus on the overall structure of the system, includ-
ing its class structure and mechanisms. As with use case scenario reviews, archi-
tectural reviews should be conducted throughout the project, led by the project’s
architect or other designers. Early reviews focus on sweeping architectural issues,
whereas later reviews may focus on a certain component or specific pervasive
mechanisms. The central purpose of such reviews is to validate designs early in
the lifecycle. In so doing, we also help to communicate the vision of the architec-
ture. A secondary purpose of such reviews is to increase the visibility of the archi-
tecture so as to create opportunities for discovering patterns of classes or
collaborations of objects, which may then be exploited over time to simplify the
architecture.

Informal reviews should be carried out periodically, in accordance with the devel-
opment process, and generally involve the peer review of certain components or
lower-level mechanisms. The purpose of such reviews is to validate these tactical

3. We have encountered use of the notation in reviews involving such diverse non-
developer groups as astronomers, biologists, meteorologists, physicists, and bankers.

308

SECTION Il METHOD

7.2

decisions; their secondary purpose is to provide a vehicle for more senior devel-
opers to instruct junior members of the team.

Staffing

Staffing for object-oriented development is similar to that for traditional software
development. The differences tend to be associated with the timing of these
resources within the development cycle. For example, architects and designers
play a critical role early in the process due to its iterative and incremental nature.

Resource Allocation

One of the more delightful aspects of managing object-oriented projects is that, in
the steady state, there is usually a reduction in the total amount of resources
needed and a shift in the timing of their deployment relative to more traditional
methods, such as a single waterfall. The operative phrase here is in the steady
state, with an experienced team. Generally speaking, the first object-oriented
project undertaken by an organization will require more resources than for non-
object-oriented methods, primarily because of the learning curve inherent in
adopting any new technology. The essential resource benefits of the object model
will not show themselves until the second or third project, at which time the
development team is more adept at object-oriented analysis and design, from
architecture through class design and harvesting of common abstractions and
mechanisms, and the management team is more comfortable with driving the iter-
ative and incremental development process.

For analysis, resource requirements do not typically change much when employ-
ing object-oriented methods. However, because the object-oriented process places
an emphasis on architectural design, we tend to accelerate the deployment of
architects and other designers to much earlier in the development process, some-
times even engaging them during later phases of analysis to begin architectural
exploration. During later increments, fewer resources are typically required,
mainly because the ongoing work tends to leverage common abstractions and
mechanisms invented earlier during architectural design or previous increments.
Testing may also require fewer resources, primarily because adding new function-
ality to a class or mechanism is achieved mainly by modifying a structure that is
known to behave correctly in the first place. Thus, testing tends to begin earlier in
the lifecycle and manifests itself as a cumulative rather than a monolithic activity.
Integration usually requires fewer resources, compared with traditional methods,
mainly because integration happens incrementally throughout the development
lifecycle, rather than occurring in one “big bang” event. Thus, in the steady

CHAPTER 7 PRAGMATICS 309

state with an experienced team, the net of all the human resources required for
object-oriented development is typically less than that required for traditional
approaches. Furthermore, when we consider the cost of ownership of object-
oriented software, the total lifecycle costs are often less because the resulting
product tends to be of far better quality and so is much more resilient to change.

Development Team Roles

It is important to remember that software development is ultimately a human
endeavor. Developers are not interchangeable parts, and the successful deploy-
ment of any complex system requires the unique and varied skills of a focused
team of people.

Experience suggests that the object-oriented development process requires a sub-
tly different partitioning of skills, compared with traditional methods. We have
found the following three roles to be central to the technical development team for
an object-oriented project:

1. Project architect
2. Component lead
3. Application engineer

The project architect is the visionary and is responsible for evolving and main-
taining the system’s architecture. For small to medium-sized systems, architec-
tural design is typically the responsibility of a few particularly insightful
individuals. For larger projects, this may be the shared responsibility of a larger
team. The project architect is not necessarily the most senior developer, but rather
is the one best qualified to make strategic decisions, usually as a result of his or
her extensive experience in building similar kinds of systems. Because of this
experience, architects intuitively know the common architectural patterns relevant
to a given domain and the performance issues that apply to certain architectural
variants. In addition to analysis and design experience, architects should have
programming experience and be well versed in the notation, process, and tools of
object-oriented development because they must ultimately express their architec-
tural vision in terms of clusters of classes and collaborations of objects.

It is generally bad practice to hire an outside architect who, metaphorically speak-
ing, storms in on a white horse, proclaims some architectural vision, and then
rides away while others suffer the consequences of these decisions. It is far better
to actively engage an architect during analysis and then retain that architect
throughout most if not all of the system’s evolution. Thus, the architect will
become more familiar with the actual needs of the system and over time will be
subject to the implications of his or her architectural decisions. In addition, by

310

SECTION Il METHOD

keeping responsibility for architectural integrity in the hands of one person or a
small team of developers, we increase our chances of developing a more resilient
architecture.

Component leads are the primary abstractionists of the project. A component lead
is responsible for the design of an entire component. In conjunction with the
project architect, each lead must devise, defend, and negotiate the interface of a
specific component and then direct its implementation. A component lead is
therefore the ultimate owner of a cluster of classes and its associated mechanisms
and is also responsible for its testing and release during the evolution of the system.

Component leads must be well versed in the notation and process of object-
oriented development. They may be better designers and programmers than the
project architect but lack the architect’s broad experience. On the average, com-
ponent leads constitute about a third to a half of the development team.

Application engineers are the less senior developers in a project and usually carry
out one of two responsibilities. Certain application engineers are responsible for
the implementation of a component, under the supervision of its component lead.
This activity may involve some class design but generally involves implementing
and then unit testing the classes and mechanisms invented by other designers on
the team. Other application engineers are then responsible for taking the classes
designed by the architect and component leads and assembling them to carry out
the use case scenarios of the system. In a sense, these engineers are responsible
for writing small programs in the domain-specific language defined by the classes
and mechanisms of the architecture. Another approach to accomplishing this
work is to have the application engineers responsible for even more of the
detailed class design while ensuring they have sufficient supervision and mentor-
ing from the component lead.

Application engineers are familiar with but not necessarily experts in the notation
and process of object-oriented development; however, they are very good pro-
grammers who understand the idioms and idiosyncrasies of the given program-
ming languages. On the average, half or more of the development team consists of
application engineers.

This breakdown of skills addresses the staffing problem faced by most software
development organizations, which usually have only a handful of really good
designers and many more less-experienced ones. The social benefit of this
approach to staffing is that it offers a career path to the more junior people on the
team: Specifically, junior developers work under the guidance of more senior
developers in a mentor/apprentice relationship. As junior developers gain experi-
ence in using well-designed classes, over time they learn to design their own
quality classes. The corollary to this arrangement is that not every developer
needs to be an expert abstractionist but can grow in those skills over time.

CHAPTER 7 PRAGMATICS 311

In larger projects, a number of other distinct development roles are required to
carry out the work. Some of the roles listed here (such as the system administra-
tor) are indifferent to the use of object-oriented technology, although some of
them are especially relevant to the object model (such as the reuse engineer).

Project manager

Analyst

Reuse engineer

Quality assurance

Integration manager

Documenter

Toolsmith

System administrator

Responsible for the active management of the
project’s deliverables, tasks, resources, and
schedules

Responsible for evolving and interpreting the end
user’s requirements; must be an expert in the
problem domain, yet must not be isolated from
the rest of the development team

Responsible for managing the project’s repository
of classes, components, and designs; through par-
ticipation in reviews and other activities, actively
seeks opportunities for commonality and causes
them to be exploited; acquires (e.g., through com-
mercial libraries), produces, and adapts classes
and components for general use within the project
or the entire organization

Responsible for measuring the products of the
development process; generally directs system-
level testing of all prototypes and production
releases

Responsible for assembling compatible versions
of released components in order to form a deliver-
able release; maintains the configurations of
released products

Responsible for producing end-user documenta-
tion of the product and its architecture
Responsible for creating and adapting software
tools that facilitate the production of the project’s
deliverables

Responsible for managing the physical computing
resources used by the project

Of course, not every project requires all of these roles. For small projects, many
of these responsibilities may be shared by the same person; for larger projects,
each role may represent an entire organization. For even larger projects, there
may be additional roles such as an enterprise architect, a methodologist, a config-
uration management lead, and a business analyst. Some of these, such as the
methodologist, might not be dedicated to just one project [29].

312

SECTION Il METHOD

7.3

Experience indicates that object-oriented development makes it possible to use
smaller development teams, compared with traditional methods. Indeed, it is not
impossible for a team of roughly 30—40 developers to produce several hundred
thousand lines of production-quality code in a single year. However, we agree
with Boehm, who observes that “the best results occur with fewer and better peo-
ple” [7]. Unfortunately, trying to staff a project with fewer people than traditional
folklore suggests are needed may produce resistance. Such an approach infringes
on the attempts of some managers to build empires. Other managers like to hide
behind large numbers of employees because more people represent more power.
Furthermore, if a project fails, there are more subordinates on whom to heap the
blame.

Just because a project applies the most sophisticated design method or the latest
fancy tool doesn’t mean a manager has the right to abdicate responsibility for hir-
ing designers who can think or to let a project run on autopilot [8].

Release Management

Release management concerns for object-oriented development are like those for
traditional software development; they provide a foundation to support the devel-
opment process. The development team must manage the configuration of the
system being developed while integrating and testing the pieces of developed
software, from classes to components and finally to the entire software system.

Configuration Management and Version
Control

Consider the plight of an individual developer, who might be responsible for
implementing a particular component. He or she must have a working version of
that component, that is, a version under development. In order to proceed with
further development, at least the interfaces of all imported components must be
available. As this working version becomes stable, it is released to an integration
team, which is responsible for collecting a set of compatible components for the
entire system. Eventually, this collection of components is frozen and baselined
and made part of an internal release. This internal release thus becomes the cur-
rent operational release, visible to all active developers who need to further refine
their particular part of its implementation. In the meantime, the individual devel-
oper can work on a newer version of his or her component. Thus, development
can proceed in parallel, with stability made possible because of well-defined and
well-guarded component interfaces.

CHAPTER 7 PRAGMATICS 313

Implicit in this model is the idea that a cluster of classes, not the individual class,
is the primary unit of version control. Experience suggests that managing ver-
sions of classes is too fine a granularity since no class stands alone. Rather, it is
better to version related groups of classes. This does not mean that we don’t ver-
sion control classes, just that this is not our primary focus. Practically speaking,
this means versioning components since groups of classes map to components. At
higher levels within the software system, one would version subsystems com-
posed of multiple lower-level components.

At any given point in the evolution of a system, multiple versions of a particular
component may exist: There might be a version for the current release under
development, one for the current internal release, and one for the latest customer
release. This intensifies the need for reasonably powerful configuration manage-
ment and version control tools.

Source code is not the only development product that should be placed under con-
figuration management. The same concepts apply to all the other products of
object-oriented development, such as use case specifications, visual models, and
software architecture documents.

Integration

Industrial-strength projects require the development of families of programs. At
any given time in the development process, there will be multiple prototypes and
production releases, as well as development and test scaffolding. Often, each devel-
oper will have his or her own executable view of the system under development.

As explained in the previous chapter, the nature of the iterative and incremental
process of object-oriented development means that there should not be a single
“big bang” integration event (although this may happen in projects that are in
trouble). Instead, there will generally be many smaller integration events, each
marking the creation of another prototype or architectural release. Each such
release is generally incremental in nature, having evolved from an earlier stable
release. As Davis et al. observe, “when using incremental development, software
is deliberately built to satisfy fewer requirements initially, but is constructed in
such a way as to facilitate the incorporation of new requirements and thus achieve
higher adaptability” [9]. From the perspective of the ultimate user of the system,
the macro process generates a stream of executable releases, each with increasing
functionality, eventually evolving into the final production system. From the per-
spective of those inside the organization, many more releases are actually con-
structed, and only some are frozen and baselined to stabilize important system
interfaces. This strategy tends to reduce development risk because it accelerates

314

SECTION Il METHOD

7.4

the discovery of architectural and performance problems early in the development
process.

For a modest-sized project, an organization may produce an internal release every
two to three months. For more complex projects that require much greater devel-
opment effort, this might mean a release every six months or so, according to the
needs of the project. In the steady state, a release consists of a set of compatible
components along with their associated documentation. Building a release is pos-
sible whenever the major components of a project are stable enough and work
together well enough to provide some new level of functionality.

Testing

The principle of continuous integration applies as well to testing, which should
also be a continuous activity during the development process. In the context of
object-oriented architectures, testing must encompass at least three dimensions.

1. Unit testing involves testing individual classes and mechanisms. It is the
responsibility of the application engineer who implemented the structure.

2. Component testing, which involves integration testing a complete compo-
nent, is the responsibility of the component lead. Component tests can be
used as regression tests for each newly released version of the component.
Note that the term component is generic and can mean a single component
in a small project or a collection of components, sometimes referred to as a
subsystem, in a larger project.

3. System testing involves integration testing the system as a whole and is the
responsibility of the quality assurance team. System tests are also typically
used as regression tests by the integration team when assembling new
releases.

Testing at each level should focus on the external behavior of the item being
tested; a secondary purpose of testing is to push the limits of the system in order
to understand how it fails under certain conditions.

Reuse

One of the most acclaimed benefits of object-oriented development is reuse, but it
is one that requires management commitment to realize the benefits of reusing the
many artifacts of the development process.

CHAPTER 7 PRAGMATICS 315

Elements of Reuse

Any artifact of software development can be reused, including use case scenarios
(for both requirements and testing), design, code, and documentation. As noted in
Chapter 3, classes serve as the primary linguistic vehicle for reuse: Classes may
be subclassed to specialize or extend the base class. Also, as explained in Chapter
4, we can reuse patterns of classes, objects, and designs in the form of idioms,
mechanisms, and frameworks. Reuse of collaborating classes, in the form of com-
ponents, typically offers the most benefit. Framework reuse and pattern reuse are
at a higher level of abstraction than the reuse of individual classes and so provide
greater leverage (but are harder to achieve).

It is dangerous and misleading to quote figures for levels of reuse [10]. In suc-
cessful projects, we have encountered reuse factors as high as 70% (meaning that
almost three-fourths of the software in the system was taken intact from some
other source) and as low as 0%. The degree of reuse should not be viewed as a
quota to achieve because potential reuse appears to vary wildly by domain and is
affected by many nontechnical factors, including schedule pressure, the nature of
subcontractor relationships, and security considerations.

Ultimately, any amount of reuse is better than none because reuse represents a
savings of resources that would otherwise be used to reinvent some previously
solved problem.

Institutionalizing Reuse

Reuse within a project or even within an entire organization doesn’t just hap-
pen—it must be institutionalized. This means that opportunities for reuse must be
actively sought out and rewarded. Indeed, this is why we include pattern scaveng-
ing as an explicit activity in the micro process.

An effective reuse program is best achieved by making specific individuals
responsible for leading the reuse activity, while making everyone responsible for
participating. This activity involves identifying opportunities for commonality,
usually discovered through architectural reviews, and exploiting these opportuni-
ties, usually by producing new components or adapting existing ones, and cham-
pioning their reuse among developers. This approach requires the explicit
rewarding of reuse. Even simple rewards are highly effective in fostering reuse;
for example, peer recognition of the author or reuser is often useful.

In addition to developing assets to be reused, we can purchase commercial class
and component libraries to assist us with our development. However, we must
still develop an effective design, within the framework of the architecture, to use

316

SECTION Il METHOD

7.5

these commercial library assets. It is not simply a matter of plugging together the
classes or components [30].

Ultimately, reuse costs resources in the short term but pays off in the long term. A
reuse activity will be successful only in an organization that takes a long-term
view of software development and optimizes resources for more than just the cur-
rent project.

Quality Assurance and Metrics

Software quality assurance involves “the systematic activities providing evidence
of the fitness for use of the total software product” [11]. Quality assurance seeks
to give us quantifiable measures of goodness for the quality of a software system.
Many such traditional measures are directly applicable to object-oriented systems.

Software Quality

Schulmeyer and McManus define software quality as “the fitness for use of the
total software product” [12]. Software quality doesn’t just happen: It must be
engineered into the system. Indeed, the use of object-oriented technology doesn’t
automatically lead to quality software; it is still possible to design bad software
with object-oriented analysis and design techniques and to write very bad soft-
ware using object-oriented programming languages.

This is why we place such an emphasis on software architecture in the process of
object-oriented development. A simple, adaptable architecture is central to any
quality software; its quality is made complete by carrying out simple and consis-
tent tactical design decisions that support the strategic design decisions.

As we described earlier, development reviews and other kinds of inspections are
important practices even in object-oriented systems and provide insights into the
software’s quality. Perhaps the most important quantifiable measure of goodness
is the defect-discovery rate. During the evolution of the system, we track software
defects according to their severity and location. The defect-discovery rate is
thereby a measure of how quickly errors are being discovered, which we plot
against time. As Dobbins observes, “the actual number of errors is less important
than the slope of the line” [13]. A project that is under control will have a bell-
shaped curve, with the defect-discovery rate peaking at around the midpoint of
the test period and then falling off to some, hopefully, very low rate. A project
that is out of control will have a curve that tails off very slowly or not at all.

CHAPTER 7 PRAGMATICS 317

One of the reasons that the macro process of object-oriented development works
so well is that it permits the early and continuous collection of data about the
defect-discovery rate. For each incremental release, we can perform a system test
and plot the defect-discovery rate versus time. Even though early releases will
have less functionality, we still expect to see a bell-shaped curve for every release
in a healthy project.

Defect density is another relevant quality measure. Measuring defects per thou-
sand source lines of code (KSLOC) is the traditional approach and is still gener-
ally applicable to object-oriented systems. In healthy projects, defect density
tends to “reach a stable value after approximately 10,000 lines of code have been
inspected and will remain almost unchanged no matter how large the code volume
is thereafter” [14].

In object-oriented systems, we have also found it useful to measure defect density
in terms of the numbers of defects per class. With this measure, the 80/20 rule
seems to apply: 80% of the software defects will be found in 20% of the system’s
classes [15].

Object-Oriented Metrics

The British physicist Lord Kelvin, after whom the Kelvin temperature scale was
named, said the following about measurement: “When you can measure what you
are speaking about, and express it into numbers, you know something about it;
but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind. It may be the beginning of
knowledge, but you have scarcely in your thoughts advanced to the stage of sci-
ence.”* Our concern with object-oriented metrics is specifying ones that provide
meaningful measures to support the analysis and design of software systems.

Metrics to assist us in this endeavor fall into one of two categories, process met-
rics or product metrics. Process metrics, sometimes called project metrics, assist
the management team in assessing progress with respect to the object-oriented
development process being used. Examples of process metrics include the num-
ber of person-hours expended, the amount of work accomplished, and the number
of project dollars spent—all compared to what was planned. We can also look at
metrics more specific to object-oriented development, such as those recom-
mended by Lorenz and Kidd [16]:

4. Lord William Thomson Kelvin is said to have made this statement in Popular Lectures
and Addresses during 1891-1894. He also supposedly said that “Heavier-than-air flying
machines are impossible.” We will agree with his first statement.

318 SECTION Il METHOD

m Application size
Number of scenario scripts (NSS)
— Number of key classes (NKC)
Number of support classes (NSC)
— Number of subsystems (NOS)
m Staffing size
— Person-days per class (PDC)
— Classes per developer (CPD)

m Scheduling
— Number of major iterations (NMI)
— Number of contracts completed (NCC)

We tend to measure development progress by counting the classes in the logical
design, or the components in the physical design, that are completed and working.
As we described in the previous chapter, another measure of progress is the stabil-
ity of key interfaces (that is, how often they change). At first, the interfaces of all
key abstractions will change daily, if not hourly. Over time, the most important
interfaces will stabilize first, the next most important interfaces will stabilize sec-
ond, and so on. Toward the end of the development lifecycle, only a few insignifi-
cant interfaces will need to be changed since most of the emphasis is on getting
the already designed classes and components to work together. Occasionally, a
few changes may be needed in a critical interface, but such changes are usually
upwardly compatible. Even so, such changes are made only after careful thought
about their impacts. These changes can then be incrementally introduced into the
production system as part of the usual release cycle.

Our primary focus here is on product metrics (sometimes called design metrics)
that help the development team assess the artifacts of their analysis and design
efforts, rather than on process metrics. We have found that appropriate product
metrics can help the architect and component leads assess the quality of the
design. For example, they will be able to know whether design guidelines, such as
the range for the depth of the inheritance tree, are being met. Acquiring and ana-
lyzing applicable quantitative measures against these metrics on a variety of
projects over time will provide a historical database that can be used as a point of
comparison for the measures being analyzed on current projects.

Chidamber and Kemerer suggest a number of language-independent design met-
rics that are directly applicable to object-oriented systems [17]:

m Weighted methods per class (WMC)
m Depth of inheritance tree (DIT)

m Number of children (NOC)

m Coupling between object classes (CBO)

CHAPTER 7 PRAGMATICS 319

m Response for a class (RFC)
m Lack of cohesion in methods (LCOM)

Weighted methods per class gives the sum of the complexities of each of the
methods of an individual class. If all the method complexities are considered to be
equally complex, this becomes a measure of the number of methods per class.
However, this measure is truly useful when we assign relative complexity values
to each of the methods; however, for the sake of flexibility, Chidamber and
Kemerer did not provide the means to define this complexity. In general, a class
with significantly more methods than its peers is more complex, tends to be more
application-specific, and often hosts a greater number of defects [17].

The depth of the inheritance tree and number of children are measures of the shape
and size of the class structure. As we described in Chapter 3, well-structured
object-oriented systems tend to be architected as forests of classes, rather than as
one very large inheritance tree. The depth of the inheritance tree, measured from
the subject class to its highest-level parent class, gives a measure of the impact to
it from inheriting functionality. Therefore, a deeper inheritance tree increases the
complexity of a class, due to the functionality it inherits.

Looking down the inheritance tree, we see the number of children for the subject
class. The more children a class has, the greater its impact on the software sys-
tem’s design, due to the reuse it produces [17].

Coupling between objects is a measure of their connectedness to other objects
and thus is a measure of their class’s encumbrance. As with traditional measures
of coupling, we seek to design loosely coupled objects, which have a greater
potential for reuse.

Response for a class is a measure of the methods that its instances can execute in
response to a message call. In general, a class that has significantly more methods
that can be invoked, compared with its peers, is more complex.

Lack of cohesion in methods is a measure of the unity of the class’s abstraction. A
class with low cohesion among its methods suggests an accidental or inappropri-
ate abstraction; such a class should generally be reabstracted into more than one

class or its responsibilities delegated to other existing classes [17].

In his text on software quality engineering, Kan discusses examples of how to
apply the product metrics proposed by Lorenz (and later by Lorenz and Kidd in
1994) and those proposed by Chidamber and Kemerer. The eleven Lorenz design
metrics include several object-oriented design guidelines and rules of thumb for
their application. Kan found that the rules of thumb “are very useful. They were
derived based on experiences from industry OO projects. They provide a thresh-
old for comparison and interpretation” [18].

320

SECTION Il METHOD

7.6

With respect to the Chidamber and Kemerer metrics (the CK metrics) applied in
several studies, Kan found that “more empirical studies need to be accumulated
before preferable threshold values of the CK metrics can be determined” [18]. In
fact, Chidamber and Kemerer said that the threshold values should be determined
for each development site. Kan did find that “In practical use, the metrics can be
used to flag out-lying classes for special attention” [18].

More recently, Kemerer and Darcy provided several examples of the application
of the CK metrics suite and offered observations about its practical application.
From study of these applications, they made several observations about object-
oriented metrics [19].

m Such metrics have been successfully applied in several domains.

m They consistently demonstrated relationships to quality factors (e.g., cost,
defects, reuse, and maintainability).

m A generally useful set consists of size (WMC), coupling (CBO or RFC),
and cohesion (LCOM).

m The relationship between metrics and outcome predictions should be calcu-
lated for local influences.

There is still disagreement about how object-oriented design principles contribute
to software quality; consequently, there is still much debate about what consti-
tutes an appropriate set of object-oriented metrics. We believe the metrics pre-
sented here provide a reasonable set of measures to assist the architect and
component leads in assessing the quality of their object-oriented design.

Documentation

In addition to code, there are development artifacts that are critical to the com-
plete lifecycle of a software system. These artifacts, such as requirements and
design, must be documented to support the development process and the opera-
tion and maintenance of the system.

Development Legacy

The development of a software system involves much more than writing its raw
source code. Certain products of development offer ways to give the management
team and users insight into the progress of the project. We also seek to leave
behind a legacy of analysis and design decisions for the eventual maintainers of
the system. The products of object-oriented analysis and design are visual models
in which we create numerous views in the form of diagrams. These views include

CHAPTER 7 PRAGMATICS 321

sets of use case diagrams, activity diagrams, class diagrams, state machine dia-
grams, sequence diagrams, and component diagrams. Collectively, with appropri-
ate guidelines, we can use these diagrams to offer traceability back to the
system’s requirements. Use case diagrams (along with use case specifications)
show the high level functionality specified by the requirements, while the activity
diagrams detail the use case scenarios. Class diagrams represent key abstractions
that form the vocabulary of the problem domain. Classes with complex state-
related behavior are examined in state machine diagrams. Sequence diagrams
show the collaboration of objects as they provide system functionality. Compo-
nent diagrams show the mapping of classes to components.

Documentation Contents

The documentation of a system’s architecture and implementation is important,
but the production of such documents should never drive the development pro-
cess: Documentation is an essential, albeit secondary, product of the development
process. It is also important to remember that documents are living products that
should be allowed to evolve together with the iterative and incremental evolution
of the project’s releases. Together with the design and generated code, delivered
documents serve as the basis of most formal and informal reviews.

What must be documented? Obviously, end-user documentation must be pro-
duced, instructing the user on the installation and operation of each release.’ In
addition, analysis documentation must be produced to capture the semantics of
the system’s required functionality as viewed through use case scenarios. We
must also generate architectural and implementation documentation, to communi-
cate the vision and details of the architecture to the development team and to pre-
serve information about all relevant strategic decisions, so the system can readily
be adapted and evolved over time.

In general, the essential documentation (not necessarily on paper) of a system’s
architecture and implementation should include the following:

m Documentation of the high-level system architecture
m Documentation of the key abstractions and mechanisms in the architecture

m Documentation of scenarios that illustrate the as-built behavior of key
aspects of the system

5. Itis an unwritten rule that for personal productivity software, a system that requires a
user to constantly refer to a manual is user-hostile. Object-oriented user interfaces in par-
ticular should be designed so that their use is intuitive and self-consistent, in order to min-
imize or eliminate the need for end-user documentation.

322

SECTION Il METHOD

7.7

The worst possible documentation to create for an object-oriented system is a
stand-alone description of the semantics of each method on a class-by-class basis.
This approach tends to generate a great deal of useless documentation that no one
reads or trusts, and it fails to document the more important architectural issues
that transcend individual classes, namely, the collaborations among classes and
objects—and especially among components. It is far better to document these
higher-level structures in UML diagrams and then refer developers to the inter-
faces of certain important classes for tactical details.

Tools

Object-oriented development practices change the tools needed by the develop-
ment team during analysis and design. The development of complex object-
oriented systems changes the picture entirely: Trying to build a large software
system with a minimal tool set is equivalent to building a multistory building with
stone hand tools. Since object-oriented analysis and design highlights key
abstractions and mechanisms, we need tools that can focus on richer semantics. In
addition, the rapid development of releases defined by the macro process of
object-oriented development requires tools that offer rapid turnaround for the
analysis and design cycle.

It is important to choose tools that scale well. A tool that works for one developer
designing a small stand-alone application will not necessarily scale to production
releases of more complex applications. Indeed, for every tool, there will be a
threshold beyond which the tool’s capacity is exceeded, causing its benefits to be
greatly outweighed by its liabilities and clumsiness.

Kinds of Tools

We have identified three primary tools applicable to object-oriented analysis and
design. The first is a visual modeling tool supporting the UML notation. Such a
tool can be used during analysis to capture the semantics of use case scenarios, as
well as early in the development process to capture strategic and tactical design
decisions, maintain control over the design products, and coordinate the design
activities of a team of developers. Indeed, visual modeling tools can be used
throughout the lifecycle, as the design evolves into a production implementation.
Such tools are also useful during systems maintenance. Specifically, we have
found it possible to reverse-engineer many of the interesting aspects of an object-
oriented system, producing at least the class structure and component architecture
of the system as built. Without this feature, designers may generate marvelous
visual representations of the design, only to find that they are out of date once the

CHAPTER 7 PRAGMATICS 323

implementation proceeds because programmers fiddled with the implementation
without updating the design. Reverse engineering makes it less likely that design
documentation will ever get out of step with the actual implementation.

Next, especially for larger projects, one must have software configuration man-
agement and version control tools. Such tools support the development team as
they collaborate and share assets throughout the entire software development life-
cycle. These assets include all artifacts of the analysis and design process, from
use case diagrams through class and sequence diagrams that provide the design of
the architecture and the components that collaborate within the architecture. As
mentioned earlier, these components are the best unit of configuration manage-
ment, especially from a reuse perspective.

The third tool we have found important with object-oriented analysis and design
is a class library tool. Many languages have predefined class libraries or commer-
cially available class libraries. As a project matures, the library grows as domain-
specific reusable software classes and components are added over time. It does
not take long for such a library to grow to enormous proportions, which makes it
difficult for a developer to find a class or component that meets his or her needs.
If the perceived cost (usually inflated) of finding a certain component is higher
than the perceived cost (usually underestimated) of creating that component from
scratch, all hope of reuse is lost. For this reason, it is important to have at least
some minimal library tool that allows designers to locate classes and components
according to different criteria and add useful classes and components to the
library as they are developed.

These three tools often have integrations providing the development team with a
more seamless access to their aggregate capabilities. Though the primary function
of an integrated development environment (IDE) is to provide a programming
environment, it may also provide a foundation through which visual modeling,
configuration management and version control, and class library tools collaborate.

Organizational Implications

This need for powerful tools creates a demand for two specific roles within the
development organization: a reuse engineer and a toolsmith. Among other things,
the duties of the reuse engineer are to maintain the class library for a project.
Without active effort, such a library can become a vast wasteland of junk classes
that no developer would ever want to walk through. Also, it is often necessary to
be proactive to encourage reuse, and the reuse engineer can facilitate this process
by scavenging the products of current design efforts. The duties of a toolsmith are
to create domain-specific tools and tailor existing ones for the needs of a project.
For example, a project might need common test scaffolding to test certain aspects
of a user interface, or it might need a customized class browser. A toolsmith is in

324

SECTION Il METHOD

7.8

the best position to craft these tools, usually from components already in the class
library. Such tools can also be used for later development efforts. However, in the
best of cases where an integrated tool suite is available, the role of toolsmith

would not be needed. The system administrator could mange the integrated suite.

A manager already faced with scarce human resources may lament that powerful
tools, as well as designated reuse engineers and toolsmiths, are an unaffordable
luxury. We do not deny this reality for some resource-constrained projects. How-
ever, in many other projects, we have found that these activities go on anyway,
usually in an ad hoc fashion. We advocate explicit investments in tools and people
to make these ad hoc activities more focused and efficient; doing so adds real
value to the overall development effort.

Special Topics

There are several topics of special concern to people practicing object-oriented
analysis and design. Domain-specific issues include the development of effective
user interfaces and the integration of legacy functionality, from data to entire sys-
tems. Another special concern to most everyone involved is how to effectively
adopt object-oriented technologies.

Domain-Specific Issues

We have found that certain application domains warrant special architectural con-
sideration. One of these is the design of an effective user interface, which is still
much more of an art than a science. For this domain, the use of prototyping is
absolutely essential. Feedback must be gathered early and often from end users,
so as to evaluate the gestures, error behavior, and other paradigms of user interac-
tion. The generation of use case scenarios is also effective in driving the analysis
of the user interface.

Some applications involve a major database component; other applications may
require integration with databases whose schemas cannot be changed, usually
because large amounts of data already populate the database (the problem of leg-
acy data). For such domains, the principle of separation of concerns is directly
applicable: It is best to encapsulate the access to all such databases inside the con-
fines of well-defined interface classes. This principle is particularly important
when mixing object-oriented decomposition with relational database technology.

Consider also real-time systems. Real-time means different things in different
contexts: It might denote subsecond response is user-centered systems and submicro-

CHAPTER 7 PRAGMATICS 325

second response in data acquisition and control applications. It is important to
realize that even for hard real-time systems, not every component of the system
must (or can) be optimized. Indeed, for many complex systems, the greater risk is
whether or not the system can be completed, not whether it will perform within its
performance requirements. For this reason, we warn against premature optimiza-
tion. Focus on producing simple architectures, and the evolutionary generation of
releases will illuminate the performance bottlenecks of the system early enough
to take corrective action.

We refer to a legacy system as one for which there is a large capital investment
that cannot economically or safely be abandoned. However, such systems may
have intolerable maintenance costs, which require that they be replaced over time.
Fortunately, coping with legacy systems is much like coping with databases: We
encapsulate access to the facilities of the legacy system within the context of
well-defined interface classes and, over time, migrate the coverage of the object-
oriented architecture to replace certain functionality currently provided by the
legacy system. Of course, it is essential to begin with an architectural vision of
how the final system will look, so that the incremental replacement of the legacy
system will not end up as an inconsistent patchwork of software.

Adopting Object-Oriented Technology

As Stix and Mosley report, “As the information systems community responds to
the market’s demand for object technologists, many cognitive issues need to be
addressed. . . . two major challenges software practitioners are confronted with
are: understanding objects and understanding how to design. Furthermore, the
evidence gathered suggests that programming constructs and design are two inde-
pendent skill sets that must be learned concurrently to effectively implement and
achieve the benefits of object technology” [20].

How do we develop this object-oriented design capability? We recommend the
following ideas.

m Provide formal training to developers and managers in:
— The Unified Modeling Language
The object-oriented analysis and design process to be used by the project

The tools to be used by the project
The languages and libraries to be used by the project

m Use object-oriented development in a low-risk project first, and allow the
team to learn by:

— Using experienced OOAD consultants as mentors for the project team

— Growing expertise within these team members and using them to seed
other projects and act as mentors for the object-oriented approach

326

SECTION Il METHOD

7.9

m Expose the developers and managers to examples of well-designed object-
oriented systems

In our experience, it takes only a few weeks for a professional developer to master
the syntax and semantics of a new programming language. It may take several
more weeks for the same developer to begin to appreciate the importance and
power of classes and objects. However, we have seen a very different situation
with the mastering of object-oriented design concepts and applications. Maksim-
chuk and Naiburg make this case from the perspective of what they refer to as the
Training Trap: “A programming language might be object-oriented, but learning
an object-oriented language does not mean you will learn the concepts for good
object-oriented design using the UML” [21]. It may take as many as six months
of experience for that developer to mature into a competent class designer. This is
not necessarily a bad thing, for in any discipline, it takes time to master the art.

We have found that learning by example is often an efficient and effective
approach. Once an organization has accumulated a critical mass of applications
developed in an object-oriented style, introducing new developers and managers
to object-oriented development is far easier. Developers may start as analysts and
grow into a design role as they become more skilled in object-oriented tech-
niques; or, they may start as designers, using the well-structured abstractions that
already exist. Over time, developers who have studied and used these components
under the supervision of more experienced people gain sufficient experience to
develop a meaningful conceptual framework of the object model and become
effective designers.

The Benefits and Risks of Object-Oriented
Development
The benefits of object-oriented development have been touted for years and are

quite real. However, without the successful application of an object-oriented
development process, one will become more familiar with the risks.

The Benefits of Object-Oriented
Development
The adopters of object-oriented technology usually embrace these practices for

one of two reasons. First, they seek a competitive advantage, such as reduced
time-to-market, greater product flexibility, or schedule predictability. Second,

CHAPTER 7 PRAGMATICS 327

they may have problems that are so complex that they don’t seem to have any
other solution.

In Chapter 2, we suggested that the use of the object model leads us to construct
systems that embody the five attributes of well-structured complex systems: hier-
archy, relative primitives (i.e., multiple levels of abstraction), separation of con-
cerns, patterns, and stable intermediate forms. The object model forms the
conceptual framework for the notation and process of object-oriented develop-
ment, and thus these benefits are true of the method itself. In that chapter, we also
noted the benefits that flow from the following characteristics of the object model
(and thus from object-oriented development):

Appeals to the working of human cognition
Leads to systems that are more resilient to change

Reduces development risk

]

]

m Encourages the reuse of software components

]

m Exploits the expressive power of object-oriented programming languages
A number of case studies reinforce these findings; in particular, they point out
that the object-oriented approach can reduce development time and the size of the
resulting source code, better in some cases than in others [22, 23, 24].

The Risks of Object-Oriented Development

On the darker side of object-oriented development, we find the risks. An innova-
tive study of these risks is presented in an article by Hantos, where “Bertrand
Meyer’s classic OO technology concepts are mapped into Barry Boehm’s Top 10
methodology-neutral software risks to illustrate potential areas of exposure” [25].
From Meyer’s work [26], Hantos developed the following list of object-oriented
concepts, to be mapped into Boehm’s risks [25]:

A unique way to define architecture and data structure instances
Information hiding through abstraction and encapsulation
Inheritance to organize related elements

Polymorphism to perform operations that can automatically adapt to the
type of structure they operate on

Specialized analysis and design methods
Object-oriented languages
Environments that facilitate the creation of object-oriented systems

Design by contract, a powerful technique to circuamvent module boundary
and interface problems

328 SECTION Il METHOD

m Memory management that can automatically reclaim unused memory
m Distributed objects to facilitate the creation of powerful distributed systems

m Object databases to move beyond the data-type limitations of relational
database management systems

For the other side of his mapping, he took Boehm’s Top 10 Software Risks [27],
along with an updated list from Boehm [28], to develop the following eight
risks [25]:

1. Personnel shortfalls
2. Unrealistic schedules, budgets, or processes

3. Shortfalls in commercial off-the-shelf products, external components, or
legacy software

Mismatches in requirements or user interface
Shortfalls in architecture, performance, or quality
Continuing stream of requirements changes
Shortfalls in externally performed tasks

Straining computer science

® N A

Hantos provides a detailed explanation of each of the eight risks and how the
object-oriented concepts he listed either increase the particular risk within the
software development project or help to mitigate it.

For a simple visual perspective of the results, he summarizes his study in a single
mapping diagram; we see that Boehm’s classical software development risks per-
tain to object-oriented software development, as they do to other approaches. On
the positive side, Hantos shows that several of the object-oriented development
concepts described by Meyer help to mitigate software risks. Specifically, the
concept of “architecture and instances” helps to mitigate the risks of a “continu-
ing stream of requirements changes” and of “shortfalls in externally performed
tasks.” The concept of “abstraction and encapsulation” also helps to mitigate the
risk of a “continuing stream of requirements changes [25].”

If we recall our study of these object-oriented concepts, we can understand their
risk-mitigating effects. Requirements changes, especially ones continuing
throughout a development project, have the potential to wreak havoc. But, by
focusing on an appropriate logical and physical structuring (architecture) of the
system classes and components, we can provide a compartmentalization of struc-
ture and behavior to reduce the ripple effect of requirements change throughout
our system. Any system development shortfalls by the project team are similarly
compartmentalized.

CHAPTER 7 PRAGMATICS 329

Understanding the potential risks in a software development project—and how
object-oriented concepts potentially contribute to or mitigate them—is essential
as we develop risk management plans for our software development projects.

Summary

The successful development and deployment of a complex software system
involves much more than just generating code.

Many of the basic practices of software development management, such as
walkthroughs, are unaffected by object-oriented technology.

In the steady state, object-oriented projects typically require a reduction in
resources during development; the roles required of these resources are sub-
tly different than for non-object-oriented systems.

In object-oriented analysis and design, using an iterative approach, there
should never be a single “big bang” integration event; the unit of configura-
tion management for releases should be the component, not the individual
class.

Reuse must be institutionalized to be successful.

Defect-discovery rate and defect density are useful measures for the quality
of an object-oriented system. Other useful measures include various process
and product metrics.

Documentation should never drive the development process.

Object-oriented development requires different tools than does non-
object-oriented systems development.

The transition by an organization to the use of the object model requires a
change in mindset; it is critical that the development team understand
object-oriented analysis and design techniques. Object-oriented software
development is not just about programming.

There are many benefits to object-oriented technology as well as risks; good
risk management can assist in realizing the former while minimizing the
latter.

This page intentionally left blank

Section III

Applications

To build a theory, one needs to know a lot about the basic phenomena of the
subject matter. We simply do not know enough about these, in the theory of
computation, to teach the subject very abstractly. Instead, we ought to teach

more about the particular examples we now understand thoroughly, and hope
that from this we will be able to guess and prove more general principles.
MARVIN MINSKY

“Form and Content in Computer Science”

Methods are a wonderful thing, but from the perspective of the practicing
engineer, the most elegant notation or process ever devised is entirely
useless if it does not help us build systems for the real world. The previous
chapters have been but a prelude to this section of the book, in which we
now apply object-oriented analysis and design to the pragmatic construc-
tion of software systems. We have chosen a set of applications from
widely varying domains, encompassing navigation, command and control,
cryptanalysis, data acquisition, and Web business application design,
each of which involves its own unique set of problems.

We will present the application of object-oriented analysis and design
techniques by successively moving through the phases in the macro pro-
cess in each of the five application chapters. The chapters progress from
Inception through Elaboration to Construction. (Transition is for the most
part beyond the scope of this book. However, we present some interesting
post-transition considerations.) That is, each of the chapters will primarily
emphasize a specific part of the macro lifecycle and the applicable analy-
sis and design (i.e., micro process) techniques. We believe this provides a

331

332

SECTION Il APPLICATIONS

more interesting approach than simply focusing on a single problem
through all the steps of object-oriented analysis and design.

Each chapter focuses on the particular aspects of development shown
here but also includes other aspects as necessary to provide context and
a better understanding of the chapter’s primary focus.

m Chapter 8 (satellite-based navigation) focuses on system
architecture

m Chapter 9 (control system) focuses on system
requirements

m Chapter 10 (cryptanalysis) focuses on analysis

m Chapter 11 (data acquisition) focuses on analysis to
preliminary design

m Chapter 12 (Web modeling) focuses on detailed design

and implementation

Each of these chapters could expand to fill an entire book on its own.
Thus, we cannot address every phase, every activity, and every step in the
process. However, we strive to address those key aspects that are most
interesting and important.

The relationship of the disciplines of object-oriented analysis and design
and the specific diagrams that should be used is not rigid or prescriptive.
Certain diagrams are typically seen more in one phase than another. Use
case diagrams are seen much more often in the early phases of a project
lifecycle. Some diagrams you will rarely, if ever, encounter on a real
project. However, as you will see in the following chapters, certain types of
diagrams are used throughout the project lifecycle. The difference is in the
level of abstraction that the diagrams capture. For example, early in the
lifecycle, component diagrams may capture very large, coarse elements
(e.g., systems or subsystems). Later in the lifecycle, component diagrams
can be used to capture fine-grained implementation elements (e.g., soft-
ware executables). You will see the refinement in the level of abstraction
as you progress through the application chapters.

Chapter 8

System Architecture:
Satellite-Based
Navigation

The object-oriented analysis and design principles and process presented
earlier in this book, as well as the UML 2.0 notation discussed in Chapter
5, apply just as well to the development of the highest-level system archi-
tecture as to the development of software. With system architecture,
though, rather than developing the structure and design of classes, we are
concerned with understanding the system requirements and using that
knowledge to partition the larger system into its constituent segments.
However, we must remember that the concerns at this level typically are
quite abstract, huge in scope and impact, and uninvolved with implemen-
tation or technology details. If we understand this and take the right steps
when designing the architecture, we’re more likely to create a system with
long-term viability—it will be more operable, maintainable, and extensible,
as it should be.

In this chapter, we show how we would approach the development of the
system architecture for the hypothetical Satellite Navigation System (SNS)
by logically partitioning the required functionality. To keep this problem
manageable, we develop a simplified perspective of the first and second
levels of the architecture, where we define the constituent segments and
subsystems, respectively. In doing so, we show a representative subset of
the process steps and artifacts developed, but not all of them. Showing a
more complete perspective of the specification of any of these individual
segments and their subsystems could easily require a complete book.
However, the approach that we show could be applied more completely

333

334

SECTION Il APPLICATIONS

8.1

across an architectural level (e.g., segment or subsystem) and through the
multiple levels of the Satellite Navigation System’s architecture.

We chose this domain because it is technically complex and very interest-
ing, more so than a simple system invented solely as an example prob-
lem. Today there are two principal satellite-based navigation systems in
existence, the U.S. Global Positioning System (GPS) and the Russian
Global Navigation Satellite System (GLONASS). In addition, a third sys-
tem called Galileo is being developed by the European Union.

Inception

The first steps in the development of the system architecture are really systems
engineering steps, rather than software engineering, even for purely or mostly
software systems. Systems engineering is defined by the International Council on
Systems Engineering (INCOSE) as “an interdisciplinary approach and means to
enable the realization of successful systems” [1]. INCOSE further defines system
architecture, which is our focus here, as “the arrangement of elements and sub-
systems and the allocation of functions to them to meet system requirements” [2].

Our focus here is to determine what we must build for our customer by defining
the boundary of the problem, determining the mission use cases, and then deter-
mining a subset of the system use cases by analyzing one of the mission use
cases. In this process, we develop use cases from the functional requirements and
document the nonfunctional requirements and constraints. But before we jump
into our requirements analysis, read the sidebar to get an introduction to the
Global Positioning System.

Requirements for the Satellite Navigation
System

The process of building systems to help solve our customer’s problems begins
with determining what we must build. The first step is to use whatever documen-
tation of the problem or need our customer has given us. For our system, we have
been given a vision statement and associated high-level requirements and
constraints.

CHAPTER 8 SYSTEM ARCHITECTURE: SATELLITE-BASED NAVIGATION 335

An Introduction to the Global Positioning System

The Global Positioning System provides anyone possessing a GPS receiver with the
ability to know his or her position on the earth regardless of the location, the time of
day, or the weather.! GPS satellites, in orbits at 11,000 nautical miles above the
earth, are controlled and monitored from ground stations around the world. From the
launch of the first GPS satellite in 1978 to the 24th in 1994, which completed the sys-
tem, GPS has been a boon to worldwide navigation [3].

Navigation has progressed from the ways the earliest people remembered and recog-
nized landmarks as they lived their daily lives to the many technological develop-
ments on the way to GPS today. Along this path, people have used maps of the earth
and stars, compasses, sextants, chronometers, and current ground-based radio navi-
gation systems such as LORAN (long-range navigation) [4].

The GPS architecture consists of three segments: Control, User, and Space. The
Control Segment is comprised of six ground stations, with the master control station
located at Schriever Air Force Base in Colorado. The receivers that assist many of us
in our navigation efforts constitute the User Segment, which receives position infor-
mation from the 24 satellites that comprise the constellation of the Space Segment [5].

GPS receivers calculate their distance from the satellites by using time and position
data broadcast by the satellites. Specifically, “If we know our exact distance from a
satellite in space, we know we are somewhere on the surface of an imaginary sphere
with a radius equal to the distance to the satellite radius. If we know our exact dis-
tance from two satellites, we know that we are located somewhere on the line where
the two spheres intersect. And, if we take a third and a fourth measurement from two
more satellites, we can find our location. The GPS receiver processes the satellite
range measurements and produces its position” [6].

The Global Positioning System has numerous uses, both military and civilian. Most
people are familiar with its use by military personnel for navigation on land, at sea,
and in the air. It is also used on weapon systems such as the cruise missile for pre-
cise real-time navigation in support of targeting. But it’s the civilian applications that
have crept into many people’s lives. GPS is used by emergency services to quickly
provide support to people in need. It was used during the construction of the English
Channel Tunnel to ensure that separate teams digging from England and France met
in the middle at the precise location. It's even used in numerous personal activities
such as driving, geocaching,? and hiking [7].

1. The Aerospace Corporation developed the GPS Primer—A Student Guide to the Global Positioning
System, which is the source of this introductory information. Additional information can be found in
the Aerospace Corporation’s Summer 2002 issue of Crosslink, which focuses on satellite navigation
and the GPS.

2. You can find the Official Global GPS Cache Hunt Site at www.geocaching.com/.

www.geocaching.com/

336

SECTION Il APPLICATIONS

Vision:

m Provide effective and affordable Satellite Navigation System services for
our customers.

Functional requirements:

m Provide SNS services
m Operate the SNS
m Maintain the SNS

Nonfunctional requirements:

m Level of reliability to ensure adequate service guarantees
m Sufficient accuracy to support current and future user needs
m Functional redundancy in critical system capabilities

m Extensive automation to minimize operational costs

m Easily maintained to minimize maintenance costs

m Extensible to support enhancement of system functionality
m Long service life, especially for space-based elements

Constraints:

m Compatibility with international standards
m Maximal use of commercial-off-the-shelf (COTS) hardware and software

Obviously, this is a highly simplified statement of requirements, but it does pro-
vide the very basic specification for a satellite-based navigation system. In prac-
tice, detailed requirements for a system as large as this come about only after the
viability of a solution is demonstrated, and then only after many hundreds of per-
son-months of analysis involving the participation of numerous domain experts
and the eventual users and clients of the system. Ultimately, the requirements for
a large system may encompass thousands of pages of documentation (and, hope-
fully, visual models), specifying not only the general behavior of the system but
also intricate details such as the screen layouts to be used for human/machine
interaction.

Defining the Boundaries of the Problem

Though minimal, the requirements and constraints do permit us to take an impor-
tant first step in the design of the system architecture for the Satellite Navigation
System—the definition of its context, as shown in Figure 8—1. This context dia-
gram provides us with a clear understanding of the environment within which the
SNS must function. Actors, representing the external entities that interact with the
system, include people, other systems that provide services, and the actual envi-

CHAPTER 8 SYSTEM ARCHITECTURE: SATELLITE-BASED NAVIGATION 337

SatelliteNavigationSyst ontext /
SatelliteNavigationSystem
7
- iig
User s +° ExternalPower
~ .
RN

——————— == e

Operator ExternalCommunications
J‘ i 5 i ~

it ~ L\k

Maintainer Atmosphere/Space

Figure 8—1 The Satellite Navigation System Context Diagram

ronment. Dependency arrows show whether the external entity is dependent on
the SNS or the SNS is dependent on it.

It is quite clear that the User, Operator, and Maintainer actors are dependent
on the SNS for its services as they use its navigation information, operate it, and
maintain it, respectively. Though the Satellite Navigation System will have the
capability to generate its own power as a backup for ground-based systems, primary
power services will be provided by an external system, the ExternalPower
actor. In a similar manner, we have an External Communications actor that
provides purchased communications services to the SNS, as primary in some
cases and backup to the internally provided system communications in other
cases. We’ve prefixed the names for these two actors with “External” to clearly
separate them from internal system power and communications services.

The remaining actor, Atmosphere/Space, may seem rather odd until we con-
sider that it is the transmission medium for communications between the Satellite
Navigation System’s ground-based and space-based assets; therefore, it is a ser-
vice provider. Its state certainly affects the quality of these communications.
Another way to regard this actor is from the perspective of the constraint “Com-
patibility with international standards.” Numerous national and international reg-
ulations and treaties govern satellite transmissions; thus, we have important
reasons to specify this actor.

338

SECTION Il APPLICATIONS

A critical point about our context diagram is the actual boundary of the system,
that is, what is inside our system and what is not. Some may question our placing
of the Operator and Maintainer actors outside the boundary of the
SatelliteNavigationSystem package. By doing so, we’ve taken the
viewpoint of a particular stakeholder, our customer, whose focus is that the sys-
tem be used to provide navigation information to the user. The customer’s focus is
not on the broader corporate enterprise within which the SNS operates, unlike the
User actor, who would likely regard the Operator and Maintainer as
inside the system. Clearly, one’s perspective is the key point here. For example, if
we were providing a complete turnkey system that included operation and main-
tenance services, we would place the Operator and Maintainer actors
inside the boundary of the SatelliteNavigationSystem package.

We’ve seen numerous variations in the presentation of a context diagram, some
very elaborate and some very simple. The more elaborate ones tend to provide
detailed information about the information that flows, in both directions, between
the actors and the system being developed. Where a system is being developed
within a more mature environment, perhaps as a replacement for an existing sys-
tem, this type of information is known earlier in the development cycle, and thus
some development teams choose to represent it here.

The particulars are much less important than having the development team choose
a style, document it, and then follow it so clarity and understanding are ensured.
However, we prefer our approach to presenting a context diagram because it sim-
ply and clearly conveys the high-level concept of the system being a container of
functionality that interacts with entities in its external environment. In these inter-
actions, the system provides services to some entities and receives services from
others. This is the critical understanding that is so important in the beginning of
development.

In addition to the functional requirements, we’ve been given high-level nonfunc-
tional requirements that apply to portions of the functional capability or to the
system as a whole. These nonfunctional requirements concern reliability, accu-
racy, redundancy, automation, maintainability, extensibility, and service life.
Also, we see that there are some design constraints on the development of the
SNS. We maintain the nonfunctional requirements and design constraints in a tex-
tual document called a supplementary specification; it is also used to maintain the
functional requirements that apply to more than one use case. Another critical
document that we must begin at this point is the glossary; it is important that the
development team agrees on the definition of terms and then use them accordingly.

Even from these highly elided system requirements, we can make two observa-
tions about the process of developing the Satellite Navigation System.

CHAPTER 8 SYSTEM ARCHITECTURE: SATELLITE-BASED NAVIGATION 339

1. The architecture must be allowed to evolve over time.

2. The implementation must rely on existing standards to the greatest extent
practical.

Obviously, we cannot carry out a complete analysis or design of the Satellite Nav-
igation System (or even the architecture) in a single chapter, much less a single
book. Since our intent here is to explore how our notation and process scale up to
the development of a system’s architecture, we focus on the problem of designing
the first and second levels of the architecture, where we define the constituent
segments and subsystems, respectively. We develop these architectural levels by
logically partitioning the required functionality used by the Operator actor. As
stated in the chapter introduction, we show only a representative subset of the
process steps and artifacts developed.

After reviewing both the vision and the requirements, we (the architecture team)
realize that the functional requirements provided to us are really containers (pack-
ages, in the UML) for numerous mission-level use cases that define the function-
ality that must be provided by the Satellite Navigation System. These mission use
case packages provide us a high-level functional context for the SNS, as shown in
Figure 8-2. These packages contain the mission use cases that show how the
users, operators, and maintainers of the SNS interact with the system to fulfill
their missions. Since we are using object-oriented analysis and design techniques
and the UML 2.0 notation to perform a systems engineering rather than a soft-
ware engineering task, how we’ve used the notation in Figure 8-2 may be slightly
unfamiliar. However, we believe it clearly presents the desired information and
thus ensures understanding.

Determining Mission Use Cases

The vision statement for the system is rather open ended: a system to “Provide
effective and affordable Satellite Navigation System services for our customers.”
The task of the architect, therefore, requires judicious pruning of the problem
space, so as to leave a problem that is solvable. A problem such as this one could
easily suffer from analysis paralysis, so we must focus on providing navigation
services that are of the most general use, rather than trying to make this a naviga-
tion system that is everything for everybody (which would likely turn out to pro-
vide nothing useful for anyone). We begin by developing the mission use cases
for the SNS.

Large projects such as this one are usually organized around some small, centrally
located team responsible for establishing the overall system architecture, with the
actual development work subcontracted out to other companies or