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FOREWORD

David Clark
Massachusetts Institute of Technology

his third edition represents another major upgrade to this classic networking

book. The field continues to change fast, and new concepts emerge with amaz-

ing speed. This version expands its discussion of a lot of important new top-
ics, including peer-to-peer networks, Ipv6, overlay and content distribution networks,
MPLS and switching, wireless and mobile technology, and more. It also contains an
earlier and stronger focus on applications, which reflects the student and professional’s
increased familiarity with a wide range of networked applications. The book continues
its tradition of giving you the facts you need to understand today’s world.

But it has not lost track of its larger goal, to tell you not only the facts but the
why behind the facts. The philosophy of the book remains the same: to be timely but
timeless. What this book will teach you in today’s networked world will give you the
insight needed to work in tomorrow’s landscape. And that is important, since there
is no reason to believe that the evolution of networks is going to slow down anytime
soon.

It is hard to remember what the world looked like only ten years ago. Back then
the Internet was not really a commercial reality. Ten megabits per second was really
fast. We didn’t worry about spam and virus attacks—we left our computers unguarded
and hardly worried. Those times were simpler, but today may be more exciting. And
you better believe that tomorrow will be different from today: at least as exciting, with
luck no less trustworthy, and certainly bigger, faster and filled with fresh innovation.

So I hope Larry and Bruce can relax for a little before they have to start the next
revision. Meanwhile, use this book to learn about today and get ready for tomorrow.
Have fun.



This Page Intentionally Left Blank



FOREWORD TO THE FIRST EDITION

David Clark
Massachusetts Institute of Technology

he term spagbhetti code is universally understood as an insult. All good computer

scientists worship the god of modularity, since modularity brings many benefits,

including the all-powerful benefit of not having to understand all parts of a
problem at the same time in order to solve it. Modularity thus plays a role in presenting
ideas in a book, as well as in writing code. If a book’s material is organized effectively—
modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper” modularity
has been handed down to us in the form of an international standard: the seven-layer
reference model of network protocols from the ISO. This model, which reflects a
layered approach to modularity, is almost universally used as a starting point for
discussions of protocol organization, whether the design in question conforms to the
model or deviates from it.

It seems obvious to organize a networking book around this layered model.
However, there is a peril to doing so, because the OSI model is not really successful
at organizing the core concepts of networking. Such basic requirements as reliability,
flow control, or security can be addressed at most, if not all, of the OSI layers. This
fact has led to great confusion in trying to understand the reference model. At times it
even requires a suspension of disbelief. Indeed, a book organized strictly according to
a layered model has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered
model, but they do not pretend that this model actually helps in the understanding of
the big issues in networking. Instead, the authors organize discussion of fundamental
concepts in a way that is independent of layering. Thus, after reading the book, readers
will understand flow control, congestion control, reliability enhancement, data rep-
resentation, and synchronization, and will separately understand the implications of
addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially
the Internet protocols. Peterson and Davie have a long involvement in and much
experience with the Internet. Thus their book reflects not just the theoretical issues in
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protocol design, but the real factors that matter in practice. The book looks at some of
the protocols that are just emerging now, so the reader can be assured of an up-to-date
perspective. But most importantly, the discussion of basic issues is presented in a way
that derives from the fundamental nature of the problem, not the constraints of the
layered reference model or the details of today’s protocols. In this regard, what this
book presents is both timely and timeless. The combination of real-world relevance,
current examples, and careful explanation of fundamentals makes this book unique.
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hen the first edition of this book was published in 1996, it was a novelty to

be able to order merchandise on the Internet, and a company that advertised

its domain name was considered cutting edge. Today, Internet commerce is
a fact of life, and “.com” stocks have gone through an entire boom and bust cycle.
A host of new technologies ranging from optical switches to wireless networks are
now becoming mainstream. It seems the only predictable thing about the Internet is
constant change.

Despite these changes the question we asked in the first edition is just as valid
today: What are the underlying concepts and technologies that make the Internet
work? The answer is that much of the TCP/IP architecture continues to function just
as was envisioned by its creators nearly 30 years ago. This isn’t to say that the Internet
architecture is uninteresting, quite the contrary. Understanding the design principles
that underlie an architecture that has not only survived but fostered the kind of growth
and change that the Internet has seen over the past three decades is precisely the right
place to start. Like the previous editions, the third edition makes the “why” of the
Internet architecture its cornerstone.

Audience

Our intent is that the book should serve as the text for a comprehensive networking
class, at either the graduate or upper-division undergraduate level. We also believe that
the book’s focus on core concepts should be appealing to industry professionals who
are retraining for network-related assignments, as well as current network practitioners
who want to understand the “whys” behind the protocols they work with every day
and to see the big picture of networking.

It is our experience that both students and professionals learning about networks
for the first time often have the impression that network protocols are some sort of edict
handed down from on high, and that their job is to learn as many TLAs (three-letter
acronyms) as possible. In fact, protocols are the building blocks of a complex system
developed through the application of engineering design principles. Moreover, they
are constantly being refined, extended, and replaced based on real-world experience.
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With this in mind, our goal with this book is to do more than survey the protocols
in use today. Instead, we explain the underlying principles of sound network design.
We feel that this grasp of underlying principles is the best tool for handling the rate of
change in the networking field.

Changes in the Third Edition

Even though our focus is on the underlying principles of networking, we illustrate
these principles using examples from today’s working Internet. Therefore, we added a
significant amount of new material to track many of the important recent advances in
networking. We also deleted, reorganized, and changed the focus of existing material
to reflect changes that have taken place over the past seven years.

Perhaps the most significant change we have noticed since writing the first edition
is that almost every reader now has some familiarity with networked applications such
as the World Wide Web and email. For this reason, we have increased the focus on
applications, starting in the first chapter. We use applications as the motivation for
the study of networking, and to derive a set of requirements that a useful network
must meet if it is to support both current and future applications on a global scale.
However, we retain the problem-solving approach of previous editions that starts with
the problem of interconnecting hosts and works its way up the layers to conclude with
a detailed examination of application-layer issues. We believe it is important to make
the topics covered in the book relevant by starting with applications and their needs. At
the same time, we feel that higher-layer issues, such as application-layer and transport-
layer protocols, are best understood after the basic problems of connecting hosts and
switching packets have been explained.

Another important change in this edition is in the exercises. We have increased
the number and quality of exercises; we have attempted to identify those that are
especially difficult or that require above-average levels of mathematical knowledge
(these are marked with an icon %); and in each chapter we have added a number of
exercises with worked solutions that are included in the book. As before, the complete
set of exercise solutions is available only to instructors.

As we did in the second edition, we have added or increased coverage of im-
portant new topics and brought other topics up-to-date. Major new or substantially
updated topics in this edition are

B a new section on Multiprotocol Label Switching (MPLS), including coverage
of traffic engineering and virtual private networks

B a new section on overlay networks, including “peer-to-peer” networking and
“content distribution networks”
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M greatly expanded coverage on protocols for multimedia applications, such as
Session Initiation Protocol (SIP) and Session Description Protocol (SDP)

B updated coverage of congestion-control mechanisms, including selective ac-
knowledgments for TCP, equation-based congestion control, and explicit con-
gestion notification

B updated security coverage, including distributed denial of service (DDoS) at-
tacks

M updated material on wireless technology, including spread spectrum tech-
niques and the emerging 802.11 standards

Finally, the book is now supplemented by a comprehensive set of laboratory exer-
cises designed to illustrate the key concepts through simulation experiments. Sections
that discuss material covered by the laboratory exercises are marked with the icon
shown in the margin. Details on this new feature of the book appear below.

Approach

For an area that’s as dynamic and changing as computer networks, the most important
thing a textbook can offer is perspective—to distinguish between what’s important and
what’s not, and between what’s lasting and what’s superficial. Based on our experi-
ence over the past 20 years doing research that has led to new networking technology,
teaching undergraduate and graduate students about the latest trends in network-
ing, and delivering advanced networking products to market, we have developed a
perspective—which we call the systems approach—that forms the soul of this book.
The systems approach has several implications:

B Rather than accept existing artifacts as gospel, we start with first principles
and walk you through the thought process that led to today’s networks. This
allows us to explain why networks look like they do. It is our experience that
once you understand the underlying concepts, any new protocol that you are
confronted with will be relatively easy to digest.

B Although the material is loosely organized around the traditional network
layers, starting at the bottom and moving up the protocol stack, we do not
adopt a rigid layered approach. Many topics—congestion control and security
are good examples—have implications up and down the hierarchy, and so
we discuss them outside the traditional layered model. In short, we believe
layering makes a good servant but a poor master; it’s more often useful to
take an end-to-end perspective.
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B Rather than explain how protocols work in the abstract, we use the most

important protocols in use today—many of them from the TCP/IP Internet—
to illustrate how networks work in practice. This allows us to include real-
world experiences in the discussion.

Although at the lowest levels networks are constructed from commodity hard-
ware that can be bought from computer vendors and communication services
that can be leased from the phone company, it is the software that allows net-
works to provide new services and adapt quickly to changing circumstances.
It is for this reason that we emphasize how network software is implemented,
rather than stopping with a description of the abstract algorithms involved.
We also include code segments taken from a working protocol stack to illus-
trate how you might implement certain protocols and algorithms.

Networks are constructed from many building-block pieces, and while it is
necessary to be able to abstract away uninteresting elements when solving
a particular problem, it is essential to understand how all the pieces fit to-
gether to form a functioning network. We therefore spend considerable time
explaining the overall end-to-end behavior of networks, not just the individ-
ual components, so that it is possible to understand how a complete network
operates, all the way from the application to the hardware.

The systems approach implies doing experimental performance studies, and
then using the data you gather both to quantitatively analyze various design
options and to guide you in optimizing the implementation. This emphasis on
empirical analysis pervades the book.

Networks are like other computer systems—for example, operating systems,
processor architectures, distributed and parallel systems, and so on. They
are all large and complex. To help manage this complexity, system builders
often draw on a collection of design principles. We highlight these design
principles as they are introduced throughout the book, illustrated, of course,
with examples from computer networks.

Pedagogy and Features
The third edition retains several features that we encourage you to take advantage of:

B Problem statements. At the start of each chapter, we describe a problem that

identifies the next set of issues that must be addressed in the design of a
network. This statement introduces and motivates the issues to be explored
in the chapter.
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Shaded sidebars. Throughout the text, shaded sidebars elaborate on the topic
being discussed or introduce a related advanced topic. In many cases, these
sidebars relate real-world anecdotes about networking.

Highlighted paragraphs. These paragraphs summarize an important nugget
of information that we want you to take away from the discussion, such as a
widely applicable system design principle.

Real protocols. Even though the book’s focus is on core concepts rather than
existing protocol specifications, real protocols are used to illustrate most of the
important ideas. As a result, the book can be used as a source of reference for
many protocols. To help you find the descriptions of the protocols, each appli-
cable section heading parenthetically identifies the protocols described in that
section. For example, Section 5.2, which describes the principles of reliable
end-to-end protocols, provides a detailed description of TCP, the canonical
example of such a protocol.

Open issues. We conclude the main body of each chapter with an important
issue that is currently being debated in the research community, the commer-
cial world, or society as a whole. We have found that discussing these issues
helps to make the subject of networking more relevant and exciting.

Further reading. These highly selective lists appear at the end of each chapter.
Each list generally contains the seminal papers on the topics just discussed.
We strongly recommend that advanced readers (e.g., graduate students) study
the papers in this reading list to supplement the material covered in the
chapter.

Road Map and Course Use

The book is organized as follows:

Chapter 1 introduces the set of core ideas that are used throughout the rest
of the text. Motivated by widespread applications, it discusses what goes into
network architecture, and it defines the quantitative performance metrics that
often drive network design.

Chapter 2 surveys a wide range of low-level network technologies, ranging
from Ethernet to token ring to wireless. It also describes many of the issues
that all data link protocols must address, including encoding, framing, and
error detection.
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B Chapter 3 introduces the basic models of switched networks (datagrams versus

virtual circuits) and describes one prevalent switching technology (ATM) in
some detail. It also discusses the design of hardware-based switches.

Chapter 4 introduces internetworking and describes the key elements of the
Internet Protocol (IP). A central question addressed in this chapter is how
networks that scale to the size of the Internet are able to route packets.

Chapter 5§ moves up to the transport level, describing both the Internet’s Trans-
mission Control Protocol (TCP) and Remote Procedure Call (RPC) used to
build client/server applications in detail.

Chapter 6 discusses congestion control and resource allocation. The issues
in this chapter cut across both the network level (Chapters 3 and 4) and the
transport level (Chapter 5). Of particular note, this chapter describes how
congestion control works in TCP, and it introduces the mechanisms used by
both the Internet and ATM to provide quality of service.

Chapter 7 considers the data sent through a network. This includes the prob-
lems of both presentation formatting and data compression. The discussion
of compression includes explanations of how MPEG video compression and
MP3 audio compression work.

Chapter 8 discusses network security, ranging from an overview of cryptog-
raphy protocols (DES, RSA, MDS), to protocols for security services (authen-
tication, digital signature, message integrity), to complete security systems
(privacy enhanced email, IPSEC). The chapter also discusses pragmatic issues
like firewalls.

Chapter 9 describes a representative sample of network applications and the
protocols they use, including traditional applications like email and the Web,
multimedia applications such as IP telephony and video streaming, and overlay
networks like peer-to-peer file sharing and content distribution networks.

For an undergraduate course, extra class time will most likely be needed to help

students digest the introductory material in the first chapter, probably at the expense

of the more advanced topics covered in Chapters 6 through 8. Chapter 9 then returns

to the popular topic of network applications. In contrast, the instructor for a graduate

course should be able to cover the first chapter in only a lecture or two—with students

studying the material more carefully on their own—thereby freeing up additional

class time to cover the last four chapters in depth. Both graduate and undergraduate

classes will want to cover the core material contained in the middle four chapters
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(Chapters 2-5), although an undergraduate class might choose to skim the more ad-
vanced sections (e.g., Sections 2.2, 2.9, 3.4, and 4.4).

For those of you using the book in self-study, we believe that the topics we have
selected cover the core of computer networking, and so we recommend that the book
be read sequentially, from front to back. In addition, we have included a liberal supply
of references to help you locate supplementary material that is relevant to your specific
areas of interest, and we have included solutions to selected exercises.

The book takes a unique approach to the topic of congestion control by pulling
all topics related to congestion control and resource allocation together in a single
place—Chapter 6. We do this because the problem of congestion control cannot be
solved at any one level, and we want you to consider the various design options at
the same time. (This is consistent with our view that strict layering often obscures
important design trade-offs.) A more traditional treatment of congestion control is
possible, however, by studying Section 6.2 in the context of Chapter 3 and Section 6.3
in the context of Chapter 5.

Exercises

Significant effort has gone into improving the exercises in both the second and third
editions. In the second edition we greatly increased the number of problems and, based
on class testing, dramatically improved their quality. In this edition, we added a few
more exercises, but made two other important changes:

B For those exercises that we feel are particularly challenging or require special
knowledge not provided in the book (e.g., probability expertise), we have
added an icon * to indicate the extra level of difficulty.

M Ineach chapter we added some extra representative exercises for which worked
solutions are provided in the back of the book. These exercises, marked v/,
are intended to provide some help in tackling the other exercises in the book.

The current sets of exercises are of several different styles:

B Analytical exercises that ask the student to do simple algebraic calculations
that demonstrate their understanding of fundamental relationships

B Design questions that ask the student to propose and evaluate protocols for
various circumstances

B Hands-on questions that ask the student to write a few lines of code to test
an idea or to experiment with an existing network utility
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M Library research questions that ask the student to learn more about a partic-
ular topic

Also, as described in more detail below, socket-based programming assignments,
as well as simulation labs, are available online.

Supplemental Materials and Online Resources
To assist instructors, we have prepared an instructor’s manual that contains solutions
to selected exercises. The manual is available from the publisher.

Additional support materials, including lecture slides, figures from the text,
socket-based programming assignments, and sample exams and programming assign-
ments are available through the Morgan Kaufmann Web site at http:/www.mkp.com
(search for Computer Networks). We suggest that you visit the page for this book
every few weeks, as we will be adding support materials and establishing links to
networking-related sites on a regular basis.

And finally, new with the third edition, a set of laboratory experiments supple-
ments the book. These labs, developed by Professor Emad Aboelela from the University
of Massachusetts Dartmouth, use simulation to explore the behavior, scalability, and
performance of protocols covered in the book. The simulations use the OPNET simu-
lation toolset, which is available for free to anyone using Computer Networks in their
course.
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Foundation

I must Create a System, or be enslav’d by another Man’s; I will not
Reason and Compare: my business is to Create.

—William Blake

uppose you want to build a computer network, one that has the potential to

grow to global proportions and to support applications as diverse as telecon-

ferencing, video-on-demand, electronic commerce, distributed computing, and
digital libraries. What available technologies would serve as the underlying build-
ing blocks, and what kind of software architecture would you design to integrate
these building blocks into an effec-
tive communication service? Answer-
PROBLEM ing this question is the overriding
goal of this book—to describe the
available building materials and then
to show how they can be used to con-
struct a network from the ground up.
Before we can understand how to design a computer network, we should first

Building a Network

agree on exactly what a computer network is. At one time, the term network meant
the set of serial lines used to attach dumb terminals to mainframe computers. To
some, the term implies the voice telephone network. To others, the only interesting
network is the cable network used to disseminate video signals. The main thing these
networks have in common is that they are specialized to handle one particular kind of
data (keystrokes, voice, or video) and they typically connect to special-purpose devices
(terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks?
Probably the most important characteristic of a computer network is its generality.
Computer networks are built primarily from general-purpose programmable hard-
ware, and they are not optimized for a particular application like making phone calls or
delivering television signals. Instead, they are able to carry many different types of data,
and they support a wide, and ever-growing, range of applications. This chapter looks



at some typical applications of computer networks and
discusses the requirements that a network designer who
wishes to support such applications must be aware of.

Once we understand the requirements, how do we
proceed? Fortunately, we will not be building the first net-
work. Others, most notably the community of researchers
responsible for the Internet, have gone before us. We will
use the wealth of experience generated from the Internet
to guide our design. This experience is embodied in a net-
work architecture that identifies the available hardware
and software components and shows how they can be
arranged to form a complete network system.

To start us on the road toward understanding how
to build a network, this chapter does four things. First, it
explores the requirements that different applications and
different communities of people (such as network users
and network operators) place on the network. Second, it
introduces the idea of a network architecture, which lays
the foundation for the rest of the book. Third, it intro-
duces some of the key elements in the implementation of
computer networks. Finally, it identifies the key metrics
that are used to evaluate the performance of computer
networks.
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1.1 Applications

Most people know the Internet through its applications: the World Wide Web, email,
streaming audio and video, chat rooms, and music (file) sharing. The Web, for example,
presents an intuitively simple interface. Users view pages full of textual and graphical
objects, click on objects that they want to learn more about, and a corresponding new
page appears. Most people are also aware that just under the covers, each selectable
object on a page is bound to an identifier for the next page to be viewed. This identifier,
called a uniform resource locator (URL), uniquely names every possible page that can
be viewed from your Web browser. For example,

http://www.mkp.com/pd3e

is the URL for a page representing this book at Morgan Kaufmann: The string http
indicates that the HyperText Transfer Protocol (HTTP) should be used to download
the page, www.mkp.com is the name of the machine that serves the page, and pd3e
uniquely identifies the page at the publisher’s site.

What most Web users are not aware of, however, is that by clicking on just one
such URL, as many as 17 messages may be exchanged over the Internet, and this
assumes the page itself is small enough to fit in a single message. This number includes
up to six messages to translate the server name (www.mkp.com) into its Internet address
(213.38.165.180), three messages to set up a Transmission Control Protocol (TCP)
connection between your browser and this server, four messages for your browser
to send the HTTP “get” request and the server to respond with the requested page
(and for each side to acknowledge receipt of that message), and four messages to tear
down the TCP connection. Of course, this does not include the millions of messages
exchanged by Internet nodes throughout the day, just to let each other know that they
exist and are ready to serve Web pages, translate names to addresses, and forward
messages toward their ultimate destination.

Although not yet as common as surfing the Web, another emerging application
of the Internet is streaming audio and video. Although an entire video file could first
be fetched from a remote machine and then played on the local machine, similar to
the process of downloading and displaying a Web page, this would entail waiting for
the last second of the video file to be delivered before starting to look at it. Streaming
video implies that the sender and the receiver are, respectively, the source and the sink
for the video stream. That is, the source generates a video stream (perhaps using a
video capture card), sends it across the Internet in messages, and the sink displays the
stream as it arrives.

To be more precise, video is not an application; it is a type of data. One example
of a video application is video-on-demand, which reads a preexisting movie from disk
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and transmits it over the network. Another kind of application is videoconferencing,
which is actually the more interesting case because it has very tight timing constraints.
Just as when using the telephone, the interactions among the participants must be
timely. When a person at one end gestures, then that action must be displayed at
the other end as quickly as possible. Too much delay makes the system unusable. In
contrast, if it takes several seconds from the time the user starts the video until the
first image is displayed, then the service is still deemed satisfactory. Also, interactive
video usually implies that video is flowing in both directions, while a video-on-demand
application is most likely sending video in only one direction.

The Unix application vic is an example of a popular videoconferencing tool.
Figure 1.1 shows the control panel for a vic session. Note that vic is actually one
of a suite of conferencing tools designed at Lawrence Berkeley Laboratory and
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Figure 1.1 The vic video application.



6 1 Foundation

UC Berkeley. The others include a whiteboard application (wb) that allows users to
send sketches and slides to each other, a visual audio tool called vat, and a session
directory (sdr) that is used to create and advertise videoconferences. All these tools
run on Unix—hence their lowercase names—and are freely available on the Internet.
Similar tools are available for other operating systems.

Although they are just two examples, downloading pages from the Web and
participating in a videoconference demonstrate the diversity of applications that can
be built on top of the Internet and hint at the complexity of the Internet’s design.
Starting from the beginning, and addressing one problem at a time, the rest of this
book explains how to build a network that supports such a wide range of applications.
Chapter 9 concludes the book by revisiting these two specific applications, as well as
several others that have become popular on today’s Internet.

1.2 Requirements

We have just established an ambitious goal for ourselves: to understand how to build
a computer network from the ground up. Our approach to accomplishing this goal
will be to start from first principles, and then ask the kinds of questions we would
naturally ask if building an actual network. At each step, we will use today’s proto-
cols to illustrate various design choices available to us, but we will not accept these
existing artifacts as gospel. Instead, we will be asking (and answering) the question
of why networks are designed the way they are. While it is tempting to settle for just
understanding the way it’s done today, it is important to recognize the underlying con-
cepts because networks are constantly changing as the technology evolves and new
applications are invented. It is our experience that once you understand the funda-
mental ideas, any new protocol that you are confronted with will be relatively easy to
digest.

The first step is to identify the set of constraints and requirements that influence
network design. Before getting started, however, it is important to understand that the
expectations you have of a network depend on your perspective:

B An application programmer would list the services that his or her application
needs, for example, a guarantee that each message the application sends will
be delivered without error within a certain amount of time.

B A network designer would list the properties of a cost-effective design, for
example, that network resources are efficiently utilized and fairly allocated to
different users.

B A network provider would list the characteristics of a system that is easy to
administer and manage, for example, in which faults can be easily isolated
and where it is easy to account for usage.
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This section attempts to distill these different perspectives into a high-level
introduction to the major considerations that drive network design, and in doing
so, identifies the challenges addressed throughout the rest of this book.

1.2.1 Connectivity

Starting with the obvious, a network must provide connectivity among a set of com-
puters. Sometimes it is enough to build a limited network that connects only a few
select machines. In fact, for reasons of privacy and security, many private (corporate)
networks have the explicit goal of limiting the set of machines that are connected. In
contrast, other networks (of which the Internet is the prime example) are designed
to grow in a way that allows them the potential to connect all the computers in the
world. A system that is designed to support growth to an arbitrarily large size is said
to scale. Using the Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network
can consist of two or more computers directly connected by some physical medium,
such as a coaxial cable or an optical fiber. We call such a physical medium a link, and
we often refer to the computers it connects as nodes. (Sometimes a node is a more
specialized piece of hardware rather than a computer, but we overlook that distinction
for the purposes of this discussion.) As illustrated in Figure 1.2, physical links are
sometimes limited to a pair of nodes (such a link is said to be point-to-point), while
in other cases, more than two nodes may share a single physical link (such a link is
said to be multiple access). Whether a given link supports point-to-point or multiple-
access connectivity depends on how the node is attached to the link. It is also the case
that multiple-access links are often limited in size, in terms of both the geographical
distance they can cover and the number of nodes they can connect. The exception is
a satellite link, which can cover a wide geographic area.

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.
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Figure 1.3 Switched network.

If computer networks were limited to situations in which all nodes are directly
connected to each other over a common physical medium, then either networks would
be very limited in the number of computers they could connect, or the number of wires
coming out of the back of each node would quickly become both unmanageable and
very expensive. Fortunately, connectivity between two nodes does not necessarily imply
a direct physical connection between them—indirect connectivity may be achieved
among a set of cooperating nodes. Consider the following two examples of how a
collection of computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-
to-point links. Those nodes that are attached to at least two links run software that for-
wards data received on one link out on another. If organized in a systematic way, these
forwarding nodes form a switched network. There are numerous types of switched net-
works, of which the two most common are circuit switched and packet switched. The
former is most notably employed by the telephone system, while the latter is used for
the overwhelming majority of computer networks and will be the focus of this book.
The important feature of packet-switched networks is that the nodes in such a network
send discrete blocks of data to each other. Think of these blocks of data as correspond-
ing to some piece of application data such as a file, a piece of email, or an image. We
call each block of data either a packet or a message, and for now we use these terms
interchangeably; we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As
the name suggests, each node in a store-and-forward network first receives a complete
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packet over some link, stores the packet in its internal memory, and then forwards
the complete packet to the next node. In contrast, a circuit-switched network first
establishes a dedicated circuit across a sequence of links and then allows the source
node to send a stream of bits across this circuit to a destination node. The major
reason for using packet switching rather than circuit switching in a computer network
is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that
implement the network (they are commonly called switches, and their sole func-
tion is to store and forward packets) and the nodes on the outside of the cloud that
use the network (they are commonly called hosts, and they support users and run
application programs). Also note that the cloud in Figure 1.3 is one of the most
important icons of computer networking. In general, we use a cloud to denote any
type of network, whether it is a single point-to-point link, a multiple-access link, or a
switched network. Thus, whenever you see a cloud used in a figure, you can think of
it as a placeholder for any of the networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in
Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected
to form an internetwork, or internet for short. We adopt the Internet’s convention
of referring to a generic internetwork of networks as a lowercase 7 internet, and the

Figure 1.4 Interconnection of networks.
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currently operational TCP/IP Internet as the capital I Internet. A node that is connected
to two or more networks is commonly called a router or gateway, and it plays much
the same role as a switch—it forwards messages from one network to another. Note
that an internet can itself be viewed as another kind of network, which means that an
internet can be built from an interconnection of internets. Thus, we can recursively
build arbitrarily large networks by interconnecting clouds to form larger clouds.

Just because a set of hosts are directly or indirectly connected to each other does
not mean that we have succeeded in providing host-to-host connectivity. The final
requirement is that each node must be able to say which of the other nodes on the
network it wants to communicate with. This is done by assigning an address to each
node. An address is a byte string that identifies a node; that is, the network can use
a node’s address to distinguish it from the other nodes connected to the network.
When a source node wants the network to deliver a message to a certain destination
node, it specifies the address of the destination node. If the sending and receiving
nodes are not directly connected, then the switches and routers of the network use this
address to decide how to forward the message toward the destination. The process
of determining systematically how to forward messages toward the destination node
based on its address is called routing.

This brief introduction to addressing and routing has presumed that the source
node wants to send a message to a single destination node (unicast). While this is
the most common scenario, it is also possible that the source node might want to
broadcast a message to all the nodes on the network. Or a source node might want
to send a message to some subset of the other nodes, but not all of them, a situation
called multicast. Thus, in addition to node-specific addresses, another requirement of
a network is that it support multicast and broadcast addresses.

The main idea to take away from this discussion is that we can define a network
recursively as consisting of two or more nodes connected by a physical link, or as two
or more networks connected by a node. In other words, a network can be constructed
from a nesting of networks, where at the bottom level, the network is implemented by
some physical medium. One of the key challenges in providing network connectivity is
to define an address for each node that is reachable on the network (including support
for broadcast and multicast connectivity), and to be able to use this address to route
messages toward the appropriate destination node(s).

1.2.2 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This section explains
the key requirement of computer networks—efficiency—that leads us to packet switch-
ing as the strategy of choice.
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Given a collection of nodes indirectly connected by a nesting of networks, it is
possible for any pair of hosts to send messages to each other across a sequence of
links and nodes. Of course, we want to do more than support just one pair of com-
municating hosts—we want to provide all pairs of hosts with the ability to exchange
messages. The question then is, How do all the hosts that want to communicate share
the network, especially if they want to use it at the same time? And, as if that problem
isn’t hard enough, how do several hosts share the same link when they all want to use
it at the same time?

To understand how hosts share a network, we need to introduce a fundamental
concept, multiplexing, which means that a system resource is shared among multiple
users. At an intuitive level, multiplexing can be explained by analogy to a timesharing
computer system, where a single physical CPU is shared (multiplexed) among multiple
jobs, each of which believes it has its own private processor. Similarly, data being sent
by multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,
where the three hosts on the left side of the network (L1-L3) are sending data to the
three hosts on the right (R1-R3) by sharing a switched network that contains only
one physical link. (For simplicity, assume that host L1 is communicating with host R1,
and so on.) In this situation, three flows of data—corresponding to the three pairs of
hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed
back into separate flows by switch 2. Note that we are being intentionally vague about
exactly what a “flow of data” corresponds to. For the purposes of this discussion,
assume that each host on the left has a large supply of data that it wants to send to its
counterpart on the right.

There are several different methods for multiplexing multiple flows onto one phy-
sical link. One common method is synchronous time-division multiplexing (STDM).
The idea of STDM is to divide time into equal-sized quanta and, in a round-robin
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Figure 1.5 Multiplexing multiple logical flows over a single physical link.
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fashion, give each flow a chance to send its data over the physical link. In other words,

during time quantum 1, data from the first flow is transmitted; during time quantum

2, data from the second flow is transmitted; and so on. This process continues until all

the flows have had a turn, at which time the first flow gets to go again, and the process

repeats. Another method is frequency-
division multiplexing (FDM). The idea of
FDM is to transmit each flow over the phys-
ical link at a different frequency, much the
same way that the signals for different TV
stations are transmitted at a different fre-
quency on a physical cable TV link.

Although simple to understand, both
STDM and FDM are limited in two ways.
First, if one of the flows (host pairs) does not
have any data to send, its share of the phys-
ical link—that is, its time quantum or its
frequency—remains idle, even if one of the
other flows has data to transmit. For com-
puter communication, the amount of time
that a link is idle can be very large—for
example, consider the amount of time you
spend reading a Web page (leaving the link
idle) compared to the time you spend fetch-
ing the page. Second, both STDM and FDM
are limited to situations in which the max-
imum number of flows is fixed and known
ahead of time. It is not practical to resize the
quantum or to add additional quanta in the
case of STDM or to add new frequencies in
the case of FDM.

The form of multiplexing that we
make most use of in this book is called
statistical multiplexing. Although the name
is not all that helpful for understanding
the concept, statistical multiplexing is really
quite simple, with two key ideas. First,
it is like STDM in that the physical link
is shared over time—first data from one
flow is transmitted over the physical link,

SANSs, LANs, MANSs,
and WANs

One way to characterize networks
is according to their size. Two well-
known examples are LANs (local
area networks) and WANs (wide
area networks); the former typi-
cally extend less than 1 km, while
the latter can be worldwide. Other
networks are classified as MANs
(metropolitan area  networks),
which usually span tens of kilome-
ters. The reason such classifications
are interesting is that the size of a
network often has implications for
the underlying technology that can
be used, with a key factor being the
amount of time it takes for data
to propagate from one end of the
network to the other; we discuss
this issue more in later chapters.
An interesting historical note is
that the term “wide area network”
was not applied to the first WANSs
because there was no other sort
of network to differentiate them
from. When computers were in-
credibly rare and expensive, there
was no point in thinking about
how to connect all the computers
in the local area—there was only
one computer in that area. Only as
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then data from another flow is transmitted, and so on. Unlike STDM, however, data is

transmitted from each flow on demand rather than during a predetermined time slot.

Thus, if only one flow has data to send, it gets to transmit that data without waiting

for its quantum to come around and thus without having to watch the quanta assigned

computers began to proliferate did
LANs become necessary, and the
term “WAN” was then introduced
to describe the larger networks that
interconnected geographically dis-
tant computers.

Another kind of network that
we need to be aware of is SANs
(system area networks). SANs are
usually confined to a single room
and connect the various compo-
nents of a large computing sys-
tem. For example, HiPPI (High
Performance Parallel Interface) and
Fiber Channel are two common
SAN technologies used to connect
massively parallel processors to
scalable storage servers and data
vaults. (Because they often connect
computers to storage servers, SANs
are sometimes defined as storage
area networks.) Although this book
does not describe such networks
in detail, they are worth knowing
about because they are often at the
leading edge in terms of perfor-
mance, and because it is increas-
ingly common to connect such net-
works into LANs and WANSs.

to the other flows go by unused. It is this
avoidance of idle time that gives packet
switching its efficiency.

As defined so far, however, statistical
multiplexing has no mechanism to ensure
that all the flows eventually get their turn to
transmit over the physical link. That is, once
a flow begins sending data, we need some
way to limit the transmission, so that the
other flows can have a turn. To account for
this need, statistical multiplexing defines an
upper bound on the size of the block of data
that each flow is permitted to transmit at a
given time. This limited-size block of data
is typically referred to as a packet, to distin-
guish it from the arbitrarily large message
that an application program might want
to transmit. Because a packet-switched net-
work limits the maximum size of packets,
a host may not be able to send a com-
plete message in one packet. The source may
need to fragment the message into several
packets, with the receiver reassembling the
packets back into the original message.

In other words, each flow sends a se-
quence of packets over the physical link,
with a decision made on a packet-by-packet
basis as to which flow’s packet to send next.
Notice that if only one flow has data to send,
then it can send a sequence of packets back-
to-back. However, should more than one of
the flows have data to send, then their pack-
ets are interleaved on the link. Figure 1.6
depicts a switch multiplexing packets from
multiple sources onto a single shared link.
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Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.

The decision as to which packet to send next on a shared link can be made in a
number of different ways. For example, in a network consisting of switches inter-
connected by links such as the one in Figure 1.5, the decision would be made by
the switch that transmits packets onto the shared link. (As we will see later, not all
packet-switched networks actually involve switches, and they may use other mech-
anisms to determine whose packet goes onto the link next.) Each switch in a packet-
switched network makes this decision independently, on a packet-by-packet basis.
One of the issues that faces a network designer is how to make this decision in a
fair manner. For example, a switch could be designed to service packets on a first-
in-first-out (FIFO) basis. Another approach would be to service the different flows
in a round-robin manner, just as in STDM. This might be done to ensure that cer-
tain flows receive a particular share of the link’s bandwidth, or that they never have
their packets delayed in the switch for more than a certain length of time. A net-
work that allows flows to request such treatment is said to support quality of service
(QoS).

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming
packet streams onto one outgoing link, it is possible that the switch will receive packets
faster than the shared link can accommodate. In this case, the switch is forced to buffer
these packets in its memory. Should a switch receive packets faster than it can send them
for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state,
it is said to be congested.
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The bottom line is that statistical multiplexing defines a cost-effective way for
multiple users (e.g., host-to-host flows of data) to share network resources (links and
nodes) in a fine-grained manner. It defines the packet as the granularity with which the
links of the network are allocated to different flows, with each switch able to schedule
the use of the physical links it is connected to on a per-packet basis. Fairly allocating
link capacity to different flows and dealing with congestion when it occurs are the key
challenges of statistical multiplexing.

1.2.3 Support for Common Services

While the previous section outlined the challenges involved in providing cost-effective
connectivity among a group of hosts, it is overly simplistic to view a computer network
as simply delivering packets among a collection of computers. It is more accurate to
think of a network as providing the means for a set of application processes that are
distributed over those computers to communicate. In other words, the next require-
ment of a computer network is that the application programs running on the hosts
connected to the network must be able to communicate in a meaningful way.

When two application programs need to communicate with each other, there
are a lot of complicated things that need to happen beyond simply sending a mes-
sage from one host to another. One option would be for application designers to
build all that complicated functionality into each application program. However, since
many applications need common services, it is much more logical to implement those
common services once and then to let the application designer build the application
using those services. The challenge for a network designer is to identify the right set
of common services. The goal is to hide the complexity of the network from the ap-
plication without overly constraining the application designer.

Intuitively, we view the network as providing logical channels over which
application-level processes can communicate with each other; each channel provides
the set of services required by that application. In other words, just as we use a cloud
to abstractly represent connectivity among a set of computers, we now think of a chan-
nel as connecting one process to another. Figure 1.7 shows a pair of application-level
processes communicating over a logical channel that is, in turn, implemented on top
of a cloud that connects a set of hosts. We can think of the channel as being like a
pipe connecting two applications, so that a sending application can put data in one
end and expect that data to be delivered by the network to the application at the other
end of the pipe.

The challenge is to recognize what functionality the channels should provide
to application programs. For example, does the application require a guarantee that
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Figure 1.7 Processes communicating over an abstract channel.

messages sent over the channel are delivered, or is it acceptable if some messages fail to
arrive? Is it necessary that messages arrive at the recipient process in the same order in
which they are sent, or does the recipient not care about the order in which messages
arrive? Does the network need to ensure that no third parties are able to eavesdrop
on the channel, or is privacy not a concern? In general, a network provides a variety
of different types of channels, with each application selecting the type that best meets
its needs. The rest of this section illustrates the thinking involved in defining useful
channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs
of a representative collection of applications, then extracting their common commu-
nication requirements, and finally incorporating the functionality that meets these
requirements in the network.

One of the earliest applications supported on any network is a file access pro-
gram like FTP (File Transfer Protocol) or NFS (Network File System). Although many
details vary—for example, whether whole files are transferred across the network or
only single blocks of the file are read/written at a given time—the communication
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component of remote file access is characterized by a pair of processes, one that re-
quests that a file be read or written and a second process that honors this request. The
process that requests access to the file is called the client, and the process that supports
access to the file is called the server.

Reading a file involves the client sending a small request message to a server and
the server responding with a large message that contains the data in the file. Writing
works in the opposite way—the client sends a large message containing the data to be
written to the server, and the server responds with a small message confirming that the
write to disk has taken place. A digital library, as exemplified by the World Wide Web,
is another application that behaves in a similar way: A client process makes a request,
and a server process responds by returning the requested data.

Using file access, a digital library, and the two video applications described in the
introduction (videoconferencing and video-on-demand) as a representative sample, we
might decide to provide the following two types of channels: request/reply channels
and message stream channels. The request/reply channel would be used by the file
transfer and digital library applications. It would guarantee that every message sent
by one side is received by the other side and that only one copy of each message is
delivered. The request/reply channel might also protect the privacy and integrity of the
data that flows over it, so that unauthorized parties cannot read or modify the data
being exchanged between the client and server processes.

The message stream channel could be used by both the video-on-demand and
videoconferencing applications, provided it is parameterized to support both one-way
and two-way traffic and to support different delay properties. The message stream
channel might not need to guarantee that all messages are delivered, since a video appli-
cation can operate adequately even if some frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which
they were sent, to avoid displaying frames out of sequence. Like the request/reply
channel, the message stream channel might want to ensure the privacy and integrity of
the video data. Finally, the message stream channel might need to support multicast,
so that multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number
of abstract channel types that can serve the largest number of applications, there is
a danger in trying to get away with too few channel abstractions. Simply stated, if
you have a hammer, then everything looks like a nail. For example, if all you have
are message stream and request/reply channels, then it is tempting to use them for the
next application that comes along, even if neither type provides exactly the semantics
needed by the application. Thus, network designers will probably be inventing new
types of channels—and adding options to existing channels—for as long as application
programmers are inventing new applications.
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Also note that independent of exactly what functionality a given channel pro-
vides, there is the question of where that functionality is implemented. In many cases,
it is easiest to view the host-to-host connectivity of the underlying network as simply
providing a bit pipe, with any high-level communication semantics provided at the
end hosts. The advantage of this approach is it keeps the switches in the middle of the
network as simple as possible—they simply forward packets—but it requires the end
hosts to take on much of the burden of supporting semantically rich process-to-process
channels. The alternative is to push additional functionality onto the switches, thereby
allowing the end hosts to be “dumb” devices (e.g., telephone handsets). We will see this
question of how various network services are partitioned between the packet switches
and the end hosts (devices) as a reoccurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery is one of the
most important functions that a network can provide. It is difficult to determine how
to provide this reliability, however, without first understanding how networks can fail.
The first thing to recognize is that computer networks do not exist in a perfect world.
Machines crash and later are rebooted, fibers are cut, electrical interference corrupts
bits in the data being transmitted, switches run out of buffer space, and if these sorts
of physical problems aren’t enough to worry about, the software that manages the
hardware sometimes forwards packets into oblivion. Thus, a major requirement of a
network is to mask (hide) certain kinds of failures, so as to make the network appear
more reliable than it really is to the application programs using it.

There are three general classes of failure that network designers have to worry
about. First, as a packet is transmitted over a physical link, bit errors may be introduced
into the data; that is, a 1 is turned into a 0 or vice versa. Sometimes single bits are
corrupted, but more often than not, a burst error occurs—several consecutive bits are
corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good
news is that such bit errors are fairly rare, affecting on average only one out of every
10¢ to 107 bits on a typical copper-based cable and one out of every 10'2 to 104
bits on a typical optical fiber. As we will see, there are techniques that detect these bit
errors with high probability. Once detected, it is sometimes possible to correct for such
errors—if we know which bit or bits are corrupted, we can simply flip them—while
in other cases the damage is so bad that it is necessary to discard the entire packet. In
such a case, the sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a
complete packet is lost by the network. One reason this can happen is that the packet
contains an uncorrectable bit error and therefore has to be discarded. A more likely
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reason, however, is that one of the nodes that has to handle the packet—for example,
a switch that is forwarding it from one link to another—is so overloaded that it has
no place to store the packet, and therefore is forced to drop it. This is the problem of
congestion mentioned in Section 1.2.2. Less commonly, the software running on one of
the nodes that handles the packet makes a mistake. For example, it might incorrectly
forward a packet out on the wrong link, so that the packet never finds its way to the
ultimate destination. As we will see, one of the main difficulties in dealing with lost
packets is distinguishing between a packet that is indeed lost and one that is merely
late in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut,
or the computer it is connected to crashes. This can be caused by software that crashes,
a power failure, or a reckless backhoe operator. While such failures can eventually be
corrected, they can have a dramatic effect on the network for an extended period of
time. However, they need not totally disable the network. In a packet-switched net-
work, for example, it is sometimes possible to route around a failed node or link. One of
the difficulties in dealing with this third class of failure is distinguishing between a failed
computer and one that is merely slow, or in the case of a link, between one that has been
cut and one that is very flaky and therefore introducing a high number of bit errors.

The key idea to take away from this discussion is that defining useful chan-
nels involves both understanding the applications’ requirements and recognizing the
limitations of the underlying technology. The challenge is to fill in the gap between
what the application expects and what the underlying technology can provide. This is
sometimes called the semantic gap.

1.3 Network Architecture

In case you hadn’t noticed, the previous section established a pretty substantial set of
requirements for network design—a computer network must provide general, cost-
effective, fair, and robust connectivity among a large number of computers. As if this
weren’t enough, networks do not remain fixed at any single point in time, but must
evolve to accommodate changes in both the underlying technologies upon which they
are based as well as changes in the demands placed on them by application programs.
Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general
blueprints—usually called a network architecture—that guide the design and imple-
mentation of networks. This section defines more carefully what we mean by a network
architecture by introducing the central ideas that are common to all network archi-
tectures. It also introduces two of the most widely referenced architectures—the OSI
architecture and the Internet architecture.
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Figure 1.8 Example of a layered network system.

1.3.1 Layering and Protocols

When the system gets complex, the system designer introduces another level of ab-
straction. The idea of an abstraction is to define a unifying model that can capture
some important aspect of the system, encapsulate this model in an object that provides
an interface that can be manipulated by other components of the system, and hide the
details of how the object is implemented from the users of the object. The challenge
is to identify abstractions that simultaneously provide a service that proves useful in a
large number of situations and that can be efficiently implemented in the underlying
system. This is exactly what we were doing when we introduced the idea of a channel
in the previous section: We were providing an abstraction for applications that hides
the complexity of the network from application writers.

Abstractions naturally lead to layering, especially in network systems. The gen-
eral idea is that you start with the services offered by the underlying hardware, and
then add a sequence of layers, each providing a higher (more abstract) level of ser-
vice. The services provided at the high layers are implemented in terms of the services
provided by the low layers. Drawing on the discussion of requirements given in the
previous section, for example, we might imagine a network as having two layers of
abstraction sandwiched between the application program and the underlying hard-
ware, as illustrated in Figure 1.8. The layer immediately above the hardware in this
case might provide host-to-host connectivity, abstracting away the fact that there may
be an arbitrarily complex network topology between any two hosts. The next layer up
builds on the available host-to-host communication service and provides support for
process-to-process channels, abstracting away the fact that the network occasionally
loses messages, for example.

Layering provides two nice features. First, it decomposes the problem of building
anetwork into more manageable components. Rather than implementing a monolithic
piece of software that does everything you will ever want, you can implement several
layers, each of which solves one part of the problem. Second, it provides a more mod-
ular design. If you decide that you want to add some new service, you may only need
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Figure 1.9 Layered system with alternative abstractions available at a given layer.

to modify the functionality at one layer, reusing the functions provided at all the other
layers.

Thinking of a system as a linear sequence of layers is an oversimplification,
however. Many times there are multiple abstractions provided at any given level of
the system, each providing a different service to the higher layers but building on the
same low-level abstractions. To see this, consider the two types of channels discussed
in Section 1.2.3: One provides a request/reply service, and one supports a message
stream service. These two channels might be alternative offerings at some level of a
multilevel networking system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the
architecture of a network more precisely. For starters, the abstract objects that make
up the layers of a network system are called protocols. That is, a protocol provides
a communication service that higher-level objects (such as application processes, or
perhaps higher-level protocols) use to exchange messages. For example, we could imag-
ine a network that supports a request/reply protocol and a message stream protocol,
corresponding to the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service inter-
face to the other objects on the same computer that want to use its communication
services. This service interface defines the operations that local objects can perform
on the protocol. For example, a request/reply protocol would support operations by
which an application can send and receive messages. Second, a protocol defines a peer
interface to its counterpart (peer) on another machine. This second interface defines
the form and meaning of messages exchanged between protocol peers to implement
the communication service. This would determine the way in which a request/reply
protocol on one machine communicates with its peer on another machine. In other
words, a protocol defines a communication service that it exports locally, along with
a set of rules governing the messages that the protocol exchanges with its peer(s) to
implement this service. This situation is illustrated in Figure 1.10.
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Figure 1.10 Service and peer interfaces.

Except at the hardware level where peers directly communicate with each other
over a link, peer-to-peer communication is indirect—each protocol communicates with
its peer by passing messages to some lower-level protocol, which in turn delivers the
message to its peer. In addition, there are potentially multiple protocols at any given
level, each providing a different communication service. We therefore represent the
suite of protocols that make up a network system with a protocol graph. The nodes of
the graph correspond to protocols, and the edges represent a depends-on relation. For
example, Figure 1.11 illustrates a protocol graph for the hypothetical layered system
we have been discussing—protocols RRP (Request/Reply Protocol) and MSP (Mes-
sage Stream Protocol) implement two different types of process-to-process channels,
and both depend on HHP (Host-to-Host Protocol), which provides a host-to-host
connectivity service.

In this example, suppose that the file access program on host 1 wants to send
a message to its peer on host 2 using the communication service offered by protocol
RRP. In this case, the file application asks RRP to send the message on its behalf.
To communicate with its peer, RRP then invokes the services of HHP, which in turn
transmits the message to its peer on the other machine. Once the message has arrived
at protocol HHP on host 2, HHP passes the message up to RRP, which in turn delivers
the message to the file application. In this particular case, the application is said to
employ the services of the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to
the abstract interfaces—that is, the operations defined by the service interface and the
form and meaning of messages exchanged between peers—and sometimes it refers to
the module that actually implements these two interfaces. To distinguish between the
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Figure 1.11 Example of a protocol graph.

interfaces and the module that implements these interfaces, we generally refer to the
former as a protocol specification. Specifications are generally expressed using a combi-
nation of prose, pseudocode, state transition diagrams, pictures of packet formats, and
other abstract notations. It should be the case that a given protocol can be implemented
in different ways by different programmers, as long as each adheres to the specification.
The challenge is ensuring that two different implementations of the same specification
can successfully exchange messages. Two or more protocol modules that do accurately
implement a protocol specification are said to interoperate with each other.

We can imagine many different protocols and protocol graphs that satisfy the
communication requirements of a collection of applications. Fortunately, there exist
standardization bodies, such as the International Standards Organization (ISO) and
the Internet Engineering Task Force (IETF), that establish policies for a particular pro-
tocol graph. We call the set of rules governing the form and content of a protocol
graph a network architecture. Although beyond the scope of this book, standardiza-
tion bodies such as the ISO and the IETF have established well-defined procedures for
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introducing, validating, and finally approving protocols in their respective architec-
tures. We briefly describe the architectures defined by the ISO and the IETF shortly,
but first there are two additional things we need to explain about the mechanics of a
protocol graph.

Encapsulation

Consider what happens in Figure 1.11 when one of the application programs sends a
message to its peer by passing the message to protocol RRP. From RRP’s perspective,
the message it is given by the application is an uninterpreted string of bytes. RRP does
not care that these bytes represent an array of integers, an email message, a digital
image, or whatever; it is simply charged with sending them to its peer. However, RRP
must communicate control information to its peer, instructing it how to handle the
message when it is received. RRP does this by attaching a header to the message.
Generally speaking, a header is a small data structure—from a few bytes to a few
dozen bytes—that is used among peers to communicate with each other. As the name
suggests, headers are usually attached to the front of a message. In some cases, however,
this peer-to-peer control information is sent at the end of the message, in which case
it is called a trailer. The exact format for the header attached by RRP is defined by
its protocol specification. The rest of the message—that is, the data being transmitted
on behalf of the application—is called the message’s body or payload. We say that the
application’s data is encapsulated in the new message created by protocol RRP.

This process of encapsulation is then repeated at each level of the protocol graph;
for example, HHP encapsulates RRP’s message by attaching a header of its own. If we
now assume that HHP sends the message to its peer over some network, then when the
message arrives at the destination host, it is processed in the opposite order: HHP first
strips its header off the front of the message, interprets it (i.e., takes whatever action
is appropriate given the contents of the header), and passes the body of the message
up to RRP, which removes the header that its peer attached, takes whatever action
is indicated by that header, and passes the body of the message up to the application
program. The message passed up from RRP to the application on host 2 is exactly the
same message as the application passed down to RRP on host 1; the application does
not see any of the headers that have been attached to it to implement the lower-level
communication services. This whole process is illustrated in Figure 1.12. Note that in
this example, nodes in the network (e.g., switches and routers) may inspect the HHP
header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is
given by some high-level protocol, we mean that it does not know how to extract any
meaning from the data contained in the message. It is sometimes the case, however,
that the low-level protocol applies some simple transformation to the data it is given,
such as to compress or encrypt it. In this case, the protocol is transforming the entire
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Figure 1.12 High-level messages are encapsulated inside of low-level messages.

body of the message, including both the original application’s data and all the headers
attached to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.2 that a fundamental idea of packet switching is to multiplex
multiple flows of data over a single physical link. This same idea applies up and down
the protocol graph, not just to switching nodes. In Figure 1.11, for example, we can
think of RRP as implementing a logical communication channel, with messages from
two different applications multiplexed over this channel at the source host and then
demultiplexed back to the appropriate application at the destination host.

Practically speaking, all this means is that the header that RRP attaches to its
messages contains an identifier that records the application to which the message
belongs. We call this identifier RRP’s demultiplexing key, or demux key for short.
At the source host, RRP includes the appropriate demux key in its header. When the
message is delivered to RRP on the destination host, it strips its header, examines the
demux key, and demultiplexes the message to the correct application.
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RRP is not unique in its support for multiplexing; nearly every protocol imple-
ments this mechanism. For example, HHP has its own demux key to determine which
messages to pass up to RRP and which to pass up to MSP. However, there is no uniform
agreement among protocols—even those within a single network architecture—on ex-
actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can
support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some
protocols have a single demultiplexing field in their header, while others have a pair of
demultiplexing fields. In the former case, the same demux key is used on both sides of
the communication, while in the latter case, each side uses a different key to identify the
high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture

The ISO was one of the first organizations to formally define a common way to connect
computers. Their architecture, called the Open Systems Interconnection (OSI) architec-
ture and illustrated in Figure 1.13, defines a partitioning of network functionality into

End host End host

One or more nodes
within the network

Figure 1.13 OSI network architecture.
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seven layers, where one or more protocols implement the functionality assigned to a
given layer. In this sense, the schematic given in Figure 1.13 isnot a protocol graph, per
se, but rather a reference model for a protocol graph. The ISO, usually in conjunction
with a second standards organization known as the International Telecommunications
Union (ITU),! publishes a series of protocol specifications based on the OSI archi-
tecture. This series is sometimes called the “X dot” series since the protocols are given
names like X.25,X.400, X.500, and so on. There have been several networks based on
these standards, including the public X.25 network and private networks like Tymnet.

Starting at the bottom and working up, the physical layer handles the transmis-
sion of raw bits over a communications link. The data link layer then collects a stream
of bits into a larger aggregate called a frame. Network adaptors, along with device
drivers running in the node’s OS, typically implement the data link level. This means
that frames, not raw bits, are actually delivered to hosts. The network layer handles
routing among nodes within a packet-switched network. At this layer, the unit of data
exchanged among nodes is typically called a packet rather than a frame, although
they are fundamentally the same thing. The lower three layers are implemented on all
network nodes, including switches within the network and hosts connected along the
exterior of the network. The transport layer then implements what we have up to this
point been calling a process-to-process channel. Here, the unit of data exchanged is
commonly called a message rather than a packet or a frame. The transport layer and
higher layers typically run only on the end hosts and not on the intermediate switches
or routers.

There is less agreement about the definition of the top three layers. Skipping
ahead to the top (seventh) layer, we find the application layer. Application layer pro-
tocols include things like the File Transfer Protocol (FTP), which defines a protocol by
which file transfer applications can interoperate. Below that, the presentation layer is
concerned with the format of data exchanged between peers, for example, whether an
integer is 16, 32, or 64 bits long and whether the most significant bit is transmitted
first or last, or how a video stream is formatted. Finally, the session layer provides a
name space that is used to tie together the potentially different transport streams that
are part of a single application. For example, it might manage an audio stream and a
video stream that are being combined in a teleconferencing application.

1.3.3 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP architecture after
its two main protocols, is depicted in Figure 1.14. An alternative representation is given
in Figure 1.15. The Internet architecture evolved out of experiences with an earlier

TA subcommittee of the ITU on telecommunications (ITU-T) replaces an earlier subcommittee of the ITU, which
was known by its French name, Comité Consultatif International de Télégraphique et Téléphonique (CCITT).
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Figure 1.15 Alternative view of the Internet architecture.

packet-switched network called the ARPANET. Both the Internet and the ARPANET
were funded by the Advanced Research Projects Agency (ARPA), one of the R&D
funding agencies of the U.S. Department of Defense. The Internet and ARPANET
were around before the OSI architecture, and the experience gained from building
them was a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the
Internet, a four-layer model is often used instead. At the lowest level are a wide variety
of network protocols, denoted NET;, NET>, and so on. In practice, these protocols
are implemented by a combination of hardware (e.g., a network adaptor) and soft-
ware (e.g., a network device driver). For example, you might find Ethernet or Fiber
Distributed Data Interface (FDDI) protocols at this layer. (These protocols in turn
may actually involve several sublayers, but the Internet architecture does not presume
anything about them.) The second layer consists of a single protocol—the Internet
Protocol (IP). This is the protocol that supports the interconnection of multiple net-
working technologies into a single, logical internetwork. The third layer contains two
main protocols—the Transmission Control Protocol (TCP) and the User Datagram
Protocol (UDP). TCP and UDP provide alternative logical channels to application
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programs: TCP provides a reliable byte-stream channel, and UDP provides an un-
reliable datagram delivery channel (datagram may be thought of as a synonym for
message). In the language of the Internet, TCP and UDP are sometimes called end-to-
end protocols, although it is equally correct to refer to them as transport protocols.

Running above the transport layer are a range of application protocols, such as
FTP, TFTP (Trivial File Transport Protocol), Telnet (remote login), and SMTP (Simple
Mail Transfer Protocol, or electronic mail), that enable the interoperation of popular
applications. To understand the difference between an application layer protocol and
an application, think of all the different World Wide Web browsers that are available
(e.g., Mosaic, Netscape, Internet Explorer, Lynx, etc.). There are a similarly large
number of different implementations of Web servers. The reason that you can use any
one of these application programs to access a particular site on the Web is because
they all conform to the same application layer protocol: HTTP (HyperText Transport
Protocol). Confusingly, the same word sometimes applies to both an application and
the application layer protocol that it uses (e.g., FTP).

The Internet architecture has three features that are worth highlighting. First, as
best illustrated by Figure 1.15, the Internet architecture does not imply strict layering.
The application is free to bypass the defined transport layers and to directly use IP or
one of the underlying networks. In fact, programmers are free to define new channel
abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice
an hourglass shape—wide at the top, narrow in the middle, and wide at the bottom.
This shape actually reflects the central philosophy of the architecture. That is, IP serves
as the focal point for the architecture—it defines a common method for exchanging
packets among a wide collection of networks. Above IP can be arbitrarily many trans-
port protocols, each offering a different channel abstraction to application programs.
Thus, the issue of delivering messages from host to host is completely separated from
the issue of providing a useful process-to-process communication service. Below IP,
the architecture allows for arbitrarily many different network technologies, ranging
from Ethernet to FDDI to ATM to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF
culture) is that in order for someone to propose a new protocol to be included in the
architecture, they must produce both a protocol specification and at least one (and
preferably two) representative implementations of the specification. The existence of
working implementations is required for standards to be adopted by the IETF. This
cultural assumption of the design community helps to ensure that the architecture’s
protocols can be efficiently implemented. Perhaps the value the Internet culture places
on working software is best exemplified by a quote on T-shirts commonly worn at
IETF meetings:
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We reject kings, presidents, and voting. We believe in rough consensus and running
code.
(Dave Clark)

Of these three attributes of the Internet architecture, the hourglass design philos-
ophy is important enough to bear repeating. The hourglass’s narrow waist represents
a minimal and carefully chosen set of global capabilities that allows both higher-level
applications and lower-level communication technologies to coexist, share capabili-
ties, and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability
to adapt rapidly to new user demands and changing technologies.

1.4 Implementing Network Software

Network architectures and protocol specifications are essential things, but a good
blueprint is not enough to explain the phenomenal success of the Internet: The number
of computers connected to the Internet has been doubling every year since 1981 and is
now approaching 200 million; the number of people who use the Internet is estimated
at well over 600 million; and it is believed that the number of bits transmitted over the
Internet surpassed the corresponding figure for the voice phone system sometime in
2001.

What explains the success of the Internet? There are certainly many contributing
factors (including a good architecture), but one thing that has made the Internet such
a runaway success is the fact that so much of its functionality is provided by software
running in general-purpose computers. The significance of this is that new function-
ality can be added readily with “just a small matter of programming.” As a result,
new applications and services—electronic commerce, videoconferencing, and packet
telephony, to name a few—have been showing up at a phenomenal pace.

A related factor is the massive increase in computing power available in commod-
ity machines. Although computer networks have always been capable in principle of
transporting any kind of information, such as digital voice samples, digitized images,
and so on, this potential was not particularly interesting if the computers sending and
receiving that data were too slow to do anything useful with the information. Virtually
all of today’s computers are capable of playing back digitized voice at full speed and can
display video at a speed and resolution that is useful for some (but by no means all)
applications. Thus, today’s networks have begun to support multimedia, and their
support for it will only improve as computing hardware becomes faster.

The point to take away from this is that knowing how to implement network
software is an essential part of understanding computer networks. With this in mind,
this section first introduces some of the issues involved in implementing an application
program on top of a network, and then goes on to identify the issues involved in
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implementing the protocols running within the network. In many respects, network
applications and network protocols are very similar—the way an application engages
the services of the network is pretty much the same as the way a high-level protocol
invokes the services of a low-level protocol. As we will see later in the section, however,
there are a couple of important differences.

1.4.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the interface exported
by the network. Since most network protocols are implemented in software (espe-
cially those high in the protocol stack), and nearly all computer systems implement
their network protocols as part of the operating system, when we refer to the inter-
face “exported by the network,” we are generally referring to the interface that the
OS provides to its networking subsystem. This interface is often called the network
application programming interface (API).

Although each operating system is free to define its own network API (and most
have), over time certain of these APIs have become widely supported; that is, they
have been ported to operating systems other than their native system. This is what has
happened with the socket interface originally provided by the Berkeley distribution of
Unix, which is now supported in virtually all popular operating systems. The advantage
of industrywide support for a single API is that applications can be easily ported from
one OS to another. It is important to keep in mind, however, that application programs
typically interact with many parts of the OS other than the network; for example, they
read and write files, fork concurrent processes, and output to the graphical display.
Just because two systems support the same network API does not mean that their
file system, process, or graphic interfaces are the same. Still, understanding a widely
adopted API like Unix sockets gives us a good place to start.

Before describing the socket interface, it is important to keep two concerns sep-
arate in your mind. Each protocol provides a certain set of services, and the API
provides a syntax by which those services can be invoked in this particular OS.
The implementation is then responsible for mapping the tangible set of operations
and objects defined by the API onto the abstract set of services defined by the pro-
tocol. If you have done a good job of defining the interface, then it will be possible
to use the syntax of the interface to invoke the services of many different protocols.
Such generality was certainly a goal of the socket interface, although it’s far from
perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A
good way to think of a socket is as the point where a local application process attaches
to the network. The interface defines operations for creating a socket, attaching the
socket to the network, sending/receiving messages through the socket, and closing the
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socket. To simplify the discussion, we will limit ourselves to showing how sockets are
used with TCP.
The first step is to create a socket, which is done with the following operation:

int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket interface was
designed to be general enough to support any underlying protocol suite. Specifically, the
domain argument specifies the protocol family that is going to be used: PF_INET denotes
the Internet family, PF_UNIX denotes the Unix pipe facility, and PF_.PACKET denotes
direct access to the network interface (i.e., it bypasses the TCP/IP protocol stack). The
type argument indicates the semantics of the communication. SOCK_STREAM is used to
denote a byte stream. SOCK_DGRAM is an alternative that denotes a message-oriented
service, such as that provided by UDP. The protocol argument identifies the specific
protocol that is going to be used. In our case, this argument is UNSPEC because the
combination of PF_INET and SOCK_STREAM implies TCP. Finally, the return value from
socket is a handle for the newly created socket, that is, an identifier by which we can
refer to the socket in the future. It is given as an argument to subsequent operations
on this socket.

The next step depends on whether you are a client or a server. On a server
machine, the application process performs a passive open—the server says that it is
prepared to accept connections, but it does not actually establish a connection. The
server does this by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *address, int *addr_len)

The bind operation, as its name suggests, binds the newly created socket to the
specified address. This is the network address of the local participant—the server. Note
that, when used with the Internet protocols, address is a data structure that includes
both the IP address of the server and a TCP port number. (As we will see in Chapter 5,
ports are used to indirectly identify processes. They are a form of demux keys as de-
fined in Section 1.3.1.) The port number is usually some well-known number specific
to the service being offered; for example, Web servers commonly accept connections
on port 80.

The listen operation then defines how many connections can be pending on
the specified socket. Finally, the accept operation carries out the passive open. It is
a blocking operation that does not return until a remote participant has established
a connection, and when it does complete, it returns a new socket that corresponds
to this just-established connection, and the address argument contains the remote
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participant’s address. Note that when accept returns, the original socket that was
given as an argument still exists and still corresponds to the passive open; it is used in
future invocations of accept.

On the client machine, the application process performs an active open; that is,
it says who it wants to communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, int addr_len)

This operation does not return until TCP has successfully established a connection, at
which time the application is free to begin sending data. In this case, address contains
the remote participant’s address. In practice, the client usually specifies only the remote
participant’s address and lets the system fill in the local information. Whereas a server
usually listens for messages on a well-known port, a client typically does not care
which port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following
two operations to send and receive data:

int send(int socket, char *message, int msg_len, int flags)
int recv(int socket, char *buffer, int buf_len, int flags)

The first operation sends the given message over the specified socket, while the second
operation receives a message from the specified socket into the given buffer. Both
operations take a set of flags that control certain details of the operation.

1.4.2 Example Application

We now show the implementation of a simple client/server program that uses the socket
interface to send messages over a TCP connection. The program also uses other Unix
networking utilities, which we introduce as we go. Our application allows a user on
one machine to type in and send text to a user on another machine. It is a simplified
version of the Unix talk program, which is similar to the program at the core of a Web
chat room.

Client

We start with the client side, which takes the name of the remote machine as an
argument. It calls the Unix utility gethostbyname to translate this name into the remote
host’s IP address. The next step is to construct the address data structure (sin) expected
by the socket interface. Notice that this data structure specifies that we’ll be using the
socket to connect to the Internet (AF_INET). In our example, we use TCP port 5432
as the well-known server port; this happens to be a port that has not been assigned to
any other Internet service. The final step in setting up the connection is to call socket
and connect. Once the connect operation returns, the connection is established and the
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client program enters its main loop, which reads text from standard input and sends

it over the socket.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX_LINE 256

int
main(int argc, char * argvl[])

{

FILE *fp;

struct hostent *hp;
struct sockaddr_in sin;
char *host;

char buf[MAX_LINE];

int s;

int len;

if (argc==2) {
host = argv[l];

}

else {
fprintf (stderr, "usage: simplex-talk host\n");
exit (1) ;

/* translate host name into peer's IP address */

hp = gethostbyname (host) ;

if ('hp) {
fprintf (stderr, "simplex-talk: unknown host: %$s\n", host);
exit (1) ;

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

bcopy (hp->h_addr, (char *)&sin.sin_addr, hp->h_length) ;
sin.sin_port = htons (SERVER_PORT) ;

/* active open */

if ((s = socket (PF_INET, SOCK_STREAM, 0)) < 0) {
perror ("simplex-talk: socket");
exit (1) ;
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}

if (connect (s, (struct sockaddr *)é&sin,
perror ("simplex-talk: connect");
close(s);
exit(1l);

}

sizeof (sin))

/* main loop: get and send lines of text */

while (fgets(buf, sizeof (buf), stdin))
buf [MAX_LINE-1] = '\0';
len = strlen(buf) + 1;

send (s, buf, len, 0);

Server

{

< 0)

35

The server is equally simple. It first constructs the address data structure by filling in

its own port number (SERVER_PORT). By not specifying an IP address, the application

program is willing to accept connections on any of the local host’s IP addresses. Next,

the server performs the preliminary steps involved in a passive open: creates the socket,
binds it to the local address, and sets the maximum number of pending connections
to be allowed. Finally, the main loop waits for a remote host to try to connect, and

when one does, receives and prints out the characters that arrive on the connection.

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<netdb.h>

#define SERVER_PORT 5432
#define MAX_ PENDING 5
#define MAX_LINE 256

int
main ()

{

struct sockaddr_in sin;
char buf[MAX_LINE];
int len;

int s,

new_s;

/* build address data structure */
bzero ((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons (SERVER_PORT) ;
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/* setup passive open */
if ((s = socket (PF_INET, SOCK_STREAM, 0)) < 0) {
perror ("simplex-talk: socket");

exit (1) ;

}

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {
perror ("simplex-talk: bind") ;
exit (1) ;

}
listen(s, MAX_PENDING) ;

/* wait for connection, then receive and print text */
while (1) {
if ((new_s = accept (s, (struct sockaddr *)&sin, &len)) < 0){

perror ("simplex-talk: accept");
exit (1) ;
}
while (len = recv(new_s, buf, sizeof (buf), 0))
fputs (buf, stdout);
close(new_s) ;

1.4.3 Protocol Implementation Issues

As mentioned at the beginning of this section, the way application programs interact
with the underlying network is similar to the way a high-level protocol interacts with
a low-level protocol. For example, TCP needs an interface to send outgoing messages
to IP, and IP needs to be able to deliver incoming messages to TCP. This is exactly the
service interface introduced in Section 1.3.1.

Since we already have a network API (e.g., sockets), we might be tempted to use
this same interface between every pair of protocols in the protocol stack. Although
certainly an option, in practice the socket interface is not used in this way. The reason
is that there are inefficiencies built into the socket interface that protocol implementers
are not willing to tolerate. Application programmers tolerate them because they sim-
plify their programming task and because the inefficiency only has to be tolerated once,
but protocol implementers are often obsessed with performance and must worry about
getting a message through several layers of protocols. The rest of this section discusses
the two primary differences between the network API and the protocol-to-protocol
interface found lower in the protocol graph.

Process Model
Most operating systems provide an abstraction called a process, or alternatively, a
thread. Each process runs largely independently of other processes, and the OS is
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Figure 1.16 Alternative process models: (a) process-per-protocol; (b) process-per-
message.

responsible for making sure that resources, such as address space and CPU cycles,
are allocated to all the current processes. The process abstraction makes it fairly
straightforward to have a lot of things executing concurrently on one machine; for
example, each user application might execute in its own process, and various things
inside the OS might execute as other processes. When the OS stops one process from
executing on the CPU and starts up another one, we call the change a context switch.

When designing the network subsystem, one of the first questions to answer
is, “Where are the processes?” There are essentially two choices, as illustrated in
Figure 1.16. In the first, which we call the process-per-protocol model, each protocol
is implemented by a separate process. This means that as a message moves up or down
the protocol stack, it is passed from one process/protocol to another—the process that
implements protocol i processes the message, then passes it to protocol i — 1, and so
on. How one process/protocol passes a message to the next process/protocol depends
on the support the host OS provides for interprocess communication. Typically, there
is a simple mechanism for enqueuing a message with a process. The important point,
however, is that a context switch is required at each level of the protocol graph—
typically a time-consuming operation.

The alternative, which we call the process-per-message model, treats each pro-
tocol as a static piece of code and associates the processes with the messages.
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That is, when a message arrives from the network, the OS dispatches a process that
it makes responsible for the message as it moves up the protocol graph. At each level,
the procedure that implements that protocol is invoked, which eventually results in the
procedure for the next protocol being invoked, and so on. For outbound messages, the
application’s process invokes the necessary procedure calls until the message is deliv-
ered. In both directions, the protocol graph is traversed in a sequence of procedure calls.

Although the process-per-protocol model is sometimes easier to think about—
I implement my protocol in my process, and you implement your protocol in your
process—the process-per-message model is generally more efficient for a simple reason:
A procedure call is an order of magnitude more efficient than a context switch on most
computers. The former model requires the expense of a context switch at each level,
while the latter model costs only a procedure call per level.

Now think about the relationship between the service interface as defined above
and the process model. For an outgoing message, the high-level protocol invokes a
send operation on the low-level protocol. Because the high-level protocol has the
message in hand when it calls send, this operation can be easily implemented as a
procedure call; no context switch is required. For incoming messages, however, the
high-level protocol invokes the receive operation on the low-level protocol, and then
must wait for a message to arrive at some unknown future time; this basically forces a
context switch. In other words, the process running in the high-level protocol receives a
message from the process running in the low-level protocol. This isn’t a big deal if only
the application process receives messages from the network subsystem—in fact, it’s the
right interface for the network API since application programs already have a process-
centric view of the world—but it does have a significant impact on performance if such
a context switch occurs at each layer of the protocol stack.

It is for this reason that most protocol implementations replace the receive oper-
ation with a deliver operation. That is, the low-level protocol does an upcall—a pro-
cedure call up the protocol stack—to deliver the message to the high-level protocol.
Figure 1.17 shows the resulting interface between two adjacent protocols, TCP and IP
in this case. In general, messages move down the protocol graph through a sequence of
send operations, and up the protocol graph through a sequence of deliver operations.

Message Buffers

A second inefficiency of the socket interface is that the application process provides
the buffer that contains the outbound message when calling send, and similarly it
provides the buffer into which an incoming message is copied when invoking the
receive operation. This forces the topmost protocol to copy the message from the ap-
plication’s buffer into a network buffer, and vice versa, as shown in Figure 1.18. It turns
out that copying data from one buffer to another is one of the most expensive things a
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Figure 1.18 Copying incoming/outgoing messages between application buffer and
network buffer.

protocol implementation can do. This is because while processors are becoming faster
at an incredible pace, memory is not getting faster as quickly as processors are.
Instead of copying message data from one buffer to another at each layer in the
protocol stack, most network subsystems define an abstract data type for messages
that is shared by all protocols in the protocol graph. Not only does this abstraction
permit messages to be passed up and down the protocol graph without copying, but
it usually provides copy-free ways of manipulating messages in other ways, such as
adding and stripping headers, fragmenting large messages into a set of small messages,
and reassembling a collection of small messages into a single large message. The exact
form of this message abstraction differs from OS to OS, but it generally involves a
linked list of pointers to message buffers, similar to the one shown in Figure 1.19.
We leave it as an exercise for you to define a general copy-free message abstraction.
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Figure 1.19 Example message data structure.

1.5 Performance

Up to this point, we have focused primar-
ily on the functional aspects of networks.
Like any computer system, however, com-
puter networks are also expected to perform
well, since the effectiveness of computations
distributed over the network often depends
directly on the efficiency with which the net-
work delivers the computation’s data. While
the old programming adage “First get it
right and then make it fast” is valid in many
settings, in networking it is usually neces-
sary to “design for performance.” It is there-
fore important to understand the various
factors that impact network performance.

1.5.1 Bandwidth and

Latency
Network performance is measured in two
fundamental ways: bandwidth (also called
throughput) and latency (also called delay).
The bandwidth of a network is given by
the number of bits that can be transmitted
over the network in a certain period of time.
For example, a network might have a band-
width of 10 million bits/second (Mbps),
meaning that it is able to deliver 10 million

Bandwidth and
Throughput
Bandwidth and throughput are two
of the most confusing terms used
in networking. While we could try
to give you a precise definition of
each term, it is important that you
know how other people might use
them and for you to be aware that
they are often used interchange-
ably. First of all, bandwidth is lit-
erally a measure of the width of
a frequency band. For example,
a voice-grade telephone line sup-
ports a frequency band ranging
from 300 to 3300 Hz; it is said
to have a bandwidth of 3300 Hz —
300 Hz = 3000 Hz. If you see the
word “bandwidth” used in a situa-
tion in which it is being measured
in hertz, then it probably refers to
the range of signals that can be
accommodated.

When we talk about the band-
width of a communication link, we
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bits every second. It is sometimes useful to think of bandwidth in terms of how long it
takes to transmit each bit of data. On a 10-Mbps network, for example, it takes 0.1
microsecond (js) to transmit each bit.

While you can talk about the bandwidth of the network as a whole, sometimes
you want to be more precise, focusing, for example, on the bandwidth of a single
physical link or of a logical process-to-process channel. At the physical level, band-
width is constantly improving, with no end in sight. Intuitively, if you think of a second
of time as a distance you could measure with a ruler, and bandwidth as how many
bits fit in that distance, then you can think of each bit as a pulse of some width. For
example, each bit on a 1-Mbps link is 1 us wide, while each bit on a 2-Mbps link
is 0.5 us wide, as illustrated in Figure 1.20. The more sophisticated the transmitting
and receiving technology, the narrower each bit can become, and thus, the higher the
bandwidth. For logical process-to-process
channels, bandwidth is also influenced by
other factors, including how many times the
software that implements the channel has to
normally refer to the number of . .

handle, and possibly transform, each bit of
data.

The second performance metric, la-

bits per second that can be trans-
mitted on the link. We might say
that the bandwidth of an Ethernet
is 10 Mbps. A useful distinction
might be made, however, between
the bandwidth that is available on
the link and the number of bits per
second that we can actually trans-

tency, corresponds to how long it takes a
message to travel from one end of a network
to the other. (As with bandwidth, we could
be focused on the latency of a single link
or an end-to-end channel.) Latency is mea-

. . . sured strictly in terms of time. For example,
mit over the link in practice. We ) .
5 ) a transcontinental network might have a la-
tend to use the word “throughput - .
tency of 24 milliseconds (ms); that s, it takes

to refer to the measured perfor-
a message 24 ms to travel from one end of
mance of a system. Thus, because of .
.. . . North America to the other. There are many
various inefficiencies of implemen- L . . :
. . situations in which it is more important to
tation, a pair of nodes connected by

a link with a bandwidth of 10 Mbps
might achieve a throughput of only
2 Mbps. This would mean that an
application on one host could send
data to the other host at 2 Mbps.
Finally, we often talk about

know how long it takes to send a message
from one end of a network to the other and
back, rather than the one-way latency. We
call this the round-trip time (RTT) of the
network.

We often think of latency as having
three components. First, there is the speed-
of-light propagation delay. This delay oc-
curs because nothing, including a bit on

the bandwidth requirements of an
application—the number of bits

a wire, can travel faster than the speed
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Figure 1.20 Bits transmitted at a particular bandwidth can be regarded as having some
width: (a) bits transmitted at 1 Mbps (each bit 1 s wide); (b) bits transmitted at 2 Mbps
(each bit 0.5 us wide).

of light. If you know the distance between two points, you can calculate the speed-of-
light latency, although you have to be careful because light travels across different medi-
ums at different speeds: It travels at 3.0 x 10% m/s in a vacuum, 2.3 x 10® m/s in a cable,
and 2.0x 108 m/s in a fiber. Second, there is the amount of time it takes to transmit a unit
of data. This is a function of the network bandwidth and the size of the packet in which
the data is carried. Third, there may be queuing delays inside the network, since packet
switches generally need to store packets for some time before forwarding them on an
outbound link, as discussed in Section 1.2.2. So, we could define the total latency as

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

where Distance is the length of the wire over
which the data will travel, SpeedOfLight
is the effective speed of light over that

wire, Size is the size of the packet, and

Bandwidth is the bandwidth at which the ~ Per second that it needs to trans-
packet is transmitted. Note that if the mit over the network to perform

message contains only one bit and we are acceptably. For some applications,

talking about a single link (as opposed to this might be “whatever I can get”;

a whole network), then the Transmit and for others, it might be some fixed
number (preferably no more than
the available link bandwidth); and

for others, it might be a number

Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to de-

fine the performance characteristics of a that varies with time. We will pro-

given link or channel. Their relative impor- vide more on this topic later in this

tance, however, depends on the application. SISl

For some applications, latency dominates
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bandwidth. For example, a client that sends a 1-byte message to a server and receives
a 1-byte message in return is latency bound. Assuming that no serious computation
is involved in preparing the response, the application will perform much differently
on a transcontinental channel with a 100-ms RTT than it will on an across-the-room
channel with a 1-ms RTT. Whether the channel is 1 Mbps or 100 Mbps is relatively in-
significant, however, since the former implies that the time to transmit a byte (Transmit)
is 8 us and the latter implies Transmit = 0.08 us.

In contrast, consider a digital library program that is being asked to fetch a
25-megabyte (MB) image—the more bandwidth that is available, the faster it will be
able to return the image to the user. Here, the bandwidth of the channel dominates
performance. To see this, suppose that the channel has a bandwidth of 10 Mbps. It will
take 20 seconds to transmit the image, making it relatively unimportant if the image
is on the other side of a 1-ms channel or a 100-ms channel; the difference between a
20.001-second response time and a 20.1-second response time is negligible.

Figure 1.21 gives you a sense of how latency or bandwidth can dominate perfor-
mance in different circumstances. The graph shows how long it takes to move objects
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— 500 —
£ : :
g 1-MB object, 1.5-Mbps link
9 200 —
b5 1-MB object, 10-Mbps link ——
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Figure 1.21 Perceived latency (response time) versus round-trip time for various ob-

ject sizes and link speeds.
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of various sizes (1 byte, 2 KB, 1 MB) across networks with RTTs ranging from 1 to
100 ms and link speeds of either 1.5 or 10 Mbps. We use logarithmic scales to show
relative performance. For a 1-byte object (say, a keystroke), latency remains almost
exactly equal to the RTT, so that you cannot distinguish between a 1.5-Mbps network
and a 10-Mbps network. For a 2-KB object (say, an email message), the link speed
makes quite a difference on a 1-ms RTT network but a negligible difference on a 100-
ms RTT network. And for a 1-MB object (say, a digital image), the RTT makes no
difference—it s the link speed that dominates performance across the full range of RTT.
Note that throughout this book we use the terms latency and delay in a generic
way, that is, to denote how long it takes to perform a particular function such as
delivering a message or moving an object. When we are referring to the specific
amount of time it takes a signal to propagate from one end of a link to another,
we use the term propagation delay. Also, we make it clear in the context of the
discussion whether we are referring to the one-way latency or the round-trip time.
As an aside, computers are becoming
so fast that when we connect them to net-

. . . How Big Is a Mega?
works, it is sometimes useful to think, at 9 9

least figuratively, in terms of instructions per There are several pitfalls you need

mile. Consider what happens when a com- to be aware of when working with

puter thatis able to execute 1 billion instruc- the common units of networking—
tions per second sends a message out on a MB, Mbps, KB, and Kbps. The

channel with a 100-ms RTT. (To make the first is to distinguish carefully be-
tween bits and bytes. Throughout

math easier, assume that the message covers .
this book, we always use a lower-

a distance of 5000 miles.) If that computer

sits idle the full 100 ms waiting for a reply case b for bits and a capital B for

message, then it has forfeited the ability to bytes. The second is to be sure you
are using the appropriate definition
of mega (M) and kilo (K). Mega,

for example, can mean either 22°

execute 100 million instructions, or 20,000
instructions per mile. It had better have been

worth going over the network to justify this P .
or 10°. Similarly, kilo can be either

waste. . .
219 or 103. What is worse, in net-
working we typically use both def-
1.5.2 Delay x Bandwidth initions. Here’s why.

Product Network bandwidth, which is

It is also useful to talk about the product of often specified in terms of Mbps,

these two metrics, often called the delay x
bandwidth product. Intuitively, if we think
of a channel between a pair of processes

is typically governed by the speed
of the clock that paces the trans-
mission of the bits. A clock that is

as a hollow pipe (see Figure 1.22), where
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Figure 1.22 Network as a pipe.

the latency corresponds to the length of the pipe and the bandwidth gives the diameter
of the pipe, then the delay x bandwidth product gives the volume of the pipe—the
number of bits it holds. Said another way, if latency (measured in time) corresponds
to the length of the pipe, then given the width of each bit (also measured in time),
you can calculate how many bits fit in the pipe. For example, a transcontinental chan-
nel with a one-way latency of 50 ms and a bandwidth of 45 Mbps is able to hold

running at 10 MHz is used to trans-
mit bits at 10 Mbps. Because the
mega in MHz means 10° hertz,
Mbps is usually also defined as 10°
bits per second. (Similarly, Kbps is
103 bits per second.) On the other
hand, when we talk about a mes-
sage that we want to transmit, we
often give its size in kilobytes. Be-
cause messages are stored in the
computer’s memory, and memory
is typically measured in powers of
two, the K in KB is usually taken
to mean 2'°. (Similarly, MB usu-
ally means 2%°.) When you put
the two together, it is not un-
common to talk about sending a
32-KB message over a 10-Mbps
channel, which should be inter-
preted to mean 32 x 210 x 8 bits
are being transmitted at a rate of

50 x 1073 seconds x 45 x 10° bits/second
=2.25 x 10° bits

or approximately 280 KB of data. In other
words, this example channel (pipe) holds as
many bytes as the memory of a personal
computer from the early 1980s could hold.

The delay x bandwidth product is im-
portant to know when constructing high-
performance networks because it corre-
sponds to how many bits the sender must
transmit before the first bit arrives at the
receiver. If the sender is expecting the re-
ceiver to somehow signal that bits are start-
ing to arrive, and it takes another channel
latency for this signal to propagate back
to the sender (i.e., we are interested in the
channel’s RTT rather than just its one-way
latency), then the sender can send up to
two delay x bandwidth’s worth of data be-
fore hearing from the receiver that all is
well. The bits in the pipe are said to be “in
flight,” which means that if the receiver tells
the sender to stop transmitting, it might re-
ceive up to a delay x bandwidth’s worth of
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data before the sender manages to respond.
In our example above, that amount corre-
sponds to 5.5 x 10° bits (671 KB) of data.
On the other hand, if the sender does not fill
the pipe—send a whole delay x bandwidth
product’s worth of data before it stops to
wait for a signal—the sender will not fully
utilize the network.

Note that most of the time we are
interested in the RTT scenario, which we
simply refer to as the delay x bandwidth
product, without explicitly saying that
this product is multiplied by two. Again,
whether the “delay” in “delay x band-
width” means one-way latency or RTT is
made clear by the context.

1.5.3 High-Speed Networks

The bandwidths available on today’s net-
works are increasing at a dramatic rate, and
there is eternal optimism that network band-
width will continue to improve. This causes
network designers to start thinking about
what happens in the limit, or stated another
way, what is the impact on network design
of having infinite bandwidth available.

Although high-speed networks bring
a dramatic change in the bandwidth avail-
able to applications, in many respects their
impact on how we think about networking
comes in what does not change as band-
width increases: the speed of light. To quote
Scotty from Star Trek, “You cannae change
the laws of physics.” In other words, “high
speed” does not mean that latency improves
at the same rate as bandwidth; the transcon-
tinental RTT of a 1-Gbps link is the same
100 ms as it is for a 1-Mbps link.

1 Foundation

10 x 10° bits per second. This is the
interpretation we use throughout
the book, unless explicitly stated
otherwise.

The good news is that many
times we are satisfied with a
back-of-the-envelope calculation,
in which case it is perfectly reason-
able to pretend that a byte has 10
bits in it (making it easy to convert
between bits and bytes) and that
10° is really equal to 22° (making
it easy to convert between the two
definitions of mega). Notice that
the first approximation introduces
a 20% error, while the latter intro-
duces only a 5% error.

To help you in your quick-
and-dirty calculations, 100 ms is
a reasonable number to use for a
cross-country round-trip time—at
least when the country in question
is the United States—and 1 ms is
a good approximation of an RTT
across a local area network. In the
case of the former, we increase the
48-ms round-trip time implied by
the speed of light over a fiber to
100 ms because there are, as we
have said, other sources of delay,
such as the processing time in the
switches inside the network. You
can also be sure that the path taken
by the fiber between two points will
not be a straight line.
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Figure 1.23 Relationship between bandwidth and latency. With a 1-MB file, (a) the
1-Mbps link has 80 pipes full of data; (b) the 1-Gbps link has 1/12 of one pipe full of
data.

To appreciate the significance of ever-increasing bandwidth in the face of fixed
latency, consider what is required to transmit a 1-MB file over a 1-Mbps network
versus over a 1-Gbps network, both of which have an RTT of 100 ms. In the case
of the 1-Mbps network, it takes 80 round-trip times to transmit the file; during each
RTT, 1.25% of the file is sent. In contrast, the same 1-MB file doesn’t even come close
to filling 1 RTT’s worth of the 1-Gbps link, which has a delay x bandwidth product
of 12.5 MB.

Figure 1.23 illustrates the difference between the two networks. In effect, the
1-MB file looks like a stream of data that needs to be transmitted across a 1-Mbps
network, while it looks like a single packet on a 1-Gbps network. To help drive this
point home, consider that a 1-MB file is to a 1-Gbps network what a 1-KB packet is
to a 1-Mbps network.

Another way to think about the situation is that more data can be transmitted
during each RTT on a high-speed network, so much so that a single RTT becomes a
significant amount of time. Thus, while you wouldn’t think twice about the difference
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between a file transfer taking 101 RTTs rather than 100 RTTs (a relative difference
of only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a
100% increase. In other words, latency, rather than throughput, starts to dominate
our thinking about network design.

Perhaps the best way to understand the relationship between throughput and
latency is to return to basics. The effective end-to-end throughput that can be achieved
over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency identified earlier
in this section, but also any additional time spent requesting or setting up the transfer.
Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize

We use RTT in this calculation to account for a request message being sent across the
network and the data being sent back. For example, consider a situation where a user
wants to fetch a 1-MB file across a 1-Gbps network with a round-trip time of 100 ms.
The TransferTime includes both the transmit time for 1 MB (1/1 Gbps x 1 MB = 8 ms),
and the 100-ms RTT, for a total transfer time of 108 ms. This means that the effective
throughput will be

1 MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the ef-
fective throughput, where in the limit, an infinitely large transfer size will cause the
effective throughput to approach the network bandwidth. On the other hand, having
to endure more than 1 RTT—for example, to retransmit missing packets—will hurt
the effective throughput for any transfer of finite size and will be most noticeable for
small transfers.

1.5.4 Application Performance Needs
The discussion in this section has taken a network-centric view of performance; that
is, we have talked in terms of what a given link or channel will support. The unstated
assumption has been that application programs have simple needs—they want as much
bandwidth as the network can provide. This is certainly true of the aforementioned
digital library program that is retrieving a 25-MB image; the more bandwidth that is
available, the faster the program will be able to return the image to the user.
However, some applications are able to state an upper limit on how much band-
width they need. Video applications are a prime example. Suppose you want to stream
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a video image that is one-quarter the size of a standard TV image; that is, it has a
resolution of 352 by 240 pixels. If each pixel is represented by 24 bits of information,
as would be the case for 24-bit color, then the size of each frame would be

(352 x 240 x 24)/8 = 247.5 KB

If the application needs to support a frame rate of 30 frames per second, then it might
request a throughput rate of 75 Mbps. The ability of the network to provide more
bandwidth is of no interest to such an application because it has only so much data to
transmit in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because
the difference between any two adjacent frames in a video stream is often small, it is
possible to compress the video by transmitting only the differences between adjacent
frames. This compressed video does not flow at a constant rate, but varies with time
according to factors such as the amount of action and detail in the picture and the
compression algorithm being used. Therefore, it is possible to say what the average
bandwidth requirement will be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose
that this example video application can be compressed down to the point that it needs
only 2 Mbps, on average. If it transmits 1 megabit in a 1-second interval and 3 megabits
in the following 1-second interval, then over the 2-second interval it is transmitting at
an average rate of 2 Mbps; however, this will be of little consolation to a channel that
was engineered to support no more than 2 megabits in any one second. Clearly, just
knowing the average bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how big of a burst an
application like this is likely to transmit. A burst might be described by some peak rate
that is maintained for some period of time. Alternatively, it could be described as the
number of bytes that can be sent at the peak rate before reverting to the average rate
or some lower rate. If this peak rate is higher than the available channel capacity, then
the excess data will have to be buffered somewhere, to be transmitted later. Knowing
how big of a burst might be sent allows the network designer to allocate sufficient
buffer capacity to hold the burst. We will return to the subject of describing bursty
traffic accurately in Chapter 6.

Analogous to the way an application’s bandwidth needs can be something other
than “all it can get,” an application’s delay requirements may be more complex than
simply “as little delay as possible.” In the case of delay, it sometimes doesn’t matter so
much whether the one-way latency of the network is 100 ms or 500 ms as how much
the latency varies from packet to packet. The variation in latency is called jitter.

Consider the situation in which the source sends a packet once every 33 ms,
as would be the case for a video application transmitting frames 30 times a second.
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Figure 1.24 Network-induced jitter.

If the packets arrive at the destination spaced out exactly 33 ms apart, then we can
deduce that the delay experienced by each packet in the network was exactly the same.
If the spacing between when packets arrive at the destination—sometimes called the
interpacket gap—is variable, however, then the delay experienced by the sequence of
packets must have also been variable, and the network is said to have introduced
jitter into the packet stream, as shown in Figure 1.24. Such variation is generally
not introduced in a single physical link, but it can happen when packets experience
different queuing delays in a multihop packet-switched network. This queuing delay
corresponds to the Queue component of latency defined earlier in this section, which
varies with time.

To understand the relevance of jitter, suppose that the packets being transmitted
over the network contain video frames, and in order to display these frames on the
screen the receiver needs to receive a new one every 33 ms. If a frame arrives early,
then it can simply be saved by the receiver until it is time to display it. Unfortunately,
if a frame arrives late, then the receiver will not have the frame it needs in time to
update the screen, and the video quality will suffer; it will not be smooth. Note that it
is not necessary to eliminate jitter, only to know how bad it is. The reason for this is
that if the receiver knows the upper and lower bounds on the latency that a packet can
experience, it can delay the time at which it starts playing back the video (i.e., displays
the first frame) long enough to ensure that in the future it will always have a frame to
display when it needs it. The receiver delays the frame, effectively smoothing out the
jitter, by storing it in a buffer. We return to the topic of jitter in Chapter 9.

1.6 Summary

Computer networks like the Internet have experienced enormous growth over the
past decade and are now positioned to provide a wide range of services—remote file
access, digital libraries, videoconferencing—to hundreds of millions of users. Much
of this growth can be attributed to the general-purpose nature of computer networks,
and in particular to the ability to add new functionality to the network by writing
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software that runs on affordable, high-performance computers. With this in mind,
the overriding goal of this book is to describe computer networks in such a way that
when you finish reading it, you should feel that if you had an army of programmers
at your disposal, you could actually build a fully functional computer network from
the ground up. This chapter lays the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify exactly
what we expect from a network. For example, a network must first provide cost-
effective connectivity among a set of computers. This is accomplished through a nested
interconnection of nodes and links, and by sharing this hardware base through the use
of statistical multiplexing. This results in a packet-switched network, on top of which
we then define a collection of process-to-process communication services.

The second step is to define a layered architecture that will serve as a blueprint for
our design. The central objects of this architecture are network protocols. Protocols
both provide a communication service to higher-level protocols and define the form
and meaning of messages exchanged with their peers running on other machines. We
have briefly surveyed two of the most widely used architectures: the OSI architecture
and the Internet architecture. This book most closely follows the Internet architecture,
both in its organization and as a source of examples.

The third step is to implement the network’s protocols and application programs,
usually in software. Both protocols and applications need an interface by which they
invoke the services of other protocols in the network subsystem. The socket interface is
the most widely used interface between application programs and the network subsys-
tem, but a slightly different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where the two
performance metrics we are most interested in are latency and throughput. As we will
see in later chapters, it is the product of these two metrics—the so-called delay x
bandwidth product—that often plays a critical role in protocol design.

There is little doubt that computer
networks are becoming an integral
part of the everyday lives of vast OPEN ISSUE
numbers of people. What began over
20 years ago as experimental sys-
tems like the ARPANET—connecting
mainframe computers over long-
distance telephone lines—has turned into big business. And where there is big busi-
ness, there are lots of players. In this case, there is the computing industry, which has

Ubiquitous Networking
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become increasingly involved in supporting packet-switched networking products; the
telephone carriers, which recognize the market for carrying all sorts of data, not just
voice; and the cable TV industry, which currently owns the entertainment portion of
the market.

Assuming that the goal is ubiquitous networking—to bring the network into
every household—the first problem that must be addressed is how to establish the
necessary physical links. Although it could be argued that the ultimate answer is to
bring an optical fiber into every home, at an estimated $1000 per house and 100 million
homes in the U.S. alone, this is a $100 billion proposition. The most widely discussed
alternatives make use of either the existing cable TV facilities or the copper pairs used
to deliver telephone service. Each of these approaches has its own set of problems. For
example, today’s cable facilities are asymmetric—you can deliver 150 channels into
every home, but the outgoing bandwidth is severely limited. Such asymmetry implies
that there are a small number of information providers, but that most of us are simply
information consumers. Many people would argue that in a democracy we should
all have an equal opportunity to provide information. Digital subscriber line (DSL)
technology need not be asymmetric, but can only offer high-bandwidth connections
to a subset of consumers over the existing telephone wires.

How the struggle between the computer companies, the telephone companies,
and the cable industry will play out in the marketplace is anyone’s guess. (If we knew
the answer, we’d be charging a lot more for this book.) All we know is that there
are many technical obstacles—issues of connectivity, levels of service, performance,
reliability, and fairness—that stand between the current state of the art and the sort of
global, ubiquitous, heterogeneous network that we believe is possible and desirable.
It is these challenges that are the focus of this book.

FURTHER READING

Computer networks are not the first communication-oriented technology to have
found their way into the everyday fabric of our society. For example, the early part
of this century saw the introduction of the telephone, and then during the 1950s tele-
vision became widespread. When considering the future of networking—how widely
it will spread and how we will use it—it is instructive to study this history. Our first
reference is a good starting point for doing this (the entire issue is devoted to the first
100 years of telecommunications).

The second and third papers are the seminal papers on the OSI and Internet
architectures, respectively. The Zimmerman paper introduces the OSI architecture, and
the Clark paper is a retrospective. The final two papers are not specific to networking,
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but ones that every systems person should read. The Saltzer et al. paper motivates
and describes one of the most widely applied rules of system design—the end-to-end
argument. The paper by Mashey describes the thinking behind RISC architectures; as
we will soon discover, making good judgments about where to place functionality in
a complex system is what system design is all about.

M Pierce, J. Telephony—a personal view. IEEE Communications 22(5):116-120,
May 1984.

M Zimmerman, H. OSI reference model—the ISO model of architecture for
open systems interconnection. IEEE Transactions on Communications COM-
28(4):425-432, April 1980.

M Clark, D. The design philosophy of the DARPA Internet protocols. Proceed-
ings of the SIGCOMM °88 Symposium, pages 106114, August 1988.

M Saltzer, J., D. Reed, and D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems 2(4):277-288, November 1984.

B Mashey, J. RISC, MIPS, and the motion of complexity. UniForum 1986 Con-
ference Proceedings, pages 116124, 1986.

Several texts offer an introduction to computer networking: Stallings gives an
encyclopedic treatment of the subject, with an emphasis on the lower levels of the OSI
hierarchy [Sta0Oa]; Tanenbaum uses the OSI architecture as an organizational model
[Tan02]; Comer gives an overview of the Internet architecture [Com00]; and Bertsekas
and Gallager discuss networking from a performance modeling perspective [BG92].

To put computer networking into a larger context, two books—one dealing
with the past and the other looking toward the future—are must reading. The first is
Holzmann and Pehrson’s The Early History of Data Networks [HP9S5]. Surprisingly,
many of the ideas covered in the book you are now reading were invented during
the 1700s. The second is Realizing the Information Future: The Internet and Beyond,
a book prepared by the Computer Science and Telecommunications Board of the
National Research Council [NRC94].

To follow the history of the Internet from its beginning, you are encouraged to
peruse the Internet’s Request for Comments (RFC) series of documents. These docu-
ments, which include everything from the TCP specification to April Fools’ jokes, are
retrievable at http://www.ietf.org/rfc.html. For example, the protocol specifications for
TCP, UDP, and IP are available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and culture, two ref-
erences are must reading; both are also quite entertaining. Padlipsky gives a good
description of the early days, including a pointed comparison of the Internet and OSI
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architectures [Pad85]. For a more up-to-date account of what really happens behind
the scenes at the Internet Engineering Task Force, we recommend Boorsook’s article
[Boo95].

There are a wealth of articles discussing various aspects of protocol implemen-
tations. A good starting point is to understand two complete protocol implementation
environments: the Stream mechanism from System V Unix [Rit84] and the x-kernel
[HP91]. In addition, [LMKQ89] and [SW95] describe the widely used Berkeley Unix
implementation of TCP/IP.

More generally, there is a large body of work addressing the issue of structuring
and optimizing protocol implementations. Clark was one of the first to discuss the
relationship between modular design and protocol performance [Cla82]. Later pa-
pers then introduce the use of upcalls in structuring protocol code [Cla85] and study
the processing overheads in TCP [CJRS89]. Finally, [WM87] describes how to gain
efficiency through appropriate design and implementation choices.

Several papers have introduced specific techniques and mechanisms that can be
used to improve protocol performance. For example, [HMPT89] describes some of
the mechanisms used in the x-kernel, [MD93] discusses various implementations of
demultiplexing tables, [VL87] introduces the timing wheel mechanism used to manage
protocol events, and [DP93] describes an efficient buffer management strategy. Also,
the performance of protocols running on parallel processors—locking is a key issue in
such environments—is discussed in [BG93] and [NYKT94].

Because many aspects of protocol implementation depend on an understanding
of the basics of operating systems, we recommend Finkel [Fin88], Bic and Shaw [BS88],
and Tanenbaum [Tan01] for an introduction to OS concepts.

Finally, we conclude the “Further Reading” section of each chapter with a set
of live references, that is, URLs for locations on the World Wide Web where you can
learn more about the topics discussed in that chapter. Since these references are live,
it is possible that they will not remain active for an indefinite period of time. For this
reason, we limit the set of live references at the end of each chapter to sites that either
export software, provide a service, or report on the activities of an ongoing working
group or standardization body. In other words, we only give URLs for the kinds of
material that cannot easily be referenced using standard citations. For this chapter, we
include four live references:

M http:/www.mkp.com: information about this book, including supplements,
addendums, and so on

B http://www.acm.org/sigcomm/sos.html: status of various networking stan-
dards, including those of the IETF, ISO, and IEEE
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M http:/www.ietf.org/: information about the IETF and its working groups

B http://www.cs.columbia.edu/” hgs/netbib/: searchable bibliography of network-
related research papers

EXERCISES

1 Use anonymous FTP to connect to ftp.isi.edu (directory in-notes), and retrieve the
RFC index. Also retrieve the protocol specifications for TCP, IP, and UDP.

2 Look up the Web site

http://www.cs.princeton.edu/nsg

Here you can read about current network research under way at Princeton Uni-
versity and see a picture of author Larry Peterson. Follow links to find a picture
of author Bruce Davie.

3 Use a Web search tool to locate useful, general, and noncommercial information
about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

4 The Unix utility whois can be used to find the domain name corresponding to
an organization, or vice versa. Read the man page documentation for whois and
experiment with it. Try whois princeton.edu and whois princeton, for starters.

5 Calculate the total time required to transfer a 1000-KB file in the following cases,
assuming an RTT of 100 ms, a packet size of 1 KB and an initial 2 x RTT of
“handshaking” before data is sent.

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet we
must wait one RTT before sending the next.

c e bandwi is “infinite,” meaning that we take transmit time to be zero,
The bandwidth is “infi ” g that k t b
and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RTT we can send one packet
(2'=1), during the second RTT we can send two packets (22~ 1), during the third
we can send four (231), and so on. (A justification for such an exponential
increase will be given in Chapter 6.)
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Calculate the total time required to transfer a 1.5-MB file in the following cases,
assuming an RTT of 80 ms, a packet size of 1 KB and an initial 2 x RTT of “hand-
shaking” before data is sent.

(a) The bandwidth is 10 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each data packet we
must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth such that only
20 packets can be sent per RTT.

(d) Zero transmit time as in (c), but during the first RTT we can send one packet,
during the second RTT we can send two packets, during the third we can send
four = 2371, and so on. (A justification for such an exponential increase will
be given in Chapter 6.)

Consider a point-to-point link 2 km in length. At what bandwidth would propa-
gation delay (at a speed of 2 x 10% m/s) equal transmit delay for 100-byte packets?
What about 512-byte packets?

Consider a point-to-point link 50 km in length. At what bandwidth would propa-
gation delay (at a speed of 2 x 10® m/s) equal transmit delay for 100-byte packets?
What about 512-byte packets?

What properties of postal addresses would be likely to be shared by a network
addressing scheme? What differences might you expect to find? What properties
of telephone numbering might be shared by a network addressing scheme?

One property of addresses is that they are unique; if two nodes had the same
address it would be impossible to distinguish between them. What other properties
might be useful for network addresses to have? Can you think of any situations
in which network (or postal or telephone) addresses might 7ot be unique?

Give an example of a situation in which multicast addresses might be beneficial.

What differences in traffic patterns account for the fact that STDM is a cost-
effective form of multiplexing for a voice telephone network and FDM is a cost-
effective form of multiplexing for television and radio networks, yet we reject both
as not being cost-effective for a general-purpose computer network?

How “wide” is a bit on a 1-Gbps link? How long is a bit in copper wire, where
the speed of propagation is 2.3 x 10% m/s?
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How long does it take to transmit x KB over a y-Mbps link? Give your answer as
a ratio of x and y.

Suppose a 100-Mbps point-to-point link is being set up between Earth and a new
lunar colony. The distance from the moon to Earth is approximately 385,000 km,
and data travels over the link at the speed of light—3 x 10% m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay x bandwidth product for the
link.
(c) What is the significance of the delay x bandwidth product computed in (b)?

(d) A camera on the lunar base takes pictures of Earth and saves them in digital
format to disk. Suppose Mission Control on Earth wishes to download the
most current image, which is 25 MB. What is the minimum amount of time
that will elapse between when the request for the data goes out and the transfer

is finished?

Suppose a 128-Kbps point-to-point link is set up between Earth and a rover on
Mars. The distance from Earth to Mars (when they are closest together) is approx-
imately 55 Gm, and data travels over the link at the speed of light—3 x 10% m/s.

(a) Calculate the minimum RTT for the link.
(b) Calculate the delay x bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and sends these to
Earth. How quickly after a picture is taken can it reach Mission Control on
Earth? Assume that each image is 5 Mb in size.

For each of the following operations on a remote file server, discuss whether they
are more likely to be delay sensitive or bandwidth sensitive.

a) Open a file.

b

C

Read the contents of a file.

(a)
(b)
(c) List the contents of a directory.
(d)

d) Display the attributes of a file.

Calculate the latency (from first bit sent to last bit received) for the following:

(a) 10-Mbps Ethernet with a single store-and-forward switch in the path, and
a packet size of 5000 bits. Assume that each link introduces a propagation
delay of 10 us and that the switch begins retransmitting immediately after it
has finished receiving the packet.
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(b) Same as (a) but with three switches.

(c) Same as (a) but assume the switch implements “cut-through” switching: It is
able to begin retransmitting the packet after the first 200 bits have been
received.

Calculate the latency (from first bit sent to last bit received) for the following;:

(a) 1-Gbps Ethernet with a single store-and-forward switch in the path, and a
packet size of 5000 bits. Assume that each link introduces a propagation delay
of 10 ps and that the switch begins retransmitting immediately after it has
finished receiving the packet.

(b) Same as (a) but with three switches.
(c) Same as (b) but assume the switch implements “cut-through” switching: It

is able to begin retransmitting the packet after the first 128 bits have been
received.

Calculate the effective bandwidth for the following cases. For (a) and (b) assume
there is a steady supply of data to send; for (c) simply calculate the average over
12 hours.

(a) 10-Mbps Ethernet through three store-and-forward switches as in Exercise
18(b). Switches can send on one link while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte acknowledgment
packet after sending each 5000-bit data packet.

(c) Overnight (12-hour) shipment of 100 compact disks (650 MB each).

Calculate the bandwidth x delay product for the following links. Use one-way

delay, measured from first bit sent to first bit received.

(a) 10-Mbps Ethernet with a delay of 10 us.

(b) 10-Mbps Ethernet with a single store-and-forward switch like that of
Exercise 18(a), packet size 5000 bits, and 10 us per link propagation delay.

(c) 1.5-Mbps T1 link, with a transcontinental one-way delay of 50 ms.

(d) 1.5-Mbps T1 link through a satellite in geosynchronous orbit, 35,900 km
high. The only delay is speed-of-light propagation delay.

Hosts A and B are each connected to a switch S via 10-Mbps links as in
Figure 1.25. The propagation delay on each link is 20 us. S is a store-and-
forward device; it begins retransmitting a received packet 35 us after it has finished
receiving it. Calculate the total time required to transmit 10,000 bits from
AtoB
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(a) as a single packet

(b) as two 5000-bit packets sent one right after the other

Suppose a host has a 1-MB file that is to be sent to another host. The file takes
1 second of CPU time to compress 50%, or 2 seconds to compress 60%.

(a) Calculate the bandwidth at which each compression option takes the same
total compression + transmission time.

(b) Explain why latency does not affect your answer.

Suppose that a certain communications protocol involves a per-packet overhead
of 100 bytes for headers and framing. We send 1 million bytes of data using this
protocol; however, one data byte is corrupted and the entire packet containing it
is thus lost. Give the total number of overhead + loss bytes for packet data sizes
of 1000, 5000, 10,000, and 20,000 bytes. Which size is optimal?

Assume you wish to transfer an n-byte file along a path composed of the source,
destination, seven point-to-point links, and five switches. Suppose each link has a
propagation delay of 2 ms, bandwidth of 4 Mbps, and that the switches support
both circuit and packet switching. Thus you can either break the file up into 1-KB
packets, or set up a circuit through the switches and send the file as one contiguous
bit stream. Suppose that packets have 24 bytes of packet header information and
1000 bytes of payload, that store-and-forward packet processing at each switch
incurs a 1-ms delay after the packet has been completely received, that packets
may be sent continuously without waiting for acknowledgments, and that circuit
setup requires a 1-KB message to make one round-trip on the path incurring a
1-ms delay at each switch after the message has been completely received. Assume
switches introduce no delay to data traversing a circuit. You may also assume that
file size is a multiple of 1000 bytes.

(a) For what file size 72 bytes is the total number of bytes sent across the network
less for circuits than for packets?

(b) For what file size n bytes is the total latency incurred before the entire file
arrives at the destination less for circuits than for packets?
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(c) How sensitive are these results to the number of switches along the path? To
the bandwidth of the links? To the ratio of packet size to packet header size?

(d) How accurate do you think this model of the relative merits of circuits and
packets is? Does it ignore important considerations that discredit one or the
other approach? If so, what are they?

Consider a closed-loop network (e.g., token ring) with bandwidth 100 Mbps and
propagation speed of 2 x 10% m/s. What would the circumference of the loop be
to exactly contain one 250-byte packet, assuming nodes do not introduce delay?
What would the circumference be if there was a node every 100 m, and each node
introduced 10 bits of delay?

Compare the channel requirements for voice traffic with the requirements for the
real-time transmission of music, in terms of bandwidth, delay, and jitter. What
would have to improve? By approximately how much? Could any channel re-
quirements be relaxed?

For the following, assume that no data compression is done; this would in prac-
tice almost never be the case. For (a)—(c), calculate the bandwidth necessary for
transmitting in real time:

(a) Video at a resolution of 640 x 480, 3 bytes/pixel, 30 frames/second.
(b) 160 x 120 video, 1 byte/pixel, 5 frames/second.

(c) CD-ROM music, assuming one CD holds 75 minutes’ worth and takes
650 MB.

(d) Assume a fax transmits an 8 x 10-inch black-and-white image at a resolution
of 72 pixels per inch. How long would this take over a 14.4-Kbps modem?

For the following, as in the previous problem, assume that no data compression
is done. Calculate the bandwidth necessary for transmitting in real time:

(a) HDTV high-definition video at a resolution of 1920 x 1080, 24 bits/pixel,
30 frames/second.

(b) POTS (plain old telephone service) voice audio of 8-bit samples at 8 KHz.
(c) GSM mobile voice audio of 260-bit samples at 50 Hz.
(d) HDCD high-definition audio of 24-bit samples at 88.2 KHz.

Discuss the relative performance needs of the following applications, in terms of
average bandwidth, peak bandwidth, latency, jitter, and loss tolerance:
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(a) File server

(b) Print server

(c) Digital library

(e) Voice

)
)
)
(d) Routine monitoring of remote weather instruments
)
(f) Video monitoring of a waiting room

)

(g) Television broadcasting

Suppose a shared medium M offers to hosts A1, Ay, ..., Axin round-robin fashion
an opportunity to transmit one packet; hosts that have nothing to send immediately
relinquish M. How does this differ from STDM? How does network utilization
of this scheme compare with STDM?

Consider a simple protocol for transferring files over a link. After some initial
negotiation, A sends data packets of size 1 KB to B; B then replies with an ac-
knowledgment. A always waits for each ACK before sending the next data packet;
this is known as stop-and-wait. Packets that are overdue are presumed lost and
are retransmitted.

(a) In the absence of any packet losses or duplications, explain why it is not
necessary to include any “sequence number” data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that packets that do
arrive always arrive in the order sent. Is a 2-bit sequence number (that is, N
mod 4) enough for A and B to detect and resend any lost packets? Is a 1-bit
sequence number enough?

(c) Now suppose that the link can deliver out of order, and that sometimes a
packet can be delivered as much as 1 minute after subsequent packets. How
does this change the sequence number requirements?

Suppose hosts A and B are connected by a link. Host A continuously transmits the
current time from a high-precision clock, at a regular rate, fast enough to consume
all the available bandwidth. Host B reads these time values and writes them each
paired with its own time from a local clock synchronized with A’s. Give qualitative
examples of B’s output assuming the link has

(a) high bandwidth, high latency, low jitter
(b) low bandwidth, high latency, high jitter

(c) high bandwidth, low latency, low jitter, occasional lost data
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For example, a link with zero jitter, a bandwidth high enough to write on every
other clock tick, and a latency of 1 tick might yield something like (0000, 0001),
(0002, 0003), (0004, 0005).

Obtain and build the simplex-talk sample socket program shown in the text. Start
one server and one client, in separate windows. While the first client is running,
start 10 other clients that connect to the same server; these other clients should
most likely be started in the background with their input redirected from a file.
What happens to these 10 clients? Do their connect()s fail, or time out, or succeed?
Do any other calls block? Now let the first client exit. What happens? Try this
with the server value MAX_PENDING set to 1 as well.

Modify the simplex-talk socket program so that each time the client sends a line
to the server, the server sends the line back to the client. The client (and server)
will now have to make alternating calls to recv() and send().

Modify the simplex-talk socket program so that it uses UDP as the transport pro-
tocol, rather than TCP. You will have to change SOCK_STREAM to SOCK_DGRAM
in both client and server. Then, in the server, remove the calls to listen() and ac-
cept(), and replace the two nested loops at the end with a single loop that calls
recv() with socket s. Finally, see what happens when two such UDP clients simul-
taneously connect to the same UDP server, and compare this to the TCP behavior.

Investigate the different options and parameters that you can set for a TCP con-
nection. (Do man tcp on Unix.) Experiment with various parameter settings to see
how they affect TCP performance.

The Unix utility ping can be used to find the RTT to various Internet hosts. Read
the man page for ping, and use it to find the RTT to www.cs.princeton.edu in New
Jersey and www.cisco.com in California. Measure the RTT values at different times
of day, and compare the results. What do you think accounts for the differences?

The Unix utility traceroute, or its Windows equivalent tracert, can be used to find
the sequence of routers through which a message is routed. Use this to find the
path from your site to some others. How well does the number of hops correlate
with the RTT times from ping? How well does the number of hops correlate with
geographical distance?

Use traceroute, above, to map out some of the routers within your organization
(or to verify none are used).
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Direct Link Networks

It is a mistake to look too far abead. Only one link in the chain of
destiny can be handled at a time.

—Winston Churchill

The simplest network possible is one in which all the hosts are directly connected
by some physical medium. This may be a wire or a fiber, and it may cover a small
area (e.g., an office building) or a wide area (e.g., transcontinental). Connecting
two or more nodes with a suitable medium is only the first step, however. There are
five additional problems that must be addressed before the nodes can successfully
exchange packets.

The first is encoding bits onto the
wire or fiber so that they can be un-
PROBLEM derstood by a receiving host. Second
is the matter of delineating the
sequence of bits transmitted over the
link into complete messages that can
be delivered to the end node. This is

called the framing problem, and the messages delivered to the end hosts are often

Physically Connecting Hosts

called frames. Third, because frames are sometimes corrupted during transmission, it
is necessary to detect these errors and take the appropriate action; this is the error
detection problem. The fourth issue is making a link appear reliable in spite of the
fact that it corrupts frames from time to time. Finally, in those cases where the link is
shared by multiple hosts—as opposed to a simple point-to-point link—it is necessary
to mediate access to this link. This is the media access control problem.

Although these five issues—encoding, framing, error detection, reliable delivery,
and access mediation—can be discussed in the abstract, they are very real problems
that are addressed in different ways by different networking technologies. This chapter
considers these issues in the context of four specific network technologies: point-to-
point links, Carrier Sense Multiple Access (CSMA) networks (of which Ethernet is the
most famous example), token rings (of which IEEE Standard 802.5 and FDDI are the



most famous examples), and wireless (for which 802.11 is
an emerging standard). The goal of this chapter is simul-
taneously to survey the available network technology and
to explore these five fundamental issues.

Before tackling the specific issues of connecting hosts,
this chapter begins by examining the building blocks that
will be used: nodes and links. We then explore the first
three issues—encoding, framing, and error detection—in
the context of a simple point-to-point link. The techniques
introduced in these three sections are general and there-
fore apply equally well to multiple-access networks. The
problem of reliable delivery is considered next. Since link-
level reliability is usually not implemented in shared-access
networks, this discussion focuses on point-to-point links
only. Finally, we address the media access problem in the
context of CSMA, token rings, and wireless.

Note that these five functions are, in general, imple-
mented in a network adaptor—a board that plugs into a
host’s I/O bus on one end and into the physical medium
on the other end. In other words, bits are exchanged be-
tween adaptors, but correct frames are exchanged between
nodes. This adaptor is controlled by software running on
the node—the device driver—which, in turn, is typically
represented as the bottom protocol in a protocol graph.
This chapter concludes with a concrete example of a net-
work adaptor and sketches the device driver for such an
adaptor.
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2.1 Hardware Building Blocks

As we saw in Chapter 1, networks are constructed from two classes of hardware
building blocks: nodes and links. This statement is just as true for the simplest possible
network—one in which a single point-to-point link connects a pair of nodes—as it is for
a worldwide internet. This section gives a brief overview of what we mean by nodes
and links and, in so doing, defines the underlying technology that we will assume
throughout the rest of this book.

2.1.1 Nodes

Nodes are often general-purpose computers, like a desktop workstation, a multipro-
cessor, or a PC. For our purposes, let’s assume it’s a workstation-class machine. This
workstation can serve as a host that users run application programs on, it might be
used inside the network as a switch that forwards messages from one link to another,
or it might be configured as a router that forwards internet packets from one network
to another. In some cases, a network node—most commonly a switch or router inside
the network, rather than a host—is implemented by special-purpose hardware. This
is usually done for reasons of performance and cost: It is generally possible to build
custom hardware that performs a particular function faster and cheaper than a general-
purpose processor can perform it. When this happens, we will first describe the basic
function being performed by the node as though this function is being implemented
in software on a general-purpose workstation, and then explain why and how this
functionality might instead be implemented by special hardware.

Although we could leave it at that, it is useful to know a little bit about what a
workstation looks like on the inside. This information becomes particularly important
when we become concerned about how well the network performs. Figure 2.1 gives
a simple block diagram of the workstation-class machine we assume throughout this
book. There are three key features of this figure that are worth noting.

First, the memory on any given machine is finite. It may be 4 MB or it may be
128 MB, but it is not infinite. As pointed out in Section 1.2.2, this is important because
memory turns out to be one of the two scarce resources in the network (the other is
link bandwidth) that must be carefully managed if we are to provide a fair amount of
network capacity to each user. Memory is a scarce resource because on a node that
serves as a switch or router, packets must be buffered in memory while waiting their
turn to be transmitted over an outgoing link.

Second, each node connects to the network via a nefwork adaptor. This adaptor
generally sits on the system’s I/O bus and delivers data between the workstation’s
memory and the network link. A software module running on the workstation—the
device driver—manages this adaptor. It issues commands to the adaptor, telling it,
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- (T0 network)

/O bus

Figure 2.1 Example workstation architecture.

for example, from what memory location outgoing data should be transmitted and
into what memory location incoming data should be stored. Adaptors are discussed
in more detail in Section 2.9.

Finally, while CPUs are becoming faster at an unbelievable pace, the same is
not true of memory. Recent performance trends show processor speeds doubling every
18 months, but memory latency improving at a rate of only 7% each year. The relevance
of this difference is that as a network node, a workstation runs at memory speeds, not
processor speeds, to a first approximation. This means that the network software needs
to be careful about how it uses memory and, in particular, about how many times it
accesses memory as it processes each message. We do not have the luxury of being
sloppy just because processors are becoming infinitely fast.

2.1.2 Links

Network links are implemented on a variety of different physical media, including
twisted pair (the wire that your phone connects to), coaxial cable (the wire that your
TV connects to), optical fiber (the medium most commonly used for high-bandwidth,
long-distance links), and space (the stuff that radio waves, microwaves, and infrared
beams propagate through). Whatever the physical medium, it is used to propagate
signals. These signals are actually electromagnetic waves traveling at the speed of
light. (The speed of light is, however, medium dependent—electromagnetic waves
traveling through copper and fiber do so at about two-thirds the speed of light in a
vacuum.)
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One important property of an electromagnetic wave is the frequency, measured in
hertz, with which the wave oscillates. The distance between a pair of adjacent maxima
or minima of a wave, typically measured in meters, is called the wave’s wavelength.
Since all electromagnetic waves travel at the speed of light, that speed divided by the
wave’s frequency is equal to its wavelength. We have already seen the example of a
voice-grade telephone line, which carries continuous electromagnetic signals ranging
between 300 Hz and 3300 Hz; a 300-Hz wave traveling through copper would have
a wavelength of

SpeedOfLightinCopper + Frequency
=2/3 x 3 x 10% =300
= 667 x 10° meters

Generally, electromagnetic waves span a much wider range of frequencies, ranging
from radio waves, to infrared light, to visible light, to X rays and gamma rays. Figure
2.2 depicts the electromagnetic spectrum and shows which media are commonly used
to carry which frequency bands.

So far we understand a link to be a physical medium carrying signals in the form
of electromagnetic waves. Such links provide the foundation for transmitting all sorts
of information, including the kind of data we are interested in transmitting—Dbinary
data (1s and Os). We say that the binary data is encoded in the signal. The problem of
encoding binary data onto electromagnetic signals is a complex topic. To help make
the topic more manageable, we can think of it as being divided into two layers. The
lower layer is concerned with modulation—varying the frequency, amplitude, or phase
of the signal to effect the transmission of information. A simple example of modulation
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Figure 2.2 Electromagnetic spectrum.
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is to vary the power (amplitude) of a single wavelength. Intuitively, this is equivalent
to turning a light on and off. Because the issue of modulation is secondary to our
discussion of links as a building block for computer networks, we simply assume
that it is possible to transmit a pair of distinguishable signals—think of them as a
“high” signal and a “low” signal—and we consider only the upper layer, which is
concerned with the much simpler problem of encoding binary data onto these two
signals. Section 2.2 discusses such encodings.

Another attribute of a link is how many bit streams can be encoded on it at
a given time. If the answer is only one, then the nodes connected to the link must
share access to the link. This is the case for the multiple-access links described in
Sections 2.6 and 2.7. For point-to-point links, however, it is often the case that two bit
streams can be simultaneously transmitted over the link at the same time, one going in
each direction. Such a link is said to be full-duplex. A point-to-point link that supports
data flowing in only one direction at a time—such a link is called half-duplex—requires
that the two nodes connected to the link alternate using it. For the purposes of this
book, we assume that all point-to-point links are full-duplex.

The only other property of a link that we are interested in at this stage is a very
pragmatic one—how do you go about getting one? The answer depends on how far
the link needs to reach, how much money you have to spend, and whether or not you
know how to operate earth-moving equipment. The following is a survey of different
link types you might use to build a computer network.

Cables

If the nodes you want to connect are in the same room, in the same building, or even
on the same site (e.g., a campus), then you can buy a piece of cable and physically
string it between the nodes. Exactly what type of cable you choose to install depends
on the technology you plan to use to transmit data over the link; we’ll see several
examples later in this chapter. For now, a list of the common cable (fiber) types is
given in Table 2.1.

Of these, Category 5 (Cat-5) twisted pair—it uses a thicker gauge than the twisted
pair you find in your home—is quickly becoming the within-building norm. Because
of the difficulty and cost in pulling new cable through a building, every effort is made
to make new technologies use existing cable; Gigabit Ethernet, for example, has been
designed to run over Cat-5 wiring. Fiber is typically used to connect buildings at a site.

Leased Lines

If the two nodes you want to connect are on opposite sides of the country, or even
across town, then it is not practical to install the link yourself. Your only option is to
lease a dedicated link from the telephone company, in which case all you’ll need to be
able to do is conduct an intelligent conversation with the phone company customer
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Cable Typical Bandwidths | Distances
Category 5 twisted pair | 10-100 Mbps 100 m
Thin-net coax 10-100 Mbps 200 m
Thick-net coax 10-100 Mbps 500 m
Multimode fiber 100 Mbps 2 km
Single-mode fiber 100-2400 Mbps 40 km

Table 2.1 Common types of cables and fibers available for local links.

Service | Bandwidth
DS1 1.544 Mbps
DS3 44.736 Mbps
STS-1 51.840 Mbps
STS-3 155.250 Mbps
STS-12 622.080 Mbps
STS-48 2.488320 Gbps
STS-192 | 9.953280 Gbps

Table 2.2 Common bandwidths available from the carriers.

service representative. Table 2.2 gives the common services that can be leased from
the phone company. Again, more details are given throughout this chapter.

While these bandwidths appear somewhat arbitrary, there is actually some
method to the madness. DS1 and DS3 (they are also sometimes called T1 and T3,
respectively) are relatively old technologies that were orginally defined for copper-
based transmission media. DS1 is equal to the aggregation of 24 digital voice circuits of
64 Kbps each, and DS3 is equal to 28 DS1 links. All the STS-N links are for optical fiber
(STS stands for Synchronous Transport Signal). STS-1 is the base link speed, and each
STS-N has N times the bandwidth of STS-1. An STS-N link is also sometimes called
an OC-N link (OC stands for optical carrier). The difference between STS and OC is
subtle: The former refers to the electrical transmission on the devices connected to the
link, and the latter refers to the actual optical signal that is propagated over the fiber.

Keep in mind that the phone company does not implement the “link” we just
ordered as a single, unbroken piece of cable or fiber. Instead, it implements the link
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on its own network. Although the telephone network has historically looked much
different from the kind of network described in this book—it was built primarily to
provide a voice service and used circuit-switching technology—the current trend is
toward the style of networking described in this book, including the asynchronous
transfer mode (ATM) network described in Chapter 3. This is not surprising—the
potential market for carrying data, voice, and video is huge.

In any case, whether the link is physical or a logical connection through the
telephone network, the problem of building a computer network on top of a collection
of such links remains the same. So, we will proceed as though each link is implemented
by a single cable/fiber, and only when we are done will we worry about whether we
have just built a computer network on top of the underlying telephone network, or
the computer network we have just built could itself serve as the backbone for the
telephone network.

Last-Mile Links

If you can’t afford a dedicated leased line—they range in price from roughly a thousand
dollars a month for a cross-country DS1 link to “if you have to ask, you can’t afford
it”—then there are less expensive options available. We call these “last-mile” links
because they often span the last mile from the home to a network service provider.
These services, which are summarized in Table 2.3, typically connect a home to an
existing network. This means they are probably not suitable for use in building a com-
plete network from scratch, but if you’ve already succeeded in building a network—and
“you” happen to be either the telephone company or the cable company—then you
can use these links to reach millions of customers.

The first option is a conventional modem over POTS (plain old telephone ser-
vice). Today it is possible to buy a modem that transmits data at 56 Kbps over a
standard voice-grade line for less than a hundred dollars. The technology is already
at its bandwidth limit, however, which has led to the development of the second
option: ISDN (Integrated Services Digital Network). An ISDN connection includes two

Service | Bandwidth

POTS 28.8-56 Kbps
ISDN 64-128 Kbps
xDSL 16 Kbps—55.2 Mbps

CATV 20-40 Mbps

Table 2.3 Common services available to connect your home.
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Figure 2.3 ADSL connects the subscriber to the central office via the local loop.

64-Kbps channels, one that can be used to transmit data and another that can be

used for digitized voice. (A device that encodes analog voice into a digital ISDN link

is called a CODEC, for coder/decoder.) When the voice channel is not in use, it can
be combined with the data channel to support up to 128 Kbps of data bandwidth.

For many years ISDN was viewed
as the future for modest bandwidth into
the home. ISDN has now been largely
overtaken, however, by two newer tech-
nologies: xDSL (digital subscriber line) and
cable modems. The former is actually a
collection of technologies that are able
to transmit data at high speeds over the
standard twisted pair lines that currently
come into most homes in the United States
(and many other places). The one in most
widespread use today is ADSL (asymmetric
digital subscriber line). As its name implies,
ADSL provides a different bandwidth from
the subscriber to the telephone company’s
central office (upstream) than it does from
the central office to the subscriber (down-
stream). The exact bandwidth depends on
the length of the line running from the
subscriber to the central office. This line
is called the local loop, as illustrated in
Figure 2.3, and runs over existing copper.
Downstream bandwidths range from
1.544 Mbps (18,000 feet) to 8.448 Mbps
(9000 feet), while upstream bandwidths
range from 16 Kbps to 640 Kbps.

Shannon’s Theorem
Meets Your Modem
There has been an enormous body
of work done in the related areas
of signal processing and informa-
tion theory, studying everything
from how signals degrade over dis-
tance to how much data a given sig-
nal can effectively carry. The most
notable piece of work in this area
is a formula known as Shannon’s
theorem. Simply stated, Shannon’s
theorem gives an upper bound to
the capacity of a link, in terms of
bits per second (bps), as a function
of the signal-to-noise ratio of the
link, measured in decibels (dB).
Shannon’s theorem can be used
to determine the data rate at which
a modem can be expected to trans-
mit binary data over a voice-grade
phone line without suffering from
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Figure 2.4 VDSL connects the subscriber to the optical network that reaches the

neighborhood.

An alternative technology that has yet to be widely deployed—rvery high data rate

digital subscriber line (VDSL)—is symmetric, with data rates ranging from 12.96 Mbps
to 55.2 Mbps. VDSL runs over much shorter distances—1000 to 4500 feet—which
means that it will not typically reach from the home to the central office. Instead,
the telephone company would have to put VDSL transmission hardware in neighbor-
hoods, with some other technology (e.g., STS-N running over fiber) connecting the

too high an error rate. For example,
we assume that a voice-grade
phone connection supports a fre-
quency range of 300 Hz to 3300
Hz.

Shannon’s theorem is typically
given by the following formula:

C = Blog,(1 + S/N)

where C is the achievable channel
capacity measured in hertz, B is the
bandwidth of the line (3300 Hz —
300 Hz = 3000 Hz), S is the av-
erage signal power, and N is the
average noise power. The signal-
to-noise ratio (S/N) is usually
expressed in decibels, related as fol-
lows:

dB =10 x log;((S/N)

neighborhood to the central office, as illus-
trated in Figure 2.4. This is sometimes called
“fiber to the neighborhood” (contrasting
with more ambitious schemes such as “fiber
to the home” and “fiber to the curb™).
Cable modems are an alternative to
the various types of DSL. As the name
suggests, this technology uses the cable
TV (CATV) infrastructure, which currently
reaches 95% of the households in the
United States. (Only 65% of U.S. homes
actually subscribe.) In this approach, some
subset of the available CATV channels
are made available for transmitting dig-
ital data, where a single CATV channel
has a bandwidth of 6 MHz. CATYV, like
ADSL, is used in an asymmetric way, with
downstream rates much greater than up-
stream rates. The technology is currently
able to achieve 40 Mbps downstream on
a single CATV channel, with 100 Mbps
as the theoretical capacity. The upstream
rate is roughly half the downstream rate
(i.e., 20 Mbps) due to a 1000-fold de-
crease in the signal-to-noise ratio. It is also
the case that fewer CATV channels are
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dedicated to upstream traffic than to downstream traffic. Unlike DSL, the bandwidth
is shared among all subscribers in a neighborhood (a fact that led to some amusing
advertising from DSL providers). This means that some method for arbitrating access
to the shared medium—similar to the 802 standards described later in this chapter—
needs to be used. Finally, like DSL, it is unlikely that cable modems will be used to
connect arbitrary node A at one site to arbitrary node B at some other site. Instead,
cable modems are seen as a means to connect node A in your home to the cable

company, with the cable company then defining what the rest of the network looks
like.

Wireless Links

The field of wireless communication is exploding, both economically and technologi-
cally. The Advanced Mobile Phone System (AMPS) has been the standard for cellular
phones in the United States for several years. AMPS, which is based on analog technol-
ogy, is rapidly giving way to digital cellular—PCS (Personal Communication Services)
in the United States and Canada, and GSM (Global System for Mobile Communi-
cation) in the rest of the world. All three

systems currently use a system of towers

to transmit signals, although some signifi-
cant efforts have been made to supplement
this infrastructure by ringing the globe with
a grid of medium- and low-orbit satellites.
These projects—which include ICO, Glob-
alstar, Iridium, and Teledesic—have had
mixed success. Those that are still viable are
mostly focusing on delivery of telephone ser-
vice to those increasingly rare parts of the
globe where cellular service is not available.

Thinking a bit less globally, frequency
bands from the radio and infrared portions
of the electromagnetic spectrum can be used
to provide wireless links over short dis-
tances, such as inside office buildings, cof-
fee shops, building complexes, and cam-
puses. In the case of infrared, signals with
wavelengths in the 850-950-nanometer
range can be used to transmit data at
1-Mbps rates over distances of about 10 m.

Assuming a typical decibel ratio
of 30 dB, this means that S/N =
1000. Thus, we have

C = 3000 x log,(1001)

which equals approximately 30
Kbps, roughly the limit of a 28.8-
Kbps modem.

Given this fundamental limit,
why is it possible to buy 56-Kbps
modems at any electronics store?
One reason is that such rates de-
pend on improved line quality, that
is, a higher signal-to-noise ratio
than 30 dB. Another reason is
that changes within the phone sys-
tem have largely eliminated analog
lines that are bandwidth-limited to
3300 Hz.



2.2 Encoding (NRZ, NRZIl, Manchester, 4B/5B) 75

This technology does not require line of sight, but is limited to in-building environ-
ments. In the case of radio, several different bands are currently being made available
for data communication. For example, bands at 5.2 GHz and 17 GHz are allocated
to HIPERLAN (High Performance European Radio LAN) in Europe. Similarly, band-
width at 2.4 GHz has been set aside in many countries for use with the IEEE 802.11
standard for wireless LANs. (Additional bandwidth is available at 5 GHz, but unfor-
tunately it is subject to interference from microwave ovens.) IEEE 802.11, which is an
evolving standard that supports data rates of up to 54 Mbps, will be discussed more
fully in Section 2.8.

Another interesting development in the wireless arena is the Bluetooth radio
interface that operates in the 2.45-GHz frequency band. Bluetooth is designed for
short distances (on the order of 10 m) with a bandwidth of 1 Mbps. Its developers
envision it being used in all devices (e.g., printers, workstations, laptops, projectors,
PDAs, mobile phones), thereby eliminating the need for wires and cables in the office
(or between the various devices on your body, perhaps). Networks of such devices are
starting to be called piconets.

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B)

The first step in turning nodes and links into usable building blocks is to understand
how to connect them in such a way that bits can be transmitted from one node to the
other. As mentioned in the preceding section, signals propagate over physical links.
The task, therefore, is to encode the binary data that the source node wants to send
into the signals that the links are able to carry, and then to decode the signal back
into the corresponding binary data at the receiving node. We ignore the details of
modulation and assume we are working with two discrete signals: high and low. In
practice, these signals might correspond to two different voltages on a copper-based
link, or two different power levels on an optical link.

As we have said, most of the functions discussed in this chapter are performed by
a network adaptor—a piece of hardware that connects a node to a link. The network
adaptor contains a signalling component that actually encodes bits into signals at the
sending node and decodes signals into bits at the receiving node. Thus, as illustrated
in Figure 2.5, signals travel over a link between two signalling components, and bits
flow between network adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to
do is to map the data value 1 onto the high signal and the data value 0 onto the low
signal. This is exactly the mapping used by an encoding scheme called, cryptically
enough, non-return to zero (NRZ). For example, Figure 2.6 schematically depicts the
NRZ-encoded signal (bottom) that corresponds to the transmission of a particular
sequence of bits (top).
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Figure 2.6 NRZ encoding of a bit stream.

The problem with NRZ is that a sequence of several consecutive 1s means that

the signal stays high on the link for an extended period of time, and similarly, sev-

eral consecutive Os means that the signal stays low for a long time. There are two

fundamental problems caused by long
strings of 1s or Os. The first is that it leads
to a situation known as baseline wander.
Specifically, the receiver keeps an average of
the signal it has seen so far, and then uses this
average to distinguish between low and high
signals. Whenever the signal is significantly
lower than this average, the receiver con-
cludes that it has just seen a 0, and likewise,
a signal that is significantly higher than the
average is interpreted to be a 1. The prob-
lem, of course, is that too many consecutive
1s or Os cause this average to change, mak-
ing it more difficult to detect a significant
change in the signal.

The second problem is that frequent
transitions from high to low and vice versa
are necessary to enable clock recovery.
Intuitively, the clock recovery problem is
that both the encoding and the decoding

Bit Rates and Baud Rates
Many people use the terms bit
rate and baud rate interchangeably,
even though as we see with the
Manchester encoding, they are not
the same thing. While the Man-
chester encoding is an example of
a case in which a link’s baud rate
is greater than its bit rate, it is also
possible to have a bit rate that is
greater than the baud rate. This
would imply that more than one bit
is encoded on each pulse sent over
the link.

To see how this might happen,
suppose you could transmit four
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Figure 2.7 Different encoding strategies.

processes are driven by a clock—every clock cycle the sender transmits a bit and the

receiver recovers a bit. The sender’s and the receiver’s clocks have to be precisely

synchronized in order for the receiver to recover the same bits the sender trans-

mits. If the receiver’s clock is even slightly faster or slower than the sender’s clock,

then it does not correctly decode the signal. You could imagine sending the clock

to the receiver over a separate wire, but this is typically avoided because it makes
the cost of cabling twice as high. So instead, the receiver derives the clock from the

distinguished signals over a link
rather than just two. On an analog
link, for example, these four signals
might correspond to four different
frequencies. Given four different
signals, it is possible to encode two
bits of information on each signal.
That is, the first signal means 00,
the second signal means 01, and so
on. Now, a sender (receiver) that
is able to transmit (detect) 1000
pulses per second would be able to
send (receive) 2000 bits of informa-
tion per second. That is, it would

be a 1000-baud/2000-bps link.

received signal—the clock recovery process.
Whenever the signal changes, such as on
a transition from 1 to 0 or from 0 to 1,
then the receiver knows it is at a clock
cycle boundary, and it can resynchronize
itself. However, a long period of time with-
out such a transition leads to clock drift.
Thus, clock recovery depends on having lots
of transitions in the signal, no matter what
data is being sent.

One approach that addresses this
problem, called non-return to zero inverted
(NRZI), has the sender make a transition
from the current signal to encode a 1 and
stay at the current signal to encode a 0.
This solves the problem of consecutive 1s,
but obviously does nothing for consecu-
tive 0s. NRZI is illustrated in Figure 2.7.
An alternative, called Manchester encod-
ing, does a more explicit job of merging
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the clock with the signal by transmitting the exclusive-OR of the NRZ-encoded data
and the clock. (Think of the local clock as an internal signal that alternates from low
to high; a low/high pair is considered one clock cycle.) The Manchester encoding is
also illustrated in Figure 2.7. Observe that the Manchester encoding results in 0 being
encoded as a low-to-high transition and 1 being encoded as a high-to-low transition.
Because both 0s and 1s result in a transition to the signal, the clock can be effectively
recovered at the receiver. (There is also a variant of the Manchester encoding, called
differential Manchester, in which a 1 is encoded with the first half of the signal equal
to the last half of the previous bit’s signal and a 0 is encoded with the first half of the
signal opposite to the last half of the previous bit’s signal.)

The problem with the Manchester encoding scheme is that it doubles the rate
at which signal transitions are made on the link, which means that the receiver has
half the time to detect each pulse of the signal. The rate at which the signal changes
is called the link’s baud rate. In the case of the Manchester encoding, the bit rate is
half the baud rate, so the encoding is considered only 50% efficient. Keep in mind
that if the receiver had been able to keep up with the faster baud rate required by the
Manchester encoding in Figure 2.7, then both NRZ and NRZI could have been able
to transmit twice as many bits in the same time period.

A final encoding that we consider, called 4B/5B, attempts to address the inef-
ficiency of the Manchester encoding without suffering from the problem of having
extended durations of high or low signals. The idea of 4B/5B is to insert extra bits
into the bit stream so as to break up long sequences of Os or 1s. Specifically, every
4 bits of actual data are encoded in a 5-bit code that is then transmitted to the
receiver; hence the name 4B/5B. The 5-bit codes are selected in such a way that each
one has no more than one leading 0 and no more than two trailing 0s. Thus, when sent
back-to-back, no pair of 5-bit codes results in more than three consecutive Os being
transmitted. The resulting 5-bit codes are then transmitted using the NRZI encoding,
which explains why the code is only concerned about consecutive 0s—NRZI already
solves the problem of consecutive 1s. Note that the 4B/5B encoding results in 80%
efficiency.

Table 2.4 gives the 5-bit codes that correspond to each of the 16 possible 4-bit
data symbols. Notice that since 5 bits are enough to encode 32 different codes, and
we are using only 16 of these for data, there are 16 codes left over that we can use
for other purposes. Of these, code 11111 is used when the line is idle, code 00000
corresponds to when the line is dead, and 00100 is interpreted to mean halt. Of the
remaining 13 codes, 7 of them are not valid because they violate the “one leading 0,
two trailing 0s” rule, and the other 6 represent various control symbols. As we will
see later in this chapter, some framing protocols (e.g., FDDI) make use of these control
symbols.
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4-Bit Data Symbol | 5-Bit Code
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

Table 2.4 4B/5B encoding.

2.3 Framing

Now that we have seen how to transmit a sequence of bits over a point-to-point link—
from adaptor to adaptor—Ilet’s consider the scenario illustrated in Figure 2.8. Recall
from Chapter 1 that we are focusing on packet-switched networks, which means that
blocks of data (called frames at this level), not bit streams, are exchanged between
nodes. It is the network adaptor that enables the nodes to exchange frames. When
node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame
from the node’s memory. This results in a sequence of bits being sent over the link.
The adaptor on node B then collects together the sequence of bits arriving on the link
and deposits the corresponding frame in B’s memory. Recognizing exactly what set of
bits constitutes a frame—that is, determining where the frame begins and ends—is the
central challenge faced by the adaptor.
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Figure 2.9 BISYNC frame format.

There are several ways to address the framing problem. This section uses several
different protocols to illustrate the various points in the design space. Note that while
we discuss framing in the context of point-to-point links, the problem is a fundamental
one that must also be addressed in multiple-access networks like Ethernet and token
rings.

2.3.1 Byte-Oriented Protocols (BISYNC, PPP, DDCNMP)

One of the oldest approaches to framing—it has its roots in connecting terminals to
mainframes—is to view each frame as a collection of bytes (characters) rather than
a collection of bits. Such a byte-oriented approach is exemplified by the BISYNC
(Binary Synchronous Communication) protocol developed by IBM in the late 1960s,
and the DDCMP (Digital Data Communication Message Protocol) used in Digital
Equipment Corporation’s DECNET. Sometimes these protocols assume a particular
character set—for example, BISYNC can support ASCII, EBCDIC, and IBM’s 6-bit
Transcode—but this is not necessarily the case.

Although similar in many respects, these two protocols are examples of two
different framing techniques, the sentinel approach and the byte-counting approach.

Sentinel Approach

The BISYNC protocol illustrates the sentinel approach to framing; its frame format is
depicted in Figure 2.9. This figure is the first of many that you will see in this book
that are used to illustrate frame or packet formats, so a few words of explanation



2.3 Framing 81

are in order. We show a packet as a sequence of labeled fields. Above each field is a
number indicating the length of that field in bits. Note that the packets are transmitted
beginning with the leftmost field.

The beginning of a frame is denoted by sending a special SYN (synchronization)
character. The data portion of the frame is then contained between special sentinel
characters: STX (start of text) and ETX (end of text). The SOH (start of header)
field serves much the same purpose as the STX field. The problem with the sentinel
approach, of course, is that the ETX character might appear in the data portion of the
frame. BISYNC overcomes this problem by “escaping” the ETX character by preceding
it with a DLE (data-link-escape) character whenever it appears in the body of a frame;
the DLE character is also escaped (by preceding it with an extra DLE) in the frame
body. (C programmers may notice that this is analogous to the way a quotation mark
is escaped by the backslash when it occurs inside a string.) This approach is often
called character stuffing because extra characters are inserted in the data portion of
the frame.

The frame format also includes a field labeled CRC (cyclic redundancy check)
that is used to detect transmission errors; various algorithms for error detection are
presented in Section 2.4. Finally, the frame contains additional header fields that
are used for, among other things, the link-level reliable delivery algorithm. Examples
of these algorithms are given in Section 2.5.

The more recent Point-to-Point Protocol (PPP), which is commonly run over dial-
up modem links, is similar to BISYNC in that it uses character stuffing. The format for
a PPP frame is given in Figure 2.10. The special start-of-text character, denoted as the
Flag field in Figure 2.10, is 01111110. The Address and Control fields usually contain
default values, and so are uninteresting. The Protocol field is used for demultiplexing:
It identifies the high-level protocol such as IP or IPX (an IP-like protocol developed
by Novell). The frame payload size can be negotiated, but it is 1500 bytes by default.
The Checksum field is either 2 (by default) or 4 bytes long.

The PPP frame format is unusual in that several of the field sizes are negotiated
rather than fixed. This negotiation is conducted by a protocol called LCP (Link Control
Protocol). PPP and LCP work in tandem: LCP sends control messages encapsulated
in PPP frames—such messages are denoted by an LCP identifier in the PPP Protocol
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