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Preface

When Academic Press approached me with the proposal that I serve as
editor of a handbook for digital signal processing, I was aware of the need for
such a book in my work in the aerospace industry. Specifically, I wanted basic
digital signal processing principles and approaches described in a book that a
person with a standard engineering background could understand. Also, I
wanted the book to cover the more advanced approaches, to outline the advan-
tages and disadvantages of each approach, and to list references in which I
could find detailed derivations and descriptions of the approaches that might
be most applicable to given implementation problems.

The various authors in this volume have done an outstanding job of ac-
complishing these goals. Coverage of the fundamentals alone makes the book
self-sufficient, yet many advanced techniques are described in readable,
descriptive prose without formal proofs. Detailing fundamental approaches
and describing other available techniques provide an easily understandable
book containing information on a wide range of approaches. For example, the
chapter on adaptive filters derives basic adaptive filter structures and provides
the reader with a background to ‘‘see the forest’’ of adaptive filtering. The
chapter then describes various alternatives, including adaptive lattice struc-
tures that might be applicable to particular engineering problems. This
description is provided without the detailed derivations that get one ‘‘lost in
the trees.”’

Many new useful ideas are presented in this handbook, including new finite
impulse response (FIR) filter design techniques, half-band and multiplierless
FIR filters, interpolated FIR (IFIR) structures, and error spectrum shaping.
The advanced digital filter design techniques provide for low-noise, low-
sensitivity, state-space, and limit-cycle free filters. Filters for decimation and
interpolation are described from an intuitive and easily understandable view-
point. New fast Fourier transform (FFT) ideas include in-place and in-order
mixed-radix FFTs, FFTs computed in nonorthogonal coordinates, and prime
factor and Winograd Fourier transform algorithms. Transmultiplexing discus-
sions carefully describe how to control crosstalk, how to satisfy dynamic range
requirements, and how to avoid aliasing when resampling. Using an over-
determined set of Yule-Walker equations is a key concept described for reduc-
ing data-induced hypersensitivities of parameters in model-based spectral
estimation. Tools are provided for understanding the basic theory, physics,

xi



Xii Preface

and computational algorithms associated with deconvolution and time delay
estimation. Recursive least squares adaptive filter algorithms for both lattice
and transversal structures are compared to other approaches, and their advan-
tage in terms of rapid convergence at the expense of a modest computational
increase is discussed. Extensions of Kalman filtering include square-root filter-
ing. The simplicity and regularity of distributed arithmetic are lucidly described
and are shown to be attractive for VLSI implementation.

There is some overlap in the material covered in various chapters, but
readers will find the overlap helpful. For example, in Chapter 2 there is an ex-
celtent derivation of FIR digital filters that provides the necessary
mathematical framework, and in the first part of Chapter 3 there is an intuitive
explanation of how various FIR filter parameters, such as impulse response
length, affect the filter performance. Similarly, in Chapter 9 the Yule-Walker
equations are discussed in the context of spectral analysis, whereas in Chapter
10 these equations appear from a different viewpoint in the context of decon-
volution.

Many applications in digital signal processing involve the use of computer
programs. After many discussions the chapter authors decided to include
useful programs and to give references to publications in which related pro-
gram listings can be found. For example, Chapter 7 points out that a large
percentage of FFT applications are probably best accomplished with a radix-2
FFT, and such an FFT is found in Appendix 7-C. However, Appendixes 7-D
and 7-E present prime factor algorithms designed for IBM ATs and XTs. The
listing in Appendix 7-E is a highly efficient 1008-point assembly language pro-
gram. Other sources for FFTs are also listed in Appendix 7-B.

The encouragement of Academic Press was crucial to the development of
this book, and I would like to thank the editors for their support and advice. 1
would also like to express my appreciation to Stanley A. White for his behind-
the-scenes contribution as an advisor, and to thank all of the chapter authors
for their diligent efforts in developing the book. Finally, I would like to thank
my wife, Carol, for her patience regarding time I spent compiling, editing, and
writing several chapters for the book.
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CCwW Counterclockwise

CG Coherent gain
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DA Distributed arithmetic
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DCT Discrete cosine transform

DFT Discrete Fourier transform
DF2 Direct-form 2

DIF Decimation-in-frequency
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DPCM Differential pulse code modulation
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HT
IDFT
IDTFT
IFFT
IFIR
IIR
1Q

IT
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KT
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LHP
LMS
LP
LPC
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LS
LSA
LSI
LTI
MA
MAC
MFIR
MIR
MLMS
MMS
MP
MSE
MSP
NO
NTSC
NTT
PFA
PROM
PSD
PSR
QMF
RAM
RC
RCFA
RHT
RLS
ROM
RRS
RT
SD
SDSLSI
SER
SFG
SNR

Acronyms and Abbreviations

Highpass filter

Haar transform

Inverse discrete Fourier transform
Inverse discrete-time Fourier transform
Inverse fast Fourier transform
Interpolated finite impulse response
Infinite-duration impulse response
In-phase and quadrature

Inverse transform; identity transform
Karhunen-Loéve transform
Kumaresan-Tufts

Lossless bounded real
Inductance-capacitance

Lossless discrete integrator

Left half-plane

Least-mean-square

Lowpass

Linear predictive coding

Lowpass filter

Least squares

Least squares analysis

Large-scale integration

Linear time-invariant

Moving average
Multiplier-accumulator
Multiplicative finite impulse response
Mixed-radix integer representation
Modified least-mean-square
Minimum mean-square
McClellan-Parks

Mean-squared error

Most significant product

Natural order

National Television Systems Committee
Number-theoretic transform

Prime factor algorithm
Programmable read-only memory
Power spectrum density
Parallel-to-serial register

Quadrature mirror filter
Random-access memory

Ruritanian correspondence

Recursive cyclotomic factorization algorithm
Rationalized Haar transform
Recursive least squares

Read-only memory

Recursive running sum

Rapid transform

Sign digit

Silicon-on-sapphire large-scale integration
Sequential regression

Signal-flow graph

Signal-to-noise ratio
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SPR
SR
SRFFT
SSBFDM
ST
SVD
TDM
VLSI
WDF
WFTA
WHT
WSS

Serial-to-parallel register

Shift register

Split-register fast Fourier transform
Single-sideband frequency-division multiplexing
Slant transform

Singular value decomposition

Time division (domain) multiplexed
Very large-scale integration

Wave digital filter

Winograd Fourier transform algorithm
Walsh-Hadamard transform
Wide-sense stationary
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Symbol

a-b

a, x, ...
a, x ..
a* x* ...
a, bn Cry

a.

b, c., di, y:
b

by

c
C;

Cu(m) -

()

d

d(n), g(n)
dn)
[d(n), jdn)]
d(s,n)

eij
e(n)
S

Jo

So

g

N

S
2
f(z2)

g(n), h(n), ...

h(n)
h.@)

Notation

Meaning

Give variable a the value of expression b (or replace a by b)
Lowercase denotes scalars

Underbar denotes a random variable

The complex conjugate of a. x, ...

Filter coefficients
Coefficients for the numerator polynomial of a transfer function, coefficients
of corresponding difference equation
Elements of Jury’s array for stability testing
Number of bits used to represent the value of a number (does not include the
sign bit)
Coefficients of the denominator for polynomial of a transfer function, coeffi-
cients in the corresponding difference equation
Recursive least squares scalar divisor, initial state mean
Scale factor given by
_ {1 ifi0or N
77 /2 ifi=0or N
Autocovariance sequence for the discrete-time random sequence x(n) where
cu(m) = E{[x(n) — pllx(n—m) — pu]*}
Cross-covariance sequence for the discrete-time random sequences x(n) and
y(n) where
colm) = E{lx(n) — plly(n—m) — p]*}
Discrimination factor
Input output sequences
Hilbert transform of d(n)
Analytic signal
Data sequence where s is slow time index (identifies groups) and » is fast time
index (identifies position in a group)
Steady-state frequency domain contour in the z-plane
Error sequence
Frequency in hertz (Hz)
Filter center frequency
Passband upper edge frequency in hertz
Stopband lower edge frequency in hertz
Stopband (rejection band) edge frequency in hertz
Sampling frequency in hertz; f, = 1/T
Resampling frequency
A linear factor (z — re’)
A linear factor (rz—e”)
Time domain scalars
Filter impulse response, filter coefficient, data sequence window
Impulse response of an analog prototype filter
Xvil
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Svmbol

i j, k., ,mn
i = m (modulo n)

nu(n)

v,

x(n)

x(n), y(n), ...
x(t)

x{n

X

() » (n)

y(n)

yA

A
A,
A

r

A% B
Arg[H(e’*")]
A,

B

C,

Co(w)

D

D(e™)
D(z)
DFT[x(n)]
DTFT[X(n)]
E{ )

E(w)

Notation

Meaning

Integer indices
i is congruent to m (modulo n), i.e., i = /n + m where i, /, m, and n are
integers
V-1
Transform sequence number, integer step index, selectivity parameter
Logarithm to the base e
Logarithm to the base 10
Logarithm to the base 2
ith multiplier coefficient
Data sequence number (time index), system dynamic order
Data sequence from filter bank where « is the filter index and s is the time
index
Magnitude of a complex number (pole, zero)
Autocorrelation sequence for the discrete-time random sequence x(r)
where r.(m) = Elx(n)x*(n—m)]
Cross-correlation sequence for the discrete-time random sequences x(7)
and y(n) where r,,(m) = E[x(n)y*n—m)]
Laplace transform variable, s = o + jw
Zeros of the inverse Chebyshev filters
1, n20

Unit step sequence defined by u(n) = |’ .
0 otherwise

Value of inductance or capacitance
Input sequence; nth data sample
Discrete-time random sequences

Time domain scalar-valued function at time ¢
Sampled function
Estimate of the random variable x

The convolution of the sequences x(n) and y(n) where
x(n) »y(m) = L x(my(n—m)

Output sequence

z-transform independent variable, z = &7, but used in this book for a nor-
malized sampling period of 7 = 1 unless otherwise indicated

Minimum stopband attenuation

Filter passband attenuation in decibels, 4, = —20 log,, 6,

Minimum acceptable filter stopband attenuation in decibels, A, = 20 log,,
6,

Bit by bit addition of the binary numbers 4 and B

Steady-state frequency domain phase response

Maximum allowable specified passband ripple in decibels

BPF bandwidth (rad s™!)

cos(in/k)

Chebyshev polynomial of degree # (Chapter 4)

Distortion function

The desired frequency response of a digital filter

Denominator polynomial of a transfer function

The discrete Fourier transform of the sequence x(n)

The discrete-time Fourier transform of the sequence x(n)

Expected value, expectation

Approximation error spectrum
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Symbol

E, 1 E,

F

F.(z")

Ge™), H(e"),
..., G(2), H(2), ...
G(2)

G(2)

H.(jw)
He®")

[He )

H(H

H(z)

H(z)
Hoy(2)

H.,

H*

H(w)

1, J, K, L, M, N
1(z)

1(2)

Im[ ]

1,

1)

J
K()
M

N

N(2)

Qo
Qlx(n)]
Ref ]
R (w)
S.(e”)

T
Wy
148

W(ef“‘)
X(e’™)
X(k)
X(2)

X'(2)
X'e)

Xix

Meaning

Shorthand notation for the matrices of exponents defined by Wi Wit
Analog frequency in hertz
A causal approximant to predictor z

Transform domain scalars

An intermediate complex variable

Intermediate complex variable in cascade description

Steady-state frequency response function for an analog prototype filter
Steady-state frequency response function of a digital filter

Steady-state frequency domain magnitude response

Spectral response (Chapter 3)

Transfer function of individual quadratic blocks in a parallel realization of
a digital filter

Transfer function of a digital filter

Zero-phase part of linear-phase filter with (N + 1)-point impulse response,
H(z) = zV*Hy(z)

Wiener filter transfer function

Complex conjugate of the point spread transfer function

Window (filter) spectrum (Chapter 3)

Integer indices

Discrete integration operator

1+ zh1 -z

The imaginary part of the quantity in brackets

The N x N identity matrix

Modified zeroth-order Bessel function of the first kind

Performance measure

Attenuation-related scale factor

The highest power of zin the numerator polynomial of a transfer function
H(z), number of filter weights (coefficients)

Transform dimension order of a digital filter (the highest power of zin the
characteristic polynomial)

Numerator polynomial of a transfer function

Filter quality factor defined by ratio of center frequency to bandwidth
Quantized value of x(n) where Q[x(n)] = x(n) + e(n)

The real part of the quantity in brackets

Chebyshev rational function

Spectrum of the autocorrelation sequence r..(1) where

S.(e’?) = DTFT[r..(m)]

Sampling interval in seconds

exp(—j2n/N)

The matrix defined by (W%‘*™) where (E(k,n) is a matrix with rows k = 0,
1, ..., K-1land columnsn = 0, i, ..., N—1

Weighted error function that allocates relative errors between a filter pass-
band and stopband

The spectrum of the sequence x(n) where

X(e’) = DTFT [x(n)] = X(2)|.zew

Coefficient number £ in a series expansion of a peroidic sequence

The z-transform domain representation of the sequence x(n)

dX(z)/dz

dX(e’*)/dw (compare with above)
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Symbol Meaning

a, b, x, .. Vectors are designated by lowercase boldfaced letters
Measurement noise mean vector
State noise mean, constant measurement bias
Arbitrary vector
Measurement noise vector, arbitrary vector
State noise vector
State vector
Arbitrary vector
Measurement vector
Matrices are designated by capital boldfaced letters
Arbitrary matrix, noise-shaping filter state coupling matrix
. The inverse of matrix A
* Complex conjugate of matrix A
T The transpose of matrix A
Af (AD*
A(2) AT(z")
AoB The M x N matrix formed from element by element multiplication of the
elements in the M x N matrices A and B; i.e., A 0B = (A{k,n)B(k,n))
A®B The Kronecker product of 4 and B
B Arbitrary matrix, noise-shaping filter input coupling matrix
C Noise-shaping filter output coupling matrix
D Composite system input coupling matrix
F
G
H

PEEPpNERE e T
=
»

State coupling matrix
Deterministic input coupling matrix
Equation coefficient matrix, output coupling matrix

Ha(k) Haar transform of size 2*

1. Opposite diagonal matrix

1: Identity matrix of size R X R

K Gain matrix, Kalman gain

L Input noise coupling matrix

M Measurement noise coupling matrix, state error covariance square root

N Square root of inverse state error covariance matrix
0 Null matrix

P Covariance matrix, state covariance matrix

P, Steady state prediction error covariance matrix

Py Permutation matrix

Py Initial state covariance matrix

Q State noise covariance matrix

R Measurement noise covariance matrix

RH(k) Rationalized Haar transform of size 2*

S() Slant transform of size 2°

w Symmetric weighting matrix

X A transform domain vector resulting from the data vector x

X. DCT of x(n)

X, DFT of x(n)

X, Coefficients of kth basis function

w(n) Data sequence window function; also called a weighting function (Chapters 1 and
2)

Zx(0) The Laplace transform of the function x(¢)

#(i/m) The remainder when i is divided by m

W (e'*) Window function spectrum (Chapters 1 and 2)



vlotation

Symbol

2 [x(n)]

A, B, C, D
o

T m

(e}

w«f,

o,

i

8(n)

€
E(n)
n Orm, or u

XXi

Meaning

The z-transform of the sequence x(n) where X(z) = Z [x(n)]

Chain parameters of digital two-pair

Transfer matrix of digital two-pair

Chebyshev polynomial of degree M (Chapter 5)

Ratio of 6-dB bandwidth to sample rate

6-dB bandwidth referred to sample rate

Digital filter coefficients

Peak error in kth filter band, where 24, is the peak-to-peak error

Unit impulse (also called discrete-time impulse, impulse, or unit sample), defined
by

1, n=90
o - [t
™=l nso

Mean-squared error ripple factor

Quantization error at sample number 7

The mean value of the random variable x given by n = FElx]
Argument (phase) of a complex number (pole, zero)
Eigenvalue

Covergence parameter

Noise-shaping filter state coupling

Adjacent correlation coefficient

Real part of s (the Laplace transform variable)

El(x ~ )]

Group delay

Signal power spectra

Noise power spectra

Frequency in radians per second, w = 2xf, where fis usually normalized to f, =
I Hz in discrete-time systems

Cutoff frequency of a filter, the — 3dB cutoff frequency
The lower cutoff frequency of a bandpass or bandstop filter
Geometric mean frequencey for bandpass transformation
Center frequency (elliptic filters)

Passband edge frequency

Specified passband edge frequency

Stopband (rejection band) edge frequency

Sampling radian frequency given by

w, = 2n/T

The upper cutoff frequency of a bandpass or bandstop filter
Transition bandwidth of a filter, Af = (w, — w,)/27

State error

Measurement error

Continuous-time frequency in radians per second, @ = 2xf
Jth eigenvalue

N x N basis vector

kth basis function

ith element of kth basis vector

Arbitrary square matrix, noise-shaping filter initial covariance matrix
Covariance matrix, composite system state coupling matrix
Inverse of state error covariance matrix
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Chapter 1

Transforms and
Transform Propertties

DOUGLAS F. ELLIOTT

Rockwell International Corporation
Anaheim, California 92803

INTRODUCTION

Transforms and transform properties occupy an important compartment of an
engineer’s “tool kit” for solving new problems and gaining insight into old ones.
By resolving a time-varying waveform into sinusoidal components, engineers
transform a problem from that of studying time domain phenomena to that of
evaluating frequency domain properties. These properties often lead to simple
explanations of otherwise complicated occurrences.

Continuous waveforms are not alone in being amenable to analysis by
transforms and transform properties. Data sequences that result from sampling
waveforms likewise may be studied in terms of their frequency content. Sampling,
however, introduces a new problem: analog waveforms that do not look anything
alike before sampling yield exactly the same sampled data; one sampled
waveform “aliases” as the other.

This chapter briefly reviews the nature of sampled data and develops
transforms and transform properties for the analysis of data sequences. We start
by reviewing Fourier series that represent periodic waveforms. We note that the
aliasing phenomenon leads to a periodic spectrum for data sequences so that the
spectrum has a Fourier representation in terms of the data. We can find this
representation from the data by using the discrete-time Fourier transform
(DTFT).

The (DTFT)is generalized to the z-transform, which is a powerful tool for data
sequence analysis. We also review the discrete Fourier transform (DFT) and
recall the Laplace transform. We review discrete-time random sequences before
discussing correlation and covariance sequences and their power spectral
densities. Tables of properties are presented for each transform,
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2 Douglas F. Elliott

H REVIEW OF FOURIER SERIES

Fourier series have been a fundamental engineering tool since J. Fourier
announced in 1807 that an arbitrary periodic function could be represented as the
summation of scaled cosine and sine waveforms. We shall use Fourier series as a
basis for developing the DTFT in the next section. We show that the integrals
defining the series coeflicients correspond to the inverse discrete-time Fourier
transform (IDTFT).

This section simply recalls for the reader’s convenience the definition of
Fourier series. We consider one- and two-dimensional series.

A One-Dimensiona! Fourier Series

Let X(x) have period P and be the function to be represented by a one-
dimensional (1-D) series. Let X () be such that

P2
JA | X(a)|da = Ky < o0 (1.1)

~-Pj2
Then X (a) has the 1-D Fourier series representation

X@= Y x(ne /2" (1.2)
At a point of discontinuity, o, the series converges to [X(ag) + X(xg)]}/2, where
X(ag) and X(xg) are the function’s values at the left and right sides of the
discontinuity, respectively. The x(n), n=0, +1, +2,..., are Fourier series
coeflicients given by

NN
x(n) = —J X(o)el 2P do (1.3)
—P/2

P

We can easily derive Eq. (1.3) from Eq. (1.2) by using the orthogonality
property for exponential functions:

1P )
_J e*JZnun/PBJZnak/Pda - 5kn “4)
P -P/2
where
1 k=n
On=1. )
kn {O, otherwise (1.5)

is the Kronecker delta function. Multiplying both sides of Eq. (1.2) by
exp(j2nak/P), integrating from —P/2 to P/2, and using Eq. (1.5) yield
Eq. (1.3).
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For most engineering applications the function X(x) is bounded and con-
tinuous, except, possibly, at a finite number of points. In this case the Fourier
series holds for very general integrability conditions. The orthogonality con-
dition, Eq. (1.4), makes the Fourier series useful by allowing a function to be
converted from one domain (frequency, etc.) to another (time, etc.). Other

1
w
S
£ _|-Pa 0 P4 P2 3P/4
E-.IOJ"—'Y!nv:r. T
= o
<
-1
(a)
14
w
u ]
E 1/p/a 0 P/4 P/2 3pP/4
q 0f—- — .
=
<
-14
I w
14
g i
go“!’"?, o
<
-1
(c)

Fig. 1.1. A periodic waveform and its Fourier series representation. (a) One period of the
waveform; (b) One-term approximation. (c) Two term-approximation. {d) Three-term approxi-
mation. {¢) Ten-term approximation.
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AMPLITUDE
°

-1

P/4 P/2 3P/2

—P/a

10

AMPLITUDE
o

-1

(e)
Fig. I.1. (Continued)

ransforms (Walsh, etc.; see Chapter 6) also have orthogonality conditions and
may be considered for the analysis of periodic functions.
Figure 1.1(a) shows one period of a square wave of period P. Figure 1.1(b)—(e)
shows Fourier series representations using 1, 2, 3, or 10 terms of the series. The
reader may verify that the N-term approximation, Xy(a), to the square wave

reduces to
& ”— 4 2n(2m ~ Na
Xy(a) = mzl (-1 l(2m e cos|: P ] (1.6)

If we let x(n) = 2a,/n, we note that ay =0, a, = (— 1)~ 2/n when the index n is
an odd integer, and a, = 0 when n is even. The series coefficients a, are plotted
versus both n and n/P in Fig. 1.2.

Figure 1.1(e) illustrates an advantage and a disadvantage of the Fourier series
representation of the square wave. An advantage is that only 10 terms of the
series give a fairly accurate approximation to the waveform. A disadvantage is the
overshoot, or Gibbs phenomenon, at the points of discontinuity of the waveform.
Further discussion of this phenomenon and Fourier series in general is in [1].

We have illustrated the representation of a periodic continuous function
X (a) by a sequence of coeflicients x(n). Given the sequence x(n), we can find the
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4a,

14 ag=1

12+

an-0 35:1/5

/ 0 52:0 34:0

0 | ‘ .
0 1 2 4 5 n

aq=-1/3

—————— — — e — — — « — — — —» — — N[P
0 1/P 2P 3/P a/p

Fig. 1.2. Scaled Fourier series coefficients for the waveform in Fig. 1.1.

function X(«), and, indeed, the procedure of taking a data sequence and finding
the corresponding X (o) is that of the DTFT, discussed in Section III.

Two-Dimensional Fourier Series

Let X (a, f) be an image with period P; along the a axis and period P, along the
B axis (see Fig. 1.3). Note that the periodic image is generated by simply repeating
a single image in both the horizontal and vertical directions. Let
P2 [P2/2

|X(x, B)| dadf = K, < o0 (1.7)

—Py/2J—P3/2

Then X(a, B) has the 2-D Fourier series representation

X(oB)= Y 3 x(n,m)e i2ran/Pig=ilnfmiP: (1.8)

m=—won=—mx

.« s «P2

.

Fig. 1.3. Two-dimensional function with periods P, along the horizontal axis and P, along the
vertical axis.
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Paralleling the derivation of the Fourier coefficients for the 1-D series, we obtain
the Fourier coefficients for the 2-D series:

1 Pyj2  ("P2/2 . .
X (o, B)ei2mamiP1 ¢i2xBniP2 Jo 4 g (1.9)

R vl I R
The coefficient x(m,n) scales the product of complex sinusoids exp(—jzmam/
P,)exp(—j2npn/P,) that have mcycles per P; units in the horizontal direction and
n cycles per P, units in the vertical direction. Remarks concerning integrability
conditions, advantages, and disadvantages for the 1-D series apply equally to the
2-D series.

The reader will doubtless see a pattern emerging from the 1-D and 2-D series
development. This pattern leads to series representations for N-D functions,
N =3,4,.... We will not present these representations but will exploit a similar
pattern in a later section to develop N-D discrete Fourier transforms.

Il  DISCRETE-TIME FOURIER TRANSFORM

The periodic waveforms discussed in the previous section have Fourier series
representations determined, in general, by an infinite number of coefficients.
Given the waveform, we can determine the sequence of coefficients. Conversely,
given a sequence, we can find the continuous waveform. It is this latter procedure
that yields the DTFT.

The DTFT provides a frequency domain representation of a data sequence
that might result, for example, from sampling an analog waveform every T
seconds (s). The distinct difference between the frequency spectrum of the analog
signal and the discrete-time sequence derived from it is that the sampling process
causes the analog spectrum to repeat periodically at intervals of f;, where f, =
1/T is the sampling frequency. This section reviews the reason for the period-
icity of the discrete-time spectrum, derives the DTFT and IDTFT, and presents
a table of DTFT properties.

A Reason for Perlodicity in Discrete-Time Spectra

Figure 1.4 shows cosine waveforms with frequencies of 1 and 9 Hz. There is no
chance of mistaking one of these analog waveforms for the other. However, when
they are sampled every # s, the situation changes dramatically because the cosine
functions intersect at 1 s, ¢s,. ..

cos[2n(3)] = cos[2n9(})], cos[2n(2)] = cos[2n9(%)],...

respectively; the sampled data from one is exactly the same as the sampled data
from the other, and we say that sampled data from one “aliases” as sampled data
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fs = 8 SAMPLES/SECOND
cos(2mt) cos (279t)

Fig. 1.4. Cosine waveforms yielding the same data at sampling instants.

from the other. It is easy to verify cosines of frequencies 1 + kf;, f, = 1/T, k =
+1, +2,..., go through the same points of intersection. Although Fig. 1.4
depicts cosine waveforms, aliasing will occur for any sinusoid.

We have shown that sampled sinusoids of frequency 1 Hz are indistinguishable
from those of 1 + kf, Hz, where k is any integer. Likewise, sampled sinusoids of
frequencies f and f + kf, are indistinguishable:

cos[2nfnT + ¢} = cos[2n(f + kf)nT + @]

where ¢ is an arbitrary phase angle. Consequently, a spectrum analyzer would get
the same value at f as at f + kf,. We conclude that if by some means we
determine the frequency spectrum of a discrete-time data sequence, the aliasing
feature causes the spectrum to repeat at intervals of f;, as shown in Fig. 1.5. In
general, the frequency spectrum X(f) is complex, so only the magnitude is
plotted in the figure. The nonsymmetry of the spectrum about 0 Hz is due to a
complex-valued data sequence that might result, for example, from frequency
shifting (i.e., complex demodulation), which is described later.

Fourler Series Representation of Periodic Spectra

We have found that the spectrum of a data sequence is periodic. If the data
results from sampling a continuous-time signal every T s, then the period of the
spectrum is f; = 1/T Hz. Since periodic functions can be represented by Fourier

IX(f)
~tg —fs 0 fs fs 31 1 (Hz)
2
-N -N 0 N N 3N k
2 2 2

Fig. 1.5. Magnitude spectrum for a complex data sequence.
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series under relatively mild conditions, we can use Eq. (1.2) to represent the
spectrum by the series

X,(f)= i x(nye 2/l (1.10)

n=-—aoc

where the series coefficient x(n) is given by

1 [fs2 )
x(n) = - J X,(f)eiH "0 df (11)
Sd-ra2

The series coefficient x(n) is the data sequence giving rise to the spectrum. We use
x(n) for samples of the continuous-time function x(t) sampled at t = nT and for
data sequences in general. We know that x(n) has a periodic spectrum.
Substituting f + kf,, where k is an integer, for f; in (1.10) shows that X (f)
is the same for f as for f + kf,. Thus, X,(f) has period f Hz, as required.

Note that in the Fourier series development we assumed a periodic function
was given, and we found the sequence of coefficients for the Fourier series
representation, using Eq. (1.11). If we are given a sequence of coefficients instead
of the spectrum, we can use the coefficients to find the spectrum by using
Eq. (1.10). When dealing with sequences, we are more likely to be given data
that corresponds to the coefficients. If the data is the sequence x(n), we find
its spectrum using Eq. (1.10). We recover the data sequence from its spectrum
by using Eq. (1.11). In any case Egs. (1.2) and (1.3) or Egs. (1.10) and (1.11)
are a transform pair.

Another transform pair is the continuous-time Fourier transform and its
inverse defined, respectively, by

oG

X,(f) = j x(t)e 2t dr (1.12)

x(t) = f X(f)e* " df (1.13)

We can gain additional intuition for Eq. (1.10) by noting that it is the Fourier
transform of

x(t)[ Y ot — nT)J (1.14)
where for any continuous function y(t),
J‘ y()o(t — nT)dt = y(nT) (1.15)

The function é(t — nT) is a Dirac delta function that acts as a sampling function
in the sense that it derives y(nT) from y(t) through Eq. (1.15). If we let Eq. (1.14)
be the integrand of Eq. (1.12), then Eq. (1.15) yields

y(nT) = x(nT)exp(—j2nfnT) = x(n)exp(—j2nfn/f,)
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which isa term in Eq. (1.10). Thus, Eq. (1.10) is the Fourier transform of Eq. (1.14).
Whereas Eq. (1.12) yields the same answer as Eq. (1.10) if x(t) is sampled with
delta functions, Eqs. (1.11) and (1.13) do not correspond directly because
Eq. (1.11) applies to a sequence and Eq. (1.13) applies to a continuous-time
function. Since the spectrum given by Eq. (1.10) is periodic, only one period is
required to obtain the sample x(n), as Eq. (1.11) shows. This is in contrast to
Eq. (1.13), where the entire spectrum is used to obtain x(t).

One-Dimensional DTFT and IDTFT C

We will now simplify the notation by using a normalized sampling interval of
T =1 s and radian frequency w = 2nf. Let X,(f) = X(e’*T). Then rewriting
Eqgs. (1.10) and (1.11) for T = 1 s gives

X(E*)= ) x(ne " (1.16)

n=—o0

x(n) = LJ X(e®)e' " dw (1.17)
2n

Equations (1.16) and (1.17) are defined as the 1-D DTFT and 1-D IDTFT,

respectively. The DTFT yields a periodic spectrum X(e/”) for a given data

sequence x(n). The IDTFT recovers the data sequence from the spectrum. We will

also use the notation

-n

X(e’®) = DTFT[x(n)] (1.18)

x(n) = IDTFT[X (/)] (1.19)

for Egs. (1.16) and (1.17), respectively. Let Q be the analog radian frequency. Then
conversion from the radian frequency @ normalized for a sampling interval of 1 s

to analog radian frequency Q for an arbitrary sampling interval T requires only
the substitution w = QT. Figure 1.6 indicates corresponding points on the

. - - f
0 Y 1 >

® - ° -y ()
0 w 2T

® - - - ()
0 /T 2n/T

- . - —> F
0 fo/2 fs

Fig. 1.6. Corresponding points on frequency axes for normalized variables f and © and for analog
variables Q and F.
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frequency axes for the variables f, w = 2nf,Q = 2nF,and F, where F is the analog
frequency in hertz.

D DTFT Properties

Table I summarizes properties of the 1-D DTFT. A property is described by a
transform pair consisting of a data sequence representation and a transform
sequence representation. For example, x(n) and X(e/®) constitute a transform
pair. We will illustrate derivation of the pairs with several examples. For further
details see [2, 3].

1 Frequency Shifting

Let the sequence x(n) have the DTFT X(e/®). Then the frequency-shifted
sequence is e/“°"x(n), and its DTFT is

DTFT[ejmo"x(n)] = Z ejmonx(n)e—jmn

= Z x(n)e‘j(“’_“"”" = X(ej(“’_“"’)) (1_20)
The transform of e/®*"x(n) is right-shifted by w, rad s™!, and the DTFT of
e @9 x(n) is left-shifted in frequency so that e*/®°"x(n) and X (e/®¥*9) constitute
a pair.

2 Data Sequence Convolution

Convolution of the sequence x(n) with y(n) is represented by x(n) * y(n) and is
defined by

xW*ym= Y xmym-m= ¥ ymxm—m  (121)

The transform of Eq. (1.21) is

a0

Y. x(n) * y(n)e /" = i i x(m)y(n — m)e <" (1.22)

Interchanging summations on the right of Eq. (1.22) and letting i = n — m yield

@0

DTFT[x(n) * yf] = 3 x(mje=™ 3 y(i)e io"

= X(e/?) Y(e’®) (1.23)
as stated in Table I.



TABLE I

Summary of Discrete-Time Fourier Transform Properties

Property

Data sequence representation

DTFT representation

Discrete-time Fourier
transform

Linearity

Horizontal data axis sign
change

Complex conjugation
Both of the above
Sample shift
Frequency shift

Double-sideband modulation

Data sequence convolution
(transform product)

Frequency domain convolution
(data sequence product)

Discrete-time impulse 3(n -~ ny)

Frequency domain delta
function

Discrete-time cosine waveform

x(n)

ax(n) + by(n)

x(—n)

x*(n)
x*(—n)
x(n £ m)
ey (n)

cos(men)x(n)
sin{won)x(n)

x(n) * y(n)
x(nmy(ny

. I, nm=n
om—m:{' ¢

0 otherwise

oiTfan

cos(2nfom)

X (/)

aX(e®) + bY(e')
X(e ')

X*(e i)
X*(e')
eriomy (eie)
X (eftoF oo

E[X(ef“'""’"') + X(pj(,_, o)
$i[X (et oy - X (e o)
X(c-"") y((,jm)

X(e7) » Y(e!*®)

e jom

S~ fo)

WO+ L)+ 5000 — fo)

{contimied )
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TABLE 1 (Continued)

Property

Data sequence representation

DTFT representation

Discrete-time sine waveform
N sample step sequence

Two-sided step truncated for
In] > N

Triangular sequence

Sequence 1runcated for {n] > N

Sequence truncated for n <0
andn> N

Two-sided decaying
exponential

Damped sinusoid

Conjugate symmetry of the
transform of a real sequence

sin(2xfyn)

) = I, n=0,12,...,N-1
un(n) = 0 otherwise
. I, In|<N

n) =
N 0, |nl>N

. N —|nl, |n] <N
1 =
ritr) {o, nl > N
x(n)sy(n)
x(m)uy(n)
e—xlnl

¢ MM eosi2nnw,)

xin)

Lio(f + fo) =~ 30(f = fo)
,sin(wN/2)
sin(w/2)
sinfw(N + 1/2)]
sin{w/2)
sin?(wN/2)
sin(w/2)

o ioN = 1y

s:in[a)(N +1/2)
sin{w/2)

X(gjm) » {

X(?j(')\ » |:e—jo>(h'— 1)2

-2z

I —e

1 - 2¢%cosm + e %

] P —e
201 = 2¢ Yeosfm + o) + €7

X(e/?) = X*e 1y

sin{mN/2)

sin{w/2)

%

J

TS
| -

RN )

i) 4 ¢
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Decomposition of a real
sequence x(n) into an even
part x.(n) plus an odd x,(n)

Decomposition of a complex
data sequence x(n) into a
conjugate symmetric part
x.(n) and a conjugate
antisymmetric part x,(n)

Decomposition of a complex
transform X (e/)

Energy spectral density

Increasing sampling
frequency by M—i.e,,

transforming a data sequence
x,(n) padded with zeros by a

factor of M

Reducing sampling frequency
by M—ie., decimating a
sequence x,(n) by a factor
of M

Parseval’s theorem

x(n) = X (n) + x,(n)
x(n) = 3[x(m) + x(—n)]
xo(n) = 1[x(m) — x(—n)]

x(n) = x.{n) + x,(n)
x(n) = 3[x(n) + x*(—n)}
xo(n) = 4[x(m — x*(~n)]

x(n)
Re[ x(n)]
Jim[x(m)]

x(n)

() = {xl(n) if n/M =

3

0 otherwise

Y x(my*n)

LEE4

X(e®)
Re[X (/)]
JIm[X(ef*)]

X(e)
Re[ X(e’®)]
jlm{X(e/*)]

X(/®) = X,(e) + X,(ei°)

Xle’®) = 3[X(e®) + X*e /)]
X,(e'®) = $[X(e7®) ~ X *(e77*)]

|X(e/e)?

X, ()

1

M-1
_ X (ej(uﬁ 2rb)IM
M ‘;ZO ! )

L[ . ;
——j. X(e’°)Y*e'?)dw
2n | _,
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3 Frequency Domain Convolution
Frequency domain convolution is defined by
: ; 1 (™ ; .
X(e')* Y(el) = f X (/%)Y (/") (1.24)
T -n

Using the IDTFT definition, Eq. (1.17), interchanging integrations, and making a
change of variables yield

IDTFT[X (e/®) * Y(e/®)] = x(n)y(n) (1.25)
as stated in Table I.

4 Symmetry Properties

Several properties in Table I deal with conjugate symmetric sequences sat-
isfying x(n) = x*(—n) and conjugate antisymmetric sequences satisfying x(n) =
—x*(—n). If a sequence is real, then conjugate symmetric or antisymmetric
correspond to even or odd, respectively.

5 Sampling Frequency Change

As an example of the utility of transform properties, consider the sampling
frequency change properties (the two entries before Parseval’s theorem at the end
of Table I). Let the periodic repetitions of a spectrum of a sequence x,(n) be
widely spaced so that the signal bandwidth (BW) satisfies BW < f,/M. Then the
sequence may be desampled by M : 1; that is, only 1 of every M samples is retained
[see Fig. 1.7(a), (b)]. This reduces the spectral amplitude by 1/M and causes the
spectrum to repeat at the new sampling frequency f,/M [Fig. 1.7(c); the curve
for X5(e/*™) applies to X,(e’?™) after frequency units are changed to Hz/3].
Desampling is used, for example, to more efficiently analyze a signal with a DFT.
Before going to the DFT, the signal is desampled as much as possible without
introducing aliasing, and, as a consequence of the desampling, the DFT can be
run at a lower rate.

A signal can be interpolated by a 1: M upsampling that adds M — 1 zeros to
every sample (padding with zeros by 1: M). Although the upsampling increases
the sampling frequency, it does not effect the spectrum, which still repeats at f,/M
{Fig. 1.7(c)]. When we remove the spectral replicas at integer multiplies of f,/M
by filtering, the zero values introduced by padding disappear and we obtain the
original sequence x(n). If we start with the signal x,(n) and wish to interpolate to
find intermediate sample values, we simply pad with zeros by 1: M and use a
lowpass filter with a zero frequency gain of M to get a sequence x,(n) such that
every M th value matches x,(n). Another interesting application of upsampling is
to effect a sampling frequency change (see Chapter 3).
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x(t) X{n) Xy(n) X3(n) X(n)

SIGNAL: &‘ .HI!JI..,. M _LLH”:::“;‘ %“ .h.h‘.ll.n

36 12 DIGITAL 36

—_— > . .
SAMPLING f M ?:05 BY ; FILTER
FREQUENCY: * N § '

(a)
BW2 o BW72 13 23 1 1 (H)
(b)
4 DIGITAL FILTER GAIN
"
o)
/1‘ /KEEPLICAS 7/\ /——\
-BW72 0 BW2 13 23 1 t (Hz)

(€
Fig. 1.7. For f. > M - BW desampling by M :1 reduces computation rate while upsampling by
1: M interpolates the signal. (a) Block diagram showing desampling, upsampling, and filter to remove
replicas. (b) Spectral magnitude for x, (n). (c) Spectral magnitude of x;(n) for M = 3.

Two-Dimensional DTFT

Let an image x(r, s) be sampled at intervals of T, and T, along the r and s axes,
respectively, yielding the 2-D sequence x(m, n). The spectrum will be 2-D with
periods 1/T; and 1/T, along the f; and f, axes, respectively, for the same reason
that a 1-D spectrum is periodic. Since the 2-D spectrum is periodic, we can
represent it by a 2-D Fourier series. Paralleling the steps for the 1-D DTF and
IDTFT leads to

X@oe)= 3 Y x(mm)e ome o (1.26)

m=-on=—wx

1 2 = n . ) ) )
x(m,n) = (E) J f X(e/91, el 92)el 1M oy dw,  (1.27)
We define Eqgs. (1.26) and (1.27) as the 2-D DTFT and 2-D IDTFT, respec-

tively. Extension of Table I to the 2-D case using Eqgs. (1.26) and (1.27) is
straightforward.
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IV  z-TRANSFORM

The z-transform generalizes the DTFT and gives additional information on
system stability. This section discusses the z-transform, the inverse z-transform,
and a table of properties.

A One-Dimensional z-Transform

Equation (1.16) defines the 1-D DTFT:

X)) = Y x(n)e o {1.16)
We can generalize this equation by replacing e /" by e~ /" letting z = e” "/,
and defining the resulting summation as the two-sided, 1-D z-transform of x(n)
or, simply, the z-transform of x(n), denoted by

X(@z)=Z[x(n]= Y x(mz™" (1.28)
For ¢ = 0, z = ¢/*, and Eq. (1.28) is the same as Eq. (1.16). In this case |z| =
|ei?| = |cos w + jsin w]|, which defines the unit circle (a circle with unity radius
centered at the origin). Evaluating the z-transform on the unit circle in the z-plane
corresponds to the DTFT.

B Region of Convergence

The infinite series in Eq. (1.28) is meaningful only if it converges. One test of
convergence is the ratio test: a series converges if the magnitude of the ratio of
termn + 1 to term n (term —n — 1 to term —n on the negative axis) is less than 1
as n— oo. For n > 0 we require that

. + 1)z ! . 1
im XDy e 2 im [P R (1.29)
n—w x(n)z™" nowc | x(n)
whereas for n < 0 we require that
|x(=n— 1)zt | x(=n)
1 —_—l = =
nlﬂn; - <1 or |z <"lg?0 Ppr— R, (1.30)

The region where Eqgs. (1.29) and (1.30) are satisfied is called the region of con-
vergence; R, and R, are called the radii of convergence. As an example, let

n

a”, n>0 }
x(n) = o n<0 (1.31)
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Applying the geometric series summation formula

1—cV

l+c+cz+-"+c””‘=lhc (1.32)
to the z-transform of Eq. (1.31) gives
X(@z)= ) az " — Z bz"
n=0 n=—1
= ! + 1 i b "z"
1 (12.'~l n=0
z z 2z[z — (a + b)/2]
= = 1.33
e z-0b (z—a)z—h) (133
where
Z a"z 7" converges for |z| > a and
"o (1.34)
Y. b™"z" converges for |z| < b

1l

n=0

From Egq. (1.34) we conclude that the region of convergence for Eq. (1.33) is the
annulus defined by z| > a and |z| < b, as shown in Fig. 1.8. As is evident from
Eq. (1.33), the function X(z) diverges at z = a and z = b. Such points are called
poles of the function. Similarly, X(z) = O at z = (a + b)/2 and z = 0. Such points
are called zeros of the function. If b < a, there is no region of convergence for
(1.33) because the z-transform diverges everywhere.

Fig. 1.8. Region of convergence for x(n) = (a", n > 0; —b™" n < 0).
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One-Sided z-Transform

Many sequences considered in this book are zero for n < 0. Such a sequence is
right-sided, and the 1-D z-transform, given by Eq. (1.28), becomes

A

X(z)= ) x(nz™" (1.35)

n=0

Similarly, if x(n) = Ofor n > 0, the sequence is lefi-sided and its 1-D z-transform is

X(z) = Z x(n)z™" (1.36)
Equations (1.35) and (1.36) define one-sided z-transforms. Section VI gives the z-
transform of a number of right-sided sequences along with the corresponding
continuous-time function x(t) from which the sampled version, the sequence x(n),
is derived and the Laplace transform of x(t).

Inverse One-Dimensional z-transform

Given the function X(z), we derive the data sequence x(n) by taking the inverse
z-transform of X(z). Equation (1.28) defines the z-transform:

Xz =Y x(nz™" (1.28)
Multiplying both sides of Eq. (1.28) by z™~!/2nj and integrating over a
counterclockwise (CCW) contour C, which is in the region of convergence of
X (z) and encircles the origin, yields

X(z)z" 'dz = i x(n)li%q_%z*"z'"ldz] (1.37)
c

27j C n= o0

where we have substituted the right side Eq. (1.28) for X(z) and have then inter-
changed summation and integration. We evaluate the integral in the brackets
by the Cauchy integral theorem:

— D z" " dz = 8(n — m) (1.38)
2 Jc
where
1 n=m
on—m=1<?" . 1.39
( ) {O otherwise (137

is the discrete time impulse. Since Y¥. ., x(n)d(n — m) = x(n), Eq. (1.37)
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reduces to the inverse z-transform:

1
x(n)=21[X(z)] = ——é X(2)z" 'dz (1.40)
2nj Je
When C is the unit circle z = ¢/, the preceding integral reduces to
1 [ o
x(n) = MJ‘ X (')l dw (1.17)
2n ),

which is the IDTFT defined previously.
We can evaluate the integral on the right of Eq. (1.40) by Cauchy’s residue
theorem:

x(n) = Y [Residues of X(z)z"" ! at poles inside C] (1.41)

However, in practice it is often easier to use either long division or a partial-
fraction expansion rather than Eq. (1.40) or Eq. (1.41). As an example of long
division, consider the right-sided z-transform X(z) = 1/(1 — az™'). Dividing
numerator by denominator yields

Xz =1+az ' +a’z 2+ +a"z"+ =) x(nz" (1.42)
n O
Comparing coefficients of z ™" gives x(n) = a”.
As an example of using a partial-fraction expansion, consider the right-sided
transform

1 _a/la—b) N b/(b — a)

X(Z):(l—az‘l)(l—bz_')_'—“Z"1 1 —bz"!

(1.43)
We may evaluate each term in the summation on the right of Eq. (1.43) by using
Eq. (1.42) to get x(n) = (a"*' — b"*')/(a — b), or we can use z-transform pairs.
Some z-transform pairs are stated for right- and left-sided sequences in Table 11.
In the table w and a are real numbers; right- and left-sided sequences converge
for |z] > p and |z| < g, respectively, where p is a right-sided sequence pole and ¢
1s a left-sided sequence pole. More extensive right-sided z-transforms are in
Section VI.

z-Transtorm Properties E

Table I1T summarizes a number of 1-D z-transform properties, most of which
apply to either one- or two-sided data sequences. When the property applies only
to a one-sided sequence, this is stated. For example, the initial value theorem in
the table applies to right-sided sequences. Derivation of the properties is treated
in [3-13, 19]. Most of the properties are a straightforward application of the
z-transform definition, as the following examples illustrate.
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TABLE 11
z-Transform Pairs
z-Transform, X(z)
Data sequence, x(n) Right-sided Left-sided
o(n) | |
i 1
Ini Ep— et
& | —az! | —az
o ng 82
ltfe (M —az 'y {F —az)?
50 az” "1 +az™") az(l + az)
Inf"a (1 —a="t)? (1 - az)?
il - asin(wT)z"! asin{wT)z
Gl L 1 — 2acos(wT)z ' + a*z7? 1 — 2acos(cwT)z + a’z?
. T | —acos(wT)z! 1 —acostwT)z
e easinie 1 = 2acos{wT):z ' +a%z"? 1 — 2acos(wT)z + a’z?
TABLE Il
Summary of z-Transform Properties
Data sequence z-Transform
Property representation representation
- Transform x(n) X(z)
Equivalence of the DTFT and the x(n) DTFT[x(n)] = Xiz)|. .

z-transform evaluated on the
unit circle

Linearity

Data sequence horizontal axis
sign change

Complex conjugation
Both of the above

Transform of real part of data
sequence

Transform of imaginary part of
data sequence

Sample shift
Left shilt of right-sided sequence

z-plane complex scale change

ax(n) + hy(n)

x(—n)

x*(n)
x*(—n)

Re[x(n)]

Im[x(n)]

x(n+ m)
x{n 4 m)

w "x(n)

aX(z)+ hY(2)

X(1/2)

X*(z*)
X*(1/z%)

FLX (2 + X*=*)

X () — X=(=*)]

257X 12)

:"'[Xl:) - ,:Z; um:"'}

X(wz)

(continued)
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TABLE 11l (Continued)
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Property

Data sequence
representation

z-Transform
representation

Convolution of data sequences
(transform product)

Periodic convolution of transforms
(data sequence product)’

Data sequence multiplication by n

Right-sided data sequence®
division by n [12]

Initial value theorem for
right-sided sequence

Final value theorem for right-sided
sequence’

Right-sided data sequence x(n)
with period N

Increasing sampling frequency by
M —i.e., transforming a data
sequence x,(n) padded with
zeros by a factor of M

Reducing sampling frequency by
M —i.e., decimating a sequence
v, (n) by a factor of M

Parseval's theorem?

x(n) * y(n)

x(n)y(n)

nx(n)

Kt 1)
o

where x(n) = 0forn < 2

x(0)

lim x(n)
x(n), 0<n<N
x,(n) = ,
0 otherwise
xym)y ifn/M=m
x(n) = .
0 otherwise

x(n) = x,(Mn),
n=0+1, +2,...

ks

Y x(my*(n) =

n= -

X(2)Y(2)

1 z
A~_§ X(u)Y(-)u”’ dv
2 J¢ v

dX(2)

dz

—2Z

J X(w)dw forjz{ > R

lim X(z)

EEhd

lim (1 - z7H)X(2)

z=1

XI(ZL

|-z

XI(ZM}

1 Mzt ;
. Z Xl(zl/Me"/le/M'
M =

I ; .
——j X(e’°)Y*(e'*)dw
2n J .

“ C is1n the region of convergence of X(v) and Y(z/v).
® R is the radius of convergence of X (z).

“ The poles of X(z) must lie within the unit circle except for possibly a first-order pole at z = 1.
¢ The poles of X(z) and Y(z) must lie within the unit circle.

Data Sequence Horizontal Axis Sign Change

Let x(n) be replaced by x(—n)—for example, by a time reversal in taking data.

The z-transform of the sequence x(— n) is, by definition,

i x(—n)z " =

n=-x

™8

m=—wx m= — o

)"l oo

The data sequence horizontal axis sign change yields x(—n), which has the

z-transform X(1/z), whereas x(n) has the z-transform X (z).

1
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2 Convolution of Data Sequences

This property states that the z-transform of the convolution of data sequences
yiclds the product of the z-transforms of each sequence. Let x(n) and y(n) be the
sequences convolved, and let w(n) be the resulting sequence:

RS

w(n) = x(n)* y(n) = Y x(m)y(n — m) (1.45)

By definition the z-transform of w(n) is

@

W)= ) wnz"= i i x(m)y(n — m)z™" (1.46)

n=—no0 n=—-—owm=-w
Interchanging the summations and letting k = n — m yield

X0

W= 3 xm Y yn-mzt = 3 xim) ¥ k"= X@YE)

m=-wx n=- o m= -

(1.47)

so the z-transform of x(n) * y(n) is X(z)Y{(z).

3 Periodic Convolution of Transforms

This property states that the z-transform of the sequence formed from the
term-by-term product of two data sequences is given by a contour integral. If the
region of convergence of the z-transform of each sequence includes the unit circle
in the z-plane, then the contour integral is a periodic convolution. Let w(n) =
x(n)y(n). Then the z-transform of w(n) is

o o0 1

Wiz = Y x(nymz"= 3 x(n)-.§ Y(u)o" 'dvz™" (1.48)
n ne 2nj Je,

where Eq. (1.40) was used to express y(n) and C, is a CCW contour around the

origin in the region of convergence of Y(v). Interchanging the integration and

summation in Eq. (1.48) yields

1 & z\™7" 1
W(z) = i d. ":Z‘l x(n)(;) Y(vyv 'dv
= —1; X(i) Y(v)v 'dv (1.49)
2nj J e, v

where now C, must lie in the region of convergence of X(z/v) as well as that of
Y(v). Interchanging the roles of x(n) and y(n) yields another form of the integral:

W(z) = L% X(U)Y(E>v’ Ldv (1.50)
21 Je v
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where C is a CCW contour that encircles the origin and lies in the regions of
convergence of X (v) and Y(z/v). Combining Egs. (1.48) and (1.50) gives the result
that the z-transform of the sequence x(n)y(n) is a contour integration. Let C
include the circles with radii p and r/p. Let z = re’® and v = pe’“. Then Eq. (1.50)
gives

W(rel?) = ij X(pej“’)Y[Lej“" '“”] dw (1.51a)

2n ), p

which is called a periodic convolution because W(re/?) has period 2n. When the
circles of convergence include r = p = 1, we interchange the roles of ¢ and w and
denote the periodic convolution by

W(el®) = X (e/®) * Y(e®) (1.51b)

which is the same as frequency domain convolution for the DTFT [see
Eq. (1.24)].

Two-Dimensional z-Transform F

Just as we generalized the 1-D DTFT to obtain the 1-D z-transform, we shall
generalize the 2-D DTFT to obtain the 2-D z-transform. Let x(m,n) be a 2-D
sequence representing, for example, a sampled image. We obtain the 2-D z-
transform of x(m, n), 2,_p[x(m, n)], by generalizing Eq. (1.26), letting z; = ¢” i,
i = 1,2, which gives

X(zy,23) = Zoplx(mm]l = 3 ) x(mmz"z;" (1.52)
The region of convergence of X(z,,z,) is that region in z,, z, space for which
Eq. (1.52) is absolutely summable:

Y Z Ix(m,n)z7™z;" < oo (1.53)

Likewise, the 2-D inverse z-transform results from generalizing Eq. (1.27):

1 2
x(m,n) = Z55(X(zy,2,)) = <ﬁ> i‘E fﬁ X(zy,2,)27 257 dz, dz, (1.54)
c. Je

27j
where C; is a closed contour encircling the origin of the z;-plane, i = 1, 2. The
contours C; are generally difficult to specify unless the 2-D z-transform is
separable: X(z,,z,) = X,(z,)X,(z,), which s true if and only if the data sequence
is separable.
The table of 1-D z-transform properties extends in a straightforward manner
to 2-D properties. For example, the z-transform of a 2-D convolution gives the
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product of transforms:
2, plx(m,n) * y(m,n)] = X(z,,2,)Y(z,,25) (1.55)
The 2-D z-transform is important in the development of 2-D digital filters used
in image processing. Thus, stability of the 2-D filter is an important con-
sideration, and the stability assessment requires us to determine the location of
the zeros of the denominator polynomial of the filter transfer function. The filter
is stable if the denominator polynomial is never zero for any values of z, and =,
such that|z,| > 1 and |z,| > 1.

V  LAPLACE TRANSFORM

Whereas the z-transform is the primary tool for analysis of discrete-time
systems, the Laplace transform is often the primary tool for analysis of
continuous-time systems. Laplace transforms were originally developed by
Oliver Heaviside to solve ordinary differential equations by algebraic means
without finding a general solution and evaluating arbitrary constants.

Laplace transforms have several applications in this book. We use them
principally to describe an analog filter transfer function. We can convert this
transfer function to a digital filter by the techniques described in Chapter 4.

A Definition of the One-Sided Laplace Transform

Let x(t) be a function such that

j Ix(e di = K < o (1.56)

0

for some finite, real-valued constant ¢. Then the one-sided Laplace transform of
x(t), L[ x(t)], is defined as X(s) and given by

X(s) = ZL[x(1)] = j x(t)e ™ dt, s=0+ jQ (1.57)
4]
To insure essential uniqueness of the function x(t), if we are given X (s), we require
that
x(t) = 0, t<0 (1.58)
Then the inverse Laplace transform of X(s) is
1 ay+ jo
x(t) = QJ‘ F(s)e™ ds (1.59)
27[.] ay —jx

where o, > ¢ and the latter is the ¢ in Eq. (1.56).
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Laplace Transtorm Properties

Table IV summarizes some Laplace transform properties. In the table all
functions are zero for negative time; that is, if t < 0, then x(t) = x,(t) = x,(t) = 0.
Other notational definitions include

10 )
0) = i | x"(0) = i |, (1.60)
oo (b 120 Lon
“W=, <o (1.6%)

We illustrate derivation of the pairs with several examples.

Laplace Transform of e ™

at

For Re[s] > a the transform of e™* is

o0 —(s+a) |o
J e eV dt = _¢ - !

0

0 s+a

Laplace Transform of !, x(t) dt

The Laplace transform of [}, x(t)dr is

f ’ [ J 'x(‘c) dz}e-s' dt = [e_mjlx(r) dr]
0 0 —SJo

X(9)

N

oL ceae (163)

0 —SJo

where we used fudv = uv — Jvdu, u = |}, x(t)dt, and dv = e ¥ dt, and where the
expression in brackets when evaluated at zero and infinity equals zero [14].

Laplace Transform of dx(t)/dt
Let lim, ., {e *x(t)]| = 0. Then

j e’“iiit)drze"s’X(t) +SJ x(t)e " dt (1.64)
0

0 de 0

= —x(0) + sX(s)

where again we integrated by parts, using u = ¢ and dv = dx(t).



TABLE IV

Summary of Laplace Transform Properties”

Time domain

derivative

denvative

derivative

Property representation Laplace transform representation
Laplace transform x(1) X(s)
Time domain first-order dx(t)/dt sX(s) - x(0)
Time domain second-order d2x(t)/dt? VX (s) — sx(0) — x'(0)
Time domain nth-order dmx(t)/de” S"X(s) — 5" P(0) - X" Oy
- - . ! X{s)
Time domain integration x(t)ydt ——
o s
Right-shifted time function x(t —a), a=0 e "X (s)
Left-shifted time function x(r + a)u(t), a=0 e L x(Qu(t — a)}
. . . x(t), 0<t<P X (s)
Function x{t) with period P = . R
0 otherwise P—e™™
Attenuated time function e “x(), a=0 X(s + a)
| §
Horizontal time axis scaling x(at), a=>0 X(‘>
a \a
Time domain convolution X (1) * x,(1) X, (5)X,(s)

(frequency domain product)

Frequency domain
convolution (time domain
product)*

Time function partial
derivative with respect to
a parameter

Time function integration with
respect to a parameter

Product of time function
and ("

Division of time function by ¢

Decomposition of a complex
time function

Initial value theorem

Final value theorem®

:J‘ X (T)x,(t — T)dr
(

{]

X {0)x,(1)

ox(t,a)

fa

fﬂl x(t,a)da

t"x(1)

il
t

x(t) = Re[x(t)] + jIm[x(1)]

x(0)

x(20)

X (s)* Xy4(s)

| crjx
- .u;‘[ X, (w) X35 — whdw
2mj

[ =

zl”X(-s_)

)"
(-1 i

n

J ’ X(s)ds

X(s) = Re[X(s)] + jIm[X(s)]

lim sX(s)

L]

limsX(s)

s—0

“ Re[w] = c lies to the right of the poles of X,(w) and to the left of the poles of X,(s — w).
¥ The poles of sX (s) must be in the left half of the s-plane.

¢ Adapted from [ 14].
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TABLE OF z-TRANSFORMS AND LAPLACE TRANSFORMS VI

Table V states the Laplace transform for each listed function x(t), as well as the
z-transform of the right-sided sequence x(n), x(n) = x(r) evaluated at t = nT.
where T is the sampling interval. Note that the z-transforms have not been stated
for a normalized sampling frequency of 1 Hz, but the sampling interval is
contained explicitly in the transforms.

DISCRETE FOURIER TRANSFORM VIi

The DTFT discussed in Section III yields a periodic, continuous spectrum for a
nonperiodic data sequence of infinite length. The DFT of this section also yields a
periodic spectrum characteristic of sampled data. In contrast to the DTFT, the
DFT has a line spectrum that represents a sequence of period N. The term
“discrete Fourier transform” is somewhat of a misnomer since the DFT provides
a Fourier series representation for a finite sequence, whereas the DTFT yields a
true Fourier (ransform of an infinite sequence incorporating Dirac delta
functions [see Eq. (1.14)].

Series Representation of an N-Point Sequence A

Let an N-point sequence, x(n), be givenforn =0, 1,2,..., N — 1. Then we form
the periodic sequence, x,(n), from x(n) by simply repeating x(n) with period N:

x,(n) = x(i), i=0,1,2,...,N—1I,i=nmodN (1.65)
where for some integer m, n = i + Nm. Thus, i is the remainder of n/N, or, stated

another way, i is congruent to n (modulo N). These equivalent statements are
written as

i=n modN or i=n (modulo N) (1.66)

As discussed in Section II, periodic functions can be represented by a Fourier
series. There is a periodic function x,(t) that yields the sequence x(n) when
sampled at t =nT,n=0,1,2,..., N — 1, where P = NT is the period of the
function. The Fourier coefficients X,(k) for the series represent a line spectrum
where the lines are at intervals of 1/P = f,/N as illustrated in Fig. 1.2. Thus, the
lines in the spectrum are at the frequencies

L
fzjéf, k=0,1,2....,N — | (1.67)

where just N values are required for k because X, (k) has the period N.
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TABLE V
Table of Laplace and z-Transforms®

Laplace transform Time function z-transform
X(s) x(1) X (z)
1 (1) 1
e Tt o(t —nT) "
1 ) z
- u
s 71
1 . Tz
52 {z —1)2
2 s T3z(z + 1)
3 ‘ Y
s fz—1)
(n—1)! -, , et z
" Hm(—1)"* [
Sn ! al}:rrl)( ) 6an4] z — (,~aT
1 a z
s+a ¢ z—e T
1 1 ! z z
- — ~ol __ b _
(s + a)(s + b) b—a(e ) bna<z—e’” z-e’”)
1 1 I (1 —e )z
— e — — l - —at . —————— e
s(s + a) a(“( )= ) alz — 1)z —e )
l 1(1 B l;e_’) if Tz (1—e Ty
s(s + a) a a aliz—-1* alz—Wz—-e")
s+b -t b 1{b 1 z — bl —e )z’
L+l T lun+ i -(2—1)e 1 Pz lazhilze )
s4s + a) a a a\a aliz - 1) a(z-1)z-eT)
1 1 ( b a ) b= bz az i
T —| a4 ——— T e —¢ ') T e - ee—
s(s + a)(s + b) ab u—2b a—b J ablz -1 tu-bz ~¢ ") qu-b)z-o "y
1 o Tze o
5 +a)? « {z—e7)?




6¢

(s + a)? + b?

s+a
(s+a)?+b?

1

slis + ) + 7]

cos at
sinhaT
coshaT
{
—{u(t) — cosat)
a
1.
{ ——sinat
a
‘ -at
s [u(ty — (1 + atye™]
t 2 t 2\ .
a—z—;u(l)+ 'a—2'+E§ e
l —al o5 bl
—e “sin
b i

e % cos bt

1

—2+—b2[l — ¢ “secpcos(hr + @)}
a

¢ = tan” ‘(—-—-h—a>

1[’ T (@T - 2T: : z
- +
al (-
zsinaT
2% —2zcosaT + 1

z(z — cosaT)
72 —2zcosaT + |

zsinhaT
z2 —2zcoshaT + 1

2(z — cosh aT)
z? —2zcoshaT + 1

1| =z z{z — cosaT)

alz—1 z?-2zcosaT + |
Tz 1 zsinaT

(z-—1)?* az?—2zcosaT +1

| z z aTe *7z
a*lz—-1 z-eT (z—e )

+ + :
(Z _ l)z 7 — e—aT (Z _ e*nl‘)l

0 daz - 1) Az -1 Tak: < ey

1 [(aT + 2)z — 222 2z aTe™ 'z
a?

1 ze *TsinbT
b\z? — 2z¢ T coshT + e~ 297
22~ ze"VcosbT

z2 — 2ze™"Tcos hT + e 2°7

1 z 7% — ze Tsec pcos(hT — ¢)
a?+ bz -1 222z TcosbT + e T

|

,]

“ From {8].
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B Inverse Discrete Fourier Transform

We just showed that the spectrum for x,(n) is a line spectrum with period N. In
Section HIL.B we showed that a sequence, x,(n) in this case, defines the Fourier
series for the periodic spectrum. Since the spectrum is now a line spectrum, we
find x,(n) from a summation over a period rather than an integration over a
period as in Eq. (1.11), which is repeated here for convenience:

Js
)= f X,(f)e’"- df (168)
fJo
where the limits have been shifted from —f,/2 and f,/2 to 0 and f,. This shift has
no eflect on the value of the integral because we are integrating the product of a
periodic function and a complex sinusoid that completes an integer number of
cycles per period. Integration of the product gives the same answer if the limits
are shifted, provided the limits span the period. Let a < b mean that b replaces a.
Then the integral yielding x(n) is approximated by an N-point summation as

follows:
-k : kf
if ==, =kdf =--2,
W=y J=rI=7y
1 s | N1 f kf> d .
- d =X * )= X (k (1.69
I eare sy or xo- ,,(N X, )
These substitutions yield
1 N ! -
xp(n) = = Y Xy(k)(e 12Ny (1.70)
N <o
Defining
Wy = e 2V (1.71)

and dropping the subscript p in Eq. (1.70) yield the inverse discrete Fourier
transform (IDFT):

1w
—N Z (YW ¥, n=0,1,2,...,N -1 (1.72)

Note that the sampling frequency does not appear in Eq. (1.70), and we can
assume a normalized value of f, = 1 Hz in accordance with Fig. 1.6.

The IDFT in Eq. (1.72) determines the data sequence x(n) given the transform
sequence X(k), k =0,1,2,..., N — 1. The DFT obtains the transform sequence
X (k) from the data sequence x(n), which is described next.
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The DFT

Suppose we want the coefficient X (/) in the summation in Eq. (1.72). We get it
by multiplying x(n) by W% and summing over n:

N-1

Y xmwh =y H }:Z; X(k)W;""} win (1.73)

n=0 n=0
1 N-1 N-1
=— Y X(k) T Wy
Nk:() n=0

where we interchanged the summations over n and k on the right side of the last
equals sign. We evaluate the summation over n on the right side of (1.73) with the
geometric summation formula Eq. (1.32) and get

| — W0 N2 Gl — k]
P —wi W02 sin[r(l — k) /N]

D S (1.74
o, I#£kandLk=0,1,2,...,N — | 1.74)

Thus,
N-1 1 Nt
Z x(mWh = - Z X(k)Noy, (1.75)
n=0 N k=0
which is the DFT
N-1
X(k) = z x(nyWwh (1.76)
n=0

Role of N in the DFT and IDFT

We could have started our development with the Fourier series for x(n), using

N-1
x,(n) = Y X, (k)yWy*" (1.77)
k=0
in which case we get
1 N-1 . )
X, (k) = N ";} x,(M)WY (1.78)

Since this switches the factor 1/N from the IDFT to the DFT, we conclude that
the role of N in the DFT and IDFT is arbitrary. We will use Eq. (1.76) and (1.72)
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for the DFT and IDFT, respectively, in this book because these definitions are the
most common.

The DFT is usually implemented by a fast Fourier transform (FFT) algorithm,
as discussed in Chapter 7. If the mechanization involves fixed-point hardware,
then Eq. (1.78) is often more convenient than Eq. (1.76), because the I/N can be
used for scaling the outputs of FFT stages to prevent overflow. The 1/N also
has the advantage of normalizing the peak DFT frequency response to unity
(see [2, Chapter 6]).

E DFT Properties

The notation
X (k) = DFT[x(n)] and x(n) = IDFT[X (k)] (L.79)

means that the DFT and its inverse are defined by the N-point sequences x(n) and
X (k), respectively. When both X (k) and x(n) exist, we say that they constitute a
DFT pair. Let x(n) and y(n) be two sequences with a period of N points. Then
Table VI lists some DFT pairs that are labeled by an identifying property. A brief
discussion of some of the DFT properties follows. More detailed discussions are
in the references at the end of this chapter.

1 Convolution

Circular convolution is defined for periodic sequences, whereas convolution is
defined for aperiodic sequences. The circular convolution of two N-point
periodic sequences x(n) and y(n) is the N-point sequence a(m) = x(n) * y(n),
defined by

N-1
a(m) = x(m) * y(m) = Y x(mym—n), m=0,1,2,....N—1 (180)
n=0
Since a(m + N) = a(m), the sequence a(m) is periodic with period N. Therefore
A(k) = DFT[a(m)] has period N and is determined by A(k) = X (k) Y(k).

The noncircular (i.e., aperiodic) convolution of two sequences x(n) and y(n) of
lengths P and Q, respectively, yields another sequence a(n) of length N = P +
Q-1

N-1
a(m)= Y x(n)y(m — n), m=0,1,....P+Q -2 (1.81)

n-—=0
Note that the convolution property of the DFT [see Eq. (1.80)] implies circular
convolution. Noncircular convolution, as implied in Eq. (1.81), requires that the
sequences x(n) and y(n) be extended to length N > P + Q — 1 by appending
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SEQUENCE x{n) E AUGMENTED _ -
OF LENGTH P :?ﬁ’-ﬁg 22% SEQUENCE  X(n) | N_poINT X (k)
OF THE DFT
SEQUENCE
SEQUENCE yin} ADD ZEROS AUGMENTED
OF LENGTHQ AT THE END SEQUENCE ¥ (n) N - POINT
OF THE DFT
SEQUENCE
N>P+Q-1
Tin) = xin)ay(n A (k) =
_n=01,..., N-1 N-pPOINT | X¥ @)
IDFT 7™

Fig. 1.9. Application of DFT to obtain the noncircular convolution of two sequences x(n) and y(n).

zeros to yield the augmented N-point sequences
{X(n)} = {x(0), x(1),...,x(P—1),0,0,..., 0} (1.82)
{F(m)} = {y(0), (1),..., y(Q - 1),0,0,...., 0} (1.83)

Then the circular convolution of X(n) and j(n) yields a periodic sequence a(n) with
period N. However, a(m) = a(m)form =0, 1,..., P + Q — 2. Hence

DFT[d(n)] = DFT[%(n) * §(n)] = X (k) Y(k) (1.84)
where X (k) and Y (k) are the N-point DFTs of %(n) and j(n), respectively, and
a(n) = IDFTLX (k) Y(k)] (1.85)

These operations are illustrated in block diagram form in Fig. 1.9. Of course, an
FFT is applied to implement the DFT.

Overflow can be a problem when implementing convolution in a digital
computer. Therefore, a factor of 1/N is often included before the summations in
Eqgs. (1.80) and (1.81), and this scaling precludes overflow with floating-point as
well as properly scaled fixed-point sequences. Convolution is discussed in more
detail in Chapter 8, starting on page 666.

Periodicity of the Data Sequence
Data sequence periodicity follows from the IDFT:

1 N—1L
x(n) = k;) X (kYW bn (1.86)
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Summary of Discrete Fourier Transform Properties

TABLE VI

Property

Data sequence representation

Transform sequence representation

DFT
Linearity

Periodicity of data and transform sequences

Horizontal axis sign change
Complex conjugation

Both of the above

Sample shift

Frequency shift

Double-sideband modulation

Data sequence circular convolution (transform
sequence product)

Transform sequence circular convolution (data
sequence product)

Dala sequence convolution (transform product)

Transform sequence convolution (data
sequence product)

Data sequence cross-correlation

x{n)
ax(n) + by(n)

x(n +iN)
im=...,—10,1,...

x(—n)
x*(n)
x*(—-n)
x(n + m)
W konx(n)

cos(2rkon, N)x(n)
sin(2rkon/N)x(n)

x(n) * y(n)
x(n)y(n)
X(n) * Fim)

(augmented N-point sequences)

S(m¥(n)

i
X —n)* Tn
N :

(augmented N-point sequences)

X(k)
aX(k) + bY(k)
X(k + mN)

X(—k)
X*—k)
X*(k)
WEmX (k)
X(k £ ko)

YIX(k + ko) + X (k — k)]
LXKk + ko) — Xtk ~ ko)l

X(kY(k)
X (k) * Y(k)
XYk

Ly = Yok
(augmented N-point sequences)

|- ~
LR kT K
N { [AA )

i
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Data sequence autocorrelation
Conjugate symmetry of the transform of a
real-valued sequence

Decomposition of a real sequence x{n) into an
even part x.(n) plus an odd part x,{(n)

Decomposition of a complex data sequence
x(n) into a conjugate symmetric part x.(n)
and a conjugate antisymmetric part x,(n)

Decomposition of a complex transform X (k)
into a conjugate symmetric part X (k) and a
conjugate antisymmetric part X (k)

Symmetry

IDFT by means of DFT

DFT by means of IDFT

DFT of two real N-point sequences x{n) and
y(n) by means of one N-pomt DFT

DFT of a 2N-point real data sequence using an
N-point DFT

t
N X(—n)* I*"n)

i

x(n}

x(n) = x.(n) + x,(n)

x.(n) = y{x(n) + x(—n)]
Xo(m) = §[x(n) — x(—n)]

x(n) = x.(n) + x,(n)

x(n) = ¥[x(n) + x*(—-n)]
xo(n) = 3[x(n) — x*(—n)]

x(n) = Re[x(n)] + jim[x(n)]

Re[x(n)]
JIm[x(n)]
X(-n)/N
X(n)
IX" )
N
X*n)

a(n) = x(n) + jy(n)

a(n) = x(2n} + jx(2n + 1),
n=01,.. . N-1

1 o

X =k

Nl (=l

X (k)= X*N — k)

X (k)
Re[X{k)]
JIm{X (k)]

X (k)

Re[X(k)]

JIm[X (k)]

X(k) = X (k) + X (k)

X (k) = $[X() + X*(— k)]
X,(k) =$[X(k) — X*(-K)]

x(k)
Nx(—k)
x*(k)
Nx*(k)
A(k) = X (k) + Xk )+jY(k)
+ k). k=01... N2
X (k) = }Re[A(k) + AN — k)]

Y,(k) = iRe[A(k) — AN — k)]
X (k) = LIm[A(k) — AN — k]
Y,(k) = JIm[A(k) + AN — k)]
Xik) = $Re[A(k) + A(N k]

+ {Im[A(K) — AN —~ k)]

- W‘z,v{%ReM(k) ~ AN ~ k)]

— Lim[A(k) + AN -~ k)_l‘,.
k=01,

(((munuedj



TABLE VI (Continued)

Property

Data sequence representation

Transform sequence representation

IDFT of a 2N-point complex transform
sequence, which resulted from a 2N-point
real sequence using an N-point DFT
and IDFT by means of a DFT

Complex exponential data sequence (DFT
frequency response)

Unity data sequence

DFET output in response to an arbitrary input”

DFT output with an input weighing® that is
nonzeroonly forO < n < N

DFT output with an input weighing that is
nonzero forn < Qandn > N

Y(n) = ${Re[X(m] + Im[X ()]}
YN ~ n) = }{Re[X(1)] - Im[X ()]}
A(n) = Y(2n) + jY(2n + 1), etc.

(,)'lnfn,'.\‘
) 1, n=01...., N -1
n)=

Hw 0 otherwise

x(n)

xtnyw(n)

w(n) = 0 for

n<Oandnz> N

x{n)win)
w(n) # 0 for
n<Oandn>N

X = 51 (ReLyK] + IR

) 1
X(2N — k) = o {Re[y(k)] — Im{y(k)1}
k=0.1,....N

oI Rk= i1~ L sin[n(k — f)]

sin[n(k — f)/N]

Uy(e/™) = e’/’l.r‘m‘»—nM
B sinf/)
N, k=0
", k=12..,N-1

Un(e®) * X, (e/?)
evaluated at & = 2nk/N

#(e) » X, (/)
evaluated at «» = 2rk/N

W (et » Uyled?) » X (e
evaluated at w = 2nk’'N

F=kiN
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A-point DFT response 10 u,,(n)

M-points into an N-point DFT (zero extending

a data sequence)

MN-point DFT* of a data sequence padded
with zeros by a factor of M

Interpolation of an N-point data sequence to
an MN-point sequence’

Interpolation of an N-point data sequence to
an MN-point sequence using a frequency
domain window that is nonzero only for
0<k<MN-1*

L-dimensional DFT

Parseval’s theorem

) 1, n=01,.... M- 1
. =
fuin 0, otherwise

n) xn), n=0,1,....M -1
X = 0, otherwise

x{m) fn/M=m
x(n) = .

0, otherwise
Ue!2™™*) + x(n)

where x{n) is padded with zeros by a
factor of M

#r:(ejlxllMN) * x(n)
where x(n) is padded with zeros by a
factor of M

Xy, ny,...,n)

N-
PTG =
n=0

) o
Lyl 37 = g kM - LN ?Ti”k‘”’ N)

sin(nk/N)

X{k) = Upyle*) & X (/)] on

Xunlk) = Xy(kmod N) = DFT[x(n)]

Xu(k), k=01,....N—1

X“”‘k)={0 k=N,... 6 MN—I

Xyyntk) = w(k) Xy(k mod N)

X(kyykayoons ki)

LS xgare
-ﬁk;’| (k)

* X(e/”) = DTFTx(n)]

* #{e!?) = DTFT[w(n}]

¢ X, (ky = DFT,[x(m)] = Y. X' x(ny W
¢ See Fig,. 8.36.
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If we replace n by n + iN, where i is an integer, we have
W k(n+iN) — (e JZn/N) kin+iN) __ WN kn ”87)
since exp[(j2n/N)(iNk)] = 1. Thus,

- N-1

x(n +iN) = % 2 Nt — Z X)Wk = x(n)  (1.88)
Since x(n) = x(n + iN),i= ..., — 1,0, 1,..., the data sequence has period N, at
least when we use the IDFT to derive the data. Unfortunately, when we take N
samples of a time waveform at a sampling interval of T s, it is unusual that the
period P = NT of the time waveform is known, and indeed the waveform may
not be periodic. The implication of this is discussed next.

3 DFT Output in Response to an Arbitrary Input

The use of the DFT presumes a periodic input whose known period is spanned
by the N samples used in the DFT. Such an input has a line spectrum, and if it is
properly bandlimited the DFT measures it exactly. In general, either the period is
unknown or the signal may be nonperiodic or even a continuum of frequencies.
The result is that the DFT transform coefficient X (k) measures a windowed
spectrum from 0 to f, Hz. To determine the characteristics of the windowed
spectrum, note that the DFT is evaluating the DTFT at specific frequencies

= e =0,1,....,N — 1.8Y

f=x k=01 1 (1.89)

for an input, x(n), that is truncated for n < 0 and n > N. This can be achieved by
multiplying x(n) by uy(n), where

1, n=0,1,2...,N—1
= . N 0
un(n) {0 otherwise (1.50)

The sequence uy(n)x(n) is that required by the DFT and

DFT[uy(n)x(n)] = DTFT [uy(n)x(n)] (1.91)

S=k/N

Let frequency domain convolution be defined by (1.24), let X, (e/®) =
DTFT([x(n)], and let DTFT[uy(n)] = Uy(e’*). Then using the entries in Table I
for frequency domain convolution (data sequence product) and for the trans-
form of the N sample step sequence, we get

X (k) = DFT[uy(n)x(n)] = Uy(e’”) * X, (')

w=2nk/N

v o sin[n(k — fN)] o
= Jnlk= FNX(3 = 1/N) i2nf .
j |/2 sin[7(k — fN)/N] X (e*)df  (1.92)
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sin [n(k - fN)]
,/V sin [{k - tN)/N}
N
-] Xg(eh)|
0 I\ /\ & N\
AV 142

0 SN/ \/k/N\/

NORMALIZED FREQUENCY (Hz)
Fig. 1.10. The DFT frequency response admits spectral leakage.

The DFT has a [sin(nfN)/sin(rnf)| frequency response magnitude that has nulls
every 1/N Hz. If the input has a spectrum of only N delta functions that are
spaced 1/N Hz apart starting at f = 0 and that have strength X(k)/N, then the
DFT determines these lines exactly because only the line at f = k/N is not at a
null of sin[r(k — fN)]/sin{n(k — fN)/N]. Otherwise, Eq. (1.92) shows that the
DFT output is an integral of the product of the responses of Uy(e/®) shifted to
w = 2nk/N and X,(e/®). Figure 1.10 shows the magnitude of X,(e’*) and
Uy(e#?™%~ IMIN) (the complex exponential factor is not shown), and illustrates
how the sidelobes of Uy(e/®) pick up energy (called spectral leakage) included in
X (k) by the integration in Eq. (1.92). Furthermore, Fig. 1.10 shows that the
mainlobe of the DFT frequency response includes a band of frequencies in the
input, X,(e’“). This band, plus the spectral leakage, determines the output
coefficient X (k) and leads to the term DFT filter response with a rectangular
weighting on the input. Thus the DFT can be regarded as a bank of filters where
the magnitude response of adjacent DFT filters is given in Fig. 8.32.

DFT Output in Response to a Weighted Input 4

The sin(nf'N)/sin(znf) frequency response of the DFT can be changed by data
sequence weighting (also called a data sequence window [2]). Let the weighting,
w(n), be nonzero only for 0 < n < N. Then w(n) truncates the data sequence in
the same manner as uy(n). Let DTFT[w(n)] = #7(e’*). Then

DFT[w(n)x(n)] = DTFT[w(n)x(n)] = W(el®)* X, (¢!)

w  2rk/N w — 2nk/N

(1.93)

On the other hand, if w(n) is nonzero for n<0 and n> N, the sequence x(n) must
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again be truncated by uy(n) with the result that

DFT[w(n)uy(n)x(n)] = #(e/®) * Uy(e’®) * X,(e’®) (1.94)

w=2nk/N

Asin Eq. (1.92), the convolutions in Egs. (1.93) and (1.94) are defined by Eq. (1.24).
Displaying Egs. (1.93) and (1.94) as convolutions evaluated at f = 2nk/N shows
that the DFT output is the integral of the product of the data spectrum and a
frequency domain window determined by #7(e’“) * Uy(e’“) in Eq. (1.94). These
windows are selected to achieve desirable modifications to the basic DFT
window, Uy(e’®). The modifications include the following: (1) reduce the peak
amplitude of the sidelobes; (2) change the width of the mainlobe of the frequency
(filter) response; (3) increase the rate at which successive sidelobes decay; (4) vary
the locations of the sidelobe nulls; and (5) simultaneously do (1)—~(4). Similar to
Fig. 1.10, the frequency domain windows have the appearance of filter responses
and are referred to as DFT filters. Weighted, overlapping blocks of data plus a
frequency bin phase shift accomplish filtering operations such as multiplexing
and demultiplexing (see Chapter 8). The Appendix in Chapter 3 includes
windows, and its Table Al lists some of their properties.

5 Horizontal Axis Sign Change

Taking the DFT of the sequence x(— n) gives the horizontal axis sign change:

N—-1 —~N+1
DFT[x(—n)] = Y x(-mW= Y x()Wy* (1.95)
n=90 1=0
where we let | = —n. The periodicity of Wg* and the sequence x(I) allow us to

shift the indices to between 0 and N — 1, giving

S X)Wy = X(—K) (1.96)

=0

50 DFT[x(—n)] = X(—k).
6 DFT of Two Real N-Point Sequences

Let x(n) and y(n) be two real N-point sequences and let a(n) = x(n) + jy(n).
Let DFTy[x(n)] = X (k) + jX,(k), where X(k) and X,(k) are the DFTs of
the even and odd parts, respectively, of x(n), and DFT, means an N-point DFT.
Similarly, let DFTy[y(n)] = Y,(k) + jY,(k) and DFT,[a(n)] = A(k). Then we
can determine X (k) and Y(k) from A(k), using the formulas in Table VI: X, (k) =
1Re[A(k) + A(N — k)], etc. This -algorithm is for determining the DFTs of
two real N-point sequences by just one N-point DFT; see Fig. 8.30(a). Other
algorithms are available to take the DFT of a 2N-point real sequence by using
an N-point DFT and the DFT of a 4N-point even or odd sequence by using an
N-point DFT [15, 16].
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Multidimensional DFT

The multidimensional DFT is a direct extension of the 1-D DFT and is defined
by

NpL—1Np-;—-1 Ni—1

Xkpky groonk)= 8 Y o ¥ X(Agng1,..ny)  (197)

np.=0 n =0 n =0
x val;-nl_ W}kvl;: ll"L B vall'n
where
Wy, = e~ 127/ (1.98)

The multidimensional DFT is the basis for developing several FFT algorithms in
Chapter 7.

7

DISCRETE-TIME RANDOM SEQUENCES VI

So far we have discussed signals that are periodic in the frequency domain (for
the DFT, the data sequence is assumed to be periodic as well). If a signal is
deterministic, it has a definite value as a function of sample number and, unless
we admit Dirac delta functions, has finite energy over its duration or, in the case
of the DFT, over a period. If a signal is a discrete-time random sequence (DTRS),
it also has a periodic spectrum, like all data sequences. In contrast to the
deterministic signals the value of a DTRS at a given sample number can only be
specified by a probability distribution function, and, furthermore, a DTRS may
have infinite energy.

A DTRS is also referred to as a stochastic signal, stochastic process, random
function, random time series, or random process. At any sample number the data
is a random variable. Many of the properties of the DTRS are summarized in
terms of its correlation sequence and power spectrum. We shall briefly review
random variables and then discuss correlation sequences and power spectra.

Random Variables

A DTRS is a sequence of random variables, x(n), where for a given n, x(n)is a
random variable described by a probability distribution function, Fé(,,,(x, n); that
is, in general it is a function of the data sequence number and is given by

Fi(n,(x, n) = Pr{x(n) < x} (1.99)

where Pr means the probability that the event in braces occurs, and x is a real
number. The random variables can assume either a continuous range of values or
adiscrete set of values. If the partial derivative of Fy(,(x, n) with respect to x exists

A
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for all x, then x(n) is described by the probability density function

2

{‘
Sxmlx,n) = F Fonl(x,n) (1.100)

On the other hand, if x(n) assumes only a countable set of values, it is described by
the discrete probability density function (also called a probability mass function)

L

Semx,n) =Y Prim(Xis )O(X — X;) (1101
k-

where p,,(x,n) is the probability mass function, and the Dirac delta function
d(x — x,) is described in Egs. (1.14) and (1.15). For the continuous and discrete-
valued random variables the distribution function is given by

Fumlx.n) = j Seamles ) dot (1.102a)

o

= Y Ppum(Xe:n) (discrete type only),
k- T
m={m:x, <X <Xy (1.102b)

where Eq. (1.102a) holds for both and Eq. (1.102b) holds only for the discrete type.
The following examples illustrate the two types of random variables.

Gaussian Distributed

The continuous random variable x i1s Gaussian distributed if the density

function is given by
1 1 x—n\?
fi(x) = *2—“(; cxp[ - Z(ATI‘) } (1.103)

where we have suppressed the data sequence index n, and y and ¢ are the mean
and variance, respectively, of x. Figure 1.11 shows the normalized density and
distribution functions af,(x/c) and F,(x/0), respectively.

2 Binomial Distributed

The discrete random variable x is binomial distributed if, for example, it
describes the probability of getting k heads in N tosses of acoin, 0 < k < N.Letp
be the probability of getting a head and ¢ = 1 — p be the probability of getting a
tail. Then x takes discrete values according to the density

N Nl

Sl =Y

. pkgN ky -~ )
LN Rk P ok =k (1.104)



1. Transforms and Transform Properties 43

m‘l( X/o)

0.399

(a)

0.058

|
|
~1% -og7 0014 087
T T H
| -0
| | | 1509 of area
| L
1
|

[

| -68.3% of area—-

0.75
07

06

0.2

= { | L1 1 | J
-4 =3 =) -l 0 0% a6 | 2 3 i
Fig. 1.11. Gaussian (a) density and (b) distribution functions. [From E. Parzen, Modern Proba-
bility Theory and Its Applications, Wiley, New York. Copyright ©) 1960, John Wiley and Sons, Inc.
Reprinted with permission.]
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where again we have suppressed the index n. For N = 3 the probability mass
function

_A_HN! k N~k
Pk = N i P

takes values only at k = 0, 1, 2, and 3, yielding p,(0) = % (1) = ps(2) = 3, and

px(3) = 4. The dlstnbutxon functlon 1s stalr-step—hke stepsuponlyatk =0, 1,2,
and 3, yielding F(0) = LEM= 2 F(2) = 3,and F, “3) =1

B Jointly Distributed Random Sequences

Two discrete-time sequences x(n) and y(m) are described by a joint probability
distribution function Fy ym(x,n, y,m):

Fyquy, (%> 1, y,m) = Pr{x(n) < x and y(m) < y} (1.105)

When x(n) and y(m) assume a continuous range of values and Fyq,) ym(x, 2, y, m) is
differentiable with respect to x and y, the joint probability density l{mctlon of x(n)

and y(m) is
- 2

d
&(u),!(m)(x’ n, Y’ m) ] »} x(n) y(m)(x n, }’, m) (1 . 106)

Equations (1.105) and (1.106) extend to three, four, or more random variables
straightforwardly. Likewise, Eq. (1.101) extends to two, three, or more random
variables.

C Stationary Discrete-Time Random Sequences

A DTRS is stationary if its statistical characterization is not affected by a shift
in the data sequence origin. For example, the probability distribution function of
the stationary sequence x(n) satisfies

Fymy(x, 1) = Fyn 4 19(x, n + k) = F(x) (1.107)
for all integers k and n. In addition, the joint distribution function satisfies
Fﬁ(n),!(m)(x7 n, Y, m) = F'E(n +k),y(m +k)(x7 n+ k: _V, m + k) (]]08)

for all integers k, m, and n.

D Expectations

Let g(x) be a function of the random variable x. (We are suppressing the index n
in x(n) for notational convenience.) Then we define the expected value of g(x),
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E[g(x)], as

E[g(x)] = j 9(x) fi(x)dx (1.109)

=5

E[g(x)]is also called the average value or the mean value of g(x). For example, let
g(x) = x. Then the mean value, n,, of the random variable x is

ao

n. = E[x] = J xf(x)dx (1.110)

—a

If x is Gaussian distributed, we obtain n, = 5 by using Eq. (1.103). The mean-
squared value of x is E[x?], while the variance of x, 62, is defined by

oz = E[(x — %] (L111)

Statistically Independent and Uncorrelated Random Variables

The random variables x and y are statistically independent (or simply
independent) if their joint probability density and distribution functions factor
into the product of two functions:

Sey 06 9) = L) (») (1.112)

They are uncorrelated if
E[xy] =E[x]E[y] (1.113)

It follows from Eq. (1.112) that independent random variables are uncorrelated;
the converse is not necessarily true.

CORRELATION AND COVARIANCE SEQUENCES

Much useful information about DTRSs is available from their correlation and
covariance sequences. In this book we shall discuss wide-sense stationary (WSS)
sequences. These sequences have a mean value that is independent of the data
sequence index, and a correlation and covariance that are functions only of the
difference in the time indices of two random variables. To state this mathemat-
ically, let x(n) be a wide-sense stationary DTRS. Then

E[x(n)] = n, for all n (1.114)

where 7, is a constant. The autocorrelation sequence for x(n), r,.(m), is defined for
all integers n and all shift indices m

radm) = E[x(m)x*(n — m)] = E[x(n + m)x*(n)] (1.115)

E

) ¢
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and is a function only of the difference in the indices. Conversely, sequences
satisfying Eqs. (1.114) and (1.115) for all n are WSS.

Similarly, if x(n)and y(n) are two WSS DTRSs, their cross-correlation sequence
is defined for all integers m and n by

Foy(m) = E[x(n)y*(n — m)] = E[x(n + m)y*(n)] (1.116)
Covariance sequences differ from correlation sequences only in that the mean
value of a DTRS is removed before taking an expected value. Thus, the
autocovariance and cross-covariance sequences of WSS DTRSs are defined,
respectively, by

Cxx(m) = E{[E(ﬂ) - ’?x][—l‘(” — m) - ﬂ,]*} S5 rxx(m) - lrl'xlz (1.1 |7)
e,y(m) = E{[x(n) = nJ[p(n — m) — n,]*} = re(m) —neny (1.118)

The variance of x(n)in Eq. (1.111) is also given by
2 = ¢ (0) (1.119)

A Time Averages and Ergodicity

Time averages are often used to infer statistical properties for DTRSs. Let x(n)
be a WSS DTRS. Then the (2N + 1)-point time average for the x(n) defined by

N

Y x(n) (1.120)

(x(n)yy = IN 4+ 1,2

provides an estimate of the mean. If this estimate converges as N approaches
infinity, we define

{x(n)) = lim {x(n)yy (1.121)

N—x

as the average of the entire sequence. By comparison, E[x(n)] is an ensemble
average; that is, it is the mean of all possible values of x(n) at a specific value of n.
Similar to Eq. (1.120), an estimate of the autocorrelation sequence is

] N

*(n — =" *n — 27
Cxlmx*(n = m)y = 55— ":ZN)_c{n)a (n — m) (. £22)
While similar to Eq. (1.121), if the estimate in Eq. (1.122) converges, we have
{x(r)x*(n—m)> = lim {x(n)x*(n — m)>y (1.123)
N—=

If x(n) is not only WSS but also satisfies the ergodic theorems for the mean and
autocorrelation [17, 18], then

{(x(n)y = E[x(n)] (1.124)
{x(mx*n —m)y =r.Am) (1.125)
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Equation (1.124) says that an average of x(n) over all possible values of the index
n is equal to the expected value (average) of x(n) for a specific integer n. Thus,
engineers are apt to say that, if a sequence is ergodic, time averages are equivalent
to ensemble averages, where the ensemble is all possible values of the random
variable x(n), with »n fixed. A similar interpretation applies to Eq. (1.125).
Likewise, if x(n) is WSS and satisfies the ergodic theorems for the mean and
autocorrelation, then

Coelm) = {Lx(n) = n0x(n — m) — 1,]*) (1.126)
If x(n) and y(n) are both ergodic sequences, then

rey(m) = {x(n)y*(n — m)) (1.127)

Cxy(m) = [x(n) — 0 JLy(n — m) —n,1*> (1.128)

Ergodic sequences are important in engineering applications of digital signal
processing because we can determine their mean values and correlations by using
many samples from one sequence rather than specific samples from many
sequences.

Correlation and Covariance Properties B

Table VII gives some properties of the correlation and covariance sequences
for WSS sequences x(n) and v(n). The properties result mainly from applying
definitions already stated. Some examples and clarification follow.

Conjugate Symmetry 1

Conjugate symmetry results from taking the complex conjugate of a corre-
lation or covariance sequence. For example, since x(n)x*(n — m) = x*(n —
m)x(n), we have

re(m) = E[x*(n — m)x(n)] = E[x*(n)x(n + m)] (1.129)

where the indices can be shifted because the sequences are stationary. Taking the
complex conjugate in Eq. (1.129) outside the expection yields

re(m) = {E[x(n)x*(n + m)]}* = r¥(—m) (1.130)
as stated in Table VII.

Autocorrelation is Maximum at the Origin 2

Let x(n) and y(n) be two real sequences. Then solving

E{[x(n + m) + ay(m)]*} (1.131)



TABLE VII
Properties of the Correlation and Covariance Sequences for Wide-Sense Stationary Sequences

Property Sequence Equivalent representation
Autocorrelation rox(m) E[x(n)x*(n — m)]
Autocovariance Cexlm) E{[x(n) — 7, ][x(n — m) — n.}*}
Cross-correlation r.y(m) E[x(n)y*(n — m)]
Cross-covariance ¢yy(m) E{[x(n) — n J[y(n — m) —n,3*}
Conjugate symmetry rex(m) ré(~m)
cxx(m) ¢ :1( - m)
Faylm) rhd=m)
Cm) cr(—m)
Relation of autocovariance Cex(m) rexm) = I7,)?
and autocorrelation Cyylm) ro{m) = n.t
Uncorrelated sequences r(m) neny
Orthogonal sequences r(m) 0
Sum of orthogonal Tww(m) redm) + r,,(m)
sequences x(n) and y(n)
w(n) = x(n) + y(n)
Product of independent T (M) rex(m)r,,(m)
sequences w(n) = x(n)y(n)
Ergodicity rex{m) [
o SR "'(*"’)]
Colm) g LY P R
im| ——[x(m) — x(~m) —n,
N$_2N+ 1 X el *§ m A
Tey(m) o
1 e * y*(—
,\T,J_2N o x(m) * y*( m'jl
ol lim 4L [x(m) — 1 oy [y(=m) — 1,%
AN 1 Nl *5 LY Ay
Qutput of a linear, stable, r.(m) re(m) * h*(—m)
shift-invariant system with ry.(m) o (m) * h{m)
impulse response h(n), r,,(m) r.{m) *h(m) *h*(—m)

y(n) = h(n) * x(n)

The following properties apply only to sequences that become uncorrelated for large index shifts of

one sequence

Decorrelation of sequences
for large shifts of one
sequence

lim r, . (m)

m—m

lim ¢, (m)

m-=no

lim r,(m)

m—x

lim ¢, (m)

m— o

UM

0

0y

0
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TABLE VH (Continued)

Property Sequence Equivalent representation

The following properties apply only to real sequences

Autocorrelation is real r(m) r¥(n
Autocorrelation is even r..(m) Tex(—m)
Autocorrelation is rx(0) 2|redm)l
maximum at the origin rx(0) + r,,(0) 22|r,,(m)|
r«(0)r,,(0) =r,(m)
Equivalence of ¢,(0) o?

autocovariance and
variance at the origin

Autocorrelation at the r(0) ol + n?
origin

for « and concluding that the discriminate is nonpositive give rZ(m) <
rx(0)r,,(0). Noting that Eq. (1.131) is greater than or equal to zero for « = —1
yields 2r,(m) <r,(0) + r,(0). In like manner we get the useful identity

[rex(m)] < r(0).

Ergodicity
Define the (2N + 1)-point convolution of x(m) and y(m) as
N
x(m) Yo = 3, xti)ym i) (1.132)

Comparing Eqs. (1.132) and (1.122) shows that the cross-correlation for ergodic
sequences x(n) and y(n) can be expressed in terms of the convolution

rol) = lim [E-I—V'Jr - x(m) *Ny*(—m)] (1.133)

— a0

with similar expressions holding for r,.(m), ¢, (m), and ¢, (m), as shown in
Table VII.

Output of a Linear System

Let h(n) be the impulse response of a linear, stable, shift-invariant discrete-time
system. In general, i(n) can be complex. Let the system have input x(n) and output
y(n), as illustrated in Fig. 1.12, where the output is determined by

y(n) = x(n) * h(n) (1.134)
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x(n) y(n)
p——————>

— & hn)

Fig. 1.12. Linear system relationships.

The cross-correlation sequence r.(m) relating a WSS input and system output 1s

X

ryx(m) = E[y(n)x*(n — m)] = F[ Y, x(n—i)h(i)x*(n — mlJ

i

= i rom — i)h(i) = r(m) * h(m) (1.135)

i=-w

as stated in Table VIIL Similar computations yield the entries shown in the table
for r.(m) and r, (m).

X POWER SPECTRAL DENSITY

The DTFT of the covariance sequence yields a function of frequency variously
called the power spectral density (PSD), power density spectrum, power
spectrum, or spectrum. Let S,.(w) denote the PSD for the sequence x(n). Then

Sex(w) = DTFT[c(n)] = Z [ (n)] (1.136)

z= eJw

The cross-power spectral densities, S, () and S, (), are similarly defined:

Solw) = DTFT[¢,,(n)] = Z[c,,(n)] (1.137)

z=elw

S,x(@) = DTFT[¢,(n)] = Z[c,(m)] (1.138)

z=elw

A Convergence Conditions

The sequences ¢, (n), ¢,,(n), and ¢, (n) are defined for n =0, £1, £2,..., so
the z-transforms in Eq. (1.136)—(1.138) are two-sided and the usual convergence
conditions apply. From Table VII we get

redn) = e + In,)? (1.139)
Z[rom] = Z[cu(m] + Z[In.l?*] (1.140)

Comparing Eqs. (1.140) and (1.34), we see that the region of convergence for
ZIn*]is 1 < |z| < 1, which cannot be satisfied, so we require that 7, = 0. Thus,
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if we do not admit delta functions, the PSD of the autocorrelation sequence r (1)
exists only if the DTRS x(n) has a mean value of zero. Likewise, the PSD of r,(n)
exists only if #, = 0 and/or 5, = 0. We conclude that the PSD of an autocorre-
lation (or cross-correlation) function exists only if the mean value(s) of the
DTRS(s) is (are) zero, in which case the PSD of the correlation is the same as the
PSD of the covariance. Nevertheless, the PSD provides a very general approach
to the study of DTRS(s), since if a DTRS has a nonzero mean value the mean can
be subtracted, yielding a DTRS that has a zero mean and therefore has a PSD if
its z-transform converges on the unit circle in the complex plane.

Table of Properties

Table VIII states some properties of the PSD of a WSS sequence. Most of the
properties follow directly from PSD definitions. An example and some discussion
follow.

PSD Relating System Input and Output

Table VIII shows that the cross-covariance relating the output of a linear,
stable, shift-invariant system is r, (m) = r,(m) * h(m) * h*(—m). Using the data
sequence convolution, horizontal axis sign change, and complex conjugation
properties in Table I, we get a relation between the PSD of the system output
and its input:

S,,(w) = DTFT[r,(n)] = S, ()| H(w)|* (1.141)

PSD for Ergodic Sequences

Table VIII gives representations for these sequences in terms of the average
of a convolution. We apply the DTFT to the right entry in the table and define
the PSD in terms of averages of X(e’”) and Y(e/?). When we do this, we must
consider convergence conditions that are a lengthy digression. We refer the
reader to several references [3, 18].

SUMMARY

In this chapter we presented a brief summary of transforms and transform
properties. We started our development by recalling the Fourier series represen-
tation of a periodic function. We showed that sampled data from cosine

1

2

Xl
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TABLE VI
Power Spectral Density Properties for Wide-Sense-Stationary Sequences

Property Power spectral density Equivalent representation

Power spectral density (PSD) Sex(w) DTFT[c,(n)]
PSD of a zero mean sequence Sex() DTFT[r,(n)]
Cross PSD S,y(w) DTFT[c,,(n)]
Cross PSD of zero mean Slw) DTFT{r,,(n)]

SCunl’lCCS
The covariance function S.<(w)or S, (w) See Table 1 or Table V

is analytically defined with z = ¢/®

(see, e.g., below)
rex(n) = sy(n) sinfw(N + 1/2)] . I, Inf<N

" —— DTET[sy(n)]; sn(n) =

(see Table I) sin(w/2) Lsw(m)]; suim) 0, |nj>N
The PSD of a sequence is real Sex(w) S¥(w)
Conjugate symmetry of S.y(w) St (w)

cross PSD of WSS sequences
Orthogonal sequences, S(w) 0

x(n) and y(n)
PSD for w(n) = x(n) + y(n) Sore(®) Sex(w) + S, (w)

where x(n) and y(n) are
orthogonal sequences

The PSD of a real sequence, S, (o) S*(w)
x(n), is real, even, and Sex(®) Sex(—m)
nonnegative Sexl(®) >0
Output of a linear, a stable, S, () Sex(@)H(w)
shift-invariant system: S,,(w) Sex(w)H*(w)
y(n) = x(n) * h(n) Syy(w) S dw)| H(w)?
Ergodic sequence , ) I . o
cross-correlation® Sn(w) ’:T; [EN +1 Xule™)YR(e™)
Erodic sequence . 1 -
autocorrelation® Sixl) JT‘J 2N + 1 [Xn(e™)

N

“Xy(e) = Y x(meTion
n N

waveforms separated in frequency by the sampling frequency, f;, went through
exactly the same points, so the spectrum of sampled data is periodic and can be
represented by a Fourier series called the discrete-time Fourier transform. We
generalized the DTFT to derive the z-transform, and we then stated the Laplace
transform. The discrete Fourier transform was derived from a Fourier series
representation of an N-point sequence that was assumed to repeat with period N.
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To introduce correlation and covariance sequences, we reviewed discrete-time
random sequences. We concluded the chapter by stating some properties of the
power spectral density of the covariance sequence.
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Chapter 2

Design and Implementation
of Digital FIR Filters

P. P. VAIDYANATHAN

Department of Electrical Engineering
California Institute of Technology
Pasadena, Califomnia 91125

INTRODUCTION |

Digital filters [1,2] can be classified into two main types: finite impulse
response (FIR) filters, and infinite impulse response (IIR) filters. Finite impulse
response digital filters possess several desirable properties that make them
attractive for a wide range of applications. An exactly linear phase-response can
be achieved with FIR filters, with the result that they can be used in the faithful
reconstruction of signals without phase distortion. In addition, FIR filters are
inherently stable, and hence the question of stability does not arise either in the
design or in the implementation of these filters (unless they are implemented with
recursive building blocks [ 1]). This is very attractive in such applications as echo
cancelers, where an adaptive transversal filter is used, whose coefficients are time
varying. Moreover, even though FIR filter typically requires a large order, it can
usually be realized by implementing the convolution sum efficiently with fast
Fourier transform (FFT) algorithms [3]. Furthermore, recent publications show
that under most practical situations FIR filters of high orders can be im-
plemented efficiently by indirect design approaches. Another major advantage of
FIR filters is that near-optimal multidimensional FIR filters (in image processing
applications, for example) can be designed easily starting from one-dimensional
(1-D) prototypes and using spectral transformations. The resulting multidimen-
sional filters are guaranteed to be stable and can be implemented without
impairing this stability in spite of coefficient quantization. Finally, FIR filters
naturally lend themselves to efficient implementation of multirate signal
processing algorithms and can be used to achieve extremely efficient sampling
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rate conversions, as discussed in Chapter 3. The only possible disadvantage of
linear-phase FIR filters in certain applications is that the overall group delay
is equal to (N — 1)/2. This quantity is large for high filter orders, and in
communications applications where echos of transmitted signals cannot be
tolerated, this tends to be objectionable (unless echo cancelers are employed).
Moreover, in digital feedback control applications, a large delay in the feedback
loop is. generally not acceptable.

In the past 20 years many techniques have been advanced for the design and
implementation of FIR filters, This chapter outlines the most important
techniques so that you can choose the appropriate design methodology for the
applications involved.

Section II reviews FIR filter preliminaries. Section III discusses the window-
ing technique for FIR design, with particular emphasis on Kaiser’s window.
This method is one of the earliest but is surprisingly efficient for numerous
applications. Section IV discusses optimal FIR designs with equiripple weighted
error, emphasizing Remez exchange techniques developed for FIR filters by
McClellan and Parks. This class of filters is the most well known and widely used,
primarily because its flexibility enables the designer to realize a very wide range of
requirements. Section V deals with maximally flat FIR filters. An attractive
feature of this type of filter is that for low orders it can be implemented without
multipliers, and high-order multiplierless filters can be designed by combining
such low-order building blocks. Section VI discusses linear programming
techniques for FIR designs, originally introduced by Rabiner et al. Even though
these designs have their own limitations (such as numerical difficulties, large
convergence time etc), they are useful in certain applications where Remez
exchange techniques are not suitable. Examples include designs that require a
certain degree of flatness (or tangency) in the passband. Section VII deals with
frequency transformations in FIR filters, and Section VIII extends these concepts
so that a 1-D linear-phase FIR filter can be converted into a 2-D FIR filter.
Section IX describes recent unconventional design approaches that meet all
conventional design requirements but are more efficient from an implementation
point of view. The techniques of Sections IX are based primarily on suitable
modifications of those in Sections IV and V. Section X discusses designs of
useful types of FIR filters, such as minimum-phase, half-band, and power-
complementary filters.

Il FIR DIGITAL FILTER PRELIMINARIES
A causal FIR filter [2] of length N has transfer function

H(iz)=h0)+ h(D)z ' + -+ H(N — 1)z7@W" D 2.1)

where N — 1 is the filter order and h(n) are the impulse response coefficients. In
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this chapter we assume that these coefficients are real numbers. Such a filter has
a linear phase-response if the impulse response is either symmetric [ie., h(n) =
h(N — 1 — n)] or antisymmetric [i.e., h(n) = —h(N — 1 — n)]. Depending upon
whether the filter order is even or odd and whether h(n) is symmetric or
antisymmetric, four classes of linear-phase FIR filters can be distinguished. We
discuss these classes in greater detail in Section IV. For now we consider a filter
with a symmetric impulse response. The corresponding frequency response,
which is the discrete-time Fourier transform (DTFT) of the sequence h(n), can be
written as (see Chapter 1)

H(e®) = e oW = D2 g (piv) (2.2)
[(N— 1)/2
. 2, bacos(en) if (N — 1)is even
Ho(e’*) = { x1 i (2.3)
- if (N — 1) is odd
H; b, cosw(n 2) ( )is o

where Hqy(e’?) is a real function of w. The coefficients b, [see Table IV]for N — 1

even are given by
N -1
(2 am
b, = - (2.4)

Thus the phase response of the filter is

N—1
¢>(w)=—( 3 )w (2.5)

which shows that it is a linear-phase filter with a group delay equal to (N — 1)/2.
For N — 1 even, this delay is an integral number of samples, whereas for N — 1
odd, the delay is nonintegral. If the order N — 1 is even, then a zero-phase filter
with the same magnitude response as that of H(z) can be obtained by con-
structing the noncausal transfer function

Ho(z) = 2V~ D2 H(z) (2.6)

where H,(z) has the frequency response in Eq. (2.3).

Filter Characteristics A

A FIR transfer function of the form in Eq. (2.1) can be implemented with N
multipliers and N — 1 adders, as shown in Fig. 2.1(a). This structure is called the
direct form. For linear-phase filters, the symmetry of the coefficients h(n) permits
a more efficient implementation. Figure 2.1(b) demonstrates this for a sixth-order



h(0) h(1) h(2 h(N-1)

+ + y(n)

Fig. 2.1(a). The direct-form implementation of a FIR filter of order N — [.

x(n} 27! 27! 27!

v
+ =
N
y

,-1 L y L

Y
h(0) h(1) h(2) h(3)
/\-[_—/ 7\4_7 -+ y(n)

Fig. 2.1(b). Sixth-order linear-phase FIR filter implemented with four multipliers.

Fig. 2.1(c). Symmetry of zeros of a linear-phase FIR filter with real h(n).
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filter (i.e.. N — 1 = 6). In general, a linear-phase FIR filter of order N — 1 can be
implemented with (N — 1)/2 + | multipliers if N — 1 is even, and with N2
multipliers if N — 1 is odd.

Note that the frequency response H(e’*) is always periodic in o with period 2.
If N — 1 is even, then ¢ /@ " 1/2 = prilo+2mN=102. 4f N _ 1 s odd, then
e JOW I it 20N =2 Accordingly, Hy(e) has a period of 2x for N — |
even and 4x for N — 1 odd. If the impulse response coefficients h(n) are real,
then H(¢’”) is such that |H(e’®)| is symmetric and arg(H(e’®)) is antisymmetric:

[Hie™)| = [H(e ), arg(H(e™) = —arg(H(e )

Accordingly, it 1s sufficient to plot | H(e/*)| and arg H(¢#*)in therange 0 < w < 7.

If z, is a zero of H(z) for any linear-phase FIR filter, then 1/z, is also a zero
[1]. Thus, zeros are restricted to be either on the unit circle or in reciprocal pairs
with respect to the unit circle in the z-plane. Figure 2.1(c) shows the possible
types of zeros for such linear-phase filters.

[t is sometimes of interest to design FIR filters that have a minimum-phase
(rather than a linear-phase) response. For such filters none of the zeros are
outside the unit circle, and the phase lag at any frequency is the smallest possible
among all FIR filters having the same magnitude response. These filters are
discussed in Section X.

Design Specifications

The simplest type of design specification is the lowpass frequency response.
Other types will be taken up in later sections. Figure 2.2 shows an ideal lowpass
response, and Fig. 2.3 shows a typical tolerance requirement. Here 8, and 4,
represent the peak permissible errors in the passband and stopband, respectively.
The transition bandwidth Af'is

Af =—"——F (2.7a)

Hd(ejw)

hY
Y /cu
0 (.UC i

Fig. 2.2. An ideal lowpass filter specification.
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Fig. 2.3. Tolerance scheme for a practical lowpass filter specification.

where w, and w, are the passband and stopband (rejection band) edges,
respectively. The cutoff frequency w, of a lowpass filter is defined to be the
arithmetic mean of the bandedges:

i W, oy
v 2

(2.7b)

The variable f, defined as f = w/2=n, is called the normalized frequency (see
Fig. 1.6). Thus, for real h(n) we plot |H(e’”)| in the range 0 < f < 0.5. A typical
design problem is to find FIR filter transfer function H(z) such that the fre-
quency response magnitude lies within the tolerance region of Fig, 2.3.

The minimum stopband attenuation in dB is defined as

A, = —20log, 4, (2.8)
and the peak passband attenuation in dB is defined as
A, = —20log, (1 — ;) (2.9)
For small é,,
A, =~ 8.6866, dB (2.10)

The notation A,,, denotes the quantity 24,. If the frequency response is
normalized so that its maximum magnitude (in the passband) is unity, 4.,
essentially represents the maximum passband attenuation in dB for small d,.

In most of the numerical design examples we show the frequency response
plots, along with passband details (see, for example, Fig. 2.9). The response is
plotted in dB; that is, 20log, ,| H(e/®)| is plotted. The passband details, however,
are not plotted in dB, but | H(e’?)| is displayed. The passband edges (for example,
normalized frequencies 0.0 and 0.08) are always explicitly indicated in the
passband blowups.
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FIR FILTER DESIGN BASED ON WINDOWING

Windowing is one of the earliest design techniques for FIR filter design, is one
of the simplest [4, 5], and is further discussed in the Appendix to Chapter 3. The
technique is simple because the filter coefficients can be obtained in closed form
without elaborate optimization procedures. Thus, the design time is very small,
and most designs can be done on a calculator. This simplicity continues to make
the technique attractive today, in spite of more sophisticated FIR design
algorithms developed during the last 15 years. Moreover, FIR designs based on
Kaiser’s windows [5] are quite flexible, and experience shows that they are close
to optimal.

To explain the windowing technique, first consider Fig. 2.2, which shows an
ideal (or desired) lowpass response Hy(e’”) with cutoff frequency w, radians.
The corresponding impulse response coefficients given by the inverse DTFT

(IDTFT) of Hy(e’®) are
W, [sinwn
hg(n) = —‘(

i

), —0<n<w 2.11)
w.n

Clearly, Eq. (2.11) represents a noncausal IIR filter that, in addition, is unstable
(i.e., the impulse response hy(n) is not absolutely summable {1]). It is therefore
unrealizable. To obtain a FIR filter that approximates the response of Fig. 2.2, we
can truncate the above impulse response to a finite-length sequence as

h(n) = {hd(")’ -N-12<n<(N-1)/2

0 otherwise @12)

The impulse response h(n) represents a FIR filter of order N — 1 (which turns out
to be even). A causal filter can be obtained simply by delaying the impulse
response by (N — 1)/2 units of time. For the rest of this section we will assume for
notational convenience that the impulse response is noncausal [i.e., of the form of
Eq. (2.12)] so that H(z) is a zero-phase filter and H(e’®) is real valued for all w.

Now, the above process of obtaining h(n) from hy(n) can be viewed as
multiplying the sequence h(n) with the rectangular window function

w(n):{ , —(N - 1)/2<n<(N-—1)/2
0 otherwise

Equivalently, H(e’®) is the convolution of H(e/”) with the transform of the
rectangular window (see Table I in Chapter 1)
sin(wN/2)
sin(w/2)
where N is the window length or span (= filter length). Figure 2.4 is a plot of

#(e’®) for N — 1= 16. The peak sidelobe of the window transform is only a weak
function of N and corresponds to about — 13 dB, regardless of how large N is.

(2.13)

Wi(e'®) = (2.14)
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Fig. 2.4. The transform of a rectangular window.

The resulting response H(e’®) = Hy(e/®) has ripples, as shown in Fig. 2.5, with
ripple size increasing toward the bandedge. Increasing the filter order has the
effect of confining the ripples closer to the bandedge but does not decrease the
ripple magnitude. The first sidelobe of the stopband in the lowpass response has a
height of about —21 dB, regardless of how large N is, assuming a passband re-
sponse of about 0 dB. (For example, Fig. 2.5(b) shows the frequency response of
a lowpass filter of order N — 1 = 64 designed with a rectangular window.) The
explanation for this behavior is that hy(n), given by Eq. (2.11), is the Fourier series
expansion of the periodic frequency domain response of Fig. 2.2, and this series
gives rise to the well-known Gibbs phenomenon [6].
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Fig. 2.5(a). Lowpass filter with rectangular window.

Decreasing the Ripple Size

We can decrease the ripple size by using windows w(n) that are less abrupt than
the rectangular window—the triangle window, for example. The 2M + 1)-point
triangular window (also called the Bartlett window) is defined as

|n|

=1—--— for—-M<n<M
w(n) ] or <n<

0 otherwise

Il
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Fig. 2.5(b). Lowpass filter with rectangular window.

For a given window length the mainlobe width (defined to be twice the first zero
crossing) of W (e/®) for a triangular window is double that of the corresponding
rectangular window. Consequently, Af of the resulting lowpass response
increases. We can compensate for this increase of Af simply by increasing the
window span N, because Af varies as 1/N.

Figure 2.6 shows the transform of a 33-point triangular window (M = 16). The
mainlobe width is the same as that of the 17-point rectangular window (Fig. 2.4),
but the sidelobe level of the window transform is now about —26 dB. Thus a
lowpass filter design based on this triangular window has the same transition
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Fig. 2.6. The transform of a triangular window.

bandwidth as in Fig. 2.5(a), but has a minimum stopband attenuation of -about
—25 dB. In general, depending on the required stopband attenuation, the
designer chooses an appropriate window and then, depending on the specifica-
tion for Af, chooses the filter length N.

Fora given filter length N the attainable stopband attenuation A, is higher for
a window with smaller sidelobe level, and the transition bandwidth Af of the
filter response is smaller for a window with narrower mainlobe. This gives an
overall guideline for choosing of the window. Historically, many window



TABLE 1

Commonly Used Windows for FIR Design

Window wi(n)
N -1 N
Rectangular 1 =3 <n< 5
Triangular In|
or Bartlett |- o -M<nsM
(N =2M + 1 point) !
1 2nn N -1 N -1
Hann -{ I +cos —— - ~<n< -
2 N 2 2
. 2nn N -1 N - |
Hamming 0-54 + 0-46 cos — —mee— < K
N 2 2
2nn 4nn N — 1 N -1
Blackman 042 + 05 COST + 0-08 cos N e, TSNS 5
{ i “ &

(a) Time Domain Representation

Window Transform #'(¢’)
sin(wN 2
Rectangular S(w) & —;{%m»)l
Triangular S ()
2= 2n
Hann 0-58(w) + 0-25 S(cu - \7) + 0-25 S<w + N)
) 2 27
Hamming 0-54 S(w) + 023 S| w - N + 0238w+ —)
2=
Blackman 042 S(w) + 025 S(m Y ) + 025 S(m +

o) I
.Zya

0045( 0 — ™Y 4 0045(w+ 2T
+ [ _N «) N

(b) Transform Domain Representation

Peak sidelobe Minimum stopband

Width of level of attenuation A,
mainlobe 1A (el?)] of the resulting
Window of | #7(e®)) indB lowpass filter

Rectangular 4n/N -13 - 21
Triangular 8n/N -26 -25
Hann 8n'N -31 —44
Hamming 8n/N —41 ~53
Blackman 127/N —57 —74

(¢) Relevant Details
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functions are known, such as the Bartlett, Hann, Hamming, and Blackman
windows and many more [7,8]. Some of these windows are optimal in certain
respects. For example, consider windows of length N with the following form
for w(n):

2nn N-—-1 N -1 .

w(n) = a + (1 a)cos( N ) 3 <n< 3 (2.15)

Among all windows of this form, the Hamming window has the smallest first-

sidelobe level. Even the rectangular window is optimal in a certain sense—, it

leads to a frequency response that is the best least squares fit to the desired

frequency response. However, none of these windows leads to optimal filters—
filters with minimum length for a given set of specifications.

An extensive tabulation of windows furictions is in the appendix to Chapter 3.
Table 1 shows some window functions along with their transforms. In Table TI(c),
we list the mainlobe width and the peak sidelobe amplitude of % (e/) for each N-
point window, where #(e’°) is normalized to unity. The mainlobe width is
defined as twice the first zero-crossing frequency of %7 (e®). Table I(c) also shows
the attainable minimum stopband attenuation A, for the lowpass filter. The
transition bandwidths Af of the lowpass filters, designed using some of these
windows, are as follows: 0.9375/N for rectangular-window-based designs;
3.3125/N for Hamming-window-based designs; and 5.06/N for Kaiser-window-
based designs (with § = 7.865).

TABLE 11

Minimum Stopband Attenuation
Versus Beta for Kaiser Window

Minimum
stopband attenuation p
25.0 1.333
30.0 2.117
350 2.783
40.0 3.395
45.0 3975
50.0 4551
55.0 5.102
60.0 5.653
65.0 6.204
70.0 6.755
75.0 7.306
80.0 7.857
85.0 8.408
90.0 8.959
95.0 9.510

100.0 10.061
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B The Kaiser Window

In 1974, Kaiser [5] advanced a new window, now known as the Kaiser
window, based on discrete-time approximations of the prolate spheroidal wave
functions. This window has a flexible parameter § that can be chosen to meet a
given stopband attenuation, and then the window length N can be chosen to meet
the requirements on Af. Due to the parameter f8, the Kaiser window essentially
subsumes several other windows for FIR design.

Recall that a window is essentially a time-limited function with a lowpass type
of transform. One would like the transform #7(e’®) to resemble an impulse
function so that the result of convolution of #7(e/?) with H,(e®) resembles
H,(e’) as closely as possible. One possible approach for obtaining an optimal
window is therefore to minimize the energy in the sidelobes of #(e’”). The
Kaiser window is a discrete-time approximation of such an optimal continuous-
time family of functions [9], and is

n 2 N-—-1 N -1
w(n) = I"[B\/l ((N )/2) ]/10(‘8)’ 2 "ST (1)

0 otherwise

IA

where I(x) is the modified zeroth-order Bessel function, which can be computed

casily as
L) =1+ Z [(x/ NT (2.17)

Analytical expressions for #'(e/®) are not available for the Kaiser window, but
they are not required for designing FIR filters based on this window. The
argument x in Eq. (2.17) is clearly in the range (0, §). The parameter f, to be
discussed next, is typically in the range 2 to 10, and for this range of arguments
about 20 terms in the summation of Eq. (2.17) are sufficient to yield accurate
values of w(n).

As the value of f increases, the stopband attenuation of the lowpass filter
increases and the transition band widens. Proper choice of N then leads to the
final design. Accurate design formulas are available for choosing # and N. Thus,
we can design a lowpass filter with equal passband and stopband peak ripples
(6, = 9,) by choosing

0.1102(A, — 8.7) if 4, > 50
B ={0.5842(A, — 21)°* + 0.07886(4, —21)  if 21 < A4, <50 (2.18)
0 if 4, <21

Moreover Kaiser has found the following closed-form expression for estimating
the window length N (i.e,, the filter length) in terms of the desired specifications
Af and A, [see Eq. (2.7(a)) and (2.8)]:

7.95

A —_
N-1=00072 2.19
1436 Af 2.19)
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which is an elegant and quick design aid. Thus, given the specifications in terms of
A,, @,, and w,, we compute Af from Eq. (2.7a) and then estimate f and N — 1
from Egs. (2.18) and (2.19). We compute the window coefficients w(n) from
Eq. (2.16) and take the filter coefficients to be h(n) = hy(n)w(n), where hy(n) is as in
Eq. (2.11). If the resulting filter response is not satisfactory, we can increase f§ and
N — 1 as required. Usually, a couple of trials of this kind bring about very
satisfactory results. Experience with lowpass designs shows that the required
order is close to the order of an optimal equiripple design (the topic of the next
section).

Table 1I shows a list of values of B for various possible attenuation
requirements. Table III shows the required order N — 1 for various typical
combinations of A, and Af.

Design Example 1. Consider a lowpass design with specifications
w, = 0.16n, w,=024n, A, =39dB (2.20)
3, =9, (2.21)

Recall that A, is defined to be —20log,,0,. The frequency w, in Eq. (2.11) is the
arithmetic mean of w, and w,. For a Kaiser-window-based design, we estimate f
and the filter order from Egs. (2.18) and (2.19), respectively. Thus the parameters
for the window-based design are

N — 1 =order =54, f=3276, w.=02n (2.22)

Figure 2.7 shows the relevant frequency response plots. Note that all the desired
specifications are satisfied, thus demonstrating the accuracy of the estimates of
and N.

TABLE HI
Estimated Order of Kaiser-Window-Based Lowpass Filter

A'

Af 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
0.010 153 223 292 362 432 501 571 641
0.015 102 148 195 241 288 334 380 427
0.020 76 111 146 181 216 250 285 320
0.025 61 89 117 144 172 200 228 256
0.030 51 74 97 120 144 167 190 213
0.035 43 63 83 103 123 143 163 183
0.040 38 55 73 90 108 125 142 160
0.050 30 4 58 72 86 100 114 128
0.060 25 37 48 60 72 83 95 106
0.070 21 31 41 51 61 71 81 91
0.085 18 26 34 42 50 59 67 75
0.100 15 22 29 36 43 50 57 64
0.110 13 20 26 32 39 45 51 58

0.120 12 18 24 30 36 4] 47 53
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Limitations of Windowing Techniques

One limitation of the windowing approach is that the designer has no
simultaneous control over the passband and stopband errors. The peak errors o,
and J, are always equal. Secondly, filters with unconventional responses, such
as multiband filters with different attenuations in different bands, cannot be
designed. Also, the design of such filtering functions as optimal digital differen-
tiators and Hilbert transformers requires a completely different approach, which
is described in Section V.

EQUIRIPPLE APPROXIMATIONS FOR FIR FILTERS

Perhaps the most well-known and widely used linear-phase FIR filters are
those that have an equiripple weighted approximation error [10]. The main
reason for this is that such equiripple filters (also called minimax designs.
Chebyshev designs, and sometimes simply optimal designs) are optimal in the
sense that, for a given set of specifications (such as for instance, w,, w;, d,, and 3,),
these filters have the lowest order N — 1. Thus a direct-form implementation
(Fig. 2.1) of the filter requires the smallest number of multiplications (equal to
(N —1)/2 + 1 for odd N and N/2 for even N). Moreover, McClellan and Parks
[11] have developed a general design algorithm (called the MP algorithm in this
chapter) that can be used to design optimal FIR filters, in the above sense, for a
wide variety of requirements. For example, filters with several passbands and
stopbands, with each band having its own error tolerance J, can be designed. In
addition, a nonuniform tolerance over a given passband also can be achieved.
Digital differentiators and Hilbert transformers [2] with exact linear phase can
be designed with this algorithm. Even IIR filters can be designed by carefully
adapting the principles involved here [12].

In view of its numerous merits, this entire section is dedicated to the principles
and applications of the MP algorithm. Section IX presents novel applications of
this algorithm that lead to surprisingly efficient FIR designs.

Four Basic Types of Linear-Phase FIR Filters

Recall that an FIR transfer function has the form of Eq. (2.1) and that for a
linear phase-response, the coeflicients must be symmetric [h(n) = h(N — 1 — n)]
or antisymmetric [#(n) = —h(N — 1 — n)]. The order N — 1 can be even or odd.
Thus four types of linear-phase FIR filters can be distinguished [10], and their
properties are summarized in Table [V. For each type, the frequency response can

C

v

A
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TABLE IV(a)
The Four Types of Linear-Phase FIR Filters

N -1
Type (=order) h{n) Ho(e/®) b,
N-1)2 N —1
1 Even Symm. Y. b,cos(nw) bo=nh — \)
n=0 o Vi
N-1
b, = 2h(~—2-—~ - n), n#0
Ni2 I N
2 0dd Symm. Y bucosw| n 3 by = 2h{ 5~
n=1
(N=1)2 N =1
3 Even Antisymm. Y. b,sin(nw) b, = 2h —5—
n=1
N2 ! N
4 Odd Antisymm. Y. b,sin w(n - i) b, = 2h(5- - n>
n=1

H(e’*) = frequency response = (j)'e /N~ V2l (e!*), where | = O for types 1 and 2 and [ = 1 for
types 3 and 4.

TABLE IV(b)
Equivalent Expressions for Hy(e’*) for the Four Types

Equivalent expression Relation between
Type for Hy(e’®) b, and b,
(N=1)2 _ -
1 Y b,cos(nw) b, = b,
rR=0
b, = 50 + 5:/2
(N-=2)j2 _ —LF Y
2 cos 2 Y b,cos(nw) b= 20+ b
2 56 k=2,3...,(N~2)/2

—1p
bN/Z - Zb(N*Z)/Z

bl = Eo - 552
(N=3)2 _ - 4P b
3 sinw Y b, cos(nw) {b" = 3l = bis),
n=0 k=2, ,(N-1)/2-2
b(~/~n/2~l :ihw—wz—z
b(N— 02 = %b(w -t
by = 50 - 551
o T 3)
4 — b
sin HZO , COS(nw) {k 2 N2

= 1h
hN,‘Z = zthvz)/z
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TABLE IV(c)
Further Properties of the Four Types of Linear-Phase FIR Filters

Value of Hy(e/®) Value of Hy(e’)
Type atm =0 ato=mn Typical application

i Unconstrained Unconstrained Bandpass filter design

2 Unconstrained Zero Bandpass filter design
(except highpass)

3 Zero Zero Differentiators and
Hilbert transformers

4 Zero Unconstrained Differentiator and

Hilbert transformers

Note: “Bandpass” in general stands for lowpass, highpass, bandpass, and
multiband designs, with a constant attenuation requirement in a given band.

be written in the form
H(e’®) = (j)te /oW -2} (oiv) (2.23)

where j = /— 1, and Hy(e’®) is the zero-phase part (i.e., Hy(e*) is real valued for
all values of w). The exponent k in Eq. (2.23) is equal to 0 for types 1 and 2 and is
equal to 1 for types 3 and 4. Tables I'V(a) and IV(b) show two equivalent ways of
writing Hy(e’®), where the meaning of b, is explained in Table I'V(b). Table IV(c)
lists the behaviors of the four types at @ = 0 and @ = =; these constraints are
useful when making judgments as to which type should be used.

We identify four different types because each type has a different application.
For example, bandpass filters with constant attenuation in each band can be
designed with types 1 and 2. Types 3 and 4 must not be used for designs that
require a nonzero response at w = 0. To design differentiators and Hilbert
transformers, we must use only type 3 or type 4 because the constant factor j is
required in these designs. Itis also clear from Table I'V that if a filter with nonzero
response at @ = 7 is required, then it cannot be designed with a type 2 or type 3
transfer function. Type 4 transfer functions are more general than type 3 in this
sense. Similarly, type 1 transfer functions are more general than type 2. However,
there are some applications in multirate signal processing (the “QMF filter
banks”) where only type 2 filters can be used for signal splitting and recon-
struction [13] (unless special structures with additional forward delays are
incorporated). Further implications of the properties of the various types will be
clarified in later subsections.

The Alternation Theorem B

Most of the results on equiripple FIR filters are based on the alternation
theorem, suitably adapted for FIR transfer functions [11]. In Fig. 2.3, which
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shows a typical lowpass specification, it is intuitively clear that if the approxi-
mation error is uniformly distributed throughout the band of interest, then the
resulting transfer function will be optimal in the sense that the filter order is
minimized. The alternation theorem makes this intuition more precise.

A result from the Alternation Theorem. Let % be any closed subset of the
closed interval 0 < @ < 7. Let P(e/®) be a linear combination of cosines:

M
P(e™) =Y a(n)cos(wn) (2.24)
n=0
Let D(e!”) be any (desired) continuous function on .#. Define a weighted error
function E(e’®) by

E(e’®) = W(e™)[D(e™®) — P(e')] (2.25)

Then P(e?) is said to be the best weighted Chebyshev approximation to D(e)
[with weight W(e/®)] if the quantity

max | E(e’)| (2.26)
is the smallest over all possible sets of a(n) in Eq. (2.24). The alternation theorem
says that P(e/“) is the unique best weighted Chebyshev approximation to D(e’?)
if and only if there exist at least M + 2 points w; in % such that @, < m,; <
o < @y 4 and such that

E(e!®) = —E(e/® "), i=1,2,....M+1 (2.27)
and
|E(e’?*)] = max |E(e’?)), i=01L2,....M+2 (2.28)
weF

Most of the optimal design techniques are essentially iterative schemes for
satisfying the above alternation conditions on the weighted approximation
error E(e’”).

C Method Due to Hermann

Hermann [14] showed in 1970 how a set of nonlinear constraints on the
function H,(e’”) can lead to an equiripple solution. To explain the method, we
consider type 1 filters, where, as in Table 1V,

) M
Ho(e’?) = Y b, cos(om), M="—" (2.29)
n=0
The function Hy(e’) is required to be equiripple as shown in Figure 2.8, where 9,

d,, and N (and hence M) are assumed to be given. The quantities b, are then
computed so as to make H,(e/*) an equiripple function with peak errors §; and
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Fig. 2.8. Equiripple constraints for Herrmann’s method.

0,. There is no direct control over the bandedges w, and ,, but an indirect
control can be exercised by constraining the number of extrema N, in the
passband and the number of extrema N, in the stopband. [In this section, the
term “extrema” stands for the zeros of the derivative Hj(e/?).]! For a filter of a
given order N — 1, we therefore have only a finite number of choices for the
bandedges of the equiripple filter.

Let us now look into the actual details of Herrmann’s method. The function
Hy(e*) can have at most M — | extrema in the open interval 0 < w < 7.
Moreover, it always has one extremum at & = 0 and one at w = =, regardless of
the unknown coefficients b,,. Let N, and N, represent the total number of extrema
in the ranges 0 < w < w, and w, < o < 7, respectively. Clearly N, + N, <
M + 1. Hermann showed how to obtain the coefficients such that there are pre-
cisely M + 1 extrema of Hy(e’®) in the region 0 < w < n. For this, the
following constraints are imposed:

Ho(e™) =1 — (= 1)*,, k=1.2,...,N,
Hiy(e) = 0, k=1.2....,N, — 1

o " (2.30)
Hole) = (= 1)45,. k=1,2.....N,

Hiyle™™) = 0,

k=1.2,...,N,—1

Note that wy, = Oand 6y, = mand the derivatives are automatically zero at these
frequencies, and, moreover, M + 1 = N, + N,. We solve the above set of 2M
equations to obtain the 2M unknowns (w,,w,,...,wy, - 1), (01,05,...,0y 1),
and(by, b,...., by ). Thefilter coefficients h(n) can then be calculated from b,. The
bandedges w, and w, are those frequencies in the range w, < w < 6,, where

* Here the superscripl prime denotes derivative with respect (o m.
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Hy(e’) is equal to 1 — 8, and &,, respectively. These points are automatically
determined in the process.

As a comment on Herrmann’s method, first note that there are precisely M + 1
extrema; hence, if we count the bandedges, there are M + 3 distinct frequencies
where the approximation error E(e/“) attains its maximum value. Moreover, the
error clearly alternates between positive and negative extrema. Thus, all the
conditions of the alternation theorem are satisfied, and the resulting design is
therefore optimal in the Chebyshev sense. However, according to the alternation
theorem it is sufficient to have M + 2 frequencies where the error attains its peak
magnitude. We thus have one more ripple than the minimum number required to
satisfy the theorem. For this reason, Herrmann’s solutions are called extraripple
solutions.

The above equations that must be solved to obtain the filter coefficients are
highly nonlinear in terms of the unknowns w, and 6,. The method is therefore
limited to the solution of low-order extraripple filters only. Moreover, the
modification of the method for designing other filter shapes is generally
complicated.

Using an elegant technique of Hofstetter ¢t al. [15]; we can overcome the
disadvantage of solving a set of highly nonlinear equations. Hofstetter’s method
has exactly the same formulation as Herrmann’s method, and most of the
preceding discussion is valid. However, the solution for the 2M unknowns is now
based on a multiple-exchange procedure. Since this procedure is also basic to the
widely used McClellan- Parks algorithm, we now describe the latter.

D The McClellan—Parks (MP) Algorithm

Let us again begin with a lowpass specification, as in Fig. 2.3. Recall that in the
algorithms of Herrmann and Hofstetter et al. N, d,, and d, were specified and
w, and w, were automatically constrained by the resulting design. In the MP
algorithm, however, the quantities specified are N, w,, w,, and the ratio of
passband to stopband error, K = 6,/d,. The peak errors ¢, and 4, are determined
by the resulting optimal solution. If these errors are not small enough, we can
increase N and redesign the transfer function. Given the more common
specifications d,, d,, w,, and w,, we can estimate the desired order and use this
estimate as the input to the MP algorithm. The resulting design is usually very
close 10 being satisfactory and can always be improved by slightly increasing the
order N — 1. Kaiser has reported a simple and useful estimate for N — 1, based
on experience with window-based designs that N — 1 is inversely proportional to
A/ and proportional to the arithmetic mean of the errors log,, é, and log, 3,.
Based on this intuition and the design data for equiripple filters due to Herrmann
[ 14], the following estimate has been reported [5]:

L
N 1= 22008i0vdi0, — 13 (231)
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This estimate of filter order for optimal filters is reasonably close to the es-
timate in Eq: (2.19) for window-based designs for the special case 6, =9,. Table V
shows the computed order estimates based on Eq. (2.31) for various com-
binations of Af and A, (where 4, = —20log,,+/9,9,). Herrmann obtained a
somewhat more accurate formula by measuring an extensive set of optimal

linear-phase lowpass filters; the formula is given by [16]

Dm(al’éz) - F(él’éz)(Af)z

N—-1= (2.32
Af )
where
2
D .(3,,0,) = [a(l0og100,)" + a,l0g,00; + as]log,,0,
+ [a4(10g106,)* + aslog,o 0, + as] (2.33)
and
F(d1,6,) = by + b,[log;46; — log;09,] (2.34)
The constants g, and b, are given by
a, = 0.005309, a, = 007114, ay = —04761, 35)
(2.
a, = —0.00266, as = —0.5941, a, = —0.4278
and
b, = 1101217, b, = 0.51244 (2.36)
TABLE V
Estimated Equiripple Filter Order, Kaiser’s Formula
A'

Af 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
0.010 116 184 253 321 390 458 527 595
0.015 77 123 168 214 260 305 351 397
0.020 58 92 126 160 195 229 263 297
0.025 46 73 101 128 156 183 210 238
0.030 38 61 84 107 130 152 175 198
0.035 33 52 72 91 111 131 150 170
0.040 29 46 63 80 97 114 131 148
0.050 23 36 50 64 78 91 105 119
0.060 19 30 42 53 65 76 87 99
0.070 16 26 36 45 55 65 75 85
0.085 13 21 29 37 45 53 62 70
0.100 11 18 25 32 39 45 52 59
0.110 10 16 23 29 35 41 47 54
0.120 9 15 21 26 32 38 43 49
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Table VI shows the value of the estimate N — 1, computed from (2.32), for
various typical combinations of Af and 4, = —20log,,+/ ,0,. Based on (2.32),
we can estimate the value of any of the five parameters w,, w,,d;,0,, and N, given
the remaining four. Rabiner [17] has presented useful algorithms, based on
simple iterative schemes, for obtaining such accurate estimates.

Note: Extensive design experience has shown that the order N — ! does not
necessarily increase as Af decreases! For example, Rabiner demonstrates in [ 16]
that, with 6, = 4, = 0.1, Af is smaller {or a filter with N — 1 = 8 than for a filter
with N — 1 = 9, for certain values of w,. However, if we compare N — | within
the subclass of filters witheven N — 1 {(or odd N — 1), then itis found that N — 1
is monotone increasing with decreasing Af.

To explain the MP algorithm, let us get back to the lowpass specifications in
Fig. 2.3. For lowpass designs, only type 1 or type 2 transfer functions are relevant.
Assume, for simplicity, that a type 1 function is used so that the order N — |
is even. Given N — 1, w,, w,, and the ratio of passband to stopband errors
K = 0,/0,, we should minimize the weighted error function of Eq. (2.25),
where P(ef”)is as in Eq. (2.24), and

o 1, O<w=<ow
W(e'®) = i (2.37)

K = 6,/9,, o, <ot

and

P 1 0<w=w
Dleiy=1{" =T 238
0, ,Lw<n { )

TABLE VI
Estimated Equiripple Filter Order, Herrmann's Formula
Ar

Af 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
0.010 131 194 259 325 392 460 528 597
0.015 87 129 172 216 261 307 352 397
0.020 65 96 129 162 196 230 264 298
0.025 52 77 103 129 156 184 211 238
0.030 43 64 86 108 130 153 176 198
0.035 37 55 73 92 111 131 150 170
0.040 32 48 64 80 97 114 131 148
0.050 25 38 51 64 78 91 105 118
0.060 21 31 42 53 64 76 87 98
0.070 17 27 36 45 55 65 74 84
0.085 14 21 29 37 45 53 61 69
0.100 12 18 24 31 38 4 51 58
0.110 10 16 22 28 34 40 46 53

0.120 9 14 20 25 31 37 42 48
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To find b, = a(n) in Eq. (2.24) such that the maximum error of Eq. (2.26) is
minimized, we suitably adapt the Remez exchange procedure [ 10, 11], which is
described next.

Assume that we are given a set S of M + 2 trial extremal frequencies

Wy, Wayeory Opgs2 (2.39)

and that we want to force the weighted error function to satisfy the alternation
condition at these frequencies:

p = E(e!™) = —E(e/™* "), k=12,....M+1 (2.40)
where p is yet unknown. We can always solve for the M + 2 unknowns
a(0), a(l),..., (M), p (2.41)
in Eq. (2.24) from the M + 2 equations
—(= o = Me)[D(e™*) — Ple/*)] (242)

where o takes on the M + 2 values given in Eq. (2.39). After we obtain the a(i),
i=0,1,..., M, in this manner, we calculate the actual error function E(e/*) at
any frequency by using Eq. (2.25), because the right side of Eq. (2.25) is now
known. However, the set of frequencies in Eq. (2.39) may not turn out to be
extremal (i.e., points with zero derivatives). Thus, the quantity in Eq. (2.26) may
not beequal to p in Eq.(2.40). However, since E(e’“) is now completely known, we
can compute a new set of frequencies where E(e’®) is actually extremal [but not
necessarily satisfying Eq. (2.40)], and then again solve for a new set of «(i) and p
such that Eq. (2.40) is again satisfied at these new frequencies. We repeat this
process until it converges. At convergence, the frequencies in Eq. (2.39) at which
Eq. (2.40) holds are also extremal frequencies—that is, Eq. (2.28) is also satisfied.

Thus we repeat two steps in the exchange procedure, until convergence occurs:

1. Given a set S of extremal frequencies as in Eq. (2.39), compute p and P(e’®)
from Eq. (2.42).

2. From this P(e’®), compute a new set S of extremal frequencies, where the
error E(e’*) actually has maximum magnitude. If S and § are the same within a
certain tolerance, stop the iteration. Otherwise set S = S and go to step 1.

In practice, we need not explicitly solve the M + 2 simultaneous equations
Eq. (2.42). We can compute p by using a closed-form expression [10,11] and
then obtain the values of P(e/®) at frequencies w, from Eq. (2.42); we then obtain
the entire function P(e’*) by interpolation. We use this interpolation to evaluate
P(e’®) at a dense set of frequencies, and we thereby obtain a new set S of trial
extremal frequencies w, . Details of computations involved can be found in [10].

In step 2, the computation of the new set of extremal frequencies that maximize
E(e’®) is generally time consuming. The usual procedure here is to compute
E(e’)at a dense grid of equispaced frequencies in the range 0 < w < 7 such that
about 10M to 20M values are computed during each iteration. After computing
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these values, we find the set of extremal frequencies merely by locating M + 2
maxima among the computed values. Clearly M is large for large filter orders;
hence the number of evaluations is large, and the time required for each
evaluation goes up as M increases. Antoniou [18] has developed a procedure for
significantly reducing this computational overload; the procedure is based on the
fact that, as the iteration proceeds, the extremal frequencies take favored
locations closer and closer to the optimal locations, and hence an equispaced
search for extremal frequencies is not necessary. Antoniou shows how, based on
derivative information, the search can be dramatically speeded up (more than
807, saving in computational load has been reported in [18]!). The details of this
improved technique are, however, beyond the scope of this chapter.

If we want the filter order N — 1 to be odd, then Hy(e’) is no longer a sum of
cosines as required by the alternation theorem (see Table IV); instead, we can
modify the above formulation simply by suitably redefining W(e’®) and D(e’®)
so that P(e/®) in Eq. (2.25) is still a sum of cosines. A wide range of filter
requirements can be met by a simple redefinition of the quantities on the right
side of Eq. (2.25) to suit the problem at hand. The next few subsections
demonstrate this flexibility. The software due to McClellan et al. (available in
[19] incorporates this flexibility and has many applications. We conclude this
subsection with a few design examples.

Design Example 2. Consider again the lowpass specifications of Design
Example 1 [Egs. (2.20) and (2.21)]. We estimate the required filter order from
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Fig. 2.9. Example 2: Lowpass filter, equiripple design.
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Eq. (2.32) to be 48. Then we complete the design, based on the program in [19],
and find that the resulting stopband attenuation A, is about 38.7 dB. By
increasing the order to 50, we achieve an attenuation of 39.4 dB, which is just
about sufficient. It is, however, safest to slightly increase the order because the
inevitable coefficient quantization in an actual implementation usually leads to a
loss of stopband attenuation. An order of 52 offers an attenuation of 40.7 dB,
which is quite satisfactory. Figure 2.9 shows the frequency response plots, which
should be compared with the plots of Fig. 2.7.

As a comparison with the optimal IIR designs discussed in Chapter 4, the
above specifications can also be met with an IIR elliptic filter of order as low as 5.
The relevant frequency response plots in Fig. 2.10(a) show that (approximately)
the same specifications are met. The transfer function is

1 —09066z "'+ 2z )( I —1.4304z " + 272 )

Hilz) = k(

L

| +z7!
S, i S 4
) (1 - 0.7541:") (243
where k = 00071171, s0 | Hs(e/*)| has a maximum value of unity in the passband.
This IIR transfer function can be implemented with only seven multiplications
and a scaling multiplier k. In contrast, the optimal (minimum-order) FIR design
requires 27 multipliers! The price paid for the high efficiency of the IIR

implementation is that the group delay is not constant but has a large peak near
the bandedge. This is demonstrated in Fig. 2.10(b).

1 — 1.5544z7 " + 0.6969z 2 /\ 1 — 1.6522z ! + 0.9053z 2
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Fig. 2.10(b). Example 2: Lowpass filter, elliptic ITR design, group-delay response.

Design Example 3. Assume that we want to design a filter that is essentially
lowpass, except that zero frequency should be suppressed. Let the bandedges be
@, = 0.64x, , = 0.7x, and suppose we want a stopband attenuation exceeding
39 dB. Also assume that the stopband error should be twice as small as the
passband error. Let the required attenuation at zero frequency be greater than
20 dB. These requirements can be met by designing a bandpass filter with
specifications as indicated in Fig. 2.11, where

& =0.112, 8, =00224, 5 =00112 (2.44)

Tolerance 62

Tolerance 6]

\ Tolerance f3
| | 1 ! > w/2a

1 I I
0.004 0.02 0.32 0.‘35 0.5
Fig. 2.11. The bandpass specifications.
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Fig. 2.12. Example 3: Bandpass filter, equiripple design.

In other words, the weighting function W(e/®) should be chosen as

1, 0< w <0008
W(el®) ={68/5, =5 004n < w < 0.64n (2.45)
6,/6; = 10, 0.In<w<mn

A filter of order N — 1 =66 is found to meet the desired specifications
satisfactorily. Figure 2.12 shows the frequency response of such a filter designed
with the program in [19].

Design of Digital Differentiators E

Digital differentiators are characterized by a frequency response of the form

J® -—jow - 1y2

i1

(=Y

0<w<w,

H(ei®) = (2.46)

n—w

g JON - 12 2n—w, <w<2n

Notice that the phase response is still linear in w, except for the additional
constant phase shift of 7/2 rad at all frequencies due to the jfactor. We can obtain
this j factor simply by using type 3 or type 4 linear-phase FIR filters. Thus, we
should always use an antisymmetric impulse response for designing differentiators.
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The fact that types 3 and 4 have H(¢’°) = 0 is not a limitation, because this 1s
precisely what Eq. (2.46) requires. Note that the approximation is required only
in the range 0 < @ < 7. The symmetry properties of H(e/®) automatically insure
the rest.

To be specific, let us assume that type 3 filters are used. Then, referring to
Table IV, we can define a weighted error function’

i ) w (N-1)/2 1 _
E(e’?) = W(e""){; —sinw ZO b, cos(nm)] (2.47)

Now, in the region near @ = 0, the magnitude response is very small, whereas it is
largest near w = 7. Thus, we wish to have a smaller approximation error near
zero frequency. We can obtain that by defining the weight function W(e’*) as

. 1
Wie’®) = —, d<w <o, (2.48)
®
This enables us to rewrite Eq. (2.47) as

; (N-1)y2 -t _
smw[ ©_o_ z b, cos(n(u)} (2.49)

E(e/*) =

w | 7sinw =0

This error function is of the form in Eq. (2.25) with D(e/®), W(e’®). and P(e’)
identified as

w sin w

W(e') =

D'y = ——,
TsIn @ w

. (-2t
, PE)y= >  b,cos(nw)
n=0

Simply by defining the function P(e/®) as the sum of cosines appearing in
Eq. (2.49), we can use the iteration described earlier to solve this approximation
problem. The result of approximation produces an equiripple behavior of the
weighted error E(e’®), and the actual error therefore grows as « increases.

1 Remarks on the Choice of N and w, for Differentiators

Table IV shows that filters with an antisymmetric impulse response have
zero response at w = 7 if the order N — 1 is even. Thus, odd orders (type 4)
should be used for differentiators with w, = n. Even if w, is less than 7, but very
close to 7, it is preferable to use odd orders so that the approximation error near
the bandedge w, is not too large. The design charts included in [2] indeed show
that, for a given permissible peak relative error d and a given value of w,, the filter
length is much smaller for odd N — 1, compared to even N — 1. (Figure 2.A.1
includes “design charts” that aid in the choice of filter order N — 1 for
differentiators.)

* This is also termed as the relative error,



2. Design and Implementation of Digital FiR Filters 85

Next, for a given N, the designer, if he or she has some flexibility about the
choice of @, should make w, as small as possible to minimize the approximation
error.

Further Remarks on the Choice of v, 2

Let x(t) be a continuous-time waveform, bandlimited to the range (0, Q,,,,,). Let
us assume that we wish to pass this signal through a differentiator H,(s). Clearly
we require an approximation to the response

i, 0<0Q<Q

H,(jQ) = {—jﬂ, 0. <00 (2.50)

To perform this filtering digitally, we would sample the waveform x(¢) at a
frequency Q, > 2Q,.., and then design a digital differentiator with
Qmax

T

Thus, it is a simple matter to choose €2, to be large enough so that w,, is sufficiently
smaller than =. This enables us to design very accurate linear-phase FIR
differentiators with reasonably low orders.

Design Example 4. Consider a differentiator whose cutoff frequency is re-
quired to be w, = n. Assume that the relative error of Eq. (2.47), which is
equiripple, is required to have a peak value é not exceeding 0.0065. Since w,, is
equal to 7, a type 4 filter should be used. From the design charts in Fig. 2.A.1 we
can estimate the required order to be about 35. An order N — 1 = 31 is actually
found to be sufficient, and the relevant responses are plotted in Fig. 2.13.

Design of Digital Hilbert Transformers F

In the continuous-time domain an ideal Hilbert transformer is characterized
by a frequency response of the form

. —j forQ>0
H(jQ) =
() {j forQ <0
Accordingly, we would expect a digital Hilbert transformer to have the response
: —Jj 0<w<
Hel*) = { - Oswsn (252)
Js T<w<2n

Clearly, there is an inconsistency (or discontinuity) at w = = and moreover, as
H(e/®) = H(e’*"), there is an inconsistency at w = 0. Moreover, from Table IV(a),
it is clear that an antisymmetric impulse response is required. For such an
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Fig. 2.13. Example 4: Optimal differentiator with equiripple (relative) error
[58](® 1973 IEEE).
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5

impulse response the frequency response at w = 0 is always zero, as we see from
Table IV(c). Theoretically therefore, there does not exist a linear-phase FIR
Hilbert transformer. In practice, therefore, a FIR digital Hilbert transformer is
specified to have a response

. jedotN =112
wy __ ?
H(e’”) = {(_ 1)NjemieW - 112,

wy, < w < wy (2.53)
21 — oy < w <27 — Wy,
where w; >0 and w, < 7. For antisymmetric impulse responses of even
order N — 1, wy, is restricted to be strictly less than 7, because of the constraint
H(e™) = 0.

We can now formulate the approximation problem by simply defining the
weighted error function

E(e’®) = W(e’*)[1 ~ Ho(e’)] (2.54)
where H,(e/®)is as in Table [V (type 3 or type 4). Equation (2.54) can be rewritten
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in the form of Eq. (2.25) by suitably defining W(e/®) and D(e’®) so that P(e’®) is a
sum of cosines.

Commenting on the choice of the order N — 1, once again, if we are interested
inwy = =, only type 4 filters (odd order) should be employed. If, however, wy < 7,
then either a type 3 or a type 4 filter can be used. Detailed guidelines pertaining to
the choice of w,, wy,and N — 1 are in [2].

If the Hilbert transformer specifications are symmetric with respect to 7/2 (i.e.,
if w_ + wy = n)and if the order N — 1 iseven (type 3), then it can be shown that
the resulting FIR filter has b, = 0 for even values of n. Only about half of the
impulse response coefficients are therefore nonzero. We thus require only about
(N — 1)/4 + | multiplications in the implementation of the filter. If the designer
has the freedom to choose symmetric specifications, it can be exploited in this
manner. Figure 2.A.2 aids in the choice of N — I for Hilbert transformers with
wp + wy = 7. (In the figure Af = w_/2n.) The quantity & represents the peak
value of the weighted equiripple error.

Design Example 5. We wish to design a Hilbert transformer with w; = 0.1z
and wy = 0.97. Let the peak equiripple error be required to be less than 0.006.
From the design charts in Fig. 2.A.2, we estimate that an order of about 30 is
sufficient. An order N — 1 = 28 is actually found to be sufficient, and the relevant
responses are shown in Fig. 2.14. Only 14 of the 29 coefficients 4(n) are nonzero,
so only seven multipliers are required.
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Fig. 2.14. Example 5: Hilbert transformer design.
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G Flexibility of the McClellan—Parks Algorithm

The most remarkable feature of the MP algorithm is the flexibility it offers for
the design of a wide range of filter responses, as seen from the examples earlier in
this section. This flexibility results from a suitable definition of the functions
ﬁ(ef‘“) and W(e’®) in Eq. (2.25) so that the weighted error function E(e/®) of the
resulting design has the equiripple property. In the design program (Pro-
gram 5.1), which is available in the IEEE software package [19]-, two user-
definable functions (EFF and WATE) are included, which enable the designer to
choose ﬁ(ej“’) and W(e'®) according to specific requirements. The design of
bandpass filters (i.e., filters with a piecewise constant attenuation requirement),
differentiators, and Hilbert transformers can be done without modifying the
functions EFF and WATE. However, if the designer has other unconventional
specifications, these functions should be appropriately redefined.

Design Example 6. As an example of the usefulness of these functions,
consider a lowpass design specification with

w, =028, w, =036n, 9 =4, (2.55)
and

A, = —20log 43, > 35 dB (2.56)

The estimated filter order from Eq.(2.31) s equal to 38. Let us now assume that, in
addition to the above requirements, a transmission zero is required at wg =
0.78=n. (This 1s a typical requirement when there are unwanted sinusoids of
known frequency in the input signal.) However, since we do not have direct
control over the location of transmission zeros, one possible way to deal with this
problem is to uniformly increase the stopband attenuation everywhere to a very
large value, say 60 dB. A conventional FIR filter with the same specifications as in
Eqgs. (2.55) and (2.56) can now be designed, except that J, is now much smaller
than 6, . Specifically, d, is taken to be such that 4, in Eq.(2.56) is about 60 dB. The
resulting filter order, as estimated from Eq. (2.31)1s 59. The order N — 1 = 60 is
actually found to be sufficient, and Fig. 2.15 shows the response.

The preceding solution is highly inefficient because we require only about
35 dB in most of the stopband (which can be achieved with a filter of order 38),
and a filter with order 60 is therefore injudicious. One possible way to obtain
a more efficient solution is to design a multiband filter with one passband
and three stopbands, where the first and third stopbands provide an attenua-
tion exceeding 35 dB, whereas the second stopband has an attenuation exceeding
60 dB. An even more elegant solution is as outlined next. Let us first define a
transfer function

Hy(z) = (1 — 2z ' coswy + 27 2) (2.57)
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that has a transmission zero at w, = 0.787. The overall transfer function H(z) is
obtained in the form of a cascade

H(z) = H,(2)H,(2) (2.58)

where H,(z) is designed so that H(z) satisfies the tolerance requirements 9, and 0,
and has equiripple passband behavior. This is accomplished by defining D(e/®)
and W(e’®) in Eq. (2.25) as

1

-~ . —— < <
D(e®) ={ [Hy(e’)|’ O<w=<a, (2.59)
0, o, <w<n
|H,(ed?)], 0<w<w,
W(ei®) = (2.60)

ﬁsz(ej“’)l, o, <w<n
%,

We get an approximate estimate of the order N; — 1 of H,(z) by using Eq. (2.31),
which gives N; — 1 = 38, as mentioned earlier. The value N, — 1 = 40 s actually
found to be sufficient. Figure 2.16 shows the relevant frequency responses. Notice
the effect of the transmission zero at w = 0.78x = 0.39(2x). The total number of
multipliers in the final implementation is 22. This number is about the same as
that required for the conventional transfer function that meets the specifications
of Egs. (2.55) and (2.56) without the additional transmission zero requirement!
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Fig. 2.16. Example 6: Efficient way to obtain transmission zero at o = 0.787.

Section IX discusses research contributions that make further use of the
flexibility offered by the generalized error function of Eq. (2.25) in order to ob-
tain new efficient filter designs for conventional and unconventional design
requirements.

V  MAXIMALLY FLAT APPROXIMATIONS FOR FIR FILTERS

In Section III we described design techniques for FIR filters based on
windowing. The design procedures in that section do not involve computer-aided
optimizations but are based on closed-form expressions for the window
coefficients. The advantages of this simplicity were also discussed in Section I11.
In this section we introduce another class of linear-phase FIR filters with closed-
form expressions for the transfer function. This class of filters has a maximally flat
frequency response around @ = 0 and w = 7 and was introduced by Herrmann
[207 in 1971.

These filters are useful in applications where a signal should be filtered with
considerable accuracy near zero frequency. Because the transfer function of this
class of filters has a closed-form expression, the design is extremely simple. The
frequency response of these filters is monotone in each frequency band, which is
required in certain applications. However, for a given set of tolerances, such as &,
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Fig. 2.17. Specifications for a maximally flat lowpass response.

and J,, these filters do not have the smallest order, unlike the equiripple designs
of Section IV.

The frequency response of a maximally flat, linear-phase FIR filter H(z) is
H(e!®) = ¢ 7N~ DI2H (ei*), where Hy(e/®) is given by [21]

Hy(e/®) = cos“‘(g) bl d(n)sinz'*(f) 2.61)
P M= 2
_(K-1+n)!
The filter order is
N—-—1=2(K+L-1) (2.63)

Note that d(n) are positive integers. The integers K and L, which completely
characterize the transfer function, are determined from the specifications f§ and o
indicated in Fig. 2.17. The significances of K and L are clear from Eq.(2.61). Thus,
the first 2K — 1 derivatives of the magnitude response are equal to zero at w = =,
and the first 2L — 1 derivatives are zero at w = 0. For the rest of this chapter the
abbreviation [, (z) is used to denote a transfer function H(z) of the above form.

Design Procedure A

Given the specifications f§ and 4, the design procedure is simply to compute K
and L such that these specifications are satisfied. Kaiser has developed a method
for this computation. Once K and L are computed, the response of Eq. (2.61) is
then known, and an N-point IDFT is performed to obtain the filter coefficients. A
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FORTRAN code for the design of these filters, due to Kaiser, is included in the
IEEE software package [19, Program 5.3].

For given f and 4, the algorithm for finding K and L is as follows [21]: first
obtain an estimate of the filter order as

2
N—1= 2(%) (2.64)

Note that the estimated order grows as 1/6°. Next, define

o= cosz(E) (2.65)
2
and obtain the best rational approximation to « to be
K
~— 2.66
o N, (2.66)
N —1
SN, =N-—-1 (2.67)

After determining the above rational approximation, we identify its numerator
with the quantity K. With K thus determined, we next find that L = N, — K. We
then get the impulse response h(r) from Eq. (2.61) by performing an N-point
IDFT. That h(n) is real and symmetric considerably simplifies the IDFT com-

('} e
b K=17, L =9
X

-20.000
o
=]

=z -19.008
[¥9)
w
=

S -60.000
wy
w
o

\
-80.000
-100,000
2. p.10@ 8.200 0.300 g.1e0 0.5¢

NORHWALIZED FREQUENCY
Fig. 2.18. Example 7: Maximally flat lowpass filter.
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putation. After h(n) is computed, we can obtain a direct-form implementation
with K + L multipliers.

Design Example 7. Let f = 0.4z and § = 0.2n be the required specifications.
The values of K and L computed as described above are K = 17 and L = 9. This
corresponds to FIR filter of order N — 1 = 50. The computed impulse response
coeflicients are as shown in Table VII, whereas the frequency response is shown in
Fig. 2.18. Note that the frequency response is monotone, and the stopband
attenuation is large (exceeding 100 dB) almost everywhere.

We see from Table VII that many of the filter coefficients are very small.
Depending upon the required stopband accuracy around w = =, some of these
coefficients can be set to zero, leading to more efficient implementations.

TABLE VIl
Example 7: Impulse Response
Coefficients for Maximally Flat
FIR Filter with K =17, L=9
(order = 50) [21]

B(l)= .39847448
B(2) = .29650429
B(3)= 08785310
B(4) = — 05124769
B(5) = — 05604429
B(6) = —.00136329
B(7) = 02472394
B(8) = 01120456

B(9) = —.00592278
B(10) = —.00709112

B(11) = —.00061605
B(12) = 00232969
B(13)= 00113164
B(14) = — 00028640
B(15) = —.00043241
B(16) = — 00008700
B(17) = 00006961
B(18) = .00004320
B(19) = .00000222
B(20) = —.00000624
B(21) = —.00000241
B(22) = ~.00000007
B(23) = .00000016
B(24) = 00000002
B(25) = —.00000002
B(26) = — 00000001

Note: B(26) stands for h(0) = h(50).
In general, B(n + 1) stands for
h(25 - n) = hn25+n. [21}(©
1979 IEEE).
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B Minimum-Muitipiier Impiementations

Sometimes we can obtain an implementation that is more convenient than the
direct form by noting that the actual causal transfer function corresponding to
Eq. (2.61) can be written as

-“1N\N2KL-1 o1\ 2n
Iy (2)=H(z) = (1 +2Z ) > d(n)(— 1)"(1 22 ) z Lo b (2.68)
n=0

which can be implemented as shown in Fig. 2.19(a). The advantages of this
implementation are that it requires only L — | multipliers and, during the design
phase, there is no need to compute the actual impulse response coefficients. An
equivalent implementation can be obtained with only K — 1 multipliers. This is
useful when K is smaller than L. At the end of Section VII.C we shall explain how
this can be accomplished.

For large values of K and L the structure of Fig. 2.19(a) is inconvenient
because the coeflicients d(n) grow very fast. Thus, with K = 17, the coefficients
derived from Eq. (2.62) are given by

d0) = 1,d(1) = 17, d(2) = 153, d(3) = 969, d(4) = 4845,..., d(7) = 24, 5157, ...
(2.69)

As a result, either a direct-form implementation or the modified implementation
of Fig. 2.19(b) as outlined in [22] is preferable. However, for small values of K

IN—3HC(z)} oe (z) > S(2)l S{z) — S(z)
d(0) d(1 d(2) e d(L-1)
27! 27! e 5 27! out

Fig. 2.19(a). (L — 1)-Multiplier implementation of the maximally flat filter.

k (k+1)/2 (k+L-2)/(L-1)
IN— C(Z) D = Cz}p—> S(z) S(z) . S(z)

|
i
I
2! 27! oo —! 27! ..)$_>OUT

Fig. 2.19(b). Improved (L — 1) multiplier implementation.
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TABLE VIII

The (K, L) Pair for Maximally Flat FIR Filters (beta and delta are in multiples
of m)
d

Ji3 0.1 0.2 0.3 04 0.5 0.6
0.1 159, 4 40, 1
0.2 161, 17 38, 4 19, 2 9,1
0.3 104, 27 27, 17 15, 4 8,2 4.1 31
04 72, 38 17, 9 13, 7 4,2 4,2 2,1
0.5 50, 50 12,12 6, 6 3.3 2,2 1,1
0.6 38,72 9,17 7,13 2,4 2,4 1,2

and L, the structures of Fig. 2.19(a) are very efficient and are essentially
multiplierless because the d(n) are very simple combinations of powers of 2. In
view of this we find it convenient to tabulate (Table VIII), for quick design
purposes, the values of K and L for various combinations of f§ and é. Note that if
0/2 exceeds B or m — B, then the response of Fig. 2.17 is not meaningful. The
feasibility of the structures of Fig. 2.19 also depends the roundoff noise level (see
Chapter 5).

Further discussions concerning the usefulness of this class of filters are
included in Section IX, where several unconventional design methods and
implementation strategies are presented. Also, a new class of multiplierless digital
FIR filters with very sharp cutoff, based on maximally flat building blocks, is
reported in [23].

LINEAR PROGRAMMING APPROACH FOR FiR FILTER DESIGNS

In several situations a linear-phase FIR filter is required to be optimal, subject
to certain other constraints. For example, in certain applications the transient
part of the step response is required to have as small a ripple size d, as possible.
Thus, one has to optimize the frequency response under the constraint that this
transient be bounded in magnitude by a desired amount. Another application is
in the design of a frequency response with a given fixed passband error é,; the
filter coefficients are to be chosen so that the stopband error is as small as
possible, for fixed filter order N — 1, and fixed w, and w,. Furthermore, some
applications require a flatness constraint in the passband of the response. Linear
programming offers a considerable amount of flexibility for handling these
situations and always converges to a solution. In addition, many of the optimal
(equiripple) designs described in Section IV can also be handled by linear
programming. However, the design time in linear programming is rather large,

Vi
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compared to the techniques of Section IV. It is therefore preferred only in
situations that cannot be handled by conventional, faster techniques.

Rabiner [24] has studied the use of linear programming techniques for FIR
filter design. Steiglitz and Kaiser [25, 26] have also considered the application of
linear programming techiques for designing FIR filters with constraints on the
derivatives at certain frequencies. Rabiner, Graham, and Helms have also
shown how IIR filters with arbitrary magnitude response specifications can be
designed with linear programming techniques [27].

A The Basic Idea

Let us reconsider the lowpass specification as depicted in Fig. 2.3. Assume for
simplicity that the FIR filter order N — 1 is even. The response is then given by
Eq. (2.2), where

. M N —1
Ho(e’®) = Y, b,cos(wn), M= —5 (2.70)
n=0
from Eq. (2.3). The frequency response requirement can be written in the form of a
set of inequalities:

Hy(e’) < 1+ 6, 0<w<o, (2.71)
Hy(e'*) =1 -4, 0<w<o, (2.72)
Hy(e?®) < 6,, o, <w<n (2.73)
Hy(e/®) > —6,, o, <w<n (2.74)

where w,, w,, and N — 1 are assumed to be given. The above constraints are
written at a dense grid of frequencies,

Wy, Wyy..., Oppg (2.75)

where rM is a properly chosen integral multiple of M. Since Hy(e/®) is in the form
of Eq.(2.70), Egs. (2.71)—(2.74) represent a set of linear inequalities. The objective
function @ to be minimized is typically a linear combination of 4, and J,, but
there are other possible choices. For example, d; can be fixed at a predetermined
value, and ® = §, then minimized. In any case, since the inequalities and @ are
linear in the unknown variables b, we can minimize ® by linear programming.

B Examples of Constraints

Let us consider the case where §, is fixed and ® = §, should be minimized.
There are a total of M + 2 variables, by, by, ..., by, and §,, in the problem. If a
linear programming problem of the above form has N, variables and N,
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inequalities, where N, > N,, then the optimal solution is such that at least N, of
the N, inequalities are satisfied with equality [24]. Thus, in the above design
problem there are at least M + 2 frequencies in the region of interest where the
approximation error attains the peak value. In other words, the conditions of the
alternation theorem of Section IV are satisfied by the solution, which is therefore
optimal.

Constraints on the step response can be imposed simply by incorporating
additional inequalities of the form

— 0y < y(n) < 05, 0<n<n, (2.76)

where g(n) is the step response given by
g(n) =3, him) (2.77)
m=0

In Eq.(2.76), n, is the sample number up to which the step response is expected to
oscillate around zero. Note that the constraints are still linear in terms of the
coefficients h(n), which are linearly related to b,, as shown in Table 1V. The
objective function now can be a linear combination of §,, d,,and ;. Or one could
fix 0, to be a desired value and then optimize a linear combination of 4, and 4,.
Clearly there are now several possible choices of the objective function.

Similarly, if one is interested in constraining the flatness of the response at a
given frequency, say at w,, then the following constraints can be added:

de 5]
h _EZ%(:T) <0 m=12,...,N, (2.78)
dm oo™
7d(oo(;,l >0, m=12...,N, (2.79)

This is to insure that the first N, derivatives of the response are zero at w,. The
constraints of Egs. (2.78) and (2.79) are still linear in the coefficients b,. We can
design FIR filters with monotone passbands and equiripple stopbands by
incorporating flatness as described above; Steiglitz [25] has presented a
FORTRAN source code for this purpose. In applications where passband ripples
are objectionable [67, these monotone filters serve as the next best alternative.
For example, in a communication link with several repeater stations, the filters
in the stations form a long cascade, and. as a result, the passband error ¢,
accumulates. If, however, each of these filters has an extremely flat passband, then
the overall passband error of the entire link is within acceptable bounds.

The linear programming approach can be used for designing arbitrary shapes
of the frequency response, including multiband filters with arbitrary specifica-
tions and differentiators. In general, if D(e/)is the response to be approximated
by the quantity Hq(¢/“), then the set of linear inequalities

~ W(e/)§ < |Hole?™) — D(e)] < W(ei)d (2.80)

is used at a dense grid of frequencies. Here W(e/?) is the weighting function, which
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serves a purpose analogous to the weighting function in Eq. (2.25). In particular,
if W(e’*)is chosen to be equal to 1/D(e’”) (assuming that D(e’®) is nonzero) then
the relative error of approximation has equiripple behavior.

A number of FIR filter design examples based on linear programming can be
found in [247-[26]. We conclude this section with an example from [24].

Design Example 8. Consider an optimal FIR design with a constraint on the
step response as in Eq. (2.76). Assume that J, is required to be 0.03, and that the
filter order is N — 1 = 24. Assume further that the constraint §, = 254, is

STEP RESPONSE

1.2 y
ogl 837003
0.9+
0 X [
'0.4 — -t i — i A i
(0] 3 [ 9 12 15 18 21 24
SAMPLE NUMBER
0 =
— N:=25
8,:0.145
-20 8,70.00582
-m —
[H(ed)|
] 40+
in dB
_60_
_80.—
-100 | A 1 :
(¢} Ot 02 03 04 C5

Normalized Frequency -

Fig. 2.20. Example 8: Lowpass FIR design based on linear programming (after Rabiner [247)
(© 1972 IEEE).
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included along with Egs. (2.71)—(2.74). Then the solution to the linear program-
ming formulation yields the values J, =0.145 and J, =0.00582 for the passband
and stopband errors. The resulting filter is not equiripple any more, as seen from
the frequency response plot of Fig. 2.20.

In the above example, if §; is left unconstrained and the optimization
performed with linear programming, the result is an equiripple design, with the
response as shown in Fig. 2.21. The resulting values of the errors are §, = 0.06,
0, = 0.00237, 6; = 0.12. Figures 2.20 and 2.21 also show the step responses.

STEP RESPONSE

11

A —e. L A L
0 3 6 9 12 15 8 21 24
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-04

N=25
81’0.06
20K 8,:0.00237
[H(ed®)]
in dB

-404+

-60»—

~-80

-100
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L ! 1 It
o] 01 0.2 03 0.4 0.5

Normalized Frequency -

Fig. 2.21. Repetition of Example 8 with the step-response ripple 3, unconstrained
[24](© 1972 IEEE).
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FREQUENCY TRANSFORMATIONS IN FIR FILTERS

Let us assume that a digital filter, say lowpass, has been designed and im-
plemented as an interconnection of multipliers, delays, and adders. There are
applications in which it is desirable to change the cutoff frequency w, by
changing the multiplier values in the implementation, typically in real time. An
obvious way to change the cutoff frequency is to redesign the entire filter, but this
may be impractical for several reasons. With optimal FIR filters of a given length,
for example, redesigning involves rerunning the entire Remez exchange al-
gorithm. This may not be feasible within the time frame available for readjusting
the cutoff frequency. It is therefore of interest to design the filter circuit such that
the change of one or a few parameters results in the desired tuning over the
desired frequency range. In this section we discuss methods for achieving this.

A All-Pass-Based Transformations

Consider a linear-phase lowpass FIR filter with bandedges Q, and Q,. Assume
that we wish to have a single parameter that controls the exact value of Q. This
can be accomplished by first designing a prototype filter with passband edge w,
(where w, is the nominal value of Q) and then replacing each delay unit 2~ ! with
a stable all-pass function. For example,

o+ 27!
T4zt

-1

(2.81)

Letting Z = ¢/® and z = ¢’®, the prototype frequency w is related to the actual
frequency Q by

Q=ow+2tan| 2L (2.82)
1 —acosw

For each real-valued Q there exists a unique real-valued w, and the converse is
also true. The above is therefore a valid frequency transformation (or spectral
transformation). The tuning parameter o controls the actual passband edge.
Further details can be found in [28]. Since the substitution of Eq. (2.81) can
actually be incorporated into the structure, we therefore have a means of
adjusting the cutoff frequency by varying the physical multiplier-parameter .

The obvious disadvantage of this all-pass-based spectral transformation is
that the resulting filter is not FIR and therefore does not have linear-phase
characteristics, even though the prototype filter may have linear phase. For FIR
filters, therefore, a different frequency transformation is required.
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Transformations Based on Trigonometric Building Blocks B

An elegant approach to this problem was outlined by Oppenheim et al. in 1976
for type 1 FIR filters [29]. This method, however, is not based on replacement of
delay units but on replacement of another type of building block, to be described
shortly. The direct-form structure of Fig. 2.1, which has delays as the building
blocks, is not suitable for application of the proposed transformation technique;
we should first derive a new filter structure that contains the building blocks on
which the transformation operates. We now proceed to do this.

Recall that for type 1 filter the zero-phase part can be written as a sum of
cosines, as shown in Table IV. From this we get

1N D2
Ho(z) = 5 Zl b(z" + 2 ") + b, (2.83)

Now z”+ z~ " represents 2 cos nw on the unit circle. But cos nw can be written as
cosnw = J,[cos w] (2.84)

where 7,(X) represents the nth-order Chebyshev polynomial in the variable X.
Thus we can write H,(z) as

(N—1)2 4zt
Hoz)= Y, b,ﬁ;(z 22 ) + by (2.85)
n=1
This can be rearranged as a polynomial in (z + z™ *)/2:
N2 (74 27 1\k
Hy(2)= ) a (2.86)
K=o 2
The frequency response corresponding to Eq. (2.86) is
) (N—1)2
Ho(e’*) = Y accostw (2.87)

Thus, the response can be written entirely in terms of the variable cos w. Let us
now assume that a circuit with building blocks of the form (z + z7!)/2 has been
built in order to realize Eq. (2.86), as shown in Fig. 2.22(a). (We show later how to
overcome the noncausality of the building blocks, caused by the positive powers
of z.)} If we now replace (z + z~')/2 with functions F(Z), real valued on the unit
circle and satisfying

—1<Fe? <1 (2.88)

then for each frequency Q we can find a unique prototype frequency w from the
relation

@ = cos” Y(F(e™) (2.89)



102 P. P. Vaidyanathan
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Fig. 2.22(a). Implementation of Hy(z).
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Fig. 2.22(b). Graphical explanation of frequency transformation.

Thus we have a valid frequency transformation. For example, we can obtain
the transformation

P

cosw = Y A,cos*Q {2.90)
k=0

Z+Z">"

P
F(Z) = k;) Ak(————i—-w— (2.91)
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Fig. 2.22(c). Implementation of transformed filter.

where A, are such that Eq. (2.88) is satisfied. Note that, even though Eq. (2.88)
holds by construction of the right side of Eq. (2.90), cos Q in Eq. (2.90) may not
turn out to be of magnitude less than unity for an arbitrary prototype frequency
w. In other words, there may exist certain portions of the prototype frequency
response that do not map onto the unit circle of the transformed plane. This is not
generally harmful for frequency responses that are piecewise constant.

As a specific special case consider the transformation

cosw = A, + A cosQ ‘ (2.92)

In terms of the z variables,

Essentially, given a prototype filter with attenuation a, at some frequency w,,, the
transformed filter has the same attenuation at frequency Q,, where w, and Q, are
related by Eq. (2.92).

Figure 2.22(b) graphically explains how the transformation works. A major
requirement on a legal transformation is that, for every actual frequency Q in the
range 0 < Q < 2z, there should exist a unique frequency w in the range
0 < w < 2n satisfying Eq. (2.92). In other words, a straight line representing
Eq. (2.92) in Fig. 2.22(b) should satisfy

—1 <Ay + AjcosQ <1 (2.93)
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Let us assume that we wish to convert a lowpass prototype filter with cutoff
frequency w, into a lowpass filter with cutoff frequency Q. Figure 2.22(b) shows
the cases Q, < w, and Q, > w,. In either case, once the passband edge has been
mapped as desired, we wish the stopband edge w, to map into a frequency Q, such
that Q, is as close to the mapped Q, as possible. This is desirable because the
transformed filter then has the narrowest possible transition bandwidth (for a
given order and for a given set of tolerances d, and 4,). From Fig. 2.22(b) it is clear
how this can be accomplished: the straight line representing the mapping of
Eq. (2.92), which passes through the point (cos Q,, cos w,), must have the largest
possible slope, subject to the constraint of Eq. (2.93). Thus, when we want
Q, > w, (ie, when we want to expand the passband width), the point @ =0
must map onto Q = 0. Similarly, if we wish to shrink the passband width,
the best possible transformation is the one that maps w = nto Q = n.

When we attempt to expand the bandwidth (Q, > w,), the requirement that
w = (O maps onto to Q = 0 gives the constraint A, + A, = . Thus, the mapping

cosw = Ay + (1 — Ay)cosQ (2.94)

leads to such a variable-cutoff filter provided 0 < A, < L. Similarly, to shrink the
passband with (Q, < w,), we should use

cosw = Ag + (1 + Ag)cosQ (2.95)

with — 1 < 4, < 0.

By choosing 4, and A4, properly, we can use the same transformation of
Eq. (2.92) for highpass filters as well.

If the transformation of Eq. (2.94) is applied to the transfer function Eq. (2.86),
the resulting transfer function is

(N-1)2 1 — Ay + 24,Z7Y + (1 — Ax)Z™2\*
Go(Z)= akZ"( o ¥ 4o 2+( o) ) (2.96)

k=0

which represents a noncausal transfer function. The causal version is

- -1 =2\ k
Z NDRGy(Z) = (Nz”/z P ALGREVCE k)(] — Ao+ 2402 " + (1 — 40)Z )
k=0

2
(2.97)

which can be implemented as in Fig. 2.22(c). Thus, simply by changing the
parameter A, in Fig. 2.22(c), we can obtain a wide range of transfer functions.

Design Example 9. For a numerical example of the first-order transfor-
mation of Eq. (2.92), consider again the FIR filter of Example 2, which is an
equiripple filter of order N — 1 = 52, with passband cutoff frequency w, =
0.16n. We wish to design a new lowpass filter with the same passband and
stopband errors é, and J, but with passband edge at Q, = 0.3%. Since Q, > w,,
we use Eq. (2.94), from which we can compute 4, = 0.7. The response of the
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transformed filter is shown in Fig. 2.23. Note that the entire passband region
(0, w,) gets mapped into (0,Q,), whereas only a portion of the stopband response
{0, w,,,,) gets mapped onto (Q,, ), where

Q = cos”! cosw, — A,
a 1 - A,

In other words, only a portion of the unit circle of the prototype gets mapped
onto the unit circle of the resulting filter. Clearly, this is not harmful, because the
transformed response is a well-defined lowpass response with desired tolerances
9, and ¢,.

The first-order transformation of Eq. (2.92) leaves the filter order unchanged.
Moreover, §, and J, remain unchanged for obvious reasons. Thus, if the
prototype is optimal, the resulting filter is usually not optimal, because the
transition bandwidth can only increase as a result of transformation.

Using Eq. (2.91), we can define higher-order transformations in order to get
lowpass to bandpass conversions, and so on. The concept of frequency
transformations in FIR filters is important not only for the design of variable-
cutoff filters but also for certain other applications: for example, [23] develops
a “hierarchical” procedure for designing multiplierless FIR filters based on the
frequency transformation concept. Details of these filters are beyond the scope
of this chapter.

(2.98)

e. -
PASSBAND DETAILS

18,000

[aa]

=)

z  -28.000

L

w

z

S -t2.000 |

w

[99)

[+ 4
-56.,000
-70.000

0. 0.100 0.200 9.300 9.000 0.500

NORMALIZED FREQUENCY
Fig. 2.23. Example 9. The response of Example 2 (Fig. 2.9) frequency transformed.
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C Other Types of Transformations

We next proceed to describe certain related transformation techniques that are
extremely useful in FIR design practice. Let H(z) represent the transfer function
of a linear-phase FIR filter, as given by Eq. (2.1). The frequency response H(e’”)
can be written in terms of the zero-phase response Hy(e’®), as in Eq. (2.2).
Assuming that H(z) is lowpass with N — 1 even, we can write

(N—1)/2

Hy(e’®) = _21:0 b, cos wn (2.99)
Note that Hy(e/®) is an even function of . A typical plot of Hy(e’*)in Eq.(2.99)is
shown in Fig. 2.24(a). Let us now define a new transfer function
H(z) =2z V2 _ H(z) = 27N~ 2] — H(2)) (2.100)
Clearly, the zero-phase response H,o(z) of H,(z) is
H,o(e’®) = 1 — Hy(e’®) (2.101)

Figure 2.24(b) shows the function H,y(e’”), which is clearly highpass, with
passband edge equal to w, and stopband edge equal to w,. Next define a transfer

function
G(z) = Hi(—2) = (—2)" V" V(1 — Ho(—2)) (2.102)
Note that on the unit circle Hy(— z) becomes
Ho(—2) = Ho(—e7) = Ho(e*®~™) = Ho(e’* ™) (2.103)

where we used the fact that Hy(e/”) is an even function of w. Thus, letting
G(e/?) = e /W~ D2 (e*), we obtain the zero-phase response Gy(e’®) of G(z):

(— W D2Gy(ed) = 1 — HoleH™ ) = Hyofe™™ ) (2.104)

Thus, based on the plot of H,, in Fig. 2.24(b), we can plot the response G,(e'*)
given by Eq. (2.104). This is shown in Fig. 2.24(c).

It 1s thus clear that G(z) again represents a linear-phase lowpass FIR filter of
order N — 1, but its passband edge is 8, = © — w,, whereas the stopband edge is
0, = n — w,. Moreover, the passband tolerance for G(z) is J,, whereas the
stopband tolerance is , . The above sequence of operations is therefore a simple
procedure to convert a linear-phase lowpass filter H(z) into a linear-phase
lowpass filter G(z) such that the passband parameters and stopband parameters
are merely interchanged. These ideas are summarized in Table IX. Figure 2.24(d)
shows a physical circuit for obtaining G(z) from H{(z). Note that there are two
crucial requirements to be satisfied for this “trick” to work. The first is that the
transfer function H(z) must have linear phase so we can subtract the zero-phase
response from unity, as in Eq. (2.100). The second requirement is that the order
N — 1 should be even so that the delay z~ ¥~ 172 in Fig. 2.24(d) is realizable.
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TABLE IX
Interchanging the Passband and Stepband Characteristics

Passband Stopband Passband Stopband

Transfer function edge edge tolerance tolerance
H{z) (lowpass) o, o, 0 3y
H,(z) (highpass) W, )y iy &
G(z) (lowpass) n— W, 0, S,

The above idea of interchanging passband characteristics with stopband
characteristics has other important applications. For example, assume that we
wish to design a linear-phase FIR filter with a maximally flat passband and
an equiripple stopband. A direct design procedure for such specifications is
complicated [25-26] and time consuming. However, as will be shown in
Section IX, it is much easier to first design a lowpass transfer function H(z)
having an equiripple passband and maximally flat stopband. We can then
obtain the desired transfer function G(z) from H(z) prescisely as in Fig. 2.24(d).
Section IX outlines the detailed procedure for dealing with this problem; related
ideas and methods are in [30].

As another application of the above idea, recall that in Section V.B we
mentioned that maximally flat FIR filters can be built with only L — 1 multipliers
by implementing (2.68) directly. We also commented that it is possible to obtain
an implementation with K — 1 rather than L — 1 multipliers, which is suitable
when K < L. For example, let K = 3and L = 5. Let us first design a maximally
flat lowpass filter H(z) with K and L interchanged (i.e.,, K = 5 and L = 3). Thus
H(z) can be built with only two multipliers. From the structure for H(z) if we
now obtain the structure of Fig. 2.24(d), the resulting transfer function G(z) is
maximally flat lowpass, with K and L restored (i.e., K = 3 and L = 5). Thus, we
have obtained an implementation of G(z) with only K — 1 = 2 multipliers.

D Multiple Use of a Given Filter For Response-Sharpening

Consider a lowpass linear-phase FIR transfer function H(z) of order N — 1
with response as shown in Fig. 2.24(a). Let us assume that this filter is available in
the form of a module (a software module, for example) and that we wish to use
this filter to obtain filters with smaller passband and/or stopband errors. i the
output sequence generated by H(z) is again passed through H(z), this produces
an overall transfer function

G\(z) = HYz) =z W' VHEz) = = ¥ VG,4(2) (2.105)
The response G,(e’”) is shown in Fig. 2.25(a). The bandedges w, and o,
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are unchanged by the squaring operation. Clearly, the peak passband error for
G(z)is

¢ _(1+6)—(1—4)

o = =20 (2.106
1 2 1 )
whereas the peak stopband error for G,(z) is
T
0, = == 2.107
2 5 ( 7)

Thus, multiple use of the same filter decreases the stopband error, but,
unfortunately, the passband error increases.

Note that the order of G,(z)is 2(N — 1). Now assume that we want to obtain a
transfer function G,(z) of order 2(N — 1) by twice employing H(z) as above, but
we want to have a smaller passband error. We can do this by the following
sequence of operations: first define a transfer function H,(z) as in Eq. (2.100). The
response of H,(z) is as in Fig. 2.24(b). (This requires that N — 1 be even.) Next
form the transfer function H,(z) = H3(z) = z- W Y H2,(2). Figure 2.25(b)
shows the response H?%,(e/?), which is highpass with peak passband error

(1+6,)2—(1—6,)°

€ = 5 = 20, (2.108)

and peak stopband error

€, =06%/2 (2.109)
Finally, define the transfer function
Gy(z) =z ™"V — Hy(2) (2.110)
Figure 2.25(c) shows the response of G,(z). The peak passband error for G,(z) is
. 82
), = €, = — 2.111
1 = € 2 { )

whereas the peak stopband error is

5, =€ =26, (2.112)
Thus the passband error is reduced, but the stopband error increases. Fig-
ure 2.25(d) shows the physical structure for the implementation of G,(z).

Next suppose we want to devise a scheme so that using the filter H(z) several
times improves the passband and stopband errors. We can do this if we make
judicious use of H(z) three times rather than twice, which gives an overall filter
order of 3(N — 1). A general theory for accomplishing this kind of improvement,
based on the concept of amplitude change function, was introduced by Kaiser and
Hamming [31]. The details of this ingenious concept are beyond the scope of this
chapter, so we present the simplest result that is of immediate relevance to our
discussion.
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Basically, given a linear-phase FIR transfer function H(z) = z ™ " V"2H(2)
of order N — 1, we wish to construct the linear-phase FIR function G(z) =
£ 3N DG (z) such that the real-valued function Gy(e/”) has smaller pass-
band and stopband errors than the function Hy(e’?). Let G, = f(H,) denote the
functional dependency of G, on H,. The quantity H, is close to unity in the
passband and close to zero in the stopband. Accordingly, f(H,) should satisfy
f{0) =0, f(1) = 1. Furthermore, we would like small deviations of H, around
zero and around unity to be reflected as even smaller deviations in G,. We do this
by forcing the derivative of f(H,) to be equal to zero for H, = 0and H, = 1. The
simplest function satisfying all these conditions is G, = f(H,) = H(3 — 2H,).
Figure 2.26(a) is a sketch of f(H).

(a)

X(Z) }

N-1
M=t
———l >—> M z
3 6(z) = %(é))-
(b)
/ Ho(ej“)

t ‘r\ v 7
0 “p RSN \/

(c)
Fig. 2.26. Improving both the passband and the stopband.
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TABLE X
Improving the Passband and Stopband Characteristics by Multiple
Use of the Same Filter
Peak passband error Peak stopband error
H(z) ) 0,
G(2) 662 352

The relation in Fig. 2.26(a) can be realized in practice by implementing the
scheme in Fig. 2.26(b). Clearly,

G(z) = H*(z)(3z W~ V"2 — 2H(z)) (2.113)
Thus, letting G(z) = z 3% " VY2Gy(z) and H(z) = z"™ 2 H(z), we have
Go(z) = Hi(2)(3 — 2H,(2)) (2.114)

asrequired. The effect of zero slope at (0,0) and (1, 1) is that the error is reduced in
the passband and in the stopband. A Typical plot of H,(e’?), shown in Fig.
2.26(c), leads to a corresponding plot of G,(e/“), shown in the same figure. Notice
that G,(e’®) has equiripple behavior in the passband but not in the stopband.
However, for small 8, the stopband of G,(e’?) is almost equiripple. It is easily
shown that G(z) has peak passband error of about 662 and peak stopband error
of about 1.562. Table X summarizes these results. For small 6, and 6, thereis a
remarkable improvement in passband and stopband errors. However, if he
original filter H(z) has large d, and J,, then the resulting filter G(z) may be even
worse than H(z). To summarize in a qualitative way, the structure of Fig. 2.26(b)
makes good filters better and bad filters worse.

TWO-DIMENSIONAL LINEAR-PHASE FIR FILTER DESIGN
AND IMPLEMENTATION

A two-dimensional (2-D) FIR filter with impulse response coefficients h(n,, n,),
0<n, <N, —1,0<n, £N, — 1, has transfer function

Ni—1Nz-1
H(z,,z,) = ZO ZO h(n,,ny)z{"z;™ (2.115)
n =0 ny=
The impulse response h(n,,n,) is causal—that is, it vanishes for n; < 0 and for
n, < 0. The above filter is said to be an (N; x N,)-point FIR filter. We obtain the
frequency response from Eq. (2.115) by setting z, = ¢/** and z, = ¢/“2. Such
filters are used in image processing problems, such as image enhancement and
compensation for linear optical degradations, and so on [32]. The input signal
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x(n,,n,) and the output signal y(n,, n,) are related through the convolution sum

Wny,ny) = Z Zox(mnmz)h(nl — my, ny — my) (2.116)

my=0my=

where h(n,,n,) and x(n,,n,) are assumed to be causal.

Two-Dimensional Filter Inplementation A

The implementation of such filters can be accomplished by directly computing
the 2-D convolution sum of Eq. (2.116). For an N x N filter the number of
multiplications involved per computed output sample is proportional to N2. For
large N the implementation is therefore expensive, and fast convolution methods
(based on 2-D FFT techniques) must be adopted. For filters with impulse
response arrays larger than 10 x 10, FFT methods are more efficient than direct
convolution.

Many of the linear-phase FIR design methods for one-dimensional (1-D) filters
can be extended to the 2-D case. Windowing techniques can be directly extended;
optimization methods based on the linear programming approach or the Remez
exchange techniques can all be extended as described in [2]. A major dis-
advantage of such a direct optimization is that the optimization time tends to
be very large for a filter of moderate size because the number of constraint
equations and problem variables tends to be large. As a result, direct optimiza-
tion techniques are limited to moderate-sized 2-D filters, such as 10 x 10impulse
response filters. For filters of higher orders an elegant indirect approach
proposed by McClellan [33] is the most suitable technique; it is the topic of the
next subsection.

McClellan’s Transformation Technique B

In 1973, McClellan [33] showed how 1-D linear-phase FIR filters can be
transformed to 2-D linear-phase FIR filters. The method is based on the idea of
frequency transformation discussed in Section VII. Mecklenbrauker, Mersereau,
and Quatieri have studied the design and implementation of such filters in
considerable detail [32,34].

The advantage of such an indirect mapping-based method is clear: the design
time is much less because 1-D filters can be designed very efficiently by algorithms
described earlier in this chapter. As a result, higher-order filters (such as 40 x 40
or more) can be designed with very little computational effort (compared to a
direct 2-D method). The 2-D filters designed by mapping are often optimal.
Finally, the actual implementation of these filters is much more efficient (in terms
of number of multiplications) than a direct implementation of a directly designed
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2-D filter. The implementation of a mapping-based filter is more efficient than an
FFT-based implementation of a directly designed optimal filter [2], up to an
impulse response size of about 45 x 45. (Recall that an FFT-based method is
better than a direct convolution approach for orders exceeding only 10 x 10.)

To understand the basic idea, recall that a linear-phase FIR filter of even order
can be written as in Eq. (2.2), where H,(e”) is as in Eq. (2.87). Instead of replac-
ing cos w in Eq. (2.87) by F(e/®?), suppose that we replace it as follows:

cosw = Acosw, + Beosw, + Ccosw, cosw, + D (2.117)

where w, and w, are the frequencies of the 2-D filter. The constants 4, B, C, D are
such that the right side of Eq. (2.117)1s in the range [ — 1, 1] for 0 < w,, w, < &
Thus, for each frequency pair (v, , w,), we get a unique prototype frequency w, so
Eq. (2.117) represents a meaningful transformation. The response of Eq. (2.87)
gets mapped into

M; M>
Ho(e’, 672y = Y % b(m, n)cos(mw, )cos(nw,) (2.118)
m=0n=0

so the filter design involves designing the parameters A, B, C, D and the
prototype. Since the former has been described in earlier sections, we deal only
with the design of the mapping parameters A4, B, C, D.

From Eq. (2.117) we can write

cosw — D — Acosw,
=cos ! 2.119
@2 ( B + Ccoswy ) ( )

Thus a given value of w is represented by a contour in the (w,, w,)-plane, whose
exact shape is governed by the contour parameters 4, B, C, D. From Eq. (2.119) it
can be shown that the conditions |C| < |A|and |C| < | B| insure, respectively, that
there are no horizontal or vertical contours (except at the boundaries of the
square [0, 7] x [0, n] in the (w,, w,)-plane. Moreover, the contours are always
monotone [33], with the mapping asin Eq. (2.117). McClellan {33] considers two
examples: one with a monotone decreasing set of contours, and one with a
monotone increasing set. These contours can be used, respectively, to design 2-D
lowpass and 2-D fan filters, starting from a 1-D prototype. For lowpass designs,
we can choose the contour parameters such that

C=-D A=1-8B (2.120)

so that the contours are monotone decreasing, as shown in Fig. 2.27. (In Fig. 2.27,
the labels on the contour represent the normalized 1-D frequency f = w/2n.)
Note that, for each 2-D frequency w,, w,, there corresponds a unique frequency
of the 1-D prototype, and hence the ripple sizes , and J, are preserved during the
transformation. For fan filters, a typical choice would be C = Dand 4 = B + 1.

As a specific example, let A = 0.5 and C = 0.5 and assume that a lowpass 1-D
prototype should be transformed into a lowpass 2-D filter. Then B=1— 4=
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Fig. 2.27. Contours of constant w, when 4 = B=C = —D = 0.5, [16}(© 1975 IEEE).
0.5and D = —C = —0.5. This leads to
cos ¢ = 0.5(cosw, + cosw;) + 0.5cosw, cosw, — 0.5 (2.121)

which shows that the point @ = 0 maps into (v, = w, = n). Moreover, for small
values of w, w,, and @, we get the approximate relation w? = w? + w2, which
shows that the contours of constant @ are circular for small frequencies
(Fig. 2.27). Note that for large w the contours flatten out and resemble rectangles.

Design Example 10. Assume that we wish to design a lowpass 2-D equiripple
filter with the passband edge and stopband edge represented by approximately
circular contours with radii 27/6 and 2m/3, respectively'a Fig. 2.28(a)].
Assume that the peak passband and stopband errors of fhe 2-D filters are
required to be d, < 0.08 and 4, < 0.008. The transformation of Eq. (2.121) gives
contours that are only approximately circular, so we adopt the following intui-
tive guideline to compute the bandedges of the prototype 1-D filter: the 2-D
frequency (0,27/6) is a point on the contour representing the passband edge.
Substituting these values of w, and w; in Eq. (2.121), we get @ = 2x/6. Thus, the
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Fig. 2.28(a). Example 10: Circular contours representing the bandedges of the 2-D lowpass
specification.
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Fig. 2.28(b). Example 10: The frequency response of the resulting 9 x 9 2-D FIR filter [59].
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1-D prototype can be designed to have w, = 27/6. In an analogous manner we
can find w, = 2x/3.
Now ¢, and J, of the 2-D filter are the same as those of the 1-D prototype. We
therefore have the complete specifications for the 1-D equiripple design:
2 =
wp - 6 ) r 3 E}
These requirements are satisfied by a filter of order N — 1 = 8. The trans-
formation of Eq. (2.121) now gives rise to a 2-D filter of length 9 x 9. Fig-
ure 2.28(b) shows the frequency response.

5, =008, &, =0.008 (2.122)

Generalization of McClellan’s Transformation C

McClellan’s transformation has been generalized by Mersereau et al. [32] to a
considerable extent, making it possible for the designer to have a wide variety of
choices for contour shaping and contour optimization. This generalization is
based on the observations that the mapping of Eq. (2.117) is a special case of the
transformation

cosw = F(w;, w,) (2.123)

where

P 0
Flo,,w,) = ) Zo t(p, g)cos(pw, )cos(qw,) (2.124)

p=Vq=
If the prototype 1-D filter has an impulse response of length N = 2M + 1, then
the 2-D filter has a 2MP + 1) x 2MQ + 1) impulse response. However, the
design process is made considerably simpler by designing the contour param-
eters t(p, q) first and then the prototype impulse response. This then involves

only (P + 1) x (Q + 1) + M + 1 parameters.

Mersereau et al. [32] actually show how t(p, q) can be chosen optimally. In
general, there are two known methods for designing the contour parameters
t(p, ). In the first method, called the contour matching approach, we formulate an
optimization problem that enables us to approximate certain contour shapes.
Forinstance, we can force the passband edge of the 2-D response to be as close as
possible to an ellipse. Or we can design a circularly symmetric lowpass filter
where the contour representing the passband edge is as close as possible to a
circle. At the other extreme, the method can also be used to design the types of
responses required in applications such as reconstruction of objects from their
projections [32]. Contour mapping problems can be solved by linear optimiza-
tion techniques, as elaborated in [32].

The second method, which works well only for frequency responses that are
piecewise constant, is based on the viewpoint that the design of t(p, q) is itself a
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filter design problem. The basic idea is to design the contour parameters such that
the transition bandwidth w, — w, of the prototype 1-D filter is maximized.
Clearly, this minimizes the peak errors in the passband and stopband for a given
prototype filter length. This problem can also be formulated as a linear
programming design problem to solve for the coeflicients ¢(p, ¢). Techniques
more efficient than linear programming are also known from works of Kamp and
Thiran [357. All details are omitted here in the interests of brevity.

Implementation Considerations

The most efficient way to implement 2-D FIR filters using McClellan’
transformation is to recognize that a zero-phase I-D FIR filter can be
implemented exactly as in (2.86), and hence the 2-D design is obtainable simply
by replacing the building blocks (z + z7')/2 with the z-domain equivalent of
F(w,w,)in Eq. (2.124). Such an implementation is computationally much more
efficient than a direct implementation of the convolution sum, because the
number of multiplication operations in Eq. (2.86) per computed output sample is
proportional to N rather than N2, The above implementation is known to be
even more efficient than FFT-based 2-D convolution techniques for filters of
orders up to about 45 x 45. The only disadvantage of the implementations
based on Eq. (2.86) is that the coefficients g, span a large dynamic range because
of the Chebyshev transformation involved in Eq. (2.85). For a detailed treat-
ment refer to [347], where the effects of finite word length in these implementa-
tions are also studied.

RECENT TECHNIQUES FOR EFFICIENT FIR FILTER DESIGN

Newer techniques have been reported for the design and implementation of
FIR filters. Compared to equiripple designs, these techniques require less design
time and are computationally more efficient from an implementation viewpoint.
This section outlines some of these techniques.

An implementation of a filter is simply a scheme that computes the output
sequence y(n) in response to an arbitrary input sequence x(n). Let N, and N,
represent, respectively, the number of multiplications and additions required to
compute each sample of the output sequence. Also, let N, represent the number of
delay units (i.e., amount of memory required) in the implementation. The relative
importance of the three quantities N, N,, and N, depends upon the exact
architecture of implementation (i.e., whether it is special-purpose hardware, or
programmable-chip based, or simply a mainframe computer program). However,
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in many cases of practical interest, the multipliers are the most time consuming
(or equivalently space consuming), and much more significance usually needs to
be attached to N, than to N, and N,. The methods discussed here are particularly
suited to such situations. In situations where high-speed parallel multipliers are
already available, so that multiplication time is not significantly higher than
addition time, there is little motivation to reduce N, at the expense of increased
N,and N,.

To see the basic philosophy behind some of the new methods, recall that
equiripple designs are optimal in the sense that the filter order N — 1 is the
smallest among all filters that have the same specifications (for example, the same
specified values of w,, w,, é;, and J,). As a result, a direct-form implementation
requires the fewest multiplications (approximately half the order). However,
there may be other implementations that require a higher overall order than the
equiripple designs (to meet the same set of specifications) but require fewer
multipliers. Such implementations can be very attractive when N, is not as crucial
as N,,. Most designs discussed in this section are based on this viewpoint.

The Interpolated FIR (or IFIR) Approach

The IFIR technique is valuable in situations where a FIR filter with a “narrow
passband” is desired. For notational simplicity let us confine our attention to the
lowpass design. Referring to the specification shown in Fig. 2.3, recall that a direct
optimal design requires an order as estimated by Eq. (2.31). Consequently, a
narrow transition bandwidth Af implies a high order. The number of multipliers
in a direct implementation is therefore very large (about half the order N — 1).
However, it is sometimes possible to design this filter indirectly so that the actual
number of multipliers is much less, even though the order is higher than for
optimal designs.

The approach can be described by referring to a lowpass design. Correspond-
ing to the lowpass specifications as in Fig. 2.29(a), consider a new set of stretched
specifications as in Fig. 2.29(b), where the bandedges have been stretched by a
factor of 2 but the tolerances §, and J, are unchanged. The new specifications are
meaningful, provided 2w, < 7. The modified specifications can be met by a model
filter Hy,(2) of order given by

_ —20log;0+/6,8, — 13

Mu— 1= 14.6(2Af)

which is half the value given by Eq. (2.31). Now consider the frequency response
corresponding to Hy(z?), which is shown in Fig. 2.30(a). This is precisely as in
Fig. 2.29(a), except for the unwanted passband around w = n. The unwanted
passband can be suppressed by cascading H u(z?) with a filter having a transfer

{2.125)
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Fig. 2.29. Pertaining to the IFIR method.
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Fig. 2.30(b). The interpolator G(z).
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Fig. 2.30(c). The overall IFIR implementation.
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function G(z) and frequency response as in Fig. 2.30(b). Thus the overall transfer
function is

H(z) = Hy(2%)G(2) (2.126)

Figure 2.30(c) shows the overall implementation. The main point is that as long as
w, 1s not very close to n/2 the response of G(z) need not have a sharp transition,
although it needs to have a large attenuation in the region 7 — @, < w < n. Thus
G(z) is, in general, inexpensive, as we shall demonstrate by design examples. The
overall implementation requires only (Ny — 1)/2 + 1 multiplications (for even
Ny — 1). This is half as many as that required by a direct design.

The choice of G(z) is governed by the fact that it should have large attenuation
in the range m — o, < w < = This itself is easily accomplished, for example,

by taking
1 ~1\R
G(z) = (—+22 ‘) (2.127)

where the integer R is large enough to attenuate the unwanted passband around
w = n. However, the obvious disadvantage of this is that, for large R, the filter
G(z) causes unacceptable deterioration of the passband of H(z). One way to avoid
this is to predistort the model filter Hy(z) such that its passband compensates for
the deterioration. For example, if we are designing Hy(z) by using the MP
algorithm, then we need only choose the desired response to be

; 1/1G(e™?)], 0<w<22w
D(e™) = p 2.128
(e’) {0’ 0> 20, ( )
and the weighting function to be
; G(e/*? 0<w<?2
W(ei®) = {' (™) =@ A (2.129)
constant, w > 2w,

Thus, the overall filter H(z) has equiripple passband response. Note, however,
that if the interpolator causes a large droop in the passband, then D(e’®) in
Eq. (2.128) has a large dynamic range in the passband region. As a result, the
impulse response coefficients of Hy(z) tend to have large magnitudes, even
though they add up to approximately unity around @ = 0. This implies that
the passband sensitivity of the resulting design can be large with respect to the
coefficients of Hy(z). Thus, interpolators that cause a large droop should
be avoided.

A simple way to overcome the above sensitivity problem is to choose G(z) such
that it not only attenuates the signals around @ = = but is also very flat in the
passband region 0 < w < w,. This can generally be done with inexpensive G(z)
because the transition bandwidth Af of G(z) can still be quite large. An excellent
choice of G(z) based on this observation is the class of maximally flat FIR filters
discussed in Section V. Recall that these lowpass filters have a high degree of



122 P. P Vaidyanathan

flatness around w = 0 and w = 7. Design experience [23, 36] shows that, because
of the flatness of this type of interpolator, the predistortion described by
Eq. (2.128) is not necessary in most situations. It is also found in practice that
small values of K and L are quite sufficient in most designs. Recall from Sec-
tion V that (for small K and L) G(z) can be implemented very efficiently in a
multiplierless manner.

We now make some comments. First, the impulse response corresponding to
H\(z?) has every odd-numbered coeflicient equal to zero. The cascading of G{(z)
with Hy(z?) as in Eq. (2.126) is equivalent to filling in these zero-valued
coeflicients with a weighted average of surrounding coefficients. For this reason
G(z) is termed the interpolator. If the interpolator happens to be a maximally flat
transfer function of the form of Eq. (2.68), then we call it a maximally flat
interpolator. Note, however, that no explicit signal interpolation is involved in the
structure of Fig. 2.30(c). In other words, the structure represents a single-rate,
rather than a multirate, implementation.

Second, if w, is sufficiently small, we can extend the above idea and stretch the
frequency axis by more than a factor of 2. Thus, we can define a model lowpass
filter Hy(z) with bandedges lw, and lw,, where [ is an integer such that /o, < =.
The final design H(z) is then

H(z) = Hy(z))G(2) (2.130)

where G(z) is a suitably chosen interpolator that suppresses the { — | unwanted
passbands. The overall design now has about / times fewer multipliers than a
conventional equiripple design, provided that ((z) continues to be a simple
circuit. Note, however, that if lw,, which is less than =, is very close to «, then the
interpolator G(z) is expensive to design because it now must have sharp transition
bands. Accordingly, it is a good design strategy not to make / too large. In any
case, a theoretical upper bound on [ is the integer part of n/w,.

Design Example 11. Reconsider the specifications of Example 2. Since w, 1s
sufficiently small, we can employ the IFIR approach for the design. Note that
n/w, = 1/0.24,and, theoretically speaking, we can use ! = 4. However, to keep the
design of the interpolator simple, let us pick I = 2. The model lowpass filter Hy,(z)
has bandedges

®, = 0.32m, @, = 0.48x% (2.131)

and requires an order Ny — 1 of 26. A maximally flat interpolator with K =
L = 3 is found suitable for removing the unwanted passband of Hy(z?) around
w = n. Figure 2.31 shows the frequency response of the resulting design, which
meets all design specifications, even though it requires only 14 multipliers. Note
that no prewarping of the passband has been necessary.

Designing highpass and bandpass filters based on the IFIR technique can be
done in a similar manner. See [37] for further details. For lowpass filters with
w, > n/2, we can still use fewer multipliers by first designing the complementary
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Fig. 2.31. Example 11: Lowpass filter, IFIR design.

lowpass filter H (z) with passband edge = — w,, stopband edge = — w,,, passband
peak error 8,, and stopband peak error d,. After efficiently designing it using the
IFIR approach, we obtain the desired transfer function

H(z) = (-2 """ — H(-2) (2.132)
Other choices of G(z) are possible. The choice
. -1 s-n_t—2° '
Ga)=1+z "' 44z =T (2.133)
A

called the recursive running sum (RRS), is particularly useful. (The use of the RRS
for efficient FIR filter design was recognized earlier in a different context by
Adams and Willson [38].) This building block can be implemented with only two
addition operations, and provides a minimum stopband attenuation of about
13 dB (see Fig. 2.32). The parameter S essentially determines the width of the
mainlobe of the RRS interpolator. A typical design rule is to choose S so that
A =27r/S > w,. If the difference A — w, is too small, then designing Hy(z) is
difficult because its passband needs to have a large variation to compensate for
the droop in the passband caused by G(z). Such a large variation leads to noise
and sensitivity problems.

In Section V we mentioned that the design of maximally flat FIR filters with
small transition widths is extremely expensive because the order N — 1 grows as
the inverse square of this width. From the discussions of this section, it is clear
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Fig. 2.32(a). Implementation of the recursive running sum.
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Fig. 2.32(b). The magnitude response of the recursive running sum.

that the [FIR approach can be applied for the design of these filters as well. This is
demonstrated in the next example.

Design Example 12. Assume we want a monotone response as in Section V
with § = 0.2r and 6 = 0.1n. A direct design requires K = 161 and L = 17, which
means that a direct-form implementation requires about 178 multipliers! How-
ever, we can design indirectly a monotone filter with the same bandedges by using
the IFIR approach as follows: first design Hy(z) with f = 0.4n and 6 = 0.2x,
requiring K = 17 and L = 9. This involves only 26 multipliers. We obtain the
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Fig. 2.33. Example 12: IFIR-based design of monotone response.

overall transfer function H(z) as in Eq. (2.126), where G(z) is itself a maximally flat
interpolator (or a cascade of such interpolators) characterized by small values of
K and L. In the example under consideration, the choice G(z) = I3 , (z) is found
to suppress the unwanted passband satisfactorily. [Recall that, Iy ,(z) is the
abbreviation for a maximally flat FIR transfer function as in Eq. (2.68).] Thus, the
overall implementation is dramatically simplified since it involves only 26
multipliers (compared to 178 in a direct design) and three multiplierless building
blocks. Figure 2.33 shows the frequency response plot. For further details and
examples of this nature, see [23, 36]. Note that the resulting indirect designs have
responses that are not maximally flat, even though they are very flat, and are
usually monotone.

The Prefilter—Equalizer Approach to FIR Design' B

Reconsider a typical lowpass response as shown in Fig. 2.3. The desired
transfer function has two important roles: it should provide a good stopband
attenuation, and it should keep the passband signals as undistorted as possible.
Instead of directly designing a transfer function H(z) satisfying these require-
ments, we can take an indirect approach as follows. First design a transfer

T See reference [38].
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function H,(z) that provides considerable stopband attenuation but not neces-
sarily a good passband response. Then design a transfer function H,(z) such that
in the passband H,(z) compensates for the response of H,(z) so that the
cascaded transfer function H,(z)H,(z) has its passband response within the
required tolerance.

The advantage of such an approach is that H,(z) can usually be designed in an
efficient manner without multipliers. An example is the RRS of Eq. (2.133), which
has all transmission zeros on the unit circle of the z-plane. As mentioned earlier,
this can be implemented with only two digital adders and no multipliers. The
RRS provides a minimum attenuation of about 13 dB. The filter H,(z). which
provides the additional attenuation in the stopband and also shapes the
passband, has an order that is considerably lower than the order of a directly
designed optimum filter. Since H,(z) is multiplierless, the overall implementation
of H(z)H,(z) is therefore computationally less expensive even though the
resulting filter order is higher than that of an optimal filter.

Adams and Willson [38, 39] have introduced several building blocks for the
transfer function H,(z), which is called-the prefilter. The prefilter H,(z) should be
chosen to have all zeros on the unit circle to provide a good stopband
attenuation. The prefilters proposed in [38] and [39] are based on the RRS of
Eq. (2.133). By suitably combining RRS building blocks, we can easily construct
prefilters with attenuation exceeding 13 dB. The function H,(z) is designed such
that H,(z)H,(z) has an equiripple passband. We can do this by designing H,(z)
with the help of the MP algorithm. We choose the desired response D{¢’“) and
weighting function W(e/®) to be input to the MP algorithm in an obvious
manner:

Jo
D(gf‘”) — {“/HZ(e 1K 0<mw< w, (2.134)
0. W = (0,
and
j |Hy(e/)l, l<w<w
W) =15 /s : » 2
= {51/02|H2(3m)|, W= W, (2.135)

Design Example 13. As a simple illustration of the prefilter—equalizer
approach, consider a lowpass specification with bandedges w, = 0.042%, , =
0.146m, A,, = maximum passband attenuation = 0.28 dB, and A, = minimum
stopband attenuation = 36 dB. A direct design based on the MP algorithm
leads to an equiripple design H,(z) of order 33, requiring 17 multipliers. An RRS
of the form of Eq. (2.133) with § = 13 has mainlobe extending from w = 0
to w = 2n/13 = 0.1538x, and is a suitable prefilter for this problem. The opti-
mal equalizer designed using the MP algorithm has order 27, and the overall
design therefore requires 14 multipliers. Figure 2.34 shows the relevant fre-
quency responses.
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C Prefilters Based on Dolph—Chebyshev Polynomials

A new class of prefilters, introduced in [40], is based on Dolph—Chebyshev
polynomials. A Dolph—Chebyshev function of order M and cutoff frequency ¢,

is defined by
Toy(X)
Dy () = M\ ) (2.136)
ol = LX)
where
_ cos(w/2) ’ = o (2.137)
cos(w,/2) cos(w,./2)

and J,,(X) is the Mth-order Chebyshev polynomial in X. Figure 2.35 is a typical
plot of this lowpass function. The minimum stopband attenuation is

A, =20l0g,0 7o (X.) (2.138)

We can design a linear-phase FIR filter with frequency response as in Eq. (2.2),
where Hy(e/®) is of the form of Eq. (2.136), simply by recognizing that the
response cos(w/2) is realizable (in causal form) as (1 + z7!)/2. As a result, FIR
filters with responses as in Eq. (2.136) can be built as in Fig. 2.36(a), where the tap
weights are the coefficients of the Chebyshev polynomial. Each box labeled X in
Fig. 2.36(a) corresponds to the X defined in Eq. (2.137). We can write

L 112 -142 77!
PO A A VeY (U (2.139)
2 cos(mw,/2)

2cos(w,/2)
Thus
M 1 4+ z71 N
Tyy(X) = k; c,,z"/z(m> (2.140)

Two difficulties are associated with a direct implementation of Eq. (2.140). The
first is the noncausality of the building blocks caused by positive powers of z; the
second is the presence of fractional powers of z, which do not correspond to

y
@ o}
<
3
.
3
Z AT
i > w
w m

c

Fig. 2.35. A typical plot of the Dolph—Chebyshev magnitude [40]
(© 1985 IEEE).
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Fig. 2.36(a). Implementation ol a Dolph-Chebyshev function [40]
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Fig. 2.36(b). Causal implementation of 1,,(x) for even M.

physical operators. Both of these difficulties are trivially overcome in practice, as
we outline next.

From the property of Chebyshev polynomials [1, 417, it is known that if M 1s
odd then Z,,(X) has only odd powers of X, whereas if M is even it has only even
powers of X. Thus for even M,

- x M2 . | 4271 \2 5 14
(X) = k;)cz,,z (2cos(wc/2)> (2:141)
The noncausality in Eq. (2.141) is avoided by introducing M/2 units of delay:
l + - 2k ‘
2 M2g z M2k 2.142
Z 2 (2009 /2)) ( )

Figure 2.36(b) shows the overall causal implementation of (2.136), which is free
from fractional powers of z. For odd M an analogous derivation leads to a
causal structure.

Note the X2 in Fig. 2.36(b). These multipliers imply additional computational
overhead, but they can often be judiciously avoided, as we demonstrate in a latter
example.

Prefilters with response of the form of Eq. (2.136) are attractive for several
reasons. First, even for small M the stopband attenuation is quite large for typical
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values of w,. Second, the tap coeflicients ¢, in Fig. 2.36 are very simple
combinations of powers of 2 for small M, leading to an inexpensive im-
plementation of H,(z). By proper choice of w,, we can make the values of the
multipliers X in Fig. 2.36 equal to a simple power of 2.

From Fig. 2.35 it is clear that w, should be chosen such that w, > m,.
Moreover, w, should be as close to w, as possible so that the attenuating effect of
the prefilter is available throughout the stopband. However, the smaller the value
of w,, the smaller is the equiripple attenuation A, shown in Fig. 2.35. Clearly. a
compromise is necessary. For filters with a narrow passband, w, is typically small.
and it may not be desirable to reduce w, to a comparably small value. A simple
solution to this problem is to first construct an intermediate function H,(z) based
on the Dolph—Chebyshev function with w, > 2w,, and then define the prefilter
H,(z) to be H,(z) = H,(z2)H,(z). A number of other prefilters can be generated
based on the Dolph—Chebyshev prefilter. A three-parameter family of functions
for this purpose is reported in [40] and has magnitude response

5 7yl X")
Hy(e'?)| = |-S—¢ (2,143
A = 7 ’
The prefilter H,(z) is then generated as
H,(z) = H,(z?)H,(z) 12.144)

Guidelines for choice of the parameters k, M, and w, are discussed in [40].

Design Example 14. Let us now reconsider Design Example 13. A prefilter
of the form Eq. (2.144), where H,(z) is given by Eq. (2.143) with M = 5 and
w, = 0.2951672x, is most suited to obtain an efficient design.' An equalizer
H,(z) corresponding to this prefilter requires an order of 13. Thus, the overall
implementation H,(z)H,(z) requires only 7 multipliers compared to 17 required
by the direct approach. Figure 2.37 shows all the relevant responses. Clearly the
new design meets all specifications met by the conventional equiripple design.

The above design can be further improved by combining the IFIR approach
with the Dolph—Chebyshev prefilter—equalizer approach. Thus, with the prefilter
as in Design Example 14, we can first design an equalizer H,(z) with bandedges
@, = 0.084n and &, = 0.2927 and then obtain the overall transfer function H(z)
as H(z) = H,(z*)H,(z). The required order of H,(z) is now only 8. Figure 2.38
shows the frequency response of the resulting design, which clearly meets all
specifications and requires only five multipliers.

Table XI shows a comparison of computational complexity for the design
example. The quantities N, and N, are shown for the direct equiripple approach,
the RRS prefilter approach, and the Chebyshev-function-based prefilter
approach (with and without incorporating the IFIR technique).

* This choice of w, corresponds to X2 = 1.25 = | + 2% hence the multipliers in Fig. 2 36b are
simple.
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TABLE XI
Complexity Comparison for the Examples

Prefilter Total for Direct equiripple
Example (adders) Equalizer” H,(z)H,(z)" design®

Example 14 Dolph-Chebyshev 38 13 51 iR
prefilter 7 7 (I
Example 13 RRS prefilter 2 (RRS) 27 29 R
14 14 i

Example 14 Dolph-Chebyshev 38 8 46 kR
prefilter with IFIR-based S 5 17

equalizer

“ The first number is the number of adders; the second, the number of multipliers.

D FIR Filters with Very Flat Passbands and Equiripple Stopbands

In certain applications it is required to design a lowpass transfer function G(z)
with cutoff frequency w, such that the response is very flat around w = 0 and the
peak passband error is less than a prescribed value, say ¢,, in the rest of the
passband. As mentioned in Section VI, such specifications can be handled by a
linear programming formulation, as shown by Steiglitz [25]. However, as
pointed out by Kaiser and Steiglitz [26], this might lead to numerical problems
during the design phase, in addition to requiring long convergence time. Such
specifications can also be met by using the MP algorithm, with the weighting
function properly chosen. However, a more efficient way to use the MP algorithm
to achieve the same purpose is outlined next [30].

Assume that we require a flatness of degree M — 1 at @ =0 (e, M — 1
derivatives of the response G(e/*) are zero at w = 0); also assume that the peak
passband and stopband errors permitted are §; and d,. The stopband is required
to be equiripple so that J, is minimized for a given filter order. Figure 2.39
represents these specifications.

T tangency M-1
e

1}

l6(ed) |

Fig. 2.39. The desired lowpass specifications.
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We can obtain such a response by first designing a transfer function H(z) to
meet the complementary specifications defined in Fig. 2.40(a). The complemen-
tary transfer function has a tangency of M — 1 at @ = n and can therefore be
decomposed as

H(z) = H,(z)H,(2) (2.145)

where

~1\M
H2(2)=(1 +2z ) (2.146)

Next we can design H,(z) by using the MP algorithm with the following
specifications for D(e’®) and W(e’/®):

. 1/|H,(e’® —
D(e_lm) — { /l Z(e )L 0 S w S us wr (2]47)
0, T—w,<w<n
and
j |H,(e7?)l, O<w<n—o,
W(e’?) = . .
(e ) {52/51|H2(6"(n_wp))|’ mn— (l)p <w<En (2 148)

[H(ed®)]
e
(z) 2
N
x(n) ——>
A4
H{-z)

Fig. 2.40(b). The overall implementation of G(z).
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This insures an overall equiripple passband for the cascade H(z) in Eq. (2.145).
The desired transfer function G(z) is then'

G(z) =(—z) "V 2 — H(—2) (2.149)

so that it has an equiripple stopband and a passband with degree of fiatness of
M — 1 at zero frequency. The choice of W(e/®) as in Eq. (2.148) also insures that
the peak passband to equiripple stopband error of G(z) is 8,/d, as desired. The
choice of the order N, — 1 of H,(z) should be done to meet the actual require-
ment on ¢, for a given 6,/d,. An approximate estimate can once again be ob-
tained from the right side of Eq. (2.31).

The overall implementation of G(z) is shown in Fig. 2.40(b). Note that the
overall order N — 1 = N, — | + M is required to be even so that the com-
plementation indicated in Eq. (2.149) can be performed. Even though the filter
order is N — 1, the number of multipliers is only about (N, — 1)/2. Thus, the
passband flatness of G(z) is achieved in a multiplierless manner by H,(—z), and
the stopband of G(z) is taken care of by H,(—z). Finally note that only the MP
algorithm is required in the entire design process, and no other optimization
routines are involved.

The key point to be noticed in the above method is that the flatness
requirement at w = 0 has been exploited to extract the building block H,(z),
which can be implemented without multipliers. If a linear programming
approach [or a direct Remez exchange approach with a suitably chosen W(e/)]
were employed for this design problem, then such a building block extraction
would not be possible.

Design Example 15. Referring to Fig. 2.39, consider the following specifica-
tions: d; = 0.016, ¢, = 0.26,, w, = 0.6m, w, = 0.77, M = 16. Note that J, cor-
responds to about 50-dB attenuation in the stopband. The order N, — [ of
H,(z) can be estimated from the right side of Eq. (2.31) as

_ "Zologlo\,‘éléz - ]3

M- 1= (14.6)(0.05)

=44 (2.150)

With H,(z) as in Eq. (2.146) where M = 16, and with H,(z) designed as described
above, the overall transfer function G(z) has the frequency response as in
Fig. 2.41(a). Figure 2.41(b) shows an equiripple FIR filter of order 44 with the
same stopband attenuation. Note that the equiripple design requires the same
number of multipliers (23) as the new design. Figure 2.41(b) also shows a com-
parison of passband details of the new design and the equiripple design. Note
that for the new design the stopband is equiripple, the passband is extremely
flat around @ = 0, and the remaining specifications are also met satisfactorily.

! See also Section VIL.C and Table IX.
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Fig. 2.41(a). Example 15: The new design for flat passband filters.
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X OTHER USEFUL TYPES OF FIR FILTERS

This section discusses certain useful additional topics on FIR filter design.
These include minimum-phase filters, half-band filters, and power-complemen-
tary filters.

A Minimum-Phase FIR Filters

As outlined in Section I, FIR filters have several advantages in addition to the
(optional) linear-phase property. Thus, if an application does not particularly
require the linear-phase property, we still have motivations for using FIR rather
than IIR filters. These motivations include guaranteed stability in spite of
parameter quantization and absence of limit cycles. In addition, in multirate
signal processing applications FIR filters are extremely efficient and, in general,
outperform their IIR counterparts even in terms of computational complexity
[42, 43].

A major price paid for the linear-phase nature of a FIR filter is that the overall
group delay, which is equal to (N — 1)/2,is large. The reason is that for a given set
of frequency response specifications (such as o,, d,, w,, and w,), the required
order N — 1 of a FIR design is much higher than that of an IIR design. (Design
Example 2 in Section IV demonstrates this.) If linear phase is not a requirement,
then FIR filters can be designed to have acceptably small group delays in the
passband, even though N — 1 may continue to be large. In addition, a linear-
phase filter has a 50% redundancy in the coefficients, due to impulse response
symmetry. Thus, a nonlinear-phase FIR filter meeting a set of magnitude
response specifications is expected to have lower order (though not necessarily by
a factor of 2 [16]), compared to a linear-phase design.

Some authors have addressed the problem of optimal FIR design with
minimum phase [44—48]. A minimum-phase FIR transfer function G(z) has the
property that all the zeros z, of G(z) satisfy |z,| < 1. Consequently, among all
transfer functions that have the same magnitude response | G(¢*)|, the minimum-
phase function has the smallest phase lag. Thus, if ¢,,;,(w) denotes the phase
response arg(G(e/”)) of a minimum-phase transfer function G(z), then

—Pmin(@) £ —P(w)  forallw (2.151)

where ¢(w) is the phase response of any other transfer function having the same
magnitude response.

The simplest technique [44] for designing a minimum-phase lowpass FIR filter
with equiripple magnitude response is to first design a linear-phase transfer
function H(z) with a response as in Fig. 2.42 and then obtain a new transfer
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Fig. 2.42. Linear-phase function I (z).

function H,(z) as
H\(z) = H(z) + 6,z % h72 (2.152)
assuming that N — | is even. The frequency response of H, (z) now has double
zeros at the frequencies w,, as indicated in Fig. 2.43. Thus H,(e’“) can be written
as
H,(e/®) = ¢ 190N = DI2H | (o) (2.153)
where H,,(¢’”) is real and positive. We can therefore factorize H,(z) to yield

H,(z) = z W "D2G(2)G(z™Y) (2.154)

where G(z) has real coefficients and has its zeros in the region |z| < 1. Thus, G(z)is
a minimum-phase function and has an equiripple magnitude response as shown
in Fig. 2.44, where the peak errors are given approximately by

oy ==,  §,=+/26, (2.155)

for small 6, and é,.

The design procedure is therefore as follows: given the lowpass specifica-
tions w,, w,, b,, 6, compute d, and 8, using Eq. (2.155), and then design a linear-
phase transfer function H(z) with lowpass specifications w,, w,, é,, and 9,.
Next compute H,(z) as in Eq. (2.152). The spectral factor G(z), which is the de-
sired minimum-phase filter, is then computed.

1+6]+62

1—§]+62

Y

Fig. 2.43. The function H,(z) with double zeros.
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Fig. 2.44. The minimum-phase function G(z).

One disadvantage of this approach is that the computation of the spectral
factor G(z) involves computation of the zeros of the polynomial H,(z), which is
time consuming and leads to severe numerical inaccuracies for large values of N.
A simple way to partially overcome this difficulty is as follows. When the
equiripple filter H(z) is designed using the MP algorithm, the values of the
extremal frequencies wy in Fig. 2.42 are automatically available. A subset of these
values is precisely the double zeros of H,(e/“) and their accuracy can be refined if
necessary by means of standard root-refining techniques [49]. Thus, the spectral
factorization is rendered easier because many of the roots have already been
located. Great care should still be exercised because deflation of a high-degree
polynomial H,(z) with known roots on the unit circle is known to be a highly
inaccurate process [50].

If we are interested in designing optimal minimum-phase filters with arbitrary
magnitude response, such as nonequiripple stopbands or several stopbands with
different peak errors, a more general design procedure is called for. For example,
we could first obtain a weighted equiripple linear-phase FIR filter with the
constraint that the response Hy(e/®) be positive for all w. The next step 1s to
perform the spectral factorization as described above. Detailed results on these
and related techniques are in [45, 46].

Mian and Nainer [47] have proposed a new technique to circumvent the
problem of having to locate the roots of H,(z). The method is based on a useful
property of the complex cepstrum [ 1] and converts the factorization problem to
a computation of two FFTs. The basic idea is that the impulse response g(n)
corresponding to G(z) can be obtained from the cepstral sequence Gg(n)
corresponding to G(z), which in turn can be obtained easily from the cepstral
sequence corresponding to H,(z). For further related discussions, see [47, 48].

Design Example 16. As an example of minimum-phase FIR design, let us
assume that we wish to design a lowpass FIR filter G(z), having minimum phase,
to meet the following requirements: w, = 0.08(27), w, = 0.12(2n), 5, <0012,
—20log, o9, > 25 dB. We find 9, and 4, of the corresponding linear-phase FIR
filter H(z) from Eq. (2.155). Note that H(z) is required to have the same w, and w,
as the minimum-phase filter G(z). We obtain the estimate for the order of H(z)
as usual from Eq. (2.31) or Eq. (2.32). An order of N — 1 =60 is found to be
sufficient. Figure 2.45(a) shows the response of H(z) and also the response of
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H,(z) defined in Eq. (2.152). We arrive at the minimum-phase spectral factor G(z)
defined in Eq. (2.154) by using the method described in [47]. Figure 2.45(b) shows
the magnitude response of G(z). Note that all specifications requirements are
satisfied.

B Half-Band FIR Filters

Certain applications [51-54] need a lowpass filter with cutoff frequency /2.
Thus “half” of the frequency band is “passed,” and the other half is attenuated.
Such half-band filters have interesting properties under certain additional
symmetry constraints, which make them attractive from an implementation
viewpoint. In this subsection we indicate some of these properties.

Let H(z) be a linear-phase FIR transfer function of even order N — 1 and with
symmetric impulse response (i.e., type 1 filter, Table IV). Then the real-valued
quantity Hy(e®) is

. M N —1
Hy(e/®) = Z b, cos nw, M = 5 (2.156)
n=0
Since w, = n/2, we have, by Eq. (2.7b)
W, +w, =7 (2.157)

Moreover, assume that the passband ripple and the stopband ripple are the same
(i.e., 8, = 8, = ). Thus, the response exhibits symmetry around n/2. Figure 2.46
(solid curve) shows a representative plot of such a symmetric half-band response.
In view of the symmetry, we easily verify that

Hy(e'®) = 1 — Hy(ed" =) (2.158)
Equivalently, in terms of H(z),
Hy(z) + Ho(—z) = | (2.159)
Py )
146 — Ho (7))
NN s
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Fig. 2.46. Symmetric hall-band response.
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that is,
H(iz)+ (—1D)N " V2H(—2) = z7W- D12 (2.160)

Substituting Eq. (2.156) in Eq. (2.158), we can verify that the coefficients b, are
constrained as follows:

byy=0, n#0 (2.161)

and by = h(M) = 0.5. As a result, the impulse response sequence (Table IV) has
every odd-numbered sample equal to zero for M odd and every even-numbered
sample equal to zero for M even (except the coefficient (M) = b(0) = 0.5). Thus,
for M even, h(0) = h(N — 1) = 0; hence the filter order is actually not N — 1.
Since h(0) is zero, we can shift the impulse response by one sample and redefine
h(1) to be the zeroth sample; this makes the filter order equal to N — 3. In
summary, for half-band symmetric frequency responses, N — 1 can always be
taken to be of the form

N—-1=4ny+ 2, n, = integer (2.162)

In other words, M can be assumed to be odd without loss of generality.
Correspondingly, half-band symmetric linear-phase FIR filters can be assumed
to satisfy

h(n) = {0’ n=odd # M (2.163)

0.5, n=M

without loss of generality.

A direct-form implementation of half-band symmetric FIR filters as in
Fig. 2.1(b) requires only about (M + 1)/2 rather than M multipliers. In addition,
once we implement H(z) with about (M + 1)/2 multipliers, we can get the com-
plementary half-band highpass function H(z), defined as

Hy(z)=z ®" V2 _ H(z) = 77N~ V2H_(7) (2.164)

without using additional multipliers. Figure 2.46 (dashed curve) also shows the
response of the highpass linear-phase filter obtained in this manner. In summary,
at the expense of a total of only about (N — 1)/4 multipliers, we have obtained
two half-band filters, operating on the same input signal.

Efficient Use of the MP Algorithm for Half-Band Filter Design 1

We can design the half-band transfer function H(z), which has é, = &, and
which satisfies Eq. (2.157), using the MP algorithm by requesting a filter order as
in Eq. (2.162). However, because of computational inaccuracies, the odd-
numbered impulse response coefficients do not exactly satisfy Eq. (2.163) even
though in practice, at the end of the MP design, these coefficients come out to be
very close to that in (2.163). Since we know h(M) = 0.5 and the other odd values of
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h(n) are zero, as indicated in Eq. (2.163), it is judicious to eliminate thesc
coefficients from the approximation problem, and solve only for the unknown
coefficients (i.e., even-numbered coefficients of the impulse response), thus saving
considerable design time. We now show how this can be accomplished by
designing a linear-phase FIR filter V(z) of odd order (N — 1)/2 = M, and then
manipulating the result.

Let V(z) be a linear-phase FIR filter of odd order M with symmetric impulse
response (i.e., type 2, Table IV). We know that V(e’™) is equal to zero. Let V(z) be
designed to be a lowpass filter such that its passband edge is 6, and its stopband
edge is 0, = n. Letting

V(ejm) = ¢ SjoM/2 Vo(e.i"’) (2 ] 65)

we see that V,(e/*) has the typical form shown in Fig. 2.47(a) for 0 < w < 2. (The
plot is antisymmetric with respect to = because of the factor cos(w/2) in V,(e’®), as
indicated in Table IV.) Now consider a filter with transfer function V(z?). The
corresponding response V(e?/®) is shown in Fig. 2.47(b). If this curve is now
shifted up by adding a constant equal to unity, the result is precisely the half-band

Jja
Vo le™™)
T+¢
1=+ 1-¢
0 } +
! \/\/\2
-1
(a)
23
Vole Juy
1+¢
]-L/\T]_E /\/\/‘
0 i -} o
.721 b 2%

Fig. 2.47. Pertaining to half-band filter design.
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symmetric response’ Hy(e/?), as shown in Fig. 2.46! Thus H(z) can be designed as
V(z?) 4z N2
2

After we find the coefficients v(n) of the filter V(z) of order (N — 1)/2, we
determine the coefficients of H(z) to be

(2.166)

H(z) =

0.5v(n/2), n = even
h(n) =40, n=odd # M (2.167)
0.5, n=M

In summary, given the specifications for the half-band filter H(z) in the form of w,
and w, satisfying Eq. (2.157) and 6, we find € = 20 and 6, = 2w, in Fig. 2.47(a),
and design V(z) using the MP algorithm. We obtain H(z) by using Eq. (2.167).

Applications 2

An interesting application of such half-band filter banks is in signal splitting
and reconstruction in the frequency domain (such as in subband coding [53, 54]).
An accurate discussion of this involves introducing multirate concepts to take
into account sampling-rate alterations, which is the subject of Chapter 3. We
therefore outline the concept of frequency-band splitting and reconstruction,
under the assumption that there is no sampling-rate change involved.

Referring to Fig. 2.46, which represents the symmetric half-band response, we
can see clearly that the function G,(e’”) = H,y(e/®) + & is positive for all w, and
hence if we define

G(z) = H(z) + 6z N~ D2 = ;- (N-DI2G () (2.168)
then G(z) can be factorized as
G(z) =z N V2Gy(z7 NG, (2) (2.169)

where G,(z) has real-valued coefficients. Moreover, because of Eq. (2.160) G(z)
satisfies

G(z)+ (= DV V2G(—2) = (1 + 28)z N D2 (2.170)
Substituting Eq. (2.169) into Eq. (2.170), we arrive at
G,z HG,(@) + G (-2 HG,(—2) = (1 + 28) (2.171)

Note that the transfer function G,(z) in Eq. (2.169) has order M = (N — 1)/2. We
can simplify notation in Eq. (2.171) by defining

Gylz) = 27 W I2G (— 27 (2.172)

' Except for a scale factor of 2.
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Writing G,(z) in terms of its impulse response

(N-1)y2 ‘
G()= Y gimz™" (2.173)
we then have
(N-1)/2 N — l
G2y = (=W~ % g‘(T - n)(—z)" (2.174)
n=0

Notice that G,(z) is causal. The zeros of G,(z) are obtained by replacing each zero
z, of G,(z) with —1/z,. It is easily verified that if G,(z) is lowpass, then G,(z) is
highpass, and vice versa. Moreover, if G,(z) has minimum phase, then G,(z) has
maximum phase, and vice versa. On the unit circle, Eq. (2.171) can be equivalently
rewritten now as

1G4 (7)1 + |G, (e™)> = 1 (2.175)

which shows that G,(z) and G,(z) form a power-complementary pair.! For
example, if G,(z) is lowpass, then G,(z) has a highpass response such that the sum
of magnitude squares adds up exactly to unity for all frequencies. This property is
extremely useful in reconstruction of a signal that has been split into lowpass and
highpass bands. Thus, see Fig. 2.48 in which the signal x(n) has been split into a
lowpass signal x, (n) and a highpass signal x,(n). Figure 2.48 also shows how the
components x, (n) and x,(n) can be recombined by using the reconstruction filters
(or synthesis filters)

Fi(z2) =z W V2G (27, Fy(z) =z N~ D2G,(z 7V (2.176)
By making use of Eq. (2.171), we can verify that the reconstructed signal X(n) is
N -1
x(n) = x(n — —2——> (2.177)

Thus, the power-complementary property represented by Eq. (2.171) or,
equivalently, by Eq. (2.175) enables us to reconstruct x(n) with no error except for
an overall delay of (N — 1)/2 samples!

Note that even though we started with a linear-phase transfer function H(z)
[see Eq. (2.156)], the factorized transfer function G,(z) does not necessarily have
linear phase. As a result, G,(z), which is obtained from G, (z) by using Eq. (2.172),
does not have linear phase in general.}

' Equation (2.175) may itself be taken as the definition of a power-complementary pair of transfer
functions G,(z), G,(z).

# It can be shown [55] that if P(z) and Q(z) are two linear-phase FIR filters satisfying the power-
complementary property (i.e., |P(e’“)|? + |Q(e’*)}? = 1), then the magnitude responses | P(e’“)| and
|Q(e’?)) are trivial; specifically, they are either constants or functions of the form |cos(Kw)| and
|sin{K w)|.
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Fig. 2.48. Signal splitting and reconstruction.
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Design Example 17. We wish to design a lowpass filter G,(z) and a cor-
responding highpass filter G,(z), defined as in Eq. (2.172), such that Eq. (2.175) is
satisfied. To do this, we first design the linear-phase symmetric, half-band trans-
fer function H(z). The specifications w, and w, for H(z) are the same as those
of Gy(z), which in turn should satisfy the symmetry condition of Eq. (2.157).
Moreover, H(z) should have 6, = 4,, which we can find from the attenuation
requirements of G,(z) by using Eq. (2.155). (Note that since 8, = J,, then §,, 3,
in Eq. (2.155) cannot be independently specified.) Let the resulting specifications

of H(z) for certain given specifications of G,(z) be

w, = 02(2n), w,=0.32r), J =d, < 0.00035

0. e

10,000 | :
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Fig. 2.49. Example |7: The power-complementary pair of FIR filters.

(2.178)
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An order N — 1 = 38 is found sufficient for H(z). The linear-phase, symmetric,
half-band FIR filter H(z) can be designed by the MP algorithm efficiently, as
described earlier. Since H{z) is thus known, G, (z) in Eq. (2.169) can be computed.
The algorithm due to Mian and Nainer [47] can again be used, if G,(z) is required
to be a minimum-phase function. Figure 2.49 shows the response of the resuiting
power-complementary pair.

We conclude this section by noting that filter banks of the form described
above can also be used with slight modification to reconstruct x(n) after
undersampling the filtered versions x,(n) and x,(n) in Fig. 2.48. Smith and
Barnwell [ 547 have shown how exact reconstruction can be done in this manner
with no distortion (except for an overall delay).

SUMMARY

In this chapter we presented several techniques for the design of FIR digital
filters, including recent procedures that lead to efficient implementations. The
window-based methods of Section III are the simplest to use, whereas the Remez
exchange methods of Section I'V give rise to a much wider class of filter functions.
Almost any kind of design requirements (except tangency requirements in the
frequency domain and time domain constraints) encountered in practice can be
met with the methods of Section I'V. Certain specific tangency requirements can
be met with the maximally flat filters of Section V, whereas more general
tangency requirements and time domain requirements can be met by the linear
programming approach of Section VI. The methods of Section V, however,
have the advantage of design simplicity, because no optimization programs
are required. In addition, the methods of Section V can be used to design
multiplierless filters.

Once a linear-phase FIR filter has been designed, its cutoff frequency (and the
entire response) can be changed and manipulated in other ways by invoking the
transformation tools and sharpening techniques described in Section VII. A
linear-phase FIR filter can easily be converted to a two-dimensional FIR filter
through the mapping procedures of Section VIIL

Even though many of the methods in Sections III to VIII are optimal or
suboptimal in certain theoretical ways, they do not necessarily lead to optimal
implementations in the sense of network complexity. Section IX describes filter
design techniques that lead to implementations that are better than direct
implementations of the methods of earlier sections. The methods of Section IX
are essentially variations and combinations of the methods of earlier sections,
so the importance of the methods of Sections III to VIII should not be
underestimated. Finally, Section X introduces the designer to useful types of FIR
filters that are of interest for specific applications.
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A question of prime importance that a digital filter designer encounters is
whether to design a FIR filter or an IIR filter for a given application. There is no
definite answer to this question because the decision depends on the design
specifications, requirements on the group delay, internal word length available,
choice of architecture, and so on. However, some guidelines are available to
partially help the designer in this regard; the excellent study by Rabiner et al. [56]
gives such guidelines for the specific case of equiripple direct-form FIR and
cascade-form IIR filters. Basically, for most combinations of specifications IIR
filters are more economical (in terms of multiplications per output sample), but
they introduce a phase distortion. FIR filters, on the other hand, can be designed
with exact linear phase. IIR filters with group-delay equalizers in cascade, which
have approximately linear phase in the overail passband, are generally more
expensive that direct-form FIR filters meeting the same specifications [ 56]. Thus
in applications requiring linear phase, FIR filters have a very important place;
in addition, nonrecursive FIR implementations are always stable in spite
of coefficient quantization. Moreover, instead of comparing IIR filters with
equiripple FIR designs, if a comparison is made with recent FIR designs
(Section IX), then FIR filters are even more efficient than IIR designs with no
group-delay equalization.

APPENDIX A. DESIGN CHARTS FOR DIGITAL FIR
DIFFERENTIATORS AND HILBERT TRANSFORMERS

OPTIMUM FIR DIFFERENTIATORS

20 LOGq B (dB)

130 ) ] I L1
0.20 025 030 035 040 045 050

w
Passband Cutoff Frequency Eg

Fig. A2.1. Design chart for optimal FIR differentiators [60] .
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OPTIMUM HILBERT TRANSFORMERS
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Fig. A2.2. Design charts for optimal FIR Hilbert transformers [61] .
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APPENDIX B. PROGRAM LISTINGS FOR LINEAR-PHASE
FIR FILTER DESIGN

As mentioned in the text, references [ 19, 21, 25] contain useful design programs
for linear-phase FIR filters. The accompanying listing is based on the program
due to McClellan, Parks, and Rabiner, published in [19]. This program is
appropriately modified here in order to be able to obtain new and more efficient
designs. As an illustration, Design Examples 6 and 13 can be obtained by
selecting an appropriate set of input data.

The program in [19] is used here as a subroutine, invoked by the main program
MAIN{. The following distinct program files should be compiled and linked
together before execution:

1. Main program: MAIN.f.
2. Subprograms: maclel.f, magres.f, effwl.f, extfun.f, rrs.f, zero.f and compe.f.

The program efffw1.f which invokes extfun.f, zero.f, and rrs.fis crucial when we
attempt to exploit the flexibility of the Remez exchange technique. Comments arc
included in the listings which clarify some of these facts. The user should study
these comments carefully before attempting to use the programs for applications.

The listings are obtained from a FORTRAN 77 version running on the VAX
machine under the Berkeley Unix V4.2 operating system. The input and output
files are conveniently designated as FORT.n files. The program can be udapted to
other environments simply by changing the READ, WRITE, and FORMAT
statements.

To run the compiled executable code, one must prepare the following input file
{and keep it in the name FORT.9): ‘

IMETH, NFILT, JTYPE, NBANDS, LGRID.
BAND EDGES.

DESIRED VALUES IN THE BANDS.
DESIRED WEIGHTS IN THE BANDS.

The meanings of each of the above lines are elaborated in the accompanying
listing of MACLEL.f. By choosing the parameter IMETH appropriately, one can
use the programs for many applications. Note that the parameters specified in the
input file FORT.9 describe the filter designed by the MP algorithm, which is not
necessarily the final transfer function. Similarly, the file FORT.3, which contains
some of the results of the design, pertain to the filter designed by the MP
algorithm. As an illustration, in Design Example 6, the filter H,(z) is the one
specified in FORT.9. Thus, H,(z) in Eq. (2.58) is designed by creating FORT.9 as
follows:
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The impulse response of H,(z) and other details pertaining to H,(z) are written in
FORT.3 by the program MACLEL.

The frequency response of the overall filter [for example, H,(z)H,(z) in (2.58)]
is computed by the program COMPE.f automatically before the execution
terminates. This response is written in the output file FORT.18. The file FORT.7
is used for an intermediate purpose, and the user is requested not to interfere with
the contents of FORT.7.



152 P. P. Vaidyanathan

nonooo0onNoo0onNa0n00n

MAIN.

I PR EEE R EZEZ SRR R R R R E SRR SR RS2 R RS R R R SRR RS EZ RS RRR RS SRR EER RS

This main program demonstrates the use of the McClellan-Parks
program in [19], as a subroutine,

The input and output statements and files are

compatible with a Fortran 77 version running under the Berkeley
Version 4.2 of the Unix operating system.

With simple changes in the input-output details, this program
can be run in other operating environments..

(R R R R R R R R R R R R R R R R R R R R A R R R R R R R R R R R RS E R R R R R R R R RS R E RSN ]

dimension h(1025) , hresp (514)
call ieee2l

in=7

rewind (9)
read (9, *) imeth
iout=18

m=9

nfft=2**m
nout=nfft/2+1

rewind (in)

rewind (iout)

read (in, *)norder
nag=1 +norder/2

do 1 i=1,naqg
read(in, *)h (i)
h(norder+2-i)=h(i)
continue

do 5 i=norder+l, fft
h(i)=0.0

call magres (h, hresp.m)
noutl=nout-1

call compe (hresp,noutl)

Normalize the maximum magnitude to unity:

do 3 i=1,nout
if(hmax.lt.abs (hresp (i)))hmax=abs (hresp (i))
continue

do 4 i=1,nout
hresp(i)=hresp (i) /hmax

rewind (iout)

write(iout, *)noutl

do 2 i=1,nout

x=(i-1.0)/(nout-1.0)
write(iout, *)x/2 hresp(i).hresp(i)
continue

stop

end
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MACLEL. £

This program is being used here as a subroutine.

Calling sequence: call leee2l

There are no arguments to be passed: all input is read by ieee2l
from the file FORT.9

Original authors: james h. mcclellan
department of electrical engineering and computer science
massachusetts institute of technology
cambridge, mass. 02139

thomas w. parks

department of electrical engineering
rice university

houston, texas 77001

lawrence r. rabiner
bell laboratories
murray hill, new jersey 07974

input:
imeth-- Method of design
1=Conventional equiripple design
2=Prefilter-equalizer based design, using the recursive
running sum.
3=Design as in Egn. (2.58), where (2.57) represents
a transmission zero.
nfilt-- filter length
jtype-- type of filter
1 multiple passband/stopband filter
2 differentiator
3 hilbert transform filter
nbands-- number of bands
lgrid-- grid density, will be set to 16 unless
specified otherwise by a positive constant.

edge (2*nbands) -- bandedge array, lower and upper edges for each band
with a maximum of 10 bands.

fx (nbands) -- desired function array (or desired slope if a
differentiator) for each band.

wtx (nbands) -- weight function array in each band. for a
differentiator, the weight function is inversely
proportional to f.

sample input data setup:

3,41,1,2.0
0,.14..18,.5
1,0

1.1

this data specifies a length 41 lowpass filter with
passband O to 0.14 and stopband 0.18 to 0.5.
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c The passband weight is equal to the stopband weight.
c Since imeth=3, the desired passband shape, and
c the detailed shape of the weighting function are
c governed by EXTEUN.f, in a manner detailed in the
c listing of this function.
c The grid density defaults to 16.
c
c the following input data specifies a length 32 fullband
c differentiator with slope 1 and weighting of 1/f.
c the grid density will be set to 20.
= 1,32,2,1,20
c 0,0.5
[=} 1.0
c 1.0
c Since imeth=1 here, the design is a conventional
c weighted equiripple design.
C
G o e e
C
subroutine jieee2l
common pi2,ad,dev,x.y,grid,des,wt,alpha, iext, nfcns,ngrid
common /oops/niter,iout
dimension iext(252),ad(252),alpha(252),x(252).y(252)
dimension h(252)
dimension des (4032),grid (4032) ,wt (4032)
dimension edge (20), fx(10).,wtx(10) ,deviat (10)
double precision pi2,pi
double precision ad,dev,x.y
double precision gee,d
integer bdl,bd2,bd3,bd4
data bdl,bd2,bd3,bd4/1hb, 1ha, 1hn, 1hd/
input=9
rewind (3)
iout=3
rewind (iout)
pi=4.0*datan(1.0d0O)
pi2=2.0d00*pi
jout2=7
rewind (iout2)
c
c the program is set up for a maximum length of 128, but
c  this upper limit can be changed by redimensioning the
c arrays iext, ad, alpha, x, y, h to be nfmax/2 + 2.
c the arrays des, grid, and wt must dimensioned
c 16(nfmax/2 + 2).
C
nfmax=500
100 continue
Jjtype=0
c
c program input section
c

read (input, *) imeth, nfilt, jtype,nbands, lgrid
c replace stop by return
if(nfilt.eq.0)return
110 format (4i5)
if(nfilt.le.nfmax.or.nfilt.ge.3) go to 115
call error
c replace stop by return
return
115 if(nbands.le.O) nbands=1
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grid density is assumed to be 16 unless specified
otherwise

if(1grid.le.0) lgrid=16
jb=2*nbands
read (input, *) (edge(j). j=1, jb)
fregs=edge (3)
120 format(4£15.9)
read (input, *) (fx(j).j=1.nbands)
read (input, *) (wtx(j).j=1.nbands)
rewind (input)
if(jtype.gt.O.and. jtype.le.3) go to 125
call error
replace stop by return
return
125 neg=1
if(jtype.eq.1l) neg=0
nodd=nfilt/2
nodd=nfilt-2*nodd
nfcns=nfilt/2
if(nodd.eq.l.and.neg.eq.0) nfcns=nfcns+1

set up the dense grid. the number of points in the grid
is (filter length + 1)*grid density/2

grid(1)=edge (1)
delf=1grid*nfcns
delf=0.5/delf
if(neg.eq.0) go to 135
if(edge(1).1t.delf) grid(1)=delf
135 continue
j=1
1=1
lband=1
140 fup=edge (1+1)
145 temp=grid(j)

calculate the desired magnitude response and the weight
function on the grid

des (j)=eff (temp, fx, wtx, lband, jtype)
wt (j)=wate (temp, fx, wtx, lband, jtype, freqgs)
j=j+1
grid(j)=temp+delf
if(grid(j) .gt.fup) go to 150
go to 145
150 grid(j-1)=fup
des(j-1)=eff (fup, fx,wtx, lband, jtype)
wt (j-1)=wate (fup, fx, wtx, lband, jtype, fregs)
lband=1lband+1
1=1+2
if(lband.gt.nbands) go to 160
grid(j)=edge(l)
go to 140
160 ngrid=j-1
if (neg.ne.nodd) go to 165
if(grid(ngrid) .gt.(0.5-delf)) ngrid=ngrid-1
165 continue
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set up a new approximation problem which is equivalent

to

170

175

180

185
190

195

the original problem

if(neg) 170,170,180
if(nodd.eq.l) go to 200
do 175 j=1,ngrid
change=dcos (pi*grid(j))
des (j)=des (j) /change

wt (j)=wt (j) *change

go to 200

if(nodd.eq.1) go to 190
do 185 j=1,ngrid
change=dsin (pi*grid(j))
des (j)=des (j) /change

wt (j)=wt(j) *change

go to 200

do 195 j=1,ngrid
change=dsin (pi2*grid(j))
des (j)=des (j)/change

wt (j)=wt (j) *change

initial guess for the extremal frequencies--equally
spaced along the grid

200

210

temp=float (ngrid-1) /float (nfcns)
do 210 j=1,nfcns

xt=j-1

iext (j)=xt*temp+1.0

iext (nfcns+1l)=ngrid

nml=nfcns-1

nz=nfcns+1l

call the remez exchange algorithm to do the approximation
problem

call remez

calculate the impulse response.

300°

305

310

315

320

if(neg) 300, 300, 320

if(nodd.eq.0) go to 310

do 305 j=1,nml

nzmj=nz-j

h(j)=0.5*alpha (nzmj)

h (nfcns)=alpha (1)

go to 350

h(1)=0.25*%alpha(nfcns)

do 315 j=2,nml

nzmj=nz-j

nfZj=nfcns+2-j

h(j)=0.25* (alpha({nzmj) +alpha(nf2j))
h(nfcns)=0.5*alpha (1) +0.25%alpha(2)
go to 350

if (nodd.eq.0) go to 330
h{1)=0.25*alpha (nfcns)
h(2)=0.25*alpha (nml)

do 325 j=3,nml

nzmj=nz-j

nf3j=nfcns+3-j
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325

330

335

h{j)=0.25* (alpha (nzmj) -alpha (nf3j))
h(nfecns)=0.5*alpha (1) -0.25%alpha (3)
h(nz)=0.0

go to 350

h(1)=0.25*alpha (nfcns)

do 335 j=2.nml

nzmj=nz-j

nf2j=nfcns+2-j

h{j)=0.25* (alpha(nzmj)-alpha{nf2j))
h(nfcns)=0.5*alpha (1) -O.25*alpha (2)

program output section.

350

360 format(lhl, 70(1lh*)//15x,29hfinite impulse response (fir)/
113x, 34hlinear phase digital filter design/
217x, 24hremez exchange algorithm/)

365
370
375
378

380

381
382
383

384

385
390

395

410
420

425

write (iout, 360)

if(jtype.eq.1l) write(iout, 365)
format (22x, 15hbandpass filter/)
if(jtype.eq.2) write(iout, 370)
format (22x, 14hdifferentiator/)
if(jtype.eq.3) write(iout, 375)
format (20x, 19hhilbert transformer/)
write(iout,378) nfilt

format (20x,16hfilter length = ,13/)
write (iocut, 380)

format (15x, 28h**#*** impulse response ***+#)

norder=nfilt-1
write(iout2, *)norder
do 381 j=1l.nfcns
write(iout2, *)h(j)
k=nfilt+1l-j
if(neg.eq.0) write(iocut, 382) j,h(j)

.k
if (neg.eq.1l) write(iout,383) j,h(j).k

continue

format (13x,2hh(,i2,4h) = ,el5.8,5h = ,13,
format (13x,2hh(,12,4h) = ,el5.8,6h = -h(,1i3,1h))
if(neg.eq.1.and.nodd.eq.1) write(iout,384) nz
format (13x,2hh(,12,8h) = 0.0)

do 450 k=1,nbands, 4
kup=k+3
if (kup.gt.nbands) kup=nbands

write(iout, 385) (bdl,bd2,bd3,bd4, j, j=k, kup)

format (/24x,4(4al,i3,7x))
write(iout,390) (edge(2*j-1), j=k, kup)
format (2x, 15hlower band edge,5f14.7)
write(iout,39S) (edge(2*j).Jj=k,kup)
format (2x, 15Shupper band edge,5f14.7)

if (jtype.ne.2) write(iout, 400) (fx(J) j=k.kup)

format (2x,13hdesired value, 2x,5f14.7

if(jtype.eq.2) write(iout,405) (fx(J) j=k.kup)

format (2x, 13hdesired slope, 2x,5f14.
write(iout,410) (wtx(j).j=k, kup)
format(Zx,9hweighting,6x,5f14.7)

do 420 j=k.kup

deviat (j)=dev/wtx(j)
write(iout, 425) (deviat(j).j=k.kup)
format (2x, 9hdeviation, 6x,5£14.7)
if(jtype.ne.1) go to 450

do 430 i=k.kup

157
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430 deviat(j)=20.0*aloglO(deviat (j)+fx(j))
write(iout,435) (deviat(j).j=k, kup)
435 format (2x,15hdeviation in db,5f14.7)
450 continue
do 452 j=l.,nz
ix=iext (j)
452 grid(j)=grid(ix)

c the following writes the extremal frequencies

c in the output. please also copy them into fort.4
write (iout,455) (grid(j),j=1,nz)

c ioutl=4

c write(ioutl,456) (grid(j).j=1,nz)

456 format (1x, £14.9)
455 format (/2x,47hextremal frequencies--maxima of the error curve/
1 (2x,5f12.7))
write (iout, 460)
460 format (/1x,70(1lh*)/1hl)
go to 100
end

c subroutine: error
c this routine writes an error message if an
c error has been detected in the input data.

subroutine error
common /oops/niter, iout
write(iout,1)
1 format(44h **#*#*&dkksdt error in input data ****riaaii)
return
end

subroutine: remez
this subroutine implements the remez exchange algorithm
for the weighted chebyshev approximation of a continuous
function with a sum of cosines. inputs to the subroutine
are a dense grid which replaces the frequency axis, the
desired function on this grid, the weight function on the
grid, the number of cosines, and an initial guess of the
extremal frequencies. the program minimizes the chebyshev
error by determining the best location of the extremal
frequencies (points of maximum error) and then calculates
the coefficients of the best approximation.

ansan0c00n000Ccn00

[e1Ne]

subroutine remez

common pi2,ad,dev,x,y,grid,des,wt,alpha, iext,nfcns, ngrid
common /oops/niter, iout

dimension iext(252),ad(252),alpha(252),x(252),y(252)
dimension des (4032),grid(4032),wt (4032)

dimension a(66),p(65).,q(65)

double precision piZ2,num,dden,dtemp,a,p.q

double precision dk,dak

double precision ad,dev,x,y

double precision gee,d
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the program allows a maximum number of iterations of 25

itrmax=25
devl=-1.0
nz=nfcns+1
nzz=nfcns+2
niter=0
100 continue
iext (nzz)=ngrid+1
niter=niter+1l
if(niter.gt.itrmax) go to 400
do 110 j=1l.nz
jxt=iext (j)
dtemp=grid (jxt)
dtemp=dcos (dtemp*pi2)
110 x(j)=dtemp
jet=(nfcns-1) /15+1
do 120 j=1.,nz
120 ad(j)=d(j.nz, jet)
dnum=0.0
dden=0.0
k=1
do 130 j=1l.nz
l=iext (j)
dtemp=ad (j) *des (1)
dnum=dnum+dtemp
dtemp=float (k) *ad (j) /wt (1)
dden=dden+dtemp
130 k=-k
dev=dnum/dden
write(iout,131) dev
131 format (1x,12hdeviation = ,£f12.9)
nu=1
if(dev.gt.0.0) nu=-1
dev=-float (nu) *dev
k=nu
do 140 j=1.nz
1=iext (j)
dtemp=float (k) *dev/wt (1)
y (j)=des (1) +dtemp
140 k=-k
if (dev.gt.devl) go to 150
call ouch
go to 400
150 devl=dev
jchnge=0
kl=iext (1)
knz=iext (nz)
klow=0
nut=-nu
j=1

search for the extremal frequencies of the best
approximation

159
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200

210

215

220
225

230
235

240

250

255

if(j.eq.nzz) ynz=comp
if(j.ge.nzz) go to 300
kup=iext (j+1)

1=iext (j) +1

nut=-nut

if(j.eq.2) yl=comp
comp=dev

if(l.ge.kup) go to 220
err=gee(l,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if (dtemp.le.0.0) go to 220
comp=float (nut) *err

1=1+1

if(l.ge.kup) go to 215
err=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if (dtemp.le.0.0) go to 215
comp=float (nut) *err

go to 210
iext(j)=1l-1
j=3+1

klow=1-1
jchnge=jchnge+1
go to 200

1=1-1

1=1-1

if(l.le.klow) go to 250
err=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if(dtemp.gt.0.0) go to 230
if (jchnge.le.0) go to 225
go to 260
comp=float (nut) *err

1=1-1

if(l.le.klow) go to 240
err=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if(dtemp.le.0.0) go to 240
comp=float (nut) *err

go to 235

klow=iext (j)

iext (j)=1+1

j=3+1

jchnge=jchnge+1

go to 200

l=iext (j)+1
if{jchnge.gt.0) go to 215
1=1+1

if(l.ge.kup) go to 260
err=gee(l,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if(dtemp.le.0.0) go to 255
comp=float (nut) *err

go to 210

P. P. Vaidyanathan
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[od
C

260

300

310

315

320

325

330

340

345

350

360

370

calculation of the coefficients of the best approximation
using the inverse discrete fourier transform

klow=iext (j)

j=3+1

go to 200

if(j.gt.nzz) go to 320
if(kl.gt.iext (1)) kl=iext (1)
if(knz.lt.iext(nz)) knz=iext (nz)
nutl=nut

nut=-nu

1=0

kup=k1l

comp=ynz* (1.00001)

luck=1

1=1+1

if(l.ge.kup) go to 315
err=gee (1,nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if (dtemp.le.0.0) go to 310
comp=float (nut) *err

j=nzz

go to 210

luck=6

go to 325

if(luck.gt.9) go to 350
if(comp.gt.yl) yl=comp
ki=iext (nzz)

l1=ngrid+1

klow=knz

nut=-nutl

comp=y1* (1.00001)

1=1-1

if(l.le.klow) go to 340
err=gee (1.nz)
err=(err-des (1)) *wt (1)
dtemp=float (nut) *err-comp
if(dtemp.1le.0.0) go to 330
j=nzz

comp=float (nut) *err
luck=luck+1C

go to 235

if(luck.eq.6) go to 370
do 345 j=l.nfcns
nzzmj=nzz-j

nzmj=nz- j

iext (nzzmj)=iext (nzmj)
iext (1) =kl

go to 100

kn=iext (nzz)

do 360 j=1,nfcns

iext (j)=iext (j+1)

iext (nz)=kn

go to 100

if (jchnge.gt.0) go to 100
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400

410

415

420

425

430

continue
nml=nfcns-1
fsh=1.0e-06
gtemp=grid (1)
x(nzz)=-2.0
cn=2*nfcns-1
delf=1.0/cn
1=1

kkk=0

1f(grid(1).1t.0.01.and.grid (ngrid) .gt.0.49) kkk=1

if(nfcns.le.3) kkk=1
if(kkk.eq.1l) go to 405
dtemp=dcos (pi2*grid (1))
dnum=dcos (pi2*grid(ngrid))
aa=2.0/ (dtemp-dnum)

bb=- (dtemp+dnum) / (dtemp-dnum)
continue

do 430 j=1,nfcns

ft=4-1

fr=ft*delf

xt=dcos (pi2*ft)

if(kkk.eq.1l) go to 410
xt=(xt-bb) /aa

xtl=sqrt (1.0-xt*xt)

ft=atan2 (xtl,xt) /pi2

xe=x (1)

if (xt.gt.xe) go to 420
if((xe-xt).lt.fsh) go to 415
1=1+1

go to 410

a(j)=y (1)

go to 425

if ((xt-xe).1lt.fsh) go to 415
grid(1)=ft

a(j)=gee(1,nz)

continue

if(l.gt.1) 1=1-1

continue

grid(1)=gtemp

dden=pi2/cn

do 510 j=1,nfcns

dtemp=0.0

dnum=j-1

dnum=dnum*dden

if(nml.1t.1) go to 505

do 500 k=1,nml

dak=a (k+1)

dk=k

dtemp=dtemp+dak*dcos (dnum*dk)
dtemp=2.0*dtemp+a (1)

alpha (j)=dtemp

do 550 j=2.nfcns
alpha(j)=2.0*alpha(j)/cn
alpha(1l)=alpha (1) /cn
if(kkk.eq.1l) go to 545
p(1)=2.0*alpha{nfcns) *bb+alpha (nml)
p(2)=2.0%*aa*alpha(nfcns)
q(1)=alpha (nfcns-2) -alpha (nfcns)
do 540 j=2,nml

if(j.1t.nml) go to 515
aa=0.5*%aa

bb=0.5*bb

P. P. Vaidyanathan
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515 continue
p(j*1)=0.0
do 520 k=1, J
a (k) =p (k)

520 p(k)=2.0*bb*a (k)
p(2)=p(2)+a(l) *2.0%aa
jml=j3-1
do 525 k=1, jml

525 p (k) =p (k) +q (k) +aa*a (k+1)
jpl=3+1
do 530 k=3, jpl

530 p(k)=p(k)+aa*a(k-1)
if(j.eq.nml) go to 540
do 535 k=1, j

535 g(k)=-a(k)
nflj=nfcns-1-j}
q(1)=q(1) +alpha (nf1J)

540 continue
do 543 j=1,nfcns

543 alpha(j)=p(J)

545 continue
if(nfcns.gt.3) return
alpha(nfcns+1)=0.0
alpha (nfcns+2)=0.0
return
end

¢ function: d
c function to calculate the lagrange interpolation
c coefficients for use in the function gee.

double precision function d(k,n,m)

common pi2,ad,dev,x,y,grid,des,wt, 6 alpha, iext,nfcns, ngrid
dimension iext (252),ad(252),alpha(252),x(252),y(252)
dimension des (4032),grid(4032),wt (4032)

double precision ad,dev,x,y

double precision g

double precision piZ2

d=1.0

g=x (k)

do 3 1=1,m

do 2 j=l.n.,m

if(j-k)1,2,1

d=2.0*a* (q-x(3))

continue

continue

d=1.0/d

return

end

wN =

[¢]

function: gee
function to evaluate the frequency response using the
lagrange interpolation formula in the barycentric form

an

double precision function gee(k,n)
common piZ,ad,dev,x,y,grid,des,wt,alpha, iext,nfcns, ngrid
dimension iext (252),ad(252),alpha(252),x(252),y(252)
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dimension des(4032).grid(4032),wt(4032)
double precision p,c.,d,xf
double precision pi2
double precision ad.dev,x.,y
p=0.0
xf=grid (k)
xf=dcos (pi2*xf)
d=0.0
do 1 j=1,n
c=xf-x(3)
c=ad (j) /c
d=d+c
1 p=p+c*y(])
gee=p/d
return
end

subroutine: ouch
writes an error message when the algorithm fails to
converge. there sesm to be two conditions under which
the algorithm fails to converge: (1) the initial
guess for the extremal frequencies is so poor that
the exchange iteration cannot get started, or
(2) near the termination of a correct design,
the deviation decreases due to rounding errors
and the program stops. in this latter case the
filter design is probably acceptable, but should
be checked by computing a frequency response.

N0 aOnNnN00O0

subroutine ouch
common /oops/niter,iout
write(iout,l)niter
1 format (44h #*#+#ssesitts fajlure to converge *H***wddias/
141hOprobable cause is machine rounding error/
223hOnumber of iterations =, i4/
339h0if the number of iterations exceeds 3,/
462hOthe design may be correct, but should be verified with an fft)
return
end
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MAGRES . £

(2222 2 2 R R AR RS R R 2R R R R R R R R AR R R R 22 AR R R0 R2 2222 X S B2

INPUTS: fr(1) .... fr(2°m): real valued data

m: where 2°m is the number of points

OUTPTS: fmag(l) .. fmag(2°m): The magnitude of DFT

(22 R R R RS R R RS R R R R R R R R R 2R R R R R 2R R R 22 RS2 RER R

subroutine magres (fr, fmag,m)

dimension fr (1), frnw(1025), finw (1025), fmag(1)

pi=4*atan (1.d0O)

n=2**g

de 222 i=1l,n
frnw (i) =fr (i)
finw(i)=0.0

continue

mm=1

11=n/2

do 1 k=1,m

tta=pi/l1l

ti=sin(tta/2)

cs=-2*ti*ti

sd=sin(tta)

c=1

s=0

do 2 1=1,mm

i=1+(1-1)*11*2

ii=i+l1

a=frnw (i) - frnw(ii)

b=finw (i) -finw (ii)

frnw(i)= frnw(i)+frnw(ii)

finw(i)=finw(i)+finw(ii)

frnw(ii)=a

finw(ii)=b

if (11-2)6,5.5

do 4 j=2,11

cold=c

c=cs*c-sd*s+c

s=cs*s+sd*cold+s

do 4 1=1,mm

i=j+(1-1)*11+*2

ii=i+l11

a=frnw(i) -frnw(ii)

b=finw (i) -finw(1i)

frow (i) =frnw(i)+frnw(ii)

finw(i)=finw(i)+finw(ii)

frnw(ii)=a*c+b*s

finw(ii)=b*c-a*s

11=11/2

mm=mm* 2

call fftbi(frnw, finw,m)

do 111 i=1l,n
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111

fmag (i) =cabs (cmplx (frnw (i), finw(i)))
return

end

subroutine fftbi(fr, fi,m)
dimension fr (1), fi(1)
n=2**m

ib=0

nil=n-1

do 1 i=2,nil

do 2 j=1,m
nt=n/(2**3)

if (ib-nt)3,2,2
ib=ib-nt

go to 7

ib=ib+nt

if (ib+1-i)1,1.5
t=£fr (i)

fr (1)=fr (ib+1)

fr (ib+1)=t

t=fi(i)
fi(i)=fi(ib+1)
fi(ib+1)=t

continue

return

end

P. P. Vaidyanathan
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EFFW1.f

This program now works in conjunction with the Fortran functions
"EXTFUN.f", "RRS.f", and "ZERO.f".
Modified by P. P.Vaidyanathan, Dept. EE, Caltech, Pasadena, CA 91125.

EFF: Function to calculate the desired magnitude response
as a function of frequency.

An arbitrary function of frequency can be

approximated if the user replaces this function

with the appropriate code to evaluate the ideal
magnitude. note that the parameter freq is the

value of normalized frequency needed for evaluation.

function eff (freq, fx,wtx, lband, jtype)

dimension fx(5),wtx(5)

if(jtype.eq.2) go to 1

if{(fx(lband).1t.0.0001) go to 2

eff=fx(lband) /extfun (freqg*2)

return
2 eff=fx(lband)

return
1 eff=fx{lband) * freq

return

end

function: wate

function to calculate the weight function as a function
of fregquency. Similar to the function eff, this function can
be replaced by a user-written routine to calculate any
desired weighting function.

function wate(freq, fx,wtx, lband, jtype, fregs)
dimension fx(5),wtx(5)

if(jtype.eq.2) go to 1

if(fx(lband) .1t.0.0001) go to 2
wate=wtx (lband) *extfun (freq*2)

return

return
1 if(fx(lband) .1t.0.0001) go to 2
wate=wtx (lband) /freq
return
end

hkhkhkhkhkhkbhhkkhkbbhhhhkhbhhhhhbhhhhhbhhhkhhhkhhhkhhhkhkbkkhbkbkhhhhbbbhhhhkhhkhhkhkbk

EXTEUN. £

By appropriate choice of this function, a wide variety of
linear-phase filters can be designed. This function essentially
affects the function-subprograms EFF and WATE.

Please look at the listings of EFF and WATE above, to see

how "extfun" comes in.
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EFF corresponds to the '"desired response" to be approximated
by the Remez algorithm, whereas the function WATE corresponds
to the weighting function.

As an illustration, consider design example 6, where we designed
H(z) as in Egn. (2.58). Here, H2(z) is fixed as in (2.57),
whereas Hl(z) is designed using the Remez-exchange algorithm

in such a manner that H(z) has equiripple passband. The choice
of "extfun" in this problem corresponds to "IMETH=3" below.

As another illustration, consider Design Example 13. Here again
the overall transfer function is H(z)=Hl(z)H2(z), where H2(z)

is the RRS of Eqn. (2.133) with S=13. The linear-phase FIR
transfer function Hl{z) is obtained such that H{z) has equiripple
passband behavior as shown in Fig. 2.34(b).

The choice of "extfun" in this problem corresponds

to "imeth=2" below.

The sixth item on line 1 of FORT.9 is the variable imeth;

IMETH= 1 For usual equiripple design
2 Prefilter-equalizer method based on Running sum
3 To obtain transmission zero at freqO(mul of PI)
where freq0 should somehow be made known
to the program. we have chosen to include
the statement "freg0=0.78" in here, but
this is only an example.

Freq, freqO are in mul of PI

aaacaaoacaanaonaaaoaaccancono0onNQa0oanaan

function extfun(freq)
rewind (9)
read (9, *) imeth
goto(1, 2, 3)imeth

1 extfun=1.0
return
2 extfun=rrs (freq,N)
return
3 freq0=0.78
ext fun=zero (freq, freqO)
return
end
c
c 1222 222222222222 2222222222222 2222222222223 22222222222 22 X222 % 3
c
c RRS.
c
c Freq is in multiple of PI
C
c "N" here corresponds to "S" in Eqn. (2.133)
c The value of N (which is the length of the recursive running sum)
c must somehow be fed into the program. As an example,
c we have punched in "N=13" in here.
c

function rrs(freq,N)

N=13

if(freq.eq.0)rrs=1.0
if(freqg.eq.O)return
pi=4*atan(1.00)

omega=pi*freq
rrs=sin(omega*N*0.5) /sin (omega*0.5)
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rrs=rrs/N
return
end

X2 R R R R R R R R R R R R R A R R R R R R R R R R R R R R R R RS R E R R R R RS RZ R SRRRR SRR D]

ZERO. £

function zero (freq, freqQ)
pi=4*atan (1.00)
omegaC=pi*freq0
cmega=pi*freq
zero=cos (omega) -cos (omegaO)
return

end

I A R R R R A R R R R R R R S R S e R R R R R R R R R R R R R A2 2 SRS EE R RE R 2

COMPE. £

The purpose of this program is to evaluate the magnitude
response of H(z)=Hl(z)H2(z). where Hl(z) has magnitude
response stored in the array hresp(i)., and where the magnitude
response of H2(z) is obtained by invoking “"extfun". The
applications of this program are in design examples such as

6 and 13.

INPUTS: hresp(l) ...... hresp (nout+1)
OUTPUT: hresp(l) ...... hresp (nout+1)
modified by multiplying with extfun(i).

subroutine compe (hresp, nout)

dimension hresp (1)

do 3 i=1 . nout+l
freq={1i-1.00) /nout
htemp=extfun (freq)

old=hresp (i)
hresp(i)=hresp (i) *abs (htemp)

htempl=abs (htemp)

continue

return

end
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Chapter 3

Multirate FIR Filters
for Interpolating
and Desampling

FREDERIC J. HARRIS

Deparment of Electrical and Computer Engineering
San Diego State University

San Diego, Cdlifornia 92182

INTRODUCTION |

In many signal processing applications it is desirable to have the output sample
rate be different from the input sample rate. The process of altering the data rates
within a digital filter is known as resampling, and the algorithms that perform this
resampling are called multirate filters. By extension, a multirate filter may achieve
a desired change in sample rate by using a cascade of simple multirate subfilters.
Each subfilter performs a segment of the resampling process. The partition is
often selected to minimize the total computational burden.

If the output rate of a filter is less than the input rate, we say we have
downsampled (or decimated or desampled) the output. On the other hand, if the
output rate is greater than the input rate, we say we have upsampled (or
interpolated) the output. The ratio of output to input sample rates can be any
ratio of integers, P/M. Here either integer (P or M) can be unity. It is also possible
to make this ratio slowly time varying. Figure 3.1 presents examples of sample-
rate change filter configurations. To help us understand the constraints of the
resampling process, we will examine desamplings of 1/M and unsamplings of P/1.
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Fig. 3.1. Resampling filters,

A Examples of Systems with Multirate Filters

We will now identify a number of examples of systems that use multirate
processing [ 1]. The list will certainly not be exhaustive. The value of this section
is to help the novice understand how system considerations lead to a multirate
design. It also gives us specific systems to which we can refer when we later
develop the design techniques for multirate filters.

1 Zoom Transform

For this example, we describe an application for desampling. In particular, let
us consider the spectral analysis scheme known as a zoom transform. A
conventional discrete Fourier transform (DFT) algorithm processes N points of
input data. The output of the algorithm is N points of the input data’s spectrum.
These spectral points are analogous to those obtained from a bank of equally
spaced contiguous narrowband filters. The spectral resolution (i.e., filter spacing)
of this bank is the input sample rate divided by the transform size, f./N.

To obtain a finer spectral resolution, we must either increase the transform size
N or decrease the sample rate f,. The zoom transform uses the multirate filter to
accomplish the latter. We preprocess the input data with a complex heterodyne
and a lowpass filter. The complex heterodyne first shifts a desired (but arbitrary)
center frequency to zero frequency. The lowpass filter then reduces the bandwidth
of this shifted signal by convolving (a weighted average) the filter impulse
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Fig. 3.2. Zoom transform with resampling prefilter.

response with the shifted input series. The output bandwidth of the lowpass is
approximately the inverse of the averaging time interval. The output of this
heterodyne and average process is a time series representing the complex
envelope of the narrowband signal centered at the heterodyne frequency and
with the bandwidth of the lowpass filter. Note we have independent control of
the center frequency and of the bandwidth for this series.

Since the bandwidth of this series has been reduced by, say, a factor of M : 1, we
can still satisfy the Nyquist criterion if we reduce the output sample rate by the
same factor. Thus we select the output sample rate f'; to be f,/M. Now if the time
series at this rate is presented to the DFT, the DFT output spectral resolution is
S[+/N (or f,/MN). An example of this process is shown in Fig. 3.2. Here the input
data, sampled at 2048 samples per second, is prefiltered to a 4-Hz bandwidth
prior to a 200:1 sample-rate reduction to 10.24 samples/s.

Fractional Octave Spectrum Analyzer

In this example we examine another application for desampling filters. The
DFT can be visualized as an algorithm to synthesize a bank of constant-
bandwidth, equally spaced contiguous filters. A variation of this filter bank is a
contiguous filter set characterized by constant bandwidth and equal spacing on a
logarithmic scale [ 1]. Filters defined by these specifications are called constant-Q
filters because the ratio of center frequency to bandwidth (classical definition of
filter quality factor) is a constant.

2
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Spectra of vibrating mechanical systems are normally described or analyzed
by equal increments on a logarithmic scale. Examples include the Western
world’s tempered music scale, (in which the frequency ratio of adjacent notes is
2'/12) and fractional octave (third-octave and tenth-octave) filter banks used in
sound-level measurements.

Figure 3.3 is a block diagram of a third-octave spectrum analyzer. Here, the
sampled data is presented to two subprocessors. The upper processor is a bank of
three filters designed to perform the constant-Q decomposition at the top analysis
octave, say 10.0—20.0 kHz. The input sample rate (assume for our example this is
50.0 kHz) is chosen at least twice the highest analysis frequency. Thus the top
octave is located between 20%, and 409 of the input sample rate. The next lower
analysis octave would be between 109, and 209, of the input sample rate. We
access this next octave by processing the series obtained from the lower
subprocessor.

The lower segment of the process is a baseband filter designed to reduce the
input bandwidth by a factor of 2. The output of this filter is then desampled by
the same factor. We note that the second octave band, which is located between

INPUT BUFFER ————15 OCTAVE Fe. DOIUSTPPLUI;I_Y
- - [
f TOP OCTAVE PROCESSOR = BUFFERS
S
2:1
INPUT BUFFER j DTH
T SUCCESSIVE I ; BANIsHI a,
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Fig. 3.3. Fractional octave spsctrum analyzer.
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109, and 209, of the input rate, is also located between 209, and 407 of the out-
put rate. The upper processor can now filter this data (at its lower rate) to access
the next lower octave. The lower subprocessor also prepares this data by again
filtering and desampling for the next lower octave. This combination of decom-
posing the data into its top octave (by the upper processor) while preparing the
data for decomposing the next lower octave (by the lower processor) is per-
formed by nested passes through the two subprocessors for as many octaves of
analysis as desired. (Figure 3.24, presented later, shows the equivalent sequence
of filter desample, filter desample, etc., as a cascade of identical filters.)

We note that with 2:1 resampling between processing successive octaves, a
particular octave is decomposed with the same computational burden as the next
higher octave, but at half the data rate. Thus each lower octave requires half the
previous computation rate. Since the total computation rate is proportional to
thesum1 + 1 + 1 + 1 + 7 + ---. The total workload to compute the outputs for
all the lower octaves is never greater than that required to decompose the top
octave. The overhead of the filtering performed in the lower subprocessor is less
than that of the upper processor but, as a first estimate, can be considered
comparable. The lower processor also operates on successive desampled series
with the total work for all lower bands not exceeding that of the top octave.

Interpolation for Complex-to-Real Data Conversion 3

In this example we examine the postprocessing task of converting a complex
‘time series at one sampling rate to a real series at a higher rate [ 3]. Many signal
processing algorithms process time series as the in-phase and quadrature-phase
(I-Q) components of a complex series. The advantage of this form of processing is
that the signal magnitude and phase are preserved at its minimum bandwidth;
hence the signal can be processed at the minimum sample rate. One example of
this form of processing is the demultiplexing of a single-sideband frequency-
division-multiplexed (SSB-FDM) signal, which we will examine closely in
Chapter 8. The result of the demultiplexing is a collection of separated channels
of complex data. In telephone traffic each channel is nominally 3.6 kHz wide, and
the demultiplexed complex data rate is typically 4.0—6.0 kHz. This complex data
must then be converted to real data at rates between 8.0 and 10.0 kHz.

The example in Fig. 3.4 demonstrates the process of converting a complex data
set at 6-kHz rate to a real data set of 8 kHz. A simplified description of the
process is that the real and imaginary series are separately interpolated up to a
new sample frequency of 24 kHz. The data at this new data rate is then desampled
by a factor of 3 to obtain the desired data rate of 8 kHz. A complex heterodyne is
then applied to the complex data, which is now at the proper sample rate, to move
the center frequency from O to 2 kHz. The real part of this spectrally shifted series
is the desired output. In actual fact the processing is altered slightly so that the
data discarded by the two desampling operations (after the interpolation and
after the complex heterodyne) is not computed. We will examine this example in
detail at the end of this chapter.
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Fig. 3.4. Complex-to-real resampling filter.

4 Interpolating For Time Domain Beamforming

In this example we describe a system that uses the resampling interpolator
filter, not to raise the sample rate, but to generate data samples shifted a small
increment in time from the original input data sample positions. This system is a
time domain beamformer. Beamforming, a spatial filtering operation, is used to
separate signals arriving from many simultaneous directions into distinct
subsignals that are ordered by direction of arrival. Beamforming entails delay
and addition of signals collected over a spatial aperture. In a time delay
beamformer, coarse delay is realized as transport delay in a tapped delay line.
Fine delay, a fraction of the interval between the available coarse delays, is
realized with a broadband time delay filter. Narrowband beamformers often
approximate the desired time delays by additive phase shift in the frequency
domain; in this case they are known as phased-array beamformers [4].

In an array beamformer the signals intercepted by the aperture are collected at
distinct (often equally spaced) element locations across that aperture. The beam is
steered by inserting time delays in the separate signal paths to compensate for the
delays associated with a specified wavefront crossing the array. Beam steering by
digital signal processing techniques is facilitated by uniformly sampling in time
the signals observed at each spatial location. Thus the raw data collected for an
array beamformer can be thought of as a two-dimensional data array, the
dimensions being distance and time.

A mapping of a memory containing the data collected from a uniformly spaced
array of hydrophones is suggested in Fig. 3.5. Indicated in Fig. 3.5 are three time-
space contours over which data points must be summed to form beams facing the
indicated directions. (The spatial direction is scaled by the propagation velocity
so that both directions are proportional to time). Note that along contour 2 some
of the time series do not have a time data point along the contour of summation
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Fig. 3.5. Time-space data memory contours for time domain beamforming.

(the missing points are denoted by an X). If the ratio of sample rate to bandwidth
is sufficiently high (to insure high intersample correlation), we could select the
nearest-neighbor data point as an acceptable approximation to the desired data
point. Alternatively, we can interpolate to the desired position from the data
points in the neighborhood, such as over the data spans in Fig. 3.5.

Asinamplitude quantization, the time quantization (i.e., the deviation from the
line of summation) has an effect similar to additive noise and must be made
acceptably small: We could reduce the time quantization by simply increasing the
sample rate for each spatial element. For instance, rather than sample near the
Nyquist rate, say 2.5 times the highest frequency, we might choose to sample 30.0
times the highest frequency. This solution is not generally desirable for the
following reasons. Most of the extra data points would not be used in any of the
beam summations, but a higher speed and larger memory space would have to be
used to store them. (Partial-sum beamformers manage to get around this
objection by storing the desired sums rather than the raw data.) In addition, the
higher-speed analog-to-digital converter (ADC) is a hardware item with a
significantly higher cost that we may wish to avoid.

An alternative to the higher sample rate is the use of interpolating filters. The
filters can be used to upsample the data from each spatial element to synthesize
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the desired higher sample rate. But we do not really want a higher sample rate, but
one new data point at some location in the time interval between two collected
data points. We realize the two requirements by first upsampling, via the
interpolating filter, to the acceptable time quantization and then desampling
back to the original data rate with the selected time delay. Hence the in-
terpolating filter operates at an output rate that matches the input data rate and
outputs data only at the time position required for the given beam summation.
We will see later that by imbedding the desampling operation in the upsampling
filter, we obtain a filter architecture with a particularly simple structure. The filter
can be viewed as partitioned into a collection of subinterpolators known as
polyphase filters, and the resampling to the desired output time position is
performed by selecting the proper polyphase subfilter.

B Overview of Chapter

In this chapter we shall identify the parameters that describe FIR filter
characteristics, and we shall review how these parameters interact. The emphasis
will be on how the coupling between these parameters affects the design of
multirate filters. We start with classical frequency and time domain specifications
of lowpass FIR filters and present a number of quick, first-order approximations
to the ways they interact. We then show how data rate reduction is achieved with
lowpass FIR filters. Here we demonstrate, via the McClellan-Parks (MP) design
algorithm (see Section IV.D in Chapter 2), how the choice of filter parameters
controls filter characteristics and how these parameters can be traded for
desirable performance gains. We then examine data rate reduction techniques
that use carrier-centered FIR filters, and we also examine center frequencies with
interesting signal processing characteristics. We next investigate interpolating
filters used to obtain increases in the data rate by integer multiples and then
increases by multiples that are a ratio of integers. Finally we look at simple
architectural models of FIR filters. One strength of this chapter is the liberal use
of graphical presentations to demonstrate the important FIR filter relationships.

Il CHARACTERISTICS OF BANDWIDTH-REDUCING FIR FILTERS

Finite duration impulse response (FIR) filters were introduced in the previous
chapter. They perform their filtering operation as a collection of finite inner
products. These inner products are implemented by a sequence of multiplications
and additions. For each output point computed during the filtering operation,
there is one addition per filter coefficient and (if symmetric) one multiplication
per pair of coefficients. Thus the computational burden to implement a FIR filter
is proportional to the number of its coefficients (or, equivalently, to its length).
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Since the number of multiplications and additions per output point is an
important consideration in implementing a filter, a major descriptor of a FIR
filter is its length N. We saw in the last chapter that the filter length is controlled
by a combination of frequency domain specifications, primarily transition
bandwidth and passband and stopband ripple [see(2.19) and (2.31)]. A secondary
descriptor is the filter impulse response or, equivalently, the particular set of
coefficients.

A major attraction of the FIR filter is the (usually exercised) option to have the
frequency response exhibit linear phase. Linear phase is so desirable that we
sometimes forget that it is only an option. Filters exhibiting linear-phase
characteristics are constrained to have either even or odd symmetry about their
midpoint. This constraint permits us to reduce the number of multiplications per
output point by precombining data points that will be multiplied by identical
coefficients.

Filters used in multirate processing are usually bandwidth-reducing filters,
which we will show are related to a simple lowpass filter. Most of these filters are
designed to be even frequency domain functions and will have an envelope
reminiscent of the sin(wt)/(wt) function.

Frequency Domain Characteristics A

We now examine the frequency domain characteristics of realizable lowpass
filters [5—7]. Since we are discussing sampled data filters, it will be convenient to
describe all frequencies as a fraction of the sample rate. This is equivalent to
dividing (normalizing) all frequencies by the sampling frequency. Thus the
sampling frequency becomes 1.0, the half-sampling frequency becomes 0.5, etc.
(See Fig. 1.4))

The ideal lowpass filter has unity gain between the frequencies +f,, and
zero gain elsewhere. The realizable filter can only approximate the ideal. The
approximation includes an acceptable deviation envelope about unity gain in
the passband region, an acceptable deviation envelope about zero gain in the
stopband region, and an interval over which the filter gain must make the
transition from unity gain to zero gain. The transition interval, Af, is normally
implied by (the difference between) the upper edge of the passband f, and the
lower edge of the stopband (rejection band) f,. These parameters are indicated in
Fig. 3.6. In the next section we will see how to convert a set of resampling
specifications into these filter parameters.

Typical Specifications for a Lowpass Filter 1

Chapter 2 introduced techniques for designing FIR filters. Here we will
concentrate on lowpass filters and will demonstrate a design philosophy. A
design proceeds iteratively from coarse boundaries to fine detail. Part of the
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Fig. 3.6. Typical frequency domain characteristics of sampled data lowpass filter.

procedure requires the designer to review a number of options for performance or
workload comparisons. The designer should have access to quick estimation
procedures early in the process. We will now develop some useful relationships
between filter parameters which are compact approximations to the relationships
presented in Chapter 2.

The transition bandwidth of a lowpass filter is the spectral interval for the
magnitude response to make the transition between the passband and the stop-
band tolerance bands. For a minimum bandwidth narrowband filter, the tran-
sition bandwidth is identically the filter bandwidth. We know the narrowest
bandwidth a filter can realize is f,/N, where N is the filter length. This filter has
uniform (or equal) weights, with the spectral width of the Dirichlet kernel. The
length-N uniform weight set can be used as a window to truncate the impulse
response duration of any arbitrary filter. (This approach to FIR filter design was
discussed in Section III of Chapter 2, and is being discussed here to develop a
simple estimate of transition bandwidth.) The multiplication of the two
sequences in time is equivalent to a convolution of their spectra in frequency.
Abrupt spectral transitions of the filter are smoothed by the convolution with the
window spectrum, which results in a transition width equal to the spectral width
of the window’s mainlobe. Hence we have the remarkable property that all filters
of the same length N exhibit a transition bandwidth that is essentially the same
(the truncating function’s mainlobe width) and is independent of the original
(untruncated) filter bandwidth.

A filter designed with a rectangular window has sidelobes related to the — 13-
dB sidelobes of the sin(zfN)/sin(nf) function resulting from the periodic ex-
tension of the sin(nf T)/(nf) kernel (see Section VILE of Chapter 1). The sidelobe
levels are slightly lower for wider bandwidths due to averaging of the sidelobes
during the spectral convolution of the ideal filter and the window. To design
filters with lower prescribed sidelobe levels, we have to allow for an increase in
transition bandwidth. From classical window design considerations we know the
transition bandwidth of a filter is of the form

A

Af = K(A) S (3.1
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where A i1s the minimum stopband attenuation (e.g., 4 = 0.001) and K(A) is an
attenuation-related scale factor. From filter design experience we find the
parameter K(A) in Eq. (3.1) is bounded by

-20 A — A
20 log( )< <_2OIog( )

A 32
25 K(4) 20 (3-2)

In comparing Eq. (3.2) to the approximations of Egs. (2.19) and (2.31), we see that
we now have access to a quick first-order estimate of filter length for a given
sidelobe level and transition bandwidth as follows:

1 - —20log(4) f. _A(dB) f

s (3.3)

N:K(A)H 20 Af 20 Af

This relationship is demonstrated in Fig. 3.7, which is a collection of 21-point
FIR filters. These filters were designed to have a transition bandwidth of 0.1 with
the — 50-dB stopband edges located at 0.1, 0.2, 0.3, and 0.4 Hz, respectively. The
parameters of attenuation value (—50 dB) and transition bandwidth used in
Eq. (3.3) result in an upper bound to the filter length of 25 points. This estimate
for N is 16%, too high because a 21-point filter meets the specifications for this
example. The narrowband filter response of Fig. 3.7(a) is superimposed at the
right side of the other filter’s transition regions for ease of comparing the
transition bandwidths.

How the Filter Specification Parameters Interact 2

Since FIR filter design is iterative, the designer should have an idea of how the
parameters interact so that reasonable trades in the parameters can be made
during the design. We will now demonstrate how a change in a single parameter
alters the frequency and time description of a selected prototype filter. The filters
presented here were designed by the (MP) algorithm, which was altered to ob-
tain a sidelobe peak decay of — 15 dB/decade (—4.5 dB/octave).

We start with a 16-point impulse response filter with a passband ending at 0.1
Hz and a stopband starting at 0.2 Hz. Since the filter length N and the transition
bandwidth Af are already fixed, the only parameters we can adjust are the
approximation tolerance bands in the passband and stopband. Since only three
of these four parameters are independent, the MP algorithm operates with a fixed
(but user-selected) ratio of the two tolerances and then minimizes the amplitude
of both tolerance bands. Using a ratio of passband ripple to stopband ripple of 1,
10, and 100, respectively, we obtain the time and frequency responses shown in
Fig. 3.8. Since the transition bandwidth is specified and the filter length is known,
we can use Eq. (3.3) to predict that the minimum stopband attenuation level will
be between —32 and —40 dB. We obtain minimum attenuation levels of —29,
—41, and —51 dB respectively, We note that the additional stopband at-
tenuation is achieved at the expense of greater passband ripple; peak ripples are
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0.30, 0.74, and 2.88 dB, respectively. Equation (3.3) works well when the ratio of
stopband ripple to passband ripple is between 10 and 100; I regularly use 40.

In Figs. 3.9 and 3.10 we see the impulse and frequency responses for filters of
length 16, 32, and 64 points, respectively. Here, as in the previous example, the
passband ends at 0.1 Hz and the stopband starts at 0.2 Hz. In Fig. 3.9 the ratio of
passband ripple to stopband ripple is 1.0, and in Fig. 3.10 this ratio is 40.0. As
expected from Eq. (3.3), for fixed transition bandwidth, the sidelobe levels
decrease with increased filter length.

We continue with a 16-point filter but with an increase in transition band-
width obtained by modifying the location of the passband, stopband, or both.
Figure 3.11 presents the time and frequency responses obtained by modifying
the transition bandwidth, We first present, for comparison, the nominal 16-point
impulse response filter with passband set to 0.1 Hz and stopband set to 0.2 Hz.
The expected sidelobe level is between — 32 and —48 dB, the actual level is seen
to be —49 dB. In each of the cases that follow, the transition bandwidth is
increased 507 to 0.15 Hz. For the first modification we move the stopband edge
to 0.25 Hz and keep the same passband at 0.1 Hz. Note that the spectral side-
tobes are further down, and the impulse response mainlobe width is narrower.
We expect sidelobes between —48 dB and —60 dB and realize —59 dB. For
the second modification we move the passband edge to 0.05 Hz and keep the
stopband edge at 0.2 Hz. Here too the wider transition bandwidth has led to
increased peak stopband attenuation, but it is now —54 dB, and, as expected,
the mainlobe time response has widened. For the final modification we split the
direction of the transition bandwidth increase by moving the passband edge
to 0.075 Hz and the stopband edge to 0.225 Hz. This yields sidelobe levels of
~ 64 dB.

Time Domain Characteristics and Scaling Consideration B

We note by scanning Figs. 3.7 through 3.11 that the impulse responses of
these filters are essentially smoothly truncated versions of the sin(wt)/(wt)
function (see Section III in Chapter 2). The minimal filter response appears to
include the mainlobe and first sidelobes of the sin(wr)/(wt) envelope. The
mainlobe width (in time) varies inversely with passband width (in frequency). If
the (single-sided) —6-dB passband width (slightly greater than f) is af,, the
impulse response mainlobe width, measured between the first nulls, is 1/xf, or
1/a samples. Thus l/a, the ratio of sample rate to —6-dB bandwidth, is an
estimate of the number of coefficients in the mainlobe time response. For the
examples presented in Fig. 3.7 the one-sided — 6-dB bandwidths are 0.045, 0.135,
0.240, and 0.340, respectively. The expected mainlobe widths are 22, 7, 4, and 3
the actual mainlobe widths are 21, 7, 5, and 3, respectively. For Figs. 3.8 through
3.11, the —6-dB one-sided bandwidth is 0.15, so we expect the number of main-
lobe samples to be 7. The actual number of samples is either 6 or 8, depending
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Fig. 3.10(b). FIR filter for the ratio /8, = 40.0. Impulse and frequency responses, respectively,
are shown for a filter of length (c) and (d) 32 points.
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on the filter length. Note that the filter’s spectral transition width controls the
length of the filter impulse response, and the filter’s spectral bandwidth controls
the mainlobe width of the filter impulse response. We need to estimate the filter
mainlobe width because of a concern related to finite arithmetic realizations of
FIR filters.

The weighted summation of data to accomplish the filtering process is
performed by a sequence of multiplications and additions. The partial sum
formed by the sequence of additions resides in a finite word-length accumulator.
The number of bits required to represent the partial sum grows during the
accumulation. This growth is called numerical gain. A scaling procedure must be
employed to prevent the maximum width of the partial sum from exceeding the
bit width of the accumulator.

One option is to scale the filter coefficients for a peak steady-state gain of unity.
For the lowpass filters this entails scaling so that the sum of the coefficients is
unity. If there are a large number of samples in the mainlobe of the filter impulse
response, this form of scaling could force the samples with small magnitudes
below the quantization resolution of the finite registers used to represent the filter
coefficients.

To minimize the effect of finite word-length representation of the coefficients,
we normally scale them so that the maximum coefficient is between one and one
half of the largest number that can be held by the coefficient registers. Often this
scaling corresponds to setting the maximum filter coefficient to match the
register’s largest number. For ease of discussion, let us consider the binary point
to be left justified so that this largest coefficient is unity. We now can see why an
estimate of the mainlobe impulse response width is important. Since the large
coefficients of the filter are located in the mainlobe of the impulse response, most
of the numerical gain in the filtering process occurs in the summation of the
mainlobe coefficients. We conclude that smaller bandwidth filters (with wider
mainlobe impulse responses) exhibit a greater numerical gain, which must be
managed in the finite-width accumulators. For example, if there are 10
coefficients in the mainlobe of the impulse response (with the maximum
coefficient scaled to unity) and we use a triangle approximation to the mainlobe
shape, we can expect a numerical gain of 5; if there are 100 coefficients, we can
expect a numerical gain of 50. We note that if the filter coefficients are scaled for
unity maximum value, the numerical gain is approximately 1/2a, the ratio of
sample frequency to two-sided passband bandwidth. Thus filters with a very
narrow bandwidth relative to sample rate will exhibit large numerical gain.
Unless scaling is imbedded in the accumulation process, the finite accumulator
width will limit the range of possible desampling ratios.

We observed from Figs. 3.7 through 3.11 that the impulse response mainlobe
width is controlled by the spectral bandwidth of the filter. We now note that the
total filter length, in turn, controls the spectral sidelobes of the filter. Figures 3.9
and 3.10 show that an increased filter length permits additional sidelobes in the
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impulse response and results in decreased spectral sidelobes. The time domain
sidelobes introduced by lengthening the filter are successively smaller and smaller
valued. The tow-level coefficients in these sidelobes can (and do) drop below the
quantizing noise of the finite-length coefficient words. As mentioned, careful
scaling is required during the sum of products process to prevent the finite
coefficient lengths from limiting the effective filter length and hence the achievable
low-amplitude spectral sidelobe levels. As an example of this limiting effect,
Fig. 3.12 compares the response of a 32-point lowpass filter obtainable with
floating-point coefficients to one obtainable with fixed-point coefficients with
word lengths of 16, 14, 12, 10, and 8 bits respectively. We see that the 16-bit coef-
ficient quantizing effects are down 75 dB relative to the peak response and that
shorter coeflicient lengths result in poorer sidelobe behavior in the stopband.
Additional filter length realized with 16-bit accuracy will not result in lower
spectral sidelobes. Figure 3.13 compares the achievable sidelobe levels using
floating-point and 16-bit fixed-point coefficients for a 128-point narrowband
filter. We will address block floating-point coefficients sets when we examine
FIR filter architectures.

In the previous section we observed that the FIR filter time domain im-
pulse response closely resembles the envelope of a smoothly truncated
sin{wt)/(wf) function, The response included the central mainlobe and
{(usually, at least) a pair of sidelobes. The step responses of these filters exhibit
ringing precursors and postcursors due to the sidelobes of the impulse response.
These are most clearly seen as the ringing we call the Gibbs phenomenon, which
occurs in the neighborhood of a discontinuity. In some applications this ringing
is undesirable, for example video pulse processing. Here the ringing represents
spatial interpixel coupling, which results in reduced image quality.

We will now examine lowpass FIR filters with monotonic step response. The
impulse response of such a filter has no sidelobes. We still require the filter to have
a specified transition bandwidth and sidelobe level. The only filter parameter yct
to be specified is the passband bandwidth. We noted in Fig. 3.7 that for a selected
transition bandwidth and sidelobe levels, narrower bandwidth results in the
mainlobe portion of the impulse response occupying a larger fraction of the
impulse response width. A filter with a sufficiently narrow bandwidth has an
impulse response that consists entirely of mainlobe response. Thus filters with
monotonic impulse responses are narrowband filters, so narrow that their entire
spectral characteristic is described by the transition bandwidth and sidelobe
levels. Are such filters of any value? Yes! They are usually called time domain
windows or weightings and are used in spectral analysis to shape the spectral
characteristics of a DFT. We have used the classic filter design routines to design
windows with specified characteristics, such as sidelobe levels and sidelobe
slopes. Figure 3.13 presents the spectrum of a window designed by the Remez
multiple-exchange filter design routine to have peak sidelobe levels of — 70 dB
with - 15 dB/decade sidelobe falloff rate.
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Fig. 3.12(a). 32-Point FIR filter using (a) floating-point and (b) 16-bit coefficients.
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Any of the classic time domain windows designed for spectral analysis can be
used as the impuse response of a minimum bandwidth filter with monotonic step
response. The windows are easy to generate and satisfy standard filter constraints
such as minimum stopband attenuation [23]. The Appendix presents time and
spectral descriptions of some of the better windows filters as well as the standard
rectangular and triangular weightings for comparison. The Hamming, the
Blackman, and the Blackman—Harris windows are regularly used as prototype
lowpass filters because they are simply formed as the weighted sum of two, three,
or four cosines. Table Al lists these windows along with standard figures of merit
that are useful for comparing their performance as lowpass filters. A computer
program to generate samples of classic window functions is included in this
handbook as an addendum to Chapter 3.

The filters that we have designed and described can be used in any application.
Examples include windows for spectral analysis and shadings for phased-array
beamformers. In Chapter 8 we will use these filters in conjunction with the DFT
to synthesize banks of narrowband filters with arbitrary spectral shapes.

DATA RATE REDUCTION (DESAMPLING) BY 1/M FILTERS

We now examine techniques that permit us to reduce the sampling rate of a
time series [9-18]. The rate reduction will occur in conjunction with a filtering
operation that reduces the bandwidth of the data set. Thus the filter will be
characterized by two sampling rates: the input rate and the output rate. Until
now, we have found it convenient to describe filter bands in terms of frequencies
normalized by the filter sampling rate. Now that we have two sampling rafes,
what do we do? We can interpret the resampling process as two distinct opera-
tions: (1) a bandwidth-reducing filtering operation followed by (2) an editing
operation. This perspective is reflected by the presence of the two sampling
switches at the input and at the output of the filter indicated in Fig. 3.14. Here
we see quite clearly that the filtering operation occurs at the input sampling rate,
and it is the input rate to which we must normalize the filter characteristics. We
will see shortly that the filter specifications are often presented in terms of the
output sampling rate. As part of the design process, we will be required to recast
those specifications to the input rate. If there is any possibility of confusion, we
will explicitly state that the input and output frequencies are f, and f.P/M.

M:P
RESAMPLING
j ] DIGITAL ﬁ’ -
FILTER P
fs M fs

Fig. 3.14. Input and output rates of resampling digital filter.



3. Multirate FIR Filters 209

respectively; that is, for every M samples into the filter only P output samples
are used.

Baseband Filters A

The resampling process is most easily visualized as an extension of the lowpass
antialiasing filter applied to a signal before periodic sampling. We first select the
desired bandwidth required to adequately describe the input signal. We will refer
to the one-sided filter bandwidth as the analysis bandwidth and denote it by f,.
The analysis bandwidth defines the passband width of the antialiasing lowpass
filter. We must also select the required dynamic range (the ratio of the minimum
to maximum spectral levels) to be recognized in the analysis band. The dynamic
range, denoted by 1/A, identifies the highest level (or minimum attenuation) of
sampling-related artifacts permitted in the analysis band. The dynamic range, in
turn, helps define the transition bandwidth of the antialiasing filter. The
transition bandwidth, denoted Af, is the interval between the passband edge
and the frequency for which the filter achieves the minimum attenuation 1/A4.
Filter parameters are shown in Fig. 3.15. We see that the sampling rate, f, re-
quired to obtain an alias-free passband down to the level 1/4 satisfies

fo=2f, + Af (3.4)

Equation (3.4) is the engineer’s version of the Nyquist sampling theorem. We
note that the sampling rate exceeds the Nyquist rate by the transition bandwidth
of the antialiasing filter. For a given analysis bandwidth and dynamic range, we
can obtain a reduced sampling rate only by using a filter with a narrower
transition bandwidth.

REPLICATE PRIMARY
| SPECTRUM SPECTRUM l

B

0 f

-

Fig. 3.15. Spectral description of resampling lowpass filter.
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1 Filter Length Versus Fractional Bandwidth and Desampling Rate

The discussion of the previous section described the relationship between
analysis bandwidth, transition bandwidth, and sampling rate for an antialiasing
filter. A desampling filter is also an antialiasing filter! A change in sampling
rate does not affect the relationship between desired analysis bandwidth,
transition bandwidth of the filter and the final sampling rate. The change in
sampling rate from f; to f,/M affects the filter length through the selected
transition bandwidth and dynamic range.

The new sampling rate after M:1 desampling is f,/M. The new sampling rate
defines the total postdesampling bandwidth of the output signal. The integer M is
sometimes called the decimation rate. Within this bandwidth the (two-sided)
fraction a will be alias free [ 19]. The width of this alias-free band is determined by
the transition width of the antialiasing FIR filter. We now demonstrate the
relationship between filter length N and the new analysis bandwidth (the alias-
free desampled bandwidth). The new (two-sided) analysis bandwidth is

fs

2y =) (3.5)

The transition bandwidth of the FIR antialiasing filter, from Eq. (3.3), is

1 —20log(A4) A(dB)
Af = K{ )N where K(A) 0 0 (3.6)
Substituting Eqs. (3.5) and (3.6) into Eq. (3.4) gives
f_ ) I .
Mo ———+K(A)N (3.7)
Rearranging Eq. (3.7), we obtain
N = K(A) K(A)-=- js (3.8)

Af /f Af

Equation (3.8) 1s a good estimate of the required filter length for a given set of
specifications. Note that in Eq. (3.8) the term 1 — ais the transition bandwidth of
the filter relative to the filter final output rate f,/M. Comparing Eq. (3.8) to
Eq. (3.1), we see that the filter length for M : 1 desampling is M times that of the
filter satisfying the same spectral description without including the desampling.
This reflects our awareness that the alias-free bandwidth is specified relative to
the output rate, but that the filtering is performed at the input rate, which is M
times greater.

For example, suppose we need an 8:1 desampling filter with a dynamic range
of 60 dB, and we require that 50%; of the bandwidth be alias free after desampling.
Equation (3.8) tells us to use a filter length between 38 and 48. For this example we
selected an impulse response of length 40. These filter specifications were cast into
parameters required for the MP version of the Remez multiple-exchange
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TABLE 1

Parameter List for McClellan-Parks
Algorithm

FL, FT, NB, SD =40, 1, 2, 16
FO,F1.F2, F3 =0.,0.03125,0.09375.0.50

Gl1,G2 =1.0.0.0
P1, P2 = 1.0, 100.0
TABLE 11

Definition of Parameter List for Table 1

FL: Filter length

FT: Filter type (1 = lowpass)

NB: Number of bands (one passband and one stopband)
SD: Sampling density (default is 16)

FO, F1. Frequencies of beginning and end of band |

F2, F3: Frequencies of beginning and end of band 2

G1, G2: Gain desired in bands 1 and 2

P1, P2: (Penalty) weighs in bands 1 and 2

algorithm. This parameter list is shown in Table I for a lowpass filter. Table 11
identifies the parameters of Table I. Figure 3.16 shows the relationship between
these parameters relative to the input and output sampling rates. When these
parameters were used with the algorithm, the filter design lead to a passband
ripple of 0.96 dB and a peak stopband ripple of —64.0 dB. The impulse and
frequency response of this design are shown in Fig. 3.17. Figure 3.18 emphasizes
the aliasing regions associated with the resampling process by presenting the
frequency response of this filter after resampling at both the input and output
sample rates. This figure shows the individual aliased spectral levels that fold
back into the passband due to the resampling process. Note the advantage of the
sloping sidelobes in the filter design. Had the sidelobes been of equal amplitude,
the folded sidelobe power would add at 3 dB per doubling. On the other hand, the

Fig. 3.16. Spectral description of 8:1 resampling filter.
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Fig. 3.18. Spectrum of 8: 1 resampling filter after resampling with aliasing levels shown at (a) input

and (b) output rates.
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power sum of unequal level sidelobes is dominated by the largest, so there is no
significant increase in the summed sidelobes.

Continuing with the example of the last paragraph, we note that the 40-point
filter more than satisfied the — 60-dB sidelobe requirement and exhibited about a
1.0-dB passband ripple. The designer has several choices. If the design as realized
is acceptable, the extra stopband attenuation can be used to absorb unwanted
power due to spectral folding and the design is complete. Alternatively, the filter
length can be held fixed and a decreased penalty weight in the stopband, which
results in a slight increase in the stopband ripple, can be tried. This will result in a
slight decrease of passband ripple. A second choice is to decrease the filter length
by a small integer and retry the algorithm. An iterative combination of these
options converges rapidly to the specified design. One other option is to review
the design specifications. Often a slight relaxation of a parameter will simplify the
design. This was demonstrated in Fig. 3.11 where a reduction of bandwidth or an
increase of passband tolerance resulted in additional sidelobe attenuation. Yet
another option, which will be presented in Section 111.A.3, is to realize the
desampling filter as a set of shorter multistage filters.

2 Processing Overlap

In the last section we showed how to determine the filter length N required to
realize an M:1 desampling filter with specified fractional bandwidth and
specified sidelobe levels. The filter must perform an N-point inner product for
each output data point. If we assume an even symmetric response, the N-point
filter will require N/2 multiplications and N additions per output point. The
output data rateis |/M of the input data rate, so the computational workload per
input point is

Mult | N K(A)

e _ X _ A 9

Input - M2 21 - 2) (3.52)
K

Adds _ 1 _ K@) (3.9b)

Input M (1 — )
Notice that on the right sides of Eq. (3.9) the workload per input point is
independent of the filter length and desampling ratio, but is directly proportional
to the sidelobe level attenuation and inversely proportional to the fractional
transition bandwidth. For example, a filtering operation that specifies a —60-dB
peak sidelobe level and 509; fractional bandwidth will require four multiplica-
tions and eight additions per input point. This workload per input point is the
same if the desampling ratio is 8: 1 or 80: 1. Thus, knowing the input data rate, we
can easily estimate the computational speed required to perform real-time signal
processing. Conversely, knowing multiplier speeds, we can infer a maximum
input sample rate for real-time processing.
The N/M ratio in Eq. (3.9) has an important interpretation. It tells us the
overlap (or shift) factor of the filter. The desampling filter is a sliding block
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operation. The N-point inner product is applied to successive blocks of data
separated by intervals of M data points. Each data block of length M will
experience N/M shifts (and hence contribute to N/M outputs) as it passes
through the filter. For some architectures the number of output points to which a
data block contributes is an indicator of the network complexity. For instance. in
the partial-sum architecture (which we will examine in a later section) the N/M
ratio is the number of partial accumulators in the process. Alternatively, the
reciprocal ratio, M/N, is the fractional shift of the filter length between successive
application of the inner product.

Cascade Filters 3

In previous sections we determined the filter length required to obtain a desired
resampling ratio for a specified fractional bandwidth and sidelobe level. We then
determined the computational burden per input point for that filter. We found
that the multiplication and addition rates were defined only by the fractional
transition bandwidth and sidelobe levels. We now consider the option of
reducing the sampling rate in a succession of cascade filters [20, 21]. Each filter in
the cascade must not exceed some sidelobe level to protect the final passband
from aliasing artifacts, and the analysis bandwidth of each section must also have
the same value. Then where is the advantage?—in the fact that fractional (not
actual) transition bandwidth of the spectral description affects the filter length
and computation rate.

To see how cascading affects the processing workload, we consider the two-
stage partition. The first-stage filter performs a coarse bandwidth reduction,
which accommodates most of the sample-rate reduction but leaves an overly
wide transition bandwidth. The second-stage filter finishes the resampling
process and forms the desired transition bandwidth. The workload performed by
the second filter proceeds at the reduced data rate established by the first filter. In
addition, the second filter length is considerably reduced due to the smaller ratio
of (new) sample rate to transition bandwidth.

As an example of the available gain due to cascading, let us consider a 20:1
resampling filter of the type described in the previous section. The useful partition
is a 10:1 filter followed by a 2:1 filter. Figure 3.19 presents the bandwidth
reduction and resampling that occurs in each stage. The corresponding filter
parameters are listed in Table I11. The cycles-per-output parameter indicates how
often the filter is exercised per output point. For instance, in this example the
output filter operates with a 2: 1 resampling rate, which means the previous filter
must operate twice to allow the next filter to operate once.

As seen from the last entry in Table IT1, for this example thereis a 239 saving in
the number of multiplications due to the cascading. The saving becomes more
significant when the original resampling ratio is larger. Another factor in favor of
the cascade filter set is the reduced amount of data storage along with the reduced
number of filter coefficients that must be stored. In this example, a filter of length
120 is replaced with two filters of combined length 52. For small integer
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Fig. 3.19. 20:1 resampling as a single-stage filter and as a cascade of two-stage filters.

TABLE II1
Parameters of Single-Stage and Two-Stage Filter for 20:1 Desampling

Two-stage filter

Single
Parameter filter Filter 1 Filter 2

Input sample rate f, 1. 1,710

Output sample rate 1,20 1.,/ 10 {, 20

Resampling ratio [M ] 20 10 2

Analysis bandwidth [ f] 1./40 1./40 1.740

Fractional bandwidth [«] 0.5 0.25 0.5
(rel. output rate)

Filter length [KM /(1 — )] 120 40 12
Cycles per output 1 2 1
Multiplication per output 60 40 6

Composite mult/output 60 46

resampling the benefits of cascaded filters are small and the overhead of
operating separate subfilters may overcome the small gains.

Figures 3.20 present the impulse and frequency responses of the 20:1
resampling filters described in this example. Also shown is the aliasing, which
folds back into the (final) passband for the one-stage and two-stage realizations.
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HETERODYNE PROCESSING

In the previous section we addressed the task of resampling a baseband signal.
We have been assuming that the signal was real, so a single filter accomplished the
task. Had the signal been complex (i.e., an ordered pair), the filtering operation
would proceed separately on each of the ordered pairs using identical versions of
the designed baseband filter. We now consider the task of resampling carrier-
centered signals.

We may have an interest in the structure of a signal occupying a reduced
bandwidth at some center frequency other than zero [22,23]. An inital approach
would be to design a baseband filter to eliminate signal components that lie above
the desired bandwidth. The cutoff frequency of this filter output would then be
the sum of the center frequency and the one-sided bandwidth of the signal. The
bandwidth of the signal may be considerably smaller than the center frequency of
the signal, and it may not be necessary to select the sample rate based on the
highest frequency. It is possible to sample at a rate based only upon the signal
bandwidth by accounting for the known center frequency in some auxiliary
processing. We have a number of options that allow us to sample at the
bandwidth-related rate rather than at the highest frequency-related rate.

The first option is to move the center frequency of the spectral region of
interest to zero and proceed to filter and desample as we have in earlier sections.
The shifting of a spectrum is called frequency shifting or heterodyning from
the Greek hetero, which means “different,” and dyne, which means “move.”
The shift to zero frequency is called basebanding. If the spectrum does not ex-
hibit conjugate symmetry about the center frequency, the shift requires two
heterodynes: a complex heterodyne on an I-Q (in phase—quadrature) hetero-
dyne (also called complex demodulation). Signals that exhibit conjugate sym-
metry about a carrier can be shown to result from either amplitude or phase
modulation of the carrier. On the other hand, signals that do not exhibit conju-
gate symmetry about the carrier must be described by both amplitude and phase
modulation of the carrier (or equivalently by independent amplitude modula-
tion of the quadrature carrier components, cos and sin). The modulation of
the color subcarrier in the National Television System Committee NTSC:
American TV standard and quadraphase modulation of modems are examples
of this type of modulation: In the absence of a priori information about signal
structure, a basebanding operation must be performed by a complex heterodyne.

The second option is to form the narrowband filter at the carrier-centered
frequency of f, Hz. If we resample this output by a factor of M :1, the carrier-
centered frequency will alias to the new frequency of [ f; ] mod( f,/M) Hz where x
mod y means the remainder of x divided by y. The aliasing may or not result in
spectral folding with the negative frequency components, depending on the
center frequency and the bandwidth of the signal. To prevent the possibility of
spectral aliasing, we can perform complex narrowband filtering to eliminate the

v
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negative frequency components. If desired, the new center frequency can then be
shifted to zero frequency by a heterodyne at the output rate (as opposed to one at
the input rate). We will examine both options in the next section. Note that there
is no inherent coupling between the desired bandwidth, the selected center
frequency, and the resampling ratio (except for aliasing considerations). Later we
will also examine systems that realize computational efficiencies by requiring
coupling between these parameters.

A Complex Bandshifting of Input Data

Complex bandshifting, also referred to as frequency shifting or I-Q de-
modulation, is a direct application of the modulation theorem, which is stated
below for both continuous and sampled data.

Modulation Theorem. Given a transform pair
h(t)yand H([f) h(nT)and H2rfT)
a second transform pair is
h(t)exp(—j2nfyt) and H(f — f;)
hnT)exp(—j2nfoTn)and H2nfT — 2nf,T)

-)e n
e 2 3
4 2 4 H
h-Hz pw
i
LOWPASS FILTER
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—— is0 =
: \
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102 h— su—— 6o 024 — ] o
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(1o2u) o 1512)
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Fig. 3.21. Heterodyning a desired spectrum to bascband.



3. Multirate FIR Filters 225

Hence to shift the spectral band of interest from the center frequency f;, to zero
frequency, we multiply the input data by the ordered pair exp(—j2nfonT). Since
the sampled data spectrum is periodic, this represents a rotation of the spectrum
about the unit circle by the amount f,/f; Hz. The lowpass filtering operation is
then performed on the two separate data sets presented by the ordered pair at the
output of the heterodyne operation. This operation and the spectral description
corresponding to points in that process are presented in Fig. 3.21. In the figure the
crosshatched region is the frequency band of interest.

We have already examined the computational workload of the separate
lowpass filters in the basebanding operation. For the complex heterodyne
processing we have to account for the presence of two lowpass filters and for the
complex heterodyne. In the heterodyning each real input data point is multiplied
by a cos and sin value, which represents an increase of two real multiplications
per input point. Therefore, if the input data is complex, there is an increase of four
real multiplications and two real additions per input point. Merging this
additional workload with that of the two N-point FIR filters yields

N K(A
Re mult/input = — + 2 = ——(——l + 2 [real input data]
M | —a
N K(4
=—+4= ~u + 4 [cmplx input data] (3.10a)
M 1 —«a
2N 2K(A
Re adds/input = — = ~Q [real input data]
M 1 -«
2N 2K(A
=222 & a’ +2  [cmplx input data] (3.10b)

Complex Bandshifting of Filter B

In Section 1V.A we alluded to the possibility of frequency shifting the LPF
(lowpass filter) response rather than demodulating the data spectrum. Let d(n)
and g(n) denote the system’s input and output, respectively. Then the convolution
performed by the N-point impulse response filter in the previous section is of the
form

g(n) = [d(n)exp(—j2nf, Tn)] * h(n) (3.11a)
=S din — Wyexpl—j2nfy T(n — kyThik) (3.11b)
K=o
— exp(—j2nfoTn) 3 din — kh(k)exp(j2nfy TH) (3.11¢)
K=0

= exp(—j2nfo Tn)[d(n) * h(n)exp(j2nf,Tn)] (3.11d)
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Equation (3.11d) shows that the heterodyne, which we had originally applied
to the data, can also be applied to the lowpass filter (forming a different set of
weights) off line. In this scheme the narrowband carrier-centered filtering is
performed first, and the heterodyne is applied at the output. If the filter input and
output rate were identical, there would be a slight disadvantage of the second
technique over the first. If the heterodyning is performed at the filter input (on
real data), we have a single real-complex multiplication (2 Re mult) per input
point. If it is performed at the filter output, we have a complex-complex
multiplication (4 Re mult and 2 Re adds) per output point. If the output sample
rate is sufficiently lower than the input rate, we may realize a saving in the
heterodyne by not having to heterodyne the data points we discard by the
resampling process. In sliding the complex exponential through the resampler, we
find that the frequency (in hertz) has aliased to [ f, ] mod( f,/M). The workload to
apply this new heterodyne at the output rate is given by

2N 4 K(A) 4
Re mult/input = — + - =-— -~ + — {3.12a)
fmput = T oty
2N 2 2K(A4) 2
Re adds/input = —- + — = + - (3.12b)
fimput =t N T T T M
Z 3
I
= . U-Hz BW A 5
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Fig. 3.22. Heterodyning a filter to desired spectrum.
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Comparing with Eq. (3.10), we see a saving accrues to heterodyning the filter
output if the resampling ratio is greater than 2:1.

Figure 3.22 presents the form of the filter in which the coefficient set has been
heterodyned and the heterodyne occurs at the output data rate. A second benefit
in heterodyning the narrowband desampled filter output results if the sin-cos
values used in the heterodyne are taken from a table. Since the table is finite, only
those frequencies commensurate with the table length can be heterodyned. This is
true at both the input rate and the output rate. To achieve a selected frequency
resolution at the output of the system would require a resolution at the input that
is M times as great. Hence for a fixed-length sin-cos table, the frequency
resolution of an output heterodyne is M times better than that of an input
heterodyne.

If the data from the filter is to be presented to a DFT routine for spectral
decomposition, we have access to one additional option—don’t do the
heterodyning! The heterodyne only accomplishes a shifting of a specified
frequency to the zero frequency of the spectrum. As long as we know where in the
spectrum that frequency resides, we need only reassign the DFT bin to frequency
correspondence. The only concern here is that the desired center frequency might
not reside in the center of a DFT bin, but this residual offset can be avoided by
clever selection of the input sample frequency. If the residual frequency offset 1s
important, it can be removed by the output heterodyne.

Center Frequencies with Special Properties C

Earlier we mentioned that there is no coupling between the parameters of
bandwidth, center frequency, and resampling rate of the resampling filters. We
can, however, require that these parameters be constrained in particular ways to
obtain a desired simplification or improvement of the filtering process. One
simple example we have already seen is that symmetric filters can be implemented
with half of the multiplications of an arbitrary filter. We had easy access to an
implementation simplification through a simple constraint.

Four frequencies on the unit circle can be moved to zero frequency with no
special processing. They are zero (an easy one to miss), plus or minus a quarter of
the sampling frequency, and half the sampling frequency. A heterodyne can
rotate the spectrum from any arbitrary center frequency to zero frequency by a set
of complex multiplications. For the frequencies just identified, the complex
multiplications are free; they are achieved by sign changes or by interchanging the
real and imaginary parts of a number (data steering) and appropriate sign
changes.

The half sampling frequency is easily interchanged with zero frequency by sign
reversals on alternate data points. Alternatively, a lowpass filter can be rotated to
half the sampling frequency (thus becoming a highpass filter) by the same
procedure of alternating the sign of adjacent coefficients. If the lowpass filter is a
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half-bandwidth filter?, that is, has 3-dB points at a quarter of the sampling
frequency, then the reflected highpass filter will also be. Let the outputs of the two
filters be resampled by 2: 1. Then at a quarter of the sampling input frequency, the
power gain sum of the two filters is precisely unity. In the regions where one of the
filters exhibits large attenuation, the other exhibits unity gain, so the power gain
sum is again very nearly unity. By using an optimization scheme; we can fine-tune
the filter so that the power gain sum in the transition bandwidth of the pair is
essentially unity (within fractions of a dB). The important property here is that
the sum of the two filter gains is unity even in their transition bands. Figure 3.23
shows the frequency response of a half-bandwidth lowpass and half-bandwidth
highpass filter as well as the power sum of the pair. The benefit of this property is
seen in the next paragraph.

If the filter is used with 2:1 resampling, the aliasing of the highpass filter will
yield a bandwidth coinciding precisely with the bandwidth of the mirror filter. It
does because the mirror is the same filter simply heterodyned to half the sampling
frequency by the coeflicient sign changes. These filter pairs are called quadrature
mirror filters (QMF) [24—27]. They are used in speech analysis and synthesis of
half-bandwidth spectral regions by a chain of successive 2:1 desampling
operations. This form of processing is akin to the constant-Q spectral decom-
position discussed in this chapter’s introduction. Figure 3.24 presents the
structure of a spectral decomposition by a cascade of resampling QMFs. Here
the upper path reduces the data rate by a sequence of filter and resampling stages
while the lower path(s) extracts the upper half-bandwidth from each successive
stage. Figure 3.25 presents the spectral response of a QMF and the spectral
resolution of the first six stages of a QMF decomposition.

The quarter sampling frequency is another spectral location that exhibits
particularly attractive properties. The complex heterodyne required to shift a
quarter of the sampling frequency to zero frequency is

1 s
—j2nfoTn) = —j2r— = —j= 13
exp(—j2nf,Tn) exp( J 1r4T Tn) exp( ]2n) (3.13)

= =iy

This is also a trivial sequence to apply either to data or to any baseband filter to
shift its spectral properties to the quarter sampling frequency. The heterodyned
coefficient sets are zero valued at alternate positions in the real set and are zero
valued at (single offset) alternate positions in the imaginary set. Thus there are
half as many multiplications and additions, all of which are trivial, as we would
expect for an arbitrary complex filter. The proportional bandwidth filter bank
described in the introduction to this chapter takes advantage of this reduced
workload filter heterodyned by a quarter of the sampling frequency.

* These filters are also called half-band filters.
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We now examine a filter with an interesting coupling of bandwidth, center
frequency, and resampling rate. The filter is a half-bandwidth filter of the type
described in the discussion on QMFs. In particular, we can select the impulse
response to be samples of a Nyquist pulse. Figure 3.26 presents the time and
spectral domain descriptions of this impulse response. Note that the coefficients
of the half-bandwidth filter are samples of a smoothly truncated version of the
sin(wt)/(wt) envelope. After the samples of the mainlobe, alternate samples
coincide with the zeros of the envelope.

When we align the coefficients of this baseband filter with those of the quarter
sampling frequency sin heterodyne, we see that they have the same zero set
(except at the origin). Also we note that the nonzero sin coefficients have the same
sign as the filter impulse response coefficients in the negative time interval and
opposing signs in the positive time interval. Thus the nonzero product terms are
all negative valued in positive time and all positive valued in negative time.

When we align the coefficients of the baseband filter with those of the quarter
sampling frequency cos heterodyne, we have a surprise. The zeros of the cos
samples coincide with the nonzero values of the baseband filter (except at the
origin), and the zeros of the filter coincide with the nonzero values of the cos
samples. Thus the product of the two series is zero everywhere but at the origin.
The real part of our filter has almost disappeared; all that remains is a single path
of unity gain. What we have just designed is a filter that passes only the spectral
content of the positive frequency axis and, when desampled 2:1, exhibits the
constant power gain (as in the QMFs) even in the transition bands.

This filter forms a complex signal that has the property that its DFT is
(essentially) zero over the negative frequencies. For the continuous case such a
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signal is called analytic. By extension, we denote these sequences as analytic
sequences. This signal is the minimum bandwidth representation of real signals
and is particularly useful in describing the properties of narrowband signals. The
filter supplying the imaginary output is a wideband 90° phase shifter. Hence the
filter performs a Hilbert transform on the input data d(n) and generates the signal
d(n) [28]. The ordered pair

a(n) = [d(n) + jd(m)] (3.14)

from this process is the analytic signal, the signal with a single-sided spectrum.
We can easily see this in Fig. 3.27, which presents the complex impulse response
and the frequency response (prior to resampling) of the QMF set designed as a
Hilbert transform filter.
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INTERPOLATING FILTERS

Interpolation is the process of computing sample values of a sequence in an
iterval between existing data points. We note that before the advent of the
pocket calculator it was common practice to interpolate between entries in tables
of transcendental functions to improve the accuracy of computations. Interpo-
lation is performed by first computing the parameters of a function selected to
pass through (or fit) a chosen set of sample points and then sampling the resultant
curve at the desired locations. Classically the curve selected for the data fit is a
low-order polynomial. The most familiar of these are the zero-order, the first-
order, and the second-order polynomials. These are often called, respectively, the
boxcar or zero-order hold, the linear interpolator, and the quadratic interpolator.
The primary attraction of a polynomial interpolator is computational simplicity.
The primary disadvantages is that the user has no guideline for selecting the order
of the polynomial fit. Intuition leads us to select a polynomial of sufficient order
to match the order of the significant local derivatives of the underlying function
(from which the samples came). If we do not know the local derivatives, we can
estimate them (by successive differences), or we can try a different approach. This
section deals with the alternative approach.

In general, our data points correspond to samples of a bandlimited but
otherwise unknown function. Knowing this, we put aside the burden of
estimating local derivatives and choose instead to pass a simple bandlimited
interpolator through our data points. We will show shortly that the structure
of this bandlimited interpolator is intimately related to our ubiquitous
sin(zfN)/(mfN) lowpass filter function. The sin(nfN)/(zfN) function is often
called the cardinal (bandlimited) interpolator. The very practical problem
associated with this interpolator is its unbounded length. To have a useful
interpolator, we have to select finite-length approximations to this function. We
will demonstrate that the selection of such a finite-length approximation is akin
to the design of the impulse response of a lowpass FIR filter. The performance
measures of the approximation will be in terms of the spectral characteristics of
the equivalent filter.

Increasing the Data Rate by a Factor of P

Given a set of equally spaced data points x(nT'), we can perform bandlimited
interpolation to the arbitrary position T, by
XNTy) =Y x(nT)D(Ty — nT) (3.15)

One interpretation of (3.15) is the replacement of each sample value x(nT) by a
weighted copy of the interpolating function D(t) centered at the sample locations
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nT followed by the summation of each contributor at the desired sample
position. This interpretation, the classic cardinal reconstruction, is shown in
Fig. 3.28. An alternative interpretation places the cardinal interpolator at the
desired sample position T, and then forms the weighted summation of the data
values of each sample position that intersects that cardinal function. The data is
weighted by the value of the cardinal function at each intersection position.
Shown in Fig. 3.29 is a set of data points and the cardinal function located at
the desired interpolation position.

We now examine the task of interpolating an arbitrarily long sequence of data
at P equally spaced subintervals between the existing data [29,30]. These
subintervals are indicated in Fig, 3.30. We can slide the weighting function to each
of the desired positions and then form the appropriate weighted summation. This
sequence of operations looks amazingly like a convolution. With the inclusion of
one final detail, this weighted summation will be seen to be a FIR filtering
operation. We start with a naive, but still useful, initial approach to increase the
data rate by the factor P. We first identify positions for the P — | new data points
between each pair of existing data points by placing zero values at those desired
equally spaced positions. This is called zero-packing (as opposed to zero-
extending) the data, and we will soon develop design insight by examining this
operation in more detail. The interpolation task is now that of a simple moving
weighted average through this zero-packed data, which can be performed with a
FIR filter. The filtering process replaces the zero-packed data with the
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Fig. 3.29. Convolution with cardinal function.

bandlimited interpolation values. If the lowpass filter coefficients were originally
scaled for unity gain at zero frequency, a final scale factor of value P must be
applied to the output data to maintain the unity again at 0 Hz.

We still have to address the problem of selecting the proper length filter and
examine processing schemes that take advantage of the zero-valued data points
of the input series. Speaking of zeros, we note that the cardinal weighting
sequence has its own set of equally spaced zeros and that by choosing the
bandwidth to be an integer fraction of the sample rate these zeros can be made to
coincide with sample positions. These approximations, called Nyquist pulses, are
obtained by windowing the cardinal function. Because the distance between these
zeros is the same as the distance between the input data points, we see that filter
weights based on the Nyquist pulse require no computation to form output
values at the output positions that match the input data positions. Thus only data

X - INTERPOLATION POINTS
Fig. 3.30. 4:1 Interpolation: desired subintervals indicated.
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at the interpolated positions have to be computed. For a non-Nyquist pulse,
data has to be computed at all positions, even those that correspond to input
data positions.

Spectral Effects of Zero-Packing Input Data B

In the previous section we cast the interpolation process in terms of lowpass
filtering of zero-packed data. The zero-packing can be visualized as multiplexing
the input data with P — 1 additional zero-valued data points, as indicated in
Fig. 3.31. We note that the data rate out of the multiplexer is P times the input
data rate. Also, in spite of the new rate, the only nonzero data present is the
input data. Then what have we accomplished by multiplexing with the zeros?
We have changed the quantity we identify as the sample rate from 1/7T samples/s
to P/T samples/s. Since the spectra associated with sampled data is periodic in
the sampling frequency, we have redefined a spectral period as P cycles of
spectra rather than one such cycle. The spectra is still periodic in 1/T since
it satisfies

H(f)=H(f+§> (3.16)

for all frequencies f; but Eq. (3.16) must also be satisfied for all integers K and
particularly for the desired integer P. The task of the interpolating filter is to reject
the spectral copies that occur at the integer multiples (less than P) of the input
sampling frequency. This is the same task the lowpass filter had to perform as part
of the desampling process described in Section III. We call attention to the
similarity of the filtering functions of upsampling and downsampling so that we
have access to the design techniques presented earlier. The spectral description of
the data at the indicated points in Fig. 3.31 is shown in Fig. 3.32.

If we compare the spectral relationships for the upsampling filter (Fig. 3.32)
with those of the desampling filter (Fig. 3.16), we realize that the relationships are

ZERO

PACKED INTERPOLATED
fs P-fs P-fs
————() e T LOWPASS FILTER 2

Fig. 3.31. P:1 Zero-packing with input multiplexer.
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Fig. 3.32. Spectral description of filtering zero-packed data.

identical. In both of the filters the parameters M and P denote the ratio of the
higher sample rate to that of the lower sample rate. The difference in the two filter
cases is that for the desampling filter the higher sampler rateis the input rate, and
for the upsampling filter it is the output rate. Thus we find that Eq. (3.8)
establishes the length of the lowpass filter for both desampling and upsampling
operations (with the parameter P substituted for the parameter M if required).
For the upsampling filters the parameter K(A) no longer reflects control of
aliased spectral terms but control of replicated spectral terms.

C Partitioning Filters For Polyphase Structures

In the previous two sections we presented the technique of interpolation by
zero-packing and lowpass filtering. We further showed that the length of the
lowpass filter is chosen to satisfy the same spectral constraints required for a
desampling filter. This relationship, originally Eq. (3.8), is repeated here as

N=p>2= (3.17)
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We now note that of every P samples of zero-packed data presented to the filter
only one point is nonzero. The contribution of the remaining P — 1 zero-valued
data points to the output weighted summation is identically zero. We may reduce
the computational burden of the N-point filter by suppressing those multiplica-
tions (and additions) of the filter coefficients that operate on these known zero-
valued data points. Figure 3.33 indicates, by a set of indicator flags, the position
of the nonzero data values for a sequence of zero-packed data in a filter
performing a 4:1 upsampling interpolation. Since only one out of P samples is
nonzero, if we count the nonsuppressed arithmetic operations performed by the
length-N filter, we find only N/P multiplications and additions per output point.
Comparing this to Eq. (3.9), we see that the number of operations per output
point is the same for the process of desampling and upsampling and that this
number depends only on sidelobe levels and fractional bandwidth of the filtered
data. The total workload may be greater for upsampling simply because more

output points are being computed.
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Fig. 3.33. Partition of impulse response by indicator set from 4:1 zero-packed data set.
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We now partition the lowpass filter into a collection of subfilters known as
polyphase filters [31]. The subset of filter coefficients needed to compute a given
output point are those that intersect the nonzero data points in the span of the
filter’s total impulse response. On successive shifts, the nonzero input data
samples intersect different subsets of the filter’s impulse response needed to
compute a particular output sample. We use the indicator set of Fig. 3.33 to
identify the coefficient subset required for each particular output shift. These
subsets define the polyphase subfilters, of which there must be precisely P, the
upsampling ratio.

Shown in Fig. 3.33 is a partition of a 30-point filter into the four subfilters
required for a 4: 1 upsampling operation. The four successive indicator time lines
correspond to successive time shifts of data through the filter. Note that only four
distinct subsets are defined by this partition because the next time shift time line
cycles back to the first such line. We also note that there may not be an equal
number of coefficients in each subset. The average length of the subsets is N/P,
and if this is not an integer, the actual lengths are either the next integer higher or
lower. If we count the indicator set in Fig. 3.33, we find two subfilters of length 8
and two of length 7. A consideration for identical architectural structure in the
subsets may lead us to require that N/P be an integer and this can be trivially
arranged by choosing a larger N in the filter specification or by zero-extending
the existing coefficient set.

The filter structure can now be modified to take advantage of this partition of
coeflicients. Examining Fig. 3.33, we note a curious relationship between the
nonzero data locations and the filter coefficients. The data indicated on the first
time line is processed by the eight coefficients of the phase 1 filter. On the next
three time lines we note that the same data is successively processed by the next
successive phases of the filter. The important observation here is that it is the
same data! We might reason that the data could stay still while a succession of
four filter sets is applied between successive (nonzero) input samples. Rather than
visualize zero-packed data sliding through a single N-point filter and intersecting
P distinct subsets, we can imagine the non-zero-packed data sliding simulta-
neously through P distinct filters of length N/P. Each filter receives a new data
point at the input sample rate, and we increase the output rate by multiplexing

'!
72/

y

Fig. 3.34. 4:1 Polyphase filter structure.
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through the outputs of the P polyphase filters. Figure 3.34 shows this structure.
Note that the input commutator, which originally was used to zero-pack the
input data. is now used to sequentially address the outputs of the polyphase filter.

Arbitrary Change in Sample Rate by PPM D

[n Section 111 we presented techniques to decrease the filter output rate by an
integer factor M, and in Section V we described techniques to increase the filter
output rate by the integer factor P. We now combine the two methods to realize
ratios of output to input sampling frequency equal to the ratio of arbitrary
integers P/M. The rational fraction P/M can be greater or less than unity. Often
the fraction is a ratio of small integers such as 5/2 or 3/4, but a ratio such as
18/6145 can also be managed. There are cases, such as in time delay interpolators,
for which the ratio is precisely unity but realized as P/P (such as 20/20). Wc¢
alluded to such an option in the introduction as the interpolators used in time
domain beamformers. We can even accommodate a ratio that is slowly time
varying about a nominal value by imbedding occasional input zero sample
padding and/or output sample skipping in the filtering process.

The philosophy of this technique is to upsample the data by the numerator
integer (P) but with a transition bandwidth on the interpolating filter to allow a
desampling by the denominator integer (M) Figure 3.35 shows the shifting
indicator set for a 3:1 desampling imbedded in a 1:4 upsampling filter. Fig-
ure 3.36 shows the polyphase structure of the filter; note that it operates on the
shift schedule listed in Fig. 3.35.

This method is best described with the aid of a specific example. For an
example of a resampling of arbitrary ratio, let us consider the task of inter-
polating complex data at an input rate of 6 kHz to a real output rate of 8 kHz.
For example, data could be a voice-grade telephone channel that has been
zero centered by a complex heterodyne and has a normal one-sided alias-free
bandwidth of 1.8 kHz. The first task is to upsample the data to the lowest
common factor of the input and output frequencies; this is 24 kHz, so we require
an initial 4 : 1 interpolating filter. If our only need was to upsample by a factor of
4, the required transition bandwidth of the filter, as shown in Fig. 3.37, would be
2.4 kHz (4.2 kHz — 1.8 kHz). The desampling and conversion to a real signal,
which follows the upsampling operation, reduces the bandwidth spacing between
the spectral replicates, thus necessitating a narrower transition bandwidth.
Hence we see that the upsampling and desampling operations are coupled
through the transition bandwidth specifications of the interpolating filter.
For our example the required transition bandwidth is seen to be 0.4 kHz
(2.2 kHz — 1.8 kHz), and since the LPF must operate at the equivalent input
data rate of 24.0 kHz, we find that the required filter length for 40-dB sidelobes is

Js 24.0
N__K(A)Af—ZOA =120 (3.18)
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Fig. 3.35. Partition of impulse response by indicator set from 4 : 1 zero-packed data with imbedded
3:1 desampling for a total 4: 3 resampling.

With this interpolator implemented in a polyphase structure, we can imbed the
desampling operation in the phasing of the input clock and output commutator
clock. Figure 3.35 presented a sequence of time lines showing the zero-packed
data sliding past the filter coefficients and pausing at each third input to compute
the desampled output. Comparing the input sequence to the polyphase filter taps,
we see the input-output phase relationships are indicated in Fig. 3.36. The final
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|
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Fig. 3.36. 3:4 Resampling filter with a 4:1 polyphase filter and imbedded 1:3 resampling,
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operation applied to the output is the complex heterodyne to shift the data by one
quarter of the sampling frequency. Since we are only interested in the real part of
that heterodyne product, we will only form that part of the complex multiplica-
tion that contributes to the real part. This operation is

d(n) = Re{[x(n) + jy(n)] * [cos(Bn) + j sin(6n)]} (3.19)

= x(n) * cos(6n) — y(n) * sin(6n)

= x(n) * cos (Zn) — y(n) * sin (725 n)

We note that the sequence of cos and sin values needed for the complex
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multiplication are cyclically the values

{cos(g n)} — 410,00, —1.0,0.0 (3.20)

{sin (g n)} — 00, +1.0,00, —1.0

Since these products are trivial, the sequence d(n) of Eq. (3.18) can be formed as
cyclically multiplexed and sign-reversed filter outputs such as

{d(n)} = x(n), y(n + 1), —x(n + 2), —y(n + 3),... (3.21)

Figure 3.37 shows the spectral descriptions of the signal in the conversion of the
6-kHz complex signal to an 8-kHz real signal. Figure 3.38 shows the final
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Fig. 3.38. Complex-to-real polyphase filter structure.
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structure of the complex-to-real interpolator, in which the desampling is
performed with the polyphase output commutator, and the output heterodyne is
imbedded in the multiplexer along with appropriate sign changes. Note that the
workload for this filter is 30 multiplications and additions per real output point.
Also note that for this example the coefficients for phases 1 and 2 are the same set
but in reversed order; this is also true for phases 3 and 4.

ARCHITECTURAL MODELS FOR FIR FILTERS

The FIR filter directly implements the convolution process as a weighted
summation of data points. The various names by which the filter is known
include “tapped delay line,” “moving average,” “transversal,” “all zero,” “nonre-
cursive,” and “linear phase” (As explained in Chapter 2, a FIR filter is not
necessarily linear phase.) These names reflect properties or structure of the filter.
The first three names are architectural descriptors and represent the signal flow
model that first comes to mind for most of us. Figure 3.39 presents a block
diagram of the classical tapped-delay-line model. The model describes the way
we would manipulate data stored in a sequence of memory cells. The first
observation is that the adder junction of the model is an (N — 1)-input adder that
does not exist. Occasionally the model is redrawn to reflect the use of two-input
adders for the actual implementation. One such version is shown in Fig. 3.40.

2% ¢t

Fig. 3.39. Classical tapped-delay-line FIR filter model.

—{TTT — 171}

Fig. 3.40. Two-input adders model of tapped-delay-line filter.

Vi
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Note that we are free to rearrange the order in which we perform the additions of
the product terms to obtain reduced computational noise. We will discuss this
option soon. This form also suggests various levels of parallelism in terms of
adder trees, as indicated in Fig. 3.41.

The simplest adder chains are implemented by successive additions in an
accumulator. This form of the adder chain is the digital version of an integrate
and dump recursive filter and model is shown in Fig. 3.42.

The N multiplication operations distributed through the models in Figs. 3.39
through 3.41 could be performed by parallel multipliers. Most implementations
of the FIR filter use only one multiplier, which sequentially accesses the
coefficient and data pairs as suggested in the block diagrams. Signal processors
designed with four multipliers (an architecture optimized for complex com-
putations such as in an FFT) have options for some parallelism in the multiplier
chain or in the successive inner products of sequential (shifted) filter outputs,

The combination of a single multiplier and accumulator along with data and
coefficient memories leads to the minimal FIR filter processing architecture
shown in Fig. 3.43. We now leave this level of architectural detail and return to
the block diagram level. If the filter response exhibits symmetry about its
midpoint, the block diagram model is modified to reflect a sum-product-sum

Fig. 3.41. Parallel adder model of tapped-delay-line filter.

MEMORY
CELL

Fig. 3.42. Integrate and dump accumulator.
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sequence of operations [32]. This is shown in Fig. 3.44 and again in Fig. 3.45. In
this form the coefficient memory is half of the filter.

While we are fine tuning the filter architecture to reflect our knowledge about
the coeflicient set, we can modify that set to minimize computational noise. We
can do this by storing the coefficients as short blocks of successive weights that
share common binary exponents. This is called a block floating-point set. We
recall that the overall response of the lowpass filter is a smoothly truncated
version of the sin(wt)/(wt) function. The envelope of the time response mono-
tonically decreases as we leave the central peak. Moving away from the co-
efficient peak, we mark the coefficient boundary beyond which the magnitude
of the coefficients is alway less than half of the peak. We store the boundary
marker (as a count away from the peak) and simply double the coefficient values
that reside across that boundary on either side of the peak. We do this bound-
ary marking and coefficient doubling recursively till we reach the end of the set.
This process reduces the effects of coefficient quantization errors, which we
have observed limit the achievable stopband sidelobe attenuation.

The filtering process of multiplication and addition proceeds from the tail of
the filter toward the center point. On each call to the coefficient memory we
examine:the exponent flag (to identify a crossing of an exponent boundary). If the
flag is set, while performing the multiplication we simultaneously align the

Fig. 3.44. Sum-product-sum FIR filter model.
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exponent of the partial sum with that of the coefficient (by a binary shift and sign
extension) prior to the recursive addition. This recursive exponent alignment
continues through the entire coefficient set and, when finished, results in the
properly aligned summation. Here we have the advantage that the partial
summations are performed with more accurate coefficients before the scaling.
The original filter coefficient set indicated in Fig. 3.45 has been modified by the
block floating-point operation to become the second set shown in the same figure.
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Also shown in Fig. 3.45(c), (d), and (e) is the frequency response of the filter
realized, respectively, with floating-point, with 16-bit fixed-point, and with 16-bit
block floating-point coefficients, respectively. This technique requires the data to
be buffered in random access memory so that the partial sums can be performed
in the selected order. We cannot apply this scaling technique if the memory is
sequential access, such as in a shift register memory, nor can we apply it if the
architecture is not of the tapped delay form, such as in the partial-sum models.

A Partial-Sum FIR Filter Structure

The partial-sum model is a minimum data memory realization of the
resampling FIR filter [33]. In this architecture partial summations instead of raw
input data are stored. In the tapped-delay-line model each data point shifts
through the delay line with periodic pauses to compute the product and
summation required for its contribution to a given output point. In the partial-
sum model the set of products and summations, normally formed sequentially as
a data point moves in the tapped-delay-line model, are all formed simultaneously
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Fig. 3.46. Partial-sum partition of polyphase filter set.
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upon the data point’s arrival. The additions are made to partial-sum ac-
cumulators, which are cleared only upon completion of each summation. Since
the data’s contribution to each filter output point is stored as a collection of
partial summations, there is no need to store the raw data. Storage consists
entirely of the partial summations. This consideration is important in very high-
speed applications where memory access times would limit processing speeds.

We now address the number of partial summations required for a given filter.
The number of partial summations required to form a resampling FIR filter
depends on filter length, number of polyphase segments (upsampling parameter),
and the imbedded desampling parameter (if any). The required number is most
easily seen by keeping track of the clearing rate for the accumulators. The
contents of a partial-sum accumulator are cleared upon the completion of the
polyphase inner product. Upon clearing, the accumulator becomes available to
form the next partial sum.
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Fig. 3.47. Partial-sum polyphase filter realization.
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Let us follow a specific example, in particular the 30-point 4:1 upsampling
filter with the imbedded 1:3 desampling of Fig. 3.35. Assume the first three data
points have just contributed to a freshly cleared phase 1 segment. Since the
segment has not finished its run (of eight), it cannot clear. The next three input
points arrive and contribute to this first partial sum and to the start of a second
partial sum. The first sum has now accumulated six of its required eight points;
hence it has not completed its run and still cannot clear. The second accumulator,
holding a fresher sum, obviously has not finished its run of eight, and it too
cannot be cleared. The next three input points arrive; two of them contribute to
the first sum and finish its run of eight points, thus allowing an output and a
clearing. These same input points contribute to the second partial sum and to a
fresh third partial sum. When the next three input points arrive, they start a fresh
partial sum run in the original first accumulator. Thus we find that three partial
sums had to be in operation for the phase | segment. This accounting technique 1s
shown in Fig. 3.46 for all four phases. Shown in Fig. 3.47 is the partial sum
polyphase structure of this same filter.

SUMMARY

This chapter has examined the structure of resampling filters. We found that
the resampling filter is essentially a lowpass filter and a system of input and
output switches operating at two or more frequencies. These frequencies are
related by integer ratios M :1, 1: P,and M : P. In our review of lowpass filters we
found that the filter length is proportional to the ratio of sampling rate to
transition bandwidth. The proportionality coefficient was shown to be inversely
related to stopband attenuation. We formed a simple estimate of this
attenuation-related coefficient and demonstrated some designs using our
estimates.

An interesting result of our review of resampling filters is that the filter design is
the same for desampling and upsampling ratios of M : 1 and 1: P, respectively. We
showed that, as with nonresampling lowpass filters, the filter length is pro-
portional to the ratio of the sample rate to transition bandwidth, where the
sample rate is the larger of the pair of input and output sampling rates.

We introduced upsampling filters through the technique of lowpass filtering a
zero-packed input data stream. We then used the nonzero positions in the zero-
packed data to identify filter subsets that formed distinct subfilters. These
subfilters were used as the polyphase components of computationally efficient
interpolating filters.

We also introduced other architectural variations of the FIR filter that permit
enhanced performance options related to speed, finite accuracy coefficients, and
memory requirements. These included the add-multiply-add structure, block
floating-point coefficient structrue, and the partial-sim structures.



3. Multirate FIR Filters 253

APPENDIX WINDOWS AS NARROWBAND FILTERS

Introduction

Windows were discussed in Section III in conjunction with FIR filter design.
Windows are also used in conjunction with the DFT to perform spectral analysis
on data sets observed over finite intervals. In support of that task, the window
serves various functions. the most important of which is to shape the spectral
response of the equivalent filter set. For this reason, windows designed for
spectral analysis applications can also be used as the impulse response of
narrowband FIR filters. In this appendix we shall review the important
properties of windows from the classical viewpoint of spectral decomposition. As
part of this review, we shall cite how those properties that make windows useful
for spectral decomposition can be interpreted as desirable properties for
narrowband FIR filters.

The first function a data sequence window (also called a data sequence
weighting) serves in spectral analysis is to define the duration of the observation.
For sampled data systems the duration is the number of samples N, which along
with the known time interval between samples T defines the total time duration
of the observation NT. This in turn defines the analysis’ minimum spectral
resolution, which is the inverse of the observation length 1/N T, where the units
are inverse seconds or hertz. This minimum resolution can be factored to
emphasis that the minimum resolution is equal to the sample rate divided by the
number of data points: (1/N)(1/T). This minimum achievable bandwidth is
obtained with the rectangular weighted window, sometimes called the default
window. By analogy, a FIR lowpass filter defined by the rectangular weights will
exhibit this minimum bandwidth response for the given number of points. From
the inverse viewpoint a FIR filter designed to pass a band of frequencies that
represents 1/N of the sample rate must span an input interval of at least N data
points. Data sequence shaping and additional filter length are required to obtain
filter sidelobe control for a given spectral bandwidth.

Figures of Merit

‘We must share the same concern about the maximum levels of the out-of-band
spectral response of FIR filters and data sequence windows. Table AI lists
common figures of merit for windows that can aid in comparing the important
performance considerations. The first parameter listed in Table Al is the highest
sidelobe level —that is, the minimum stopband attenuation. Filters are normally
specified by a minimum required attenuation level, and windows are identified as
exhibiting particular sidelobe levels or are designed to realize a given sidelobe

A
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TABLE Al

Figures of Merit for Shaped DFT Filters

Figure of merit

Overlap
Highest Equivalent carrelation
sidelobe Sidetobe noise 30-dB  Scallop Worst-case 6.0-dB (%
level fallofl Coherent BW BW loss process BW
Weighting (dB} (dB/octave) gain {bins) {bins) {dB) loss (dB) (binsy 75, OL  50% OL
Rectangle -13 -6 1.00 1.00 0.89 392 3.92 1.21 150 50.0
Triangle —27 —12 0.50 1.33 1.28 1.82 307 1,78 71.9 250
o= 10 —-23 —12 0.64 1.23 1.20 210 3.01 1.65 75.5 318
cos™(x) x=20 -32 —18 0.50 1.50 1.44 1.42 318 2.00 65.9 16.7
Hann x =130 -39 -24 042 1.73 L.bb 1.08 347 232 86,7 85
= 4.0 —47 -30 0.38 1.94 1.86 0.56 375 2.59 48.6 43
Hamming —43 —6 0.54 1.36 1.30 178 310 1.81 0.7 235
Parabohc -21 -12 0.67 1.20 .16 222 301 1.59 76.5 14.4
Riemann - 26 —-12 0.59 .30 1.26 1.89 303 1.74 734 274
Cubic —53 —24 0.38 1.92 1.82 0.90 3.72 2.55 49.3 50
o =025 —14 ~ 18 0.88 1.10 1.01 296 339 1.38 74.1 44.4
Tukey {a =0.50 —15 -18 0.75 1.22 1.15 224 311 1.57 727 364
x=10.75 —19 —18 0.63 1.36 1.31 1.73 3.07 1.80 70.5 25.1
Bohman —46 —24 0.41 1.79 L7 1.02 154 2.38 545 74
2 =20 -19 -6 0.44 1.30 1.21 2.09 323 1.69 69.9 278
Poissen [:c =30 —-24 6 0.32 1.65 1.45 1.46 164 2.08 54.8 15.1
2 =40 - 31 -6 0.25 208 175 1.03 4,21 258 40.4 74
Hatnming: a =105 — 35 — IR 43 161 1.54 1.26 333 214 61.3 12.6
Poisson [: =10 -39 - 18 0,38 1.73 1.64 L1l 3.50 230 56.0 9.2
=20 none —18 0.29 202 1.87 0.87 394 245 44.6 47
z =30 --11 -6 0.42 148 1.34 1.71 340 1.90 616 202
Cauchy ['x =40 35 -6 0.33 1.76 1.50 136 383 220 48.8 13.2
x = 50 - 30 - & (.28 2,06 |.68 1.13 428 2.53 i 94
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% =20
x =25
Taylor a=130
2 =35
a =40
x =25
Gaussian 2 =30
o= 3.5
% =25
Dolph- x=3.0
Chebyshev | x = 3.5
x=40
o = 2.0
Kaiser- x=25
Bessel 2 =30
=35
Barcilon-— 1=30
Temes 1=35
1= 4.0
Exact Blackman
Blackman

Minimum 3-sample
Blackman - Harris
Minimum 4-sample
Blackman—-Harris
62-dB 3-sample
Blackman-Harris
74-dB 4-sample
Blackman—Harris
4-sample a=30
Kaiser— Bessel

-40
- 50
- 60
-70
—~80
—42
—55
-69
—50
—60
-70
—80
—46
—-57
—69
—82
-53
—-58
—68
—68
- 58
—171

—-92

—62

—74

-69

0.57
0.51
0.47
0.44
0.41
0.51
0.43
0.37
0.53
0.48
045
0.42
0.49
0.44
0.40
0.37
0.47
043
0.41
0.46
042
0.42

0.36

045

0.40

0.40

1.30
1.43
1.55
1.66
1.76
1.39
1.64
1.90
1.39
1.51
1.62
1.73
1.50
1.65
1.80
1.93
1.56
1.67
1.77
1.57
1.73
1.71

2.00

1.79

1.80

1.25
1.36
1.47
1.58
1.67
1.33
1.55
1.79
133
1.44
1.55
1.65
1.43
1.57
1.71
1.83
1.49
1.59
1.69
1.52
1.68
1.66

1.90

1.74

1.74

1.91
1.60
1.37
1.20
1.06
1.69
1.25
0.94
1.70
1.44
1.25
1.10
1.46
1.20
1.02
0.89
1.34
1.18
1.05
1.33
L.10
1.13

0.83

1.27

1.03

1.02

306
ERN
326
340
352
3.14
3.40
373
312
323
335
3.48
3.20
338
3.56
374
3.27
3.40
3.52
329
347
345

3.85

334

356

3.56

1.74
1.90
2.06
221
235
1.86
2.18
2.52
1.85
201
2.17
2.31
.99
220
2.39
2.57
207
223
236
213
235
1.81

272

2.19

2.44

2.44

757
713
67.0
629
59.1
67.7
57.5
472
69.6
64.7
60.2
55.9
65.7
59.5
539
48.8
63.0
58.6
54.4
62.7
56.7
572

46.0

61.0

539

539

283
214
16.1
12,1
9.1
20.0
10.6
49
223
16.3
1.9
8.7
16.9
1.2
74
48
14.2
10.4
7.6
14.0
9.0
9.6

38

74

74
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level. The sidelobe levels are specified to reflect dynamic range considerations,
such as the noise floor of an input ADC (at —6.0 dB/bit). Windows are also
characterized by asymptotic rates of decay for the out-of-band sidelobe levels.
This traditionally is not a specification for FIR filters. As explained in Chapter 3,
however, a FIR filter with rates of decay between —4.5 and —6.0 dB/octave
{or —15 to —20 dB/decade) exhibits reduced levels of sidelobe aliasing under
the resampling operation. This asymptotic sidelobe decay rate is the second
parameter listed for each window in Table AL

The coherent gain (CG) of the window {or prototype lowpass FIR filter) is the
zero frequency gain (also referred to as the dc gain) of the window, which is found
as the summation of the window weights. The weights are normalized to a peak
value of unity, and the summation over the N points is bounded by N. The CG
parameter listed in Table AT is the summation scaled by the number of terms N:

N- I
CG = !;—":ZO w(n) (A3

This term is the numerical gain referred to in Chapter 3 and is required to
estimate the width of the accumulators needed when forming the weighted
summation of the FIR filter.

It 1s difficult to assess and compare the bandwidth-reducing abilities of filters
with different spectral shapes. One useful measure of this ability is the equivalent
noise bandwidth (ENBW). We can conduct test to measure the ENBW of a filter
by passing white noise with a known spectral density through the filter and then
measuring the output variance. The variance of the output noise is a measure of
the filter bandwidth. In particular, the ENBW of a window or filter is the width of
an equivalent ideal rectangular spectral response that will pass the same noise
power as the filter under test. The filter under test is first normalized for unity zero
frequency gain. If we assume unity sample rate and unity noise power spectral
density, the ENBW of a filter is given by

Y wi(n)
ENBW = " (A3.2)

Y win)

For a rectangular weighted summation of N terms, the ENBW is 1/N, which is
also the filter’s spectral resolution. For other weightings the ENBW is larger. In
many cases we are willing to accept a larger ENBW in order to control the out-of-
band sidelobe levels. The ENBW parameter listed in Table AI has been
normalized relative to the ENBW of the rectangular weights of the same filter
length.

Another important set of parameters is related to the shape of the filter’s
mainlobe spectral response. In particular, the spectral interval between the peak
gain and the ~3.0-dB and — 6.0-dB response levels is a convenient measure of
the filter mainlobe width. Normalized versions of these parameters are listed in
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Table Al for N-point weighting sequences. The normalization is in terms of bins.
where a bin is the frequency resolution using rectangular weightings (1/N of
the input sample rate).

The scallop loss is the attenuation of the window at one-half a bin separation
from the mainlobe peak spectral position. It is an important consideration when
the window is used to form a bank of adjacent filters that are spaced at one-bin
intervals such as in a DFT. The scallop loss represents the apparent reduction in
signal level due to a sinusoid whose frequency is midway between two adjacent
filter center frequencies. An allied figure of merit is the worst-case processing loss.
This term is the sum of the scallop loss and the ENBW (converted to dB) of the
filter. This represents the apparent reduction in SNR for a sinusoid in additive
white noise and can be attributed to use of the window. 1t is due to the position
of the input sinusoid in the filter bandwidth and to increased noise variance
resulting from the increased mainlobe widths. This figure is useful for detection
considerations but is often replaced with an average loss over the bandwidth (as
opposed to the maximum loss).

The last figure of merit listed in Table Al is the percent overlap correlation for
filters used to reduce the bandwidth of the input series. In many applications the
sample rate is reduced commensurately with the bandwidth reduction. For a
white noise input, filter output samples separated by more than the filter length
are independent. Those taken from the filter that are closer than the filter length
are correlated, because some of the same input data has contributed to each
output. The correlation coefficients represent the degree of correlation of filter
output points that are separated by 25% and 509 of the filter length. These terms
are useful in quantifying the estimation uncertainty (or variance reduction)
related to incoherent averaging of filter data.

Window (Filter) Descriptions C

Rectangular Window 1

The rectangular window is unity over its entire interval. When this data
sequence window is represented by an even symmetric FIR filter impulse
response, it is defined as

P4

h(n) =10, n=-——,...,—1.0, 1%’ (A3.3)

o

The sequence is shifted N/2 locations to the right to make it realizable. The
spectral response of the realizable weights is given by
N ]sin[((N + 1)/2)w]

H(w) = exp[—jiw sin[(l/2)w]“” (A3.4)
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The time response of this filter for N/2 = 25 is shown in Fig. A3.1(a); the spectral
response is shown in Fig. A3.1(b). The filter has the narrowest mainlobe width for
an N-point filter but exhibits high sidelobes. The first sidelobe is attenuated
approximately 13.0 dB relative to the mainlobe, and the remaining sidelobes fall
off at 6 dB/octave.

1 1.25

1.00

25 -20 -15 -10 -5 o 10 10 15 20 25

T 0dB

+ -60 I

Fig. A3.1. (a) Rectangle window and (b) log-magnitude of window’s frequency response.
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Triangular (Fejer, Bartlett) Window 2

The triangular window, when represented by an even symmetric FIR filter
impulse response, is defined by
In] N N
hny=10 - —— =——...,— 101, .., = A35
(n) N2 " 5 5 (A3.5)
This sequence is shifted N/2 — 1 positions to the right to make it realizable. The
spectral response of the realizable weighting is

(N sin[(N/4)w] }* ,

The time and spectral responses of this filter are shown in Fig A3.2. This filter’s
frequency response is seen to be the magnitude squared of the response of a
rectangular window of length N/2 + 1. The reason is that the triangle can be
obtained as the convolution of two (half-width) rectangles, so the resultant
transform is the product of the rectangle’s spectrum with itself. Note that the
mainlobe width has been doubled and that the sidelobes start at —26 dB and
decay at 12 dB/octave. The spectrum is everywhere positive, which is a property
of a filter response obtained by self-correlation of an arbitrary sequence.

Cos*(x) Windows 3

The cos(x) windows are a family of windows defined on the parameter «. The
window used as a symmetric FIR filter is defined by

X A7 _ N N
h(n) = Cos [(ﬁ)n:l n= BRI —1,0, ],...,? (A3.7)

The window is formed by raising to the power « the samples of half a cycle of a
cosine, which extends over the N + 1 points of the impulse response. The zeros at
the end of the interval become repeated zeros as the power « increases. The
repeated zeros of the resultant function suggest that not only is the function zero
at the boundaries, but also a number of the function’s derivatives are zero. This
has the effect of forcing the spectral sidelobe structure to decay more rapidly. This
also causes the time function (i.e., the impulse response) to the narrower so that its
spectral response widens. The time response and spectral responses for the filter
are presented in Fig. A3.3 for a = 2.0. This is the Hann window, which is
sometimes referred to as a raised cosine window. The window is defined by

hin) = Cosi’-[(%)n] =05[1.0 + cos[(-zNﬁ)n], (A3.8)
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Fig. A3.2. (a) Triangle window and (b) log-magnitude of window’s frequency response.

Since the time domain description of the Hann window is that of a two-term
cosine series, the spectral description is particularly simple, being a summation of
Dirichlet kernels of the form

2n 2n
H(w) = 0.5D(w) + 0.25[ (a) — W) + D( W)] (A3.9)
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where
_sin[(N/2)w]
" sin[(1/2)w]
The spectrum of the Hann window has a mainlobe width twice that of the

rectangular window (as does the triangular window), a highest sidelobe
attenuated relative to the mainlobe by 32 dB, and an asymptotic rate of sidelobe

I

|
.I!'l”l IH“!II N
-25 -20 -15 -5 0 5 10 15 20 25
(a)
7 0dB
il
i
Iy ﬂﬁﬁ.
e

(b)
Fig. A3.3. (a) Cos*(nn/N) window and (b) log-magnitude of window’s frequency response.
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decay of 18 dB/octave. The reduced sidelobe levels can be visualized as resulting
from the destructive cancellation of sidelobes from the offset Dirichlet kernels of
Eq. (A3.9).

4 Hamming Window

The Hamming window is an extension of the Hann window in the sense that it
is a raised cosine window of the form

h(n) = o + (1.0 — a)cos[(%")n] (A3.10)

with a corresponding spectrum of the form

H(0) = aD(w) + Loziﬂ[D(m — %“) + D(w + %“ﬂ (A3.11)

The parameter  permits the optimization of the destructive sidelobe cancellation
mentioned in the description of the Hann window. In particular, when o is
adjusted to 25/46 (0.543478261...), the first sidelobe (see the Hann window) is
canceled. The common approximation to this value of « is 0.54, for which the
window is called the Hamming window and is of the form

H(0) = 0.54 + 0.46 cos[(%)n] (A3.12)

The time and spectral responses of this filter are shown in Fig. A3.4. Note that
the mainlobe width matches that of the Hann, that the highest sidelobe is attenu-
ated with respect to the mainlobe by 43 dB, and that the asymptotic rate of
attenuation is 6 dB/octave.

5 Short Cosine Series Windows
The Hamming and the Hann windows are examples of windows constructed

by the summation of shifted Dirichlet kernels. The general time domain de-
scription of such a window is of the form

K/2 2 N
hwy =3 a®eos| (Z\kn| n==2 101N @A313
K=o N 2 2

which has a spectral description of the form

H(w) = a0)D(w) + i —(2—[ (w - k%”—) + D(m + k%’fﬂ (A3.14)
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subject to the constraint
K/2
Y a(k)=10 (A3.15)
k=0
We see that the Hamming and the Hann windows are of this form with only two
nonzero coefficients. Constructing a window with a small number of nonzero
coeflicients is one way to control the mainlobe width of the spectral response.

1.25

'

wn[lf”{ |

-10 -5

(b)
Fig. A3.4. (a) Hamming window and (b) log-magnitude of window’s frequency response.
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a. Blackman Window. Blackman examined windows with three terms and
found the values that placed zeros at the nominal position of the first two
sidelobes outside the mainlobe interval. These exact values and their two-place
approximations are

793

al0) = rgegg = 0426 590 71 % 042
9240
1403

ai3) = 18.608 = 0.076 848 67 ~ 0.08

The window defined by the two-place approximations is known as the Blackman
window and is of the form

2 .
h(n) = 0.42 + 0.50 cos[ﬁn n] + 0.08 cos [Fﬂ 2nJ. (A3.16)
N N
:——,..,—1,0,1,...,_
n 2 N 2

The time and spectral responses of this filter are presented in Fig. A3.5. Note that
the first sidelobe is attenuated 59 dB relative to the mainlobe and that the
sidelobes fall off at 18 dB/octave. The time and spectral responses for the exact
Blackman weights are presented in Fig. A3.6. Note that the highest sidelobe is
attenuated by 69 dB relative to the mainlobe response and that the sidelobes
decay at 6 dB/octave.

b. Blackman—Harris Window. Using a gradient search technique, Harris
found three-term and four-term windows that achieve minimum sidelobe level
responses. Nutall subsequently published corrected coefficients for the same
windows. These three- and four-term windows are called Blackman—Harris
or Harris—Nutall windows. These windows achieve sidelobe levels of —74 and
—94 dB, respectively. The coefficients for these windows are listed in Table AIL
The three-term ( — 74-d B) window formed by this short cosine series and its spec-
trum are given in Fig. A3.7.

¢. Sampled Kaiser—Bessel Window. Any good window with acceptable
sidelobe levels can be the prototype of a small number of term cosine series. We
simply sample the mainlobe spectral response of the prototype filter and use
scaled versions of those samples as the coefficients of the cosine series terms.in
(A3.13). For instance, the spectral description of the Kaiser—Bessel window is of
the form

H(w) = Si"hif“_zi?f/_z)z ., O<a<4 (A3.17)
n?a? — (wN/2)?
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Fig. A3.5. (a) Blackman window and (b) log-magnitude of window's [requency response.

TABLE All
Coefficients of Three- and Four-Term Blackman—Harris (Harris—Nutall) Windows

3 Term 3 Term 4 Term 4 Term
(—61dB) (—67dB) (—74 dB) {—94 dB)

a(0) 0.449 59 0.423 23 0.402 17 0.358 75
a(l) 0.493 64 0.497 55 0.497 03 0.488 29
a(2) 0.056 77 0.079 22 0.098 92 0.141 28
a(4) — - 0.001 83 0.011 68
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Fig. A3.6. (a) Exact Blackman window and (b) log-magnitude of window’s frequency response.
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Fig. A3.7. (a) Three-Blackman—-Harris window and (b) log-magnitude of window’s frequency
response.

In Eq.(A3.17)let @ = m(2rn/N), the equally spaced spectral points of a DFT; then

we have
sinh(z+/o? — m?) (A3.18)
w2 — m? ’

Hi(m) =
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TABLE Alll

Coefficients of Four-Term Sampled
Kaiser—Bessel Window

a(0) = 0.402 43
a(l) = 0.498 04
a(2) = 0.098 31
a(3) = 0.001 22

Now scaling the sampled results of Eq. (A3.17) gives

¢ = Hy(0) + 2H,(1) + 2H,(2) + [2H,(3)] (A3.19)
a(0) = H—‘((—) agm) = 22 ;(m), m=1,2.(3)

The four coefficients for the sampled Kaiser — Bessel window corresponding to the
parameter a = 3 (for — 70-dB sidelobes) are listed in Table AIll. The window
formed by this four-term cosine series and its spectrum are presented in Fig. A3.8.
Note that the four-term approximating window maintains essentially the same
sidelobe performance of the original prototype.

6 Constructed Windows

Numerous windows have been constructed as the product, as the sum, as
sections, and asconvolutions of simple functions and of other simple windows. In
general, these constructed windows do not exhibit the good spectral properties of
narrow mainlobe width and low sidelobe levels. We include them here to help the
user avoid taking well-trod pathways that have not led to useful results. For these
windows we simply describe the function and give their time and frequency
responses with no other comments.

a. Parabolic (Riesz, Bochner, Parzen) window. The parabolic window is a
simple polynomial function (quadratic) of the form

n |? N
=10—|—= — 3.20)
h(n) = 1.0 [N/z]’ 0<nl < 5 (A3.20)

The time and frequency responses of this window are given in Fig. A3.9.

b. Riemann Window. The Riemann window is a set of samples of the central
(main) lobe of the sin(x)/(x) function and is of the form

sin 2nn
N N
h(n) = ., 0<inl<— (A3.21)
2nn 2
N

The time and frequency responses of this window are given in Fig. A3.10.
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Fig. A3.8. (a) Four sample Kaiser—Bessel window and (b) log-magnitude of window’s frequency
response.
¢. De La Vallé—Poussin (Jackson, Parzen) window. This window is a
piecewise cubic curve obtained by self-convolving two triangles of half extent or
four rectangles of one-fourth extent. It is defined by

2 |n| N

h(n) = ] N v (32
2[10~—:] — < |nl <+
N/2 4 2

The time and frequency responses are given in Fig. A3.11.
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Fig. A3.9. (a) Riesz window and (b) log-magnitude of window’s frequency response.

d. Cosine Taper (Tukey) Window. The Tukcy window is unity amplitude
over (1 — a/2)N points, with the remaining («/2) N points forming a cosine taper
from unity to zero at its boundaries. The window is equivalent to convolving a
rectangle of width (1 — «/2)N with a raised cosine (the Hann window) of width
(2/2)N. The resultant window is of the form

1.0, 0<|n <a—

—a(N/2
0.5(1.0+cos[ ~iw~a( /2 ]) ociv—<ln|<ﬂ
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Fig. A3.10. (a) Riemann window and (b) log-magnitude of window’s frequency response.

The time and frequency responses of this window are given for a = 0.75 in
Fig. A3.12.

e. Bohman Window. The Bohman window is obtained by the convolution of
two half-duration cosine functions (Eq. (A3.7) with « = 1.0); thus its transform is
the square of the corresponding cosine function’s transform. The window is of the
form

[n]

_ [n] |n| N
h(n)—[lO—m] os[ N/2]+« n[ N/2] Og|n|35 (A3.24)

The time and frequency responses of this window are given in Fig. A3.13.
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Fig. A3.11. (a) De La Vallée-Poussin window and (b) log-magnitude of window’s frequency
response.

f. Poisson Window. The Poisson is a family of truncated two-sided expo-
nentials defined by
N
h(n) = exp[—al\lli/lz], 0<inl < 5 (A3.25)
The parameter « in this family corresponds to the reciprocal time constant of
an exponential sequence. The time and frequency responses of this window for
o = 3.0 are given in Fig. A3.14.
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Fig. A3.12. (a) 75% cosine taper (Tukey) window and (b) log-magnitude of window’s frequency
response.

g. Hann—Poisson Window. The Hann—Poisson family of windows is ob-
tained as the product of the Hann and the Poisson windows and is of the form

N/2 N/2 2

The time and frequency responses of this window are given for « = 0.5 in
Fig. A3.15.

hin) = 0.5[1.0 + cos<ni)]exp(~aﬂ), o<in< (A326)
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Fig. A3.13. (a) Bohman window and (b) log-magnitude of window’s frequency response.

h. Cauchy (Abel, Poisson) Window. The Cauchy is a family of windows
obtained from samples of a truncated Cauchy function. This function is the
power spectrum of a first-order analog filter and is the form
_ 1.0
"~ 1.0 + [an/(N/2)]?’

The time and frequency responses of this window are given for 4.0 in Fig. A3.16.

h(n)

0<|n < % (A3.27)



3. Multirate FIR Filters 275

4 1.26

l
H
:EI“‘LIHIHU;U

i : n
-25 -20 -1 -10 - 0 5 10 15 20 25
(a)
/ 0dB
’I/ - \ -20
(\)
/\/J |
[’\J +  -a0
/
| T -60
T { T T 1 | T T { 1 16
- 0
(b)

Fig. A3.14. (a) Poisson window and (b) log-magnitude of window’s f[requency response (x = 3.0).

Gaussian (Weierstrass) Window

Windows are smooth (usually positive) functions with tall, thin (i.e., concen-
trated) frequency responses. From the uncertainty principle we know that the
mean-square time duration T and the mean-square bandwidth W (in hertz)
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Fig. A3.15. (a) Hanning- Poisson window and (b) log-magnitude of window’s frequency response

(z = 0.5).

satisfies

]
TW > -
-2

(A3.28)

The Gaussian function is the minimum time-bandwidth function because it alone
satisfies Eq. (A3.28) with equality. The Gaussian window obtained as samples of a
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Fig. A3.16. Cauchy window and (b) log-magnitude of window’s frequency response (a = 4.0).

truncated Gaussian function is no longer minimum time-bandwidth and is of the

form
2
h(n) = exp[—1<a—h%) ] 0 <|n| s% (A3.29)

The time and frequency responses of the window for « = 3.0 are given in
Fig. A3.17.
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Fig. A3.17. (a) Gaussian window and (b) log-magnitude of window’s frequency response (x = 3.0).

8 Dolph-Chebyshev Window

The Dolph-Chebyshev window is an optimum window in the sense that it
exhibits the narrowest mainlobe width for a given maximum sidelobe level. The
peak sidelobe levels are all of the same size and are selectable. The window is most
easily described by its DFT in the frequency domain and then the inverse DFT
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determines the time domain samples. The DFT description is of the form

cosh(N cosh™(f cosh(nk/N)))

Hl) = cosh(N cosh ' [£])

(A3.30a)

where
cosh (X)=In[X + /X2 -10], |X|>10

~ cos(Ncos™ (B cos(nk/N)))

k) = cosh(N cosh™![£]) (A3.30b)

where

where f satisfies
t
B = cosh (ﬁ cosh™! 10") (A3.30¢)

and

N1 27
hn)= ) H(k)exp(j—ﬁnk> (A3.31)
The parameter o has the interpretation of sidelobe level in decades of atten-
uation. The time and frequency responses of this window are presented for a =
3.0 in Fig. A3.18. Note that the constant-level sidelobes in the spectrum imply
that the filter impulse response exhibits an impulse that resides at the boundary
of the time response. (In Fig. A3.18(a) the impulse amplitude is so small that the
impulse is not noticeable.)

Taylor Window 9

The Taylor window is an approximation to the Chebyshev window, which
holds a subset of the sidelobes at a constant level and permits the remaining
sidelobes to fall off at 6 dB/octave. This avoids the impulse in the time response
description of the window. The number of sidelobes held at the designated fixed
level depends on the chosen attenuation level. The spectral description of the
window is a short cosine transform exhibiting nonzero coefficients only over the
bandwidth of the constant-level sidelobes.

The Taylor weightings can also be described by the coefficients of the short
cosine series. Table ATV lists the nonzero coefficients of the short cosine series for
Taylor weights with sidelobe levels of —40, — 50, —60, and — 70 dB. The time
and frequency responses of a 51-point Taylor window for a maximum sidelobe
level of —60 dB are shown in Fig. A3.19.
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Fig. A3.18. (a) Dolph—~Chebyshev window and (b) log-magnitude of window’s frequency response
(a = 3.0).

10 Kaiser-Bessel Window

The Kaiser—Bessel window (see also Section IILB in Chapter 2) is an optimum
window in the sense that it achieves the smallest time-bandwidth product for
functions of finite duration. In a manner similar to the Gaussian function, which
is its own transform (in the absence of truncation), this window is its own
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TABLE ALV
Coefficients for Short Cos Expansion of Taylor Window

—40 dB ~50dB —60dB —70dB
a(0) 0.566 071 0.511 488 0.469 792 0.464 840
a(l) 0.440 535 0473 578 0.489 709 0.528 340
a(2) —0.010 702 0.013 046 0.040 343 0.007 174
a(3) 0.005 527 0.003 098 0.000 465 —0.000 292
a(4) —0.001 824 —0.001 837 —0.000 893 —0.000 225
a(s) 0.000 393 0.000 919 0.000 631 0.000 285
alt) — —0.000 410 —0.000 397 —0.000 228
ai7) =224 0.000 146 0.000 237 0.000 166
a(8) - —0.000 028 —0.000 132 —0.000 116
al9) -- 0.000 066 0.000 078
a(l10) — — —(1.000 027 —-0.000 051
a(ll) — — 0.000 007 0.000 032
a(l2) — - —0.000 018
a(l3) — s — 0.000 (19
a(ld) — — — —0.000 004
a(15) — — — 0.000 001

transform when we include the truncation operation. As such, we can define the
window either by samples of its spectrum or by samples of its time description. In
the sample domain description the window is defined in terms of the zero-order
Bessel function (of the first kind) by

Io(may/1.0 — (n/(N/2)? N
) = o™ /N <N (A3.32)
{o(me) 2
where
o k|2
I(X)= Y /%) (A3.33)
¥=o| k!
An alternative description in terms of its spectra is
h(n)zsmh((n/a 1.0 — (n/N/2)%) (A3.34)

sinh(m/a)

The time and frequency responses for the Kaiser—Bessel window for o = 2.5 are
given in Fig. A3.20.

Barcilon-Temes Window

Whereas the Kaiser—Bessel window achieved its performance by maximizing
the energy contained in the mainlobe, the Barcilon—Temes window achieves its
performance by minimizing the weighted energy outside the mainlobe. This
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Fig. A3.20. (a) Kaiser—Bessel window and (b} log-magnitude of window’s frequency response
(x = 2.5).

window, like the Dolph—Chebysheyv, is described by equally spaced samples in
the frequency domain, and then an inverse DFT transforms the window to the
time domain. The frequency domain samples are defined by

Acos{[y(k)] + BLy(k)/CIsin[ y(k)]}
(C + AB){[y(k)/C]* + 1.0}

W(k) = (A3.35)
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where A =sinhC = \/WW
B = cosh C = 10°
C = cosh ' 10°
f = cosh(C/N)

y(k) = N cos™ 1[[% cos (%k)]

+
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Fig. A3.21. (a) Barcilon—Temes window and (b) log-magnitude of window’s frequency response
(o = 3.5).
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Fig. A3.22. Highest sidelobe level versus worst-case processing loss. Shaped DFT filters in the

lower left tend to perform well.
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The time and frequency descriptions of the window are presented for = 3.5 in
Fig. A3.21.

D Closing Comments

We have described some classic windows that may be used as the impulse
response of narrowband FIR filters. We have also presented a table of important
figures of merit with which different windows/filters can be compared. A quick
comparison of important figures of merit is possible with Fig. A3.22. Here the
highest sidelobe level is plotted against worst-case processing loss for the different
windows described in this appendix. These parameters are important for
detecting sinusoids of unknown frequency in additive white noise. Robust filters
should exhibit low sidelobes and low processing loss—should be located in this
figure toward the lower left corner. By this criterion we see that the better filters
are the Dolph—Chebyshev, the Taylor, the Blackman—Harris, and the Kaiser -
Bessel weightings. If we include the consideration that the out-of-band sidelobes
should not be of constant amplitude, the Blackman—Harris and the Kaiser -
Bessel weightings are the most desirable.

Some of the windows identified here are particularly useful because of their
simplicity of form. For example, the short cosine series expansions for the
Blackman—Harris windows make it possible to compute the filter coefficients
for very large filters when standard filter design algorithms (e.g., the Remez
algorithm described in Appendix 2A) fail to converge.
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Chapter 4
lIR Digital Filters

NAZIR A. PASHTOON

Electrical Engineering Deparment
State University of New York

Stony Brook, New York 11794

INTRODUCTION |

The unit sample response (impulse response) of discrete-time linear time-
invariant digital filters is either of infinite duration or of finite duration. Thus,
from the point of view of the impulse response duration, filters can be classified as
infinite-duration impulse response (IIR), or finite-duration impulse response
(FIR) digital filters. IIR digital filters are commonly realized recursively by
feeding back a weighted sum of past output values and adding these values to a
weighted sum of present and past input values. In principle, IIR digital filters
have infinite memory. In contrast, the nonrecursive realization of FIR digital
filters has finite memory, where an output sample is generated as a weighted sum
of present and past input values.

The major advantage of IIR digital filters, compared to FIR digital filters, is
that, for a given order N, highly selective recursive digital filters can be designed.
In other words, the recursive realizations of IIR digital filters are computation-
ally efficient. The disadvantage of the recursive realization is that the designer
must pay attention to stability, parasitic phenomena, and (when a design
consideration) phase nonlinearity [1-4].

The title of this chapter covers numerous classes of digital filters. Indeed, the
topic of IR digital filters will, deservedly, require a whole book. Some important
and interesting low-noise and low-coefficient-sensitivity IIR digital filters [5—8]
appear in Chapter S. Special design requirements may dictate an investigation of
these structures and others.

Our purpose is to present standard techniques for designing IIR digital filters.
We emphasize indirect approach of designing digital filters from analog filter
prototypes [ 1-4] meeting given magnitude response specifications.
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Sections I and II contain an introduction and some definitions. Section 111
discusses the stability of IIR digital filters. Standard digital filter realizations are
discussed in Section IV. Section V describes filter specifications in the frequency
domain, as well as the use of analog filters as prototypes. Various analog filter
types and their design are discussed in Section VI. Section VII discusses analog
transformations for converting the lowpass prototypes of Section VI to lowpass,
highpass bandpass, and bandstop filters. Section VIII discusses various trans-
formations necessary for the “digitalization” of analog prototype filters. Section
IX examines spectral transformations, which are used for transforming a
prototype lowpass digital filter to bandpass, highpass, etc.

These techniques require precise knowledge of the transfer functions of analog
and digital filters at some stage of the design process. Section X presents two
types of IIR digital filters [9, 10] that start with a doubly terminated analog
lossless ladder network as a prototype, thus obviating the need for exact
knowledge of transfer functions. These filters have low sensitivity to coefficient
quantization errors and are well suited for narrowband designs.

Il PRELIMINARIES

The output sequence y(n) of a causal, linear, and time-invariant digital filter in
response to an input sequence x(n) is given by the convolution sum

yo) = 3. it~ myxm) = 3. hom)x(n — m) @

where h(m) is the unit-sample (impulse) response of the digital filter. The digital
filter is called a FIR digital filter if h(m) is identically zero outside a range
m, < m < m,. Otherwise, it is called an IIR digital filter. Assuming a causal
input sequence, we can write the convolution sum representation of digital
filters as

y(n) = 2:0 n — m)x(m) = z h(m)x(n — m) (4.2)

We obtain the frequency domain characterization of the digital filter by taking
the z-transform of Eq. (4.2), assuming the initial conditions are zero, which yields
the filter transfer function

Y(z)

H(z) = X@)

(4.3)

We obtain the steady-state frequency domain response of the digital filter by
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evaluating H(z) on the unit circle of the z-plane:
H(z) = H(e’*T) = |H(e’T)| Arg H(e®T) (4.4)

where T is the sampling period.
The transfer function H(z) can be expressed as a ratio of two polynomials

M
Y az*
H(z) = —*=0 _N@ (4.5)

N
1+ Z bz 7k
K=

For causal filters, considered in this chapter, N > M. If the denominator and
numerator do not have common factors, there will be N poles and zeros, with
N — M zeros at z = 0.

A time domain characterization of Eq. (4.5) as a recursive difference equation,
provided not all b, are zero, is given by

N M
yo) = = 3 by =R+ 3. axln — k) (46)

In Eq. (4.6) the output of the filter is a weighted sum of past outputs and inputs
and the present input. If all b, are zero, then the output is a weighted sum of
present and past inputs. The resulting difference equation is nonrecursive.

STABILITY

In the design of TIR digital filters stability is an important consideration. A
paper design might indicate a perfectly stable filter, whereas the actual filter
implemented may be unstable. An illustrative example will be the design of highly
selective filters, with poles inside but close to the unit circle of the z-plane (high-Q
poles). In the actual implementation of the digital filter, the finite precision
representation of coefficients could cause the poles in the proximity of the unit
circle to wander out and produce an unstable digital filter.

A discrete-time linear time-invariant causal digital filter is considered stable if a
bounded input creates a bounded output. In a stable system the impulse response
h(n) vanishes after a sufficiently long time. In an unstable system h(n)
grows without bound after a sufficiently long time. The impulse response h(n)
approaches a constant (nonzero) or a bounded oscillation for a marginally stable
system.
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Mathematically, a necessary and sufficient condition for the stability of the
digital filters under consideration is that the impulse response be absolutely
summable:

io [h(n)| < o (4.7)

The implication of Eq.(4.7) is that the stability of digital filters can be ascertained
by restricting the location of the poles of the transfer function H(z) of the digital
filter. In general, the stability requirements for the pole—zero location of H(z)can
be summarized as follows:

a. For a stable system the poles of H(z) can lie anywhere inside the unit circle
of the z-plane, regardless of their order (multiplicity).

b. If H(z) has poles outside the unit circle of the z-plane, regardless of the
order, the system is unstable.

c. If H(z) has first-order poles on the unit circle, the system is marginally stable.
Multiple-order poles on the unit circle make the system unstable.

d. In general, zeros of H(z) are allowed to lie anywhere in the z-plane.

A Testing for Stabiiity

In the previous section we summarized the stability requirements for digital
filters. Given a transfer function

Hp=NO _ NG (4.8)

D(z) i kaN k

the stability testing of H(z) requires that the location of the roots in the z-plane of
D(z) (characteristic polynomial) be investigated.

1 Direct Approach

A direct approach for ascertaining that the poles of H(z) lie inside the unit circle
is through root-finding routines, which are part of the standard repertoire of
computer libraries. However, for narrowband filters the roots of D(z) clump
together very close to the unit circle in a small region of the z-plane. Some root-
finding routines might require proper initial guesses, or might even provide
inaccurate results. Therefore, it is a good idea to verify that the roots found do
satisfy the characteristic equation.
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Jury’s Stability Test'

Jury’s stability test is similar to the Routh—Hurwitz test for stability testing of
continuous-time systems. The coefficients of the characteristic polynomial D(z)
are used to construct an array of numbers, known as Jury’s array, as illustrated
in Table 1. The procedure for constructing the array is as follows:

a. Form the first two rows of the array by writing the coefficients of D(z) as

shown.
b. Form the third and fourth rows of the array by evaluating the determinants

by b,

J

¢ = ,  j=0,1,2,...,N—1 4.9)

¢. Form thg fifth and sixth rows of the array from the third and fourth rows by
calculating its elements from

Co ON-1-J
d¢ =

J

,  j=0,12..,N=2 (4.10)

CN*I Cj

d. Continue this procedure until you obtain 2N — 3 rows, with the last row
having three elements y,, y, y,.

Jury’s stability criterion states that a digital filter with a transfer function H(z) and
a characteristic polynomial D(z) is stable if it passes the following tests:

a D)., >0
b (—)¥D(@)],o_, > 0

z=

C. |bol > Ibyl. Icol > len—1l, Idol > ldy -l Vol > |yal-

TABLE I
Jury’s Array for Stability Testing

Row Coefficients
1 by b, by
2 by by-y1be
3 Co € T CN—y
4 CnN-1 Cn-2"""Co
5 dy d, -dy.,
§ dy_pdy_3°dy
2N -3 Yo Y1 Y2

* See references {4, 11].

2
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TABLE 1
Jury’s Array for Example 4.1

Row Coefficient
1 8 4 2 —1 -1
2 -1 —1 2 4 8
3 63 31 18 —4
4 —4 18 31 63
5 3953 2025 1258

Example 4.1. To check the transfer function

z* + 223 4 22

H(z)=824+4z3+2zz—z—1

for stability, we form Jury’s array as shown in Table I1. Performing the various
tests gives the following results:

a. D(z),_, =12>0
b. (—)"D(2)|,—_, = (—1)*D(=1)=6>0
c. |8 > [—1],163] > |—4],]3953| > [1258]

Therefore the roots of D(z) are all within the unit circle of the z-plane, so the given
digital filter is stable.

B Stabilization

During computer-aided design (CAD) of digital filters, we may, while
optimizing, meet the magnitude response specification, but the transfer function
may be unstable. Also, using spectral transformations to derive from a given
lowpass prototype a digital filter with different passband specifications may
produce an unstable transfer function. In situations like the above, it is possible to
stabilize the digital filters [12] and still meet the magnitude response specifica-
tions. Toillustrate, let us assume that a pole of H(z)is outside the unit circle of the
z-plane. Thus D(z) has a factor

fz) = (z — re’? r>1 4.11)
For stabilization purposes let us replace f(z) by the factor
f2) =riz — r el = (rz — &%) (4.12)

Clearly, replacing the pole re’® by r~'e/® stabilizes the filter. The substitution
leaves the overall magnitude response unaffected because both factors have
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similar magnitude responses. To see this, consider

[f(ei°Ty = ’: —rel® = [(coswT — rcos)* + (sinwT — rsin6)*]"*
i z=eiwT
(4.13)
Now
I,/',(ejﬂ”.)l — r(z T Iejﬂ) — leijejO(re*jG _ e'*ij)' — Ie'*jmT _ rewj0|
= l(coswT — rcos 8)? + (sinwT — rsin#)?]'/? (4.14)
[f(e™N) = |f"(e”T) (4.15)

DIGITAL FILTER REALIZATIONS

For a given transfer function H(z) or the difference equations of a digital filter
meeting given specifications, we can implement the digital filter using special-
purpose hardware or as a software algorithm. A realization will consist of
converting the input-output relation of the digital filter into an algorithm of basic
operations, which are described next.

Realization Building Blocks

The basic operations involved in realizing digital filters require the following
building blocks:

a. Summer (adder). We assume that the summer can perform subtraction as
well.

b. Multiplier or scaler.

c. Delay units, which can be registers or memory references for storage and
recall of past values of signals.

Figure 4.1 shows the basic building blocks used in realizing digital filters.

xq (n)

yin) = xi(n) +xz(n) 0 m o y(n) = mx(n) x(n) y(n) =x(n - 1}
[: .zﬁ

(a) summer {b) multiptier {c) delay

Fig. 4.1. Basic building blocks.

Xz (n)
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Using the basic building blocks, we can realize a digital filter in many different
forms. From a practical standpoint, different realizations will exhibit different
noise characteristics, and the responses will show different sensitivities to
coefficient quantization, as discussed in the next chapter. In the following
subsections some standard realizations are shown,

Direct-Form Reaiizations

The transfer function of a digital filter expressed as a ratio of two polynomials
is

Yo 2%

H) =505 = > B (4.16)

We will let b, = 1, without loss of generality. The difference equation corre-
sponding to Eq. (4.16) is

y(n) = _ZO a;x(n — i) — Zl b;y(n — i) 4.17)

A realization of Eq. (4.17) known as direct-form 1 is shown in Fig. 4.2.
We will derive an alternative realization known as direct-form 2 by introducing
an intermediate variable G(z):
Y G(z2)
H(z) = ———— 4.18
(2) G0 X (4.13)

Fig. 4.2. Direct-form 1 realization.
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Let Y(z)/G(z) be the numerator polynomial

G
6(‘2“) = Z a;z (419)

i=o
and let G(z)/X(z) be the denominator polynomial
z 1
%—) - {4.20)
@ + Y bz
i=0

The difference equations corresponding to Eq. (4.19) and Eqg. (4.20), respectively,
are

N
yin) = ZO a;g(n — i) (4.21)
and
N
g(n) = x(n) — 3, big(n — i) (4.22)

Equation (4.21) can be viewed as the nonrecursive part of the algorithm of the
digital filter, shown at the right of the realization diagram in Fig. 4.3. Equation
(4.22) is the recursive part, as illustrated on the left of Fig. 4.3.

Figure 4.3 shows two sets of delays. Since a single set of delays is sufficient, the
delays are combined in Fig. 4.4, which results in what is called a direct-form 2

Recursive Non-recursive
x(n) N g(n) a0 n y(n)

+ - -

a4

a2

an

Fig. 4.3. Direct-form 2 realization.
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y(n)

Ye

Fig. 4.4. Direct-form 2 canonic realization.

canonic realization. This realization is canonic in the sense that, for the given
transfer function, the structure has the fewest adders, multipliers, and delays.
The maximum number of adders, multipliers, and delays is 2N, 2N + 1, and
N, respectively.

The direct realizations, though simple in appearance, have severe response
sensitivity problems because of coefficient quantization effects, especially as the
order of the filter increases. To reduce these effects, we can decompose the
transfer function into quadratic blocks, realized either as parallel or cascade
sections. These realizations, called nondirect realizations, are described next.

C Parallel Realization

A given transfer function H(z) can be expressed as a sum of quadratic sections:

Y(z

H(z) i (4.23)

where
agi + a“z"l
14 b,z " +byz72

Hi(z) = (4.24)
To obtain the H,(z), we use a partial-fraction expansion (see Section 1V.D in
Chapter 1) to get the various sections. Figure 4.5 shows the parallel realization,
and Fig. 4.6 illustrates a typical section.
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> H1 (Z)

X(z) Y(z)
»> Ha(2)

Hg (z)

Fig. 4.5. Parallel realization.

x{n) ap; y{n)
+

-b1i ay;

-bg;

Fig. 4.6. A typical section in parallel realization.

Cascade Realization D

A transfer function H(z) can also be decomposed as a cascade of quadratic
sections:

Y@ G(d) Gd)  Y()

=30~ %0 6.0 G

K
= Hy(2) - Hy(2) - Hy(2) = Ul Hy(z) (4.25)

where the Gi(z), i = 1, 2,..., K, are intermediate variables and

H(z) ag; +ayz ' +ayz?
AZ) =
' 1+ bzt + byz?

(4.26)

A typical cascade realization is shown in Fig. 4.7, and the realization of Eq. (4.26)
is shown in Fig. 4.8.
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Xl(z) Gy(2) Go(2) Y{z)
——p{ Hy(2) Hy(2) ~ee — Hglz) p—»

Fig. 4.7. Typical cascade realization.

&

Fig. 4.8. A typical quadratic section.

Using the transposition theorem from signal flow graph (SFG) theory, we can
derive alternative realizations, which may have different noise performance
characteristics. The theorem states that if the direction of each and every branch
in an SFG is reversed, the transfer function is unchanged [4, 13].

V FREQUENCY DOMAIN DESIGN

As stated in the introduction, this chapter deals with the design of frequency
selective IIR digital filters. More specifically, these filters meet prescribed
magnitude response specifications for the band of frequencies the filters will pass
or reject. We can approximate the given magnitude response specifications by
direct methods, such as computer-aided design, or indirect methods, such as
digitalizing an analog filter. The characterization of magnitude response of
filters and the notation used is explained next.

A Magnitude Response Characterization

The magnitude response of filters can be characterized in terms of the
frequency bands the filter will pass or reject. In Fig. 4.9 the ideal magnitude
responses of the four most frequently used filter types are illustrated as a function
of w in radians per second. Note that the periodicity of frequency response with
respect to the sampling frequency is not shown.
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EH](..)\

me— pdassband —» stopband ———5

Yo w, rps

(a) Lowpass

Hl(-o)[

pte— stopbdand —passband —— 5

O
we w, rPS
(b) Highpass
'Hl(r,\),
P le o o2 0 2 - 2 -
re— s Lopband—prg—~—passband —stopband ———>
0] ) w r
{ U.E.- u e ps
(c) Bandpass
R |
I
le— passhand —pdg—stopband —mpassband —»
0 [ — -
) We Yy W, rPS

(d) Bandstop or notch

Fig. 4.9. Ideal magnitude response characterization or brick-wall characteristics.
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In Fig. 4.9(a) the ideal magnitude response of a lowpass filter is illustrated. The
range of frequencies from 0 to w, is the passband of the filter, and w, is known as
the cutoff frequency. The stopband of the filter starts from w,. Figure 4.9(b)
shows the response of an ideal highpass filter. The stopband of the filter is from 0
to w,. The passband of the filter starts from w,. The magnitude response of an
ideal bandpass filter is shown in Fig. 4.9(c). Frequencies in the passband between
w, and w, are passed. Frequencies above and below w, and w, are in the stopband
of the filter and are rejected. Figure 4.9(d) is the response of an ideal bandstop
filter that behaves in a complementary fashion to the bandpass filter.

The response characteristics in Fig. 4.9 are also known as “brick wall” filter
specifications because of their shape. Although we cannot realize a brick-wall
characteristic by using a finite number of building blocks or elements, their use
does allow us to approximate the ideal responses closely.

To facilitate the approximation, we illustrate more realistic magnitude
response specifications in Fig. 4.10. In addition to passbands and stopbands, the
figures show a transition band for each type of filter. Furthermore, the passband
and stopband specifications also provide for response tolerances, indicated by the
crosshatched horizontal zones. The magnitude function is designated with the
nondescript notation |H,(w)|. The reason is that the steady-state frequency
domain magnitude specifications for analog and digital filters are basically
similar, except for the periodicity of the digital filter response with respect to ..
the sampling radian frequency:

2
w, =2nf, = lez rads ' (4.27)

Later when we need to distinguish between the transfer functions of analog and
digital filters, we use H,(jw) and H(e“T), respectively. The maximum value of
|H ()] is assumed to be 1. The passband tolerance makes allowance for | H,{r)]
to fluctuate from 1 to 1/+/ 1 + €2, where ¢, the ripple factor, is related to passband
ripple. Frequency «, designates the passband edge frequency. Frequency o,
designates the rejection frequency or stopband edge frequency, where | H,(w)|
should deviate from 0 by no more than 1/a. The symbol w, will be used to
designate the cutoff frequency (half-power point) of the filter magnitude
response, Furthermore we let

H,(w) = |H,(w)|e!* (4.28)
where
Hw) = Arg H,(w) (4.29)
is the phase angle. The group delay of the filter is defined as

_ db(w)

e 4.30
dw ( )

{w) =
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Fig. 4.10. Practical magnitude response specifications with allowance for tolerances.
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Fig. 4.11. Filter specifications in terms of attenuation in dB.
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The steady-state frequency domain response of filters is frequently specified in
terms of the attenuation or loss characteristics in the bands of interest. The
attenuation in dB is defined as

A(w) = —10log|H,(w)]* dB (4.31)

Figure 4.11 shows filter characterizations based on attenuation specifications.
The passband tolerance (maximum allowed ripple in dB) is designated by A,
and the minimum acceptable stopband attenuation is designated by 4,.

Specifications to Realization B

Filter design, in general, deals with the problem of finding an approximation to
given response specifications. The magnitude response specifications allow for
tolerances on in-band ripple as well as out-of-band rejection. For a given
realization the designer’s task is to find the unknown coefficients in the digital
filter transfer function in order to approximate the desired magnitude response
meeting or exceeding the specifications. Direct methods such as pole—zero
placement in the z-plane, error minimization, and optimization techniques
[14-17,3] can be used. Indirect methods, such as the transformation of proto-
type analog filters to digital filters, a standard design technique [1-4], will
be presented later.

CAD Technique' C

The direct approach of computer-aided design (CAD) of IIR digital filters
deals with approximating an arbitrary set of magnitude response specifications.
It is useful in finding digital filter coefficients for filters with multiple passbands
and stopbands. In this approach the arbitrary magnitude response specifications
are represented by a set of values a,, at frequencies w,. For a given realization the
transfer function H(z), whose coeflicients are unknown, is also evaluated at w,.
An error criterion, which can be minimized, is defined. Optimization techniques
[15-17,3] can be used to good effect. The application of the techniques may give
unstable poles, which can be stabilized by the method outlined in Section II1.B.

Use of Analog Filters as Prototypes D

The design of digital filters, namely, finding the coefficients of the transfer
function H(z) in order to meet a given response specification can be achieved

* See references [3,15-17].
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without reference to analog (continuous-time) filters. However, the use of analog
filters as prototypes has been popular [ 1] because of the preponderence of design
aids and information available about these filters.

VI ANALOG FILTER DESIGN AND FILTER TYPES'

The design task at hand constitutes designing first an analog filter that meets
the desired specifications and then utilizing simple transformations to map the
analog filter to the desired digital filter. The next section discusses the design of
some widely used analog lowpass filters, are the basis for many IIR filters,
because, by using frequency transformations, we can convert them to highpass,
bandpass, or bandstop filters.

A Butterworth Filters

Butterworth filters have a monotonically decreasing response with respect to
frequency. The magnitude-squared Butterworth function of order n is

1

H(jo)? = ————s (4.32
I a(.’w)l 1 + (CL)/(J)C)Z" ( )

where w, is the frequency for which |H,(jw,)|? = 1/2. Alternatively, since
20log|H,(jw)| =-3 dB (4.33)

w, is also known as the — 3dB cutoff frequency. Plots of Butterworth filters are
shown in Fig. 4.12. The Butterworth type of response is also known as a
maximally flat response because it is the response that is the flattest at w = 0 in
the sense that

&'\ Hy(jo)

- =0, i=012...m (4.34)
dw

w=0
where Eq. (4.34) holds for the largest m among all transfer functions with constant

numerators (all-pole transfer functions) and denominators of the same order.
To obtain a transfer function in the s-domain, we use analytic continuation:

1

Ul = ROR=9)| = oy

(4.35)

t See references [4, 18-22].
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Fig. 4.12. Magnitude-squared characteristic of the normalized Butterworth lowpass filter.

or

1
H,(s)H,(—s) = 4.36
I N (430
The 2n poles of H,(s)H,(—s) are the roots of
s 2n
1+ (— 1)"(—) =0 (4.37)
wC
which are given by
Sg = wcejﬂ:(l—n+21()/2n’ K=012....2n—1 (4.38)

Thus the poles are all on a circle of radius w_ and are n/n rad apart. Figure 4.13(a)
and (b) shows the distribution of the poles for n = 5 and n = 6, respectively,
for w, = 1.
To obtain a stable transfer function, all the left-half-plane poles in Eq. (4.38) are
assigned to H,(s). The left-half s-plane poles are
2K + 1 2K + 1
. 2K+ Dn N jcos( 2+ )n]

Sg = wc[ —sin——_

, K=0,1,....,n—1 (439
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n=5 n=6
(a) (b)
Fig. 4.13. Pole locations of H(s)H(—s) for Butterworth filters for (a) n = 5 and (b) n = 6.

The transfer function of Butterworth filters is given by

H,(s) = (—1)" "ﬂl ok (4.40)

K=0S — Sk

In Table III the denominator polynomials in Eq. (4.40), known as Butterworth
polynomials, are tabulated in factored form for normalized (w, = 1) filters.

Practical filter specifications are usually provided in the form of Fig. 4.11. In
other words, given the maximum passband attenuation A4, the passband edge
frequency f,, the minimum allowable attenuation in the stopband, and the
stopband edge frequency f,, we are required to find the order and transfer
function of the Butterworth filter. Applying the definition of attenuation,
Eq. (4.31), to Eq. (4.35) yields

2n
lOlog[l + (“ﬁ’) J = 4, (4.41)
,

TABLE 111
Factored Butterworth Polynomials for Normalized Lowpass Filters

=

Butterworth polynomial

SO0V BN -

s+ 1

52 4+ 1.41421s + 1

(s+ 2 +s+1)

(52 + 0.76537s + 1)(s? + 1.84776s + 1)

(s + 1)(s? + 0.61803s + 1)(s*> + 1.61803s + 1)

(52 4 0.51764s + 1)(s> + 1.41421s + 1)(s> + 1931855 + 1)

(s + 1)(s2 + 0445045 + 1)(5> + 1.24798s + 1)(s% + 1.80194s + 1)

(52 + 0.39018s + 1)(s? + 1.11114s + 1)(s® + 1.66294s + 1)(s* + 1.96157s + 1)
(s + D(s? + 0347305 + 1)s% + 5 + 1)(s2 + 1.53209s + 1)(s® + 1.87939s + 1)

(52 + 0.31287s + 1)(s? + 0.90798s + 1)(s2 + 1.41421s + 1)(s? + 1.78201s + 1)(s* + 1.97538s + 1)
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and
) 2n
IOIog[l + (;) } = A, (4.42)
wc
where
w, = 2nf, (4.43)
and
w, = 2xf, (4.44)

Dividing Eq. (4.41) by Eq. (4.42) and solving for n gives

ne [log[(10%!4» — 1)/(10% 14 — 1)]|
[log(w,/w,)|

(4.45)

Equation (4.45) can be written in more compact form by defining a selectivity
parameter

k=é%=§‘l<1 (4.46)
and a discrimination factor
100.1Ap -1 1/2
d2 (——*——100“ - 1) <1 (4.47)

for the filter. Larger k values imply narrower transition width. Af—that is,
steeper rolloff. Smaller d values of the discrimination factor imply a greater
difference between A, and A,. Substituting Eqs. (4.46) and (4.47) in Eq. (4.45)
gives a design equation

llogd| log(1/d)

"2 oghl ~ log(i/k) (4.48)

From Eq. (4.48), n will almost always be a noninteger value. To meet or exceed
specifications, select the next higher integer value for n. The cutoff frequency w,
can be calculated from Eq. (4.41) or Eq. (4.42). Thus to meet the passband
attenuation requirement exactly and exceed the stopband specification, we need

Dy

= o (4.49)

wC
To meet the stopband attenuation requirement exactly and exceed the require-
ment of passband specification, we need

Wy
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Example 4.2. Find the transfer function of a lowpass filter with Butterworth
magnitude response. The filter is to have no more than 1-dB deviation from ideal
magnitude response up to a frequency of 1000 Hz. The filter must reject
frequencies above 5000 Hz by at least 30 dB.

From the information supplied the specifications of the filter are

A,=1 dB, w, =21 x 1000 rads '
A, =30 dB, w, =21 x 5000 rads™!
The selectivity parameter of the filter is

Lo Jo _ 1000 _

=7 = %000 =
The discrimination factor of the filter is

VI10% A — 1 /1001 — |
= \/100.1A, 1 - \/’103 —1
The order of the filter is

. llogd| |log1.6099 x 1072|
“ llogk| [log 0.2

d = 1.6099 x 10~?

= 2.565

Selecting the next higher integer, we use n = 3. The poles for the normalized filter
can be obtained from a table (Table IIT) or calculated as

. 2K + 1 2K + 1
sK=—sm( )n+jcos( A )7:’ K=01,..,n-1
2n 2n
Therefore

i 7 ——

So = —sing +jcosg = —1/2 4+ jJ/3/2

§, = —sin3—7r + 'cosir = —1

L= 6 T/ T

. Sm Sn _
5, = —sm? +jcos? =—1/2—-jJ3/2=5,,

The normalized transfer function is given as
n—1 SK 1

Hals) = (AI)HKUOS — Sk T+ DT s+ )

To find the denormalized transfer function, we need to calculate the actual cutoff
frequency w,:

e = (10140 — 1) 12" = 27 x 1000(10°" — 1)
= 1253 x 2n = 7870 rads™!
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Denormalization is achieved by replacing every s in the transfer function by s/w.:

s 1
H(J) = (s/7870 + 1)((s/7870)% + s/7870 + 1)

Chebyshev Filters B

A filter’s magnitude response specification can be approximated in a band of
frequencies (the passband) by minimizing the peak error of the approximating
function in the band. Using this strategy, we get the Chebyshev magnitude
response filters. The magnitude response is characterized by an equiripple
passband and a much sharper transition band rolloff than in Butterworth filters.

The squared magnitude transfer function of the normalized (w, = 1) lowpass
Chebyshev prototype filter is

1
|H,(jo)|* = m (4.51)

where C,(w) is the nth-order Chebyshev polynomial:
C,(w) = cos(ncos™ ! w), O<w<l
=cosh(ncosh™'w), w>1 (4.52)

and e {called the ripple factor) is a free variable that determines the amplitude of
the ripple. To establish that C,(w) are polynomials in o, let

u=cos 'w 4.53)
Then
C,(w) = cos nu (4.54)
Using trigonometric identities, we get

Colw) =cos0 =1

C,(w) = cosu = cos(cos 'w) = w (4.55)
Cy(w)=cos2u =2cos?u—1=2w?—1 (4.56)
Cy(w) =cos3u=4cos’u — 3cosu = 4w’ — 3w 4.57)

The preceding relations are called Chebyshev polynomials. Table IV lists them
for n = 1,..., 10. Utilizing the trigonometric identity

cos[(n + 1)u] = 2 cos(nu)cos(u) — cos[(n — 1)u] (4.58)
we get a recursive formula for Chebyshev polynomials:

Cpi (@) = 20C, (@) — Cy_y(@); n=0,1,2,... (4.59)
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TABLE IV
Chebyshev Polynomials C_(w)

Chebyshev polynomial C,(w)

3

0 i

1 w

2 2w? -1

3 40° - 3w

4 8w* — 8w? + 1

5 160° — 20w* + 5w

6 320° — 480* + 18w? — 1

7 64w’ — 1120° + 560> — Tw

8 128w® — 2560w0° + 160w* — 32w? + 1

9 2560° — 576w + 4320° — 1200° + 90
10 5120'° — 12800® + 11200° — 400w* + 50w? — 1

Cnlw)
/—— n=3 9 — n=4 /- n=5
Y T T

A

Fig. 4.14. Chebyshev polynomials.
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with Co(w) =1 and C,(w) = w. We can obtain the higher-order Chebyshev
polynomials by using Eq. (4.59).

Figure 4.14 contains plots of the Chebyshev functions. Using Fig. 4.14 and
Eqgs. (4.52) and (4.59) we can deduce the following properties of C,(w):

1. For any order n
0<|C) <1 for0<|w| <1
|Co(w)] > 1 for |w| > 1

Also, C,(1) = 1 for any n.
2. |C,(w)| increases monotonically for w > 1.
3. C,(w)is an even (odd) polynomial if n is even (odd).
4. |C,(0)} = Ofor odd n. |C,(0)] = 1 for even n.

In light of the above, the Chebyshev magnitude response is characterized by
the following properties.

1.
1 when n is odd
11 + € when is even

2. Since C,(1) = 1 for any n, then |H,(j1)| = 1/+/1 + € for any n.
3. |H,(jw)| decreases monotonically for || > 1.

IHa(jw)’w-';O = {

In Fig. 4.15 typical response for odd and even n are shown.

Pole Location of Chebyshev Filters

Consider
(o)) = -y — = g (4.60)
MO =TV ECHw) 1+ €CH—9) |s— o ‘
The poles are obtained by finding the roots of the denominator
1 4+ €2C3(—js) = 0 - Cy(—js) = ii (4.61)
Letting
s=0+jo—o —js=—jo+w (4.62)
yields
cos[ncos Yw — jo)] = + ﬁ (4.63)
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IH,(jeo)t? -
o

n=6/—n—5

£=05

0.2

| n=6\‘ /—n—S

0.0 0.1

T T =1 T 1 T T T T |
0.00 0.25 0.50 0.7 (.00 (.25 1,5 1.7 2.00 2.25 2.50
w, 1ps

Fig. 4.15. Magnitude-squared response of an even-order and an odd-order normalized lowpass
Chebyshev filter.

Let
cos Yo — jo) = x + jy (4.64)
Substituting Eq. (4.64) in Eq. (4.63) gives

cos(nx + jny) = -_i'é (4.65)
cos(nx) - cos(jny) — sin(nx) - sin( jny) = + é {4.66)

Since cos( jx) = cosh(x) and sin(jy) = jsinh(y), we get
cos(nx)cosh(ny) — jsin(nx)sinh(ny) = + é (4.67)

Equation (4.67) is satisfied if
cos(nx) - cosh(ny) = 0 (4.68)



4. IR Digital Filters 315

and
. . i

sin(nx) - sinh(ny) = F - (4.69)

Since cosh(ny) # 0, in Eq. (4.68), cos(nx) = 0 so
x=(2K+1)-2’in, K=01,2,...,21n~1 (4.70)

|
y =t —sinh !~ (4.71)

n €

From Egs. (4.70) and (4.71) we obtain the real and imaginary parts of the roots,
which specify the pole locations:

1 1
ox = isin[(ZK + l)l] . sinh{— sinh™! —} 4.72)
2n n €

1
wg = cos[(2K + 1)%] . cosh[1 sinh ™! {| 4.73)
n €

where K =0, 1, 2,..., 2n — 1. From this we have

Ok n W
sinh?y ~ cosh?y

1 1
=1, y = ;sinh"” < (4.74)

This is the equation of an ellipse with foci at @ = + 1, and with minor and major
axes on the - and jw-axes of the s-plane, respectively. A typical pole distribution
of Chebyshev filters is shown in Fig. 4.16.

We now give design relations when maximum passband attenuation (4,),
minimum stopband attenuation (A4,), passband edge frequency (w, = 2xf,), and
stopband edge frequency (w, = 2nf,) are given. The denormalized magnitude-
squared function is

1

H(jo)? = — s
|Ha(jo)l (T eiCioioy (4.75)
so that
|H,(jw )lz—ml L 4.76
2% 1+ €2CH0/0) | pew, |+ € (4.76)
A, = 10log(1 + €?) (4.77)
From Eq. (4.77) we obtain
€ =/10014 ] (4.78)

Now

4, = 1010g(1 ¥ esz(%)> 4.79)
P
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cosh (L sinh™ (1/€))

[~ sinh (% sinh {1/€))

T T T 1 Res
6.4 0.6 0.8 1.0

Fig. 4.16. Pole locations of H(s)H(—s) for a Chebyshev filter of order n = 6.

Using Eq. (4.52) gives us

A, = lOlog(l + €Zcosh2<n cosh“‘(:—:)i))) (4.80)
P

l()O.IAr _ 1 1/2
n> cosh_‘<~—-——2————> /cosh_l(&> (4.81)

€ / @,
Using the discrimination factor (d), Eq. (4.47) and the selectivity factor k,
Eq. (4.46), we can write the order n of a Chebysheyv filter very compactly:
cosh " 1(1/d)

"= Cosh (1/k)

from which

(4.82)

Note that
cosh™(x) = In(x + /x2 — 1) (4.83)
Knowing € and n from the design equations, Eq. (4.78) and Eq. (4.82), we can
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calculate the LHP poles of the transfer function from (4.72) and (4.73):

1. i
Sg = sin[(ZK + 1)—2%] . smh[; smh"IZ]

1 1
+ jcos[(ZK + l)l}coshl} sinh"—] (4.84)
2n n €
Note that .
sinh™'(x) = In(x + v/x2 + 1) (4.85)
The transfer function is
n—1
Hos)=—[] —*~, nodd (4.86)
K=08 — Sk
and
1 n—1 SK
H,(s) = n even (4.87)

V1+e€? KUOS — 5k
The poles obtained by using Eq. (4.84) are the poles of the normalized filter (i.e.,
w, = 1). To denormalize to an edge frequency w, = 2nf,, replace every s in the
transfer function with s/w,.
Finally, we can obtain the 3-dB cutoff frequency w_ by observing that

[ Ha(joo)I* = % = ITZICE(“(;‘S (4.88)
Using Eq. (4.52), we get
1 + €Zcosh?(ncosh™ w,) = 2 (4.89)
Solving Eq. (4.89) for w,, we obtain
w, = cosh (1 cosh™! 1) (4.90)
n €

Example 4.3. A lowpass filter is to be designed with the passband ripple not
exceeding 2 dB up to a frequency of w,,. The filter is to reject out-of-band signals
by at least 50 dB in the frequency range above 5w,.

The filter specifications based on the description are

A,<2dB atw = w,
A, > 50dB at w = w, = Sw,
The ripple factor is
€ =+/1001r — 1 = /102 — 1 =0.76478

The selectivity parameter is
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The discrimination factor is
€ 0.764783
d = =
\/100.1Ar_ 1 \/105_ 1
Using d and k, we may now solve for the filter order:
cosh™ '(1/d)

"= cosh™ '(1/k)
CIn(l/d + 1/d? + 1)

T In(1/k + J1/kE + 1)

=2.4185 x 107*

67177

= - = 29051
2.3124

Selecting the next higher integer yields n = 3. The poles can be obtained from
(Table V). To calculate sg for a normalized filter, we have

1 11 (1 1
=—sinh '~ =-In[-+ [ +1
y=~-sinh™* - nn<€+ e2+ )
1
= 3In(1.3076 + /27097) = 03610

Now

e¥—eY e’ +e7?

5 =03689.  coshy = = 1.0659

sinhy =

sy = sin| 2K + l)1 -sinh y + jcos| 2K + 1)1 -coshy
2n ’ 2n
Thus

So = ~sin<%)(0.3689) + jcos(%) 1.0659 = —0.1844 + j0.9231
. (n n
5, = sm(i)(o.3689) + jcos(5> 1.0659 = —0.3689

8y = —sin(%>(0.3689) + jcos(s?n) 1.0659 = —0.1844 — j0.9231 = §,

The normalized transfer function is

B 0.3269
(s + 0.3689)(s2 + 0.3688s + 0.8861)

H,(s)

To denormalize to any other frequency w, = 2nf,,, replace every s in the transfer
function by s/w,.



TABLE V
Factors of the Denominator Polynomials of Normalized Chebyshev Lowpass Filters

3

0.1-dB Ripple (€ = 0.15262)

o o0~ A B o —

S

5+ 6.55220
% 4 2.372365 + 3.31403
(s + 0.96941)(s* + 0.96941s + 1.68975)
(s* + 0.52831s + 1.33003)(s? + 1.27546s + 0.62292)
(s + 0.53891)(s? + 0.33307s + {.19494)(s* + 0.87198s + 0.63592)
(52 + 0.22939s + 1.12939)(s> + 0.62670s + 0.69637)(s? + 0.85608s + 0.26336)
(s + 0.37678)(s> + 0.16768s + 1.09245)(s* + 0.46983s + 0.75322)(s* + 0.67893s + 0.33022)
(s7 + 0.12796s + 1.06949)(s2 + 0.36440s + 0.79889)(s* + 0.54536s + 0.41621)(s> + 0.64330s + 0.14561)
(s + 0.29046)(s* + 0.10088s + 1.05421)(s* + 0.290465 + 0.83437)
- (s + 0445015 + 0.49754)(s* + 0.54589s + 0.20134)
(s* + 0.08158s + 1.04351)(s? + 0.23675s + 0.86188)(s> + 0.368745 + 0.56799)
- (52 + 0.46464s + 0.27409)(s? + 0.51506s5 + 0.09246)

0.2-dB Ripple (¢ = 0.21709)

0 ko —

(s + 4.60636)
(5% + 1.92709s + 2.15683)
(s + 0.81463)(s* + 0.814635 + 1.41363)
(s2 + 0449625 + 1.19866)(s> + 1.08548s + 0.49155)
(s + 0.46141)(s2 + 0.28517s + 1.11741)(s2 + 0.74658s + 0.55839)
{s? + 0.19705s + 1.07792)(s2 + 0.53835s + 0.64491)(s> + 0.73540s + 0.21190)
(s + 0.32431)(s% + 0.14433s + 1.05566)(s? + 0.40441s + 0.71644)(s* + 0.58439s + 0.29343)
(s? + 0.11028s + 1.04183)(s> + 0.31407s + 0.77124)(s> + 0.47004s + 0.38855)
- (s% + 0.554455 + 0.11795)
(s + 0.25057)(s* + 0.08702s + 1.03263)(s* + 0.25057s + 0.81278)
-(s? + 0.38389s + 0.47596)(s* + 0.47092s + 0.17976)
(s” + 0.44461s + 0.07513)(s2 + 0.40109s + 0.25677)(s? + 0.31830s + 0.55066)
-{s? + 0.20436s + 0.84455)(s* + 0.07042s + 1.02619)

6L

teontined )
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TABLE V (Continued)

=

0.5-dB Ripple (¢ = 0.34931)

O ~1 AN VAW

O

—
[=]

s+ 2.86278
s? + 1.42562s + 1.51620
(s + 0.62646)(s? + 0.62646s + 1.14245)
(s? + 0.35071s + 1.06352)(s? + 0.84668s + 0.35641)
{s + 0.36232)(s? + 0.22393s + 1.03578)(s? + 0.58625s + 0.47677)
(s? + 0.15530s + 1.02302)(s? + 0.424295 + 0.59001)(s2 + 0.57959s + 0.15610)
(s + 0.25617)(s? + 0.11401s + 1.01611)(s® + 0.31944s + 0.67688)(s? + 0.46160s + 0.25388)
(s2 + 0.08724s + 1.01193)(s? + 0.24844s + 0.74133)(s? + 0.37182s + 0.35865)

-(s? + 0.43859s + 0.08805)
(s + 0.19841)s? + 0.06891s + 1.00921)(s? + 0.19841s + 0.78937)

- (s* + 0.303985 + 0.45254)(s® + 0.37288s + 0.15634)

(52 + 0.055805 + 1.00734)(s? + 0.161934s + 0.82570)(s® + 0.25222s + 0.53181)

-(s? + 0.31781s + 0.23791)(s® + 0.35230s -+ 0.05628)

-3

1-dB Ripple (¢ = 0.50885)

o0~ N L AN —

s + 196523
s? + 1.09773s + 1.10251
(s + 0.49417)(s? + 0.49417s + 0.99421)
(s2 + 0.27907s + 0.98651)(s? + 0.67374s + 0.27940)
(s + 0.28940)s? + 0.17892s + 0.98832)(s? + 0.46841s + 0.42930)
(s2 + 0.124365 + 0.99073)(s® + 0.33976s + 0.55772)(s? + 0.46413s + 0.12471)
(s + 0.20541)(s? + 0.09142s + 0.99268)(s? + 0.25615s + 0.65346)(s> + 0.37014s + 0.23045)
(s2 + 0.070025 + 0.99414)(s? + 0.19939s + 0.72354)(s? + 0.29841s + 0.34086)

.(s? + 0.35110s + 0.07026)
{s + 0.15933)(s? + 0.05533s + 0.99523)(s? + 0.15933s + 0.77539)

-(s? + 0244115 + 0:43856)(s® + 0.29944s + 0.14236)

(s? + 0.04483s + 0.99606)(s2 -+ 0.13010s + 0.81442)(s? + 0.20263s + 0.52053)

- (s? + 0.25533s + 0.22664)(s? + 0.28304s + 0.04500)




1.5-dB Ripple (¢ = 0.64229)

5+ 1.55693
s2 + 0922185 + 0.92521
{5 + 0.42011)(s> + 0.42011s + 0.92649)
{s? + 0.238265 + 0.95046)(s* + 0.575215 + 0.24336)
(s + 0.24765)(s% + 0.153065 + 0.96584)(s> + 0.40071s + 0.40682)
(52 + 0.10650s + 0.97534)(s? + 0.29097s + 0.54233)(s2 + 0.39747s + 0.10932)
(s + 0.17603)(s* + 0.07834s + 0.98147)(s? + 0.21951s + 0.64225)(s2 + 0.31720s + 0.21924)
{s2 + 0.06003s + 0.98561)(s? + 0.17094s + 0.71501)(s> + 0.25583s + 0.33233)

-(s2 + 0301775 + 0.06173)
(s + 0.13667)(s? + 0.04745s + 0.98852)(s2 + 0.13664s + 0.76867)

<(s? + 0.20934s + 0.43185)(s? + 0.25679s + 0.13565)
(s? + 0.038455 + 0.99063)(s? + 0.11159s + 0.80900)(s2 + 0.17381s + 0.51510)

S(s2 + 0219015 + 0.22121)(s2 + 0.242775 + 0.03958)

=

2-dB Ripple (€ = 0.76478)

2 N B W N —

O

—_
(=]

s + 1.30756
5% + 0.80382s + 0.82306
(s + 0.36891)(52 + 0.36891s + 0.88610)
(5% + 0.20978s + 0.92868)(s> + 0.50644s + 0.22157)
(s + 0.21831)(s% + 0.13492s + 0.95217)(s> + 0.35323s + 0.39315)
s2 4+ 0.09395s + 0.96595)s? + 0.25667s + 0.53294)(s? + 0.35061s + 0.09993)
(s + 0.15533)(s? + 0.06913s + 0.97462)(s> + 0.19371s + 0.63539)(s> + 0.27991s + 0.21239)
{52 + 0.05298s + 0.98038)(s2 + 0.15089s + 0.70978)
- (s? + 0.22582s + 0.32710)(s* + 0.26637s + 0.05650)
{s + 0.12063)(s> + 0.04189s + 0.98440)(s* + 0.12063s + 0.76455)
< (s? + 0.18482s + 0.42773)(s% + 0.22671s + 0.13153)
(s2 + 0.03395s + 0.98730)(s? + 0.09853s + 0.80567)(s% + 0.15347s + 0.51178)
- (5% + 0.19338s + 0.21788)(s2 + 0.21436s + 0.03625)

L2e

(continued)
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TABLE V {Continued)

2.5-dB Ripple (e = 0.88220)

20 -1 AN W B W N

O

S

(s + 1.13353)
(s + 0.71525s + 0.75579)
(s + 0.32995)(s? + 0.32995s + 0.85887)
(s2 + 0.18796s + 0.91386)(s% + 0.45378s + 0.20676)
(s + 0.19577)(s* + 0.12099s + 0.94284)(s? + 0.31677s + 0.38382)
(s2 + 0.08429s + 0.95953)(s® + 0.230285 + 0.52651)(s2 + 0.314565 + 0.09350)
(s + 0.13941)s + 0.06204s + 0.96992)(s* + 0.17384s + 0.63070)(s? + 0.25120s + 0.20769)
(s + 0.047565 + 0.97680)(s2 + 0.1354s + 0.70620)(s> + 0.20269s + 0.32352)

«(s? + 0.23909s + 0.05292)
(s + 0.10829)(s* + 0.03761s + 0.98157)(s + 0.10829s + 0.76173)

(52 + 0.16591s + 0.42490)(s> + 0.203525 + 0.12870)
(s + 0.19245s + 0.03396)(s? + 0.17361s + 0.21560)(s> + 0.13778s + 0.50949)

-(s? + 0.08846s + 0.80338)(s2 + 0.03048s + 0.98502)

3-dB Ripple (¢ = 0.99763)

00 ~1 N WU A W N —

s + 1.00238
5% + 0.64490s + 0.70795
(s + 0.29862)(s2 + 0.29862s + 0.83917)
(s? + 0.17034s + 0.90309)(s> + 0.41124s + 0.19598)
(s + 0.17753)(s? + 0.10970s + 0.93603)(s% + 0.28725s + 0.37701)
(s* + 0.076465 + 0.95483)(s? + 0.20889s + 0.52182)(s* + 0.28535s + 0.08880)
(s + 0.12649)(s® + 0.056295 + 0.96648)(s? + 0.15773s + 0.62726)(s? + 0.22792s + 0.20425)
(s + 0.043165 + 0.97417)(s* + 0.12290s + 0.70358)(s* + 0.18393s + 0.32089)

(52 + 0.21696s + 0.05029)
(s + 0.09827)(s% + 0.03413s + 0.97950)(s? + 0.09827s + 0.75966)

(s> 4+ 0.15057s + 0.42283)(s* + 0.18470s + 0.12664)

{s* + 0.02766s + 0.98335)(s% + 0.08028s + 0.80171)}(s? + 0.12504s + 0.50782)

-(s? 4 0.15757s + 0.21393)(s? + 0.174665 + 0.03229)
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Inverse Chebyshev Filters C

Inverse, or type 2, Chebyshev filters have a flat magnitude in the passband and
equiripple in the stopband. Standard Chebyshev filters of type 1, discussed in
Section VLB, were all-pole filters. In contrast, inverse Chebyshev filters have
transmission zeros in the stopband. For a given filter order n, the magnitude
response is flatter in the passband for an inverse Chebyshev filter than for a
comparable Butterworth filter. The magnitude-squared transfer function is

€2Cw,/w)
H (jo)|?* = ——5—— 491
LGOI = s (491)
where C,(w) is the Chebyshev polynomial and w, is the stopband edge frequency
where the ripple starts. The attenuation in dB is

1

The ripple factor € can be calculated by noting that at the stopband edge, where
® = w,, the specified attenuation requirement must be satisfied as follows:

4, = 1010g( 1+ (4.93)

1
€2CZ(1))
Since C,(1) =1,

e L (4.94)

To meet the attenuation requirements in the passband, the maximum allowable
attenuation A4, cannot be exceeded at w = w,;:

4, = IOIOg(l + (4.95)

1
€2C,?(wr/w,,))
Using Eqgs. (4.94) and (4.95), we obtain the order of the filter as

cosh™*(1/d)
= cosh™(1/k)
which is the same as for Chebyshev filters [see Eq. (4.82)].
Analytic continuation is used in Eq. (4.91) to find the poles and zeros

__€Chjo,/s)
1+ €2C2(jw,/s)

(4.96)

Ha(S)Ha( - S)

4.97)

We obtain the zeros by setting.
jw
C, (L) -0 (4.98)
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Using Eq. (4.52), we write (4.98) as

cos(n cos™! (j—(iﬁ>) =0 (4.99)

which is satisfied if

cos ! (l‘i) =M modd (4.100)
$ 2n
The zeros, designated as s,,, are
sm:jw,sec<%’§>, m=1,3,...,2n— 1 (4.101)

The poles of the inverse Chebyshev filters are the roots of
I+ €2Cf<»j%) —0 4.102)

which is the same as Eq. (4.60) except that —s is replaced by l/s. Note that for
standard Chebysheyv filters the denormalization of the transfer function is with
respect to w, [see Eq. (4.75)], whereas for inverse Chebyshev filters the
denormalization is with respect to the stopband edge frequency w, . Therefore, we
determine the poles of a standard Chebyshev filter and then perform a pole
reciprocation to obtain the poles for the inverse Chebyshev filter. Pole
reciprocation consists of replacing each and every pole s, of the standard
Chebyshev filter by 1/s,. Note that the poles of the inverse Chebyshev filter lie
on an almost elliptical contour in the s-plane.

D Elliptic Filters'

The requirements of a given magnitude response specification can be met by
spreading the approximation error in the passband and the stopband. A strategy
of minimizing the peak error of the approximating function results in a filter
magnitude response characteristic that is equiripple in the passband and the
stopband. Filters having such a response are known as elliptic or Cauer filters.
Elliptic filters have transmission zeros (loss poles) in the stopband. The
magnitude response of elliptic filters is optimum in the sense that for a given order
n the rolloff in the transition band is the steepest, and for this reason elliptic filters
are used very widely.

The square magnitude response function for elliptic filters is

1

[H,(jw)I* = T R ) (4.103)

! See references [4,18,21-26].
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where R,(w) is known as the Chebyshev rational function and ¢ is the ripple
factor. The roots of R,(w) are related to the Jacobi elliptic sine function. The
calculation of the pole—zero locations of the transfer function requires elabora-
tion of elliptic function theory and its properties [23,27,22,4,3]. An extensive
tabulation of lowpass elliptic filter pole—zero locations is available [28]. For
design purposes the pole—zero locations can also be calculated by using series
approximation for the elliptic functions. The design procedure presented herein
was. proposed in [23], with full discussion of elliptic functions and a computer
program of the design equations in [4]. Also see [24] for a FORTRAN program
of these equations.

The following is a summary of the properties of Chebyshev rational functions.
Note the similarities with the properties of Chebyshev polynomials.

1. R,(w)isaneven function of @ when niseven. Itis an odd function of w when
n is odd.

2. The zeros of R,(w) are in the range |w| < 1, and the poles of R,(w) are in the
range |®] > 1.

3. The function R,(w) oscillates between the values + 1 in the passband.

4. R(w)=1latw=1.

5. R,(w) oscillates between + 1/d and infinity in the stopband, where d is the
discrimination factor defined (Eq. 4.47).

The Chebyshev rational function, normalized to a “center frequency” w, = 1,
has the form

(n-1)/2 wi2 — w?

R(w)=w for n odd (4.104)

=1 1 —ole?
and

2 2 2
L )]

R,(@) =[] ;

Ui ote for n even (4.105)

The poles and zeros of R,(w) are reciprocals of each other and exhibit geometric
symmetry with respect to the center frequency w,. Furthermore,

1 1
R, (5) = K@) (4.106)

that is, the Chebyshev rational function R,(w) exhibits a symmetry with respect to
the center frequency w, = 1 such that its value at a frequency w; in the range
0 < w < w, is the reciprocal of a value at the geometrically symmetric frequency
1/w; (or generally wy/w;).

A typical magnitude-squared response is shown in Fig. 4.17. The transition
region is exaggerated to show clearly some frequencies of interest. The figure
shows the equiripple passband and stopband characteristic. In the passband
|H,(jow)}? oscillates between 1 and 1/(1 + €2) up to the passband edge frequency
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Fig. 4.17. Magnitude-squared response of a normalized lowpass elliptic filter

at w = w,. The passband specification requirement is that the attenuation
(ripple) be at most 4, dB.

A, = 10log(1 + €?) (4.107)
€=+/10%140 _ 1 (4.108)

The figure also sh