SYN'&RESS®

BUYER PROTECTION PLAN /

C# .NET

Web Developer’s Guide

Develop and Deliver Enterprise-Critical Desktop and Web
Applications with C# .NET
« Complete Case Studies with Ready-to-Run Source Code and Full Explanations

- Hundreds of Developing & Deploying, Migrating, and Debugging Sidebars,
Security Alerts, and C# .NET FAQs

- Complete Coverage of Web Services and the Integrated Development
Environment (IDE)

Adrian Turtschi

DotThatCom.com

Jason Werry

Greg Hack

Joseph Albahari

Saurabh Nandu Technical Editor

4 PORTABLE
Wei Meng Lee Sseries Editor - SOLUTION!



solutionsasyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

» One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» “Ask the Author” customer query forms that enable you to post
guestions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWwwWw.syngress.com/solutions

SYNGRESS®


http://www.syngress.com/solutions

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work™) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” and “Ask the Author
UPDATE®),” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,” “Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL NUMBER

001 CDFE48952P

002 NHBN9436KH
003 BAEN24P7BV
004 HY9W84UJTA
005 RTWO9B39RE4

006 JSEAFAHT82
007 VTS8TYCGF2
008 AUTGFLDCWR
009 833K74SLAF
010 VFRAMHY3XW

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

C# .NET Web Developer’'s Guide

Copyright © 2002 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-50-4

Technical Editor: Saurabh Nandu Freelance Editorial Manager: Maribeth Corona-Evans
Co-Publisher: Richard Kristof Cover Designer: Michael Kavish

Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Shannon Tozier
Developmental Editor: Kate Glennon Copy Editor: Darren Meiss

CD Production: Michael Donovan Indexer: Rich Carlson

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.



Acknowledgments

We would like to acknowledge the following people for their kindness and support in
making this book possible:

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous access
to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight into
the challenges of designing, deploying and supporting world-class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin
Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing their
incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our vision
remains worldwide in scope.

Annabel Dent of Harcourt Australia for all her help.

David Buckland, Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan, and
Joseph Chan of Transquest Publishers for the enthusiasm with which they receive our

books.
Kwon Sung June at Acorn Publishing for his support.
Ethan Atkin at Cranbury International for his help in expanding the Syngress program.

Jackie Gross, Gayle Vocey, Alexia Penny, Anik Robitaille, Craig Siddall, Darlene Morrow,
Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates for all their
help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, and the rest of the great folks at Jaguar Book Group for
their help with distribution of Syngress books in Canada.



Vi

Contributors

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition to its
primary Web site, Match.com provides back-end services to AOL, MSN, and
many other Web sites in its affiliate program. Todd specializes in design and
development of high-performance, high-availability data architectures primarily
on the Microsoft technology. His background includes designing, developing,
consulting, and project management for companies such as Fujitsu, Accenture,
International Paper, and GroceryWorks.com. In addition to his contribution to
C# .NET Web Developer’s Guide, Todd has also contributed chapters to other
books in the Syngress INET Series including the ASP .NET Web Developer’s
Guide, and the VB .NET Developer’s Guide. Todd resides in Sachse, TX, with his
wife and two children.

Mark Tutt is a Senior Software Engineer with MICROS Systems. MICROS
provides complete information management solutions for the hospitality
industry, including software, hardware, enterprise systems integration, consulting,
and support. Mark is the principle designer of a number of software packages,
including Guest Service Solution, a customer relationship management system
for the MICROS Restaurant Enterprise Series platform. In addition to his
product development duties, Mark is a key contributor to the design and devel-
opment of system integration software and customer-specific product exten-
sions that allow MICROS clients to fully integrate MICROS products into
their overall technology plans. Mark currently resides in Baltimore, Maryland
with his wife Malinda and their twin sons, Fred and Jackson.

Jason Werry (MCSD) runs a consulting firm, Synergy Data Solutions, in
Australia. He currently provides strategic and technical consulting to his clients
and specializes in Windows-based enterprise systems development. Jason has an
extensive background using Microsoft technologies and is currently developing
state-of-the-art, Web-based applications on the .NET platform. His clients have
ranged from a Taiwanese multimedia company to various government depart-
ments and local startups. A natural born programmer, Jason started coding

Z80 processors in Assembly at age 13. Since then he has used most popular



programming languages and presently enjoys working with SQL Server, M TS,
IIS, Visual Basic, and C#. Jason holds a bachelor’s degree in Mathematics/
Computer Science from The University of Queensland. He dedicates his
writing to his loving wife, LiHsing.

Patrick Coelho (MCP) is an Instructor at The University of Washington
Extension, North Seattle Community College, Puget Sound Center, and Seattle
Vocational Institute, where he teaches courses in Web Development (DHTML,
ASP, XML, XSLT, C#, and ASP .NET). Patrick is a Co-Founder of
DotThatCom.com, a company that provides consulting, online development
resources, and internships for students. He is currently working on a .NET
solution with contributing author David Jorgensen and nLogix. Patrick holds a
Bachelor’s of Science degree from the University of Washington, Bothell.
Patrick lives in Puyallup, WA with his wife Angela.

David Jorgensen (MCP) is an Instructor at North Seattle Community
College, University of Washington extension campus, and Puget Sound Centers.
He is also developing courses for Seattle Vocational Institute, which teaches
.NET and Web development to the underprivileged in the Seattle area. David
also provides internship opportunities through his company DotThatCom.com,
which does online sample classes and chapters of books. David holds a bach-
elor’s degree in Computer Science from St. Martin’s College and resides in
Puyallup, WA with his wife Lisa and their two sons Scott and Jacob.

Greg Hack is a Senior Software Engineer with Allscripts Healthcare Solutions.
Greg has over 15 years experience developing software on platforms ranging
from the mainframe to the desktop using a wide variety of languages and tech-
nologies. Recent work includes a Web-based application that allows patients to
view their medical records and a Pocket PC application that delivers clinical
information to physicians at the point of care.

Axel Goldbach is a Senior Consultant with modulo3 GmbH, a consulting
company based in Germany and specializing in project management consulting
throughout Europe. modulo3 is a process implementation specialist for the
major networking frameworks, including eXtreme Programming, MSF and
V Modell. Axel currently provides senior-level strategic and technical consulting
to all modulo3 clients in Germany and Central Europe. His duties include anal-
ysis and development of multi-tiered applications in heterogeneous environments.
vii



viii

Axel also works as a technical scout and trainer for modulo3. His training spe-
cialties include programming languages, networking, and academic fields such as
development methodology, parser- and interpreter-technology, theory of com-
plexity, and provable correct software.

Joseph Albahari is a freelance consultant and developer with over 10 years
experience in designing networked systems. He has led a string of successtul
projects, from custom application frameworks for start-up companies, to high-
performance OLAP and data warehousing systems for telecommunications
giants. His knowledge in object-oriented user interface design has been called
upon in the planning or production of many large and complex systems, where
well-balanced abstractions are of key importance. Joseph is also experienced in
SQL Server database administration, and has developed high-performance solu-
tions for clients with specialized requirements—such as a replication system
providing field level synchronization, or a high-throughput bulk-copying agent.
Joseph holds a Bachelor’s degree in computer science and physics.

Adrian Turtschi (MCSE, MCSD) is Lead Architect Solution Development
with Avanade (Germany), where he is responsible for the solution oftering in
the mobile computing space. He has been working on the Microsoft .NET
platform since fall 2000, specializing in developing enterprise systems using Web
Services. He is particularly interested in using Web Services to bridge platform
and system boundaries. Prior to joining Avanade, Adrian worked for KPMG’s
Global Knowledge Exchange in Boston, where he helped design and develop
KPMG's global knowledge management and collaboration solution, used by its
100,000 professionals world-wide. Adrian has work experience in Switzerland,
the Netherlands, and the US. He has degrees in Mathematics and Computer
Science. He currently lives in Berlin, Germany.



Technical Editor and Reviewer

Saurabh Nandu is the Founder of www.MasterCSharp.com which concen-
trates on teaching C# and .NET. He worked with HTML, JavaScript, Flash 5.0
before he started programming in Java. Saurabh has been impressed by the
power and flexibility of .NET. He is currently employed by YesSoftware Inc.

as Technical Evangelist.

Technical Editor’'s Acknowledgements

I would like to thank my friend Nanu Jogi without whose direction I would
have never got into working on the .NET Platform. I would also like to thank
my family, especially my brother Pritesh, for their support.

Series Editor

Wei Meng Lee is Series Editor for Syngress Publishing’s .NET Developer
Series. He is currently lecturing at The Center for Computer Studies, Ngee
Ann Polytechnic, Singapore. Wei Meng is actively involved in Web development
work and conducts training for Web developers and Visual Basic programmers.
He has co-authored two books on WAP. He holds a Bachelor’s degree in
Information Systems and Computer Science from the National University of
Singapore. The first and second books of the .NET series, IV'B .NET Developer’s
Guide (ISBN: 1-928994-48-2), and ASP .NET Developer’s Guide (ISBN:
1-928994-51-2) are currently available from Syngress Publishing.



About the CD

This CD-ROM contains the code files that are used in each chapter of this book. The
code files for each chapter are located in a ¢hXX directory (for example, the files for
Chapter 8 are in the ¢h08 directory). Any further directory structure depends on the pro-
jects that are presented within the chapter.

To work with the examples provided, you will need at least the Windows 2000 or
Windows XP Professional operating system with the latest service packs, IIS 5.x, and IE
6.0, since ASPNET and Web Services (a part of ASPNET) are not supported on earlier
operating systems such as Windows 9x/WindowsME/WindowsNT. Also needed is the
.NET SDK Beta2 (the latest public release available while writing this book) and the
Visual Studio.NET Beta2 IDE.

The C# .NET Web Developer’s Guide provides you with extensive examples that will
help solve the problems you might face while developing applications for the .NET
Platform rather than concentrating on the theory of C# and .NET programming.
Therefore code is the main feature of this book.

The chapters contain both code snippets and sample programs that illustrate the
principles discussed. Chapter 2 presents a series of sample programs that introduce con-
cepts in C# that are different from other object-oriented languages. Chapter 4 helps you
understand the basics of building Graphical User Interface (GUI)-rich Windows Forms
applications; the examples presented in this chapter are the launch pad for Windows
Forms applications used in other chapters. Similarly, code presented in Chapter 8 helps
you to interact with various databases using ADO.NET; again, this chapter acts as a foun-
dation for further chapters’ database coverage. Chapter 9 will acquaint you with using
.NET Class Libraries to interact with XML and its related technologies.

Chapters 5, 6, and 11 discuss technologies and Application Program Interfaces (APIs)
that help two applications to communicate and interact with each other. Chapter 5
focuses on enabling applications to communicate over the TCP and UDP protocols and
provides an overview of the techniques used to interact with Web pages programmatically.
Code examples in Chapter 6 and Chapter 11 concentrate on using Simple Object Access
Protocol (SOAP) and object serialization and deserialization.



Chapter 7 examples examine message delivery in distributed applications using
Microsoft Message Queuing (MSMQ). Chapter 10 takes a comprehensive look at
ASPNET and helps you build various applications of increasing complexity and func-
tionality, starting with an XML Poll, progressing to a SQL-powered Message Board, and
ending with a Shopping Cart.

Lastly, to end on a lighter note, Chapter 12 takes you through building a Jokes Web
Service. The code in this chapter helps you build both the Jokes Web Service as well as
the Windows Forms Client for the service.

in the book demonstrations.

.ﬁ: Look for this CD icon to obtain files used

Xi



From the Series Editor

For many years, C and C++ programmers have been searching for alternative pro-
gramming languages that offer the same kind of flexibility and power of C and C++,
but without the complexities and steep learning curve required for mastery of the
language. What many programmers desired was a language that would allow applica-
tions to be built rapidly, but at the same time giving them the ability to code at low
level. The search has finally ended with Microsoft’s new language—C#, a member of
the .NET Framework.

C# 1s the revolutionary new language from Microsoft, designed solely to run on
the .NET framework. Drawing experiences from C, C++, and Visual Basic, C# was
designed to be a simple and modern object oriented programming language.

But why learn C#? With the integration of C# and the Visual Studio.NET
(known as Visual C#), developing Windows and Web applications has been radically
simplified. With full access to the .NET Class Libraries, C# includes built-in support
for developing robust Web services and ASPNET applications. (It was reportedly said
that Visual Studio.NET was built entirely using C# and that most of the examples in
MSDN were coded in C#.That in and of itself is a very good reason to learn C#!)
Besides this, C# enhances the productivity of programmers by eliminating common
errors often associated with C and C++.

While many of the earlier C# books have primarily focused on the language
syntax, The C# .NET Web Developer’s Guide illustrates the uses of C# for Web devel-
opers looking to harness the new functionality and ease of this powerful program-
ming language. The best way to learn a new language is by trying out the examples
while you are reading this book. Within many chapters, you will find numerous code
examples used in various practical situations; this hands-on, code-intensive approach
allows you to have a deeper understanding of issues involved in C# Web develop-
ment, and at the same time allows you to cut and paste portions of applicable code
into your current projects, thereby shortening development time.

We are constantly working hard to produce the best technical books needed by
professional programmers like you. I sincerely hope you will enjoy reading this book
as much as the authors did writing it!

Wei Meng Lee, Series Editor
Syngress .NET Developer Series

Xii



Contents

X

Foreword
Chapter 1 Introducin

Introduction
Introducing the.NET Platform
Microsoft .NET and Windows DNA
Microsoft .NET Architecture Hierarchy
Features of the .NET Platform
Multilanguage Development
Platform and Processor Independence
Automatic Memory Management
Versioning Support
Support for Open Standards
Easy Deployment
Distributed Architecture
Interoperabili ith Unmanaged Code
Security
Performance
Components of t
.NET Runtime
Managed/Unmanaged
Intermediate Lar

icrosoft .NET Platform

OO O XN JUlUl R~ LN =

ability

rchitecture

Common Tyg
.NET Base 15
Assemblies 16
Metadata 16
Assemblies a 17
Assembly Cag 18
Reflection 19
Just In Time 19
Garbage Colli 20
Exploring the Co : 21
The Pursuit of Sta ation 24
Summary/Solutio ‘Track/Frequently Asked Questions 26
Chapter 2 Introducing C# Programming 33
Introduction = - 34
Getting Started 35
Creating Your First CH 37
Compiling and Ex 38
Defining a C 40
Declaring th 43
Organizing L 43

xiii




Xiv Contents

Using the using Keyword 44
Adding Comments 45
Introducing Data Types 47
Value Types 47
Primitive Data Types 47
Reference Types 48
Explaining Control Structures 49
Using the if Statement 49
Using the if-else Statement 50
Using the switch case Statement 50
Using the for Statement 51
Using the while Statement 52
Using the do while Statement 52
Using the break Statement 52
Using the continue Statement 53
Using the return Statement 54
Using the gofo Statement 55
Understanding Properties and Indexers 56
Using Properties 56
Get Accessor 59

Set Accessor 59
Accessing Lists with Indexers 60
Using Delegates and Events 69
Delegates 70
Single Cast 74
Multicast 75
Events 79
Using Exception Handling 85
Using the try Block 89
Using the catch Block 89
Using the finally Block 89
Using the throw Statement 89
Understanding Inheritance 90
Summary/Solutions Fast Track/Frequently Asked Questions 104
Chapter 3 Visual Studio.NET IDE 109
Introduction 110
Introducing Visual Studio.NET 110
Components of VS.NET 112
Design Window 112
Code Window 113
Server Explorer 114
Toolbox 116
Docking Windows 117
Properties Explorer 117
Solution Explorer 118
Object Browser 119
Dynamic Help 120

Task List Explorer 121



Contents

Features of VS.NET
IntelliSense
XML Editor
Documentation Generation (XML Embedded Commenting)
Adding XML Document Comments to C# Pages
Customizing the IDE
Creating a Project
Projects
Creating a Project
Add Reference
Build the Project
Debugging a Project
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 4 Windows Forms
Introduction
Introducing Windows Forms
Writing a Simple Windows Forms Application
Adding Controls
Adding an Event Handler
Adding Controls at Runtime
Attaching an Event Handler at Runtime
Writing a Simple Text Editor
Starting the Project
Creating a Menu
Adding a New Form
Creating a Multiple Document Interface
Creating a Dialog Form
Using Form Inheritance
Adding a TabControl
Anchoring Controls
Changing the Startup Form
Connecting the Dialog
Using the ListView and TreeView Controls
Building an ImageList
Adding a ListView
Using the Details View
Attaching a Context Menu
Adding a TreeView
Adding a Splitter
Implementing Drag and Drop
Creating Controls
Creating a User Control
Adding a Property
Adding Functionality
Writing a Custom Control
Testing the Control
Enhancing the Control
Subclassing Controls

XV

122
122
124
127
127
129
130
130
130
131
131
132
133

137
138
138
141
142
145
147
152
154
154
155
157
159
160
162
164
166
167
167
170
170
172
173
174
175
177
178
181
181
182
182
183
187
189
191



Xvi Contents

Custom Controls in Internet Explorer
Setting Up IIS
Creating a Virtual Directory
Writing a Test Page

Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 5 Network Programming:
Using TCP and UDP Protocols
Introduction
Introducing Networking and Sockets
Introduction to TCP
Introduction to UDP
Introduction to Ports
System.Net Namespace
System. Net.Sockets Namespace

Example TCP Command Transmission and Processing
General Usage of Needed .NET Classes

The Server
The Client
Compiling and Running the Example

Example UDP Command Transmission and Processing
General Usage of Needed .NET Classes

The Server
The Client
Compiling and Running the Example

Creating a News Ticker Using UDP Multicasting
General Usage of Needed .NET Classes

The Server
The Client
Compiling and Running the Example

Creating a UDP Client Server Chat Application

The TCPServerSession Class

The TCPServer Class

The Chat Protocol

The ChatServer Class

The ChatClient Class

Compiling and Running the Example

Creating a TCP P2P File Sharing Application

The Remote File Stream Protocol

The RemoteFileStreamServer Class

The RemoteFileStreamProxy Class

The FileSharingPeer Class

Compiling and Running the Example
Access to Web Resources

General Usage of Needed .NET Classes

A Web Access Client

Compiling and Running the Example
Request Method

Redirection

193
193
193
194
196

203
204
204
206
208
211
212
213
214
216
217
220
226
227
228
229
231
234
235
236
240
243
250
250
253
256
260
260
265
268
269
271
272
276
279
283
283
284
285
289
290
290



Contents

Authentication
Cookies
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 6 Remoting
Introduction
Introducing Remoting
Remoting Architecture
Creating a Simple Remoting Client Server
Creating the Remote Server Object
Creating the Hosting Application
Creating the Client Application
Understanding the Remoting Code
Improving the Sample Application
Adding Event Logging and Error Handling
Using the soapsuds Tool
Using Configuration Files
Updating Configuration Files Using the .NET
Framework Configuration Tool
Changing the Hosting Application to a Service
Using the TCP Channel with the Binary Formatter
Summary of the Improved Sample Application
Creating an Intranet Application
Object Lifetime and Leasing
Creating the CountServer Project
Creating the CountHost Project
Creating the CountClient Project
Understanding the Leasing and Sponsorship Code
Client Activated Objects
Sending and Receiving Objects by Value
Sending and Receiving Objects by Reference
Creating Service-Based Applications
Building a Versioned Remoting Application
Creating the VersionHost Project
Creating the VersionClient Project
Testing Side-By-Side Execution of Remote Objects
Summary/Solution Fast Track/Frequently Asked Questions

Chapter 7 Message Queuing Using MSMQ
Introduction
Introducing MSMQ
MSMQ Architecture
Installing MSMQ
Using Visual Studio to Manage Queues
Creating a Simple Application
Understanding the Messaging Code
Sending Messages
Message Formats
Sending and Receiving Messages with Complex Objects
Storing Files within Messages

Xvii

291
291
292

299
300
301
302
303
303
305
306
308
310
310
312
313

318
319
321
321
321
321
322
325
326
329
331
332
333
334
334
336
337
339
340

345
346
346
348
349
349
349
353
353
355
356
360



xviii

Contents

Setting Queue Options
Creating a Complex Application

Creating the MSMQGtaphics Drawing Library

Creating the DrawingSender Project

Creating the DrawingReceiver Project
Creating an Asynchronous Application

Using Public Queues While Disconnected from the Network
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 8 ADO.NET

Introduction
Introducing ADO.NET
ADO.NET Architecture
Understanding the Connection Object
Building the Connection String
Understanding the Command Object
Understanding DataReaders
Understanding DataSets and DataAdapters
DataTable
DataColumn
DataRow
Differences between DataReader Model and DataSet Model
Understanding the DataView Object
Working with System.Data.OleDb
Using DataReaders
Using DataSets
Working with SQL.NET
Using Stored Procedures
Working with Odbc.NET
Using DSN Connection
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 9 Working with XML

Introduction
Introduction to XML
Explaining XML DOM
Explaining XPath
Explaining XSL
Explaining XML Schemas
XML Classes in the .NET Framework
Working with XML DOM
Creating an Empty XML DOM Document
Adding an Element to the XML Document
Updating an Element in the XML Document
Deleting an Element in the XML Document
Loading and Saving the XML Document
Working with XML and Relational Data
XML and the DataSet Class
XML Schemas and the DataSet Class
Traversing Relations in the DataSet Class

364
365
366
369
373
376
378
379

383
384
384
386
388
389
391
396
396
398
398
402
405
406
408
408
414
418
419
422
423
426

431
432
432
434
435
436
437
437
439
442
443
446
450
451
452
456
461
464



Contents

Working with XPath and XSL Transtormations
Working with XPath
Working with XSL
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 10 ASP.NET
Introduction
Introducing the ASPNET Architecture
ASPNET Server Controls
Working with User Controls
Custom Controls
Understanding the Web.config File
Using the Global.asax Page
Working with Web Forms
Creating a Simple Web Form
Building an XML Poll
Creating the updateXPoll Method
Creating the updateFile Method
Displaying the Current Poll Statistics
Working with ADO.NET
Building a Message Board with SQL

Using VS.NET to Validate Form Input with a Regular Expression

XML and XSLT
Using the String Builder Class
Building a Shopping Cart with SQL
Creating dataaccess.cs
Creating XmlShoppingCart.cs
Creating catalog.cs
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 11 Web Services
Introduction
The Case for Web Services
The Role of SOAP
Why SOAP?
Why Web Services?
The World of Web Services
Web Service Standards
Wiring Up Distributed Objects—The SOAP Protocol
Creating Your Very First Web Service
Running Your Very First Web Service
Describing Web Services—WSDL
Discovering Web Services—DISCO
Publishing Web Services—UDDI
Working with Web Services
Passing Complex Data Types
Error Handling
Malformed SOAP Request
Wrong Argument Types
Exceptions in Server Code

Xix

469
469
479
490

495
496
496
497
501
510
511
513
513
513
517
523
525
526
529
529
538
543
547
549
551
553
556
571

575
576
576
577
578
579
579
581
581
581
589
602
608
610
611
611
614
614
617
617



XX

Contents

Writing a SOAP Client Application
Passing Objects
Passing Relational Data
Passing XML Documents
Working with UDDI
SOAP Headers
Advanced Web Services
Maintaining State
State Information in the URL (URL Mangling)
State Information in the Http Header (Cookies)
State Information in the Http Body (SOAP Header)
Security
Summary/Solutions Fast Track/Frequently Asked Questions

Chapter 12 Building a Jokes Web Service
Introduction
Motivation and Requirements for the Jokes Web Service
Functional Application Design
Defining Public Methods
Defining the Database Schema
Defining the Web Service Architecture
Security Considerations
State Management
Error Handling
Implementing the Jokes Data Repository
Installing the Database
Creating the Stored Procedures
Implementing the Jokes Middle Tier
Setting Up the Visual Studio Project
Developing the Error Handler
Developing the Database Access Component
Developing the User Administration Service
Adding New Users
Checking Existing User Information
Adding Moderators
Creating the Public Web Methods—Users
Error Handling for the Public Web Methods
Creating the Public Web Methods—Administrators
Testing the Public Web Methods
Developing the Jokes Service
Best Practices for Returning Highly Structured Data

Setting Up Internal Methods to Wrap the Stored Procedure Calls
Setting Up Internal Methods to Manage Jokes and Ratings

Setting Up Internal Methods to Return Jokes
Creating the Public Web Methods
Creating a Client Application
Some Ideas to Improve the Jokes Web Service
Summary/Solutions Fast Track/Frequently Asked Questions

Index

619
626
631
635
639
646
646
647
648
651
653
662
664

669
670
670
672
672
673
674
676
677
677
677
678
680
694
694
698
702
704
704
709
713
715
718
720
722
724
724
727
734
742
748
758
775
776

781



Foreword

Seldom 1n the history of computer software has any technology received such a posi-
tive response from developers and the industry, even while the technology is still in
its nascent beta stage. The .NET Beta2 SDK from Microsoft has already been down-
loaded by millions of developers all over the world. There have been dozens of pub-
lished books, Web sites and newsgroups devoted to the .NET platform, its related
technologies and languages.

Microsoft has invested billions of dollars and years of research in the creation of
NET. .NET is a comprehensive strategy ,consisting of operating systems, database
servers, application servers, and the .NET Runtime, as well as managed languages
that operate over the .NET platform.

Many people see the .NET platform as the practical implementation of the pre-
viously formulated Windows DNA. Others see it as a response to developer woes
from working with previous technologies and languages. However, the common
opinion simply offers that .INET is a significant improvement over previous Microsoft
technologies. The .NET platform has been built from the ground up with numerous
goals in mind, including security, scalability, reliability, flexibility, and interoper-
ability—these goals have all been dealt with from the start to help to make the .NET
platform enterprise ready and developer-friendly.

The .NET platform displays a significant shift in Microsoft’s thinking. While
building the .NET platform, Microsoft has shown strong support for open standards
like XML, SOAP, and UDDI, rather than building its own proprietary standards and
technologies. Even the core part of the .NET platform—the Common Language
Infrastructure (CLI)—and the C# specifications have been placed before ECMA for
standardization.

C# 1s defined as a simple, modern, object-oriented, and type-safe programming
language derived from C and C++. Developed by Anders Hejlsberg of Microsoft

especially for the .NET platform, C# derives its features from a number of languages
Xxi



XXii Preface

like C, C++, and Java. Specifically written to ofter the simplicity of Visual Basic and
power of C++ as an object-oriented language, C# makes it easier for developers to
create, debug, and deploy enterprise applications. It has also been predicted that C#
will become the favored language for developing applications on the .NET platform.

Visual Studio.NET, the next version of Visual Studio IDE, is also a key compo-
nent of the .NET strategy. The Visual Studio.NET IDE has also been given a facelift
and packed with a wide variety of new functionalities. A bitmap editor, debugger,
Web Forms designer, Windows Forms designer, Web Services designer, XML editor,
HTML editor, Web browser, Server Resources Explorer, and multi-language support
have all been packed into one single IDE.

The focus of The CH#.NET Web Developer’s Guide 1s not on teaching you the core
C# language, but rather providing you with code examples that will help you
leverage the functionalities of the .NET Framework Class Libraries. The .NET
Framework collection of base classes cover many of the multiple APIs. Although
impossible for one book to cover all the features, in this book we have covered the
key concepts, libraries, and APIs of the .NET Framework that we feel will help you
easily create new applications using C#.

You have a whole host of features to learn and master, so why wait? Let’s get
started!!

—Saurabh Nandu, Technical Editor
Founder, www. MasterCSharp.com

www.syngress.com



Chapter 1

Introducing the
Microsoft .NET

Platform

Solutions in this chapter:

Introducing the .NET Platform

Features of the .NET Platform

= Components of the .NET Architecture

Exploring the Code Cycle

The Pursuit of Standardization

M Summary
M Solutions Fast Track

M Frequently Asked Questions



Chapter 1 ¢ Introducing the Microsoft .NET Platform

Introduction

The .NET platform is the foundation upon which the next generation of soft-
ware will be built. Microsoft has invested a lot of capital in its development, and
is putting its considerable weight behind its adoption as a new standard. A long
list of Microsoft partners have also announced support for .NET tools and com-
ponents—you can check http://msdn.microsoft.com/vstudio/partners for a cur-
rent list of vendors who have .NET offerings.

The .NET platform is much more than a new language, software develop-
ment kit (SDK), or even an operating system. It offers powerful new services, a
new processor-independent binary format, new managed languages, managed lan-
guage extensions to existing languages, and the list goes on. Effectively using
these new tools is not possible without a firm background of the platform that
will empower your applications.

In this chapter, we take a look at the various components of the .NET plat-
form. We introduce not only the concepts and their technology, but explain the
terminology used to describe them. This will enable you to have a strong under-
standing of the internal workings of the .NET platform, and get the full benefit
of the information in the following chapters.

Introducing the .NET Platform

The precept behind the .NET platform is that the world of computing is
changing from one of PCs connected to servers through networks such as the
Internet, to one where all manner of smart devices, computers, and services work
together to provide a richer user experience. The .NET platform is Microsoft’s
answer to the challenges this change will provide for software developers.

The .NET platform has several components—however, who you ask will
probably aftect the answer you receive. Servers such as BizTalk and SQL Server,
as well as services such as .NET My Services and its first visible component,
.NET Passport, are being described by some as integral parts of the .NET plat-
torm. However, for many of us, the .NET Framework is what we think of when
.NET is mentioned. It includes Visual Studio.NET (VS.NET), the .NET
Common Language Runtime (CLR), and the .NET Base Class Libraries (BCL).
The other components may be required by specific applications, but they are not
a necessary part of all NET applications.

Looking at the overall architecture, NET consists of three primary
components:

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

» The .NET Framework A completely new application development
platform.

= Several .NET products Various applications from Microsoft based on
the .NET Framework, including new versions of Exchange and SQL
Server, which are Extensible Markup Language (XML)—enabled and
integrated into the .NET platform.

= Several .NET services Provided by Microsoft for use in developing
applications running under the .NET Framework. Microsoft’s Hailstorm
project is actually an attempt to package some of the most crucial Web
Services under the Microsoft brand name.

The .NET Framework itself can be divided into three parts:

» The CLR A managed execution environment that handles memory
allocation, error trapping, and interacting with the operating-system
services.

» The Base Class Library An extensive collection of programming
components and application program interfaces (APIs).

= Two top-level development targets One for Web applications
(ASPNET) and another for regular Windows applications (Windows

Forms).

The advantages offered by the .NET Framework include shorter develop-
ment cycles (code reuse, fewer programming surprises, support for multiple pro-
gramming languages), easier deployment, fewer data type—related bugs due to
integral type safety, reduced memory leaks thanks to the garbage collector, and, in
general more scalable, reliable applications.

Microsoft .NET and Windows DNA

If some of the marketing speak surrounding .NET sounds familiar, there’s a good
reason: The .NET platform is the next generation of what was called Windows
DNA. However, although Windows DNA did offer some of the building blocks
for creating robust, scalable, distributed systems, it generally had little substance in
and of itself.

Windows DNA was a technical specification that focused on building soft-
ware based on Microsoft server products, utilizing numerous technologies and
languages (ASP, HTML, JavaScript, MTS, COM, and so on), many of which are
quite unrelated from a developer’s point of view. The servers and languages

www.syngress.com



Chapter 1 ¢ Introducing the Microsoft .NET Platform

involved all have varying APIs and type systems, making interoperability a chal-
lenge at best. Herein lies the big difference: .INET is much more than a specifica-
tion. A product in its own right, it includes the tools and languages required to
make developing these types of n-tiered applications easier, neatly packaged as a

single coherent and comprehensive API.

Microsoft .NET Architecture Hierarchy

The diagram in Figure 1.1 shows the .NET platform architecture. Essentially, the
NET families of languages are each compiled into Microsoft Intermediate
Language (MSIL, or just IL) output according to the Common Language
Specification. The primary types of application development are Web Forms, Web
Services, and Windows Forms applications. These applications communicate using
XML and Simple Object Access Protocol (SOAP), getting their functionality
from the Base Class Library and run within the Common Language Runtime
environment. Visual Studio.NET is not required in order to develop .NET
Framework applications, however it does offer an extensible architecture that

makes it an ideal choice for developing .NET software.

Figure 1.1 The .NET Platform Architecture

VBNET Hanoged @ Per g::;[m';g
Common Language Specification ((LS)
WWe:bSI?:rI;iS Windows Forms
Data and XML
Base Class Library

Common Language Runtime (CLR)

o —ac —-uv —_—ac v -

—_—_m=-

www.syngress.com




Introducing the Microsoft .NET Platform ¢ Chapter 1

Features of the .NET Platform

The core of the .NET platform is found in the Common Language Runtime,
Base Class Library, and the Common Language Specification. The .NET Base
Class Library exposes the features of the Common Language Runtime in much
the same way that the Windows API allows you to utilize the features of the
Windows operating system; however, it also provides many higher-level features
that facilitate code reuse.

This architecture gives a great number of benefits, not the least of which is a
consistent API. By writing to the Common Language Runtime and using the
.NET Base Class library, all application services are available via a common
object-oriented programming model. Today some OS functions are accessed via
DLL calls using the C-based API and other facilities are accessed via COM
objects, making the developer do the necessary legwork to make everything work
together smoothly. Some features are available only to developers working in
low-level languages, forcing design decisions.

This new programming model greatly simplifies the efforts that were required
when writing Windows DINA applications, or for that matter, almost any Win32
and COM project. Developers no longer need to be a Windows or COM archi-
tecture guru with an in-depth understanding of GUIDs, I[Unknown, AddRef,
Release, HRESULTS, and so on. .NET doesn’t just hide these from the devel-
oper; in the new .NET platform, these concepts simply do not exist at all.

Another great benefit for NET developers is its model for error handling via
exceptions. Developing software for the Windows platform has always meant you
were pulled into its own inconsistencies; particularly in the ways errors were
returned. Some functions would return Win32 error codes, some return HR E-
SULTS, and some raise exceptions, all requiring the programmer to write dif-
terent types of error-handling code. In .NET, all errors are reported via
exceptions, which greatly simplifies writing, reading, and maintaining code.
Thanks to the Common Language Specification and Common Type System,
NET exceptions work across module and language boundaries as well.

Multilanguage Development

Because many languages target the .NET Common Language Runtime, it is now
much easier to implement portions of your application using the language that’s
best suited for it. Older methods of allowing diftferent programming languages to
interoperate, such as COM or CORBA did so through the use of an Interface
Definition Language (IDL). The .NET platform allows languages to be integrated

www.syngress.com



Chapter 1 ¢ Introducing the Microsoft .NET Platform

with one another through the use of the MSIL. Although it contains instructions
that appear similar to assembly code, such as pushing and popping values and
moving variables in and out of registers, it also contains instructions for managing
objects and invoking their methods, manipulating arrays, and raising and catching
exceptions.

The Microsoft Common Language Specification describes what other devel-
opment tool authors must do in order for their compilers to output IL code that
will allow them to integrate well with other .NET languages. Microsoft currently
provides several compilers that produce IL code targeting the .NET Common
Language Runtime: C++ with managed extensions, C#, Jscript, and Visual Basic.
In addition, several companies other than Microsoft are producing compilers for
languages that also target the .NET Common Language Runtime. Currently
support for COBOL, Eiffle, Fortran, Perl, Python, Scheme, and many more have
been announced by various vendors. For a current list check http://msdn
.microsoft.com/vstudio/partners/language/default.asp.

Why should you care about the details of IL? Because this is how .NET
manages many of its cross-language features. No Interface Definition Language is
required to enable cross-language functionality because IL metadata handles the
entire translation overhead. For instance, with an exception object defined by IL,
the same object can be caught regardless of the .NET language used.Your com-
ponent written in C# can raise an exception that can be caught by the Fortran
application using it. No more worries about different calling conventions or data
types, just seamless interoperability.

Cross-language inheritance is another feature made possible by the use of IL.
You can now create new classes based on components written in other languages,
without needing the source code to the base component. For example, you can
create a class in C++ that derives from a class implemented in Visual Basic. NET
can enable this because it defines and provides a type system common to all
NET languages.

One of the great challenges of developing applications under the Windows
DNA specification was in debugging applications developed in a variety of lan-
guages. Thanks to the unified development environment of Visual Studio.NET
and the use of IL as the output of all .NET languages, cross-language debugging
is possible without resorting to assembly language. The .NET Common
Language Runtime fully supports debugging applications that cross language
boundaries. The runtime also provides built-in stack-walking facilities, making it
much easier to locate bugs and errors.

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

Platform and Processor Independence

The intermediate language 1s CPU-independent, and it’s much higher level than
most machine languages. Once written and built, a managed .NET application
can execute on any platform that supports the .NET Common Language
Runtime. Because the .NET Common Type System defines the size of the base
data types that are available to .NET applications, and applications run within the
Common Language Runtime environment, the application developer is insulated
from the specifics of any hardware or operating system that supports the .NET
platform.

Although at the time of this writing .NET applications run only on Windows
platforms, on June 27th, 2001 Microsoft announced that it had reached an agree-
ment with Corel to develop a shared-source implementation of a C# compiler
and the .NET Framework infrastructure components for the FreeBSD version of
Unix. This is currently expected to be available in a beta version sometime in the
first half of 2002.

A few weeks later, on July 10, 2001 Microsoft gave the go-ahead to an open-
source version of .NET being planned by Ximian, the developer the popular
GNOME user interface for Linux.You can find the project, called Mono, at
www.go-mono.net. The group is developing a C# language compiler, along with
the .NET Common Language Runtime. Work has also begun on the Base Class
Library. The release of the first usable Project Mono code is planned for the end
of 2001.

Automatic Memory Management

The mere mention of a memory leak problem brings forth images of endless
hours of debugging for developers who’ve come from a development environ-
ment that did not offer automatic memory management. Even for those fortu-
nate enough to work with this in some form have likely spent some time trying
to hunt down obscure bugs caused by tricky code that circumvented the resource
management methodology.

Developers coming from Visual Basic or COM backgrounds are familiar with
the reference counting technique. This technique recovers the memory used by
an object when no other object has a reference to it, essentially when it’s no
longer needed. Although this sounds perfect in theory, in practice it has a few
problems. One of the most common is a circular reference problem where one
object contains a reference to another object which itself contains a reference
back to the first object. When the memory manager looks for objects that are not

www.syngress.com



Chapter 1 ¢ Introducing the Microsoft .NET Platform

in use, these objects will always have a reference count greater than zero, so unless
they are implicitly deconstructed, their memory may never be recovered.

For a C or C++ programmer—accustomed to ensuring that objects are
properly destroyed, essentially managing memory on their own—this sounds per-
fectly normal, and a good reason for not trusting anyone else to take care of
managing resources. However, in the .NET environment, Microsoft is striving to
make developing software easier. Later in this chapter, we cover a how .NET
garbage collection works, and the improvements that have been made over strict
reference counting or manual memory management approaches.

Versioning Support

Anyone who doesn’t understand the phrase “DLL Hell” hasn’t been developing
(or at least supporting) software for Windows very long. For the uninitiated,
you’ll find yourself in DLL Hell someday when a customer installs a software
package that uses one of the same DLLs as your application. However, your appli-
cation used version 1.0 of this DLL, and the new software replaces it with version
1.1. We developers all always make sure everything is 100% backwards-compat-
ible, right? The new DLL makes your application exhibit some strange problem
or perhaps just stop working altogether. After a lot of investigation, you figure out
what the offending DLL is and have the customer replace the new one with the
version that works with your software. Now their new software doesn’t work...
welcome to DLL Hell. Many developers resort to simply installing every DLL
their application requires in the application directory so that it will be found first
when the application loads the libraries. This defeats the purpose of shared
libraries, but it is one way around the problem.

COM was going to change this; one of its primary tenants was that you never
changed a methods interface you simply add new methods. Unfortunately, software
developers are frequently perfectionists, and leaving a “broken” function alone just
chafes some people. Problem is, changing a components interface once it’s in use
can have adverse affects on the client software that expected the old behavior.
Because COM objects are loaded using information in the Registry, simply placing
the DLL or control in the application directory doesn’t work for this problem.

The .NET architecture now separates application components so that an
application always loads the components with which it was built and tested. If the
application runs after installation, the application should always run. This is done
with assemblies, which are .NET-packaged components. Although current DLLs
and COM objects do contain version information, the OS does not use this
information for any real purpose. Assemblies contain version information that the

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

.NET Common Language Runtime uses to ensure that an application will load
the components it was built with. We cover more of the specifics of how assem-
blies and versioning works later in the chapter.

Support for Open Standards

In today’s world, not every device you may want to work with is going to be
running a Microsoft OS or using an Intel CPU. Realizing this, the architects of
NET are relying on XML and its most visible descendant, SOAP, an emerging
standard for sending messages across the Internet that activates programs or appli-
cations regardless of their underlying infrastructure. SOAP will provide the means
for disparate systems to exchange information easily, but even more, SOAP allows
you to invoke methods on remote systems and return the results. Because SOAP
is a simple text-based protocol similar to HTTP, it can easily pass through fire-
walls, unlike DCOM or CORBA objects.

Other standards employed by the .NET platform include Universal
Description, Discovery, and Integration (UDDI), a directory of companies and
their XML interfaces and the Web Services Description Language (WSDL),
which describes what a piece of application code can do. By basing much of
.NET on open standards and by submitting the proposed draft standards for C#
and the .NET Common Language Infrastructure to ECMA, an international
standards organization, Microsoft hopes to see its version of the future of software
adopted beyond its own domain.

Easy Deployment

Today, developing installations for Windows-based applications can be incredibly
difficult, to the point that most companies use third party tools for developing
their installation programs, and even then it’s not pleasant. There are usually a
large number of files to be installed in several directories, various Registry set-
tings, installation of required COM components, and shortcuts that need to be
created, and so on. Completely uninstalling an application is nearly impossible,
most leave bits and pieces of themselves around even if they provide an uninstall
feature. With the release of Windows 2000, Microsoft introduced a new installa-
tion engine that helps with some of these issues, but it is still possible that the
author of a Microsoft Installer Package may fail to do everything correctly. Even
with those third party tools specifically designed to make developing installation
programs easier, it is still frequently a monumental task to correctly install a
retrievial application.

www.syngress.com



10

Chapter 1 ¢ Introducing the Microsoft .NET Platform

The .NET design team must have felt the same way about this problem,
because .NET plans to do away with these issues for good. .NET components
are not referenced in the Registry, thanks to the use of metadata and reflection,
components are self describing. In fact, installing many .NET applications will
require no more than copying their files to a directory, and uninstalling an appli-
cation will be as easy as deleting those files.

Developing & Deploying...

Using the Visual Studio.NET Setup Tools

Realizing that deploying applications and authoring installation pack-
ages is frequently a monumental task, the Visual Studio.NET team inte-
grated a number of setup tools into the Visual Studio.NET environment.

After you have completed your Visual Studio.NET project develop-
ment, start a new project from the File menu. Choose Setup and
Deployment Projects from the selection list. You'll see a number of
setup project options listed:

= Cab Project

= Deploy Wizard

= Merge Module Project

= Setup Project

= Setup Wizard

= Web Setup Project

Using the wizards, you can select the Visual Studio project you want
to use and have a setup or deployment project created automatically. If

the defaults are not sufficient for your needs, you can use the new setup
project as a basis for creating your custom setup or deployment.

Distributed Architecture

Today’s distributed applications are much different than those we will see in the
future. Microsoft certainly believes this; they say they are betting the company on
the concept of distributed Web services.

www.syngress.com




Introducing the Microsoft .NET Platform ¢ Chapter 1

For example, today when a user is interacting with a portal site, it appears to
them that they are working with one remote server. Most of us know that is nor-
mally not the case, at least for a site of any significant size. There are various
servers and applications behind the scenes are accessing information on several
remote sites, combining it with information from their user database and merging
it all into an integrated product that is delivered to the user via their browser.

As useful as these types of applications are, they are all very complex to
develop and maintain. Each provider of information has developed difterent
interfaces to access data and processes on their servers. This redundant develop-
ment is grossly inefficient and for the most part fairly boring, so there has been a
great deal of activity around three standards to streamline the process: XML,
SOAP, and UDDI. As we discussed earlier, these are used in .NET and also in
competing, less well known initiatives from IBM and Sun.

Interoperability with Unmanaged Code

As you can probably guess, unmanaged code is code that isn’t managed by the
NET Common Language Runtime. However, this code is still run by the CLR,
it just doesn’t get the advantages that it offers, such as the Common Type System
and Automatic Memory Management. You will probably end up using unman-
aged code in a couple of different situations:

» Calling DLL functions There is a lot of functionality locked inside
DLLs today. Not every company is going to rush to deliver a .NET
component version of their products, so if you need to interface with
them, you’ll be calling unmanaged code.

» Using COM components This is likely to be for pretty much the
same reasons you might be required to call DLL functions.

= Calling .NET services from COM components Although this
sounds a little odd, it is possible. A COM client can be made to call a
NET component as though it was a COM server.

Here’s a little more information on the COM interoperability issue. Microsoft
didn’t want to force companies to abandon their existing COM components;
especially because many of Microsoft’s own products are COM-based today.
COM components interoperate with the .NET runtime through an interop layer
that handles all the work required when translating messages that pass back and
tforth between the managed runtime and the COM components operating as
unmanaged code.

www.syngress.com

1



12

Chapter 1 ¢ Introducing the Microsoft .NET Platform

On the other side of the coin, companies with a vested interest in COM
technology might want to use a few bits and pieces from the .NET platform,
sticking a toe in before taking the plunge. COM clients can easily interface with
.NET components through the COM interop layer.

Security

Distributed component-based applications require security, and thus far Microsoft
hasn’t had a lot of positive feedback about its products’ security features.
Fortunately, the .NET designers decided to take a new approach, different than
traditional OS security, which provides isolation and access control based on user
accounts, and also unlike the model used by Java, where code that is not trusted is
run in a “sandbox,” with no access to critical resources. The .NET Framework
provides a fine-grained control of application security.

Security for .NET applications starts as soon as a class is loaded by the CLR.
Before the class loader instantiates a class, security information—such as accessi-
bility rules and self-consistency requirements—are checked. Calls to class methods
are checked for type safety. If you’ve ever heard of a security vulnerability caused
by a “buffer overrun,” you can understand why this is important. With verified
code, a method that is declared as taking a 4-byte integer parameter will reject an
attempt to call it with an 8-byte integer parameter. Verification also prevents
applications from executing code at a random location in memory, a common
tactic in bufter overflow exploits.

Additionally, as code requests access to certain resources, the class credentials are
verified. .NET security crosses process boundaries and even machine boundaries to
prevent access to sensitive data or resources in a distributed application environ-
ment. The following are some of the basic elements of the .NET security system:

» Evidence-based security is a new concept introduced by the
.NET Framework. An assembly contains several important pieces of
information that can be used to decide what level of access to grant the
component. Some of the information used includes what site the com-
ponent was downloaded from, what zone that site was in, (Internet,
intranet, local machine, and so on) and the strong name of the assembly.
The strong name refers to an encrypted identifier that uniquely defines
the assembly and ensures that it has not been tampered with.

» The .NET Common Language Runtime further provides secu-
rity using a Policy-Driven Trust Model Using Code Evidence.

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

It sounds worse than it really is. Essentially this is a system of security
policies that can be set by an administrator to allow certain levels of
access based on the component’s assembly information. The policies are
set at three levels: the enterprise, the individual machine, and the user.

Calling .NET Framework methods from the Base Class Library
get the benefits of built in security. That is, the developer doesn’t
have to make explicit security calls to access system resources. However,
if your components expose interfaces to protected resources, you will be
expected to take the appropriate security measures.

Role-based security plays a part in the .NET security scheme.
Many applications need to restrict access to certain functions or
resources based on the user, and .NET introduces the concepts of identi-
ties and principals to incorporate these functions.

Authentication and authorization functions are accessed
through a single API. It can easily be extended to incorporate appli-
cation-specific logic as required. Authentication methods include basic
operating system user identification, basic HTTP, ASPNET forms,
Digest and Kerberos, as well as the new .NET service, Microsoft .NET
Passport.

Isolated storage is a special area on disk assigned to a specific
assembly by the security system. No access to other files or data is
allowed, and each assembly using isolated storage is separated from each
other. Isolated storage can be used for a saving a components state, or
saving settings, and can be used by components that do not have access
to read and write files on the system.

A robust set of cryptographic functions that support encryp-
tion, digital signatures, hashing, and random-number generation
are included in the .NET Framework. These are implemented
using well-known algorithms, such as RSA, DSA, Rijndael/AES, Triple
DES, DES, and RC2, as well as the MD5, SHA1, SHA-256, SHA-384,
and SHA-512 hash algorithms. Additionally, the XML Digital Signature
specification, under development by the Internet Engineering Task Force
(IETF) and the World Wide Web Consortium (W3C), is also available.
The .NET Framework uses these cryptographic functions to support
various internal services. The cryptographic objects are also available in
the Base Class Library for developers who require this functionality.

www.syngress.com

13



14

Chapter 1 ¢ Introducing the Microsoft .NET Platform

Performance and Scalability

Let’s face it—there is no magic bullet that will allow a poorly designed applica-
tion to scale well. What the .NET Framework is giving you are tools to make it
easier to design better performing software. One big gain for Web development
will come from ASPNET’s improved support for keeping code, data, and presen-
tation separate. .NET offers features for transaction handling and component
pooling, but makes them easier to use than they were in previous incarnations, so
more development will be likely to take advantage of them.The .NET Base Class
Library has an enormous set of functionality, which means that you will have to
write less basic code and spend more time refining the features and performance
of your applications.

New versions of Microsoft software christened with the .NET emblem offer
improved performance over earlier versions. SQL Server.NET ofters quite an
enhancement over earlier versions of the database engine, and other server prod-
ucts offer enhanced scalability as well. When you redesign an application around
the .NET Framework, take advantage of the latest advances all around and see
what the results are.

Components of the .NET Architecture

As we mentioned earlier, there is a lot to the NET Framework. In this section,
we identify the individual components and describe their features and how they
fit into the overall picture.

.NET Runtime

The heart of the .NET Framework is the CLR. Similar in concept to the Java
Virtual Machine, it is a runtime environment that executes MSIL code. Unlike
the Java environment, which is the concept of one language for all purposes, the
NET platform supports multiple programming languages through the use of the
Common Language Specification, which defines the output required of com-
pilers that want to target the CLR.

Managed/Unmanaged Code

Because all code targeted at the .NET platform runs with the CLR environment,
it is referred to as managed code. This simply means that the execution of the

code and its behavior is managed by the CLR.The metadata available with man-
aged code contains the information required to allow the CLR to manage its safe

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

execution. By safe execution we mean memory and security management, type
safety, and interlanguage interoperability. Unmanaged code can write to areas of
memory it does not own, execute instructions at arbitrary locations in memory,
and exhibit any number of other bad behaviors that cannot be managed or pre-
vented by the CLR. Most of the applications running on Windows today are
unmanaged.

Intermediate Language

The .NET intermediate language, MSIL, is defined in the Common Language
Specification. It is an amalgam of a low-level language similar in many ways to a
machine language and a higher object language. You can write applications directly
in MSIL, much as you can write directly in assembly language. Thankfully, this is
not necessary for most purposes.

Common Type System

NET applications, regardless of their source languages all share a common type
system. What this means is that you no longer have to worry when doing devel-
opment in multiple languages about how a data type declared in one language
needs to be declared in another. Any .NET type has the same attributes regardless
of the language it is used in. Furthermore, all .NET data types are objects,
derived from System.Object.

Because all data types derive from a common base class, they all share some
basic functionality, for example the ability to be converted to a string, serialized,
or stored in a collection.

.NET Base Class Library (BCL)

If I could have bought a library that oftered everything the .NET Base Class
Library ofters when I started programming, a year’s salary would have seemed
reasonable—there really is that much to it. Almost everything in the .NET envi-
ronment is contained within the BCL. Let’s look at a “Hello World” example:

using System

class Hello

{
public static void Min()

{

www.syngress.com

15



16

Chapter 1 ¢ Introducing the Microsoft .NET Platform

Consol e. WiteLine("Hello World");

The only function contained in this simple program is a call to the WriteLine
method of the Console class. What is really unique about the .NET environment
is that .NET languages don’t have to implement even the most basic functions;
they are available in the BCL. Because all .NET languages share the same
common set of libraries, the code being executed by your C# program is the
same code being executed by a program written in another language. This means
that all languages that target the .NET environment essentially share the same
capabilities, except they have different syntax.

Some people will wonder why we even have difterent languages if they all
have the same capabilities. A few reasons immediately spring to mind:

» Programmers don't like change.

» Programmers usually have a favorite language.

» Programmers don't like change...

Imagine if Microsoft had come out with all the good things in .NET, but said
that in order to use it, we all had to learn a new language. Lots of people might
have never even given it an honest look unless forced by their employers. Making
it available for all languages makes it seem less like the chore of learning a new
language and more like the excitement of receiving a new library with tens of
thousands of functions that will make your life as a developer easier.

Assemblies

Assemblies are the means of packaging and deploying applications and compo-
nents in .NET. Just like a compiled application or component today, assemblies
can be made up of either single or multiple files. An assembly contains metadata
information (covered in the next section), which is used by the CLR for every-
thing from type checking and security to actually invoking the components
methods. All of this means that you don’t need to register .NET components,
unlike COM objects.

Metadata

Metadata is the feature that lets the CLR know the details about a particular
component. The metadata for an object is persisted at compile time and then

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

queried at runtime so that the CLR knows how to instantiate objects, call their
methods, and access their properties. Through a process called reflection, an appli-
cation can interrogate this metadata and learn what an object exposes. This 1is
similar to the way IDispatch and type libraries work in COM.

Unlike COM, where the information about a component can be found in
type libraries and the Registry, where it is only associated with the actual compo-
nent, NET metadata is stored within the component itself in a binary format
packaged inside the assembly. The metadata contains a declaration for every type
and a declaration, including names and types, for all of its members (methods,
fields, properties, and events). For every method implemented by the component,
the metadata contains information that the loader uses to locate the method
body. It is also possible (but not required) for the creator of a class type to asso-
ciate help text and comments with a method or parameter in the metadata, sim-
ilar to the way that information can be associated with a component using
information within the IDL in the COM world.

Besides the low-level information described in this section, a component also
includes information regarding its version and any culture information specific to
the component. The culture information can be queried at runtime and used in
developing localized applications. Look at the System.Reflection. AssemblyName class
as a place to get started, and check out the Culturelnfo class to see how extensive
the culture support of .NET components can be.You can also use reflection to
determine a components version, which might be useful if your application is
dynamically loading components and needs to make adjustments for different
versions.

Assemblies and Modules

NET applications are deployed as assemblies, which can be a single executable or
a collection of components. When you create a .NET application, you are actu-
ally creating an assembly, which contains a manifest that describes the assembly.
This manifest data contains the assembly name, its versioning information, any
assemblies referenced by this assembly and their versions, a listing of types in the
assembly, security permissions, its product information (company, trademark, and
so on), and any custom attribute.

An assembly that is shared between multiple applications also has a shared
name (also known as a strong name). This is a key pair containing a globally unique
name (think GUID from COM) as well as an encrypted digital signature to pre-
vent tampering. This information is optional and may not be in a component’s
manifest if it was not intended as a shared component.

www.syngress.com

17



18

Chapter 1 ¢ Introducing the Microsoft .NET Platform

Creating .NET modules that do not contain assembly manifest data is also
possible. These modules can then be added to an assembly, by including it in the
Visual Studio project. An example of why you might want to do this would be if
you had a component that was logically divided into several subcomponents that
would be best distributed and versioned as a single unit.

Debugging...

Finally, a Complete Debugging Solution

Some old-school programmers eschew today’s fancy Integrated
Development Environments (IDEs) as a mere toy for the weak. (Giving
away my age, it's mostly us crusty old Unix programmers) However, the
debugging capabilities offered by the new Visual Studio.NET IDE may
finally change their minds. The new IDE provides end-to-end debugging
of applications across languages, projects, processes, and stored proce-
dures. This is a monumental achievement on the part of the Visual
Studio development team.

Using the integrated debugger, developers can step between HTML,
script, and code written in any of the .NET supported languages com-
plete with integrated call stacks offering a total solution for end-to-end
development.

Assembly Cache

The assembly cache is a directory normally found in the \WinNT\Assembly direc-
tory. When an assembly is installed on the machine, it can be merged into the
assembly cache, depending upon the installation author or the source of the
assembly. The assembly cache has two separate caches: a global assembly cache and
a transient assembly cache. When assemblies are downloaded to the local machine
using Internet Explorer, the assembly is automatically installed in the transient
assembly cache. Keeping these assemblies separated prevents a downloaded com-
ponent from impacting the operation of an installed application.

Now for what may be a great feature that you won't think of until your pro-
ject is finished. The assembly cache will hold multiple versions of an assembly,
and if your installation programs are written correctly, they cannot overwrite a

www.syngress.com




Introducing the Microsoft .NET Platform ¢ Chapter 1

previous version of an assembly that may be needed by another application. You
read that right, the .NET Framework is making a solid effort to banish DLL Hell.

Just to clarify what this means, the assembly cache can contain multiple ver-
sions of a component, as an example, we’ll say we’ve installed versions 1.0 and 1.1
of MyComponent.dll on a system. If an application was built and tested using
Version 1.0 of MyComponent.dll, the CLR will see this when it reads the appli-
cation’s metadata and will load Version 1.0 of MyComponent.dll, even though a
later version of the assembly exists in the cache. The application will continue to
function normally because the code that it is executing is the same code that it
was built and tested with. Thanks to this feature, you also don’t have to maintain
compatibility with earlier versions of your components. This feature alone is
enough to make the .NET architecture great.

Reflection

Reflection is the means by which .NET applications can access an assembly’s meta-
data information and discover its methods and data types at runtime. You can also
dynamically invoke methods and use type information through late binding
through the Reflection API.

The System. Type class is the core of the reflection system. System. Type is an
abstract class that is used to represent a Common Type System type. It includes
methods that allow you to determine the type’s name, what module it is con-
tained in, and its namespace, as well as if it is a value or reference type.

For example, using the System.Reflection. Assembly class you can retrieve all of
the types in an assembly, and all of the modules contained in the assembly. To
invoke a method of a class loaded at runtime, you would use a combination of
the Activator class to create an instance of the type you had obtained through the
Assembly class. Then you can use the type’s GetMethod method to create a
MethodInfo object by specifying the method name that you wish to invoke. At
this point, you can use the MethodInfo object’s Invoke method, passing it the
instance of the type you created with the Activator class.

It sounds a lot like some of the nasty bits of COM programming, but the
Reflection API genuinely makes it a lot easier.

Just In Time Compilation

The .NET CLR utilizes Just In Time (JIT) compilation technology to convert
the IL code back to a platform/device—specific code. In .NET, you currently have
three types of JIT compilers:

www.syngress.com

19



20 Chapter 1 ¢ Introducing the Microsoft .NET Platform

= Pre-JIT This JIT compiles an assembly’s entire code into native code at
one stretch. You would normally use this at installation time.

»  Econo-JIT You would use this JIT on devices with limited resources. It
compiles the IL code bit-by-bit, freeing resources used by the cached
native code when required.

» Normal JIT The default JIT compiles code only as it is called and
places the resulting native code in the cache.

In essence, the purpose of a JIT compiler is to bring higher performance to
interpreted code by placing the compiled native code in a cache, so that when
the next call is made to the same method/procedure, the cached code is exe-
cuted, resulting in an increase in application speed.

Garbage Collection

Memory management is one of those housekeeping duties that takes a lot of pro-
gramming time away from developing new code while you track down memory
leaks. A day spent hunting for an elusive memory problem usually isn’t a produc-
tive day.

NET hopes to do away with all of that within the managed environment
with the garbage collection system. Garbage collection runs when your applica-
tion is apparently out of free memory, or when it is implicitly called but its exact
time of execution cannot be determined. Let’s examine how the system works.

When your application requests more memory, and the memory allocator
reports that there is no more memory on the managed heap, garbage collection is
called. The garbage collector starts by assuming everything in memory is trash
that can be freed. It then walks though your application’s memory, building a
graph of all memory that is currently referenced by the application. Once it has a
complete graph, it compacts the heap by moving all the memory that is gen-
uinely in use together at the start of the free memory heap. After this is complete,
it moves the pointer that the memory allocator uses to determine where to start
allocating memory from the top of this new heap. It also updates all of your
application’s references to point to their new locations in memory. This approach
is commonly called a mark and sweep implementation.

The exception to this is with individual objects over 20,000 bytes. Very large
objects are allocated from a difterent heap, and when this heap is garbage col-
lected, they are not moved, because moving memory in this size chunks would
have an adverse eftfect on application performance.

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

As you can see, garbage collection involves a lot of work, and it does take
some time. A number of performance optimizations involved in the .NET
garbage collection mechanism make it much more than the simple description
given here.

Normally you will just let the CLR take care of running garbage collection
when it is required. However, at times you may want to force the garbage col-
lector to run, perhaps before starting an operation that is going to require a large
amount of memory. To do this, just call GC. Collect(). And if you want to report
on your memory use at various points during your application’s execution to
help you determine when might be a good time to force collection, you can use
GC. Get'TotalMemory(bool forceFullCollection).

As you can probably guess, the parameter forceFull Collection determines if
garbage collection is run before returning the amount of memory in use.

NoTE

For those of you who may want to know more about how the .NET
garbage collector actually works its magic, Jeffery Richter wrote two arti-
cles for MSDN magazine in the November and December 2000 issues
that describe the system architecture in some depth. You can find them
online at msdn.microsoft.com/msdnmag/issues/1100/GCl/GCl.asp and
msdn.microsoft.com/msdnmag/issues/1200/GCI2/GClI2.asp.

Exploring the Code Cycle

Let’s take a look at what’s really going on with a .NET application from code to
execution. We've already covered that the compiler is going to transform your
source code into IL, but what else is happening from code to running applica-
tion? Here’s an example:

1. You write your “Hello World” application in Visual Studio .NET using
the C# Console Application project.
2. The compiler outputs the MSIL code and a manifest into an exe file

that has a standard Win32 executable header.

Let’s stop here and take a look at the output using ildasm.exe, a MSIL disas-
sembly tool provided with the .NET SDK. Here is the Hello.exe manifest:

21

www.syngress.com



22

Chapter 1 ¢ Introducing the Microsoft .NET Platform

.assenbly extern nscorlib

{
. publi ckeytoken = (B7 7A 5C 56 19 34 EO 89 ) [l .z\V.4..
.ver 1:0:2411:0

}

.assenbly Hello

{

.custominstance void [nscorlib] System Reflecti on.

Assenbl yKeyNaneAttri bute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yKeyFi |l eAttribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [mscorlib] System Reflecti on.

Assenbl yDel aySi gnAttribute::.ctor(bool) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yTrademar kAttri bute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yCopyright Attribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [mscorlib] System Reflecti on.

Assenbl yProduct Attribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yConmpanyAttribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yConfigurati onAttribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [mscorlib] System Reflecti on.

Assenbl yDescripti onAttribute::.ctor(string) = ( 01 00 00 00 00 )
.custom instance void [nscorlib] System Reflecti on.

Assenbl yTitl eAttribute::.ctor(string) = ( 01 00 00 00 00 )
/1--The followi ng custom attribute is added automatically, do not
/1 uncomment - -

/'l .custominstance void

/1 [mscorlib] System Di agnosti cs. Debuggabl eAttri bute:: . ctor(bool,

/1 bool) = ( 01 00 01 01 00 00 )

. hash al gorithm 0x00008004
.ver 1:0:628:38203

}

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

.nodul e Hell 0. exe

/1 WID: {D840F359-1315-4B70- 8238- 0D77358D57D0}
. i magebase 0x00400000

. subsyst em 0x00000003

.file alignnment 512

. cor flags 0x00000001

/1 1 mage base: 0x032c0000

You can see that the manifest references the assembly mscorlib that contains
the System.Console. WriteLine method. It also contains the version of this assembly
that the application was built with, so that the correct one can be loaded when
the application is executed. And here is the MSIL output for the Main() function:

.nmethod public hidebysig static void Min() cil managed
{

.entrypoint

/'l Code size 11 (0xb)

. maxstack 8

I L_0000: Idstr "Hello World"

I L_0005: call void [mscorlib] System Consol e:: WiteLine(string)
I L_000Oa: ret

} /1 end of nethod Hello:: Min

Pretty basic stuft—the CLR is doing all the work. What you can’t see is that
behind the scenes the compiler added a call to a function in the .NET Runtime
named _ CorExeMain. If you examine the EXE using the depends.exe utility that
installs with VS .NET, you will see that it is bound to mscoree.dll for this func-
tion, but you won'’t see any of the DLLs containing the .NET Base Class Library
Functions. This is because those functions are invoked through the CLR, not
through the normal Windows operating system functions. Figure 1.2 illustrates
the process by which your application’s source code is eventually executed as
native code.

1. When the application is executed, it first behaves just like a normal
Win32 application, loading any required libraries, including mscoree.dll,
which exports the _CorExeMain function.

2. The loader then jumps to the EXE’s entry point. Because the Windows
operating system itself cannot execute the MSIL code, the C# compiler
placed the _CorExeMain function at the entry point.

www.syngress.com

23



24

Chapter 1 ¢ Introducing the Microsoft .NET Platform

3. When the _CorExeMain function is invoked, it begins the execution of
the MSIL code.

4. The CLR compiles the MSIL code into the native machine format as it
processes the MSIL code by using a JIT compiler. The JIT compiles
code as it is executed, it does not process the entire application before
beginning execution. Once a given function is compiled, the resulting
machine code is cached so that it does not have to be recompiled at a
later point.

5. The native code is then executed by the system.

Figure 1.2 Code Cycle Diagram

Application source code is written.

Y

A NET compiler generates IL code and builds assembly.

Y

Application execution begins normally, with the loader reading the Windows executable header.

Y

Required DLLs are loaded.

Y

The _CorExeMain function inserted at the application’s entry point is executed by the 0S.

Y

_CorExeMain uses a Just In Time (JIT) compiler to compile the IL code to native code.

Y

Native code is executed.

The Pursuit of Standardization

Microsoft is actively pursuing a process whereby the Common Language
Infrastructure and C# Programming Language can be standardized so that any

www.syngress.com



Introducing the Microsoft .NET Platform ¢ Chapter 1

company or individual can create applications based on a recognized standard. On
October 31, 2000, Hewlett-Packard, Intel, and Microsoft jointly submitted pro-
posed draft standards to ECMA for use in defining the C# Programming
Language (ECMA TC39/TG2) and the Common Language Infrastructure
(ECMA TC39/TG3) standards. The official submissions are available from the
ECMA Web site at www.ecma.ch.

Since submission, the original documents have been reviewed and edited by
the participants of ECMA TC39/TG2 and TC39/TG3. However, little informa-
tion 1is available about the group’s progress, other than the availability of updated
documentation once or twice a month. Given that the standards process for plat-
forms and languages that have already been released and are in widespread use is
generally measured in years, it is probably premature at this point to say much
about the progress that is being made.

Fujitsu Software, Hewlett-Packard, Intel Corporation, International Business
Machines, ISE, Microsoft Corporation, Monash University, Netscape, Openwave,
Plum Hall, and Sun Microsystems are all participants in the standards process.

www.syngress.com

25



26

Chapter 1 ¢ Introducing the Microsoft .NET Platform

Summary

The .NET platform is a great leap forward in the evolution of computing from
PCs connected to servers through networks such as the Internet, to one where all
manner of smart devices, computers, and services work together to provide a
richer user experience. The .NET platform is Microsoft’s vision of how the
developers of this new breed of software will approach the challenges this change
will provide.

If some of the .NET concepts sound familiar, there’s a good reason: The
NET platform is the next generation of what was called Windows DNA.
Although Windows DNA did ofter some of the building blocks for creating
robust, scalable, distributed systems, it generally had little substance in and of
itself, where .NET actually has an integrated, comprehensive design and well
conceived, usable tools.

The components at the heart of the .NET platform are the Common
Language Runtime, the Base Class Library, and the Common Language
Specification. The .NET Base Class Library exposes the features of the Common
Language Runtime in much the same way that the Windows API allows you to
utilize the features of the Windows operating system. However, it also provides
many higher-level features that facilitate code reuse. The Common Language
Specification gives language vendors and compiler developers the base requirements
for creating code that targets the .NET Common Language Runtime, making it
much easier to implement portions of your application using the language that’s
best suited for it. The .NET platform allows languages to be integrated with one
another by specifying the use of the Microsoft Intermediate Language (MSIL, or
just IL) as the output for all programming languages targeting the platform. This
intermediate language is CPU-independent, and much higher level than most
machine languages.

Automatic resource management is one of the most discussed features of the
NET platform, and for good reason. Countless man-hours have been spent
chasing problems introduced by poor memory management. Thanks to the man-
aged heap memory allocator and automatic garbage collection, the developer is
now relieved of this tedious task and can concentrate on the problem to be
solved, rather than on housekeeping. When an allocated object is no longer
needed by the program, it will be automatically be cleaned up and the memory
placed back in the managed heap as available for use.

Once written and built, a managed .NET application can execute on any
platform that supports the .NET Common Language Runtime. Because the

WWW.syngress.com




Introducing the Microsoft .NET Platform ¢ Chapter 1 27

NET Common Type System defines the size of the base data types that are avail-
able to .NET applications, and applications run within the Common Language
Runtime environment, the application developer is insulated from the specifics of
any hardware or operating system that supports the .NET platform. Although
currently this means only Microsoft Windows family of operating systems, work is
underway to make the .NET core components available on FreeBSD and Linux.
The .NET architecture now separates application components so that an appli-
cation always loads the components with which it was built and tested. If the appli- #
cation runs after installation, the application should always run. This is done with
assemblies, which are .NET-packaged components. Assemblies contain version
information that the INET Common Language Runtime uses to ensure that an :
application will load the components it was built with. Installing a new version of ‘
an assembly does not overwrite the previous version, thanks to the assembly cache,
a specialized container (directory) that store system-installed .NET components.
Given the massive amount of legacy code in use, it was necessary to allow
.NET applications to interact with unmanaged code. As you can probably guess,
unmanaged code is code that isn’t managed by the .NET Common Language
Runtime. However, this code is still run by the CLR, it just doesn’t get the advan-
tages that it offers, such as the Common Type System and Automatic Memory
Management. There are a couple of times when you will probably end up using
unmanaged code, making API or other DLL calls, interfacing with COM compo-
nents or allowing COM components to utilize NET components. However,
realize that by calling unmanaged code, you may be giving up portability.
Developing software using .NET technology is a big change; the technology
has a lot of pieces to the puzzle and more than a few new ideas. Hopefully, we have
given you a solid introduction into the basics, and you now have a foundation
upon which to build your skills using the information found in the rest of the
book. If you want more detail on a particular feature of the platform, the MSDN
Web site contains a vast amount of reference material that covers the features of the
NET platform at a much more technical level than we attempted here.

Solutions Fast Track

Introducing the .NET Platform

M Software is changing from a closed to a connected world, much like

personal computers themselves are. The .NET Framework is designed to

WWW.syngress.com



28 Chapter 1 ¢ Introducing the Microsoft .NET Platform

make it easier to create distributed applications that leverage this new
paradigm.

M There are multiple pieces to the .NET Framework, starting from a
shared Common Language Infrastructure and extended to various
Microsoft servers and services.

M The .NET Framework is designed as a single consistent development
environment offering shorter development cycles, improved scalability,
and better behaved programs.

Features of the .NET Platform

M The .NET platform hides the gory details of interfacing with the
underlying operating system functions and lets you concentrate on the
solution at hand.

M Multilanguage development is greatly simplified thanks to the use of the

intermediate language and Common Language Runtime.

M Automatic memory management reduces the level of effort required to
_— manage resources; you can simply let the garbage collector take care of
cleaning up and preventing memory leaks.

N

It includes a new versioning system designed to end DLL Hell.

Much of the platform is built on open standards, such as XML and SOAP.

=

M You are not forced to rewrite everything to use .NET—interoperability
with existing code and components is maintained.

M It includes an improved security model, which allows a fine-grained
k J control as well as integrated safety from security flaws caused by

problems related to buffer overruns.

Components of the .NET Architecture

F M The Common Language Runtime is a managed execution environment
offering many advantages over the traditional native code development
methods.

M All languages compile to the same intermediate language. The IL is

platform- and processor-independent, potentially allowing .NET
applications someday to run on non-Windows operating systems.

WWW.syngress.com



Introducing the Microsoft .NET Platform * Chapter 1 29

M The Common Type System allows all languages to share data types
without requiring that the developer deal with interpreting different
languages conventions.

M It includes a large Base Class Library shared by all .NET languages,
offering a wide range of functionality intended to improve developer
functionality.

M Assemblies and metadata are designed to improve on some of the
weaknesses of the COM model, by including information about the ’ ‘
versions of required components a given component was built with. e,

M The assembly cache is a new facility designed to contain shared .NET
components. The assembly cache can contain multiple versions of a ﬂ
given assembly, helping to put an end to DLL Hell.

M Through a process called reflection, an application can interrogate this
metadata and learn what an object exposes.

Exploring the Code Cycle

M Compiling your source code, regardless of the language used, results in
IL code output.

M Behind the scenes, the compiler inserts a stub function to load the CLR,
which then runs the Just In Time Compiler to transform the IL code
into native code.

The Pursuit of Standardization

M Microsoft is making an active effort to see that the technologies on
which the .NET platform is based are accepted as standards by a
recognized standards organization.

M The draft standards for the CLI and C# language have been submitted
to ECMA.

M The current versions of the standards are available online. They are

updated once or twice a month at the current time.




30

Chapter 1 ¢ Introducing the Microsoft .NET Platform

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:

A:

Q:

A:

If any .NET language has access to everything in the Base Class Library, why
is there so much talk about C#?

Although in theory all .NET languages have equal access to the BCL, in
reality it was left up to the language teams to determine what level of support
they wanted to offer, at least beyond the minimums needed for basic compli-
ance. In our opinion, C#, because it was developed as a new language specifi-
cally for the .NET platform, has the best support for .INET applications.

I’'m a C/C++ developer. Why on earth would I give up all the power and
control I have now?And-what about speed—native code is always better.

The .NET platform 1s all about a new way of developing applications. Many
of the enhancements are there fomincreased productivity. For example, today a
C++ application for the desktop and PocketPC are vastly different pieces of
code. In the .NET world, they can be the same. Additionally, there are a lot of
prebuilt classes available in the BCL ‘that have'a lot to offer any developer. As
to the native code issue, that'is debatable. In a perfect model, you might be
right, but for the majority of applications developed today, it’s just not a signif-
icant factor. The improvements in versioning support and automatic memory
management alone make a good argument for the managed environment.

. Is everything in the Win32 API exposed through the BCL?

Not through the BCL, but you can make API calls directly through most
languages.

: Why not just switch to Java?

I’'m going to preface this answer by saying that I like Java, I've written several
successful commercial projects in Java, and it met the requirements of those
projects well. However, Java as a platform requires the developer to buy into

WWW.syngress.com




Introducing the Microsoft .NET Platform * Chapter 1 31

the idea of a single language for all things, which goes against my philosophy
of “use the right tool for the job.” The .NET design allows and encourages
cross-language development, letting programmers make use of language skills
already developed as well as leverage the various strengths of each .NET lan-
guage. As to the cross-platform features, my experience and that of many
others is summarized by the often-heard phrase “write once, test every-
where,” rather than the advertised “Write once, run everywhere.” In my
opinion, Java also suffers from some earlier design oversights that .NET
appears to have learned from. Look at the difference in the Streams imple- :
mentation on both platforms for an example; the initial Java design did not L]
accommodate Unicode character streams. When this was corrected in JDK

1.1, Java ended up with four base stream classes. ﬂ

Q: Isn’t the fact that .NET applications aren’t native code going to increase PC

requirements?

A: This depends on what type of application you’re developing, but it’s a pretty
safe bet. The managed environment introduces additional memory require-
ments, but they will be negligible in practice. Every new development in soft-
ware engineering has required more horsepower, and we’re really not taxing
today’s processors with most software. Buying more memory, if it is required,
should be a simple sale; developer man-hours are generally a lot more expen-

L

sive than more memory.







Chapter 2

Introducing C#

Programming

Solutions in this chapter:

= Getting Started

Creating Your First C# Program

= Introducing Data Types

= Explaining Control Structures

= Understanding Properties and Indexers
= Using Delegates and Events

= Using Exception Handling

= Understanding Inheritance

M Summary
M Solutions Fast Track

M Frequently Asked Questions
33



34

Chapter 2 ¢ Introducing C# Programming

Introduction

Let’s start with your first look into the C# language. This chapter teaches you to
write, build, and execute console applications. This provides the groundwork for
developing applications that use more advanced features of .NET in later chapters.

The C# language is a modern object-oriented language. In some ways, it can
be seen as an extension of other languages that came before it. C# is most often
compared with Java and C++. If you are not familiar with C# programming, this
chapter gets you started. If you are familiar with Java or C++, you may want to
just skim this chapter because the concepts presented will look very familiar to
you. If you already know C#, feel free to skip this chapter entirely. We assume
you have a basic understanding of at least one object-oriented language.

We’ve mentioned that C# is a modern object-oriented language. Let’s take a
little time to explain what we mean by that. C# is a modern language. It supports
the notion of data types, low of control statements, operators, arrays, properties,
and exceptions. Depending on the language(s) you are accustomed to program-
ming in, most of these concepts should be familiar to you. Throughout the
chapter, you will see examples and/or discussions of most of these features of C#.

C# 1s an object-oriented language. It supports the notion of classes and the
object-oriented nature of classes including encapsulation, inheritance, and poly-
morphism. C# also supports interfaces in conjunction with the .NET Common
Language Runtime (CLR) garbage collection, which some feel is necessary in an
object-oriented language. It also supports the notion of indexers, which in sim-
plified terms lets you manipulate objects as arrays and delegates, which you can
think of as method callbacks on steroids.

The .NET Framework supports console applications, graphical user interface
(GUI) applications (Windows Forms), browser-based applications (Web Forms
and ASPNET), and Web Services. This chapter will focus on command line
applications, which are known as console applications. Console applications have a
text-only user interface. In later chapters, you will learn how to create other types
of applications. The focus of this chapter is to explain the concepts that are new
and/or different in C# from other object-oriented languages. Concepts that are
familiar to object-oriented programmers are covered in brief.

Throughout the chapter, a series of sample programs are presented that illustrate
the concepts introduced in each section. The sample programs are available on the
CD included with this book. Although there are separate sample programs for each
section, each sample builds on concepts covered in earlier sections of this chapter.

www.syngress.com



Introducing C# Programming * Chapter 2

Getting Started

Microsoft supplies a full-blown development environment—Visual Studio
.NET—for building .NET applications. But, you don’t need to buy anything to
get started writing C# programs. The Microsoft. NET Framework software devel-
opment kit (SDK) is available for download from Microsoft’s Web site for free
(http://msdn.microsoft.com/net). It contains a command line C# compiler that
we use to compile the examples in this chapter. This chapter assumes you have
already installed the Microsoft. NET Framework SDK.The only other thing you
need to get started is a text editor. Because you are writing C# programs for the
Microsoft. NET Framework on Microsoft Windows platforms, you have several
choices freely available in the Windows operating system. We will stick with the
old reliable Notepad as our source code editor of choice.

For users that may be new to the Windows operating system, we run through
some explicit instructions on using the command line and Notepad. If you are
familiar with Windows, or if you aren’t interested in typing the programs in your-
self, you can skip ahead to the next section.

The first things you need to do are start a command line session and create
some directories to store your sample programs in. To start a new command line
session, click Start on the lower-left corner of the screen. Select the Run menu
option from the pop-up menu. The Run dialog box will appear. Type cmd in the
edit box and click OK.You should now see a command line window similar to
Figure 2.1.

Figure 2.1 A Command Line Window

Now you will create directories to save your C# programs in.You can set up
any directory structure you like, but for purposes of this example, we use a struc-
ture that uses an abbreviated book title as the root directory, the chapter as a sub-
directory, and the program name as the lowest level directory:

" www.syngress.com

35



36

Chapter 2 ¢ Introducing C# Programming

>

3
4.
5
6

Type md C#.NET at the command prompt and press Enter.

Type cd C#.NET and press Enter to navigate to the C# .NET
directory.

Type md chap1 and press Enter to create a subdirectory called chapl.
Type cd chap1 and press Enter to navigate to the chap1 directory.
Type md FirstCSharpProgram and press Enter.

Type cd FirstCSharpProgram.

You have now created the directory to store your first C# program, which

will be called FirstCSharpProgram. Leave the command-line window open.

You will use it to compile your first program a little later.

As previously mentioned, Notepad is our preferred source code editor. To

start Notepad, click Start | Programs | Accessories | Notepad.You should

now see the Notepad application. You will now create an empty source code file

in the directory you previously created for your first C# program:

Click File | Save.

In the Save dialog box, use the Save In drop-down list to select the
FirstCSharpProgram folder you just created.

C# programs typically use the file extension .cs, which is the convention
we will follow. Type FirstCSharpProgram.cs in the File name edit
area. The dialog box should look like Figure 2.2.

Click Save.

Figure 2.2 Saving a File in Notepad
Saenhe ______________________________________ Hi

T I R~ e .

Fil paara: II S harpMagen o j I e |
Syt st pps |Maw Doourmnt 1" b E | Loz
Drampny TH] A

www.syngress.com



&

Introducing C# Programming * Chapter 2

You now have an empty source file available for your first C# program. As
you type C# source code into Notepad, you can save your source at any time by
clicking File | Save.You are finally done with the preliminaries and are ready to
start writing code.

Creating Your First C# Program

The first C# program we look at is a very simple program that writes a couple
of lines of text to the console. The program source code is shown in Figure 2.3.
If you are following along, type in the program using Notepad and save it. We
examine the code in the following sections to get a general feel for the structure
of'a C# console application. The source code is included on the CD that accom-
panies this book in a file named FirstCSharpProgram.cs.

Figure 2.3 The FirstCSharpProgram.cs Listing

usi ng System

nanmespace First CShar pProgram

{
/1] <summary>
/1l My first C# class. Contains the program entry point.
/1] </ summary>

cl ass FirstCsharpd ass

{
static void Main( string[] args )
{
try
{
/*

*  Show when we wrote our first program on screen.

*/

Dat eTi me today = DateTi nme. Now,

Consol e. WiteLine( "I wote ny first C# programat: " +
today. ToString() );

Continued

www.syngress.com

37



38 Chapter 2 ¢ Introducing C# Programming

Figure 2.3 Continued

if ( args.Length > 0 )

{
/1 Show an optional nessage on screen.
string msg = "You wanted to say: " + args[O0];
Consol e. WiteLine( nmsg );
}
}
catch ( Exception exception )
{
// Display any errors on screen
Consol e. WiteLine( exception. Message );
}

Compiling and Executing

The command line compiler included in the Microsoft. NET Framework
SDK is named csc.exe. To compile the application, type csc.exe /out:
FirstCSharpProgram.exe FirstCSharpProgram.cs on the command line
and press Enter. If you typed the program correctly, no errors should display.

Taking a look at the command line, the first part of the statement, csc.exe,
invokes the C# compiler. The compiler takes two arguments in this case. The first
is /out:FirstCSharpProgram.exe. The /out compiler switch indicates that the fol-
lowing text will be the name of the compiled file that will be created, in our case
FirstCSharpProgram.exe. The final argument is the name of the source code file to
compile, FirstCSharpProgram.cs. The compiler takes many other optional argu-
ments. But for simple programs, you should be able to use the same command-
line text and just replace the name of the output file and the name of the source
code file.

FirstCSharpProgram takes one optional command-line argument when it exe-
cutes, that is, the message to display. To execute the program with an optional

www.syngress.com



Introducing C# Programming * Chapter 2

message, type the following at the command line prompt: FirstCSharpProgram
“C#, I like it!” Be sure to include the quotes. You should see output very sim-
ilar to Figure 2.4 after compiling and running the program.

Figure 2.4 Compiling and Executing the FirstCSharpProgram

Now that you’ve written, compiled, and executed your first C# program, let’s
take a look in the next sections at some of the features of C#.

Debugging...

Compiling C# Programs/Environment Variables

Your environment variables may not be properly set up if you get the fol-
lowing error message when compiling your program:

'csc.exe' is not recognized as an internal or external command,

oper abl e program or batch fil e.

When you installed the Framework SDK, your environment variables
should have been set up correctly for you to compile programs. If you
get the error just shown, your environment variables have not been set
correctly. To fix this problem, execute the batch file corvars.bat located
in the bin directory of the SDK. Change directories to the Framework
SDK root directory, normally installed in the directory \Program Files\
Microsoft.NET\FrameworkSDK\bin. Execute the batch file by typing
corvars on the command line. Now change directories back to where
your program is saved and compilation should be successful.

www.syngress.com

39



40

Chapter 2 ¢ Introducing C# Programming

Defining a Class

Classes are the basic ingredients of object-oriented languages. Classes are declared
in C# by using the class keyword followed by the class name and brackets sur-
rounding the body of the class. The FirstCSharpProgram sample has one class,
named FirstCSharpClass.

C#, like most object-oriented classes, supports member variables and methods.
Here is another class that contains some methods and member variables:

cl ass Enpl oyee

{
/1l Menber vari abl es
private string mFirstNane;

private string m Last Nane;

/1 Constructor
public Enpl oyee( string FirstNane, string LastNane )
{

m_Fi rst Name = First Nane;

m Last Nane = Last Nane;

/1 Public methods
public string getFirstName() { return mFirstNane; }
public string getlLastNane() { return m_LastNane; }

This class has three methods, the constructor Employee and two other
methods, getFirstName and getLastName. It has two member variables, m_FirstName
and m_LastName. Classes and class members (methods and variables) can have
access modifiers associated with them that define their level of visibility. Table 2.1
lists the class and class member visibility access modifiers. Some restrictions apply
to use of the access modifiers—consult the .NET SDK documentation for
details.

www.syngress.com



Introducing C# Programming * Chapter 2

Table 2.1 Class and Class Member Visibility Access Modifiers

Access Modifier Visibility

public Accessible from anywhere

protected Accessible from this class or any class derived from
this class

internal Accessible within current program (assembly) only

protected internal Accessible within current program (assembly) or any
class derived from this class

private (default) Accessible only within current class

You can see some of these access modifiers applied to the Employee class and
its members. Classes can also support interfaces. You can think of interfaces as
contracts with a class to supply methods defined in the interface. Interfaces supply
class methods and signatures but no implementations. Classes that support a given
interface must supply the implementation of the methods defined by the inter-
face. Here is the previous Employee class extended to support an interface:
/1 I XM Representation interface signature
interface | Xm Representation
{

string get XM_();

/1 Enpl oyee class inplenents | Xm Representation

cl ass Enpl oyee : | Xm Representation

{
private string mFirstNane;

private string m Last Nane;

public Enpl oyee( string FirstNanme, string LastNane )
{

m Fi rst Name = FirstNaneg;

m_Last Name = Last Nane;

public string getFirstNane() { return mFirstName; }

www.syngress.com

a1



42

Chapter 2 ¢ Introducing C# Programming

public string getlLastNane() { return mLast Nane; }

/1 get XML nethod inplenents a nethod in | Xm Representation interface
public string get XM ()

{
string xm Enpl oyee = "<Enpl oyee>";
xm Enpl oyee += "<FirstNanme>" + mFirstName + "</FirstNane>";
xm Enpl oyee += "<Last Name>" + m LastNane + "</Last Nane>";
xm Enpl oyee += "</ Enpl oyee>";
return xm Enpl oyee;

}

An interface named IXmlRepresentation, which has one method getXML,
returns a string. The definition of the interface supplies no implementation. The
declaration of the Employee now looks like this:

cl ass Enpl oyee : | Xm Representation

You can see the interface IXmlRepresentation after the class name and a colon.
This signifies that the Employee class must supply an implementation for all the
methods declared in an interface. As you can see, the Employee class does supply
an implementation for the getXML method. The compiler would generate an
error if the get XML method were missing from the Employee class. Interfaces are
often used to supply functionality to a class that really is not part of the class’s
core functionality. In the case of the Employee class, getting an XML representa-
tion of the employee really is not related to being an employee at all. But, it may
be useful for another class that outputs XML to call the get XML method on
Employee. We show other examples of interfaces later in this chapter.

\WARNING

C# does not have deterministic destructors like C++ does. The .NET
Common Language Runtime (CLR) uses garbage collection to clean up
memory and other resources. Long time C++ programmers have a hard
time getting used to this idea. This is a topic that is hotly debated on
newsgroups and bulletin boards devoted to C# programming.

www.syngress.com



Introducing C# Programming * Chapter 2

Declaring the Main Method

Every C# program must have a Main method. Here is the declaration of the
Main method of the FirstCSharpProgram:

static void Main( string[] args )

Execution of the program starts at the Main method. The Main method is
always declared static, which indicates that it is a method of the class and not of a
particular class instance. Also note that the Main method is declared as a method
of the class FirstCSharpClass. In other languages, such as C/C++, the entry point
is often a global function. Global functions are not supported in C#. Also note
that the letter M 1s capitalized in the keyword Main.

The Main method can take command-line arguments in the form of a string
array. In FirstCSharpProgram, we check to see if at least one command-line argu-
ment exists. If yes, we print a message to the screen. Here is the relevant code
trom FirstCSharpProgram to accomplish this:

if ( args.Length > 0 )
{
string msg = "You wanted to say: " + args[O0];

Consol e. WiteLine( nsg );

Program flow of control starts at the beginning of the Main method and con-
tinues executing all statements within the Main method, or until a return state-
ment is encountered. When all statements have been executed, the program
terminates.

Organizing Libraries with Namespaces

Namespaces are used in.NET to organize class libraries into a hierarchical struc-
ture. One reason to do this is to help organize classes in a meaningful way that is
understood by consumers of the class library. For instance, the .NET Framework
SDK has many namespaces, such as System, System. Windows. Forms, System.10O, and
System. XML.You get a good idea of the types of classes that are contained within
the namespace from just the namespace name itself. The fully qualified name of a
class is the class name prefixed with the namespace name. The period character is
used to separate namespaces nested within other namespaces. It is also used to
separate the class name from the innermost namespace. For example, within the

www.syngress.com

43



44

Chapter 2 ¢ Introducing C# Programming

System.IO namespace is a class named File. Here is some C# code to create an
instance of the class—observe how we wrote the fully qualified name of the class
File by prefixing the namespace name System.IO. Also note that System is the top
namespace and IO is the nested namespace within which the File class resides:

System IO File file = new System IO File();

Another reason to use namespaces is to reduce naming conflicts. For example,
if your company name is Synergistic Corporation, you could have all of your
namespaces contained with a root namespace named Synergistic. One namespace
might be Synergistic. Tools, and a typical class within the namespace might be
Logger. The full name of the class would be Synergistic. Tools. Logger. It 1s unlikely
that you will find another class with the same name anywhere, thus eliminating
naming conflicts.

Here is a snippet of the FirstCSharpProgram source code:

nanmespace First CShar pProgram
{

/1] <sunmmary>

1l My first C# class.

/1] </ summary>

cl ass FirstCsSharpd ass

{

The namespace keyword indicates that the class FirstCSharpClass is contained
within the namespace FirstCSharpProgram. Therefore, to create an instance of
FirstCSharpClass, use the following code:

Fi r st CShar pPr ogr am Fi r st CShar pCl ass nyl nstance =
new Fi r st CShar pProgram Fi r st CShar pd ass();

Using the using Keyword

You might be thinking this namespace thing is all right, but you sure do have to
type a lot code to create a new instance of a class. Fortunately, a shortcut exists:
the using keyword.

www.syngress.com



Introducing C# Programming * Chapter 2

In FirstCSharpProgram, we call the static method WriteLine of the Console class
to write text to the screen. The Console class is actually part of the System names-
pace in the .NET Framework class library, so you would expect to see
System. Console. WriteLine() instead of Console. WriteLine(). Take a look at the fol-
lowing line code at the top of the program:

usi ng System

The using keyword allows you to reference classes in the System namespace
without having to include System prior to the class name. This works equally well
with nested namespaces as in our example of the File class.You can now create a
new instance of a file object by using the following statements:

using System |G

File file = new File();

Adding Comments

C# supports three different types of source code comments, single-line com-
ments, multiline comments, and source code documentation comments. Single-
line comments begin with //. Multiline comments begin with /* and end with
*/ and can span multiple lines. Text between them constitutes the comment.
Source code documentation comments begin with ///. Examples of all three
types of comments from FirstCSharpProgram are shown here:

/1 Show an optional nessage on screen.

/*
*  Show when we wote our first program on screen.
*/

/1] <summary>
/1l My first C# class.

/11 </ summary>

Source code documentation comments deserve further explanation.You can
supply an additional argument to the C# compiler to parse the source code docu-
mentation comments and emit XML as documentation. The additional argument
takes the form /doc:filename. Here 1s the command line to build FirstCSharp Program
modified to create the documentation file:

www.syngress.com

45



46 Chapter 2 ¢ Introducing C# Programming

csc. exe /out: First CShar pProgram exe FirstCSharpProgramcs /

doc: Fi r st CShar pPr ogr am xni

Here is the XML that is generated by the compiler.

<?xm version="1.0"7?>
<doc>
<assenbl y>
<nane>Fi r st CShar pPr ogr anx/ nane>
</ assenbl y>
<menber s>
<menber nanme="T: Fi rst CShar pProgram Fi r st CShar pCl ass" >
<sunmary>
My first C# cl ass.
</ summary>
</ menber >
</ menber s>

</ doc>

Debugging...

Debugging Console Applications: Cordbg.exe

The .NET Framework SDK includes a command-line debugger that you can
use at runtime to debug your applications. A simple example follows:

cordbg First CShar pProgram exe !b FirstCSharpProgram cs: 100

The example starts execution of FirstCSharpProgram.exe and sets a
breakpoint at line 100 of the file FirstCSharpProgram.cs. The debugger
allows you to set and display the value of variables in your program to
aid in debugging your application. You can find more information on
cordbg in the .NET Framework SDK documentation.

FirstCSharpProgram uses the <summary> tag, which is recognized by the
compiler as a source code documentation tag. You can use many other tags to
document other parts of your code, including parameters, return codes, and so

www.syngress.com



Introducing C# Programming * Chapter 2

on. In effect, you can self-document your classes and methods for other program-
mers using source code documentation comments. The XML emitted can be
converted into other formats, such as HTML, and then be published so that other
programmers can learn the classes and methods available in your program.You
can learn more about XML in Chapter 9.

Introducing Data Types

A programming language wouldn’t be able to do much if it didn’t have data to
work with. C# supports two data types: value types and reference types. lalue
types are the typical primitive types available in most programming languages and
are allocated on the stack. Reference types are typically class instances and are allo-
cated on the heap. Both are discussed in further detail in the following sections.

Value Types

Value types encompass the data types you would traditionally encounter in
nonobject-oriented programming languages. This includes numeric, strings, bytes,
and Booleans. Value types in C# are implemented in the form of Structures and
Enums. Value types are allocated on the stack and therefore have little overhead
associated with them.

Primitive Data Types

Primitive data types include all value types except structures. The primitive data
types are shown in Table 2.2.

Table 2.2 Primitive Data Types, Sizes, and Descriptions

Data Type Size in Bytes Description

sbyte 1 Signed byte

byte 1 Unsigned byte

short 2 Signed short

ushort 2 Unsigned short

int 4 Signed integer

uint 4 Unsigned integer
long 8 Signed long integer
ulong 8 Unsigned long integer
float 4 Floating point

Continued

www.syngress.com

47



48

Chapter 2 ¢ Introducing C# Programming

Table 2.2 Continued

Data Type Size in Bytes Description

double 8 Double-precision floating point
decimal 8 96-bit signed number

string n/a Unicode string

char 2 Unicode character

bool n/a True or false

Reference Types

Instances of classes are reference types. Reference types are allocated on the heap.
In C#, all classes are derived from the .NET Framework class Object within the
System namespace. C# does not support pointers, but classes, being reference data
types, act like pointers. If you copy a pointer to another pointer, they both still
reference the same object. You can modify the contents of the original object
from either pointer. In C#, if you instantiate a class object and then make a copy
of it, changes made to either instance of the class change the original object. If
you pass an instance of a class to a class method, changes made to the object
passed in will persist upon returning from the method call.

As we mentioned previously, reference types are allocated on the heap. The
new keyword is used to allocate a new instance of a reference type (class). You
don’t need to free an instance of a class in C#, however. The CLR does garbage
collection on object instances that are no longer referenced. Here is a simple
example of instantiating an object of a class:

usi ng System

cl ass Test Soned ass

{

static void Main(string[] args)

{
// dass is instantiated here using the new keyword. A new object
/1 of type SomeC ass will be allocated on the heap.
Soned ass instance = new SoneC ass();
i nst ance. showMessage( "Here is the nmessage" );

}

www.syngress.com



Introducing C# Programming * Chapter 2

cl ass Soned ass

{
public void showessage( string nessage )
{
Consol e. Wi teLine( nessage );
}
}

Sometimes class methods require class instances derived from the .NET
Framework class object. The odd thing is that you can pass a primitive data type,
such as an int, to the method. How can this be? C# has a feature called boxing,
which will automatically convert a value type to a reference type when a refer-
ence type is required. Upon return from the method, the reverse process, called
unboxing, will convert back to a value type. As a programmer, you don’t need to
do anything special to take advantage of boxing. You should note, however, that
some overhead is involved in the boxing/unboxing process.

Explaining Control Structures

The C# language supports all of the flow-of-control statements you would nor-
mally expect. This section gives you a very brief look at them. We point out a
few of the problem areas (especially for C/C++ programmers).

Using the if Statement

The if statement executes a series of statements if a test Boolean expression evalu-
ates to true. The test expression to evaluate must be Boolean.You cannot use a
test numeric expression as in C/C++:

int i = 3
int j = 0;
if (i >2)
{

=3
}

www.syngress.com

49



50 Chapter 2 ¢ Introducing C# Programming

Using the if-else Statement

The if-else statement adds a path for the false evaluation of the Boolean expression.

int i = 3;
int j = 0;
int k = 0;
if (i >2)
{

I =3
}
el se
{

=4

k =5
}

Using the switch case Statement

The switch statement chooses flow of control based on the evaluation of a
numeric or string comparison. The switch statement does not allow control to fall
through to the next case as in C/C++ unless the case statement is followed
immediately by another case statement. In other words, you must use a break state-
ment with every case statement. You can also use a gofo statement, although most
programmers frown on using them. Here are two examples:

int j =0;

int i = 1;

switch (i )
{
case 1:
=
br eak;

case 2:

case 3:

www.syngress.com



=22

br eak;

defaul t:
j =33

br eak;

string | astNanme = ;

string text = "fred";

switch ( text )

{

case "fred":
| ast Name = "Flinstone";

br eak;
case "barney":
| ast Nane = "Rubbl e";

br eak;

defaul t:

| ast Nanme "Slate";

br eak;

Using the for Statement

Introducing C# Programming * Chapter 2

The for statement is used to loop through a series of statements until a test

Boolean expression evaluated at the beginning of the loop is false. In the fol-

lowing example, the WriteLine method will execute five times:

for (int i =0; i <5; i++)

{
Console. WiteLine( "I wll

talk in class" );

" www.syngress.com

51



52

Chapter 2 ¢ Introducing C# Programming

Using the while Statement

The while statement is also used to loop through a series of statements until a test
Boolean expression evaluated at the beginning of the loop 1s false. The following
code has the same result as the previous for statement example:

int i = 0;

while (i <5)

{
Consol e. WiteLine( "I will not talk in class" );
i ++;

}

Using the do while Statement

The do while statement is also used to loop through a series of until a test
Boolean expression evaluated at the end of the loop is false. Therefore, the series
of statements contained within the do while loop will always execute at least once:

int i =6

do

{
Console. WiteLine( "I will not talk in class" );
i ++;

}

while (i <5 );

Using the break Statement

The break statement exits the loop of a for, while, or do while statement regardless
of value of the test Boolean expression. In each of the following examples, the
WriteLine method will execute two times:

int j = 0;

for (int i =0; i <5; i++)

{
Console. WiteLine( "I will not talk in class" );
j++;

if (] =2)

www.syngress.com



int

int

br eak;

j =0

while (i <5)

{

int
int
do

}

Consol e. Wi teLi ne(
i ++;

j +t;

if (j ==2)

br eak;

I
L

i

Consol e. Wi t eLi ne(
i ++;

j ++;

if (] ==2)

br eak;

while (i <5);

Introducing C# Programming * Chapter 2

"I will not talk in class" );

"I will not talk in class" );

Using the continue Statement

The continue statement will pass low of control immediately to the start of a loop

when encountered. In the following example, “I will not talk in class” will display

twice and “At least I'll try not to talk in class” will display three times:

i nt

for

{

i =0

(int i =0; i <5;

j ++;

i++ )

" www.syngress.com

53



54 Chapter 2 ¢ Introducing C# Programming

if (j >2)

{
Console. WiteLine( "At least I'Il try not to talk in class" );
conti nue;

}

Console. WiteLine( "I will not talk in class" );

Using the return Statement

The return statement returns flow of control from a method to the caller, option-
ally passing back a return value. Here is a complete example:

using System

cl ass Test D vision

{
static void Main(string[] args)
{
int dividend = 2;
int divisor = O;
Di vi der divider = new Divider();
bool ret = divider.divide( dividend, divisor );
if (ret == true)
Console. WiteLine( "I divided!'" );
el se
Consol e. WiteLine( "Something went horribly wong!" );
}
}

cl ass Divider

{

public bool divide( int dividend, int divisor )

{

www.syngress.com



Introducing C# Programming * Chapter 2

if ( divisor == 0 )

return false;

int result = dividend / divisor;

return true,;

NoTE

A better way to handle this case would have been to throw an exception
when the divisor is zero. We cover exceptions in a later section.

Using the goto Statement

The goto statement has been the bain of structured programming for many years.
C# supports the gofo statement, although as previously stated, we wouldn’t rec-
ommend using it. The goto statement immediately transfers flow of control to the
statement following a label. If you must use goto, here is an example:

int i = 0;

int j = 0;

while (i <5)

{
Console. WiteLine( "I will not talk in class" );
i ++;
j ++;

if ()] ==2)
got o j unpeddout ofloop;

j unpeddout ofloop:
Consol e. WiteLine( "I jumped out" );

www.syngress.com

55



56 Chapter 2 ¢ Introducing C# Programming

Understanding Properties and Indexers

Two of the more interesting features of C# are properties and indexers. Properties
allow you to call methods on a class using syntax that indicates you are accessing
member variables. Indexers allow you to access collections within a class using
array syntax. You will see examples of each in the following sections.

Using Properties

If you come from a C++ background, you have probably written many get and
set methods for classes you have created. A typical pattern used by C++ program-
mers is to make member variables of a class private and provide public accessor
methods to assign and retrieve the values of the member variables. A public set
method is written to assign a value to a member variable, and a get method is
written to retrieve the value assigned to a member variable. An alternate solution
is to make the member variables themselves public. The advantage of using get
and set methods is that if the underlying data type ever changes, the consumer of
the class does not have to change his code. Only the get and ser methods need to
be rewritten. This is often referred to as data hiding.

Using get and set methods has a couple of disadvantages. First, it seems a little
more intuitive to just assign a value to a data member or retrieve its value rather
than having to use accessor methods. Also, slightly less typing is involved in
accessing the data member directly.

C# provides the best of both methods. It supports the idea of properties.
Properties are method calls that look like direct access to member data. Figure 2.5
is a complete listing that shows properties in action. The program is included on
the CD in the file Properties.cs.

NoTE

Throughout the rest of the chapter, we expand on this example of an
employee list.

ﬁ Figure 2.5 The Properties.cs Program Listing
A

usi ng System

1] <summary>

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.5 Continued

/1l Contains the programentry point for the Properties Sanple.
/1l <lsummary>
cl ass PropertySanpl e
{
static void Main( string[] args )
{
try
{

/1 Create a new enpl oyee

Enpl oyee enpl oyee = new Enpl oyee();

/1 Set some properties

enpl oyee. First Nane = "Ti not hy";
enpl oyee. M ddl eName = "Arthur";
enpl oyee. Last Nanme = "Tucker";
enpl oyee. SSN = "555-55-5555";

/1 Show the results on screen
string name = enployee.FirstName + " " + enpl oyee. M ddl eNane +
+ enpl oyee. Last Nane;

string ssn = enpl oyee. SSN,

Consol e. WitelLine( "Nanme: {0}, SSN. {1}", nane, ssn );
}

catch ( Exception exception )

{

/1 Display any errors on screen

Consol e. WitelLi ne( exception. Message );

Continued

www.syngress.com

57



58

Chapter 2 ¢ Introducing C# Programming

Figure 2.5 Continued

1] <summary>

/1l Represents a single enployee

/1l </ summary>

cl ass Enpl oyee

{
private string mfirst Nane;
private string m.m ddl eNane;
private string m.| astNane;

private string m SSN

/1 FirstName property
public string FirstName
{
get { return mfirstNane; }

set { mfirstName = value; }

/1 M ddl eNarme property
public string M ddl eName
{
get { return m._m ddl eNane;

set { m._mi ddl eNane = val ue;

/'l Last Name property
public string LastNane
{

get { return m/| astNane; }

set { mlastNane = value; }

/1 SSN property

}

}

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.5 Continued

public string SSN

{
get { return mSSN, }

set { mSSN = value; }

Get Accessor

Let’s take a look at the source code for the get accessor of the SSN property
(SSN being the employee’s social security number). Consider the following
source code for the SSN property:

public string SSN

{
get { return mSSN, }
set { mSSN = value; }

}

First, let’s take a look at the property declaration. The public keyword of the
property indicates its visibility. Normally you will make a property public because
the purpose is to allow consumers to have access to the data associated with the
property. Next, this property works with string data as indicated by the string key-
word. Finally, the name of the property is SSN.

The get accessor method is relatively simple. It just returns the value of the
private data member m_SSN. In the program, you can see the SSN property is
accessed using syntax usually reserved for accessing member data:

string ssn = enpl oyee. SSN;

Set Accessor
Here are code snippets that show invocation of the set property of SSN and the

implementation of the set property itself:
enpl oyee. SSN = "555-55-5555";

set { mSSN = value; }

www.syngress.com

59



60

Chapter 2 ¢ Introducing C# Programming

The set accessor assigns a value to the member variable m_SSN. The value
keyword contains the value of the right side of the equal sign when invoking the
set property. The data type of value will be the type in the declaration of the
property. In this case, it is a string.

One thing to note about the sef accessor is that it can do more than just set
the value of a data member. For instance, you could add code to validate the
value and not do the assignment if validation fails.

NoTEe

Throughout the samples in this chapter, you will see a lot of string oper-
ations that use the overloaded concatenation operators such as “+" and
“+=" as in the following code:

string stringl = "a" + "b" + "c";

stringl += "e" + "f";

In C#, strings are immutable, which means they cannot be changed
once they have a value assigned to them. In the previous example, each
time the string is modified, a new copy of the string is created. This can
lead to performance problems in code that does a large amount of
string operations. The .NET Framework supplies the
System.Text.StringBuilder class, which allows you to create and manipu-
late a string using a single buffer in memory for cases where you do a
lot of string processing.

Accessing Lists with Indexers

The need to create and manipulate lists is a common programming task. Let’s
extend our employee example from the last section. Let’s say you need to display
a list of employees. The most logical thing to do would be to create a new
Employees class, which contains all of the individual Employee instances. You would
then iterate through all of the employees displaying each one until there are no
further employees. One way to solve this would be to create a property that
returns the number of employees and a method that returns a given employee
given its position in the list, such as the following:

for (i = 0; i < enployees.Length; i++ )
{

www.syngress.com



Introducing C# Programming * Chapter 2

Enpl oyee enpl oyee = enpl oyees. get Enpl oyee( i );
Consol e. Wi teLine( enployee. Last Nane );

However, it would be more intuitive if we could just treat the list of
employees as an array contained with the Employee object. Here is what that
might look like:

for (i = 0; i < enployees.Length; i++ )
{
Consol e. WiteLine( enployees.[i].LastNane );

This is precisely what indexers do. They let you use array syntax to access a
list of objects contained inside another class. Indexers do not imply a specific
implementation for the list, however. The list within the containing class could be
a static array, a file on disk, one of the collection classes supplied by the .NET
Framework, or some other implementation. If the underlying implementation is
changed from a static array to a collection class, for example, a programmer using
the Employees class would not need to change her code. This is highly desirable
and analogous to the same situation described in the section discussing properties
in this chapter. Figure 2.6 extends the code listing in Figure 2.5 to make use of
an indexer to iterate through a list of employees. The program is included on the
CD in the file Indexers.cs.

Figure 2.6 The Indexers.cs Program Listing

usi ng System

usi ng System Col | ecti ons;

/1]l <summary>
/1l Contains the programentry point for the |ndexers Sanple.
/1l <l summary>

cl ass | ndexersSanpl e

{
static void Main( string[] args )
{
try
{

Continued

www.syngress.com

61



62 Chapter 2 ¢ Introducing C# Programming

Figure 2.6 Continued

/1l Create a container to hold enpl oyees

Enpl oyees enpl oyees = new Enpl oyees(4);
/1 Add sone enpl oyees
enpl oyees[ 0] = new Enployee ( "Tinothy", "Arthur",

"Tucker", "555-55-5555" );

enpl oyees[ 1] = new Enployee ( "Sally", "Bess",
"Jones", "666-66-6666" );

enpl oyees[ 2] = new Enployee ( "Jeff", "M chael",
"Simms", "777-77-7777" );

enpl oyees[ 3] = new Enpl oyee ( "Janice", "Anne",
"Best", "888-88-8888" );

/1 Display the enployee list on screen

for (int i = 0; i < enployees.Length; i++ )
{
string name = enployees[i].FirstName + " " +
enpl oyees[i]. M ddl eNane + " " +

enpl oyees[i]. Last Nare;
string ssn = enpl oyees[i]. SSN,
Consol e. WiteLine( "Nane: {0}, SSN. {1}", name, ssn );
Enpl oyee enpl oyee = enpl oyees["777-77-7777"];
if ( enployee !'= null )
{

string name = enployee.FirstName + " " +

enpl oyee. M ddl eName + " " + enpl oyee. Last Nane;

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.6 Continued

111
111
111
111

string ssn = enpl oyee. SSN;

Consol e. WiteLine( "Found by SSN, Nanme: {0}, SSN. {1}",

name, ssn );

}
el se
{
Consol e. Wi t eLi ne(
"Coul d not find enpl oyee with SSN. 777-77-7777" );
}
}
catch ( Exception exception )
{
/1 Display any errors on screen
Consol e. WitelLi ne( exception. Message );
}
}
<sunmary>

Cont ai ner class for enployees. This class inplements two
i ndexers

</ sunmary>

cl ass Enpl oyees

{

private ArraylList m Enpl oyees;

private int m MaxEnpl oyees;

public Enpl oyees( int MaxEnpl oyees )
{
m_MaxEnpl oyees = MaxEnpl oyees;
m _Enpl oyees = new ArraylLi st( MuxEnpl oyees );

Continued

www.syngress.com

63



64 Chapter 2 ¢ Introducing C# Programming

Figure 2.6 Continued
}

/1l Here is the inplenentation of the indexer by array index

public Enpl oyee this[int index]

{
get
{
/] Check for out of bounds condition
if ( index < 0 || index > mEnployees.Count - 1)
return null;
/1 Return enpl oyee based on index passed in
return (Enpl oyee) m Enpl oyees[index];
}
set
{
/'l Check for out of bounds condition
if ( index < 0 || index > m MaxEnpl oyees-1 )
return;
/1 Add new enpl oyee
m_Enpl oyees. I nsert( index, value );
}
}

/1l Here is the inplenentation of the indexer by SSN
public Enpl oyee this[string SSN]
{

get

{
Enpl oyee enmpReturned = nul | ;

Continued

www.syngress.com



Introducing C# Programming * Chapter 2

Figure 2.6 Continued

foreach ( Enpl oyee enpl oyee in m Enpl oyees )

{
/1 Return enpl oyee based on index passed in
if ( enployee.SSN == SSN )
{
enpRet urned = enpl oyee;
br eak;
}
}

return enpReturned;

/1l Return the total number of enployees.
public int Length

{
get
{
return m Enpl oyees. Count;
}
}

/1] <summary>

/1l Represents a single enployee

/1l </ summary>

cl ass Enpl oyee

{
private string mfirst Nane;
private string mm ddl eNane;
private string m.l ast Namne;

private string m SSN,

Continued

www.syngress.com

65



66 Chapter 2 ¢ Introducing C# Programming

Figure 2.6 Continued

/1 Constructor
public Enpl oyee( string FirstNane, string LastNane, string
M ddl eNanme, string SSN )

{
m fir st Name = Fir st Naneg;
m_m ddl eName = M ddl eNane;
m_| ast Nane = Last Naneg;
m SSN = SSN;

}

/1 FirstName property
public string FirstName
{
get { return mfirstNane; }

set { mfirstName = value; }

/1 M ddl eNarme property
public string M ddl eName

{

get { return mnm ddl eNane; }

set { m.mi ddl eName = val ue; }

/'l Last Name property
public string LastNane
{

get { return m/| astNane; }

set { mlastNane = value; }

/1 SSN property

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.6 Continued

public string SSN

{
get { return mSSN, }

set { mSSN = value; }

You can see how this sets the value of an item in the list and get the value of
an item in the list using arraylike syntax such as this:

enpl oyees[ 0] = new Enpl oyee ( "Tinothy", "Arthur",
"Tucker", "555-55-5555" );

string ssn = enpl oyees[i]. SSN,

The portion of the code that implements an Indexer follows:

public Enpl oyee this[int index]

{
get
{
if ( index < 0 || index > 4 )
return null;
return m Enpl oyees[i ndex];
}
set
{
if ( index < 0 || index > 4 )
return;
m_Enpl oyees[i ndex] = val ue;
updat eCount () ;
}
}

www.syngress.com

67



68

Chapter 2 ¢ Introducing C# Programming

This sample code implements two indexers, one based on an index entry in
the list and the second based on the SSN of an employee. The code to imple-
ment an indexer is just a property on the containing class. The only real difter-
ence is that now the property takes the index within the list as a parameter. This
example uses an ArrayList, which is part of the System.Collections namespace of
the .NET Framework. So, the code to get an item in the list via an index entry
just returns the item in the ArrayList based on the index entry requested.
Similarly, the code to set an item in the list just sets the item in the ArrayList. A
check is also done to validate that the index entry passed in i1s within bounds
based on the maximum size of the list passed to the constructor of the Employees
class. Our implementation is relatively simple in that it returns if the index is out
of bounds. A better implementation would be to throw an exception. We cover
exceptions later in this chapter.

The code also implements a second read-only indexer based on SSN.This
illustrates that an indexer can be implemented using more than just the index of
an entry in the list. In the Main method of the program, you can see the fol-
lowing statement:

Enpl oyee enpl oyee = enpl oyees["777-77-7777"];

This code calls our SSN indexer implementation. The SSN indexer loops
through the Employee instances contained in the m_Employees ArrayList. If it finds
an Employee instance that has the SSN requested, it returns that Employee instance.
If it doesn’t find it, it returns null.

In C#, the foreach keyword is used to iterate through a list of objects con-
tained within another object. Here is what our sample program would look like
using foreach:

foreach ( Enpl oyee enpl oyee in enpl oyees )

{
string nane = enployee.FirstNane + " " +
enpl oyee. M ddl eNane + " " + enpl oyee. Last Nane;
string ssn = enpl oyee. SSN;
Consol e. WiteLine( "Nane: {0}, SSN. {1}", name, ssn );
}

To use the foreach keyword, the class that contains the list must implement the
IEnumerable interface contained within the System.Collections namespace. The

www.syngress.com



Introducing C# Programming * Chapter 2

IEnumerable interface has one responsibility: return an instance of an object that
implements the IEnumerator interface also from the System. Collections namespace.

The class that implements the IEnumerator interface is responsible for main-
taining the current position in the list and knowing when the end of the list has
been reached. Although this seems overly complex, it allows the flexibility of
having the implementation of IEnumerator be in the class containing the list or in
a separate class.

The complete sample that implements the IEnumerable interface is on the CD
in the Enumerable.cs file. Because the ArrayList class already implements the
IEnumerable interface, all that is necessary in the Employees class is to declare the
class as implementing the IEnumerable interface and then provide the implementa-
tion of the GetEnumerator method of the IEnumerable interface. The GetEnumerator
method simply returns the ArrayList implementation. The relevant code from the
sample on the CD that accomplishes this is shown here:

/1l <summary>
/11 Container class for enployees. This class inplenents
/1] 1Enumerabl e allowi ng use of foreach sytax
/1] </ summary>
cl ass Enpl oyees : | Enunerator
{
/1 1 Enunerabl e inplenentation, delegates |Enunerator to
/1 the Arrayli st
public | Enunerator GetEnunerator()

{

return m Enpl oyees. Get Enuner at or () ;

At first glance, indexers seem somewhat complex, and talking about them in
the abstract can be a bit confusing. However, when you see the code, it is rela-
tively simple and provides a clean and simple syntax to iterate though a list of
objects.

Using Delegates and Events

If you are familiar with Windows programming, you’ve most likely dealt with
callbacks. Callbacks are method calls that are executed when some event happens

www.syngress.com

69



70 Chapter 2 ¢ Introducing C# Programming

during processing. For instance, a callback can be established to handle the pro-
cessing of an incoming message on a communications port. Another part of the
communications program can wait for messages on a communications port and
invoke the callback whenever a new message arrives. Function pointers perform
the same sort of tasks in straight C/C++ programs.

Delegates in C# improve on method callbacks in two areas. Delegates are type
safe, unlike callbacks in Windows programming. In addition, delegates can call
more than one callback when an event occurs. This is termed multicasting.

Delegates

Let’s extend our employees sample to use delegates. This sample simulates a back-
ground process that receives messages to add new employees to the employee list.
Our queue will be a static array, but in the real world it could be a message
queue (Microsoft Message Queue [MSMQ)]), a socket, or some other type of
queue. The source code in Figure 2.7 shows the relevant portions of the sample
pertaining to delegates. The full source code for this sample is on the CD in the
file Delegates.cs.

Figure 2.7 Relevant Portions of the Delegates.cs Program Listing

usi ng System

usi ng System Col | ecti ons;

/1] <summary>
/1l Contains the programentry point for the Del egates Sanple.
/1] </ summary>

cl ass Del egat esSanpl e

{
static void Main( string[] args )
{
try
{

/]l Create a container to hold enpl oyees

Enpl oyees enpl oyees = new Enpl oyees(4);

/1l Create and drain our simulated nessage queue

Enpl oyeeQueuelbni tor monitor =

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.7 Continued

new Enpl oyeeQueueloni tor( enpl oyees );

monitor.start();

nmoni tor. stop();
/1 Display the enployee list on screen
Consol e. Wi teLi ne(

"List of enployees added via delegate:" );

foreach ( Enpl oyee enpl oyee in enpl oyees )

{
string name = enployee.FirstName + " " +
enpl oyee. M ddl eNane + " " + enpl oyee. Last Nane;
string ssn = enpl oyee. SSN,
Consol e. WiteLine( "Nane: {0}, SSN. {1}", name, ssn );
}
}
catch ( Exception exception )
{
/1 Display any errors on screen
Consol e. WitelLi ne( exception. Message );
}

/1] <summary>

/11 Simul ates our nessage queue.
/1l </ summary>

cl ass Enpl oyeeQueueMoni t or

{
/1 Del egate signature

Continued

www.syngress.com

71



72 Chapter 2 ¢ Introducing C# Programming

Figure 2.7 Continued

public del egate void AddEvent Cal | back( string FirstNane,
string LastName, string M ddleNanme, string SSN );

/1 Instance of the del egate
private AddEvent Cal | back m addEvent Cal | back;

private Enpl oyees m enpl oyees;

private int m.lengthQeue;

private string[, ] mnsgQueue =

{
{"Tinmothy", "Arthur", "Tucker", "555-55-5555"},
{"Sally", "Bess", "Jones", "666-66-6666" },
{"Jeff", "Mchael", "Sims", "777-77-7777"},
{"Jani ce", "Anne", "Best", "888-88-8888" }

i

publ i c Enpl oyeeQueueMoni tor ( Enpl oyees enpl oyees )

{
m_enpl oyees = enpl oyees;
m | engt hQueue = 4;
/'l Create an instace of the delegate and register the
/1 addEnpl oyee nmethod of this class as a call back.
m_addEvent Cal | back = new AddEvent Cal | back(
t hi s. addEnpl oyee );
}

/1 Drain the queue.

public void start()
{

if ( menployees == null )

return;

Continued
www.syngress.com




Introducing C# Programming * Chapter 2 73

Figure 2.7 Continued

for (int i =0; i < mlengthQueue; i++ )
{
string FirstNanme = mnmsgQueue[i, 0];
string M ddl eName = m nsgQueue[i, 1];
string LastNane = m nsgQueue[i, 2];
string SSN = m nsgQueue[i, 3];

/] Invoke the call back registered with the del egate

Consol e. WiteLine( "Invoking del egate" );

m addEvent Cal | back( FirstNanme, LastName, M ddl eNane,
SSN ) ;

public void stop()
{
/'l In a real conmunications program you would shut down

/1 gracefully.

/1 Called by the del egate when a nessage to add an enpl oyee

/1l is read from the nessage queue.

public void addEnpl oyee( string FirstName, string M ddl eNane,
string LastNane, string SSN )

{
Consol e. WiteLine( "In del egate, adding enployee\r\n" );
int index = m.enpl oyees. Lengt h;
m enpl oyees[i ndex] = new Enpl oyee ( FirstNane, M ddl eNane,
Last Name, SSN );
}

www.syngress.com



Chapter 2 ¢ Introducing C# Programming

Single Cast

The source code in the previous section is an example of a single cast delegate. A
single cast delegate invokes only one callback method. Let’s examine our previous
sample to see this.

The EmployeeQueueMonitor class simulates a message queue. It contains a static
array that holds the current messages. At the top of Employee QueueMonitor are the
following lines:

public del egate void AddEvent Cal | back( string FirstName,
string LastNane, string M ddl eNanme, string SSN );

private AddEvent Cal | back m addEvent Cal | back;

The first statement defines a delegate and the parameters an object instance
of the delegate takes. In this case, we callback to a method that takes first name,
last name, middle name, and SSN. We do this whenever a request to add a new
employee appears in the message queue.

The second statement declares a member variable to hold our delegate. It is
initially set to null. A new object instance must be created prior to making
method calls through the delegate. An object instance is instantiated in the con-
structor of Employee QueueMonitor.

m addEvent Cal | back = new AddEvent Cal | back( this.addEnpl oyee );

This statement creates a new object instance of the delegate. The delegate
takes as an argument the method to call when the delegate is invoked. In this
case, whenever the delegate is invoked, the method that will execute is
Employee QueneMonitor.add Employee.

In the start method of EmployeeQueueMonitor is the following code:
for (int i = 0; i < mlengthQueue; i++ )

{

string FirstName = m nmsgQueue[i, 0];

string M ddl eNanme = m nsgQueue[i, 1];

string Last Nane = m nsgQueue[i, 2];

string SSN = m nmsgQueue[i, 3];

/1 I nvoke the callback registered with the del egate

Consol e. WiteLine( "lInvoking del egate" );

www.syngress.com



Introducing C# Programming * Chapter 2

m addEvent Cal | back( FirstName, LastNarme, M ddl eName, SSN );

This code simulates draining the message queue of any waiting messages. The
callback function is invoked by treating the m_addEventCallback member variable
as if it were a method call passing it our four parameters. Note that you do not
specify the callback itself when making the call. The delegate maintains the
address of the callback internally and therefore knows the method to call. The
following example shows what not to do:

/'l Incorrect
m_addEvent Cal | back. addEnpl oyee( First Nane, LastName, M ddl eName, SSN );

Multicast

The true power of delegates becomes apparent when discussing multicast dele-
gates. Let’s extend our previous example a bit further. Because background pro-
cesses do not usually have a user interface for human interaction, they typically
log incoming events for later review. Let’s add a second callback to our sample to
log incoming add employee requests. The relevant snippets of code are shown in
Figure 2.8. The full source code is for this sample 1s on the CD in the file
Multicasting.cs.

Figure 2.8 Relevant Portions of the Multicasting.cs Program Listing

cl ass Enpl oyeeQueueMoni t or
{

/1 Delegate signature for add enpl oyee event call back
public del egate void AddEvent Cal | back( string FirstNane,
string LastNanme, string Mddl eName, string SSN );

/1 Instance of the del egate
private AddEvent Cal | back m addEvent Cal | back;

private Enpl oyeeQueuelLogger m | ogger;

publ i c Enpl oyeeQueueMoni tor ( Enpl oyees enpl oyees )
{

Continued

www.syngress.com

75



76

Chapter 2 ¢ Introducing C# Programming

Figure 2.8 Continued

m_enpl oyees = enpl oyees;

m_| engt hQueue = 4;

m_| ogger = new Enpl oyeeQueuelLogger( "log.txt" );

/!l Register the methods that the delegate will

i nvoke when an

/1 add enpl oyee nessage is read fromthe nessage queue

m addEvent Cal | back =

new AddEvent Cal | back( this.addEnpl oyee );

m addEvent Cal | back +=

new AddEvent Cal | back( m.| ogger.| ogAddRequest );

/1 Drain the queue.
public void start()

{
if ( menployees == null )
return;
for (int i = 0; i < mlengthQeue; i++ )

{
string FirstNane = m nmsgQueue[i, 0];
string M ddl eName = m nmsgQueue[i, 1];
string LastNane = mnsgQueue[i, 2];

string SSN = m nmsgQueue[i, 3];

Consol e. WiteLine( "Invoking del egate" );

/1 1nvoke the del egate passing the data associated with

/1 adding a new enployee resulting in the subscribed

/1 cal |l backs met hods bei ng execut ed,

/1 Enpl oyees. this. addEnpl oyee()

namel y

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.8 Continued

/1 and Enpl oyeeQueuelLogger .| ogAddRequest ()
m_addEvent Cal | back( FirstNanme, LastNane, M ddl eNane,
SSN ) ;

/1 Called by del egate whenever a new add enpl oyee nessage

/| appears in the message queue. Notice the signature matches

/1 that requried by AddEvent Cal | back

public void addEnpl oyee( string FirstNane, string M ddl eNane,
string LastName, string SSN )

{
Consol e. WiteLine( "In del egate, adding enployee\r\n" );
int index = menpl oyees. Lengt h;
m enpl oyees[i ndex] = new Enpl oyee ( FirstNane, M ddl eNane,
Last Name, SSN );
}

/1l <summary>
/1l Wites add enpl oyee events to a |log fil e.
/11 </ sumrary>

cl ass Enpl oyeeQueuelogger
{

string mfil eNane;
publ i ¢ Enpl oyeeQueuelLogger ( string fil eNane )

{

m fil eName = fil eNane;

/1 Called by del egate whenever a new add enpl oyee nessage

Continued

www.syngress.com

77



78 Chapter 2 ¢ Introducing C# Programming

Figure 2.8 Continued

/1 appears in the nessage queue. Notice the signature matches

/1 that requried by AddEventCal | back

public void | ogAddRequest( string FirstName, string LastName,
string M ddl eNane, string SSN )

{
string nane = FirstName + " " + MddleName + " " + Last Nane;
Fil eStream stream = new FileStrean( mfil eNane,

Fi | eMbde. OpenOr Create, Fil eAccess. ReadWite);
StreanmWiter witer = new StreanWiter( stream);
writer.BaseStream Seek( 0, SeekOrigin.End );
witer.Wite("{0} {1} \n", DateTi me. Now. ToLongTi meString(),

Dat eTi me. Now. ToLongDat eString());
witer.Wite( "Adding enpl oyee - Nanme: {0}, SSN. {1}",

nane, SSN );
witer.Wite("\n---------ommmm oo \n\n");
writer. Flush();
writer.d ose();

}

A new class, EmployeeQueuneLogger, has been added. It has a method
logAddRequest, which logs requests to add employees to a log file. The important
thing to note is that the logAddRequest method has a signature that matches the
AddEventCallback delegate signature. An instance of the logger is created in the
constructor of EmployeeQueueMonitor. The code that wires up the delegates 1s also
in the constructor and is shown here:

m | ogger = new Enpl oyeeQueuelLogger( "log.txt" );
m_addEvent Cal | back = new AddEvent Cal | back( this.addEnpl oyee );
m addEvent Cal | back += new AddEvent Cal | back(

m | ogger . | ogAddRequest );

www.syngress.com



Introducing C# Programming * Chapter 2 79

First, a new logger instance is created. Next, the delegate is initialized with a
first callback function to the addEmployee method of Employee QueneMonitor.
Finally, a second callback is added to the delegate, which will invoke the
logAddRequest of the EmployeeQueneLogger class. Notice that the plus sign 1s used
to add the second callback to the delegate. The plus sign (addition operator) has
been overloaded in the System.Delegate class of the .NET Framework to call the
Combine method of that class. The Combine method adds the callback to the list of
methods the delegate maintains. The minus sign (subtraction operator) is also
overloaded to call the Remove method, which removes a callback from the list of
methods the delegate maintains. The rest of the source code remains unchanged.
When the delegate is invoked in the start method of Employee QueueMonitor, both
EmployeeQueneMonitor.add Employee and Employee QueueLogger.logAddRequest are
executed.

Events

The event model is often referred to as the publish/subscribe model or the listener
pattern. The idea behind the event model is that a class publishes the events that it
can raise. Consumers of the class object subscribe to the events they are interested
in. When the event occurs, the object that monitors the event notifies all sub-
scribers that the event has been raised. The subscribers then take some action.

The event model is often used in GUI programs. Handlers are set up for
common events, such as pressing a button. When the button press event occurs,
all subscribers registered for the button press event are invoked. The .NET
Framework uses the event model and in particular the System.Event delegate for
Windows Forms—based applications.

The .NET Framework supplies a built in delegate of type System.Event. The
idea of events in the .NET Framework is to supply a single signature for the del-
egate regardless of the data that is passed to the subscribed callback. One of the
arguments for the Event delegate is an object derived from the .NET Framework
class System.EventArgs, which contains the data the callback needs.You declare a
class derived from System.EventArgs with the data your callback needs. When the
event takes place, you instantiate your derived EventArgs object and invoke the
event. Callback functions subscribed to the event are called passing the object
derived from EventArgs. Changes to the multicast delegate code sample that
implement events are shown in Figure 2.9.The full source code for this sample i1s
on the CD in the file Events.cs.

www.syngress.com



-

80 Chapter 2 ¢ Introducing C# Programming

Figure 2.9 Relevant Portions of the Events.cs Program Listing

o /1] <summary>

/1l Defines the data that will be passed fromthe event delegate
/11 the callback method when the event is raised

/11 <l summary>

cl ass AddEnpl oyeEvent Args : Event Args

{
string m_FirstNane;
string m Last Name;
string m M ddl eNane;
string m_SSN,
publ i ¢ AddEnpl oyeEvent Args( string FirstNang,
string LastName, string M ddl eName, string SSN )
{
m Fi rst Name = First Nane;
m _Last Nanme = Last Nane;
m M ddl eNanre = M ddl eNane;
m SSN = SSN,
}
/1 Event argunent properties contain the data to pass to the
/1 callback methods subscribed to the event.
public string FirstName { get { return mFirstNane; } }
public string LastNane { get { return m.lLastNane; } }
public string M ddl eName {get { return mM ddl eNane; } }
public string SSN { get { return mSSN, } }
}

/1l <summary>

to

/11 Simulates nonitoring a nessage queue. Wen a nmessage appears

/1] the event is raised and nethods subscribed to the event
[/l are invoked.

/11 </ summary>

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.9 Continued

cl ass Enpl oyeeQueueMoni t or

{

/1l Event signature for AddEnpl oyeeEvent
public del egate voi d AddEnpl oyeeEvent ( object sender,
AddEnpl oyeEvent Args e );

/'l Instance of the AddEnpl oyeeEvent
public event AddEnpl oyeeEvent OnAddEnpl oyee;

private Enpl oyeeQueuelLogger m.| ogger;

private Enployees m enpl oyees;

private int m.l engthQueue;

private string[, ] mnsgQueue =

{
{"Tinmothy", "Arthur", "Tucker", "555-55-5555"},
{"Sally", "Bess", "Jones", "666-66-6666" },
{"Jeff", "Mchael", "Sinms", "777-77-7777"},
{"Jani ce", "Anne", "Best", "888-88-8888" }

b

publi ¢ Enpl oyeeQueueMonitor( Enpl oyees enpl oyees )
{
m_enpl oyees = enpl oyees;

m | engt hQueue = 4;

m_| ogger = new Enpl oyeeQueuelLogger( "log.txt" );

/!l Register the methods that the Event will invoke when an add
/1 enployee nessage is read fromthe nessage queue
OnAddEnpl oyee +=

new AddEnpl oyeeEvent ( this. addEnpl oyee );

Continued

www.syngress.com

81



82

Chapter 2 ¢ Introducing C# Programming

Figure 2.9 Continued

OnAddEnpl oyee +=
new AddEnpl oyeeEvent ( m.| ogger.| ogAddRequest );

/1 Drain the queue.
public void start()

resul ting

{

if ( menployees == null )
return;

for (int i = 0; i < mlengthQueue; i++)

{
/1 Pop an add enpl oyee request off the queue
string FirstNane = m nmsgQueue[i, 0];
string M ddl eName = m nmsgQueueli, 1];
string LastNane = mnsgQueue[i, 2];
string SSN = m nmsgQueue[i, 3];
Consol e. WiteLine( "Invoking del egate" );
/1l Create the event argunents to pass to the nethods
/'l subscribed to the event and then invoke event
/1 in the callbacks nethods being executed, nanely
/'l Enpl oyees.this.addEnmpl oyee() and
/'l Enpl oyeeQueuelLogger. | ogAddRequest ()
AddEnpl oyeEvent Args args = new AddEnpl oyeEvent Args( First Naneg,

Last Nare, M ddl eNane, SSN );

OnAddEnpl oyee( this, args );

}

}

public void stop()
{

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.9 Continued

/1 In a real conmmunications program you would shut down

Il gracefully.

/1 Called by event whenever a new add enpl oyee nessage appears

/1 in the nmessage queue. Notice the signature matches that required
/1 by System Event

public void addEnpl oyee( object sender, AddEnpl oyeEventArgs e )

{
Consol e. WiteLine( "In del egate, adding enployee\r\n" );

int index = menpl oyees. Lengt h;
m enpl oyees[i ndex] = new Enpl oyee ( e.FirstName, e.M ddl eNaneg,
e. Last Nane, e.SSN );

/1] <summary>

/1l Wites add enpl oyee events to a |log fil e.
/1] </ sumrary>

cl ass Enmpl oyeeQueuelogger

{

string mfil eNane;

publ i c Enpl oyeeQueuelLogger ( string fil eNane )
{

m fil eName = fil eNane;

/1 Called by event whenever a new add enpl oyee nessage appears

/1 in the nmessage queue. Notice the signature matches that required
/1 by System Event

public void | ogAddRequest ( obj ect sender, AddEnpl oyeEventArgs e )

Continued

www.syngress.com

83



84 Chapter 2 ¢ Introducing C# Programming

Figure 2.9 Continued

{
string nane = e.FirstNane + " " + e.MddleNane + " " +
e. Last Nane;
Fil eStream stream = new FileStrean( mfil eNane,

Fi | eMbde. OpenOr Create, Fil eAccess. ReadWite);
StreamWiter witer = new StreanWiter( stream);
writer.BaseStream Seek( 0, SeekOrigin.End );
witer.Wite("{0} {1} \n", DateTi me. Now. ToLongTi meString(),

Dat eTi me. Now. ToLongDat eString());
witer.Wite( "Adding enpl oyee - Nanme: {0}, SSN. {1}",

nane, e.SSN );
witer. Wite("\n-------mmmmmm e \n\n");
writer. Flush();
writer.d ose();

}

A new class, AddEmployeEventArgs, has been added. It contains the informa-
tion that will be passed to callback methods subscribed to the event. Notice the
data members of the AddEmployeEventArgs class are the same as the signature for
the AddEventCallback delegate in our previous sample. Instead of invoking the
callback with individual arguments, when using events, you pass a class object,
which contains the arguments instead.

Just as with the delegates samples, we declare the signature and create a
member variable for the delegate in Employee QueueMonitor class. The only differ-
ence is that the signature matches the signature necessary for events. The first
parameter 1s the object that raised the event, and the second is the object instance
that contains the arguments passed to subscribed callback methods. This is shown
here:

public del egate void AddEnpl oyeeEvent ( object sender,

www.syngress.com



Introducing C# Programming * Chapter 2

AddEnpl oyeEvent Args e );
public event AddEnpl oyeeEvent OnAddEnpl oyee;

In the constructor of the class, we subscribe the callback methods to the
event as shown here:

OnAddEnpl oyee +=

new AddEnpl oyeeEvent ( this. addEnpl oyee );
OnAddEnpl oyee +=

new AddEnpl oyeeEvent ( m | ogger. | ogAddRequest );

The callback methods have the correct signature for event callbacks. Here are
the callback method’s signatures:

public void addEnpl oyee( object sender, AddEnpl oyeEventArgs e )
public void | ogAddRequest ( object sender, AddEnpl oyeEventArgs e )

When an add employee message is popped off the queue in the start method
of EmployeeQueueMonitor, an instance of the AddEmployeeEventArgs is created and
the event is invoked. Here is the code that accomplishes this:

AddEnpl oyeEvent Args args = new AddEnpl oyeEvent Args( First Nane,
Last Nane, M ddl eNanme, SSN );
OnAddEnpl oyee( this, args );

As you can see, using events instead of delegates is really just a syntactic dif-
terence. The code is nearly identical. The main benefit is that you don’t have a
different delegate signature for every delegate you create based on the data that is
passed to subscribed callbacks. Instead, the standard event delegate signature will
suftice.

Using Exception Handling

If you look through the .NET Framework SDK documentation, you won't find
an error code returned from any method calls in the library. Instead, the
Framework uses exceptions to indicate errors that occur. To illustrate exceptions,
consider the code snippet in Figure 2.10 that builds upon the Enumerable sample
from the Indexers section of this chapter. The complete sample is included on the
CD in the file Exceptions.cs.

www.syngress.com

85



-2

86 Chapter 2 ¢ Introducing C# Programming

Figure 2.10 Relevant Portions of the Exceptions.cs Program Listing

usi ng System

usi ng System Col | ecti ons;

&

I <summary>
/1l Contains the programentry point for the Exceptions Sanple.
/1l </ summary>

cl ass ExceptionsSanpl e

{
static void Main( string[] args )
{
try
{

/] Create a container to hold enpl oyees

Enpl oyees enpl oyees = new Enpl oyees(4);

/1 Add sone enpl oyees
addOneEnpl oyee ( enpl oyees, "Tinothy", "Arthur”,
"Tucker", "555-55-5555" );

addOneEnpl oyee ( enpl oyees, "Sally", "Bess",

"Jones", null );

addOneEnpl oyee ( enpl oyees, "Jeff", "Mchael",
"Simms", "777-77-7777" ) ;

addOneEnpl oyee ( enpl oyees, "Janice", "Anne",
"Best", "9888-88-88889" );

/1 Display the enployee |list on screen
foreach ( Enpl oyee enpl oyee in enpl oyees )
{

string name = enployee.FirstName + " " +

enpl oyee. M ddl eNane + " " + enpl oyee. Last Naneg;

www.syngress.com

Continued



Introducing C# Programming * Chapter 2

Figure 2.10 Continued

string ssn = enpl oyee. SSN;

Consol e. WiteLine( "Nane: {0}, SSN. {1}", name, ssn );

}
}
catch ( Exception exception )
{
/] Display any errors on screen
Consol e. WitelLi ne( exception. Message );
}

/'l Hel per method to add an enployee to the |ist

static void addOneEnpl oyee( Enpl oyees enpl oyees,
string FirstNane, string M ddl eNane, string LastNang,
string SSN )

bool addedEnpl oyee = fal se;

try
{
Consol e. WitelLine( "Adding an enpl oyee" );

/1 SSN cannot be NULL, throw exception
if ( SSN == null )
throw new Argunent Nul | Exception( "SSN is null!" );

/] SSN length nust be 11, throw exception
if ( SSN. Length !'= 11 )
t hrow new Argunent Qut OF RangeExcepti on(
"SSN length invalid!'" );

Continued

www.syngress.com

87



88 Chapter 2 ¢ Introducing C# Programming

Figure 2.10 Continued

/1 Add the enpl oyee
enpl oyees[ enpl oyees. Length] = new Enpl oyee ( FirstName,
M ddl eName, LastNanme, SSN );

addedEnpl oyee = true;

}
catch ( Argunent Qut OF RangeExcepti on exception )
{
Consol e. WiteLine( "W caught ArgunentQut Of RangeException” );
Consol e. WitelLi ne( exception. Message );
}
catch ( Argunent Nul | Excepti on exception )
{
Consol e. WitelLine( "W caught ArgunentNul | Exception" );
Consol e. WiteLi ne( exception. Message );
}
catch ( Exception exception )
{
Consol e. WiteLine( "W caught a base exception" );
Consol e. Wi telLi ne( exception. Message );
}
catch
{
Consol e. WiteLi ne( "W caught an unknown exception"” );
Consol e. WiteLi ne( "Unknown exception caught!" );
}
final | 'y
{
if ( addedEnpl oyee == true )
Consol e. WiteLine( "Add was successful\r\n" );
el se
Consol e. WiteLine( "Add failed\r\n" );
}

Continued

www.syngress.com



Introducing C# Programming * Chapter 2

Figure 2.10 Continued
}

Using the try Block

Code that may throw an exception is placed inside a fry block. In this example,
the addOneEmployee method has a try block surrounding the code that will add a
new employee to the list of employees. If an exception is thrown in a fry block,
control 1s passed to the catch block.

Using the catch Block

The catch block is where you handle exceptions that are thrown. The first exception
type that matches the exception thrown has control passed to its block of source
code. In our example, if SSN length is not 11, an ArgumentOut OfRangeException
exception is thrown. This results in execution of the catch block of

ArgumentOut OfRangeException.

You should order your catch blocks so that the most general exceptions come
last. If you put the general exceptions at the top of your catch blocks, they will
always catch the exception. This can cause problems if you need to do special
processing based on the exception type. Because all exceptions in the .NET
Framework derive from System.Exception, the last two catch blocks in our sample
are equivalent. They will catch any exceptions that are not caught by a more spe-
cific exception above. They are both shown in Figure 2.10 for completeness.

Using the finally Block

The finally block is the last part of a try-catch-finally block for handling exceptions.
The finally block 1s always executed regardless of whether an exception was
thrown. Typically, finally blocks include cleanup code, such as closing files or
databases. You do not have to include a finally block if you have no need to do
special processing. In our example, the finally block prints a different message
based on whether an exception was thrown.

Using the throw Statement

You can throw exceptions to indicate errors that occur in your programs by using
the throw keyword. To throw an exception, you create a new instance of a

www.syngress.com

89



20

&

Chapter 2 ¢ Introducing C# Programming

System. Exception class that indicates the type of exception encountered. Exceptions
derived from the System.Exception class take a message, which you can set as one
of the parameters. The code that catches the exception can retrieve the message
for display or logging purposes. In the previous sample code, an exception is
thrown when SSN is null or is not eleven characters in length. Here is the rele-
vant code:

/1 SSN cannot be NULL, throw exception
if ( SSN == null )
t hrow new Argunent Nul | Exception( "SSNis null!" );

/1 SSN I ength must be 11, throw exception
if ( SSN. Length !'= 11 )
t hrow new Argunent Qut OF RangeException( "SSN length invalid!'" );

The CLR will also throw exceptions if it encounters errors. For instance, it
will throw an error if a divide-by-zero operation is attempted. If an exception is
thrown, and the method it is thrown in doesn’t contain a catch block, the CLR
will look for a catch block in the calling method, if one exists. It will keep looking
for a catch block up the call chain until it finds one that matches or until it has
reached the top-level method call. If it still doesn’t find a match, the system will
handle the exception. This typically results in an error message being displayed
and the program being aborted. You need to understand that even though you
may not throw any exceptions, the runtime may. So, if you have a program that
needs to keep running indefinitely, you should catch exceptions somewhere in
the call chain and then continue executing your application.

All of the exceptions in the sample are ones defined by the .NET
Framework. You can define your own exceptions as well. Typically, you just need
to derive your own exception from the System.Exception class provided by the
Framework and implement any behavior specific to your custom exception.
Before you can do that however, you need to understand inheritance in C#—we
cover that next.

Understanding Inheritance

Inheritance and polymorphism are the two characteristics that make object-ori-
ented programming languages so powerful. Many books, articles, and Web sites
have been written explaining the subjects with flowing prose. We distill it down
to a couple of short sentences. Inheritance means you can create a new type of

www.syngress.com



Introducing C# Programming * Chapter 2

object B that inherits all of the characteristics of an existing object A.
Polymorphism means that this new object B can choose to inherit some character-
istics and supply its own implementation for others.

Just in case it needs a bit more explanation, here is an example. Throughout
this chapter, you have seen examples that use the Employee class. An employee in
our case has a first name, middle name, last name, and SSN. What happens when
we add in wage information? Now we have two difterent types of employees:
salaried and hourly. They both still have the original characteristics of an
employee but one now has an hourly wage and the other a yearly salary. When
you need to run payroll for the employees, each type of employee’s pay is calcu-
lated differently.

One way to solve this would be to put a flag in the Employee class indicating
hourly or salaried. Then whenever you need to do something that requires
knowledge of the type of employee, you have to check the flag and do the
appropriate thing. This works fine for our simple example, but what if there are
20 kinds of things? Suddenly, a lot of code is spent just checking what type of
thing it is before doing further processing.

Fortunately we have inheritance to help us solve this problem. Inheritance
lets you create two new types of employees—hourly and salaried—that inherit all
of the characteristics of the Employee class. Here are the declarations of the two
new classes. We get to the implementations in a moment.

cl ass Sal ari edEnpl oyee : Enpl oyee

{
}

cl ass Hourl yEnpl oyee : Enpl oyee

{
}

The text to the right of the colon indicates the base class of the new class.
Therefore, both SalariedEmployee and HourlyEmployee each have Employee as their
base class, or you can say they are derived from Employee. This means that they
inherit all of the characteristics of the Employee class. For instance, you can instan-
tiate a new Salaried Employee object and write code like this:

string LastNane = sal ari edEnpl oyee. Last Nane;

www.syngress.com

91



92

Chapter 2 ¢ Introducing C# Programming

That solves our first problem.You now have two types of employees to
manipulate. But you still don’t have a way to calculate payroll. Derived classes can
override methods defined in the base class. So one way to solve this is to create a
new base class method named getPayroll and have both classes write their own
implementation of the method. Portions of the class implementations are shown
here to demonstrate this:

cl ass Enpl oyee

{
virtual public double getPayroll()
{
return 0.O0;
}
}

cl ass Sal ari edEnpl oyee : Enpl oyee

{
private double m Sal ary;
public Sal ari edEnpl oyee( double Salary )
{
m Sal ary = Sal ary;
}
override public double getPayroll ()
{
return mSalary / 12;
}
}

cl ass Hourl yEnpl oyee : Enpl oyee

{
private double m Hourl yRate;

private doubl e m HoursWrked;

publ i c Hourl yEnpl oyee ( doubl e HourlyRate )

www.syngress.com



Introducing C# Programming * Chapter 2 93

m Hour | yRat e = Hourl yRat e;

publ i ¢ doubl e Hour sWrked
{
get { return m HoursWrked; }

set { m HoursWrked = val ue; }

override public double getPayroll ()

{
return m HoursWrked * m Hourl yRat e;

Notice that all three classes have a getPayroll method. The Salaried Employee
class calculates monthly payroll by dividing yearly salary by 12. The Hourly Employee
class calculates payroll by multiplying pay rate by the number of hours worked.
This is exactly what we want. Each type of employee calculates payroll the appro-
priate way. Notice the getPayroll method of the Employee class is prefaced with the
keyword virtual. Also notice that the SalariedEmployee and HourlyEmployee classes
are prefaced with the keyword override. The virtual keyword indicates that if a
derived class provides the same method with the same signature and is prefaced
with the override keyword, call the derived classes implementation instead of the
base classes. The best way to explain is with a simple example:

Enpl oyee enpl oyee = new Enpl oyee();

Sal ari edEnpl oyee sal ari edEnpl oyee = new Sal ari edEnpl oyee( 600000 );
Hour | yEnpl oyee hour | yEnpl oyee = new Hourl yEnpl oyee( 10.00 );

hour | yEnpl oyee. Hour sWorked = 10;

Consol e. Wi teLine( enpl oyee. getPayroll () );
Consol e. Wi teLine( sal ari edEnpl oyee. get Payrol 1 () );
Consol e. Wi teLi ne( hourl yEnpl oyee. get Payroll () );

The resulting output would be as follows:

www.syngress.com



94

Chapter 2 ¢ Introducing C# Programming

0
5000
100

This is just what you would expect. Each type of employee returns the cor-
rectly calculated payroll amount. This is polymorphism at work. We can choose to
inherit those things that are common and implement those things that aren’t in
derived classes.

Let’s take a further look at polymorphism. The true power of polymorphism
allows you to use a derived class when an object of the base class is specified. The
tollowing code demonstrates this:

Enpl oyee enpl oyee = new Enpl oyee();

Sal ari edEnpl oyee sal ari edEnpl oyee = new Sal ari edEnpl oyee( 600000 );
Hour | yEnpl oyee hourl| yEnpl oyee = new Hour| yEnpl oyee( 10.00 );

hour | yEnpl oyee. Hour sWor ked = 10;

di spl ayPayr ol | Amount ( enpl oyee );
di spl ayPayr ol | Amount ( sal ari edEnpl oyee );

di spl ayPayr ol | Amount ( hour | yEnpl oyee );

public void displayPayrol | Anount ( Enpl oyee enpl oyee )

{
Consol e. Wi teLine( enployee.getPayroll () );
}
The resulting output would once again be as follows:
0
5000
100

Notice that the displayPayrollAmount method takes an Employee object as a
parameter. But it is passed an instance of both SalariedEmployee and
HourlyEmployee. The displayPayrollAmount method also displays the payroll amount
appropriate to the class type passed in. This is polymorphism at work. A
SalariedEmployee is an Employee, and an HourlyEmployee is an Employee as far as the

www.syngress.com



Introducing C# Programming * Chapter 2

CLR is concerned. So any method that expects an object of class type Employee
will also take an object of class types Salaried Employee or HourlyEmployee.

There is still one odd thing about the code. The class Employee returns zero if
displayPayrollAmount is called. In truth, it doesn’t make any sense to create an
object of type Employee. All employees must be salaried employees or hourly
employees. But with the current code, nothing is stopping a programmer from
instantiating a class object of type Employee.

Fortunately, in C# you can make the Employee class an abstract class, and the
compiler will generate an error if an object of type Employee is created. Here are
the changes necessary to the enable this:

abstract class Enpl oyee

{
abstract public double getPayroll();

If you now try to create an instance of Employee, such as

Empl oyee enpl oyee = new Enpl oyee();

the compiler will generate an error saying it cannot create an abstract class
Employee.

Notice that the Employee class declaration uses the keyword abstract. This indi-
cates to the compiler that an object of this class type can never be created.
Another change is that the getPayroll() method is also prefixed by the keyword
abstract. Notice that we supply only the signature for the method and no imple-
mentation. The abstract keyword indicates that a derived class must implement the
method. Note the distinction between the virtual and abstract keywords applied to
a base class method. The virtual keyword says the derived class is free to imple-
ment its own version of a method. If the derived class does not implement the
method, the base classes method will execute when called. The abstract keyword
says that the derived class must implement the method.

You can apply one other keyword to classes. The sealed keyword indicates that
the class cannot be used as a base class. Use the sealed keyword if you never want
other classes to derive from a class.

The getPayroll method shown in the examples in this section could also be
written as a property. Let’s take a look at how the code would change to support
this. The full source code for the three classes is shown here (the code is also
included on the CD in a sample program in the file Payroll.cs):

www.syngress.com

95



Chapter 2 ¢ Introducing C# Programming

/1] <summary>
/1l Base class for an enployee. Note that this is an abstract class
/11 and therefore cannot be instantiated.
/11 </ summary>
abstract class Enpl oyee
{
private int mlD;
private string mfirst Nane;
private string mm ddl eNane;
private string m.l ast Nane;

private string mSSN,

public Enployee( int ID, string FirstNane, string LastNane,
string M ddl eNane, string SSN )

{
mID = ID
m first Nane = First Nane;
m_m ddl eName = M ddl eNane;
m | ast Name = Last Nane;
m SSN = SSN;

}

abstract public double Payroll

{
get;

public int 1D
{

get { return mID;, }

public string FirstName
{

www.syngress.com



111
111
111
111

cl ass Sal ari edEnpl oyee :

{

Introducing C# Programming * Chapter 2

get { return mfirstNane; }

set { mfirst Nane

= val ue; }

public string M ddl eNane

{

get { return m.m ddl eNane; }

set { mmddl eNane = val ue; }

public string LastNane

{

get { return m.lastNane; }

set { ml ast Nane

public string SSN
{

= val ue; }

get { return mSSN, }

set { mSSN = value; }

<sunmar y>

Sal ari ed enpl oyee class. Inplenments the abstract

defined in the base class.

</ sumary>

Enpl oyee

private double m Sal ary;

public Sal ari edEnpl oyee( int ID, string FirstNang,

string Last Nane,

doubl e Salary )

string M ddl eNane, string SSN,

met hod Payrol |

" www.syngress.com

97



98 Chapter 2 ¢ Introducing C# Programming

base( I D, FirstNane, LastNanme, M ddl eName, SSN )

m Sal ary = Sal ary;

override public double Payroll

{
get { return mSalary / 12; }

11 <summary>
/11 Hourly enployee class. Inmplements the abstract method Payroll
/11 defined in the base class. Also inplenments sonme class
/1l specific nmethods
/1] </ summary>
cl ass Hourl yEnpl oyee : Enpl oyee
{
private double m Hourl yRate;
private doubl e m HoursWrked;

public Hourl yEnpl oyee( int ID, string FirstNane,
string LastNane, string M ddl eNane, string SSN,
doubl e HourlyRate ):
base( I D, FirstNane, LastNanme, M ddl eName, SSN )

m Hour | yRate = Hourl yRat e;
m Hour sWor ked = 0;

publ i c doubl e HoursWrked

{
get { return m HoursWrked; }

set { m HoursWorked = value; }

www.syngress.com



Introducing C# Programming * Chapter 2

override public double Payroll

{
get { return mHoursWrked * mHourl yRate; }

The Employee class now has a Payroll property that is declared as abstract:

abstract public double Payroll
{

get;
}

Notice that the get method has no implementation. The Salaried Employee and
HourlyEmployee classes supply the following implementations of the property:

/1 Sal ari edEnpl oyee inpl enentation
override public double Payroll

{
get { return mSalary / 12; }

/1 Hourl yEnpl oyee i npl ement ati on
override public double Payroll

{
get { return m HoursWrked * mHourlyRate; }

}

The payroll sample program included on the CD in the file payroll.cs incor-
porates most of the concepts we have covered in this chapter. It extends the
employee message queue we have seen throughout this chapter. In particular, it
highlights the power and practical use of inheritance and polymorphism in C#.
The sample extends the messages received in the message queue to include mes-
sages that indicate hours worked for hourly employees as well as supporting the
add new employee message. After processing all of the messages in the queue, the
program lists each employee and the amount of their paycheck for the month.

www.syngress.com

29



100 Chapter 2 ¢ Introducing C# Programming

Along with the Employee, Salaried Employee, and HourlyEmployee classes just
shown, it illustrates inheritance and polymorphism in a few other classes. As men-
tioned earlier in the chapter when discussing exceptions, you can derive custom
exceptions. We have derived a new custom exception from System.Exception that
is thrown when an attempt is made to read past the end of the message queue.
Here is the declaration of the class:

/1] <summary>

/1] Custom exception which is throwm when an attenpt is nmade to
/1l read past the end of the queue.

/1] </ sumrary>

cl ass EndOf MessageQueueException @ Exception

{
public EndOf MessageQueueException( string Message )
base( Message )
{
}
}

The sample also derives the Employees message queue class directly from
ArrayList instead of including an ArrayList as a member of the class. Because
ArrayList already supports IEnumerable, there is little we need to implement our-
selves. Here is the Employees class code:

/1] <summary>
/1] Container class for enployees derived from ArraylLi st
/1l </ summary>

cl ass Enpl oyees : Arrayli st

{
public int Length
{
get { return this.Count; }
}
}

We’ve also created a new Logger base class and have derived the EmployeeLogger
class and a new ErrorLogger class from it.You can see from the following code that

www.syngress.com



Introducing C# Programming * Chapter 2 101

the Logger class performs the actual writing of text to a disk file while the other
two classes implement methods specific to the type of logging they perform:

/1l <summary>

/1l Ceneral logging class to a file. Base class for other nore

/1l specific | oggers.

/11 </ summary>

cl ass Logger

{
string mfil eNane;
public Logger( string fil eName )
{
m fil eNane = fil eNane;
}
protected void log( string text )
{
Fil eStream stream = new Fil eStrean( m fil eNane,

Fi | eMode. OpenOr Create, Fil eAccess. ReadWite);
StreamWiter witer = new StreamWiter( stream);
witer.BaseStream Seek( 0, SeekOrigin.End );
witer.Wite("{0} {1} \n", DateTi ne. Now. ToLongTi meString(),

Dat eTi me. Now. ToLongDat eString());
witer. Wite( text );
witer. Wite("\N-----mmmmm o \n\n");
writer.Flush();
writer.d ose();

}
}

/1] <summary>

www.syngress.com



102 Chapter 2 ¢ Introducing C# Programming

/1l Wites add enpl oyee events to a |og fil e.
111 </ sunmary>

cl ass Enpl oyeeQueuelLogger : Logger

{

publ i ¢ Enpl oyeeQueuelLogger ( string fil enane )
base( fil enane )

{

}

public void | ogAddRequest ( object sender,
AddEnpl oyeEvent Args e )

{
string nane = e.FirstName + " " + e.Mddl eNane + "

e. Last Nan®;

string text = "Addi ng Enpl oyee\n";
text += "EnployeelD:. " + e.ID. ToString();
text += ", Nanme: " + nane;
| og( text );

}

public void | ogHour sWorked( object sender,
Hour sWor kedEvent Args e )

{
string text = "Adding Hours Wrked\n";
text += "EnployeelD:. " + e.ID. ToString();
text += ", Hours Worked: " + e.Hours.ToString();
| og( text );

}

}

/1l <summary>
/1l Logs error neessage to a log fil e.

/1] </ summary>

www.syngress.com



Introducing C# Programming * Chapter 2 103

class ErrorlLogger : Logger
{
public ErrorLogger( string fil ename )

base( fil enanme )

public void |ogError( Exception exception )
{
| og( exception. Message );

| og( exception. StackTrace );

The payroll sample should provide you with several good examples of inheri-
tance and polymorphism. With the other samples you have seen and the concepts
discussed in this chapter, you should have a solid foundation to start creating your
own C# programs.

" www.syngress.com



104

ke

Chapter 2 ¢ Introducing C# Programming

Summary

C# 1s a modern object-oriented language. The Microsoft. NET Framework soft-
ware development kit (SDK) and a text editor are all you need to get started pro-
gramming in C#. In conjunction with the Common Language Runtime (CLR),
you can develop console applications, graphical user interface (GUI) applications,
and Web-based applications using C# and the .NET Framework.

C# includes all of the features you would expect in a modern object-ori-
ented language. It supports the notion of classes and the object-oriented nature of
classes, including inheritance and polymorphism. Classes are one of two data
types in C#, reference types, which are allocated on the heap.Value types, which
are allocated on the stack, are also supported including the usual primitive
numeric and string data types. The looping and conditional statements available
in most modern languages are part of C#, including if-else statements, switch state-
ments, for loops, while loops, and do-while loops.

C# also includes advanced features such a properties and indexers which pro-
vide intuitive syntax for accessing data members while promoting data hiding.
Delegates and events allow you to define events in your programs and set up call-
backs to subscribed class methods when the event is raised. Exception handling is
supported, which moves the clutter of error-checking outside of your main pro-
cessing, resulting in clearly defined business logic.

Solutions Fast Track

Getting Started

M C# is a modern object-oriented language.

M The Microsoft .NET Framework software development kit (SDK) and a
text editor are all you need to begin programming in C#.The Windows
family of operating systems supplies several adequate editors including
Notepad.

M Microsoft sells a feature rich development environment for developing
NET applications: Visual Studio .NET.

M You can use C# in development of console applications, graphical user
interface (GUI) applications, and Web-based applications.

| www.syngress.com




Introducing C# Programming * Chapter 2

Creating Your First C# Program

M A command-line compiler, csc.exe, is supplied with the .NET
Framework SDK.You use it to compile console applications.

M Every C# program must have a static Main method, which is the entry
point of the program. C# does not support global functions, so Main
must be a class method.

M You can use namespaces to group related classes together. The using
keyword allows you to reference a class object without prefixing it with
the full namespace.

M You can also use source code control comments to document your
program classes and methods for other programmers that may call
your code.

Introducing Data Types

M C# supports two data types: value types and reference types.

M Value types are allocated on the stack and include primitive types such as
numerics, Booleans, characters, and strings. Structures and Enums are
also value types.

M Reference types are allocated on the stack and are typically instances of
class objects.

M C# does not support pointers.

Explaining Control Structures

M C# supports the control structures you normally find in a modern
language: if-else conditional, for loop, do while loop, while loop, and the
switch statement.

M The test expression in an if-else statement must evaluate to a Boolean
value. Numeric test expressions are not supported as they are in C/C++.

M The switch statement does not support falling through to the next case
statement as it does in C/C++.

105




106

é

Chapter 2 ¢ Introducing C# Programming

Understanding Properties and Indexers

M Properties are method calls that appear to be member variables.

Properties hide the underlying data type allowing you to change the
implementation without the need to change code that uses the property.

Indexers allow you to use array syntax to access a list of objects
contained inside another class. Like properties, indexers hide the
underlying implementation allowing you to change it without the need
to change code that uses the indexer.

Implementing indexers that support the IEnumerator interface allows you
to use the for-each looping syntax to access the list objects of the indexer.

Using Delegates and Events

M You can use delegates to call subscribed method calls when a triggering

event happens. Delegates are similar to callback functions in Microsoft
Windows programs or function pointers in C++.

A single cast delegate invokes a single subscribed method. A multicast
delegate invokes more than one subscribed method.

Events are a type of a delegate that is provided for you in the .NET
Framework. Methods subscribing to an event always provide the same
set of arguments. This differs from delegates in that each delegate
provides a unique signature for its subscribed methods.

Using Exception Handling

M You use exception handling return and trap errors in C# programs.

M Exception handling uses the try-catch-finally syntax. Tiy blocks define the

code that may throw exceptions. One or more catch blocks trap and
handle exceptions of various types. The finally block is always executed
regardless of whether an exception was thrown and is typically used to
free resources.

M Because the NET Common Language Runtime (CLR) may throw

exceptions even if you don’t, you should catch exceptions somewhere
near the top of your call chain to be sure you program will continue
running.

| www.syngress.com




Introducing C# Programming * Chapter 2 107

Understanding Inheritance

M C# is an object-oriented language and as such supports inheritance and
polymorphism. Inheritance means you can create a new type of object B
that inherits all of the characteristics of an existing object A.
Polymorphism means that this new object B can choose to inherit some
characteristics and supply its own implementation for others.

M The virtual keyword is used to define methods in a base class that a '
derived class supplies its own implementation of. The override keyword is
used by a method with the same signature in the derived class to provide
a different implementation than the base class. ‘

M The abstract keyword applied to a class definition indicates that the class
is abstract and cannot be instantiated.

M The abstract keyword applied to a method call of an abstract class means
the method has no implementation in the base class and must be
implemented in the derived class.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Does C# support friend-classes like in C++?

A: No. About the closest you can come is using the internal keyword, which
allows access within the current assembly. But, there is no way to specify spe-
cific a class that knows about another class’s private implementation.

Q: I thought destructors didn’t exist in C#. Why can ['declare one?

A: You can declare a method that-looks-ike-a C++ destructor such as ~Employee().
But it really becomes a shorthand way to define System.Object. Finalize. The
Finalize method is not the same as a C++ destructor.A short explanation is
that C++ destructors are called when the call stack'unwinds. The Finalize

WWW.syngress.com



108 Chapter 2 ¢ Introducing C# Programming

method will be called when the garbage collector of the CLR is ready to
destroy the object.

Q: How do I convert a numeric type to a string?

A: Call Sytem.Object. ToString(). For example, if the variable count is an integer,
write the following:

string text = count.ToString();

Q: How do I call a member method and pass a primitive type (Value Type) by
reference?

A: Use the ref keyword when declaring the parameter of the method, for
example:

public bool GetValue( ref int returnVvalue );
This will pass the numeric by reference. You can modify the value of

returnValue within the body of Getlalue and it will persist when the method
call returns.

Q: Can I call a Win32 API function from a C# program?

- A: Yes, you can. The .NET Framework provides a set of services called Platform
Invoke, also known as Plnvoke. Refer to the .NET Framework documenta-
tion for examples of using PInvoke services.

WWW.syngress.com




Chapter 3

Visual Studio.NET

IDE

Solutions in this chapter:

| §

Introducing Visual Studio.NET
Components of VS.NET

~ Features of VS.NET
Customizing the IDE

Creating a Project

M Summary

M Solutions Fast Track

M Frequently Asked Questions

109



110

Chapter 3 ¢ Visual Studio.NET IDE

Introduction

In addition to the powerful .NET platform, Microsoft has introduced a new ver-
sion of its Visual Studio Suite, called Visual Studio.NET (VS.NET). Even in its
Beta stages, VS.NET provides the developer with powerful visual tools for devel-
oping all kinds of applications on the .NET platform.

VS.NET helps in the speedy creation and deployment of applications coded
in any of the managed languages, including C#. This chapter gets you familiar
with the new features of VS.NET and teaches you to customize it according to
your needs. We cover the many new features of VS.NET, including the .NET
Framework, Web Services, XML support, and the Integrated Development
Environment (IDE).

Also, we cover the XML editor, which has tag completion for Extensible
Stylesheet Language Transformations (XSLTs). We go over the IntelliSense feature
and how it is used in the different windows. Finally, we cover how to customize
your settings within the IDE.

VS.NET is a complete development environment. The components stay the
same regardless of language, making it very easy to switch projects and languages
and have the same features in the same place. Also, with the expanded IntelliSense
with tag completion, routine code writing is faster.

Introducing Visual Studio.NET

The Start pages deliver a great many resources for the development environment.
The Start page is the default home page for the browser inside of the IDE.You
can tap all aspects of the IDE from these pages. We go over the three most useful
Start pages, starting out with the “What’s New” page and the “My Profile” page,
and ending with the “Get Started” page. We show you what is new with VS.NET,
set up your profile, and get started using the tool.

Let’s open up VS.NET and take a look at the first of the Start pages (see
Figure 3.1).

You can filter the “What’s New” Start page to whatever topic you are inter-
ested in—we have chosen to filter by .NET Framework. All content in the
“What’s New” Start page will be rendered based on the filter, so you can save
some time by not looking up new features for VB, for example. You can also
select Check availability of Visual Studio.NET service packs from this
Start page and check to see if you need the latest download for VS.NET. Let’s
look at the “My Profile” page next, shown in Figure 3.2.

www.syngress.com



Figure 3.1 VS.NET Start Page: What's New

Visual Studio.NET IDE « Chapter 3

wisual Studin Ewtensibility
E, — e EEE =

s Ll ¥

[CANET ] O

The “My Profile” section of the Start page lets you create your own (custom)
profile or select from any of the options listed. If you happen to come from a VB

background, using the VB profile would be beneficial so that you could be
familiar with the tools from VS 6. Likewise, a C++ or Interdev user from VS 6
will benefit from the same environment. This will help you to learn the tool by

showing a familiar layout. You can also select to have only external help, which

will open the Help documentation in a new window outside of the IDE.You can
filter the Help topics; in our case, we've selected .NET Framework SDK in

www.syngress.com

111



112

Chapter 3 ¢ Visual Studio.NET IDE

the What’s New section Start page.You can also select the window layout that
you want to use.You then can select the Get Started Start page, shown in
Figure 3.3.

Figure 3.3 VS.NET Start Page: Get Started
HHquI

Gwt Harted
byt P e

_ _ ] Tebsnd oy
dnlne Commarty

Hamd Bresz : : .
_ | e LB 0L
Sawrch Onine

A o b

e e Dgenm Frajmc M Frejuck

‘Web Howhreg

My Frofile

Here you can select projects you worked on previously, and you can also see
where they are located on the machine by dragging the mouse over the name of
the file. This is a nice feature that you can use where you have two projects
named the same but at different locations.

The Start page is the default page for the Web browser window in VS.NET,
so if you close it and want to get it back, simply hit the home icon on the Web
toolbar and the page will load in the design window.

Components of VS.NET

The Visual Studio.NET IDE is made up of many components that interact with
one another.You can use each of them separately or at the same time. This feature
lets the user decide which set of components he wishes to use. All of the compo-
nents together create an intuitive graphical user interface (GUI).

Design Window

The design window is used when you are graphically creating an application using
the Toolbox to drag and drop objects onto the window. Much like the code

www.syngress.com



Visual Studio.NET IDE « Chapter 3 113

window and browser, the design window cannot be docked or set to Auto Hide.
You can split the design view or have tab groups added to it. Splitting the window
helps when you need to compare code from two separate files (see Figure 3.4).

Figure 3.4 Split Window View

d impdeb sl - Marin sl wiawasl CH NI T [desige) - w'shifsim] sspe ca
flo Bt Wew Fropct fuld [ebg  Jook  wisdow  Help
H-T-FEP| ERBR| o - e - | RER T
I 1 | W il £ @ ad LN P RPN X R
Lait g '--'-fﬂ'-l--r\-| L ‘n’#n—l.mw| o 3
From | A [ E N e
i|.. | i uring Syrtexc -
’ = uring Syxcer. Cocllecticom;
LA | § uming Syazen. Componsnclods]; 1]
“ nEIAD Bpe e, atal }_
o ) b USLAD ERaTEs, PIA]L !
ybiact uslay f!-lr.i'\--::b'a- .::ﬂ
il i g Systen.¥sb. SerrionState:
- e uring Syxter. Bab.UI;
M arh using Spacen.Bsbh. Ul . PshConcrole;
i mang Fpasen, Beh, 0T.BenlConcro Lep
H H USIAY BRaTen, Beh, Haill
E |.:.|'u::l|.-'\.--=| Fimplaflail
E: i
x:
FEAT e T W
&
E = pullie Fl&sS HMEDFGEE] HySLEt, MED. UL P
Tured Ernai | | S Frobectad Syrtam. Bak. Ul . PabControls
il | ;l_l procectad Systam. Bab.UI.WabContzole
._?(r y ||:|H'||-|. - B U T SR LS T SR p——— .I.'
| Masds [TRE] Cal 100 chin T 1jws]

Here you can see windows for both design and code. This is a C# Web appli-
cation, but the functionality is the same for any project.

Code Window

As we mentioned, the code window is much like the design window. There is no
toolbox functionality within the code view, however—you cannot drag and drop
objects from the toolbox into the code view. If you create objects in the code
view and then switch back to the design view, the objects that you added would
persist in design view. Again you cannot dock this window nor allow it to float.
You can, however, split it and add new tab groups to the display. Figure 3.5 shows
the code window split and a tab vertical tab order added.

If you look at Figure 3.5 a little more closely, you can see a collapsible menu
tree on the left-hand side. This is created every time you create a class or function,
enabling you to collapse each section independently to save space for viewing

www.syngress.com



114

Chapter 3 ¢ Visual Studio.NET IDE

other code present within the window. Note that you must have the default
option Outlining Mode checked for this to work. If you want to have line num-
bers show for your code, you will have to choose Tools | Options. In the
Options dialog box, select Text/Editors. Select C# and then choose the option
to have line numbers added.

Figure 3.5 Code View

[* e |
e B -

.. ¥ |

You may also define your own regions of code that may be collapsed. To do
this simply add the following code to your class or function you want to make
into a region:

#regi on
/1] Conments and code

#endr egi on

Server Explorer

The Server Explorer is by far one of the best features in VS.NET. From this
window you can connect to a server on the network and have full access to that
server or servers. You can also link to any database servers on the network. Let’s
see how to do that. Click the Connect to Database icon in the title bar of the
window (see Figure 3.6).You will be prompted to give all information required
for a Universal Data Link (UDL).

Fill out the UDL Wizard and test the connection. After this is done, you can
access everything within that database that the user has rights to. Let’s take a look
at that in Figure 3.7.

www.syngress.com



Visual Studio.NET IDE « Chapter 3 115

Figure 3.6 Add Database to Server Explorer

[sormErgom 4 ]
k-1

g ] (YT
5 Ef Correc] bz Dalataze

£ O

Figure 3.7 Expanded Database View

T - |
@ %3
= g Cutoa Conewsoiie
= Ty worosic MvssageDh dbo
= d;."fm-twm
H - =5 msg g

i S E R T
m LT
y Views
= [ Shoves] Fhaceden
[ AR
B sdddesinge
B st
[ s
B deiGima
i dedHzsage
[ S
B kogprisbadensin
[ Fe T
(TR SEH
v iy P

#- & Ferea

www.syngress.com



116 Chapter 3 ¢ Visual Studio.NET IDE

You can now click on any object within the Server Explorer and edit it
within VS.NET. This is a timesaver from having to have both the Query Analyzer
and VS.NET open at the same time and going back and forth between the two
just to switch a data type of one stored procedure input parameter.

Toolbox

The Toolbox, shown in Figure 3.8, includes Data, Components, Web Forms, and
Window Forms tabs. As stated earlier in the chapter, you can use the Toolbox
with the Design View window. You can drag and drop each component or con-
trol onto the design window. Also, you may customize the Toolbox by adding in
your own code fragments and renaming them to something meaningful.

Figure 3.8 The Toolbox Window
(Tookos &= x|

Ciats
\w'ab Farma -
il Weage
L] Fans
| PlaceHaider
7T Coemdm
=ES T
1 Tabe
7 Redisdsd b
M G
3 Rargeafsidaie
T gl spass sk skciedon
K Catosbdsio
T vy
I3
] Laernd
Tiph SR g
Coanparenly -
HT ML
Clpboasd Rirg
eyl

To do this, simply right-click on the Toolbox and select Add Tab. Give it a
name that is different than the existing tabs, and you are ready to add your own
tools. To add a new tool, highlight a block of code that you want to make into a
tool and drag it onto the Toolbox label you just created.

The Clipboard Ring stores all the items that you have copied in code view
automatically. You can then double-click these and add them to the source code.

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Docking Windows

One of the new features for VS.NET is that you can dock or expand or collapse
all the windows within the IDE.To add windows to your IDE, navigate to the
standard toolbar and select View; here you can select all the windows that you
want to have immediately available in your environment. One drawback to this is
that you will not have much room left to work in if you select a lot of windows
to show, but the Auto Hide feature of each window makes them slide off the
screen and embed in the side when not needed. This enables you to have max-
imum code view but still have all windows present. To see a window that has
Auto Hide enabled, simply position your mouse over the window icon on either
side of the IDE.You can dock each window into place by clicking on the pin or
by navigating to the standard toolbar and choosing the Window menu option.
Once a window is docked, it is there permanently; you can, however, make the
window float by selecting Window | Floating (see Figure 3.9).

Figure 3.9 Floating Window
Progol Bubd Detup Forst Tabde bwet Fowws oo | ek | bk

117

2~ ] I I Phakasse
Dy |
‘b Foarsd - Draclabla
K Poris b
1 A Labd [7] Eroars
i i TestBxe A0 Hide &0
3| Huben — .
= o b= Hara Hoagonial Tab Beep
Y —— [T s Weriod Tab B
5 Hypaiink: i Ciossl Docurant
|_'- PooFleeelin _El 1 whebFoan] a0
HTML 3 S1ut Fagm
Doy Firg Wi
[ ] [~

Properties Explorer

The Properties Explorer is much as it was in VS 6 and the Visual Basic IDE and
Visual Interdev IDE. Select an object from the design window, and in the
Properties Explorer, you will see available attributes for that object listed, as
shown in Figure 3.10.The right-hand column lists the property names, and the
left-hand column stores the attribute’s value. The Properties window enables
Rapid Application Development (RAD) by allowing you to quickly create a
graphical representation of the application you are building without doing any

www.syngress.com



118

Chapter 3 ¢ Visual Studio.NET IDE

coding whatsoever. Some options are available in the Properties Explorer. You can
select from the drop-down list the actual object you want to view.You can also
select the Events option and have the event available to that object displayed. You
can organize the Properties Explorer either by categories or alphabetically.

Figure 3.10 Properties Explorer
Fropabe: ___________H]

| eorSmbgect 5 i ah L 'wsbConirok. Taff oo H

i [H][m] =

1D sl e =

[Le]]
Argeslis
Pt Baok
B sk G

B iddesCokor

B ik s

[LIET ]
Finkes

]
N Tes
Hutsel

Bosdewith

Codarea n

Caillaea

E e

E rinbdeabema lfe
EH Fowd

Fraelokr 1

Hagit 2
M aal_swgih 1}
FsydCink F

Furas

T e
Tt
Thes bl vk,

Any changes made in this window will be propagated to the design view and
code view windows, respectively.

Solution Explorer

The Solution Explorer is the same as it was in VS 6. The Solution Explorer is a
look at all the files in your solution. In the title menu bar, you have four options:
Refresh, Copy Web, Show All Files, and Properties. The Properties option lets you
set all of your solutions’ properties, including debug parameters options. The
.NET IDE has two different types of containers available for holding items: solu-
tions and projects. The main difference between the two is that you can have mul-
tiple projects within a solution, whereas the project container keeps only files and
items within files. To view a project’s properties, right-click the project and select
Properties. Let’s look at project properties in more detail in Figure 3.11.

Here, you need to make two changes. Set the target schema to Internet
Explorer 3.2 & Navigator 3.0. Also, change the page layout from Grid to

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Flow. These two changes will make all the JavaScript comply with the selected
browsers. This will enable you to code without having to check to make sure if
your scripts will work in older browsers. By making the change to “flow layout,”
you prevent your code from using absolute positioning within span tags so that it
will be safe for Netscape users. These two changes are useful for any ASPNET
development you may do inside of the VS.NET IDE.

Figure 3.11 Project Properties
S |
[ 4 | | ' |

—§ Cooranon Prapa b B ekl "
Garasl Pags L Flows
wiah Saling: Tawgeed Balwsrny et E mphored 22 & Blysagatiod 20
¥ [eagne Daleul B Vel 5o
Anlwsrcaz Fath T T H
4 Corbpaakan Propadm:

[hent Scnpl Langeegs
Speoiy i Soink Languags thed vl e inedvhen 00de B DeneLsted POl y0u K3 nn on Hhe
chant

| 0l | Lo Hlo

Object Browser

The Object browser will give you a complete list of all classes’ methods and
properties in your solution. Everything is listed, and it is quite in depth. If you
want to, you can look up parents of classes that you are using and list out the
methods and properties you might need. By double-clicking on an external class
in your solution, the Object browser will load and have all parent and child nodes
of the class listed with each of their methods and properties included. This comes
in handy when you are in need of finding a suitable substitute class to handle
some part of your application. Like in Java, .INET has an incredible quantity of
built-in classes that can accomplish just about everything you may need—the
trouble is finding their location and how to access their methods and properties.

Using the Object Browser enables you to achieve this in a timely fashion (see
Figure 3.12).

119

www.syngress.com



120 Chapter 3 ¢ Visual Studio.NET IDE

Figure 3.12 Object Browser

1 impdeb sl - Merineali Wiawsl CH N T [desiged - gect Bimraes
Pl Ecd ew Pyt [Buld Dby Jook Wik Help
A-o-=Ea BR - - Debg = | i AP Tk R
| m i e i1 B A WY e e | EFER =
v e Mrerwrnas | Ll - -
Browee  pecied Lorpoeant: w Cimbommm. L v of » i ':..'.'. B
[owscis W g of Bialwslaf E
- L} Smimwwebli T .
8 [ Smimm wiak Ll HindCanisk L P T N ]
[} Symtan e LI WhabiCaniack Sl | o CrmatnC i orirsh|
H P i waksdE el Sig o Do el oen - m iyl
il bl il el iy Diniodionad]
0 AdFoleto & bE rcanba [ paftdier Tupal
i Bpteloagas sk o DAl 8wl S b £ il
+ '\-':_ -ll [ simci el racleal ol men. F vandlug |
B B ahcieioy i Prpeel ornal-mmc|
v e B e e o P Satin el | Hid Tt i
H-% BawaiCoba Call :
# 0t Bandiaen g | Celuiies =
pabdedens BaraDetalint Spplom 's'ab, Ul 'webCantraly WebiCantral
Wk o Sqatem sk 10 Webl.srtiola
iy 5
Seren ot ta oot v chor ke B el LU WebDonteoh Dl st e wheb L8 WabiCantioh. [ el wd by gred ok W et ion rewmantey Ut

e coverean bos bolh conteahy.

Femuits:
iy wel greion o Ve ccbns v gty vl et T el L bt gt ialont eeed il It oty [ gl s ity et oo ructbinchy e
proparms o ol

From this window, you can quickly drill through a class that is not your own
and see what methods and properties it has; you also will get a summary of what
it does and how it is instantiated.

Dynamic Help

Dynamic Help is a dockable window just like the previous windows we have dis-
cussed. To get Dynamic Help to appear, simply choose Help | Dynamic Help.
You can then make the window float or Auto Hide. One thing to note is that
each part of Help (Index, Contents, Search, Index Results, and Search Results),
are all separate windows, so if you undock them and make them all float you will
have quite a few windows appearing on the screen. One thing you may do is
load all the Help windows into themselves and a bottom tab order will appear
inside the main Help window; you can then access all parts of Help from the
same window (see Figure 3.13).

To customize the Dynamic Help window, choose Tools | Options. In
the Options dialog box, select Environment and then select Dynamic Help.

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Here you can specify what topics you want to have available and in what order.
You may also specify how many links are displayed per topic. You may also create
a custom Help file on your own for your project, by following the XML schema
named vsdh.xsd. Create your XML file based oft of that schema list and place the
file where you want your Help topics to be displayed.

Figure 3.13 Docked Help Windows

(Ormc ek ]
& 3 4l

LT peste

Lbping) et Chids e

J‘E-ﬂ:

LLT Gettisg Sasited

|

il
L R A

Tabbing through the many different Help options and getting to the informa-
tion you need is now easy. If you have the hard drive space, loading all the
MSDN Help files from the disks that come with VS.NET would be beneficial. To
do this, simply check the option on the installation sequence that will run from
the computer and not the CD. This will prevent you from constantly having to
load another disk every time you want to look up a particular topic. This gets
quite annoying when you need one disk to open the tree view and another to
access the topic within.

Task List Explorer

The Task List (see Figure 3.14) enables you to add tasks that need to be done and
organize them in a number of different ways and with priority. It is very simple
to use. If you are using Source Safe, a group of developers can quickly see what
needs to be done and what has been done by viewing the Task List for each file
in the project.

121

www.syngress.com



122

Chapter 3 ¢ Visual Studio.NET IDE

Figure 3.14 Task List
Tack Lot 2k

| o | [ pswipdon Filer

el [ Maed ko braxhiths chapiard

1] | xl

Another feature of the Task List is that it will create tasks on the fly as you
debug your application by marking down any errors. You can then go back and
fix each task and have it removed. You can organize the task list on Build errors.
Also you can create your own custom token, which is a unique key that tells the
Task List that a comment needs to be added to the list, to appear in your Task
List from your code.You can map out your function or method or whatever you
are coding with your own custom tokens and have them appear in the Task List.

To create your own custom token to add to the default tokens available
(HACK, TODO, UNDONE), choose Tools | Options | Task List. Give the
token name and priority. To use the token, simply add something like the fol-
lowing in your code window (use the comment tag “//” and then the token
name followed by the instruction for the task):

/1 FUBAR what | want in the task list to appear.

Features of VS.NET

VS.NET has a combination of new and old features built into the IDE. We discuss
the additions to IntelliSense, the new features of XML support, and the many dif-
ferent ways you can now customize the IDE. Let’s begin with IntelliSense.

IntelliSense

IntelliSense is a form of code completion that has been part of most Microsoft
developer tools for many years now. Code completion technology assists when you
start to type a tag, attribute, or property by providing the resulting ending so that
you will not have to write out the whole item.You will notice this right away.

www.syngress.com



Visual Studio.NET IDE « Chapter 3

123

VS.NET has IntelliSense support for all of the primary programming lan-
guages: VB.NET, C#, and C++. IntelliSense even exists for Cascading Style
Sheets and HTML. Unfortunately, VS.NET doesn’t include IntelliSense for XSLT
in the Beta2 version—we may have to wait for the release version. Currently
ActiveState does make an XSLT plug-in for VS.NET that provides this function-
ality; you can obtain a free trial version at http://aspn.activestate.com/ASPN/

Downloads/Visual XSLT.

While developing, you will notice that IntelliSense provides information

about active classes only, meaning those that you have created in your project or

those referenced in your page with the using Directive (for code-behind pages:

pagename.aspx.cs). If you are trying to use an object or method, and no

IntelliSense appears for it, you may have forgotten to include the reference.

For example, if you attempt to do data operations using the SqlCommand

object, no IntelliSense will appear until you reference the appropriate data class

(see Figure 3.15):

using System Data. Sgl dient;

Figure 3.15 Using IntelliSense

gimphel sl - e esli Wisunsl CE M T [deaiged

crampren Uil ascosee et

Bl Bt W Fopc Bad (g Jock wieew  Hep

W-O-F P L BRG] b D - | o oz - RER =
oW o W o, om FS BT AT FRLTERTRE T e N
e T L il o LR g —— P I T
o I':':'lrdal:lltmnl:dal::::::: j I L EVE SR j R E
= pehliz TmenSet gutllliBooks|] r E'b-ﬂ-\:n"-.npi-u
E ; j e vmpel o)
- . R T - H- (58 Felseros
ring "Pr {mr =Sl OLEDE. | FaTat a L i il
- e
Bl ORRSSTLON SOEN = iV BOILOARSSTLOR | THLS.SOEREDT-1L0A 19] ot
i dntnac
conn.Cpen § ) : AR i
Sqliommsrd cmd = ney SglCoommnd | "Getllifooks™ , o=w= ) ; - _|.T.,m.\,
. 4#] Araarsbdin
W Ol = | bk H T
BN Cormmard] st ol
R ol arsind oF cslmag <d
b ] Globsad o
S Corwmchon Ipaageeny ] 5 e Dds Coavmard Type Sl averred Caverwied T o
B Cord e Eretn o pechi b et s L [ ot 5 il lev S ol oererarsd CosraraesdT exd paopeitp o 1 bee
o Crested] bftel roapewd
A Crowial marnster Elm,rrl«:-u
B [ o lwm ki H- Y pagel
o [liguies =] 1 troie i
B e oiein
el g
sl q _'_| &% | Eh|
Le 2@ Cal 17 Tha ]

www.syngress.com



124

Chapter 3 ¢ Visual Studio.NET IDE

For C#, IntelliSense is available only in the code-behind page and not in the
ASPX page itself. This may change in the release version. To disable IntelliSense,
choose Tools | Options | Text/Editor and select the editor you are using,
which should be C#. In the Statement Completion section, uncheck all the
options, which will disable IntelliSense for the editor.

XML Editor

When working with XML,VS.NET has some interesting features. If you create a
well-formed XML document of your own, you can easily generate a corre-
sponding XSD schema that conforms to the 2001 W3C XML schema. Once this
is done, your XML document will have code completion based on this new
schema. To test creating a schema, let’s open poll.xml and generate a schema for it:

» Choose File | Open. Navigate to your CD-ROM drive and locate the
file poll.xml.
= Click Open. This should load the page into the IDE.

= If the XML is one continuous line, simply click the Format the Whole
Document icon (see Figure 3.16).

Figure 3.16 Formatting an XML Document

o ARLFOl wae - Micisssli Wicasl CHEMLET |dmigen - pod o
E Edd g Pegnd Jokd Dsbag ERL Teies  Losk  lgWeks  Help

H-O-FE £ -5 O v (M Wetba - RAER T
& &y ny » m TR T . 3__ it | L] 9 = iR AN e .
- r el | T"-P"-Phl—""a"l'ﬂ'HJH"l'I = | Froputm ¥ =
ﬂ I xnl verziorm™l.0" anccdirge"opzf-87 pollrcticla>Frogramacs Fof$ II.I.I-I.I'\I'.I'I j
g ik m]| =
E’ [ ] Lrmeped (LI 1 F 4§
| l . h | J ‘urf-g® i fro=t e

[eakiap
L]
Ban =
caxe=Hy PFrimacy Dew Tosl dmi:fmest
cicaxTIHET.
E a>ELSpy
Eicarother
T
vlmy
Ll by gl ] b evwpacaie: e
m o || i " -
I I
Pundy Ch1 (7

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Now, let’s create a schema for this file. Right-click anywhere in the text editor
and select Create Schema.You can see these resulting changes in Figure 3.17:

= A new file called poll.xsd was auto-generated by VS.NET.

= In the Properties window, the new schema is set as the file’s target
schema.

= An XML namespace attribute is added.

= IntelliSense based on the schema is now available for this document.

Figure 3.17 Generating a Schema for a Well-Formed XML Document

WL Poll_wes - Micessolt Vinus] CHHET Jasaign] - el asl
Fle Ect Mo Project Buld Debig Hel Tabe Jook  Widow el
-\-l-l'._l'-'SE“ L BR| v -c"l-i ¢ Mebig = ol metbe] _ ;rﬂ-j,'_ll "
W% % W s om o= o owe o WL I CICL e | O 9, i ar | SO % % TR .
Ik TPy pall el + o || Spitine Fupiwes - 204 Poll_san [
g. £irml verrion="1_0" sreodirgeTuef-E77 = .TTIII .
S cpzil mlza=Thorg: f/tampuri-cogf polll . =mdTs = q-.“““..’_" __J
5 sticlerFrogra==ra Poll<icitle i ol Aekese
SRR L E AT A 3 in
5] Szl
i, HE| el | =r]= 0 ] Gkl s
e § Tocur iz opn:z</tmxt + ) Db el s
coprionseaskoop: ope ioes ﬁklr:i:h:-\.
“option>Babs foprian 2 polled
coprionrlehi lesfoprione EII'"‘""'
quest Lan -
CUMERIT
textifAy Foimmry Dev Tool iz:dfbmst r|:l|:l.|.- E_ -
4OpTionsWENE T/ cprions d EL"“ =
coption>XEIpp</opoion: g L recziacha FL TP
COPT AN TREC o oRs Lo gl comrna hag Aeryan gl wd
s A LonE
SUEVET=UESL LOnS
results
-1 14
LradpOnEs qQUEREion-ideTln iseeicrm ok la™
CEEAP O U = o ion=TEEET
I |
1= | Disbe
N —
| R Chimscted ped ueed 1o drsiiaes thag cloturmend.

You can also select a different schema to base the XML file on by selecting a
new schema from the targetSchema drop-down (see Figure 3.18).This would then
provide IntelliSense based on the schema selected.

You can also view XML documents from the Data mode. This presents the
document in a hierarchical structure. From this view, you can also add new nodes
and data to the document (see Figure 3.19).

125

www.syngress.com



126 Chapter 3 * Visual Studio.NET IDE

Figure 3.18 Selecting a Target Schema
[Progeties ]
| pocumEnT E |

| 4i)m| ==
srcoong Urscrsda [UTF )
hip A farpn argelpalll |

éed Aicistza Schadule Fila
by Foared Condnoks
ot cHTHL Templse
Wi vty Fioars Cowinenis
Mol HTHLE D Tampia
Wohds 'ty Paage
hitpevevra. ricsa ol oo schamas Erterore T emplete s TOLS chara
ot sl Il DA S e S el
hitped w8 AL S mara
g tengasl cagped ieed

Figure 3.19 Viewing an XML Document in Data Mode

L Poll_ws - Micssselt Visusl CEHE T flsaign] - paoll

Flo Ect Wew Pt fuld [ebvg el Joch Windew [Hep
W--FEd % &m0 - -G R 7 | o et | RER T
IS Y Y ¥ »om S W ow
ﬁmm.;-p-.-|
Drala Tabler:

E ||-.-] E..,.,,-..,.

wpdean
[LET ]

dals
L2t

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Documentation Generation
(XML Embedded Commenting)

This feature enables you to comment your code with an embedded XML tag-
ging structure. When XML documentation is enabled, an XML documentation
file will be created during the build process. In the Solutions Explorer, right-click
on the project name, then select Properties. The Project Properties dialog
appears. Click the Configuration Properties folder and select Build.

Find the item called XML Documentation File in the textbox next to this,
provide a relative path to the file location you would like the Documentation
written to, and click Apply (see Figure 3.20).

Figure 3.20 Setting the XML Documentation File Source in the Project
Properties Dialog

Eonkguriar: [csciefCetng] =l patare [ackereT) | EorfpasinHaneger . |
i Cooraren Frapa b B Cofe b osasistin
28l Cordguabion Prop Lo = 1 Comilants OEBLG:TRACE
w Bl I plrize Fuses
Dabugorg Dok bor dstharan [ veioasindsabe Faks
Aedemncad Elcea el ods bocks Fkss
Bl Eiions il Wi
g Lered “woaming bred 4
Tressl Wavangs £ E Wi Fikess
Bl Dl
g it Pty [T
abwplier a0 Ml bl
G ereaate Cosbuginn) Wfoanestion Tru
S [kerementalion Fie
Speiled By Aot ol 5 Ml by phach dooinenlytion Dosarends pAl b predesied Palh
[ ] cowd | oo | b |

Now let’s look at how to add XML comments to the code.

Adding XML Document Comments to C# Pages

The file used in this example is from a sample application built in Chapter 10
and 1s on the CD (See catalog.cs in the components folder.) To add XML docu-
mentation comments to your code, simply type three slashes above any class,
method, or variable.

127

www.syngress.com



128 Chapter 3 ¢ Visual Studio.NET IDE

public DataSet catal ogltenDetails( string book_isbn )
{

return catal ogRangeByCat egory( -1, -1, book_isbn);

}

An XML representation of its inputs and outputs will be generated:

1] <summary>

111

/11 </ sumrary>

/1l <param name="book_i sbn"></ par an»

/11l <returns></returns>

public DataSet catal ogltenDetails( string book_isbn )

{
return catal ogRangeByCategory( -1, -1, book_ishbn);

Simply add appropriate notes and build the project:

1] <summary>

/1l Specialized interface to catal ogRangeByCat egory.

/1l This Method returns all the data for only the given book
11 <lsummary>

/1l <param name="book_i sbn">stri ng</ paran

/11 <returns>DataSet</returns>

public DataSet catal ogltenDetails( string book_isbn )

{

return catal ogRangeByCategory( -1, -1, book_isbn);

}

When you build the project, you will receive a list of warnings corresponding
to every Public variable, property, method, and class that is not commented. Figure
3.21 shows what happens when you tell it to create comments; this is how it tells
you what variable isn’t commented. This will not prevent program execution, nor
the writing of the documentation file. Figure 3.22 contains the XML generated
on build.

www.syngress.com



Visual Studio.NET IDE « Chapter 3

Figure 3.21 Warning for Uncommented Public Variables, Properties,

Methods, and Classes
et 5]

| Bt ||
CLpligsl. Rfpx - SR 27 - wmarming CH1ERL: RHiecing 3HL oosssnc far publizly wicikls cyps n-r:l
tipagal. mrpx_cpi® I3 - warning C515%L: Risring FAL commant for publicly wiribla bype o
EL kgl REpE g0 Ll - perndng CI1EDL: Hieeing 3HL cosssne fur publizly oipikls oyps ox
tipapal. mrpx oy 00 - werning CS15%L: Misring AL commant for publizly wiribla oype o
CLpgl. REpE -S4l 47 - warmding CI1ERL: Hiecing 3HL oosssnr foar publizly wicilkls cyps n--'_l
tipagal. mrpx_cyidl 511:- wearning C515%L: Risring FAL commant for publicly wiribla bype o
ELpEg ] . REpE S lLlE IE): waendey CHLEE1: Hicrivey MHL ccmssre for pobilicoly ricitls r"“j;l
.

" - . -

Figure 3.22 Generated XML Documentation

T 1 b ol - Wi bt Bk rest I il

Ble ES Ywa Fpemim Jah Hep o0 - o - Q] 3 (Ereeais Joesh wrecas 3
e T FBe
books within the given range < Summeas |
cpEram rames"startPos”
CPATA M rEE BT
CIETUmS £

FrmafhaTs
ITETIEEET MAE d-'1:himplul:ﬂﬁ.l.'lrrllp-l.llmrﬂ-. st snciase’ >
crpmmery=This Class ix weed for all nteractions waith the data spurcscSsooammery =
cimembeE
TrEizeet nm i =" Ehmiple Ca rt . com paon aet S o 8 S8 o0 5 5. (et AN B nods”
ESUmn Ty = gL ANE doks comnot s to the 80L database and edaciles the storad peo oo dura
"Gt ABE D ks™ < Srurmmany s
eretume=Mhataset containeng the DataTable "Books™crebrmss

A b s
afeairiat e ea="T shmghs Gart  combnaat s . dimnlBleop ping Ca ">
caumamary = This compesiad is a wrapgper class Tor XML furstions @ provides add, ramsaye,
elwar, arul viewr msthods < oommery s
s baTs

s fae = whmplia Ca . comm pan el s sl hap pig Ca e it Cart
[ Sy stmm, String, SysEmm String >
counnayslidtializos the Can. opape oad tha cart chin e initailizad with asn euisting
=mllart string, this analhilas clant hireg ol thin car .« oamsans
Cparan name="dataBourca” ¢
o2y T O
st nasa="T:ehmghsCar . Glokals
cnpmamry = Bumemary description for Global, < Soommany s
cimembers
rresmier name=Tisimpls Cart. page ] |
] Doma | =L, by Compases

Customizing the IDE

The VS.NET IDE is fully customizable. All windows can be set to dockable, hide,
auto hide, and floating. You can display different toolbars for each different type of
file, and you can create customizable toolbars.You can set font, tab, and text
layout properties for each type of file.You can set the default Start page to open
the last project, or even set it to a user-created page. If you mess up the layout,
you can easily set it back to several predefined layouts.

129

www.syngress.com



130

Chapter 3 ¢ Visual Studio.NET IDE

Creating a Project

Now that we have covered all the difterent aspects of the IDE, let’s create a test
project. We cover the difterent type of projects available, show how to add a Web
reference to the project, and briefly go over some of the debugging tools avail-
able to the IDE. This should give a well-rounded tour of the complete IDE. Now
let’s go over the projects available.

Projects

We cover the projects available to C# development:

»  Windows application

» Class Library

=  Windows Control Library
= ASPNET Web application
= ASPNET Web service

=  Web Control Library

= Console application

»  Windows Service

=  Empty project

=  Empty Web project

= New project in existing folder

Most of these are self-explanatory. Users new to .NET will see that three
Web projects are added into the project listing for all languages. These are the
ASP. NET, Application, Web Service, and Control Library. The other projects will
be familiar to all VS 6 users (see Figure 3.23).

Creating a Project

For this example, we will build an ASPNET Web application (see Figure 3.23).
You may keep the name as the default or select a new name. The location should
be localhost if you are developing on the same box as the IIS server; if not, you
will have to place the location of the server in that text box, either through IP or
the name of server. The next option is to either close any open solutions and
open this new, or add it to the existing solution. We recommend that you choose

www.syngress.com



Visual Studio.NET IDE « Chapter 3

to have it close all open solutions and open new, so as not to task your machine
with having multiple solutions in the same IDE. Click OK, and VS.NET will
create the project for you.

Figure 3.23 Project Listing in the IDE

Bl e

1 Vel P e Pt
i Vil [0 Py
0 Vol e P
1 " s e [ oplossaret P
¥ ] s P
1 Mol e

Mw=e ‘sl

[ 5
T e o O b T e bt
Fops il

Fum | o | e | ne |

Add Reference

One of the great benefits of working within the IDE of VS.NET is that you can
add references to your project with ease. Try it out: In this project, select the project
name in the Solutions Explorer. Right-click and select Add Web Reference.
Now you will have to have a location to a WSDL file from which to locate and
add in the Web Service to the project. This is covered later in the book.

You may also add a reference to a DLL to your project. This will be done
much the same way as the Web Reference. Instead of selecting Add Web
Reference as we just did, select Add Reference, then choose from all the avail-
able references on your machine.

Build the Project

To build a project, simply press F5 or click the Start icon on the main window
menu bar. The project will be compiled. You must also set a Start page before this
takes place.To do that, right-click on the file you want to have be the Start page or
window and set it to Start page.This will launch this page first after the project
has been compiled and run (see Figure 3.24).

131

www.syngress.com



132 Chapter 3 ¢ Visual Studio.NET IDE

Figure 3.24 Compiling a Project
T N R T

G [ e Paed Gudd [y Pl el Reme Jek vk
HA- -2 P Py =Y I [ e

= |
| [PETr—— R — =

Debugging a Project

While building the project, any errors will bring up a dialog box, which will ask
you to continue with the errors in place, or to strop debugging and correct any
errors displayed. These errors will show in the Task window. You may double-
click on any error in the Task window, and the IDE will take you to that location
in the code. As you fix the bugs present in the task list, they will be removed. You
can also set breakpoints and step over and step into options.

www.syngress.com



Visual Studio.NET IDE « Chapter 3 133

Summary

In this chapter, we’ve taken a tour of the VS.NET IDE. We've seen an overview
of the interface, some of its component windows and some of its built-in fea-
tures. The design window and the code window are graphical tools used in cre-
ating an application. You can split the windows or have tab groups added to
them; you can use the Toolbox (which includes Data, Components, Web Forms,
and Window Forms) to drag and drop objects onto the design window. The 1.
Server Explorer window allows you to connect to a server on the network and

have full access to that server, and to link to any database servers on the network.

One of the new features for VS.NET is that you can dock all the windows, or
expand and collapse them within the view of the IDE. The Auto Hide feature of '
each window makes them slide oft the screen and embed in the side when not
needed; this enables you to have maximum code view but still have all windows
present.

The Properties Explorer (similar to the one in VS 6 and the Visual Basic IDE
and Visual Interdev IDE) allows you to select an object from the design window
to see available attributes for that object listed. Any changes made in this window
will be propagated to the design view and code view windows respectively.

The Solution Explorer (the same as in VS 6) is a look at all the files in your
solution via the four options: Refresh, Copy Web, Show All Files, and Properties.
The VS.NET IDE has two difterent types of containers available for holding
items, solutions and projects (you can have multiple projects within a solution,
whereas the project container keeps only files and items within files). The Object
browser will give you a complete list of all classes’ methods and properties in your
solution.

Other windows include Dynamic Help and the Task List. Dynamic Help is a
dockable window that you can fully customize to make it easy to tab to whatever
information you are interested in.You can use the Task List for collaborative pro-
jects and in debugging; it lets you add and prioritize tasks.

IntelliSense, the code-completion technology Microsoft uses, is supported in
VS.NET for VB.NET, C#, and C++, but not yet for XSLT. IntelliSense provides
information about active classes. For C#, IntelliSense is available only in the
code-behind page and not in the ASPX page itself.

Another important feature is XML Documentation. This feature enables you
to comment your code with an embedded XML tagging structure. When XML

documentation is enabled, an XML documentation file will be created during
the build process.

WWW.syngress.com



134 Chapter 3 ¢ Visual Studio.NET IDE

We’ve looked at some issues like the customizable, dockable, hide, auto hide,
and float settings for many of the component windows along with the profile
setting on the Start page. VS.NET is a collection of integrated developer tools
that you should definitely familiarize yourself with.

Solutions Fast Track

~  Introducing Visual Studio.NET

M Visual Studio.NET (VS.NET) provides a consistent interface across the
primary development languages.

M VS.NET provides easy to use tools for Windows and WebForms rapid
prototyping across languages (including C# and Managed C++).

“ Components of VS.NET

M Enhanced window manipulation for user preferences within the
Integrated Development Environment (IDE) gives the developer the
ability to dock, auto hide, hide, or float all component windows.

M Task List has the ability to create custom tokens to map out and
prioritize your code via the Task List.

M Server Explorer allows the developer to quickly connect and access any
database server on the network, enabling direct access to all database
objects, including stored procedures, functions, and user settings.

L F Features of VS.NET

M IntelliSense is one of the best tools at your disposal when learning a new
language or technology. VS.NET has built IntelliSense into almost every
aspect of the development process.

’ M Dynamically generated XML Documentation provides a fast and easy
way to comment your code and generate a separate XML formatted
documentation file. This tool makes code more self-documenting, and it
should save developers time and ensure that some documentation is

provided.

WWW.syngress.com



4]

Visual Studio.NET IDE « Chapter 3

Generating XML schemas from well-formed XML is now a breeze with
.INET.You can also create new XML documents that conform to
popular standards by selecting a targetSchema and using the IntelliSense
feature to create valid XML documents.

Customizing the IDE

4}

The VS.NET IDE is fully customizable. All windows can be set to
dockable, hide, auto hide, and floating. You can display difterent toolbars
for each different type of file and create customizable toolbars.You can
set font, tabbing, and text layout properties for each type of file.

You can set the default Start page to open the last project, or even set it
to a user-created page.

The IDE also includes several common default settings in case you mess
up while customizing your interface, settings like the default VB 6
interface or Visual InterDev.

Creating a Project

4}

4]

4}

One of the great benefits of working within the IDE of VS.NET is that
you can add references to your project with ease.

To build a project, simply press F5 or click the Start icon on the main
window menu bar.

While building the project, any errors will bring up a dialog box, which
will ask you to continue with the errors in place, or to strop debugging
and correct any errors displayed.

www.syngress.com [

135

-
&



136 Chapter 3 ¢ Visual Studio.NET IDE

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How can I look up a parent class method or property of any System-level
object?

A: Use the Class View window; accessed from the standard toolbar by clicking
View | Class View.

Q: Does VS.NET support line numbering in its text editor?

A: Yes, from the standard toolbar select Tools | Options. This will open the
Options dialog; select the Text Editor folder, pick the language, and click on

the check box for line numbering under the display section.

= Q: s there a way to set the tab size in the text editor?

A: Yes, from the standard tool bar select Tools | Options. This will open the
Options dialog; select the Text Editor folder, choose a language folder, select
Tabs, and set them to your desired setting.

| www.syngress.com




Chapter 4

Windows Forms

Solutions in this chapter:

* Introducing Windows Forms

Writing a Simple Windows
Forms Application

"Writing a Simple Text Editor

Using the ListView and TreeView Controls

Creating Controls

M Summary
M Solutions Fast Track

M Frequently Asked Questions

137



138

Chapter 4 » Windows Forms

Introduction

With so much focus on Web-based user interfaces, it’s easy to dismiss the tradi-
tional Windows architecture when developing for the Internet. The recent popu-
larity, however, of peer-to-peer file sharing and online chat programs
demonstrates that the “rich client” can work extremely well over the Internet,
and provide features unavailable in thin client model. The .NET platform pro-
vides a modern solution for developing Windows applications, with the following
key features:

= A revamped object-oriented model, with a focus on consistency and
extensibility

= A rapid application development environment in Visual Studio

» Easy access to the Internet through .NET networking libraries and
Web Services

= Managed execution environment that allows custom controls to be
hosted in a Web page

» Compilation to a small executable

And, of course, you no longer have any installation worries—you just need
to copy a small executable to the target machine and run it. Rich client has
become thin.

The components provided in the .NET library for writing Windows applica-
tions can broadly be divided into two groups: Windows Forms (the components
that manage windows and controls) and the graphics device interface known as
GDI+ (the classes that encapsulate the lower-level graphics functions). This chapter
covers Windows Forms in some detail, also touching upon GDI+, and it takes you
step by step through the process of creating typical rich client applications.

Introducing Windows Forms

In essence, Windows Forms is a collection of classes and types that encapsulate
and extend the Win32 API in a tidy object model. In other words, the compo-
nents used to create Windows GUI applications are provided as .NET classes and
types that form part of an orderly hierarchy.

This hierarchy is defined by inheritance: Simple reusable classes such as
Component are provided, and then used as a base from which more sophisticated
classes are derived. We can draw a useful overview by representing the inheritance

www.syngress.com



Windows Forms ¢ Chapter 4 139

hierarchy in a treelike diagram. Figure 4.1 summarizes at a high level the classes
that comprise Windows Forms and GDI+.

Figure 4.1 A Summary of Window Forms and GDI+ Classes

’ Object

|

’ Component

\ i

Control ‘

: |
,,,,,,,, S —— N P
| Containers Hosting } | Windows Forms } | Windows Forms } | GDI+ Classes }
I Child Controls | ! Controls | I Components | ‘ |
‘ | | ‘ | ‘ Graphics |
} Form | } Label \ } Timer | } Pen |
| Panel I Button \ | MainMenu \ | Brush \
| TabPage . TextBox \ | Imagelist \ | Bitmap \
| GroupBox I CheckBox ‘ | ‘ | ‘
| UserControl } \ ListBox } \ } \ }
- L I L \ ‘_,,,,,,,, \
System.Windows.Forms System.Drawing
‘f 77777777 \ ‘f ******** |
| |
| Subclassed Forms | } Custom Controls |
} and UserControls } | drawn with GDI+ }
| | |

The arrows represent inheritance: Control assumes all the functionality of
Component, which assumes all the functionality of Object. Table 4.1 provides a

quick and pragmatic summary of the four essential classes on which the Windows
Forms types are based.

www.syngress.com



140 Chapter 4 » Windows Forms

Table 4.1 Core Classes

Class What It Does

Why We Need It

Object Acts as a base class for all
types in the .NET Framework.

Component Provides the basics of contain-
ership, facilitates hosting in a
visual designer, and defines a
protocol for resource disposal.

Control Provides the core functionality
for a visual control that
responds to mouse and key-
board messages, accepts focus,
and can participate in drag-
and-drop operations.

Form Defines a class representing a
window to which you can add
controls.

For a tidy unified type system,
and to provide core function-
ality available to all types (such
as ToString).

So Visual Studio’s Designer can
host a wide variety of controls
and components in a generic
way, to provide a base from
which you can write nonvisual
components, and to allow the
cleanup of Windows handles
and file handles in a timely and
reliable manner.

As a common superclass for all
controls, such as textboxes,
labels, and buttons, allowing
them to be treated in a consis-
tent manner, as well as pro-
viding a base from which you
can derive your own custom
controls.

To provide a base class with
standard windowing and con-
tainership functionality that
you can subclass to create
forms in your application.

Creating a Windows Forms application is largely just a matter of instantiating
and extending the Windows Forms and GDI+ classes. In a nutshell, you typically

complete the following steps:

1. Create a new project defining the structure of a Windows Forms

application.

2. Define one or more Forms (classes derived from the Form class) for the

windows in your application.

3. Use the Designer to add controls to your forms (such as textboxes and
checkboxes), and then configure the controls by setting their properties

and attaching event handlers.

www.syngress.com



Windows Forms ¢ Chapter 4

4. Add other Designer-managed components, such as menus or image lists.
Add code to your form classes to provide functionality.

6. Write custom controls to meet special requirements, using GDI+ classes
to handle low-level graphics.

In this chapter, we cover each of these steps through a series of walkthroughs.
Starting with a new Windows Forms project, we visually add controls to a simple
form, add an event handler, and then demonstrate how controls can be added at
runtime. In the next walkthrough, we write a simple text editor, illustrating
menus, single and multiple-document interfaces, dialog forms, and visual inheri-
tance. In the following example, we introduce the ListView and TreeView controls,
going step-by-step through the process of setting up a splitter, adding a context
menu, and enabling drag and drop between the controls. In the final walk-
through, we write our own controls—starting with a simple address container
and finishing with a scrolling text banner. We then show how custom controls
can be hosted on an HTML page—demonstrating how C# and Windows Forms
can be used to write Java-like Internet applets.

Writing a Simple Windows
Forms Application

The first step to building a Windows Forms application is creating a project. A
Windows Forms project is just like any other type of project in that it consists of
a grouping of source code files, a list of references to required .NET code
libraries, and an appropriate configuration of compilation and debugging options.
When you use Visual Studio to create a project from a template, it sets all of this
up for you, providing a “skeleton” appropriate to the template you’ve selected. In
the case of Windows Forms, this consists of the following;:

= A project of Output Type Windows Application.You can view or change
this in the Project | Properties dialog box.

» References to the .NET assemblies required for typical Windows Forms
applications (covering most of the types in the Windows Forms namespace).
You can see a list of the project references in the Solution Explorer.

= A blank form, called Form1 (a C# class with the structure required for a
visually editable form).

» A Main method in Form1 that instantiates and displays the form.

141

www.syngress.com



142 Chapter 4 » Windows Forms

Let’s start the walkthrough by creating a new Windows Forms project. From

the main menu, choose File |

New | Project, click Visual C# Projects, and

choose the Windows Application template (see Figure 4.2). Change the project
name to SimpleApp and click OK.

Figure 4.2 Creating a New Windows Forms Project
T - |

Ergact Tppax Larplstuz Mﬂ
| Voud Barc Prgmcts — =
S Vo Ch P S B G
| Subp wrd Ciaplerard Propect R e Lbimss  Widies
53] Ovban Proqet &z ion " Canbal Linay
| Wioual Shuden S olubon
@& F
EEOMET  ASFRET  whsh Donbal
o ms A 'wiat Larace |
& ™ m =T e i
Blyes I-rﬂ-t—a:
Lot I:'-l:ﬂ;u:: ;I Hemazn. |
™ i b 3 o P Cloow Sitsfion
Frgact vall b cwaled sl chongeen Sregisfpp.
Whos [ ] oo | wwe |

Adding Controls

Once we've created the project,Visual Studio opens the main form (Form1) in
the Designer—the visual editor for our C# form class. Basically, a form created in
Visual Studio is just a C# file, defining a class based on

System. Windows. Forms. Form, containing code to add and configure the controls
created visually. Visual Studio is a “two-way tool” meaning that we can work with
the same code either visually (using the Designer) or programmatically (in the

Code Editor).

Let’s use the Designer to add a few controls to Form1. We can add controls
and components from the toolbox window and then configure them using the

Properties window.

1.

From the toolbox, add a Label control to the form. By default, Visual

Studio will name the control Labell.

From the Properties Window (F4) change label1’s Text property to

Favorite CD, and change its AutoSize property to True (see Figure 4.3).
This tells the control to size itself according to the metrics of the font

and width of the text.

www.syngress.com



Windows Forms ¢ Chapter 4

Figure 4.3 Adding and Configuring a Label Control

i Wil CHHET sk - Feamd <o [Dissgnd®

[l G Yoy Poscl [l [ebg Oy [xk ks Hep
- E e Gl o5 oo - -] G - | seal - Al T
ST I | ————— O e -]
'] ] [Fateett 5 ptem, ko Fromrs Ll B
Eomprapris el 2 B
Wirdora Fars = EEICIES -
e e e e e =Pt T Ty T———
By i B Iﬂl L FaeCadod [
A Lasal ot [
A - s
H"'"‘“ |.m‘um._.-l. ) Faed
feime bmaged ol [
Fi Teatflm ATl o l\.:.-
i e Tt Fawpede LD
P OrachBo: Tesbisiny Tapleh
W Haded fn 1) prshd e Trum
— =
Gmpliem el g obm
anl Piokase - L |
] Paral Cormelidigm rora| =
2 Datullad Ersslest (E]
| abircken ]
5 Linifion Yrabln T
0| Chseh el st B 1 prd wpr sl v
o Combclios e ——
15 Treiview Hloaa =
§1F Lifiom [ ] | Aaolmion ]
'y Tl — & aabin g e Hoong Baredor ind e Hole B
Ell e ge b= Wm L | & &% & e on DD N MR 554 it ik o Fe e et o g
Db g = L
Omrers ﬁml: s o H aqe e
S B2 Tahin
L=

Now add a TextBox from the toolbox onto the form, and position it
below the label. Enlarge it horizontally and clear its Text property.

Add another label to the form, setting its Text property to Favorite
Style, and AutoSize property to True.

Add a2 ComboBox and position it below the Favorite Style label. Clear
its Text property.

Select the combo’s Items property, and then click the ellipses on the right
to open the String Collection Editor. Type in a few styles of music—
each on a separate line, as shown in Figure 4.4.

Click OK, and then press F5 to save, compile, and run the application.

143

www.syngress.com



144

Chapter 4 » Windows Forms

Figure 4.4 Populating a ComboBox Items Collection

fl Bt Vee Poet fud [ebp Oy o Widos  Hep

WridrF el fRE e S e u | g e | SR T
Todlha A 2| Foml.cs [Desgal | oo 1) || Puopiies LI
ata Im“l Syviem " raloen. Fore Dol oo j
Comparmply [Sfee ML)
windovaFow | = [E] i [ o | .
b b A Ll B =
:"‘F" b3 L £ B8 3R 2R =85 B8 DRI R CC 00 () Dot ot |
Label | ER8=5555855e8 S Data
A Lnidsiel f R o ) (Ll rirerl
ﬂm | ok, MOERER LR e eni L= o |
B Tostin ] S . SR bR Y
By vt S T
] R ) bl
- Panas Fl'ﬂﬂnhﬁltﬂiﬂ-'-l:l‘ﬂ“ g
b b raeas [T | FiTTee combalion
e I ;‘“‘E‘" Lok ed Faka
wnl Fctwafice HEEL i dcatfan Fiats
Parstd J
%Dﬂ'ﬂ waurgor -
—
;_.]m —_— L] . Led
Ehee o s B 1k b
3 Conbafion g 1. 41
i Tedks s 171, 71 B
15 Lt -
] Taiomt n _IJH-I.I-IImh.
Optarifieg | = —
W i Esplers | 2 Dl Wi
S E[E Takin
Frtay

Developing & Deploying...

Working with Controls: Using TextBoxes
To create and work with textboxes having more than one line:

1. Set MultiLine to True and AutoSize to False.

2. Set AcceptsTab and AcceptsReturn to True to allow tabs and
new lines to be entered via the keyboard.

3. Set the ScrollBars property to Vertical (or Both if WordWrap is
false).

4. Use the Lines property to access the control’s text one line at
a time.

5. Use \r\n for a new line, for example, Flat 18\r\nQueen St.
To use the control for entering a password, set the PasswordChar

property to *. To read or update selected text, use the SelectionStart,
SelectionLength, and SelectedText properties.

www.syngress.com




Windows Forms ¢ Chapter 4 145

Adding an Event Handler
Let’s add some functionality to the form.

1. Add a Button and ListBox to the form.

2. Select the button, and change its Text property to Update. Then click
the lightning icon in the Properties window to switch to the Events
View (see Figure 4.5).

Figure 4.5 Properties Window Events View

Tmglf el e
il a1 e # g
o el o]

p g N |

=1
Bl lrpabrans
E

W
Dusglvan
T e
ey =l
Lk
Doy msory s el n clched

R Pt [ 5 o e (5

Think of these events as “hooks” into which we can attach our own
methods.You can either double-click on an event to create a new event-
handling method, or use the drop-down list to connect into an existing
compatible method.

3. Double-click on the Click event.Visual Studio will write a skeleton
event-handling method, wiring it to the event. It will then place you in
the Code Editor, inside the empty method definition:

private void buttonl_Cick(object sender, System EventArgs e)
{

The .NET convention for event handling requires two parameters: a
sender parameter of type object, and an event arguments parameter of

www.syngress.com



146

Chapter 4 » Windows Forms

type EventArgs—or a descendant of EventArgs. The sender parameter tells
us which control fired the event (this is useful when many controls have
been wired to the same event-handling method). The second parameter
1s designed to supply special data about the event. In the case of Click,
we have a standard EventArgs object, and this contains no useful infor-
mation—it’s just there to meet the protocol required to support more
sophisticated events (such as KeyPress or MouseDown).

The actual name for this method (button1_Click) is just a convenient
identifier generated by Visual Studio; Windows Forms doesn’t impose
any particular naming convention.

Add the following code to the event handler:

private void buttonl_Cick(object sender, System EventArgs e)
{
listBoxl.ltens.Clear();
listBoxl.ltenms. Add ("Fav CD: " + textBoxl. Text);
|istBoxl.ltens. Add ("Fav Style: " + conboBox1. Text);

Here we’re manipulating our list box through its Ifems property. Items
returns a collection object, having methods to add and remove items from
its list. Note how we access each control through its name—this is possible
because the Designer creates class fields matching the names of each con-
trol. You can see these declarations at the top of the class definition.

Press F5 to compile and run the program (see Figure 4.6).

Figure 4.6 Running a Simple Windows Forms Application

Farsoibs [T

||.'|-HIIE'

Fapworis G
Chiond -

Faré LY Chinane
Firs Sl Chillead

www.syngress.com



Windows Forms ¢ Chapter 4

Developing & Deploying...

Working with Controls: Using the
ComboBox and ListBox Controls
To add items to the controls’ selection lists programmatically:

1. Call the Item property’'s Add method to append to the end of
the list, for example:

myControl.ltens. Add ("My New lteni);

2. Use the Item property’s Insert method to insert within the list.

3. Because these methods expect an Object type, the item you
add can be of any class, including your own (this is polymor-
phism in action—one of the benefits of a working in an
object-oriented language). The control simply calls the item’s
ToString method to determine what to display.

To get the currently selected item:

1. Use the Text property to return a string.
2. Use Selectedindex to get a numeric position within the list.

3. Use Selecteditem to get an object reference. If the item is of
your own custom class, you’ll need to explicitly cast the
returned value back to your type.

To allow the user to select only from items in a ComboBox list, set
the DropDownStyle property to DropDownlList.

Adding Controls at Runtime

Sometimes it’s necessary to add controls without the help of the Designer. For
instance, you might want some controls to appear on a form only when a partic-
ular button is clicked.

In learning how to programmatically add controls, it’s very helpful to
examine a visually created form in the Code Editor. If you expand the Designer
Generated Code region, you’ll see a method called InitializeComponent containing
all the code that creates and configures each of the form’ visual components.

147

www.syngress.com



148

Chapter 4 » Windows Forms

\WARNING

Although reading Designer-generated code is useful in understanding
how components are instantiated and configured, you shouldn’t make
manual changes to this code without exercising some caution. In partic-
ular, you should check that the control renders as expected in the
Designer before saving the form. You should also check your code after
making some visual change—Visual Studio completely rewrites the
Designer-generated code section, so your modifications may not appear
as originally entered.

Here are the four steps to programmatically adding a control or component:

Add a class field declaration for the new control.
Instantiate the control.

Configure the control by setting its properties and adding event han-
dlers, if required.

Add the control to the form’s Controls collection (or alternatively, to the
Controls collection of a container control, such as a GroupBox).

Let’s work through an example: we’ll create a new form, add a button, and

then have a textbox appear when the user clicks the button:

1.

Create a new Windows Forms project called SimpleApp2 and add a
Button control from the toolbox onto the new form.

Press F7 to open the Code Editor, and locate butfon1’s declaration.
Below this, add a similar declaration for our new textbox, as follows (you
can exclude the System.Windows. Forms prefix if your form has the appro-
priate using statement):

private System W ndows. Fornms. Button buttonl;

private System W ndows. For ms. Text Box nyText Box;

You need to understand that this declaration doesn’t actually create a
textbox. All it does 1s instruct the compiler, once our form is instanti-
ated, to create a field that can reference (point to) a textbox object—one
that does not yet exist. This declaration exists so as to provide a conve-
nient way to refer to the control throughout the lifetime of the form. In
the cases where we don’t need to explicitly reference the control after its
been created, we can do away with this declaration.

www.syngress.com



Windows Forms ¢ Chapter 4 149

3. Return to the Designer, and double-click on the button. This is a quick
way to attach an event handler to the button’s default event (Click).

4. Add the following code to the button’s event handler:

private void buttonl Cdick(object sender, System EventArgs e)

{

/l Create the actual textbox and assign its reference to
my Text Box
this. myText Box = new Text Box();

/! Position the control

nyText Box. Locati on = new Point (30, 20);

// Put the control on the form
this.Control s. Add (myText Box);

5. Press F5 to test the application (illustrated in Figure 4.7).

Figure 4.7 Adding Controls at Runtime
B Faimi HEH

—

st |

You might have noticed that we created a Point object to position the con-
trol. Point, Size, and Rectangle are three “helper types” defined in the
System. Drawing namespace, and are used extensively in Windows Forms—as well
as other parts of the .NET Framework. Table 4.2 illustrates how these types are
most commonly applied in Windows Forms.

www.syngress.com



150 Chapter 4 » Windows Forms

Table 4.2 Helper Types for Positioning and Sizing

Type Example Notes
Point buttonl. Location = new Point (100, 80); Sets puttonl's
struct position 100 pixels
across and 80 pixels
down.
buttonl. Left = 100; Equivalent to the
buttonl. Top = 80; above.
Consol e. WiteLine (buttonl.location.X); Equivalent to out-
putting buttoni.Left.
buttonl. Location. X = 100; Not permitted because
of the way structs are
marshaled in C#.
Size buttonl. Size = new Size (75, 25); Resizes button to 75
struct by 25 pixels.
buttonl. Wdth = 75; Equivalent to the
but t onl. Hei ght = 25; above.
/1 Assuming "this" is our form Attempts to resize the
this.Size = new Size (buttonl.Right, form so it just fits
but t onl. Bott om) ; button1. However, the
form’s Size property
includes the title bar
and borders—its
usable space is less,
and button1 won't
quite fit.
this.dientSize = new Size ClientSize excludes
(buttonl.Right, buttonl.Bottom; title bars and borders
so this works
correctly.
Rectang/e buttonl. Bounds = new Rectangl e Rectangle combines
struct (100, 80, 50, 20); Point and Size.

buttonl. Bounds = new Rectangl e
(0, 0, this.dientSize.Wdth,
this.CientSize. Height);

Moves and sizes
button1 to fill the
whole client area of
our form (later we'll
see that docking pro-
vides a better solution
to achieving this).

www.syngress.com



Windows Forms ¢ Chapter 4 151

Developing & Deploying...

Working with Controls: Using Controls Collections

The form class is an example of a control that hosts other controls.
Windows Forms manages this containership by providing a Controls
property, returning a ControlCollection object that has methods to add,
remove, and access the child controls. Like other .NET collections, it
implements standard interfaces such as ICollection and IList—and this
means we can work with them all in a similar way.

To access an individual control by its position in the collection, use
its Indexer—for example:

Control s[0].Hi de() // hide the first control in the collection

To iterate through every control, use the foreach structure—for
example:

/[l Wite the Text property of each control on the form
foreach (Control c¢ in Controls)
Consol e. WiteLine (c.Text);

To remove a control from the collection, use the Remove method—
for example:

Control s. Renbve (txtM ddl eNane) ;
To reparent a control to another collection:

» Change the control’s Parent property.

= A control’s position in the collection determines its z-order
(front-to-back order), where position 0 is at the front. When
you use Bring To Front and Send To Back in the Designer,
you're actually changing the control’s position in its parent’s
Controls collection. You can also achieve the same thing at
runtime by calling the object’s BringToFront and SendToBack
methods, or by using the parent collection’s SetChildindex
method.

Here are some other commonly used container-style controls that
offer the same property:

Continued

www.syngress.com



152 Chapter 4 » Windows Forms

= Panel A simple container for other controls.

= GroupBox A container with a border and caption text, used
for visually grouping controls on a form. It's also often used
to host RadioButton controls (only one radio button can be
checked at a time inside each group box).

» TabPage A TabControl contains a collection of TabPage con-
trols—each of which acts as a container for child controls,
with its own Controls property.

Attaching an Event Handler at Runtime

Let’s suppose we want to set up our newly created textbox so that when it’s
right-clicked, a message box appears. We need to add an event handler to the
textbox at runtime, and there are two steps to this:

»  Writing the event-handling method.
» Attaching the method to the control’s event.
In our case, we’ll need to attach to the textbox’s MouseDown event (because
there’s no specific right-click event). First, we need to write the event-handling

method, with parameters of the correct type for a MouseDown event.You can
determine an event’s signature in two ways:

=  Look for the event in the Microsoft documentation, and then click on
its delegate (in our case, MouseEventHandler).

»  Using the Designer, add a dummy control of the type we’re attaching to,
create an appropriate event handler, and then delete the dummy control.
The event-handling method will still be there—with the correct signa-
ture. All we need to do is rename it.

Here’s how we do it:

1. Using either approach, add a method to our form, as follows:

voi d nyText Box_MuseDown (object sender, MuseEvent Args e)

{
if (e.Buttons == MbuseButtons. Ri ght)
/1 Show is a static method of System W ndows. For nms. MessageBox
MessageBox. Show ("Right dick!");
}

www.syngress.com



Windows Forms ¢ Chapter 4 153

2. Next, we attach this method to myTextBox’s MouseDown event. Return
to the button1_Click method and add the following line of code:

my Text Box. MouseDown += new MouseEvent Handl er (myText Box_MouseDown)

On the left-hand side, myTextBox.MouseDown is the event to
which we’re attaching, using the += operator. On the right-hand side,
we're creating a new MouseEventHandler delegate instance: in other words,
an object containing a pointer to a method (myTextBox_MouseDown) con-
forming to MouseEventHandler's signature.

3. Test the application.

Developing & Deploying...

Why We Need Delegates

It's often asked, “why can’t we simply assign a target method (for
example, myTextBox_MouseDown) directly to an event?” C# doesn’t
allow this because the language is strongly typed, and the event needs
to pass parameters to the target method. If we could assign a method
directly to an event, there would be no place to formalize the number
and types of these parameters (the method signature). We need a way
of describing an agreed method signature, and for this we have dele-
gates. The easiest way to think of a delegate is in two parts:

» The delegate definition This simply describes a method
signature.

» A delegate instance This is an object containing a pointer
to a method conforming to the signature.

Most of the delegate definitions you'll come across are part of the
.NET Framework—although sometimes you define your own—usually
when writing custom controls. Delegate instances, however, are created
whenever you hook up to an event.

Here's an example of a complete delegate definition:

public del egate void EventHandl er (object sender, EventArgs e)

As you can see, all this does is set out a signature: two parameters,
one of type object, and the other of type EventArgs, and a void return
type. EventHandler is the “plain vanilla” delegate used extensively in the

Continued

Www.syngress.com



154

Chapter 4 » Windows Forms

.NET Framework. Events are declared of this type if they don’t require
any special information sent to the target.
Here's an example of a delegate instance:

Event Handl er eh = new Event Handl er (textBox1l di ck);

This simply contains a reference (pointer) to textBox1_ Click. The
compiler will check that the target method'’s signature agrees with the
delegate definition (EventHandler). The following line of code attaches
eh to myTextBox's click event:

myText Box. d i ck += eh;

Review Chapter 2 for more information on delegates and events.

Writing a Simple Text Editor

This walkthrough will take you through developing a simple Notepad-style text
editor, demonstrating the following:

» Adding a menu

» Creating and activating a new form

»  Creating a Multiple Document Interface
= Creating a dialog form

» Using form inheritance

» Adding a tab control

» Anchoring controls

» Connecting the dialog form

The code for this walkthrough 1s on the accompanying CD-ROM, in folder
the TextEditor directory.

Starting the Project

First, we’ll create a new project. We’ll then rename the main form Visual Studio
creates for us to something more meaningful:

1. Create 2 new Windows Forms Project, naming the project TextEditor.

2. From the Solution Explorer, rename Form1.cs to MainForm.cs (press F2
or right-click and choose Rename). Also, from within the Properties

www.syngress.com




Windows Forms ¢ Chapter 4

window, change the form’s name to MainForm (this changes its class
name), and change its Text property to Simple Editor.

In the Code Editor, check that the class’s Main method references
MainForm rather than Form1, changing it if necessary.

Creating a Menu

Next, we’ll create the main menu:

1.

From the toolbox, drag a MainMenu component onto the form. The
Designer provides a WYSIWYG interface for populating the menu. In
other words, it’s just a question of typing directly into the menu.

Type in menu items for File, New, and Exit, as in Figure 4.8.

Figure 4.8 Creating a Main Menu

To enter the underlined accelerator keys, put an ampersand (&) before
the desired character (the same principle works with label controls). To
enter the separator between New and Exit, type a single hyphen (-).

Click on the New menu item, and from the Properties window, set its
shortcut to Ctrl+N.

Right-click on one of the menu items, select Edit Names, and enter
meaningful menu item names such as miFile, miNew, and miExit.
This will help later on with coding and debugging. Right-click again
and uncheck Edit Names.

Double-click on the Exit menu item. This will create and attach an
event handler (to Click, the default event for the Menultem class) and
place you in the code window. Add the following line:

private void mExit_Cick(object sender, System EventArgs e)
{

155

www.syngress.com



156

Chapter 4 » Windows Forms

Cl ose();

Because we're in the application’s startup form, closing the form is
sufficient to close the application (and any other forms that are open). If
we wanted to exit the application from another form, we could instead
call Application. Exit().

6. Run the application. There’s our menu!

Developing & Deploying...

Working with Controls: Using Menus

Menus are not strictly controls—in fact, they’re based on Component—
because menus and menu items don’t exhibit the normal behavior of a
control. Each menu is encapsulated by a MainMenu component, com-
prised of a collection of Menultem components. Although you can have
any number of main menus on a single form, only one can be active at
a time (this is determined by the form’s Menu property). A context menu
(right-click pop-up menu) is encapsulated by the ContextMenu compo-
nent, and this also comprises a collection of Menultems.
To add a menu item at runtime:

1. Define an appropriate event-handling method for the menu
item’s Click event, such as the following:

void m New Click (object sender, EventArgs e)

{
MessageBox. Show ("New Item Cicked!");
}
2. Create and configure a Menultem object, and then add it to
the main menu’s Menultem collection. For example:
Menultem mi = new Menul tem

("New', new Event Handl er (m New Cick));
m . Shortcut = Shortcut.CtrlN;
mai nMenul. Menul tens. Add (mi);

Continued

www.syngress.com




Windows Forms ¢ Chapter 4

To add subitems at runtime:

1. Define an event-handling method, then create and configure
a Menultem object as in the previous bullet item.

2. Add the new object to the parent menu item’s Menultem
collection, as follows:

m File. Menultens. Add (mi);

To enable and disable menu items, set the menu item’s Enabled

property to True or False (the parent menu item’s Popup event is a con-
venient place in which to do this). To check and uncheck menu items, set
the menu item’s Checked property to True or False.

Adding a New Form

Let’s create a new form for editing text documents:

1.

Go to Project | Add Windows Form, name the class EditForm.cs,
and then change the form’s Text property to Untitled.

Drag a TextBox control from the toolbox to the form, and from the
Properties windows, change its name to txtEdit.

Clear the textbox’s Text property and change its font’s point size to 10.

Set AutoSize to False and MultiLine to True. This allows us to vertically
enlarge the textbox.

Change the Dock property to Fill (from the drop-down, click the box in
the center). This expands the textbox so that it fills the entire client area
(inside area) of the form. If you subsequently resize the form, the
textbox will still fill the entire area.

Set AcceptsReturn and AcceptsTab to True.

Drag a MainMenu control onto the form, and create a View |
Options menu structure, as in Figure 4.9.
Let’s now hook this up to our main form.

Return to the main form, and double-click on the menu item for New.
Add the following code to its event handler:

private void m New O ick(object sender, System EventArgs e)

{

Edit Form ef = new EditForm(); // Create new instance of form

157

" www.syngress.com



158 Chapter 4 » Windows Forms

ef . Show() ; /1 Display form nodel essly
}
Figure 4.9 EditForm Menu structure
[Sllitied A
et

== e

Now run the application, and click New a few times to open up several text
editor windows. Notice how each of the forms is modeless (you can click ran-
domly on any form) and rop-level (each window floats independently on the
desktop). It we moved the File menu to the child form itself, and did away with
the main form entirely, we’d have a Single Document Interface (SDI) application.
Internet Explorer is an example of an SDI (see Figure 4.10).

Figure 4.10 Single Document Interface
T 1] -] |

ol L kil il

L A 1]
et
s cpesaras

T

www.syngress.com



Windows Forms ¢ Chapter 4 159

Creating a Multiple Document Interface

In the example in the preceding section, we would prefer the editor forms to be
physically constrained to the main parent window, and to have only one menu,
with the View menu items merged into the main menu. This describes a Multiple
Document Interface (MDI) style. Let’s turn our interface into an MDI:

1. Enlarge the main form, and change its IsMdiContainer property to True.

2. Click on our main menu component and add a new menu item for a
Window menu. Set its MdiList property to True (this instructs
Windows to add items for child forms automatically) and set its
MergeOrder to a large value such as 20 (so that the Window menu item
appears at the right-hand side, when merged with child menus).

3. Press F7 to return to the Code Editor, and enhance the event handler
for miNew as follows:

private void m New O ick(object sender, System EventArgs e)

{
Edi t Form ef = new EditForn();
ef. Mdi Parent = this; // this makes ef an M
/1 child form
ef . Show() ;
}

4. Run the application. We now have an MDI (see Figure 4.11).

Figure 4.11 Multiple Document Interface

www.syngress.com



160

Chapter 4 » Windows Forms

Let’s now enhance this by adding “Tile” and “Cascade” menu items:

1. Add menu items to the Window menu, titled Tile Vertical, Tile
Horizontal, and Cascade.

2. Double-click each of the menu items to create event handlers. In each
method, call the form’s LayoutMdi method with an appropriate member
of the MdiLayout enumeration, such as in the example below:
private void m TileVertical _Cick(object sender,

System Event Args e)

Layout Mdi (Mdi Layout. Til eVertical);

Creating a Dialog Form

A form with OK and Cancel buttons is usually described as a dialog. In most
cases, dialog forms are modal rather than modeless, meaning the user must accept
or cancel before clicking on another form. Making and displaying a dialog form
involves three parts:

» Creating a form that has the “look and feel” of a dialog
= Displaying the form modally—using ShowDialog() instead of Show()
= Disposing of the form when we’re finished
Let’s first create a basic dialog form. Later we’ll use this as a base for creating
an Options Form within our text editor:
1. Add a new form to the project called DialogForm:.

2. Put two buttons onto the form. Name one btnOK and the other
btnCancel. Change their Text properties to OK and Cancel.

3. Set the DialogResult property of the OK button to OK and the Cancel
button to Cancel. This instructs the form to automatically close when
the button is pressed (and to return an appropriate DialogResult to the
calling program).

4. Click directly on the form, and change its FormBorderStyle property to
FixedDialog. This will prevent the user from resizing the form. Of
course, you can still resize it from within the Designer.

www.syngress.com



Windows Forms ¢ Chapter 4

5. Set MaximizeBox and MinimizeBox properties to False and the
StartPosition to CenterScreen.

6. Set the AcceptButton property to btnOK and the Cancel Button property
to btnCancel. This will hook up the Enter and Escape keys to the OK
and Cancel buttons (see Figure 4.12).

Figure 4.12 Basic Dialog Form
e -

[ o ] cows |

7. Finally, we need to remove the form’s icon and associated menu. This is
not possible with the Designer, however, it can be done programmati-
cally. In the form’s constructor, after the call to InitializeComponent, add
the following:

this.lcon = null;

8. Next, we need to activate and test the dialog. We’ll do this from the
Options menu item in EditForm. Return to EditForm and double-click
on the Options menu item. Add the following code:

private void m Options_Click(object sender, System EventArgs e)

{
Di al ogForm df = new Di al ogFor () ;
i f (df.ShowDi al og() == Di al ogResult. OK)
MessageBox. Show ("OK Pressed!");
df . Di spose(); /1 nodal forns don't dispose autonatically!
}

The ShowDialog method returns a DialogResult enumeration, and this tells us
how the form was closed.You can also query the form’s DialogResult property to

161

www.syngress.com



162

Chapter 4 » Windows Forms

the same eftect. The call to Dispose is required because a form activated with
ShowDialog does automatically clean up when it’s closed. This is a useful feature
because it allows us to query the state of its controls after the form’s been closed.
But once we’re done, we must remember to call Dispose—otherwise the form
will continue to consume operating system resources—even after the garbage
collector has released its memory. This completes the skeleton dialog form.You
can run the application as it is, to ensure that the form works as expected.

Debugging...

Remembering to Call Dispose

As a rule, if a .NET object has a Dispose or Close method, it must be
called once the object is no longer required. But in practice, we rarely
dispose Windows Forms components explicitly because most compo-
nents are parented to a container collection that handles disposal auto-
matically. For instance, a control object is normally parented to a form’s
Controls collection (or some other Controls collection), and this is pro-
grammed to dispose all child controls automatically with the parent.

In a couple of situations, however, you do need to explicitly dis-
pose—when you've programmatically instantiated an object having a
Dispose method that’s not managed through a component collection
(such as a Bitmap), and when you've instantiated a form modally (by
calling ShowDialog).

Disposing is about releasing resources—such as Windows handles
and file handles. It's not about releasing memory: The CLR’s garbage col-
lector does this automatically (some time) after an object is no longer
referenced. Calling Dispose does not influence garbage collection, and
conversely, the garbage collector knows nothing about Dispose.

It's sometimes asked, “why doesn’t the class’s destructor handle
disposal?” The answer is that inherent limitations are associated with
destructors activated via automatic garbage collection, and disposal is
considered too important to be subject to these limitations.

Using Form Inheritance

The dialog form we’ve just designed is an example of a template that could be
utilized in many places within an application. We could keep this form as it is

www.syngress.com



Windows Forms ¢ Chapter 4

(our “skeleton” dialog), and then whenever we need a real dialog, we could create
a copy to which we add controls.

But this approach is inflexible in that if we later enhance the base dialog
form, we’d have to manually update each of the forms we’ve already created. By
using inheritance, we get around this problem: Forms that have been subclassed
from the base dialog form will automatically assume its functionality—even if the
base class is later modified.

Let’s turn our DialogForm into a reusable base class. We need to make only
one small change. Select the OK button and change its Modifiers property to
Protected (sometimes called Family), and likewise with the Cancel button.

This allows subclasses to access the buttons—and change their properties.
Subclassed dialogs will need to modity the buttons’ Location properties, otherwise
they’ll be stuck in one position on the form.

WARNING

Once you've created a reusable form, such as a dialog, it's quite
tempting to subclass it again to create another reusable form—such as a
tabbed dialog, which in turn is subclassed into a sizable tabbed dialog,
then a dialog with an Apply button, and so on. This leads to a messy and
inflexible hierarchy, causing many more problems than the designer set
out to solve. It's usually best to keep (implementation) inheritance as
simple as possible—the best object-oriented designs often employ com-
ponent reuse and interface inheritance as alternatives to keep complexity
and coupling to a minimum. It's worth reading a book or two on object-
oriented design before diving into a big project—if these concepts are
unfamiliar.

Now we can subclass and create the options form. First, rebuild the project
(Shift+Ctrl+B). Then select Project | Add Inherited Form, name the class
OptionsForm, and select DialogForm from the Inheritance Picker (see
Figure 4.13).

To test this, modify the miOptions_Click method in EditForm so that it
instantiates OptionsForm instead of DialogForm and run the application.

163

www.syngress.com



164

Chapter 4 » Windows Forms

Figure 4.13 Inheritance Picker

5 o0y et e i sl B B
Coanposend Hawee | Pagpect Blame | Lgscon -
E diFarmi T ek ien £ ynpeayeh Carcal |
Farf corn T wtE e g ch
[ T ™ & =T Hep
all ] | Hewarn
Huw corsponant narss: O phonsf o

]

Adding a TabControl

When designing a form, it’s a good idea to start with a TabControl if you plan to
have a lot of controls—or if you anticipate a lot of controls in the future. It dis-
courages future developers from cluttering the form, as well as giving dialog

forms a tidy presentation.

Let’s add a tab control to OptionsForm:

1. Drag a TabControl onto the options form, and align it with the OK
and Cancel buttons, as shown in Figure 4.14. (The easiest way to align
the Cancel button is to select it together with the tab control by using
the Ctrl key, and then choosing Align Rights from the Layout toolbar

or Format menu.)

Figure 4.14 Options Form with TabControl

F oo ] cew |

2. Select the tab control and then click Add Tab at the bottom of the

Properties window.

www.syngress.com



Windows Forms ¢ Chapter 4 165

3. Click inside the dashed rectangle on the tab control to select a TabPage,
and then set its Text property to Editor.
Note that you can also add and configure tab pages by clicking the
ellipses on the tab control’s TabPages property. Now we’ll add controls to
the tab page.

4. Put a couple of checkboxes, a NumericUpDown control, and a label onto
the tab page, as in Figure 4.15. Name the controls chkWordWrap,
chkApplyAll, and nudFontSize.

Figure 4.15 Adding Controls to the TabPage

5. Choose View | Tab Order and click each control in sequence, from
top to bottom. This sets the order of focus when the Tab and Shift+Tab
keys are used.

Developing & Deploying...

Working with Controls: Using TabControls

A TabControl consists of a collection of TabPages, each of which hosts a
collection of controls.
To determine the active tab page:

1. Use the SelectedTab property to get a TabPage object.
2. Use the SelectedIndex property to get its position.

To add a page at runtime:

Continued

www.syngress.com



166 Chapter 4 » Windows Forms

1. Create a new TabPage control:

TabPage tp = new TabPage ("Advanced Properties");

2. Add the new TabPage control to the tab control’s TabPages
collection:
tabControl 1. TabPages. Add (tp);
To programmatically add controls to a tab page:

1. Declare, create, and configure the control as if it were to go
directly on the form.
2. Add the control to the tab page’s Controls collection instead
of the form’s Controls collection:
t abPage4. Control s. Add (nmyText Box) ;
/*or*/ tabControl 1. TabPages[ 3] . Control s. Add (nmyText Box) ;

Anchoring Controls

Next, we’ll make the form sizable. This is a useful feature in forms that have con-
trols with a lot of information to display—such as the TabPage Collection Editor
in Visual Studio. Of course in our case, we have only two checkboxes and an up-
down control, but we’ll gloss over that for now:

1. Change the tab control’s Anchor property to all four sides (from the
drop-down, click on the bottom and right rectangles so that all four
rectangles are selected). Selecting two opposite sides instructs a control
to expand or shrink in that direction. Our tab control will expand or
shrink both vertically and horizontally.

2. Change the OK and Cancel button’s Anchor properties to Bottom and
Right (from the drop-down, uncheck the rectangles at the top and left,
and check those at the bottom and right). This instructs the buttons to
maintain their alignment to the bottom and right of their parent con-
tainer (in this case the form).

3. Change the Form’s FormBorderStyle to Sizable.

Now try resizing the form.You can test this better by adding a dummy list
box to the tab page (placing it the area at the right), and anchoring it to all four
sides. Anchoring works in the same way at runtime.

www.syngress.com



Windows Forms ¢ Chapter 4

Developing & Deploying...

Navigating in the Designer and Code Editor

= To select the parent of the control you're on, press Escape.
For example, if you have a TabPage selected, pressing Escape
will select its TabControl, and pressing Escape again will
select the form.

= In the Code Editor, press Ctrl+spacebar to redisplay an
object’s list of members. Press Shift+Ctrl+spacebar to
redisplay its parameters.

= Use the F12 shortcut to jump to a class or member’s
definition.

= Enable Auto Hide on the Output and Task List windows to
see more form and code.

Changing the Startup Form

Once you have several forms in your application, you might want to change the
form used for startup. This is simply a matter of moving the Main method:

1. Cut and paste the Main method from the old startup form to the new
startup form.

2. Update this method so that it instantiates the new form class instead.

As long as you have only one Main method in your project, the compiler will
find it, and make that class the startup object. If you have more than one method
in your project with this name, you need to specify which should be the startup
object in the Project | Properties dialog.

Connecting the Dialog

Let’s now write the code to make the Options form function. We’ll need to pass
data to and from the dialog form—in our case, the editing form’s textbox.To do
this, the first thing we’ll need is a field in the Options form to hold a reference
to textbox it’s controlling:

167

www.syngress.com



168

Chapter 4 » Windows Forms

1.

Add the following declaration to the OptionsForm class:

public class OptionsForm : TextEditor.D al ogForm

{

private Text Box hostControl;

Next, we’ll need some way to get the textbox in, so we can save it to
the class field. The easiest way is through its constructor. Once we have
the textbox, we can also set the initial values for the word wrap and font
size controls.

Modity the form’s constructor, as follows:

public OptionsForm (TextBox host Control)

{

InitializeConmponent();

/1 Save hostControl paranmeter to class field

this. hostControl = hostControl;

chkWor dW ap. Checked = host Control . Wor dW ap;

nudFont Si ze. Val ue = (decimal) host Control. Font. Si ze;
}

When the user clicks OK, we need to update the textbox’s word
wrap and font properties.

Double-click on the OK button to attach a Click event handler, and
enter the following:

private void btnOK dick(object sender, System EventArgs e)
{

host Control . WordW ap = chkWordW ap. Checked ;

host Control . Font = new Font

(host Control . Font. Nane, (float) nudFontSi ze. Val ue);

The method that displays this form is going to be responsible for
propagating the settings to all other open windows, if the Apply All
checkbox 1s checked. This means we need to provide a way in which
this checkbox can be queried from outside the class.

www.syngress.com



Windows Forms ¢ Chapter 4 169

4. Add a property definition inside the OptionsForm class as follows:
public bool Shoul dAppl yAl |

{
get {return chkAppl yAll. Checked;}

Finally, we need to make a couple of modifications to EditForm. We
require a property to expose the textbox, and miOptions_Click needs to
be updated so that it passes in the form’ textbox to OptionsForm, and
then checks and handles the “Apply All” scenario. The following below
illustrates how to iterate through MDI child forms. Note that because
the MdiChildren collection consists of plain Form objects, we need to
cast each child into the expected class, so we access its specific properties
(in this case, EditControl).

5. Make the following changes to EditForm.cs:

publ i c TextBox Edit Control

{
get {return txtEdit;}

}
private void m Options_Cick(object sender, System EventArgs e)

{
Opti onsForm of = new OptionsForm (txtEdit);

if (of.ShowDi al og() == Di al ogResult. K && of . Shoul dAppl yAl I')
foreach (Form child in MiParent.Mli Chil dren)
{

Text Box childEdit = ((EditForm child).EditControl;
chil dEdi t. WordWap = txtEdit.WrdW ap;
childEdit. Font = txtEdit. Font;

}
of . Di spose();

This completes the simple text editor.

www.syngress.com



170

Chapter 4 » Windows Forms

Debugging...

Using the Console Class

You'll remember from the second chapter that the Console class pro-
vides Write and WriteLine methods that send output to the screen in
command-line applications. You can call the same methods from a
Windows Forms application, and the text will be diverted to Visual
Studio’s Output window—providing a quick and easy mechanism for
generating debugging output.

Using the ListView
and TreeView Controls

Most people are very familiar with Windows Explorer: On the left is a tree view
displaying folders hierarchically; on the right is a list view offering four modes of
display (Large Icons, Small Icons, List, and Detail). In this walkthrough, we’ll
create a ListView and TreeView control, add images and items, and then attach a
context menu to allow the user to switch between each of the four views. Then
we’ll insert an Explorer-style splitter and enable a simple drag-and-drop facility
between the controls. The code for this walkthrough is on the accompanying
CD-ROM, in the WeatherView folder.

Building an ImagelList

Before we can set up a list or tree view capable of displaying icons, we need to
create an ImageList component. An image list is just a convenient repository, into
which we can load a collection of same-sized images, and then use in any
number of controls on the form.

In this example, we’ll create two image lists: one suitable for a TreeView and a
ListView’s Small Icons view and another suitable for a ListView’s Large Icons view:

1. Create 2 new Windows Forms project called WeatherView, and drag an
ImageList from the toolbox to the form. Because it’s a component
rather than a control, its icon appears in the bottom section of the
Designer.

www.syngress.com



Windows Forms ¢ Chapter 4 171

2. Change its Name property to ilSmall, and its ImageSize to 16x16
pixels—this is the size of the small icons we’ll be loading.
3. Next we need to find some images to load in. Search your hard drive

for the Elements folder (this is usually in Program Files\Microsoft Visual
Studio. NET\Common7\Graphics\Icons).

4. Expand the component’s Immages collection property, and add four icons
appropriate for Sun, Snow, Clouds, and Rain (see Figure 4.16).

Figure 4.16 Populating an ImagelList
bvage Colmclisn it |

M b Eestvan Dyanang B ey Propeis:
a Eysian Dyawang B s + = [
1|EE SoctenCvarargHimsp
] enroeigRinn &)
1]
| T3 | Carscal | Hap |

Note that while we’ve loaded images from ICO files, the image list
control stores the data in ordinary bitmap format.

5. Add a new ImageList called ilLarge, change its ImageSize to 32x32
pixels, and repeat the previous steps (using the same icons).

6. Check that the images in the two lists appear in the same order. If not,
use the up and down arrow buttons in the Collection Editor to rear-
range the images.

NoTEe

When designing custom graphics for use in an ImagelList control, saving
into the GIF format is a good idea, because it provides transparency in
an easy and reliable manner. If you're using Microsoft Paint in Windows
2000, you can select the transparency color from Image | Attributes
(this option is only enabled once the file's been saved as a GIF).

www.syngress.com




172 Chapter 4 » Windows Forms

Adding a ListView

Now that we have the image lists set up, creating a list view is easy:

1. Add a ListView control to the form, setting its LargelmageList property
to ilLarge and its SmalllmageList property to ilSmall.

2. Expand its Items property and add four items with text properties: Sun,
Snow, Clouds, and Rain. Set the Imagelndex on each to the corre-
sponding icon (see Figure 4.17).

Figure 4.17 ListViewltem Collection Editor

Lictemewllem Lolociorn b ddm
Mk Lishfewiiaay |l Pupeais

0| Lishemadnn: Gl
1] Linfmmdturre [Snoa]

B
3| Litieedcen (Do * | w

Sk e ]
Chonchomd Fahin
- =
F oeal_ oice
B 3 A
=l tal magmirsdac: : |rera|
Tt Famn

Ll ool s i o T

[ o ] cowd | ha |

]

The control defaults to the Large Icons view.You can see the Small
Icons view by changing the control’s View property in the Designer.

3. Attach a handler to the control’s ItemActivate event, and add the fol-
lowing code:

MessageBox. Show (i stViewl. Sel ectedltens[0]. Text);
Because list views allow multiple items to be selected, the control has

a collection property for this purpose. In this case, we’re interested only
in the first selected item.

4. Run the application and double-click on a list item to test the event

handler.

www.syngress.com



Windows Forms ¢ Chapter 4

Using the Details View

The Details view allows us to add columns. This is often used in Windows Forms

to provide simple grid control, without with the need for a dataset. In this

example, we’re going to enhance our list view by defining two columns:

1.

Change the list view’s View property to Details, and then expand its
Columns collection property. Add two columns, and set their Text prop-
erties to Outlook and Probability.

Once you close the dialog, you can visually resize the columns by
dragging their headers in the Designer.

Return to the Items Collection Editor, and for each member, open its
Subltems collection. Add a subitem, and set its Text property to some
random value, such as in Figure 4.18.

Figure 4.18 Adding Subltems to a ListViewltem
Uit Colectom Bl

el LiEtwina®s bl Lopal Propedies

ull.-:rr-enw-en Fun | B um
1 BackColar (|
| F——

| (1] | Carecal Hap

—

We’ll also add an item programmatically.

In the form’s constructor, after the call to InitializeComponent, add the

tollowing:
ListViewtem Ivi = new ListViewtem
(new string[] { "Hail", "Possible" } );

listViewl.ltens. Add (lvi);

4. Run the form (see Figure 4.19).

173

www.syngress.com



174 Chapter 4 » Windows Forms

Figure 4.19 Details View at Runtime

B2 The sumeer = Higily

g";m—-— Ly ]

A ik High

FRun [ostsn
Hal Farzhla

Attaching a Context Menu

It would be nice if the user could right-click on the list view control, and then
from a menu, select one of the four available views:

1.

Add a ContextMenu component to the form, naming it cmView, and
type in four menu items: Large Icons, Small Icons, List, and Details,
as shown in Figure 4.20. Right-click and select Edit Names, and
rename them miLargelcon, miSmalllcon, miList, and miDetails.

Figure 4.20 Designing a Context Menu

L% The aummer = Hisg =l=] =]
Crordecd idar
Lasgm lcanx
Graal ko

Double-click each of the menu items, to create handlers for their Click
events. Code each method as follows (where XXXX is Largelcon,
Smalllcon, List, or Details):

private void m XXXX _Cick(object sender, System EventArgs e)
{

www.syngress.com



Windows Forms ¢ Chapter 4

listViewl.View = Vi ew XXXX;

3. Select the cmView component, and in the Properties window, switch to
the Events view and then double-click its Popup event. Here’s where
we’ll tick the selected view:

private void context Menul_Popup(object sender,

System Event Args e)

{
m Lar gel con. Checked = (listViewl.View == View Largelcon);
m Smal | 1 con. Checked = (listViewl.View == View Snmalllcon);
m Li st. Checked = (listViewl.View == View. List);
m Detai |l s. Checked = (listViewl.View == View. Detail s);

}

4. Finally, select the list view control, set its ContextMenu property to
cmView, and then test the form.

Adding a TreeView

Setting up a tree view control is rather similar to setting up a list view. First you
create and attach an image list (if icons are required), and then add items to the
tree—either visually or programmatically. In this example, we’ll use one of the
image lists we created earlier:

1. Put a TreeView control on the form, set its ImageList property to
ilSmall. With this control, there’s only one image list, equivalent to the
list view’s Small Icons view.

2. Expand the tree view’s Nodes collection, and add three root nodes for
Sun, Snow, and Clouds. Then add a child node for Rain, below Clouds.
Set their Label, Image, and Selected Image properties as in Figure 4.21.

Now we’ll add an item programmatically. The tree view’s items are
managed through Nodes—a property returning a collection—rather like
with the list view control’s Ifems property, except that in this case it’s
hierarchical. Nodes itself has itself a Nodes property, returning another
tree node collection. Adding nodes is largely just a question of finding
the right place in the containership tree.

www.syngress.com

175



176

Chapter 4 » Windows Forms

Figure 4.21 TreeNode Editor
T T ——

e O -l
]
#..
3 Chie
-]
jmbft | sl | % g |
[
=
e Ll i m
= A = E
[

Let’s insert a node as a child to Snow. First, we need to know its
numeric position. Because it’s second in the list, and the list is zero-
indexed, its position is 1. We’ll also give the new node an Imagelndex—
in this case, we’ll use Snow’s image (also position 1).

Add the following to the form’s constructor:

/1 Use snow s |Inagelndex (1) for inmage & selected inmage
TreeNode tn = new TreeNode ("Sleet", 1, 1);

/1 treeViewl. Nodes[1] is the Snow Node.
/1 W want to add to *its* node collection.
treeVi ewl. Nodes[ 1] . Nodes. Add (tn);

Test the form.

Sometimes you need to add custom information to list view items or tree
nodes. The easiest solution is to use the Tag property. This property is of
type Object (allowing data of any class to be stored)—and this works in
the same way as the Tag property in the Control class. As an alternative
you can subclass ListViewltem or TreeNode, adding your own fields and
methods, and then instantiating the subclassed versions instead to create
items or nodes. Note that with the latter approach, you cannot then add
your subclassed items or nodes through the Designer.

www.syngress.com



Windows Forms ¢ Chapter 4 177

Adding a Splitter

Let’s now add an Explorer-style splitter bar between the tree view and list view
controls. Getting a splitter to work is largely about getting all the controls in the
correct front-to-back order (z-order). In a nutshell, we need the following:

= A side-docked control, at the back of the z-order

= A splitter control, docked to the same side, in the middle of the z-order
» A fill-docked control, at the front of the z-order

We already have the two controls we want to split—all that’s required is the
splitter control, and of course, everything in the right z-order.

1. Set the tree view’s Dock property to Left (click the leftmost rectangle
in the drop-down). This pushes it up hard against the left-hand side of’
the form.

2. Add a Splitter control from the toolbox, and change its Dock property
to Left (if not already docked left). Because we’ve just put it on the
form, it’ll be in front of the tree view, and will appear to its right.

3. Set the list view’s Dock property to Fill (click the center rectangle in the
drop-down) and then right-click the control and select Bring to
Front. Now it’ll be at the front, with the splitter in the middle, and the
side-docked tree view at the back.

4. Test the application. The controls will automatically resize as you drag the
splitter (and also when you resize the form), as shown in Figure 4.22.

Figure 4.22 Splitter Control at Runtime

&
# -
P

www.syngress.com



178

Chapter 4 » Windows Forms

Implementing Drag and Drop

When demonstrating the list view and tree view controls, it’s hard to put them
side-by-side without someone asking about drag and drop. The good news is that
dragging between these controls is reasonably easy to implement in Windows

Forms.

\WARNING

When you create a Windows Forms project, Visual Studio adds the
[STAThread] attribute to the startup form’s Main method. This tells the
compiler to apply the Single Threaded Apartment threading model,
allowing your application to interoperate with other Windows and COM
services. If you remove this attribute, features such as drag and drop will
not work—even between controls within your own application.

Let’s take a look at drag and drop in general. As you might guess, it consists of
two parts. In the first part, you need to identify when the user starts dragging the
mouse, and then ask Windows to start the operation, supplying data necessary for
the recipient when processing the drop. In Windows Forms, this is done as follows:

1.

4.

Decide from which event to start the operation. If youre dragging from
a list view or tree view control, it’ll be the special event called ItemDrag.
With other controls, it will usually be the MouseDown or MouseMove
event.

Package information to be sent to the target in a DataObject. It you want
to interoperate with another Windows application, you must use one or
more of the standardized formats listed in the DataFormats class, such as
Text or HTML.

Decide on what actions (such as Move or Copy) are permitted. You can’t
always be sure at this point on what will end up happening, because it
could depend on where the item is dropped.

Call DoDragDrop to start the operation.

The second part is about enabling a target control to accept a drop. In

Windows Forms, this is done as follows:

1.

Set the target’s AllowDrop property to True.

www.syngress.com



2.

NoTE

Windows Forms ¢ Chapter 4

Handle the DragEnter or DragMove event. DragEnter fires just once when
the cursor enters the control; DragMove fires continually as the cursor
moves through the control. In the event handler, you need to decide if
the drop is allowable—and this is done by checking that the packaged
data is of an expected type. If so, you set the DragEventArg parameter’s
Effect property to one of the permitted actions, and this enables the drop
(changing the cursor accordingly).

Handle the DragDrop event. To get at the packaged data, you first need
to extract it and cast it back into its original type.

The advantage of passing a DataObject to DoDragDrop is that you can
include data in multiple formats, allowing external applications, such as
Microsoft Word, to function as drop targets. Standard formats are
defined (as static public field) in the DataFormats class.

In our example, we're going to allow dragging from the tree view to the

list view:

1.

Double-click the tree view’s ItemDrag event, and type the following:
treeVi ewl. DoDragDrop (e.ltem DragDropEffects. Move);
The first parameter is our package of information. Because we’ve not

wrapped it in a DataObject, Windows Forms does this for us automatically,
as if we did the following:

treeVi ewl. DoDragDrop (new Dat aChject (e.ltem,
Dr agDr opEf f ect s. Move) ;

e.Item is the actual data we want to send to the target: in this case the
TreeNode we're dragging. The second parameter describes the allowed
actions: In this example, we’re going to allow only moving.

Set the list view’s AllowDrop property to True.
Double-click the list view’s DragEnter method, and type the following:

private void |istViewl_DragEnter(object sender,
Syst em W ndows. For ms. Dr agEvent Args e)

179

www.syngress.com



180

Chapter 4 » Windows Forms

if (e.Data.GetDataPresent (typeof (TreeNode)))
e. Effect = DragDropEffects. Mve;

e.Data returns the packaged information, as a DataObject. R egardless
of how the data went in when we called DoDragDrop, we always get
back a DataObject. This class 1s designed to hold information in multiple
formats, and we call its GetDataPresent method to find out if a particular
type of data is supported.

Double-click the list view’s DragDrop event, and type the following:

private void |istViewl_DragDrop(object sender, DragEventArgs e)

{
if (e.Data.GetDataPresent (typeof (TreeNode)))
{
TreeNode tn = (TreeNode) e. Data. GetData
(typeof (TreeNode));
listViewl. | tenms. Add (tn.Text, tn.|nagelndex);
treeVi ewl. Nodes. Renove (tn);
}
}

We use the data object’s GetData method to retrieve our original
data, and then cast it back to the original type. Once this is done, we can
treat it again as a normal TreeNode.

Test the application. You’ll now be able to drag items from the tree view
to the list view.

Developing & Deploying...

Dragging Into a Tree View

If setting up to drag into a tree view, you might want the dropped item
to be inserted into the tree at the position under the mouse pointer. For
this, you first need to determine which tree node is positioned under the
mouse, as follows:

Continued

www.syngress.com




Windows Forms ¢ Chapter 4

voi d treeVi ewl_DragDrop(object sender, DragEventArgs e)

{
Point pos = treeViewl. Point Todient (new Point (e. X e.Y));
TreeNode tn = treeVi ewl. Get NodeAt (pos);

Creating Controls

Sometimes your requirements demand extending or replacing standard Windows
Forms controls. It could be that your requirements are specific to a particular
application—or they could warrant developing a general-purpose component for
use in thousands of applications. Writing and deploying custom components is
easy, because .NET components are self-describing, they don’t require registra-
tion, and are not accidentally overwritten by subsequent software installations.
Let’s look at the three most common scenarios:

= You have a recurring group of controls that you would like to make into
a reusable component (a UserControl).

= You need a control that cannot be assembled or adapted from existing
components (a custom control).

*  You want to extend a standard control-—in order to modify or enhance
its appearance or behavior (an inherited control).

In the following sections, we’ll walk through solutions to each of the scenarios.

Creating a User Control

Suppose your application contains several forms with a group of controls for
entering an address. Assembling these controls into a reusable class would be
nice—both for visual consistency, and so that common functionality can be
added, such as postcode lookup. In this walkthrough, we’ll create a user control to
show how to do this:

1. Create a new Windows Forms project, and then choose Project | Add
User Control, naming the file Address.cs.

2. Add a group of controls suitable for entering an address, such as in the
example in Figure 4.23.

181

" www.syngress.com



182 Chapter 4 » Windows Forms

Figure 4.23 UserControl in Designer

3. Build the project (Shift+Ctrl+B) and return to Form1. At the bottom

of the toolbox, in the Windows Forms tab, will be a new control called
Address. Add this to Form1 and then run the application.

Adding a Property

Our address control is not much use because there’s no way for the form to
determine what the user typed in. For this, we need to add properties to our
control. Here’s how we add a property to allow access the contents of the Street

textbox:

1.

Add the following declaration to the Address class:

[Category ("Data"), Description ("Contents of Street Control")]
public string Street

{
get {return txtStreet. Text;}

set {txtStreet.Text = value;}

The first line is optional—it specifies Category and Description
attributes, to enhance the control’s presentation in the Designer. Without
the Category attribute, the property would appear in the “Misc” section
in the Properties window.

Rebuild the project, and return to Form1.The address control now has a
Street property into which you can type. Of course, it can also be
accessed programmatically as with any other control property.

Adding Functionality

Once the control has been set up, it’s fairly easy to modify its class so as to add
reusable functionality, such as postcode lookup. It’s just a matter of capturing
events such as TextChanged or Validating and then updating the properties of other

www.syngress.com



Windows Forms ¢ Chapter 4

controls accordingly. We don’t provide an example, because it doesn’t introduce
aspects of Windows Forms we haven’t already covered. However, it’s worth men-
tioning that in a real situation you would consider good object-oriented design,
and abstract the postcode-lookup functionality into a class separate from the user
interface. You could also consider basing this class on a (C#) interface—to which
the user control would be programmed. This would allow the control to plug in
to different implementations (to facilitate internationalization, for instance).

Writing a Custom Control

If your needs are more specialized, you can paint a control from scratch with
GDI+. In principle, this is fairly simple: You subclass Control, and then override its
OnPaint method, where you render the graphics.You can also capture mouse and
keyboard events by overriding methods such as OnMouseDown and OnKeyPress.

NoTE

Every event had a corresponding protected method, prefixed with the
word On. Some people have asked about the difference between han-
dling the event (such as Paint) and overriding the protected OnXXXX
method (such as OnPaint). There are a number of differences:

= Overriding the protected method is faster because the CLR
doesn’t have to traverse an event chain.

» Because the protected method fires the event, you can effec-
tively snuff the event simply by failing to call base.OnXXXX.

=  Events can be attached and detached at runtime; code in over-
ridden OnXXXX methods always runs.

» When subclassing a control, you generally override protected
methods rather than handling events.

GDIH+ is accessed through a Graphics object—a representation of a drawing
surface, with methods to draw lines, shapes, and text. GDI+ is stateless, meaning
that a graphics object doesn’t hold properties to determine how the next object
will be drawn (the “current” color, pen, or brush)—these details are supplied with
each call to a GDI+ drawing method. Tables 4.3 and 4.4 summarize the most
common GDI+ helper types.

183

www.syngress.com



184 Chapter 4 » Windows Forms

Table 4.3 Commonly Used GDI+ Helper Types

Type Description

Color struct

Represents an RGB or ARGB color (where A represents alpha,

or transparency). Also used in Windows Forms.

Font class

Represents a font consisting of a name (referred to as the

font “family”), a size, and a combination of styles (such as
bold or italic). Also used in Windows Forms.

Brush class

Describes a fill color and style for areas and shapes. A brush

can consist of solid color, graded color, a bitmap, or hatching.

Pen class

Describes a line color and style. A pen has a color, thickness,

dash-style, and can itself contain a brush describing how the
line should be rendered.

Table 4.4 Instantiating GDI+ Helper Types

Type Example Notes

Color Color gray = Color. FromArgb Creates a color from its
(192, 192, 192); red, blue, and green

intensities (0 to 255).
Col or bl ueWash = Col or. FromArgb The alpha component
(80, 0, 0, 128); is optional and speci-
Col or grayWash = Col or. Fr omAr gb fies opacity: 0 is
(80, gray); totally transparent;
255 is totally opaque.
gray is defined above.
Col or green = Color. G een; Green is a static prop-
erty of the Color
struct.
Col or background = SystenCol ors. Control; Use this class if the
Col or foreground = color you need is part
Syst enCol or s. Cont r ol Text ; of the Windows color
scheme.

Font Font f1 = new Font ("Verdana", 10); When specifying font
Font f2 = new Font ("Arial", 12, styles, use the bitwise
FontStyle.Bold | FontStyle.ltalic); OR operator (|) to
Font f3 = new Font (f2, combine members of

Font Styl e. Regul ar) ;

the enumeration.
There are 13 ways to
call Font's constructor.

www.syngress.com

Continued



Windows Forms ¢ Chapter 4 185

Table 4.4 Continued

Type Example Notes

Brush Brush bl ueBrush = Brushes. Bl ue; Returns a solid blue
brush.

Brush border = The preferred way to

Syst enBr ushes. Acti veBor der; obtain brushes consis-
tent with the
Windows color
scheme.

Brush grayBrush = new Sol i dBrush The Brush class itself is

(this.BackCol or); abstract; however, you

Brush crisscross = new HatchBrush can instantiate its sub-

(HatchStyl e. Cross, Col or. Red); classes such as
SolidBrush or
HatchBrush.

Pen Pen p = Pens.Violet; Creates a violet pen
with thickness of one
pixel.

Pen ht = SystenPens. Hi ghl i ght Text ; The preferred way to

obtain pens consistent
with the Windows
color scheme.

Pen thick = new Pen (Color.Beige, 30); A beige pen 30 pixels
wide.
Pen ccPen = new Pen (crisscross, 20); A pen 20 pixels wide

drawn with the criss-
cross brush (defined
earlier in this table).

In this walkthrough, rather than defining our control as part of a Windows

Forms project, we’ll make a class library—so our control can be used in a

number of different applications:

1.

From File | New Project, choose the Windows Control Library
template, calling the library FunStuff. Visual Studio assumes we’ll start
with a user control. However in this case we want a custom control.

From the Solution Explorer, delete UserControl1.The project should now
be empty.

www.syngress.com



186

Chapter 4 » Windows Forms

3. From Project | Add New Item, select Custom Control. Name the

file ScrollingText.cs.

Switch to the Code View. Notice that Visual Studio has based our class
on Control, and that it has added code to overwrite the OnPaint method.
This is where we use GDI+ to draw the control—for now, we’ll just fill
the control’s area with red, and then draw a green ellipse in the middle.

Enter the following code into the overridden OnPaint method:

protected override void OnPai nt (Pai nt Event Args pe)

{
pe. Graphi cs. C ear (Col or.Red);
Brush b = Brushes. G een;
pe. Graphics.FillEl'lipse (b, dientRectangle);
b. Di spose();
base. OnPai nt (pe);

The PaintEventArgs parameter contains a Graphics object used to
access GDI+ methods—such as Clear and FillEllipse. We use static prop-
erties of the Color and Brushes types as shortcuts to creating Color and
SolidBrush objects. ClientRectangle describes the inside bounds of the
control based on a (0, 0) origin. (In this case, the inside and outside areas
are equivalent because there are no Windows-imposed borders or scroll-
bars). We call base. OnPaint so that the Paint event still fires—in case the
end user of our control wants to attach to this event for any reason.

Build the project. We now have a custom control (ScrollingText) as part of
a reusable library (FunStuff).

Developing & Deploying...

Using GDI+ to Draw Custom Controls

To obtain a Graphics object:

= From within a subclassed OnPaint method, use
PaintEventArgs parameter’s Graphics property.

Continued

www.syngress.com



Windows Forms ¢ Chapter 4

= From outside an OnPaint method, use Control.CreateGraphics
or Graphics.Fromimage. It's not often that you should need
to access GDI from outside OnPaint—an example is the use
of MeasureString to calculate how many pixels are required
to display a string in a given font. Remember to call Dispose
when you're finished.

To draw a bitmap, create an image using the Bitmap class’s con-
structor, and call Drawimage, for example:
Image im = new Bitmap (@ c:\docs\pics\mypic. bmp");
pe. Graphi cs. Draw mage (im CientRectangle);
i m Di spose();
To repaint the control, call Invalidate.

To draw 3D borders, sizing handles, selection frames, disabled text,
and images, use static methods provided in the ControlPaint class.

Testing the Control

Now that we’ve built the custom control, we can use it two different ways:

» From a new Windows Forms project, we can add the compiled custom
control to the toolbox. We do this by right-clicking the toolbox,
selecting Customize Toolbox, and from the .NET Framework
Components tab, clicking Browse and locating the Control Library
DLL (in our case, FunStuff\bin\debug\FunStuft.dll). The component
(Scrolling Text) will then appear in the list, and if checked, will be added
to the toolbox.

»  We can create a solution containing two projects: both the Control
Library and a new Windows Forms project.

Normally, you opt for the second approach if you are still developing the
control (and have access to its project file and source code), because it means you
can more easily make any necessary changes. This is what we’ll do in our
example:

1. From the Solution Explorer, right-click on the solution and select Add
| New Project. Then choose the Windows Application template,
naming the project TestFunStuff.

187

" www.syngress.com



188

Chapter 4 » Windows Forms

2. Locate the ScrollingText control in the toolbox, and drag it to Form1. If

the control 1s not in the toolbox, rebuild the project and look again. If it
still doesn’t appear, right-click the toolbox, select Customize ToolBox,
and from the .NET Framework Components tab, click Browse and
locate the Control Library DLL (try FunStuff\bin\debug\FunStuft.dll),
and then check the ScrollingText component in the list.

You’ll notice that as you resize the control in the Designer, it won’t
render properly because the control doesn’t assume it needs to be
redrawn when resized. We can resolve this in two ways: We can override
its OnResize method, calling Invalidate (marking the control “dirty” so
that it gets redrawn), or in the control’s constructor we can set a special
flag to have this happen automatically. Let’s take the latter approach:

Modity the control’s constructor as follows:

public ScrollingText()

{
Set Style (Control Styl es. Resi zeRedraw, true);

}

Rebuild the project and return to Form1. It will now render properly in
the Designer when resized (see Figure 4.24).

Figure 4.24 Custom Control in Designer
T T

Finally, we should test the form at runtime. Because we started out cre-
ating a control library, the startup project will be a DLL—which can
only compile and not run. We can change this from the Solution
Explorer: Right-click the TestFunStuff project, select Set as Startup
Project, and then run the application.

www.syngress.com



-~

Windows Forms ¢ Chapter 4 189

Enhancing the Control

Let’s turn this custom control into a real-world example: a scrolling text banner.
This is easier than it sounds: it’s simply a matter of maintaining a text string, to
which with a Timer, we periodically remove a character from the left—and add
to the right. The text is rendered using DrawString in the Graphics class, using a
graded brush for eftect. We can also allow the user to start and stop the animation
by overriding the control’s OnClick method. The code for the Scrolling’lext con-
trol is on the accompanying CD-ROM, in the FunStuff folder. Here’s the com-
plete code listing:

usi ng System

using System Col | ecti ons;
usi ng System Conponent Model ;
usi ng System Draw ng;

usi ng System Dat a;

usi ng System W ndows. For nrs;

nanespace FunStuff

{
public class ScrollingText : System W ndows. Forns. Contr ol
{
Timer timer; /1 this will animate the text
string scroll = null; /1 the text we're going to aninmate

public ScrollingText()

{

timer = new Tiner();

timer.Interval = 200;

timer. Enabl ed = true;

timer.Tick += new Event Handl er (Ani nmate);
}

void Animate (object sender, EventArgs e)

{

/1 Create scroll string field from Text property

www.syngress.com



190

Chapter 4 » Windows Forms

if (scroll == null) scroll = Text + "

/] Trimone character fromthe left, and add it to the right.

scroll = scroll.Substring (1, scroll.Length-1)

+ scroll.Substring (0, 1);

/1 This tells Wndows Forms our control needs repainting.

Invalidate();

void StartStop (object sender, EventArgs e)

{ timer.Enabled = !timer.Enabled; }

/1 When Text is changed, we nust update the scroll string.
protected override void OnText Changed (EventArgs e)
{

scroll = null;
base. OnText Changed (e);

protected override void OnClick (EventArgs e)
{

timer.Enabled = !tiner. Enabl ed;
base. OnClick (e);

public override void Dispose()

{
/1 Since the tiner hasn't been added to a collection (because
/1 we don't have one!) we have to dispose it manually.
timer. Di spose();
base. Di spose();
}

www.syngress.com



Windows Forms ¢ Chapter 4 191

protected override void OnPaint (Pai nt Event Args pe)

{
/1 This is a fancy brush that does graded colors.
Brush b = new System Draw ng. Drawi ng2D. Li near G- adi ent Brush
(dientRectangle, Color.Blue, Color.Crinson, 10);
/1 Use the control's font, resized to the height of the
/1 control (actually slightly less to avoid truncation)
Font f = new Font
(Font . Narme, Height*3/4, Font.Style, G aphicsUnit.Pixel);
pe. Graphics.Drawstring (scroll, f, b, 0, 0);
base. OnPai nt (pe);
b. Di spose(); f.Dispose();
}

Figure 4.25 illustrates the control in the test form, at design time, with its Text
and Font properties set. A nice touch in Visual Studio is that the control animates
in the Designer.

Figure 4.25 Completed Scrolling Text Control in Designer

- fox The quick broi

Subclassing Controls

Once we’ve designed a user control or custom control we can use inheritance to
subclass it in the same way we did with our reusable dialog earlier in the chapter.
You can also inherit from a standard control such as a TextBox or Button—in

www.syngress.com



192 Chapter 4 » Windows Forms

order to modify its appearance or behavior without going to the trouble of
designing a new control from scratch.

Visual Studio distinguishes between inheriting user controls and custom con-
trols. You can create an inherited user control directly—from Project | Add
Inherited Control—whereas to create an inherited custom control (or to sub-
class a standard control) you need to write the class manually. The easiest way to
go about this is to ask Visual Studio to create a custom control, and then in the
Code Editor, to edit the control definition’s base class.

To take an example, suppose your marketing department demands customiz-
able “skins” in your Windows application. One approach (other than skinning the
marketing department!) is to subclass some of the standard controls, such as
Button and Label. The challenge would then be to decorate the controls without
upsetting their existing graphics. Let’s walk through this briefly:

1. From a new or existing Windows Forms project, go to Project | Add
New Item and select Custom Control.

2. Switch to the Code Editor, and change the class definition so that we’re
subclassing Button instead:

public class WashedButton : System W ndows. Forns. Button

Now we need to override OnPaint. First, we’ll have to invoke the
base class’s code so that it renders the button. Then we’ll “wash” the
control with a linear gradient brush—the same brush used in the
scrolling text example, except that we’ll use translucent colors so as not
to erase the existing graphics. This is called alpha blending and activated
simply by using a color with an alpha-value.

3. Update the OnPaint method as follows:

protected override void OnPaint (Pai nt Event Args pe)
{
base. OnPai nt (pe);
/!l Create two sem -transparent colors
Color ¢l = Color.Fromargb (64, Color.Blue);
Color c2 = Color.FromArgb (64, Color.Yellow);
Brush b = new System Draw ng. Drawi ng2D. Li near Gr adi ent Brush
(dientRectangle, cl, c2, 10);
pe. Graphics. Fill Rectangl e (b, dientRectangle);
b. Di spose();

www.syngress.com



Windows Forms ¢ Chapter 4

}

4. Build the project, and put the custom control onto a form as we did in
the previous walkthrough (see Figure 4.26).

Figure 4.26 Subclassed Buttons in Designer

Custom Controls in Internet Explorer

The scrolling textbox we wrote in the “Writing a Custom Control” section is beg-
ging to be hosted on a Web page. Its compiled assembly is small enough to be
downloaded over the Internet in a couple of seconds, and is secure because .NET
code runs in a managed environment, rather like Java’s virtual machine. In fact,
both C# and Windows Forms have their roots in Java—their technical predecessors
being J++ and its supplied Windows Foundation Classes. Of course, Windows
Forms applets require that the client has a Windows operating system—with the
NET runtime installed. It also requires support at the server-end.

Setting Up IIS

Before starting this walkthrough, you need to check that Internet Information
Services is installed and running. IIS is shipped with Windows 2000 Professional—
you can check that it’s present and install it from the Control Panel (go to
Add/Remove Programs | Windows Components and locate Internet
Information Services). To check that it’s running, choose Administrative
Tools | Services from the Control Panel and locate the World Wide Web
Publishing Service.

Creating a Virtual Directory

We’ll need a Virtual Directory to host the Web page and applet. This is done
using the Internet Services Manager—in Windows 2000, we can access this
through the Control Panel, under Administrative Tools.

193

www.syngress.com



194

Chapter 4 » Windows Forms

1.

From Internet Services Manager, expand your computer’s icon and
right-click Default Web Site choosing New | Virtual Directory.
The Virtual Directory Wizard will then appear.

When prompted for an alias, type FunStuff.

It will then ask for a directory: When testing, it’s easiest to specify the
tfolder where Visual Studio compiles the component library’s DLL (for
example, FunStuff\bin\debug).

The wizard will then prompt for Access Permissions. Check Read and
Run Scripts and uncheck everything else.

Writing a Test Page

We’ll need to create an HTML page to test the component. We can do this

either in Visual Studio or with an independent HTML or text editor program

such as Notepad. In this example, we’ll use Visual Studio’s editor. Note that the

file will have to be in the folder specified when creating the virtual directory:

1.

From Visual Studio, reopen the FunStuff solution. Click on the
FunStuff project in the Solution Explorer, then click the Show All
Files icon. Expand the folder containing the compiled DLL (for
example, bin\debug), right-click the folder, and select Add | Add
New Item and use the HTML Page template, naming the file
test.htm.

Switch to the HTML view and add the following, inside the <BODY>
section of the page:

<p> Testing our control! </p>

<object id="test"
classid="http: funstuff.dl|#FunStuff.ScrollingText"
hei ght =" 50" wi dt h="500">
<par am nane="Text" val ue="The quick brown fox...">

</ obj ect >

This is rather like inserting a Java applet or ActiveX control. For the
Class ID, we specify the DLL containing the custom control, followed by
the class’s full name, including its namespace (note that this is case-sensi-
tive). The object size is specified in pixels—it’s for this reason that when

www.syngress.com



Windows Forms ¢ Chapter 4

writing the control, we created a font matching the height of the con-
trol, rather than the other way round.

The final step is viewing the test page. Start Internet Explorer, and open
http://localhost/FunStuff/test.htm (see Figure 4.27).

Figure 4.27 Custom Control in Internet Explorer

[ ES ws Fpose ol e E|

L I B [ B T T R e 1l I
gl b Frp e e e e | o ks
=l

|

ick brorwn tox tests |

LAl 0 Lecs raansd

www.syngress.com

195



196

ke

Chapter 4 » Windows Forms

Summary

Tools for writing Windows applications have come a long way since the early
days of Visual Basic and C++; in this chapter we examined Windows Forms,
Microsoft’s modern object-oriented solution.

One of the benefits of an object-oriented framework is consistency: The same
core classes, interfaces, and protocols are used repeatedly throughout the frame-
work. And at the heart of consistency is inheritance: A combo box supports all
the functionality of a control, which supports all the functionality of a compo-
nent. This means that most of the objects we worked with here, were in eftect,
components, and it was by virtue of this we could manipulate them in the
Designer, and know that they would be disposed automatically with the host
control.

We dealt in this chapter with many components that hosted child objects:
Forms that hosted controls, tab controls that hosted tab pages, menus that contained
menu items, tree view controls that contained nodes. In all cases, the child objects
were managed through a property returning a collection object—implementing
consistent interfaces for adding, removing, and enumerating the members.

A Windows application is a consumer of events, and we saw 1in this chapter
how this is modeled in Windows Forms through C# events and delegates. In
adding an event handler programmatically, we saw how to instantiate a delegate
object—a pointer to a method of an agreed signature, and then how it’s attached
to an event, using the += operator.

In writing a text editor, we discovered the default behavior of newly activated
forms—modeless and top-level. But by changing a few properties, we created a
multiple document interface (MDI) application, and later on we saw how we
could use the MdiChildren collection property to enumerate the child forms. We
also created a modal dialog, by building a form with the “look and feel” of a
dialog, and then activating it with ShowDialog.

The anchoring and docking features make it easy to design forms that can be
usefully resized. We found that anchoring was useful in creating a sizable dialog
form, and docking was required when setting up a list view/tree view/splitter
combination. Because docking space is allocated on a “first-come, first-served”
basis—where controls at the back of the z-order are first—we needed to ensure
the z-order of the participating controls was correct.

Windows Forms also provides access to operating system features such as drag
and drop, and we looked briefly at a common scenario—calling DoDragDrop
from a list view’s ItemDrag event; seeing how a DataObject is marshaled to the

WWW.syngress.com




Windows Forms ¢ Chapter 4

recipient; and discussing how the DragEnter and DragDrop events on the target are
handled to enable the operation.

The .NET Framework’s object-oriented model is extensible, and by sub-
classing the Windows Forms components and controls—as well as our own, we
can start creating reusable classes. In the text editor example, we built a reusable
dialog; later on we subclassed various Windows Forms classes to build custom
controls. We derived from UserControl to create a composite of existing compo-
nents, while we derived from Control to create a custom control on par with a
label or textbox.

In our custom control, we used the stateless graphics device interface (GDI+)
to render the graphics, through a Graphics object exposed in the PaintEventArgs
parameter within the control’s OnPaint method. Many of the GDI+ methods,
such as DrawLine or FillRectangle, accept as parameters helper objects, such as
pens, brushes, or images. These objects we created and disposed explicitly.

In the last walkthrough, we hosted a custom control in Internet Explorer.
This raised the issue of C# and Windows Forms as an alternative to Java for
Internet applets—this is currently limited by its requirement for the (less
portable) .NET Common Language Runtime (CLR) on the client machine.
However, it does illustrate how Windows Forms programs can compile to small
executables that can run securely, requiring no special setup or deployment. These
features—combined with other benefits provided by C# and the NET CLR—
make the platform a good choice for developing modern Internet-connected
Windows applications.

Solutions Fast Track

Writing a Simple Windows Forms Application

M Use Visual Studio’s Windows Forms project template to create the
structure of a Windows application.

M Add controls and components visually using the Designer, and then use
the Properties window to configure the objects and add event handlers.

M To add controls programmatically, first declare, instantiate, and configure
the controls, then add them to the form or parent container’s Controls
collection.

197

L




198 Chapter 4 » Windows Forms

4]

To attach an event handler at runtime, define a method matching the
event delegate’s signature, then attach a delegate instance wrapping the
method to the event using the += operator.

Writing a Simple Text Editor

4]

4]

N ™

To add a main menu, use the MainMenu component—and then enter its
items visually in the Designer.

A new form is displayed by instantiating its class and calling Show. This
results in a top-level modeless form.

To implement a multiple document interface, set the parent window’s
IsMdiContainer property to True, and then assign each child’s MdiParent
property to the parent form.

Use form inheritance to encapsulate common functionality. But keep
the abstractions simple to minimize coupling and complexity.

Use a TabControl to simplify forms with many controls.
Use the anchoring and docking features to create resizable forms.

Define public properties in a form’s class to expose its controls to other
forms or classes.

Use the MdiChildren collection of an MDI parent to traverse its child
forms.

Using the ListView and TreeView Controls

A

N ™

First set up one or more ImageList components if icons are required in
the ListView or TreelView.

Add items to a ListView control through its Items collection property.
Use the ListView’s details view for a multicolumn grid-like control.

Add items to a Treeliew through its Nodes collection property. Subnodes
can also be added to each node in the same way.

To configure a splitter control, first set the docking properties of the
participating controls, then arrange their z-order.

Start a drag-and-drop operation by calling DoDragDrop from the Itemdrag
event on the source control, passing any data required by the recipient.

WWW.syngress.com




Windows Forms ¢ Chapter 4 199

M Enable a drop target by setting its AllowDrop property to True, and then
handling its DragEnter and DragDrop methods.

Creating Controls

M To encapsulate a reusable group of controls, build a UserControl and then
add properties to enable access to its data.

M When you need to start from scratch, define a custom control—overriding ‘.
the Control class’s OnPaint method to render its graphics, using GDI+.

M When using GDI+, remember to dispose any Pens and Brushes that

you create. ‘
M Ultilize inheritance to enhance existing controls, overriding their
methods to add or change functionality.

M Use the object tag to insert controls from component libraries into
HTML pages, specitying the assembly’s DLL and the control’s fully
qualified name.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Can I easily renamesasselution or project?

A: Yes—right-click from the Solution Explorer and choose Rename.You’ll
also have to edit the namespace declarations in any source code files you've
created.

Q: How do I detach an event handler?

A: In the same way you attach‘an-event handler, except using the -= operator.
For example:

buttonl. dick -= new EventHandl er (buttonl_Cick);

WWW.syngress.com




200

Chapter 4 » Windows Forms

Q: Where is image data loaded into ImageList controls actually stored in the
project?

A: Each form has an associated resource file (with a .resx extension) where
image data and localized strings are stored.You can see this by clicking the
Show All Files icon in the Solution Explorer.

! Can a textbox control contain text in more than one color or font?

No. For this you need to use the RichTextBox control.

: How can I add icons to menu items?

20 20

items to be owner-drawn (set OwnerDraw to True) and then use GDI+ to
draw both the text and graphics (handle the Measureltem and Drawltem events).
Microsoft’s “Got Dot Net” site (www.gotdotnet.com) is a good place to start
for information about implementing owner-drawn controls.

Q: What’s the difference between tab-order and z-order?

A: Tab-order describes the order of focus as the user moves between controls
using the Tab and Shift+Tab keys. This is determined by the control’s

TabIndex property—set either in the Properties window, or by selecting View

| Tab Order and then clicking each control in order. Z-order describes the
front-to-back order of controls, and this set in the Designer using the Bring
to Front and Send to Back layout options. Z-order matters when controls
visually overlap and also when docking: Those at the back of the z-order will
be assigned docking space first.

Q: I need to determine the current mouse position and state of the Shift,
Control, and Alt keys—but I'm not inside an event handler that provides
this information. How can it be done?

A: Use the MousePosition, MouseButtons, and ModifierKeys static properties of the
Control class.

Q: How can I screen input in a textbox?

A: For this, it’s usually best to start by subclassing the TéxtBox control so that
your solution is reusable within your project (or outside your project).
Override On'lextChanged, or for more control, OnKeyPress and OnKeyDown.

WWW.syngress.com

Unfortunately there is no built-in feature for this. You need configure the menu



>0 > O

Windows Forms ¢ Chapter 4 201

OnKeyPress tires for printable characters; OnKeyDown fires for all key combi-
nations. Both of these offer a Handled property in the event arguments
parameter, which you can set to True to cancel the event.

: When designing an inherited or custom control, can I trap windows messages

such as WM_PASTE?
Yes—by overriding the WndProc method.

4

. Is there a Windows Forms newsgroup where I can get help?

: Microsoft provides a newsgroup: microsoft.public.dotnet.framework

.windowsforms. 1

Www.syngress.com







Chapter 5

Network
Programming:

Using TCP and UDP
Protocols

Solutions in this chapter:

Introducing Networking and Sockets

Example TCP Command Transmission
and Processing

Example UDP Command Transmission
and Processing

Creating a News Ticker Using

- UDP Multicasting

Creating a UDP Client Server
Chat Application

Creating a TCP P2P File
Sharing Application

Access to Web-Resources

M Summary

M Solutions Fast Track

M Frequently Asked Questions

203



204

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Introduction

Networking can be defined, in a general sense, as inter-process communication. Two or
more processes (such as applications) communicate with each other. The processes
can run on the same or different computers or other physical devices. Connections
between the network nodes are made mostly by a wire (such as local area network
[LAN], wide area network [WAN], and Internet); by wireless via radio frequencies
(such as cell phone, wireless appliances, wireless LAN, Internet, and Bluetooth); or
by infrared (IR) light (such as a cell phone to a laptop).

In this chapter, we cover the basics of networking and how it is accomplished
with C#.We start out with some theory, covering a little bit about the history of
networking and the Internet and sockets; then we discuss commonly used proto-
cols such as the Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). Subsequently, we have a look at ports and their uses. The last
point of theory is to get to know the .NET classes we use.

Keeping theory in mind, we then go into practice. First, we develop some
very simple communication examples using TCP and UDP.Then we develop a
multicast news ticker. We have a look at a chat server and client, where we com-
bine the learned techniques. After all the client/server-applications, we develop a
P2P file sharing system, and finally, we show how you can use special .NET
classes that encapsulate the networking.

Introducing Networking and Sockets

In the sixties, researchers of the Advanced Research Projects Agency (ARPA) in
the U.S. were requested by the Department of Defense (DoD) to develop a
system for saving information military important in case of a war. The result of
their work was an electronic network—the ARPAnet. Military information was
stored on all computers that were part of the network. The computers were
installed in different places far away from each other and information was
exchanged in several different ways. New or updated data on the computers was
to be synchronized in a very short time so that in case of the destruction of one
or more computers, no data would be lost.

In the 1970s, the DoD allowed nonmilitary research institutes to access the
ARPAnet. The researchers were more interested in the connected computers
than in synchronizing data. They used it for exchanging information, and students
at these institutes used a part of the network as a blackboard for communicating
with each other—this was the beginning of Usenet.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

In the 1980s, the military and civil parts of the ARPAnet were divided. In other
countries, similar activities led to national networks. At the end of the 1980s, most
of the national networks became connected to each other. The Internet was born.

It was necessary to have a standardized way to communicate over different
types of networks and with different kinds of computers. So TCP/Internet
Protocol (TCP/IP), which was developed by ARPA, became a worldwide standard.

TCP/IP 1s a “protocol family” that allows connected computers to communi-
cate and share resources across a network. (TCP and IP are only two of the pro-
tocols in this family, but they are the most widely recognized. Other protocols in
this set include UDP) For all protocols provided by .NET, have a look at the
NET reference documentation (class System.Net. Sockets. Socket).

To access IP-based networks from an application, we need sockets. A socket is
a programming interface and communication endpoint that can be used for con-
necting to other computers, sending and receiving data from them. Sockets were
introduced in Berkeley Unix, which is why sockets are often called Berkeley
Sockets. Figure 5.1 shows the general architecture of IP-based communication.

Figure 5.1 General Communication Architecture

Computer Computer

Application Application

T—» Socket s - Socket J

Generally, three types of sockets exist:

» Raw sockets This type is implemented on the network layer (see
Figure 5.2). An example for a protocol on this layer is IP.

» Datagram sockets Datagrams are packets of data. This type of sockets
1s implemented on the transport layer (see Figure 5.2). However, the
assignment to a layer is not strict, because, for instance, IP is also data-
gram-oriented. We go more in detail on this type of sockets later in this
section.

» Stream sockets In contrast to datagram sockets, these sockets provide
a stream of data. We go into more detail on this type of sockets later in
this section.

205

www.syngress.com



206 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.2 Communication Protocol Stack

Application Layer
(HTIR FTP, ...)

;

Transport Layer
(TCP UDP ...)

y

Network Layer
(IP ...)

v

Physical Layer
(Ethernet, ...)

Modern communication architectures use a stack of different protocol layers
where data is given to the top layer. Each layer is adding layer-specific protocol
information to the data and then it is given to the next layer. The lowest layer is
sending the data to another process running on another computer (or maybe the
same computer) where the data goes up in the same stack of layers. Each layer
removes the protocol-specific information until the application layer is reached.
Figure 5.2 shows such a stack.

The application layer can be divided into sublayers. You may think of an
application using the XML-based Simple Object Access Protocol (SOAP) using
the Hypertext Transfer Protocol (HTTP) for sending SOAP commands in XML.
This is called HTTP tunneling and is used especially with firewalls, so that the
firewalls do not have to be reconfigured for passing through SOAP.

Introduction to TCP

The Transmission Control Protocol is a connection- and stream-oriented, reliable
point-to-point protocol. TCP communication is analogous to a phone call. You
(the client) may want to talk with your aunt (the server).You establish a connec-
tion by dialing the number of your aunt’s phone (point-to-point). This is shown
in Figure 5.3.

If your aunt is at home, she will pick up her phone and talk to you (see
Figure 5.4). The phone company guarantees that the words you and your aunt
are speaking are sent to the other end and in the same order (reliability). As long
as you are on the phone, you can speak continuously (stream-oriented).

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.3 Calling Your Aunt (Point-to-Point Connection)

|
o~ RNG
RING

& =

Figure 5.4 Talking to Your Aunt (Reliability and Stream-Orientation)

The connection will be established until you and your aunt are finished with
your conversation (connection-oriented). See Figure 5.5 for an example of dis-

connecting.

Figure 5.5 Aunt Hangs Up (Connection-Orientation)

. ‘ e
CLICK

&< &

TCP uses IP as its network protocol. IP is datagram-oriented and a best-eftort
protocol. As mentioned before, datagrams are packets of data. Best-effort means that
datagrams are sent without the guarantee of delivery and correct order.

As we have seen, TCP is stream-oriented. TCP must simulate the streaming of
data. Therefore, it is necessary that TCP controls the order and correct occurrence
of the datagrams. If a datagram is corrupt or lost, it must be resent. If this does
not function, an error is reported. TCP also implements a number of protocol
timers to ensure synchronized communication. These timers also can be used to

produce timeouts, if needed.

The advantage of TCP is its reliability—TCP is the base of most reliable pro-
tocols such as HTTP, File Transfer Protocol (FTP), or Telnet. Those protocols are
needed if delivery and order of packets is important. For instance, if you send an

207

www.syngress.com



208

Chapter 5 * Network Programming: Using TCP and UDP Protocols

e-mail to your aunt starting with “Hello, Aunt,” first it must be delivered, and
second, it should not be delivered as “Hlnt Aeluo.” The disadvantage to TCP is
the loss of performance due to the administration overhead for handling the reli-
ability. Figure 5.6 shows a sample stack of communication layers with HTTP.

Figure 5.6 HTTP Communication Layers Stack

(lient Server

Application
{uyer HITP |- > HTIP

>
-

Transport
Layer TCP - - TCP

-
-

Network
Layer IP

|-
-4
g
m
=
S

|-

Physical

Layer Ethernet |@------ - Ethernet

\ \

If reliability 1s not needed, you can choose the protocol UDP. We discuss this
protocol in the next section.

Introduction to UDP

The User Datagram Protocol is a connection-less and datagram-oriented best-
effort protocol. A UDP-communication is analogous to sending a letter. You (a
peer) may want to send a letter to your aunt (another peer).You don’t have to
hand-deliver the letter to your aunt—the post office delivers the letter (a data-
gram), and it delivers it as a whole entity, rather than delivering page by page (see
Figure 5.7).

Sending a letter is mostly, but not always, reliable. The post oftice offers a
best-eftort service. They don’t guarantee an order in sending letters. If you send
letter 1 today and send letter 2 tomorrow, your aunt may receive letter 2 before
letter 1 arrives (see Figure 5.8).

On the other hand, one of your letters may get lost. The post office doesn’t
guarantee that a letter will be delivered (see Figure 5.9).

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 209

Figure 5.7 Sending a Letter to Your Aunt (Whole Communication Delivery)

ne-n

Figure 5.8 No Delivery Order Guaranteed

non

Figure 5.9 Loss of a Communication Is Possible

R

So why should you use such a protocol? For the following reasons:

» Performance UDP is faster than TCP because there is no administra-
tive overhead to bring data in order or for resending lost packets. So it
can be used for time-critical applications such as video- or audio-
streaming.

» If your application doesn’t care about a lost packet. Consider a
time server: If the server sends a packet and the packet is lost, it doesn’t
make sense to resend it. The packet will be incorrect if the client

" www.syngress.com

receives it on the second try.



210 Chapter 5 * Network Programming: Using TCP and UDP Protocols

= UDP causes less network traffic. UDP needs 8 bytes for protocol
header information, whereas TCP needs 20 bytes. In times where we
speak of gigabyte hard drives, 16 bytes doesn’t seem like it should be a
problem, but think of the sum of all packets sent in global communica-
tion—then 16 bytes becomes a very heavy weight.

» If your application needs a best-effort protocol for analyzing the
network. For instance, the ping command is used to test communication
between two computers or processes. It needs to know about lost or cor-
rupt packets to determine the quality of the connection. It doesn’t make
sense to use a reliable protocol for applications such as ping.

UDP is typically used for Domain Name System (DNS), Simple Network
Management Protocol (SNMP), Internet telephony, or streaming multimedia.

Another advantage of UDP is in multicasting, which means that a number of
processes can be grouped together by a special IP address (see Figure 5.10). The IP
address must be in the range 224.0.0.1 to 239.255.255.255, inclusive. Every process
contained in the group can send packets to all other processes of the group.

Figure 5.10 UDP Multicasting

Process2

Process 1 —» Process 3

Process 4

No process of the group knows how many other processes the group con-
tains. If one application wants to send data to the others, it has to send the data to
the IP address of the group. On the protocol layer, no process is a specialized
server. Your job is to define clients and servers if needed. For more details, see the
section “Creating a News Ticker Using UDP Multicasting” later in this chapter.

The next section introduces ports. Ports are important for identifying applica-
tions running on a computer.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

NoTE

Many firewalls are configured not to allow UDP. Firewalls are used to
permit unauthorized access from outside the firewall. Using UDP, the
firewall cannot determine if a packet comes from inside or outside
because no connection is made explicitly. Remember that TCP is connec-
tion-oriented, as in a direction from the client to the server.

Introduction to Ports

Generally, a computer has a single connection to the network. If all data arrives
through one connection, how can it be determined which application running
on the computer receives the data? The answer is through the use of ports.

A port is a 16-bit number in the range or 0 to 65535.The port numbers O to
1023 are reserved for special services such as HTTP (port 80), Mail (port 25), and
Telnet (port 23).

A connected application must be bound to at least one port. Binding means that
a port is assigned to a socket used by an application. The application is registered
with the system. All incoming packets that contain the port number of the applica-
tion in the packet header are given to the application socket (see Figure 5.11).

Figure 5.11 Ports

:

Application Port

TCP

Applicafion Port | or 47 Client

upp

!

Datagram

Applicafion Port

:

Please note that Figure 5.11 for TCP does not mean that only one socket can
be bound to one port. If a socket is waiting on a port for an incoming connec-
tion, normally the port is blocked for other applications (“normally” means that
this feature can be switched oft—for more details, please have a look at the .NET
reference documentation System.Net. Sockets. Socket. SetSocketOption() method). Let’s
call a socket waiting on a connection to a server socket. If a connection is
accepted by a server socket, it creates a new socket representing the connection.

211

www.syngress.com



212

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Then, the server socket can wait for a new connection request. So, multiple
clients can communicate concurrently over the same port.

An example for an application using this feature is a Web server. For instance,
while a Web page you requested is loaded by the browser, you can use a second
browser to request another page from the same server. The next sections intro-
duce the most important .NET classes we use for our examples.

NoTE

In this book, we focus more on real-life examples than on theory.
Because classes like the .NET Socket class are complex in use, we show
.NET classes that simplify the developing rather than the core networking
classes.

System.Net Namespace

Whereas the namespace System.Net.Sockets provide classes for more basic net-
working functionality, the System.Net namespace contains classes that encapsulate
these basics for easier access. The classes of System.Net are a simple programming
interface for some protocols used for networking.

At the core of this namespace are the classes WebRequest and WebResponse.
These abstract classes are the base for protocol implementations. Two protocols
are pre-implemented: HTTP with HttpIWebRequest (with corresponding
HitpWebResponse) and file system access (request-URISs starting with file://”) with
FileWWebRequest (with corresponding FilelWebResponse). The other classes are mostly
helper-classes, such as IP addresses, authorization and permission classes, excep-
tions, and certificates. Table 5.1 shows the classes we use for our examples.

Table 5.1 System.Net Classes

Class Description
IPAddress Represents an IP address.
IPEndPoint Identifies a network endpoint. A network endpoint is an IP

address and a port.

WebRequest Makes a request to a Uniform Resource Identifier (URI). This
class is abstract and must be extended for the destination
protocol.

Continued

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Table 5.1 Continued

Class Description

WebResponse Represents a response to a URI. This class is abstract and
must be extended for the destination protocol.

WebProxy Identifies an HTTP proxy. It contains all proxy settings used

by WebRequest.

System.Net.Sockets Namespace

As mentioned earlier in the chapter, the System.Net.Sockets namespace contains
classes that provide basic networking functionality. The central class is Socket. As

mentioned, a socket is the most basic programming interface for networking. We
use most of the classes of this namespace for our example. Table 5.2 shows the

class we use.

Table 5.2 System.Net.Sockets Classes

Class Description

Socket Implements the Berkeley sockets programming interface.

NetworkStream  Allows easy access to data of stream sockets.

TcpClient Provides a TCP client that can connect to a server socket.

TcpListener Implements a TCP server socket listening for incoming
connection-requests.

UdpClient Provides a UDP peer with the possibility of multicasting.

Enough theory—let’s go into practice. The next section describes a simple
command transmission and processing using TCP.

NoTE

For simplifying the code, all examples presented in this chapter do

not contain any exception handling. (Refer to Chapter 2 for more infor-
mation on exception handling.) Please have a look at the .NET class
reference for each method which exceptions must be handled.

213

www.syngress.com



214

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Example TCP Command
Transmission and Processing

The example in this section has a strict separation between the presentation layer
and the functional layer. The presentation layer is the user interface (UI). In this
example, you use a console application because you should focus first on com-
munication and then concentrate on creating a good-looking UI. The functional
layer is the part of the application that does all the work—for example, a business
object for calculating something. Figure 5.12 shows the simplified architecture of
the first example.

Figure 5.12 Example Architecture

Presentation Layer

i

1. Request 2. Response

Functional Layer

For the presentation layer, where the functionality is executed is unimportant.
You can implement the functional layer within the same application, in another
process on the same computer, or on another computer anywhere in a LAN or on
the Internet. To make this architecture more flexible, you will add a command pro-
cessor between the presentation and functional layers. The command processor is a
standardized interface for the functional layer. The presentation layer is giving its
requests in the form of commands to the processor. The processor is executing
methods of the functional layer based on the commands. Finally, the command pro-
cessor will take the results and give it back to the presentation layer. Figure 5.13
shows the extended architecture.

The command processor makes it simple to access the functional layer in var-
ious ways—either within the same application or via network communication on
another computer. Figure 5.14 shows an example with a remote functional layer.
The advantage of this model is that the presentation layer does not have to know
where the functional layer i1s running. It just gives commands to the command
processor and receives the result.

A typical example of such an architecture is a Web-browser-to-Web-server
communication. You are typing in an URL in the address field of your browser.

www.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5

The browser is converting the URL to a GET request for a Web server and is
sending the request to the Web server. The Web server analyzes the request and
returns an HTML page to the browser.

Figure 5.13 Example Architecture with Command Processor

Presentation Layer

A

1. Request 4. Response

Y |

Command
Processor

A

2. Request 3. Response

v |

Functional Layer

Figure 5.14 Example Architecture with Communication

Presentation Layer

-Request 10, Response

Command

Processor Client

N

. Request 9. Response

Communication
Layer

w

|
. Request 8.Response  Network

Communication
Layer

-~

. Request 7. Response

Command

Server
Processor

w

. Request 6. Response

Functional Layer

215

www.syngress.com



216 Chapter 5 * Network Programming: Using TCP and UDP Protocols

This example performs the same action in a very simplified form. A console
client is sending a request to a server and the server returns “Hello World !”” to
the client. This example implements a simple communication protocol with two
commands: GET and EXIT. A sample communication looks like this:

c: (establish tcp connection to the server)
s: (accept connection)

c. CET<CRLF>

s: "Hello Wrld !"<CRLF>

c: EXI T<CRLF>

s: BYE<CRLF>

c: (close connection)

s: (close connection)

c: indicates the client and s: the server. <CRLF> means a carriage return fol-
lowed by a line feed to indicate that the line is finished. This is commonly used
with communication protocols such as HTTP or SMTP.

General Usage of Needed .NET Classes

You need two main network classes for this example. On the client side, you
use System.Net.Sockets. TcpClient and on the server side it is System.Net.Sockets
. TepListener.

Generally, on the client side a TepClient connects to the server. Then you
work with a stream given by the client on the connection. After all the work is
done, you close the client:

/'l connect client to the server 127.0.0.1:8080
TcpCient client = new TcpCient ( "127.0.0.1", 8080 );

/1 get the network stream for reading and witing sonething
// to the network
Net wor kStream ns = client. GetStream ();

/1 read/wite sonmething fromlto the stream

/! disconnect from server

client.dose ();

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

The server side involves one more step, but generally the code looks like the
client code.You bind a TepListener on a local port. Then, if a client connects to
the listener, you get a socket. With this socket, you create a stream. From this
point on, the code is the same as on the client side:

/1 create a listener for inconm ng TCP connections on port 8080
TcplLi stener |istener = new TcpLi stener ( 8080 );

listener.Start ();

/1 wait for and accept an incom ng connection

Socket server = listener.Accept Socket ();

/]l create a network stream for easier use

Net wor kSt ream ns = new Networ kStream ( server );
/1 read/wite sonmething fromto the stream

/1 disconnect fromclient

server.C ose ();

After having a look at the general use of the networking classes, let’s go fur-
ther in our first example.

The Server

Let’s start with the server. The class is called TCPHelloWorldServer. The source
code of Figures 5.15 to 5.18 is included on the CD in a file named
TCPHelloWorldServer.cs. For simplification, only the client has a command pro-
cessor component. Later, we show examples where the server also has a processor.
For the server (see Figures 5.15 to 5.18), you need the following namespaces;
again, for simplification, the class has a Main() method only.

Figure 5.15 Needed Namespaces in TCPHelloWorldServer.cs

usi ng System
using System IO
usi ng System Net. Sockets;

217

www.syngress.com



218

Chapter 5 * Network Programming: Using TCP and UDP Protocols

The code in Figure 5.16 is a snippet of the Main() method in
TCPHelloWorldServer. It shows the server initialization. For waiting for
incoming connections on port 8080, use a TcpListener instance.

Figure 5.16 Server Initialization in TCPHelloWorldServer.cs

Console. WiteLine ( "initializing server..." );

TcplLi stener |istener = new TcpLi stener ( 8080 );

listener.Start ();

Consol e. WiteLine ( "server initialized, waiting for " +
"incom ng connections..." );
Socket s = listener. Accept Socket ();

/1l create a NetworkStream for easier access

Net wor kSt ream ns = new NetworkStream ( s );

/1 use a stream reader because of ReadLine() nethod

StreanReader r = new StreanReader ( ns );

The listener listens on port 8080 for incoming connections. The AcceptSocket()
method returns a socket representing the connection to the client. This method
blocks the program until a client opens a connection to the listener.

After a connection is established, the socket returned by AcceptSocket() is used
for exchanging data with the connected client. The easiest way to do this is the
use of a NetworkStream. This class is located in the namespace System.Net.Sockets.
NetworkStream encapsulates the methods for reading and writing data with a
socket. So, you can use this stream with code working only on streams.

The next step is creating a StreamReader. This class is part of the System.IO
namespace. This class simplifies the access to a stream. Here, you use it because of
its ReadLine() method. This method reads a single line of characters. The .NET
reference documentation defines a line as follows: “A line is defined as a sequence
of characters followed by a carriage return (“\r”), a line feed (“\n”), or a carriage
return immediately followed by a line feed.”

After the client establishes a connection, it sends a command to the con-
nected server. Now the incoming commands must be parsed and executed by the
server. The code is shown in Figure 5.17.

www.syngress.com



-2

Network Programming: Using TCP and UDP Protocols * Chapter 5 219

Figure 5.17 Command Processing in TCPHelloWorldServer.cs

bool | oop = true;
while ( loop )
{

/Il read a line until CRLF
string command = r. ReadLine ();

string result;

Consol e. WitelLine ( "executing renote conmand: " +

conmand );

switch ( comand )
{
case "CGET":
result = "Hello Wrld !'";

br eak;

/1 fini sh conmmuni cati on
case "EXIT":

result = "BYE";

| oop = fal se;

br eak;

/! invalid conmand

defaul t:
result = "ERROR';
br eak;
}
if (result !'= null )
{

Consol e. WiteLine ( "sending result: + result );

Continued

www.syngress.com



-2

220

4

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.17 Continued

/! add a CRLF to the result

result += "\r\n";

/1 convert data string to byte array
Byte[] res = System Text.Encodi ng. ASCl | . Get Bytes (
result.ToCharArray () );

/!l send result to the client

s.Send ( res, res.Length, 0 );

If the GET command is received, the server returns the string “Hello World
I, and the loop continues. The loop also continues if an unknown command
arrives. In that case, the string “ERROR” is returned. On the EXIT command,
the server stops the loop. After that, the connection must be closed (see Figure
5.18).You can do this by simply calling the Close() method of the socket. Finally,
the server waits for the pressing of the Return key.

Figure 5.18 Server Shutdown in TCPHelloWorldServer.cs

Console. WiteLine ( "clearing up server..." );

s.C ose ();

Console. Wite ( "press return to exit" );
Consol e. ReadLi ne ();

That’s all for the server. Let’s move on to the client.

The Client

The client is a bit more complex than the server. It has two parts: the Ul (a
simple console application), and the command processor, which contains the
communication components.

Let’s have a look at the command processor, named
TCPRemoteCommandProcessor. The source code for Figures 5.19 to 5.25 is

www.syngress.com



-

-

E

E

Network Programming: Using TCP and UDP Protocols * Chapter 5

included on the CD in a file named Base.cs. This file is compiled to a library
named Base.dll that is also contained on the CD. For the command processor, the
needed namespaces are as shown in Figure 5.19.

Figure 5.19 Used Namespaces in Base.cs

usi ng System
using System |G
usi ng System Net. Socket s;

First, you will write an interface. This interface gives you the flexibility to
implement more than one type of command processor with different underlying
network protocols, so a client gets only an object that implements the interface.

This makes the client independent from the used network protocol (see Figure
5.20).

Figure 5.20 CommandProcessor Interface in Base.cs

public interface CommandProcessor

{
/] execute a command and return the result
/1 if the return value is false the command processing | oop
/1 should stop

bool Execute ( string command, ref string result );

Now, create the TCPRemoteCommandProcessor class that implements the
CommandProcessor interface. The class has three methods: a constructor, a Close()
method, and the implementation of the Execute() method. The command pro-
cessor has two difterent running modes. In the Hold Connection mode, the con-
structor establishes the connection to the server directly from the constructor.
Disconnecting will be done at the moment the Close() method is called. In the
Release Connection mode, every time the processor is requested to send a com-
mand to the server, the connection is established. After retrieving the result, the
connection is closed. The first mode is for short-term or high-performance com-
munication. The second mode is for long-term communication and can be used
for saving money on the Internet or reducing use of network resources.

Let’s start with the class fields. Figure 5.21 shows all the information and
objects needed for running the communication process.

221

www.syngress.com



-

222 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.21 Class Fields of TCPRemoteCommandProcessor in Base.cs

. ) /'l renote host
private string host = null;
/1 renote port
private int port = -1;
/'l connection node
private bool releaseConnection = false;
/'l comuni cation interface
private Tcpdient client = null;
/1 outgoing data stream
private NetworkStream out Stream = nul | ;
/1 ingoing data stream
private StreanReader inStream = null;

Now for the constructor (see Figure 5.22). It has three parameters: the name
and port of the host to connect with and a Boolean flag determining the mode.
If the flag is true, the command processor works in Release Connection mode.
Otherwise, the Hold Connection mode is active. If the processor runs in the last
mentioned mode, the constructor connects immediately to the server specified by
the host name and port. Finally, it initializes the stream input and output stream
fields.

Figure 5.22 Constructor of TCPRemoteCommandProcessor in Base.cs
" publ i ¢ TCPRenot eConmandPr ocessor ( string host, int port,

bool rel easeConnection )
/1 add parameter checking here

this. host = host;
this.port = port;

this.rel easeConnection = rel easeConnecti on;

if ( !this.rel easeConnection )

{

Consol e. WiteLine ( "connecting to " + this.host + ":" +

www.syngress.com

Continued



-2

&

Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.22 Continued

this.port + "..." );

this.client = new TcpOient ( this.host, this.port );
this.outStream = this.client.GetStream ();

this.inStream = new StreanReader ( this.outStream);

Consol e. WiteLine ( "connected to " + this.host + ":" +

this.port );

The Close() method is quite simple. It closes only the connection (see Figure
5.23).This will be done only in Release Connection mode. If the command pro-
cessor is in Hold Connection mode, this method does nothing because the client

field will be null.

Figure 5.23 Close() Method of TCPRemoteCommandProcessor in Base.cs

public void dose ()

{
if ( this.client !'= null )
{
this.client.d ose ();
Consol e. WiteLine ( "connection closed: " + this.host +
":" + this.port );
}
}
NoTE

You do not have to flush the streams by using the Flush() methods of
NetworkStream because these are not buffered streams. But if you
develop classes that work only on streams without knowing which kind
of streams it uses, you should always consider flushing them.

223

www.syngress.com



224 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Execute() is more complex. If the command processor is in the Release
Connection mode, it first must connect to the server and finally close the con-
nection after sending the command (see Figure 5.24). For sending, the command
1s concatenated with a trailing carriage return and line feed. After that, it is con-
verted to a byte array. This array is given to the output stream. Then the processor
reads the response from the input stream. Finally, it checks if the response in the
string 1s “BYE”. If so, false is returned; true otherwise.

Figure 5.24 Execute() Method of TCPRemoteCommandProcessor in Base.cs

- public bool Execute ( string command, ref string result )

{

/1 add paranmeter checking here
bool ret = true;

if ( this.releaseConnection )
{
Consol e. WiteLine ( "connecting to " + this.host + ":" +
this.port + "..." );

/'l open connection to the server
this.client = new TcpCient ( this.host, this.port );
this.outStream = this.client.GetStream ();

this.inStream = new StreanReader ( this.outStream);
Consol e. WiteLine ( "connected to " + this.host + ":" +
this.port );
/1 add a CRLF to command to indicate end
command += "\r\n";
/1 convert command string to byte array

Byte[] cmd = System Text.Encodi ng. ASCl | . Get Bytes (
conmand. ToCharArray () );

www.syngress.com

Continued



-2

&

Network Programming: Using TCP and UDP Protocols * Chapter 5 225

Figure 5.24 Continued

/1 send request

this.outStream Wite ( cnd, 0, cnd.Length );

/'l get response

result = this.inStream ReadLine ();

if ( this.releaseConnection )

{

/1 close connection

this.client.dose ();

Consol e. WiteLine ( "connection closed: " + host + "
+ port );
}
ret = !result.Equals ( "BYE" );

return ret;

Finally, you need a client using the command processor. Call it
TCPHelloWorldClient. The source code for Figure 5.25 is included on the CD in
the file TCPHelloWorldClient.cs. It creates a TCPCommandProcessor instance for
communicating with the server. Then, it sends the GET command and displays
the result on the console. After that, it sends the EXIT command and closes the
connection.

Figure 5.25 TCPHelloWorldClient Listing in TCPHelloWorldClient.cs

usi ng System
using System |G
usi ng System Net. Sockets;

public class TCPHel | oWworl dd i ent

Continued

www.syngress.com



226 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.25 Continued

{
public static void Main ()
{
Console. WiteLine ( "initializing client..." );
TCPRenot eCommandPr ocessor proc = new
TCPRenot eCommandPr ocessor ( "127.0.0.1", 8080, false );
string result;
Console. WiteLine ( "requesting..." );
proc. Execute ( "GET", ref result );
Console. WiteLine ( "result: " + result );
Consol e. WiteLine ( "closing connection..." );
proc. Execute ( "EXIT*, ref result );
proc. C ose ();
Console.Wite ( "press return to exit" );
Consol e. ReadLine ();
}
}

Now you can compile and run the example.

Compiling and Running the Example

Go to the directory where you can find the files TCPHelloWorldServer.cs and
TCPHelloWorldClient.cs. For compiling, batch file exists called compile.bat.
Because we are using TCP for this example, you must start the server before the
client is running.

Now you can start the client by double-clicking on TCPHelloWorldServer
.exe. A Console window like the one shown in Figure 5.26 will appear.

Now you can start the client by double-clicking on TCPHelloWorldClient
.exe. Another Console window like Figure 5.27 will appear.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.26 Server Waiting for Client Connection

0T 1T elle'a ek, TP Hallcdlwil e mn

Figure 5.27 Running Client

Tl 1P el ke, 1P H el bl Terd e 9 ) ]

The server window now looks like Figure 5.28. Now you can stop both
applications by pressing any key. The next section uses the same example using
UDP as underlying transport protocol.

Figure 5.28 Server after Doing Its Work

ST 1T el ke, TP H sl al e man

NoTE

Because you are using TCP, you must always start the server before the
client begins trying to connect to the server.

Example UDP Command
Transmission and Processing

In this section, you rewrite the example from the section “Example TCP

Command Transmission and Processing” for using UDP as the transport protocol.

227

" www.syngress.com



228 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Refer back to that section for the introduction to the architecture and the imple-
mented communication protocol.

NoTE

As mentioned earlier, UDP is normally not used for request/response pro-
tocols like client/server command processing. This example is used for
showing the differences in using UDP and TCP.

General Usage of Needed .NET Classes

In contrast to TCP, in using UDP only one main network class is needed for this
example. This is because the handling is like peer-to-peer (P2P). On both sides
(client and server), we use System.Net.Sockets.UdpClient.

As a matter of principle, we can say a UDP client binds to a local port from
which it receives data. Data is sent directly to another UDP client without con-
necting explicitly. That is what is meant by connection-less communication.

Generally, the code on both sides looks the same. A UdpClient 1s bound to a
local port. Now it 1s ready to send and receive data. Because you bind the client
to a local port only, you must use one Send() method that needs the remote host
connection information. This information is used for sending the data to another
UDP client. Because you bind the UdpClient to a local port, you receive data
from this port, and you do not have to specify a receive point for the Receive()
method. That is the reason why we use the dummy variable that is set to null.

/1 bind client to |local port where it receives data
UdpCient client = new UdpClient ( 8081 );

/] create a byte array containing the characters of

/1 the string "a request™

Byte[] request = System Text.Encodi ng. ASCl|. CGetBytes (
"a request".ToCharArray () );

/1 send request to the server
client.Send ( request, request.lLength, "127.0.0.1", 8080 );

www.syngress.com



-

&

Network Programming: Using TCP and UDP Protocols * Chapter 5

/1 create a dumy endpoi nt
| PEndPoi nt dummy = nul | ;

/'l receive sonething fromthe server

byte[] response = client.Receive ( ref dumy );
/1 do something with the response

/! unbind the client

client.C ose ();

After having a look at the general use of the networking classes, let’s move on
to the second example.

The Server

First, let’s have a look at the server. The class is called UDPHelloWorldServer and is
included on the CD in the file UDPHelloWorldServer.cs. The code does not
difter very much from the code of the TCPHelloWorldServer class (see the section
“Example TCP Command Transmission and Processing”).

For simplification, the class also has a Main() method only. The initialization of
the server is very simple. You just have to bind a UdpClient to a local port. The
code of Figure 5.29 appears at the beginning of the Main() method.

Figure 5.29 Server Initialization in UDPHelloWorldServer.cs

Console. WiteLine ( "initializing server" );

UdpClient server = new Udpdient ( 8080 );

Because UDP is a connection-less protocol, you cannot send back a response
directly without the knowledge of where a request comes from. The header of a
UDP datagram, among other things, contains the port where the sending socket is
bound to (source port). On the IP layer, you can say the UDP datagram is
embedded in an IP datagram.The header of the IP datagram contains the sender’s
IP address. But with C#, you cannot access this information with the simple API
you use (at least with the Beta 2 of the .NET Framework). So the simplest way is
to add the sender’s information to a datagram if you want a receiver returning data.
The syntax of command that will be sent to the server is as follows:

229

www.syngress.com



230 Chapter 5 * Network Programming: Using TCP and UDP Protocols

I P ADDRESS ":" PORT ":" COMVAND

where IP ADDRESS and PORT are the IP address and port of the sender.
COMMAND is the command to execute. The server code for receiving a com-
mand is shown in Figure 5.30. After receiving the command string, it will be split
into the parts described earlier.

Figure 5.30 Receiving a Command in UDPHelloWorldServer.cs

/1 an endpoint is not needed the data will be sent
/1 to the port where the server is bound to

| PEndPoi nt dummy = nul | ;

bool | oop = true;
while ( loop )
{

Console. WiteLine ( "waiting for request..." );

byte[] tnp = server.Receive ( ref dumy );

/'l split request string into parts, partl=client IP
/! address or DNS nane, part2=client port, part3=comuand
string dg =

new System Text.ASCl | Encoding (). CGetString (

dat agram ) ;

string[] cnd = dg.Split ( new Char[] {':'} );
string renoteCd ientHost = cnd[0];
int renoteCientPort = Int32. Parse ( cnd[1] );
string comand = cnd[ 2] ;

string result = null;

/1 command execution

The command execution code is the same as in the TCPHelloWorldServer
class. Also the result-sending code is similar to the code of the mentioned class
(see Figure 5.31).

www.syngress.com



-2

&

Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.31 Result Sending in UDPHelloWorldServer.cs

/1 convert data string to byte array
Byte[] d = System Text.Encodi ng. ASCI | . Get Bytes (
result.ToCharArray () );

// send result to the client
server.Send ( d, d.Length, renotedientHost,

remoted ientPort );

The shutdown code is also the same as the code you knew from
TCPHelloWorldServer. Now let’s have a look at the client.

The Client

The client 1s called UDPHelloWorldClient and is included on the CD in the file
UDPHelloWorldClient.cs. It is modified code from TCPHelloWorldClient with
only one difference: the command processor and its instantiation. The command
processor is called UDPCommandProcessor, and you can find it on the CD in the
file Base.cs. Figure 5.32 shows the only different line of the code.

Figure 5.32 Instantiation of the Command Processor in
UDPHelloWorldClient.cs

UDPRenpt eConmmandPr ocessor proc = new
UDPRenot eCommandPr ocessor ( 8081, "127.0.0.1", 8080 );

The parameter 8081 is the local port where the command processor is
bound. The other two parameters of the constructor are the remote IP address
and port of the server to which the command processor connects.

Now comes the command processor, called UDPCommandProcessor. Just like
TCPCommandProcessor, this class has three methods: a constructor, a Close()
method, and an Execute() method. First, let’s have a look at the class fields (see
Figure 5.33).

Figure 5.33 Class Fields of UDPCommandProcessor in Base.cs

/1l the local port where the processor is bound to

private int local Port = -1;

Continued

231

www.syngress.com



232 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.33 Continued

/'l the renote host

private string renoteHost = null;
/1l the renote port

private int renmotePort = -1;

/1 comunication interface

private Udpdient client = null;

The next stop is the constructor. It sets all class fields and binds the UDP
client to a local port (see Figure 5.34).

Figure 5.34 Constructor of UDPRemoteCommandProcessor in Base.cs

publ i ¢ UDPRenot eConmandProcessor ( int |ocal Port,

string renoteHost, int remotePort )
{

/1 add paranmeter checking here

this.local Port = |ocal Port;

t hi s.renpt eHost = renbt eHost ;

this.renotePort = renotePort;

this.client = new UdpClient ( |ocalPort );
}

The Close() method is very simple. It calls the Close() method of the UDP
client (see Figure 5.35).

Figure 5.35 Close() Method of UDPRemoteCommandProcessor in Base.cs

public void dose ()
{

this.client.C ose ();

The Execute() method is very similar to the same named method of
TCPCommandProcessor.You have a different handling in communication because

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 233

of UDP.You need code for adding the local IP address and port to the command.
Also, the sending and receiving of data is different. See Figure 5.36 for the UDP
code.

Figure 5.36 Execute() Method of UDPRemoteCommandProcessor in Base.cs

public bool Execute ( string command, ref string result )
{

/1 add paranmeter checking here

bool ret = true;

Consol e. WiteLine ( "executing comrand: " + comand );

/1 build the request string

string request = "127.0.0.1:" + this.local Port.ToString ()

+ ":" 4+ command,;

Byte[] req = System Text. Encodi ng. ASCl | . Get Bytes (
request. ToCharArray () );

client.Send ( req, req.Length, this.renoteHost,

this.remotePort );

/1 we don't need an endpoint

| PEndPoi nt dummy = nul | ;

/'l receive datagram from server

byte[] res = client.Receive ( ref dunmmy );

result = System Text.Encoding.ASCI|.CGetString ( res );

ret = !result.Equals ( "BYE" );

return ret;

www.syngress.com



234 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Compiling and Running the Example

Go to the directory where you can find the files UDPHelloWorldServer.cs and
UDPHelloWorldClient.cs and start the compile.bat batch file.

i Now, after successfully compiling all files, you are ready to run the example.
Start the server by double-clicking on UDPHelloWorldServer.exe in Windows
Explorer. A console window like the one shown in Figure 5.37 will appear.

=

Figure 5.37 Server Waiting for Client Connection

M P H el b ] TS el ol ) peem omer

Start the client by double-clicking on UDPHelloWorldClient.exe. Another
console window like Figure 5.38 will appear.

Figure 5.38 Running Client

1T DI H el b 1S el kel e o[9[ B

The server window now looks like Figure 5.39.

Figure 5.39 Server after Doing its Work

Now you can stop both applications by pressing any key. The next section
discusses how to write a UDP multicasting application.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Creating a News Ticker
Using UDP Multicasting

A news ticker is an application where a news server sends messages to a number
of clients. A client subscribes to the news server. From the moment of subscrip-
tion, the client is allowed to receive new messages from the server.

You can implement implement such an architecture in several ways, but the
easiest 1s using UDP multicasting. As described in the section “Introduction to
UDP” with UDP, you can group applications (peers) together. An IP address
together with a port is the alias for the group; that means a peer sends data to
that IP address and port and all peers of that group will receive the data.

In this section, you will see how to develop a simple news ticker server and
client. The server is a simple Windows Forms application with a text box and a
button. The user types in the news in the text box. By clicking on the button, the
server sends the news to the group (see Figure 5.40). The server must send news
continuously so that a client can be started at any time for receiving the news.

Figure 5.40 UDP Multicast News Server
™ Mews Server Mi=] E3

e IEIreaking Mesws. |

Set |
/

(lick to Send News New Text Box

The client also is a simple Windows Forms application with only one text
box. If news arrives, it will be displayed in the text box by shifting the text from
the right to the left like a marquee (see Figure 5.41).

Figure 5.41 UDP Multicast News Client
[ News Client =]

Shifting Characters

235

" www.syngress.com



236 Chapter 5 * Network Programming: Using TCP and UDP Protocols

General Usage of Needed .NET Classes

As you have seen with UDP, you need only one class: Systen. Net. Sockets. Udp Client.
In addition to the methods discussed in the section “Example UDP Command
Transmission and Processing,” you can use the UdpClient. JoinMulticastGroup()
method. This method registers a UDP peer to a multicast group.

The initialization of the news server and client is done by the same code.
First, you bind a UdpClient to a local port. Then you register this client to a mul-
ticast group by calling its method JoinMulticastGroup(). This method gets the IP
address of the group. Finally, you create an IPEndPoint to receive data from. As
mentioned in the introduction, an IPEndPoint is the combination of an IP address
and a port:

/1 create a peer bound to a local port
Udpd ient peer = new UdpClient ( LOCAL_PORT );

/1 create the group |IP address
| PAddr ess groupAddress = | PAddress. Parse ( GROUP_IP );

/1 add the peer to the group
peer.Joi nMul ticast Group ( groupAddress );

/'l create an end point for sending data to the group
| PEndPoi nt groupEP = new | PEndPoi nt ( groupAddress,
GROUP_PORT ) ;
The code for sending and receiving is similar to the code in the section
“Example UDP Command Transmission and Processing’:

/1 send data to the group, d is a byte array
peer. Send ( d, d.Length, groupEP );

/1 receiving data fromthe group
| PEndPoi nt dummy = nul | ;
byte[] d = peer.Receive ( ref dunmmy );

After having a look at the general use of the needed classes, let’s go further into
the news ticker example. Let’s first have a look at a class that is used by the news

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

client and news server. This class is called UDPPeer, and it is included on the CD
in the file Base.cs. It represents a simplified interface to the UdpClient class.

The server can be driven in unicast or multicast mode. If the class is instanti-
ated with the local port, only the unicast mode is active. If it is instantiated with
an additional UDP multicast group IP address and port, multicast mode is used.
The Close() method shuts down the server and the Receive() and Send() methods
are used for receiving and sending data, respectively.

Let’s now go more in detail and start with the class fields (see Figure 5.42).

Figure 5.42 Class Fields of UDPPeer in Base.cs

/1 udp peer

private Udpdient server = null;

/1 multicast group |IP address

private | PAddress groupAddress = null;

/1 multicast group endpoint (IP address and port)

private | PEndPoint group = null;

The server field is needed as a communication interface for unicasting and
multicasting. The groupAddress and group fields are only needed in case of multi-
casting. The groupAddress field is the IP address of the UDP multicast group and
group 1s the end point where the data is sent to.

The next is the unicast constructor (see Figure 5.43). It is very simple; it just
binds the UDP peer to a local port.

Figure 5.43 Unicast Constructor of UDPPeer in Base.cs

public UDPPeer ( int |ocal Port )
{

/1 add paraneter checking here

Console. WiteLine ( "initializing UDP server, port=" +

local Port + "..." );

this.server = new Udpdient ( localPort );

Consol e. WiteLine ( "UDP server initialized" );

237

www.syngress.com



238 Chapter 5 * Network Programming: Using TCP and UDP Protocols

The multicast constructor calls the unicast constructor for binding the UDP
peer to a local port and additionally registers the peer with the multicast group (see
Figure 5.44). For registering an instance of IPAddress initialized with the group IP
address is needed. This address 1s represented by the field groupAddress. The field
group 1s an instance of the IPEndPoint class and is needed later for receiving data.

Figure 5.44 Multicast Constructor of UDPPeer in Base.cs

public UDPPeer ( int |ocalPort, string grouplP,
int groupPort ) : this ( localPort )

/1 add paranmeter checking here

Consol e. WiteLine ( "adding UDP server to nulticast " +

"group, IP=" + grouplP + ", port=" + groupPort + "...");

t hi s. groupAddress = | PAddress. Parse ( grouplP );
this.group = new | PEndPoi nt ( this.groupAddress,
groupPort );

this.server.JoinMulticastGoup ( this.groupAddress );

Consol e. WiteLine ( "UDP server added to group" );

The Close() method is very simple. In case of multicasting, it deletes the peer

from the multicast group. Finally, it calls the Close() method of UdpClient (see
Figure 5.45).

Figure 5.45 Close() Method of UDPPeer in Base.cs

public void dose ()

{
if ( this.groupAddress != null )
this.server.DropMilticastGoup ( this.groupAddress );

this.server.C ose ();

}

www.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5

The Receive() method is a simple method that encapsulates the byte-array
handling (see Figure 5.46). The received byte array is converted to a string, and it
is returned to the caller of this method.

Figure 5.46 Receive() Method of UDPPeer in Base.cs

public String Receive ()

{
| PEndPoi nt dummy = nul | ;

/'l receive datagram

byte[] data = this.peer.Receive ( ref dumy );

return new System Text.ASCl | Encoding (). GetString (
data );

The Send() method is also simple. After converting the given string to a byte
array, it calls the Send() method of the UDP peer (see Figure 5.47).

Figure 5.47 Send() Method of UDPPeer in Base.cs

public void Send ( string nessage )
{
/1 add paraneter checking here
Console. WiteLine ( "sending " + nmessage + "..." );
/1 convert news string to a byte array
Byte[] d = System Text.Encodi ng. ASCl | . Get Bytes (
nmessage. ToCharArray () );

this.server.Send ( d, d.Length, this.group );

Consol e. WiteLine ( "nmessage sent" );

239

www.syngress.com



240 Chapter 5 * Network Programming: Using TCP and UDP Protocols

The next section discusses the Ul of the news server.

The Server

The UDPPeer class now makes it very easy to develop a simple user interface
class for the news server. The class is named UDPNewsServer and is included on
the CD in the file UDPNewsServer.cs.

The class has one constructor and three methods: an event handler for a
window-closed event, an event handler for a button contained in the UlI, and a
method that is used by a thread for sending news continuously.

The news server class is derived from System. Windows. Forms.Form. Let’s first
have a look at the class fields, in Figure 5.48.

Figure 5.48 Class fields of UDPNewsServer in UDPNewsServer.cs

/'l local port where the UDP server is bound to
private const int LOCAL_PORT = 8080;

/1 multicast group |P address

private const string GROUP_IP = "225.0.0.1";
/'l multicast group port

private const int GROUP_PORT = 8081;

/1 UDP server

pr
/1 a thread for sending new continuously

vat e UDPPeer server = null;

private Thread serverThread = null;

/1 a data field for typing in a new nessage
private TextBox text = null;

/1l a button for setting the new nessage

pr
/1 the news nessage

vate Button setButton = null;

private string news = ;

Figure 5.49 shows the constructor code whereby the initialization of the Ul
components is not shown. If the Send button is clicked, the news server should
update the news to be sent to the multicast group. In order to get notified by the
button, register the OnSet() method with the button as a click event handler. The
OnClosed() method is registered with the window for the Closed event. Finally,

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 241

start a thread with the Run() method that continuously sends the news typed in
the text field.

Figure 5.49 Constructor of UDPNewsServer in UDPNewsServer.cs

publ i ¢ UDPNewsServer ()
{

/1 U conponents initialization

/! add an event listener for click-event

this.setButton.dick += new System EventHandler ( OnSet );

/! add an event listener for close-event

this.C osed += new System Event Handl er ( OnC osed );

/| create communi cati on conponents
this.server = new UDPPeer ( LOCAL_PORT, GROUP_IP,
GROUP_PORT ) ;

// start communication thread
this.serverThread = new Thread (
new ThreadStart ( Run ) );

this.serverThread. Start ();

Console. WiteLine ( "initialization conplete" );

The thread is needed because the server must send the news continuously.
Let’s now have a look at the thread (see Figure 5.50). Every second it sends the
content of the class field news to the multicast group and writes a message to the
console that it is sending data. After sending, this method puts the thread to sleep
for one second by calling the static method Sleep() of the Thread class. The value
1000 means one-thousand milliseconds—that is, one second. This call causes the
current thread to sleep for the specified time.

www.syngress.com



242 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.50 Sending Thread of UDPNewsServer in UDPNewsServer.cs

/'l sending thread
public void Run ()
{
while ( true )
{
if ( !this.news.Equals ( "" ) )
{
Console. WiteLine ( "sending " + this.news );

this.server.Send ( this.news );

/!l wait one second
Thread. Sl eep ( 1000 );

The news field is set by the event handler that is registered for the click event
of the Set button (see Figure 5.51).

Figure 5.51 Button Event Handler of UDPNewsHandler in
UDPNewsHandler.cs

/'l button click event handler
public void OnSet ( Object sender, EventArgs e )
{

this.news = this.text. Text;

Finally, let’s look at the shutdown code. It is placed in an event handler that is
called if the form receives the Closed event. The method requests the sending
thread to stop by calling its Abort() method and waits until it is dead. This is done
with the call to the Join() method of the thread. After that, it calls the Close()
method of the UDPPeer object. The code is shown in Figure 5.52.

www.syngress.com



-2

&

Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.52 OnClosed() Method of UDPNewsHandler in UDPNewsHandler.cs

public void OnCl osed ( Object sender, EventArgs e )
{

Consol e. WiteLine ( "server shut down..." );
/1 stop thread

this.serverThread. Abort ();

/1 wait until it's stopped
this.serverThread. Join ();

this.server.Cose ();

Application. Exit ();

The Client

The client 1s also divided into two parts: a UDP multicast client class and a user
interface. First, let’s have a look at the client class. It is called UDPMulticastClient
and 1s included on the CD in the file Base.cs.

In this example, you develop an asynchronous communication. An example
for asynchronous communication is talking with a friend via e-mail or chat.You
send a message to a friend and then you can do something else while you wait
for the response. After a while, you receive your friend’s answer and you are noti-
fied. Here in this example, asynchronous means that the client UI can be used
while a thread in the background is waiting for incoming data. But the UI must
be notified by the receiving thread if a message arrives. This is done by the thread
calling a delegate that is implemented by the UI form. Figure 5.53 shows the
architecture of the client.

The client is built of three main components; the Ul, the ticker thread, and
the receiving thread. The UI 1s a simple form with a text box. The ticker thread
shifts the characters of the text box content by one position to left.

The receiving thread is implemented in UDPMuilticastClient and is listening
permanently for incoming messages. If a message arrives, it calls a Notify() dele-
gate that 1s implemented as the SetNews() method in the Ul The Notify() delegate

243

www.syngress.com



244 Chapter 5 * Network Programming: Using TCP and UDP Protocols

is shown in Figure 5.54. It is included on the CD in the file Base.cs. It acts a little
bit like an event handler. If the thread receives a new message, it calls the delegate
by passing the message to it. You will see this in the UDPMulticastClient class.

Figure 5.53 Architecture

of the News Client

ul

3. SetNews (Message)

l

Receiving
Thread

Ticker Thread
(Shifting Characters)

’ 2. Notify (Message) ‘

1. Message

Figure 5.54 The Notify() Delegate in Base.cs

public delegate void Notify ( string text );

NoTE

The System.Net.Sockets.Socket class implements an interface to the

Windows sockets DLL.

That means that not only the default Berkeley

sockets are supported. You also find methods for asynchronous commu-
nication in this DLL and in the Socket class. For all methods like Accept()
or Receive(), you'll find asynchronous methods like BeginAccept()/
EndAccept() or BeginReceive()/EndReceive(). For instance, BeginAccept()
initiates the asynchronous wait for an incoming connection. Among
others, this function takes a so-called AsyncCallback, which is a delegate
that is called if a connection is accepted.

Now comes the UDPMulticastClient code. It has one constructor and two
methods. The constructor initializes the UDP client that receives messages from
the news server. The Run() method is used by a thread to listen for news, and the

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 245

Close() method shuts down the news client. We need at least three class fields: the
notification delegate, the communication components, and a thread for asyn-
chronous receiving of data (see Figure 5.55).

Figure 5.55 Class Fields of UDPMulticastClient in Base.cs

/'l notification del egate
private Notify notify = null;
/1 communi cation interface
private UDPPeer peer = null;
/1 receiving thread

private Thread clientThread = null;

The constructor stores the notification delegate and initializes the UDP peer
with the given group IP address and port. Finally, it starts the news receiving
thread (see Figure 5.56).

Figure 5.56 Constructor of UDPMulticastClient in Base.cs

public UDPMulticastClient ( string grouplP, int groupPort,
Notify notify )

/1 add parameter validation here

Consol e. WiteLine ( "initializing UDP rnulticast " +
"client, group=" + grouplP + ", port=" + groupPort +

)

this.notify = notify;

/1 create communi cati on conponents
this.client = new UDPPeer ( groupPort, grouplP,
groupPort );

/1 start listener thread
this.clientThread = new Thread (
new ThreadStart ( Run ) );

Continued

www.syngress.com



246 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.56 Continued

this.clientThread. Start ();

Consol e. WiteLine ( "UDP multicast client initialized" );

The receiving thread is implemented by the Ru#n() method. It is an endless
loop that receives available data and gives it directly to the notification delegate
(see Figure 5.57).

Figure 5.57 Receiving Thread of UDPMulticastClient in Base.cs

public void Run ()

{
while ( true )

this.notify ( this.peer.Receive () );

The Close() method shuts down the client. It stops the receiving thread and
calls the Close() method of its UDP peer (see Figure 5.58).

Figure 5.58 Close() Method of UDPMulticastClient in Base.cs

public void dose ()

{
this.clientThread. Abort ();

this.clientThread.Join ();

this.peer.Cose ();

That’s all there is to the UDP multicast client. Now let’s look at the news
client UL. The Ul is a class derived from System. Windows. Forms.Form. It is called
UDPNewsClient and contained on the CD in the file UDPNewsClient.cs. It
simply contains a TextBox. The class also has one constructor and four methods.
The constructor initializes the client application. Furthermore, it includes an
event handler method called OnClosed() registered for the Closed event. Finally,
there are the methods RunTicker() for shifting the characters in the text field and

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 247

the SetNews() method. SetNews() implements the Notify() delegate and is used by
the listener thread of UDPMulticastClient to update the news text field. First, con-
sider the class fields shown in Figure 5.59.

Figure 5.59 Class Fields of UDPNewsClient in UDPNewsClient.cs

/1 multicast group |P address

private const string GROUP_IP = "225.0.0.1";
/1 multicast group port

private const int GROUP_PORT = 8081;

/1 communi cation interface

private UDPMulticastClient client = null;
!/ ticker thread

private Thread tickerThread = null;

/'l new messages

private TextBox text = null;

I/ default news displayed at the beginning

private string news = "Please wait...";

The constructor initializes the TextBox, event handler, UDP peer, and ticker
thread. Figure 5.60 shows the constructor without TextBox initialization.

Figure 5.60 Constructor of UDPNewsClient in UDPNewsClient.cs

public UDPNewsClient ()
{

/] initialize U

/!l add an event listener for close-event

this.C osed += new System Event Handl er ( OnCl osed );
/] start comrunication thread

this.client = new UDPMul ticastCient ( GROUP_IP,

GROUP_PORT, new Notify ( SetNews ) );

[/l start ticker thread

Continued

www.syngress.com



248 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.60 Continued

this.tickerThread = new Thread (
new ThreadStart ( RunTicker ) );
this.tickerThread. Start ();

Consol e. WiteLine ( "initialization conplete" );

The news client shutdown method called by the Closed event is shown in
Figure 5.61. It closes the client and stops the ticker thread.

Figure 5.61 Event Handler for Closed Event in UDPNewsClient.cs

public void OnCl osed ( Object sender, EventArgs e )

{
Consol e. WiteLine ( "client shut down" );
this.client.Cose ();
this.tickerThread. Abort ();
this.tickerThread.Join ();
Application. Exit ();

}

The ticker thread shifts—every 500 milliseconds—one character of the news
string into the text box on the right and deletes one on the left. The implemen-
tation is not very smart, but for a simulation it is enough. Figure 5.62 also shows
the notification method. It simply sets the message received by the multicast
client to the news variable.

Figure 5.62 Ticker Thread and Notification Method in UDPNewsClient.cs

public void RunTi cker ()
{

[/l initialze the textbox with the default text

this.text. Text =" -+-+ " + this.news + " -+-+- " +

www.syngress.com

Continued



Network Programming: Using TCP and UDP Protocols * Chapter 5 249

Figure 5.62 Continued

this.news + " -+4-+-

while ( true )
{

string data = this.news + " -+-+-

/1 repeat as long as there are characters in the data string
while ( !data.Equals ( "" ) )

{
/1 wait 500 mlliseconds
Thread. Sl eep ( 500 );
/'l renove the first character fromthe text field and add the
[l first character of the data string
this.text. Text = this.text. Text.Substring ( 1 ) +
dat a[ 0] ;
/1l renove the first character fromthe data string
data = data.Substring ( 1);
}

/1 notification method, used by multicast client
public void SetNews ( string news )

{

this. news = news;

You now have everything you need to compile and run the example.

www.syngress.com



Chapter 5 * Network Programming: Using TCP and UDP Protocols

Compiling and Running the Example

Go to the directory where you can find the files UDPNewsClient.cs and
UDPNewsClient.cs. Start the compile.bat batch file. After successful compiling,
double-click UDPNewsClient.exe. A form like Figure 5.63 appears.

Note that the server must not be started first. This is because UDP is connec-
tion-less, that is, the client does not have to connect to the server. If the server
sends data to the UDP multicast group, the clients simply receive the data.

Figure 5.63 UDP News Client Form
= | ST |

To start the server, open a new console and type in UDPNewsServer or

double-click on UDPNewsServer.exe. After typing in some news, the server
form may looks like Figure 5.64.

Figure 5.64 UDP New Server Form

Now, click Set, and after a short period, your client looks like Figure 5.65.

Figure 5.65 UDP News Client Receiving News
Rl v o meies B |

In the next section, you will develop a client/server chat application com-
bining TCP and UDP technologies.

Creating a UDP Client
Server Chat Application

For users, a chat application seems to be a classic P2P application. You send a

message to the chat room, and all users that take part at the chat receive the mes-
sage. So far, you have learned something about the client/server protocol TCP,
about the P2P (unicasting), and also peer-to-group (multicasting) protocol UDP.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

So for a chat application, the UDP multicasting seems to be the best choice
(okay, it 1s the simplest!). You can develop a UDP multicast peer, send this to your
friends, and give them a common IP address to connect.You can send messages
to this address and all friends that are connected receive these messages—a very
simple but effective chat application.

Let’s do something a little different to show a technique of other applications
like Web servers. The result will be an application that guarantees a reliable
delivery of the messages from a chat client to a chat server. The server will be a
TCP server. You will see how the server can handle more than one client at the
same time on the same port. This is like a Web server that responds to many
requests at the same time on the standard HTTP port 80.Then, the server sends
the messages via UDP to all connected chat clients.

Figure 5.66 shows the three phases from the client’s connect request to client/
server communication:

= Connect The client connects to the server via TCP.
= Create thread The server creates a server thread for the client.

=  Communication/listen for new connection The client communi-
cates with the server thread. At the same time, the server listens for new
connections.

Figure 5.66 The Three Phases from Connection Request to Communication

3. Listen for New Connection
/

/

/

/
Client ——— 1. Connect ——m» Server

I
2. Create Thread
3. Communication

Communication
Thread

More interesting than listening for new connections while communicating is
that the server can communicate with more than one client at the same time.
This can happen at the same port. So a server is not restricted to “only” 65,536
connections. Theoretically the number of concurrent connections is unlimited. In
reality, the number of concurrent connections depends on various conditions—
for simplicity, this example focuses on the technique that builds the base for han-
dling concurrent connections.

251

www.syngress.com



252 Chapter 5 * Network Programming: Using TCP and UDP Protocols

You will reuse most of the classes you developed until now. On the client
side, you use TCPCommandProcessor for communicating with the chat server and
UDPMulticastClient for receiving messages from the server that were sent by other
clients. On the server side, you use UDPPeer for sending chat messages received
from the clients.

For handling multiple client connections, you will develop two new classes.
The TCPServer class will be the class that listens for incoming client connections.
If a connection is accepted, TCPServer creates an instance of TCPServerSession
that handles the communication with the client. This instance will be driven by a
thread. TCPServerSession will receive the chat protocol commands from the
TCPCommandProcessor on the client side. The commands will be given to a com-
mand processor object that implements the interface CommandProcessor; corre-
spondingly, they are given to a method of this object that implements the
delegate ExecuteCommand. This method interprets the commands and sends the
containing message to the chat members. Figure 5.67 shows a UML-like
sequence diagram that describes this behavior.

Figure 5.67 UML-Like Sequence Diagram of the Chat Client/Server Behavior

Server
1N 15§ P

Client
UMC TCP

i

|

l

|
Copnecl

! (reate —»

|

1 Command ——»
! ‘ I— Command —»
|

ﬁ—Messuge
|
\J 1 # \J

UMC: UDPMulticastClient
TCP: TCPCommandProcessor
TS: TCPServer

TSS: TCPServerSession

(P: CommandProcessor

All mentioned classes, including the new ones, are contained on the CD in
the file Base.cs. Let’s start with the delegate ExecuteCommand() (see Figure 5.68).
It has the same signature as the Execute() method of the interface
CommandProcessor and 1is used to access this method of CommandProcessor imple-
menting instances.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 253

Figure 5.68 The Delegate ExecuteCommand()

public del egate bool ExecuteCommand ( string conmand,

ref string result );

The TCPServerSession Class

This class has a constructor for initializing the server session and two methods.
The Close() method shuts down the session and Run() listens for incoming com-
mands. Let’s start with the class fields of TCPServerSession (see Figure 5.69).

Figure 5.69 Class Fields of TCPServerSession in Base.cs

/1 command processor

private ExecuteCommand execut eCommand = nul | ;
/1 conmmuni cation interface

private Socket socket = null;

/1 open flag

private bool open = fal se;

The constructor gets a socket for listening for and responding to requests. It
also gets an ExecuteCommand() delegate for executing incoming commands.
publ i ¢ TCPServer Sessi on ( Socket socket,

Execut eCommand execut eComrand )

this.socket = socket;
t hi s. execut eCommand = execut eCommand;
this.open = true;

}

public void Cose ()

{

/'l session closing

www.syngress.com



254

Chapter 5 * Network Programming: Using TCP and UDP Protocols

public void Run ()

{

/1 comrand execution

The constructor gets the socket and an ExecuteCommand delegate. The socket

represents the connection to the client. Behind the delegate 1s a command pro-
cessor that executes the incoming commands.

the

Figure 5.70 shows the Run() method. It reads—in a loop—a command from
client. The command is given to the ExecuteCommand delegate that returns a

result. The result is returned to the client. These steps are repeated as long as the

delegate returns false or the Close() method was called.

Figure 5.70 Run() Method of TCPServerSession in Base.cs

public void Run ()
{
Net wor kSt ream ns = new Networ kStream ( this.socket );

StreanReader reader = new StreanReader ( ns );

bool | oop = this. open;
while ( loop )
{
if ( ns.DataAvailable )
{
/1 read command from client
string cnd = reader. ReadLine ();

string result ="";

/1 execute command

|l oop = this.executeCommand ( cnd, ref result );

Consol e. WiteLine ( "sending result, result=" + result );

result += "\r\n";

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.70 Continued

Byte[] res = System Text.Encodi ng. ASCl | . Get Bytes (
result.ToCharArray () );

/] return result to client

this.socket.Send ( res );

Console. WiteLine ( "result sent" );

/'l repeat until executeConmand() returns false or
/1 server session is closed

| oop = |l oop && this. open;

Close ();

The Close() method clears the open flag and closes the connection to the
client (see Figure 5.71). If the thread is still running, the cleared open flag causes

the Run() method to terminate.

Figure 5.71 Close() Method of TCPServerSession in Base.cs

public void dose ()

{
if ( this.open)

{
Consol e. WiteLine ( "TCP session is closing..." );

this.open = fal se;

this.socket.C ose ();

Continued

255

www.syngress.com



256

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.71 Continued

Consol e. WiteLine ( "TCP session closed" );

The TCPServer Class

The next class is TCPServer. As the name implies, it implements a simple TCP
server. It can handle multiple clients by using a session for each client. The ses-
sions are instances of TCPServerSession. TCPServer contains a constructor and two
methods. The constructor initializes the server. The Close() method shuts down
the server and Run() listens for incoming connection requests. Furthermore,
Run() starts a session for each connected client. First, Figure 5.72 shows the class
fields of TCPServer.

Figure 5.72 Class Fields of TCPServer in Base.cs

// sessions |ist
pr
/] session threads |ist

vate Arraylist sessions = null;

private Arraylist sessionThreads = null;

/1 command processor

private ExecuteCommand execut eCommand = nul | ;
/'l connection |istener

pr
/'l server thread
pr
/'l open flag
pr

vate TcpListener listener = null;

vate Thread server = null;

vate bool open = fal se;

Figure 5.73 shows the constructor.

Figure 5.73 Constructor of TCPServer in Base.cs

public TCPServer ( int port, ExecuteConmmand executeConmand )

{

Continued

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 257

Figure 5.73 Continued

this.sessions = new ArrayList ();

this.sessionThreads = new ArraylList ();

t hi s. execut eCommand execut eConmand;

Consol e. WiteLine ( "initializing TCP server..." );
Console. WiteLine ( "creating listener..." );
this.listener = new TcpListener ( port );

Console. WiteLine ( "starting listener..." );

this.listener.Start ();

this.open = true;

this.server = new Thread ( new ThreadStart ( Run ) );

this.server.Start ();

Consol e. WiteLine ( "TCP server initialization conplete, port=" +

port );

First, it creates two instances of ArrayList. The first is the class field sessions that
contains all sessions. The second one is a list of the session threads and is repre-
sented by the class field sessionThreads. This list is needed for shutting down the
session threads. This will be done by the Close() method. Furthermore, the con-
structor creates a listener that listens on the given port for incoming client con-
nection requests. The other parameter is a delegate that implements a command
processor. This delegate instance will be given to each started session for com-
mand execution. Finally, the constructor starts a thread for listening on incoming
connections and starting a session for each connection. The thread runs the Run()
method (see Figure 5.74).

www.syngress.com



258 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.74 Run() Method of TCPServer in Base.cs

public void Run ()

{
while ( this.open )
{
Consol e. WiteLine ( "listening for inconm ng connections..." );
/'l wait for incoming client connection requests
Socket s = this.listener.Accept Socket ();
if ( s.Connected )
{
Consol e. WiteLine ( "client connected, starting client " +
"session..." );
/] create a client session
TCPSer ver Sessi on session = new TCPServer Session ( s,
t hi s. execut eCommand ) ;
// add it to the session |ist
this.sessions. Add ( session );
/] create a thread for the session
Thread th = new Thread ( new ThreadStart ( session.Run ) );
[l start it
th.Start ();
// add it to the session thread |ist
this.sessionThreads. Add ( th );
}
}
}

The Run() method listens for incoming connections. If the method receives a
connection request, a session is started with the accepted socket and the com-
mand processor delegate. This is repeated as long as the open flag is set. If the
open flag is cleared by the Close() method, the loop terminates (see Figure 5.75).

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.75 Close() Method of TCPServer in Base.cs

public void dose ()

{
Console. WiteLine ( "TCP server is closing..." );
if ( this.open )
{
this.open = fal se;
/1 stop listner
this.listener.Stop ();
/1 stop server thread
this.server.Abort ();
this.server.Join ();
Il stop all session threads and cl ose the sessions
while ( this.sessions.Count > 0 )
{
/'l stop session thread
Thread th = (Thread)this.sessionThreads[O0];
th. Abort ();
th.Join ();
this. sessionThreads. Renove ( th );
/'l close session
TCPSer ver Session s = (TCPServer Session)this.sessions[0];
s.Close ();
t hi s. sessions. Renove ( s );
}
}

Consol e. WiteLine ( "TCP server closed" );

259

www.syngress.com



260

Chapter 5 * Network Programming: Using TCP and UDP Protocols

The Close() method stops the listener and the server thread that listens for
incoming connections. Then, each session thread is stopped, and the suitable ses-
sion 1s closed.

The Chat Protocol

Here, you will implement three commands: HELLO, SAY, and BYE. The general
syntax of a command line is as follows:

user_name ":" command [ ":" message ] CRLF

That syntax means a line contains the username that sends the command line
followed by the actual command. An optional message may follow the command.
The message is part of the command line if the command is SAY. A carriage
return/linefeed terminates the line. The following is a sample communication
between a client ¢ and a server s:

c: <user_name>: HELLO<CRLF>
s: HELLO<CRLF>
(sends via UDP nulticast "<user_name> has joined the chat roont)
c: <user_name>: SAY: <message><CRLF>
S: OK<CRLF>
(sends via UDP nulticast "<user_name>: <message>")
c: <user_name>: BYE<CRLF>
s: BYE<CRLF>

(sends via UDP nulticast "<user_nanme> has |eft the chat roont)

You now can describe the chat server class and client class. Let’s start with the
chat server.

The ChatServer Class

This class is contained on the CD in the file ChatServer.cs. For simplification, the
chat command processor is contained in the user interfaces classes. User interface
is not a correct name; it is a simple console application without any user interac-
tion. Because all functionality is contained in the classes described earlier, the
server is very simple. It implements the CommandProcessor interface and has only
three methods: a constructor, a Close(), and an Execute() method. Figure 5.76
shows the class fields of the ChatServer class.

www.syngress.com



-2

&

Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.76 Class Fields of the ChatServer Class in ChatServer.cs

/1 listening port for incom ng connection requests
private const int TCP_PORT = 8080;

/1 local port for the UDP peer for sending new nessages
private const int UDP_LOCAL_PORT = 8081;

/1 multicast group |IP address

private const string UDP_GROUP_IP = "224.0.0.1";

/'l multicast group port

private const int UDP_GROUP_PORT = 8082;

/1 TCP server for incomng connection requests

pr
/1 UDP peer for sending new nessages

vate TCPServer tcpServer = null;

private UDPPeer udpPeer = null;

Il list of currently connected users

pr

vate Arraylist users = null;

Now let’s have a look at the constructor (see Figure 5.77). First, it creates the
currently connected users list. Then the constructor starts the TCP server and the
UDP peer.

Figure 5.77 Constructor of ChatServer in ChatServer.cs

public Chat Server ()
{

this.users = new ArraylList ();

this.tcpServer = new TCPServer ( TCP_PORT,
new Execut eComrand ( Execute ) );

this. udpPeer = new UDPPeer ( UDP_LOCAL_PORT, UDP_GROUP_I P,
UDP_GROUP_PORT );

The next method is the Close() method (see Figure 5.78). It simply shuts
down the UDP peer and TCP server by calling their Close() methods.

261

www.syngress.com



262 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.78 Close() method of ChatServer in ChatServer.cs

public void dose ()

{
this.udpPeer.C ose ();
this.tcpServer.d ose ();

The command execution is determined by the chat protocol. A user can send
messages to others only if the HELLO command was sent before. If the server
receives that command, the username is added to the connected users list. Now if
the server receives the SAY command from that user, it sends the message to the
UDP multicast group. If a user wants to leave the chat room, it simply sends the
BYE command. The server now removes the user form the user list and sup-
presses all possible SAY commands from that user. Figure 5.79 shows the Execute()
method.

Figure 5.79 Execute() Method of ChatServer in ChatServer.cs

public bool Execute ( string command, ref string result )

{

bool ret = true;
Consol e. WiteLine ( "executing comrand: " + command );

/1 split the command into parts

string[] cnd = command. Split ( new Char[] {':'} );
string user = cnd[O0];

string operation = cnd[1];

string message = null;

/1 if the command string contains nore than two ':' concatenate the
/1 splitted rest, this may happen if the nessage contains ':'
if ( cnd.Length > 2 )
{
nessage = cmd[ 2] ;

for (int i = 3; i < cnd.Length; i++ )

www.syngress.com

Continued



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.79 Continued

nessage += cnd[i];

/| execute the command

switch ( operation )

{
/'l user enters the chat room
case "HELLO':

if ( !this.users.Contains ( user ) )

{
result = "HELLO';
[/l add user to currently connected users |ist
this.users. Add ( user );
/'l send nmessage to all users
this.udpPeer. Send ( user + " has joined the chat rooni );
}
br eak;

/1 user sent nessage to the chat room
case "SAY":
/] execute only if user is currently connected
if ( this.users.Contains ( user ) && ( nessage != null ) )

{
result = "K',

/1 send nmessage to all users
this.udpPeer. Send ( user + ": " + nessage );

}

br eak;

/'l user disconnects from chat room

Continued

263

www.syngress.com



264 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.79 Continued

case "BYE":

/] execute only if user is currently connected
if ( this.users.Contains ( user ) )

{
result = "BYE";

/1 remove user fromcurrently connected users |ist

this.users. Renmove ( user );

/1 send nmessage to all users
this.udpPeer. Send ( user + " has left the chat roont );

}

br eak;

// unknown conmmand, return an error
defaul t:
result = "ERROR';

br eak;

return ret;

SECURITY ALERT

A client can track all chat room messages if it knows the group IP
address and port. It doesn’t have to be connected with the HELLO com-
mand. The server’s user administration takes care that unconnected users
do not send messages to the chat room.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

The ChatClient Class

This class is contained on the CD in the file ChatClient.cs. For simplification, the
client chat functionality is contained in the user interfaces classes. Here we have a
Windows Forms application (see Figure 5.80).

Figure 5.80 The Chat Client Form

W Ml M= B
i |
Hrmamgen Jl

Let’s go through a small chat session. Assume that the chat server and client
are still running. Type in a name to the Name data field. After clicking Connect,
the code of its click event handler is executed (see Figure 5.81). This event han-
dler is the OnConnect() method.

Figure 5.81 OnConnect() Event Handler of the ChatClient Class in
ChatClient.cs

public void OnConnect ( Onhject sender, EventArgs e )

{
this.proc = new TCPRenot eCommandPr ocessor ( "127.0.0.1", TCP_PORT,
true );

string result = null;

this.proc. Execute ( this.nanme. Text + ":HELLO', ref result );

this.connected = result.Equals ( "HELLO' );

/1l enable or disable controls on connection status

265

www.syngress.com



266 Chapter 5 * Network Programming: Using TCP and UDP Protocols

The class field proc is the command processor that sends commands to the
chat server. After creating an instance of TCPCommandProcessor, the HELLO
command is sent to the server. If the result of the command is HELLO, the con-
nected flag is set. Now you can type a message into the Message data field. After
clicking Send, the OnSend() method is called. This method is the click event
handler of the Send button (see Figure 5.82).

Figure 5.82 OnSend() Event Handler of the ChatClient Class in ChatClient.cs

public void OnSend ( (bject sender, EventArgs e )

{
string result = null;
this.proc. Execute ( this.name. Text + ":SAY:" + this. nmessage. Text,
ref result );
}

The message is sent within a SAY command to the server. Before you get a
look at the message-receiving code, let’s discuss the disconnect code. The
OnDisconnect() method 1s the click event handler of the Disconnect button (see
Figure 5.83).

Figure 5.83 OnDisconnect() Event Handler of the ChatClient Class in
ChatClient.cs

public void OnDi sconnect ( Object sender, EventArgs e )

{
if ( this.connected )
{
string result = null;
this.proc. Execute ( this.nane. Text + ":BYE"', ref result );
this.proc.dose ();
this.connected = fal se;
/1l enable or disable controls on connection status
}
}

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 267

For disconnecting, first the BYE command is sent. After that, the command
processor will be closed and the connected flag will be cleared.

For receiving messages from the chat server, you use an instance of the
UDPMulticastClient class. As you have seen in the section “Creating a News
Ticker Using UDP Multicasting,” the constructor of UDPMulticastClient needs a
Notify delegate. This delegate will be initialized with the SetMessage() method of
ChatClient. The instantiation of the multicast client is done by the constructor of
the ChatClient class. (see Figure 5.84). A closed event handler for the form is reg-
istered here also.

Figure 5.84 Constructor of ChatClient in ChatClient.cs

public Chatdient ()

{
/'l create controls
/1 add an event listener for close-event
this.C osed += new Event Handl er ( Ond osed );
/1 create conmunication conponents
this.group = new UDPMulticastdient ( UDP_GROUP_I P, UDP_GROUP_PORT,
new Notify ( SetMessage ) );
}

As a result of receiving a message from the chat server, the SetMessage()
method is called by the multicast client instance. The method simply concatenates
the given string to the text in the multiline data field that shows the messages
(see Figure 5.85).

Figure 5.85 SetMessage() Method of ChatClient in ChatClient.cs

public void SetMessage ( string text )
{
if ( !this.nessages. Text.Equals ( "" ) )
t hi s. nessages. Text += "\r\n";

thi s. messages. Text += text;

www.syngress.com



268

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Finally, we have a look at the OnClosed() method of the form. This method i1s
registered to the form as a closed event handler. If the window is closed, the code
is executed (see Figure 5.86).

Figure 5.86 OnClosed() Method of ChatClient in ChatClient.cs

public void OnClosed ( Object sender, EventArgs e )
{

OnDi sconnect ( null, null );

this.group.dose ();

First, the OnDisconnect() method is called for disconnecting the command
processor if the Disconnect button wasn’t clicked before. Then the multicast
client is closed. Now you can compile and run your example.

Compiling and Running the Example

Please go to the directory on the CD where you can find the files ChatServer.cs
and ChatClient.cs. Start the batch file compile.bat to compile the example. After
successful compiling, start the batch file run.bat. A server and a client is started.
Now you can start a chat session as described in this section. Figure 5.87 shows
the chat client after finishing a very short chat session. Figure 5.88 shows the chat
server after the mentioned session.

Figure 5.87 Chat Client after a Short Chat Session

B e et Hi= B

g |

LT |
o

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.88 Chat Server after a Short Chat Session

0 D ST eroes

The next section shows one way you can implement a file sharing peer
with .NET.

Creating a TCP P2P File
Sharing Application

The concept of peer-to-peer (P2P) is becoming more and more important in
networks, and P2P Internet applications such as Napster and Gnutella are widely
popular. But what exactly 1s a peer-to-peer application?

Well, first consider client/server applications, the most common model for
communication today. A client requests or posts data to or from a server. The
client knows how to request or post data and the server knows how to respond.
For instance, a Web server listens for incoming connections until a browser
requests a page. The Web server reacts only to browsers; it cannot arbitrarily con-
tact a browser. Any communication is initiated by a client.

In P2P communication, on the other hand, all applications act as clients and
servers at the same time. When peer A requests data from peer B, A acts like a
client and B as a server. However, B can also request data from A, so B acts as a
client and A as a server. Every peer adds a bigger amount of value to network.
Furthermore, no centralized server is needed, which decreases the effort needed
in administrating the data. Another advantage is that if a peer is down, only a
small portion of data is unavailable.

This model does require additional functionality from the peer application.
First, a peer must be able to find other peers. This is called discovery. There are

269

www.syngress.com



270 Chapter 5 * Network Programming: Using TCP and UDP Protocols

different strategies for discovery. So-called pure P2P applications can discover
other peers directly. Another approach is to have discovery servers where peers
are registering if they are online. A peer searching for another peer requests the
connection information from the discovery server.

Another key functionality of P2P networks is the so-called content lookup. A
peer must be able to find data contained in the network. A pure P2P application
can directly query the network for data. A second approach is the existence of a
lookup server. Peers send information about their data to the lookup server. For
instance, for file sharing peers, this information can be filename, length, type, and
descriptions about file content. Another possible server is a content server. Peers
upload their files to this server. Then a peer can download the files from this server.

In this section, you create a simplified P2P file sharing application with
reduced functionality. The peer can upload or download files from another peer
only. No discovery or lookup functionality is contained in this peer.

You may think that UDP is the best way to implement such a peer. Indeed
this 1s how some remote file access systems are implemented. As mentioned, the
advantage of UDP is the performance. However, you would have to implement a
method that guarantees the correct order of the datagrams sent between the
peers, so you’ll use another way to implement the peer.

For the remote functionality, you develop a remote file stream that works in
principle like CORBA, remoting, or RMI—because were discussing .NET, we
use the term remoting.

Generally speaking, all remote object architectures work in the same way. A
remote object is divided into two parts. On the client side is a proxy object. The
actual object functionality is implemented on the server side. For communication
between the proxy and the server object, SOAP is used. Figure 5.89 shows this
very simplified remoting architecture.

Figure 5.89 Very Simplified Remoting Architecture

Client Server
Proxy  |a— SOAP Server
Object

A proxy object acts like a normal object. The application using that object
doesn’t notice anything about the remote activity (except maybe a lower perfor-
mance while executing object methods). Every method call to the proxy object

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

leads to a protocol request to the server object. The parameters of the method
must be serialized for sending. At the server side, the server object executes the
called method with the deserialized data and returns a result as a response to the
client request. This response also is serialized by the server object and deserialized
at the client side. Now the client object returns the result as a normal object.

Based on this architecture, you develop a similar one. Your proxy server object
is an instance of a class called RemoteFileStreamProxy and RemoteFileStreamServer
respectively. Both classes are contained on the CD in the file Base.cs. Because a
peer is both a client and a server, your peer class FileSharingPeer uses both remote
file classes. The FileSharingPeer class is also contained on the CD in the file
Base.cs. Figure 5.90 shows the architecture of our example.

Figure 5.90 Architecture of File Sharing Peer Example

Server Server

Peer Peer
Remote Remote
Download() File Stream ] File Stream Download()

Proxy | Proxy
|

Remote | Remote

Upload() File Stream " ; File Stream Upload()

|
|

Remote File Stream Protocol

The Remote File Stream Protocol

Let’s start with the protocol between the proxy and the server. The commands of
the protocol reflect the most important methods of a stream:

= OPEN Reflects the proxy object instantiating.
= READ Sent if the Read() method of the proxy is called.
= WRITE Sent if the Write() method of the proxy is called.
= CLOSE Sent if the Close() method of the proxy is called.
Now let’s look at some example communications. Here we describe the

communication between the proxy and the server class. The proxy requests are
marked with ¢: and the server responses with s:.

Let’s first have a look at a download scenario. The proxy calls the server for
reading from a file:

www.syngress.com

271



272

Chapter 5 * Network Programming: Using TCP and UDP Protocols

c: OPEN: <fil e_name>:true<CRLF>

s: (opens the file <file_nane> for reading and returns the file length
of <fil e_name>)

c: READ: <count ><CRLF>

s: (returns max. <count> bytes of the fil e <fil e_name>)

c: CLOSE<CRLF>

s: (cl oses connection)

If <count> is bigger than the file length, only the contained bytes of the file
are sent. On the other hand, if <count> is less than the file length, the READ
command will be repeated as long as the end of the file is reached.

The next example shows an upload scenario. The proxy calls the server for
writing to a file:

c: OPEN: <fil e_nanme>: f al se<CRLF>

s: (opens the fil e <fil e_name> for witing)

c: WRI TE: <count ><CRLF>

s: (reads <count> bytes fromthe client and wites it to the file
<fil e_nane>)

c: CLOSE<CRLF>

s: (cl oses connection)

If <count> is less than the client’s file length, the WRITE command will be
repeated as long as the end of the file is reached.

The RemoteFileStreamServer Class

This class is used by a thread and has only two methods: a constructor and the
Run() method. Additionally, it has a private class field client of the type

System. Net. Sockets. NetworkStream. The constructor initializes only the client field
(see Figure 5.91).

Figure 5.91 Constructor of RemoteFileStreamServer in Base.cs

public RenoteFil eStreanBerver ( Socket socket )

{

Consol e. WiteLine ( "initializing renote fil estream server..." );

Continued

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.91 Continued

this.client = new NetworkStream ( socket );

Consol e. WiteLine ( "renote fil estream server initialized" );

As you will see later, the socket comes from a connection request from a
RemoteFileStreamProxy instance.

The Run() method is used by a thread that runs as long as the connected
RemoteFileStreamProxy instance closes the connection. In a loop, all protocol
request commands are handled. Figure 5.92 shows a snippet of the Run() method.
For clarity, we first show the method frame without command processing.

First, a StreamReader is created for easier access to CRLF-terminated com-
mand lines from the proxy class. Then the method reads command lines in an
endless loop. After reading a line, it is split into the parts described in the protocol
section above. Now the parts are processed in the command processing.

Figure 5.92 Snippet of the Run() Method of RemoteFileStreamServer in
Base.cs

public void Run ()
{

Consol e. WiteLine ( "starting renote fil estream server..." );

StreanReader cmdln = new StreanmReader ( this.client );

FileStreamf = null;

int count = -1;

byte[] buffer = null;

bool | oop = true;
while ( loop )
{
/1 read the request I|ine
string[] buf = cndln.ReadLine ().Split ( new Char[] {':'} );

Continued

273

www.syngress.com



274 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.92 Continued

Consol e. WiteLine ( "request received, reg=" + buf[0] );
/1 buf[0] is the command
switch ( buf[0] )

{

/'l command processing

Consol e. WiteLine ( "request executed, reqg=" + buf[0] );

Consol e. WiteLine ( "stopping renote fil estream server..." );

Have a look at the OPEN command processing (see Figure 5.93). On the
OPEN command, the server opens a local file. The file mode, reading or writing,
depends on the read flag—true means reading and false means writing. If the file
1s opened for reading, the server returns the number of bytes of the file.

Figure 5.93 OPEN Command Processing of RemoteFileStreamServer in Base.cs

case "OPEN':
/1 the nane of the local file to open
string file = buf[1];

/1 open for reading or witing
bool read = bool.Parse ( buf[2] );

/1 open the local file

f = new FileStream ( ".\\" +
( read ? "download" : "destination" ) + "\\" + file,
( read ? FileMdde. Open : FileMde.Create ) );

Continued

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.93 Continued

/1 return the file length to client

if ( read)

{
string length = f.Length. ToString () + "\r\n";
Byte[] | = System Text.Encodi ng. ASCl | . CetBytes (

| engt h. ToCharArray () );

this.client.Wite ( I, 0, |I.Length );

}

br eak;

On the READ command, the server reads the requested number of bytes
from the local file and returns it to the client (see Figure 5.94).

Figure 5.94 READ Command Processing of RemoteFileStreamServer in Base.cs

case "READ":
/! nunber of bytes to read

count = int.Parse ( buf[1] );

/'l read/wite buffer

buf fer = new byte[count];

// read fromthe |ocal file

count = f.Read ( buffer, 0, count );

/1 return the bytes to the client
this.client.Wite ( buffer, 0, count );

br eak;

On the WRITE command, the server reads the requested number of bytes
from the client and writes it to the local file (see Figure 5.95).

www.syngress.com

275



276 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.95 WRITE Command Processing of RemoteFileStreamServer in Base.cs

case "WRI TE":
/1l nunber of bytes to wite

count = int.Parse ( buf[1] );

/'l read/wite buffer

buf fer = new byte[count];

/1l read bytes fromthe client

count = this.client.Read ( buffer, 0, count );

/!l wite bytes to the local file
f.Wite ( buffer, 0, count );

br eak;

On the CLOSE command, the server closes the local file and the connection
to the client. The loop terminates and the so does the thread (see Figure 5.96).

Figure 5.96 CLOSE Command Processing of RemoteFileStreamServer in Base.cs

case "CLOSE":
/'l close local file
f.Close ();

// close connection to the client

this.client.Cose ();

/1 stop the |oop
| oop = fal se;

br eak;

The RemoteFileStreamProxy Class

This class is derived from the abstract class System.IO.Stream. An instance of this
class can be used as a normal stream. For instance, it can be given to a method

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 277

that generally works on streams. Here we focus on the constructor and the
Read(), Write(), and Close() methods. For all other methods and properties that
must override abstract method’s properties, refer to the class code in the file
Base.cs on the CD.

First, the constructor (see Figure 5.97) opens the connection to the server,
sends the OPEN command, and receives the remote file length if the open mode
1s read.

Figure 5.97 Constructor of RemoteFileStreamProxy in Base.cs

public RenmoteFileStreanProxy ( string host, int port, string fil e,

bool read )

this.read = read;

this.remoteFile = new Tcpdient ( host, port ).GetStream ();

this.open = true;

Send ( "OPEN. " + file + ":" + read );

if ( read)
{
this.length = int.Parse (

new StreanReader ( this.renoteFile ).ReadLine () );

The next one is the Read() method (see Figure 5.98). It sends the READ
command to the server and receives the bytes sent by the server.

Figure 5.98 Read() Method of RemoteFileStreamProxy in Base.cs

public override int Read ( byte[] buffer, int offset, int count )

{

/1 to do: inplenent exceptions here as described in .NET reference

if ( !'CanRead )

t hrow new Not Support edException ( "stream cannot read" );

Continued

www.syngress.com



278 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.98 Continued

Send ( "READ:" + count );

return this.remoteFile. Read ( buffer, offset, count );

Now, let’s look at the Write() method (see Figure 5.99). It sends the WRITE
command and the bytes to write to the server.

Figure 5.99 Read() Method of RemoteFileStreamProxy in Base.cs

public override void Wite ( byte[] buffer, int offset,
{

/1 to do: inplenent exceptions here as described in .NET reference

int count )

if ( !CanWite )

t hrow new Not SupportedException ( "stream cannot wite" );

Send ( "WRITE:" + count );

this.renoteFile. Wite ( buffer, offset, count );

Finally, the Close() method (see Figure 5.100). It sends the CLOSE command
to the server and then it closes the connection.

Figure 5.100 Close() Method of RemoteFileStreamProxy in Base.cs

public override void Cdose ()
{
this.open = fal se;

Send ( "CLOSE" );

this.renoteFile.Cose ();

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

As you have seen, the methods of the proxy are simpler than those of the

server because the functionality is implemented in the server.

The FileSharingPeer Class

FileSharingPeer has two main parts. The first part is a thread that accepts proxy con-

nections. The thread creates for each connection request a RemoteFileStreamServer
instance that handles the commands coming from the proxy. The second part con-
tains two methods: Download() and Upload(). Both methods each create an instance

of RemoteFileStreamProxy that communicates with the server for the requested func-
tionality. Have a look at the class fields (see Figure 5.101).

Figure 5.101 Class Fields of FileSharingPeer in Base.cs

/'l listener for incom ng connections
private TcpListener listener = null;
/1 listening server thread

private Thread server = null;

Now, let’s discuss the constructor (see Figure 5.102). It first initializes and
starts a listener for incoming connection requests. Then it creates and starts a
thread that uses the Run() method. This method is described later.

Figure 5.102 Constructor of FileSharingPeer in Base.cs

public FileSharingPeer ( int |ocal Port )

{

Console. WiteLine ( "initializing file sharing peer, local port=" +

| ocal Port );

/1 initialize proxy |istener
this.listener = new TcpListener ( |ocal Port );

this.listener.Start ();

/1 start listening thread for incomi ng connection requests
this.server = new Thread ( new ThreadStart ( Run ) );

this.server.Start ();

Continued

279

www.syngress.com



280 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.102 Continued

Console. WiteLine ( "file sharing peer initialized" );

In the constructor, you see the use of the Run() method for the server
thread. This method handles the incoming connection requests (see Figure
5.103). After a proxy connects to the server, the resulting socket is given to the
RemoteFileStreamServer instance. Then a thread for this instance is created and
started. The Run() method of the RemoteFileStreamServer instance is used by this
thread for handling the proxy requests.

Figure 5.103 Run() Method of FileSharingPeer in Base.cs

public void Run ()

{
while ( true )
{
Socket s = listener. Accept Socket ();
Consol e. WiteLine ( "client connected" );
Renot eFi | eStreanServer srv = new RenoteFil eStreanServer ( s );
Thread th = new Thread ( new ThreadStart ( srv.Run ) );
th.Start ();
}
}

The Close() method stops the proxy listener and the server thread (see
Figure 5.104).

Figure 5.104 Close() Method of FileSharingPeer in Base.cs

public void dose ()
{

/1 stop proxy listener

this.listener.Stop ();

www.syngress.com

Continued



Network Programming: Using TCP and UDP Protocols * Chapter 5 281

Figure 5.104 Continued

/'l stop server
this.server. Abort ();

this.server.Join ();

As mentioned before, the proxy class is derived from System.IO.Stream.
System.10. FileStream is also derived from this class. So, downloading and
uploading file is nothing else than reading data from one stream and writing this
data to another stream. In other words, for downloading and uploading, you need
only one method for a copy functionality. And now you have found a name for
the method: Copy() (see Figure 5.105).

Figure 5.105 Copy() Method of FileSharingPeer in Base.cs

protected void Copy ( Stream sin, Stream sout )
{
byte[] buf = new byte[4096];
long I = 0O;
while (| < sin.Length )
{
int n = sin Read ( buf, 0, 4096 );
sout.Wite ( buf, 0, n);

| += n;

sout.d ose ();

sin.C ose ();

The Download() and Upload() methods are opening a local file and a proxy
stream. Download() reads from the proxy stream and writes to the local file.
Upload() does the inverse. Figure 5.106 shows both methods.

www.syngress.com



282 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.106 Download() and Upload() Methods of FileSharingPeer in
Base.cs

public void Download ( string renoteHost, int renotePort,

string file )

{
Consol e. WiteLine ( "downl oading file, host=" + renoteHost +
", port=" + remotePort + ", file=" + file + "..." );
Stream sin = new RenoteFil eStreanProxy ( renoteHost, renotePort,
file, true );
Stream sout = new FileStream ( ".\\destination\\" + file,
Fi |l eMode. Create );
Copy ( sin, sout );
Console. WiteLine ( "file downl oaded, host=" + renoteHost +
", port=" + renptePort + ", file=" + file );
}
public void Upload ( string renoteHost, int remotePort, string file )
{
Consol e. WiteLine ( "uploading file, host=" + renpteHost +
", port=" + renmptePort + ", file=" + file + "..." );
Stream sin = new FileStream ( ".\\upload\\" + file, FileMde. Open );
Stream sout = new RenoteFil eStreanProxy ( renmoteHost, renotePort,
file, false );
Copy ( sin, sout );
Consol e. WiteLine ( "file upl oaded, host=" + renoteHost +
", port=" + renptePort + ", file=" + file );
}

www.syngress.com



o

E

Network Programming: Using TCP and UDP Protocols * Chapter 5

Now you can compile and run our example.You will learn something about
the user interface in the next section.

Compiling and Running the Example

Please go to the directory on the CD where you can find the file
FileSharingPeer.cs. Start the compile.bat batch file. Start the resulting
FileSharingPeer.exe two times. You can do this by simply starting the run.bat file
in the same directory.

Two forms appear. Try the download or upload by choosing a file and
pressing the button for the functionality you want to try. Also have a look at the
two DOS consoles. Now the forms should be similar to Figure 5.107.

Note that this peer class just simulates a file sharing peer. It has a download
and upload functionality only, and it knows which files can be found on the
other peer.

Figure 5.107 File Sharing Peers in Action

:r\-a- | 1 i'\-cl-|..

ﬁ |.--|-.-||
=

Access to Web Resources

We’ve now investigated remote operating classes that encapsulate communication
protocols and work like local classes; now we’ll have a short look at some Web
access classes of the .INET Framework. Three classes are of particular interest:
System. Net. WebRequest, System.Net. WebResponse, and System.Net. WebProxy.

As mentioned in the introductory sections, the abstract classes WebRequest and
WebResponse are general APIs to underlying protocol handlers like an HTTP
handler. Your goal is to develop a small application that makes a request via an
HTTP proxy to a Web server and receives the response. You could use such an
application as a base for a Web browser or a crawler, for instance.

283

www.syngress.com



284 Chapter 5 * Network Programming: Using TCP and UDP Protocols

A crawler 1s an application that “walks” through the Web along the links in the
HTML documents to track the structure behind. Crawlers are used by search
engines to create a searchable database of documents. A search request to a search
engine means that a query to the database of the engine is made. A crawler can
also be useful for intranets to determine the structure, for example, for creating
index pages.

General Usage of Needed .NET Classes

Today many companies use proxies to channelize and control outgoing requests
from the company to the Web (see Figure 108).

Figure 5.108 Clients Access the Internet via Proxy

Client

Client, |- »| Proxy —p

Client

So, you can first define the parameters for the proxy to give them to the
requesting class. This class then makes the request and receives the results page:

/1 create a request to the Syngress honepage
WebRequest request = WebRequest. Create (

"http://ww. syngress.com" );

/1 set the proxy |IP address an port

request. Proxy = new WebProxy ( proxyHost, proxyPort );
/1 set the proxy user and password
request. Proxy. Credentials = new NetworkCredential ( proxyUser,

pr oxyPassword );

/1 get the reponse page

www.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5

WebResponse response = request. Get Response ();

/1 get the response stream

Stream s = response. Get ResponseStream ();
/1 read fromthe stream

/! close the stream

s.Cl ose ();

WebRequest. Create() 1s a static method that creates a request object depending
on the protocol defined in the URL parameter. The resulting object is of the
type System.Net. HttpWebRequest because the protocol of the URL is HTTP. The
string proxyHost and the int proxyPort are the IP address and port of your proxy.
The System.Net. NetworkCredential class holds the authorization parameters for the
proxy, that is, proxyUser and proxyPassword are the username and password needed
to go through the proxy.

A Web Access Client

Now, let’s develop a small form that shows the HTML code of a Web page. It
looks a little bit like a Web browser (see Figure 5.109).

Figure 5.109 HTML Page Source Viewer

On the top of the form are fields for the proxy parameters. The URL field is
for typing in the destination URL (for example, http://www.syngress.com/). The
untitled field contains the source of the HTML page specified by the URL.

285

www.syngress.com



-2

286 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Before going into the form, you need to use a small class that allows easier
handling of the Web access classes. It is called WebAccessClient and 1s included on
the CD in the file Base.cs. The class has two constructors and the Get() method.
One constructor is for initializing without using a proxy and one with a proxy.
The constructor for initializing the client without a proxy simply does nothing.
The Get() method returns a Web page based on a request URI. Figure 5.110
shows the class fields of WebAccessClient.

Figure 5.110 Class Fields of WebAccessClient in Base.cs

/1 proxy paraneters

&

private WebProxy proxy = null;

The proxy field holds the proxy parameters and is initialized by the con-
structor. The constructor code using a proxy looks like Figure 5.111.

Figure 5.111 Constructor Using Proxy of WebAccessClient in Base.cs

Il with proxy
public WebAccessCient ( string proxyHost, int proxyPort,

string proxyUser, string proxyPassword )

/1 create a proxy

WebProxy proxy = new WebProxy ( proxyHost, proxyPort );

/1 set user name and password for proxy
proxy. Credentials = new NetworkCredential ( proxyUser,

pr oxyPassword );

/1 disable proxy use when the host is |ocal

proxy. BypassProxyOnLocal = true;

/1 all new requests use this proxy info
d obal ProxySel ecti on. Sel ect = proxy;

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5 287

First, we create a proxy object as shown in the general usage section. But now

comes something new—the property BypassProxyOnLocal 1s a flag that advises the

request class not to try to connect through the proxy if a local URL such as

localhost 1s requested (for example, a local Web server on the same computer).

The other new element is the GlobalProxySelection class of the namespace
System.Net. This class has a static property Select. This property is a proxy instance

that MWebRequest instances use to connect to the outside. You can set this once, and
you don’t have to set the Proxy property of WebRequest. (Note that this doesn’t
make a lot of sense in your class because there is only one constructor, but it’s

worth mentioning.)

The Get() method requests and returns a stream containing a Web page for a

given URL (see Figure 5.112). It is a very simple method that does nothing too

different from the example code in the general usage section.

Figure 5.112 Get() Method of WebAccessClient in Base.cs

public Stream Get ( string url )

{

/1 create a request based on the URL
WebRequest req = WebRequest.Create ( url );

/1 get the response

WebResponse res = req. Get Response ();

/1 return a stream containing the response

return res. Get ResponseStream ();

Now we come to the form. The class is called WebAccessClientForm and 1is

contained on the CD in the file WebAccessClient.cs. This class has only two
methods: a constructor that initializes all controls, and a key event handler that is
called if the URL field receives a KeyUp event. Let’s focus here on the event han-
dler (see Figure 5.113).

www.syngress.com



288 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Figure 5.113 KeyUp Event Handler of WebAccessClientForm in
,  WebAccessClient.cs

4

public void OnKeyUp ( Object sender, KeyEventArgs a )
{
/1l read a page if the return key was pressed
if ( a. KeyCode == Keys.Return )
{
/1l clear the result field

this.text. Text = ""

/'l create a Web access client
WebAccessClient client = null;
if ( this.proxyHost.Text.Equals ( "" ) )
client = new WebAccessCient ();
el se
client = new WebAccessC ient ( this.proxyHost. Text,
int.Parse ( this.proxyPort. Text ),
thi s. proxyUser. Text, this.proxyPassword. Text );

/1 get the response stream
StreanReader s = new StreanReader (
client.Get ( this.url.Text ) );

/Il read the response and wite it to the text field
i nt BUFFER_SI ZE = 4096;
Char[] buf = new Char[ BUFFER_SI ZE] ;
int n = s.Read ( buf, 0, BUFFER SIZE );
while ((n >0)
{
this.text.Text += new String ( buf, 0, n);

n = s.Read ( buf, 0, BUFFER_SIZE );

www.syngress.com

Continued



Network Programming: Using TCP and UDP Protocols * Chapter 5

Figure 5.113 Continued

/Il close the stream

s.Cose ();

The request should be made if the Return key was pressed in the URL
field. This a little bit browser-like. First, you can create a WebAccessClient instance
based on the proxy parameter fields. Then, you can make the request by calling
the Get() method. The StreamReader is for your convenience because its Read()
method reads into a char array that you can easily convert to a string. This string
is simply concatenated with the content of your result text field. Finally, the
stream 1s closed. Now you can compile and run the example.

Compiling and Running the Example

Please go to the directory on the CD where you can find the file
WebAccessClient.cs. Start the compile.bat batch file. After successful compiling,
double-click on WebAccessClient.

Now a form appears. Please type in the proxy information and an URL.
Finally press the Return key while the cursor resides in the URL field. Now the
form should be similar to Figure 5.114.

Figure 5.114 HTML Page Source Viewer after Doing a Request

i
L Ll

shlle « B g Bl AL DO WCTN WCLE: Darbinlion-s A
s
ORI e ST AT, RN S TR
nl:-.-o-ug-:-wulul-ur\-

rrri-n'\-ﬁu e o T e
o,

M L T, LRI [ || CHPC R LR
il ks g Lrved ks

Cprgra e e M, Fereran e e

i

s e YRR e EOTHRT T

This example is only a start into Web access with .NET WebRequest classes.
These classes offer many more features. Here you’ll focus on HttpWebRequest. An

289

www.syngress.com



290

Chapter 5 * Network Programming: Using TCP and UDP Protocols

instance of this class is returned by the Create() method of WebRequest if the given
URL starts with http://.

The HttpWebRequest class has a large number of properties to directly influ-
ence the HTTP request. Among others are properties for directly manipulating
HTTP request header fields such as Accept, Content-Length, Content-Type, and so
on. All headers can be accessed by the property Headers. This property is an
instance of WebHeaderCollection and contains the headers exposed by the
HttpWebRequest properties or unchangeable headers needed by the system. Please
see the .NET reference documentation for mutable and immutable headers.

Some other functionality can be influenced directly by manipulating proper-
ties of HttpIWebRequest. The following sections describe a part of it, especially the
request method, redirection, authentication, and cookie handling.

Request Method

By default, an HttpWebRequest instance created by the Create() method requests
with the HTTP GET. If you want to use another method, such as POST, you
can do this by setting the Method property of HttpWebRequest.

Other HTTP 1.1 methods are HEAD, PUT, DELETE, TRACE, or
OPTIONS. If you want to use a version other than 1.1, you must set the
Protocol Version property with the needed version. Please have a look at the .NET
reference documentation for the Http Version class. The default HTTP version of
HittpWebRequest is Http Version. Version11.

Redirection

Normally, if you are implementing an HTTP client, you must react on the
HTTP status codes starting with 301. These codes define redirection methods. To
see which status code the response to your request has, have a look at the
StatusCode property of the HttpIWebResponse instance returned by the
GetResponse() method of Http WebRequest.

Mostly, redirection means that the requested page is not available anymore
under the specified URL (see the W3C Web site for HTTP specifications, at
www.w3.org). The response then contains the new URL of the requested page
or another redirection page, so you then have to re-request with the new URL.

With the HttpWebRequest class you do not have to do this by hand if you do
not want to. If the Boolean property AllowAutoRedirect 1s set to true the class does
all the work for you. If this property is set to false, you must implement redirec-
tion by yourself. The default value of this property is true.

www.syngress.com



Network Programming: Using TCP and UDP Protocols * Chapter 5

Authentication

Sometimes a Web site requests an authentication from you for login. This is, if the
response has the HTTP status code 401 Unauthorized. Normally, if you know what
you need for authentication (for example, username and password) you re-request
the page with these requirements contained in the WIWIW-Authenticate HTTP
header. With the HttplWebRequest class, you can do this easily with the
PreAuthenticate and Credentials properties.

The following procedure is the same whether you get a 401 Unauthorized
response or you know before for which Web site you need an authentication:

Set the PreAuthenticate property to true.

2. Create an instance of NetworkCredential. It is the same procedure as
described for proxies in this section.

Set the Credentials property to the credential you created in Step 2.

Request or re-request the page.

Cookies

Normally, cookies are used to store a state needed during long-term communica-
tion, such as revisiting a page. For instance, a Web site stores some customer infor-
mation in a cookie on your computer. If you revisit the site it requests the
cookie, in order to know immediately who you are, so that a page may be cus-
tomized especially for you.

Because cookies are particular to the sites you request, we can only give you
direction to get more detail about cookies:

» [f you are new to cookies, please have a look at general documentation
about cookies (RFC 2965, Proposed Standard for HTTP State
Management Mechanism).

» In the .NET reference documentation, you will find the System. Net
.Cookie class. As the name implies, this class represents an HTTP cookie.

» The HttpWebRequest class has a property named CookieContainer. This 1s
an instance of the System.Net. CookieContainer class and contains all
cookies for the request.

» The HttpWebResponse class has a property named Cookies. This is an
instance of the System.Net. CookieCollection class and contains all cookies
of the response.

291

www.syngress.com



292

Chapter 5 * Network Programming: Using TCP and UDP Protocols

Summary

This chapter presents some examples of how to implement networking applica-
tions with the .NET Framework.

The most widely used protocols in networking are TCP and UDP.You can use
TCP for reliable client/server applications because it is a reliable and connection-
oriented protocol. On the other hand, you can use UDP for applications such as
DNS, time servers, Internet telephony, and streaming multimedia in general because
it is faster than TCP. The better performance is caused by the relative unreliability
of the protocol. If a packet of data gets lost, no administrative overhead is needed to
resend it. UDP also supports another option: multicasting. Multicasting means that
one application sends data simultaneously to a group of applications without the
knowledge of which kinds of applications are listening, or how many.

The chapter discussed the meaning of ports for developing networking appli-
cations—only if an application is registered with a port it can be reached by
other processes.

As introductory examples, we developed simple remote command processing
with TCP and UDP. These examples show how you can use the .NET net-
working classes for networking and what the difterences are in using the TCP
and UDP classes. These differences are caused by the different natures of the pro-
tocols. TCP is a connection- and stream-oriented client/server protocol. So, the
NET TCP classes reflect the client/server model by providing client and server
classes. Clients have methods for connecting to and disconnecting from a remote
host. Servers have methods for listening for and accepting incoming connections.
Furthermore, after successful connection, TCP classes provide stream classes for
accessing the data streams between client and server. The .NET UDP classes on
the other hand have no connection establishment and stream functionality.
Because UDP is connection-less and packet-oriented, these classes need send and
receive methods only where network addresses and data are given directly. Data is
sent and received without making a connection. UDP is peer-oriented, reflected
in the absence of explicit client and server classes. The same class is used for
sender and receiver applications.

The TCP and UDP examples are followed by a UDP multicasting example
and a news ticker application. Multicasting 1s an option of UDP where a sender
application sends data to an IP address. This address represents a group of applica-
tions. All these applications are able to receive the sent data. An application can
take part in the group simply by registering with the group IP address.

WWW.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5 293

The next example was a client/server chat application. It showed how you
can use TCP and UDP in combination.You can use TCP to send messages to a
server in a reliable way. You can use UDP multicasting for sending the chat mes-
sages to all clients that take part in the chat room. The most important technique
shown with this example is how Web servers handle multiple client requests at
the same time. If a TCP client establishes a connection to a server listener class,
the server creates a socket for only this connection, then the server is ready for
listening on its port for new clients. r

A simple P2P file sharing application was the next example. Here we showed
how to use the client/server-like protocol TCP for developing P2P applications. A
peer must act like a TCP server and a TCP client simultaneously. Such a peer must _
be divided in two parts. First, a TCP client that connects to another peer for ‘
sending and receiving data (upload and download of files). Second, there must be a
TCP server that accepts connection from another peer, so that this peer can down-
load and upload files from the TCP server. The most important technique in this
section 1s how to implement remote object access—such as remoting or
CORBA—in a very simplified way. We developed a remote file stream. On the
client side, we have a proxy, and on the server side a server class. The remote file
stream on the client side is used similar to a “normal” file stream. But methods such
as Open(), Close(), Read(), and Write() are working over a network using a simple
communication protocol. The remote file stream class is derived from the .NET
stream class and can be used in the same way as other stream classes. An application
that works only on streams does not recognize a difference from other streams.

Finally, we show how to use special .INET classes for accessing Web resources.
With the System.Net.WebRequest and System. Net. WebResponse classes, accessing a
Web server is simple using only a few methods. These classes encapsulate HTTP
or FTP handling. We also have shown how to request a Web page through a
proxy. A proxy is an intermediate process between a Web client and server to
channelize and control communication. Finally, we mentioned some other tech-
niques in accessing Web resources by using .NET classes.

We described how to change request methods with the System. Net
HttpWebRequest class. The default method of this class is the HTTP GET,
but for instance, some applications need the HTTP POST method.

Another point mentioned was redirection of Web pages. Sometimes it 1s neces-

sary to change the URL of a Web page. Maybe this is caused by changing the host
name of the Web server or other administrative work. But the page should still be

accessible via the old URL. The Web server then returns a special redirection
status code and a new URL for the page. The client then requests the page with

www.syngress.com §



294

Chapter 5 * Network Programming: Using TCP and UDP Protocols

the new URL. With .NET, we do not have to develop this by ourselves—the
HittpWebRequest class does this work for us.

This class also does authentication handling. If a Web server requests authenti-
cation for accessing a page, we do not have to develop the HTTP authentication
procedure. If authentication is requested by a Web server, it returns a special status
code. The client now must re-request by adding the authentication information,
for instance, username and password. This work is done by the HrtpWebRequest.

Finally, we mentioned cookie handling. Cookies are small packets of informa-
tion that bring states to the state-less HTTP. State-less means that every HTTP
request/response pair is independent from former and further communication.
State information on the client side can be stored with cookies. The Web server
requests a cookie and knows in which state, for instance, a Web shop transaction
is. Because of the special character of cookies depending on the application and
their use, we showed only the .NET cookie class and where to find cookies in
request and response classes.

Solutions Fast Track

Introducing Networking and Sockets

M Networking is inter-process communication. Two or more processes
communicate with each other. The processes can run on the same or
different computers or other technical devices.

N

The most important networking API is the socket.

=

Most networks today use the Internet Protocol (IP) as base protocol. The
most widely used application protocols are the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP). TCP and UDP

run on IP.

M TCP is a reliable connection- and stream-oriented point-to-point
protocol. The communication is client/server—oriented. The delivery and
order of data is guaranteed.

M UDP is a connection-less and datagram-oriented best-effort protocol.
The delivery and order of data is not guaranteed. It can be used as a
point-to-point protocol (unicasting) or as a point-to-group protocol

(multicasting).

| www.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5

Example TCP Command Transmission and Processing

M For TCP communication, the easiest way 1s to use the System.Net
. TepListener and System.Net. TcpClient classes.

M This section showed how a TepClient on the client side connects to a
TepListener on the server side.

M The client sends a command and receives a result.

M This is similar to a browser making a request to a Web server and
receiving a Web page.

Example UDP Command
Transmission and Processing

M For UDP communication, the easiest way is to use the System. Net
.UdpClient classes.

M This section showed how a UdpClient on the client side communicates
to another UdpClient on the server side. The client sends a command
and receives a result.

M This example 1s similar to the example in the “Example TCP Command
Transmission and Processing” section for showing the difterences
between TCP and UDP.

Creating a News Ticker Using UDP Multicasting

M UDP can be used for sending data to a group of peers (multicasting).
M For multicasting, System. Net. UdpClient can also be used.

M This section showed how to develop multicasting between UDP peers.

Creating a UDP Client Server Chat Application

M This example combined our TCP and UDP knowledge.

M TCP is used for transferring messages to the chat server; UDP is used
for sending the messages to all connected chat clients.

295

# 1




296 Chapter 5 * Network Programming: Using TCP and UDP Protocols

Creating a TCP P2P File Sharing Application

M This example showed how to develop TCP P2P applications.
M A TCP peer has one TCP server and one TCP client.

M This example showed in a very simplified way how remote object access
such as remoting or CORBA is implemented. This is done by a so-called
remote file stream.

Access to Web-R esources

M You can easily create access to Web resources with the .NET classes
System.Net. WebRequest and System.Net. WebResponse.

M  WebRequest makes a request to a Web resource, such as a Web server. The
result of the request is WebResponse instance that gives access to a stream,
such as representing the requested Web page.

M Communicating through proxies is made with help of the
System. Net. WebProxy class.

WWW.syngress.com




Network Programming: Using TCP and UDP Protocols * Chapter 5

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is TCP and how does is work?

A: Today, most networks use the Internet Protocol (IP) on the network protocol
layer. IP is an unreliable data packet (datagram) delivery service where the
delivery and order of packets is not guaranteed (best-effort). The Transmission
Control Protocol (TCP) is designed to address this problem—it guarantees
reliability. If packets are lost, TCP can resend them. If the order of packets is
not correct, TCP can put them in the right order. On the other hand, TCP is
stream-oriented, that is, you can read your data byte-by-byte. Finally, TCP is
connection-oriented, that is, a client opens a connection to a server, commu-
nicates with the server;and after finishing, it closes the connection.

Q: What is UDP and how does it work?

A: The User Datagram Protocol (UDP) provides an unreliable datagram-oriented
protocol on top of TP. The delivery and order of datagrams are not guaranteed.
It is connection-less, that is, 2 UDP application does not have to connect
explicitly to another. Datagrams are simply sent or received.

Q: What is multicasting?

A: Multicasting means that a set of applications can be grouped together by an
I[P address. If an application sends data to that IP address, all members of the
group receive the data. UDP provides this service.

Q: When do I use TCP, and when do I use UDP?

A: You should use TCP if a reliable connection is necessary. You can use UDP
when you don’t need reliability when or you need more performance.

Q: Why does UDP multicasting sometimes not work under the German version
of Windows 2000?

297

WWW.syngress.com




298

Chapter 5 * Network Programming: Using TCP and UDP Protocols

A: We encountered problems with the German version of Windows 2000

Q:

Professional and Service Pack 2 using the Beta 2 of the .NET Framework. At
the time of this writing, no solution has been found, either on the Microsoft
Web site or from other sources. This problem seems to be deeper than the
NET Framework. Tests with Java applications also lead to negative results. At
the time of this writing, we do not know if the problems also exist with
other Windows 2000 versions.

Why does the UDP unicast example sometimes not work under the German
version of Windows NT 4?

A: We encountered a problem with the Beta 2 of the .NET Framework running

under German Windows NT 4 Service Pack 6a. If the example is started
with the run.bat file, UDP unicasting doesn’t work. If the example is started
directly, it works well. At press time, we do not know if the problems also
exist with other Windows NT versions. With Windows 2000, the example
works well when started directly or via batch file.

WWW.syngress.com




Chapter 6

Remoting

Solutions in this chapter:

| B
i

Introducing Remoting 5 'i

Creating a Simple Remoting Client Server

Creating an Intranet Application

Creating Service-Based Applications

M Summary

M Solutions Fast Track

M Frequently Asked Questions

299



300

Chapter 6 * Remoting

Introduction

Ever since the early days of Windows programming, there has been a gradual
improvement in operating system stability. Much of this is due to the separation
of applications into distinct processes so that each has its own area of memory.
Developers have had to use many tricks to get these applications to communicate
with each other. Some of these methods included using the system clipboard,
sending windows messages, using the Visual Basic (VB) SendKeys function or sim-
ilar, transferring “message” files, or declaring an area of shared memory. Each of
these methods had pros and cons and were generally “hacks” around the separa-
tion of processes. When Microsoft’s Component Object Model (COM) arrived,
the situation vastly improved, and such tricks were no longer needed, but COM
did introduce a number of issues with versioning, registration, and administration
that a generation of Windows developers has had to deal with. Now with the
NET platform, you get cross-application communication built-in, which pro-
vides you with an amazing amount of flexibility and control as to how you want
your applications to communicate with each other.

Every application on the .NET platform exists in its own unique Application
Domain. And every Application Domain is able to expose objects to the outside
world from any type of application—from simple console applications to Windows
Forms and Internet Information Server (IIS)—hosted applications. To enable appli-
cations running in one Application Domain to communicate with other applica-
tions in another Application Domain, you use remoting. Or you could say remoting
allows you to call methods and pass objects across Application Domains.

The Remoting API on the .NET platform takes a difterent approach than the
other application programming interfaces (APIs), such as Distributed COM
(DCOM) and Remote Method Invocation (RMI) for communication and mes-
sage format. Rather than relying on a proprietary message and protocol, the
Remoting API uses well-established standards such as Simple Object Access
Protocol (SOAP) for messaging and Hypertext Transfer Protocol/Transmission
Control Protocol (HTTP/TCP) protocols for communication. This allows appli-
cations to communicate just as easily across the Internet as they do within the
enterprise.

To understand how remoting works, imagine that you need to create your
own method of cross-application communication. Imagine that you have an
object that needs to accept calls from client applications across HTTP. First, you’d
need to define your object’s location as a URL of some kind. Then you would
need to choose a port that the object should listen to.You would also need some

www.syngress.com



Remoting * Chapter 6

way of publishing the interface of your object so that clients would know what
methods are available to call, and you would need a method of describing the
interface and handling the messaging between objects. The creators of the .NET
Framework have done just that and have exposed the remoting functionality as a
powerful way for programmers to start getting their applications to communicate.

This chapter introduces the remoting framework and provides many examples
from real-world scenarios that occur during development. First, we get an
overview of how remoting works and look at the variety of choices available to
the developer as to how remoting is configured.

In the second part of the chapter, we produce a simple remoting example that
is gradually extended to use a range of remoting services. We also take a look at
how to deal with issues that developers face during the development lifecycle in
regard to deployment, debugging, administration, documentation, and versioning
while using the remoting framework.

Introducing Remoting

Remoting provides you with a number of choices as to the method and configura-
tion of communication used. Configuration areas are the choice of channel, type
of hosting application, the activation model, the configuration method, and the
method of exposing server metadata to the client application.

The channel is the means of communication used by an application to call to
a remote object; the selection is between HTTP and TCP (SMTP doesn’t appear
to be ready in Beta 2). The HTTP channel is mostly used for Internet communi-
cation where firewalls need to be negotiated. The TCP channel has a perfor-
mance gain by using direct socket connections over an arbitrary port selected by
the developer. Both channels use SOAP for communication; the TCP channel
defaults to use a faster (but proprietary) binary representation of the SOAP mes-
sage, whereas the HTTP channel defaults to use the XML standard. The TCP
channel can also use the normal XML-formatted SOAP messaging format.

The selection of the hosting application for the remote object is the next
choice. A hosting application must be configured to listen on a channel and
create the requested object in its own AppDomain when required. In Visual Basic
6, developers often used IIS or COM+ services to host remote objects—the mys-
terious dllhost.exe that you may see running in your Windows 2000 Task
Manager is the hosting application used by COM+. With the .NET Framework,
you can still use these hosting services, but you can gain more control by writing
your own hosting applications. When creating your own hosting application, as

301

www.syngress.com



302

Chapter 6 * Remoting

we do in the first example, you may choose from a Console application,
Windows Service, or Windows Forms application.

Choice number three is the activation model for the remote object. SingleCall
objects are stateless in that they handle only single calls from clients and do not
hold state between calls. After the call is handled, the object is discarded. Singleton
objects can be shared between multiple clients. They are often used when the
resources needed to initialize the object are large and the object’s state needs to
be preserved between method calls. You need to remember that Singleton objects
do have a default lifetime and may be recycled—we’ll see later how developers
can control the object’s lifetime to suit their needs. Client Activated Objects
(CAO:s) allows a client application to create a remote instance of the object for
exclusive use and to preserve state between remote method calls.

Choice number four is the method of configuring the remote server. The
host application can programmatically configure itself on startup or a configura-
tion file can be used. Of course, using an external file to hold remoting configu-
ration data enables changes to be made without a recompile of the source code.
The configuration information contains the channel, port, activation model, type
name, and assembly name of the object. A Uniform Resource Identifier (URI),
which clients use to identify the object, is also specified.

The final choice is how the client obtains the remote object’s metadata. Again
comparing with Visual Basic 6, a server object’s interface definition had to be on
the client, either as a type library or an exported MTS package, to enable the
client VB code to make the call over DCOM. With remoting, the situation is
similar but improved by the .NET Framework’s use of metadata. The first method
is to set a reference to the remote object’s DLL in the client project so that the
compiler can extract the metadata. The second method, but only if using the
HTTP channel, is to use the soapsuds.exe utility to generate a “proxy” class from
the remote object’s URI. This proxy class can then be included in the client pro-
ject and used as if it is a local .NET type. Internally, the proxy class will route the
call to the remote object.

Remoting Architecture

An end-to-end picture of remoting is as follows. The host application is loaded
and registers a channel and port on which to listen for incoming calls. The con-
figuration file, if any, is read and an object’s remoting information is loaded—the
host application can now map a URI to the physical assembly and instantiate the
object when required. The client application also registers the same channel and
then attempts to create a new instance of the remote class. The remoting system

www.syngress.com



Remoting * Chapter 6

handles the request for a new instance by providing a proxy object in place of the
actual object on the server. The actual object is either created immediately for
CAO:s or on the first method call for Singleton/ Singlecall objects—the remoting
framework takes care of this for you automatically. When the client calls a
method on the proxy object, the information is sent across the channel to the
remote object. The remoting system will then pass back the results of the method
across the channel in the same manner.

Creating a Simple
Remoting Client Server

We’ll now create a simple client server application to demonstrate the usage of
the remoting framework. The code for the server side is located in the ListServer
directory of the CD—double-click on the solution file ListServer.sln so that you
load both the server and the hosting application together. First, we’ll create the
remote class named CompanyLists that contains the functionality. All of the fol-
lowing code 1s on the CD.

NoTE

The code in this chapter uses localhost as the target server—this will self-
reference your local computer so that you may use both the client and
server code on the same PC. If you wish to place the server-side code on
a remote server, you will need to replace localhost with the correct server
name.

Creating the Remote Server Object
The remote server object contains all the server-side functionality for our
application:
1. Create a new Class Library application in Visual Studio named
ListServer.

2. Right-click the default Classl.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class, and name your new class CompanyLists.cs.

303

www.syngress.com



304

Chapter 6 * Remoting

4. Modity the class declaration to inherit from MarshalByRefObject so that a
reference to the object can be passed remotely:

public class ConpanylLists: Marshal ByRef Obj ect
{
}

5. Add a private variable to the CompanyList class that contains an array of
strings:

private String[] Countries = {"Spain","France","ltaly"};

6. Add a public method to CompanyList that returns the array of strings
defined in the preceding step. The complete class should appear as:

public class ConpanylLists: Marshal ByRef Qbj ect

{
private String[] Countries = {"Spain","France","ltaly"};
public String[] getCountryList()
{
return Countries;
}
}

The CompanyList class can now be loaded by a hosting application for
remoting. If you already have classes that you’d like to make remoting aware of,
it’s as simple as inheriting from Marshal ByRefObject and then recompiling.

NoTE

If your class must receive and send objects during method calls, you

will need to use the <Serializable> custom attribute to pass these
objects by value or inherit from MarshalByRefObject to pass by reference.
An example of this is shown later. If your class already inherits from
another class, you'll need to make the parent class inherit from
MarshalByRefObject because multiple inheritance is not allowed in C#.

www.syngress.com



Remoting * Chapter 6

Creating the Hosting Application

Now we create the hosting application. This will be a console application initially,

but in the real world, this would probably be a Windows Service application:

1.

From the Visual Studio menu, choose File | Add Project | New
Project. Select Console Application and name the new project
ListHost.

Rename the default Class1.cs file to CompanyListHost.cs.

Add a reference to the System.Runtime. Remoting namespace and the
ListServer project.

Add the following using statements at the top of the code window to
reference the relevant namespaces:

usi ng System Runti ne. Renoti ng;
usi ng System Runti ne. Renoti ng. Channel s;

usi ng System Runti m Renoting. Channel s. Ht t p;

Add the following code to the Main method. This code creates

an HittpChannel object that uses port 8080. The RegisterChannel

method is then used to register the channel, after which the
RegisterWellKnownService Type method is called to register the class with
the remoting framework. The RegisterWellKnownService Type method con-
tains three parameters that specify the type of the remoting class, the
URI, and the object activation mode. After this method has been called,
your class is then ready to accept requests from client applications.

static void Miin(string[] args)

{
Ht t pChannel nyChannel = new H t pChannel (8080);
Channel Servi ces. Regi st er Channel (myChannel ) ;
Renot i ngConfigur ati on. Regi st er Wl | KnownSer vi ceType
(typeof (Li st Server. ConpanylLi sts),
" CompanylLi sts", Well KnownObj ect Mbde. Si ngl eton);
}

305

www.syngress.com



306 Chapter 6 * Remoting

6. Build the console application to create the ListHost.exe console
application.

The CompanyList class can now accept calls from remote clients. You’ll notice
that we have chosen port 8080 to listen to for client requests. The choice of port
is rather arbitary, although port 80 should be used to be firewall friendly. You
need to remember that a port can only be registered once per machine. To see
what happens when an attempt is made to register the same port twice, perform
the following experiment:

1. In Windows Explorer, find and run the host application ListHost.exe.

2. While the console application is running, run the same host application
from within the Visual Studio IDE.You may need to right-click the
ListHost project in the Solution Explorer and select Set as StartUp
Project to enable the IDE to do this.

3. Figure 6.1 shows the exception that occurs when the same port is
reused.

Figure 6.1 The Exception Generated after an Attempt to Reuse a Port

e L ] T RS T PR PR |
1 sk 0 i i i g o il ] 1 Wi Byn i oo i
o L I B e e L0
o =
0|
] === |

‘ Creating the Client Application

2% The client application will be a standard Windows Application with a main form,
but it could also be any other type of .NET application. The source for this pro-
ject is located under the ListClient directory of the CD:

1. From the Visual Studio menu choose File | New | Project. Select
Windows Application, and name the new project ListClient.

2. Rename the Form1.cs file to ListClient.cs.

Add a reference to the System.Runtime. Remoting namespace and also to
the ListServer.dll.

4. Add the following using statements at the top of the ListClient.cs code
window to reference the relevant namespaces:

www.syngress.com



Remoting * Chapter 6

usi ng Li st Server;
usi ng System Runti ne. Renoti ng;
using System Runti nme. Renoti ng Channel s;

usi ng System Runti ne. Renoti ng. Channel s. Ht t p;

Modity the code in the Form1 constructor to appear as follows so that a
new HrttpChannel object is created and registered on application startup:

public Forml()

{
InitializeConponent();
Htt pChannel ¢ = new HttpChannel ();
Channel Servi ces. Regi st er Channel (c);
}

Add a button and a textbox to the form. In the button’s click event, add
the following code. This code will create a reference to the remote
object by using the Activator. GetObject method. Three parameters are
used by this method to specify the type of the remote class, its URI, and
the creation mode. The list of countries is then retrieved and used to
populate the form’s ListBox control:

private void buttonl_Cick(object sender, System EventArgs e)

{
ConpanylLi sts cLst = (ConpanyLi sts)Activator. Get Obj ect (typeof (
ConpanylLi sts),"http://1 ocal host: 8080/ ConpanyLi sts",

Wel | Knownhj ect Mode. Si ngl et on) ;

| i st Box1. Dat aSource = cLst. get CountryList();

Run the host application ListHost.exe and leave the console window
open. Figure 6.2 shows the host application.

307

www.syngress.com



308

Chapter 6 * Remoting

Figure 6.2 The Server Application Waiting for Clients

T “ulsca st e o e 125 mvm v Hews
1

8. Run the ListClient application. Click the button to retrieve the list
country list from your server object. In Figure 6.3, you can see that the
county list has been successfully obtained from the remote object.

Figure 6.3 The Client Application

L] P ——— | [ ]

Understanding the Remoting Code

The host application simply needs to register a channel and port

using RegisterChannel and to register the remoting object using
RegisterWellKnownService Type. The RegisterWellKnownService Type method

takes three parameters—the type of the object, the object’s URI as defined

by the developer, and the creation mode. The first parameter provides the link
between the hosting application and the remoting object—this is why having a
reference to your class library’s DLL is necessary. Developers that have used pre-
vious versions of Visual Basic may notice that we cannot magically determine the
location of a DLL using CreateObject. We must explicitly tell the compiler the
DLL’s location. This is actually a major benefit of the .NET Framework because
we no longer must trust that the Registry has accurate information to instantiate
an object.

Another important point is that an object does not “own’ a channel. You are
free to register as many channels and objects in the hosting application as you
like. Communication on the server side is multithreaded, so there is no need to
worry about a request blocking a channel while processing is done.You may also
want to use one channel for Internet clients and another for intranet clients and
force this policy by screening ports on your proxy server.

www.syngress.com



Remoting * Chapter 6

The client application must also register a channel, but in this case the port
does not need to be specified. This may seem strange at first—doesn’t the client
need to know which port to communicate with? The confusion lies in the
double life of the HttpChannel class. Creating a HttpChannel object actually cre-
ates a ClientChannel and a ServerChannel object. The ClientChannel object does
not need a port number because it can communicate with any port specified in
the URL.You could replace HttpChannel with ClientChannel in the client code
and everything would still work fine. The ServerChannel object is given to us for
free by the remoting framework so that the server object can call back to the
client if needed. By specifying a port when creating a Http Channel, we are
allowing our client app to “listen” on this port, but it has no influence on what
port our app may talk to. Also, if you are a lazy programmer, you can actually
forget about registering a channel altogether. The remoting framework will create
one for you the first time you attempt to reference a remote object. Try com-
menting out the two lines of code that create and register a channel on the client
(shown in Step 5 in the previous section) and then rerun the application.

The client application also needs a reference to ListServer.dll but for a dif-
ferent reason than the hosting application has a reference. The hosting application
needs the reference so that it can create the remoting object to handle incoming
requests. The client application needs the reference only so that it can access the
DLDs metadata. As you will see soon, the SoapSuds.exe utility removes the need
to reference the DLL by extracting the metadata and providing it to the client in
the form of a proxy class.

To obtain a reference to the remote object, Activator. GetObject is used. This
method takes two parameters—the type of the object and the remote object’s
URI. The reference returned by GetObject is actually a reference to a proxy
object that routes messages to the remote server. The remote object is not created
until the client makes the first method call. This explains why the first time the
button is clicked in our example application that there is a delay—the remoting
framework is instantiating the remote object. And for those developers that
deleted the code to register the channel, there will be a slightly longer delay
while the framework sets up a default channel for you to use.

Note that if you are using the HTTP channel then the host application can
be tested by typing the remote object’s URI into a browser. Try typing in
http://localhost:8080/ CompanyLists?wsdl into Internet Explorer. As long as
the host application is running and configured correctly, you’ll see the SOAP def-
inition of the remote class as it appears in Figure 6.4.

309

www.syngress.com



310

Chapter 6 * Remoting

Figure 6.4 The SOAP Definition of the Remoting Class
I T e N - |

e ChtaLen
L= :..u‘, rr:..h;-l..:n i ru;.:lll e b i s et L Bara e

panp e
= CimmpanplFls gell ol el SR dgud

el = relurn Dopers wn ke pHWring -

ol I |

Improving the Sample Application

Although the sample application 1s a good start and has shown how to execute
calls to a remote object, some areas need improving in order to become a more
real-world application. We introduce these improvements by adding to the sample
code one step at a time.

Adding Event Logging and Error Handling

A good coding standard would be to always have a hosting application write to
the event log information regarding startup success or failure, the application
name, server port number, and any other useful data. We now add event logging
and error handling to the sample hosting application. This updated code is in the
CompanyListHost2.cs file on the CD.The complete code for the host is shown
in Figure 6.5.

Figure 6.5 Adding Event Logging and Error Handling to the Hosting
Application

using System

using System Runti me. Renoti ng;

usi ng System Runti ne. Renoti ng. Channel s;

usi ng System Runti ne. Renoti ng. Channel s. Ht t p;

usi ng System Di agnhosti cs;

nanespace Li st Host

{
public class ConpanylLi st Host

Continued

www.syngress.com



Remoting * Chapter 6

Figure 6.5 Continued
{

Event Log nmyLog = new Event Log();
myLog. Source = "ListHost";

bool failed = fal se;

try

{
Ht t pSer ver Channel nyChannel = new HttpServer Channel (8080);

Channel Ser vi ces. Regi st er Channel (nmyChannel ) ;

myLog. WiteEntry("Regi stered HTTPChannel (8080)");
}
catch (Exception e)

{
nmyLog. WiteEntry("Failed to register HTTPChannel (8080) " +

e. Message, System Di agnosti cs. Event LogEntryType. Error);

failed = true;

}
try
{
Renot i ngConfigur at i on. Regi st er Wl | KnownSer vi ceType(t ypeof (
Li st Server. ConpanylLi sts), "ConpanylLists",
Wl | KnownOhj ect Mode. Si ngl et on) ;
nyLog. WiteEntry("Registered ListServer. ConpanylLists as
Si ngl eton");
}

catch (Exception e)

{
nyLog. WiteEntry("Failed to register ListServer.Conpanylists

+ e. Message);

Continued

311

www.syngress.com



312 Chapter 6 * Remoting

Figure 6.5 Continued

failed = true;

}
if (failed)
{
System Consol e. WiteLine("Errors at startup —
see Event Log.");
}
System Consol e. WiteLine("Press [Enter] to exit...");

Syst em Consol e. ReadLi ne();

The code that writes messages to the event log is quite straightforward. The
WriteEntry method of the EventLog object is used to write error messages from
within the catch blocks. Error handling has been added to trap exceptions caused
while setting up the remoting configuration.

Using the soapsuds Tool

The need for every client application to have a reference to the remote assembly

=

&

may be inconvenient for some third-party services.You use the soapsuds.exe tool
to create a proxy object from the remote assembly’s metadata so that a reference
to the assembly is not needed. We now modify the sample application to use this
proxy object by following the next few steps (The updated ListClient code 1s
located in the ListClient2.cs file on the CD):

Open the ListClient project in Visual Studio.

2. From the command prompt, type soapsuds —url:http://
localhost:8080/CompanyLists?wsdl —gc. This creates a proxy
class named ListServer.cs.

Copy the ListServer.cs file to your source code directory.

Remove the project’s reference to ListServer from the Solution Explorer
window.

www.syngress.com



Remoting * Chapter 6

5. Right-click the ListClient project in the Solution Explorer window.
Select Add | Existing Item and choose the ListServer.cs file to add
it to your project.

6. Modity the button1_click method so that the code is as follows:

private void buttonl_Cick(object sender, System EventArgs e)

{
ConpanylLists cLst = new ListServer. ConpanylLi sts();

| i st Box1. Dat aSource = cLst.get CountrylList();
}

7. Build the application.

Notice that the ListServer.cs file has taken the place of the reference to the
remote assembly. Inspection of the ListServer.cs code reveals that this class is
acting as a proxy by routing the remoting calls to the remote object’s URI. This
allows us to do away with the use of Activator. GetObject to obtain a remote refer-
ence—we can now program against ListServer as if it was a local class.

NoTE

The soapsuds utility has a range of command line options to aid client-
side development—see the Microsoft documentation for details. When
using this utility, it helps to remember that wsdl means Web Services
Description Language and -gc means generate code. You'll then be able
to amaze your friends and colleagues when you can type in soapsuds
commands from memory.

Using Configuration Files

Many settings to the configuration of .NET applications can be achieved not
only inside code but with configuration files as well. All of these files use XML
so that they are humanly readable and easily parsed by the .NET Framework.
With remoting, you can use configuration files to handle all of the work neces-
sary to expose and consume remoting objects.

313

www.syngress.com



314 Chapter 6 * Remoting

You use the Configure method of the RemotingConfiguration class to configure
the remoting framework by specifying the configuration file’s location. We now
modify the ListHost hosting application to read a configuration file at startup:

1. Open the ListHost project in Visual Studio.

2. Add a new file to the project called ListHost.exe.config (which is also
located on the CD) with the following contents:
<configur ati on>
<system runti ne.renoti ng>
<application nane="Li st Server">
<servi ce>
<wel | known node="Si ngl eton" type=
"Li st Server. ConpanylLi sts, Li st Server" objectUri="ConpanyLi sts"/>
</ service>
<channel s>
<channel type="System Runti me. Renoting. Channel s. Http. Htt pChannel,
System Runti me. Renoti ng" port="8080"/>
</ channel s>
</ application>
<debug | oadTypes="true" />
</systemruntine.renoti ng>

</ configur ati on>

3. Modity the Main() method to use this configuration file on startup
(CompanyListHost3.cs on the CD):
static void Main(string[] args)
{
Event Log nyLog = new EventLog();
nmyLog. Source = "ListHost";

bool failed = false;

try

{
Renot i ngConfigur ati on. Configure(@..\..\ListHost. exe. config");
nyLog. WiteEntry("Configuration from Li st Host. exe.cfg

successful ") ;

www.syngress.com



Remoting * Chapter 6 315

catch (Exception e)

{
myLog. WiteEntry("Failed to configure host application: " +
e. Message, System Di agnosti cs. Event LogEntryType. Error);
failed = true;
}
if (failed)
{
System Consol e. WiteLine("Errors at startup - see Event Log.");
}
System Consol e. WiteLine("Press [Enter] to exit...");

Syst em Consol e. ReadLi ne();

Note that while running the host application in the Visual Studio IDE, the
bin\debug directory will contain the executable.You’ll therefore need to use the
“.\..\” syntax in the file path to reach the configuration file in your source code
directory. A further improvement would be to use a command line argument to
specify the CFG file location. This would help during deployment, and you could
test out a variety of configuration options easily without recompiling.
Configuration files may also contain multiple channels definitions and object
URTI entries.

NoTE

The Microsoft standard for configuration files is that they should have
the same name as the assembly, but with a .config extension. For
example, myapp.exe will have the configuration file myapp.exe.config.
This configuration file must be placed in the same directory as the
assembly to enable utilities such as the .NET Framework Configuration
tool to locate configuration information.

www.syngress.com



316 Chapter 6 * Remoting

The type parameter is of the format type= “IypeName, AssemblyName”. These
parameters can be difticult to debug if they are wrong—no error message will be
displayed during the call to RemotingConfiguration. Configure. To help with debug-
ging, the <debug load Types=“true” /> attribute has been added, which causes the
types specified in the configuration file to be loaded. Any errors in the spelling of
a type name will then appear as a FileNotFoundException type exception.

On the client side a slightly different configuration file can be used:

<configur ati on>
<systemruntine.renoting>
<application name="Listdient">
<client>
<wel | known type="Li st Server. ConpanyLi sts, ListServer"
url ="http://1ocal host: 8080/ ConpanyLi sts"/>
</client>
<channel s>
<channel type="System Runti me. Renoti ng. Channel s. Htt p. Htt pChannel ,
System Runti nme. Renoti ng"/ >
</ channel s>
</ application>
</systemruntinme.renoting>

</ configur ati on>

The client code also uses the Configure method of the RemotingConfiguration
class to read the configuration file on startup. A client that uses a configuration
file still needs a reference to the remoting application’s DLL but can use the new
keyword to instantiate the class. The client-side configuration actually redirects
the object creation to the server and returns the remote reference. By using this
method, it can be difficult to know if you are successfully creating the remote
object. A mistake in the configuration file can cause the object to be instantiated
locally instead of remotely. To avoid such subtle bugs, you can simply close down
the remote hosting application and make sure that the object creation code
causes an exception when running the client.

www.syngress.com



Remoting * Chapter 6 317

Developing & Deploying...

Remoting Applications

Remoting applications on the .NET platform have a great deal of flexi-
bility as to how objects communicate with one another. It is even pos-
sible to “plug-in” your own (or a third party’s) functionality to handle
custom formatting, encryption, and more. This makes it all the more
important for remoting issues to be considered up front in any design
work. The areas that need to be examined include the following:

= Should objects be sent over the network by value or by
reference?

= How large are these objects?
= How often will these objects need to be sent?

= For every remote method call, how many bytes of data
would a typical call contain?

= How many client applications will a Singleton object need to
handle?

= What are the lifetime issues with these objects? (that is, for
how long must they maintain state?)

= Can a stateful object be used to increase performance?
= Will your firewalls allow your remoting calls through?

= Do your server-side objects need to call back to the clients? If
so, will these clients have their own firewalls?

» If you need to shut down a hosting application to upgrade
the server object, how will the clients handle this?

Deployment of remoting applications seems quite easy—and
indeed it is. You could send the client-side executables with their con-
figuration files via e-mail to a friend and he would only need to copy
them to a directory and double-click the EXE to get started.

But wait, what happens if you want to move your server-side objects
to another server? When version 2 of the server-side functionality is
released, how do you let the client-side applications know? The solution
to these issues is largely dependent on the type of applications you
create, whether they are Internet- or intranet-based, and the number of
clients that must be administered. One idea to get you started is to have

Continued

www.syngress.com



318

Chapter 6 * Remoting

your client configuration files actually located on your Web server. This
would need to be a server that is almost guaranteed not to have a
domain name change. Instead of having thousands of client configura-
tion files distributed around the globe—you now have only one. When
client applications start up, they can get the configuration file via HTTP
from your server and always have the latest version.

Updating Configuration Files Using
the .NET Framework Configuration Tool

Most developers are happy to use Notepad to update configuration files, but as the
number of files increases, locating the necessary files in the directory tree can be
troublesome. The .NET Framework provides you with a Microsoft Management
Console (MMC) snap-in that serves as a central location for .NET configuration.
Although in Beta 2 this snap-in appears to still need some improvement, it does
hold promise of being a very useful tool. To start the snap-in, open a command
prompt window and change the current directory to the installation directory of
the NET Framework, which will be WINNT\Microsoft.Net\Framework\vx.y.z
(where WINNT is your windows directory and x.y.z is the version of the .NET
Framework). Type mscorcfg.msc to start the .NET Framework Configuration
tool. You will see a screen similar to Figure 6.6.

Figure 6.6 The .NET Framework Configuration Tool

d W et

www.syngress.com



=

Remoting * Chapter 6 319

To add ListHost.exe to the Applications node, simply click the Add an appli-
cation to be configured hyperlink and select the ListHost.exe file from the
dialog. As long as your configuration file is named ListHost.exe.config and located
in the same directory as the executable, you’ll be able to modify the remoting
configuration settings. To update the settings, right-click the Remoting Services
node under ListHost.exe and select Properties from the context menu.

Changing the Hosting Application to a Service

Hosting all of your remoting objects from console applications does appear strange
at first sight. It’s the 21st century and we still haven’t completely got rid of those
character-based applications! The fact is that console applications do provide a
good environment for debugging applications that use remoting—you can imme-
diately see if your hosting application is running, and you can easily send debug
messages to the console window in real-time while you run your client-side app.

Once your server-side classes are ready for deployment, a Windows Service
provides a better hosting environment. System administrators can easily start and
stop your service, you can view your service from within Visual Studio’s new Server
Explorer, and you can guarantee that your service will be started after a reboot of
the server. The service application we will create is located under the ListService
directory on the CD.To create a new hosting service, follow these steps:

1. Load the ListHost project into Visual Studio.
2. Select and copy all the code from within the Main() method.

3. Select File | New | Project. Select the Windows Service template
and type in ListService for the project name. Make sure that the Add
to Solution option is set and then click OK.

4. While the Servicel.cs file is in design view, use the Properties window
to set the service name to ListService.

5. Switch to code view and paste the code you copied in Step 2 into the
OnStart() method. Remove any code that was used to write to the con-
sole window. Replace any text within the code that refers to ListHost
to be ListService.

6. Add the line using System.Runtime.Remoting to the start of
Servicel.cs.

7. Switch back to the Servicel.cs design view. At the base of the Properties
window, select the Add Installer link—see Figure 6.7.

www.syngress.com



320 Chapter 6 * Remoting

10.

11.
12.

13.

14.

Figure 6.7 Setting the Properties of a Windows Service Application
T——

'-u-n.---l_.-— |
t: (S]] #
S BrranaFiopets —t

P e e L

Ll | (L]
[~ [T
Eulid b s
lym b
Thegs g i by g oy ) i

R

Select the serviceProcessInstallerl component (if this component is
not visible, double-click the ProjectInstaller.cs file in the solution
explorer) and set its Account property to Local System.

Copy the ListHost.exe.config file to the winnt\system32 directory and
rename as ListService.exe.config.

Change the method call that reads the configuration file to the following:

Rernot i ngConfigur ati on. Configur e(" Li st Servi ce. exe. config")

Build the ListService project.

Open a command prompt window and change the current directory to
the installation directory of the .NET Framework, which will be
WINNT\Microsoft.Net\Framework\vx.y.z (Where WINNT is your
windows directory and x.y.z is the version of the .NET Framework).

Type installutil appPath where appPath is the directory path to
ListService.exe. This will install your service.

The service 1s now installed. You can now start the service by using the
Server Explorer from within Visual Studio.

You can also view the Event Log from the Server Explorer making Visual

Studio the central hub of your development activities. Notice that the configura-

tion file was placed in the winnt/system32 directory because this is a Windows

Service application. If you need to keep the configuration file together with the

executable, you will have to use the absolute path. Installing the service with the

installutil tool has to be done only once. To update the executable, simply stop the
service and rebuild the project.

www.syngress.com



Remoting * Chapter 6

Using the TCP Channel with the Binary Formatter

Within a corporate intranet, you can gain more speed by using the TCP channel.
To change the sample application to use the TCP channel all you need to do is
do a search and replace of every “Http” with “Tcp” within the configuration
files. The TCP channel uses binary formatting by default, whereas the HTTP
channel defaults to SOAP formatting. Two downsides of using the TCP channel
is that communication may be blocked by firewalls, and you cannot use your
browser to examine the SOAP description of your hosting application.

Summary of the Improved Sample Application

Your sample application now contains enough bells and whistles to provide a base
for a real-world multitier application.You have seen how to host your remoting
objects from within a Windows Service, how to write to the event log, how to
handle exceptions on startup, and how clients can easily communicate with your
remote objects. To further enhance the application you could connect to a
database to obtain various lists of data that are in common use across all corpo-
rate applications—countries, clients, customers, languages, application settings, and
so on. On the client side, you could then subclass a ComboBox control and add a
property called ListType, which would load the corresponding list of items from
your remote object on initialization. This control would save development time
and provide a standardized user interface. ASPINET applications could also use
your remote objects in the same way.

Creating an Intranet Application

The remoting framework provides fine control over how objects are sent to and
from remote applications and also how objects are created and destroyed. We now
look at an example of how you can use these features in a remoting application.

Object Lifetime and Leasing

In the COM world, object lifetime was controlled by reference counting. As
clients disconnected from the server object, the reference count was decremented
until it reached zero. The server object was then unloaded immediately, and any
hold on system resources was released. With the .NET Framework, no reference
counting occurs. Instead, an object is marked to be garbage collected when no
other object holds a reference to it. Because the garbage collector cannot detect

321

www.syngress.com



322

Chapter 6 * Remoting

remote references (because they are in another AppDomain), .NET uses another
method for handling object lifetime called leasing.

Objects have a default lease time—when this time has passed, the object will
be ready for garbage collection provided there are no references to the object
from its own AppDomain. An object can change its own lease period on startup
or even set it to infinity to maintain state forever (forever = until a server
reboot!). Clients are able to renew this lease if they wish to keep communicating
with the same object instance. Also, the client can register a sponsor for a lease.
When the lease expires, the sponsor is given the opportunity to renew the lease.

We now create a sample application that uses the leasing features of the
remoting framework. The source code for this project is in the CountServer
directory—opening up the solution file CountServer.sln will make sure that both
the server and the hosting application are loaded into Visual Studio.

Creating the CountServer Project

This project contains the server-side functionality. The Count class implements a
counter that can be incremented and decremented with the inc and dec methods
respectively:

1. Create a new Class Library application in Visual Studio named
CountServer.

2. Right-click the default Class1l.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class and name your new class Count.cs.

4. Add the following code to Count.cs:
usi ng System
usi ng System Runti ne. Renoti ng;

usi ng System Runtine. Renoting. Lifetine;

namespace Count Server

{
public class Count: Marshal ByRef Obj ect

{

private int nval;

www.syngress.com



Remoting * Chapter 6 323

public Count ()

public override Object InitializelLifetineService()

{
| Lease | ease = (lLease)base.lnitializelLifetineService();
if (lease.CurrentState == LeaseState.lnitial)
{
| ease. I nitial LeaseTi me = Ti neSpan. FronSeconds(5);
| ease. RenewOnCal | Ti me = Ti meSpan. FronSeconds(1);
| ease. Sponsor shi pTi neout = Ti neSpan. FronSeconds(5) ;
}
return | ease;
}

public int inc()

{
mval ++;

return nval;

public int dec()

{
mval —

return nval;

This code 1s quite straightforward except for the InitializeLifetimeService
method. Every remoting object has this method because InitializeLifetimeService 1s

www.syngress.com



324

Chapter 6 * Remoting

a method of the inherited MarshalByRefObject class. This method obtains the cur-
rent lease for the object, and by overriding this method, an object can control/set
its own lease properties. These lease properties can be set only before the object
has been marshaled to the client—the CurrentState property is used to check that
the lease is in its initial state and can therefore be modified. The three lease prop-
erties used in the code are the following:

» InitialLeaseTime The time of a lease. The object will be ready for
garbage collection after this amount of time. Setting this property to null
gives an infinite lease time.

= RenewOnCallTime Every call to the object will increase the lease

time by this amount.

» SponsorshipTimeout When the lease has expired, the lease will con-
tact any registered sponsors. The sponsor then has the opportunity of
extending the lease. The Sponsorship Timeout value is the amount of time
that the object will wait for a response from the sponsor. The sponsor
class will be introduced shortly in the client-side code.

These default lease settings can also be placed within the configuration file as
tollows:

<appl i cati on nane="Count Server" >
<lifetime |easeTi me="5S" sponsorshipTi neCut ="5S" renewOnCal | Ti me="1S"/ >

</ application>

The units of time used in the configuration file are D for days, M for minutes,
S for seconds, and MS for milliseconds.

NoTE

For a lease on the server to contact a sponsor on the client, the client
must register a ServerChannel to listen on a port. If the lease attempts to
contact your client-side sponsor and you do not have a ServerChannel,
the contact will fail and the remoting object will be deactivated after the
specified SponsorshipTimeout value. You will not receive an error in this
situation.

www.syngress.com



Remoting * Chapter 6

Creating the CountHost Project

This host application will configure the Count class for remoting as a Singleton
object. Being a Singleton object, it is shared between all client applications:

1. Add a new Console Application project named CountHost to the cur-
rent solution and add a reference to the CountServer project.

2. Add the call to RemotingConfiguration in the main method and reference
the System.Runtime. Remoting namespace so that the complete console
application code appears as follows:

usi ng System
usi ng System Runti ne. Renoti ng;

namespace Count Host

{
class dassl
{
static void Main(string[] args)
{
try
{

Renot i ngConfigur ati on. Configure(@. .\..\ Count Host . exe. config") ;
}
catch (Exception e)

{

System Consol e. WiteLine("Failed to configure
host appl i cati on:

+e. Message, System Di agnosti cs. Event LogEntryType. Error);
}

System Consol e. WiteLine("Press [Enter] to exit...");

Syst em Consol e. ReadLi ne();

325

www.syngress.com



326 Chapter 6 * Remoting

3. Create the configuration file named CountHost.exe.config and place
in the project directory:

<configur ati on>
<system runtine. renoting>
<appl i cati on name="Count Server" >
<channel s>
<channel di spl ayNane="MChannel "
type="System Runti ne. Renot i ng. Channel s. Ht t p. Ht t pChannel ,
System Runti nme. Renoti ng" port="8085" />
</ channel s>
<servi ce>
<wel | known di spl ayNane="M/Servi ce" node="Si ngl et on"
t ype="Count Ser ver. Count, Count Server"
obj ect Uri =" Count Server" />
</ servi ce>
</ application>
<debug | oadTypes="true" />
</systemrunti nme.renoti ng>

</ configur ati on>

4. Build the project to produce the hosting application—CountHost.exe.

Creating the CountClient Project

The CountClient project is a Windows Application that will remote to the server-
side Count object and update the counter value. The app will also have two but-
tons that allow us to renew the lease and to also add a sponsor for the object.
Follow the next steps to create the project or alternatively access the code from
the CountClient directory on the CD:

&

1. Create a new Windows Application for the client side called
CountClient.

2. Add four buttons to the form—btnInc, btnDec, btnRenew, and
btnSponsor with the captions—*“Inc”, “Dec”, “Renew Lease”, and
“Add Sponsor”. Also add a textbox called txtValue.

www.syngress.com



Remoting * Chapter 6

3. Add click event handlers to each button and add the following code to

usi ng
usi ng
usi ng
usi ng
usi ng
usi ng
usi ng

usi ng

the form:

System

Syst em Dr awi ng;
System Col | ecti ons;
Syst em Conponent Model ;
Syst em W ndows. For nrs;
Syst em Dat a;

System Runti ne. Renot i ng;

System Runti ne. Renoting. Li fetine;

nanespace Countd i ent

{

public class Fornml : System W ndows. Forms. Form

{

private System W ndows.
private System W ndows.
private System W ndows.
private System W ndows.

private System W ndows.

For ns.
For ns.
For rs.
For ns.

For nrs.

Button btnl nc;
Butt on bt nDec;
Butt on bt nRenew;
Butt on bt nSponsor;

Text Box txt Val ue;

private System Conmponent Model . | Cont ai ner conponents;

private Count Server. Count obj

private Cient Sponsor

private |Lease nlLease;

public Forml()

Count ;

nmSponsor ;

@..\..\Countd ient.exe.config");

obj Count = new Count Server. Count ();

{

InitializeConmponent();

Renot i ngConfigur ati on. Configur e(
}

private void btnlnc_Cick(object sender, System EventArgs e)

www.syngress.com

327



328 Chapter 6 * Remoting

t xt Val ue. Text = obj Count.inc().ToString();

private void btnDec_Cick(object sender, System EventArgs e)

{
t xt Val ue. Text = obj Count.dec().ToString();

private void btnRenew Cick(object sender, System EventArgs e)

{
nLease = (| Lease)RenotingServi ces.
Get Li feti nmeServi ce(obj Count);
try
{
nLease. Renew( Syst em Ti neSpan. Fr onSeconds(10));
MessageBox. Show(t hi s, "Lease renewed for 10 seconds");
}
catch
{
MessageBox. Show(t hi s, "Lease has expired");
}
}

private void btnSponsor_Click(object sender, System EventArgs e)
{
nmLease = (I Lease)RenotingServi ces.
Get Li feti neServi ce(obj Count);
nSponsor = new C i ent Sponsor();
nSponsor . Renewal Ti ne = Ti meSpan. Fr onSeconds( 15) ;
try
{
nLease. Regi st er (nSponsor) ;

}

www.syngress.com



Remoting * Chapter 6

catch

{
MessageBox. Show(t hi s, "Lease has expired");

MessageBox. Show( " Sponsor registered with object");

4. Create the client-side configuration file:

<configur ati on>
<system runti ne.renoti ng>
<application nane="CountCient">
<client>
<wel | known type="Count Server. Count, Count Server"
url ="http://1ocal host: 8085/ Count Server"/>
</client>
<channel s>
<channel type="System Runtime. Renoti ng. Channel s. Tcp. TcpChannel
System Runti me. Renoti ng" port="8011"/>
</ channel s>
</ application>
</ systemrunti nme.renoting>

</ configur ati on>

Understanding the Leasing and Sponsorship Code

The increment and decrement buttons simply call the corresponding methods on
the server-side Count object and display the result in the textbox. By observing
the returned value, you can determine if you are still using the original class
instance.

The Renew Lease button renews the lease of the current server-side Count
object. To do this, the lease is obtained by calling GetLifetimeService on the remote
object. A remote reference to the server-side lease is then returned and the Renew
method is called on the lease. Note that the lease is also acting as a remote object

329

www.syngress.com



330

Chapter 6 * Remoting

in this scenario. The Renew method takes a TimeSpan parameter that specifies the
new lease time.

The Add Sponsor button registers a sponsor so that you can receive a notifi-
cation when the lease has expired. The code obtains a remote reference to the
lease, creates a sponsor, and then registers the sponsor with the lease. In the pre-
ceding code, the sponsor will set the lease time to 15 seconds when notified by
the server-side lease. By running the client-side application, you will see a form
as shown in Figure 6.8.

Figure 6.8 Controlling Object Lifetime with Leases and Sponsors
O T S |0 4|

= | i | [

e rrred b CL emenh

Heralere | dddpree | [ 3

To test the object lifetime features of .INET remoting, click on the Inc
button two times so that the value in the textbox is 2. The InitialLease Time set by
the server-side Count object is 5 seconds—if you wait more than 5 seconds and
then click on Inc again, you will notice that the counter has been reset. The
remoting framework has destroyed the original instance after 5 seconds and has
created a new object to handle the latest call.

The server-side lease property, RenewOnCallTime, has a value of 1 second.
This will cause 1 second to be added to the lease time on every call to the
remote object.You can test this by clicking on the Inc button quickly 20 times—
you will notice that after waiting 20 seconds, and clicking Inc again, that the
counter has not been reset.

Clicking Renew Lease will set the current lease time to 10 seconds. Again, by
clicking on Inc a couple of times, waiting about 8 seconds, and then clicking
Renew Lease, you will notice that the counter life is extended. Clicking Add
Sponsor has the effect of having a permanent Singlefon object on the server. The
sponsor will always set the lease time of the remote object to 15 seconds whenever
it is notified by the server that the lease has expired. After the client application is
closed, the server site lease will eventually attempt to notify the client of lease expi-
ration. In our example, 15 seconds will pass while the server lease waits for an
answer. When that answer doesn’t arrive, the remote object will be shut down.

As a final experiment, start up two instances of the CountClient.exe and run
them side-by-side. By clicking on the Inc and Dec buttons of each application,
you will see that they both share the same Singleton instance of the server-side

www.syngress.com



Remoting * Chapter 6 331

object. Also, if all client-side applications are shut down, the server-side compo-
nent will still maintain its state if a new application calls the component before its
lease expires.

Debugging...

Remoting Applications

Anyone that has started learning the .NET remoting framework will
know how easy it is to accidentally stop an application from working. A
wrong port number or a misspelled type name can take some time to
track down. In a perfect world, you would get an error message like
“You tried to communicate with server xyz on port 8050. There is
nothing listening on that port but 8051 has something that may interest
you.” To help avoid these problems, a base application might help—this
application would contain the three projects needed for a remoting app
(server, host, and client) plus any boilerplate code and configuration
files. This application could then serve as a starting point for all your
remoting applications.

Another method to help (or avoid) debugging your applications is
to start with the simplest case. A simple “test” method on each remote
object could be used to test the communication channels between the
tiers of your application. Such an approach is better than calling a com-
plex method on an object that may contain other object references and
serialized objects as parameters—there would just be too many places
where something could go wrong. This “test” method would also help
in the construction of a monitoring application that could ping your
remote objects every few minutes and e-mail an administrator if an
object does not respond.

Client Activated Objects

The server-activated objects that we have been using so far in this chapter have
been of two types, Singleton and SingleCall. The third type of remoting object is
the CAO or Client Activated Object, which allows a client application to create a
remote instance of the object for exclusive use, similar to the way that clients do
in the COM world. These objects can maintain state without you having to

www.syngress.com



332

Chapter 6 * Remoting

worry about another client connecting to the remoting object and changing its
state without your knowledge.

Making your objects ready for client activation is as easy as modifying the
configuration file on the server. For example, the CountClient’s configuration file
has the following section:

<servi ce>
<wel | known node="Si ngl et on" type="Count Server. Count, Count Server"
obj ect Uri =" Count Server" />

</ service>

To change this to a CAQO, the activated attribute is used with only the type
parameter instead of the wellknown attribute:

<service>
<activated type="Count Server. Count, Count Server">
</ activated>

</ service>

The client-side configuration file then requires a modified <client> specifica-
tion that uses the same activated attribute parameters as the server-side configura-
tion file:

<client url="http://1ocal host: 8085" >
<activated type="Count Server. Count, Count Server"/ >

</client>

When the client-side uses new to create a remote instance, the remote object
1s created immediately for the exclusive use of the client. Lifetime leasing and
sponsorship need to be used in the same way as in the previous example—even
though the object “belongs” to the client, it still has a lease that may expire,
causing the object to lose state.

Sending and Receiving Objects by Value

For more complex remoting applications, you may need to pass objects as parame-
ters to remote method calls or receive such objects in return. For example, instead
of passing a customer name and a customer ID in separate calls, it is more efticient
to create a Customer object containing the required information and send the
whole object to the server in one call. To achieve this, the remoting framework
needs to be able to serialize your class so that it can be sent over a channel.

www.syngress.com



Remoting * Chapter 6

The [serializable] attribute is used to specify a class as being serializable and
able to be remoted by value. Using the customer example, the class definition
would appear as follows:

[ Serializabl €]

cl ass Custoner

{
public Custoner()
{1
int 1D
String Naneg;
}
NoTE

It is important to consider the suitability of a class for remoting. If the
class can hold large amounts of data and must be sent over a slow con-
nection, application performance will suffer. Also, some types of data
(for example, a file path) would have no meaning on a remote server.

Sending and Receiving Objects by Reference

For overly large objects, passing them by reference to remote servers may be
more efficient. This is roughly equivalent to simplified remoting—the remoting
framework will create a proxy for your object on the server. As the server calls
methods on your object, the proxy will route the calls to the real object on the
client side. As you are controlling the creation of the object instance and handling
the calls explicitly, you don’t need to consider ports, channels, and object lifetime
issues (although if you would like the server to call-back to your client object,
keeping a reference to it would be a good idea to prevent it from being garbage
collected).

For a class to be sent by reference, it is necessary for the class to inherit from
MarshalByRefObject. The customer class would then appear as follows:

cl ass Custoner: Marshal ByRef Obj ect
{

333

www.syngress.com



334 Chapter 6 * Remoting

public Custoner()

{}
int 1D
String Naneg;

Creating Service-Based Applications

A major improvement of .NET components compared to legacy COM compo-
nents is the ability to use side-by-side deployment. Upgrading COM components
is an all-or-nothing affair, which can cause problems with client applications
relying on a specific version of a component. With the .NET Framework, you
can have different versions of the same component running at the same time. To
achieve this with your remoting applications, you need to give your server-side
assemblies what is known as a strong name.

@ Building a Versioned Remoting Application

A strong name 1s a unique identifier for an assembly, which i1s generated by com-
bining a text name, the version number, culture information (if it exists), a public
key, and a digital signature. This may sound complicated, but it is in fact quite
easy. We now create a remoting class and build the assembly with a strong name.
The following code is in the VersionServer directory on the CD:

1. Create a new Class Library application in Visual Studio named
VersionServer.

2. Right-click the default Class1.cs module in the Solution Explorer and
choose Delete.

3. Right-click the ListServer project in the Solution Explorer, select Add
| Add Class and name your new class Test.cs.

4. Add the following code to Test.cs. The getVersion method will be used to
return the current version string back to the client application:

using System
usi ng System W ndows. For 1rs;

usi ng System Reflecti on;

www.syngress.com



Remoting * Chapter 6

nanespace VersionServer

{
public class Test: Marshal ByRef Obj ect
{
public Test()
{
}
public String getVersion()
{
return Assenbly. Get Assenbl y(this. Get Type()).
Get Nane(). Version. ToString();
}
}
}

Now, use the strong name utility (sn.exe) to generate a new strong name
key. To do this, use the -k parameter with the output file name. From the
Visual Studio .NET Command Prompt type in sn =k mykey.snk. Copy
the new key file to the source code area of the VersionServer project.

Now, add the key to the assembly manifest. Open the AssemblyInfo.cs
file, which contains the assembly attributes, and find the AssemblyKeyFile
attribute. Add the path to the key file to the AssemblyKeyFile attribute as
shown here:

[assenbly: Assenbl yKeyFile("..\\..\\nykey. snk")]

Also, set the desired version number using the Assembly Version attribute
as shown here:

[ assenbly: Assenbl yVersion("1.0.0.99")]

After building the VersionServer.dll, you need to install the assembly into
the Global Assembly Cache (GAC).The GAC is located in the Assembly
directory under the Windows system directory. For example
CAWINNT\Assembly. To install the assembly, you can drag and drop
the DLL into the GAC or you can use the gacutil.exe utility.

335

www.syngress.com



336 Chapter 6 * Remoting

9. Now update the version to 2.0.0.0. Rebuild the project and repeat
Step 8. Update the version to 3.0.0.0 and repeat Step 8 again.You will
now have three versions of the TersionServer in the GAC, as shown in
Figure 6.9.

Figure 6.9 Installing Multiple Versions in the GAC

i Gdl Yew (e Jok  Bel W|

Creating the VersionHost Project

The VersionHost project is a simple console application that will host the ver-
sioned components. The code for the project is located in the VersionHost direc-
tory on the CD.This code is the same as that used for the earlier examples
except a slightly different configuration file is used (see Figure 6.10). In this con-
figuration file, the required version has been added to the wellknown attribute.
Even though you earlier created a version 3 of the assembly, you are able to
choose version 2 (or any other version) by modifying this configuration file.

Figure 6.10 Configuring a Versioned Remoting Application

<configur ati on>
<system runtinme.renoting>
<appl i cati on nane="Count Server" >
<channel s>
<channel type="System Runti me. Renoti ng
Channel s. Ht t p. Ht t pChannel , Syst em Runti ne. Renoti ng"
port ="8085"/>
</ channel s>
<servi ce>
<wel | known node="Si ngl eCal |'*
t ype="Ver si onSer ver . Test, Ver si onSer ver, Ver si on=2. 0. 0. 0"

obj ect Uri =" Versi onServer2" />

Continued
www.syngress.com




-

&

Remoting * Chapter 6

Figure 6.10 Continued

</ servi ce>
</ application>
<debug | oadTypes="true" />
</ systemrunti me.renoting>

</ configur ati on>

This version setting will be used whenever a server activated VersionServer
object is needed. This means that clients requesting a server activated object from
a URI are not able to request a specific version—versioning is determined by the
server. To enable client requests for different versions, you need to use a different
URI for each version.You can do this by adding extra wellknown attributes to the
configuration file, as shown in Figure 6.11.

Figure 6.11 Including Multiple Versions in a Configuration File

<wel | known node="Si ngl eCal | "
t ype="Ver si onSer ver . Test, Ver si onSer ver, Ver si on=2. 0. 0. 0"
obj ect Uri ="Versi onServer2" />

<wel | known node="Si ngl eCal | "
t ype="Ver si onSer ver . Test, Ver si onSer ver, Ver si on=3. 0. 0. 0"

obj ect Uri ="Versi onServer 3" />

NoTE

If the version is not specified in the server-side configuration file, the
latest version available will always be loaded.

Creating the VersionClient Project

The VersionClient project will be used to connect to a specific version of
VersionServer. This will be done by specifying the corresponding URI in the
client-side configuration file. Follow the next steps to create the project (or access
the code from the VersionClient directory on the CD):

337

www.syngress.com



338 Chapter 6 * Remoting

Create a new Windows Application called VersionClient.
2. Add a button to the form called btnGetVersion.

Add a click event handler to the button and add the following code to
the form.The button will retrieve the version information from the
remote object and display it within a message box:

usi ng System

usi ng System Drawi ng;

usi ng System Conponent Model ;
usi ng System W ndows. For ns;

using System Runti me. Renoti ng;

nanespace Versiondient

{

public class Fornl : System W ndows. Fornms. Form

{

private System W ndows. For ms. Button bt nGet Ver si on;
private System Conponent Model . Cont ai ner conponents = null;

private VersionServer.Test obj Renote;

public Forml()

{
InitializeConmponent();
Renot i ngConfigur ati on. Configur e(
@..\..\VersionCient.exe.config");
obj Renbte = new VersionServer. Test();
}

private void btnGetVersion_Cick(object sender,

System Event Args e)

MessageBox. Show( obj Renot e. get Version());

www.syngress.com



Remoting * Chapter 6

4. Create the client-side configuration file. The VersionServer2 URI is used
to connect to version 2 of the remote component:

<configur ati on>
<system runtine.renoting>
<application name="VersionCient">
<client>
<wel | known type="VersionServer. Test, VersionServer"
url ="http://1ocal host: 8085/ Ver si onServer 2"/ >
</client>
</ application>
</systemrunti me.renoting>

</ configur ati on>

5. Start the VersionHost.exe console application and then build and run the
VersionClient project. Clicking the button will display the version of the
remote object—see Figure 6.12.

Figure 6.12 Including Multiple Versions in a Configuration File
o T I 0 5

Ll L

=3

Testing Side-By-Side Execution of Remote Objects

As a final experiment, we get two versions of the remote object running side by
side. To do this, keep the VersionClient application running. Then open up the
client-side configuration file and change the URI from lersionServer2 to
ersionServer3—this will not impact the running application because the configu-
ration file is read only on startup. Now find the VersionClient.exe executable in
Windows Explorer and run it. After clicking the button, you’ll see that version 3
of the remote object 1s now being used. Click the button of the first application
instance and version 2 is still available! Both application instances can run inde-
pendently on the client, while multiple versions of the server-side objects can
handle client requests at the same time.

339

www.syngress.com



340

Chapter 6 * Remoting

Summary

Remoting 1s used to allow .NET applications to communicate with each other
across TCP or HTTP protocols. This communication takes place across a channel
which uses SOAP to format message calls. These SOAP messages can either be
XML formatted or sent as a binary stream. Although the HTTP channel is suit-
able for applications distributed on the Internet, the TCP channel is faster and is
often used on corporate networks.

Server-side objects must be hosted in a hosting application to expose them to
requests from client applications. A hosting application may be a Console,
Windows Service, or Windows Forms application. When the hosting application
starts, it must register a channel to listen for client requests by calling
ChannelServices. RegisterChannel. The host will then register remoting configuration
information with the remoting framework either in code (using the
RemotingConfiguration. RegisterWellKnownService Type method) or by using a config-
uration file (using the RemotingConfiguration. Configure method).

Remoting objects have three activation models—SingleCall, Singleton, and
Client Activated Objects (CAQO). SingleCall objects are stateless, whereas Singleton
objects are stateful and able to be shared between client applications. CAO
objects are created by a client application for exclusive use and they preserve state
between remote method calls.

For a client application to be compiled in Visual Studio.NET, the remote
server classes metadata is needed. The easiest method is to reference to the remote
object’s DLL in the client project. The other method is to use the soapsuds.exe
utility to generate a proxy class from the remote object’s URI.

For a client application to use remoting, a channel must be registered and the
remoting framework configured in a similar manner to that used in the hosting
application. If a configuration file is not used on the client and a proxy class is
not available (from the soapsuds utility), the Activator. GetObject method must be
used to create a reference to the remote object.

The lifetime of a remoting object is controlled by a lease. Objects have a
default lease time after which they can be garbage collected. An object may
change its default lease time on startup by overriding the InitializeLifetimeService
method. Clients may also renew a lease to keep a remote object active. When a
lease expires, the remoting framework will notify any registered sponsors so that a
sponsor may renew the lease if required.

An assembly in which remoting classes reside may be versioned by using a
strong name. A strong name allows the assembly to be placed in the Global

WWW.syngress.com




Remoting * Chapter 6

Assembly Cache (GAC) so that it may be located by the remoting framework.
The server-side configuration file is used to expose a specific version of a com-
ponent for remoting clients to access. It is possible for multiple versions of
remoting objects to run side-by-side.

Solution Fast Track

Introducing Remoting

M Remoting allows cross-application communication, whether they are
located on the same PC or across the Internet.

M Channels are used as the communications mechanism—HTTP and TCP
channels may be used.

M Server-side objects need a hosting application to handle incoming
requests. A hosting application may be in the form of a console
application, Windows Service, forms-based app, IIS, or COM+ service.

Creating a Simple Remoting Client Server

M All remoting objects must inherit from MarshalByRefObject.

M Hosting applications use the RegisterWellKnownService Type method of the
RemotingConfiguration class to register objects for remoting.

M Singletons objects only have a single instance and handle multiple client
requests.

M SingleCall objects do not maintain state. They handle a single request and
are then recycled by the remoting framework.

M Remoting applications that act as servers must listen on a port as
specified by the developer.

M External XML configuration files may also be used to configure
remoting on both the server and the client.

M Hosting remote objects in a Windows Service application eases the
administration of server-side remoting objects.

341




342 Chapter 6 * Remoting

Creating an Intranet Application

M A lease controls object lifetime—the lease specifies the time-to-expire
of the object.

M The default values of the lease may be specified by the remote object

on startup.

i M A client application may control the lease to keep a remote object

* active.
™ M A sponsor can be attached to a lease. When the lease has expired, the
sponsor will be notified so that the lease may be extended if required.
Creating Service-Based Applications
M Versioned assemblies require a strong name so that they can be uniquely
. identified by the .NET Framework.
&

M To generate a strong name, a strong name key is needed. The sn.exe
utility is used to create key files.

M Versioned assemblies should be placed in the Global Assembly Cache
(GAC)—the .NET Framework will search the GAC for strong-named
(shared) assemblies.

M For server activated objects, the server configuration file is used to map a
URI to the version of an assembly.

WWW.syngress.com




Remoting * Chapter 6

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: If I have a Singleton object to handle multiple clients and it only listens on a
single port, doesn’t this create a performance bottleneck?

A: Don’t worry. Remoting objects are multithreaded so that one request does
not block another.

Q: With .NET, it seems much easier to maintain state on the server. Will this
change the way applications are developed?

A: The stateless model of development is often the most scalable and robust
architecture. The lessons learned with Windows DINA multitier development
still apply today.

Q: It is also easier now to have the server perform callbacks to the client side, in
what situations can this be used?

A: Callbacks are easier with .NETas compared to VB in the past. They are also
very interesting to program, but in a business setting, you should use them only
when you have no other choice. For example,a, callback to notify a user of a
certain situation may be better handled with a generated e-mail instead. You
could develop and debug the e-mail code a lot faster, and the end-user could
then use her e-mail program to assign tasks, forward the e-mail, and so on.

Q: Where can I find out more about remoting?

A: The best newsgroup for this is the
microsoft.public.dotnet.framework.remoting group. Also, the MSDN area on
the Microsoft site often publishes articles on aspects of .NET remoting.

343

WWW.syngress.com







Chapter 7

Message Queuing

Using MSMQ

Solutions in this chapter:

| B
i

Introducing MSMQ

Creating a Simple Application

Creating a Complex Application

Creating an Asynchronous Application

M Summary

M Solutions Fast Track

M Frequently Asked Questions

345



346

Chapter 7 * Message Queuing Using MSMQ

Introduction

The connectivity of local area networks (LANs) and the Internet has made the
concept of distributed applications a reality. Applications now routinely utilize
remote machines to perform tasks and provide services. Unfortunately, a dis-
tributed application has many more points of failure than a nondistributed appli-
cation—servers may be offline, the network may be overloaded, or the scheduled
maintenance or upgrading of servers can also cause problems for distributed
applications. What is needed is for an application to be able to continue running
when distributed resources are unavailable—which is what the messaging infra-
structure of Microsoft Message Queue (MSMQ) provides.

With MSMQ handling the communication between machines in a dis-
tributed application, it has a great deal of responsibility. All communication (mes-
sages) must have guaranteed delivery, security needs must be met, messages must
be logged, and delivery confirmations must be sent, too. The MSMQ product
provides all of these services and more—in fact, by using MSMQ technology, you
can make your applications more robust and scalable. For a small increase in
application complexity, you gain many rewards.

The .NET Framework provides added functionality during the development
of .NET applications. Objects can be serialized to binary or XML and then sent
as a message. By using .NET serialization you send any dataset, image, or file into
a message with very little coding.

In this chapter, we look at how MSMQ uses queues to store messages that
provide a communications mechanism between applications. You’ll see the
options that are available for the usage of queues and the variety of ways in
which messages can be created, sent, and received. We develop a simple MSMQ
example application, and we also discuss debugging and deployment issues. We
then move on to the more advanced areas of MSMQ and develop some addi-
tional example applications to show how MSMQ can be of use in your own
applications.

Introducing MSMQ

MSMQ provides solutions to a range of problem scenarios that appear during
application development. A common example is in client-server architecture
where a direct connection to the server is needed to handle information updates.
In this situation, any disruption to the server will cause all client applications to
fail, possibly causing idle staft and lost productivity. Such a disruption may be

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

caused by a hardware failure, power outage, or a server upgrade. The solution is to
use message queuing to “uncouple” the client and the server by providing a
storage point for communication between them. Now;, if a connection to the
server cannot be made, data entered in client application can be stored in a
client-side message queue. Once a connection is reestablished, the messages are
then automatically forwarded to the destination queue on a remote server. An
application on the server will then read the messages from the message queue and
perform the necessary database updates.

A similar situation to the client/server scenario is when it becomes quite
common for client applications to be disconnected from the network. Sales staff
often use notebook computers to run their sales applications while they are on
the road. Some may type in information directly into the notebook, whereas
others may wait until they arrive back at the office. Instead of writing code to
handle the online and offline situations (and possibly an “upload to server” func-
tion), using message queuing to handle both cases is more efficient. In online
mode, all messages will be sent directly to the server queue. In offline mode, the
messages will be temporarily stored on the client, ready for forwarding to the
server queue when the network connection is made.

MSMQ also provides the plumbing you need for true distributed processing.
A good example of this is in the area of mathematical computation. If the work
required to find a solution to a mathematical problem can be divided into pieces
then such pieces could be placed on a queue. Each piece would constitute a mes-
sage containing all the information required for an idle computer on a network
to get started on the problem. These computers could take a piece of the mathe-
matical puzzle, calculate their share of the solution, and send the result back to
the queue. A central controlling application could then correlate the response
messages with the request messages and combine these results into the total solu-
tion. You may also need MSMQ when you hear the following during conversa-
tions between IT personnel:

»  “Not again!, This Web server always takes at least three minutes to
respond on Monday morning, and my app slows to a crawl.”

»  “The application locks up when they back up the server every night.
What can we do?”

» “How can we trace the communication between these applications?”

= “Last time our server was offline, we had 50 data entry operators idle for
an hour. How can we avoid this in the future?”

347

www.syngress.com



348

Chapter 7 * Message Queuing Using MSMQ

A side eftect of using MSMQ in your applications is that you can now easily
trace the messages sent between your application tiers. This tracing can help with
auditing and debugging your application. You can also authorize new applications
to hook onto your messaging infrastructure to reuse the services that your mes-
sage queuing applications provide.

The next time you participate in the planning phase of a software project,
keep these scenarios in mind, and you may find areas where MSMQ can really
save development time and increase application stability.

MSMQ Architecture

In the world of MSMQ, you will be dealing with two main objects—queues and
messages. A queue is a storage area for messages on a MSMQ server. A queue
may be public or private. Private queues can only be used on a single machine,
whereas public queues are replicated around the network for all machines to
access. A message can be thought of as an envelope containing data plus informa-
tion that describes the type of data being sent, its priority, security needs,
acknowledgement, and timing information. Applications may send and receive
messages from any queue that they have access to.

Computers running client applications must have MSMQQ installed to be able
to send messages. Within the MSMQ architecture are two types of clients:

» Dependent clients Dependent clients must have direct access to a
Message Queuing server. Client applications will then rely on the server
to carry out all message queuing functions. When many dependent
clients are connected to a Message Queuing server, a performance
penalty can occur. Also, you cannot use the “store and forward” features
of MSMQ with dependent clients—client apps will simply fail when
disconnected from the network. For this and other reasons, independent
clients are the recommended choice where possible.

» Independent clients Independent clients do not need continuous
access to a Message Queuing server to send messages. Any messages that
are sent while disconnected from the network are stored locally in an
outgoing queue. When a connection is reestablished, the messages in the
outgoing queue will be sent to the destination queue.

www.syngress.com



=

Message Queuing Using MSMQ ¢ Chapter 7 349

Installing MSMQ

To get started using MSMQ), you will need a computer running Windows 2000.
Simply choose Add/Remove Programs from the Control Panel, select Add/
Remove Windows Components, and select Message Queuing Services
from the list of components, as shown in Figure 7.1.You may require your
Windows 2000 installation CD to complete the install.

Figure 7.1 Selecting Message Queuing Services for Installation

g v e - yporad, el i chorbbos: @ gl s g i o
o oy e reprrwerd ol e roalieed e o bl ekt o ik
Lihah

-
L1

= ks
o By bk gt g e

I —

Using Visual Studio to Manage Queues

Visual Studio.NET provides the Server Explorer to handle common server
administration tasks, and you can use it to manage your MSMQ applications. If
the Server Explorer is not visible, just use Ctrl+Alt+S to display it—you will see
under the Servers node a list of computers that are available (see Figure 7.2).Your
own computer will be listed here, but you can connect to other servers by using
the Connect To Server toolbar button. Under a computer node is a list of
application services including Message Queues, which allows you to create/delete
queues and set various queue properties.

Creating a Simple Application

We now create a simple application that will send a string message to a queue
and receive it back. This application will be built upon later to demonstrate other
aspects of Message Queue applications. The code for this application is located on
the CD inside the MSMQapp1 project.

www.syngress.com



350 Chapter 7 * Message Queuing Using MSMQ

Figure 7.2 The Server Explorer Showing Available Queues

T - ||
IEY
- I T RPE
7 Sk
[
_—
P Ot
Forvelog
S ey da
1 P L
I © el
I © R |
i - -
e -
=
= A byl
LR e |
* ] Prdits e
¥ L e G
[ e
v Wy e
T

NoTE

If you are using the example code from the CD, you will need to modify
the path to your message queue. To do this, click on the message queue
component while the form is in design view. In the Property window,
modify the path to a queue on your local Windows 2000 PC or server.

1. Create a new Windows Application type project in Visual Studio and
name the project MSMQappl.

2. From within the Server Explorer, right-click Private Queues, select
Create Queue, and enter the name Alpha for the queue.

3. While Form1 is in design mode, click and drag the Alpha queue from
the Server Explorer to your form’s design surface. This will create a
queue component for your application to use.

4. Add two Buttons to the form called btnSend and btnReceive.

Add a private variable of type inf to the class declaration of Form1 as
follows:

public class Fornl : System W ndows. Forms. Form

{

private System W ndows. Fornms. Button btnSend;

private System W ndows. Forms. Button btnRecei ve;

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 351

private System Messagi ng. MessageQueue MyMY
private System Conponent Model . | Cont ai ner conponents;

private int iCount = 0;

Add the following code to the click events of the two buttons. A quick
method of adding event handlers is to view the properties of a button,
switch to event view by clicking the Events toolbar button at the top of
the property window, and then double-click the click event from the
event listing. This will create the event handler method for you and
attach the new event handler to the button. It will also place the cursor
at the correct location in the code for you to start coding the event han-
dler. For those of you in more of a hurry, you can simply double-click
the button on the form.

private void btnSend_Cick(object sender, System EventArgs e)
{

i Count ++;
try
{
M/MQ Send( " nessage contents " + i Count.ToString());
}
cat ch( Exception ex)
{
MessageBox. Show(t hi s, ex. Message) ;
}

private void btnReceive_Cick(object sender, System EventArgs e)

{

Syst em Messagi ng. Message m
String str;

try

www.syngress.com



352

Chapter 7 * Message Queuing Using MSMQ

{
m = MyMQ Recei ve(new Ti neSpan(0, 0, 3));
str = (String)m Body;

}

catch

{
str = "No nmessages were receieved";

}

MessageBox. Show(t hi s, str);

7. Build and run the MSMQuapp1 application.

You can now click Send to send some messages to the Alpha message queue.
Now take a look at the Server Explorer and navigate to the Alpha node to see
the messages that you have sent. If you are running the application from within
Visual Studio, you will need to select Debug | Break All to pause execution so
that you can use the Server Explorer. Notice that as you click on a message in
Server Explorer, the Property window displays a large amount of information
regarding the specific message.

To receive messages, click Receive. A message box will display the contents
of the message received, as shown in Figure 7.3. Notice that the messages are
received in the same order that they were sent—this cannot be relied upon.
Messages that are sent with a higher priority can jump ahead of other messages
on the queue while other applications may remove messages from the queue
without your knowledge. A queue should be thought of as a “bag” of messages to
emphasize that we cannot make assumptions as to the order of messages we will
receive.

Figure 7.3 A Simple Messaging Application
T i |
trd | [_rew ]

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

As a further experiment, try opening up two or more instances of the
MSMQapp1 application by using Explorer to find and execute MSMQapp1.exe
multiple times. Use one application instance to send messages and another
instance to receive them.You can see that each application is completely inde-
pendent and that they all share the same message queue.

Understanding the Messaging Code

The MSMAQ classes are contained within the System.Messaging namespace. Of the
more than 20 classes contained within this namespace, the most important is
MessageQueue. In Step 3 in the previous section, when the Alpha queue was
dragged from Server Explorer to the form’s design surface, four lines of code were
automatically generated that will reference the System.Messaging namespace, declare
and create a MessageQueue object, and set the Path property to the location of the
Alpha queue. The format of the Path property is MachineName\\QueueName for
public queues and MachineName\\$Private\\QueueName for private queues.
Because the amount of generated code is quite small, manually adding similar code
to your applications is quite easy.

To send a message to a queue, you use the Send method of the MessageQueue
object. For the purposes of our example, a simple string was used as a message,
but we will see later how more complex messages may be sent.

To receive a message from a queue, use the Receive method of the MessageQueue
object. This method returns an object of type Message to the caller. The Message
object contains a large amount of information in regard to the message itself—if
you just want to know the content of the message, use the Body property. The Body
is of type object and therefore must be cast to the correct type of the receiving vari-
able, which in the example is type (String). The Receive method accepts a TimeSpan
parameter, which specifies how long we want to wait for the arrival of a message. If
a message exists on the queue, Receive will return quickly, but if no messages exist,
the application’s thread of execution will be blocked while waiting for the next
message. For this reason, keeping the wait time short is a good idea. An asyn-
chronous (nonblocking) method of receiving messages is described later in this
chapter in the section “Creating an Asynchronous Application.”

Sending Messages

Within the System.Messaging namespace 1is the Message class, which can be consid-
ered to be the “envelope” in which messages are sent. When you call the Send
method of a queue and pass in an object as a parameter, the .NET Framework

353

www.syngress.com



354

Chapter 7 * Message Queuing Using MSMQ

creates a new message and sets the Body property of the message to the object.
For example, the following code fragment

MyMQ Send("content");

1s equivalent to

Message m = new Message();
m Body = "Content";
M/MQ Send(m ;

Be aware, though, that in creating your own Message object that you must set
the other properties of the Message object to suit your needs. When you send an
object that is not a Message, the Message properties are set to those defined in the
DefaultProperties ToSend property of the queue.

You can test this method of sending messages by adding a button to Form1
called btnSend2 and adding the following code to the click event handler of the
button:

private void btnSend2_d i ck(object sender, System EventArgs e)

{
Syst em Messagi ng. Message m = new Syst em Messagi ng. Message() ;

m Body = "Custom Message";
M/MQ Send(m ;

NoTE

The code for this change is in the Form2.cs file on the CD. To update
your project as you read the chapter, from within Visual Studio, right-
click the Form1.cs file, choose Exclude From Project, then right-click the
solution, choose Add | Add Existing Item, and select the Form2.cs file.

Then add code to set the queue’s default properties for sending messages
directly after the InitializeComponent call in the form’s constructor:

public Forml()
{

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

InitializeConmponent();

MyMQ. Def aul t Properti esToSend. Label = "Default Label";

MyMQ. Def aul t Properti esToSend. Priority =
MessagePriority. Hi ghest ;

Now build and run the application. Clicking on the first Send button will
now use the DefaultProperties for the queue because we are only passing a string
to the Send method. After clicking this button, a few times you can use the
Server Explorer to see the labels of the messages have been set to “Default
Label”. Using the second Send button will use the Message object that does not
have a label set. Notice that we are also making all default messages to be of
highest priority. This will cause the messages containing the words “message con-
tents” to always be received before the custom messages that contain the text
“Custom Message”.

Message Formats

All data that is sent to a remote server during Message Queue processing must be
serialized into a stream. The method of serializing an object into a stream is called
formatting. The Message class handles streaming automatically for you by applying a
formatter to whatever object you set as the Body property. The output of the for-
matter appears in the BodyStream property of the message:

» XMLMessageFormatter Streams objects and value types to human-
readable XML.

» BinaryMessageFormatter Streams objects to a binary stream.

» ActiveXMessageFormatter Persists basic data types and enables a

message queuing application to work together with previous versions of
MSMQ.

You can also write a stream directly to the BodyStream property of the
Message object, and we use this method later to send images to a queue.

To examine the contents of the BodyStream property, you can use the Server
Explorer again to display the properties of a message. Click on the BodyStream
property from within the Properties window and you will see a ““. . .” button
appear within the property value cell. Clicking on the button will display the

Byte Array Property Editor, as shown in Figure 7.4.

355

www.syngress.com



356 Chapter 7 * Message Queuing Using MSMQ

Figure 7.4 The BodyStream Contents—The Result of Streaming a
Message to XML

BUSRYSH S Or TH @D AC D8 M JE T3 2 AR P WAL 3N 30 M [Erp———
BN  m 30013 3r 3D B OB T3 M TR R W 47 K A e R
BOMNES 4m TH TI AL 4T E1 5343 4P L TH @8 4 T4 75 33 s i
B0 = xoar ¢ % gF4E 47 O = AL L

Lr}
Foegdap blovin
Cen egmm | Cap s i

To change the formatter that is used, you can use the property window of the
MessageQueue component and select the formatter from the drop-down list.
From within the code, you can do the same by setting a reference to the
System. Runtime. Serialization. Formatters namespace and attaching a new formatter
to the queue as follows:

MMQ Formatter = new Bi naryMessageFor matter (Fornatter Assenbl yStyle. Ful |,
Formatt er TypeStyl e. TypesAl ways) ;

The FormatterAssemblyStyle and Formatter TypeStyle parameters determine how
assembly and type names are sent to the stream.These choices handle all situa-
tions by using the most verbose method of describing the types—if a more com-
pact stream 1s needed, you may want to experiment with the different options
available.

Sending and Receiving
Messages with Complex Objects

Formatters provide a means of streaming not only single objects but also complex

objects within a message. To test the sending of complex objects in a message, we
now add two new classes to the example application, have one class contain a
collection of the other class, instantiate the objects, and then pass them to a mes-
sage queue. The updated code is within the Form3.cs file on the CD.

First, add the following assembly reference to the top of the form’s code:

using System Xml . Serialization;

Now, add two new classes to the application:

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

[ Xm I ncl ude(typeof (Student))]

public class Teacher

{
public String nane;
public System Col |l ections. ArrayLi st students;
public int salary;
publ i c Teacher()
{
students = new System Col | ections. ArrayList();
}
}

public class Student
{
public String nane;

public int mnuteslnd ass;

Don’t forget the [Xmllnclude] attribute! This is needed when you send an
object of type Teacher to the XML formatter because the formatter will not rec-
ognize the Student objects within the ArrayList. This attribute allows the formatter
to serialize the Student objects found nested within a Teacher object. If this
attribute is not added, you will receive a runtime exception with the following
message:

There was an error generating the XM. docunment. The type

MSMQappl. Student was not expected. Use the Xmllnclude or Soaplncl ude

attribute to specify types that are not known statically.

Now add a new button to the form called btnTeacher and add the following
code to the button’s click event:

private void btnTeacher_Cick(object sender, System EventArgs e)
{

Student s1 = new Student();

Student s2 = new Student();

Student s3 = new Student();

357

www.syngress.com



358 Chapter 7 * Message Queuing Using MSMQ

Teacher t = new Teacher();
sl.nane = "Jason";
s2.nane = "Marlo";
s3. nane = "Jacky";

sl. m nutesl nCl ass = 90;
s2. m nuteslnC ass = 5;

s3. m nuteslnd ass = 100;

t.name = "Toni;
t.salary = 50000;
t.students. Add(s1);
t.students. Add(s2);
t.students. Add(s3);

Syst em Messagi ng. Message m = new System Messagi ng. Message() ;

m Body = t;
try
{
MM Send(m ;
}
catch (Exception ex)
{
MessageBox. Show( ex. Message + " " + ex.|nner Excepti on. Message);
}

After building and running the application, click on the new button to send a
Teacher object with its contained Students to a message queue. By using the Byte
Array Property Editor to display the BodyStream property of the new message,
you can see that the objects have been successtully streamed to human-readable
XML, as shown in Figure 7.5.

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 359

Figure 7.5 A Complex Object Streamed with the XML Formatter

<?xm version="1.0"?>
<Teacher xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<nanme>Tonk/ nane>
<student s>
<(bj ect xsi:type="Student">
<nanme>Jason</ nanme>
<m nut esl nCl ass>90</ m nut esl nCl ass>
</ Obj ect >
<bj ect xsi:type="Student">
<nanme>Mar | o</ nanme>
<m nut esl nC ass>5</ m nut esl nCl ass>
</ vj ect >
<bj ect xsi:type="Student">
<name>Jacky</ nanme>
<m nut esl nC ass>100</ nmi nut esl nCl ass>
</ Cbj ect >
</ st udent s>
<sal ary>50000</ sal ary>

</ Teacher >

Retrieving a complex object message from a queue is done using the familiar
Receive method of the Message Queue class. Once the message is received, you will
need to use a formatter to obtain the original object from the BodyStream. This is
done by creating a formatter and specifying the type of object that needs to be
obtained. The Body property of the message can then be cast to the correct type.
To try this, append the following code to the end of the code in the
btnTeacher_Click event (this code is in Form4.cs on the CD):

Syst em Messagi ng. Message n2;

Teacher t2;

try
{

www.syngress.com



360 Chapter 7 * Message Queuing Using MSMQ

m = MyMQ Receive(new Ti neSpan(0, 0, 3));
n2. Formatter = new Xml MessageFor matter ( new

Type[]{typeof (Teacher), typeof (Student)});

t2 = (Teacher) n2. Body;

MessageBox. Show( " Message received. " + t2.nane + " has " +

t2.students. Count + " students.");

}
catch (Exception ex)
{
MessageBox. Show( ex. Message) ;
}

After building and running the application, click on the same button used
earlier to send the Teacher object to the message queue. The preceding code will
then immediately receive the message, define an XML formatter, and extract the
Teacher object from the message. A dialog saying “Message received. Tom has 3
students.” will then be displayed.

§ Storing Files within Messages
. Y The BodyStream property of the Message class contains the serialized form of the
message contents and usually does not need to be directly accessed by the devel-
oper (although it can be handy during debugging). One situation in which we
do need to use the BodyStream property is when we already have information in
a stream and wish to send it directly to a message queue.

Streams are usually created during memory and file I/O operations—we use
an image file to create a stream, pass the stream to a Message object, and then send
it to a queue. This message will then be received and a Bitmap object created
from the stream and displayed inside a PictureBox control.

The code for this example is in Form5.cs on the CD. First, add two new but-
tons to the simple messaging application called btnSendImage and btnReceivelmage.
Add a picture box control named picBox1 and also an OpenFileDialog component
to the form. Then add a reference to the System.IO namespace as follows:

using System |G

Now add the following code to the click events of the two new buttons:

www.syngress.com



private void btnSendl mage_C i ck(object sender,

Message Queuing Using MSMQ ¢ Chapter 7

System Event Args e)

= new System Messagi ng. Message();

files (.bnp,.jpg,.gif)]

== Di al ogResul t. OK)

{
Stream i mageStream
Syst em Messagi ng. Message ml mage
openFil eDial ogl. Filter = "image
*.brmp;*.jpg;*.gif;*. exe" ;
openFileDialogl.Filterlndex = 1 ;
i f (openFi | eDi al ogl. Showbi al og()
{
i f((imgeStream = openFil eDi al ogl. OpenFile())!= null)
{
m mage. Body St ream = i mageSt r eam
try
{
MM Send(nl nage) ;
}
catch (Exception ex)
{
MessageBox. Show( ex. Message) ;
}
final I'y
{
i mageStream d ose();
}
}
}
}

private void btnReceivel mage_C i ck(object

{
Bi t map bnp;

sender, System EventArgs e)

361

" www.syngress.com



362

Chapter 7 * Message Queuing Using MSMQ

Stream i mageStream

Syst em Messagi ng. Message m nage = new System Messagi ng. Message() ;

try
{
m mage = MYMQ Recei ve(new Ti neSpan(0, 0, 3));
}
catch
{
MessageBox. Show("No messages were received");
}
try
{
i mageSt ream = mnl nage. BodyStream
bmp = new Bi t map(i mageStrean ;
pi cBox1. | mage = bnp;
}
cat ch( Exception ex)
{
MessageBox. Show( ex. Message) ;
}

In the btnSendImage_Click event, the code obtains a file path from the user
and a stream 1s opened from the file and passed to the BodyStream property of the
message. The message is then sent in the usual manner using the Send method.

In the btnReceivelmage_Click event, a message is received, and a stream is
obtained from the BodyStream property. A new bitmap is then created from the
stream, and this bitmap is passed to a picture box object for display. The three
lines of code to achieve this can be reduced to the following one line of code:

pi cBox1. | mage = new Bitmap(m mage. BodyStrean);
After building and running the application, click on the btnSendImage button

and select a file from the dialog. Now click on the btnReceivelmage button, and
the image will be displayed as shown in Figure 7.6.

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

Figure 7.6 Sending and Receiving an Image from a Queue

bl

Gy e s M I

Rk ke I

G g I Feacas ke |

Debugging...

MSMQ Applications

During the development of MSMQ applications, many objects must act
in unison to achieve the desired results. Problems can occur in the fol-
lowing areas:

» The DefaultPropertiesToSend property collection of a mes-
sage queue can cause unexpected behavior during the
sending of a primitive data type—make sure to check the set-
tings of the default properties.

= The wrong formatter is used when sending a complex object.

= A complex object does not contain the required attributes to
allow the serialization of the object’s contents.

Developing the message queuing application using simple string
messages can often be useful. Once the application has been debugged,
you can use more complex messages and formatters. Remember that
while debugging, you can always pause the execution of the code and
examine the contents of the messages with the Server Explorer window.

Another useful debugging tool is the Performance Viewer located
in the Administrative Tools area of the Control Panel. This tool displays
performance information for a range of services and applications, one of
them being MSMQ. To view the MSMQ performance statistics, click on
the + icon and select MSMQ Queue from the Performance Object list.
Choose one of the counters that displays either bytes or messages and
then click Add. You will now see the activity of MSMQ in real time and
can check that your queue is behaving as expected.

363

www.syngress.com



364 Chapter 7 * Message Queuing Using MSMQ

Setting Queue Options

% So far we have mostly accepted the default properties of a queue that the .NET
Framework has provided. To improve the robustness of a message queuing appli-
cation, you need to modify some of these properties. To do so, click on Message
Queue component while your form is in design mode. The Property window
will display the DefaultProperties ToSend property with a + icon so that you can
expand it. Some important properties to modify are the following:

NoTEe

AcknowledgeType Use this property to request acknowledgement on
the success or failure of messages to reach a destination queue.
Acknowledgements are sent as messages to the Administration queue
defined by the developer.

AdministrationQueue This queue will receive acknowledgement
messages that are generated on success or failure conditions as defined in
the AcknowledgeType property.

Recoverable Setting this property to true will guarantee the delivery
of a message even if a computer or network failure occurs. To achieve
this, the message and its state are written to disk at all times in order to
recover from such failures. Setting this option does degrade the
throughput of the application.

TimeToBeReceived Sets the maximum amount of time for a message
to wait on the destination queue. If the UseDeadLetterQueue property is
set to true, the expired message will be sent to the dead-letter queue.

TimeToReachQueue Specifies the maximum amount of time for a
message to arrive at the destination queue. If the UseDeadLetterQueune
property is set to true, the expired message will be sent to the dead-
letter queue.

You can also specify the properties listed in this section on a per-message
basis by setting the equivalent properties on a Message object.

We now use a couple of these properties to send expired messages to the
dead-letter queue (the code for this is in the Form6.cs file on the CD):

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 365

Open the form of the simple messaging application in design mode.

Click on the message queue component under the form and bring up
the Property window.

>

Expand the DefaultProperties property by clicking on the + icon.

3

4. Set the TimeToBeReceived property to 5 seconds.
5. Set the UseDeadLetterQueue property to true.

6

Build and start the project.

Now click Send (the very first button that was added to the project).You
now have five seconds to click the Receive button to obtain the message before
it expires and is sent to the dead-letter queue. Try this a few times and make sure
to let a few messages expire! You can now view the dead-letter queue by using
the Server Explorer, as shown in Figure 7.7.

Figure 7.7 Examining the Dead-Letter Queue

@ Creating a Complex Application

We now create a more complex message queuing application. This application is
composed of a form that allows the user to draw pictures using line segments. A
Drawing object that contains a collection of Line objects will hold the drawing’s
information. The Drawing object will then be streamed to XML and sent to a
queue. Another application will “listen” in on the queue and receive any new
drawings that appear on the queue and then display them.

The application has three separate projects (the full source code is available on

the CD):

www.syngress.com



366

Chapter 7 * Message Queuing Using MSMQ

» MSMQGraphics A class library application that contains the Drawing

and Line classes. This DLL is used by the other two projects.

» DrawingSender A Windows application that allows the user to draw

on the form and send the drawing as a message.

» DrawingReceiver A Windows application that listens for new draw-

ings on the queue.

Creating the MSMQGraphics Drawing Library

Figure 7.8 shows the code listing of the MSMQGtaphics class library. This library
contains all the functionality needed to draw a collection of line segments on a

graphics surface.

Figure 7.8 The Drawing Library Project

usi ng System

usi ng System Drawi ng;

using System Xml . Serialization;

usi ng System Col | ecti ons;

nanespace MSMQG aphi cs

{

[ Xm I ncl ude(typeof (Line))]

public class Draw ng

{
public ArrayList |ines;

publ i c Draw ng()
{

lines = new ArraylList();

public void clear()

{

lines.dear();

www.syngress.com

Continued



Message Queuing Using MSMQ ¢ Chapter 7 367

Figure 7.8 Continued

public void add(Line I)
{

l'ines. Add(I);

public void draw( G aphics Q)

{
foreach (Line | in |ines)
{
I draw(g);
}
}

public class Line
{
public int x1;
public int y1,
public int x2;
public int y2;
public int Wn32Col or;

public Line()
{
}

public Line(int Wn32Color,int x1,int yl,int x2,int y2)

this.x1 = x1;
this.yl = yl1;
this.x2 = x2;
this.y2 = y2;
this. Wn32Col or = W n32Col or;

Continued

www.syngress.com



368 Chapter 7 * Message Queuing Using MSMQ

Figure 7.8 Continued
}

public void draw( G aphics Q)

{
g. DrawLi ne( newPen( Col or Transl at or . Fr omiW n32( W n32Col or)),

x1,y1,x2,y2);

This code should be straightforward for those that have spent some time with
C# class definitions and collections, but some points must be noted. First, the
XmlInclude attribute is necessary so that the XML formatter can recognize the
Line objects within the ArrayList. Also, a default constructor for the Line class has
been added because this is also required by the XML formatter. Finally, you will
notice that we have used an integer value to determine the color instead of a
Color object. This roundabout way is due to the XML formatter being unable to
handle static classes. As you can see, it 1s important to design classes so that they
may be easily handled by the XML formatter if you expect that they will be used
within a MSMQ application.

Developing & Deploying...

MSMQ Applications

The development of message queuing applications can be aided by cre-
ating a class that hides many of the message queuing details from other
areas. Such a class would have an event that was called when messages
arrived allowing you to attach your own event handler. All formatting
and streaming would be handled inside this class, too, and you could
use extra methods to make development more efficient. For example,
you could have a Clear method that would clear out all messages from
your queue and a Dump method that could write the contents of all
messages to a file. With some extra effort, this class could be reused in
future message queue applications.

Continued

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 369

Message queuing code often has to depend on a queue having been
already created by an administrator. By adding an installer for your
queue, you can make sure that such queues are created during installa-
tion. To add an installer, click on the Message Queue component under
your form while it is in design mode. View the properties for the compo-
nent and click on the Add Installer hyperlink at the bottom of the
Properties window. Visual Studio will create a new file named
Projectinstaller.cs and place the file in design mode so that the
messageQueuelnstaller1 component is visible on the design surface. You
can then click on the messageQueuelnstaller1 component and set the
properties of the queue in the Property window. The executable built
from this project will now contain a Projectinstaller class that is detected
by the installutil.exe tool. Running installutil.exe with the path to the pro-
ject executable as a command-line parameter will then install the queue.

Creating the DrawingSender Project

This project will use the MSMQGtaphics library to allow the user to draw on a
form. This form contains the following components:

» pictureBox1 The drawing surface.
= btnColor This button is used to change the current color.

» btnSend This button will send the drawing to the drawings message
queue.

» drawingMQ The message queue component that was created by drag-
ging the drawings message queue from the Server Explorer window.

= colorDialogl A color dialog window that allows the selection of a
color.

The code that handles the drawing and sending of the message is shown in
Figure 7.9.

Figure 7.9 The DrawingSender Project

using System

usi ng System Draw ng;

usi ng System Col | ecti ons;
usi ng System Conponent Model ;

usi ng System W ndows. For nrs;

Continued

" www.syngress.com



370 Chapter 7 * Message Queuing Using MSMQ

Figure 7.9 Continued

usi ng System Dat a;

usi ng System Messagi ng;

using System Xni .

Serialization;

usi ng MSMQGr aphi cs;

nanmespace Draw ngSender

{

public class Fornl : System W ndows. Forms. Form

{

private
private
private
private
private
private
private
private
private
private
private

private

Syst em W ndows. For ms. Pi ct ur eBox pi ct ur eBox1;
Syst em W ndows. For ms. Butt on bt nSend;

Syst em W ndows. For ms. Col or Di al og col or Di al og1;
Syst em W ndows. For ms. Butt on bt nCol or;

Syst em Drawi ng. Col or current Col or;

System Drawi ng. Pen current Pen;

int startx;

int starty;

int endx;

int endy;

bool |inelnProgress = fal se;

MBMQGr aphi c¢s. Drawi ng thi sDrawi ng =

new MSMQGr aphi cs. Draw ng();

vate

pr

private

Syst em Messagi ng. MessageQueue dr awi ngMy,

Syst em Conponent Mbdel . Cont ai ner conponents = nul | ;

public Forml()

{

InitializeConmponent();

current Col or = Col or. Bl ack;

currentPen = new Pen(currentCol or);

private void btnSend_Cick(object sender, System EventArgs e)

www.syngress.com

Continued



Message Queuing Using MSMQ ¢ Chapter 7 371

Figure 7.9 Continued

{
Syst em Messagi ng. Message m = new System Messagi ng. Message() ;
m Body = thi sDrawi ng;
try
{
drawi ngMQ. Send(m ;
}
catch (Exception ex)
{
MessageBox. Show( ex. Message + " " +
ex. | nner Excepti on. Message) ;
}
}

private void btnCol or_Cick(object sender, System EventArgs e)

{

col or D al ogl. ShowDi al og() ;

current Col or = col orDi al ogl. Col or;

bt nCol or. BackCol or = current Col or;

currentPen = new System Drawi ng. Pen(current Col or);
}

private void pictureBoxl_MuseDown(object sender,

Syst em W ndows. For ms. MouseEvent Args e)

{

startx = e. X

starty = e.Y,;

i nel nProgress = true;
}

private void pictureBoxl_MuseMve(object sender,

Syst em W ndows. For ms. MbuseEvent Args e)

Continued

" www.syngress.com



372 Chapter 7 * Message Queuing Using MSMQ

Figure 7.9 Continued

if (linelnProgress)

{

endx = e. X

endy = e.V;

pi ct ureBox1. I nval i date();
}

private void pictureBoxl MuseUp(object sender,

Syst em W ndows. For ns. MouseEvent Args e)

{
if (linelnProgress)
{
i nel nProgress = fal se;
Graphics g = pictureBoxl. CreateG aphics();
g. DrawLi ne(currentPen, startx, starty, e. X, e.Y);
Line | = new Line(Col orTransl at or. ToOW n32(
currentColor),startx,starty,e. X e.VY);
t hi sDrawi ng. add(I);
}
}

private void pictureBox1l_Paint(object sender,

Syst em W ndows. For ns. Pai nt Event Args e)

{
t hi sDrawi ng. draw( e. Gr aphi cs) ;
if (linelnProgress)
{
e. G aphi cs. DrawLi ne(current Pen, startx, starty, endx, endy) ;
}
}

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 373

The form defined in this code has a private property that holds the current

drawing, thisDrawing. As mouse events are detected, Line objects are created and
then added to the line collection within the Drawing object. When the user is
happy with the drawing, clicking the Send button sends the Drawing object

together with its line objects to the message queue. Note that this project must
have a reference to the MSMQDrawing project to enable the application to be
compiled.

Creating the DrawingReceiver Project
This project also uses the MSMQGraphics library and consists of the following

components:

pictureBox1 The drawing surface.
timerl A timer that attempts to receive messages every 5 seconds.

drawingMQ The message queue component that was created by drag-
ging the drawings message queue from the Server Explorer window.

The code that handles the receiving of the drawing message and displays it is
shown in Figure 7.10.

Figure 7.10 The DrawingReceiver Project

usi
usi
usi
usi
usi
usi
usi
usi

usi

ng
ng
ng
ng
ng
ng
ng
ng
ng

System

Syst em Dr awi ng;

System Col | ecti ons;

Syst em Conponent Model ;
Syst em W ndows. For 1rs;
Syst em Dat a;

Syst em Messagi ng;

System Xml . Seri al i zati on;

MBMQGr aphi cs;

nanespace Draw ngRecei ver

{

public class Fornl : System W ndows. Forms. Form

{

private System W ndows. For ns. Pi ct ur eBox pi ctureBox1;

Continued

www.syngress.com



374 Chapter 7 * Message Queuing Using MSMQ

Figure 7.10 Continued

private MSMQYG aphi cs. Drawi ng thi sDraw ng;
private System Messagi ng. MessageQueue drawi ngMl
private System W ndows. Forns. Ti mer tinerl;

private System Conponent Mbdel . | Cont ai ner conponents;

public Forml()

{
InitializeConmponent();
t hi sDrawi ng = new MSMQG aphi cs. Drawi ng();
timerl. Enabled = true;

}

private void checkFor Draw ng()

{
Syst em Messagi ng. Message m
MBMQGr aphi cs. Drawi ng d;

try
{
m = drawi ngMQ Recei ve(new Ti neSpan(0, 0, 1));
m Formatter = new Xm MessageFormatter (new
Type[]{typeof (MSMX aphi cs. Drawi ng ),
t ypeof (MSMQG aphi cs. Line )});
d = (MSMQGr aphi cs. Drawi ng ) m Body;
thi sDrawi ng = d;
pi ctureBox1. I nval i date();
}
catch

Continued

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

Figure 7.10 Continued

{

/1l W don't want to display a nessage after

every 5 second poll if no nessages are avail able

private void pictureBox1l_Paint(object sender,

Syst em W ndows. For ns. Pai nt Event Args e)

t hi sDrawi ng. dr aw( e. G aphi cs) ;

private void tinmerl_Tick(object sender, System EventArgs e)

{
checkFor Drawi ng() ;

This form also has a reference to the MSMQDrawing project to give access to
the Drawing and Line classes. After the queue is initialized, the timer control is
enabled and polling of the queue at five-second intervals is started. When a mes-
sage 1s received, the XML formatter is applied to the message to build the
Drawing object together with the collection of Line objects. The Invalidate method
is then called on the picture box control, which forces a Paint event and the sub-
sequent display of the drawing.

After building the solution, two executables (DrawingSender.exe,

DrawingR eceiver.exe) will be created. By running the DrawingSender application,
a form will be displayed, as shown in Figure 7.11.

By clicking and dragging on the form, you can draw line segments; you can
change the current color selection by clicking the Change Color button. Clicking
Send will send the drawing to the message queue. As you draw, you can send the
latest version of the drawing to the queue at any time. By starting the drawing
receiver application (DrawingR eceiver.exe), you will see your drawing progressively
appear as each drawing is received at five second intervals—see Figure 7.12.

375

www.syngress.com



376 Chapter 7 * Message Queuing Using MSMQ

Figure 7.11 The DrawingSender Application

s Lk Tl |

Figure 7.12 The DrawingReceiver Application Receiving Images from a
Message Queue

@ Creating an Asynchronous Application

You may have noticed while working with the examples in this chapter that the
application will stop responding while waiting to receive messages (especially if
none are in the queue). In some situations, you may want the user or the applica-
tion to perform some other task while waiting for a message. To make an asyn-
chronous call, you use the BeginReceive method of the Message Queune object.

The call to BeginReceive returns immediately, and a callback is made to the
ReceiveCompleted method of the MessageQuene component when a message
arrives. We will now modity the Drawing Receiver application to make asyn-
chronous calls for receiving messages (this modified form is saved as FormZ2 in the
DrawingReceiver source code directory). This modified code is in the file Form2.cs
in the DrawingReceiver directory on the CD:

=  Remove the fimerl control from the form.

= Remove the timerl_Tick method and the timerl. Enabled = true line of
code from the form.

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

»  While the form is in design-view, double-click the message queue com-
ponent located under the form. This will create the ReceiveCompleted
method.

» In the forms constructor, add a call to checkForDrawing(). The constructor
will then have the following code:

public Forml()

{
InitializeConmponent();
thi sDrawi ng = new MSMQG aphi cs. Drawi ng();
checkFor Drawi ng() ;

}

»  Modity the checkForDrawing method to call the BeginReceive method of
the message queue and add code to the ReceiveCompleted method as
shown here:

private void checkForDraw ng()

{
dr awi ngMQ Begi nRecei ve(new Ti meSpan(0, 0, 3));

private void drawi ngMQ Recei veConpl et ed( obj ect sender,
Syst em Messagi ng. Recei veConpl et edEvent Args e)

Syst em Messagi ng. Message m
MBMQGr aphi ¢s. Drawi ng d;

try
{
if (e.Message != null)
{
m = e. Message;
m Formatter = new Xml MessageFormatter (new Type[]{typeof (
MBMQGr aphi cs. Drawi ng ), t ypeof (MSMQJG aphi cs. Line )});

d = (MSMQGr aphi cs. Drawi ng ) m Body;

377

www.syngress.com



378

Chapter 7 * Message Queuing Using MSMQ

thi sDrawi ng = d;

pi ctureBox1l. I nvalidate();

}

catch

{1}

dr awi ngMQ. Begi nRecei ve(new Ti meSpan(0, 0, 3));

The initial call to checkForDrawing simply initiates the asynchronous call.
When the message is received (or the timeout has been reached), the
ReceiveCompleted method is called, and it is here where the work is done to
extract the message. After the message has been processed, the BeginReceive
method is called again to restart the process.

Using Public Queues While
Disconnected from the Network

A useful feature of MSMQ applications is their ability to keep operating even
when disconnected from the network. Once the client application is recon-
nected, the messages that have been stored on the client are then forwarded to
the designation queue.To use this feature in your own applications, you need to
modify the method of identifying the queue.

All of the examples in the chapter use the Path property to point to a queue.
For example:

this.drawi ngMQ Path = "synergy\\draw ngs";

If you attempt to send a message, and the queue specified in the Path can not
be found, an exception is raised and the send fails. To avoid this problem, you can
specify a path location in a second way, which uses the syntax FormatName:[
format name |.

To obtain the FormatName for a queue, you use the Solution Explorer and
click on the queue you want to use. The Property window will then show the
FormatName property, which you can cut and paste into your code. The code to
specify the message queue will then appear similar to this:

dr awi ngMQ. Pat h="For mat Nane: Publ i c={81c4c70d- 71e7- 4ec6- a910-
of cf 16278f 8b} ";

www.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7

Summary

This chapter gave an introduction to the powerful services that Microsoft
Message Queue (MSMQ) provides. Message queuing helps distributed applica-
tions in the following areas:

» Less reliance on permanent connections to servers

» Asynchronous requests capability

= Robustness in the face of hardware of network instability
» Communication encryption and authorization

» Tracing and failure notifications

A message queuing application sends and receives messages from queues.
These queues may be located on the same machine or on a remote server.
Examining the client tier of an application, there are two types of MSMQ
clients—dependent and independent. A dependent client requires a direct con-
nection to a Message Queuing server to send messages, whereas an independent
client can operate with or without such a connection.

MSMQ is a Windows component. Therefore, you can install it from the
Add/Remove Windows Components area of the Control Panel. During installa-
tion, you will be asked whether you require a dependent or independent client
installation. After a successful installation, you can use Visual Studio.NET to
manage your queues from the Server Explorer window.

The message queuing area of the .NET Framework is in the System.Messaging
namespace. The most important class in this namespace, Message Queue, allows you
to send and receive messages and to manage your queues. The Send method of
the MessageQueue class allows you to send messages; you use the Receive method
to receive them. Although you can send simple strings as messages, you can also
create and send a Message object. Using the Message object allows you to fine-tune
the message settings on a per-message basis. The Receive method will block code
execution while waiting for messages. To prevent this, you can use the asyn-
chronous BeginReceive method—the method call will return immediately and
the ReceiveCompleted method of the MessageQuene object will be called when a
message arrives.

Messages that are sent to a queue must be serialized into a stream.The .NET
Framework provides two serialization methods (formatters) for this purpose:
XMILMessageFormatter and BinaryMessageFormatter, which are selected by using
the Formatter property of the MessageQueue class. A third formatter type,

379




380 Chapter 7 * Message Queuing Using MSMQ

ActiveXMessageFormatter, is used when connecting to queues created with pre-
vious versions of MSMQ. By using formatters to stream message data, the .NET
Framework allows the sending of complex nested objects as messages, too. It may
be necessary to modify such classes so that they are “formatter friendly” before
using them in a message queuing application. If an application is dealing with
streams of data from files, memory, images, and so on, you can bypass the format-
ting process and send the stream directly into the message by using the
BodyStream property of the Message class.
* Message queues have a number of configuration settings that modify the way
messages are handled. These settings are within the DefaultProperties ToSend prop-
erty collection of the MessageQueue class. The TimeToBeReceived and
TimeToReachQueue properties specify the timeout settings of any messages sent to
the queue—any messages that expire are sent to the dead-letter queue if
UseDeadLetterQueue s set to true. The Recoverable property makes sure that all
messages are written to disk so that you can recover them after an unexpected
system shutdown. The Acknowledge Type property requests acknowledgement mes-
sages reporting on the success or failure of messages in reaching the destination

queue—the Administration Queue specifies which queue will receive these
acknowledgement messages. You can also set all of these properties for individual
. messages by setting the corresponding properties on a Message object.

When sending messages to a public queue on a remote server, you may need
to handle the situation where a network connection is unavailable. In this case,
you must use the FormatName of the queue. The FormatName is composed of a
GUID string that uniquely identifies the queue on the network. All messages sent
while disconnected from a network are stored temporarily in an outgoing queue,
ready to be forwarded to the destination queue when a network connection is
reestablished.

L | Solutions Fast Track

Introducing MSMQ

F M Message queuing applications use queues and messages to communicate.

M Queues are storage areas for messages. Queues can be either public or
private.

M Public queues can be shared by all computers on a network. Private
queues can be used only by the machine where the queue resides.

WWW.syngress.com



Message Queuing Using MSMQ ¢ Chapter 7 381

M MSMQ client machines are either dependent or independent. A
dependent client requires a connection to a remote queue to send
messages, whereas an independent client does not.

Creating a Simple Application

M Messages can be sent using two methods—by using a Message object or a |
simple data type. 3 ‘
- ¥
M When sending a simple data type, the message queue’s default properties % ol
are used.

M When using the Message object, you can set its properties to handle your
messaging requirements instead of using the message queue’s default

properties.

Creating a Complex Application

M You can send complex objects as messages by using a formatter to
stream the message to XML.

M The class definitions of the complex object must contain attributes to -
help the formatter.

Creating an Asynchronous Application

M An asynchronous message queuing application will immediately return
control back to the user while waiting for messages to arrive.

M The asynchronous receive method will also return after a specified period
of time if no messages were received.

M An asynchronous receive uses the ReceiveCompleted method of the
MessageQueue object to notify an application when a message has been
received.




382

Chapter 7 * Message Queuing Using MSMQ

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: In what ways can [ improve the performance of my MSMQ applications?
A: With MSMQ, as in other software areas, a tradeoff exists between security/

stability and performance. Acknowledgement messages can lessen perfor-
mance because they can effectively double the number of messages being
handled. The Recoverable property, although useful in persisting messages to
disk, can also cause performance problems with large numbers of messages. It
is important to do performance testing under expected loads before the
deployment of a new application.

: How can I programmatically list available queues?
: The GetPublicQueuesByLabel, GetPublicQueues By Category, and

GetPublicQueunesByMachine methods of the MessageQueue class provide access
to queues on a network. To specify more exactly the type of queue you are
looking for, the GetPublicQueues method has a MessageQueueCriteria parameter
in which you can specify combinations of search criteria.

: I want to examine the contents of a message before actually removing it from

the queue. How can I do that?

: The MessageQueue class has Peek and BeginPeek methods that allow both syn-

chronous and asynchronous retrieval of messages'without removing them
from the queue. These methods return a Message objeet that you can then
examine, and you can store the ID of this message. Then, if your program
logic decides to remove this message from the queue, it can use the
ReceiveByld method to remove the message. Using the ID for message
removal is important because another application may also remove the mes-
sage between your calls to Peek and Receive.

: How can I learn more about message queuing?

: The microsoft.public.dotnet.general news group has some .NET-specific

MSMQ information; the microsoft.public.msmq groups are the main areas of
activity.

| www.syngress.com




Chapter 8

ADO.NET

Solutions in this chapter:

= Introducing ADO.NET % ,i
»  Working with System.Data.OleDb -
. '_Working with SQL.NET

» Working with Odbc.NET

M Summary
M Solutions Fast Track

M Frequently Asked Questions

383



384

Chapter 8 * ADO.NET

Introduction

ADO.NET is the latest implementation of Microsoft’s Universal Data Access
strategy. In the past few years, classic ActiveX Data Objects (ADO) has gone
through many changes, bug fixes, and enhancements. These libraries have been
the foundation for many Web sites and applications that are in place today.
ADO.NET will be no different in this respect because Microsoft is positioning
ADO.NET to be the primary data access technology for the .NET Framework.
This will ensure that the Data Access Architecture is mature and robust because
all the Common Language Runtime (CLR) languages will be using ADO.NET
for their primary means of communicating with data providers.

Flexible and efficient data access technologies are at the heart of dynamic
Web sites and Web applications. Classic ADO serialized data in a proprietary pro-
tocol that limited its reach, and it could have been made more efficient.
ADO.NET serializes data using XML. This allows ADO.NET to take advantage
of a standards-based approach to moving data back and forth in your applications.
With rich support for any data source that can create or consume XML,
ADO.NET is truly the data access technology for current and future applications.
Through ADO.NET, you are able to connect to myriad data sources with the
speed and flexibility that today’s businesses require.

The goal for the developers of the ADO.NET architecture was to continue
the tradition of ADO by further removing the complexities of interacting with
different data providers and shielding you from the intricacies that would inter-
fere with your primary mission: packing functionality and usefulness into your
applications. After this chapter, you should feel comfortable with connecting,
viewing, and editing data using ADO.NET in the .NET Framework.

Introducing ADO.NET

To start with, let’s talk about the foundation. ADO.NET is based on XML, so
you have rich support for XML documents. Classic ADO had some support later
on for XML, but the format was difticult to use unless you were exchanging it
with another ADO client. The ADO.NET objects are consistent with the XML
specification and are well-defined. It is possible to take a plain XML document
with just a root node and open it in ADO.NET, add data to it, and save it back
out. Pretty handy for persistence.

The ADO Recordset is dead. ADO.NET has a couple of new ways to serve
data, which made the Recordset obsolete. In classic ADO, the Recordset object was a

www.syngress.com



ADO.NET ¢ Chapter 8

representation of a database cursor.You could open a Recordset, navigate forwards
and backwards, change data, and leave it open. Leaving the Recordset open, how-
ever, would result in wasting resources on the database server. This was undesir-
able. In classic ADO, you could disconnect a Recordset and even save the Recordset
to disk; however, updating a disconnected Recordset was difficult. ADO.NET has
two options that work together to replace the Recordset: DataSet and the
DataReader.

You can think of the DataSet as an in-memory relational database. It has pro-
visions for multiple tables, relations within the DataSet, primary keys, views,
sorting—the list goes on. Classic ADO has no counterpart to the DataSet. The
DataSet 1s not connected to the data source and holds a copy of the data that is
put into it from the data source.You can populate a DataSet from any .NET
provider, and you can save the contents back to any .NET provider.

The DataSet requires a DataAdapter. The DataAdapter represents the connec-
tion and commands to “fill” the DataSet. After the user is finished adding or
updating the DataSet, the Update method of the DataAdapter is called and the
changes are committed back to the data source. A couple of notes here; changes
are not required to be committed back to the original source, and you can
transfer data to another data source as long as the schema’s match. The other
thing to keep in mind, especially when developing for ASP.NET, is that this is a
disconnected copy of your data. It is suitable for a small subset of the data from
your data source. For ASPNET, a possible use would be for a small amount of
data that needs to be retrieved more than once in the same page rendering, or
that will not change in the course of a user’ session. For example, consider a Web
application that has a drop-down list that contains the 50 states in the United
States of America. If more than one of these is used on a page, a DataSet could be
filled and every instance of the drop-down list is bound to this DataSet. This way,
a database connection is created and used once for all 50 states and the results can
be reused.

You can think of the DataReader as a fire hose recordset. A fire hose recordset
was a nickname given to a read-only, forward-only Recordset in classic ADO. So, a
DataReader is a forward-only, non-updateable stream of data from the data
provider. For ASPNET work, this is the object that is most useful. Because Web
development is stateless, fast access to the data is more important than scrolling
and updating. Another noteworthy item is that the DataAdapter uses a DataReader
to populate a DataSet.

The next item we want to discuss is the idea of Managed Providers. A
Managed Provider is a namespace designed to connect to—and execute commands

385

www.syngress.com



386

Chapter 8 * ADO.NET

against—a data source. A good example is the SqlClient Managed Provider. This
namespace is written specifically to connect to Microsoft SQL Server. ADO.NET
can be separated into two fundamental architectures, the first being the data “con-
tainers,” and the second being the Managed Providers. Data containers are the
DataSet, Data’lable, and DataReader objects. The objects are data-source-agnostic in
that they do not contain any code specific to a data source. They do not really care
where the data comes from—they are generic in nature.

Managed Providers, on the other hand, are specific to a data source.
ADO.NET implements Managed Providers using difterent namespaces for the
different data providers. In classic ADO, the Provider Property dictated the data
source you were connecting to. For example, Microsoft Access would take a
provider of “Microsoft.Jet. OLEDB.4.0”. For SQL Server, it was “SQLOLEDB.1”.

So, for example, this code:

Di m oConn as ADQODB. Connecti on

SET oConn = New ADODB. Connecti on
oConn. Provi der =" SQLOLEDB. 1"

becomes

Sqgl Connecti on oConn;

oConn = new Sqgl Connection(strConn);

More commonly, the Provider property was another parameter in the
Connection string. The Provider property is still used in the OleDb, and the Open
Database Connectivity (ODBC) namespaces, however, the SqlClient namespace
does not use a Provider property, and if the Provider property is left in the
Connection string for a SqlConnection object, the object will throw an exception.
Connection strings are discussed in detail later in the chapter.

ADO.NET Architecture

ADO.NET is the latest extension of the Universal Data Access technology. Its
architecture is similar to classic ADO in some respects, but a great departure in
others. ADO.NET is much simpler, less dependent on the data source, more flex-
ible, and the format of data is textual instead of binary. Textual formatted data is
more verbose than binary formatted data, and this makes it comparably larger.
The tradeoft is ease of transportation through disconnected networks, flexibility,
and speed.

www.syngress.com



ADO.NET ¢ Chapter 8

Because data in ADO.NET is based on XML, Managed Providers are required
to serve data in a proper XML format. Once a developer has written data access
code, they only need to change a few parameters to connect to a different data
source.

ADO.NET is based on a connection-less principle that is designed to ease the
connection limitations that developers have traditionally had to deal with when
creating distributed solutions. You no longer need to maintain a connection, or
even worry about many of the connection options that developers had to deal
with in the past.

Because the ADO.NET classes inherit from the same core of data access
classes, switching data sources is much easier and less troublesome. Table 8.1
shows the core ADO.NET namespaces.

Table 8.1 ADO.NET Core Namespaces

Namespace Description

System.Data Makes up the core objects such as DataTable,
DataColumn, DataView, and Constraints. This
namespace forms the basis for the others.

System.Data.Common  Defines generic objects shared by the different
data providers such as DataAdapter,
DataColumnMapping, and DataTableMapping.
This namespace is used by data providers and con-
tains collections useful for accessing data sources.
For the most part, you do not use this namespace
unless you are creating your own data provider.

System.Data.OleDb Defines objects that you use to connect to and
modify data in various data sources. It is written as
the generic data provider, and the implementation
provided by the .NET Framework in Beta2 contained
drivers for Microsoft SQL Server, the Microsoft OLE
DB Provider for Oracle, and Microsoft Provider for
Jet 4.0. This class is useful if your project connects to
many different data sources, but you want more
performance than the ODBC provider.

System.Data.SqlClient A data provider namespace created specifically for
Microsoft SQL Server version 7.0 and up. If you are
using Microsoft SQL Server, this namespace is
written to take advantage of the Microsoft SQL
Server API directly and provides better performance
than the more generic System.Data.OleDb name-
space.

Continued

www.syngress.com

387



388

Chapter 8 * ADO.NET

Table 8.1 Continued

Namespace Description

System.Data.SqlTypes  Provides classes for data types specific to Microsoft
SQL Server. These classes are designed specifically for
SQL Server and provide better performance. If you
do not use these specifically, the SQLClient objects
will do it for you, but may result in loss of precision
or type-conversion errors.

System.Data.Odbc This namespace is intended to work with all com-
pliant ODBC drivers. It is available as a separate
download from Microsoft.

The Command, Connection, DataReader, and DataAdapter are the core objects in
ADO.NET. They form the basis for all operations regarding data in .NET. These
objects are created from the System.Data. OleDb, System.Data.SqlClient, and the
System.Data. Odbc namespaces.

Understanding the Connection Object

Making a database connection in ADO.NET is really very simple. The most diffi-
cult part of creating the connection is the Connection string. This is a semicolon-
delimited string of name-value pairs. If you have worked with ODBC, or even
OLE-DB, they are basically the same with a twist for the SqlConnection object.
Because the only acceptable data source that the SqlConnection object can connect
to is Microsoft SQL Server, you do not need to specity a provider, it is under-
stood that SQL Server is the data provider.

It has become common to create what is referred to as the DAL, or Data
Access Layer. This implies a multitiered approach to application architecture, and
ADO.NET lends itself quite well for this purpose. Because the System.Data
namespace doesn’t really care about the data source or connection, the data con-
tainer objects such as the DataSet can be populated from any provider that can
understand how to connect between them and the data source. So, if a developer
has a page level DataSet, it can be populated from an OleDbDataReader object, or
the SqlDataReader object. The data source can be decided at runtime if the appli-
cation requires it.

Each Managed Provider implements a connection object which is specific to
the data sources it will connect to. The OleDb Managed Provider is specifically
written to connect to a data source that understand the OLE-DB protocols. The
same can be said for the ODBC, and SqlClient Managed Providers.

www.syngress.com



ADO.NET ¢ Chapter 8 389

All of these Managed Providers are created specifically to interact with a par-
ticular database API. Microsoft released the ODBC Managed Provider well after
the Beta 2 release of the .NET Framework. This demonstrates the extensibility of
the .NET Framework. For instance, you can create a Managed Provider specifi-
cally for Oracle, or Exchange, and add them to the Framework.

Developing & Deploying...

Connection Pooling

Connection pooling for SqlConnections is handled in Windows 2000
Component services. Each connection pool is differentiated using a
unique connection string. The uniqueness of the connection string is ver-
ified using an exact matching algorithm.

The SqlConnection is hosted in Windows 2000 Component services
to take advantage of the resource management that Component
Services provides. The .NET Framework SDK contains information on the
parameters that can be included in the connection string to modify the
default behavior of connection pooling for the Sq/Connection object.

Connection pooling for the OleDbConnection object is handled
using OLE DB session pooling, which is handled by each individual OLE
DB provider if it supports connection pooling. Similar to Sq/Connection
pooling, connection pooling with the OleDbConnection object is modi-
fied with parameters in the connection string. These parameters are not
documented in the Framework SDK, because they are specific to the OLE
DB provider. Suffice to say that they are not the same as the
SqlConnection options. Therefore, the connection strings are not
portable across namespaces if they modify connection pooling.

Building the Connection String

The first step in creating a connection is the Connection string. Depending on the
namespace used, the Connection string will vary a little. Basically, the connection
string for a SqlConnection does not have the Provider attribute, and a Connection
string for ODBC must have the corresponding Data Source Name (DSN)
Registry entries.

www.syngress.com



390 Chapter 8 * ADO.NET

Connection to the SQL Server is done using the System.Data.SqlClient
namespace. This namespace contains the classes for the SqlConnection object. As
described above, the connection string is the hardest part of creating a connec-
tion. This 1s not to say that Connection strings are hard to create, but rather that
connections in ADO.NET are not difficult to create. Table 8.2 lists some
common keys, and the default values with some simple explanations.

Table 8.2 Connection String Properties

Name Default Description

Connect Timeout 15 Seconds to try and make the con

-or- nection. When these are up, an

Connection Timeout exception is thrown.

Data Source <User Defined> The name or IP address of the SQL

-or- Server to make the connection with.

Server For servers with multiple instances

-or- of SQL Server, this would be

Address <servername>\<instancename>.

_or-

Addr

_or-

Network Address

Initial Catalog <User Defined> The name of the database. If you do

-or- not specify this, you will get a con-

Database nection to the default database
defined for the User ID.

Integrated Security  ‘false’ Whether SQL Server will use the NT

-or- user credentials or expect a SQL

Trusted_Connection Server Username and password.

Password <User Defined> The password for the SQL Server

-or- account logging on. For integrated

Pwd security this is not specified.

Persist Security Info  ‘false’ When set to ‘false’, security-sensitive

information, such as the password,
is not returned as part of the con-
nection if the connection is open or
has ever been in an open state.
Resetting the connection string
resets all connection string values
including the password.

User ID <User Defined> The SQL Server login account.

www.syngress.com




ADO.NET ¢ Chapter 8

For example:

strConn = "Password=nmypassword; User | D=admi n;Initial
Cat al og=nort hwi nd; Data Sour ce=dbServer1";

This connection string would work for a SqlConnection because it lacks the
Provider attribute. It would establish a connection to a Database named northwind,
on the server named dbServer1. It would then log in with a user name of admin,
using mypassword as a password.

A trick we have used in the past was to create a text file with .udl as the file
extension. Executing this file would start the Connection Wizard and allow you
to step through creating the connection string. When you are finished, open the
file in Notepad and copy the completed connection string. For a SqlConnection,
remove the Provider attribute.

Understanding the Command Object

The command objects, OleDbCommand, OdbcCommand, and SqlCommand allow
developers to execute statements directly against the database. They provide for a
simple and direct route to data, regardless of where the data resides. They can
have a collection of parameters that are used to pass variables in, and get variables
out. If a developer needs to get the return value of a stored procedure, the
Command object is the object they would use. Command objects are particularly
useful for executing INSERT, UPDATE, and DELETE statements, but they can
also generate DataReader and XMLDataReader objects for returning data:

string strSql = "SELECT * FROM Orders";
string sConn = "Provider=SQLOLEDB. 1;" +
"Passwor d=password; " +
"Persist Security Info=True;" +
"User |D=sa;" +
"Initial Catal og=Northw nd;" +
"Data Source=l ocal host";
d eDbConnecti on nyConnection = new O eDbConnecti on(sConn);
A eDbComrand nmyCmrd = new O eDbCommand(strSql, myd eDbConnecti on);

Command objects are the only means available in ADO.NET to execute com-
mands against a data source. The Command objects are particularly suited for
calling stored procedures, which are the preferred method for relational data
access. Stored procedures allow some relational database management systems to

391

www.syngress.com



392

Chapter 8 * ADO.NET

precompile and take advantage of statistics that it has gathered on the source
tables. Take this stored procedure as a simple example:

CREATE PROCEDURE get Shi ppers AS

Sel ect *

From shi ppers

Order By ConpanyNane

This stored procedure just returns an ordered list of records from the shippers
table in the fictional Northwind database that installs with the .NET SDK.To
call this procedure, you can use a couple of different syntaxes. You can just specify
the name of the stored procedure instead of a SQL statement, or you can create a
command object explicitly. Take this as an example of replacing a SELECT state-
ment with the name of a stored procedure:

/1 strSgl = "SELECT * FROM Shi ppers";
strSql = "get Shippers";

obj A eDbCommand = New O eDbCommand(strSqgl, nyd eDbConnection);

Here, the line with the select statement in it is commented out, and the
stored procedure name is inserted. For a better example, let’s add an input param-
eter. By adding a parameter to this stored procedure, you can now limit the rows
that the application uses and make it more efficient. For instance, say that you add
a parameter to the stored procedure that is used to find a shipper with a partic-
ular ShipperID. To call it, just add the parameter in the order required by the
stored procedure. In this case, with one parameter, it would look like this:

strSql = "get Shi ppersByl D 2";

This method is fine for instances when you are only trying to get some
records back from a stored procedure, but not very useful if you are trying to get
an output value or a return value. Here is where the parameter objects come into
play. To implement the example with a parameter, the code would look like this:
string strSP;

A eDbComrand obj A eDbCnd;

A eDbPar anet er obj Param

A eDbConnecti on obj Connecti on;
O eDbDat aAdapt er obj Adapt er;
Dat aSet nyDat aSet ;

www.syngress.com



ADO.NET ¢ Chapter 8

try
{
strSP = "get Shi ppersByl D';

Get the new connection to the database. If you have a connection that is
available, you could use it instead of creating a new one:

obj Connection = new O eDbConnecti on(sConn);
obj Connecti on. Qpen();

Instantiate a new command object and specity the new connection you just
created. Set the type of command to stored procedure:

obj O eDbCnd = new O eDbConmmand(str SP, obj Connection);
obj A eDbCnd. CommandType = CommandType. St or edPr ocedur e;

The line of code following this paragraph does several things. First, starting
from the inner parenthesis, it creates a new OleDbParameter with a data type of
unsigned integer and a size of 4. Then, it adds this new parameter to the
Parameters collection of the Command object that you just created. Finally, it puts a
reference to this newly created Parameter object in the variable objParam:

obj Par am = obj O eDbCnu. Par anet er s. Add(New O eDbPar aneter ("@D",
O eDbType. Unsi gnedint, 4));

Here, you are setting the direction of the parameter and its value. The value is
easy enough to explain, but the direction is a little more complicated. For an
explanation of the different options you have for parameter direction, refer to
Table 8.3.

Table 8.3 Parameter Directions

Member Name Description

Input The parameter is an input parameter. This allows for data to
be passed into the command, but not out. You may have
more than one.

Output The parameter is an output parameter. It is used to return
variables, but you cannot use it to pass data into a com-
mand. You must write the command specifically to populate
this variable as part of its routine. You may have more than
one.

Continued

393

www.syngress.com



394

Chapter 8 * ADO.NET

Table 8.3 Continued

Member Name Description

InputOutput The parameter is capable of both input and output. Use it
when you need to pass data into and out of a command in
one object. It is exactly what the name says it is: It performs
both the input and the output operations. You may have
more than one.

ReturnValue The parameter represents a return value. This is similar to the
output parameter, except that you can have only one.

obj Param Di rection = ParaneterDirection.|nput;

obj Par am Val ue = i nt Shi pperl D,

This line of code sets the SelectCommand of the DataAdapter to the newly cre-
ated CommandObject 0bjOleDbCmd.You have the option of specifying
Select Command, Insert Command, Delete Command, and UpdateCommand:

obj Adapt er. Sel ect Conmand = obj A eDbCnd;
Here, you “fill” your DataSet by using the SelectCommand of the Adapter
object:

obj Adapter. Fill (nyDataSet);

Now, all that is left is to set the data source of our DataGrid and complete the
error handler:
DGor der s. Dat aSour ce = mnyDat aSet ;

}
catch (Exception e)

{
MessageBox. Show( e. ToStri ng);

}
final | 'y

{

obj Connection. C ose();

This example demonstrated the use of an OleDbCommand object to populate
a DataSet.You passed the OleDbCommand object you created into the

www.syngress.com



ADO.NET ¢ Chapter 8

Select Command property of the DataAdapter. When you called the Fill method,
ADO.NET used your OleDbCommand object to execute a DataReader and popu-
late your DataSet.

You had to create a Parameter object, and set its Direction to Input, then its
value. Note that in ADO you could make up your own names for the Parameter
objects that you created. In ADO.NET, you must ensure that your parameters are
named the same as they are in the definition of the stored procedure. ADO.NET
uses them to implement named parameters and it will throw an exception if it
doesn’t find a match. Of course, data types and sizes must also match.

To get an output parameter, you can modify your stored procedure to return
the current day of the server just as a demonstration of the output parameter. You
can easily turn this into an example of returning the ID of a newly created record:

obj Param = obj O eDbCnd. Par anet ers. Add( New O eDbPar anet er (" @urr ent Day", _
O eDbType. Date, 8));

obj Param Direction = ParaneterDirection. Qutput;

To access this value after the OleDbCommand. ExecuteNon Query method had
been called 1s simple:

dt Server Date = obj SQ.Cnd. Par anet er s(" @urr ent Day") . Val ue;

Using the stored procedure in the SQL statement is simpler, but not as flex-
ible, as you can see here.You can also access the return value using a similar tech-
nique. The only difference in using the return value is that you must declare a
parameter with the name of RETURN VALUE, and a direction of type return
value. After that, you access it just like any other output value. The return value
from a SQL Server stored procedure can only be a data type of Integer. If the pre-
vious example were something like the number of days since an order date, you
could use the following lines of code to get it. The stored procedure might look
something like this:

CREATE PROCEDRUE Get DaysSi nceLast Order (@ust| D nChar(5))
AS
DECLARE @ Days | NT

Sel ect @ Days = DATEDI FF(dd, Max(OrderDate), GETDATE())
From Orders

Where Custonerl D = @ustID

Return @ Days

395

www.syngress.com



396

Chapter 8 * ADO.NET

The code to create the parameter and get the return value should look some-
thing like this:
obj Param = obj O eDbCnd. Par anet ers. Add( New O eDbPar anet er (" RETURN VALUE" _
A eDbType. Char, 5));

obj Param Di rection = ParaneterDirection. ReturnVal ue;

Play around with this object. It is probably going to be one of the most used
in your toolbox. Understanding how to use the output values and returning data
from them will be essential to your high performance development.

Understanding DataReaders

The DataReader is a read-only, forward scrolling data object that allows you to
gain access to rows in a streaming fashion.You'll typically use it where you need
read-only access to data because it is much faster than using a DataSet. A DataSet
is populated behind the scenes using a DataReader, so if you don’t need the fea-
tures of a DataSet, you should not create one. A DataReader is created either from
the OleDb libraries, or from the SqlClient libraries. This is a simple example of
creating an OleDbDataReader from a Command object:

O eDbDat aReader nyReader = nmyCnd. Execut eReader () ;

You now have a populated DataReader object that you can use like this:

whil e (nmyReader. Read())
{

/1 do sonme row | evel data mani pul ation here

}

The DataReader object allows for much greater speed, especially if you need
to access a large amount of data. It does not allow you to update information, nor
does it allows you to store information like the DataSet object does, but it does
allow for very fast access to the data.

Understanding DataSets and DataAdapters

A DataSet is an in-memory copy of a portion of one or more databases. This may
be one table, or many tables. Imagine a small relational database residing in a vari-
able. This is a complete copy of the requested data. It is completely disconnected
from the original data source and doesn’t know anything about where the data
came from.You could populate the data from XML from your Microsoft BizTalk
Server, save it to Microsoft SQL Server, and then write it out to an XML file.

www.syngress.com



ADO.NET ¢ Chapter 8

When you are finished with your operations, the entire DataSet is submitted
to the data source for processing. It takes care of standard data processing, such as
updating, deleting, and inserting records. The DataSet object is a key player in the
ADO.NET object model. Examine the object model in Figure 8.1 for the
DataSet object and the collections it can contain. Due to the architecture of
ADO.NET, several combinations of collections are possible. Take the Columns
collection as an example. As you can see, the Data’lable object has a Columns col-
lection made up of DataColumn objects. The PrimaryKey property of the
Datalable contains a collection of DataColumns as well. This is the same
DataColumn object in the Datalables. Columns collection, but two difterent
instances of them.

Figure 8.1 DataSet Object Model and the Possible Collections It Can Contain

DataSet
g

N1 Table Collection
DataTable

G|

“—| DefaultView

397

www.syngress.com



398

Chapter 8 * ADO.NET

DataTable

A DataSet contains a collection of Datalables. This collection is the key to the
DataSet’s versatility. They are tabularized representations of your data. Essentially
identical to the tables in your database, or other data source, they are added to
our DataSet just like you add objects to other collections. Once they are in your
DataSet, you can define properties, such as the DataRelations, Primarykeys, and so
on.You can create Datalables programmatically, or retrieve them from a database
through a SqlDataAdapter/ OleDbDataAdapter object using the Fill method.

After you populate your DataSet with Data'lable objects, you can access these
tables by using an index or the name you gave the table when you add it to the
DataSet.

The collection uses a zero-based index, so the first DataTable is at index O:

ds. Tabl es[ 0] ;

The above mentioned method is more efficient, but harder to read, while the
one below is easier to read, but a little less efficient. How inefticient has yet to be
determined, but generally speaking your users won'’t be able to tell, so unless you
have a compelling reason to use the index, this will be easier to maintain.

ds. Tabl es["Orders"];

The Tables collection is the basis for DataSet operations. From the collection,
you can pull tables into separate DataTable variables and DatalView objects. You
can also bind them to bindable controls on Windows Forms and Web Forms, or
act on them in the collection as in the previous examples.

DataColumn

A DataColumn 1s exactly what it sounds like: a column of data. The DataColumn
is the foundation of a Data’lable and has very similar properties to a column in a
relational database table. A relational database table is often represented in a
spreadsheet-like format with rows and columns. The data in a DataTable is repre-
sented in the same manner. So, a DataTable is made up of DataColumns and
DataRows. A Datalable contains a collection of DataColumns, and this could be
considered the Datalable’s schema, or structure. This representation contains no
data, but forms the basis or foundation to store and retrieve data.

DataColumns are .NET objects with properties and methods just like any other
.NET object. Remember that unlike the column in a classic ADO Recordset
object, a DataColumn 1s a true object, inheriting from the System. Object namespace.

www.syngress.com



ADO.NET ¢ Chapter 8

This represents a huge shift forward in programming with data. In classic ADO,
data was stored in a proprietary format, which consisted of a string of variant
objects. These objects had all the overhead consistent with variants and resulted in
a flexible container for any type of data. It also meant that that ADO had to do a
lot of work behind the scenes sorting out data types and remembering the schema
of the data.

Because a DataColumn is a true object, it has a complement of properties and
methods that make interacting with it much more object-oriented in nature.
Refer to Table 8.4 for a listing and description of the properties of a DataColumn,
and Table 8.5 for the methods.

Table 8.4 DataColumn Properties

Property Name Description

AllowDBNull True or False, default is True. Determines whether the
column will allow Null values. Null values represent
the absence of a value and generally require special
handling.

Autolncrement True or False, default is False. This indicates whether
the DataColumn will automatically increment a
counter. When this value is True, a numeric value will
be placed in this column. If the column is not of a
Int16, Int32, or Int64, it will be coerced to Int32. If the
DataTable is to be populated by an array, a Null must
be placed in the array position corresponding to the
Autolncrement column in the DataTable.lf an expres-
sion is already present when this property is set, an
exception of type ArgumentException is thrown.

AutolncrementSeed  Default is 1. This is the starting value of the first row
in the column if the Autolncrement property is set to
True.

AutolncrementStep  Default is 1. This is the value that the counter is incre-
mented by for each new row in the DataColumn is the
Autolncrement property is True.

Caption Caption for the column. If a caption is not specified,
the ColumnName is returned.
ColumnMapping Determines the MappingType of the column, which

is used during the WriteXML method of the parent
DataSet.These are the MappingTypes and their
descriptions:

» Attribute XML attribute

Continued

399

www.syngress.com



400 Chapter 8 * ADO.NET

Table 8.4 Continued

Property Name

Description

ColumnName

Container

DataType

DefaultValue
DesignMode
Expression

ExtendedProperties
MaxLength
Namespace

Ordinal

Prefix

ReadOnly

Site

Table

Unique

s Flement XML element
=  Hidden Internal structure
» SimpleContent XmlText node

Name of the column in the DataColumnCollection. If a
ColumnName is not specified before the column is
added to the DataColumnCollection, the
DataColumnName is set to the default (Column1,
Column2, and so on).

Returns the container of the component (inherited
from MarshalByValueComponent).

Sets, or returns, the type of data in the column. These
types are members of the System.Type class. Throws an
exception of type ArgumentException if data is present
in the DataColumn when the DataType is set.

Determines the default value for a new row.

Returns a value indicating whether the component
is in design mode (inherited from
MarshalByValueComponent).

Defines an expression used to filter rows or create an
aggregate column.

Returns a collection of custom user information.
Defines the maximum length of a text column.
Defines or returns the namespace of the DataColumn.

Returns the index or position of the column in the
DataColumnCollection collection.

Defines or returns an XML prefix used to alias the
namespace of the DataTable.

True or False, default is False. Indicates whether the
column allows changes once a row has been added to
the table.

Returns a reference to the parent. If Null reference or
nothing, the DataColumn does not reside in a con-
tainer (inherited from MarshalByValueComponent).

Returns a reference to the DataTable of which the
column belongs.

True or False, default is false. Determines if the values
in each row of the column must be unique.

www.syngress.com



=

ADO.NET ¢ Chapter 8 401

Table 8.5 DataColumn Methods

Method Names Description

Dispose Releases resources used by the component (inherited
from MarshalByValueComponent). Overloaded.

Equals Returns True if two instances of the Object are equal
(inherited from Object). Overloaded.

GetHashCode Hash function useful for hashing algorithms and data
structures similar to hash tables (inherited from Object).

GetService Returns the implementer of iServiceProvider interface
(inherited from MarshalByValueComponent).

GetType Returns the type of the current instance (inherited from
Object).

ToString Returns the existing column Expression. Overridden.

Because DataColumns are proper .NET objects, you can create a DataTable at
runtime, add DataColumns to the DataColumnCollection of the DataTable and pop-
ulate this programmatically, or by binding the Datalable to an object that supports
data binding, such as a DataGrid. Refer to Figure 8.2 for a simple example of cre-
ating a Data’Table and adding two DataColumns to the DataColumnCollection (you
can find the corresponding files on the CD that accompanies this book, in the
folders DataColumn\AutoIncrementExample).

Figure 8.2 Creating a Simple DataTable with Two DataColumns
(DataColumn\AutolncrementExample)

private DataTabl e AddAut ol ncrenent Col um()
{
Dat aCol um mnyCol utm = new Dat aCol um() ;
Dat aCol um nmyData = new Dat aCol um() ;
/1l Create an ID colum
nmyCol um. Dat aType = System Type. Get Type(" System I nt32");
myCol um. Col umNane = "PK_ID';
myCol umm. Aut ol ncrement = true;

myCol um. ReadOnly = true;

/] Create a data colum

nyDat a. Dat aType = System Type. Get Type(" System String");

Continued

www.syngress.com



402 Chapter 8 * ADO.NET

Figure 8.2 Continued

myDat a. Col uitmNane = "strData";

/1 Add the colums to a new DataTabl e.

Dat aTabl e nmyTabl e = new Dat aTabl e(" MyTabl e");
nyTabl e. Col ums. Add( nyCol umm) ;

nmyTabl e. Col uims. Add( nyDat a) ;

/! Return the new DataTable to the caller

return nyTabl e;

This example demonstrated the creating of a DataTable and two DataColumpns.
It also demonstrated setting some of the properties to make the table a little more
useful.

DataRow

The DataRow object actually represents a single row of data in a Data’lable. The
DataRow is a ftundamental part of a Data’Table. DataRows are the objects that are
used to interrogate, insert, or delete data in a Data’Table. A DataRow is not a part
of the Datalable definition or schema, but it represents the state of a DataTable.
DataRows contain not only data, but also error information for the row, versions
of the row, and of course, data.

As far as the Data'lable is concerned, when you work with data you are
manipulating the DataRowCollection of a Data’lable.You need to realize that a
Data'lable contains a collection of DataRows. This becomes apparent when you
review the methods for a DataRow. In a database, for example, you execute an
INSERT statement to add rows to a table. Expecting an INSERT method of a
DataTable to add new rows would not be unrealistic; after all, the DataTable looks
and feels like a database table. Because the DataRow belongs in a collection, the
Add method is used to insert data. When data is retrieved, the Item property is
used to retrieve a specific column in the DataRow.You can place an entire row
into an array with a single method call.

For a listing of properties and methods, refer to Tables 8.6 and 8.7, respec-
tively. The DataSet object is a big reason the Recordset no longer exists in ADO.

www.syngress.com



ADO.NET ¢ Chapter 8

Table 8.6 DataRow Properties

Property Name

Description

HasErrors

Item

ItemArray
RowéError
RowsState

Table

True or False, default is False. Indicates whether any
column in the row contains an error. Use GetColumnError
to return a single column in error, or GetColumnsinError
to return an array of columns in error.

An indexer for the DataRow class; sets or gets data in a
particular column. Overloaded.

Allows all columns to be set or returned using an array.
Sets or returns a custom error description for a DataRow.

Used with the GetChanges and HasChanges method of
the dataset, the RowState depends on two things: the
changes that were made, and whether or not
AcceptChanges has been called.

» Added The DataRow has been added to a
DataRowCollection, and AcceptChanges has not
been called.

» Deleted The Delete method of the DataRow has
been called.

= Detached The DataRow is not part of a
DataRowCollection. A DataRow in this state may
have been removed from a DataRowCollection or
just created.

» Modified Data has been modified and AcceptChanges
has not been called.

» Unchanged Data has not changed since the last call
to AcceptChanges.

Returns a reference to the parent DataTable.

Table 8.7 DataRow Methods

Method Name

Description

AcceptChanges

Commits changes made to the DataRow since the last
time that AcceptChanges was called. When this method
is called, the EndEdit method is implicitly called. The
Current version of the data is discarded and the
Proposed version of the data becomes the new Current
version. If the RowState was deleted, the DataRow is
removed from the DataRowCollection. Calling the
AcceptChanges method does not update the data

Continued

403

" www.syngress.com



404 Chapter 8 * ADO.NET

Table 8.7 Continued

Method Name

Description

BeginEdit

CancelEdit
ClearErrors

Delete

EndEdit

Equals
GetChildRows

GetColumnError
GetColumnsinError
GetHashCode

GetParentRow
GetParentRows

Getlype

source; however, if the Update method of a
DataAdapter is called to update the data source, and
the AcceptChanges method of the DataRow or parent
DataTable has not been called, the changes are not
committed to the data source. The AcceptChanges
method of the DataTable calls the AcceptChanges
method for each DataRow in the DataRowCollection.

Puts the DataRow into edit mode and suspends data
validation events until the EndEdit method is called or
the AcceptChanges method is called. Begins the storing
of DataRow versions.

Cancels the edit mode of the current row and discards
the DataRow versions.

Clears the errors for the row, including the RowError
and errors set with SetColumnError.

Sets the RowState to Deleted. The row is not removed
until the AcceptChanges method is called. Until the
AcceptChanges method is called, the row can be
“undeleted” by calling the RejectChanges method of
the DataRow.

Ends the edit mode of the row, fires the
ValidationEvents, commits the Proposed data to the
Current data, and discards the versioned data.

Returns True or False, determines whether two Object
instances are equal (inherited from Object). Overloaded.

Returns the DataRows that are related to the current
row using a DataRelation. Overloaded.

Returns the error description for a column. Overloaded.
Returns an array of columns that have errors.

Hash function useful for hashing algorithms and data
structures similar to hash tables (inherited from Object).

Returns the parent DataRow of the current DataRow
using the specified DataRelation. Overloaded.

Returns the parent DataRows of the current DataRow
using the specified DataRelation. Overloaded.

Returns the Type of the current instance (inherited
from Object).

www.syngress.com

Continued



ADO.NET ¢ Chapter 8

Table 8.7 Continued

Method Name Description
HasVersion Returns True if the specific version exists. Possible ver-
sions are:

= Current DataRow contains current values.
Default DataRow contains its default values.

n
» Original DataRow contains its original values.
» Proposed DataRow contains a proposed value.
IsNull Returns True if the specified column contains a Null value.
RejectChanges Rejects all changes made to the row since
AcceptChanges was last called.
SetColumnError Sets the error description for the current DataRow.
Overloaded.
SetParentRow Used in conjunction with a DataRelation to set the
parent DataRow for the current DataRow. Overloaded.
SetUnspecified Sets the value of a specified DataColumn to Unspecified.
ToString Returns a string that represents the current Object

(inherited from Object).

Looking at the Table 8.6 and Table 8.7, you can see how powerful the
DataRow object 1s and the possibilities it creates. For applications that need to
work with disconnected data, the DataRow makes these applications easy to
create, with some very powerful state management built in. Of course, when you
populate a Data’lable from a DataSource, ADO.INET creates the DataColumns, and
then adds the DataRows to the DataRowCollection for you in one method call.

Differences between DataReader
Model and DataSet Model

Data in ADO.NET is disconnected for all practical purposes. Data access can be
broken down into two methods, or models. The DataSet model involves reading
the data into a local cache, interacting with it, and discarding, or synchronizing,
the data back to the source. The DataReader model does not allow for updating
data or reusing it. With a DataReader, data is read once and discarded when the
next row is read.

When you populate a DataSet from the database, a connection is opened, the
data is selected and returned into a DataTable, and then the connection is closed.
The data is present in the DataTable, and an application is free to interact with it

405

www.syngress.com



406

Chapter 8 * ADO.NET

in any manner, however, the database is free to do whatever it needs to do.
Resources are not being held on the database server while the application is
being used.

When a DataReader is used for data access, a connection is opened, and the
data is navigated using the Read method. It is not possible to “go back” and read
data that has previously been read, or rather it is not possible to scroll backward
in the data. Because a DataReader is forward-only and read-only, it is useful only
for retrieving the data and is very efficient. You need to realize that during the
scrolling process, resources are being held up on the server. This means that if an
application allows a user to manually navigate in a forward-only manner, the
database is serving the request and waiting. This may result in a resource problem
at the database. It 1s best to use the DataReader when fast access to the data is
needed, and the entire resultset is being consumed in a relatively short period of
time. This, of course, depends on several variables, such as number of users,
amount of data, hardware availability, and so on.

In both instances, the data is retrieved; however, with the DataSet it is per-
sisted in a DataTable. As stated earlier, a DataReader is used to populate a
DataTable, so in this regard if a developer needs to access the data once in a for-
ward-only mode, the DataReader provides a faster mechanism. On the other
hand, if this data is somewhat expensive to create, and it will be used repeatedly,
using a DataSet makes more sense. These are the types of decisions that you will
need to make during the course of designing the application.

The two models are similar in that they both provide data, but that is where
the similarities end. The DataReader provides a stream of data, whereas the
DataSet provides a rich object model with many methods and properties to
interact with the data in any scrolling direction an application would need.

Understanding the DataView Object

The DataView class is part of the System.Data namespace. The DatalView’s main
purpose is to provide data binding to forms and controls. Additionally you can
use it to search, filter, sort, navigate, and edit the data. DataViews are based on
Data'lables, therefore they do not stand on their own; however, they compliment
the DataTable and provide a means to bind a Datalable to a Web Form or
Windows Form.

You can use DatalViews to present two views of the same data. For example, you
may create a DatalView to show only the current DataRows in a Data'lable, and you
could create another DatalView to show only DataRows that have been deleted. This

www.syngress.com



ADO.NET ¢ Chapter 8

is made possible by a property of the DatalView called RowFilter. Figure 8.3 contains
an example of creating a DataView and setting some properties.

Figure 8.3 Creating and Using a DataView

usi ng System
usi ng System Dat a;

nanespace O dersDat aSet
{
public class cDataVi ew
{
public DataVi ew fil t er Cust oner Byl D( Dat aSet ds, string sCustlD)

{
Dat aVi ew dv = new DataVi ew);

dv. Tabl e = ds. Tabl es("Orders");

dv. Al |l owDel ete = True;

dv. Al lowEdit = True;

dv. Al | omNew = True;

dv. RowFilter = "CustonerlD = '" + sCustlD + "'";

dv. RowSt ateFi |l ter = Dat aVi ewRowsSt at e. Modi fiedCurrent;
dv. Sort = "OrderDate DESC';

return dv;

The example creates a new Dataliew object, and then sets the Table property
to the Orders Data’lable in the DataSet that is passed in. This example also sorts
the records by the OrderDate in descending order. This is an example that demon-
strates the functionality; however, filtering the data in the Data’lable when it was
populated is more efficient, instead of loading all the records in the Data’Table into
memory and then choosing the records that needed viewing. Putting as little
information into the Data’lable and DataSet objects as possible is preferable. You
don’t need to transport this data if it is not needed.

407

www.syngress.com



408

Chapter 8 * ADO.NET

Working with System.Data.OleDb

The System.Data.OleDb namespace is the most flexible Managed Provider that
ships with the .NET Framework. It provides a bridge from .NET to any data
source that has implemented an OleDb provider. According to the Microsoft lit-
erature, the .NET Framework has been tested with MS SQL Server, Access, and
Oracle—however, any existing OleDb provider should work. The examples that
follow will use Access to demonstrate the functionality possible with ADO.NET,
and specifically the System.Data. OleDb data provider. A simple application will be
used with a comboBox and a DataGrid. This will allow you to focus on data access
and manipulation, without having to worry about interface restrictions. Figure
8.4 is the final product; the source code for this is on the CD (OrdersDataSef\
OrdersDataSet.csproj).

Figure 8.4 Completed System.Data.OleDb Example (OrdersDataSet\

OrdersDataSet.csproj)
mdialion - | \

el ol et
(== Fogipesil]  (nielisie  Hegeelise Uy
:r fires) = = e

Using DataReaders

As discussed earlier in the chapter, a DataReader is a read-only, forward-only
stream of data. The project for the examples to follow is built around a DAL, or
Data Access Layer. This is implemented in classes named CDalOleDb, CDalSql,
and CDalOdbc. These will be used to demonstrate the similarities between the
three namespaces.

The code in Figure 8.5 (the corresponding file on the CD is OrdersDataSef\
CDalOleDb.cs) 1s the declaration of the CDalOleDb class, a constructor, and the
strConnection property.

www.syngress.com



-

&

ADO.NET ¢ Chapter 8 409

Figure 8.5 CDalOleDb class declaration (OrdersDataSet\CDalOleDb.cs)

usi ng System
usi ng System Dat a;
usi ng System Dat a. d eDb;

nanmespace O der sDat aSet
{
1] <summary>
/1l Summary description for Cbhal A eDb.
/11 </ summary>
public class Cbhal A eDb
{
string strConStr;
private O eDbConnection cn;

private O eDbDat aAdapter adptr = new O eDbDat aAdapter();
public CDal d eDb(string sConn)

{

t his.strConnecti on = sConn;

public string strConnection

{
get
{
return strConStr;
}
set
{
strConStr = val ue;
try
{
this.cn = new O eDbConnection(val ue);
}

Continued

www.syngress.com



410 Chapter 8 * ADO.NET

Figure 8.5 Continued

catch (Exception e)

throw e;

These three lines declare some class-level variables that will be used to main-
tain some state in the Data Access Layer:
string strConStr;
private O eDbConnection cn;
private O eDbDat aAdapter adptr = new O eDbDat aAdapter();

If the constructor is fired, it simply calls the public property strConnection and
forwards the connection string to the Set portion of the property procedure:
public CDal O eDb(string sConn)
{

t his.strConnection = sConn;

}

The strConnection property sets the class-level variable strConnStr, and then
proceeds to create a class-level connection. What this means is that when you
instantiate an object based on this class, it will create a connection when it is ini-
tialized. This behavior may not be desirable depending on the application:

public string strConnection

{
get
{
return strConStr;
}
set
{
strConStr = val ue;
try
{

www.syngress.com



=

ADO.NET ¢ Chapter 8 411

this.cn = new A eDbConnection(val ue);

}
catch (Exception e)
{
throw e;
}

}

The DAL now has a connection open and available during the life of the
object. The code in Figure 8.6 (the corresponding file on the CD is
OrdersDataSet\CDalOleDb.cs) demonstrates several of the ADO.NET objects
discussed earlier in the chapter, namely the Command object, Connection object,
and the DataReader.

Figure 8.6 The GetCustomers() Method (OrdersDataSet\CDalOleDb.cs)

publ i c O eDbDat aReader Get Customners()

{

string sSQL = "SELECT Customer| D FROM Customers";
A eDbCommand cnd = new A eDbConmand(sSQ., cn);

try
{
if (cn.State != ConnectionState. Open)
{
cn. Open();
}
return cnd. Execut eReader () ;
}
catch (Exception e)
{
t hrow e;
}

www.syngress.com



412

Chapter 8 * ADO.NET

Take a closer look at what the code is doing in Figure 8.6.

Create a variable to hold the simple SELECT statement, then create an
instance of the OleDbCommand object, passing the newly created SQL statement
and the class-level connection object.

string sSQL = "SELECT Customer| D FROM Custoners";
A eDbComrand cnd = new O eDbConmand(sSQ., cn);

In a try-catch block, the connection is interrogated for its state; if the state is
not open, open it. If a connection is already open and the Open method on the
cn object is called, an exception is thrown halting execution. Next, the
ExecuteReader() method is called to execute the command, and return a reference
to a DataReader object. If an exception is thrown, the catch block bubbles the
event back to the caller:

try
{
if (cn.State != ConnectionState. Open)
{
cn. Open();
}
return cnd. Execut eReader () ;
}
catch (Exception e)
{
t hrow e;
}

This very simple DAL class now has one property, and a single method. It 1s
capable of opening a connection to a database, and then returning the results in
the form of a DataReader. Figure 8.7 demonstrates how you can use the object to
populate a ComboBox on a Windows Form (the corresponding file on the CD is
OrdersDataSet\Form1.cs).

www.syngress.com



-

&

ADO.NET ¢ Chapter 8

Figure 8.7 Populate a ComboBox with an OleDbDataReader (OrdersDataSet\
Form1.cs)

public class Fornl : System W ndows. Fornms. Form

{
private System W ndows. For ns. ConboBox conmboBox1;

private string sConn = "<connection string>";
private CDhal O eDb db;

public Forml()

{
/1 Required for Wndows Form Designer support
InitializeConponent();
[/ TODO Add any constructor code after InitializeConponent call
db = new CDal O eDb(sConn);
popChoCust omer s() ;

}

private void popChoCustoners()

{
d eDbDat aReader dr;

dr = db. Get Custoners();

comboBox1. I tens. C ear ();
conboBox1. Begi nUpdat e() ;
while (dr.Read())

{
conboBox1. I tens. Add(dr. Get String(0));

}
conboBox1. EndUpdat e() ;

/1 always call C ose when done reading, this frees up the

/] connection to service other requests.

Continued

413

www.syngress.com



414

Chapter 8 * ADO.NET

Figure 8.7 Continued
dr.d ose();

The code in Figure 8.7 begins with declaring a variable named db that is
derived from the CDalOleDb class. In the Form1 method, the db object is set to
a new instance of the CDalOleDb class, and the connection string is passed to the
constructor. This fires the strConnection method, and a connection is created (note
that the connection is not open, and therefore is not taking up resources on the
database server).

The next step is a call to the private method to populate comboBox1. This
method declares a variable of type OleDbDataReader and sets the instance of the
DataReader to the output of the GetCustomers method of the DAL. The next step
in the method is to loop through the data and populate the ComboBox with the
CustomerID’s using the Read() method of the DataReader.

The Read() method of a DataReader object returns True if a row was success-
tully retrieved, False if a row was not found signaling the end of the data. This
allows you to set up a simple looping construct with a while statement. The
GetString method of the OleDbDataReader allows a programmer to retrieve a
result from the DataReader of type string. Because .NET is a strongly typed envi-
ronment, this saves you the hassle of having to cast the data to a type string.
Calling the BeginUpdate and EndUpdate methods of the ComboBox object will
keep the screen from flickering while the data is added to the ComboBox.

Using DataSets

As we discussed earlier in the chapter, a DataSet is basically an in-memory rela-
tional database. The sample application uses a DataGrid populated with some
order information from the Northwind database that comes with Access and
SQL 2000.To continue creating the DAL, the next method is the GetOrders
method. The code in Figure 8.8 contains the implementation of the GetOrders
method (which you can find on the accompanying CD as OrdersDataSef\
CDalOleDb.cs). This method returns a DataSet that is used to populate the
DataGrid on the form.

www.syngress.com



ADO.NET ¢ Chapter 8 415

Figure 8.8 GetOrder Method of the DAL (OrdersDataSet\CDalOleDb.cs)

/1 O ass-level DataAdapter, and CommandBuil der. These lines are
/1 included in the class declaration

private O eDbDat aAdapter adptr = new O eDbDat aAdapter();
private O eDbConmandBui |l der cndBI dr;

public DataSet GetOrders(string sCustlD)

{
Dat aSet ds = new DataSet ();
string sSQL = "SELECT Order| D, EnployeelD, " +
" OrderDate, RequiredDate, " +
Shi ppedDate, ShipVia " +
FROM Orders " +
VWHERE CustonerID = '" + sCustlD + "'";
try
{
if (cn.State == ConnectionState. d osed)
{
cn. Open();
}
cmdBl dr = new O eDbConmandBui | der (adptr);
adptr. Sel ect Command = new O eDbCommand(sSQL, cn);
adptr.Fill (ds, "Orders");
}
catch (Exception e)
{
throw e;
}
return ds;
}

Continued

www.syngress.com



416

Chapter 8 * ADO.NET

Figure 8.8 Continued

public void SaveRecords(string sTable)

{

try

{

adptr. Updat e(ds, sTable);
}
catch (Exception e)
{
throw e;

}

}

Notice the input parameter, and how it is used to build the SELECT state-
ment for the variable named sSQL.You could have just as easily used a stored
procedure if the data source supported it.

Again, the code is using the class-level Connection object. It also uses the class-
level DataAdapter, which we discussed as representing the Connection and
Command objects for connecting a DataSet to a data source. The DataAdapter is
specific to the Managed Provider; such as the OleDbDataAdapter, or the
SqlDataAdapter. The code in Figure 8.8 ensures that the connection is open, cre-
ates a Command object, and sets it as the SelectCommand for the DataAdapter. The
code then populates the DataSet using the DataAdapters Fill() method. Again, the
code bubbles any Exceptions back to the caller or returns the DataSet.

In addition to setting the SelectCommand of the DataAdapter, the code in
Figure 8.8 instantiates the class-level OleDbCommandBuilder. The CommandBuilder
will take the syntax from the SelectCommand and synthesize the corresponding
UpdateCommand, InsertCommand, and DeleteCommand objects for the DataAdapter.
These commands are used during the DataAdapter. Update method. Again, the
CommandBuilder must be created before the DataAdapter.Select Command is speci-
tied. The CommandBuilder “listens” for the SelectCommand property to be set, and
then builds the corresponding commands for the developer.

The SaveRecords method in Figure 8.8 demonstrates the Update method of the
DataAdapter class. This method fails if the correct UpdateCommand, InsertCommand,

www.syngress.com



&

ADO.NET ¢ Chapter 8

and DeleteCommands are not specified explicitly, or by using the CommandBuilder.
The implementation of the GetOrders method 1s shown in Figure 8.9
(OrdersDataSef\Form1.cs on the accompanying CD).

Figure 8.9 GetOrders Implementation. (OrdersDataSet\Form1.cs)

private void conmboBox1_Sel ect edl ndexChanged( obj ect sender,

System Event Args e)

{
string sCustl D = conboBox1. Sel ectedltem ToString();
Cursor. Current = Cursors. Wit Cursor;
| abel 1. Text = Get Cust onmer Nane(sCust|D);
popG dOrders(sCustlD);
Cursor.Current = Cursors. Default;
}

private void popG dOrders(string sCustlD)

{

if (ds !'= null)

{

ds.C ear();

}

ds = db. Get Orders(sCustlID);

dat aGi d1. Dat aSource = ds;
}

The code in Figure 8.9 consists of two functions: the first function
comboBox_SelectedIndexChanged is an event that is triggered when the value of a
ComboBox 1s changed. The example uses the SelectItem. ToString method to retrieve
the value that the user selected and calls the pop Grd Orders function. The second
function, pop GrdOrders takes the CustomerID as an input parameter, and passes it
to the DAL class. The DAL class will return a reference to the DataSet. This refer-
ence is then specified as the DataSource tor the DataGrid on the form. Notice that
the code tests for a null reference to the DataSet. If the reference is Null, a Null
reference is thrown. The Clear method of the DataSet removes all DataRows in all
DataTables in the DataSet.

417

www.syngress.com



418

Chapter 8 * ADO.NET

Working with SQL.NET

Working with the System.Data.SqlClient namespace is very similar to working
with the System.Data. OleDb namespace. As a matter of fact, switching back and
forth between the two namespaces is quite easy. You can do so by using a simple
find and replace operation—and, of course, removing the provider attribute from
the connection string. Replace the OleDb prefix with Sql and compile.

In the examples for Figures 8.5 through 8.9, the data source was MS Access.
Let’s now switch to SQL Server to demonstrate the GetOrders method using a
stored procedure. A stored procedure is a group of one or more SQL statements that
is pseudo-compiled into an execution plan. SQL Server will execute the plan and
return the results in one of three ways. Table 8.8 gives a list of these, along with a
brief description. All of these are demonstrated later in this section.

Table 8.8 Stored Procedure Output Options

Option Description

Output parameters Output parameters can return numeric data, dates, and
textual data. A stored procedure can return a maximum
of 2100 parameters, including text, ntext, and image
data.

Return codes A stored procedure may return a single integer value.
These are generally useful for returning the error state
or status of the procedure.

Result sets A result set for each SELECT statement contained in the
stored procedure or any other nested stored procedures.

Developing & Deploying...

Embedded SQL Statements

Embedded SQL or Dynamic SQL is a term given to generating SQL state-
ments at runtime and executing it against the database. For Access, it is
the only method. For SQL Server, Oracle, DB2, and so on, it is optional.
For SQL Server, the stored procedure is preferred for several reasons. SQL
Server can optimize the query plan and cache it for reuse, thus saving
the cost of parsing and compiling the statement every time it runs. Also,

Continued

www.syngress.com



.
\-:i
¥
&

ADO.NET ¢ Chapter 8

you can use a stored procedure to prevent direct access to a table. A
table owner can create a stored procedure to select records from the
table. You can grant Execute permissions for the stored procedure to a
user, however, select permissions are not granted to the user against the
owner’s table. The user is able to select records using the stored proce-
dure, but they are not able to execute SELECT statements directly. This
behavior is known as the ownership chain in SQL Server, and it is used
by many DBAs to control ad-hoc access to sensitive data. This approach
obviously limits the use of Embedded SQL, however, the benefits of
speed, reuse, and security gained by the use of stored procedures far
outweighs the flexibility gained by Embedded SQL.

Using Stored Procedures

With ADO.NET, you have a couple of options for calling stored procedures.
The obvious method is to create a command object with a Command Type

of Command Type.StoredProcedure similar to the example in Figure 8.10
(OrdersDataSet\CDalSql.cs on the accompanying CD).The merits of this
method are that you can declare parameters and return the values in output
parameters. The use of parameters for returning a single row of data is preferred
over returning a result set of one row. Output parameters require less overhead
both for the server and the client. You can also retrieve return codes by using
this method.

Figure 8.10 ComandType.StoredProcedure (OrdersDataSet\CDalSql.cs)

public DataSet GetOrdersl(string sCustlD)
{

Dat aSet ds = new DataSet ();

Sgl Command cnmd = new Sql Conmand() ;

Sql Par anet er par am

cnd. CommandText = "uspGet OrdersByCust|D";

crmd. CommandType = ConmandType. St or edPr ocedur €;

Param = cnd. Par anet ers. Add(new Sql Par aneter (" @Cust| D",
Sql DbType. NChar, 5));

Param Directi on = ParaneterDirection.|nput;

Continued

419

" www.syngress.com



420 Chapter 8 * ADO.NET

Figure 8.10 Continued

Par am val ue = sCust| D;

try
{
if (cn.State == ConnectionState. C osed)
{
cn. Qpen();
}
adptr. Sel ect Command = cnd;
adptr. Fill (ds, "Orders");
}
catch (Exception e)
{
throw e;
}
return ds;

Another method is to set the CommandType to Command Type. Text and
include the EXEC(UTE) keyword in the SelectCommand property, similar to the
example in Figure 8.11 (OrdersDataSet\CDalSql.cs on the accompanying CD).
In this example, you can see that the CustID is appended to the SQL statement,
which will result in the successful execute and passing of the parameters. Figure
8.12 (OrdersDataSet\Data\uspGetOrdersByCustID.sql on the CD) contains the
definition of the stored procedure. The benefit with this approach is that param-
eter objects do not have to be created, thus saving some overhead. The downside
1s that output parameters and return codes are not available.

www.syngress.com



ADO.NET ¢ Chapter 8 421

Figure 8.11 CommandType.Text (OrdersDataSet\CDalSq]l.cs)

public DataSet GetOrders(string sCustlD)

{
Dat aSet ds = new DataSet ();
string sSQL = "EXEC uspGet OrdersByCustID '" + sCustID + "'";
try
{
if (cn.State == ConnectionState. C osed)
{
cn. Qpen();
}
adptr. Sel ect Command = new Sql Conmand(sSQ., cn);
adptr. Fill (ds, "Oders");
}
catch (Exception e)
{
throw e;
}
return ds;
}

Figure 8.12 uspGetOrdersByCustID Stored Procedure (OrdersDataSet\Data\
\ uspGetOrdersByCustID.sql)

CREATE PROCEDURE uspGet Order sByCust | D(
@Cust | D NCHAR(5)

)

AS

SELECT Order| D

, Enpl oyeel D

Continued

www.syngress.com



422

Chapter 8 * ADO.NET

Figure 8.12 Continued

Or der Dat e
Requi redDat e
Shi ppedDat e
, ShipVia
FROM O ders
VHERE Custoner| D = @Cust| D

As you can see, the code in Figure 8.10 takes fewer lines of code than Figure
8.9, however, it 1s also important to point out that the stored procedure in Figure
8.11 does not have output parameters defined, nor is a return value defined.

If the data source you are using supports stored procedures, you should take
advantage of them. The modularity gained by separating the data access layer and
the business layer is enhanced when stored procedures are leveraged in the final
solution. The examples in Figures 8.7 through 8.11 demonstrate a possible migra-
tion path that might take place in a project that was prototyped using Access and
then upgraded to SQL Server—all in all not a lot of changes for a major upgrade
in database functionality.

Working with Odbc.NET

ODBC is an acronym that stands for Open Database Connectivity. Modern rela-
tional databases have proprietary APIs that you can use to create data driven
applications. These APIs may be cryptic, difficult to use, and may or may not be
based on standards. ODBC was envisioned to provide a common programming
model that developers could use to create data-driven applications by program-
ming to the ODBC API. Each data provider would then create an ODBC driver
that could bridge the gap between the prospective data source and the ODBC
API. ODBC is generally thought of as being slower than OLEDB; however, there
are many more ODBC drivers available than there are OLEDB drivers.

Microsoft has created an ODBC Managed Provider for .NET. This names-
pace is designed to work with native ODBC drivers in the same manner that the
OLEDB namespace allows developers to work with native OLEDB drivers.
Microsoft has made the ODBC namespace available as an add-on to the .NET
Framework that needs to be downloaded from the Microsoft Web site. Microsoft
has stated that the ODBC drivers for Access, SQL Server, and Oracle will work
with the new namespace.

www.syngress.com



ADO.NET ¢ Chapter 8

During the setup of the System.Data. Odbc namespace, the System.Data
.Odbc.dll 1s added to the Global Assembly Cache. This will allow a developer to
add a reference to this DLL in the project. In Visual Studio.NET, select Project
| Add Reference and select the System.Data.Odbc.dll file. After you have estab-
lished a reference, the System.Data. Odbc namespace 1s ready for use.

The System.Data. Odbc namespace is very similar to the System.Data.OleDb
and the System.Data.SqlClient namespaces. The ease of switching between the
namespaces was demonstrated earlier in the chapter, and much of what was
demonstrated there also applies to the System.Data. Odbc namespace. As before, the
obvious difference is that the Connection, Command, and DataAdapter objects are
prefixed with Odbc. The Connection string is also difterent. Table 8.9 lists some
examples of connection strings that you can use with the System.Data. Odbc
namespace.

Table 8.9 Sample Connection Strings for the System.Data.Odbc Namespace

Connection Strings

Driver={M crosoft ODBC for

Or acl e}; Server =<ser ver >; U D=<user >; P\ND=<passwor d>

Driver={Mcrosoft Access Driver (*.ndb)},; DBQ=<path to

fil e>

Driver={Mcrosoft Excel Driver (*.xls)};DBQ=<path to

fil e>

Driver={Mcrosoft Text Driver (*.txt;
*.csv)}; DBQ=<path to fil e>

DSN=<dsn nane>

For a DSN connection, the appropriate entries must be made in the Registry
for a successful connection. The ODBC Data Source Administrator in Windows
2000 is used for this purpose.

Using DSN Connection

Before you can use a DSN connection, you must create it using the ODBC Data
Source Administrator. The application steps the user through the process of cre-
ating a the Registry entries used to establish a connection to a particular data
source. The code in Figure 8.13 (OrdersDataSet\CDalOdbc.cs on the CD) is for

423

www.syngress.com



424

&

Chapter 8 * ADO.NET

the CDalOdbc class, and the strConnection method implemented in ODBC. This
method is not aware at compile time, whether it will be using a DSN or not. The
implementation in Figure 8.14 demonstrates using the method with a DSN.

Figure 8.13 Data Access Layer for ODBC (OrdersDataSet\CDalOdbc.cs)

usi ng System
usi ng System Dat a. Gdbc;

nanespace O dersDat aSet

{

public class Cbal Gdbc

{

string strConStr;
private OdbcConnection cn;

private OdbcDat aAdapter adptr = new QdbcDat aAdapter();

publ i c CbDal Gdbc(string sConn)
{

this.strConnection = sConn;

public string strConnection

{
get

return strConStr;

set

strConStr = val ue;
try
{

this.cn = new QdbcConnecti on(val ue);

}
catch (Exception e)

Continued

www.syngress.com



ADO.NET ¢ Chapter 8

Figure 8.13 Continued

{

throw e;

Figure 8.14 Using the CDalOdbc Class with a DSN

string sConn = "DSN=dsn_Dot Net SQL";

db = new CDal A eDb(sConn);

The DSN used in Figure 8.14 contained the provider definition, path to the
file, and any security information necessary to connect to the resource. The rest
of the process for using the System.Data. Odbc namespace is exactly the same as
using the System.Data.OleDb, and the System.Data.SqlClient namespaces.

425

www.syngress.com



426

Chapter 8 * ADO.NET

Summary

ADO.NET represents a fundamental change in the way Windows developers will
work with data for the foreseeable future. With its rich support for XML, and its
demonstrated extensibility, ADO.NET will lead the way for data access.

With the creation of ADO.NET, the architecture of data access has leapt for-
ward with rich support for XML, and is particularly suited to disconnected data
manipulation. The recordset object in ADO 2.x has been replaced with the
DataReader and the DataSet. The DataReader is a read-only, forward-only stream
of data. The DataReader allows for very fast sequential access to data. The DataSet
1s an in-memory copy of one or more tables from a data source. The DataSet has
rich support for synchronizing the copy of data in its DataTable collection, as well
as providing for much of the same functionality that a relational database has to
offer, such as relationships, primary keys, and constraints. Because working with
data in ADO.NET is connection-less for the most part, the DataSet will play an
important role in applications that require scrolling access to data. The state man-
agement built into the DataSet is superb, and it is obvious to see that Microsoft
has put a great deal of effort into this object and the related collections.

A DataSet contains a collection of Data'lables. Data'lables contain a collection
of DataRows, which contain a collection of DataColumns.You can create a
DataSet manually by adding Data’Tables and DataRows at runtime, or you can use
the Fill method of a DataAdapter to dynamically create Data’lables and DataRows
by retrieving data from a data source. The DataSet does not connect to a data
source, as a matter of fact, it is completely disconnected from a data source. A
DataAdapter represents the connection and command objects that are used to
connect to and retrieve data. Implementations of the DataAdapter are specific to a
Managed Provider. A Managed Provider is a set of classes that are created specifi-
cally to connect to a data source, and issue commands against the connection.

The .NET Framework Beta2 ships with the System.Data.OleDb, and the
System.Data.SqlClient Managed Providers. A third was made available as a separate
download that creates the System.Data. Odbc Managed Provider. The
System.Data. OleDb provider was created to use the many existing OLE-DB
providers that are already available, such as the OLE-DB provider for Oracle, MS
Access, and SQL Server, to name a few. The System.Data.SqlClient provider was
created specifically to take advantage of a lower protocol that is proprietary to
SQL Server. This provider is very fast and efficient, but only for connecting to
MS SQL Server. The System.Data. Odbc provider is similar to the System.Data
.OleDb provider except that it makes use of existing ODBC drivers.

WWW.syngress.com




ADO.NET ¢ Chapter 8 427

The Managed Providers inherit interfaces and common objects from the .NET

Framework and provide remarkably similar object models.You can use a find and

replace operation to switch from one Managed Provider to another. This is made

possible by the adherence to a naming convention that involves the use of a prefix

that is added to Managed Provider specific objects such as the connection. For
example, the SqlConnection object has the same interface as the OleDbConnection
object, which has the same interface as the OdbcConnection object.
The command objects are specific to the Managed Providers as well as : ‘

the connection objects. They are the OleDbCommand, SqlCommand, and

OdbcCommand. These commands are used to execute statements that the data

source will respond to, such as SQL queries, stored procedures, or functions.
These command objects contain a collection of parameters that you can use ﬂ. 51

with either stored procedures or parameterized queries.

Solutions Fast Track

Introducing ADO.NET

M Recordset is gone. It was replaced with the DataSet and the DataReader.

M Managed Providers are used to create data source—specific objects for
connecting to and manipulating data in data sources.

M ADO.NET contains rich support for XML, and XML is used to
transport data between the difterent layers.

M The core namespaces are the following:

System.Data
System.Data. Common
System. Data. OleDb
System. Data.SqlClient
System.Data.Sql Types
System.Data. Odbc

M DataSets are made up of Datalables, which are made up of DataColumns

and DataRows.




428 Chapter 8 * ADO.NET

4]

DataViews provide for data binding, as well as search, sort, filter, and
navigation of data in Data'lables.

Working with System.Data. OleDb

4]

|
4
4]

4
4]
[

4]
4]

‘i

4]

i o

The System.Data. OleDb ships with the .NET Framework.
A connection string must specify the correct provider attribute.
The OleDbCommand object 1s used to execute a SQL statement.

Use the ExecuteReader() method of the OleDbCommand object to return
an OleDbDataReader object to the calling function.

Working with SQL.NET

The System.Data.SqlClient ships with the .NET Framework.
Remove the Provider attribute from the connection string.

The SqlClient Managed Provider can only be used to connect to SQL
Server 7.0 and higher.

The preferred method of data access is with stored procedures.

Create SqlConnection and SqlCommand objects for interacting with the
SQL Server.

Working with Odbc.NET

The System.Data.Odbc is a separate download from Microsoft.

You can use the ObdcConnection in conjunction with a Data Source
Name (DSN) or a connection string.

Use OdbcConnection and OdbcCommand objects to connect to and
interact with a data source.

Odbc.NET uses a Provider attribute similar to the OleDbConnection
object, but with a slightly different syntax.

WWW.syngress.com




ADO.NET ¢ Chapter 8

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Which object allows for faster reading of data: the DataReader or the DataSet?

A: As always, testing is the final determination, but generally the DataReader is
faster than the DataSet. The DataReader is intended to provide a forward-
scrolling source of read-only data that provides access to data one row at a
time. If you are returning a great number of rows, the DataReader may be a
better idea than the DataSet.Your testing will determine if the DataSet is
better for smaller amounts.of data.

Q: Should I use the OleDb-Managed Provider or the SQL Managed Provider?

A: If your project is using SQL Server in production, by all means use the SQL
Managed provider. The-SQL Managed Provider is more efficient and faster
than the OleDb libraries—which is about itssonly advantage. Both objects
have the same options and methods—the difference 15 in the implementation.
The OleDb Managed Provider will allow you change the DataSource easily
without having to change much code.

Q: Should I use SQL statements or stored procedures fot.data access?

A: Stored procedures are the preferred method of data access because they allow
for another layer of granularity to your application. Most relational databases
also precompile and take the opportunity to optimize the query plan of the
stored procedure based on index statistics. They do, however, require other
specialized skills that may not be available on your team. In general, resort to
SQL statements as a last resort or in special instances.

429

WWW.syngress.com




430 Chapter 8 * ADO.NET

Q: When should I use output parameters?

A: Output parameters have less overhead than returning data from a stored pro-
cedure does. If you are returning a couple of pieces of data, or even an entire
row of data, using the output parameters is more efticient. It is, however, a lot
more work for both the DBA and the developers. It may come down to your
project deadlines, but in general, they are variables in memory that are more
efficient than an XML Data Stream.

WWW.syngress.com




Chapter 9

Working with XML

Solutions in this chapter:

| B
i

Introduction to XML
Working with XML DOM

‘Working with XML and Relational Data

Working with XPath and XSL
Transformations

M Summary

M Solutions Fast Track

M Frequently Asked Questions

431



432

Chapter 9 * Working with XML

Introduction

The popularity of the Internet took oft with the advent of the World Wide Web.
Suddenly, a world of information was available using a Web browser and dial-up
access to the Internet. Without diverse content, however, the World Wide Web
would be of little interest.

The wide availability of Hypertext Markup Language (HTML) editors
allowed people with little technical knowledge to publish their content on the
Web for the world to see. The proliferation of personal Web sites that display
family pictures and lists of hobbies is testament to this. HTML is an excellent
language for defining the presentation of data, but it is not very useful in
describing the data itself. As the Web matured, it became apparent that separation
of presentation from content was highly desirable. This separation allowed people
such as graphic artists to concentrate on presentation and allowed people such as
programmers to concentrate on creating and manipulating data.

Extensible Markup Language (XML) has emerged as the Web standard for
representing and transmitting data over the Internet. XML is a generic, platform-
independent data description language and as such has gained great popularity in
the computer industry, adopted by many of the largest companies in the com-
puter industry. The World Wide Web Consortium (W3C) has produced standards
for several XML-related technologies.

Microsoft has realized the importance of XML and has been providing XML
support within their products for the past several years. Internet Explorer has
continually added new support for XML with each release. XML support is
taken to a new level within the .NET Framework. In fact, use of XML is preva-
lent throughout the .NET Framework including use in configuration files, C#
source code comments, and Web services. This chapter teaches you to work with
XML and related technologies provided within .NET using C#.

Before we delve into XML support within .NET, we take a brief look at
XML and related technologies. You will then be ready to see how .NET provides
first-class support for working with XML.

Introduction to XML

There has been a lot of confusion regarding what XML really is. When XML was
first covered in the trade press, there was a tremendous amount of hype sur-
rounding it. XML was touted as the “next big thing” in the computer industry. It
was the savior of all things computer-related. It followed in a long line of saviors,

www.syngress.com



Working with XML ¢ Chapter 9

such as structured programming, artificial intelligence, case tools, object-oriented
programming, design patterns, and so on. Given this coverage in the press, XML
had little chance to live up to the expectations placed upon it. XML is, however, an
important and viable technology when considered with appropriate expectations.

So what is XML? A very simplified explanation is that it is structured text. If
you don’t currently know much about XML, you may be thinking, “That’s it?
What is the big deal?” The simplicity of XML is what makes it a big deal. Text is
supported on every computing platform. So, if you can represent your data in
text, people on every other computer platform can read your data without need
for specialized conversions from one format to another. This makes it easy for a
manufacturer to share data with his suppliers, for example.

Let’s take a look at a simple example of an XML document:

<?xm version="1.0" standal one="yes"?>
<Enpl oyees>
<Enpl oyee Enpl oyeel D="1">
<Fi r st Name>John</ Fi r st Nanme>
<M ddl el ni t >M</ M ddl el ni t >
<Last Name>Sni t h</ Last Nanme>
<Sal ari ed>t rue</ Sal ari ed>
<Wage>40000</ Wage>
<Acti ve>f al se</Active>
</ Enpl oyee>
</ Enpl oyees>

The data in an XML document is described by elements and attributes.
Elements have a start tag and an end tag, like HTML, enclosed in angle brackets.
For instance <Employees> is the start tag and </Employees> is the end tag for
the <Employees> element. The “/” character indicates an end tag. The
<Employees> element is the first element in the XML document and 1s known
as the root element. An element can also have attributes. In this example,
EmployeelD is an attribute with a value of 1.

Elements can also contain sub-elements. In the example, the <Employee>
element is a sub-element of the <Employees> element. This is an important item
to note. XML documents are structured in a hierarchical format. An XML docu-
ment can be known as well-formed. A simplified explanation of a well-formed
XML document is that it has one root node, each element must have both start

433

www.syngress.com



434 Chapter 9 * Working with XML

and end tags, and element tags must be nested properly. The following example
shows improper nesting:

<?xm version="1.0" standal one="yes" ?>
<Enpl oyees>
<Enpl oyee Enpl oyeel D="1">

<Fi r st Name>John</ Fi r st Name>
<M ddl el ni t >M</ M ddl el ni t >
<Last Name>Sni t h</ Last Nane>
<Sal ari ed>t rue</ Sal ari ed>
<WAge>40000</ Wage>
<Active>fal se

</ Enpl oyee>

</ Active>

</ Enpl oyees>

In this example, the <Active> elements end tag comes after the <Employee>
elements end tag. Because the <Employee> element is the parent element of the
<Active> element, the <Active> element’s end tag should precede it.

You could write your own program to read a well-formed XML document.
But, because a well-formed document is a hierarchical representation of data,
generic programs have been written to read XML documents. A program that
can read an XML document is known as an XML parser. Several difterent types of
parsers are available in .NET. Programmer’s access XML data read in by a parser
using an application programming interface (API) the parser exposes. One pop-
ular API is the Document Object Model (DOM), which we describe next.

Explaining XML DOM

The W3C has standardized an API for accessing XML documents known as
XML DOM.The DOM API represents an XML document as a tree of nodes.
Because an XML document is hierarchical in structure, you can build a tree of
nodes and subnodes to represent an entire XML document.You can get to any
arbitrary node by starting at the root node and traversing the child nodes of the
root node. If you don’t find the node you are looking for, you can traverse the
grandchild nodes of the root node.You can continue this process until you find
the node you are looking for.

www.syngress.com



Working with XML ¢ Chapter 9

The DOM API provides other services in additional to document traversal.
You can find the full W3C XML DOM specification at www.w3.org/DOM.
The following list shows some of the capabilities provided by the DOM API:

» Find the root node in an XML document.

» Find a list of elements with a given tag name.

»  Get a list of children of a given node.

= Get the parent of a given node.

» Get the tag name of an element.

»  Get the data associated with an element.

»  Get a list of attributes of an element.

»  Get the tag name of an attribute.

»  Get the value of an attribute.

» Add, modify, or delete an element in the document.
» Add, modify, or delete an attribute in the document.
= Copy a node in a document (including subnodes).

The DOM API provides a rich set of functionality to programmers as is
shown in the previous list. The .NET Framework provides excellent support for
the XML DOM API, which you will see later in this chapter. The DOM API is
well suited for traversing and modifying an XML document. But, it provides little
support for finding an arbitrary element or attribute in a document. Fortunately

another XML technology is available to provide this support: XML Path
Language (XPath).

Explaining XPath

XPath is another XML-related technology that has been standardized by the
W3C. XPath is a language used to query an XML document for a list of nodes
matching a given criteria. An XPath expression can specify both location and a
pattern to match.You can also apply Boolean operators, string functions and
arithmetic operators to XPath expressions to build extremely complex queries
against an XML document. XPath also provides functions to do numeric evalua-
tions, such as summations and rounding. You can find the full W3C XPath speci-
fication at www.w3.org/ TR /xpath. The following list shows some of the
capabilities of the XPath language:

435

www.syngress.com



436

Chapter 9 * Working with XML

» Find all children of the current node.
» Find all ancestor elements of the current context node with a specific tag.
» Find the last child element of the current node with a specific tag.

» Find the nth child element of the current context node with a given
attribute.

» Find the first child element with a tag of <tagl> or <tag2>.
»  Get all child nodes that do not have an element with a given attribute.
»  Get the sum of all child nodes with a numeric element.

= Get the count of all child nodes.

The preceding list just scratches the surface of the capabilities available using
XPath. Once again, the .NET Framework provides support for XPath queries
against XML DOM documents and read-only XPath documents. You will see
examples of this later in this chapter.

Explaining XSL

According to the W3C, XSL is a catchall phrase that encompasses three different
W3C-based specifications. It includes XPath, XSL Transformations (XSLT), and
XSL Formatting Objects (XSL-FO). XSL-FO is an XML-based grammar applied
to an XML document using stylesheets that aftect the presentation of the docu-
ment. XSL-FO is still a work-in-progress, so in this chapter we focus on XPath
and XSLT.

XSLT is an XML-based language for transtorming XML documents. XSLT
stylesheets applied to an XML document transform the XML to another form.
You can use XSLT stylesheets to convert XML documents to other file formats
such as HTML, RTE PDE etc. XSLT can also be used transform XML to XML.
For instance, if a manufacturer creates XML in one format, but his suppliers
assume they will receive XML in another format, an XSLT stylesheet can be
applied to the XML document to convert it to the format expected by the sup-
pliers. XPath expressions can be used by XSLT stylesheets during the transforma-
tion process. You can find more information about XSL at
www.w3.org/ TR /xslt.

XSLT support is built into the .NET Framework. Later in the chapter, we
show examples that apply XSLT stylesheets to XML documents.

www.syngress.com



Working with XML ¢ Chapter 9

Explaining XML Schemas

As previously mentioned, XML is a good format for exchanging data between
diverse groups. However, if groups cannot agree on a specific format for XML
that they share, it will be of no help. The data in an XML document itself does
not provide the information that defines the structure of an XML document.

Document Type Definitions (DTDs) are one way to describe the structure of
an XML document. A DTD specifies the elements and attributes in an XML
document. It also indicates the position of elements and the number of times
they occur. DTDs are the traditional way the structure of an XML document has
been expressed.

If an XML document has a DTD associated with it, an XML parser can read
the DTD and determine if the XML document conforms to the DTD. If the
XML conforms to the DTD, it is known as a valid XML document. If a docu-
ment is valid, the receiver of a document knows that the data in it conforms to
the structure expected. Not every XML parser performs validation however.
Parsers that do perform validation are known as validating parsers.

One limitation of DTDs is that they do not give any indication of the data
type associated with the elements and attributes in an XML document. For
instance, if an XML document has an element with a tag <OrderID>, it is
unclear if order ID is a string, numeric, or something else.

XML schemas pick up where DTDs leave oft. XML schemas provide all of
the same support in defining the structure of an XML document as DTDs. In
addition, XML schemas also let you define data types for elements and attributes,
specify minimum and maximum values