

Developing Web Applications with Visual Basic .NET
and ASP.NET

John Alexander
Billy Hollis

Wiley Computer Publishing John Wiley & Sons, Inc.

Publisher: Robert Ipsen
Editor: Theresa Hudson
Developmental Editor: Kathryn A. Malm
Managing Editor: Angela Smith
New Media Editor: Brian Snapp
Text Design & Composition: John Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.
This book is printed on acid-free paper.

Copyright © 2002 by John Alexander and Billy Hollis.

All rights reserved.
Published by John Wiley & Sons, Inc., New York

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 750-4744. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
<PERMREQ@WILEY.COM>.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.
Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-08517-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1
To all our loved ones, those whom we hold so dear, and to those departed whom we
miss. This is for you. Life is a measured gift, use it wisely and make it count.
About the Authors
John Alexander is the Marketing Technologist for G.A. Sullivan. His broad project
experience includes building solutions in several industries on platforms ranging from
the mainframe to the Internet. A Microsoft Certified Solution Developer and Trainer with

19 certifications, John has also written Microsoft Official Curriculum (some of the
earliest on Active Server Pages) and consults and teaches at sites from Seattle to
Moscow. Highly experienced in software estimation, requirements gathering and
definition, creating project plans, defining deliverables, and working on all phases of the
software development life cycle, John prides himself on achieving solutions that exceed
the client's expectations.
A featured speaker at conferences such as VB Connections, Web Tech-Ed 98,
Developer Days, and VBITS, John has been nominated and chosen by Microsoft for the
fourth straight year as a Microsoft Developer Network Regional Director. He is currently
serving on the Microsoft virtual .NET Subject Matter Expert Team for DevDays 2001,
has consulted as a technical adviser on .NET e-Business Architecture by G.A. Sullivan,
published by SAMS, and has recently finished a speaking tour on .NET technologies.
He is currently advising a major client on their first .NET project.

G. A. Sullivan is a global e-Business solution company. Since 1982, G. A. Sullivan
professionals have consistently delivered complex enterprise solutions and provided
strategic consulting to specific vertical industries. The company's focus is to drive
maximum business results from technology investments.
G. A. Sullivan is a leader in implementing technology and providing business value
using Microsoft's .NET platform. As one of Microsoft's leading development partners
worldwide, G. A. Sullivan has proven experience as documented in numerous case
studies. G. A. Sullivan's expertise is validated in their most recent technical book titled
.NET e-Business Architecture, which documents best practices learned building an
enterprise-class application utilizing the Microsoft .NET platform. Details are available
at www.gasTIX.net.
G. A. Sullivan was among the first companies in the world to become a Microsoft Gold
Certified Partner for E-Commerce Solutions. With 300 professionals across six U.S.
and two European locations, G. A. Sullivan consistently ranks as one of the fastest
growing technology companies in the United States. Learn more about G. A. Sullivan
by visiting www.gasullivan.com.
Billy Hollis has been developing software for over twenty years. He has written for
many technical publications, and is a frequent speaker at conferences, including
Comdex, Microsoft's Professional Developers Conference (PDC), and the Visual Basic
Insiders Technical Summit (VBITS). Billy is co-author of the first book ever published on
Visual Basic .NET, VB.NET Programming on the Public Beta, and sole author of the
book Visual Basic 6:Design, Specification, and Objects.

Billy is MSDN Regional Director of Developer Relations in Nashville, Tennessee for
Microsoft, and was named Regional Director of the year for 2001. He is currently
heavily involved in training, consultation, and software development on the
Microsoft.NET platform
Cole Francis is a Senior Consultant for G.A. Sullivan in Kansas City, MO. He plays
many roles as a consultant, including Business Analyst, Software Developer, and
Quality Assurance. Cole is a Microsoft MCP, delivers occasional presentations for G.A.
Sullivan, and has recently taken part in a Microsoft Case Study.

Cole would like to thank his wife, Tami, and his daughter, Kyrstin, for their ongoing
dedication and support. Cole would also like to thank John Alexander for the
opportunity to be a part of this book.
Brian Wendt is a consultant in Nashville, Tennessee. He has been working in the IT
industry since 1983, previously in UNIX environments, and has spent the last ten years
working with Microsoft technologies. He holds several Microsoft certifications including
MCSD, MCDBA, and MCSE+Internet. In addition to .NET, his skills include C, C++,
Microsoft SQL Server, ASP, Visual Basic, and JavaScript.
Acknowledgments

From John:

John would like to thank Valerie, Nathaniel, and Ian for sticking by him through the
making of this book. Daddy promises not to lock himself in the basement any more.

Thanks to the contributors on the book: Cole Francis and Brian Wendt for the
absolutely rocking job you guys did on this.

Thanks to Donis Marshall for the advice, guidance, assistance, and persistence
throughout this process.

Thanks to the following folks at G.A. Sullivan: Greg Sullivan, Dave Smith, Don Benage,
David Burgett, Matthew Baute, and Eric Brown. Dedication to quality is often given lip
service, in the consulting industry but rarely followed through. I'm proud to be a part of
this organization!

John also thanks the following folks at Microsoft that gave assistance, both directly and
indirectly: Jennifer Ritzinger, David Lazar, Ari Bixhorn, Susan Warren, Dave Mendlen,
Mike Iem, Scott Guthrie, Ilya Bukshteyn, Keith Ballinger, Chris Featherstone, and last
but not least Steve Loethen.

And of course John would like to thank the Wiley Publishing crew that made this into
what is now: Kathryn Malm, developmental editor extraordinaire, Terri Hudson, Ben
Ryan, Jen Bergman, and his publisher, Robert Ipsen.

And finally thanks to Mom and Dad for the Commodore Vic-20 that started it all....

From Billy:

Thanks, as usual, to my family for being forgiving enough to allow me the time to write
another book. Cindy, Ansel, and Dyson have all been wonderful throughout my writing
career.

I'd also like to offer appreciation to the folks at Microsoft that have given me invaluable
assistance in the past few months, including, but not limited to, Mike Iem, Ari Bixhorn,
and Jennifer Ritzinger. They exemplify the spirit of their company.

Table of Contents

Developing Web Applications with Visual Basic .NET and
ASP.NET

 Introduction
 Chapter 1 - Getting Your Feet Wet with .NET

 Chapter 2 -
The Development Environment and
Language Changes

 Chapter 3 -
Object-Oriented Changes in Visual Basic
.NET

 Chapter 4 -
Introduction to Web Application
Development

 Chapter 5 - ASP.NET Pages and Web Forms
 Chapter 6 - Using ASP.NET Web Controls

 Chapter 7 -
Web Services: Family Fun with XML,
SOAP, and WSDL

 Chapter 8 - ASP.NET Data Access Topics
 Chapter 9 - ASP.NET Web Application Services
 Chapter 10 - ASP.NET Application: A Walkthrough
 Appendix A - .NET Framework Class Library References
 Appendix B - Resources
 Index
 List of Figures
 List of Tables
 List of Sidebars

 1

Introduction
Developing Web Applications with Visual Basic .NET and ASP.NET was born out of a
desire to enable experienced Visual Basic developers to extend their knowledge and
experience investment to the Web easily and seamlessly.

The thought behind this title is that the developer wouldn't need to master several
technologies for ASP.NET development but could use the integrated tools and practical
techniques to be productive quickly. It's also designed to be a code-based, hands-on
introduction that will prepare, you, the reader for more focused titles.

Who Should Read This Book

If you are a Visual Basic programmer who has significant experience with:
§ Event-driven programming (including working with forms and controls)
§ COM component development
§ Data access using ADO
§ Basic familiarity with HTML, but little exposure to Web-related development

concepts

then you should read this book. This book will help you to extend your existing
knowledge investment to building Microsoft technology-centric Web Applications in
.NET.

For the VB Developer, learning ASP Web development meant dealing with a variant of
VB, a blurred line between code and content, component deployment issues, and
bulky, interpreted solutions that are sometimes less-than-elegant. In addition, the
paradigm shift required for Web development meant rethinking traditional application
design and architecture methods as well.

ASP.NET is an exciting new platform for developing, deploying, and running Web
applications. It is a major enhancement of ASP; solving performance, scalability, and
deployment challenges while strengthening the platform through its extensive compiled
programming language support and a simplified, more powerful page model.

The integration of Web development features in Visual Basic .NET through its support
of ASP.NET allows VB developers to make the transition more easily than ever before,
without the use of separate tools or technologies. A major ASP.NET design goal was to
create a similar programming model so that VB developers would have a shorter
learning curve in building Web applications, thus solving many of the aforementioned
problems using earlier technologies. This frees the developer to focus on the new
concepts introduced by Web development without the need to learn multiple
environments and tools in the process.

 2

How This Book Is Organized
Chapter 1 provides a basis for introducing the vision of the Next Generation Web:
Microsoft .NET! The developer is introduced to the .NET common language runtime
and extensive language support. Next, Microsoft .NET Enterprise Servers (such as
Commerce Server and BizTalk Server) are briefly discussed before descending to
highlight the native underlying Internet related services exposed by Windows 2000.
This discussion culminates in Chapter 1 with an overview of the programming
enhancements and fundamental changes to Web development that ASP.NET provides.
The point of this chapter is to start a foundation that will set the overall tone for the
remainder of the book.
Chapter 2 begins with issues and concepts surrounding the impressive changes that
especially impact ASP.NET development. Expanding the background in the previous
chapter, now we start to explore the new features of the next version of Visual Basic.
As the new environment features are highlighted, the reader will understand that the
Visual Basic's RAD virtues have been extended for Web development.
Building on the changes introduced in Chapter 2, Chapter 3 continues with those
changes in Visual Basic that pertain to Object-oriented development.
The focus of Chapter 4 is to acquaint the Visual Basic developer with DHTML for use in
building ASP.NET Applications. Attention is given to illustrate the improvements
brought about by the new server-side controls and the expanded flexibility that
developers gain. Important for all levels of browser support, the ability of the server-side
controls to automatically generate "uplevel" and "downlevel" HTML intelligently is
shown as well.
Chapter 5 gives an overview of ASP.NET Pages, building on the knowledge of the
previous preparatory chapters. As ASP.NET support is completely integrated into
Visual Basic.NET, VB developers are able to effectively use their experience in making
the transition to web development. Developers will also discover the ease of UI
development through the use of WebForms, the use of the Code-behind method of
writing ASP.NET Page code, and the simplified page object model. VB developers who
have experience with WebClasses will appreciate the expanded capability and
functionality of WebForms illustrated through several examples.
One of the exciting new features of ASP.NET is the ability to utilize and customize
server-side controls. As control usage is natural to every VB developer, this knowledge
will be extended to ASP.NET. Building on the discussion in Chapter 4 with
HTMLControls, the focus in Chapter 6 now shifts to the WebControls, illustrating usage
and function through practical examples. Since many of the WebControls will be
familiar to the VB Developer from the start, the emphasis is on essential usage
scenarios such as page navigation, validation, data access, and client-event handling
topics. In addition, we've added a brief section on creating custom controls.
Chapter 7 deals with the second member of the ASP.NET platform: Web Services. Web
Services can be used to enable remote access to internal systems from the Internet,
thereby supporting integration and business-to-business applications. Developers will
learn that Web Services are server objects that use the Simple Object Access Protocol
(SOAP) (or HTTP-Get/Post) to accept requests and return results. They also discover
that clients using the Service Description Language (SDL) discover these objects. The
next topic is XML (the basis for SOAP and SDL) and its importance to Web Services as
the common language of communication. The key concepts of these infrastructure
technologies are touched upon before moving into a practical discussion of creating
and testing a Web Service.
Chapter 8 begins with an overview of ADO.NET, the powerful yet simple-to-use data
access toolset that is instrumental for creating rich Web applications. More than just a
simple enhancement of Active Data Objects, ADO.NET brings true platform
interoperability and scalable data access through the use of XML as the format for data
transmission. The developer is reintroduced to the concept of data binding—from the

 3

server. The XML Designer and the ADO.NET Data Set Designer are examined in detail,
with practical examples to illustrate usage. Special emphasis is placed on the fact that
any COM+ object can be bound, in addition to traditional data stores. Formatting and
error handling topics are also addressed in order to have a well-rounded understanding
of this important subject.
ASP.NET simplifies configuration and deployment by improving the deployment
process for both code and ASP.NET pages, and by providing extensible application
configuration. Chapter 9 covers the differences between Application-level and Session-
level scope. Next, proper usage and expanded support of the Application and Session
objects are highlighted. Various scalability issues surrounding application design and
maintenance are woven in throughout this section to underscore their importance,
including data caching. As Security issues are on the mind of every developer, a primer
on the ASP.NET Authentication/Authorization Services is of great importance. The
chapter concludes with techniques for programmatically authorizing the user once
authenticated.
Chapter 10 rounds out the title by providing a walkthough of a sample enterprise
prototype application. Starting with design documents, we first discuss the requirements
for the application and then move into an explanation of selected code listings. In
addition, the data store and stored procedures are examined and explained, as is the
presentation tier. A Web service for the client is also discussed.
Let's check out some background material on .NET and why it's important before
moving on to Chapter 1 .

 4

.NET—Background and Purpose

.NET was introduced to the public in July 2000 at Microsoft's Professional Developers
Conference. This technology had been in development for more than two years, under
very heavy wraps. We had seen various aspects of what was to become .NET (at that
time called "Next Generation Windows Services") at different times in the preceding
year. The pieces, however, didn't reveal the overall plan. As we'll see in the following
chapters, .NET makes our job as developers quite a bit easier for a multitude of tasks.

Microsoft .NET represents a revolution in application development—not just for Web
application development, but for Windows apps as well. Moving information from
anywhere to anywhere is the basic message of .NET. This means that that information
should be able to flow from a mainframe to a phone or wireless device and anything in
between. The key to making this information flow possible is Microsoft .NET's heavy
reliance on standards-based protocols and formats, such as XML and SOAP. Another
key factor is that .NET has been specifically designed with the Internet in mind.

To make the .NET vision a reality, companies must make many changes not just in
technology, but also in philosophy. It can be a challenge for corporations to fully grasp
the .NET vision, despite the many attempts to explain and demonstrate the different
scenarios in which .NET is useful.

The best usage scenario I've seen in front of the public currently is in a TV commercial
featuring lettuce. The scene begins with a shot of rotting lettuce sitting on a warehouse
dock in the hot summer sun. The CIO (coincidentally visiting) confronts the warehouse
foreman about the situation. The foreman explained that the delivery information was
incorrect, that the distributor had been faxed, and they were waiting on a confirmation.
The CIO then harangues the foreman about the fact that the company has computers
that could solve this problem. The foreman replies, "Too bad they can't talk to my
distributor." The commercial ends with a warehouse worker using a wireless device to
reroute the lettuce on the fly, solving the problem and saving the lettuce. In 30 seconds,
seamless communication between the partners in the business transaction is beautifully
illustrated.

Before we can leap into the future, however, we need to understand where we've been.
We're making the assumption that you've already read about the evolution of the
database application from desktop to client/server to distributed. Let's take a quick look
at the evolution of Web applications and learn why it's been such a long road. Until
relatively recently the development environment, testing tools, and interoperability
elements were comparatively primitive in light of what you've been used to as a Visual
Basic developer.

Three Generations of Web Applications

The first generation of the Web application were Web pages and early dynamic
systems that focused on exposing large amounts of static information through standard
formats and protocols. Because the graphical nature of HTML was simple to
understand and use, most anyone could publish a Web page. Vast numbers of users
were empowered with the ability to publish and consume information on a wide scale.

However, as the demands for up-to-date content increased the challenges of providing
this competitive edge with little more available than manual tools mounted. Single or
limited user resources were limiting the refreshing of content on a timely basis. The use
of client/server architecture began the rise of the shared resource, elevating
departmental-level computing. However, this architecture relied on a fixed number of
resource connections, so scalability was limited.

 5

Client/server applications were amplified with Web browsers and server applications.
The industry focused on rich OS and local services afforded by products like SQL
Server, Exchange, and SNA Server. Web app developers took advantage of these local
services and used HTML to "project" the UI to many types of clients. While this allowed
for an explosion of information that was freely accessible, the static nature paved the
way for the next generation. The absence of business efficiency meant that the main
focus was on simply having an Internet presence ("brochure-ware because we gotta be
there!"). The main metric of this time was the number of hits that the site received. The
focus still wasn't on scalability; resources and connections were still directly tied
together.

In 1996, Microsoft introduced a technology code-named "Denali" that changed Internet
application development forever. The technology, of course, was Active Server Pages
(ASP), and moved developers one step closer to Rapid Application Development for
the Web. It was a huge kludge, and awkward and cumbersome, but, man, it was cool!
Although there had been server-side technologies before ASP, none gave developers
as much control and flexibility as the new offering.
Thus, the second generation was born, ushering in Windows DNA. Applications moved
towards the n-tier architecture or distributed model. By freeing resource connections
from direct communication with the business and presentation layer (the client),
applications were able to provide greater scalability and performance while accessing
enterprise data. In addition, the widespread use of a combination of "stateless" Web
protocols with DNS and IP routing enabled scalability at quantum levels while improving
the manageability and reliability of the applications themselves. While this was all well
and good, debugging these applications was a pain in the registry, to put it mildly. With
the separation of data and business logic, the applications themselves were improving,
but the developer tools that spanned the different tiers and techno logies were still in the
dark ages. Developers also had to stay current on a plethora of different technologies to
support and maintain these applications.

The need for interoperability between local and remote systems ushered in the modern
age of Web applications. This new generation requires a standards-based mechanism
to transmit data. And, as many have now learned, a business reason as well. Many
Web sites and applications sprung up (literally overnight in some cases) without a clue
or care on how to make a profit, made a ton of money in an IPO, and then spectacularly
exploded when the .COM bubble burst. Applications become programmable Web
Services, similar to those little plastic building blocks you may have used (or stepped on
in the middle of the night) long ago. Web services permit applications to communicate,
regardless of operating system or programming language, using the Internet as the
medium. They are the "secret sauce" that finally will allow open communication
between business entities, both internally and externally.

The key is that Web Services use protocols that are defined through public standards
organizations such as the W3C. They enable not just the sharing of data, but can also
invoke methods and utilize properties from other applications without concern about
how the other applications were built.
.NET is about XML Web services. XML Web Services are programmatic. You can think
of Web Services as components for the Internet. It is really standards-based reuse.
Web Services allow you to expose code that implements business logic that can be re-
used in multiple applications, but are based on vendor-independent Internet
technologies and protocols such as HTTP, XML, SOAP, and UDDI. They allow you to
encapsulate code, publish interfaces, discover services, and communicate between the
publisher and consumer of services, in much the same way as COM+ does, only using
vendor-independent, standards-based technologies. True interoperability between
disparate systems is a reality, thanks to .NET.

 6

What's Wrong with COM?
So, what's wrong with COM? Nothing really ... the Component Object Model is great for
what it was designed for; providing an interface-based model of information
communication between components on a single machine. In order to communicate
between machines, the Distributed Component Object Model, or DCOM was created.
DCOM added authentication in order to operate within the remote machines' security
context via a Remote Procedure Call. Even so, the process of encapsulating and
transporting parameters between the remote components (called marshalling) was very
resource-intensive. If that wasn't enough, COM and DCOM were only supported on
Windows-based systems, so all of the legacy corporate data on disparate systems had
to be accessed indirectly through intermediate gateways such as SNA server (when it
was available). COM added the attributes and benefits of Microsoft Transaction Server
and gave birth to COM+.
So, is COM+ dead? No! Microsoft has put a tremendous amount of effort into COM+
interoperability within .NET. COM+ components appear as .NET assemblies through
the wrappers that have been developed. So the question really isn't "What's wrong with
COM?" as much as "What are the problems with getting information from anywhere to
anywhere using current technology?"
The Internet isn't just a fad. Sure, the dot-corn bubble has for the most part burst, but
that doesn't mean that the Internet isn't a great medium for sharing information. There
just has to be a valid and solid business reason for using it. As a Visual Basic
Developer, you can extend the skills you've honed to utilize .NET in your solutions and
applications. This and the remaining chapters will give you a solid understanding of
developing Web applications while building on the knowledge you've gained as a Visual
Basic developer. That said—let's go ahead and dig deeper. On to Chapter 1!

 7

Chapter 1: Getting Your Feet Wet with .NET

Overview

It is a very sad thing that nowadays there is so little useless information.
Oscar Wilde

Good ol' Oscar was right on the money in articulating the business challenge we are
currently facing. We have tons of information sitting in many different sources, on as
many platforms, without a universal mechanism to connect it all together. There has to
be a standards-based set of open communication, regardless of the source, data, or
destination. Enter .NET.

Many have heard of the .NET vision that has been put forth by Microsoft, but most don't
fully grasp its significance. In a nutshell, .NET is Microsoft's vision for seamless
communication that combines hardware, software, and philosophy. It is based on
Extensible Markup Language (XML) Web services. What does this mean to you as a
developer? In this chapter, we'll take a look at where .NET came from and the tools and
technologies that a re part of this vision.
This chapter focuses on understanding .NET, which will give you a big picture
perspective; it expands on the background material in the Introduction (most of you
skipped right to Chapter 1, so you should go back and read it sometime). It's helpful to
understand .NET before you can use it effectively, hence the bit about getting your feet
wet. We'll walk through the pieces and parts of the vision and the technologies used to
make it a reality, round it out with a quick romp through ASP.NET, and try it out in a
starting exercise before moving into Visual Basic .NET.

Core Components of .NET

The Microsoft .NET vision is reali zed through five separate pieces:
§ Windows and the .NET Enterprise Servers
§ .NET Framework
§ Developer Tools
§ .NET Foundation Services
§ .NET User Experience

Figure 1.1 shows the relationship between the different components that comprise
.NET and how they relate to current technology. As you can see in the figure, there are
several parts missing from the current Microsoft technology (Windows DNA 2000) that
would make our lives a lot easier, namely, Internet interoperability. Windows DNA 2000
hasn't gone anywhere. It's just been enhanced tremendously with Microsoft .NET.
Notice that from the second to the third generation, the only piece that isn't enhanced is
COM+. That's because we need to have smooth interoperability between COM+
objects and .NET. The other thing to be aware of is that both generations of
applications still use the strong foundation of Windows. Let's take each part of the
Microsoft .NET platform and explore it in the following sections.

 8

Figure 1.1: The .NET Framework Roadmap, as envisioned by Microsoft.

Windows and the .NET Enterprise Servers

In the .NET vision, the Windows operating system and the .NET Enterprise Servers
provide the plumbing to make the end-to-end communication possible. Although none
of the .NET Enterprise Servers support the .NET services directly at this time (mainly
because they've yet to be released), several do support native XML, making it possible
to create Web services in the Windows DNA 2000 world.

Windows 2000, Windows XP, and the forthcoming Windows .NET servers are the
foundation on which the .NET vision becomes reality. Microsoft Windows native
services allow the .NET Enterprise Servers to function as a common infrastructure for
high-performance applications.

As a developer, you may be thinking, "Why should I care about servers?" These
products allow you to extend your application development capabilities and help
overcome challenges, things like communicating with legacy systems, hosting Web
sites, translating disparate documents from outside your organization, load balancing
your application for high availability, or communication with any other data store. As you
read the following brief highlights of the .NET Enterprise Servers, see if you can apply
them to your organization's challenges.

The .Net Enterprise Servers provide the complete application platform that allows Web
services to function. Currently, the individual members comprising the Microsoft .NET
Enterprise Servers are as follows:

§ Application Center
§ BizTalk Server 2000
§ Commerce Server 2000
§ Content Information Server
§ Exchange Server 2000
§ Host Integration Server 2000
§ Internet Security and Acceleration Server 2000
§ Mobile Information Server
§ Sharepoint Portal Server 2000
§ SQL Server 2000

 9

Let's examine each of the servers briefly to see what each brings to the table. We'll go
in alphabetical order so as not to offend any.

Note You might be wondering why the .NET rollout began without a

Windows .NET server. It's simple. Although the initial .NET
Framework rollout does affect the operating system by adding
components to it, namely, the common language runtime, with the
Windows Component Update that's included with Visual Studio
.NET, both Windows 2000 and Windows XP incorporate parts of the
.NET philosophy and foundation, with expanded support for
underpinning technologies, such as XML.

Application Center

For Web sites that are built on Microsoft Windows 2000 and Microsoft Internet
Information Services 5.0, Application Center provides management and deployment
tools that assist with scalability and reliability. It's crucially important for mission-critical
applications to have high availability, ensuring failover in case of hardware failure.
Another factor is the ability for COM+ components to handle increasing workloads
without failure. If those components were to fail, it would adversely affect performance
and functionality, possibly even causing the Web site to crash.
For a developer, the Microsoft Application Center server makes the job of deploying
and maintaining high-availability applications much, much easier. You can let the server
handle the plumbing tasks of load balancing and focus on the application itself. One
thing to keep in mind: If it isn't used properly, Application Center load balancing will
negatively affect throughput (how much work gets done by the Web server) and
response time (the amount of time to return user feedback) on Web sites where it is a
high priority. By its very nature, component load balancing makes calls across the
network, because the components involved are probably on different servers, and this
in itself will affect throughput and response time. Weighing this with the benefits listed
previously is an important factor in the architecture of a Web site.

BizTalk Server 2000

Microsoft BizTalk Server 2000 translates data between applications and organizations.
It facilitates business-to-business communications and automates business processes.
Microsoft BizTalk Server also provides services that can satisfy very stringent audit and
tracking requirements and filtering and logging capabilities.

Microsoft BizTalk Server can parse documents in the following file formats right out of
the box:

§ XML
§ Flat files (delimited or positional)
§ EDI (ANSI X12 or UN/EDIFACT). X12 EDI, or Electronic Data

Interchange, is currently the de facto standard for business-to-business
electronic data exchange. It is governed by the American National
Standards Institute (ANSI). The international counterpart to this is
EDIFACT, which is governed by the United Nations.

Additional formats can be built using the parser SDK that is included with Microsoft
BizTalk Server Enterprise Edition.

Microsoft BizTalk Server 2000 unites enterprise application integration and business-to-
business integration through both its messaging and its orchestration pieces. It's been
designed and built to utilize standards-based protocols such as Simple Object Access

 10

Protocol (SOAP) and XML to accomplish this. Another interesting feature of BizTalk
Server 2000 is its ability to handle transactions that can span weeks or months, as
opposed to just minutes or hours. It does this by dehydrating the transaction after a
certain period of time— completely storing the transaction state in the database. Upon
receipt of the other portion of the transaction, the state is retrieved from the database
and rehydrated, regardless of the time needed to complete the transaction.

Of the .NET Enterprise Servers, Microsoft BizTalk Server 2000 allows disparate data
sources to link together more seamlessly and easily than ever before. As a developer,
you can take advantage of this on both external applications that connect businesses
and internal applications.

Commerce Server 2000
Commerce Server 2000 enables scalable, maintainable, and available e-commerce
sites by providing built-in ready-to-use resources for business-to-consumer and
business-to-business Web application development. Commerce Server 2000 works
with two complete solution sites that can easily be downloaded from the Microsoft
Commerce Server site, which is currently at
www.microsoft.com/commerceserver/downloads/solutionsites.asp. One solution site is
for retail applications (B2C), and the other site is a starter for supplier applications
(B2B). These sites actually have quite a bit of functionality and were specifically
designed as a starting point. In addition, the sample Commerce Server 2000 site shows
multilingual and multicurrency support. Best of all, it's a chocolate store. Download it
currently from microsoft.com/downloads/release.asp?ReleaseID=31147. Resources
such as these enable you to design, develop, and deploy an e-commerce solution
quickly.

In addition to standing alone, Commerce Server 2000 is designed to operate with other
.NET Enterprise Servers to extend its functionality. For example, you could use the
document transfer capabilities of Microsoft Biztalk Server 2000 to exchange catalogs
between trading partners in a B2B scenario or use Microsoft Host Integration Server
2000 to access product or inventory data on a legacy system.

I hope you can see from this short overview the power that developers have with not
just Commerce Server, but also with the synergy of combining the strengths and
features of the .NET Enterprise Servers into solutions that focus on solving the
business problems of users and clients.

Exchange Server 2000

Microsoft Exchange Server 2000 is the developer's platform infrastructure for
messaging and collaboration solutions. It is seamlessly integrated with Windows 2000
and introduces several new features for application developers. Some of the solutions
you can leverage right out of the box with Microsoft Exchange Server 2000 are:

§ Messaging. Using collaboration data objects, you can integrate
applications with message stores and clients such as Microsoft Outlook.
Developers can also link applications with Instant Messenger.

§ Calendar Applications. Building custom calendar applications for the
enterprise allows item saved at a personal leve l to be added to the
enterprisewide calendar and categorized in meaningful ways.

§ Workflow or Real-Time Collaboration. Collaboration solutions using
Microsoft Project and Project Central allow for efficient scheduling of
resources. Organizations can also manage workflow and have greater
process control.

 11

In addition to the solution development resources, Microsoft Exchange 2000 also has
the Web Storage System, which can be accessed from several different development
environments, including Office 2000/XP, Explorer, Web Browser, and Messaging
Clients. The advantage of this data store as it relates to application development is its
ability to handle semistructured data that is crucial when building knowledge
management-type of solutions. This—along with the fact that Exchange 2000 enables
URL addressing for resources, collaboration data objects support in ASP pages, and
the ability to access ASP pages out of the Web store—makes it a very strong tool for
developing messaging solutions of all kinds.

Host Integration Server 2000

Host Integration Server 2000, which is used for legacy host system integration, supplies
secure access to host-based data and data translation between applications. This
server allows a developer to choose the right technology for a given task, whether for
simpler gateway integration or more complex programmatic access to applications,
transactions, and legacy data stores, such as DB2. In addition, it also has the ability to
do two-phase commit transactions between the mainframe and the windows
environments.

Host Integration Server 2000 relies on technology being available on the host, so the
majority of the time you won't have to deal with costly host application rewrites.
Through the Open Transaction Manager Architecture (OTMA) server, existing legacy
IMS implicit message queue-based transaction programs can use TCP/IP connectivity
without being recompiled or redesigned.

Once the incoming information is transformed, BizTalk Server 2000 can use the Host
Integration Server 2000 (HIS 2000) for either synchronous or (COM+)-based integration
or asynchronous (Message Oriented Middleware, or MOM)-based integration through
the MSMQ to MQSeries Bridge, allowing asynchronous document exchange.

Internet Security and Acceleration Server 2000

Internet Security and Acceleration Server (ISA) is a multilayered enterprise firewall and
Web cache server built to provide policy-based access control, acceleration, and
management of internetworking. The enterprise firewall capabilities of ISA help to
protect network resources from threats such as external hackers, unauthorized access,
and virus attacks. The Web cache facilitates an organization's ability to conserve
network bandwidth and permits faster Web access by serving frequently used objects
locally instead of externally.

As an Enterprise firewall, ISA provides Multilayered Firewall Protection in the following
three ways:

§ Packet filtering determines which packets will be allowed to pass
through to the secured proxy services.

§ Circuit filtering provides application-transparent circuit gateways for
multiplatform access to several Internet services.

§ Application filtering allows ISA to interpret application protocol
commands (e.g., HTTP, FTP, and Gopher) from client PCs. ISA Server
also conceals the network topology and IP addresses from the outside
network.

In addition to the multilayered firewall protection, Internet Security and Acceleration
Server employs Smart Application Filters, which can accept, reject, redirect, and modify
traffic through intelligent filtering of HTTP, FTP, SMTP email, H.323 conferencing,
streaming media, and RPC content. ISA also makes use of rules-based Server

 12

Publishing to protect Web servers, email servers, and Web applications from external
attacks.

As a Web cache server, ISA Server can be used as a forward cache, a reverse cache,
or content distribution vehicle that uses fast RAM caching and efficient disk operations.

Developers can extend Internet Security and Acceleration Server through a collection of
APIs and an SDK that can be used to develop additional Web and application filters,
MMC snap-ins, reporting tools, scriptable commands, alert management, and more.

SQL Server 2000

Microsoft SQL Server 2000 includes significant enhancements that support the
plumbing for .NET solutions and is an extremely powerful platform that developers can
use not only as a data store but also to perform advanced data analysis. SQL Server
2000 builds on the advances introduced in SQL Server 7.0 and introduces inbound and
outbound native support for XML. This is ideal for developing Web applications with
dynamic data or business-to-business data processing, both situations that require the
use of a platform-independent data transport mechanism.

Although there have been many enhancements to SQL Server in the current version,
we will primarily focus on the ones that deal with XML because of the underlying
support for Microsoft .NET.

T-SQL, or Transact-SQL, is the dialect of Structured Query Language used by
Microsoft SQL Server. The FOR XML T-SQL language extension allows a SELECT
statement to return the result set as XML. This is accomplished through the FOR XML
clause, which retrieves XML data from the database engine. The FOR XML clause has
three modes:

§ Raw. The Raw mode returns one <row> element per row in the result set
and has no support for nested elements. In the Raw mode columns and
values returned in the result set are mapped to attributes and values on
the <row>. The structure of the mode is very similar to comma-separated
values (CSVs) but is in an XML format.

§ Auto. In Auto mode, the Table/View name in database is used for the
element name in the result set. You can choose between element
attributes or subelements for the columns, with the names of the columns
corresponding to the attribute or subelement names. Use the Elements
to return subelements instead of attributes, which are the default. Auto
mode supports nested XML output, which is determined by the ordering
of the columns in your Select clause. Although sibling relationships are
not supported in Auto mode, table and column aliases are.

§ Explicit. The Explicit mode provides complete control over the formatting
of XML results. In this mode, columns can be individually mapped to
either attributes or subelements and have complete support of nesting at
any level. As would be expected with this level of control, sibling
relationships and CDATA sections in XML output are fully supported.

XML views of SQL Server 2000 databases may be defined by using XML-Data
Reduced (XDR) schemas to map the associated tables, views, and columns. The XML
views can then be referenced in XPath queries, which are retrieved as XML documents
directly from the database. In addition, you can expose XML document data as a
relational resultset using the new OPENXML rowset function.

 13

Now that we've examined the member .NET Enterprise Servers, let's go up a notch and
learn about the .NET Framework and the developer tools that target it.

Sharepoint Portal Server 2000

Sharepoint Portal Server is an enterprise collaboration portal system. Documents can
be categorized and stored internally within Sharepoint, and can also be accessed
externally from whatever data store they reside in. For developers, Sharepoint adds
collaboration functionality that allows for enterprise data access and indexing and can
be customized based on the user's information needs with a dashboard-based portal.

Mobile Information Server

Mobile Information Server is just about that—serving up and extending information from
.NET enterprise applications down to mobile devices from many vendors and wireless
carriers. For the developer, this means you can extend your intranet or network to use a
multitude of existing devices easily and seamlessly. From Outlook Mobile Access to
your own custom applications, you can also use your existing skill sets and tools to
create information solutions that are available anytime, anywhere.

Content Management Server

Content Management Server solves an (Internet) age-old problem—empowering the
people who create the content to publish it to their page or site easily, without needing a
tremendous amount of technical skill. This server also allows for dynamic content
delivery based on the group accessing the site, and for sufficiently faster time to market
for scalable Internet solutions.

.NET Framework
The .NET Framework is an environment for designing, developing, deploying, and
running XML Web services, Web applications, NT services, and Windows applications,
among others. The .NET Framework is separated into two parts: the common language
runtime and the class libraries.
Let's explore the .NET Framework in a bit more detail before moving on. Figure 1.2
illustrates the major portions of the .NET Framework.

 14

Figure 1.2: High-level parts of the .NET Framework.

Common Language Runtime

You may or may not be aware of this, but runtimes have been around for quite a while.
Some runtimes were interpreter based (Visual Basic, JAVA) and some were truly
compiler based (C++, for example). In addition, the capabilities of runtimes varied
greatly between languages, depending on their architecture. For example, some
languages, such as SmallTalk, were totally object based, whereas others, such as
COBOL, ignored them completely until relatively recently. Another challenge was the
lack of portability between the languages. You couldn't take source code written in one
language and run it through another's runtime.
The common language runtime has been specifically designed to address not only the
preceding problems, but also quite a few more. It enables reliable applications by
eliminating memory leaks. The concept of write -once, run-anywhere has been one of
the most sought after treasures in application development. It's been tried before in
different ways, but previous approaches always missed the mark. The common
language runtime, on the other hand, advances us further down the road by providing a
multilanguage execution environment that allows developers to build many different
types of applications, from Web services to Windows applications to mobile applications
and everything in between. We can now create components and integrate them fully
with Web services (and each other) without regard for programming languages. As
we've heard before, we truly are now entering a state in which the language becomes a
lifestyle choice.

 15

Language compilers that use the common language runtime are considered managed;
that is, the language's functionality is managed by the .NET Framework. In order for the
runtime to provide services and resources to the managed code, the compiler must
provide information about the related types, members, and references upon
compilation. Data about data is known as metadata. The common language runtime
uses the metadata in much the same way COM+ uses the registry and services such
as the Service Control Manager to manage lifetime, locate and load classes, and set
context boundaries. One major difference, however, is that although COM+ relies on
the registry to store registration information and state data, .NET objects store this in
the metadata, which resides locally to that object. This enables the common language
runtime to manage object references automatically as well, releasing the object at the
end of its lifetime.
Another advantage of managed code is the ability to tightly integrate applications that
use objects across languages. This means that you can define a class in one language
and derive a new class from it in another language, due to the common type system
shared by all, which also makes possible cross-language inheritance and debugging.
Currently, you can build .NET applications in more than 20 managed languages,
including Visual Basic .NET, C#, Jscript .NET, Managed C++, and even COBOL. We'll
delve further into this in just a moment.

Okay, so how does this work (in 60 words or less)? First, you design and write your
source code, which is compiled into Microsoft Intermediate Language (MSIL) and then
processed in the common language runtime through the class loader. Just-in-time (JIT)
compilers compile the intermediary language (MSIL) into native code, which is highly
optimized for the given platform or device and then executed through the common
language runtime.
Having this common substrate that different languages can build upon offers
tremendous advantages, such as inheritance between languages, a shared
development environment, and consistent types that are easily mapped. If we break the
common language runtime into functional areas, the groupings logically fall into what
you see in Figure 1.3.

Figure 1.3: The .NET common language runtime diagram.

 16

The common language runtime is Microsoft's implementation of the Common Language
Infrastructure (CLI) specification released to ECMA. As such, the common language
runtime represents a powerful platform for developing applications of all kinds. The CLI
consists of the common intermediate language and the common type system.

Common Intermediate Language

The common intermediate language specification is what powers the common
language runtime. Microsoft's version is the Microsoft Intermediate Language, which all
the .NET higher-level languages are compiled into in order to run on the common
language runtime.
It may surprise you that Microsoft has submitted the core of the .NET Framework, the
Common Language Infrastructure, to the European Computer Manufacturer's
Association (the international standards body that also governs JavaScript) for
standardization. Microsoft is fully participating in ECMA's standardization process,
which means that ECMA and not Microsoft is key in controlling and maintaining the
standard.

Common Type System

One of the key strengths of .NET is the common type system. It defines how types are
declared and used by the runtime. The system is also the traffic cop in that it sets the
rules that all the languages must follow within its object-oriented framework.
A great place to begin the discussion about types for those of us in the Visual Basic
world is to start with the two major categories that are supported by the common type
system: value types and reference types. We already know that you pass parameters
either by reference or by value, so let's build on that. Value types are stored as the
value, or contents, at the location. These types can either be inherent, user defined, or
as enumerations. Reference types are stored as a reference to the location of the
value. They can be self-describing, which can be either arrays or class types. These
types derive from a single base type, System.Object. Reference types can also either
be pointer or interface types. Class types can be further split into delegates, user-
defined classes, and box value types:

§ Classes. Template for the object

§ Interfaces. Information to and from the object

§ Value types. Categories of stored information

§ Delegates. Representatives of the object (similar to function pointers)

Class Libraries

The class libraries are responsible for programmatic access to all available resources
within .NET and include ASP.NET, Enterprise Services, ADO.NET, and Windows
Forms. This is all well and good until you want to develop an application that uses the
class libraries and runs in the common language runtime. For that, you need an
environment to leverage this power, and Visual Studio .NET does just that.

For Web development, the class libraries can functionally be broken into three major
areas:

§ Web services. Responsible for all aspects of Web service
communication and functionality.

§ User interface. Responsible for communicating information to and from
the user.

§ Data and XML. Responsible for data communication and functionality.

 17

As you can see in Figure 1.2, the class libraries sit on top of the Base Class Library
(BCL), which sits on top of the common language runtime.
The BCL is really the heart of the .NET Framework. It provides the consistent base
types that are used across all .NET-enabled languages. The classes are accessed by
namespaces, which reside within assemblies. The unified class structure provides
uniform access to the functionality exposed by the .NET platform, removing the
requirement to master diverse technologies when writing applications. Mapping of data
types enables the managed programming languages to be tightly and seamlessly
integrated with the .NET Framework.
A namespace is a grouping of like objects. Namespaces make up the .NET Framework
class library. They provide organization for all the resources available in the framework.
They also provide scope, so you can have multiple classes within your application
provided that each class resides in its own namespace and that it is properly qualified
with the corresponding namespace. You can think of namespaces as giving similar
functionality to that of aliases in SQL. The namespace name is actually part of the fully
qualified type name and has the following syntax: namespace.typename. The two
namespaces that Microsoft reserves are System and Microsoft. The System
namespace contains thousands of subordinate objects. It holds the functionality of the
Microsoft .NET Framework. The Microsoft namespace is used by product groups within
Microsoft that target projects and applications that target the common language
runtime.

The following code sample illustrates how namespaces are used within .NET:
Imports System.Web.Services
Imports System.Diagnostics
The imports keyword is used to access a namespace, which means that we don't have
to qualify them when using types. This allows us to use the functionality contained in
the assembly without having to load the source into the project.

This is our class definition:
Public Class Service1
Inherits System.Web.Services.WebService
<webmethod()> Public Function TakeOrder(ByVal Order as String)
as
Boolean

Notice in the following that Eventlog.writeentry has no namespace in front of it. If we
hadn't imported the System.Diagnostic, we would have to use
System.Diagnostics.EventLog.WriteEntry instead.
EventLog.WriteEntry ("OrdersReceived", "Order Received: " &
Order)
Return True

End Function
Namespaces reside within assemblies. An assembly is a collection of one or more
modules (classes, data sets, etc.) and is also referred to as a managed DLL, so there is
a direct analogy between the two, so much so that the file extension is still .dll. One
major difference to keep in mind, however, is that win32 and COM+ DLLs are compiled
as native code, whereas .NET DLLs are managed and executed by the common
language runtime.
You can define your own namespaces and create and compile your own assemblies as
well. Each assembly has a manifest, which contains the information that describes the

 18

contents of the assembly, much like a project file does in earlier versions of Visual
Basic. The manifest also describes the version, scope, and security information through
its metadata. We've already talked about metadata, so let's apply it here. Assemblies
emit metadata for versioning and to load and locate class types, expose interfaces, and
resolve references and method invocations, to name a few. By containing all this
information locally, there's no longer any need to rely on the registry to supply and store
it. You add assemblies to your project by referencing them.

Assemblies can either be single or multifile and can be deployed by simply copying to a
directory using the XCOPY console command, or by the more traditional deployment
methods.

Developer Tools

Visual Studio .NET has been completely rebuilt from the ground up to take advantage
of the .NET Framework and the common language runtime. Not only does it use a
common foundation of resources, but it also allows for a multilanguage development
environment. As you'll see later in this book, the ease in which applications are
seamlessly deployed is a tremendous improvement.
One of Visual Studio .NET's main functions is to develop and also reuse XML Web
services. XML Web services allow you to expose an application's functionality through
the use of standard protocols such as the SOAP and XML. We'll focus on this in detail
in Chapter 7 .

We now have tools that use the power of the Microsoft .NET Framework, but we aren't
limited to a single language. Thanks to the common language runtime, organizations
can take advantage of the benefits provided, while still leveraging their language
investments. Some of the languages are (in addition to Visual Basic .NET, C#,
Jscript.NET, and J#) Perl, COBOL, Python, ADA, and many others. For this discussion,
however, we are going to focus on the languages that have been created and
supported by Microsoft, starting with Visual Basic .NET.

Note A good thing about .NET is that all languages under the umbrella

are first-class players. This may seem like a very brief overview, but
I want to stay focused on Visual Basic .NET and ASP.NET.

§ Visual Basic .NET. Visual Basic developers can now rapidly develop

applications for the Web and smart devices, just like they've always been
able to do for Microsoft Windows. This is in no small thanks to the
reengineering of Windows Forms and the addition of Mobile Web Forms,
and the Smart Device Extensions Toolkit. Like the other member
languages within .NET, Visual Basic .NET can seamlessly interoperate
within the Visual Studio .NET multilanguage environment.

Microsoft Visual Basic .NET has also been totally rearchitected and rebuilt to use
the Microsoft .NET Framework. You wanted objects, and you've got them.
Everything is now an object. As a result, developers using Visual Basic .NET now
have direct access to the rich set of unified libraries that provides access to
everything under the sun.
We'll see exactly how Visual Basic has changed as we explore the new language
features in Chapter 2 and then expand on this in Chapter 3 by examining the new
object-oriented features.
§ C#. C# is an entirely new programming language built especially to

leverage the .NET Framework. In fact, you could say it's the first .NET-only

 19

language. It's been designed specifically to augment the strengths of
Visual Basic and JAVA and eliminate the weaknesses of other languages
like Visual C++. It also borrows heavily from Visual Basic's Rapid
Application Development environment. Microsoft is using C# extensively
both internally and in the creation of its products.

§ Jscript.NET. Jscript .NET is the .NET-enabled version of the popular
scripting language and is undoubtedly the most dramatic change in
functionality since it's introduction in 1996. One nice thing that the
development team strove for was that any enhancements to Jscript would
work within the existing language requirements. Now Jscript is a truly
compiled language. Everything's an object now, and classes and packages
have now been added. With the classes comes inheritance, and because
Jscript .NET is a full member of .NET, classes from other languages can
be inherited as well.

§ Managed C++. Under .NET, C++ comes in two flavors: managed and
unmanaged. Managed C++ uses the .NET Framework and the common
language runtime for execution. Unmanaged C++, in this brave new world,
targets the Visual C++ compiler and, as such, is totally compatible with
previous versions.

.NET Foundation Services

.NET Foundation Services are designed to provide the plumbing for applications
needing authentication and notification services of all shapes and sizes. In other words,
they are consumer-focused Web services. Microsoft .NET My Services is the first set of
user-centric Web services that Microsoft is building. These services allow users to have
access to their data regardless of device, platform, or application. .NET My Services,
which will centralize all your information in a single place, are being described as the
passport to the future. It's really all about giving you control over your information when,
where, and how you see fit.
Security is paramount to .NET My Services because it creates a virtual identity for you
through the Passport authentication service. Notice that the identity is the key concept
in .NET My Services, as shown in Figure 1.4. Everything else hangs from it.

 20

Figure 1.4: .NET My Services and service fabric.

The initial set of .NET My Services will include:
§ .NET Presence. Contains the information about where users are to receive

their alerts and is very similar to user status in Messenger.
§ .NET Location. Contains the user's physical location. Location examples

include At Home or At Work to enhance the Presence service by providing
additional information.

§ .NET Services. Lists and coordinates the services to which a user has
subscribed.

§ .NET Notifications. Sends a notification about an important event to a
subscription on any device, any time, anywhere. Users specify .NET
Presence settings (such as a cell phone if offline) to make themselves
available to these notifications, if they opt to.

§ .NET Calendar. Stores the user's calendar information centrally so that
work, family, and personal information can be accessed by users and
those they choose to share it with. The access can range from full to
limited (such as meeting information) to simply free/busy data.

§ .NET Contacts. Lets users store their contact information and share it with
those they choose.

§ .NET Inbox. Gives users access to their email on any computer or device
upon a successful sign in to .NET My Services.

§ .NET Documents. Provides users with secure storage for their documents
and enables virtual file access upon a successful sign in to .NET - My
Services.

§ .NET Wallet. Enables the user to store payment account and shipping
information used for online purchasing.

§ .NET ApplicationSettings. Stores user application settings so that any
device automatically adjusts to what is stored upon user sign in.

§ .NET Profile. Stores personal user information.
§ .NET FavoriteWebSites. Gives users access to their favorite Web links

regardless of device, location, application, or other software client.
§ .NET Lists. Lets users store any kind of relevant list.

 21

§ .NET Categories. A standardized list of categories that are available
across all .NET My Services and used to group data documents.

Even though these are the first services that Microsoft is building, others will follow and
open a whole new revenue stream for the Web. As a developer, you can get into the
act by creating applications that take advantage of the functionality in these services or
using them in conjunction with your own home-built services.

.Net User Experience

We've talked about the servers, the tools, and the building block services that Microsoft
.NET provides. That is all well and good, but without devices and clients that can take
advantage of the applications and services we developers create, the whole vision
would seem to be in vain. The devices run clients, which in turn provide user
experiences.

Smart Devices

Smart devices are just that: They're smart, smart about the way information is
presented and gathered. Examples of these devices include desktop, laptop, and
workstation PCs; and cell phones, handhelds, tablet PCs, and game consoles (as well
as the XBOX). Taking advantage of the huge amount of information that can be
harnessed through the lower levels of .NET platform, smart devices are smart in the
following areas of interaction:

§ Identity Interaction. They know your preferences and personal
information.

§ Network Interaction. They know the infrastructure and servers proving
the information.

§ Information Interaction. They are intuitive about the information and the
context in which it's received.

§ Device Interaction. They can recognize and interact with other devices.

§ Software Interaction. Similar to the hardware infrastructure interaction,
they take advantage of the information provided by software and
services, in accordance with user preferences and authentication.

Clients

Smart devices are only one of the endpoints in the .NET platform that harness and
leverage the information provided into something that we can effectively use. Let's take
a look at another endpoint—clients. You might have always thought of clients as the
hardware on this end, namely, your desktop machine. But end users interact with
computers through clients, software that translates our actions into what the hardware
can understand. Clients run on everything from smart devices like PCs and PDAs to
industrial controls and home appliances, hence the need for client software for the .NET
platform.

Smart Devices + Clients = User Experiences
The user experiences the product of the interaction of the smart devices and the clients.
Through seamless interaction, and a user-centric design, the technology now bends to
the desires of the user rather than the other way around. For example, if you are
traveling on business, your travel agent can update your calendar and send you an
alert if your flight is delayed. Coworkers or clients could receive an alert as well and
access your calendar to determine when you'll arrive.

 22

So that's the tour of the parts that make up the .NET vision. Now that we've explored it,
let's get a quick introduction to ASP.NET, which will be greatly expanded on as we
progress through the rest of the book.

Introduction to ASP.NET

Unless you've been living in a cave for the last year or so, you've most likely heard
about the next generation of active server pages, ASP.NET. But do you understand the
implications of this technology? You've grown up as a developer with a very rich
development environment, easy database connectivity, and an integrated debugging
tool. Menus, however, left a lot to be desired. Until now, you've most likely avoided ASP
development because it is so clumsy, and the tools are much more primitive than what
you're used to.

Up until now ASP has been the best and most widely used technology for Web
development that we've had to work with. It's just that when you have an architecture
that mixes layout (HTML) and logic (scripts), has code that must be interpreted and
browser compatibility issues, and doesn't allow you, among other things, to support
24x7 applications, you can get cranky. That's really all changed now that Microsoft
Visual Studio .NET brings the RAD environment to Web development.

How does ASP.NET fix the preceding problems? Well, just like you're used to in Visual
Basic, ASP.NET allows you to cleanly separate presentation and business logic,
thereby simplifying maintenance tasks. By using the services provided by the .NET
Framework, you don't have to rely on a grab bag of different technologies. And because
your code is compiled the first time a page is requested instead of when it is
interpreted, there will be impressive performance gains. Another improvement that
ASP.NET brings to the table is state management built right in, which includes Web
farm support. Caching is very important in Web applications to increase speed, and
now that is very easy to take advantage of at several levels within ASP.NET. Finally,
one last important benefit is the ability to update files while the server is running.
As illustrated in Figure 1.5 , ASP.NET applications no longer run in the context of IIS;
now they use the functionality of the .NET Framework to satisfy the requests of the
Web client through the HTTP runtime. Here is the process in a nutshell. The incoming
request is processed by the HTTP runtime, which then resolves the requested URL to
the corresponding application for processing. Requests pass through a number of
HTTP modules, which developers can create to modify the requests on the fly. Request
handlers pass a specific URL request to an application.

 23

Figure 1.5: Communication flow among ASP.NET components.

The heart of ASP.NET is System.Web. It's actually contained in System. Web.dll.
System.Web is responsible for the Web-related tasks in the .NET Framework. As you'll
discover in the following chapters, whether they discuss Web forms (Chapter 5), Web
controls (Chapter 6), or Web services (Chapter 7), all of this functionality flows from this
portion of the .NET Framework. The heart of this functionality is contained in the
System.Web namespace, as illustrated in Figure 1.6 .

 24

Figure 1.6: System.Web, where all the magic happens.

Your First ASP.NET Application
Let's try this out. The sample application that Chapter 10 is based on uses the
Northwind sample database included with Microsoft SQL Server 2000. Thus it seems
fitting to use it for our first application. We are going to create a Web form with a data
grid control on it that shows selected Northwind employee information. We will also
data bind the grid to an ADO.NET data set. Notice how similar building Web
applications in Visual Basic .NET is to what you've done in the past with Windows
applications:

Open the Web Application Project
1. Open Visual Studio .Net and select an ASP.NET Web application.
2. Name it EmployeesVB.
3. Notice that the Web form looks very similar to Visual Basic forms, as

shown in Figure 1.7.

 25

Figure 1.7: The Visual Basic .NET IDE.

4. Double-click on the Web form to access the code window.
5. Place the cursor at the beginning of the Public Class WebForm line.

Hit Enter twice to add two lines at the very top.
6. Type the following code:

7. Imports System.Data
8. Imports System.Data.SqlClient

9. Click the WebForm1 tab at the top of the code window to access the
Web form.

10. Click on the toolbar and add a label, command button, and data grid,
as shown in Figure 1.8 .

 26

Figure 1.8: Adding controls to the Web form.

11. Click on the label. Locate the text property in the Properties box.
12. Change the text property to NorthWind Employees.
13. Click on the data grid. Locate the ID property in the Properties box.
14. Change the ID property to grdEmployees.
15. Click on the Command button. Locate the text property in the

Properties box.
16. Change the text property to Get Data.
17. Double-click on the Command button to access the Code window.
18. Type the following code in the Button1_Click Event:
19.
 Dim DS As DataSet
 Dim MyConnection As SqlConnection
 Dim MyCommand As SqlDataAdapter
 MyConnection = New
SqlConnection("server=localhost;uid=sa;pwd=;database=
northwind")
 MyCommand = New SqlDataAdapter("select firstname
as 'First Name',
lastname as 'Last Name', Title from Employees",
MyConnection)
 DS = New DataSet("Employees")
 MyCommand.Fill(DS)
 grdEmployees.DataSource = DS
 grdEmployees.DataBind()

 27

Now let's talk a little about what we've just typed. In the following line, we are creating a
database connection object:
 MyConnection = New
SqlConnection("server=localhost;uid=sa;pwd=;database=northwind")

In the following line, the SQLDataAdapter object is using MyConnection and a SQL
query for the data that we want:
 MyCommand = New SqlDataAdapter("select firstname as
'First
Name', lastname as 'Last Name', Title from Employees",
MyConnection)

In the following line, the DataSet object replaces the RecordSet object. Notice the fill
method of the SQLDataAdapter object. It's actually populating the data set:
 DS = New DataSet("Employees")
 MyCommand.Fill(DS)

The following line sets the DataSource property of the DataGrid control:
 grdEmployees.DataSource = DS

In the following line, the DataBind method of the DataGrid control loads the data grid
with data. The data grid then displays the data as an HTML table:
 grdEmployees.DataBind()

Now, click File and then click Save Employees VB.aspx. Push Cntl-F8 to build and
browse. The output should look like Figure 1.9.

 28

Figure 1.9: ASP.NET page output.

Wrapping Up

This chapter should have given you a better understanding of what .NET is, why we
need it, and how it relates to what you've done before. In Chapter 2, you'll learn about
the new features and enhancements in Microsoft Visual Basic .NET. And it will continue
to just get better from there. We'll explore object-oriented enhancements, Web
development, Web applications, controls, and ADO before focusing on configuration
and deployment. This is the first step in the journey. After this the path will widen on a
trail of progressive revelation about .NET. And, yes, you'll do much more coding very
soon. Enjoy.

 29

Chapter 2: The Development Environment and
Language Changes

Overview
If it keeps up, man will atrophy all his limbs but the push-button finger.
Frank Lloyd Wright

Before getting started on the new Web development capabilities in Visual Basic .NET,
you need to know about the important differences between it and previous versions of
Visual Basic. There are three major areas to cover:

1. The new Visual Studio .NET development environment (usually referred to
as the IDE, for Integrated Development Environment)

2. Syntax changes and additions in the Visual Basic language that are not
related to object orientation

3. The new object-oriented capabilities of Visual Basic .NET

This chapter will cover the first two of these categories, and the third chapter will get
into the object-oriented changes.

The New Development Environment

When you first fire up Visual Studio .NET, you get a new Start Page that has a number
of useful new capabilities. If you have just installed Visual Studio .NET, you'll see the
My Profile tab, shown in Figure 2.1. It lets you change various things about the layout
and usage of the development environment.

Figure 2.1: MyProfile tab in Visual Studio .NET.

 30

You should select an appropriate profile before continuing. For most VB developers, the
easiest path is to select the Visual Basic Developer profile, which configures the
environment with layout and behavior that is similar to Visual Basic 6. The position of
the windows and the keystrokes used for various purposes will mirror those in VB6, so
you'll be able to dive right in and get to work.

Other tabs on the Start Page give access to lists of new features and changes in Visual
Studio .NET (taken from the help files) and news about .NET (taken from the Web).
There's also a tab that points you to some interesting services, including free trial
memberships at sites that can host your Visual Studio .NET Web projects. Using these
hosting sites is easy, and if you do not already have a good hosting option, you should
try one of them.
On succeeding times that you use Visual Studio .NET, the Start Page will contain a list
of recent projects that you've worked on and options to call up an existing project or
start a new one. The Start Page is shown in Figure 2.2 .

Figure 2.2: The Start Page.

An IDE Nickel Tour

A tour through the Visual Studio .NET IDE is an interesting mixture of familiar elements
and new, unfamiliar ones. There's so much new functionality that it can take a while to
examine it all. Let's hit the high points first.
The general layout of Visual Studio .NET has one big functional difference from VB6.
Instead of using a Multiple Document Interface (MDI) model layout for multiple
windows, the Visual Studio .NET environment uses tabs to allow an area to contain
multiple windows. (The VB6-style MDI layout is available and can be turned on in Tools,
Options. However, the old SDI layout arrangement from VB6 and earlier is not available
in Visual Basic .NET.) Figure 2.3 is an example of the IDE with several of the tabbed
areas highlighted.

 31

Figure 2.3: The new IDE in Visual Studio .NET.

This tabbed design for the various screen areas allows a lot of functionality to be
packed into a tight space. For example, the same area (marked with a 1 in the figure) is
used for the toolbox and the Server Explorer (both of which will be discussed soon).
And the area used for code windows and form design (marked with a 2 in the image)
also displays the Start Page and help pages.

The area used for form design, code, help files, and so on, is usually called the
Designer pane. It is always part of the IDE and is surrounded by windows on the left,
right, and bottom.
On the left (area 1 in Figure 2.3) are the toolbox and Server Explorer. On the right (area
3) are the Solution Explorer (the replacement for Visual Basic 6's Project Explorer), a
class viewer, and access to help files. At the bottom (area 4) are the Task List, the
Output Window, and a variety of debug-related windows that we will discuss later. In
the bottom right (area 5) is the area for the Property Window and Dynamic Help.

Managing this many windows can be a challenge, especially because different ones are
important at different times in the development process. So the environment includes
some capabilities to alter behavior and appearance of all the windows that reside on the
edge of the Designer pane. These windows can be pulled out of their default tabbed
areas and made free floating, for example. When necessary, they can be dropped back
into their original areas, and their tab will be restored. (You may have to practice this
dropping operation a bit to get comfortable with it.)
Another behavioral option is to set windows to auto-hide. You do this by clicking on the
pushpin icon in the upper right corner of the windows. When such a window is in auto-
hide mode (indicated by the pushpin being horizontal), only the tabs for these windows
show up at the edge of the screen. When a tab is selected, the associated window

 32

slides into view and can be used. When you click somewhere else in the environment,
the window slides back to its hidden position. Figure 2.4 shows all the edge windows in
auto-hide mode but with the Toolbox pulled out.

Figure 2.4: IDE Toolbox in auto-hide mode.

The Designer Pane

The place where you'll spend most of your time in the IDE is the Designer pane. This
contains code windows for code editing, form design surfaces, and component design
surfaces (a new concept in Visual Studio .NET). It also displays help topics.
The Designer pane is tabbed along the top. There is a tab for each currently active
window in the pane. If you have a Web form as part of your solution, and you look at
the layout of the Web form, there will be a tab for that. If you look at the code behind the
Web form, there will be another tab for that. And the IDE starts off with a tab in the
Designer pane for the Start Page. Figure 2.5 is a view of a typical Designer pane with
several tabs.

 33

Figure 2.5: The Designer pane with tabs.

The figure shows another interesting aspect to the Designer pane. If you place a control
on a form that has no visible manifestation (such as the PerformanceCounterl control in
the screen in the figure), it does not appear directly on the form, as in VB6. Instead, it
appears in a part of the Designer pane that is called the component tray and is directly
beneath the form's design surface. Quite a number of these controls are available, so
it's nice to have a special area for them and avoid cluttering up your form design
surface. (We talk more about performance counters in the section on the Server
Explorer.)

Code Editors in Visual Basic .NET

Code editing windows appear in the Designer pane, too, and the editors in Visual
Studio .NET are quite sophisticated. They are very smart about placing parentheses in
appropriate places if you leave them out, for example. The Visual Basic .NET editor
also reformats code to proper indentation automatically, which is a big timesaver.
The code editors in Visual Studio .NET have one very nice new feature, called code
outlining. It allows various sections of code to be made hidden or visible by clicking
some minus and plus signs on the left edge of the screen. A code-editing window with
outlining indicated is shown in Figure 2.6 .

 34

Figure 2.6: The new code outlining feature in the Code Editor.

Most code generated automatically by the designers in Visual Studio .NET is hidden
from view by default. You can see such a section of code in Figure 2.6, indicated with
the line that says Web Form Designer Generated Code. By default you can hide and
show your own individual routines. You can also set your own regions to show and hide
with the #Region directive.

Toolbox

The toolbox also acts a lot like the one in VB6. It looks a bit different because the
controls in the toolbox are listed in a linear arrangement with the name of the control
beside the icon, unlike the icon-only display in VB6. You'll also see a lot more tabs in
the toolbox, and organizing your controls in the tabs is more important because you'll
be dealing with a lot more controls in Visual Basic .NET, as we'll see later.

Property Window

The Property window in Visual Basic .NET looks and acts a lot like the one in VB6, but
you'll find some properties changed. Caption in VB6 becomes Text in Visual Basic
.NET, for example. And Height and Width are not top-level properties but instead are
found under the Size property. But such differences are very minor.

Dynamic Help

One difference of the Property window is that it shares space on the screen with
another window called Dynamic Help. The two views are accessible through tabs at the
bottom of the window.

Dynamic Help is a feature of the IDE that continuously monitors what you are doing and
tries to guess what help topics you might be interested in. It displays those help topics
in a list. If you feel a bit lost at any point in development and are not sure where to go in
the help system, you might want to check Dynamic Help for suggestions.

You can turn off Dynamic Help in the IDE options (accessible by choosing Tools,
Options). This can help make the IDE's performance a bit snappier on slower
machines.

 35

Solution Explorer

The Solution Explorer will look quite familiar to Visual Interdev users, and it is generally
similar to the Project Explorer in VB6. The Solution Explorer has to be more flexible
than the Project Explorer because a .NET solution can contain more than just the files
associated with a single project. A solution can also contain:

§ Additional related projects in the Visual Basic .NET language
§ Projects or languages in other languages
§ Items that are useful for the solution, such as graphic images, HTML

files, and XML files
§ Configuration files for the solution or for individual projects (we'll see a

lot about the Web.config files for Web projects later)
§ A list of references to other modules or to other services such as Web

services

You'll do a lot of the management of your solutions by right-clicking on something in the
Solution Explorer. For example, you can right-click on a Web form and select an option
to make it the startup page for a project.
Figure 2.7 shows a Solution Explorer window with a number of different types of items
in it.

Figure 2.7: The Solution Explorer window.

The Solution Explorer shares a region of the screen with several other windows. These
only come up if you request them. The windows that can appear in the same region as
the Solution Explorer include:

§ The Class View
§ The Resource View
§ Index to Help
§ The Macro Explorer

 36

We won't discuss all of these because some are self-explanatory, and others are a bit
advanced for a nickel tour. But you are encouraged to check out all the windows
available in the IDE.

These windows share space on the screen via a tabbed arrangement. The bottom of
the region of the screen where the Solution Explorer appears becomes tabbed when
more than one window from the preceding list is active. You can then switch among
these windows with the tabs.

Class View

One of the windows sharing space with the Solution Explorer is the Class View. This
window is basically an object browser for your solution. You can review the components
and classes in your solution, and their object interfaces, using the Class View.

Task List

Another feature that will look familiar to Interdev users but will be a welcome addition
for VB users is the Task List. This appears by default in a window under the Designer
pane. It contains a list of tasks that need to be accomplished. Clicking on a task takes
you directly to the location where that task needs to be accomplished.
Where do the tasks come from? Some are generated by the IDE. For example, build
errors are listed in the Task List, and clicking on one will take you to the place in the
code with the error. You can generate your own tasks by inserting a comment that
begins with a certain string of letters (called a token). Some of the tokens that are
automatically available when you install Visual Studio .NET include TODO and HACK.
For example, if you insert the following comment somewhere in your source code, the
Task List will contain that to-do item, as shown in Figure 2.8.

Figure 2.8: To-do item in code on the Task List window.
'TODO: I've got some work to do here.

As with build errors, if you click on a to-do task (or any other task generated by a
comment token), you are taken directly to that location in the code.

You can also add new tasks that do not appear in code. The window in the figure
shows a place to click to do that. You can set the Task List to show different types of
tasks. And you can create your own tokens, such as a DEMO token to show code that
was added just for a demo and needs to be removed later. Spend some time playing
around with the Task List. It is definitely your friend.

Output Window

Sharing space with the Task List is the Output window. This takes on some of the
functions of the Debug window in VB6. You can write text into it during program

 37

execution, for example. However, you don't write text into it with Debug.Print. Instead,
you use Console.Writeline.

Command Window

Another window sharing space with the Task List is the Command window. This has
some of the functions of the Immediate window in VB6. For example, using a command
line, you can access most options normally selected on a menu. It is also used, in its
Immediate mode, to evaluate expressions and change the value in variables during
debugging.

Server Explorer

We've left one of the best new features of the IDE to the end of the tour. The Server
Explorer is a new feature that helps you get to a wide variety of server resources,
including:

§ Databases
§ Data connections
§ Data structures
§ Data in tables and views
§ Message queues
§ Performance counters
§ Event logs
§ Windows services

If you are not familiar with message queues, performance counters, event logs, and the
like, you should invest some time in learning more about server-based resources. They
can be very useful.
The great thing about the Server Explorer is that it exposes most of these items in a
way that makes it easy to use them in your code. For example, to use a performance
counter, you just select the one you want and drag it onto your design surface. You get
a control that encapsulates the interface to that performance counter. You can then
change properties on the performance counter and use it in your code. We'll see more
about using the items in the Server Explore in Chapter 8.

You can even create new performance counters from the Server Explorer. It simplifies
the use of system resources and makes it unnecessary to keep many external tools,
such as the SQL Enterprise Manager, continuously loaded. You should definitely spend
some time investigating the Server Explorer. It can save you lots of time and frustration.

Other Nice Features of the IDE

We don't want to get bogged down at this point in everything the IDE does (it does a
lot), but here are a few more IDE capabilities you may want to explore on your own:

§ Macros and the macro development environment
§ Toolbars, a couple dozen of them, in fact
§ Editors for HTML and XML
§ Viewing or changing data that's in an XML file using a grid—without

coding a line

And in the chapter on data, we'll look at some of the wizards in the IDE for
automatically creating lots of standard data -related code.

 38

Taking It Out for a Spin: Your Hello, World! Program

Next we're going to create a Hello, World program. This will show off the IDE and
illustrate some of the major differences in Visual Basic .NET. Because the focus of this
book is Web development, our Hello, World program will be Web based.

You must have an appropriate configuration for Visual Basic .NET to run any Web-
based programs. In particular, Visual Studio .NET must be installed appropriately, and
Internet Information Server (IIS) must be loaded and running. If you took the default
options when installing the operating system and Visual Studio .NET, this configuration
should be in place for you.

In this example, we will create a Web Form that has two controls:
§ A label that contains some text for us to change
§ A button to change the text in the label and submit the page

To see the Hello, World program in action, take the following steps:
1. Start up Visual Studio .NET. You'll see the Start Page. Click the button

labeled New Project. (If you are already running Visual Studio .NET, you
can start a new project by selecting File, New, Project.) You will see a
screen that looks much like Figure 2.9.

Figure 2.9: The New Project dialog box.

2. Make sure the Visual Basic Projects folder on the left is highlighted, and

click on the ASP.NET Web application project type on the right. In the
Location text box, enter an appropriate name for your project, such as
HelloWorld.

3. Press OK. Visual Studio .NET will then set up the Web project. This
process creates a lot more files than are needed for a typical Visual Basic
forms project. Note that the directory to hold these files is, by default,
created off of the root directory of your Web site. If you are not familiar

 39

with Web technologies in general, and this is confusing to you, you'll want
to pay special attention to Chapter 4. For now, don't worry about it
because it just means that Visual Studio .NET takes care of a lot behind
the scenes to make a Web site ready for your development.

4. You'll get a screen to design your first Web Form. It will look much like
Figure 2.10, though there may be variations depending on your Visual
Studio profile. If you are using the Visual Basic developer profile (as
suggested earlier in the chapter), your screen should look very close to
this one.

Figure 2.10: Web Form design screen for the Hello World application.

Note Note the differences between what you see here and the way Visual
Basic 6 would look for regular forms-based development.

§ You can see the extra files created for the project,
shown in the Solution Explorer in the upper-right portion of
the screen.

§ The design surface is all white, befitting a Web page,
and there is a note about layout options for Web forms
controls.

§ Below the design surface are two tabs that will be
familiar to Visual Interdev users. One shows the visual
layout of the form (the Design tab), and the other shows
the HTML that is used to create that layout. We won't be
using the HTML tab in this example; however, it is used at
other places in the book.

§ The toolbox contains a different set of controls.

Despite the differences, you' ll find that the environment responds very

 40

much like VB6 forms-based development.
5. Click and drag a Label control onto the design surface and release it. The

Label control will appear on the form. Its properties will appear in the
Property window.

6. In the Property window, change the Text property for the control to
"Greeting goes here."

7. Drag a Button control onto the form. In the Property window, change its
Text property to "Update Greeting."

8. Now it's time to fix up the button so that it changes the text in the label
control to Hello, World. Double-click on the button, and an event routine
will come up, just as with Visual Basic forms. In the event routine, type in
the following code:
Label1.Text = "Hello, World!!"

9. We are now ready to test this Web Form. Press the Run icon in the
toolbar. It may take a while to see the resulting screen, especially if this is
the first time you have shown a Web Form. The screen that comes up is in
Internet Explorer (unless your default browser has been set to something
else), and it looks like Figure 2.11.

Figure 2.11: Running the Hello, World application.

10. Now press the button. The label will change to say Hello, World!!.

This very short exercise has demonstrated some key ideas about doing Web
development with Web Forms and Visual Basic .NET. You have now seen that controls
on Web Forms act very much like controls on VB6 forms, with properties to set
behavior and event code behind the controls to take actions. If you've ever used Active
Server Pages, you were probably surprised at how much easier it was to get a Web
page with some logic behind it up and going.
Chapters 5 and 6 go into much more detail about Web Forms and the controls that go
on them, so we'll leave further discussion to that point and get back to talking about the
environment and changes to Visual Basic.

 41

Debugging

The last part of the IDE we need to take a look at is how it handles debugging. If you
have set your profile to Visual Basic developer, setting breakpoints and stepping
through code is very much VB6. If you are using a different profile, the keys may be
different, but the actions are generally the same. The following discussion assumes you
are using the Visual Basic developer profile and refers to keystrokes used in that
profile.

Setting Breakpoints and Stepping through Code

To set a breakpoint in Visual Basic .NET, position the cursor on the line where the
breakpoint needs to be and press F9. Then when the program runs and hits that line,
execution will be suspended and the code window will show up with that line
highlighted. At that point, you can use the following keys to control execution:

§ F8. Step through the code one line at a time, going into other routines as
necessary.

§ Shift-F8. Step through the code one line at a time, but don't step into
functions or other routines. When a line calls a function, this kind of step
will just run the function and return.

§ Ctrl-Shift-F8. Step out of a routine. Use this when you've seen all you
want to inside a routine such as a function and you want debugging to
resume with the next line in the routine that called it.

There are some nice enhancements over VB6. For example, if you right-click on a
breakpoint and select Breakpoint Properties, you get access to capabilities such as only
breaking after the line has been executed some specified number of times. This allows
you to skip through, say, the first four executions of the breakpoint and only break on
the fifth execution.

Debug-Related Windows

Once a program is running, various other windows become available for debugging
purposes. These windows show up in the same area of the screen as the Task List and
the Command window and are accessible via tabs at the bottom of this area. Available
windows include:

§ Call Stack. Lists the procedures that are currently calling other procedures
and waiting for their return. There is a similar capability in VB6 that was
accessed with a menu option on the View menu.

§ Breakpoints. Gives some nice alternatives for creation and management
of breakpoints. Instead of going to a breakpoint in code, you can refer to it
in this window. You are able to change properties of the breakpoint, such
as whether it is currently active and how many times it has to be hit before
a break.

§ Locals. Used to monitor the value of all variables that are currently in
scope. It has a tree-control interface, similar to the equivalent function in
VB6.

§ Autos. Displays variables used in the statement currently being executed
and the statement just before it. These variables are identified and listed
for you automatically, (which is where the name of the window comes
from). The variables can be displayed in regular format or in hexadecimal,
and you can copy a variable to use somewhere else, such as in a Watch
window (discussed soon).

 42

Figure 2.12 is a sample screen, showing some code being stepped through, and the
Autos and Breakpoints windows. Other debug-related windows would be accessible
through the tabs under the Autos and Breakpoints windows.

Figure 2.12: Debugging screen in Visual Studio .NET.

Setting and Using Watches

There are also four Watch windows in this same area of the screen, called Watch 1 to
Watch 4. Each can hold a set of variables or expressions that you would like to monitor.
Variables are added to the windows in a couple of ways. They can be copied in the
Autos window and then pasted into a Watch window. Or, when a line of code is being
executed, the Debug, QuickWatch command puts up a dialog box showing variables in
the line, and you can add them to the Watch window.

Typically, you use a Watch window to monitor the value of a variable. Variables can
also have their values changed with Watch windows. Values can be displayed in
regular form or in hexadecimal.

Visual Basic .NET Language Enhancements

Contrary to what some authors have said, Visual Basic .NET is still Visual Basic. But it's
true that there are major adjustments. To get all the things we Visual Basic users

 43

wanted—Web interface development, inheritance, structured exception handling, and
so on—Microsoft had to make Visual Basic work within the larger .NET environment.
This caused incompatibilities with previous versions. To cite a quick example, Visual
Basic .NET had to support .NET data types, and these have some variations from the
data types supported by VB6.

When Microsoft realized that it would be necessary to break compatibility with earlier
versions, it decided to use this opportunity to clean up the language a bit. Visual Basic
is descended from QuickBASIC, which is itself descended from earlier BASIC versions.
Programming has changed a lot over the years. Because of this, and because there
have been many versions of Visual Basic, there are a number of areas of redundant or
obsolete syntax in VB6. Visual Basic .NET deals with many of these issues by cleaning
up the syntax.
This section will deal with the changes to Visual Basic that are not related to objects
and classes. Those changes will be covered in the next chapter. Also, the list of
changes in this chapter is not intended to be exhaustive. It contains what we think are
the most important changes you need to know about.

Data Type Changes

Some of the most important changes to understand are changes to data types.
Fortunately, these changes are not huge and are pretty easy to absorb.

As we mentioned, data type changes are necessary because Visual Basic .NET must
work within the .NET Framework. In .NET, there is a standard set of data types that all
.NET-compliant languages must support. You can check the documentation for a
complete list of data types supported, but I will give a summary of the changes from
VB6 data types.

Integer Types
The most visible changes concern types that support signed whole numbers, which are
often called integer types. Table 2.1 summarizes the changes.

Table 2.1: Changes in Integer Data Types from VB6 to Visual Basic .NET

OLD
(VB6)
TYPE

NEW
TYPE

REFERS
TO .NET
TYPE
OF SIZE RANGE

Integer Short Intl6 16
bits

_32,768 to 32,767

Long Integer Int32 32
bits

_2,147,483,648 to
2,147,483,647

(not
availa
ble)

Long Int64 64
bits

_9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

Besides getting used to typing in different types when you code, the biggest problem
that these changes cause is that they can break calls to routines in DLLs or the
Windows API that are expecting certain lengths. If you are using the Upgrade wizard to
transfer code into Visual Basic .NET, it will fix these changes for you (along with a lot of
others), but code that is cut and pasted needs to have these data types adjusted
manually.

 44

Note that for integer types, there is a distinction between what Visual Basic calls the
type and what .NET calls the type. This is represented by the two columns in the table
with headings New Visual Basic .NET type and Refers to .NET type of. This distinction
is normally not important, but there are a few instances in which it is. We will see one
example in Chapter 8, covering data access, in which setting the data type for a data
column requires using the .NET name instead of the Visual Basic .NET name.

Even though Short is only 16 bits and Integer is 32 bits, the Integer type is actually
slightly more efficient in this era of 32-bit processors and operating systems. The only
advantage of Short is to save memory.

Strings

The String data type in Visual Basic .NET is used almost exactly the same as the String
data type in VB6. Strings are variable length and are concatenated with the ampersand,
for example. However, the string is handled a bit differently internally, and you need to
be aware of the changes.
First, all strings are Unicode by default, so you don't do anything special to get Unicode
support. But the major difference is that when a string is changed, the changed version
is always copied into a new String type. That is, strings are not manipulated in place.
Even minor operations on the string require memory copies of the entire string.

This has a significant impact on performance. Many string operations that performed
quite acceptably in VB6 may be too slow in Visual Basic .NET. The fix for this is to use
what's known as a StringBuilder class. We won't go into the details here, but you should
be aware of the need for using StringBuilder when doing intense string manipulation.

Variant Is Now Object

The Variant data type does not exist in Visual Basic .NET because it is not needed. In
.NET, everything, including data types such as Integers and String, are descended from
a generic Object type. Thus the Object type can handle all of the functions of the old
Variant type and offers even more flexibility.
To start out, you can just use the Object type where you would have used the Variant
type in VB6 and not worry about the nuances. The next chapter will further discuss
object-related changes in Visual Basic .NET, and we will take up the Object type in a bit
more detail.

Currency Is Now Decimal

The Currency type in Visual Basic .NET is also no longer available. It should be
replaced in most circumstances with the Decimal data type (which is 96 bits, enough for
financial calculations). The new 64-bit Long may also be useful in some logic doing
currency manipulations because it is not subject to the size limitations of the old 32-bit
Long.

The Decimal data type in Visual Basic .NET works a bit differently from the Decimal
type in VB6. In VB6, Decimal was actually a subtype of Variant; that is, you couldn't
declare a type to be Decimal. Instead, it was necessary to declare it as Variant and
then set the subtype within Variant to Decimal. However, in Visual Basic. NET a
variable can be declared as Decimal because that is one of the standard data types.

As in VB6, the Format function can be used to format a currency value for output.

 45

Dates

The Date type has some slight differences in Visual Basic .NET. Internally, it is no
longer stored in a Double type. Instead, Date is a base type in .NET, and is stored in an
8-bit integer type. There are functions (ToDouble and FromADate) to convert back and
forth.

Character Type and Character Arrays

Another new data type called Char is available for storage of a single character. It is
really 2 bytes long because it holds Unicode character values. Char was included as a
base type in .NET because C-oriented languages use it heavily in the form of arrays of
characters (which they often use in place of strings). You don't necessarily have to use
the Char type much because variable-length strings are as good or better than
character arrays in most circumstances. But there are some design scenarios in which
character arrays offer better access or performance, so you should be aware of their
availability.

User-Defined Types Changed to Structures

In Visual Basic 6.0, a user-defined type (often abbreviated as a UDT) is a special data
structure that is defined with the Type ... End Type construct. Such a type is publicly
available, and an instance of a UDT has all of its elements (members) available. Here's
an example of a UDT in VB6:
Type Customer
 CustID As Integer
 CustPhone As String
 CustStatus As Boolean
End Type

The closest equivalent to a UDT in Visual Basic .NET is a structure. Visual Basic .NET
has no Type statement. Instead, a structure is declared using the Structure ... End
Structure syntax.

In a major difference from VB6, every member of a structure must be declared as one
of the following: Dim, Public, Protected, Friend, Protected Friend, or Private. Dim and
Public both indicate public access, and the others give various restrictions on access.
Suppose we would like to create a structure that is equivalent to the UDT in the
previous example. Such an equivalent, with the necessary declaration modifiers, might
look like this:
Structure Customer
 Public CustID As Integer ' Must declare access, _
 even if Public.
 Dim CustPhone As String ' Still defaults to Public
access.
 Private CustStatus As Boolean ' Can be Private inside
Structure.
End Structure

In this case we are making CustStatus private to the Structure. You might wonder what
good that does. In a VB6 UDT, a private element would be completely pointless
because nothing could get to it. But structures are more flexible than UDTs. For

 46

example, structures can expose properties, events, and methods. The code for these
elements could refer to one of the private elements such as the CustStatus element.
There is an example of such a structure in Chapter 3.

The syntax for accessing a structure is object syntax and is very similar to the syntax
for accessing user-defined types in VB6 and earlier.

Fixed-Length Strings

Another data type not supported in .NET is fixed-length strings. It does not have a
replacement that is a base type in .NET. However, there is a compatibility class that
looks and acts like a fixed-length string.

You have to change your code a bit to use it, however. Instead of declaring a fixed-
length string like this:
Dim sMyFixedLengthString As String*20

you would have to declare it as:
Dim sMyFixedLengthString As New VB6.FixedLengthString(20)

You also would need to vary your syntax to put strings into one of these objects if you
are using strict type checking (with Option Strict set to On). We discuss strict type
checking and Option Strict in the next chapter. Unfortunately, this replacement does not
work for all cases. Fixed-length strings are often used in two scenarios in which the
compatibility object fails to offer a solution:

§ Fixed-length strings in user-defined types to simulate fixed length
records

§ Fixed length strings as array arguments called to the Win32 API

In the first scenario, the problem is that structures (the replacement for UDTs in Visual
Basic .NET, discussed previously) can only take base types as subelements. Because
there is no base type for fixed-length strings, they cannot be used. The work-around is
to use character arrays (from the Char type discussed previously) or use variable-
length strings and include logic to check and adjust the length to a certain size.

The API situation is a bit trickier, and we won't get into it in this book. But you'll find that
you won't need to worry about that very much because there are far fewer situations in
Visual Basic .NET where calls to the API are necessary. In most cases, the .NET
Framework classes furnish access to API functionality without having to go directly to
the API.

Variable Declaration Changes

Visual Basic has always had syntax for declaring variables that was a little quirky
compared to other languages. In .NET, Visual Basic is being brought more into line with
the way other languages declare variables. For example, consider the following variable
declaration line:
Dim A, B As Integer

This syntax is valid in both VB6 and Visual Basic .NET, but it has different results. In
VB6, variable A becomes a Variant, and B is an Integer. However, in Visual Basic
.NET, both A and B are initialized as Integer. This is more consistent with the way other
languages handle variable declaration.

 47

Perhaps the biggest change to variable declaration is the ability to set initial values of
declared variables. Here's some sample syntax:
Public strCompany As String = "ABC Company"
Dim intHoursAvailable As Integer = 10
Dim intMinutesAvailable As Integer = intHoursAvailable * 60

For initializing to constant values, the preceding examples show that you can just put =
{constant value} after the regular declaration. For initializing to calculated values, any
elements used in the calculation must have been declared and initialized to their own
values. So intMinutesAvailable can be initialized to an expression that contains the
previously declared intHoursAvailable.

Changes to Arrays

There are some minor differences in declaring and using arrays from what you are used
to in Visual Basic .NET.

Option Base Gone

In VB6, arrays can be set to start with index 0 or index 1; 0 is the default. The statement
Option Base 1 sets arrays to begin at element 1.

In Visual Basic .NET, the Option Base statement is not supported. Arrays must begin at
element 0. In VB6, you could declare the bounds for an array like this:
Dim nNumbers(3 To 12) As Integer

This syntax is not available in Visual Basic .NET. All arrays must begin at element 0.

Fixed Number of Dimensions

In VB6, a Redim statement could actually change the number of dimensions of an array
(sometimes called the rank of the array). In Visual Basic .NET, no such capability is
available. The number of dimensions must be specified when an array is declared, and
cannot be changed.

Initializing Array Values

Just as you can place initial values in individual variables (covered above), you can also
place initial values in arrays. The values are in a list enclosed by braces. Here's an
example:
Dim nNumbers() As Integer = {3, 4, 5, 6}

Note that you cannot specify the size of an array declared this way. The compiler
figures out the size from the list of elements you include. In the preceding case, the
array will be four elements—nNumbers(0), nNumbers(1), nNumbers(2), and
nNumbers(3).

A similar example using strings looks like this:
Dim s() As String = {"John", "Paul", "Jones"}

In this case, s(0) is initialized to "John", s(1) to "Paul", and s(2) to "Jones".

 48

Redim Cannot Be Used as a Declaration

In VB6, you could initially declare an array with ReDim instead of Dim. That's not
possible in Visual Basic .NET. You can declare an array with no size and then give it a
size later, like this:
Dim t() As Integer
ReDim t(5)
t(5) = 7

But you can't make that initial declaration in the first line of the example with ReDim, the
way you could in VB6. (In this case, the rank of the array is assumed to be 1.)

Changes from Early Betas

If you saw or read about early betas of Visual Basic .NET, you might have heard that
arrays were declared differently in Visual Basic .NET, and that they did not have the
topmost element that you were accustomed to in VB6 and earlier. This was true in
those early betas, but it is no longer true. If you didn't hear anything about that, you can
just ignore this paragraph.

New Arithmetic Statements

For more concise syntax, Visual Basic .NET offers several new operators for functions
like incrementing and decrementing a variable. Here are examples of the ones you are
likely to use most often. For these examples, assume that the variable iIndex is an
Integer, and sName is a String.

§ iIndex += 1 This statement increases the value of iIndex by 1.

§ iIndex -= 5 This statement decreases the value of iIndex by 5.

§ iIndex *= 2 This statement doubles the value of iIndex.

§ sName &= ", Jr." This statement appends the string ", Jr." to the end of
the string variable sName.

Changes in the Way Variables Are Scoped

In VB6, a variable can be declared anywhere inside a procedure, and it is then
available for access anywhere else in that procedure. That is, a variable declared inside
a procedure is said to have procedure scope.

If the variable is declared inside a code block such as a For loop, a While loop, or an If
block, the variable is still accessible in the rest of the procedure outside the block.
Here's an example in VB6:
Dim bContinue As Boolean
bContinue = True
While bContinue
 Dim sMessage As String
 sMessage = sMessage & "."
 If Len(sMessage) > 100 Then
 bContinue = False
 End If
Wend

 49

MsgBox sMessage

This will work. The MsgBox will display a string with 101 periods in it when the loop is
finished, because the variable sMessage is available outside the loop, even though it
was declared inside the loop.

Scoping rules are different in Visual Basic .NET. A variable declared inside a code
block is only available inside that block. That is, it has block scope. The preceding VB6
example would not work in Visual Basic .NET and would need to change to something
like this:
Dim bContinue As Boolean
bContinue = True
Dim sMessage As String
While bContinue
 sMessage = sMessage & "."
 If Len(sMessage) > 100 Then
 bContinue = False
 End If
End While
MsgBox sMessage

Block scope works a bit differently from procedure scope. If a variable is declared inside
a block, it does not lose its value when the block is exited. The value is still there in
case the block is reentered. Even though the value is not lost, the variable cannot be
referenced from outside the block.

Miscellaneous Changes

There are number of minor syntactical changes you should know about that didn't fit in
any of the other categories. This section covers these miscellaneous changes.

Changes in Using Parentheses

There are a number of places in VB6 where parentheses are optional, or even not
allowed, that require parentheses in Visual Basic .NET. For example, if a subroutine is
called without the Call keyword in front of it in VB6, parentheses are not used around
the argument list for the subroutine. However, all subroutine calls in Visual Basic .NET
require parentheses around the argument lists.

Similarly, some built-in functions in VB6, such as the Date function, did not take any
parentheses. But in Visual Basic .NET, all function calls must be followed by
parentheses, even for an empty argument list.

To illustrate, here's some VB6 code that will need to be changed in Visual Basic .NET:
MsgBox "Hello, World"
Dim sDate As String
sDate = Date

These will not work in the new Visual Basic because the compiler now requires the
developer to always include parentheses for subroutine and function calls. The
equivalent working versions of these examples in Visual Basic .NET are:
MsgBox ("Hello, World")

 50

Dim sDate As String
sDate = Date()

This is not as big an adjustment for you as a developer as you might think, however.
The Visual Basic .NET editor is very smart about parentheses. If you leave them off and
type in the VB6 code example, the editor will actually insert the appropriate
parentheses for you as soon as you leave the line.

Parameters Are ByVal by Default

In VB6, arguments in an argument list that are not declared to be either ByVal or ByRef
are ByRef by default. This means that arguments without a ByVal can be changed by
the called function or subroutine, and the changes will affect the variables in the calling
routine. (That's why it's good practice to always include ByRef or ByVal explicitly.)

The default changes in Visual Basic .NET and becomes ByVal instead. This is arguably
a better default to use, but if you cut and paste code from Visual Basic 6 that does not
explicitly have ByRef or ByVal in its argument lists, you might get some unexpected
behavior in Visual Basic .NET. The changes that were propagated back into the calling
routine in VB6 will not be propagated back in Visual Basic .NET.

Optional Parameters Must Have Default Value
Optional parameters are still supported in Visual Basic .NET, but they now require a
default value in the argument list where the parameters are declared. The Is Missing
construct is no longer available to see if a parameter is missing and supply a default
value. Note, however, that the availability of overloaded functions (discussed in the next
chapter) make the use of optional parameters in argument lists less common.

Keywords Moved to Framework Class Methods and Properties
The Visual Basic language has always had a lot of keywords. Such operations as
squaring a number, for example, used a language keyword (Sqr). The design
philosophy is different in .NET. To make such functionality available to all languages,
common operations such as squaring a number are encapsulated in classes in the
.NET Framework. To use the operation, you thus need to know which class to use and
the namespace in which that class is defined. (We'll take up namespaces in detail in
Chapter 3 .)
Table 2.2 lists some of the VB6 keywords that have been replaced, with their new name
and location.

Table 2.2: VB6 Keywords Replaced by Elements of the .NET Framework Classes

KEYWORD LOCATION IN VISUAL BASIC
.NET (NAMESPACE)

METHOD /
PROPERT
Y

Circle System.Drawing.Graphics DrawEllipse

Line System.Drawing.Graphics DrawLine

Atn System.Math Atan

Sgn System.Math Sign

Sqr System.Math Sqrt

Rnd System.Random Next

Lset System.String PadRight

 51

Table 2.2: VB6 Keywords Replaced by Elements of the .NET Framework Classes
KEYWORD LOCATION IN VISUAL BASIC

.NET (NAMESPACE)
METHOD /
PROPERT
Y

Rset System.String PadLeft

DoEvents System.Windows.Forms.Application DoEvents

VarType System.Object GetType
(returns an
object of
class Type,
which has
properties
to get
information)

Date System.DateTime Today

Time System.DateTime TimeOfDay

Date$ {built-in availability in VB.NET} DateString

Time$ {built-in availability in VB.NET} TimeString

The list in the table is not exhaustive. If you notice that a keyword you are accustomed
to using in VB6 is not available as a keyword in Visual Basic .NET, it's likely that there
is a replacement for it. So don't just assume you can't do it. Check your documentation
for alternatives.

In some cases, you may not notice the difference. If appropriate namespaces have
been declared, you can use such members as Now and Timer by just referring to them,
and the code looks like you're using keywords even though they are actually members
of a class.

Retired and Obsolete Keywords

The process of cleaning up the syntax of Visual Basic resulted in a number of older
keywords that are no longer needed. A few newer ones are also replaced to be more
consistent with the way .NET does things. Here are the main keywords that are no
longer available (not counting the ones such as Option Base that we've already
covered in this chapter):

§ Gosub
§ On x GoTo ... (often referred to as computed GoTo's)
§ Let (as in Let i = i + 1)
§ VarPtr, ObjPtr, StrPtr
§ DefBool, DefByte, DefInt, DefLng, DefCur, DefSng, DefDbl, DefDec,

DefDate, DefStr, DefObj, DefVar (all of which set aside first letters of
variables to declare their type)

§ Wend (changed to End While)

Also note that because Gosub is no longer used, the keyword Return is available for a
new use. In VB6, you returned the value of a function or property like this:
Public Function DoubledNumber(i As Integer) As Integer
 DoubledNumber = i * 2
End Function

 52

This still works, but you have another alternative. You can use the Return keyword to
return the value, like this:
Public Function DoubledNumber(i As Integer) As Integer
 Return i * 2
End Function

This is somewhat preferred because if you change the name of the function, you don't
have to change that line of code to take the new function name into account.

The Empty and Null keywords are no longer used in Visual Basic .NET. Both can be
replaced in code with the Nothing keyword. Note that Null is still a reserved word in
Visual Basic .NET, even though it doesn't do anything and will generate a syntax error if
you try to use it. This helps avoid confusion with its former meanings.

Error-Handling Changes

Most of us hate to write error-handling code in VB6. It's messy coding, mostly because
the error-handling syntax in VB6 is derived from BASIC languages from the 1980s (or
earlier).

A Quick Overview of Error Handling in Visual Basic 6

In VB6, a typical routine with error-handling code looks like this:
Private Function OpenFile(sFileName As String) As Boolean

On Error GoTo ErrHandler:
Open sFileName For Random As #1
OpenFile = True
Exit Sub

ErrHandler:
Select Case Err.Number
 Case 53 ' File not found
 MsgBox "File not found"
 Case Else
 MsgBox "Other error"
End Select
OpenFile = False

End Function

The top of the routine points to a section of code called an error handler, which is
usually placed at the bottom of the routine. The error handler gets control as soon as an
error is detected in the routine, and it looks at the error number to see what to do. The
error number is available as a property of the Err object, which is a globally available
object that holds error information in VB6.

 53

If the error handler can take care of the error without breaking execution, it can resume
execution with the line of code that generated the error (Resume) or the one after that
(Resume Next) or at a particular location (Resume {LineLabel}).

This structure becomes more complex if the error handling needs to vary in the routine.
Multiple On Error GoTo... statements must be used to send errors to various error
handlers, like this:
Private Function OpenFile(sFileName As String) As Boolean

On Error GoTo ErrHandler1
' Do calculations here
Dim i As Integer
i = Len(sFileName)
Dim j As Integer
j = 100 \ i

On Error GoTo ErrHandler2
Open sFileName For Random As #1
OpenFile = True
Exit Function

ErrHandler1:
Select Case Err.Number
 Case 6 ' Overflow
 MsgBox "Overflow"
 Case Else
 MsgBox "Other error"
End Select
OpenFile = False
Exit Function

ErrHandler2:
Select Case Err.Number
 Case 53 ' File not found
 MsgBox "File not found"
 Case Else
 MsgBox "Other error"
End Select
OpenFile = False

End Function

 54

With this setup, it is easy to get confused about what should happen under various
conditions. It's also necessary to remember to change the error-handling pointer as
necessary, or errors will be incorrectly processed.

The New Way in .NET—Structured Exception Handling

Visual Basic .NET still supports these old error-handling techniques, but that's really for
compatibility with old code. There's a much better way to manage errors in Visual Basic
.NET called structured exception handling.

The first difference to understand is that structured exception handling does not use
error numbers and the Err object. In .NET, errors in code cause an object to be
generated. The object is called an exception, and it loosely corresponds to the Err
object in VB6.
However, where there is only one global Err object in VB6, there are many types of
exception objects in Visual Basic .NET. For example, if a divide-by-zero is done in
code, an OverflowException is generated. There are several dozen types of exception
classes in Visual Basic .NET, and in addition to using the ones that are available in the
.NET Framework, you can inherit from a class called ApplicationException and then
create your own exception classes (see the next chapter for a discussion of
inheritance).

Having many types of exceptions in Visual Basic .NET enables different types of errors
to be trapped with different error handlers. This is a major advance over VB6. The
syntax to do that is discussed in the following section.

Structured Exception-Handling Keywords in Visual Basic .NET

Structured exception handling depends on several new keywords in Visual Basic .NET.
They are:

§ Try. Begin a section of code in which an error might occur. This section of
code is often called a Try block.

§ Catch. Begin an error handler. Catch comes after a Try block, and it
receives control when an error is encountered in the Try block. A Try
structure can have more than one Catch block, with each one catching a
different type of exception.

§ Finally. Contains code that runs when the Try block finishes normally, or if
the Catch block receives control and then finishes. That is, the code in the
Finally block always runs, regardless of whether an error has been
detected.

§ Throw. Generates an error. This is similar to Err.Raise in VB6. It's usually
done in a Catch block when the error should be kicked back to a calling
routine. Note that a Throw statement, like an Err.Raise, ends execution of
the error handler; that is, there is no more code in the Catch block after the
Throw statement is executed. However, Throw does not prevent code in
the Finally block from running. That code still runs before the error is kicked
back to the calling routine.

Some typical simple structured exception-handling code in Visual Basic .NET looks like
this:
Private Sub GetAverage(iItems As Integer, iTotal as Integer) as
Single
 ' Code that might throw an exception is wrapped in a Try
block

 55

 Try

 Dim sngAverage As Single

 ' This will cause an exception to be thrown if iItems =
0
 sngAverage = CSng(iTotal / iItems)

 ' This only executes if the line above generated no
error
 MessageBox.Show("Calculation successful")
 Return sngAverage

 Catch exc As Exception
 ' If the calculation failed, we get here
 MessageBox.Show("Calculation unsuccessful - exception
caught")
 Return 0
 End Try

End Sub

In this code, we are trapping all the errors with a single generic exception type, and we
don't have any Finally logic. The following is a more complex example:
Private Sub GetAverage(iItems As Integer, iTotal as Integer) as
Single
 ' Code that might throw an exception is wrapped in a Try
block
 Try

 Dim sngAverage As Single

 ' This will cause an exception to be thrown
 sngAverage = CSng(iTotal / iItems)

 ' This only executes if the line above generated no
error
 MessageBox.Show("Calculation successful")
 Return sngAverage

 Catch excOverflow As OverflowException
 ' We'll get here with an OverflowException in the Try
block

 56

 MessageBox.Show("Calculation generated Overflow
Exception")
 Return 0

 Catch exc As Exception
 ' We'll get here when any exception is thrown and not
caught in
 ' a previous Catch block
 MessageBox.Show("Calculation failed - generic exception
caught")
 Return 0
 Finally
 ' Code in the Finally block will always run.
 MessageBox.Show("We always get here, with or without an
error")
 End Try
End Sub

In this code, there are multiple Catch blocks for different types of exceptions. If an
exception is generated, .NET will go down the Catch blocks looking for a matching
exception type. That means the Catch blocks should go from specific types first to more
generic types later.
This type of code structure is especially relevant for data-handling code, and we'll see
more of it in Chapter 8. A Catch block for data errors can be written with completely
different exception handling than other types of exception.

You'll understand more about structured exception handling if you see it in action. To
do that, you can type in the code in the previous listing (or get it from the Web site) and
run it. Set a breakpoint early in the code and then step through the code line by line.

It's also educational to place the code in a subroutine or function, insert a Throw into
the Catch block, and then call that routine from somewhere else. This gives you a
better idea about how Throw works.

Here's how the code would change with the Throw statement added:
Private Sub GetAverage(iItems As Integer, iTotal as Integer) as
Single
 ' Code that might throw an exception is wrapped in a Try
block
 Try

 Dim sngAverage As Single

 ' This will cause an exception to be thrown
 sngAverage = CSng(iTotal / iItems)

 ' This only executes if the line above generated no
error

 57

 MessageBox.Show("Calculation successful")
 Return sngAverage

 Catch excOverflow As OverflowException
 ' We'll get here with an OverflowException in the Try
block
 MessageBox.Show("Calculation generated Overflow
Exception")
 Throw excOverflow
 MsgBox("More logic after the thrown - never executed")

 Catch exc As Exception
 ' We'll get here when any exception is thrown and not
caught in
 ' a previous Catch block
 MessageBox.Show("Calculation failed - generic exception
caught")
 Throw exc
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block
 MessageBox.Show("We always get here, with or without an
error")
 End Try
End Sub

Here is some typical code to call the preceding subroutine. You can place this code in a
button's click event to test it out.
Try
 Dim sngAvg As Single
 sngAvg = GetAverage(0, 100)
Catch exc As Exception
 MsgBox("Back in the click event after an error")
Finally
 MsgBox("Finally block in click event")
End Try

This type of error handling offers more flexibility with cleaner logic than the On Error
constructs in VB6. You should definitely invest enough time to understand structured
exception handling before beginning serious development in Visual Basic .NET.

Wrapping Up

There are a lot of changes in Visual Basic .NET from previous versions. However, as
this chapter has shown, most of them don't take a lot of effort to absorb. And the

 58

changes are well worth it to integrate Visual Basic into the .NET Framework, thus giving
Visual Basic .NET the power to do Web development in a way that is far beyond
anything available in VB6.
We are not quite finished with the changes in Visual Basic .NET, however. The next
chapter discusses all the changes related to object technologies, including such
subjects as inheritance, function overloading, and changes in object syntax.

 59

Chapter 3: Object-Oriented Changes in Visual Basic
.NET

Overview

Change is the only constant. Hanging on is the only sin.
Denise McCluggage, U.S. race car driver
In the previous chapter, we discussed many changes in the Visual Basic language and
development environment when moving from VB6 to Visual Basic .NET. But there is
another group of related changes that require quite a bit of discussion. These are the
changes related to object orientation. All of those changes are collected and discussed
in this chapter.
The changes discussed in the previous chapter did not, for the most part, introduce new
programming concepts. Even something as new as structured exception handling can
be compared to previous capabilities of VB6. However, some of the concepts in this
chapter have no parallel in earlier versions of Visual Basic. It will be necessary to
explain and discuss some highly abstract concepts.

It is important to understand that this chapter is not intended to serve as a beginning
tutorial on object-oriented concepts. There are a number of books that do that, and it is
a transition that takes more than reading a single chapter and doing a few examples.
So the first thing we need to do is to find out if you, as an individual reader, are ready to
tackle this chapter.

Type of Developers

Both Visual Basic and Active Server Pages have always been object based. Forms and
controls could always be considered objects, all the way back to Visual Basic 1.0. Later
versions of Visual Basic and Active Server Pages added a number of new objects, such
as data access objects and the Application, Response, and Session objects in ASP.
Such objects have properties, methods, and events, and learning to manipulate these
programming elements has always been essential to success as a Visual Basic or ASP
developer.

However, with version Visual Basic 4.0, new object capabilities were added to Visual
Basic. It became possible to create new objects in Visual Basic, using classes. These
classes could have properties, methods, and events defined for them by the Visual
Basic developer. In addition, forms could also, for the first time, have new properties
and methods added by the developer.

With VBScript 5.0 in Active Server Pages, a subset of these same object-oriented
capabilities became available. Classes could be written with properties and methods,
although events were not supported. Lack of compilation to separate modules also
limited the ability to share encapsulated logic in VBScript.

These changes moved Visual Basic and VBScript from being object-based languages
to being object-oriented ones. Although they did not have all the capabilities of an
object-oriented language (inheritance being the biggest omission), it was possible to do
some semblance of object-oriented development with Visual Basic and, to a lesser
extent, with VBScript.

 60

Some developers embraced these new techniques. Others did not. That split persists
down to the present. Visual Basic and ASP developers can be roughly divided into
those developers who learned object-oriented techniques and those that didn't.

Which Type Are You?

If your main development experience has been in Active Server Pages, using VBScript,
you probably have not learned very much about object-oriented concepts. The changes
in VBScript to support creation of classes were done fairly recently, and implementing
classes in a script-based language is less than ideal. If you fall into this category, you
may need additional grounding in object-oriented concepts for this chapter to be useful.

If you are a Visual Basic developer, here's a quick way to estimate how far you are
along the object-oriented path. If you have designed and written some class modules
(.CLS files) in a production project, you're in pretty good shape. You have had to learn
the basis of properties, methods, and events. If you've never written a class file
yourself, but only used classes created by other developers, you are probably more like
the ASP developers, and you also need additional exposure to object-oriented concepts
before getting the most from this chapter.
At press time there were no good options for an introduction to object-oriented concepts
in Visual Basic .NET. However, a good conceptual introduction that you might want to
check out is The Object Primer by Scott Ambler (Cambridge University Press, 2001). It
is not specific to a particular language or platform and presents object concepts from
the ground up.

For those who are ready to plunge ahead with the object-oriented changes in Visual
Basic .NET, let's get started.

Namespaces

In working with classes, one of the first problems you face is how to identify them. This
is not much of a problem for classes you create in your own projects—you just refer to
the class name. But as classes are distributed into libraries, this is not good enough. It
becomes all too easy for class names to overlap. For example, you might have a
Customer class in two different libraries. How can you unambiguously refer to the one
you want?
In .NET (and in some other object-oriented environments) this problem is addressed
with the concept of namespaces. Namespaces were discussed briefly in Chapter 1.
Now we are ready to explore the concept in more depth.

A namespace is quite similar in concept to a directory or subdirectory in a file system.
With a file system, it is possible to have files with the same name, but you can
unambiguously identify the one you want by giving a full path name in a hierarchical set
of directories. Likewise, namespaces form a hierarchical structure that has locations in
it for groups of related classes. You can unambiguously identify the class you want by
specifying a path for it in the namespace hierarchy.

For example, .NET has a namespace called System. Within this namespace are many
additional namespaces. Two of those namespaces are called Web and Windows. The
one identified as Web is referred to in a .NET program as:
System.Web

And the one for Windows is referred to as:
Systerm.Windows

 61

The System.Web namespace has a namespace within it called UI, and there is a class
in that namespace called Control. This class is related to server controls that go on
Web pages. To refer to this class unambiguously in code, you need the reference:
System.Web.UI.Control

The System.Windows namespace in turn has a namespace called Forms, and within
that namespace is a class called Control. This class is related to controls that appear
on Windows Forms. The class is referred to in code as:
System.Windows.Forms.Control

So we have two classes both named Control that serve different purposes. That's okay
because they reside in different namespaces. The namespace hierarchy plus the actual
class name gives us an unambiguous reference.

Using and Defining Namespaces
You'll spend a lot of time getting to know the various namespaces in the .NET
Framework. The classes in them provide you with a ton of prewritten functionality. The
base classes were discussed briefly in Chapter 1, and you'll see references to various
base classes for different purposes throughout the book.

In addition to using the predefined namespaces (and classes in them), you'll also need
to define your own namespaces. When you start up a project, it will have its own
namespace defined for it by default, and that namespace will only contain classes in
that project. However, you can have multiple projects share a namespace, or you can
have a single project implement more than one namespace.

To do this, you need the Namespace keyword. Classes are defined within a
namespace with the following syntax:
Namespace MyNamespace
 Class MySimpleClass
 ' logic to implement MySimpleClass
 End Class

 Class MyOtherClass
 'logic to implement MyOtherClass
 End Class
End Namespace

Now the classes are referenced in code with the identifiers:
MyNamespace.MySimpleClass
MyNamespace.MyOtherClass

You can also nest namespaces. Suppose we wanted MySimpleClass and
MyOtherClass to be in the same root namespace (MyNameSpace) but in different
subnamespaces within MyNamespace. Then the syntax would look like this:
Namespace MyNamespace
 Namespace MyFirstSubNamespace
 Class MySimpleClass
 ' logic to implement MySimpleClass
 End Class

 62

 End Namespace
 Namespace MySecondSubNamespace
 Class MyOtherClass
 'logic to implement MyOtherClass
 End Class
 End Namespace
End Namespace

In this case, the classes would be referred to in code with:
MyNamespace.MyFirstSubNamespace.MySimpleClass
MyNamespace.MySecondSubNamespace.MyOtherClass

Now suppose we wanted to split up MySimpleClass and MyOtherClass into different
modules. We could use syntax like this in the first module:
Namespace MyNamespace.MyFirstSubNamespace
 Class MySimpleClass
 ' logic to implement MySimpleClass
 End Class
End Namespace

And the second module would look like this:
Namespace MyNamespace.MySecondSubNamespace
 Class MyOtherClass
 ' logic to implement MyOtherClass
 End Class
End Namespace

The references to the classes would still look the same as before:
MyNamespace.MyFirstSubNamespace.MySimpleClass
MyNamespace.MySecondSubNamespace.MyOtherClass

Using a Namespace in Your Program

In the VB6 world, you were familiar with the idea of creating references to class libraries
in DLL and OCX files. Before you could use a class, you had to go to the Add
Reference dialog box and point to the class.

A very similar process is used in Visual Basic .NET. Suppose the set of classes in
MyNamespace is in a DLL called MyNamespace.DLL. Further, MyNamespace.DLL is in
a directory named C:\MyVBNETModules. Then to use classes from MyNamespace in
your program, you'll need to add a reference to the DLL.
To do that, access the Project, Add Reference menu option. You'll get a dialog box that
looks like Figure 3.1.

 63

Figure 3.1: Adding a reference to a .NET DLL.

The libraries that are already listed are those that .NET knows about because they are
globally available. All the .NET Framework base classes, for example, are somewhere
in this list. But your classes are not available by default unless you have deployed them
a certain way (deployment is discussed in Chapter 9).

The Browse button can be used to point to your own DLLs. When you press it, you get
a typical File Open dialog box, and you can point at your DLL. At that point, the
component will show up in the table at the bottom of the dialog box shown in the figure,
and when you press OK, the classes in the component can be referred to in your
project (using their full namespace path).

Shortening Namespace and Class References

Although the detailed way to reference classes, using an entire namespace path, is
unambiguous, it can get tedious to keep typing in long namespace references in code.
To make code more concise, you can refer to a namespace at the beginning of a
module with an Imports statement. Then the classes in the namespace become
available in code without typing in the entire namespace path. You can use a class by
just typing the class name.

Here's an example. Let's assume we have a DLL that contains two classes—
MyNamespace.MyFirstSubNamespace.MySimpleClass and MyNamespace.
MySecondSubNamespace.MyOtherClass (as in the example we looked at previously).
After referring to MyNamespace.DLL as described previously, you could immediately
refer to MySimpleClass in a declaration statement like this:

 64

Dim x As MyNamespace.MyFirstSubNamespace.MySimpleClass

But this is fairly clumsy. If we are using MySimpleClass a lot, we could put the following
line at the beginning of our module:
Imports MyNamespace.MyFirstSubNamespace

Now the preceding line becomes:
Dim x As MySimpleClass

This is a lot cleaner and easier to read and is generally preferred.

There is only one problem. If another namespace that your program knows about
already has a class named MySimpleClass, there is ambiguity. Which MySimpleClass
does the previous line mean in that case?

If there is such ambiguity, the solution is to use the full namespace path to refer to the
class in code. That is, on class names that exist in more than one imported namespace,
you must use the full namespace path for that particular class (but not necessarily for
other classes in the namespace that are not ambiguous).

If you do have the ambiguity problem, you can still abbreviate the namespace to make
it easier to refer to. If you change your Imports statement to look like this:
Imports MyNS = MyNamespace.MyFirstSubNamespace

you can declare your class with this line:
Dim x As MyNS.MySimpleClass

This works even if there is a class named MySimpleClass in some other available
namespace.

If there are several ways to unambiguously refer to a class in code, it does not matter
which of them you use. The code will behave exactly the same. For example, if we are
using the MyNS alias, the following two lines have exactly the same effect in code:
Dim x As MyNS.MySimpleClass
Dim x As MyNamespace.MyFirstSubNamespace.MySimpleClass

Some Naming Conventions

Microsoft has two namespace root names: System and Microsoft. The System
namespace is for the basic .NET Framework classes. These classes will probably
migrate to other .NET platforms and are associated with .NET, not with Windows or
other Microsoft products.

The Microsoft namespace is for classes related to Microsoft products that work with
.NET. For example, the special classes that work in Visual Basic to replicate some of
the functionality with VB6 are in this namespace.

It is no accident that this namespace is called Microsoft. If you follow the suggested
naming conventions for .NET, your organization should have its own root namespace,
and it would typically be related to the organization name. All the classes you produce
should be in that root namespace. Keep in mind that you can have as many
subnamespaces as you want, just like you can have as many subdirectories as you
need in a file system.

 65

Such a naming convention keeps the possibility for namespace collisions to a minimum.
If you just called a namespace Data, for example, you might get a library from someone
else at some point that also had a Data namespace. But if your namespace is
ABCCompany.Data, that possibility is eliminated (unless some other company with a
similar name picks the same root namespace).

Object-Related Changes to Visual Basic Syntax

Before we get into the really major changes concerning objects in Visual Basic .NET,
let's go over some of the minor changes in object syntax that are helpful to know.
Understanding these changes will make it easy to explain the big changes later in the
chapter. These changes include:
§ Removal of default properties, unless they are indexed properties
§ No more need to use the Set keyword when dealing with object references
§ A different syntax for property procedures
§ A new function (CType) to cast objects to a particular type
§ Changes in event handler syntax

Let's look at each of these in turn.

Removal of Default Properties

Let's consider a line of code in VB6 or earlier. In this example, assume that strAddress
is a string variable and txtAddress is a text box:
' in VB6, this places the Text property of txtAddress in
strAddress
strAddress = txtAddress

In VB6 and earlier, the text box control has a default property, namely, the text it holds.
The Visual Basic compiler recognizes this and compiles the preceding line as if it were
written:
strAddress = txtAddress.Text

In Visual Basic .NET, such default properties are not available. The .NET Framework
itself does not support marking a property as a default property (unless it has an index,
as I'll explain soon). So that first line of code will no longer work in Visual Basic .NET.
The second form will be required.

This should not have too much of a negative impact on most professional developers
because good coding practices have long recommended against using default
properties. The resulting code is not easy to read and can be misinterpreted. However,
one syntax form that contains a default property is in common use. It is often seen in
working with ADO code, for instance, as in the following example:
' Works In VB6
strAddress = rsMyRecordSet("Address")

This code contains two references to default properties. Some programmers may not
even be aware that this code compiles as if it were written in this long form:
' Works In VB6 and VB.NET
strAddress = rsMyRecordSet.Fields("Address").Value

 66

The Fields collection is the default property of the Recordset object, and the Value
property is the default property of a Field object.

The Value property works just like the Text property of the text box in our previous
example. That means that when changing over to Visual Basic .NET, it is necessary to
insert the Value property to make the code compile. However, the Fields collection is a
different matter. This default property takes an argument, namely, the key to the
collection that is used to retrieve a single element (which is Address in the preceding
example). Visual Basic .NET makes an exception for properties that are indexed in this
fashion. Such default properties can be inferred by the compiler because it notes the
parameter that is included for the default property. So, even in Visual Basic .NET, the
preceding example can be written as:
' Works In VB6 and VB.NET
strAddress = rsMyRecordSet("Address").Value

No More Set

The changes just discussed for default properties allow another change that is definitely
an improvement. In VB4 through VB6 it was necessary to set all object references with
the Set keyword. That is, to set an object reference to a text box, those versions of
Visual Basic require syntax like this:
Set txtID = txtOldID ' VB6 and earlier style

This would make the txtID and txtOldID object variables refer to the same object
instance.

Without the Set, the code means something entirely different. As we discussed
previously, the following code causes the Text property of txtOldID to be assigned to
the Text property of txtID:
txtID = txtOldID ' Means something different in VB6 and VB.NET

The Set keyword was needed in VB6 and earlier to make these two cases (assigning
an object reference and assigning a default property) look different in code. But in
Visual Basic .NET, the default property no longer exists. So the Set becomes
superfluous. The preceding line of code (without the Set) can be used in Visual Basic
.NET, but it sets an object reference.

Property Procedure Changes

Suppose I want to create a property named CustomerID for one of my classes in VB6.
The property needs to be of Integer type. Typical code in VB6 for the property would
look like this:
' Property procedures In VB6 (this code does not work in VB.NET)
Private mintCustomerID as Integer

Public Property Get CustomerID() As Integer
 CustomerID = mintCustomerID
End Property

Public Property Let CustomerID(nNewValue As Integer)
 mintCustomerID = nNewValue

 67

End Property

Most developers would place these two routines together, but VB6 does not require
that. They could be widely separated in the code, and they would still work. Also, one of
them could be left out. If the Get property procedure were left out, the property would
be a write-only property because it could only be set and not read. Likewise, if the Let
procedure were left out, the property would be read only.

A property in VB6 could have up to three separate property procedures (Let, Get, and
Set), although it was only required to use one. The Set versus Let distinction was
needed for the same reason that Set was needed for object references—to eliminate
ambiguity between setting default properties and setting object references.

In Visual Basic .NET, we have a new ballgame. Let property procedures are not
needed because there's no need to differentiate between object references and
common variables. Set and Get procedures are then tied together with some new
syntax, which resembles equivalent syntax in C#. Here's an example for the
CustomerID property:
Private mintCustomerID as Integer

Public Property CustomerID() As Integer

 Get
 Return mintCustomerID
 End Get

 Set (ByVal Value As Integer)
 mintCustomerID = Value
 End Set

End Property

This is cleaner than the equivalent VB6 (and earlier) syntax. It also removes a lot of
pitfalls, such as changing the data type for a Get but forgetting to do so for the
equivalent Let.

With this syntax, you can't make a property read-only by merely leaving out the Set
procedure. Instead, the ReadOnly keyword is used at the beginning of the property
declaration, and then the Set block can be left out. If we made the preceding
CustomerID property read-only, it would look like this:
Private mintCustomerID as Integer

Public ReadOnly Property CustomerID() As Integer

 Get
 Return mintCustomerID
 End Get

 68

End Property

In this case, the module containing the property would be the only code that could
change the property value, by changing the value of mintCustomerID.

There is also a WriteOnly keyword to make a property write-only, in which case the Get
block is left out. The preceding example in write -only form looks like this:
Private mintCustomerID as Integer

Public WriteOnly Property CustomerID() As Integer

 Set (ByVal Value As Integer)
 mintCustomerID = Value
 End Set

End Property

Option Strict

Experienced Visual Basic developers know all about the importance of a directive
called Option Explicit. I think some of them have it tattooed on their arms. It was never
the default up to VB6, but pros knew to turn it on as soon as they installed Visual Basic.

Visual Basic .NET finally makes Option Explicit the default, so you don't have to turn in
on anymore. But a new directive called Option Strict has been created. I think that most
developers will want to become just as fanatical about turning it on as they have been
in the past about Option Explicit.
You can set Option Strict the same way as Option Explicit, by making Option Strict the
first line of code in a module. You can also set it on for all modules in a project in the
project properties dialog box. Right-click on the project in the Solution Explorer and
select Properties. Then select the Build option on the left-hand side of the screen. The
dialog box should look like Figure 3.2 .

 69

Figure 3.2: Setting Object Strict in the project properties dialog box.

Note the setting for Option Strict in the middle of the page.

When Option Strict is turned on, the Visual Basic compiler no longer allows some types
of automatic data type conversions. In particular, any type of implicit conversion that
might result in loss of data or a conflict in object types is disallowed. Here's an example:
' Does not work with Option Strict On
Dim lngX As Long = 100
Dim intY As Integer
intY = lngX

If Option Strict is turned off, this code will compile and run with no errors. However, if
Option Strict is turned on, the code will generate a syntax error in the last line. Because
a Long data type might have a value that is too big to fit in an Integer, the implicit
conversion from Long to Integer is disallowed. (If Option Strict is turned off, and the
Long is too big to fit in an Integer, there will be a runtime error.)

To fix that syntax error, you must explicitly tell the compiler that you really want to make
the conversion. To do that, the CInt function could be used to explicitly convert the Long
to an Integer, so the last line would be changed to:
intY = CInt(lngX)

Conversion functions, such as CInt, and CSng, have been available in previous
versions of Visual Basic, but they are now more important because they are used more
often when Option Strict is turned on.

Option Strict also disallows late binding, so if you must have late binding in your code,
you'll have to turn Option Strict off.

CType Statement
You might be asking yourself why the previous section is in a chapter on object-
oriented changes. The reason is that if Option Strict is set to On, one of its most
importance consequences is to disallow many implicit conversions between object

 70

types when setting object references. The guiding principle is the same as previously: If
an implicit conversion might have a data type problem as runtime, it is disallowed.

Here is an example of code that will work whether Option Strict is set to either Off or
On:
' This code works with Option Strict On or Off
Dim objForm As Object
Dim frmForm As New Form1
objForm = frmForm

Placing a reference to a Form object into an object variable of type Object is always
going to work, so Option Strict has no effect on that syntax. That is, going from a
specific type to a more generic type never has a problem.

Going the other way is a different story. Here's an example:
' This code has a syntax error if Option Strict is On
Dim objForm As Object
objForm = New Form1
Dim frmForm As Form
frmForm = objForm

If you have Option Strict set to On, this code will be marked with a syntax error on the
last line. That conversion is going from a generic type to a more specific type, so it
could theoretically fail. The CType function is available to use in such situations. It
performs an explicit casting to a particular object type. If the last line is changed as
follows, the code will run properly, even with Option Strict set to On.
frmForm = CType(objForm, Form)

As this example shows, to use CType, you must supply the object variable that is
holding the reference to the instance you want to cast and the type to which you want to
cast it. In this case, we are casting to the type Form.

Event Handler Changes

Events in Visual Basic .NET work syntactically very much as they did in VB6. A class
implements an event by declaring the event at the beginning of the class and then
raising the event as appropriate in the class's routines. However, the way events are
handled in the code that instantiates and uses such classes has changed.

At first you might not notice the changes. The way that events are handled looks
superficially the same. If an object has events (because it is declared using the keyword
WithEvents), it appears in the left-hand drop-down list of the code editor. If the object is
highlighted in that list, its events appear in the right-hand drop-down list. VB6
developers are very accustomed to treating controls this way, but the procedure is the
same for any object instantiated from a class with events.

In VB6, an event for a control or class instance had a standard name. It consisted of the
object name, an underscore, and the event name. So the click event for a text box
named txtName would be txtName_Click. This convention is carried forth in Visual
Basic .NET. However, there's a big difference. In VB6, the event could only have that
name. In Visual Basic .NET, such a name is merely the default—an event can have any
name desired.

 71

The difference can be seen when the entire declaration of an event is examined. Here
is the txtName_Click event in VB6:
' VB6 version of the click event
Private Sub txtName_Click()

End Sub

Things are not quite so simple in Visual Basic .NET. Here is the equivalent click event:
' VB.NET version of the click event
Private Sub txtName_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles txtName.Click
End Sub

A few things jump out about this new version. First, the click event has parameters.
This makes it easier to find out more about what's going on in the click event. (You can
examine the parameters on your own. They vary a lot from event to event, so we won't
discuss them in detail here.)

Second, the declaration ends with Handles txtName.Click. That is where the event is
actually hooked into the routine. The name at the beginning (txtName_Click) is just
assigned by the development environment as a convenience. It doesn't have to be that
name; it can be assigned any name you like. As long as the Handles txtName.Click
appears at the end, the event will still get fired when the text box is clicked.

All event routines in Visual Basic .NET must have this assignment at the end to hook
the event to a particular event in a particular class. Just naming an event with the
conventional name does not hook the event in automatically, as it did in VB6.

Delegates

There's actually a lot going on under the covers in the way events are handled using
the preceding syntax. What Visual Basic .NET is really doing is creating an object
called a delegate, which is an intermediary that hooks events in a class to routines in
the calling code.

Delegates can be used for many additional techniques involving events and other parts
of an object interface. For example, they can be used to hook events from multiple
instances of a class into the same event handler. Delegates are a bit advanced for an
introductory chapter such as this. However, you should be aware that Visual Basic
.NET has many more options for handling events than VB6 does and be ready to learn
techniques to handle those options when you need them.

Object-Oriented Enhancements in Visual Basic .NET

Now that we have gotten some of the more prosaic changes out of the way, we are
ready to discuss new functionality. Visual Basic developers have been waiting a long
time for full object-oriented capabilities, and finally with Visual Basic .NET, we get them.

In Visual Basic .NET, the syntax of Visual Basic has changed, and a number of new
keywords have been added. Visual Basic .NET now becomes a true object-oriented
language. For example, there is no syntactical difference between a form module and a
class module in Visual Basic .NET. They both use the same object-based syntax, and
the form is only differentiated by inheriting a form class from the library of base classes.

 72

(We don't cover forms in this book because it is aimed at learning Internet
development, but this is still a good illustration of just how different Visual Basic .NET is
from VB6.)

A Word to the Wise

All tools can be misused. When powerful tools are misused, the consequences can be
significant. Object orientation is a powerful programming tool, and it can definitely be
misused. We will be noting in the following discussion some of the more common ways
object-oriented techniques can be abused. But a couple of general warnings are
appropriate at this point.

At the beginning of the chapter, we discussed the fact that those developers with little
background in object-oriented concepts would have a difficult time assimilating all the
material in this chapter. Let's reiterate that warning. The discussion that follows
presumes that you already know the basics of properties, methods, instantiating an
object, and similar concepts in VB6. The discussion builds on that base because we
can't do an object-oriented tutorial in one chapter.

Also, you should be aware that these object-oriented capabilities, as powerful as they
are, should not be used indiscriminately. To cite an analogy, I have a power drill that I
like a lot. But I don't use it to pound nails. I have a hammer for that. Just because you
gain access to new tools does not mean your old tools are suddenly useless. I've seen
designs where the developer thought every variable had to be in an object and where
object hierarchies six or eight levels deep were constructed. Don't do that. Use these
techniques gradually, and integrate them into your development. That doesn't mean to
be shy about trying them, but don't abandon proven techniques you already know,
either.

Why Is It Considered Object Oriented Now?

Before we can get to the syntax additions and changes that implement the new object
capabilities in Visual Basic .NET, we need to be clear on some basic object concepts.
There are four that are considered key to object orientation:

§ Abstraction
§ Encapsulation
§ Inheritance
§ Polymorphism

Because readers are presumed to have some understanding of object concepts in VB6,
we don't have to talk in too much detail about encapsulation. Even very basic object
capabilities, such as the classes in VB6, implement encapsulation pretty well. But we
will need to discuss the other concepts, particularly inheritance, in more detail.

Abstraction

Abstraction is the simplest of these concepts and also the most widely available. It
basically means the ability to represent a functional concept in code and hide the
implementation of that functionality in a black box.

In its broadest sense, any structured programming language allows abstraction. A
function, for example, operates as a black box, taking some arguments for input and
returning some value without exposing the details of how the value is generated.
However, in object-oriented terms, abstraction means a bit more. A single function may
not be enough to represent a large concept. To do that, you need the capability to tie

 73

many functions together in a related fashion. That is, you need the concept of a class
that ties the various abstracted elements of an entity into one single representation.

With its ability to create classes, Visual Basic has had abstraction since version 4, so
we won't spend as much time on abstraction as on the other object concepts. However,
there are some enhancements that are abstraction-related that we'll be looking at later
in the chapter.

Encapsulation

Encapsulation is the object concept that deals with the idea of an interface. In
particular, encapsulation demands that an interface to a set of functionality should be
separate from the implementation of that functionality. If an interface is defined and
consumed, the consumer should not know or care if the implementation behind the
interface changes.

VB4 and up also supported encapsulation. A class could be created, and calling code
only needed to be concerned with the interface to the class. Changing the way a
method was implemented in code did not require any changes in the code calling the
class, as long as the interface did not change.

Polymorphism

Abstraction and encapsulation tell us something about the basic structure of an object
and its interface. The next two concepts, inheritance and polymorphism, make provision
for using interfaces and classes in more complex ways.

Polymorphism extends the concept of an interface beyond a single class and into
related classes. We may have a set of classes that all need a method to save their
contents, for example. We could implement a Save method on each class. If we use
exactly the same interface for Save on each class, we are allowing the Save method to
exhibit polymorphism. A collection of objects of different types can all have a Save
method. The elements of this collection can then all be treated the same way by code
that needs to call the Save method.

There are actually two ways that Visual Basic has supported polymorphism in the past.
Late binding to an interface allowed calling the same method on different classes, as
long as each class used the same argument list for the method. It was also possible to
create a standalone interface and then implement that interface in different classes. In
this case, the polymorphic methods could be used with early binding.

All of these capabilities are still intact in Visual Basic .NET.

Inheritance

Inheritance is the big dog in Visual Basic .NET object-oriented improvements because it
is the one that Visual Basic has never had before. Experienced object-oriented
developers have wanted inheritance ever since VB4 left it out. It is possible to do
sophisticated object-based development without inheritance, but there are drawbacks.
Certain situations simply cry out for inheritance as the easy, elegant way to accomplish
needed object designs. We will see an example later after we have covered the new
syntax for inheritance.

So what is inheritance? The easiest way to explain it is to go through a conceptual
example. Consider the following typical programming scenario. You have a payroll
application, and there are several types of employees: full-time, part-time, hourly, and

 74

salaried. You would like to create a set of objects to handle all these types in the payroll
application.

Using Visual Basic 6 or earlier versions, one solution would be to create a single
Employee class and then set up a property for that class that indicated the subtype (full
time hourly, for example). Then the logic in the Employee class would need lots of
Select Case logic to change its behavior depending on the subtype of employee. The
Calculate method, for example, would have a Select Case that selected the algorithm
for calculating pay based on the employee type.

This is a classic example of where the concept of inheritance is useful. Using
inheritance, you could create a base class called Employee, which contained all the
generic employee functionality. That would include properties for data such as name
and department. However, the Employee class might not have a Calculate method
because that varies with employee type.

Then you could create subclasses for each subtype of employee. Each subclass would
inherit from the base class, thereby gaining all of its functionality. Subclasses would
therefore have properties for name and department without having any code for them.
As soon as a subclass indicates that it inherits from the Employee base class, it would
immediately possess the entire object interface of the Employee class. And that's not
just the form of the interface (which you could get in VB6 by defining an interface and
implementing it). It also includes all of the logic behind properties and methods. If the
ZipCode property in the Employee base class has validation logic to accept only certain
formats of zip code, all the subclasses also have this data validation functionality for the
ZipCode property.

Then functionality specific to the subtype could be added to the subclass. For instance,
each subclass could implement a Calculate method to calculate pay for that employee
type. An hourly employee would need a property for the number of hours worked, which
is required for calculation of pay for that type of employee. All of the special logic and
special properties and methods specific to that subtype of employee would be
encapsulated into this one subclass.
Figure 3.3 shows the relationships among the base Employee class and the
subclasses. This type of design has many advantages. It is easier to add new subtypes
of employee, for instance. But perhaps the biggest advantage is that if something in the
base Employee class is changed, all of the subclasses immediately respond to the
changes. This is called implementation inheritance.

 75

Figure 3.3: The Employee class and its subclasses.

For example, suppose your company operates only in America, and the ZipCode
property therefore requires numeric digits. You could have your Employee base class
do the data validation to ensure this. Later, your company might open a Canadian
operation. In that case, the ZipCode property would need to accept a different format to
store Canadian postal codes. This logic could be added to the base Employee class,
and all subclasses would immediately have it.

There are variations on this design. The base employee class could be functional for a
generic employee with a Calculate method that only worked for a full-time salaried
employee. Then the subclasses could override the Calculate method with their own
ways of calculating pay for other employee types.

This conceptual design, in which generic functionality is abstracted to a base class and
specific functionality is encapsulated in subclasses, takes a while to get used to. It's
worth the effort. Some common programming needs are well satisfied by this capability.
We will see the syntax for using inheritance in Visual Basic .NET code later in this
chapter.

Changes in Syntax for Classes

Later in the chapter, we discuss the syntax for the new capabilities such as inheritance.
But first, we need to cover changes in the way classes are created in Visual Basic .NET
versus VB6.

One big improvement is the ability to place more than one class in a physical source
code file. We touched on this in an example early in the chapter, when we discussed
namespaces. Within a source module, a class is begun with the Class keyword and
ends with the End Class statement. Here is an example:
Public Class MySimpleClass
 ' Class members and routines go here
 Public Sub MyMethod()
 Console.Writeline("I'm a method")
 End Sub
End Class

 76

' Other classes if needed--we can include
' as many as we need.

Public Class MyOtherClass
 ' Class members and routines go here
 ' ...
End Class

These classes are by default in the project's default namespace. If we want them to be
in a different namespace, we place a Namespace statement at the beginning of the
classes specifying the namespace desired and then place an End Namespace
statement after all of the classes in the namespace, as shown earlier in the chapter.

Methods in classes are handled the same way as in VB6, by creating a Public Sub or
Public Function. Events for classes are also created the same way as in VB6.
Properties are handled with the new syntax for properties discussed earlier in the
chapter.

Overloading

Methods do have one significant new feature in Visual Basic .NET. Multiple versions of
the same method can exist in a class, as long as each version has a different argument
list. This feature is called method overloading. Here is a typical scenario where this
feature is helpful.

Suppose our class needs a method named Display to display data to some device.
Such a method might need to accept either integers or strings and to have different
logic for generating output for these two data types. To create such a method, we
create two versions of the Display method, each with its own logic for display of data.
To indicate that the method is overloaded, we use the Overloads keyword. Here are
shell code fragments that show the declaration of the two versions of the Display
method:
Overloads Sub Display(ByVal iNumber As Integer)
 ' display routine that handles number goes here
End Sub

Overloads Sub Display(ByVal sString As String)
 ' display routine that handles string goes here
End Sub

The methods must have some difference in the parameter list to be eligible for
overloading. The difference can be a different number of parameters, different types of
parameters, or both. The set of parameters for a particular version of a method,
including the types of the parameters, is sometimes called the method's "signature."

Without overloading, getting the Display functionality previously mentioned would have
required one of two more complex techniques. Two separate display routines could be
constructed with different names, one for a number and one for a string. Or optional
parameters could be used, but it would be necessary for the programmer using the

 77

routine to keep the order and type of parameters straight. Overloaded methods are
much cleaner than either of these techniques.
As you use the .NET Framework, you will notice that many of the .NET Framework
classes contain overloaded methods. The fact that a method is overloaded is noted in
the Intellisense window. A sample screen containing Intellisense for an overloaded
method is shown in Figure 3.4.

Figure 3.4: Intellisense for an overloaded method.

Note the part of the screen indicated by the black arrow that says 2 of 4. This part of the
Intellisense tooltip window is calling your attention to the fact that the method being
accessed is the second of four overloaded methods. The up and down arrows next to
the 2 of 4 allow you to cycle through the other overloaded versions and to show their
parameter lists. (This method happens to be a constructor method. Such methods are
discussed a bit later in the chapter under the heading Constructors.)

Declaration and Instantiation

Instantiation of a class in Visual Basic .NET is done with syntax similar to that in VB6,
although there are notable differences. You could declare an instance of a class named
MySimpleClass in VB6 with a line like this:
Dim objMyObject As New MySimpleClass ' instantiation in VB6

However, this syntax has a big drawback. VB6 did not instantiate the class when this
line was executed. Instead, actual instantiation was delayed until some reference was
made to the class, such as trying to set a property of the class. Because such a
reference could be considerably separated in the code from the preceding line, most
developers preferred to instantiate a class like this in VB6:
Dim objMyObject As MySimpleClass ' other way to instantiate in
VB6
Set objMyObject = New MySimpleClass

In this case, instantiation was definitely carried out by the second line, so the developer
knew exactly where instantiation would appear.

 78

Both techniques work in Visual Basic .NET, but the difference is that the first technique
also instantiates the object immediately. There is no delay in instantiation until the first
reference. That means that the reasons for avoiding the first technique in VB6 no longer
apply in Visual Basic .NET, and you will see it used as the preferred way to instantiate
an object in most Visual Basic .NET sample code.

It was sometimes inappropriate in VB6 to instantiate with New. The most commonly
used alternative was the CreateObject function, which does not exist in Visual Basic
.NET and is not needed. The New operator is used for almost all class instantiations in
Visual Basic .NET. (There are a few exceptions to this, and there is a CreateInstance
method of a class called the Assembly class that can also be used to create an
instance of a class. However, the circumstances under which this technique is used are
quite limited.)

Constructors

Even though the same basic syntax shown for instantiation works in both VB6, and
Visual Basic .NET, there is one major addition to Visual Basic .NET syntax for
instantiation. The easiest way to explain it is to start with the closest available VB6
counterpart.

When a class was instantiated in VB6, the first thing that happened in the class code
was the firing of the Class_Initialize event. This event contained code that needed to be
run when a new instance of the class was created. However, VB6 had no way to pass
parameters to Class_Initialize. If an instance of a class needed some parameters to tell
it how to act, a different method or property had to be implemented to pass that
information into the class. (I typically used a method named Load for this in VB6.)

In Visual Basic .NET, Class_Initialize does not exist. Instead, the class has a method
called a constructor. The name of the method is New. This method is the first code
executed in a new instance of a Visual Basic .NET class, just like Class_Initialize was
the first code run in VB6.

Because New is a method, it can have parameters. When you create a New method for
one of your classes in Visual Basic .NET, you can give it any parameters you like (or
none, if it doesn't need any). Such a constructor is sometimes called a parameterized
constructor.

If a class has a New method with no parameters, then the code to instantiate a class in
Visual Basic .NET is very similar to the equivalent code in VB6:
Dim objMyObject As New MySimpleClass() ' instantiation in
VB.NET

The only difference from equivalent syntax in VB6 is the set of parentheses at the end
of the line. Note that if you leave these off when typing in the line, they will be added
automatically by the VB code editor.

Again, this example shows a New method with no parameters. If the New method for a
class has parameters, you must supply those parameters when an object is declared
and instantiated. For example, suppose a class named Customer has a New method
that requires a customer ID, like this:
Public Sub New(nCustomerID As Integer)
 ' Use CustomerID to initialize the data in the object
 mnCustomerID = nCustomerID ' save customer ID for
property

 79

 GetCustomerData(nCustomerID)
End Sub

For such a class, you must supply the customer ID at instantiation. Here's an example:
Dim nCustID As Integer = 5
Dim objCustomer As New Customer(nCustID)

This generates an instance of the Customer class for the customer with an ID of 5.

Note Constructors are optional. Just like you could leave out the

Class_Terminate event for a class in VB6, you can also leave off
the New constructor in Visual Basic .NET. If you leave off the
constructor, no code in the class is run when the class is
instantiated.

Overloaded Constructors

Now let's combine two concepts we've discussed in this section, overloading and
constructors. We discussed the fact that methods can be overloaded so that there are
multiple versions of the method that take different parameters. Well, a constructor is
just a method with a special name. It, too, can be overloaded. That means you can
create several New methods in a class, each with a different parameter list. Such
constructors are referred to as overloaded constructors.

There is one minor syntactical difference. When a normal method is overloaded, all
versions of the method are declared with the Overloads keyword. However,
constructors can never have the Overloads keyword in their declaration. For example,
we might enhance our Customer class so that we can either pass in a customer ID, as
before, or leave it off. If it is left off, this means that we are starting up a brand new
customer, and an ID needs to be generated automatically. Now our two constructors for
the class could look something like this:
Public Sub New(nCustomerID As Integer)
 ' Use CustomerID to initialize the data in the object
 mnCustomerID = nCustomerID ' save customer ID for
property
 GetCustomerData(nCustomerID)
End Sub

Public Sub New()
 ' Get a new CustomerID for a brand new customer
 mnCustomerID = GenerateNewCustID()
 SetDefaultFields()
End Sub

Now we can still instantiate an existing customer with this code:
Dim nCustID As Integer = 5
Dim objCustomer As New Customer(nCustID)

 80

Or we can instantiate a brand new customer and have an ID generated with this code:
Dim objCustomer As New Customer()

You can have as many overloaded constructors as you need. I've seen classes in the
.NET Framework with as many as 16 overloaded constructors. Perhaps that should be
dubbed overloading overkill. To help those who consume your classes, it's good
practice to keep the number down to just those constructors you really need.

Life Cycle of an Object
In the previous chapter, we discussed many changes related to the fact that Visual
Basic .NET must fit within the .NET Framework. Another such change is the way an
object's life cycle is managed in Visual Basic .NET.

In VB6, we have a fair amount of control over phases of an object's life span. We were
able to write code affecting the life cycle in several places, with the most commonly
used being:

§ Class_Initialize event. First code in a class to run when an instance was
created

§ Class_Terminate event. Ran automatically as soon as an object's
reference count reached zero

We have seen that the replacement for the Class_Initialize event is a constructor. So
what's the replacement for the Class_Terminate event? The answer to that question is
a bit complex.

The closest analog to Class_Terminate is a method on a class called a destructor. It is
named Finalize. However, there's a big difference. The execution of Class_Terminate
was predictable and only depended on conditions in the application. Execution of
Finalize is less predictable and depends on external conditions.

The reason is that the way memory for objects is reclaimed (a process called garbage
collection) has changed in .NET. Finalize runs when an object is garbage-collected. But
an object is not necessarily garbage collected when the refe rence count reaches zero.
The CLR determines when garbage collection runs depending on, among other things,
when more memory for objects is needed. Because of this, there may be an indefinite
amount of time after an object's reference count reaches zero before the Finalize
method is run. With such a potential delay, it is usually unwise to put much code in the
Finalize method. Instead, it is considered good practice to write a different method,
normally called Dispose, to take care of an object's cleanup chores (releasing database
connections, for example). Then the code that created the object is responsible for
calling Dispose at the right time.

The reason for the change is not arbitrary. Some of the biggest benefits of .NET arise
from its sophisticated garbage collection. But object cleanup was easier in previous
Visual Basic versions than it is Visual Basic .NET.

Inheritance Syntax in Visual Basic .NET

Earlier in the chapter, we discussed the conceptual nature of inheritance. Now, having
gotten some of the other object enhancements of Visual Basic .NET under our belt, we
are ready to tackle the syntax used to do inheritance.

We saw earlier how a class is defined in code in Visual Basic .NET:
Public Class MySimpleClass
 ' Class members and routines go here

 81

 Public Sub MyMethod()
 Console.Writeline("I'm a method")
 End Sub
End Class
In this case, MySimpleClass only has the methods and properties defined for it in the
class. (This is not quite true, as we will see a bit further in this chapter in the section
Everything's an Object. But it will suffice for our discussion at this point.)

Now suppose we want MySimpleClass to be a subclass of some other class. As we
discussed earlier, that would give MySimpleClass all of the object interface and
capabilities of the parent class, and then we would just add the functionality that
needed to be specific to MySimpleClass.

Let's call the base class MyBaseClass; suppose it looks like this:
Public Class MyBaseClass
 ' Class members and routines go here
 Public Sub New()
 ' initialization logic goes here
 Console.Writeline("Cranking up an instance of
MyBaseClass...")
 End Sub

 Public Sub MethodInBaseClass()
 Console.Writeline("I'm a method in the base class")
 End Sub
End Class

To make MySimpleClass a subclass of MyBaseClass, we use the Inherits keyword, and
MySimpleClass changes (shown in bold) to look like this:
Public Class MySimpleClass
 Inherits MyBaseClass

 ' Class members and routines go here
 Public Sub MyMethod()
 Console.Writeline("I'm a method")
 End Sub
End Class

Note the second line. Once MySimpleClass has this line added, it instantly gains all of
the functionality of MyBaseClass. Suppose we now declare an instance of
MySimpleClass with this line:
Dim objX As New MySimpleClass

Checking Intellisense for objX reveals that objX has a method named
MethodInBaseClass. When that method is accessed, no code runs in the class
MySimpleClass. Instead, code runs in MyBaseClass because that's where
MethodInBaseClass is.

 82

MySimpleClass also gains a constructor (New subroutine) by inheriting from
MyBaseClass because the base class has one. When the line of code shown executes,
the New subroutine in MyBaseClass executes and performs any setup logic necessary.

If you are new to the concept of inheritance, it's a good exercise to go through the
preceding code. To do so, take the following steps:

1. Start up an ASP.NET Web Application project. Name it something
appropriate, such as TestInheritance.

2. Select Project, Add Class from the menu, and name the new class
MyClasses.vb.

3. Place the code shown above for MySimpleClass and MyBaseClass in
the class module.

4. Go to the blank WebForm1 created for the project. Place a button on
this form. Double-click the button and place this code in the button's
click event:
Dim objX As New MyClasses.MySimpleClass()
objX.MyMethod()
objX.MethodInBaseClass()

Run the project, and when the Web Form comes up in the browser, click the
button. If you like, you can set a breakpoint on the first line in the code in step
4 and watch the code execute.

Note By default, the Console.Writeline statements in this example do not

write to the Output window because this is a Web project. You may
wish to route the Console.Writeline output to a text file for viewing.

To do this, place the following two routines in your
WebForm1.aspx.vb code:
 Private Sub Page_Load(ByVal sender As
System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 If Not Page.IsPostBack Then
 Dim fs As New
System.IO.FileStream("c:\trace.txt", _

System.IO.FileMode.OpenOrCreate, _
 System.IO.FileAccess.Write)
 ' Create a Char writer.
 Dim w As New
System.IO.StreamWriter(fs)
 Console.SetOut(w)
 End If
 End Sub
 Private Sub Page_Unload(ByVal sender As
Object, _
 ByVal e As System.EventArgs)
Handles MyBase.Unload
 Console.Out.Flush()
 End Sub

In this case, we are writing to a text file named C:\trace.txt. The

 83

code in the Page Load event routes the output of the Console object
to this text file, and the Page Unload event flushes the written text to
the file. This technique can be used anytime you would like to use
the Console.Writeline to send output to a text file.

IMPORTANT

Depending on the configuration of your system and the
operating system you are using, it may be necessary to
grant appropriate access permissions to the file for
ASP.NET to write to it. If access is not permitted, running
the program will generate a message in Internet Explorer
explaining what to do.

The output results from running the project will be:
Cranking up an instance of MyBaseClass...
I'm a method
I'm a method in the base class

We will see a more detailed example later, after we've covered the rest of the syntax
related to inheritance.

Overriding Methods and Properties

As we've seen, when a subclass inherits from a base class, it has access to all the
members (properties, methods, and events) of the base class. In our previous example,
the subclass used the members of the base class as is. When such a member is
accessed, the code that runs is actually in the base class.

However, sometimes a subclass needs to have a different version of a property or
method from the base class with its own special logic. In this case, the property or
method is included in the code for the subclass. Doing this is called overriding the
property or method in the base class, and it is indicated in code with the Overrides
keyword.

Full overriding of properties and methods is completely supported in Visual Basic .NET.
The overriding logic may be similar to that in the base class, or it may be wildly
different.

In many cases, a property or method in a subclass may need to do a small amount of
special work and then let the rest of the work be done by the equivalent property or
method in the base class. This can be done by referring to the base class with the
MyBase keyword.

Members of the base class can be overridden in subclasses only if they are declared
with the keyword Overridable. However, the base class has additional control. It can
require that a member be overridden in a subclass by using the MustOverride keyword.

If a base class contains a member marked as MustOverride, that class is incomplete by
itself. It cannot be instantiated directly because then there would be nothing to override
the member marked MustOverride. The keyword that indicates that a class must be
inherited to be used is MustInherit. A class with any member marked as MustOverride
must itself be set as MustInherit.

 84

An Example to Illustrate Inheritance-Related Keywords

Now let's step through an example that shows each of these concepts in action. We'll
start with our previous example, which used the classes named MySimpleClass and
MyBaseClass.

To show overriding, first add this method to MyBaseClass:
Public Overridable Sub SomeMethod()
 Console.WriteLine("I'm a method that can be overridden.")
End Sub

Now add the following method to MySimpleClass:
Public Overrides Sub SomeMethod()
 Console.WriteLine("I have overridden the base class!")
End Sub

Next you need to add a line to the button event code to access the new method. Add
this line at the end of the event code for Button1:
objX.SomeMethod

If you run the program now, the output now will be:
Cranking up an instance of MyBaseClass...
I'm a method
I'm a method in the base class
I have overridden the base class!

Note that the code in SomeMethod in the base class was not executed. An overriding
member completely replaces the member in the base class. But we can get access to
the member in the base class with the MyBase keyword. Change the SomeMethod
code in MySimpleClass to look like this:
Public Overrides Sub SomeMethod()
 Console.WriteLine("I have overridden the base class!")
 MyBase.SomeMethod
End Sub

Now run the program again, and you'll get this output:
Cranking up an instance of MyBaseClass...
I'm a method
I'm a method in the base class
I have overridden the base class!
I'm a method that can be overridden.

Finally, let's demonstrate MustInherit and MustOverride. First, change the declaration of
SomeMethod in MyBaseClass so that the first line looks like this:
Public MustOverride Sub SomeMethod()

As soon as you make this change, you'll get indications of two syntax errors. One is in
the SomeMethod routine itself. Because it is now marked MustOverride, it cannot

 85

contain any logic. In fact, it can't even take an End Sub. So you must remove the rest of
the SomeMethod code and just leave the declaration.

The second syntax error is at the top of the class. The class must now be marked
MustInherit. Change the declaration of the class to look like this:
Public MustInherit Class MyBaseClass

Now the project will run again; it will give these results:
Cranking up an instance of MyBaseClass...
I'm a method
I'm a method in the base class
I have overridden the base class!

Additional Inheritance-Related Keywords

The keywords discussed previously are the ones most commonly used in classes using
inheritance. There are some additional keywords that are useful for special cases.

The Shadows Keyword

We have already learned that we can override members of a base class only if those
members are marked with the Overridable keyword. However, there are circumstances
where a base class did not make a member overridable, but we need to override its
functionality anyway. For example, if someone else wrote the base class, which has a
bug in a property or method, and we don't have the source code, we need to be able to
intercept calls to the property or method to correct the problem.

There is a way to do this. The Shadows keyword allows you to create a member on a
subclass that has the same name as a member in the base class, regardless of
whether the member can be overridden. In fact, you can even override a method and
give it a different parameter list.

This technique should be used sparingly and with great care. A base class that does
not mark a member overridable may assume that the member gets called at certain
points, and Shadows may cause that not to happen. But for the rare cases when you
absolutely must get control of a base class member, Shadows is available.

Here is an example, using the classes named MySimpleClass and MyBase-Class, that
we have used for previous examples. Add this code to MyBaseClass to create a new
method:
Public Sub TestMethod(nSize As Integer)
 Console.WriteLine("The size is " & nSize.ToString)
End Sub

Note that TestMethod cannot be overridden with the Overrides keyword in a base class
because it is not marked Overridable. Now place this code at the end of the button click
event:
objX.TestMethod(5)

The output for the program will now include the line:
The size is 5

Now use the Shadows keyword to replace this method in the subclass. The
replacement TestMethod method code should look like this:

 86

Public Shadows Sub TestMethod(nSize As Integer, sName As String)
 Console.WriteLine("Size is " & nSize.ToString & " and Name
is " &
 sName)
End Sub

Attempting to run the program at this point will get a syntax error because TestMethod
now requires two arguments, and the button click event only supplies one. The line that
invokes TestMethod must be changed to something like this to run:
objX.TestMethod(5, "Jack")

In this case, the output line will become:
Size is 5 and Name is Jack

Note that the logic in the base class version of TestMethod is not run at all after the new
shadowed version is created in the subclass. However, you can run it using the
MyBase keyword. To do that, this line can be inserted in the shadowed version of the
method:
MyBase.TestMethod(nSize)

Protected Members

We have seen that the public interface of a base class is automatically exposed in the
subclass. We have not stated it explicitly, but it should be apparent that routines
marked private in a base class are not available to the subclass, either through an
interface or through use of the MyBase keyword.

There are some situations in which a base class needs to provide a member to a
subclass, but it is not desirable for that member to be exposed to any consumers of the
subclass. The Protected keyword is used to mark such a member. Here is an example,
using the classes named MySimpleClass and MyBase-Class that we have used for
previous examples. Add this code to MyBaseClass to create a new method:
Protected Sub ProtectedMethod(nSize As Integer)
 Console.WriteLine("The protected size is " & nSize.ToString)
End Sub

Now place this code at the end of the button click event:
objX.ProtectedMethod(7)

This will cause a syntax error, because ProtectedMethod is only available from within
the sub-class, not from calling code.

Now place the following code in the subclass:
Public Sub GetProtectedSize(nSize As Integer)
 MyBase.ProtectedMethod(nSize)
End Sub

Change the line in the button click event to:
ObjX.GetProtectedSize(7)

The output for the program will now include the line:
The protected size is 7

 87

Inheritance Keyword Summary
Table 3.1 summarizes the keywords we've just discussed.

Table 3.1: Inheritance Keywords

KEYWORD PURPOSE SHORT CODE
EXAMPLE

Inherits Points to the base class
for a class.

Inherits SomeBaseClass

Public Class
SomeClass

Overridable Indicates that a member
in the base class can be
overridden in classes
derived (inherited) from
this class.

Public Overridable Sub
Clear ()

Overrides Used in a member in a
subclass to indicate that
the member is overriding
the member of the same
name in the base class.

Public Overrides Sub
Dispose()

MustInherit An attribute of a class
declaration for a base
class. Indicates that the
class cannot be
instantiated directly; it
must be inherited and
then the subclass can be
instantiated.

Public MustInherit
Class
MySimpleClass

MustOverride Indicates that any
classes that derive
(inherit) from this class
must supply an override
for this member. Only
available for classes
declared as MustInherit.
A member that is marked
as MustOverride only
supplies an interface for
the member. No logic,
not even an End Sub or
End Function line, is
allowed.

Public MustOverride
Function Name(nID as
Long)
As String

MyBase Reference to base class
for use in the subclass'
code.

StringProperty =
MyBase.StringProperty

Shadows Indicates that a member
in a subclass replaces
the member in the base
class with the same
name, regardless of

Public Shadows Sub
Name()

 88

Table 3.1: Inheritance Keywords
KEYWORD PURPOSE SHORT CODE

EXAMPLE
whether the base class
member is marked
overridable. A member
marked with Shadows
can have a different set
of parameters than the
equivalent base class
member.

Protected Indicates that this
member is only available
to classes derived
(inherited) from this
class.

Protected Sub Clear()

Here's one more example to illustrate usage of inheritance-related keywords. Suppose
we have a base class that represents customers. It looks like this:
Public Class Customer

 ' Public properties.
 Public Name As String
 Public Active As Boolean

 ' Use a constructor to initialize our public
 ' properties
 Public Sub New(ByVal Name as String, ByVal bActive as
Boolean)
 Name = sName
 Active = bActive
 End Sub

 ' Use the Overridable keyword
 ' to let subclasses implement
 ' their own version.
 Public Overridable Sub CheckStatus()
 Console.WriteLine ("Name: " & Name)
 Console.WriteLine ("Active: " & Active)
 End Sub

End Class

Now, let's create a class for a special type of customer called a target customer. The
difference is that we want a target customer to be called on a certain date. The class for
TargetCustomer has the following code:

 89

Public Class TargetCustomer
 Inherits Customer

 ' Declare another public property for this subclass
 Public DateToContact As Date

 ' Create a constructor for the subclass
 Public Sub New(ByVal sName As String, _
 ByVal bActive As Boolean, _
 ByVal datDateToContact as Date)

 ' Call the base class's constructor
 MyBase.New(sName, bActive)

 ' Initialize variables in this subclass.
 DateToContact = datDateToContact
 End Sub

 ' Override the base class's method
 Public Overrides Sub CheckStatus()
 'Call the base methods version
 MyBase.CheckStatus()

 ' Print out properties specific to subclass
 Console.WriteLine ("Call them on: " & DateToContact)
 End Sub

End Class

Here is code to create an instance of the TargetCustomer class. The instantiation
requires passing parameters to initialize the properties for TargetCustomer (which
includes the properties in the Customer base class).
Dim objMyTargetCustomer As New TargetCustomer_
 ("Simple Simon, Inc.", False, #February
22,
2002#)

The CheckStatus method can then be called, and it will generate results from both the
base class and the subclass:
objMyTargetCustomer.CheckStatus

The output would look like this:
Name: Simple Simon, Inc.
Active: False

 90

Call them on: February 22, 2002

The first two lines are generated by the CheckStatus method in the base class
(Customer), which is called within the CheckStatus method of the subclass
(TargetCustomer). Then the third line is generated by a line within that same
CheckStatus method of TargetCustomer.

Everything's an Object

The last chapter mentioned that the Variant data type is replaced by the Object type
and that the Object type would be discussed further in this chapter. I also mentioned in
this chapter that a class that does not inherit from anything only exposes the members
that are implemented in its code. At that point it was noted that that was not quite true,
and now we are ready to take up both of these loose ends.

In reality, all classes and data types in .NET inherit from a base type known as Object.
That includes such types as numbers and strings. Because all types descend from
Object, a variable of type Object can hold any .NET type. That's why the Object type is
an effective replacement for Variant.

That base Object type has a minimal interface that is then inherited by all .NET types.
For example, it has a GetType method that returns the current type. That means all
.NET objects have that method, too.

Perhaps the most commonly used method of the Object type is ToString, which returns
a string representation of an object. This method is commonly overridden in
subclasses; therefore the way the string is generated varies a lot for different types in
.NET. But the reason all .NET types have a ToString method is that it is a part of the
interface of the Object type.

Inheriting from the .NET Framework
One of the reasons inheritance is important in .NET is that it is common in programming
to need to extend a class in the .NET Framework base classes. These classes furnish a
lot of functionality, but they can't be all things to all people. For example, the ADO.NET
classes for data access (covered in Chapter 8) often need to be extended. Middle-tier
data objects in .NET often inherit from these data-oriented classes and then add
additional functionality specific to a particular application.

More Encapsulation Features

Visual Basic .NET has some additional changes and additions that can be loosely
grouped under the encapsulation banner. These include:

§ Shared members on classes
§ Structures as a replacement for user-defined types (UDTs)
§ Nested type support

Shared Members on Classes

Most object designs completely isolate object instances from one another. That is, there
is no data that is shared by different instances of a class. Setting a property in one
instance has absolutely no effect in other instances. In VB6, it was required to do things
this way. However, it is occasionally helpful to have information shared by all active
instances in a class. In Visual Basic .NET, shared members (properties or methods)
can be constructed to do this. The concept is identical to what are called static
members in C++.

 91

The Shared keyword is used to create shared members. Like regular properties, shared
properties can be implemented as Public variables. Thus, to create a shared property
named CommonName, you could use the following code:
Public Shared CommonName As String

If this property is set in any instance, it is set for all of them.

You can also create a shared property using a property procedure. To create such a
property called CommonName, the property would be declared like this:
Public Shared Property CommonName() As String

From that point, the property is coded the way that it would normally be done, with one
rather large exception. The code in the property must not refer to anything that is
related to a specific instance of the class.

As a consequence, if a property needs a private, module-level variable to hold the
property's value, that variable must be shared. So the full implementation of a
CommonName property using a property procedure would look like this:
' Declaration at top of class module
Private Shared msCommonName As String

' Intervening code here...

Public Shared Property CommonName() As String
 Get
 Return msCommonName
 End Get
 Set(ByVal Value As String)
 msCommonName = Value
 End Set
End Property

If you place such a property in MySimpleClass (the class we used for previous
examples), you could then place this code in the button click event instead of the code
that we used earlier to test the shared property:
Dim objX As New MySimpleClass()
Dim objY As New MySimpleClass()

objX.CommonName = "Name set in instance X"
Console.WriteLine(objY.CommonName)

You will see that the value for CommonName that is set by objX is fetched by the last
line of code, even though that line is using objY.

Shared methods can also be implemented. A shared method would be declared like
this in code:
Public Shared Sub CommonMethod()

 92

Shared methods can also be accessed with just a class name, without referencing any
active instance of the class. For example, we can place the following line of code just
below the preceding lines:
Console.WriteLine(MySimpleClass.CommonName)

This will return the same value for the property.

There are many constructs that you will use in your code all the time that are actually
implemented as shared members. For example, the Console class has a shared
method called Writeline, and that's why you can use Console.Writeline without
declaring an active instance of the Console class.

Structures Replace User-Defined Types

Even before we had objects in Visual Basic, we had user-defined types. A user-defined
type was declared using the Type ... End Type construct. Such a type and all of its
constituent elements (members) were made publicly available.
We discussed this briefly in Chapter 2, but we're ready to go into more detail in this
chapter. Let's start with a typical example done in VB6:
Type Employee ' VB6 syntax for user-defined types
 EmployeeID As Integer
 EmployeePhone As String
 EmployeeStatus As Boolean
End Type

A variable could then be declared as type Employee like this:
Dim MyEmployee As Employee

Constituent elements were then accessed like this:
MyEmployee.EmployeePhone = "(615) 555-5309"

This looks like the syntax used to access a property. In fact user-defined types were
often used in place of simple objects in VB6 and earlier for superior performance,
especially if a lot of instances were needed,.

In Visual Basic .NET, the Type statement is no longer available, which means that user-
defined types are not available either. In their place is something called a structure.

A structure is declared using the Structure ... End Structure syntax, similar to Type ...
End Type. However, the big difference is that constituent elements of a structure must
be declared with one of the following scoping qualifiers: Dim, Public, Protected, Friend,
Protected Friend, or Private. Dim and Public both indicate public access, and the others
give various restrictions on access.

To illustrate, if you wanted to get a structure in Visual Basic .NET that was very much
like the user-defined type for preceding Employee, it could look like this, assuming that
we decide to take advantage of some of the declaration modifiers:
Structure Employee
 Public EmployeeID As Integer ' Must declare, even if
Public.
 Dim EmployeePhone As String ' Defaults to Public
access.

 93

 Private EmployeeStatus As Boolean ' Can be Private inside
Structure.
End Structure

Structures can also contain arrays as constituent elements. And structures can contain
other structures nested inside of their elements, like this:
Structure Employee
 Public EmployeeID As Integer ' Must declare, even if
Public.
 Dim EmployeePhone As String ' Defaults to Public
access.
 Private EmployeeStatus As Boolean ' Can be Private inside
Structure.
 Public Structure EmployeeAddress
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As Integer
 End Structure
End Structure

The syntax for accessing a structure is object syntax, like the syntax for accessing user-
defined types in VB6 and earlier. And structures can be used in that same role as
lightweight objects for simple objects that require many instances.

Unlike other variables, you can't initialize any values in a structure when you declare it.
You must access the elements in code to set each one individually.

Members in Structures

There is one major capability of structures that has no analog in VB6. Structures can
have logic associated with them. Here is an example in which a structure has
implemented its own custom constructor (New method) to ensure that an element is
initialized, and has also implemented a Clear method:
Structure Employee
 Public EmployeeID As Integer ' Must declare, even if
Public.
 Dim EmployeePhone As String ' Defaults to Public
access.
 Private EmployeeStatus As Boolean ' Can be Private inside
Structure.
 Public Structure EmployeeAddress
 Public Street As String
 Public City As String
 Public State As String
 Public Zip As Integer
 End Structure
 Public Sub New(ByVal nID As Integer)

 94

 Me.EmployeeID = nID
 End Sub
 Public Sub Clear()
 Me.EmployeePhone = ""
 Me.EmployeeStatus = False
 End Sub
End Structure

This ability highlights the fact that everything is really an object in .NET. Because they
are actually objects, structures can have these object features.

Value Types versus Reference Types

There is one big difference between structures and classes. A standard class is called a
reference type. Structures, along with numeric types such as Integer, Long, Boolean,
and Single, are called value types. These two different categories are processed
differently by the CLR. This is done to improve the performance of .NET.

To get technical, reference types are allocated internally on the heap, which is designed
for generic objects. Value types are allocated on the stack, which is optimized for more
strictly defined types.

There are a number of implications of this dichotomy. Perhaps the most noticeable is
that you can have two different object variables that refer to the same instance of a
class. Changing a property value using one reference will cause the change to be
visible through the other. This is not possible with a value type. You cannot have two
different variables that refer to the same integer storage location.

Interfaces

VB5 introduced the concept of generic interfaces that could be implemented by multiple
classes to the Visual Basic world. As we learned earlier in the chapter, the ability to use
the same interface on different classes is key to polymorphism.

Interfaces in Visual Basic .NET share some of the features of interfaces in VB6. A class
implementing an interface is required to implement all elements of the interface. And a
class still indicates the interface it will implement with the Implements keyword.
However, there are some key differences. These include:

§ Interfaces in Visual Basic .NET are declared completely separately from
classes.

§ Interfaces are implemented in classes differently.
§ Interfaces can now contain events.
§ Interface members are accessed differently in calling code.

Let's look at the details on these.

Declaring an Interface

In VB6, an interface was declared using a class. Typically the class had no logic in the
declared methods and properties (though it was possible to put logic there and
instantiate the class separately from its usage as an interface).

In Visual Basic .NET, there is an Interface keyword to declare an interface. A typical
example looks like this:
Public Interface MyInterface

 95

 Sub MyMethod(ByVal nIntegerParameter As Integer, _
 ByVal sStringParameter As String)
 Property MyStringProperty() As String
 ReadOnly Property MyIntegerProperty() As Integer
 Event MyEvent(ByVal nEventParameter As Integer)
End Interface

This example also demonstrates that an event can now be a part of an interface, which
was not true in VB6 and earlier versions.

Implementing Interfaces in Classes

Implementing an interface in a class is done with the Implements keyword, just as in
VB6. But everything else is different.

Instead of the strange naming convention used by VB6 to declare implemented
properties and methods, the syntax in Visual Basic .NET is much cleaner. Here's an
example of a class that implements the interface previously declared (without any logic
in the members):
Public Class UseInterface
 Implements MyInterface
 Public Sub MyMethod(ByVal nIntegerParameter As Integer, _
 ByVal sStringParameter As String) _
 Implements MyInterface.MyMethod

 End Sub
 Public Property MyStringProperty() As String _
 Implements MyInterface.MyStringProperty
 Get

 End Get
 Set(ByVal Value As String)

 End Set
 End Property
 Public Readonly Property MyIntegerProperty() As Integer _
 Implements MyInterface.MyIntegerProperty
 Get

 End Get
 End Property
 Public Event MyEvent(ByVal nEventParameter As Integer) _
 Implements MyInterface.MyEvent
End Class

 96

As this example shows, the naming of the members is back to a more normal usage,
and the tie-in to the interface is done via the Implements keyword at the end of each
member declaration.

As in VB6, a class that implements an interface can also implement its own members
separately from the interface. For example, the preceding class could have a method
that did not implement anything in the interface, like this:
Public Sub NotFromInterface()

End Sub

Accessing Interface Members in Code

Many Visual Basic developers were confused by the way implemented interfaces had
to be used in VB4 to VB6. If a class implemented an interface, its object variable had to
be declared a certain way before the implemented interface was even visible. This
confusing requirement is gone in Visual Basic .NET.
Now any element of an object's interface can be accessed the usual way, whether it is
from an interface or a part of the class's own members. To illustrate, Figure 3.5 is an
example of Intellisense for the UseInterface class, showing the members that are
available. As this example shows, all of the members of the class are available,
including those from the implemented interface and those that are just part of the
class's own interface.

Figure 3.5: Available members for the Uselnterface class.

Changes in Moving from VBScript

If you have already done some Web development in Active Server Pages, you probably
used VBScript to write some of the logic needed to make these pages work. VBScript
does not exist in .NET. It is replaced by Visual Basic .NET, even in scripting files where
there is no explicit compilation. .NET's common language runtime performs compilation
of such code automatically. That means that you can use exactly the same syntax
inside ASP.NET pages as you use in Visual Basic programs. It is not necessary to learn
a separate scripting language in .NET. Also, the limitations of VBScript, such as only
allowing Variant data types, are gone in .NET.

 97

Unlike Active Server Pages, ASP.NET allows any .NET-enabled language to be used
for scripting in ASP.NET pages. You may see those pages using languages such as
JavaScript, C#, or COBOL. Because we are focused on Visual Basic .NET, we won't be
going into any more detail on that.

Wrapping Up

In this chapter, we've covered the most important changes in Visual Basic .NET that
are related to objects and classes. We have by no means covered all of the changes
and additions, but these are the ones you will probably need to know about right away
to begin Web programming with ASP.NET and Visual Basic .NET.
As you master all the concepts and changes in this chapter, you may want to look to
more advanced books on programming objects in Visual Basic .NET. Take a look at
Component Development with Visual Basic .NET, by Nickolas Landry (John Wiley &
Sons, 2002).
Now that we have covered the changes in getting from VB6 and VBScript to Visual
Basic .NET, we are ready to get specifically into Web development. Chapter 4 contains
an introduction to some key concepts on Web technologies such as HTTP and DHTML.
This material will prepare you to learn about Web development in Visual Basic .NET,
which is covered in later chapters.

 98

Chapter 4: Introduction to Web Application
Development

Overview

With great power comes great responsibility.
Spider-Man, Amazing Fantasy Comics #15
In the last three chapters, we've discovered the new features, functions, and promise
that Microsoft .NET brings us. Although the .NET platform expands the Rapid
Application Model to the Web very well, you need a basic awareness of the
technologies being used behind the scenes. As you learned in Chapter 3, overuse of
object-oriented programming is not a good thing; neither is a lack of understanding
about Web development. We need to learn how to use the powerful new features
appropriately so that we can focus on making our applications more efficient and
scalable.

Up to this point, we've explored the powerful new features of Microsoft .NET, ASP.NET,
and Visual Basic .NET. Now it's time to learn about the fundamentals of building Web
applications. These concepts are crucial for efficient and effective development. In this
chapter, we will focus on the differences between traditional Visual Basic programming
and Web development, the underlying technologies that make the Web work, and the
new HTML controls and designer in Visual Studio .NET.

You might be tempted to ask "Why bother learning this when I can just drop a Web
control on a Web form and never use this stuff?" The answer is that there will be
situations in which you will need an understanding of the architecture and general Web-
related technologies to build more powerful applications.

WHY YOU'VE GOT JUST 15 SECONDS...

The Web paradigm adds a whole new level of complexity to traditional application
development. The phrase "You've got just 15 seconds to grab a user's attention" is
fast becoming a cliché, but it really sums up the Idea. You're no longer just creating an
application, but a commercial or a TV show, and the user has his or her hand on the
remote. it's called surfing the Web for a reason. As a developer, you need to be
keenly aware of the Impact of architectural and implementation decisions on
application performance and scalability. With this technology, as we are discovering,
we are still dealing with a client/server

The Importance of Protocols

Have you ever seen a diplomatic meeting on a news report? Usually these events are
very formal affairs with rules that were clearly defined beforehand. For diplomats,
protocol is everything. It specifies the ceremony and etiquette and generally governs
every aspect of interaction between nations. In short, it's all about communication. For
standards-based communication, protocols are everything as well. Internet protocols
are agreed-upon standards for exchanging data between networks on diverse platforms
and different environments.

Although understanding the entire network model is important, you'll spend most of
your time as a Web developer using the application-level protocols, such as Hypertext
Transfer Protocol.

 99

Hypertext Transfer Protocol
HTTP is known as a stateless protocol. It's also one of the most highly used protocols
in the process/application layer. Using HTTP for communication is normally divided into
two parts: a request by the browser (or other client) to a server for information and a
response by the server fulfilling the client request. This flow should be familiar to you
because it resembles the client/server model with which we are all familiar.

HTTP uses Uniform Resource Locators (URLs) to assist in locating documents on Web
servers. A URL is associated with a lower-level IP address and can be thought of as a
human-readable way to access resources. We'll explore how the two identifiers are
resolved later. For now, let's focus on the URL and its successive elements.

The URL Nickel Tour

Normally an HTTP URL or Web address has a form similar to:
http://www.gasullivan.com/ourbusiness/ourbusiness.asp
<-1-> <- 2 -> <- 4 ->
If you're at or near your computer while reading this, type in this URL and then we'll
continue by tearing it apart. Your page should look similar to Figure 4.1.

Figure 4.1: The URL (request) and Web page (response).

The first part of the URL is the protocol. The second part is the hostname, which
specifies the domain or server that contains the resources that we want to access. This
is also known as a Fully Qualified Domain Name (FQDN). The last part specifies the
document path, which is a similar concept to locating files on your computer's hard
drive. This section is optional as well. Let's look at the next URL example for the final
section, also optional, which specifies the query string. The query string is used to input
parameters for dynamic search or information retrieval.
http://quote.yahoo.com/q?s=jwa&d=c
 <- 5 ->

URLs may also be relative, in a similar way to DOS relative paths.

 100

WHAT IS ICANN?

ICANN is the Internet's technical logistics body. Created in October 1998, ICANN
manages the assignment of the following globally unique identifiers In order for the
Internet to function:

§ Internet domain names
§ IP address numbers
§ Protocol parameter and port numbers

We talked earlier about client requests and server responses in HTTP. As we begin to
investigate this, let's also discover how the URL is resolved with its associated IP
address along the way. When you type in a URL that is local to your network and hit
Enter, the browser communicates with a server on your network that is running a
domain name system service (DNS). DNS is responsible for reconciling the URL with
the IP address of the server that you want to access. When you access an external
URL, the URL is transmitted to the DNS service managed by interNIC, a group of
organizations that have banded together to provide management and guidance for the
Internet. (These responsibilities are in the process of transition to the Internet
Corporation for Assigned Names and Numbers, or ICANN.) It is then resolved with its
matching IP address in the organization's DNS registry, and then the request is
transmitted to the destination Web server for a response.

The Anatomy of an HTTP Message

An HTTP message begins with a header. It lists the information that is necessary for
the transport of the body, which holds the displayable content.
When you click Enter to submit the URL, the browser actually
sends an
HTTP Request.
An HTTP request has two lines. The first line in an HTTP request is called a request-
line. The request line contains an HTTP user command followed by the HTTP header
entry.

HTTP user commands are used to manipulate objects on a server. Each command is
associated with a URL that indicates the object's location. Let's examine four of the
most relevant HTTP user commands: GET, POST, PUT, and DELETE.

§ GET. Gets an object from the server. When you want to retrieve a Web
page from a server, you GET it. The information is sent as parameters in
the query string of the URL.

§ POST. Used to transfer information from the FORM tag back to the
server. Remember, nothing in HTML can be seen by the server unless
it's on the form. As we will see, that changes in .NET with the use of the
RUNAT=SERVER.

§ PUT. Allows you to upload information to the server as well. It differs
from POST in that the information is sent.

§ DELETE. The mechanism by which resources on a server are deleted.

Here's the HTTP Request header that results from our URL example:
GET /ourbusiness/ourbusiness.asp/ HTTP 1.1

 101

Host: gasullivan.com

In this example, GET is the HTTP User command, /ourbusiness/ourbusiness.asp is the
document request that the browser is making, and HTTP 1.1 signifies the version of
HTTP supported by the browser.

The second line in an HTTP request is an HTTP header entry, which has the following
syntax:
Name: parameter

where name is Host and parameter is gasullivan.com. The host header entry,
gasullivan.com, denotes the host domain where the requested document resides.

The HTTP response header provides a lot of information. The following is the HTTP
response header to our URL:
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://www.gasullivan.com/Default.htm
Date: Sun, 22 Apr 2001 03:10:09 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, 07 Feb 2001 16:18:21 GMT
ETag: "5cd5cl962191c01:973"
Content-Length: 213

Tip If you'd like to quickly see what HTTP response header information is
generated for a URL, go to networktools.com. You can type in either
a URL or an IP address and get back all manner of interesting
information.

Let's break down the example and investigate the elements. Note that this is not an
inclusive list of HTTP headers.

§ HTTP/1.1 200 OK The first line in a HTTP response message is called
the status line. In this example, line 1 specifies that the browser's version
of HTTP is supported by the server and that the request succeeded.

§ The rest of the content in the header is made up of \header messages,
many of which are optional.

§ Server: Microsoft-IIS/5.0 Line 2 specifies the Web service running on
the server.

§ Content-Location: http://www.microsoft.com/Default.htm Line 3
specifies the Fully Qualified Domain Name, document path, and
requested document.

§ Date: Sun, 02 Apr 2001 02:25:37 GMT Line 4 specifies the date of the
request.

§ Content-Type: text/html Line 5 specifies the content type of the
document. In this example, it is text-based in an HTML format.

§ Accept-Ranges: bytes Line 6 notifies the client that the server can
accept byte ranges or portions of Web pages.

§ Last-Modified: Sat, 01 Apr 2001 00:00:37 GMT Line 7 specifies the
date that the requested document was modified.

 102

§ ETag: "467d6a18f6c9c01:872" Line 8 is an identifier that is used for
specific resources. This allows the server to know the exact document
location even if the server is hosting multiple sites within Web farms or
the content is based on geographic location. It's simply another way to
store needed state information quickly and effectively.

§ Content-Length: 18556 Line 9 specifies the body content length.

The last line of the header is always a blank line to separate the header from the body.
As you can see from the previous example, quite a bit of information can be passed
between the client and server during the request and response. Fortunately for you,
you're isolated from this lower level when using Visual Basic .NET and ASP.NET, but
you can still access the information itself through the ASP.NET object model. We look
at this in more detail later in the book. If you want to read more or study further about
HTTP itself, check out HTTP Essentials by Stephen Thomas (Wiley Computer
Publishing, 2001).
If you are more interested in a discussion of how lower-level Internet programming (for
example, working directly with TCP/IP through sockets) relates to Visual Basic .NET,
take a look at Visual Basic .NET Internet Programming by Carl Franklin (Wiley
Computer Publishing, 2002).

One last thought before we move on. As you've probably guessed by now, there isn't a
mechanism for maintaining state built into HTTP. We'll explore later some techniques
that you can use to compensate for this.

Now that we have examined the header information in both the request and the
response, we need to examine the body. And to do that, it's a good idea to understand
how, as the body of the message is sent in HTML, dynamic HTML works and explore
some examples of its use.

Dynamic HTML Support within ASP.NET (HTML 4.0)
As discussed in the introduction, I assume you have some experience with HTML. If
not, check out the links page at the Web site for this book at wiley.com for some great
HTML resources, or if you just like the feel of a good book, pick up a copy of The
Project COOL Guide to HTML by Teresa A. Martin (John Wiley & Sons, 1996). That
said, you might be wondering how a client-side technology such as dynamic HTML and
a server-side technology such ASP.NET can interact in a way that will benefit you as
developer.

HTML is very good at what it does, namely, marking up a document so that the
elements will display correctly. That's all well and good, unless you want your Web site
to respond to requests or user input on the fly. Every change means a round trip to the
server to process and display the updated results. What a Web developer needs is a
way to process some of these changes within the browser itself, thereby conserving
resources and improving performance.
Dynamic HTML affords just that through the addition of the Document Object Model to
HTML. Now every element in the document is an object (including the document) with
properties, methods, and events. For a Visual Basic developer experienced in using
objects, this should be old hat. Unfortunately, even though this is now a standard,
DHTML is still implemented differently in Internet Explorer and Netscape. For an
exhaustive guide to HTML 4.0 and the differences between the browsers, check out the
HTML 4.0 Source-book by Ian S. Graham (John Wiley & Sons, 1998).

For our purposes, we'll focus on the extended support and resources provided by
ASP.NET to client side technologies. Using it, you have programmatic access to every
element in the HTML document. First, we'll explain some of the more common

 103

elements, properties, methods, and events. Then it's off to several examples to see
how this all ties together.
Now it's time to take what we've learned so far in Chapter 4 and discover how it applies
to .NET.

Enter ASP.NET Server Controls

You may be wondering how Web architecture and information flow fits into the overall
topic of Web applications and ASP.NET. An understanding of HTML and DHTML is
essential before using one of the powerful features of ASP.NET: server controls.
ASP.NET server controls are server components that render as HTML. The intrinsic
HTML controls have a one-to-one mapping equivalent in the ASP.NET server controls.
Notice that for each of the HTML tags in Table 4.1, there is a corresponding HTML
server control. Also, the ASP.NET HTML server controls can use DHTML to accomplish
their tasks. Because these are truly server side, no ActiveX, Java, or client-side script is
needed to populate values from the client. As we'll see, they are simply handled in the
post back. The key to the HTML server controls is that they run on the server and
render themselves as HTML, as appropriate to the client. We can see the expanded list
of ASP.NET server HTML controls and their associated tags in Table 4.1 .

Table 4.1: HTML Controls versus HTML Tags

SERVER CONTROL ASSOCIATED HTML TAG

HtmlAnchor <a>

HtmlButton <button>

HtmlForm <form>

HtmlGenericControl Any unassociated tag, such as
<div>, , or <p>

HtmlImage

HtmlInputButton (Button) <input type="button">

HtmlInputButton (Reset) <input type="reset">

HtmlInputButton (Submit) <input type="submit">

HtmlInputCheckBox <input type="check">

HtmlInputFile <input type="file">

HtmlInputHidden <input type="hidden">

HtmlInputlmage <input type="image">

HtmlInputRadioButton <input type="radio">

HtmlInputText (Password) <input type="password">

HtmlInputText (Text) <input type="text">

HtmlSelect <select>

HtmlTable <table>

HtmlTableCell <td>

HtmlTableRow <tr>

 104

Table 4.1: HTML Controls versus HTML Tags
SERVER CONTROL ASSOCIATED HTML TAG

HtmlTextArea <textarea>

Keep in mind, that, as you think about using these, the ASP.NET HTML server controls
are basically for migration and only need to be used when server-side processing,
resources, or programmatic manipulation are required. Otherwise we can use the
ASP.NET server controls, which are introduced in Chapter 5 and then are discussed
further in Chapter 6.

Accessing the HTML elements through the ASP.NET HTML server controls is very
similar to what you've used in Visual Basic.

Event Support Provided by ASP.NET HTML Server Controls

Events are raised and handled on the client by the Event object in traditional Web
applications. Because of the separation of the event from its handler, the way events
are raised by ASP.NET server controls is different: The events associated with server
controls are raised on the client, but the ASP.NET page framework handles them on
the server. During server page processing, change events are processed first, without
regard for order. When the processing for the change events has occurred, the event
that caused the post itself is then processed.
The Event object is crucial to the dynamic part of dynamic HTML. It ties the element to
its event handlers. We can also use the Event object to tie specific events (such as
those in Table 4.2) on the client to custom event handlers that run on the server.

Table 4.2: Some Common Events

EVENT DESCRIPTION

OnClick The OnClick event is fired when the user clicks
the related element.

OnDblClick The OnDblClick event is fired when the user
double-clicks the related element.

OnBlur The OnBlur event is fired when the object loses
focus (similar to the Visual Basic LostFocus
event).

OnFocus The OnFocus event is fired when the object
receives the focus (similar to the Visual Basic
GotFocus event).

OnKeyDown The OnKeyDown event is fired when any key is
pressed (similar to the Visual Basic KeyDown
event).

OnKeyUp The OnKeyUp event is fired when any key is
released (similar to the Visual Basic KeyUp
event).

OnKeyPress The OnKeyPress event is fired when a key with
an ASCII equivalent is pressed (similar to the
Visual Basic KeyPress event).

 105

Table 4.2: Some Common Events
EVENT DESCRIPTION

OnHelp The OnHelp event is fired when the user clicks
the related element.

OnMouseMove The OnMouseMove event is fired when any key
is pressed (similar to the Visual Basic KeyDown
event).

OnMouseOver The OnMouseOver event is fired when any key
is pressed (similar to the Visual Basic KeyDown
event).

OnMouseDown The OnMouseDown event is fired when any key
is pressed (similar to the Visual Basic KeyDown
event).

OnMouseUp The OnMouseUp event is fired when any key is
pressed (similar to the Visual Basic KeyDown
event).

OnLoad The OnLoad event is fired immediately after the
browser loads the object (similar to the Visual
Basic Form_Load event).

OnUnload The OnUnload event is fired immediately before
the browser loads the object (similar to the
Visual Basic Form_Unload event).

OnReadyStateChange The OnReadyStateChange event is fired when
the object's state has changed.

Of course, you'll still use VBScript and JScript in Visual Studio .NET when you need to
do any client-side programming in your Web page, but you'll most likely use Visual
Basic .NET to take full advantage of the power of Visual Studio. NET. The control's ID
parameter in the page functions just like an object name in Visual Basic. This is what
ties the event procedure to the tag. Later in the chapter, we'll see how ASP.NET HTML
server controls are used in Visual Basic .NET to help create Rapid Application
Development to build Web Applications. Let's take a look at an example:

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="WebForml.aspx.vb" Inherits="HTMLCONTROLS.WebForm1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <body MS_POSITIONING="GridLayout">
<h2> NorthWind Employee Page</h2>
 <form id="Form1" method="post" runat="server">
<SELECT id=Select1 name=Select1 runat="server"
onchange="Select1Change()">
<OPTION selected></OPTION>

 106

</SELECT>
<INPUT style="Z-INDEX: 101; LEFT: 105px; POSITION: absolute;
TOP: 167px"
type=submit value=Submit id=cmdSubmit onclick="Select1Change()">

</form>
 </body>
</HTML>

The following Visual Basic .NET file is associated in the preceding page by the
CodeBehind directive at the top of the Web page. It's what ties the two together and
enables the server control events to be defined in the Visual Basic .NET file. In the
second part of our example, we are loading the list box from within the Page_Load
event. By checking the IsPostBack property of the page, we are assured of only loading
the list box when the form is posted. We normally use this to initialize, much like the
Form_Load event in Visual Basic 6.

The second thing that this example shows is the Select1Change Event. This server-
side event fires when the list box selection is changed on the client. The two in this
case are tied together through the OnClick = attribute of the tag in the page example.
Although the preceding HTML sample shows the one-to-one relationship between
ASP.NET HTML server controls and their corresponding tags, this one shows the
functionality that the controls provide:
 Private Sub Page_Load(ByVal sender As System.Object, ByVal e
As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 Dim addList As ArrayList = New ArrayList()
 If Not IsPostBack Then
 addList.Add("Nancy Davolio")
 addList.Add("Andrew Fuller")
 addList.Add("Janet Leverling")
 addList.Add("Linda Peacock")
 addList.Add("Steven Buchanan")
 addList.Add("Linda Peacock")
 addList.Add("Linda Peacock")

 Select1.DataSource = addList
 Select1.DataBind()
 End If
 End Sub
 Public Sub Select1Change()

 Demo1.InnerText = "You chose: " & Select1.Value

 107

 End Sub

Event Bubbling

Remember event bubbling in DHTML? Well, now you really don't need to use it nearly
as much as in the past because it's used in a more limited way. Event bubbling is used
by nested controls (such as buttons within template columns in a data grid row), as
opposed to each one raising an event itself. This raises a single generic event called
ItemCommand that passes parameters (Command-Argument) that indicate the control
that raised the original event. You can set the CommandArgument property to unique
values and then use the event handler to capture and act on them accordingly in a
single event and avoid having to write an event handler for each control.

Creating a Web Project Using the HTML Designer

For the remainder of the chapter, let's explore the HTML designer and build a user
interface. We'll also jump to the associated Visual Basic file and add a bit of code to
show the power and one-to-one mapping of the HTML server controls.

Our first step is to create a new Visual Basic project within Visual Studio .NET. This
project will familiarize you with the HTML designer, the code-behind files, and how the
HTML server tags relate to Visual Basic .NET. First, we want to set it up as follows:

1. Create a Visual Basic ASP.NET Web application on server http://local-
host. Name the application HTMLApp1.

2. Right-click on HTMLAppl in the Solution Explorer window.

The Web form is the object that reflects the HTML document in the browser. Let's think
of it, conceptually, as a Visual Basic form. The next step is to set and verify some
properties.

Now that we have the Web form page open, we'll want to specify the Page-Layout
property to make us feel even more at home. We'll also change the targetSchema
property to handle older browsers:

1. Select DOCUMENT item in the Properties window drop-down list.
2. Set the PageLayout property to GridLayout. This allows HTML elements to

be positioned on the document in a similar fashion to a Visual Basic form.
3. Verify that the targetSchema property is set to Internet Explorer

3.02/Navigator 3.0.

A bland Web page is pretty boring. Let's add some buttons on the page that will show
how easy formatting is. Then we'll start to add functionality.

1. Drag two Button elements and the Text Field element from the HTML tab
of the toolbox to the HTML page. These are the HTML server controls.
Arrange the buttons in a column, with the Text Field next to the first
button.

2. Left-click on the topmost button to select it.
3. Hold down the Shift key, and left-click on the other button to it.
4. From the Format menu select Align, then Lefts from the popup menu
5. Press the Escape key on the keyboard to deselect all buttons.

Now that we have added our buttons, let's begin to change some properties. This
should seem like old hat. We're going to demonstrate that Web development model is
consistent with what we've used before.

1. Select the topmost button. Verify that Button1<INPUT> appears in the
drop-down list of the Properties window.

 108

2. In the Properties window set the value attribute to Script and press Enter.
Note that the caption on the button changed from Button to Script.

3. Set the ID property to btnScript.
4. Select the bottom button. Verify that Button2 <INPUT> appears in the

Properties window drop-down list.
5. In the Properties window set the value attribute to Code and press Enter.

Note that the caption on the button changed from Button to Code.
6. Set the ID property to btnCode.

Let's pause for a moment and investigate the HTML source. If we want to ensure that
our application can be used in the widest variety of browsers, we need to use HTML
3.2. The table that we'll examine is used to position the buttons for older browsers
supporting the HTML 3.2 standard. This allows for consistent formatting and proper
placement of our controls when using HTML 3.2.

1. Click the HTML tab at the bottom of HTMLPage1.htm to switch to HTML
Source view.

2. Examine the HTML. Note that it contains an HTML <table>.

If our browsers can support a richer level of functionality, we'll use HTML 4.0 instead.
Let's make the change now:

1. Click the Design tab at the bottom of HTMLPage1.htm to switch to HTML
Design view.

2. In the Properties window drop-down list, make sure that DOCUMENT is
selected. In the Properties window, set the targetSchema to HTML 4.0.

We're still being consistent with the Visual Basic Rapid Application Model so that we
can place our code in the associated Visual Basic .NET file even though we are
programming for the Web. Just as we did in the past, we've got a form with Visual Basic
behind it. Let's continue by converting our HTML server controls to run on the server.
Then we'll add some code to change some document properties when the button is
clicked. The browser still gets the HTML, but we are manipulating it now with Visual
Basic .NET. For the first button, we'll change the code in a script tag and use a span
tag to show our change, and in the second one, we'll do it in the code window.

1. Left-click on the topmost button to select it.
2. Hold down the Shift key, and left-click on the other button to select it.
3. Right-click and select Run as server control.
4. Press the Escape key on the keyboard to deselect all the buttons.
5. Left-click on the text field to select it.
6. Right-click and select Run as server control.
7. Click the HTML tab at the bottom of the Web form to switch to HTML view.
8. Locate the </HEAD> tag.
9. Just before it add the following code:

 <script language="VB" runat="server">

 Sub btnScript_Click(source As Object, e As
EventArgs)

 Message.InnerHtml = "Hi From Script
Block"

 End Sub

 109

10. Locate the INPUT id=btnScript tag.
11. Scroll to just before runat=server and type the following:

onserverclick="btnScript_Click"
12. Locate the FORM tag.
13. Just after it, add the following code:

<H1> </HI>
 </script>

Now, let's do the same for the second button. Only this time we'll change the property
from the code-behind file.

1. Click the Design tab to return to form view.
2. Double-click btnCode to access the code window and the button control's

click event handler.
3. In the ServerClick event procedure, add the following code:
4. txtHello.Value = "Hi from CodeBehind"

One of the added benefits of HTML 4.0 is dynamic positioning of controls and text
within a page. ASP.NET supports this directly. We can use a panel to see how this
works:

1. Double-click on the Panel (Linear Layout) control in the HTML tab of the
toolbox. A new panel will appear selected in the middle of the document.

2. Drag a Text Field element from the toolbox and drop it in the center of the
panel. The Text Field will appear at the top of the panel because of the
panel's flow layout rule.

3. Drag and drop two more Text Field elements into the Panel element.
4. Click on an empty part of the panel and drag it to the left side of the HTML

page.
5. Resize the panel to the right by dragging the center selection box on the

right side of the panel to the size you want. Note that the Text Fields will
rearrange (flow) themselves as needed to fill the panel from left to right,
top to bottom.

The document outline enables us to keep track of all the elements contained within the
document, allowing for efficient movement within. Let's examine the document structure
and see how all the elements within our page are laid out in a hierarchical format. We
drop the controls on our Web form, which is consistent with how we've programmed in
the past, but they're implemented on the client side as HTML.

1. Show the Document Outline by pressing Ctrl-Alt-T.
2. Use the Document Outline to explore the structure of the HTML document

(when you click on an item in the Document Outline panel, the
corresponding item is highlighted in the Designer).

3. Notice how the panel is implemented using an HTML <div> object and that
the three text items are logically contained within the <div>.

Finally, let's see the page we created. We'll save and then view our page in the browser
and test the resulting functionality.

1. Save the HTML page using the File menu.
2. Right-click on the HTML and choose View in Browser. Note that the

Preview is integrated into Visual Basic. You also have the option to
preview in one or more external browsers.

3. Click the buttons and observe that the code is functional.
We've explored basic HTML functionality within Visual Basic .NET. Now for a quick
review and then on to Chapter 5.

 110

Wrapping Up

In this chapter, you have learned about Web development fundamentals. We
investigated Web architecture and the underlying technologies within the network
communication model. Next, we focused on the HTML server controls that ASP.NET
provides and saw how each tag can now be manipulated as an object, complete with
server-side event handling.
We rounded out this chapter with a focus on how DHTML fits within both Visual Basic
.NET and ASP.NET and worked through some exercises that illustrated how closely the
Visual Basic Rapid Application Development model has been ported to Web
development. We've learned about the fundamentals of Web Application Development
specifically as it relates to ASP.NET and its basic technologies. Now it's time to move
into the parts and pieces of ASP.NET, starting with the Page Framework in Chapter 5 .

 111

Chapter 5: ASP.NET Pages and Web Forms

Overview

Somewhere, something incredible is waiting to be known.
Carl Sagan

When you first began working with previous versions of Active Server Pages, you had
to leave a lot of your expertise behind. Rather than dropping controls on a form in an
IDE, you wrote HTML tags that, when parsed on the client browser, would result in
some sort of user interface elements appearing on the user's screen. For anything but
the simplest pages, you wrote server-side script to generate the HTML tags. This
server-side code did not implement the user interface, however. The actual UI was run
on the client. You had to deal with the difficult paradigm of sending the UI down to the
client and then receiving data posted back to the server. To provide the user with the
illusion of a stateful application, you had to manage state manually, through the use of
session variables, hidden form fields, query string variables, or other mechanisms.

Writing code in the old model is a bit like solving the puzzle involving two nails twisted
together. If you manipulate and twist it just right, eventually the nails can be separated.
Although this can be amusing, it isn't a very productive use of your time. In this chapter,
we'll examine ASP.NET Web forms. Web forms allow you to write Web pages much in
the same way you do Visual Basic form-based application development. Much of the
complexity of Web development is hidden. It's like having the solution to the puzzle
before you start. You still have to actually perform the work to get your project done, but
you don't have to spend as much time dealing with mind-twisting contortions.

ASP.NET Web Forms

Web forms are a Web-based implementation of the Visual Basic form paradigm. Visual
Basic 6 did offer a partial implementation of this functionality through WebClasses, with
which a few of you may be familiar. Although Web-Classes weren't widely adopted,
Web forms are the primary means for Web development in Visual Basic .NET. With
ASP.NET Web forms, you can make use of the skills and expertise you have gained as
a Visual Basic developer. Web forms allow you to write Web pages in much the same
way you wrote Visual Basic applications in the past. You don't need to think about the
details of whether the code runs on the client or the server, the differing capabilities of
HTML objects on various browsers, management of state, and the like. You work in the
IDE in the manner to which you are accustomed: dropping controls on a page, setting
properties at design time, writing event handlers, and so on.

The .NET platform manages much of the complexity that you were forced to deal with in
the past with ASP, freeing you to focus on the welcome complexity of the problem
you're really trying to solve. If you're a seasoned Visual Basic developer who has never
worked with the old versions of ASP, you've been spared a learning experience and
can look forward to a much easier transition into the world of Web development.

Visual Basic .NET provides a much richer object model for Web development than
Visual Basic 6 or ASP did. The .NET Framework Class Library is a comprehensive
object model that covers every aspect of .NET, from the C# compiler to XML parser. A
substantial portion of the object model is slanted toward Web development. The Web
development objects are included in the System.Web namespace.

 112

System.Web.UI

Within System.Web, the System.Web.UI namespace is the root of all of the user
interface objects that you will work with when creating Web pages with .NET. For the
discussion at hand, the most important classes under System.Web.UI are the Control
and Page classes.

System.Web.UI.Control

You are already familiar with the concept of controls, such as the TextBox and Timer
controls in Visual Basic. ASP.NET allows you to create Web forms server controls to
encapsulate functionality just as did Visual Basic. Also like Visual Basic controls, Web
forms server controls, or Web controls, can implement a portion of the user interface or
may just provide a handy set of functionality to the Web page developer. Most Web
controls are involved in generating the user interface in one way or another. Microsoft
provides a set of Web controls to generate common HTML UI elements such as input
tags, selection lists, labels, tables, and the like. You can create your own Web controls,
called user controls, to abstract and reuse the functionality you require.
We will explore a few of the most frequently used Web controls in this chapter. More
details about Web controls in general are in Chapter 6.

System.Web.UI.Control is the base class of every Web control that you will use on a
Web form, whether it is an intrinsic Web control, a third-party control, or your own user
control. Because it is the base class of all Web controls, the events, methods, and
properties it exposes are available in every Web control.

Three of the most important methods exposed by the Control class are responsible for
producing HTML for the end user's browser application and allowing Web controls to
save and load (persist) their state.

Rendering HTML: The Render() Method
The primary channel for communication from a Web application to a user is HTML. As
mentioned previously, most Web controls are involved in the user interface. Rendering
is the process of producing a string of HTML that will result in the user seeing a visual
representation of a Web control. For example, the TextBox control will render itself into
an HTML <input type='text'> tag, which will display on the end user's Web browser as a
text box into which the user may type data.

The generic Control class exposes a Render method. Every Web control that produces
output to the user must override the base class Render method with its own Render
method. Each Web control's Render method contains the code and logic necessary to
generate the appropriate HTML, based on the control's internal state, and the type of
browser being used to view the Web site.

One of the intrinsic Web controls is the TextBox control. This control includes a Text
property, which stores the value the user has entered. If the Text property has been set,
the Render method of this control will include a value attribute in the HTML input tag it
produces. For example, if the Text property has been set to xyz, this control's Render
method will produce output like <input type='text' value='xyz'>.

Persisting State: SaveViewState() /LoadViewState()
As you learned in the previous chapter, Web pages run on HTTP, a stateless protocol.
Each time the user clicks a link to view a new Web page, that page displays
independently, with no knowledge of what came before or after. One of the challenges

 113

for a Web developer is to provide users with the illusion that they are working with a
stateful application that just happens to run inside their browser window.

Imagine that you are purchasing CDs online. You want to finalize your order, and you
must enter all of your shipping and billing information, but you forget to fill in the street
address field. When you attempt to submit your order, the commerce application will
probably take you back to the shipping information page, with an error message
indicating that you must enter a street address. Even though you have been returned to
the page that you just left, the Web server and your Web browser consider this an
entirely different request. By default, the form is going to appear just as it did when you
first saw it—all of the fields will be blank. As a customer, you will probably be less likely
to complete your order if you have to reenter all of the fields too many times. You would
much prefer to have all of the other information (your name, zip code, credit card
information, etc.) reappear, allowing you to just enter the missing information (street
address) and continue. As a developer, you could accomplish this with ASP. But you
had to write the code yourself.

In ASP.NET, each of the input fields in your Web browser was probably rendered by its
own instance of the TextBox Web control. When you completed the form the first time,
all of the data you entered was sent to the server, and each TextBox control set its own
Text property based on the value from the corresponding HTML input field. When the
code realized that some data was missing, it had to rerender the same page. When
each TextBox rendered the second time around, it was able to render value tags to
cause your Web browser to show the same values that you entered.

This works well for data that can be communicated from server to client and from client
to server using standard HTTP. This is certainly the case for the Text property of a
TextBox; the server sends data in the value tag, and the client sends data back in an
HTTP POST message. Other properties may not be so straightforward. The TextBox
control also includes an Enabled property that determines whether or not the user may
edit the data in the input field. When the control is rendered, this property determines
whether or not a disabled attribute is included in the HTML input tag. However, there is
no way built into HTTP for the client to communicate this setting back to the server. In
addition, other Web controls may not even be able to send their value data to the client.
For example, they might render into static text with no HTML at all.

Controls can still persist all of the data the developer needs. They do so by overriding
the SaveViewState and LoadViewState methods. The SaveView-State method is
responsible for serializing the state of a control into a character string. When the page
is rendered to the client browser, this serialized data string is stored in an automatically
generated, hidden form field. The hidden view state field is not displayed to the end-
user. The hidden form field is posted back to the server when a round-trip occurs. The
LoadViewState method must be capable of parsing the resulting string and restoring
the control to its original state.

System.Web.UI.Page

The Page class is the base class of every ASP.NET Web page. When you create a
Web page with Visual Studio .NET, you are in fact creating a derived class from
System.Web.UI.Page. When users view your Web page, the server creates an instance
of your Page class and allows it to render itself to HTML for the user's viewing pleasure.

The Page class is in fact derived from System.Web.UI.Control and thus has all of the
functionality of the Control class. Just as with a control, a Page object must expose a
Render method that produces the HTML for the page. The Render method of an
instance of the Page class will automatically call the Render method of every Web

 114

control that appears on that page. Similarly, the Page class exposes SaveViewState
and LoadViewState methods, which are smart enough to call the corresponding
methods of every Web control on the page.

The Page class, like most derived classes, adds additional functionality beyond that
provided by its base class. Some of the features we will be discussing in this chapter
include methods to control tracing, communicate state information among different Web
pages, and add and remove controls from a Web form at runtime.

We'll cover the Page class in more detail later in this chapter.

The Model You Already Know—Now for the Web (Almost)

If you're like most readers of this book, when you write Visual Basic code, you don't
refer to MSDN for every other line of code. You don't spend time searching through the
UI to find out how to set a breakpoint. You focus on writing code, and the IDE becomes
transparent to your thought processes.

As mentioned at the beginning of this chapter, you can create Web applications using
the Visual Studio .NET IDE in much the same way you created Visual Basic
applications using Visual Basic. The Web form designer allows you to drag and drop
Web controls on a form, move and resize the controls, set their design-time properties,
and write event handlers and other code associated with the form and controls.

Important Differences

Of course, Web applications really aren't Windows applications. Microsoft has done a
great job of allowing you to leverage your Visual Basic skills with ASP.NET. However,
there are fundamental differences in the underlying technologies between Visual Basic
and ASP.NET. Some things simply will not work as expected until you learn some of
what's happening behind the scenes.

State, State, State, State

The stateless nature of the HTTP protocol has a large impact on how you must code
your Web application. Previous chapters began to discuss state management in
relation to the view state of Web controls. We showed examples of the kinds of state
data that might need to be persisted for a Web control, such as the Text and Enabled
properties of the TextBox control.

As a Visual Basic developer, you've never had to consider just how stateful your
application is. Visual Basic applications retain state while they are running. If you made
changes to the properties of objects, the properties retained their values as long as the
program ran. If necessary, you wrote the code to persist state to data files, a database
server, the registry, or some other back up store.

Page LifeTime

When you run a Visual Basic application, the executable code is loaded into memory. A
process and one or more threads are created to execute that code. The process
continues to execute until the user quits the application or some other event such as
system shutdown occurs. The user may exit the program after only a few seconds or
may leave it running on the system for many months or longer.

 115

When a user views your ASP.NET Web page, the Web server instantiates a Page
object for that user. The instance of the Page object exists solely to fulfill a single
request from a single user's Web browser. Once the page has been fully rendered into
HTML, that instance of the Page object is destroyed. The lifetime of the object may be
measured in milliseconds or in extraordinary cases such as a database connection
timeout, in tens of seconds.
Even if the same user immediately rerequests the same page, a new instance of the
Page object must be created. Properties of any objects that were set in the previous
instance of the object are not retained in the new instance unless some mechanism has
been implemented to persist the state of these objects. Fortunately, .NET will persist
quite a significant amount of state information for you. We discussed the
SaveViewState and LoadViewState methods of the Control class, which is the base
class for every Web page and every Web control. In general, your Web form (because
it is derived from Control) and all of the Web controls you use (because they are
derived from Control) will automatically persist almost all of their state information.

What Is Persisted and What Isn't

Although most state information is automatically persisted for you, there are cases
where you must write the code to persist state.

I mentioned earlier that the Page object knows how to persist its own state and the
state of any controls you have placed on the page. However, your specific ASPX page
implements a class derived from the Page class. The implementation of the view state
methods in the base class know how to persist the state of all the properties in the base
class, but they do not know how to persist the state of any new properties that you have
added to your derived class. Therefore, you must persist the values of any variables or
properties you have added to your derived Page class.

The same is true if you create a derived class that extends another Web control by
adding new properties; you must remember to extend your derived class's view state
methods to persist the new properties. The view state methods in the base class only
know about properties of the base class.

Your derived Page class is a compiled object. During execution, you may
programmatically make changes to an instance of the Page class. You can add and
remove controls to and from your Web page. The next time the page loads, the new
instance of the class will not know about these additions or deletions unless you persist
information about any such changes. Similarly, you can programmatically assign event
handler functions to objects at runtime. You must write the code to redo any such
assignments each time your Page object is instantiated.

The intrinsic Web control, Table, is provided to work with HTML tables. It is possible to
add rows and cells to a Table Web control at runtime. The Table control implements
this by allowing you to create new instances of the Table-Cell and TableRow controls
and adding them to the existing Table control. However, in doing so, you are
programmatically adding new controls to your page. The next time your Page object is
instantiated, it will not know about the added controls. Again, you must write the code to
save this state information and later reperform the creation and addition of table cells
and/or rows.
Finally, you should be aware that when your Page object is executed, saving state is
not the last thing that happens. Specifically, your objects' Render methods and your
objects' destructors are called after state is saved. Be careful that the code that
executes during rendering and object clean up does not make any changes to any
properties that need to be persisted.

 116

You can use the ViewState object to manually persist state information about your
Page object. The section, ViewState Object, later in this chapter has more information
about this.

Transferring Information between Pages

The fact that your Page object is instantiated by the Web server service and only exists
long enough to render a page of HTML for the user complicates multipage applications.
Each Web page in your application has its own distinct Page class. Instances of these
Page classes are created only by the Web server. It is not possible for your code within
one of your Page classes to directly create an instance of another one of your Page
classes. You can't get a reference to another instance of a Page class. The Page
classes for any pair of Web pages within your application will probably never both be
instantiated at the same time for the same user. So how do you pass information
between pages? Furthermore, if the only way to instantiate one of your Page classes is
by getting the user to request a Web page from the server, how do you control the flow
of execution between pages?

First, let's look at navigation. There are four ways to get a user from one page to
another within a multipage application:

1. Your page can display standard HTML hyperlinks. Each hyperlink
includes the URL of another page within your application. When
users click a hyperlink, their browser will send a request to the
server for the corresponding URL. The user controls the flow of the
application, but you decide which hyperlinks to display on a
particular page.

2. Your page can include HTML forms. When users click a Submit
button enclosed in the form, their Web browser sends a request to
the Web server for the ASPX page specified in the form tag. This
request also includes all of the values of the input tags within the
form. You can also write client-side script to programmatically cause
the form to be submitted. This option was frequently used in ASP.
Since ASP.NET focuses on server-side processing, this option won't
be used as frequently in .NET applications.

3. While processing a user's request for a given Web page, your
server-side code can use the Redirect method of the standard
Response object (Response.Redirect). This stops the processing of
the Page class for the page that the user originally requested and
sends a redirect message to the client browser, causing the browser
to request a different Web page. The browser sends the request for
the new page to the server, which begins execution of the Page
class for the Web page specified by the URL you passed. This
technique allows you to programmatically control the flow of your
application. It is not necessary for you to instantiate the Response
object. An instance is automatically provided for you. Note that
Response.Redirect results in a round-trip between the server and
client. The same task can also be accomplished in ASP.NET,
without a roundtrip, using the Transfer method of the standard
Server object (Server.Transfer). As with the Response object, it is
not necessary for you to instantiate the Server object.

4. Your Page object may download client-side script that includes code
to navigate the user to a different page. For example, your client-
side script can use the Navigate method of the IE DOM Window
object. Window.Navigate accepts a URL as a parameter. When
called, this method stops processing of client-side script and sends

 117

a request to the server for the specified Web page, just as if the user
had clicked on a hyperlink to the URL you specified. Like a server-
side redirection, you programmatically control the flow of your
application. Navigating the user from client-side script is more
efficient because it does not require that one Page object be
instantiated on the server only to terminate and redirect the user to a
different Page.

Next, let's examine passing information from one page to another. Obviously, just
moving the user from one page to another isn't enough to create a cohesive
application. You must be able to communicate parameters and data among the various
Web pages. There are a number of techniques for doing so.
Query string parameters can be specified as part of a URL. Each query string
parameter is simply a name/value pair, separated by an equals sign. Query string
parameters are added to the end of a URL. The first parameter is introduced with a
question mark. Additional parameters, if used, are introduced with ampersands.

For example, say we have the URL http://myserver/myapp/pageone.aspx. We need to
specify three parameters. The userid parameter has a value of 23, the mode parameter
has a value of search, and the country parameter has a value of us. The resulting URL
would be:
http://myserver/myapp/pageone.aspx?userid=23&mode=search&country
=us

The user can be navigated to the resulting URL using any of the four methods
described previously. If Response.Redirect is used, the user's Web browser is involved
in redirecting the user to a different URL. The user is not able to modify the parameters
passed on the URL string. Of course, a knowledgeable user could simply enter the
same URL with different parameters into the Address field of their browser.

To retrieve the parameters on the destination page, the code in your Page object uses
the QueryString method of the standard Request object. This method accepts the name
of a parameter and returns its value. It is not necessary for you to instantiate the
Request object. An instance is automatically provided for you.

Query string parameters work best for simple data types. If necessary, you can pass an
array of a simple data type using a query string parameter, although there is a limit on
the amount of data that can be included in a URL. It is not possible to pass objects
using query string parameters.

There are two drawbacks to using query string parameters. They are visible to, and can
be changed by, the user. In the previous example, we specified a userid parameter.
Presumably, the value of this parameter controls the user's level of access to the
functionality on the destination page. There is nothing to prevent users from copying the
URL, modifying the query string parameters' values, and pasting the new URL into the
Address bar of their Web browser.

Users can save copies of URLs by setting a bookmark, adding the page to their
favorites, or through other mechanisms. The query string parameters and values will be
saved with the URL. The values of query string parameters are part of the state of your
application. Your application may have other methods of storing state. If a user saves
an URL with parameters and later attempts to access it in another session, the state
stored in the query string parameters may not be consistent with other state stored
internally in your application. This may cause your application to produce errors or to
fail to work the way the user expected.

 118

Hidden form fields are simply HTML input tags with their type attribute set to hidden.
They can be created by placing an HTMLInputHidden control on your Web form.
Hidden form fields are not displayed to users in their browser window. When the form
that encloses the input tags is posted to the server, the values of the hidden fields are
also sent, along with the values of any ordinary fields. Like any other Web control, the
value sent by the user will be automatically retrieved by the HTMLInputHidden object
during the initialization of your Page object.

Like query string parameters, hidden form fields can only pass simple data types. You
can't pass objects from one page to another using them.

Users do not have the opportunity to change the values of a hidden form field.
Sophisticated users can view the values of hidden form fields by using the View Source
option in their Web browser.

When using this technique to send data from one page to another, you can only
navigate the user from one page to another by submitting the appropriate form. You
can't use a standard hyperlink or Response.Redirect or Window. Navigate. Because
the user's Web browser must submit a form, data can't be passed directly from one
ASPX page to another without involving the client browser.

Note If you want to create a hidden input field, use the HTMLInputHidden

control. This will cause a hidden input field to be sent to the user's
browser. If you create a TextBox control and set its Visible property
to false, you won't get what you expected. When you set the Visible
property of a Web control to false, the control does not render
hidden content. Instead, the control renders no HTML at all. Not
only are non-Visible controls hidden from the user, but they are
hidden from the user's browser as well.

The Session object allows you to maintain a list of name/value pairs that can be
accessed by any Web page in your application. You can store a value in the Session
object by using it as an lvalue. An example is:
Session("UserID") = 23

You can retrieve the value stored by using the Session object later as an rvalue:
1UserID = CLng(Session("UserID"))

The code that reads and writes values from the Session object may be in different Page
objects, in different instances of the same Page object, or in the same instance of the
same Page object. Users of your application have their own Session object, which lasts
for the duration of their session with your application. If users return to your Web
application after their session has expired, the data you stored earlier in the Session
object will no longer be available.

It is not necessary for you to instantiate the Session object. An instance is automatically
provided for you. A user's session data is maintained even if the Web service is
stopped and restarted on the server. ASP.NET maintains the same session data for a
given user's session even if the Web application is distributed across multiple servers in
a Web farm.
Session variables cannot be viewed or edited by end users. Unlike query strings and
hidden form fields, it is possible to store instances of objects in the session—assuming
the objects can be serialized as XML. It is not possible to communicate state from one
user's session to another user's session using the Session object.

 119

Session data can be stored in memory or in a SQL Server database. If you require a
great deal of data to be stored for each user's session, you should store the session
data in SQL.
The Application object is used just like the Session object. However, only one
Application object exists for all users of your Web application. Code executing in your
Page objects on behalf of one user can read and write values in the Application object,
which will be accessible by code running in your Page objects on behalf of any other
user of your application.

It is not necessary for you to instantiate the Application object. An instance is
automatically provided for you. There are some important limitations on the Application
object:

§ The Application object exists as long as your application is active.
If your application is stopped and restarted, all data stored in the
Application object is lost. If the Web service is stopped and restarted,
the Application object is lost. The Application object is always stored in
memory. If you require a great deal of data to be stored on the
application level, consider using some other mechanism, such as a
SQL Server database. ASP.NET does not maintain the same
application object across multiple servers in a Web farm.

§ Data stored in the application object is shared by all instances of
all Page objects in your application. When one Page instance writes
data to the Application object, the application state must be locked.
Other Page instances must wait until the application state is unlocked
before they can use it. If you have many concurrent users, and your
code frequently uses the Application object, this contention may result
in slow performance.

Cookies are lists of name-value pairs that are stored on the end-user's machine by their
browser. Multiple pages within a single web application may share the same set of
cookies, and use them to communicate parameters. The client browser associates
cookies with the Web site that generated them. Most browsers will keep each Web
applications' cookies independent of cookies associated with any other Web
applications the user visits. Cookies can be created, accessed, and modified directly by
script running on the client. Cookies are sent from the client to the server, and back
again, on each round-trip. This allows code running on the server-side to create,
access, and modify cookies as well. Cookies are normally neither displayed to, nor
modifiable by, users. When your code creates a cookie, it can specify an expiration
date and time. The client browser can delete expired cookies. You should be aware that
users are able to delete any and all cookies. Furthermore, some users may configure
their browser to reject all cookies, to enhance security and privacy. If your Web site
relies on cookies, these users may not be able to take full advantage of the functionality
you provide.

Data Binding

So far our discussion of differences between Visua l Basic forms and Web forms has
been limited to the myriad implications of the statelessness of the HTTP protocol.
Another important difference exists in the realm of data binding.

The most important difference between data binding in Visual Basic and Visual Basic
.NET is that in Visual Basic .NET, data binding simply works better than it did before. It
is actually a usable, and useful, technology.

 120

Data binding in .NET is limited in scope as compared to data binding in Visual Basic 6.
It is intended to easily get data from the database into Web controls. It does not update
data in your database based on user actions. You must write the code to send the data
back to the database, because in almost every case you will want to perform
verification and validation.
In Visual Basic, you implemented data binding by creating controls and setting
properties. In .NET, you implement data binding by creating controls, setting properties,
and explicitly calling the DataBind method of your control. This gives you a higher
degree of control over the process.
Finally, data binding in .NET works the same way whether you are binding to data in a
database or binding to data in in-memory objects. The section A Simple Data Binding
Example later in this chapter has more information about this.

Using the Code-Behind Method

In Visual Basic, there is a clear separation between objects such as forms and text
boxes and the code associated with them such as event handlers. In previous versions
of ASP, there was no clear distinction. A single ASP file might contain hundreds of
transitions between source code and HTML content. Like the puzzle referenced at the
beginning of this chapter, extricating the code from the HTML tags was difficult and time
consuming. If the developer who wrote the ASP page did not implement coding
standards to separate HTML from script code, it could be nearly impossible for other
developers to maintain the page.

ASP.NET introduces the concept of code behind. This simply means that you can put
the code and the HTML tags in separate files. The code behind a button click, for
example, is no longer mixed in with the HTML that renders the button. This results in a
tremendous improvement in the readability and maintainability of your ASP code.

An additional benefit of keeping the HTML in a separate file is that it is much easier for
a less-technical UI expert to apply styles, themes, and layouts to a Web site without
breaking functionality.

Example: Multiplication Application

We've spent quite a bit of time discussing Web forms. At this point, let's create a form
that allows the user to enter two numbers, click a button, and see the result of
multiplying the numbers.

With a few simple steps, we'll create a very simple application. No big deal, right?
That's exactly the point. If there's one thing you'll hear over and over regarding .NET, it
is that .NET does for Web development what Visual Basic did for Windows
development. Just as Visual Basic did a good job of hiding low-level details from the
developer, Web forms allow the developer to see past the messy details of the Web
and get busy writing code to solve business problems.

First, we'll create an empty Web application project:
1. Fire up Visual Studio .NET. Select File, New Project. In the New

Project dialog box, do the following:
§ Leave Visual Basic Projects as the selected Project

Type. Click ASP.NET Web Application under Templates.
§ Enter http://localhost/Ch5-Exl in the Location field. Click

OK to create the project. A new, empty Web application
will be created for you.

 121

Just as with Visual Basic 6, our next step is to add some controls to the form.
The IDE will come up with the grid layout mode of WebForm1.aspx. You'll be
familiar with the appearance of the grid from the Visual Basic IDE.

2. A list of Web controls appears in the toolbox on the left side of the
screen. Locate TextBox in the list. Double-click TextBox, and the IDE
will drop a new TextBox1 on your form in the upper-left corner.

3. Drag and drop a second text box onto your form. The IDE creates a
new TextBox2. Drag it so that it is placed underneath the first text box.

4. Drag and drop a button onto the form. Place it underneath the second
text box.

5. Drag and drop a third text box (TextBox3), and place it underneath the
buttons.

6. To make everything line up nicely, select all three text boxes and the
button. On the Format menu, select Align, Centers. On the Format
menu, select Vertical Spacing, Make Equal.

Now that we've added controls to the form, the next step is to set properties of
the controls. Just as with Visual Basic 6, we set properties of the controls at
design time to get just the behavior we want.

7. Because you selected all four controls in the last step, click on a blank
area of the form to unselect the controls. Then click to select
TextBox1, the first text box at the top of the page. Set its ID property
to txtNumberA. Leave its other properties unchanged.

8. Select TextBox2, and set its ID to txtNumberB.
9. Select the button, and set its ID to btnMultiply. Set its Text property to

Multiply.
10. Select TextBox3, and set its ID to txtResult. Because we plan to use

this field to display the result of a calculation, we don't want the user
entering numbers directly. Set its Enabled property to false.

Although the controls' built-in functionality goes a long way toward what we
want to accomplish in our example application, the controls don't do
everything. At this point, we need to write some actual code. We'll define an
event handler to perform the multiplication when the user clicks the Multiply
button.

11. Double-click the Multiply button on your form. Just as in Visual Basic,
the system will throw down a blank sub, btnMultiply_Click, for you.

12. In the On Click handler for the Multiply button, enter the following line
of code. Remember that you don't get default properties in Visual
Basic .NET.

13. txtResult.Text = txtNumberA.Text * txtNumberB.Text

At this point, we're ready to run the program.
14. Select Start from the Debug menu, or press F5. Note that your

program compiles before it runs. After a brief wait, you should see
your form in a browser window.

15. Enter an integer in each of the first two text boxes, and then click
Multiply. You should see the result of the multiplication in the third text
box. Note that you can't enter text directly in the result box.

When you created this example application, you actually created two source files:
WebForm1.aspx and WebForm1.aspx.vb. The WebForm1.aspx file contains the
descriptions of the controls you dropped on the form. The WebForm1. aspx.vb file
contains the Visual Basic .NET code behind the controls.

 122

Page Processing Sequence

You've learned a few of the many operations that automatically take place when your
Page class is instantiated and executes, such as state management and rendering.
Let's take a more detailed look at exactly what is done, and in what order:

1. A request is sent to the Web service for an ASPX page. This request
may be generated explicitly by the user (such as manually entering a
URL or clicking a hyperlink), or it may be generated through code (such
as Response.Redirect in server-side code or Window.Navigate in client-
side code).

2. If this is the first time this page has been requested, or if the page has
been modified since its last request, the ASPX file is compiled to create
a DLL.

3. Your Page class is instantiated. Any objects associated with your page,
such as controls, are instantiated. The Init event is fired, causing each
object's OnInit method to be invoked.

4. If this is a post back from an earlier instance of the page, each control's
LoadViewState method is called. The controls load their view state from
the ViewState object.

5. If form data was posted to the page, the LoadPostBack method of each
input control is called. The controls load their value properties from the
Form method of the Request object. The LoadPostBack method returns
true if it changed the value properties of its control; it returns false
otherwise.

6. If data was posted to the page, and you are using validator Web
controls, validation occurs at this point.

7. The Load event fires. The Page object's OnLoad method is called.
8. Post-back change notifications are sent. When each control's LoadPost-

Back method was called in step 5, the system kept track of which
controls indicated that their values changed. The
RaisePostDataChangedEvent method of each such control is now
called. Depending on the control type, an appropriate event will fire. For
example, a text box would fire its TextChanged event.

9. Post-back events are handled. If data was posted to the page for a Web
control, its RaisePostBackEvent method is called. Depending on the
control type, an appropriate event will fire. For example, a button would
fire its Click event.

10. The PreRender event is raised. Each control's OnPreRender method is
called. This is the last event that fires before rendering. This is the last
opportunity for your code to make changes to state, if such changes
need to be persisted.

11. The view state is saved. Each control's SaveViewState method is called.
Any changes to state made after this step will not be persisted.

12. The Render event is raised. Each control's Render method is called.
Each control must respond by outputting to the client browser the HTML
that represents the visual representation of the control, if any.

13. The Dispose method of your Page object is called. It calls the Dispose
method of each control on the page. This is your last opportunity to
deallocate and release any resources you have allocated. The instance
of your Page object is destroyed.

14. Users perform actions in their client browser based on the information
that is displayed as a result of the render operation. The user's action
will most likely result in another page request (to the same page or a
different page). The entire process starts over.

 123

As you can see, even this simple Web application has a lot of moving parts. In previous
versions of ASP or Visual Basic, you would have had to either live with less functionality
or expend the effort to write everything yourself. With Visual Basic .NET Web forms, it's
all done for you.

The Web Form Designer

The Web form designer is part of the IDE for creating ASP.NET Web pages, whether
you use Visual Basic .NET or some other language (such as C#). If you worked the
example above, you've already seen the IDE. If not, it should be very familiar to any
Visual Basic developer.

The Web form designer is a form layout tool, which defaults to Design mode (grid view).
A toolbox is available, from which you can drag and drop controls onto your form. If you
select a control, form, class, or any other component of your solution, you can view and
edit its properties in the properties window. Properties are organized in a tree view
structure into conceptual groupings, such as Appearance, Behavior, and Layout. All of
the other windows with which you are familiar (class view, object browser, etc.) are
available.

ASP.NET form layout information is stored in HTML format. As you work with the
Design view in the Web form designer, the IDE is creating and maintaining HTML for
you. If you want to work with the HTML directly, you can switch between Design mode
and HTML mode at the click of a button.

HTML Templates

The HTML created by the Web form designer can be thought of as a template for the
user interface. Although it is not strictly the HTML that will be sent to the client browser,
there is a high degree of correspondence between this server-side template HTML and
the HTML that will be rendered on the client-side.

When you created the ASPX file for the multiplication application example, you did so
by dragging and dropping controls from the toolbox onto a grid-layout form. Behind the
scenes, the IDE was creating an HTML template to describe the form you designed. If
you return to the IDE and click on the HTML button (rather than the Design button) at
the bottom of the WebForm1.aspx window, you can see the following HTML. For
brevity, I have eliminated some elements (such as style attributes).
<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb" Inherits="Ch5_Ex1.WebForm1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET
7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"

 124

content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:TextBox id="txtNumberA runat="server"></asp:TextBox>
 <asp:TextBox id="txtNumberB" runat="server"></asp:TextBox>
 <asp:Button id="btnMultiply" runat="server"
Text="Multiply"></asp:Button>
 <asp:TextBox id="txtResult" runat="server"
Enabled="False"></asp:TextBox>
 </form>
 </body>
</HTML>

We'll examine this code in some detail in the following sections. For now, you might
want to compare the code to what you see in the Web form designer in the IDE. This
HTML code and the UI you see on the screen are simply two different representations
of the same object.

Rendering versus Declaration

Some of the HTML we just showed is standard HTML and will be downloaded to the
client browser as is, without any changes. The rest of the HTML requires further
processing, or rendering, before it will be usable by the client.

<% %>

Anything appearing within the ASP delimiters <% and %> will get processed on the
server. Content appearing inside these delimiters is not HTML, but it may result in
HTML being rendered. Two ASP delimiters are used: <%@ Directive Attributes %> and
<% Code %>.

<%@ Directive Attributes %>

As with ASP pages, every ASP.NET page begins with a directive. The directive tag is
identified by the opening ASP delimiter (<%), followed by an at sign, a directive name, a
set of attributes, and the closing ASP delimiter (%>). In the HTML code from the
previous section, we can see several Page attributes. The Language=vb attribute
specifies that this page is implemented in Visual Basic .NET, as opposed to some other
language. The Codebehind attribute specifies the source file that contains the actual
code.

If no directive name is specified, as in <%@ Attributes %>, the system assumes we are
specifying Page attributes, as in <%@ Page Attributes%>. Other directives allowed are
Control, Import, Register, Assembly, and Output-Cache. The attributes that can be
specified vary with each directive type.
<% Code %>

For compatibility with previous versions of ASP, you can place source code within the
ASPX file, mixed with the HTML. All source code must be enclosed within the <% and

 125

%> delimiters. It is possible to have many such blocks of code. Any output produced by
the code is sent directly to the client browser. The Language attribute in the Page
attribute tag (discussed previously) specifies the language in which this code is written.

Note To realize the benefits of the code-behind model, you should not

place source code in your ASPX file. Keep it in your ASPX.VB file
where it belongs. If you do choose to include code in your HTML
template, you should know that this code is executed during the
Render phase of page processing, as discussed earlier in this
chapter.

Server-Side Controls

Some of the tags in the HTML template correspond to the controls you placed on your
form in the Web form designer. These special tags can be recognized by the fact that
they use the asp: namespace and include the runat attribute.

asp: Namespace

As mentioned earlier, not all of the HTML tags in the ASPX file are intended to be seen
by the client browser. A number of tags are specific to the .NET platform. These tags
are preceded with the asp: namespace identifier. Examples include asp:TextBox and
asp:Button. These tags represent the Web controls you placed on your Web form. Note
that if you wrote your own server-side controls, or installed third-party controls, the
namespace identifier user by those controls would be something other than asp:.

runat Attribute

The client browser doesn't know how to process the tags in the asp: namespace. These
tags represent server controls that must be instantiated as part of page processing. The
server controls then render themselves to standard HTML before they are sent to the
client. You know from the earlier discussion that .NET Framework objects get
instantiated for your server-side code. The runat=server attribute makes this happen.
The tags that begin with asp: and include the runat=server attribute are directives to the
ASP engine to create server-side objects such as a text box
(System.Web.UI.WebControls.TextBox).

All of the HTML you see in WebForm1.aspx was automatically created for you by the
IDE as you dropped controls onto your form and set their properties. You can return to
design view and continue to maintain this file through the graphic UI. Alternatively, you
can make changes directly to this text file, and the changes will be reflected in design
mode.

Client HTML for Multiplication Example

Let's look at what the client browser received when we ran the multiplication
application. Switch back to Visual Studio .NET and run the program again (Debug,
Start, or F5). When the application pops up in your browser window, right-click the
page, and select View Source. Internet Explorer will display the HTML that was
downloaded from IIS. You'll see something like the following code. For brevity, I've
again eliminated some of the attributes of certain tags, such as the style attributes of
the input tags.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

 126

 <HEAD>
 <title></title>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET
7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form name="Form1" method="post" action="WebForm1.aspx"
id="Form1">
<input type="hidden" name="__VIEWSTATE"
value="dDwyNjY4NzY3NzE7Oz4=" />

 <input name="txtNumberA" type="text" id="txtNumberA"/>
 <input name="txtNumberB" type="text" id="txtNumberB"/>
 <input type="submit" name="btnMultiply" value="Multiply"/>
 <input name="txtResult" type="text" id="txtResult"
disabled="disabled"/>
 </form>
 </body>
</HTML>

HTML Rendering

When you created your form for the multiplication example, you added three text boxes
and one button. Looking at the HTML source, you'll find there are four input tags, three
of type text and one of type submit. You didn't write these HTML tags. Here, the .NET
Framework has handled the mapping, or rendering, of the button and text box
semantics to the necessary HTML syntax.

Browser Capabilities

Before ASP.NET, the process of rendering HTML was greatly complicated for any
application that had to support multiple browser applications or even multiple versions
of a single browser. If you were lucky, you were developing for a captive audience such
as a corporate intranet and had the freedom to target a minimum version of a specific
browser. However, if you were writing an Internet application, the people paying the
bills wouldn't have been too happy if you had told them you planned to exclude all
customers who aren't running Internet Explorer 5.5 or later.

I used Internet Explorer 6.0 to view this page. If you are using a browser with fewer (or
more) capabilities, the HTML source you get may be very different than that shown
here. However, it's no longer up to you to figure out how to render HTML for all the
various browsers that might be out on the Internet. All of the standard Web controls
(including the TextBox and Button controls you used here) are intelligent enough to
determine the capabilities of the client browser and render the appropriate HTML.

 127

State Management

If you haven't done so already, close the window that shows the HTML source for the
example application. Return to the browser, and enter 5 in the first text field and 10 in
the second text field. Click the Multiply button. As expected, the number 50 appears in
the third text field. However, it wasn't as simple as it looks.

Recall that the UI is running inside your client browser. It doesn't know that you
intended to multiply the two numbers. When you viewed the HTML source of the page,
you certainly didn't see any event handler code. When you clicked the Multiply button,
the data you entered in the first two text fields got sent (posted) back to your server-
side ASPX file. There, your code multiplied the two numbers and stored the result in the
Text property of the txtResult object. The server-side code then downloaded an entirely
new set of HTML source to the client, which caused the client browser to display the
two numbers you entered, as well as the result of the multiplication.

A very important distinction needs to be made at this point. The objects (such as
txtResult) referenced in your server-side code (such as the btnMultiply_Click event
handler) are server-side instantiations of Visual Studio .NET Framework objects.
Specifically, txtResult is System.Web.UI.WebControls. TextBox. Although the txtResult
object referenced in the HTML source shares the same name, it is an entirely separate
object. It is an IE DOM Input object, and it knows nothing about your server-side code.
The server- and client-based objects are not only different instances, but they are not
even of the same class. How does the server-side txtNumberA TextBox object know
that the user entered 5 in the client-side txtNumberA Input object? How does the client-
side txtResult object know that it needs to display the value (50) of the server-side
txtResult object? Finally, because the client-side page got re-created after the user
clicked Multiply, how do the new instances of the client-side txtNumberA and
txtNumberB objects retain their values of 5 and 10?

In lower versions of ASP, it was your responsibility to know the answers to these
questions because you had to write the code to make these things happen. As we've
seen, the Web controls you dropped onto your ASP.NET Web form encapsulate all of
this logic for you. All of the complexity is handled in the controls' Render,
LoadPostBack, SaveViewState, and LoadViewState methods.

Intrinsic Web Controls—The Ones You'll Use the Most

Microsoft provides a set of useful Web controls with Visual Studio .NET, just as it
provided a standard set of UI controls with Visual Basic. In this section, we'll examine a
few of the built-in, or intrinsic, Web controls. I'll describe a few of the most important
properties, methods, and events of each control.

Note The controls described in this section are Web controls. Microsoft

also provides a set of HTML controls. Both Web and HTML controls
are Web forms server controls. However, the HTML controls have a
high degree of correspondence to standard HTML and do not
provide much functionality beyond HTML. The Web controls provide
a greater degree of abstraction and provide additional functionality
beyond the HTML controls. This can be confusing because both
sets of controls produce HTML when rendered for the client
browser. All HTML controls are derived from the HTMLControl
class. All Web controls are derived form the WebControl class. For
more information, consult the product documentation and compare

 128

the feature sets provided by controls in the
System.Web.UI.WebControls namespace to those in the
System.Web.UI.HtmlControls namespace.

Button

In the multiplication example application, we used a Button control to create a button
that submits the user's inputs on a form to the Web server. Two types of buttons can be
created with the Button control.

By default, the Button control creates a Submit button, which simply submits the user's
inputs (as in our example) and may have an OnClick event handler.

If you set the CommandName property of a Button object, the object creates a
Command button. Like a Submit button, a Command button submits the user's inputs
on a form to the server. However, a Command button also passes the values of its
CommandName property (and if specified, CommandArgument property) to its event
handler. Command buttons have OnCommand events rather than OnClick events. The
primary advantage to using a Command button is that a single event handler can
process the user's interaction with many Command buttons.

The text displayed on the face of a button is stored in the button object's Text property.

Label

The Label control is used to display text on a Web page. From the client browser's
standpoint, the text is static. The user cannot change the text. Of course, your ASPX
code can do so. The text displayed by this control is stored in its Text property.

Example: Adding a Label Control

Let's examine how the addition of a control to a Web form changes the HTML that gets
sent to the client's browser. We'll add a Label control to the multiplication example:

1. Return to the Visual Studio IDE, and open the multiplication
application we created earlier. In the Web form designer, view the grid
layout of your form.

2. Select the three TextBox controls and the Button control. Drag them
down the form to make room for a label at the top.

3. Drag and drop a Label control from the toolbox onto your form.
Position the label at the top of the form.

4. Set the label's ID property to lblWelcome. Set its Text property to
Welcome, followed by your name. Although we are setting the
property statically at design time, in a real application we might be
required to query the user's name from a database.

5. Run the application by pressing the F5 key. Note that your welcome
message now appears above the first input field.

When the server-side Label control renders HTML for the client, it produces an HTML
span tag that contains the text of the label. If you view the HTML source in the browser,
you can see the span tag:
Welcome, Brian Wendt

TextBox

A TextBox creates an input field in the user's Web browser. This control has three
modes of operations, selected by setting its TextMode property.

 129

In SingleLine mode, the TextBox creates an HTML input tag with a type attribute of text.
The user may enter a single line of text. This is the default mode for the control.
In Password mode, the TextBox creates an HTML input tag with a type attribute of
password. Just as in SingleLine mode, the user can enter a single line of text. However,
the data entered by the user in the input field is not displayed on the user's screen.

In both SingleLine and Password modes, the MaxLength property can be set to control
the maximum number of characters the user may enter in the field.
In MultiLine mode, the TextBox creates an HTML textarea tag. The user can enter
multiple lines of text. The user's input is visible on the screen. The Rows and Columns
properties can be set to control the size of the text area in characters. If the user enters
additional data, the text area will scroll. These properties do not prevent the user from
entering a large amount of data.

If the user enters a value or changes the value in a TextBox, the control's TextChanged
event will fire. You can prevent the user from entering data (or changing existing data)
in an input field by setting the Enabled property of the TextBox object to false.

Table

The Table control creates an HTML table. An instance of the Table control usually
contains many instances of the TableRow and TableCell controls.

In previous versions of ASP, tables were very frequently used to control the layout of
the content on a page, for example, to make the fields on a form line up. In ASP.NET,
the Web form designer takes care of ensuring that the user's browser positions controls
as you originally laid out the form. The primary use of the Table control on a Web form
is just what you might expect: to display static data to the user in a tabular format. If
your UI design requires the user to work with the data, consider using the DataList or
DataGrid controls.

The Height and Width properties control the size of the table. If these properties are not
set, the table will be sized to fit its contents. The GridLines property controls whether
grid lines will be displayed around and between the cells in the table. This property can
be set to None, Horizontal, Vertical, or Both.

The Rows property is the collection of rows in the table. Each member of this collection
is a TableRow.

TableRow

TableRow objects are members of the Rows collection of a Table object. They define
the rows in the table.

The Height and Width properties control the size of the row. If these properties are not
set, the row will be sized to fit its contents or to fit the space occupied by the enc losing
Table object. The HorizontalAlign property controls the horizontal alignment of cells
within the row. This property can be set to NotSet, Left, Center, Right, or Justify. The
VerticalAlign property controls the vertical alignment of cells within the row. It can be set
to NotSet, Top, Middle, or Bottom.

The Cells property is a collection of cells in the row. Each member of this collection is a
TableCell.

 130

TableCell

TableCell objects are members of the Cells collection of a TableRow object. They
define the cells in the row. Like TableRow objects, instances of this class have Height,
Width, HorizontalAlign, and VerticalAlign properties.

If you want a cell to span multiple columns within a table, you can set its ColumnSpan
property to the number of columns to span. If you want a cell to span multiple rows, you
can set its RowSpan property.

The Text property stores the value displayed in the table cell. The Wrap property
controls whether or not the value wraps if it is too large to fit within the width of the cell.

Page Class

When you create an ASP.NET Web page, you are creating a Page class. Your Page
class is derived from System.Web.UI.Page and includes properties and methods that
correspond to the controls and other functionality that you implement on the Web page.

System.Web.UI.Page is itself derived from System.Web.UI.Control. Every derived Page
class that you create has many properties and methods exposed from its base classes.

In the discussion of state, I mentioned that the system provides Request, Response,
Session, and Application objects for you. In reality, these objects are properties of the
base class of your Page class. If you have used previous versions of ASP, you will
recognize these objects. The Server object from ASP is also provided as a property of
the base Page class.

The ErrorPage property stores the URL to which the user will be redirected if your code
raises an unhandled exception. The Trace property returns a reference to a
TraceContext object, which can be used for debugging. Tracing and the TraceEnabled
and TraceModeValue properties of the Page object are covered in more detail later in
this chapter.

The IsPostBack property is false if the user is visiting this page for the first time or has
linked to this page from a different page. This property is true if the page has posted
data back to itself.

The User property returns information about the user who requested the Web page.

Example

Let's examine the derived Page class that we defined when we created the
multiplication application example earlier in this chapter.

The ASPX.VB file contains the Visual Basic .NET code behind the user interface
objects defined in the ASPX file. Here are the contents of the ASPX.VB file for the
multiplication application, WebForm1.aspx.vb:
Public Class WebForm1s
 Inherits System.Web.UI.Page
 Protected WithEvents txtNumberA As
System.Web.UI.WebControls.TextBox
 Protected WithEvents txtNumberB As
System.Web.UI.WebControls.TextBox

 131

 Protected WithEvents btnMultiply As
System.Web.UI.WebControls.Button
 Protected WithEvents lblWelcome As
System.Web.UI.WebControls.Label
 Protected WithEvents txtResult As
System.Web.UI.WebControls.TextBox

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e
As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

 Private Sub btnMultiply_Click(ByVal sender As System.Object,
ByVal e
As System.EventArgs) Handles btnMultiply.Click
 txtResult.Text = txtNumberA.Text * txtNumberB.Text
 End Sub
End Class

With the exception of the line of code that actually performs the multiplication, all of the
code shown here was generated by the IDE for you, as you created your form in design
mode or when you created the project.

Class WebForm1

Earlier we worked with instances of the TextBox, Button, and Label classes. You
created these instances by dropping them onto a form. Your ASPX page, itself, is an
object. It is an instance of a class that we were defining as we edited the form in Design
mode. In this case, the name of the class is WebForm1. The class was initially created
from a template when you created the project.

Inherits System.Web.UI.Page
Because it uses the Inherits keyword, class WebForm1 is a derived class. It is derived
from the public base class System.Web.UI.Page. A derived class has all of the
properties and methods of its base class plus whatever additional properties and
methods you choose to define. The derived class does not contain a copy of the base
class. It is the base class, along with additional functionality. Any code that works with
the base class will also work with the derived class.
You are familiar with the Me keyword in Visual Basic, which provides a reference to the
instance of the class on which a method was invoked. (It corresponds to the This
keyword in other languages.) Visual Basic .NET adds a MyBase keyword. Because the
derived class literally is an instance of the base class (plus some added properties
and/or methods), it is possible to coerce an instance of the derived class to be of the
type of the base class. The MyBase keyword simply provides a reference to the base
class of the class on which a method was invoked. Both Me and MyBase return a
reference to the same object. The only difference is that Me is of the type of the derived
class, and MyBase is of the type of the base class.

Fields

 132

The code generated for our example contains five fields. Fields are also known as
member variables. Each of these fields is an instance of a Web control: TextBox,
Button, or Label. These fields correspond directly to the five controls we placed on the
form. Note that WebClass1 is not derived from the TextBox, Button, or Label classes.
Rather, WebClass1 contains fields that are references to instances of these classes.

The IDE automatically added these fields to the class as you added the corresponding
controls to the form in Design mode. If you delete a control from the form, the IDE will
delete the corresponding field from the definition of class WebClass1. Just as in
previous versions of Visual Basic, if you delete a control, the IDE will not delete any of
the other code that is associated with the control, such as event handlers.

Methods

This code contains two methods. The Page_Load method is an event handler. Because
it is specified as Handles MyBase.Load, this event handler is called when a Load event
is raised to the base class of WebClass1. (See the discussion of MyBase earlier in the
chapter.) To clarify, this event handler fires when the page is loaded. An empty event
handler was created by the IDE when you created the project.

The btnMultiply_Click method is also an event handler. Because it is specified as
Handles btnMultiply.Click, this method is called when the user clicks the Multiply button.
(As you've seen, this event actually fires on the server when the client browser posts
back data indicating that the user clicked the button on the client.) The IDE created an
empty event handler when you double-clicked the Multiply button in Design mode; you
then manually entered the single line of code that performs the multiplication.

ViewState Object

Your Page object, as well as every Web control, is derived from the Control base class.
This class exposes a ViewState property, which is a reference to an instance of the
StateBag class. This class is a Dictionary object, which allows you to store name/value
pairs.

You can use the ViewState object to store any state information by using the object as
an lvalue. For example, to create an element named arg1 with a value of 23, you would
use the following:
ViewState("arg1") = 23

When your page saves its view state, this new element will automatically get persisted.
If the client browser posts back to the page, arg1 will automatically get loaded back
from the saved view state, along with all of the other elements. You can retrieve the
value of arg1 with the following code:
lArg1 = CLng(ViewState("arg1"))

Each object derived from the base Control class, including your Page object, has its
own instance of the StateBag class. You don't need to worry about naming conflicts
among the various controls on your page.

Events

Your Page object receives the following events in the following order:
§ The Init event occurs when the Page object is instantiated. This is your

first opportunity to execute code on the page. After this event completes,
the view state and post back data are loaded into the page, and validation
is performed.

 133

§ The Load event is then raised for your Page. After the Load event
completes, data-changed events are fired for Web controls on your page, if
necessary. If any post-back events occurred, the appropriate events are
raised for the relevant Web controls.

§ Your Page object next receives the PreRender event. This is your last
opportunity to make persistent changes to view state. Once this event
completes, the view state is saved.

§ The Render event is sent to your Page object. This event causes all
page content to render itself to HTML.

§ The UnLoad event is then raised. Once this event completes, the
Disposed event is raised. Once your Page object's disposed event handler
completes, the instance of your Page object is destroyed.

More Examples

The examples we've worked with so far introduced you to the fundamentals of
ASP.NET Web forms. Now that you're more familiar with the underlying technology,
let's try a few more examples and gain some hands-on experience with ASP.NET. The
examples in this section will introduce some more advanced techniques and bring
together several of the concepts we've introduced.

A Simple Data Binding Example

In this example, we'll create a form that lets you select your favorite color from a drop-
down list. In a real application, we might want to let users select a choice for a product
they are ordering. In that case, we would almost certainly obtain the list of available
colors from a database. To keep this example simple, we'll bind the drop-down list to an
in-memory array of strings. As before, our first step is to create an empty Web
application:

1. Run the Visual Studio IDE. Close any project you have open. Select
File, New Project. In the New Project dialog box, leave Visual Basic
Projects as the selected Project Type. Click ASP.NET Web Application
under Templates.

2. Enter http://localhost/Ch5-Ex5.9.1 in the Location field. Click OK to
create the project. A new, empty Web application will be created for you.

Next, we'll add controls to the form, and set the controls' design-time properties.
3. Add a Label control to the upper-left corner of your form. Set the Label

ID property to lblColorPrompt and its Text property to Please select your
favorite color. The IDE will automatically resize the label to be large
enough to display the message you enter in the Text property.

4. Add a DropDownList control to the form, beneath the first label. Set the
DropDownList ID property to selColors. Set the AutoPostBack property
to true.

5. Add a second Label beneath the drop-down list. Set this label's ID to
lblSelectedColor. Clear this label's Text property.

We need to build the array of colors for the drop-down list. We don't want to go
to the work of obtaining the list of colors every time the page posts back to
itself. Although in this example the colors come from an array, an actual
application would probably need to query a database. To avoid the overhead
of building the array after the initial load of the page, we only do so if the
page's IsPostBack property is false. If this is the first visit to the page, we build
the array (using a new Visual Basic .NET language feature to initialize it at
declaration) and then set a reference to the array in the DataSource property

 134

of the selColor control. On subsequent post backs to the page, the list of
colors will be reloaded into the drop-down list as part of its view state data.
The next step implements this.

6. Double-click the new Web form to display the Page_Load event handler.
Add the following code to the page on load subroutine:
 If Not IsPostBack Then
 Dim astrColors As String() = {"Red",
"Orange", "Yellow",
"Green", "Blue", "Indigo", "Violet"}

 selColors.DataSource = astrColors
 End If

 DataBind()

We must call the Page's DataBind() method to data bind all bound controls. If
we wanted to, we could bind just selColors by calling selColors.DataBind(). If
we do neither of these, the list box will not get populated.
When the user makes a selection from the drop-down list, we want the Web
page to display the name of the color. We'll use lblSelectedColor to do so. We
must write an event handler for the change event of the drop down list.

7. In the Web form designer, double-click the drop-down list. The IDE will
create an empty event handler for the list's SelectedIndexChange event.
Add the following code to the event handler:

8. lblSelectedColor.Text = "Selected Color: " &

9. selColors.SelectedItem.Text
The program is now ready to be tested.

10. Select Debug, Start, or press F5. You Web form will compile and run in

a browser window.
11. Select a color in the drop-down list. The page will post back to the

server. When it is rerendered, the second label will display the color you
selected.

This example isn't very impressive when you run it. However, it does illustrate data
binding. We did not manually set the collection of color options in the drop-down list
control. Instead, we built an array of colors and bound the array to the drop-down list.
The distinction is important. In a real application, we would use data binding, as we did
here. However, instead of explicitly building an array of colors in the page's load event,
we would retrieve the list of options from the database. We would bind the drop-down
list control to the result set returned from the database. Presumably, the list of options
returned from the database would depend on business rules or relational data, such as
the set of available colors for a selected product.

Adding Controls at Runtime

In this example, we'll add a text box to a form at runtime. We'll illustrate, and then
correct, the problem of .NET not tracking the addition of controls after a post-back
operation.

Once again, our first step is to create an empty Web application:

 135

1. Run the Visual Studio IDE. Close any project you have open. Select
File, New Project. In the New Project dialog box, leave Visual Basic
Projects as the selected Project Type. Click ASP.NET Web Application
under Templates.

2. Enter http://localhost/Ch5-Ex5.9.2 in the Location field. Click OK to
create the project. A new, empty Web application will be created for you.

3. Next, we add controls to the form, and set design-time properties of the
controls. Add a Label control to the upper-left corner of your form. Set
the Label ID property to lblFieldA and its Text property to Field A. The
IDE will automatically resize the label to be large enough to display the
text you enter.

4. Add a TextBox control to the form, to the right of the first label. Set the
ID property to txtFieldA.

5. Add a second Label beneath the first one. Set this label's ID to lblFieldB
and its Text property to Field B.

Don't create a second text box at this time.
6. Add a Button control to the form. Place it below the second label. Set

the ID to btnShow and the Text to Show Values.
7. Add a second button to the form, to the right of the first. Set its ID to

btnCreate and its Text to Create Field.
8. So far, you have been working with the Web forms controls in the

toolbox. Locate the HTML group of controls. Add a Horizontal Rule
control to your form, beneath the Show Values button.

9. Return to the Web controls group in the toolbox. Add a new Label
control. Place the new label beneath the horizontal rule. Set the label's
ID property to lblValueA. The IDE automatically sets the Text property of
a new label control to Label. Clear this entry in the Text property.

10. Add a final new Label control beneath the most recent one. Set its ID to
lblValueB. Clear its Text property.

11. Use the Align and Spacing commands on the Format menu to clean up
the layout of your form.

Your form should now look something like Figure 5.1.

Figure 5.1: Web form designer, form view.

 136

Before we continue with this example, we'll write the click event handler for the
Show Values button.

12. Double-click the Show Values button in the Web form designer. The IDE
will display the button's Click event handler. Add the following code:
 lblValueA.Text = "A = " & txtFieldA.Text

Do not add any other code at this time.
Now run the program. We haven't written any code for the Create Field button, so
clicking it will do nothing but cause a round trip to the server. Enter a few words in field
A, and click the Show Values button. The first label beneath the horizontal rule will
display A = value, where value is whatever you entered in the text box.

Now that we've seen how the show values function works, we'll implement the create
field function. This function is the point of the example: It does the actual work of adding
a control at runtime. I don't like to perform too much work within event handlers, so I've
put the code to add the control in a separate subroutine:

1. Return to Visual Studio and view WebForm1.aspx.vb. Add the following
subroutine:
Private Sub AddFieldB()
 Dim txtFieldB As New TextBox()
 txtFieldB.ID = "txtFieldB"
 txtFieldB.Width = txtFieldA.Width
 txtFieldB.Height = txtFieldA.Height
 txtFieldB.Style("LEFT") = txtFieldA.Style("LEFT")
 txtFieldB.Style("TOP") = 49
 txtFieldB.Style("POSITION") = "absolute"

 Dim objForm As HtmlForm
 objForm = Page.FindControl("Form1")
 objForm.Controls.Add(txtFieldB)

 btnCreate.Enabled = False
End Sub

In this subroutine, we create a new text box control and set its properties. We
set most of its position and style properties to be identical to the first text box.
We then add the text box as a child control of our Page object's Form control.
Let's try calling the subroutine from the click event handler of the Create Field
button.

2. Return to the Web form designer and double-click the Create Field
button on your Web form. Visual Studio will display an empty
btnCreate_Click subroutine. Add a call to the new AddFieldB()
subroutine to the body of this event handler.

3. Do not add any code to display the value of Field B at this time.

Run the program again at this point. Click the Create Field button. A new text
box will appear on the form. So far, we have been successful. However, in our
earlier discussion of state management, I identified the problem of .NET not
persisting the fact that new controls have been added at runtime. We can
force a post-back operation by clicking the Show Values button at this time.
Note that the new field we just added disappears. This is because the post-
back operation caused a new instance of our Page object to be created from
our derived Page class. Our derived Page class does not include the text box
for Field B.

 137

To fix this problem, when we add the new text box at runtime, we must also
add some information to our view state to remember that we created the
control. Then, we must check for this flag when we reload the page. If we find
the flag, we have to add the control again.

We'll modify the code to persist this change (the addition of the control at
runtime) through multiple round trips from client to server.

4. Add the following line of code to the btnCreate_Click event handler:
ViewState("blnCreatedFieldB") = True

5. Add the following lines of code to Page_Load:
Dim blnCreatedFieldB As Boolean
blnCreatedFieldB =
CBool(ViewState("blnCreatedFieldB"))
If blnCreatedFieldB Then
AddFieldB()
End If

6. Add the following lines of code to btnShow_Click:
 Dim txtFieldB As TextBox
 txtFieldB = Page.FindControl("txtFieldB")
 If Not txtFieldB Is Nothing Then
 lblValueB.Text = "B = " & txtFieldB.Text
 End If

The Web page should now work as expected. Experiment with entering values and
clicking the buttons.

A Multipage Example

All of the examples we've seen so far consist of single-page Web sites. In practice,
most Web applications you write will contain dozens or perhaps even hundreds of Web
pages. This example demonstrates how information can be passed from code
executing in one Web page's Page class to code executing in another page's Page
class.

We'll build on the earlier data-binding example. We'll implement two Web pages. The
Color Selection page will allow users to select the color of car they are interested in
purchasing. The user will then be redirected to the Car Inventory page. The Car
Inventory page will provide a list of cars that are available in the selected color. The
purpose of this example is to demonstrate maintenance of state information about a
user's selection. To simplify this example, we'll give the user the same list of cars for
every color. In a real application, we would query the database to retrieve the list of
cars actually on hand in the selected color.

For the Color Selection page, we'll start with the code from the data-binding example
and make a few changes:

1. You can start by opening the solution you created for the data-binding
example. If you wish to keep the earlier code, you can either create a
copy of the solution and Web application, or you can repeat the steps for
the data-binding example, specifying Ch5-Ex5.9.3 as the project name.

Presumably, the user's color selection will be useful on many other pages. The
Session object allows us to retrieve the information from any Web page within
the application, for the duration of the user's session. If we only needed the

 138

color selection on the Car Inventory page, and nowhere else in the application,
we would probably use a different mechanism to pass the user's selection. A
good choice in that case would be to send the color selection using an HTTP
form POST. Because we expect to use the color selection on many pages,
we'll use the Session object to store the selected color.

2. Add the following line of code to the existing selColors_SelectedIndex-
Changed:
Session("strColor") = selColors.SelectedItem.Text

The user needs to be able to get from the Color Selection page to the Car
Inventory page easily. We'll place a hyperlink on the Color Selection page that
allows users to navigate to the Car Inventory page with a single click. We
won't allow users to use the hyperlink until they've selected a color.

3. Add a Hyperlink control from the toolbox to your Web form. Position the
control below the lblSelectedColor label. Set the Hyperlink ID property to
objCarsLink, Text to Click Here to View Inventory, NavigateUrl to
Cars.aspx, and Enabled to False.

4. Add the following line of code to the existing selColors_SelectedIndex-
Changed:
objCarsLink.Enabled = True

We've now completed the modifications necessary to change the data-binding
example into the Color Selection page. Next, we'll create the Car Inventory
page. Because we already have a project, we don't need to create an empty
Web application. Instead, we'll add an additional Web page to the existing
project.

5. In the Visual Studio IDE, locate the Solution Explorer window. If the
window is not visible, you can select it from the View menu. Right-click
the Web site (Ch5-Ex5.9.3 or Ch5-Ex5.9.1) and select Add, Add Web
Form...

6. The Add New Item dialog box appears. Leave Web Form selected in the
Templates window. Enter Cars.aspx in the Name field, and click Open.
A new, blank Web form will be added to your application.

7. In the Solution Explorer window in the IDE, right-click WebForm1.aspx,
and select Set as Start Page.

Our Web application now consists of two Web pages. WebForm1.aspx is the
Color Selection page, and Cars.aspx is the Car Inventory page. We've added
the Car Inventory page to the Web application, but currently the form is blank.
We'll now add controls to the form and set the design-time properties of the
controls.

8. On the new Cars Web form, add a Label control in the upper-left corner
of the form. Make the control about 25 pixels tall and 300 pixels wide.
Set the label's ID property to lblTop. Clear its Text property.

9. Add a ListBox control beneath the label on the new form. Make the list
box the same width as the label control and about 150 pixels tall. Set the
list box's ID property to selCars.

10. Locate the Items property in the ListBox properties window. Click the
value field for this property. Click the ellipsis button that appears. The
List Item Collection Editor dialog box will display.

11. In the List Item Collection Editor, click the Add button. Set the Text
property of the new ListItem to Acura RSX Type-S. Click the Add button
again and create an item with a Text property of Toyota MR-2 Spyder.
Repeat this process to create items for Nissan 2003 Z-Concept and
Chevy SSR/S10 Roadster. Once all four items have been added, click
OK to close the collection editor.

 139

When users visit the Car Inventory page, we need to retrieve their selected
color from the Session object. In this example, we'll just show the selected
color on the Inventory page to prove we actually did pass the information from
the Color Selection page.

12. Double-click the new Cars.aspx Web form. The Code-Behind file,
Cars.aspx.vb, will display. Add the following code to Page_Load:
Dim strColor As String
strColor = Session("strColor")
lblTop.Text = "We have the following " & strColor & "
cars in stock."

13. Select File, Save All to save all changes. Select Debug, Start, or hit F5.
WebForm1.aspx displays in your browser. Select a color. The server-
side code stores your color selection in the Session object, sets the text
of the label property to display your selection, and enables the hyperlink
at the bottom of the page.

Click the view inventory hyperlink. Cars.aspx displays in your browser. It retrieves your
selected color from the Session object and displays it in the Label control. It then
displays the static list of cars that you created at design time. Of course, in an actual
application, you would query a database for the stock on hand.

A Peek behind the Curtain: Tracing

Debugging Web applications can be difficult. Your code is actually executing on the
Web server, but the user interface is displayed in a Web browser. Usually these
processes are running on different machines. A large number of copies of your code
may be running in parallel if many people are using the Web site. You may not have full
control of the Web server. There are many collections of information involved: session
and application variables, HTTP post data, cookies, and HTTP headers, for example.

In previous versions of ASP, the easiest solution was to add debugging code in the
form of calls to the Write method of the Response object. This method accepts a string
and outputs it literally to the client browser. The debugging information was probably
mixed in with the HTML for the page content, because it would be difficult to separate
the two streams of data. Frequently, adding or removing the code to produce diagnostic
output introduced new errors.

ASP.NET introduces the Trace object. Trace is actually a property of the base Page
class and is a reference to a TraceContext object. This object provides properties and
methods to write diagnostic messages to a separate output stream. You can control
tracing on an application or Web page level. Tracing can be disabled or enabled. If
enabled, trace messages can either be appended to the end of the rendered Web
page, or they can be stored in memory and retrieved using the trace.axd utility.

When Not to Use Tracing

Tracing is great for quickly debugging applications in development or to provide
additional data for developers to watch for bugs that might not be readily apparent in
the UI. When an application is deployed to the production server, tracing should be
disabled because it adds additional processing and memory overhead to the Web
service. If an application is being beta tested or otherwise made available to the public,
you should be wary of leaving tracing enabled. Depending on the design of your
application, trace messages could expose application data that would create a security

 140

risk or violate privacy or confidentiality. Finally, if you are debugging a complex
problem, you may be better off using a debugger.

TraceContext Class

The TraceContext class is the main programmatic interface to the tracing facilities in
ASP.NET. Each Page inherits from its base Page class a Trace property, which is a
reference to an instance of this class. This following methods and properties are
exposed.

Methods

The Write method adds an entry to the trace log. It exposes three overloads. The first
variation accepts a single string parameter and adds it to the log as a trace message.
The second variation accepts two string parameters. The first parameter is a category;
the second is the message. The final variation accepts two string parameters and a
reference to an exception object. The first two parameters are the category and
message, and the third parameter is the error information to be logged.

The Warn method is identical to the Write method in all ways except that any trace log
entries created with the Warn method are displayed in red.

Properties

IsEnabled returns a boolean value that indicates whether or not tracing is enabled for
the current page.

TraceMode is a read/write property that indicates the order in which trace messages
are displayed. It can take the values SortByCategory and SortBy-Time.

Implementing Page-Level Tracing

You can turn tracing on or off for individual Web pages by specifying a Trace attribute in
the Page directive. As you recall from earlier in this chapter, every ASPX page begins
with a list of page attributes enclosed in a <%@ %> tag. The ASPX file for our
multiplication application began with the following page directive:
<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb" Inherits="Ch5_Ex1.WebForm1"%>

To enable tracing for this page, we would add the Trace attribute with a value of true:
<%@ Page Trace="true" Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb" Inherits="Ch5_Ex1.WebForm1"%>

If we view the page after adding this attribute, we can see that a great deal of
diagnostic information is now provided, even though we haven't added any explicit
trace messages.

Implementing Application-Level Tracing

Web.config is an XML file that specifies a number of application-level settings in
ASP.NET. This file can be found in the root directory of the application's Web site.
Tracing can be controlled for an entire application by setting attributes of the trace tag
in the application's Web.config file.

 141

Note If tracing is specified at both the application and page level, the
setting in the page's directive tag overrides the setting in the
Web.config file. To make it easier to disable tracing when your
application is ready for deployment, it would be best to control
tracing at the application level, in Web.config.

Modifying Web.Config for Tracing

Visual Studio automatically created the following entry in our Web.config file when we
created the multiplication application:
 <trace enabled="false" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />

This tag includes the following attributes:
§ The enabled attribute enables or disables tracing for the application.
§ The pageOutput attribute controls where messages are displayed. If this

attribute is set to true, trace messages are appended to the end of each
Web page. If this attribute is set to false, trace messages are kept in
memory, and you must use the trace.axd tool to view the messages.

§ If pageOutput is set to false, the requestLimit attribute controls how
many sets of trace data are kept in memory. Each request for a page
with tracing enabled creates a new set of trace data.

§ The traceMode attribute sets the default value of the TraceMode
property of the all pages' Trace objects. This attribute's value can be
either SortByTime or SortByCategory.

§ The localOnly attribute specifies that trace.axd is only available locally,
on the machine on which the Web server is running.

If we want to enable tracing for this example application, we need only change the
value of the enabled attribute from false to true. It is not necessary to recompile the
application after changing Web.config.

Using Trace.axd

If tracing is enabled and the pageOutput option is set to false, the Web server will
record trace log data in memory. This data can be viewed using trace.axd. This tool is
an HTTP handler that appears to your Web browser to be located in the root directory
of each application on your Web server. For example, if the URL for the multiplication
application is http://localhost/Ch5-Exl/WebForm1.aspx, the trace data can be viewed by
accessing the URL http://localhost/Ch5-Exl/trace.axd.

You can also disable trace.axd for an application by editing the application's Web.config
file. You might want to disable this tool to avoid placing temptation in the path of
hackers. To disable trace.axd, locate the <httpHandlers> tag. Add the following tag just
before the </httpHandlers> tag:
<remove verb="*" path="trace.axd" />

You can disable trace.axd for an entire Web server by editing the server's
machine.config file. This file is located in the directory:
%SystemDrive%\WINNT\Microsoft.NET\Framework\Version\CONFIG

Open the machine.config file and locate the <httpHandlers> tag. Within this tag, find the
<add> tag for trace.axd. Place a begin comment tag (<!—) at the beginning of the line
and an end comment tag (—>) at the end of the line. The <add> tag should look similar
to the following:

 142

<!—<add verb="*" path="trace.axd"
type="System.Web.Handlers.TraceHandler, System.Web,
Version=1.0.2411.0,
Culture=neutral, PublicKeyToken=b03f5f7fIld50a3a" />->

Once you changed either the Web.config or machine.config file, you will receive a
resource not found error if you try to view the trace data, even if tracing is enabled for
an application or Web page.

Trace Output

When you enable tracing, you get more information than the trace log entries you
created with Trace.Write. We'll examine each section of the trace data individually. The
sample trace output sections are from our multiplication application.
When you request trace.axd for a Web application, the first thing you'll see is a list of
the trace logs that exist in memory for that application, as shown in Figure 5.2. You can
click the View Details link to see all of the information for the selected log.

Figure 5.2: List of trace logs.

Request Details
The View Details link displays multiple sections of detailed information about the
selected trace. The summary section, shown in Figure 5.3, includes general information
about the Web page request that created the trace log. This section includes
information such as the session ID, time of request, type of request, and HTTP status
code.

Figure 5.3: Summary of the selected trace.

Trace Information
The next section, shown in Figure 5.4 , lists the trace log entries. The .NET Framework
automatically created the log entries. If you added any additional trace logs with the
Write or Warn methods of Trace, they would appear in this section. Each row in the
table is a trace log entry. Each entry includes the category and message, the number of
elapsed seconds from the first log message to the current entry, and the number of
elapsed seconds from the previous log message to the current entry.

 143

Figure 5.4: List of events for the selected trace.

Control Tree
The control tree, shown in Figure 5.5, contains truncated information about each control
on your page. Controls exist in a tree structure, with your derived Page object at the
root. (Recall that your Page object is derived from the base Page class, which is, itself,
derived from the Control class).

Figure 5.5: Control tree for the selected trace.

The size columns in this table are useful for determining the amount of overhead for
each control. All of the render and view state data must be downloaded to the client
browser on each round trip. The view state data must also be posted back to the server
on every post-back operation.

Cookies Collection
The Cookies Collection, shown in Figure 5.6, displays information about each cookie
used by your page. Information includes the name, value(s), and size in bytes of each
cookie. In the multiplication application, we aren't using any cookies explicitly. ASP.NET
does use a cookie, as shown in Figure 5.6, to maintain session state.

Figure 5.6: Cookies for the selected trace.

Headers Collection
The Headers Collection, shown in Figure 5.7, includes the list of name/value pairs of
HTTP headers. Headers are sent from the client to the server as part of each request.

 144

Figure 5.7: HTTP headers for the selected trace.

Form Collection
If the selected request included a form post, the posted data will be displayed. The
Form Collection, shown in Figure 5.8, consists of a simple list of name/ value pairs. The
VIEWSTATE form variable is used internally by ASP.NET to maintain view state across
page post backs.

Figure 5.8: Form variables for the selected trace.

Server Variables
The final section is the list of name/value pairs of all server variables. Due to the large
size of this table, I have included only a subset of the rows in Figure 5.9. You can
access server variables in your ASP.NET code through the Server-Variables collection
of the Request object.

Figure 5.9: Server variables for the selected trace.

Tracing in Deployed Applications

One of the big advantages of the new tracing facility in ASP.NET is that it is no longer
necessary to go through the code and remove all of the diagnostic logging messages

 145

prior to deployment. The calls to the Trace object's methods can be left in place. Once
tracing is disabled for the application, the calls will simply be ignored.
Unfortunately, disabling tracing turns off all trace log entries. There may be a few log
messages that you want to generate regardless of whether tracing is enabled or
disabled.

System.Diagnostics

The System.Diagnostics namespace includes classes that can be used for application
logging and debugging. You can use members of the EventLog class to write events to
the NT event log from your Page object. Compare this to the Write or Warn methods of
the Trace class. Both classes allow you to write logging information. The methods of
the Trace class are intended for use during active development and QA of your
application. You'll probably disable most or all tracing when you deploy to production.
The EventLog class, on the other hand, might be used to log more important
exceptions. The information you log to the event log might be relevant to the network
administrator. Alternatively, you might use the event log to log critical information, such
as suspected data integrity issues. Because you'll probably only use the event log when
the most serious exceptions are detected, you can leave the event log code enabled in
the production application.

Writing to the Event Log

Before you can write events to the event log, you must register an event source. An
event source is simply a name under which all of your log entries are listed. Its purpose
is to add a level of organization to the event log. You can use the CreateEventSource
method to register an event source in your code. If you want to avoid reregistering the
source each time your code executes, use the SourceExists method to check for prior
registration. Both of these methods are shared members of the EventLog class, so it is
not necessary to create an instance of EventLog to use them. You do need to add the
following line to the top of your file:
Imports System.Diagnostics

You can the use the following code to add the event source MultExample to the NT
application log:
If Not EventLog.SourceExists("MultExample") Then
 EventLog.CreateEventSource("MultExample ", "Application")
End If

Once you have registered your event source, you can log events using the WriteEntry
method of the EventLog class. This method is also shared, so again no object instance
is required.
EventLog.WriteEntry("MultExample", "This is a test log entry.")

To view the application log, right-click My Computer on your desktop and select
Manage. The application log is located under Computer Management, System Tools,
Event Viewer, Application.

Wrapping Up

As you've seen, creating Web pages with ASP.NET can be as easy as creating
windows applications with the Visual Basic IDE.

 146

In this chapter, we've discussed Web forms and taken a look at many of the complex
details beneath the surface. We've delved into HTML rendering, basic state
management, server and client HTML, and the code behind the Web form. We've
worked with a few of the intrinsic Web controls that Microsoft provides for rendering
HTML to the client. In the next chapter, we'll learn how you can write your own Web
controls.

 147

Chapter 6: Using ASP.NET Web Controls

Overview

A man's mind stretched to a new idea can never go back to its original
dimension.
Oliver Wendell Holmes
One of the exciting new features of ASP.NET is the ability to use and customize server-
side controls. Control use is natural to every Microsoft Visual Basic Developer; now we
can use our knowledge of these and apply them to ASP.NET. Building on the
discussion in Chapter 4 about HTML controls, in this chapter we will shift focus to the
Web controls. I will illustrate how to use them and how they function with practical
examples. Because many of the Web controls will be familiar to the Visual Basic
developer from the start, we're going to see essential use scenarios such as the
difference between HTML, ActiveX, and Web server controls, how to build a Web
server control, how to persist a control, state maintenance within the control, and Web
server controls versus Web user controls. Once you see how powerful Web server
controls are compared to their predecessors, you'll always want to find a way to
leverage them in your Web applications.

Web Server Controls versus HTML Controls

Traditional Web Controls came in two well-known varieties. First, the HTML Control
was controlled by the browser. The browser was responsible for the graphical
representation of the control, as well as responsible for handling the events of the
HTML on the client-side. A second type of control was the ActiveX Control. This control
had to be approved by the client, and then had to be downloaded for use. The Web
page then referenced the CLSID of the control and all processing was still handled on
the client-side. The IIS Server would receive the ASP request for an ASP page, parse
and process server-side logic, and handle information entered for the control. Anytime
an update for the control was introduced, the CLSID changed, forcing the user to
download the new ActiveX Control before the correct functionality could resume. Both
HTML and ActiveX Controls still exist and operate today, as well as a new type of
control, the Web Server Control, that works exclusively with Web forms and has the
special ability to abridge convoluted processing logic, concealing the code and
processing intricacy from the user and the developer.

The client-side logic behind HTML Controls is interpreted and rendered in the client's
browser. The events that occur for HTML Controls are generally supported in the same
HTML Web page or an include file, creating the potential for exposing the source code
to a user. Even if the ASP page is encrypted, viewing the source can still expose
lengthy pages of unsightly rubbish to a user. A huge issue with HTML Controls is
infirmity. For instance, you cannot make API calls using HTML Controls, and all client-
side logic must either be embedded in the HTML page or exist in include files that are
included in the ASP page.

Conversely, ActiveX Controls are more robust controls, offering a developer greater
client-side dexterity because the control consists of compiled Microsoft Visual Basic
Code, as well as offers a more appealing GUI to the user. The real downfall to the
ActiveX control is the fact that its fate depends on some presumptuous and somewhat
risky factors.

 148

First, the end-user is given the ability to determine whether or not an ActiveX Control
can be downloaded to their PC. If options on the Browser are not explicitly set, then the
ActiveX Control will not be downloaded to the client's PC. Also, only certain Web
browsers support the use of ActiveX Controls, and a number of COM interfaces are
required in order for a Web browser to run ActiveX Controls. If a call is made to an
ActiveX Control that does not exist on the client's PC, then obviously the Web
application will fail.

Second, if the application uses custom components, and the code within a custom
ActiveX Control is modified to the extent that it requires recompilation, then the CLSID
will change, forcing the user to download the component and run a Setup Application
each time this occurs. Also, a modification must be made to the ASP Page so that it
references the correct CLSID of the newer component being published. If the proper
ActiveX Control is not present on the client's PC, then the call to reference the
component in the browser will once again fail.

The Web Server Control can be thought of as a hybrid between the HTML Control and
the ActiveX Control, offering all of the positive aspects of these types of controls, and at
the same time overcoming the negative traits of each as well.

Web Server Controls, much like ActiveX Controls, allow you to separate the processing
layer from the presentation layer of the component. The code is compiled, again like the
ActiveX Control, but the components are not downloaded and referenced on the client's
PC. Instead, Web Server Controls reside and respond to client events on the Server.

When certain events are fired on the ASPX Page, page information relating to the event
is sent to the IIS Web Server for processing. The IIS Server determines which ASCX
file is responsible for handling the events associated with the events invoked by the
user, and references the file.

User Controls

In addition to the conveniences offered by Web Server Controls, Web user controls
exist to allow users to create custom controls. Also known as pagelets, user controls
can be thought of as ASP.NET pages encapsulated within an ASP.NET Web form,
allowing you to save your Web page as a user control without having to write any
additional lines of code or use any server-side includes.

User controls are created using the same programming model as ASP.NET pages,
which allows you to create custom controls using the same methods that are required
to create a Web forms page.

Each individual user control requires that you use a single language to author it;
however, multiple controls that are written in different Microsoft-supported languages
can work together peacefully on a single Web form. The user control is not initially
compiled. However, it does automatically compile when initially called by the Web form
and preserved in the memory of the server to prevent diminishing response times that
can occur by ongoing requests of interpreted code. The syntax for calling a control in to
memory within the ASPX Page looks like this:
<%@ Register TagPrefix="YourPrefixHere" TagName="YourTagHere"
Src="RelativePathToTheSourceFile" %>

Remember this line of code because we implement it later in the chapter when we
create our own custom Web user control.

 149

Templates

Templates allow you to separate the data layer and the presentation layer of the
control. We will provide an example of a template when we create our own custom User
Web Control later in this chapter. The template portion of the Web user control allows
you to create a Web interface that is isolated from any of the manipulative code that
takes place behind the scenes. Although client-side script can exist in the template, the
primary purpose of a template is to provide a standard look and feel interface for the
user. The template portion of the control is housed in the .ascx* file, and the associated
code that manipulates the content resides in the .ascx.vb portion of the .ascx control.

Control Class
As briefly discussed in Chapter 5, ASP.NET Web server controls originate from the
System.Web.UI.Control Class. Two classes are considered to be base classes of
ASP.NET server controls: System.Web.UI.Control and System.Web.
UI.WebControls.WebControl. Let's take a look at both of these.

System.Web.UI.Control
The properties, methods, and events that are common to all ASP.NET server controls
are defined in the System.Web.UI.Control base class. Some of the most commonly
used properties of System.Web.UI.Control are:

§ ID. The unique identifier of the control that is assigned by the developer
and offers the developer a simple way to differentiate between two like
controls and respond to events initiated by each distinctive control on the
client-side.

§ UniqueID. A unique identifier that is assigned to the control by ASP.NET
when a page first loads. It is different from the ID, because it is
automatically generated and is read-only.

§ Page. The Web form containing the Web server control. It is responsible
for the presentation layer of the application.

§ Controls. A collection of control classes child controls. Controls that are
placed on a Form class fit this description.

§ ViewState. Used for persisting data on the Web form. As Web server
control events force communication between the client and the server, the
ViewState is responsible for persisting state between page views.

§ Visible. Determines the visibility of a control during runtime. This property
read/write, so it can also be modified at runtime.

The following is a list of the most common methods for this class:
§ LoadViewState. Defines how persisted data is returned between page

views.
§ SaveViewState. Defines how data is persisted during the transition

between page views.
§ CreateChildControls. Used by composite controls for child control

creation.
§ Render. Initiates the rendering of a control in a Web browser.

§ Dispose. Provides for the unloading and cleanup of a control.

The most commonly occurring events in a System.Web.UI.Control base class are:
§ Init. Fires during the initialization stage of the control.

 150

§ Load. Fires during the loading of the control.
§ Data Binding. Fires during data binding.

§ PreRender. Fires prior to the output being rendered.

§ Unload. Fires just prior to unloading the control.

System.Web.UI.WebControls. WebControl

The System.Web.UI.WebControls.WebControl is responsible for offering additional
properties and methods for managing the functionality of the user interface. The most
commonly used properties in a System.Web.UI.WebControls. WebControl are:

§ Forecolor. Controls the Forecolor of the Web control. You can choose
from the Web Palette, Named Colors, System Colors, and Custom Colors.

§ Backcolor. Controls the Backcolor of the Web control. You can choose
from the Web Palette, Named Colors, System Colors, and Custom Colors.

§ BorderStyle. Controls the BorderStyle of the Web control. You can choose
from notset, none, dotted, dashed, solid, double, groove, ridge, inset, and
outset.

§ Height. Controls the Height of the Web control. You can choose pixel-
Height or posHeight.

§ Width. Controls the Width of the Web control. You can choose pixel-Height
or posHeight.

Declaring a Control

Controls offer the user an attractive presentation layer to insert and examine data and
offer developers a component oriented way to layout a page, as well as capture and
manipulate the data.
As covered in the previous chapter, Microsoft offers a foundation of Web server
controls that provide support for inserting, examining, and capturing user data and allow
a developer to create custom Web server controls to meet the needs of unique software
solutions.

Let's create a new form that displays a server control:
1. Make sure you either create or already have at hand an IIS recognized

virtual directory established to store your test code.
2. Open up a text-based editor of your choice. Microsoft Notepad will be fine

for these very small examples that are simply used to familiarize you with
declaring .NET Web server controls.

3. Now try declaring a simple Web server control in the editor by copying in
the following line of code. We are using the TextBox control, listed in
Table 6.1, and we are manipulating the text property and telling IIS to run
the code server side.

Table 6.1: Commonly Used Default Web Forms Server Controls
WEB SERVER DESCRIPTION

Label Provides a standard and programmatically
editable manner of presenting text on a Web

 151

Table 6.1: Commonly Used Default Web Forms Server Controls
WEB SERVER DESCRIPTION

form.

Button Allows a user to submit a command from a
Web form or perform some other internal
action. The three visually distinctive valid
button controls that essentially offer the
same type of functionality are:

§ Standard Command Button
(Button control)

§ Hyperlink Button

(LinkButton control)

§ Graphical Button

(ImageButton control)

Image Programmatically displays graphical images
on a Web form.

TextBox Captures or displays single and multiline
user text -based input on a Web Form

DropDownList Displays a group of data in a drop-down list
box. A default item will be listed initially, and
all items within the list box will be displayed
once a user clicks the control.

Table/TableCell/TableRow Provides the ability to create a common table
on a Web form.

Calendar Provides the ability to create a common
calendar, display dates by month, and
captures user date selections.

CheckBox/CheckBoxList A Boolean-based control that allows users to
select one or more items from a generally
inclusive list.

RadioButton/RadioButtonList Allows users to quickly select a single item
from mutually exc lusive lists of items.

ListBox Allows a user to choose one or more items
displayed in the list box. The list box, by
default, will show all pieces of data available.

Panel A container used to encapsulate the control
of all other user controls placed within its
boundaries, allowing for a single point of
control through the panel. This is usually
used to group mutually inclusive controls
together.

HyperLink Allows a developer to create navigational to
links on a Web page.

 152

Table 6.1: Commonly Used Default Web Forms Server Controls
WEB SERVER DESCRIPTION

Repeater Displays a list in a user-defined manner.

Ad Rotator Displays semi-random graphic images.
Allows the developer to dictate the odds of
which graphics display more often.

<HTML>
 <HEAD>
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post"
runat="server">
 <asp:TextBox id="TextBox1" style="Z-
INDEX: 101; LEFT:
203px; POSITION: absolute; TOP: 84px"
runat="server">Nothin' but
.NET!!!</asp:TextBox>
 </form>
 </body>
</HTML>
ox runat="Server" Text="Nothin' but
.NET!!!"></asp:textbox>

Note In the code example above, we created a textbox, supplying it with an
ID, the unique identifier of the control defined earlier in this chapter.
Normally, the id attribute would allow a developer to access the
properties and methods of this specific textbox in client-side script. But,
the "runat=server" attribute forces the server to handle events that are
invoked by the ASP.NET Web forms page, using the UniquelD of the
Web server control's naming container when the page request is
handled on the server.

4. Now Save this line of code to a file in the virtual directory identified in step

1. Remember to save it with an .aspx file extension or it will not work.
5. From the Microsoft IE browser, navigate to the virtual directory that

contains the .aspx file that you just created and press the Enter key. The
contents should look like Figure 6.1.

 153

Figure 6.1: Textbox control example.

There you have it, a .NET Web server control in action.
6. Now let's try an example using the DropDownList control. Copy the

following lines of code into your text-based editor and save it. Render the
page in your browser, and it should resemble Figure 6.2.

 154

Figure 6.2: DropDownList control example.

<HTML>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:DropDownList id="DropDownList1"
runat="server">
 <asp:ListItem Value="0"
Selected="True">99 Bottles
Of Beer On The Wall</asp:ListItem>
 <asp:ListItem Value="1"
Selected="False">99 Bottles
Of Beer On The Wall</asp:ListItem>
 <asp:ListItem Value="2"
Selected="False">99 Bottles
Of Beer On The Wall</asp:ListItem>
 <asp:ListItem Value="3"
Selected="False">99 Bottles
Of Beer On The Wall</asp:ListItem>
 </asp:DropDownList>
 </form>
 </body>
</HTML>

 155

Persisting Your Control

The control object contains a ViewState property that allows you to easily persist and
manage state. It supports name/value pairs in a string data type and is passed back
and forth between the client and server in the form of a hidden variable. When used on
property data, the property value will continue to be persisted. Because of its
nonencrypted, simple-text form, I don't advise you to store sensitive information, such
as passwords or the equivalent in terms of confidentiality, in a ViewState property.
However, for all non-sensitive data, the ViewState property is an appropriate means for
persisting data.

 Public Property Car() As String
 Get
 Return CStr(Viewstate("Car"))
 End Get
 Set(ByVal Value As String)
 ViewState("Car") = Value
 End Set
 End Property

ViewState allows information to persist by taking advantage of the state bag, whereby
the page and all its values are cached during processing and returned on the next
return trip. The state bag is a location where all property name/ value pairs are stored in
memory. The ViewState property applies primarily to controls. For typical .aspx Web
processing, the Session and Application objects continue to live on and will most likely
meet your persistence needs.

Because of the overhead associated with persisting state, minimize the amount of
information that is being persisted to crucial elements.

Note .NET state bags are very similar to the property bags that were

used heavily in client-side ActiveX controls. If you are familiar with
the property bag, the state bag probably will not present much of a
challenge to you. They are much easier to deal with because most
of the overhead has been taken care of for you by .NET. The state
bag is used to maintain a data structure and house values on the
server in a name/value pair and can be resurrected to the client
calls that are made to it during processing on the server. We will
discuss ViewState further in Chapter 9 .

Building a Simple Control

Now let's build a simple Web form user control that we can call from an .aspx file. The
following steps will walk you through creating a Web user control and displaying it in a
Web form. Before we begin, make sure you create, or already have at hand, a virtual
directory in which to store your test code.

1. Open up the VisualStudio.NET IDE, and click on File, New, Project. You
should now see the New Project dialog box as shown in Figure 6.3.

 156

Figure 6.3: The New Project dialog box.

2. Choose the ASP.NET Web Application as the template to use, and name

it MyWebControlProject. Follow along by looking at Figure 6.4.

 157

Figure 6.4: The New Project dialog box.

3. Now add a Web user control to the project by clicking on File, Add New

Item as shown in Figure 6.5 . The Add New Item dialog box will appear.
Choose the Web user control as the template and name the file
MyWebUserControl.ascx. An example of this is shown in Figure 6.6.

 158

Figure 6.5: Adding an Item.

Figure 6.6: Add New Item dialog box.

You are now returned to the .NET IDE, and the MyWebUserControl. ascx file
should be highlighted in the Solution Explorer pane of the IDE.

 159

4. Now copy the following lines of code into the MyWebUserControl.ascx file
HTML Editor pane. The destination file for this code is the template file
that we talked about earlier in this chapter. After doing this, click on the
Design Editor pane, and you will see the control that you just created in
HTML (see Figure 6.7 for a visual display of what your screen should look
like at this point).

Figure 6.7: Web user control.

<%@ Control Language="vb" AutoEventWireup="false"
Codebehind="MyWebUserControl.ascx.vb"
Inherits="MyWebControlProject.WebUserControl1" %>
<HTML>
<body>
 <div id="ServerCode">
 <table>
 <tr>
 <td>
 User ID:
 </td>
 <td>
<ASP:TEXTBOX id="UserID" runat="server"></ASP:TEXTBOX>
 </td>
 </tr>

 160

 <tr>
 </tr>
 <tr>
 <td>
 User Password:
 </td>
 <td>
<ASP:TEXTBOX id="Password" runat="server"
TextMode="Password"></ASP:TEXTBOX>
 </td>
 </tr>
 <tr>
 </tr>
 <tr>
 <td>
 </td>
 <td>
<ASP:BUTTON id="cmdSend" accessKey="S" runat="server"
Text="Submit"></ASP:BUTTON>
 </td>
 </tr>
 </table>
 </div>
<asp:TextBox id="txtArea1" runat="server"
TextMode="MultiLine"
Width="274px" Height="95px"></asp:TextBox>
</body>
</HTML>

5. Double-click on the Submit button that you created. It will appear in the

Design pane. You will then be taken to the MyWebUserControl.ascx. vb
code window as shown in Figure 6.8. Copy the following lines of code into
this window:
Public MustInherit Class WebUserControl1
 'Web Server Controls Declaration Area.
 Inherits System.Web.UI.UserControl
 Protected WithEvents UserID As
System.Web.UI.WebControls.TextBox
 Protected WithEvents Password As
System.Web.UI.WebControls.TextBox
 Protected WithEvents txtAreal As
System.Web.UI.WebControls.TextBox

 161

 Protected WithEvents cmdSend As
System.Web.UI.WebControls.Button

#Region " Web Form Designer Generated Code "
 Dim strStartRoot As String
 Dim strEndRoot As String
 'This call is required by the Web Form Designer.
 <System.Diagnostics.DebuggerStepThrough()> Private
Sub
InitializeComponent()

 End Sub

 Private Sub Page_Init(ByVal sender As
System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the
Web form
designer
 'Do not modify it using the code editor.
 InitializeComponent()
 strStartRoot = CStr(Session("StartRootTag"))
 strEndRoot = CStr(Session("EndRootTag"))
 End Sub

#End Region

 'This is the UserID Textbox property.
 Public Property strUsrId() As String
 Get
 Return ViewState(UserID.Text).ToString
 End Get
 Set(ByVal Value As String)
 ViewState(UserID.Text) = Value
 txtArea1.Text = txtArea1.Text & "UserID='"
& UserID.Text
& "' />" & vbCrLf
 End Set
 End Property

 'This is the Password property.
 Public Property strPsswrd() As String

 162

 Get
 Return ViewState(Password.Text).ToString
 End Get
 Set(ByVal Value As String)
 ViewState(Password.Text) = Value
 txtArea1.Text = txtArea1.Text & "Pswrd='" &
Password.Text
& "' />" & vbCrLf
 txtArea1.Text = txtArea1.Text & strEndRoot
 End Set
 End Property

 'Called on the Load of the page.
 Private Sub Page_Load(ByVal sender As
System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 txtArea1.Text = "XML will appear here." &
vbCrLf
 End Sub

 'Called when the Send Command Button is clicked.
 Public Sub cmdSend_Click(ByVal sender As
System.Object, ByVal e
As System.EventArgs) Handles cmdSend.Click
 txtArea1.Text = strStartRoot & vbCrLf & " <User
"
 strUsrId = UserID.Text
 txtArea1.Text = txtArea1.Text & " <Pass "
 strPsswrd = Password.Text
 End Sub
End Class

 163

Figure 6.8: My Web User Control.

6. Now copy the following two lines of code into the Sub sub

Application_Start subprocedure of the Global.asax file. Look at Figure 6.9
to see the actual location within the Global.asax file into which we will
copy these lines. We are creating a small application that will display our
UserID and Password information in an XML format so that these will be
our global root tags. You will learn more about XML in Chapter 7 and more
about the Global.asax file in Chapter 9 .

 164

Figure 6.9: The Global.asax file.

 Sub Session_Start(ByVal Sender As Object, ByVal e
As
EventArgs)
 Application("StartRootTag") = "<root>"
 Application("EndRootTag") = "</root>"
End Sub
7. Change the sessionState mode in the Web.config file to InProc, which will

now allow us to save session state within our Web application and change
the authentication mode to Windows. These entries should look like the
following ones:
<authentication mode="Windows" />
<sessionstate mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424
sglConnectionString="data source=127.0.0.l;user
id=sa;password="
cookieless="false" timeout="20" />

8. Compile the code by clicking on Build on the menu bar, and then click
Build once again on the dropdown menu. The Output pane should now
appear as shown in Figure 6.10. This will allow you to see the outcome of
your build.

 165

Figure 6.10: The output pane.

As you can see, our build succeeded, and a data link library was automatically
created in the virtual directory that was automatically created when we initially
began this project. Because our data link library is scoped to our virtual
directory, we no longer need to worry about registering our DLL. I will talk
about this more in the next few paragraphs.

9. For now, let's finish implementing our Web user control in our Web form,

which is identified with the WebForm1.aspx extension in the Solution
Explorer pane, located within the .NET IDE.

10. Click on this file in the Solution Explorer Pane, and the file's properties will
show up in the Properties Pane, just like it does in Figure 6.11. Change
the File Name property of the WebForm1.aspx file to MyLogin. aspx. Make
sure you press the Enter key after making the change so that it commits
the change to the File Name property.

 166

Figure 6.11: The Solution Explorer and Properties panes.
11. Click on the MyLogin.aspx file in the Solution Explorer and enter the

following lines of code in the HTML pane:
<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="MyLogin.aspx.vb"
Inherits="MyWebControlProject.WebForm1"
EnableSessionState="True"%>
<%@ Register Tagprefix="MyLogin" Tagname="UserInfo"
Src="MyWebUserControl.ascx" %>
<HTML>
 <HEAD>
 <meta name="GENERATOR" content="Microsoft
Visual Studio.NET
7.0">
 <meta name="CODE_LANGUAGE" content="Visual
Basic 7.0">
 <meta name="vs_defaultClientScript"
content="JScript">
 <meta name="vs_targetSchema" content="Internet
Explorer
5.0" >
 </HEAD>
 <BODY MS_POSITIONING="GridLayout">

 167

 <FORM id="WebForm1" method="post"
runat="server">
 <MyLogin:UserInfo runat="server"
ID="objLogon"
autopostback="true" />
 </FORM>
 </BODY>
</HTML>

Save all the files, using the Save All icon on the .NET IDE toolbar. We have now
created a very simple interactive Web control. To display the new Web form user
control, click the Start icon on the .NET IDE toolbar. It should look like the example
show in Figures 6.12 and 6.13. Note that in the last code example, ViewState is used to
persist data on the server.

Figure 6.12: The default display for our control.

Figure 6.13: Test driving our control.

 168

Managing State
Managing state can be an extremely tricky thing. There are so many things that can
affect the behavior of processes that simultaneously execute that it can sometimes
become an overburdening challenge. Luckily for us, .NET has made this challenge less
stressful for developers by integrating Application and Session State management
services into APIs that are compatible with the complete .NET Framework.

Session State
Session State is capable of raising reliable management events, storing data on the
server for use across multiple browser request, and releasing data that has not been
revisited within a specified timeout period. We will discuss Session State further in
Chapter 9 .

Application State

The Application object exposes the HTTPApplicationState class. This class in turn
exposes a dictionary of objects that support state management with .NET Framework
objects, thereby sustaining an insightful approach and orchestrating access to global
variables stored in application state objects, including those that even support earlier
adaptations of ASP.
We will discuss Application State further in Chapter 9.

Composite Controls

Composite controls are simply two or more unlike controls that are coupled together to
make a single control. Each unique control still exists and operates independently, but
composite appear to be spawned as a single control.

Composite controls are compiled and stored in the assembly as a data link library and
called from the client using the control Namespace and Assembly. It also uses the
Create Child Controls Method to instance controls.

A Composite Control can be added to the toolbox in the .NET IDE.

Webserver Controls versus Web User Controls

The biggest difference between Web server controls and Web user controls is that Web
server controls are compiled controls and user controls are programmatically declared
controls. Often, Web user controls incorporate preexisting Web server controls and
extend their capabilities by providing additional properties and methods that will help a
user accomplish a specific task.
A good example of this is the Web User control we created in Figure 6.7, earlier in this
chapter. It took advantage of some existing Web Server Controls that Microsoft
provides in .NET, specifically the Textbox and Button controls that are declared
programmatically and offer common language support. The example also extended
them by allowing you to declare additional methods and properties. In addition to the
subsequent differences, Table 6.2 shows additional dissimilarities between Web server
controls and Web user Controls.

 169

Table 6.2: Differences between Web Server Controls and Web User Controls

WEB SERVER CONTROLS WEB USER CONTROLS

Web server controls are declared
programmatically in a Web form.

Are created by a developer
and then programmatically
declared.

Web server controls are compiled
precompiled DLL's and persist in the
assembly.

Can be created by a
developer in a text -based
editor and saved as an
.ascx file.

Can be stored in the toolbox. Cannot be stored in the
toolbox.

Wrapping Up

In closing, we discussed the differences between HTML, ActiveX, and Web Server
Controls. We briefly discussed the differences between Web Server Controls,
Composite Controls, and User Controls. We talked about persisting control information,
and worked through an example on how to build a Composite control.
Web Server Controls offer a presentation layer that intuitively allows you to enter data.
But, what if a presentation layer wasn't necessary? What if all you needed to do was to
call a method to obtain information? In the next chapter, we will explore XML and
SOAP-based Web Services, a W3C Standard protocol that will allow you all of the
functionality possessed by the Web Server Control we discussed in Chapter 6 but
without the unnecessary overhead of the presentation layer for HTTP Calls that don't
require a user interface.

 170

Chapter 7: Web Services: Family Fun with XML, SOAP,
and WSDL

Overview

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke

In some respects, the way that Web Services allow for the sharing of resources across
the Web seems indistinguishable from magic. This technology is just in its infancy, but
the promise of true interoperability moves ever closer to full realization through the
programmaticization of the Web. The majority of industry analysts and players in the
industry are emphasizing the importance of Web Services. Let's begin with tying this
subject to what you already know as a Visual Basic programmer.

Web services can be thought of as COM components for the Internet. In .NET they
allow you to encapsulate code, publish interfaces, discover services, and communicate
between the publisher and consumer of services using vendor-independent, standards-
based technologies.

You are familiar with the Microsoft COM model, which allows developers to encapsulate
code into objects and publish interface(s) to those objects. The COM model is the
standard on Windows platforms and has been extended to support distributed
applications in its later incarnations as DCOM, MTS, and COM+.
Perhaps you have code that implements business logic that can be reused in multiple
applications. As an example, consider the complex business logic of credit decisions for
consumer loan applications. It's easy to create a COM+ object that encapsulates this
code. Once the object is installed on server in your network, any of your applications
can call upon that code to obtain at least a preliminary decision for a loan application.
Using the term service in the generic sense, you could say that the object provides a
loan approval service to the multiple applications that use it.

The familiar COM model is easy to implement within the scope of well-connected
Windows servers. Throw in the complications of non-Windows operating systems, non-
Intel platforms, and interconnected networks, and you'll find yourself fighting an uphill
battle.

Web services allow you to solve the same problems but are based on vendor-
independent Internet technologies and protocols such as HTTP, XML, and TCP/IP. The
Web services stack implements standard protocols such as SOAP and UDDI. Web
services allow business logic to be shared across boundaries, such as platform,
programming language, and organization.

The Windows 2000 platform provided all of the building blocks required for
implementing Web services, even before ASP.NET. You could write a Web service
using a combination of ASP/IIS, MSXML, and COM. To do so, you would have had to
become intimately familiar with XML, SOAP, and UDDI.

With ASP.NET, support for Web service authoring is built into the development
platform. As you'll see, writing a Web service is now as easy as writing an MTS or
COM+ component. In this chapter, we'll examine the DCOM-like functionality of Web
services and the supporting technologies.

 171

Understanding the Underlying Technologies

If you want to get right down to business and implement a Web service, you could skip
to the Implementing Web Services section later in this chapter. However, it is important
to understand the underlying technologies on which Web services are built, namely,
HTTP, XML, SOAP, WSDL, and UDDI. We covered HTTP in Chapter 4. Let's take a
look at the others.

XML

XML is the medium of communication for all data and requests that go in or out of your
Web service. You don't need to know XML to implement and use Web services. The
.NET platform will do the work for you. If you are interested in seeing what goes on
behind the scenes, read on. Most of the other technologies we'll discuss in this chapter
are based on XML.

By now, you should have at least a passing familiarity with HTML, a text -based format
for describing page formatting information to client browsers. It is a specific language
that solves a specific problem. You might use HTML to present a table of customers'
information to a user of a Web application. The technology wouldn't work as well to
communicate a table of customers' information from one DBMS to another.

XML, or eXtensible Markup Language, is similar in structure to HTML. Although HTML
is a tool that was built to solve a specific problem, XML is a general-purpose tool that
can be applied to many problems. XML is a way to encode just the data, without any of
the visual rendering info provided by HTML. XML is just data. HTML defines tags that
have specific meanings, such as table, hr, and input. In XML, you define your own tags
with the meanings your applications require.

XML can be considered a superset of HTML. For the most part, HTML follows the rules
of XML—most HTML would be accepted by an XML parser. XML should appear quite
familiar to anyone who has worked with HTML.

Benefits of XML

At its core, XML is a way of communicating structured data between applications and
computer systems, even where multiple architectures, languages, and standards are
involved.

One mechanism for exchange of structured data with which you are already familiar is
the ADO Recordset object. For example, you might build a recordset on the database
server, return it to an MTS or COM+ component running on the middle-tier server, and
possibly even download it to the client browser using RDS. Some of the drawbacks of
recordsets are:

§ They may be unusable in non-Microsoft environments (such as a
competitor's Web browser, even if it is running on a Windows system).

§ They include a great deal of information that you might not actually
require.

§ The data is stored in a binary format. While binary data is more
compact, it is not directly human-readable. XML is a text-based format.

§ A recordset has a fixed structure, consisting of zero or more rows of
zero or more fields that have specific properties. ADO is based on the
relational model, which is not as good at handling complex data as XML.

 172

Another mechanism with which you are familiar is HTML. HTML is primarily created by
ASP code or CGI or directly by a developer or Web site designer. HTML is primarily
consumed by Web browsers running on client computers. Some of the drawbacks of
HTML for data interchange include:

§ HTML is designed for communication of data and formatting information
about the data.

§ It is not a general-purpose tool and is not extensible.
§ It is not designed to a llow further processing of the data by the recipient.

XML is designed to encode both data and information about the data (metadata). Both
the data and the metadata can be anything your application requires. In the case of
HTML, the only information the Web browser needs to know is related to formatting the
data on the user's screen. In XML, you could include information about a product's
dimensions, weight, and electrical requirements; about a state's population or average,
low, and high temperatures; about a customer's demographic and purchasing habits; or
about anything else you can imagine. You could store this information in HTML, but it
would be very hard to programmatically match up which piece of data is which.

When your code generates HTML, you expect it to be consumed by a Web browser.
XML might be consumed by other code within your application, by code in a separate
application, by a database management system, or even displayed to user, formatted
using XSL.

XML is an open standard and is supported by many vendors on many platforms. It
opens up the barriers between different applications, databases, operating systems,
and computer architectures. It allows data to be processed by the recipient application
rather than simply being displayed to the user. XML data is self-describing—it includes
both the data and information about the data. XML is the Esperanto of computer
systems on the Internet. As long as both the sender and the recipient follow the XML
standards, and agree on how the data is to be used, any two systems can
communicate.

XML Structure

As mentioned earlier, if you have used HTML, XML should be very familiar to you. Let's
first examine some HTML that presents a customer table to the user:
<TABLE BORDER=1>
 <TR>
 <TH>Name</TH>
 <TH>Customer ID</TH>
 <TH>Current Due</TH>
 <TH>Balance</TH>
 </TR>
 <TR>
 <TD>Doe, John</TD>
 <TD>0089153</TD>
 <TD ALIGN='Right'>$118.00</TD>
 <TD ALIGN='Right'>$2,095.00</TD>
 </TR>
 <TR>

 173

 <TD>Doe, John</TD>
 <TD>0089153</TD>
 <TD ALIGN='Right'>$57.20</TD>
 <TD ALIGN='Right'>$887.00</TD>
 </TR>
 <TR>
 <TD>Smith, Lydia</TD>
 <TD>9583651</TD>
 <TD ALIGN='Right'>$295.00</TD>
 <TD ALIGN='Right'>$4,899.00</TD>
 </TR>
 <TR>
 <TD>Xyzzy, Fred</TD>
 <TD>1234556</TD>
 <TD ALIGN='Right'> </TD>
 <TD ALIGN='Right'> </TD>
 </TR>
</TABLE>

If you viewed this HTML in a Web browser, you might see output that looks something
like Figure 7.1.

Figure 7.1: Table output from HTML.

What if you wanted to do something more with this data than just put it on the user's
screen? If you had to write code to read the preceding HTML and build data structures
in memory about customers, you might have a hard time. For example, the fact that the
third table column represents the amount currently due is not really made clear unless
you refer to the header row and match up column positions. Fred Xyzzy has no loan
outstanding at this time. If we tried to retrieve his loan information from the HTML, we'd
get —the HTML nonbreaking space. If we found this string, we could assume
there was no loan, but how often is it safe to make assumptions about our customers'
business information? John Doe has two loans, but we'd have to match on customer
number to figure this out from the HTML. HTML just isn't the right tool for the job of data
interchange between systems.

Now let's examine one possible XML string that includes the same data. Depending on
your requirements, you might define a completely different set of XML to represent this
data:

 174

<CustomerList>
 <Customer ID='0089153' FirstName='John' LastName='Doe'>
 <Loan CurrentDue='118.00' Balance='2095.00'/>
 <Loan CurrentDue='57.20' Balance='887.00'/>
 </Customer>
 <Customer ID='9583651' FirstName='Lydia' LastName='Smith'>
 <Loan CurrentDue='295.00' Balance='4899.00'/>
 </Customer>
 <Customer ID='1234556' FirstName='Fred' LastName='Xyzzy'/>
</CustomerList>

The XML includes all of the same data as the HTML. The difference is in the structure
and the additional information sent. In the XML, the structure makes it clear which data
is associated with which customer. Without even knowing how I've defined the XML
schema, you can see that there is a one-to-many relationship between customer and
loan. You can see that names go with customers and balances go with loans.

XML consists of tags, elements, and attributes. We'll examine each in the following
sections.

Tags
Each related set of data in XML is surrounded by a begin tag and an end tag. Begin
tags start with the left angle bracket. In the previous example <CustomerList> is the first
begin tag. End tags start with a left angle bracket and a forward slash. In the example,
</CustomerList> is the last end tag and matches the <CustomerList> begin tag. Tags
introduce the data they surround and define what that data means. For example, when
you see the <Customer> begin tag, you know that the information that follows is related
to a customer. When you see the </Customer> end tag, you know that all available
information has been provided on that particular customer, and the data that follows will
be about another customer or some other type of information altogether.

Unlike HTML, tag names in XML are case sensitive. A <CUSTOMER> is not the same
thing as a <Customer>.

Elements

An element consists of an opening tag, any information it contains, and the closing tag.
Elements may have child elements. In the previous example, the root element is
CustomerList. It contains three Customer child elements. Each of these Customer
elements contains zero or more Loan child elements. The Loan elements do not have
child elements.

At first glance, it may appear that some of the elements in the example are missing
their end tags. None of the Loan elements has a closing tag, nor does the final
Customer element. In fact, we are using a shortcut. Note that the begin tags for some
elements contain a slash prior to their closing right angle bracket. This trailing slash
indicates that the begin tag has completely defined the element and no closing tag is
necessary. This shortcut is commonly used for elements that do not contain child
elements. In general, the syntax:
<MyTag ...></MyTag>

is interchangeable with the syntax:

 175

<MyTag ... />

A properly formatted XML document can contain only a single root element. After that,
you can use any degree of nesting you require. Additionally, you can place different
types of elements at the same level. For example, we could include a certificate of
deposit tag as a child element of a Customer. The same customer element may have
any combination of zero or more loan elements and zero or more certificate of deposit
elements.

An element may contain data between its begin and end tag. For example, we could
define a Notes element that might appear as a child element of Customer or Loan:
 <Customer ID='9583651' FirstName='Lydia' LastName='Smith'>
 <Loan CurrentDue='295.00' Balance='4899.00'/>
 <Notes>One of our best customers, Ms. Smith has been doing
business
with us for many years, and always greets our tellers with a
smile.</Notes>
 </Customer>
In this example, the Notes element includes data between its begin and end tag. Here,
the data is text, the actual notes about the customer. If you want to represent more than
one kind of value for a tag, you have two options. You can include nested tags, as in
the Loan and Notes tags that are nested within the Customer tag, or you could use
attributes, as explained in the next section.

Attributes

Attributes are name/value pairs that appear with the begin tag of an element. In the
previous example, the Customer element contains attributes of ID, First-Name and
LastName. The Loan element contains attributes of CurrentDue and Balance. The
CustomerList and Notes elements contain no attributes. It's up to you to define how
attributes will be used in your XML. You may decide to require certain attributes on
certain tags, such as the ID attribute of the Customer tag. Other attributes may be
optional, such as a MiddleName attribute on a Customer tag.

Unlike HTML, XML requires that the values of attributes be enclosed in quotes. Both
HTML and XML allow you to use either single or double quotes when specifying
attributes. In HTML, the quotes aren't necessary unless the value contains a space or
other special characters.

Namespaces
Because XML does not define any tags, every development team must agree on the
schema—the structure, elements, tags, and attributes of the XML messages that the
application will use to communicate. What happens when we need to include
information from two different schemas within a single XML document? If any tag name
was used in both schemas, it's impossible to tell which set of rules applies. This
situation is referred to as a namespace clash. XML solves this problem by allowing you
to define a namespace and to prefix tag names with the name of the namespace in
which they reside.

Consider the earlier example, which included a Loan element with Current-Due and
Balance attributes. Let's say that the organization that uses this schema begins loaning
consumer education videos to its customers, with topics ranging from how to buy a
home to avoiding bankruptcy. The development team that wrote the video checkout
software might decide to define a Loan element that represents the loan of a video tape

 176

and include attributes such as TapeNumber and DueDate. Later, we wish to build an
XML document that includes all customer information, including monetary loans and
loans of videotapes. We have two incompatible Loan elements that need to be included
in the same message.

The solution is to define a separate namespace for the video checkout data. We create
a prefix that identifies the video checkout namespace such as VC in our document. We
then prefix the video checkout tag names with VC, followed by a colon. We could then
write XML like the following:
 <Customer ID='9583651' FirstName='Lydia' LastName='Smith'>
 <Loan CurrentDue='295.00' Balance='4899.00'/>
 <VC:Loan TapeNumber='11832' DueDate='1/1/2002'/>
 </Customer>

The code that consumes this XML is now able to distinguish between the two types of
Loan tags. The standard Loan tag, with no XML namespace specified, refers to a bank
loan. The VC:Loan tag refers to the loan of a videotape.

Using XML within Web Services

Before using .NET, I wrote a lot of client-side JavaScript that used RDS to obtain ADO
recordsets from MTS and COM+ components. I could do this because my customers'
environments were Microsoft from end to end—database server to Web browser and
everything in between.

When my JavaScript code needed to call a method of COM+ object, I didn't need to
worry about any of the details of remote procedure calls, marshalling, and interfaces.
RDS and ADO hid these details from me.

Correspondingly, when code in any section of your application needs to use a Web
service, the .NET platform will hide the details of how the method calls are made and
how the data is transmitted and received. All of the technologies used are built on XML.

SOAP

SOAP is a standard for sending data back and forth between a client and a server. It is
based on XML and is a simple, lightweight protocol. SOAP is a developing standard
and is not owned by one particular vendor.

SOAP implements the remote procedure call functionality for Web services. When you
call a subroutine that is defined within your Visual Basic project, the calling sequence is
simple and machine dependent. The compiler probably generated machine code to
save machine registers, push parameters on the stack, and jump to the address of the
subroutine. When you call a method of a COM+ component, the calling sequence is
much more complex because the component code may live in a separate address
space (or even a different computer) from your code. When you make a call to a Web
service, another level of complexity is added. The code that implements the Web
service not only might be on a distant node of the Internet but it also might be running
on an incompatible processor and operating system. To make this work, the client and
server must both implement a common protocol. SOAP is the standard protocol
designed to solve this problem. Using XML, SOAP handles the encoding and decoding
of the structured data that is sent and received between the client and server of a Web
service.

 177

PROTOCOLS CURRENTLY SUPPORTED

SOAP is the protocol of choice for access to Web services. SOAP messages are
designed for RPC-like functionality and are the most feature-rich method of access.
SOAP is transport protocol Independent. It can travel on HTTP, SMTP, or raw sockets
(known as Direct Internet Messaging or DIME).

Web services may also be accessed through the HTTP protocol with GET and POST
messages. GET and POST are discussed in Chapter 4. As a quick review, both types
of requests include a collection of name/value pairs. In a POST message, the
name/value pairs are sent as form variables, which are not displayed directly to or are
editable by the user. In a GET message, the name/value pairs are included as query
string variables on the URL itself, are viewable by the user, and potentially could be
tampered with by the user.

When GET and POST messages are used to access Web services, the collection of
name/value pairs are in fact the parameters to the method of the Web service that is
being called. Because the GET or POST message is sent by your application code,
rather than directly from a user's Web browser, the exposure of the query string
variables in a GET message is not as important.

If you use .NET to create a Web service, your Web service will automatically support
SOAP, HTTP GET, and HTTP POST. In fact the .NET platform will automatically
generate a Web Ul to allow you to test your Web service without writing any code.
More details are in the section Consuming Web Services.

Structure of a SOAP Document

Earlier, we discussed XML namespaces. We looked at a short example in which we
needed to merge two different XML schemas into a single XML message. In the
example, there was a name conflict because both schemas defined a Loan tag. An
XML namespace can also be used to refer to a standard schema. w3c.org defines
standard schemas for SOAP messages, and SOAP documents refer to these schemas
using XML namespaces. So, a SOAP document is really an XML document that uses a
SOAP namespace.

The elements of a SOAP message are the Envelope, Header, and Body. Let's take a
look at each of these parts.

Envelope

The Envelope is the root element of every SOAP message and is required. Much like
an envelope you receive in the mail, the main purpose of this element is to contain the
message.

We'll use the following SOAP message as an example. You can see that we are using
the soap-envelope XML schema and referring to it as the env namespace.
<env:Envelope xmlns:env="http://www.w3.org/2001/09/soap-envelope">
 <env:Header>
 <n:boguscontrol xmlns:n="http://bogus.org/boguscontrol">
 <n:registerno>897582352</n:registerno >
 </n:boguscontrol>
 </env:Header>
 <env:Body>

 178

 <m:mymethod xmlns:m="http://bogus.org/mymethod">
 <m:param1>33</m:param1>
 <m:param2>99</m:param2>
 </m:mymethod>
 </env:Body>
</env:Envelope>

The first and last lines of this example are the Envelope. Everything between the
<env:Envelope> start tag and the </env:Envelope> end tag is the contents of the
Envelope.

Header

The Header element contains information related to the message. The header is
SOAP's extensibility mechanism. The actual information sent within the header is not
defined by the SOAP standard. It is up to the person who designs the Web service to
decide what, if any, information may be specified in the header. The Header element in
a SOAP document is optional. If it is used, it must be the first child element of the
Envelope. The Header element does not directly contain the header information.
Instead, it is a container for header blocks. All child elements of the Header element are
header blocks. Header blocks provide a mechanism to specify information that is
relevant to the entire message.

In this example, a single header block is included. The header block is the registerno
tag. Perhaps this Web service uses a shareware model and requires that a registration
number be sent to call its methods.

Body

Every SOAP message includes a Body element. The Body element is the second child
element of the Envelope and appears after the Header. If no Header element appears
in a particular message, the Body element will be the first child of the Envelope. Just as
the Header element serves as a container for header blocks, the Body element serves
as a container for body blocks.

Body blocks contain the actual content of the message. In the case of a method call to
a Web service, the body block would contain the name of the method to be called,
along with the values of its input parameters. The structure and type of data sent in a
body block are not defined by the SOAP standard. However, the ways that data is
encoded for inclusion in the body are specified. The only case in which the structure
and type of data sent is defined by the standard is the SOAP Fault.

A SOAP Fault is a body block defined by the SOAP standard and is used to
communicate error information. Much like the Visual Basic Error object, a Fault element
includes the error number (faultcode), description (faultstring), and source (faultactor).
A SOAP Fault may also include additional detail information about the error. Note that a
SOAP message can contain at most one Fault element.

The body of our example is a method call to the mymethod method. Two parameters
are being passed: param1 with a value of 33 and param2 with a value of 99.

SOAP Namespace

SOAP is built on XML, which doesn't define any tags—it is up to the developer whose
applications need to communicate to define which tags, attributes, and elements will be

 179

used. SOAP is a standard built on XML. Ideally, the code that sends and receives
SOAP messages should know the SOAP standard. How do we define a standard built
on a completely open model like XML? We use XML namespaces and refer to schemas
published on the Internet by the World Wide Web Consortium.

Using SOAP within Web Services

SOAP is used to implement remote procedure calls and exchange data between code
that uses a Web service (the client) and the Web service itself (the server). SOAP and
XML are the media for communication between Web services and clients of Web
services. You may have used the SOAP Toolkit to implement Web services in Visual
Basic 6. In .NET, SOAP is still used for method calls to Web services. However, all of
the SOAPy details are hidden behind the scenes. You could implement and/or use a
Web service in .NET without knowing anything about SOAP or even XML.

WSDL

WSDL, or Web Services Description Language, is an emerging vendor-independent
standard for the definition of interfaces to Web services. A WSDL document defines all
of the methods exposed by the Web services; the names, data types, and order of
parameters; and the types of data returned. It has been described as the contract
between a Web service and the clients of that Web service.

WSDL is built on XML and can be used to define the interface to a Web service that
communicates via SOAP. WSDL can also be used to define the interface to a Web
service that uses mechanisms other than SOAP, such as HTTP GET/POST or MIME.

WSDL Document Structure

A WSDL document is a complete description of the interface to a Web service and
includes types, message, PortType, Binding, Port, and Service. Let's look at each of
these in more detail.

Types

WSDL can use any XML schema to define the data types for parameters and return
values. The WSDL standard recommends the XSD schema to define a set of standard
data types. If your Web service requires inclusion of any user-defined types in the
interface, the WSDL Types element defines these UDTs.

Many standard data types are included. Some examples of simple data types are
boolean, which can accept a value of 1 or 0; string, which stores a sequence of
alphanumeric characters; dateTime, which stores a date and time; integer, which stores
an integer number; and float and double, which store floating point values. Complex
types are also supported. An array stores multiple values of a simple data type, which
are accessed by index. Struct stores multiple values of different simple data types,
which are accessed by name.
For the actual XML definition of all data types supported, refer to
http://schemms.xmlsoap.org/soap/encoding/.

Message

In WSDL, a method is referred to as a message. Each Message element defines a
single method of a Web service. The Message element defines the method name. Each
input parameter to the method is defined by a Part element, which includes attributes
for the parameter name and data type. All of the Part elements for a given method are
direct child elements of the corresponding Message element.

 180

If a method has a return value, a second Message element is defined to represent the
data type of the return value. This special Message element has the same name
attribute as the method's primary Message element, with the word Response
appended. This response Message element has a single Part element that describes
the return value of the method.

PortType

A Message element might describe either the input parameters to a method or the
return value from a method. To make the interface definition explicit, the PortType
element is used. This element is a container for operation tags. Each operation tag
specifies the name of the input Message and output (response) Message for a single
method of the Web service.

Binding

Binding elements specify the protocol and encoding that is to be used for each method
of a Web service. Each Binding element might be considered an entry point into the
Web service. Every method exposed by the Web service has its own Binding element.
If a method name is overloaded, each overload has a separate Binding element.

Port

Each Port element defines an entire interface to the Web service. It specifies the ASP
file that is to be used to process requests and the name of the Binding element that
defines the protocol and encoding for method calls. Web services in .NET expose a
single interface and will therefore have a single Port element.

Service

The Service tag defines the name of the Web service and includes child Port tags for
each interface exposed by the Web service. Just like Visual Basic objects, Web
services can expose multiple interfaces. Because an interface is defined by a Port tag
in WSDL, a Web service with multiple interfaces would have multiple Port tags. The
Service tag is simply the owner, or parent tag, of the collection of Port tags.

How SOAP Relates to WSDL (Binding)

WSDL defines the interface to the methods of the Web service that may be invoked
using SOAP. In WSDL documents created by the .NET Framework, there will be a
single Binding element for each PortType element. All of the Binding elements will
specify that SOAP is to be used. In other words, SOAP is always the RPC mechanism
for .NET Web services. If you implement your Web service and client using .NET, all of
the work of creating and consuming SOAP messages will be handled for you behind
the scenes.

Disco/UDDI

DISCO is a Microsoft technology for publishing the interfaces of Web services. DISCO
uses files (with the unsurprising extension .disco) to describe the interface. The .disco
files are published on the Web server that provides the Web Server.

UDDI, or Universal Description, Discovery, and Integration, is a standard for a
distributed Internet database of business and its Web services. UDDI itself can be
considered a Web service—applications access UDDI through SOAP messages. UDDI
is a joint venture of IBM, Microsoft, and Ariba.

 181

UDDI allows services to advertise, and applications to discover, Web services on the
Internet. DISCO allows a Web server to be queried to discover what services it
provides. UDDI is a more comprehensive service because it is a distributed database.
DISCO, although simpler, requires you to know the URL of the Web server before you
can discover its services and their interfaces.

In Visual Basic terms, using UDDI or DISCO to download the WSDL document for a
Web service could be described as a form of early binding—the developer queries the
WSDL document for interface information during coding and caches this information for
use by their application at runtime.

Note UDDI is also the name of the organization that develops and

publishes the UDDI standard. You can visit its Web site at
http://UDDI.org. UDDI.org is a large cooperative group of
businesses that have joined forces to create the UDDI standard.

Structure

UDDI stores information about Web services in an XML schema. This schema includes
the following types of information:

§ Business Information. The businessEntity element stores the name of
the business that provides the Web services. It can also contain address,
contact, and description information about the business. All of this
information is referred to as white pages data. This element can also
store category information about a business. Category information is
referred to as yellow pages data. This element is the root element of the
XML document and has Service Information child element(s).

§ Service Information. businessService element(s) are used to categorize
Web services into functional groupings. For example, you may wish to
group all Web services related to your organization's bid approval
process together. Each businessService element represents a group of
Web services. This element is a direct child of the businessEntity
element. The businessService element has Service Specification child
element(s), described soon. The Service Information, along with the
Binding Information, is referred to as green pages data.

§ Binding Information. The bindingTemplate element contains technical
information about the actual Web services, including the services' Web
addresses and routing information. Information on the standards and
specifications supported by the Web service is also included here. This
element is a child of a businessService element. The binding information
is referred to as green pages data. This element contains references to
Service Specification element(s), described next.

§ Service Specifications. The tModel element is a pointer to an interface
specification for a Web service. This element does not describe the
interface directly. Instead, it includes the URL of the interface
specification. This allows multiple services and organizations to share a
published interface and write Web services that adhere to that interface.

As you can see, the UDDI schema goes beyond simply describing an interface. UDDI
provides information about what servers provide the Web service, allows services to be

 182

grouped together, and allows the publisher of the Web service to provide its contact
information.

Registering Your Service

If you are writing a Web service that is only intended for use within your organization,
you probably won't bother to register it with UDDI — unless you want to publish it
internally to your organization, using an internal UDDI server. However, if you want to
make your Web service easily accessible to other organizations and individuals on the
Internet, you can use UDDI to publish it. Publishing your Web service using UDDI
makes it easy for developers to find the service and to write code to interface with the
service. Keep in mind that UDDI only publishes information about your service (and
your business). You would still have to publish the Web service itself by placing it on a
Web server that is accessible from the Internet at large.

The Internet servers that host the UDDI database are referred to as Operator Nodes.
Authorized users of an Operator Node can make UDDI registrations. All Operator
Nodes replicate registration information, so you can add, edit, or delete your
registrations in one place. To be authorized, you must register with the organization that
maintains the Operator Node. The requirements to establish an account with an
organization that maintains an Operator Node are defined by that organization. At a
minimum, you must provide your contact information and a verifiable email address,
agree to adhere to the operator's policies, and obtain a user ID and password.

UDDI registrations can only be changed or deleted by the person who created the
registration in the first place. If that person is no longer available, ownership, or
custody, of the registration can be transferred to another person or organization.

Changes or deletions must be requested through the Operator Node on which the
registration was originally made.

Implementing Web Services

Creating a Web service with Visual Basic .NET is as easy as creating a Web page—
perhaps easier because you don't need to worry about page layout. In this section, we'll
create a sample Web service and a Web page that uses the Web service and provides
a user interface for testing the service. We'll be running both a Web service and the
code that uses the service on the same machine. In practice, the Web service may not
even belong to the same organization as the code that uses it. All Web service servers
and clients agree to use the SOAP standard for communication between client and
server. This makes Web services completely independent of computer architecture,
operating system, server, and computer language. In the final example in this chapter,
you'll actually write code that calls a Web service implemented on an Apache server.

Your First Web Service

Let's begin by creating a Web service project. The first thing we'll need to do is to
create an empty Web service project:

1. Fire up Visual Studio .NET. Select File, New Project. In the New Project
dialog box, do the following:

§ Leave Visual Basic Projects as the selected Project Type.
Click ASP.NET Web Service under Templates.

§ Enter http://localhost/Ch7-Ex1 in the Location field. Click OK
to create the project. A new, empty Web application will be
created for you.

 183

In the Solution Explorer window, you'll see five files that were created
automatically by the New Web Service wizard.
The files, shown in Figure 7.2 , are as follows:

§ AssemblyInfo.vb A standard ASP.NET assembly file. This file
contains information about the project that is used by the
compiler, such as the GUID of the class for use from COM, and
the version of the project.

§ ProjectName.vsdisco A DISCO file that allows clients to find your
Web service and discover its functionality. As discussed in the
earlier section on DISCO/UDDI, this file contains XML describing
the interface(s) supported by your Web service.

§ Global.asax The standard ASP.NET application file. Contains
event handlers for application-level events, such as
AuthenticateRequest or Error.

§ Service1.asmx This file is the entry point for the Web service.
Clients that need to use the Web service will connect to this file's
URL. To view the code-behind file (Service1.asmx.vb) that
contains the actual source code for the Web service, right-click
Service1.asmx, and select View Code.

§ Web.config The standard ASP.NET application configuration file.
This file is used to control runtime options like tracing and
security.

Figure 7.2: Solution Explorer window with five new files.

At this point, we've created a skeleton of a Web service. Our new Web service
does not implement any methods yet. Let's create a simple Web service that
provides methods to multiply or divide two floating-point numbers. All we need
to do is actually add some methods to the skeleton of the Web service and
write the code to implement the methods.

2. Return to the Web service project you created previously.
3. Right-click Servicel.asmx and select View Code.
4. Delete the Hello World Sample comments and commented-out Web

Method. These lines were added by the New Web Service wizard.

 184

5. Create Multiply and Divide methods. Your Service1.asmx.vb should look
like the following:

 Imports System.Web.Services

 Public Class Service1
 Inherits System.Web.Services.WebService

 <WebMethod()> Public Function Multiply(ByVal dblA As
Double,
 ByVal dblB As Double) As Double
 Multiply = dblA * dblB
 End Function

 <WebMethod()> Public Function Divide(ByVal dblA As Double,
ByVal
 dblB As Double) As Double
 Divide = dblA / dblB
 End Function

 End Class

Everything in this code should look pretty familiar to you, with the possible exception of
<WebMethod()>. This is referred to as an attribute . An attribute instructs the compiler to
take special action. In this case, we are using the Web method attribute to specify that
the Multiply and Divide methods are to be exposed as methods of a Web service. The
attribute tells ASP.NET to generate the code to support a SOAP interface to these
methods.

Congratulations, you've created your first Web service. We can test the service, even
though we haven't written any client application to use the code. Visual Studio .NET
automatically provides test user interfaces for Web services. Let's use the automatically
generated test UI to run our new service:

1. Right-click Servicel.asmx and select Set As Start Page.
2. Select Start from the Debug menu or just press F5.
3. Visual Studio will compile your Web service and launch a Web browser

window to display a list of methods supported by your Web service. You
should see a page similar to the one shown in Figure 7.3 .

 185

Figure 7.3: Public methods of example Web service.

The Service Description link will display the WSDL document for your service.
As we mentioned, this is an XML-based standard for publication of interfaces
to Web services. Visual Studio .NET automatically creates a WSDL document
when you click on this link.

Let's continue to explore our new Web service using the UI that was
generated for us by Visual Studio .NET.

4. Click on the Multiply link. Your browser will display a test Web page for
the Multiply method, which should be similar to Figure 7.4.

Figure 7.4: Test page for the multiply method.

This page also displays the format of the SOAP and HTTP messages that you
could use to invoke the Multiply method programmatically.

5. Enter numeric values in the dblA and dblB text boxes, and click the
Invoke button. An HTTP GET message will be sent to your Web service
to invoke the Multiply method. Your code within the method will multiply
the values and return the result. Your browser window will display an
XML message containing the return value.
 <?xml version="1.0" encoding="utf-8" ?>
 <double xmlns="http://tempuri.org/">200</double>

This XML message contains a single tag, the double tag. This tag is used to represent
an extended precision floating point value. In this example, the value contained within
the tag is 200. I entered the values 10 and 20 when I tested this method call; 200 is the
value that resulted when the Web service multiplied 10 by 20.

Experiment with the test UI that the Visual Studio .NET platform provides. Be sure to
close your browser when you are done, or Visual Studio will think you are still
debugging your Web service. If Visual Studio gets confused and remains in debug

 186

mode even after all browser windows are closed, just select Stop Debugging from the
Debug menu.

IDENTIFYING EXISTING CANDIDATES FOR CONVERSION

So far, we've seen Web services as a replacement for COM+ components, built on
Internet standards, providing vendor, platform, and programming language
independence. With all these advantages, you may be ready to start rewriting all of
your COM+ components as Web services. As a colleague of mine is fond of saying,
"When you've got a hammer, everything starts looking like a nail."

You shouldn't be ready to abandon COM+ straight away. Considering everything that
happens when you make a call to a Web service, you won't be surprised to learn that
the price you pay for the new functionality is performance. If method calls to Web
services are an integral part of the processing load of your system, you simply won't
achieve the throughput you might expect to see if you were using COM+, even if you
are calling Web services hosted on your local network. If the Web service server is
located on a distant node of the Internet, the round-trip time for a method call could be
as high as 5 or 10 seconds, or worse.

Here's a checklist to refer to when choosing between COM+ and Web services.

REASONS TO CHOOSE WEB SERVICES

§ Current or future need to access service over the Internet
§ Current or future need to interoperate with non-Microsoft tools and

technologies
§ Requirement to provide services to, or access services from,

businesses or organizations outside of your own
§ Requirement to exchange data with other businesses or organizations

REASONS TO CHOOSE COM+

§ Provider (server) and consumer (application) of service reside on the
same network

§ All components of the system are built using Microsoft technologies
§ Speed is the primary design consideration, and component method

calls are involved in the regular processing of your application's
workload.

Consuming Web Services

After we build the Web service, the next step is to actually use it. So far, we've tested
our example Web service using the browser. The URL for our sample Web service is
http://localhost/Ch7-Ex1/Service1.asmx. If you view this page in your browser, you will
get a standard test user interface, provided by .NET.
You can also make direct calls to a Web service using HTTP GET from your browser.
To do so, first append /MethodName to the Web service URL, where MethodName is
the name of the method you want to invoke. Then append query string parameters for
each parameter (if any) to that method. Recall that the first query string parameter is
introduced by a question mark, and subsequent query string parameters are introduced
by an ampersand. To divide 5 by 2, we would request the following URL:
http://localhost/Ch7-Ex1/Service1.asmx/Divide?dblA=5&dblB=2

 187

The Web service will perform the division and return the result as an XML message, as
shown here:
<?xml version="1.0" encoding="utf-8" ?>
<double xmlns="http://tempuri.org/">2.5</double>

As you can see, the value enclosed in the returned tag is 2.5, which is the result of
dividing 5 by 2. Although we've demonstrated a number of ways to access a Web
service using the browser, we haven't yet attempted to call a Web service
programmatically. We'll now create a Web page that uses the sample Web service to
perform calculations.
If you've developed COM objects in Visual Basic 6, you've probably written test
applications to call the methods of your COM objects. You did so by writing a simple
Visual Basic application, adding a reference to the component's type library to your
Visual Basic project, and writing code to call the various methods of the component.
Because you added a reference to the component, you were able to use early binding
in your test application. You can test your Web services in Visual Studio .NET using
pretty much the same technique. You can write a simple ASP.NET Web form
application to serve as your test UI. Of course, with a Web service, there is no DLL to
which to add a reference. However, there is a feature called Web references. In this
section, we'll write a simple test application for the Web service that we created earlier.
We'll add a Web reference from our test application to our example Web service.

Let's begin by creating the project for the test application:
1. Return to Visual Studio .NET. Select File, Close Solution to close the

Web service project you've been working with up to this point.
2. Select File, New Project. In the New Project dialog box, do the following:

§ Leave Visual Basic Projects as the selected Project Type.
Click ASP.NET Web Application under Templates.

§ Enter http://localhost/Ch7-Ex1Client in the Location field.
Click OK to create the project. A new, empty Web
application will be created for you.

3. Our next step is to add some controls to the Web application. The IDE
will come up with grid layout mode of WebForm1.aspx. You'll be familiar
with the appearance of the grid from the Visual Basic IDE.

4. Hover your mouse over the toolbox icon on the left side of the screen
until the toolbox appears. A list of Web controls appears in the toolbox.
Locate TextBox in the list. Double-click TextBox, and the IDE will drop a
new TextBox1 on your form in the upper-left corner.

5. Drag and drop a second text box onto your form. The IDE creates a new
TextBox2. Drag it so that it is placed underneath the first text box.

6. Drag and drop a button onto the form. Place it underneath the second
text box.

7. Drag and drop a third text box (TextBox3), and place it underneath the
buttons.

8. To make everything line up nicely, select all three text boxes and the
button. On the Format menu, select Align, Centers. On the Format
menu, select Vertical Spacing, Make Equal.

Now, we'll set the design-time properties of the controls.
9. Because you selected all four controls in the last step, click on a blank

area of the form to unselect the controls. Then click to select TextBox1,
the first text box at the top of the page. Set its ID property to
txtNumberA. Leave its other properties unchanged.

10. Select TextBox2, and set its ID to txtNumberB.

 188

11. Select the button. Set its ID to btnMultiply. Set its Text property to
Multiply.

12. Select TextBox3, and set its ID to txtResult. Because we plan to use this
field to display the result of a calculation, we don't want the user entering
numbers directly. Set its Enabled property to false.

At this point, your Web form should look something like Figure 7.5 .

Figure 7.5: Web form design view of test application.

Now, we're ready to add a reference to the Web service being tested.
13. Right-click the Ch7-Ex1Client project in Solution Explorer and select

Add Web Reference. The Add Web Reference Browser will appear. In
the Address box, enter http://localhost/Ch7-Exl/Servicel.asmx? WSDL
and hit the Enter key.

14. The Add Web Reference will display the WSDL document for the
example Web service in the left pane and a list (consisting of a single
item) of Web services defined within the WSDL document in the right
pane.

15. Click the Add Reference button. Note that a new Web References folder
appears in Solution Explorer. If you expand this folder, you'll see a sub-
folder for the host on which the Web service resides, localhost in this
case. Within this folder are WSDL files for each Web service referenced.
In our case, we have only a Service1.wsdl, as shown in Figure 7.6.

 189

Figure 7.6: Web references for test application.

In our test application, we'll only test the Multiply method of our Web service.
We need to write some code to call the Web service's multiply method when
the user clicks the test application's Multiply button.

16. Double-click the Multiply button on your form. Just as in Visual Basic,
the system will throw down a blank Sub btnMultiply_Click for you.

17. In the On Click handler for the Multiply button, enter the following lines
of code (an explanation of the Dim statement follows this example):
Dim objWebService As New
Ch7_ExlClient.localhost.Service1()

txtResult.Text =
objWebService.Multiply(txtNumberA.Text,
txtNumberB.Text)

We're now ready to run the test application.
18. Select Start from the Debug menu, or press F5. Note that your program

compiles before it runs. After a brief wait, you should see your form in a
browser window.

19. Enter an integer in each of the first two text boxes, and then click
Multiply. You should see the result of the multiplication in the third text
box. This may not seem spectacular, but the code did instantiate and
use a Web service to perform the multiplication.

In our code, we referenced the Web service as Ch7_EX1Client.localhost.Service1. The
first component of this name is the name of our project, which is Ch7-ExlClient.
Because the hyphen is not valid in identifiers, Visual Studio converted it to an
underscore character to produce Ch7_Ex1Client. This name is the root namespace for
our project. You can view it by right-clicking the project in Solution Explorer, selecting

 190

Properties, and examining the contents of the Root Namespace field on the General
page of Common properties. You might want to take a moment to explore the property
pages for the your project at this time.

The second component is the name of the subfolder under Web references that
contains the reference to our Web service. When we added the reference, the name of
this folder defaulted to the name of the server on which the Web service is hosted,
which in this case is localhost. We can rename this folder in Solution Explorer. Doing so
would allow us to use more meaningful names in our references.

The final component of the reference is the name of the Web service itself. Our
example Web service is named Service1.

If we needed to declare many instances of this service, the Dim statements could be
cumbersome. To simplify things, we could import the namespace. To do so, add the
following line to the top of WebForm1.aspx.vb, before the beginning of the class:
Imports Ch7 Ex1Client.localhost

We could then change our dimension statement in the event handler for the Multiply
button to read as follows:
Dim objWebService As New Service1

Creating a Proxy

Now that we've seen the easy way to call a Web service, let's examine what goes on
behind the scenes. Web references, as used in the previous example, hide the details
of the communication between our client application and the Web service. When you
make method calls to a Web service using a Web reference, you are really making calls
to a proxy class running on your computer. The code for the proxy class was generated
for your automatically when you added the Web reference. The IDE called the wsdl.exe
command line utility to generate the source code for the proxy class. If you choose, you
can run this utility directly. It accepts the URL of the WSDL document for a Web service
and can produce proxy classes in either C#, Visual Basic .NET, or JScript.NET.

In this example, we'll demonstrate running wsdl.exe manually. We'll essentially create a
Web reference "by hand". As in all previous examples, we'll call methods of our
example Web service synchronously. This means that when we make a method call,
we do not continue executing our program until that method call completes. This is not
really a problem when we are running a sample Web page and the Web service is
installed on the same machine as the client code.

If we were running a real application, and we were calling a Web service on a distant
Internet site, we would need to allow for the possibility that the round-trip time for a
method call may be multiple seconds, tens of seconds, or worse. Typically, users begin
to wonder if an application has locked up if it stops responding for 0.25 seconds.

A proxy class allows the client application to make asynchronous calls to Web services.
This means that the client application's code continues executing in parallel with the
Web service's processing of the method call. You don't need to create the proxy class
by hand to make asynchronous method calls. You can use the Web reference feature
and allow the IDE to generate the proxy class for you.

Synchronous Method Calls

 191

Our first example of using a manually generated proxy class will make synchronous
method calls. Our first task is to use a command line utility to generate the source code
for our proxy class:

1. Go to the command line and locate the wsdl.exe utility. This utility is
located in the directory \Program Files\Microsoft Visual Studio .NET\
FrameworkSDK\Bin.

2. Execute the following command, all on one line:
wsdl /language:vb /out:\temp\Service1Proxy.vb

 http://localhost/Ch7-Ex1/Service1.asmx?WSDL
3. The WSDL utility will respond with messages like the following:

Microsoft (R) Web Services Description Language Utility

[Microsoft (R) .NET Framework, Version 1.0.3617.0]

Copyright (C) Microsoft Corp. 1998–2001. All rights reserved.

Writing file '\temp\ServicelProxy.vb'.

Next, we'll create a test application that will call the Web service using the
proxy class we just generated. As usual, we'll start by creating an empty Web
application.

4. Return to Visual Studio .NET. Select File, Close Solution to close
the Web form project you created in the previous example.

5. Select File, New Project. In the New Project dialog box, do the
following:

§ Leave Visual Basic Projects as the selected Project
Type. Click ASP.NET Web Application under
Templates.

§ Enter http://localhost/Ch7-Ex1Client2 in the Location
field. Click OK to create the project. A new, empty Web
application will be created for you.

Next, we need to add controls to the form and set the design-time properties of
the controls. We want to implement the same UI that we did in the previous
example. To add controls to the form, perform steps 3 through 8 from the
previous example. To set the design-time properties of the controls, perform
steps 9 through 12 from the previous example. Once you have completed
these steps, your Web form should look like Figure 7.6 .
Although the UI of this example is the same as the previous example, the code
that calls the Web service is very different. In the previous example, we used a
Web reference to call the Web service. In this example, we'll use a proxy
class. We've already generated the proxy class using the command line utility.
Now, we just need to add the proxy class to our Web project.

6. In Solution Explorer, right-click Ch7-Ex2Client2, and select Add, Add
Existing Item. The Add Existing Item dialog box appears.

7. In the File Name field, enter X:\temp\Service1Proxyvb (where X is
the drive on which you created the proxy class) and hit the Enter
key. You'll see the proxy class added to your project, as shown in
Figure 7.7 .

 192

Figure 7.7: Proxy class added to test project.

The code that was generated for us by the WSDL.EXE utility imports the
System.Web.Services namespace. However, our project does not have a
reference to the DLL that implements the classes in that namespace. Our next
step is to add a reference to the correct DLL.

8. In Solution Explorer, right-click References, under Ch7-Ex1Client2.
Select "Add Reference". The Add Reference dialog box appears. On
the .NET tab, scroll down to locate "System.Web.Services.dll".
Double-click "System.Web.Services.dll". This component should
now appear in the "Selected Components" box. Click the OK button
to add the reference to your project.

Our final task is to write the event handler for the Multiply button. The code
we'll write for the event handler performs the goal of this example: using the
proxy class to call the Web service.

9. Double-click the Multiply button on your form.
10. In the On Click handler for the Multiply button, enter the fo llowing

lines of code:
Dim objWebService As New Service1()

txtResult.Text =
objWebService.Multiply(txtNumberA.Text,
txtNumberB.Text)

We're finally ready to run the program.
11. Select Start from the Debug menu, or press F5. Note that your

program compiles before it runs. After a brief wait, you should see
your form in a browser window.

 193

12. Enter an integer in each of the first two text boxes and then click
Multiply. You should see the result of the multiplication in the third
text box. As before, we used the Web service to perform the actual
multiplication. In this example, we created the proxy class ourselves
rather than allowing .NET to do all the work for us.

Asynchronous Method Calls

When we created the proxy class, either using a Web reference, or using the
WSDL.EXE utility, the system generated code for us that allows us to make both
synchronous and asynchronous method calls. Now that we've seen an example of
synchronous method calls, let's look at asynchronous method calls.
As mentioned above, an asynchronous method call allows our code to continue
executing while we are waiting for the Web service method call to complete. Obviously,
we will want to know when that method call does eventually complete. We can make
this determination in one of two ways. The first technique is polling. Polling means that
our code occasionally checks to see if the Web service has returned a result to us. If
the results aren't available yet, we continue processing and check back later.
The second technique is callback. In this scenario, when we call an asynchronous
method, we specify a function in our code that is to be called back when the Web
service has returned a result to us. To those unfamiliar with the technique, this may
seem to stand things on their head. It is almost as if code in our application is being
called by the Web service. However, if you think in terms of an event handler, say for a
button on a form, a callback isn't all that unusual.

Polling is simpler to implement and simpler to understand initially. Callbacks are more
efficient because no processor time is wasted in polling and are more timely because
your application is notified as soon as results are available. In this example, we'll go
with the simpler solution and use polling.

The previous example used the synchronous methods of the proxy class, which are
Multiply and Divide. The synchronous methods of the proxy class have the same
names as the public methods of the Web service.

For each synchronous method, WSDL.EXE also creates two asynchronous methods,
named Begin and End, followed by the name of the method. For example, for the
synchronous Multiply method, the proxy class contains an asynchronous BeginMultiply
and EndMultiply method.

The Begin method initiates an asynchronous method call. It accepts all of the same
parameters as the synchronous version of the method, as well as two additional
parameters that are used to implement callbacks. The Begin method does not return
the return value of the method call. Rather, it returns an object of type IAsyncResult,
which can be used to determine when the call is completed (using polling). Specifically,
the IsCompleted property of this object returns true if the Web service has completed its
processing of the request and false if the call is still in progress.

Once IAsyncResult.IsCompleted has indicated that the call has completed, the End
method of the asynchronous method call can be used. It accepts a single parameter,
which must be the IAsyncResult object returned by the corresponding Begin method.
The End method returns the return value of Web service's method call.

The following example also illustrates how to create a copy of a Web project. This can
be useful for experimentation and piloting of new ideas and designs.

Our first step is to create the proxy class, using the command line utility:

 194

1. Once again, we'll use our arithmetic Web service. Because we've
already created a proxy class, and the Web service's interface
hasn't changed since the proxy was generated, we can simply reuse
the Service1Proxy.vb file that we created in the previous example. If
you have changed the interface, or if you didn't do the previous
example, perform steps 1 through 3 of that example.

You've already gone through the work of creating the same test application
twice. Because the application is fairly simply, it's not too difficult to repeat the
steps to create it. However, let's take this opportunity to learn how to create a
copy of an existing Web application. This technique will be vital if you ever
need to copy a large ASP.NET Web application.

2. Return to Visual Studio .NET. If the previous example (Ch7-
Ex1Client2) isn't already open, open it.

3. Select Project, Copy Project. The Copy Project dialog box appears,
as shown in Figure 7.8. In the destination field, enter
http://localhost/Ch7-ExlClient3. In the Copy section, select All files in
the source project folder.

Figure 7.8: Copying the Web project.

4. Make sure the options match those shown in Figure 7.8 , and click
OK. Visual Interdev will copy your Web project. The progress dialog
box shown in Figure 7.9 will briefly display during the copy
operation.

 195

Figure 7.9: Progress dialog box for Web project copy operation.

5. Select File, Close Solution to close the previous example.
6. In step 4, you created a copy of your Web project. However,

Interdev duplicated the Web project and its files only. It did not
create a new solution file for you. To do so, first select File,
New,Blank Solution. The dialog box shown in Figure 7.10 will
appear. Leave Visual Studio Solutions selected in the Project Types
list, and Blank Solution selected in the Templates list. In the Name
field, enter Ch7-ExlClient3. Make sure the Location field displays the
folder in which you store your solution files. In most cases, this will
be the Visual Studio Projects folder under My Documents.

Figure 7.10: New Solution dialog box.

7. Click OK to create a blank solution. Solution Explorer will display
your new solution with no projects, as shown in Figure 7.11.

 196

Figure 7.11: New solution with no projects.

8. Select File, Add Project, Existing Project from Web.... In the dialog
box shown in Figure 7.12, leave the default value of localhost for the
server from which to create the project.

Figure 7.12: Selecting the server.

9. Click OK. The Add Existing Project dialog box will appear, as shown
in Figure 7.13.

Figure 7.13: Add existing project.

 197

10. Double-click Ch7-Ex1Client3. The dialog box will display the project
files within the selected project. Note in Figure 7.14 that the project
file still displays as client 2. When we copied the Web project, we
created an exact copy of everything in the project. The new copy of
the project resides in a new folder labeled client 3, but all of the
contents of the client 2 and client 3 folders are identical.

Figure 7.14: Project file still listed as client 2.

11. Double-click Ch7-Ex1Client2.vbproj. Solution Explorer now displays
the project, as shown in Figure 7.15. Note that it still looks like
you're working with client 2.

Figure 7.15: Project listed as client 2 in IDE.

12. To verify that you really are working with a new copy of client 2,
right-click Ch7-Ex1Client2, and select Properties. Note that in the
information section, as shown in Figure 7.16, the project folder is
definitely client 3. Don't close the properties dialog box yet.

 198

Figure 7.16: Information properties of project.

13. Let's eliminate any possible confusion by renaming everything
labeled client 2 to client 3. First, in the Properties dialog box you
opened in the previous step, change both the Assembly Name and
Root Namespace fields from Client2 to Client3. You should see
something like Figure 7.17.

Figure 7.17: Full property page for project.

14. Click OK to close the Properties dialog box. Right-click Ch7-
ExlClient2 in Solution Explorer, and rename it from 2 to 3 as well.
Finally, rename Ch7-Ex1Client2.vsdisco, again using Solution
Explorer. You should see the project listed under its new name, as
shown in Figure 7.18.

 199

Figure 7.18: Project correctly listed as client 3.

15. Finally, right-click WebForml.aspx and select Set As Start Page.

You have completed the process of creating a new copy of the previous example. Now,
we can begin modifying it to perform an asynchronous method call. Before you go on to
the next step, you might want to run the Web application and verify that it works exactly
as the previous example did.

We now have an exact copy of the previous example. We can begin modifying it to
support the features we want in this example. First, we'll modify some controls'
properties and add other, additional controls to the form:

1. Double-click WebForml.aspx. Click to select the Multiply button.
Change its Text property to Send Request.

2. Drag the third text box (txtResult) down a few rows to make room for
two additional controls.

3. Add a fourth text box to the form. Place it just below the Send
Request button. Set the new control's ID to txtStatus, and its
Enabled property to false.

4. Add a second button to the form. Place it between the new text box
you just created and the txtResult text box you moved earlier. Set
the button's ID property to btnResult, its Text property to Show
Result, and its Enabled property to false.

5. Select all six controls: Select Format, Vertical Spacing, Make Equal.
Select Format, Align, Centers. Your Web form should look
something like Figure 7.19.

 200

Figure 7.19: Modified Web form.

Finally, we'll write the code to make calls to the Web service asynchronously.
This example is somewhat more complex than the earlier examples.

6. In Solution Explorer, right-click WebForml.aspx, and select View

Code. Edit the code-behind file to match the following. We'll discuss
the code after the example is complete.
Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents txtNumberA As
System.Web.UI.WebControls.TextBox
 Protected WithEvents txtNumberB As
System.Web.UI.WebControls.TextBox
 Protected WithEvents btnMultiply As
System.Web.UI.WebControls.Button
 Protected WithEvents txtStatus As
System.Web.UI.WebControls.TextBox
 Protected WithEvents btnResult As
System.Web.UI.WebControls.Button
 Protected WithEvents txtResult As
System.Web.UI.WebControls.TextBox

 ' (Web Form Designer Generated code appears
here)

 Private Enum enumState
 iStateNew
 iStatePolling

 201

 iStateComplete
 End Enum

 Private m_objWebService As Service1
 Private m_objAsyncResult As IAsyncResult
 Private m_iState As enumState

 Private Sub SetState(ByVal iState As
enumState)
 Select Case iState
 Case enumState.iStateNew
 btnMultiply.Enabled = True
 txtStatus.Text = "Waiting for
Input"

 Case enumState.iStatePolling
 btnMultiply.Enabled = False
 btnResult.Enabled = True
 txtStatus.Text = "Waiting for
Results"

 Case enumState.iStateComplete
 btnMultiply.Enabled = False
 btnResult.Enabled = False
 txtStatus.Text = "Complete"

 Session("objWebService") = Nothing
 Session("objAsyncResult") =
Nothing
 End Select
 m_iState = iState
 Session("iState") = m_iState
 End Sub

 Private Sub Page_Load(ByVal sender As
System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 If Session("iState") Is Nothing Then
 m_iState = enumState.iStateNew
 Else
 m_objWebService =
Session("objWebService")

 202

 m_objAsyncResult =
Session("objAsyncResult")
 m_iState = Session("iState")
 End If

 SetState(m_iState)
 End Sub

 Private Sub btnMultiply_Click(ByVal sender As
System.Object,
ByVal e As System.EventArgs) Handles
btnMultiply.Click
 m_objWebService = New Service1()
 Session("objWebService") = m_objWebService

 m_objAsyncResult =
m_objWebService.BeginMultiply(txtNumberA.Text,
txtNumberB.Text,
Nothing, Nothing)
 Session("objAsyncResult") =
m_objAsyncResult

 SetState(enumState.iStatePolling)
 End Sub

 Private Sub btnResult_Click(ByVal sender As
System.Object, ByVal
e As System.EventArgs) Handles btnResult.Click
 If m_objAsyncResult.IsCompleted Then
 txtResult.Text =
m_objWebService.EndMultiply(m_objAsyncResult)
 SetState(enumState.iStateComplete)
 End If
 End Sub
End Class
Select File, Save All.

You can now run the program.

7. Select Start from the Debug menu, or press F5. Note that your

program compiles before it runs. After a brief wait, you should see
your form in a browser window. The status field will initially display
Waiting for Input.

 203

8. Enter an integer in each of the first two text boxes, and then click
Send Request. The status will field will change to Waiting For
Results.

At this point, the test program has made an asynchronous call to the Web
service's Multiply methods. The form should display in your Web browser as
shown in Figure 7.20. The test program won't attempt to retrieve the result of
the calculation until you click the Show Result button.

Figure 7.20: Method call pending.

9. Click the Show Result button. Assuming the Web service has
completed its calculation, the status changes to Complete, as shown
in Figure 7.21.

Figure 7.21: Method call complete.

Let's examine this example in detail. We declare an enum to define the state of our
application: New, Polling, or Complete.

Refer to the Page_Load event handler. When the page is viewed for the first time,
Session ("iState") will be Nothing. Our code sets the state to New and calls the
SetState subroutine. SetState enables or disables the buttons on the form and sets the
contents of the status text box, depending on the state value it is passed. When we

 204

initially pass it a state of New, it disables the Show Result button, enables the Send
Request button, and sets the status field to Waiting for Input.

No further processing takes place until you enter values in the first two text boxes and
click the Send Request button. The Send Request button is btnMultiply. Refer to the
btnMultiply_Click event handler.

The btnMultiply_Click event handler first instantiates m_objWebService, which is a
reference to an instance of the proxy class, and stores this reference in Session state. It
then calls the BeginMultiply method of the proxy class. As described, this method
initiates an asynchronous call to the Multiply method of the Web service. BeginMultiply
returns a new instance of the IAsyncResult class. We store a reference to this object in
Session state as well. (We must keep a reference to this object because we will later
need to pass it to the EndMultiply method.) The last thing the event handler does is to
call the private SetState method, with a new state value of Polling. This causes the
SetState method to disable the Send Request button, enable the Show Result button,
and change the status field to Waiting for Results.

At this point, we have initiated an asynchronous call to the Multiply method of our
arithmetic Web service. Because the call was asynchronous, we were able to continue
processing and return control to the user. The asynchronous method call will remain
pending until the Web service completes processing and our application requests the
results of the computation.

No further processing takes place on our end until you click the Show Result button. In
the meantime, the Web service is processing the multiplication request. Examine the
btnResult_Click event handler. When you do click the Show Result button, this event
handler first checks to see if the Web service has completed processing the request.
The event handler does so by checking the IsCompleted property of the IAsyncResult
object that we received as a return value from the BeginMultiply method of the Proxy
class.

If the event handler determines that the call is still in progress, it does nothing. The Web
page is rerendered to the user, and the state field still displays Waiting for Results. The
user can wait a few moments and then click the Show Result button again.

When the event handler for the Show Result method eventually determines that the
Web service has in fact completed processing, the event handler calls the EndMultiply
method. The single parameter to this method is the IAsyncResult object that we
received from BeginMultiply. The return value of the End-Multiply method is the same
as the return value from the Web service's Multiply method—the results of the
multiplication. btnResult_Click stores the result of the multiplication in the Text property
of txtResult. It then calls the private SetState method with a new state value of
complete. The SetState method disables both of the buttons and removes the
references to m_objWebService (the instance of the Proxy class) and
m_objAsyncResult (the asynchronous method call result object) from Session state.

Of course, in this example, it is very unlikely that the Web service method call will fail to
complete before you can click the Show Result button. If you want to prove that things
really are working as they should, you can insert a delay loop in the Multiply method of
the Web service. To do so, open the Web service project (Ch7-Ex1), and add the
following lines of code within the Multiply WebMethod:
 Dim dtNow As DateTime

 dtNow = Now()

 205

 While DateDiff(DateInterval.Second, dtNow, Now()) < 30
 ' Do nothing
 End While

This will create an artificial delay of at least 30 seconds for each call to the Multiply
method. Make sure you are in the Web service project rather than the client project,
and recompile the Web service by selecting Build, Build. You can then retest this
example and verify that the call is in fact asynchronous. Don't forget to remove the
delay loop from the Web service, and recompile the Web service if you plan to do any
further experimentation with any of the other earlier examples in this chapter.

Using Publicly Available Services

The final example for this chapter uses a Web service on the Internet, running on a
non-Microsoft platform. As you'll see, you access the Web service just as you did the
one you created on your machine in .NET. For this example, we'll use the simpler Web
reference technique to call the Web service.
I located the Web service for this example by going to http://www.xmethods.com. One
of the services listed gives the current temperature for any U.S. zip code. I hope this
service will still be available when you read this book.

Once again, we'll begin by creating a new, empty Web Form project:
1. Return to Visual Studio .NET. Select File, Close Solution to close the

Web form project you created in the previous example.
2. Select File, New Project. In the New Project dialog box, do the

following:
§ Leave Visual Basic Projects as the selected Project

Type. Click ASP.NET Web Application under Templates.
§ Enter http://localhost/Ch7-Ex2 in the Location field. Click

OK to create the project. A new, empty Web application
will be created for you.

Next, we add controls to the form.
3. The IDE will come up with grid layout mode of WebForml.aspx. You'll

be familiar with the appearance of the grid from the Visual Basic IDE.
4. Drag and drop a text box onto your form. The IDE creates a new

TextBox1. Drag it so that it is placed in the upper-left corner of the
form.

5. Drag and drop a button on to the form. Place it underneath the text
box.

6. Drag and drop a second text box (TextBox2), and place it underneath
the button.

7. To make everything line up nicely, select both text boxes and the
button. On the Format menu, select Align, Centers. On the Format
menu, select Vertical Spacing, Make Equal.

We now set design-time properties of the controls to produce the behavior we
require:

8. Click to select TextBox1. Set its ID property to txtZip. Leave its other
properties unchanged.

9. Select the button. Set its ID to btnInvoke. Set its Text property to Get
Temp.

10. Select TextBox2, and set its ID to txtResult. Because we plan to use
this field to display the result of a calculation, we don't want the user
entering numbers directly. Set its Enabled property to false.

 206

We'll use a Web reference to call the Web service, as we did in an earlier
example. Note that we are able to add a reference to the Web service, even
though it was developed using non-Microsoft technologies and is hosted on a
non-Microsoft Web server.

11. Right-click the Ch7-Ex2 project in Solution Explorer and select Add
Web Reference. The Add Web Reference Browser will appear. In the
Address box, enter
"http://www.xmethods.net/sd/2001/TemperatureService. wsdl" and hit
the Enter key.

12. The Add Web Reference will display the WSDL document for the
example Web service in the left pane and a list (consisting of a single
item) of Web services defined within the WSDL document in the right
pane.

13. Click the Add Reference button. Note that a new Web References
folder appears in Solution Explorer. If you expand this folder, you'll
see a sub-folder for the host on which the Web service resides,
net.xmethods. www in this case. Within this folder are WSDL files for
each Web service referenced. In our case, we have only a
TemperatureService.wsdl.

14. Right-click the net.xmethods.www folder and select Rename. Change
the name of the folder to xmethods.

Finally, we'll write the code that executes when the user clicks the Get Temp
button:

15. Double-click the Get Temp button on your form.
16. In the On Click handler for the Get Temp button (btnInvoke), enter the

following lines of code:

17. Dim objWebService As New xmethods.TemperatureService()

18.
19. txtResult.Text = objWebService.getTemp(txtZip.Text)

The program is now ready to be tested:
20. Select Start from the Debug menu or press F5. Note that your

program compiles before it runs. After a brief wait, you should see
your form in a browser window.

21. Enter your zip code in the first box. Click the Get Temp button. After a
few seconds, the outside temperature should appear in the second
text box.

22. Go outside and see if the Web service returned the correct result.

This is incredibly impressive. In the space of a few minutes, you discovered a Web
service on the Internet, created a client application to use it, and actually made a call
and received data back.

Wrapping Up

In this chapter, we've taken a fairly in-depth look at Web services and the technologies
on which they're built. We used a simple Web service to demonstrate the many
techniques by which a client can interface with the Web service. We experimented with
both synchronous and asynchronous calls to Web services. Finally, we even wrote an
ASP.NET application that uses a non-Microsoft Web service.
In the next chapter, we'll start on an entirely new topic: Data Access with ADO.NET.

 207

Chapter 8: ASP.NET Data Access Topics

Overview

Information networks straddle the world. Nothing remains concealed. But the
sheer volume of information dissolves the information. We are unable to take it
all in.
Günther Grass

Most interactive Web sites would not be of much use if they didn't have databases
behind them. Much of the work involved in creating a Web site for business purposes
typically involves allowing the Web site to manipulate data.

This chapter discusses the technologies in Microsoft .NET that are oriented around
data access. We'll discuss ADO.NET, which is Microsoft's evolution of ADO (ActiveX
Data Objects) and why it works well for many mainstream types of Web development.
But a discussion of data on the Web would not be complete without including XML, and
this chapter also looks at the ways XML-formatted data can be accessed and
manipulated from Visual Basic .NET.
To gain maximum benefit from this chapter, you should already be familiar with the
basics of ADO and relational databases. This chapter will not make any attempt to
explain basic concepts in these areas. There are a number of good references to learn
more about data in general and ADO in particular. Take a look at Programming
ADO.NET by Richard Hundhausen and Steven Borg (Wiley, April 2002).

It is not possible to cover all the capabilities for .NET data access in one chapter. That
would take a whole book, and even then it would be hard to get them all in. This
chapter concentrates on data access techniques that are (1) relatively simple and (2)
needed for common tasks. There are many more alternatives and options for the
techniques than those presented in this chapter. Just because a technique is not
included does not mean it is valueless or that you should not use it. However, once you
have mastered the fundamentals as presented in this chapter, you are ready to
experiment with more advanced techniques as presented in the documentation for
Visual Studio .NET.

Some Logistical Guidelines for This Chapter

The examples in this chapter that require a database mostly use the Northwind sample
database in SQL Server. If you are using a different data store (such as Microsoft
Access, or Jet format), you will need to change some of the example code to
compensate.

There are two ways to create most of the objects discussed in this chapter. You can
create them by authoring code (much like you would with ADO), or you can create them
using a set of wizards, controls, and designers that are included with Visual Studio
.NET. This chapter will first present techniques for creating and manipulating the
objects using code. That will communicate the essential structure of the ADO.NET
classes.

After that, we will discuss some of the other tools that are available in the IDE to write
such code for you. You should use these tools, especially for your early efforts. They
can speed up the process of integrating ADO.NET technologies into your programs.

 208

Using ADO.NET

Most developers coming from a Visual Basic background will gravitate to
ADO.NET as their main data access technology. It has an object model that
bears some resemblance to ADO, which was the primary data access tool for
most Visual Basic developers before .NET came along. However, there are big
conceptual differences that you'll have to understand before you can use
ADO.NET effectively.

To understand these differences, we have to first talk about why we need a
new data access model in the first place. Why not just continue to use ADO in
.NET?

Why We Need Another Data Access Model

Data access techniques in Visual Basic have evolved quickly in the last few
years. We have gone from local access using things like the Access Jet
engine, to client-server access using databases such as Oracle and SQL
Server, and then to Internet access, all since 1993.

In an attempt to keep up, Microsoft has introduced several models for
accessing data. Data Access Objects (DAO) were introduced for local
access. DAO proved insufficient to work well with client-server
architectures, so Remote Data Objects (RDO) came next. RDO proved less
than ideal and was only used widely for a couple of years. Microsoft
learned from that attempt and introduced ADO.

Like RDO, ADO was designed for connection-based, client-server
architectures, but it was introduced just about the time the Web became an
important factor in creating business systems. Microsoft responded with
regular versions of ADO, rolling out new capabilities. The most significant
distributed capability added to ADO was Remote Data Services (RDS).

Despite Microsoft's attempt to retrofit Web-oriented capabilities on ADO,
developers began to see limitations in ADO for Web development. The
most important were:

§ Connection-based use of ADO required unacceptable

overhead. Architectures to avoid continuous connections
required more development work.

§ RDS worked for distributed access but imposed a variety of
limitations. Using it effectively involved a steep learning curve.

§ XML became a de facto standard for data interchange on the
Web, but ADO was designed before XML became important,
and so ADO's integration with XML was weak.

§ Early versions of ADO were mutually incompatible. This was
fixed in later versions but only after developers had been
forced to make many conversions to newer versions just to
keep software systems on one server in synch with a single
version of ADO.

We can summarize the most important problems into two areas. ADO is not
ideal for distributed architectures, and it does not integrate well with XML.

 209

These are the biggest problems with ADO that Microsoft needed to address
as it moved to .NET.

ADO and ADO.NET: A Comparison

There are some areas in which ADO and ADO.NET resemble one another
closely and others in which they are wildly different. Let's first look at areas
of similarity.

Both models require a connection to a data store to fetch data, and the
code for getting a connection is similar for both. Both models have
Connection and Command objects. The Connection object is extremely
similar in both models. The Command object is conceptually similar in its
function for both, but the object model changes. However, the similarity in
these areas means that code to create and open a connection, and use a
Command object to execute commands, will look immediately familiar to
the experienced ADO developer.

Both models manipulate collections of rows and fields, but their techniques
of manipulation are different, as we will see later in the chapter. Both
models have support for transactions through the Connection object, and
this functionality uses similar code in both models. And both models can be
bound to controls for automatic data handling.

At that point the similarities begin to diminish. In ADO, the main construct
for holding data to be manipulated is the Recordset. It is a set of rows or
records holding data that was typically fetched from some data store.
ADO.NET has no Recordset object. The functional equivalents to a
Recordset in ADO.NET depend on the type of data access you need. The
two main ones are called a DataReader and a DataSet.

There are other significant differences. For example, ADO.NET has no
functionality at all for pessimistic concurrency, in which records are locked
when they are accessed and remain locked until the lock is released by the
accessing code. This type of concurrency has no place in a stateless Web
environment because it depends on extensive maintenance of state
information. The only type of concurrency available in ADO.NET is
optimistic concurrency, in which records are checked for changes when an
attempt is made to rewrite a record.

Because ADO.NET is quite different, and because there are things that
ADO does that ADO.NET cannot, it will still be necessary for some design
scenarios to continue to use ADO in .NET projects. ADO is still available
through COM interop, and the code is almost exactly the same as ADO
code in VB6. Because the code is the same as what you are probably
already accustomed to, we won't discuss data access with ADO in this
chapter. But we will point out places where using ADO is still a good
choice.

The ADO.NET Classes

The main classes that make up ADO.NET are in three namespaces:
§ System.Data General classes for disconnected access. The

most notable class in this namespace is the DataSet. There
are also classes for the elements that are related to DataSets,
such as the DataTable and DataView.

 210

§ System.Data.SQLClient Classes that provide connection-
based operations for SQL Server 7.0 and later versions. These
classes do not use OLE DB for data access.

§ System.Data.OleDB Classes that provide connection-based
operations for generic OLE DB-compliant data stores.
Supported databases include SQL Server, Oracle, Access Jet,
and others.

The dichotomy between classes for connected access and those for
disconnected access is important. We will first discuss connected
operations in ADO.NET and then discuss disconnected operations and the
relationships between connected and disconnected access.

Also, there are two different ways to set up and use these classes in
projects. You can write all the code from scratch to create and use the
appropriate classes, or you can use the wizards and other tools provided
by the Visual Studio IDE. These tools will write much of the commonly used
code for you and let you concentrate on the application.

Our initial discussion will focus on the object models (interfaces) for the
classes and the code to manipulate them. Later in the chapter, we will
spend some time discussing the various wizards and data tools to
automate the creation of this type of code.

Data Providers and Connection Operations

The sets of classes that handle connected operations are referred to
generically as data providers. (You'll also sometimes see them referred
to as managed providers.) A data provider can be compared in many
respects to what we used to call a database driver. It handles
interaction with the database at the binary level and exposes an object
model that we can manipulate to get at the data.

As the preceding list suggests, there are two groups of such providers
in ADO.NET at present. One group is used specifically to access SQL
Server databases, and the other handles more generic OLE DB
access.

The OLE DB Data Provider

The OLE DB .NET data provider is a generic provider that is
designed to work with any standard OLE DB provider. It has been
tested with the following common ones:

§ SQLOLEDB OLE DB provider for SQL Server
§ MSDAORA OLE DB provider for Oracle

§ JOLT OLE DBprovider for the Access Jet engine

The OLE DB .NET data provider does not work with the OLE DB
provider for ODBC (MSDASQL). A data provider for ODBC is
available as a separate download at
http://msdn.microsoft.com/downloads. Since this is an optional and
infrequently used capability for new projects, this book will not
discuss ODBC data access in .NET.

 211

Because OLE DB providers are COM-based software, the OLE DB
data provider must use COM interoperability to work with them.
However, the ability to interoperate with COM is well integrated into
.NET, so you don't normally need to worry about the details. The
OLE DB data provider takes care of them automatically.

The SQL Server Data Provider

The SQL Server .NET data provider provides access only to
Microsoft SQL Server version 7.0 or later. It is implemented totally
in the .NET Framework. Because it does not go through a COM-
based OLE DB provider, it yields superior performance. If you
know that your code will only need to work with SQL Server, the
SQL Server data provider is typically your best choice. If you
suspect that your code may need to access multiple data stores
other than SQL Server through OLE DB, you should probably use
the OLE DB data provider, which as mentioned is capable of
working with the SQL Server OLE DB provider.
For consistency, most of the examples in this chapter use the SQL
data provider. Because the object model of both data providers is
quite similar (as you can begin to see in Table 8.1), you should be
able to translate examples to the OLE DB provider without much
trouble.

Table 8.1: Classes in Data Provider Namespaces for Connected Access to Data in ADO.NET

TYPE OF
CLASS PURPOSE

NAME IN
SYSTEM.
DATA.
OLEDB
NAMESP
ACE

NAME IN
SYSTEM.D
ATA. SQLC
NAMESPA
CE

Connection Establishes and
manages a connection
to a database. Very
similar to the Connection
object in ADO.

OleDbCon
nection

SQLConnection

Command Carries out an operation
while connected to the
database. Conceptually
similar to the
Commandobject in ADO,
but it contains a different
object model and has
new functionality.

OleDbCom
mand

SQLCommand

DataReader Presents a stream of
data generated by a
query operation on a
database. Fulfills similar
function as a forward-
only, read-only
rRecordset in ADO.

OleDbDat
aReader

SQLDataReader

DataAdapter Fetches data from a
database and transfers it
into a DataSet and then
later transfers changes
in the data back into the
original data store.

OleDbDat
aAdapter

SQLDataAdapter

 212

Classes in the Data Providers
Both data providers have substantially similar classes in them.
Table 8.1 lists the main classes in these namespaces, along with
their basic purpose and how the classes in the two groups
correspond.

Because the classes are similar in both data providers, we will not
discuss them separately. That is, we won't discuss, for example,
the OleDbConnection class and then turn around and duplicate
most of that discussion for the SQL-Connection class. Instead, we
will have one topic for each of the four types of classes and note a
few small differences in the classes between the data providers.

Sticking with One Type of Data Provider

The classes in the different data providers are not compatible with
each other. For example, you can't create your connection with a
SQLConnection object and then switch namespaces to use an
OleDbCommand object to generate queries against the database.
If you begin using a SQLConnection object, you must only use
classes in the SQL Server data provider set. And if you begin using
an OleDbConnection, you must stick to other classes in the
System.Data. OleDb namespace to interact with it. However, either
type of data provider can be used to generate a DataSet, as we will
see later in the chapter. The DataSet class and the related classes
in the System.Data namespace can work with either type of data
provider.

OleDBConnection/SQLConnection Class

The first ADO.NET class to be used in a data operation is typically a
connection class. The OleDBConnection and SQLConnection classes
are both such connection classes. Both strongly resemble the
Connection object in ADO, so we won't go into a lot of detail on the
object model.

Both classes are initialized with a connection string, and the string is
close to identical to a connection string in ADO. Here is an example of
a connection string for the SQLConnection object that we will use
throughout the examples in this chapter:
Dim sConnectionString As String = "User ID=sa; "
& _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"

In the following examples, you will need to change MYSERVER to the
name of your SQL Server. You may also need to change the User ID
and add a password if you are not using the typical developer setup, in
which the User ID is set to sa, and the password is blank.

Here is the corresponding string for an OleDBConnection class that
connects to a SQL Server database:

 213

Dim sConnectionString As String = _
 "Provider=SQLOLEDB.1; User ID=sa; " &
_
 "Initial Catalog=Northwind;Data
Source=MYSERVER"

The main difference is that the OleDBConnection class requires a
parameter to tell it which OLE DB provider to use. Because the
SQLConnection class does not use an OLE DB provider, it has no such
parameter.

Lots of other parameters can be included, such as a connection
timeout period. Many of these parameters can also be accessed as
properties of the Connection objects. As mentioned, because these
parameters work the same way as the ADO Connection object, we will
not go into detail on them.

Once a connection string is created, a Connection object can be
instantiated and opened. Here is some sample code:
Dim sConnectionString As String = "User ID=sa; "
& _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New _

System.Data.SQLClient.SQLConnection(sConnectionSt
ring)
myConnection.Open()

This code uses the standard Visual Basic .NET technique of both
declaring and initializing an object in the same line of code. Note that
we are explicitly referring to the namespace for the SQLConnection
object. If we placed the following line at the top of our module:
Imports System.Data.SqlClient

the code to get a Connection object could be made more concise, like
this:
Dim sConnectionString As String = "User ID=sa; "
& _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SQLConnection(sConnectionString)
myConnection.Open()

To keep our examples concise, we will assume for the remainder of the
chapter that the following lines are at the top of the modules that use
the example code:
Imports System.Data
Imports System.Data.SqlClient

 214

Methods of Connection Classes

As with the ADO Connection object, the primary methods needed
to work with connection classes are the Open and Close methods.
A Connection object must be explicitly opened before it can be
used. We saw an example in the preceding code. The Close
method should be called as soon as you are finished with a
Connection object to release the resources used by the object.

Note that you can't set parameters on a Connection object when it
is open. If you need to set properties on a Connection object after it
is instantiated, you must do so before you call the Open method.

Pooling Connections

By default, connections in ADO.NET are automatically pooled. That
is, once a connection is established to a database, and then
released, it does not immediately go away. It is available for other
code to use. However, a connection can only be reused from the
pool if a new connection has exactly the same connection string.
For this reason, if you want your connections to be automatically
pooled, take care to make the connection strings identical.

You can turn off pooling for a connection. The parameters in the
connection string to do this vary between a SQLConnection and an
OleDbConnection. They are:

§ SQLConnection Uses Pooling parameter in
connection string

§ OleDbConnection Uses OLE DB Services
parameter in connection string

There are a couple of reasons you might want to turn off pooling. If
you're sure a Connection object will not be needed again, there is
no need to hold onto its resources by pooling it. Or if you want to
use COM+ Services (which we will not discuss in detail) and let it
manage pooling, the internal ADO.NET pooling can be turned off.

Connection objects have other properties to fine-tune the use of
pooling. If you are particularly interested in getting maximum
performance, you can investigate these properties in the
documentation for the Connection objects.

OleDBCommand/SQLCommand Classes

Once a connection is established, you'll need classes to interact with
and manipulate data. The classes that are the key to such interaction
are the OleDBCommand and SQLCommand, which we refer to
generically as the command classes.

As we mentioned earlier, ADO.NET command classes are conceptually
similar to the command object in ADO, but the methods and properties
are different. There are also more ways to create a command object in
ADO.NET.

Instantiating an ADO.NET Command Class

 215

There are two properties for a command object that must be set
before the command object can be used. One is the connection to
use. (We saw earlier how to create a Connection object.) The other
is the SQL statement to carry out some desired operation.

You have a choice about when you supply these property values.
You can supply one or both at initial instantiation. Or you can set
one or both via properties after the command object has been
instantiated.

In most data access code, you know the SQL statement and the
connection you want at instantiation time. In that case, it's good
practice to supply both pieces of information. An example of
creating a SQLCommand object this way is:
sSQL = "SELECT * FROM Customers"
Dim myCommand As New SQLCommand(sSQL,
myConnection)

This example assumes that myConnection was already
instantiated and opened as shown in the preceding section on
connection classes.

Here's one alternative, in which properties are used to supply the
information:
sSQL = "SELECT * FROM Customers"
Dim myCommand As New SQLCommand()
myCommand.CommandText = sSQL
myCommand.Connection = myConnection

The end result of either of these techniques is the same. You have
a SQLCommand object that is ready to be used.

Methods of the Command Classes

You'll recall from your VB6 development that the most commonly
used method of an ADO command object is the Execute method.
This method executes a SQL statement, and the results (or lack of
results) of the operation can be used in various ways.
The Execute method does not exist in ADO.NET command
classes. Instead, it has been replaced with a number of methods to
accomplish connected operations. The most frequently used ones
are listed in Table 8.2.

Table 8.2: Frequently Used Methods for Command Object

METHOD OF
COMMAND
OBJECT PURPOSE

ExecuteNonQuery Used to execute a SQL statement that does
not return a value. A typical example would
be a DELETE statement.

ExecuteReader Return a reference to a DataReader object.
As we saw earlier, this is an object to get fast,

 216

Table 8.2: Frequently Used Methods for Command Object
METHOD OF
COMMAND
OBJECT PURPOSE

read-only, forward-only access to a set of
rows. We will cover the DataReader in more
detail later.

ExecuteScalar Executes a SQL statement and returns only
the first field in the first row of the result. This
is often helpful when accessing aggregate
SQL functions such as COUNT. Using
ExecuteScalar is faster than getting back a
DataReader and then looking at the first row
in it.

ExecuteXMLReader
(only available for
SQLCommand
class)

Like ExecuteReader but returns rows in XML
format. This is an easy way to get XML
straight out of a SQL Server database.

We will see examples at this point for the ExecuteNonQuery and
the ExecuteScalar methods. The ExecuteReader method is shown
in the DataReader example later in the chapter.

Here is an example for ExecuteScalar. Suppose we want to find
the count of all customers in the Northwind database whose name
begins with the letter H. We could get that count into a variable
named nCustomersBeginningWithH using this code:
Dim sConnectionString As String = "User ID=sa;
" & _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SQLConnection(sConnectionString)
myConnection.Open()

Dim sSQL As String
sSQL = "SELECT COUNT(CustomerID) AS
CustomerCount " &_
 "FROM Customers WHERE (CompanyName
LIKE 'H%')"
Dim myCommand As New SqlCommand(sSQL,
myConnection)

Dim nCustomersBeginningWithH As Integer
nCustomersBeginningWithH =
CInt(myCommand.ExecuteScalar)

If you have the standard Northwind sample database loaded, this
code should result in a value of 4 being placed in

 217

nCustomersBeginningWithH. Obviously, if the database has been
changed since SQL Server was installed, the count might be
different.

An example for ExecuteNonQuery is similar. Suppose we want to
delete all the customers whose name begins with the letter H. Our
example would change to look like this:
Dim sConnectionString As String = "User ID=sa;
" & _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SQLConnection(sConnectionString)
myConnection.Open()

Dim sSQL As String
sSQL = "DELETE FROM Customers WHERE
(CompanyName LIKE 'H%')"
Dim myCommand As New SqlCommand(sSQL,
myConnection)

myCommand.ExecuteNonQuery()

Associating a Command Object with a DataAdapter

The preceding examples all have to do with connected access to
data. But another use of a command object is to help get data into
a DataSet for disconnected access. A DataAdapter is the
intermediary in this operation. We are going to cover DataAdapters
and DataSets in detail later in the chapter, and in that section we'll
see the code for a command object to be used in that fashion.

OleDBDataReader/SQLDataReader Classes

We have previously touched on DataReaders as a means to get fast,
read-only access to data. We saw in the preceding that a DataReader
class is returned from the ExecuteReader method of a command
object. Now we are ready to talk about DataReaders in more detail.

DataReaders classes (OleDBDataReader or SQLDataReader) can
only be created with the ExecuteReader class. You can't create one
with a New statement, nor can you inherit from these classes to make
your own specialized DataReader. So don't try to use code like this:
Dim MyDataReader As New SqlDataReader() ' This
will not work!!

Instead, once you've created a Command class, as previously covered,
you create an object variable of the appropriate type
(OleDBDataReader or SQLDataReader) and then use ExecuteReader
to initialize it as an active DataReader, like this:
Dim sConnectionString As String = "User ID=sa; "
& _

 218

 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SQLConnection(sConnectionString)
myConnection.Open()

Dim sSQL As String
sSQL = "SELECT * FROM Customers WHERE
(CompanyName LIKE 'H%')"
Dim myCommand As New SqlCommand(sSQL,
myConnection)

Dim myDataReader as SqlDataReader
myDataReader = myCommand.ExecuteReader()

At this point the DataReader is ready to use. You can loop through it
with a While loop, and the Read method of the DataReader supplies
you with the next row.

This is similar to the way a forward-only, read-only ADO Recordset
would be used, but there is one key difference in code. When a
Recordset is initialized, the first row (if the Recordset has any rows) is
already active, and you can refer to its fields right away. By contrast, a
new DataReader, such as the one created by the preceding code, has
no active row when it is created. The Read method must be invoked to
get to the first row. That means the code for looping through the rows
in the DataReader looks like this:
While (myDataReader.Read)
 Console.WriteLine("customer name: " &
myDataReader("CompanyName"))
End While
myDataReader.Close
myConnection.Close

I think this is an improvement over ADO because it's not possible to
forget the MoveNext method at the end of the loop that ADO required.
(Forgetting MoveNext would send the code into an infinite loop as the
first row was processed over and over again.) Instead, the Read
method of the DataReader must be done at the top of the loop or an
error will result as soon as you attempt to run your code.

The major attraction of the DataReader is speed. Once the connection
is established, the loop shown runs blazingly fast. The drawbacks are
that (1) you must maintain the connection as long as you are using the
DataReader, and (2) you have no way to back up through rows or
modify rows in any way. Note that the connection cannot be used for
anything else as long as the DataReader is active. You must explicitly
close the DataReader, using the Close method, before the connection
can be accessed for any other purposes.

 219

These limitations turn out not to matter in many ASP.NET scenarios.
When ASP.NET is building a Web page based on some data, forward-
only, read-only access is all that's needed. And because the page is
built and sent out as fast as possible, maintaining and monopolizing the
connection is not a problem because it is only necessary to do so for a
short period.
In fact, DataReaders are so useful for construction of Web pages in
ASP.NET that they can be data-bound to ASP.NET server controls.
(Note that DataReaders cannot be data-bound to controls in Windows
Forms because those controls require an in-memory representation of
the data for scrolling.) If we created a DataReader using the preceding
code, but did not implement the While loop (which would use up the
access to the data), we could use the DataReader to fill up an
ASP.NET DataGrid. Here's code that would do that, assuming our
ASP.NET page contained a DataGrid control named DataGrid1:
DataGrid1.DataSource = myDataReader
DataGrid1.DataBind

This allows ASP.NET pages to separate data related logic from layout
logic very effectively. The cosmetics for the grid can be done with
properties, whereas the data is derived with a DataReader and just
plugged in. Even if you have been leery of using data binding in the
past, this use for data binding in ASP.NET is something you should
definitely try.

Working with DataSets

As useful as DataReaders are, inevitably data applications need to modify
data and place the modifications in the original data store. The construct
that ADO.NET contains to allow this functionality is the DataSet.

Unlike all the classes we have looked at, there is only one DataSet class. It
is used by all types of data providers and can even be constructed on the
fly independent of any data provider. You should think of it as a generic
container for data, with the data coming from any source or even from
multiple sources.

Another key difference from the classes discussed earlier is that the
DataSet is designed to be used in a disconnected mode. As discussed, all
the classes that make up a data provider can only be used with an active
connection to the database. A DataSet requires no such connection.

DataTables
It may help to think of a DataSet as a miniature relational database in
which the data is kept in memory. It contains a collection of small sets
of rows called Data-Tables. It may also help to think of a DataTable as
the closest analog in ADO.NET to a Recordset in ADO because a
DataTable contains a set of rows that are typically extracted from a
database using a SQL statement or a stored procedure.

A DataSet can contain as many DataTables as is appropriate for a
given application. For example, a single DataSet might contain one
DataTable for customers, another for orders, and a third for order
details.

 220

The DataSet can also contain the relationships between these
DataTables. For example, if the DataSet contained DataTables for
customers, orders, and order details, it could also contain two
relationships, with one describing the relationship between customers
and orders and another describing the relationship between orders and
order details.

This virtual local relational database is totally disconnected from the
original source of the data, yet it has very flexible relational capabilities.
We'll see later in the chapter how you can access all the orders
associated with a single customer, for example.

XML as the Foundation

The foundation technology for a DataSet is XML. As we'll see later in
the chapter, XML is used to store DataSets on disk for extended
periods and to pass DataSets around between application tiers. As
befits an XML-based technology, once the data has been placed in a
DataSet, the original source does not matter. The data is operated on
identically regardless of how it was put in the DataSet. In fact, data in a
DataSet might come from several original sources. A DataSet might
contain, for example, one DataTable that was derived from a SQL
Server database and another DataTable that was derived from an
Oracle database. Operating on the DataSet involves exactly the same
techniques, even if the data comes from disparate sources.

The Life Cycle of a DataSet

As discussed earlier, data used in ADO.NET usually starts in a
traditional relational data store such as SQL Server or Oracle. From
there, we've seen how a data provider allows us to connect to the
database and extract data. Once the data has been extracted and
placed in a DataSet, there is no longer a need to continue a connection
to the database. This disconnected design for the DataSet contrasts
with the connected design of an ADO Recordset.

The way a DataSet is used also varies quite a bit from typical usage of
a Recordset. The life cycle of a DataSet is more complex; it can also
vary a lot depending on circumstances. However, here are the stages
in the life cycle of a typical DataSet:

1. Set up a connection to the database, using the
Connection object.

2. Create a Command object.
3. Create a DataAdapter object to transfer data from the

database.
4. Create a DataSet to hold the data.
5. Place the desired data into DataTables in the DataSet

using the DataAdapter.
6. Close the connection to the database once all needed

data has been fetched.
7. Set up relationships among multiple DataTables, if

necessary.
8. Manipulate the data as necessary (adding, changing,

or deleting rows).

 221

9. Go back to a connected mode and set up the
Connection, Command, and DataAdapter objects
again.

10. Use the DataAdapter to write any changes in the
DataSet back into the Database.

11. Close the connection.

This quick overview leaves out a number of options and details that
we'll cover later, but it is sufficient for our discussion at this point. The
key ideas are that the DataSet is created while connected to the
database, but it can be manipulated without any active connection
because the data is held locally in in-memory storage. Only when
changes need to be written back to the database is it necessary to
reestablish a connection.
It may help to understand these steps if they are laid out graphically. In
Figure 8.1, we follow the life cycle of a DataSet that contains a
Customers DataTable and an Orders DataTable. Most of our examples
in this chapter will involve just such a DataSet.

Figure 8.1: A typical life cycle for a DataSet.

It is important that you understand the life cycle of a DataSet and how it
varies from the way you work with Recordsets in ADO. This life cycle
gives you a conceptual structure into which you can fit the various
techniques that we are now ready to cover.

 222

Constructing a DataSet

There are a number of ways to construct a DataSet, but the most
common way, as discussed with the DataSet life cycle, is to use a
DataAdapter. We touched on the DataAdapter previously because the
DataAdapter classes are part of data providers. Before we get into
creating and using DataSets, let's talk in some more detail about
DataAdapters.

OleDbDataAdapter/SqlDataAdapter Classes

The two currently available DataAdapter classes are the
OleDbDataAdapter (from the OleDB data provider) and the
SqlDataAdapter (from the SqlClient data provider). They work very
much alike. Here is how to create a SqlDataAdapter in code:
Dim sConnectionString As String = "User ID=sa;
" & _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SqlConnection(sConnectionString)
myConnection.Open()

Dim sSQL As String
sSQL = "SELECT * FROM Customers WHERE
(CompanyName LIKE 'H%')"
Dim myCommand As New SqlCommand(sSQL,
myConnection)

Dim myDataAdapter As New
SqlDataAdapter(myCommand)

As this code demonstrates, creating a DataAdapter is much like
creating a DataReader. It is necessary to get a connection
established and then set up a Command class (in this case a
SqlCommand) that contains the information on fetching the desired
data. However, whereas the DataReader is created by calling the
ExecuteReader method of the Command class, a DataAdapter is
instantiated like any other object, and the associated Command
class is included as an argument in the constructor for the
DataAdapter.

Once you have created a DataAdapter, it can be used to transfer
data from a database into a DataSet. Each DataAdapter can fill up
one DataTable in the DataSet, so you may need multiple
DataAdapters if your DataSet needs to contain several DataTables.

The method of a DataAdapter that is used to transfer data to a
DataTable in a DataSet is the Fill method. To continue the
preceding code, we can create a DataSet and fill a DataTable
named Customers inside the DataSet with this code:
Dim myDataSet As New DataSet()

 223

myDataAdapter.Fill(myDataSet, "Customers")

Notice that our SQL statement in the earlier code fetched all
records in the Customers table that began with the letter H, so
those are the records that will end up in our Customers DataTable
after these two lines are executed.

Getting Multiple DataTables into a DataSet

We can repeat the preceding procedure to get more DataTables
into a DataSet. For example, to add a DataTable based on the
Orders table in Northwind to the preceding DataSet, we would use
the following code:
sSQL = "SELECT * FROM Orders "
Dim myOrdersCommand As New SqlCommand(sSQL,
myConnection)

Dim myOrdersDataAdapter As New
SqlDataAdapter(myOrdersCommand)
myOrdersDataAdapter.Fill(myDataSet, "Orders")

Of course, in a real application, the SQL statement for fetching
orders would have a WHERE clause to only get the desired orders,
but we are leaving that off for simplicity. (The Orders table in
Northwind is small, so it won't cause a problem in this instructional
example.)

When we are finished getting all the data we need into our
DataTables, the connection to the database should be closed. This
would be done with the line:
myConnection.Close

Setting Up Relationships between DataTables

At this point, we have two DataTables with data in them. Our
DataSet is ready to use, and we could access the rows containing
customer and order information. However, if we want to access the
data in a relational fashion (getting orders associated with a given
customer, for example), we must add the relationship between the
DataTables. This is done with the DataRelation class.

Each DataSet has a Relations collection to hold DataRelation
objects. The collection may be empty, of course, which means
there are no relationships set up among the DataTables in the
DataSet. That's where we stand right after creating our DataTables
for Customers and Orders.

To create a DataRelation, we need to point to the columns in the
DataTables that need to be related. For example, in our
Customers/Orders example, the Customers DataTable has a
primary key called CustomerID. The Orders table has a field
named CustomerID also, and this field is used to point to the
customer for this order. (In database parlance, a primary-foreign

 224

key relationship exists between the Customers table and the
Orders table in the Northwind database.)

To specify the columns to use for a relationship, the DataColumn
class is used. Each DataTable already has a collection of
DataColumns, which was created by the DataAdapter as part of
the DataTable's structure. We just need to point to the
DataColumns that we need for our relationship.

To bring it all together, here's how we create a DataRelation and
add it to the Relations collection:
Dim ParentColumn As DataColumn
Dim ChildColumn As DataColumn
ParentColumn =
myDataSet.Tables("Customers").Columns("Custome
rID")
ChildColumn =
myDataSet.Tables("Orders").Columns("CustomerID
")

Dim myRelationship As New
DataRelation("CustomersToOrders", _
ParentColumn, ChildColumn)
myDataSet.Relations.Add(relRelationship)

Now the DataSet can be used in a relational fashion. We'll see
soon how to use this capability in code in the section Accessing
Data Using For...Each Loops.

The name of the relationship (CustomersToOrders in our example)
can be set to any value desired, and it is used to refer to the
relationship in later code.

Accessing Data in a DataSet

You can randomly access individual DataTables in a DataSet and then
access the rows within them. That is done with collection-based syntax,
like this:
sName =
myDataSet.Tables("Customers").Rows(0).Item("Compa
nyName")

This line would first go to the DataTable in the Tables collection with
the name Customers. Then it would access the first row in that
DataTable (Row(0)). Then it would get the field named CompanyName
using the Item collection. If we replace the zero in Row(0) with an index
variable, we could loop through the rows with a For Next loop.

This is very different from ADO, which used a cursor to point at an
active row. The ADO.NET DataSet has no cursor in that sense. You
just indicate the table, row, and field in which you are interested in a
random access fashion. This is easier to use than connected ADO
Recordsets and also much more powerful than using disconnected

 225

Recordsets in ADO, which only support the minimal cursor operations
of MoveNext, MovePrevious, MoveFirst, and MoveLast.

Accessing Data Using For...Each Loops

Because DataTables, rows, and fields are held in collections,
For...Each syntax is another good way to get at data. Here is data
to print out the Company-Name for all the rows in a given DataSet
using a For...Each loop:
Dim rowCustomer as DataRow
For Each rowCustomer In
myDataSet.Tables("Customers").Rows
 Console.WriteLine("Company name" &
rowCustomer("CompanyName"))
Next

This would produce similar output to the DataReader example
presented earlier. The difference is that a loop like this can be used
to manipulate the data. Rows can be changed, added, or deleted.
We will see how to do that later in the section Manipulating Data in
a DataSet.

If we have set up a relationship between the Customers and
Orders Data-Tables, we can use a nested For...Each loop to look
at customers and their orders. Here is how it looks in code:
Dim rowCustomer As DataRow
Dim rowOrder As DataRow

For Each rowCustomer In
myDataSet.Tables("Customers").Rows
 ' Access header information for customer

Console.WriteLine(rowCustomer("CompanyName"))

 ' Now get orders associated with the
current customer
 For Each rowOrder In
rowCustomer.GetChildRows("CustomersToOrders")

Console.WriteLine(rowOrder("OrderDate"))
 Next

Next

The nested For...Each loop for orders uses the GetChildRows
method of a DataRow to get only the orders associated with a
given customer. GetChildRows uses the information in the
DataRelation that we set up earlier to do that.

This type of relational access to data is a big improvement over the
way similar tasks are done with ADO code. Much of the code

 226

required to manually manage the relationships among tables in
ADO is not needed with ADO.NET because the DataSet can be
configured to automatically manage relationships between
DataTables.

Manipulating Data in a DataSet

Manipulating data in existing rows of a DataTable uses syntax much
like we've already seen. For example, to change the value of the
CompanyName field in the first row of a DataTable, we would use code
like this:
myDataSet.Tables("Customers").Rows(0).Item("Compa
nyName") = "ABC Company"

This resembles ADO code somewhat. The difference is that the
changes made in this manner are not automatically placed back in the
database as soon as a different row is accessed. Instead, they are
stored in the local copy of the data, and changes are updated to the
database in batch in another operation (detailed in the section Storing
Changes Back to a Database). However, there are several additional
techniques that you'll need, including:

§ Adding a row to a DataTable
§ Finding a particular row in a DataTable
§ Deleting a row from a DataTable

Let's look at each of these.

Adding Rows to a DataTable

Unlike a Recordset, you don't create a new row in a DataTable with
an AddNew method. Instead, you create a row as an object, set
values for the fields in the row, and then add the row to the
DataTable's Rows collection. Here is code to do this for a new
customer in our Customers DataTable:
Dim rowNewCustomer As DataRow
rowNewCustomer =
myDataSet.Tables("Customers").NewRow
rowNewCustomer("CustomerID") = "NEWCU"
rowNewCustomer("CompanyName") = "New Customer"
rowNewCustomer("ContactName") = "Clark Kent"
' Set values for all customer fields...

' New row is now complete. Add it to the
DataTable
myDataSet.Tables("Customers").Rows.Add(rowNewC
ustomer)
MyDataSet.AcceptChanges()

The last line includes a method of the DataSet that we have not
previously discussed. The AcceptChanges method is used after all
the desired changes have been made to a row. Until the
AcceptChanges method is invoked, you can easily throw away

 227

pending changes. That is done by using a method called
RejectChanges instead of using AcceptChanges. These methods
work when changing rows as well as when adding new ones.
Remember that the changes made by the preceding code, even
after invoking AcceptChanges, are only in the local DataSet, not in
the original database. If you take no action to restore the changes
in the database (as described in Storing Changes Back to a
Database), the changes are lost when your program ends. In fact,
the changes are lost as soon as the DataSet falls out of scope and
is destroyed.
As with ADO, you are responsible for placing valid data in the
fields. You must match up data types, for example. If the DataSet
has constraints on it, you must satisfy the constraints. (We look at
constraints under Advanced Topics later.) If you fail to satisfy any
of these conditions, you'll get an exception in your code.

Finding a Particular Row in a DataTable

You might think that you could get to a particular row in a
DataTable by using a key to the Rows collection, like this:
myRow =
myDataSet.Tables("Customer").Rows("NEWCU") '
This does not work!

Unfortunately, the Rows collection only takes a numeric index, so
this technique does not work, even if rows have primary keys.
Instead, the DataTable class has a Select method that is used to
get the row or rows you want. To fetch the row we just inserted
(which has a CustomerID value of NEWCU), we use the following
code:
Dim rowsSelected() As DataRow
rowsSelected =
myDataSet.Tables("Customers").Select("Customer
ID =
'NEWCU'")

A Select method might return more than one row in a DataTable,
so we have to declare an array of DataRow objects to hold the
results of the Select method. In our case, we only have one row
with the unique Customer ID of NEWCU, so our returned array will
only have one element in it.

Now that we have the row, it is manipulated just as any other row
would be. For example, we can put the ContactName from the row
into a label with this line of code:
Label1.Text =
rowsSelected(0).Item("ContactName")

Keep in mind that what is obtained in the array that is returned from
a Select method is a set of object references to DataRow objects in
the DataTable. The rows are still in the DataTable's Rows
collection—we just have another means at this point to refer to
them.

 228

Deleting Rows from a DataTable

Deleting a row from a DataTable is easy. You just remove it from
the Rows collection. The hard part is picking out the row you want,
which we just covered.

If we have carried out the preceding select operation, we can
remove our row (with CustomerID of NEWCU) with the following
line:
myDataSet.Tables("Customers").Rows.Remove(rows
Selected(0))

We only need to pass any valid object reference to the row that we
want to remove. In our case, the reference was obtained with a
Select method of the DataTable object. But we could also remove
a row using its numeric index, like this:
Dim myDataTable as DataTable =
myDataSet.Tables("Customers")
myDataTable.Rows.Remove(myDataTable.Rows(0))

This example removes the first row in the Customers DataTable.
(ADO.NET collections are all zero-based, so the first item in the
collection has index zero.)

Storing Changes Back to a Database

Once data has been manipulated, it is often necessary to make the
changes permanent. As we pointed out previously, changes to a
DataSet are made to a local copy of the data, and those changes will
be lost if they are not placed back into the database.

In a sense, resolving changes back to the database is the reverse of
getting the data in the first place. We again need an active connection
and a Command object. Then a DataAdapter object is created and
associated with the Command object.

The actual method of the DataAdapter that is used to place changes
back in the database is the Update method. Remember that a
DataAdapter can only be associated with one DataTable in a DataSet.
Resolving changes in a complex DataSet that has several DataTables
will therefore require several DataAdapters.

DataAdapters can use appropriate SQL statements to perform the
necessary database operations. That is, rows can be changed with an
UPDATE statement, rows can be deleted a DELETE statement, and
new rows can be inserted with an INSERT statement. You can create
your own SQL statements for these operations, or a wizard (covered
later) can generate the statements for you. Because it is extraordinarily
tedious and error-prone to create your own statements, it is strongly
advised that you use a wizard to do it. In the section on using the data
tools in the IDE, we'll cover how to set up a DataAdapter with all of
these statements automatically generated, and then we will return to
the subject of updating data in the database using SQL statements.

Many production systems require such operations to go through stored
procedures on the database. This allows the database to perform any

 229

necessary validation and also improves performance. To allow for this
case, DataAdapters can be attached to stored procedures instead of
SQL statements. We'll cover more on that later in the chapter.

Persisting a DataSet as XML

DataSets are manipulated while being held in memory. However, when
necessary, DataSets can be saved as XML files. This allows the entire
contents of the DataSet (including information such as which rows
have pending changes) to be persisted on disk for an indefinite period
of time.

This XML representation is also the way DataSets are passed between
application tiers. The XML document for a DataSet contains both the
schema and the data, so any tier can get a complete record of the data
from any other tier.

Our Customers/Orders DataSet could be stored on disk in a file named
C:\Data\CustomersOrders.XML with the following line of code,
assuming that the directory C:\Data already exists:
myDataSet.WriteXML("C:\Data\CustomersOrders.XML",
_
 XmlWriteMode.WriteSchema)

The second parameter specifies that the schema for the DataSet
should be included in the XML file. This contains information such as
the fact that the FullName column is actually calculated from other
columns. An XML file on disk can later be read back into a DataSet.
We will see how to do this later in the chapter in the section that
focuses more explicitly on XML.

The XML representation can also be output as a stream, and this is
one way for DataSets to communicate between tiers. Another way is to
just pass an argument of type DataSet. In that case, the serialization of
the DataSet to XML so that it can be passed between components is
automatic.

Using DataViews

DataSets are the local container for data in ADO.NET. We can display
the information in them in a variety of ways. For example, we can bind
a DataSet to a data grid to see the data within it. However, sometimes
the way data is displayed needs to be different from the way it is
stored. For example, we might only want a subset of the data, such as
only customers that are in a given region. Or we might want to sort the
data for display differently from the way the data is ordered in the rows
of the DataTables in the DataSet.

To take care of such operations, ADO.NET includes a class called a
DataView. A DataView is attached to a particular DataTable and
applies filtering and/or sorting to it. You can arrange for a DataView to
only return certain records in the DataTable and for the rows to be
ordered by any field or combination of fields in the DataTable.

DataViews are often bound to Web forms controls to construct Web
pages that view data. And, because several DataViews can be

 230

attached to a single DataTable, they can be used to provide multiple,
simultaneous views of the same data in different controls. You can
have one grid on your form that holds customers ordered by company
name and another ordered by contact name, for example.

The DataView reflects a live view of the data in the underlying
DataTable. If changes are made to any rows in the DataView, the
changes are actually made to the corresponding rows in the
DataTable. That means that any changes to rows in a DataTable are
immediately available to all DataViews that are attached to that
DataTable.

To create a new DataView, simply declare the DataView and indicate
the DataTable that you want it to be attached to in the constructor.
Here is example code:
Dim myCustomerDataView As New
DataView(myDataSet.Tables("Customers"))

At this point, the DataView returns all the rows in the Customers
DataTable in the order that they have in the DataTable . That is, if you
data-bind the DataView to a grid at this point, you would not be able to
tell the difference between it and the grid being bound directly to the
underlying DataTable. So a DataView typically has properties set to
enable its sorting and/or filtering functionality. Not only can you set
such properties once, but the properties can be changed on the fly to
dynamically alter the output of a DataTable.

Getting a Subset of Data into a DataView

There are two properties that enable a DataView to return a subset
of rows in the underlying DataTable. They are the RowFilter and
RowStateFilter properties.

The RowFilter property takes a filtering expression to subset the
data. Suppose that our Customers DataTable in our previous
examples had all the customers in it. (Remember that our example
used a WHERE clause to only return a few customers. If that
WHERE clause were eliminated from the SQL SELECT statement
that fetched customers, all customers would be returned.) We want
to set the DataView to return customers with contact names
beginning with the letter D. The line of code to do that looks like
this:
myCustomerDataView.RowFilter = "ContactName
Like 'D*'"

This example is a simple expression with a single condition. But
expressions can be much more complex than this, with multiple
logical expressions connected with boolean operators (AND, OR,
NOT, etc.); RowFilter expressions can also include arithmetic
computations and constants in logical expressions and can
reference as many fields as necessary.

The RowStateFilter property does not take an expression. Instead,
it takes an enumerated value, with each value corresponding to a

 231

specific set of rows in the underlying DataTable. The enumerations
for RowStateFilter are:

§ Added. Shows new rows that have been added to
the DataTable since it was originally constructed
from the database.

§ CurrentRows. Shows current rows, including
unchanged, new, and modified rows. Deleted rows
are not included in this filter.

§ Deleted. Shows deleted rows.

§ ModifiedCurrent. Shows rows that have a current
version of data that is different from the original
data in the row.

§ ModifiedOriginal. Shows modified rows, but
displays them with the original version of the data
(even if the rows have been changed and have
another current version of the data in them).

§ None. Shows no rows at all. Could be used
initially on a DataView for a control before the user
has chosen viewing options.

§ OriginalRows. Shows all rows with their original
data version, including unchanged and deleted
rows.

§ Unchanged. Shows rows that have not been
changed since the DataTable was extracted from
the database.

You can get rows in more than one of these categories by
combining the enumerated values with a logical OR. For example,
this line of code causes the DataView to expose both new rows
and unchanged rows:
myCustomerDataView.RowStateFilter =
DataViewRowState.Added Or _

DataViewRowState.Unchanged

Sorting a DataView

To sort a DataView, you set the Sort property of a DataView to a
string expression that specifies the sorting you want. You can sort
on multiple columns, with each column sorted in ascending or
descending order.

The string expression to describe the sorting contains column
names to sort on, separated by a comma if there are more than
one. By default, columns will be sorted by ascending values, but
you can follow a column name with the letters DESC to make a
descending column sort instead. Here is an example of a sort
expression that sorts our Customers DataTable alphabetically by
Contact-Name and then by descending phone numbers:
MyNewDataView.Sort = "ContactName, Phone DESC"

 232

The order of the columns specified is important. In this case, the
DataTable will be sorted first by ContactName, and then if there is
more than one record with the same value for ContactName, those
rows will be sorted by descending phone number.

More Details on DataSet-Related Classes

Now that we've seen the essentials of working with the main ADO.NET
classes, we can look at them in detail and cover some advanced features.
This section concentrates on those classes that are related to DataSets—
the Data-Table, DataRow, DataColumn, DataView, and Constraint classes.
We begin by looking at the detailed structure of a DataSet.

Structure of a DataSet
A DataSet is made up of Tables and Relations collections. The Tables
collection contains DataTables objects, which themselves contain
collections of DataColumns, Constraints, and DataRows. Figure 8.2 is
a diagrammatic representation of this.

Figure 8.2: The hierarchy of classes contained in a DataSet.

For a DataSet to be functional, it must contain at least one DataTable
object in its Tables collection, and to contain any data, the Rows
collection of the DataTable must have some rows whose layout is
described by the Columns collection. All the other elements of the
object model are optional.

The layout of the data in DataTables, including information such as
data types, is in the Columns collection. The constraints for a particular
table are in the Constraints collection. The relationships between tables
are in the Relations collection. The actual data resides in the Rows
collection.

Understanding this structure and the relationship between the Columns
collection and the Rows collection is key to manipulating DataSets.
Each DataTable contains a Columns collection and a Rows collection.

 233

The Columns collection is accessed to get or set schema information
about the fields in each row. The Rows collection contains individual
DataRow objects, with each object representing a row or data record in
the DataTable. Each DataRow has an Item property, indexed with
column names from the Columns collection, to get to individual fields in
the row.

DataTables

As discussed, a DataTable object contains one table of in-memory
data. It has a collection of columns that contain the schema for the
table and a collection of rows to contain the actual data.

The Columns collection to contain the schema for the DataTable is
automatically created when a DataTable is initialized by a DataAdapter,
using the DataAdapter's Fill method. But that's not the only way the
schema for a DataTable can be created. In some cases, it makes
sense to explicitly create the schema using code. Using that technique,
each DataColumn in the Columns collection is created with code and
then added to the collection.
As we have seen, new rows are added to a DataTable by creating the
row with the NewRow method and then adding the row to the Rows
collection. DataTables have several other useful properties and
methods. The documentation contains a complete list, but some of the
most important ones you should know about are listed in Table 8.3.
Like all .NET classes, a DataTable must be declared using the
WithEvents keywords to get access to its events.

Table 8.3: Commonly Used Properties, Methods, and Events for a
DataTable

PROPERTIES
HasErrors A Boolean property that indicates whether the

DataTable contains errors in any of its rows.
Errors are typically present because a row
violates the constraints that were placed on the
DataTable. Note that individual DataRow objects
also have a HasErrors property.

PrimaryKey Gets or sets an array of columns that make up a
primary key for the DataTable.

METHODS
AcceptChanges Accepts all changes made to the table since the

last call of AcceptChanges. The impact of
AcceptChanges is discussed in more detail in
the section Examining Different Versions of Data
in a Row.

Clear Clears the table of all data (empties the Rows
and Columns collections).

GetErrors Returns a collection of DataRow objects that
contain errors. This method is typically used
after the HasErrors property has been accessed
and returned true.

 234

METHODS
NewRow Discussed earlier. NewRow creates a new

DataRow object that is empty but has the
structure needed for this DataTable and then
returns a reference to this new object. Note that
NewRow does not add the row to the Rows
collection automatically. By design, this step is
under the control of the programmer.

RejectChanges Throws away all changes made to the table
since it was loaded or since the last time
AcceptChanges was called.

Select Discussed previously. Takes a selection
expression and returns an array of DataRow
objects that match the selection expression.

EVENTS
ColumnChanging,
ColumnChanged
events

ColumnChanging is fired when any data value
in any row in the DataTable is being changed,
but before the change actually happens.
ColumnChanged is fired after the change
actually takes place. The event arguments
are identical for both, and they specify the row
being changed, the column within the row,
and the new value being proposed.
ColumnChanging can be used to cancel a
proposed change to a row, if necessary, by
throwing an exception.

RowChanging,
RowChanged
events

Fired when a DataRow is being changed in
any way (including deletion of the row or
rollback of previous changes to the row).
RowChanging is fired before the change, and
RowChanged is fired after the change. Both
feature the same event arguments, which
specify the action that is taking place and the
row affected. The change in the
RowChanging event can be canceled by
throwing an exception.

RowDeleting,
RowDeleted
events

RowDeleting cccurs when a DataRow is
about to be deleted. The deletion can be
canceled by throwing an exception in this
event. RowDeleted occurs after a DataRow
has been deleted.

DataColumns

Each field in a DataTable has a corresponding DataColumn object to
contain the schema information for the field. The most important piece
of information is the type of data contained in the field, and the
DataType property of the DataColumn indicates this type. Other
properties of the column control other aspects of the field. These
include the following Boolean properties:

 235

§ AllowDBNull. Allows the field to contain a null value.
§ Unique. If true, requires the value in this field to be

unique in the collection of rows in this DataTable
§ ReadOnly. If true, this field can only be read but cannot

be changed.

A DataColumn can be set to automatically insert an incremented value
for the column in new rows, similar to an Identity column in SQL Server
or a Counter field in Access. The AutoIncrement property turns this
feature on, and the AutoIncrementSeed and AutoIncrementStep
properties control where the value starts and how it is incremented.

The most common use of a column is to hold a data value that has
been extracted from a database. However, a column can be configured
to hold a value that is computed or constructed from values in other
columns. The Expression property holds the expression that is used for
the calculation. For example, suppose you need a Contacts DataTable
to have a column with a full name, but the database only has columns
for FirstName and LastName. You could create a FullName column
with code like this:
Dim clmFullNameColumn As New
DataColumn("FullName")
clmFullNameColumn.DataType =
System.Type.GetType("System.String")
clmFullNameColumn.Expression = "FirstName + ' ' +
LastName"
myDataSet.Tables("Contacts").Columns.Add(clmFullN
ameColumn)

You can also do calculations in a derived column, including addition,
subtraction, and so on. This could be used in an Orders table, for
example, to apply a discount rate to a suggested retail price.

DataRows

We've already seen how DataRows in the Rows collection can be used
to contain actual data in the DataTable and to manipulate that data.
Recall an example we used earlier:
myDataSet.Tables("Customers").Rows(0).Item("Compa
nyName") = "ABC
Company"

This line of code sets the CompanyName field in the first row of our
Customer DataTable to ABC Company. It works because the Item
property of the DataRow class is indexed on the column name.
Because the column name is part of the schema for the DataTable, it is
held in a DataColumn object in the Columns collection. In this case, we
have a DataColumn object with a Column-Name of CompanyName.

Because the Item property is the default property for a DataRow, and it
is an indexed property, we can also perform the same operation with
the following syntax:

 236

myDataSet.Tables("Customers").Rows(0).Item(1) =
"ABC Company"

In this case, we are using the numeric index of the CompanyName
column, which happens to be 1, because CompanyName is the second
column in our DataTable.

Changing Data with an Editing Mode

As we have seen, DataRows can be changed by simply accessing the
columns and setting values. This works well if the volume changes are
fairly small and we are not doing any event-handling on our DataTable.
(Recall that a Data-Table can be set to generate events when rows are
changed.)

However, if we are making many such changes, and each change is
generating an event, we may be seriously affecting performance. There
is an additional pitfall. If the event performs some validation that
depends on other columns, and the other columns have not been set
yet, the validation will fail.

What we need to remedy these problems is a way to suspend events
for a row. This can be done by putting the row into an editing mode.
While the row is in such a mode, changes will not generate events and
validation will not be performed. Then, when the editing mode is exited,
the events and validation take place.

A DataRow object has three methods to control the editing mode. Two
of these will look rather familiar to a developer experienced in ADO
programming:

§ BeginEdit Places the row in editing mode.

§ CancelEdit Cancels editing the row and throws away
any changes made. Similar to CancelUpdate in ADO.

§ EndEdit Commits the changes to the row and takes the
row out of the editing mode. Similar to the Update
method in ADO. (Remember that changes to a DataSet
don't automatically propagate to the original database.
Changes committed with an EndEdit can still be lost if
the changes in the DataSet are not saved to the
database.)

Even though this looks a lot like editing rows in ADO, there is a key
difference. Only one row can be in an edit mode at a time in ADO
because the ADO cursor can only refer to one record at a time. In
ADO.NET, you can have as many references to different DataRows as
you need, and any of them can be in an editing mode simultaneously.

Note that if you use the AcceptChanges method of a DataTable, an
EndEdit is automatically applied to each row that is in an editing mode.

Examining Different Versions of Data in a Row

DataSets are designed to hold data in a disconnected state, and that
means the manipulation of the data in a DataSet may be extensive and
spread out over time. It may be important to know what state a

 237

particular row is in so that a user has various options to undo or roll
back changes.

We've also discussed the fact that there can be multiple versions of
data in a DataRow simultaneously. A particular DataRow can have one
or more of the following versions of data in it:

§ Current. The current accepted data in the row. This can
be the original data if no data has been changed, or it
can be the value after changes have been made.

§ Default. The default values for the row. These are the
values that would be in a row when it had just been
created by a NewRow method on the DataTable.

§ Original. The data in the row when the table was first
added to the DataSet or the data in the row after the last
time an AcceptChanges was done on the entire
DataTable. An AcceptChanges method on the individual
DataRow does not alter the Original values—it just puts
the Proposed values into the Current values.

§ Proposed. The row has some new data that has not
been committed with an AcceptChanges method on the
DataTable or the individual DataRow. Such data can be
rolled back with a RejectChanges method on the
DataTable or DataRow and returned to its previous
value.

By default, the Item property of a DataRow gets the Current version of
the fields. However, you can get to other versions by using an optional
parameter of the Item property. The parameter takes any of the
following enumerated values, corresponding to the preceding version
types:

§ DataRowVersion.Current
§ DataRowVersion.Default
§ DataRowVersion.Original
§ DataRowVersion.Proposed

Here is an example. Suppose I have changed the data in the first row
of my Customers DataTable with the following line:
myDataSet.Tables("Customers").Rows(0).Item("Compa
nyName") = _
 "ABC Company"

Further suppose that I don't carry out an AcceptChanges method on
myDataSet or on the Customers DataTable. Then, later in my code, I
would like to get the proposed value of CompanyName column. The
code to do that would look like this:
Dim sProposedCompanyName As String
sCompanyName =
MyDataSet.Tables("Customers").Rows(0).Item{"Compa
nyName", _
 DataRowVersion.Proposed)

If the row does not contain a Proposed version of its data (because no
changes have been made), the second line would generate an

 238

exception. That can be avoided by first checking to see if a particular
version is present. The DataRow has a property named HasVersion to
do that.

Constraints

The final structural element of a DataTable that needs to be mentioned
is Constraints. There are two types of constraints that can be imposed
on fields in a DataTable:

§ Foreign key constraint. Requires a field to contain a
value that is present as the primary key in some row of
another DataTable.

§ Uniqueness constraint. Requires a field to be unique
within the rows of this DataTable.

To impose a constraint on a DataTable, you create an appropriate
constraint (from one of two constraint classes named
ForeignKeyConstraint and Unique-Constraint), set the constraint's
properties as needed, and then add the constraint to the DataTable's
constraint collection.

Setting up a ForeignKeyConstraint object requires you to provide the
following information:

§ The related DataTable that has the primary key to which
the foreign key points

§ The column or columns containing the foreign keys in
this DataTable (the one on which the constraint is being
imposed)

§ What action is to be taken if the constraint is violated

Some of this information is supplied to the constructor for the
ForeignKeyConstraint, and some is provided by setting properties for
the class after it is instantiated. The following is some sample code that
sets up a ForeignKeyConstraint for our DataSet that contains a
Customers DataTable and a related Orders DataTable. (This code
assumes that the DataSet was created as we did earlier in the chapter,
with one small exception. Because we are loading all Orders into the
DataSet, we need to load all Customers as well, so the SQL statement
for the DataAdapter that fills the Customers DataTable should have the
WHERE clause dropped.)
Dim ParentColumn As DataColumn
Dim ChildColumn As DataColumn
ParentColumn =
myDataSet.Tables("Customers").Columns("CustomerID
")
ChildColumn =
myDataSet.Tables("Orders").Columns("CustomerID")

Dim myFKConstraint As ForeignKeyConstraint
myFKConstraint = New
ForeignKeyConstraint("OrderFKConstraint", _
ParentColumn, ChildColumn)

 239

' If Customer is deleted, set corresponding
foreign
' keys in Order table to null values
myFKConstraint.DeleteRule = Rule.SetNull

' If Customer row has primary key updated,
cascade results to orders
myFKConstraint.UpdateRule = Rule.Cascade

' Add the constraint to the Constraints
collection
myDataSet.Tables("Orders").Constraints.Add(myFKCo
nstraint)

' Set the DataTable to enforce constraints
myDataSet.EnforceConstraints = True

There is one by-product of this operation that you should know about.
A foreign key constraint requires a unique primary key in the
associated table. So when a foreign key constraint is added to the
Orders DataTable in the preceding code, a uniqueness key constraint
is automatically added to the Customers DataTable for the CustomerID
field. You can see that this is the case by examining the Count property
of the collection myDataSet.Tables ("Customers").Constraints both
before and after the preceding line that adds the constraint. Even
though the constraint is added to the Orders DataTable, the constraint
count for the Customers DataTable also increases.

The other type of constraint class is UniqueConstraint. It is much
simpler. It is only necessary to set the columns in the DataTable that
must contain unique values by associating them with a
UniqueConstraint. Here is code for making the ContactName field in
our Customers DataTable unique. This code would work if it were
placed just before the last line in the preceding code that set the
EnforceConstraints property to True for the DataSet:
' Force contact name to be unique (just for demo
purposes)
Dim myUniqueColumn As DataColumn
myUniqueColumn =
myDataSet.Tables("Customers").Columns("ContactNam
e")

Dim myUniqueConstraint As New
UniqueConstraint("UniqueContact", _
myUniqueColumn)

myDataSet.Tables("Customers").Constraints.Add(myU
niqueConstraint)

 240

As mentioned, the CustomerID field in the Customers DataTable
already had a unique constraint imposed by the foreign key constraint
on the Orders table. Therefore we have demonstrated the capability
with the ContactName field instead, even though that would be a
foolish thing to do in a real application.

Using the Data Tools in the IDE

The Visual Studio IDE is very well integrated with ADO.NET, and a number
of tools are available in the IDE to simplify working with DataSets.

The Server Explorer
The Server Explorer was mentioned briefly in Chapter 2. Now let's take
a look at some of the data -related functionality it includes.

You can display the Server Explorer with the View, Server Explorer
menu option. It appears in the same section of the screen as the
toolbox. It contains a tree-structured hierarchy of server-based
resources.
When first opened, the Server Explorer contains two top-level
elements— one for Data Connections and one for Servers. Let's look at
the second one first. If you click on the plus sign next to Servers, you'll
see some of the server-based resources that you currently have
available to you. The screen looks something like Figure 8.3.

Figure 8.3: IDE with the Server Explorer open, and the Data
Connections option highlighted.

You can continue to navigate through the hierarchical tree of
resources. If you are using SQL Server as your database, one of the

 241

most useful resources is under the section labeled SQL Servers. This
section allows you to navigate among your databases, looking at or
modifying the structure of your tables and examining and changing
data. The information exposed is placed on the screen in the area
where the code editor resides. Figure 8.4 is a screen that shows the
Customers table in the Northwind database.

Figure 8.4: The Customers table in the Northwind sample database,
accessed with the Server Explorer.

With previous versions of Visual Studio, you would need to load SQL
Enterprise Manager for much of this functionality. But now it is
available from within the development environment.

Creating a Database Connection
The other element in the Server Explorer allows you to establish a
database connection. If you right-click on the Data Connections
item in the Server Explorer and select Add Connection, you'll get
the configuration screen for creating a connection, which looks like
Figure 8.5 .

 242

Figure 8.5: Dialog for setting up a new connection.

By default, the connection is for a SQL Server database. If you
want to establish a connection for a different type of database
(such as Access or Oracle), select the Provider tab and then you
choose the type of provider you want to use. The configuration
screen varies for different providers.

For SQL Server, you just select the server that contains the
database you want, type in login information, and then select the
database to connect to. All of our examples connect to the sample
Northwind database, which is installed with SQL Server.

The connections that are established in the Server Explorer are
available in a drop-down list in several of the other tools that we will
discuss. It is a good idea to establish the connections you need at
the beginning of a project using ADO.NET. Remember that you
might need more than one connection if you will be fetching data
from different data sources.

The Data Tab in the Toolbox
The other data-related tools are on a tab in the toolbox. The tab is
labeled Data and is typically the top tab. If you click on this, you'll see a
toolbox like the one in Figure 8.6 .

 243

Figure 8.6: The Data tab in the toolbox, showing the data-related
controls available for drag and drop onto the design surface.

The elements in the toolbox can be thought of as controls, although
they have no visual manifestation at runtime. As such, they are
incorporated into a project by dragging them from the toolbox onto the
design surface.

DataSet and DataView each have one control, and there is a set of
controls for each data provider. Because we are using the SqlClient
data provider for our examples, we will only cover the SqlDataAdapter,
SqlConnection, and SqlCommand controls.

Using a SqlConnection Control

Let's look at an example of one of these controls in action. We've
seen earlier how we can establish a Connection object in code.
The code to do so looked like this:
Dim sConnectionString As String = "User ID=sa;
" & _
 "Initial Catalog=Northwind;Data
Source=MYSERVER"
Dim myConnection As New
SQLConnection(sConnectionString)
myConnection.Open()

As an alternative to creating a connection this way, we can drag a
SqlCon-nection control from the toolbox to our design surface. It
will receive the name SqlConnection1. This is no different from a
Label control receiving the name Label1 when it is dropped onto a
design surface. But because the SqlConnection control is not

 244

visible, it does not go on the form itself. Instead, it goes in a special
area below the design surface called the component tray. Figure
8.7 shows the screen just after a SqlConnection control has been
dropped onto the Web Form.

Figure 8.7: A design surface with a SqlConnection control
dragged onto it and created as SqlConnection1.

The new control (SqlConnection1) is highlighted in the component
tray. Just as with any other control, that means that its properties
are available in the Properties window. Instead of setting the
connection string in code, you can just put it in the Properties
window. Then you can get an active connection in code with only
one line:
SqlConnection1.Open()

Of course, you could rename the control to anything you like in the
Properties window. Just as with any other control, it's a good idea
to give it an appropriate name.

The advantages of using such a control are (1) less code to write,
and (2) it is easy to see the properties you can manipulate in a
visual layout. You can examine all of the properties at once in the
Properties window and change them as needed. Of course, as with
other controls, any of the properties can be changed in code as
well.

Using a SqlCommand Control

If you drag over a SqlCommand control, you will get a control
named SqlCommandl. It too has properties you can set. The most

 245

important are the Connection property and the CommandText
property.

The Connection property is where you hook a Command control to
a connection. If you have already created Connection controls, you
can select one of them to hook to the Command.

The Command property is where the SQL statement associated
with the command object goes. It can be a SELECT statement for
later use by a DataAdapter, or it can be a SQL statement to use
with one of the execute methods of the command object that we
discussed earlier.

Using a SqlDataAdapter Control

As we saw earlier, configuring a DataAdapter from scratch takes
several lines of code. We also discussed the fact that a
DataAdapter that will place changes into a database needs even
more configuration. The entire configuration for a complex table
can easily take over a hundred lines of code. Doing this by hand is
prohibitively tedious.

To make the process easy, the DataAdapter control is configured
with a wizard. When you drop a SqlDataAdapter control onto the
design surface, the wizard begins automatically. It configures not
only the DataAdapter but also the Connection and Command
objects needed by the DataAdapter. It is not necessary or
appropriate to create a Connection control and a Command control
(as we did in the preceding examples) to use a DataAdapter
control. You just drag over a SqlDataAdapter and le t the wizard do
it all.
The first screen of the wizard is just a welcome screen. When you
click on Next, you'll be asked to select the connection to use for the
DataAdapter. That wizard screen looks like Figure 8.8.

 246

Figure 8.8: The first option screen in the DataAdapter
configuration wizard.

The connections that you added earlier in the Server Explorer are
available in the drop-down list. A new connection can also be
established right here by pressing the New Connection button.
Once you've chosen a connection, click on Next to get the screen
shown in Figure 8.9.

 247

Figure 8.9: Choosing the data access method for a DataAdapter.

We learned earlier that a DataAdapter can use either SQL
statements or stored procedures to communicate with the
database. This is where we specify which we want to use.

If you pick Use SQL statements, the DataAdapter will be
configured with SQL statements for all of the database
operations—select, insert, update, and delete. The SELECT
statement will be created later in the wizard with your input, and the
others will be created automatically.

If you pick Create new stored procedures, the wizard will create
complete, but minimal, stored procedures for each of the four
database operations. If you are working on a project with a new
database that you just created, this option could make sense to
help you get your stored procedures up quickly.
If you pick Use existing stored procedures, you'll get a screen to
pick stored procedures for each of the four database operations.
You don't have to pick stored procedures for all of them. You can
just choose for the ones you will need when data is updated. But if
you leave one out and it is needed later, you'll get a runtime
exception. Figure 8.10 is the wizard screen used to choose stored
procedures for the database operations.

 248

Figure 8.10: The screen in the DataAdapter configuration wizard
for selecting the stored procedures to use for database
operations.

Once you select the stored procedures you want to use, you can
map the parameters for the stored procedures to the fields in your
DataSet. Figure 8.11 is a version of the preceding screen with the
stored procedures selected and the mapping grid filled up on the
right for the Insert operation.

 249

Figure 8.11: The screen from Figure 8.10 after stored procedures
have been selected. The mapping of data columns to stored
procedure parameters is shown in the grid on the right.

Selecting a Source Column (on the far right-hand part of the
screen) gives you a drop down list to use in configuring your
mapping.
If you do not use a stored procedure to select the rows you want,
or if you select Use SQL statements, you will need to specify the
SQL statement that you need to select records. You can enter a
SQL statement manually into the wizard screen, which looks like
Figure 8.12.

 250

Figure 8.12: Specifying a SQL statement to use for selection of
records in a DataAdapter.

You can also design your SELECT statement graphically with a
query builder. The query builder in the wizard is very much like
query builders in other Microsoft tools that you have probably used
before, such as Microsoft Access. You can add the tables you
need to the query and then check off the fields you want. You can
also include selection criteria used to build a WHERE clause, or
you can type in a WHERE clause manually. The query builder
looks like Figure 8.13 with a Customer table already added in.

 251

Figure 8.13: The query builder accessed from the DataAdapter
configuration wizard.

Once you have completed selecting stored procedures and/or a
SELECT statement, you are finished. The fully configured
DataAdapter will be added to your project. A SqlConnection control
will also be added for use by the DataAdapter control. (A
Command object is optional for a DataAdapter, so a Command
control is not included.)

Using a DataSet Control

When you drag over a DataSet control, you get a dialog box that
looks like Figure 8.14.

 252

Figure 8.14: The dialog box for creating a DataSet control.

We are not going to discuss typed data sets in this chapter. They
are an optional, advanced technique used to work with data-related
code. You must already have a DataSet configured in the project to
use a typed data set.

If you select Untyped data set, you get a simple DataSet control
named DataSet1 on your design surface. As with the other
controls, you can manipulate it with the Properties window. It is
used in code the same way a DataSet declared in code would be.
For example, you can create a DataTable in a DataSet control by
using the Fill method of a DataAdapter.

Using a DataView Control

Dragging over a DataView control works much like the untyped
data set. You get a DataView that can have its properties
manipulated in the Properties window. At a minimum, you must set
the Table property. Accessing this property shows a list of the
DataSets that are available to use with the DataView. Then you
can set sorting and filtering properties as desired.

Advanced Topics

The ADO.NET classes are quite flexible. In the preceding sections, we've
discussed the bare minimum of capabilities needed to use them for
common database situations. It's just not possible in a single chapter to
cover all the capabilities of ADO.NET, but there are some somewhat more
advanced techniques that are needed frequently enough that you need to
see how they work.

 253

Updating Data Back to the Database

Now that we have covered creating DataAdapters with the IDE tools,
we are ready to return to the topic of using DataAdapters to update
changes in a DataSet back to the database. In this section, we'll allow
the DataAdapter to work through SQL statements.

Let's step through an example that goes all the way from creating a
DataSet through changing it and then getting the changes back in the
database. We will use the IDE tools whenever we can to simplify the
example. If you are interested in the detailed code generated by the
tools, you can look at that code in the editor.

1. Start a new ASP.NET Web application project. In the location
for the project, set the last directory name as CompleteCycle.

2. Place the controls in Table 8.4 on the blank WebForm1 that is
automatically created for your project, and set the properties
as indicated.

When you are finished, the screen should look something like Figure
8.15.

3. Table 8.4: Controls to Place on WebForm1 and Properties to Set for Each
Control

4. CONTROL TYPE 5. PROPERTIES

6. Button 7. ID = btnLoadGrid
8. Text = "Load grid"

9. Button 10. ID = btnMakeChanges
11. Text = "Make Changes"

12. Button 13. ID = btnSaveChanges
14. Text = "Save Changes to database"

15. Datagrid 16. ID = CustomerGrid

 254

Figure 8.15: The layout of WebForm1 after all controls have been
added to it.

3. If you do not have an existing connection to the Northwind
sample database, create one in the Server Explorer. We
covered that operation earlier in the chapter.

4. Open the toolbox, select the Data tab, and drag a
SqlDataAdapter control onto WebForm1.

5. In the wizard that comes up, click on Next, then select the
connection to the Northwind database, and click on Next
again.

6. Select the option to Use SQL Statements and click on Next .
7. Type in the SQL statement SELECT * FROM Customers and

click on Next.
8. Click on Finish. The SqlDataAdapter1 control will show up in

the component tray.
9. In the Properties window, change the name of the control to

Cust-DataAdapter.
10. Drag a DataSet control from the toolbox onto WebForm1.
11. Select Untyped dataset on the dialog screen and click on OK.
12. In the Properties window, change the Name of the control to

Customer-Dataset.
13. Double-click on btnLoadGrid, and in the click event routine,

place the following code:
14. CustDataAdapter.Fill(CustomerDataset)

15. CustomerGrid.DataSource = CustomerDataset

16. CustomerGrid.DataBind()

 255

17. Double-click on btnMakeChanges, and in the click event
routine, place the following code:

CustDataAdapter.Fill(CustomerDataset,
"Customers")

' Delete the first customer

Dim myDataTable As DataTable =
CustomerDataset.Tables("Customers")

myDataTable.Rows.Remove(myDataTable.Rows(0))

' Add a new customer

Dim rowNewCustomer As DataRow

rowNewCustomer = myDataTable.NewRow

rowNewCustomer("CustomerID") = "NEWCU"

rowNewCustomer("CompanyName") = "New
Customer"

rowNewCustomer("ContactName") = "Clark Kent"

' Set values for all customer fields in real
application...

' New row is now complete. Add it to the
DataTable

myDataTable.Rows.Add(rowNewCustomer)

' Change the contact for customer with ID
"NORTS"

Dim rowsSelected() As DataRow

rowsSelected = myDataTable.Select("CustomerID
= 'NORTS'")

rowsSelected(0).Item("ContactName") = "Lois
Lane"

CustomerDataset.ACceptChanges()

 256

CustomerGrid.DataSource = CustomerDataset

CustomerGrid.DataBind()

18. Double-click on the button btnSaveChanges, and in the click
event routine, place the following code. This code is exactly
like that in the previous step except that there is an additional
line, just before the data grid is bound, to save the changes
back to the database.

CustDataAdapter.Fill(CustomerDataset,
"Customers")

' Delete the first customer

Dim myDataTable As DataTable =
CustomerDataset.Tables("Customers")

myDataTable.Rows.Remove(myDataTable.Rows(0))

' Add a new customer

Dim rowNewCustomer As DataRow

rowNewCustomer = myDataTable.NewRow

rowNewCustomer("CustomerID") = "NEWCU"

rowNewCustomer("CompanyName") = "New
Customer"

rowNewCustomer("ContactName") = "Clark Kent"

' Set values for all customer fields in real
application...

' New row is now complete. Add it to the
DataTable

myDataTable.Rows.Add(rowNewCustomer)

' Change the contact for customer with ID
"NORTS"

Dim rowsSelected() As DataRow

 257

rowsSelected = myDataTable.Select("CustomerID
= 'NORTS'")

rowsSelected(0).Item("ContactName") = "Lois
Lane"

CustomerDataset.AcceptChanges()

CustDataAdapter.Update(CustomerDataset,
"Customers")

CustomerGrid.DataSource = CustomerDataset

CustomerGrid.DataBind()

19. Now run and test the program. Select Load Grid to see the
original data. Select Make Changes to see the grid with the
changed data. However, if you click on Load Grid again, you'll
get the original data back because the code behind Make
Changes did not save the changes to disk. Then select Save
Changes to Database. Now if you go back to Load Grid, the
changes will be there.

The preceding example would be quite similar even if the DataAdapter
used stored procedures instead of SQL statements. The Update
method of the DataAdapter uses whatever means that are configured
for the DataAdapter to communicate with the database.

Optimistic Concurrency

There was one big aspect of the preceding code that is different
from what you would want to do for a real system. That code has
no exception handling or problems with the database.

The most likely problem you would encounter is one with
concurrency. ADO.NET uses optimistic concurrency to deal with
changes in the underlying database. That means that if someone
changes the data in the database while you are manipulating your
DataSet and making changes to the same rows, that fact must be
detected. ADO.NET does this by maintaining the original version of
the data and checking this version against the database before
attempting to write the changes to the database. If it is discovered
that the data has indeed changed in the interim (between the time
you fetched the data and the time you tried to put changes back),
an exception will be generated. You'll have a chance to look at the
rows that are causing the problem and deal with them in some
appropriate manner. A sample application later in the book uses
exception handling in this fashion.

 258

Transactions in ADO.NET

If you have done a lot of database-oriented programming, you are
probably familiar with the concept of transactions. If there are several
related database operations that must either all succeed or all fail, a
transaction is the way to make that happen. An example might be
entering all the items in a customer order. You would like to make sure
that either all the items are ordered, or the customer is informed that
there is a problem, and the whole order is saved so that another
attempt can be made later.

There are two main ways of handling transactions in ADO.NET. One is
to use the transaction management of COM+ Services. Doing
transactions this way is beyond the scope of this book, but if you have
a complex Web site with a lot of traffic, you should consider that option.

The other way is to use the transactional capabilities of the ADO.NET
classes. The Connection classes of both data providers have a
BeginTransaction method to begin a transaction and return a reference
to a Transaction object. That Transaction object then has methods
named Commit and Rollback that commit or roll back the transaction.

We will not see an example of a transaction because it would be
necessary to explain the associated concepts. If you already
understand using transactions in other contexts, the preceding
information will steer you to information in the documentation that
covers other details of transaction-based programming in ADO.NET.

Where You Should Still Use ADO

We have discussed ADO.NET extensively in this chapter, and you might be
getting the feeling that it is a complete replacement for ADO. That is not
true. ADO.NET is very flexible, but it is designed for disconnected
scenarios. There are still some connection-based scenarios for which
classic ADO remains the best option. For example, if you need to work on a
large set of rows on a server using a server-side cursor, ADO is necessary
because ADO.NET doesn't support server-side cursors. Or if you need
pessimistic concurrency, in which records are locked when accessed and
remain locked until updated or released, again ADO will handle it but
ADO.NET will not.

If you do need to use ADO, you just refer to the ADO libraries to make
them available in your code. Then your write ADO code very much as you
would in earlier versions of VB6.

XML for Data in .NET

XML has become the lingua franca for data interchange in the Internet world. ADO.NET
is built on it and so are Web services. In many cases, you use XML technologies
without being aware of it. .NET does a great job of hiding the implementation of many
features so that you can write an XML-based Web service, for example, without seeing
a lick of XML.

 259

There are times, though, when you need to go a bit deeper. You may need to explicitly
work with data in ADO.NET in terms of XML, or you may occasionally need to work with
XML directly. This final section of the chapter covers these topics.

Using XML with ADO.NET

We've already discussed the fact that ADO.NET is based on XML and that you can
persist an ADO.NET DataSet as an XML file. Let's look at some of the other XML-
related capabilities of ADO.NET.

Reading a DataSet from an XML File

We saw earlier that we could save our Customers DataSet with code like this:
myDataSet.WriteXML("C:\Data\CustomersOrders.XML", _
 XmlWriteMode.WriteSchema)

Of course, we need to be able to come back and load a DataSet from this file as some
future time. Here is the logic that does that:
Dim myNewDataSet As DataSet
myNewDataSet.ReadXML("C:\Data\CustomersOrders.XML")

The resulting DataSet can be used just as any other DataSet would be. It can be bound
to a grid, for example, or have a DataView imposed on it. In fact, the ReadXML method
of the DataSet will work with any well-formed XML file. Suppose you have the following
XML file in a file named C:\Data\Test.xml:
<?xml version="1.0"?>
<Customers>
<Customer>
 <CompanyName>That Big Old Company, Inc.</CompanyName>
 <CompanyID>TBOCI</CompanyID>
 <ContactName>Bubba Olds</ContactName>
 <Order>
 <OrderDate>2-19-2002</OrderDate>
 <ShipDate>2-24-2002</ShipDate>
 </Order>
 <Order>
 <OrderDate>3-4-2002</OrderDate>
 <ShipDate>2-12-2002</ShipDate>
 </Order>
</Customer>
<Customer>
 <CompanyName>Little Bitty, LLC</CompanyName>
 <CompanyID>LBLLC</CompanyID>
 <ContactName>Jack Small</ContactName>
 <Order>
 <OrderDate>1-22-2002</OrderDate>
 <ShipDate>1-24-2002</ShipDate>

 260

 </Order>
</Customer>
</Customers>

Now suppose you place the following code in a project:
Dim myNewDataSet As DataSet
myNewDataSet.ReadXML("C:\Data\Test.XML")

After executing this code, you have a DataSet with two DataTables in it, namely, a
Customers table and an Order table. The DataSet also has a relationship set up
between the two DataTables, and there are new ID fields in the DataTables to use for
the relationship. The ReadXML method reads the structure of the XML file and realizes
the appropriate structure, so the resulting DataSet has that structure.

Manipulating XML with ADO.NET

Because you can read an XML file into a DataSet and then later save it into the same
or a different XML file, ADO.NET gives you a way to manipulate the data in an XML file
without using complex syntax. You can use the same syntax that you learned earlier in
the chapter to add rows, change data in rows, and delete rows. The results will be
stored in the output XML file. However, not all XML files can be transparently edited
with ADO.NET this way. If the XML file is constructed in such a way that a complete
schema cannot be abstracted from it, an exception will be raised.

Working with XML in the IDE

The preceding technologies for interpreting XML and placing the results in an ADO.NET
DataSet are used by the Visual Studio IDE to create a slick XML editor. To see this
editor in action, do the following:

1. In the Solution Explorer, right-click on a project and select Add, Add
Existing Item.

2. Navigate to the C:\Data\Test.xml file that you created earlier (or any
convenient XML file). To see the filename, you may need to change
the file type in the dialog box.

3. Click on OK, and the XML file will appear as an item in the project.
4. Double-click on the XML file in the Solution Explorer.

At this point, you'll see the XML file and be able to edit it, just as you would in a normal
XML editor. However, notice that just below the editor are two tabs. The currently active
one is XML. Click on the Data tab, and you'll see the exact same data, placed into an
editable grid.

The grid is the same one used in Windows forms programs, and it allows navigation
through the hierarchy of the data. That is, if you click on the plus sign next to a
customer records, you'll see a link to Customer Order. If you click that, you'll see the
orders associated with the customer.

If you make changes in the grid, they are reflected in the underlying XML file. Of
course, the XML file must be saved before the changes propagate to disk.

Using DataSets and XML within Web Services

A Web service in .NET can have a return data type of DataSet. Such a Web service is a
good way to send a container of data to another process. As long as the consumer of
the Web service is another .NET program, the Web service can return the data right

 261

into a declared DataSet in the consuming code. The Web service in code looks almost
exactly the same as a function that returned a DataSet, and the consuming code also
looks the same as if it were using a local function returning a DataSet.

But what if the process consuming the Web service is not based on .NET? After all,
Web services are a standard and can be produced and consumed by any type of
computer or operating system.

Because a DataSet is serialized as XML, when a non-.NET process uses a Web
service that returns a DataSet, the DataSet just looks like XML to the non-.NET
process. The XML stream that comes from the Web service can be parsed like any
other XML.

You can see this in action if you create a Web service that returns a DataSet and then
run the Web service in the Internet Explorer test bed. You'll see the DataSet as XML,
and that's exactly the way a non-.NET program would see it.

Manipulating XML Data with System.Xml

In the long run, we will probably reach the point where routine application development
does not require getting into the internals of an XML file. We are already shielded from
this in some common cases by ADO.NET.

But for the present, there are still cases where an XML file needs to be parsed and
interpreted in code. To do that, the System.Xml namespace contains various classes to
read, manipulate, and write XML. The technology in System. Xml is the replacement for
(and descended from) the MSXML libraries that are distributed with recent versions of
Internet Explorer. If you are familiar with using the MSXML libraries, you'll find that you
can write very similar code in .NET with System.Xml.

We will not cover the System.Xml classes completely. That's another subject about
which there are entire books. But we will review some of the main classes and see a
quick introduction to using them. Note that all the examples in this section assume that
you have placed the following line at the top of your code module:
Imports System.Xml

XMLReader/XMLWriter Classes

To read or write an XML file one node at a time, the XMLReader and XML-Writer
classes are available. For example, the following code reads through the
C:\Data\Test.xml file that was created earlier and places only the contact names in a
label on a Web form, using a subclass of XMLReader called XML-TextReader:
' Declare the XMLTextReader and point to the XML file
Dim myReader As New XmlTextReader("C:\Data\Test.xml")

' Move to beginning of XML document
myReader.MoveToContent()

' Go through the nodes in the XML document
While myReader.Read

 ' See if we have Contact Name

 262

 If myReader.NodeType = XmlNodeType.Element Then
 If myReader.Name = "ContactName" Then
 ' When we find a ContactName element,
 ' we need to read the next node to
 ' get the value
 myReader.Read()
 Label1.Text &= myReader.Value & " - "
 End If
 End If

End While
myReader.Close

Although simple, this example shows the basic mechanism for using an XMLReader.
The reader is declared and initialized to an XML file. Then the nodes are read
sequentially, with decision making done on the type of node encountered.

The XMLReader base class can't be instantiated directly—it must be inherited into a
subclass and extended. System.XML includes three subclasses of the XMLReader for
specialized purposes:

§ XMLTextReader. Provides a stream of nodes, with no validation except
that the XML is well formed. This generic reader is very fast. This is the
class used in the preceding example.

§ XMLNodeReader. Can read subtrees of the XML hierarchy. This reader
can have a text stream representing a node with all of its subnodes
passes in (rather than an entire file), and it can parse through that. Like
the XMLTextReader, it provides no validation except that the nodes are
well formed.

§ XMLValidatingReader. Like an XMLTextReader, but it also has
validation to a schema.

In addition to these types, you can subclass the XMLReader class and create your own
specialized XML reader.

The XMLWriter is the converse of the XMLReader. Instead of reading a node at a time,
it writes a node at a time. The input can be anything—a text stream from a flat file, an
array, or any other input source that generates multiple records that need to be output
as XML.

Like the XMLReader, the XMLWriter class cannot be used directly. There are several
subclasses that can be used. For our example, we will use the simplest, which is the
XMLTextWriter. The example takes an array of color names and outputs them as an
XML file:
Dim sColor(5) As String
sColor(0) = "Red"
sColor(1) = "Blue"
sColor(2) = "Green"
sColor(3) = "Yellow"
sColor(4) = "Black"

 263

sColor(5) = "White"

Dim myWriter As New XmlTextWriter("C:\SharedFiles\Colors.xml", _
 System.Text.Encoding.ASCII)

' Write the beginning of the XML doc
myWriter.WriteStartDocument(True)

' Write the root element
myWriter.WriteStartElement("Colors")

' Write the elements with the colors
Dim iColorIndex As Integer
For iColorIndex = 0 To 5
 myWriter.WriteElementString("Color", sColor(iColorIndex))
Next

' Write the end of the root element
myWriter.WriteEndElement()

' Write end of doc and close the writer
myWriter.WriteEndDocument()
myWriter.Close()

The XML file that will be generated by this code looks like this:
<?xml version="1.0" encoding="us-ascii"
standalone="yes"?><Colors>
 <Color>Red</Color>
 <Color>Blue</Color>
 <Color>Green</Color>
 <Color>Yellow</Color>
 <Color>Black</Color>
 <Color>White</Color>
</Colors>

XMLDocument

The XMLReader and XMLWriter classes only offer sequential access to data. To get
more complex types of access, you need the XMLDocument class. XMLDocument
implements an in-memory representation of the entire XML file, allowing navigation
both up and down through the nodes. Nodes can be modified and new nodes inserted,
and the changes can be saved.

Using an XMLDocument is very complex, but we will look at a simple example to show
the capability to change elements. Here is code to look through the C:\Data\Test.xml

 264

XML file that we created earlier and change Jack Small to John Small whenever it is in
a ContactName node:
Dim myXmlDoc As New XmlDocument()
myXmlDoc.Load("C:\SharedFiles\CustSample.xml")
Dim IndexNode As XmlNode
For Each IndexNode In
myXmlDoc.GetElementsByTagName("ContactName")
 Dim DataNode As XmlNode
 For Each DataNode In IndexNode.ChildNodes
 If DataNode.InnerText = "Jack Small" Then
 DataNode.InnerText = "John Small"
 End If

 Next
Next
myXmlDoc.Save("C:\SharedFiles\CustSample.xml")

The XMLDocument class has many useful properties and methods, and we are only
using a few in this example. The Load method creates the in-memory representation of
the XML file, and the Save method saves the current state of the in-memory copy to an
XML file on disk. The GetElementsByTagName method finds a collection of nodes with
a given tag name. You can then navigate from these nodes through their child nodes.

XMLDataDocument Class

The XMLDataDocument class is derived from the XMLDocument class, and it adds the
capability for the XML data to be used as a DataSet in ADO.NET. Because we've
talked already about using XML in ADO.NET, we won't go into further detail on the
XMLDataDocument class.

XSLTransform Class

Experienced XML developers are familiar with the idea of coupling an XML file full of
data with an XSLT file that contains formatting information. When the transform
described in the XSLT file is applied to the XML data, the output is a specially formatted
version of the data. Such output can be HTML, fixed-length records, and various other
formats.

Creating XSLT transforms is a programming art in itself, so we will not go into detail on
constructing transforms. The format for a transform is a W3C standard and is thus the
same in .NET as it was before. But we can take a look at code to apply a transform to
an XML file.

Applying an XSLT transform in .NET is straightforward. The class to use is the
XSLTransform class. It is loaded very much like the XMLDocument class is loaded,
using a Load method that can point to a filename. (There are other ways of loading
these classes, such as from a stream, but we will not pursue details in this book.)

Once the XSL document on disk has been loaded into the XSLDocument class, the
class has a Transform method to create the transformed output. The output can be sent
to a normal text file, or if the output is going to be XML, it can be sent to an XMLWriter.

 265

Here is an example. Suppose our XSL document containing the transform logic is a file
named C:\xml\CustOrders.xsl and the XML data is in a document named
C:\xml\SeptData.xml. We want the output to go to a file named C:\xml\SeptData.htm
because our transform outputs HTML. Here is code for the simplest case:
Dim myXSLTransform As New XSLTransform()
myXSLTransform.Load("C:\xml\CustOrders.xsl")
myXSLTransform.Transform("C:\xml\SeptData.xml",
"C:\xml\SeptData.htm")

Wrapping Up

Creation of interactive Web sites is one of the most important uses of ASP.NET. That
means manipulation of data, and in this chapter, we've seen the basics of doing that
with ADO.NET. We've also covered the fundamentals of direct access to data in XML
files.

The material in this chapter should be sufficient for you to understand the sample
application later in this book and to start writing data-related code in your own ASP.NET
projects.
In Chapter 9, we'll explore some in-depth capabilities of ASP.NET, such as
configuration and security. Then we'll be ready to walk through an entire application in
Chapter 10.

 266

Chapter 9: ASP.NET Web Application Services

Overview
Knowledge is not information, it's transformation.
Osho

Precision is absolute in the business of software development, and for the most part
there is very little room for error. Some of the most sophisticated technological
instruments in the world are written with software developed by a team of experts who
count on the ability of their teammates to write flawless code. Technology has found a
way to permeate its malleable backbone into all sectors of every market, making it
imperative that mistakes, ones that could cost companies millions of dollars or
individuals their lives, do not happen.
The approach to writing flawless code should always include writing secure code.
Essentially, these tasks should go hand in hand, although they can be very mutually
exclusive. For instance, it is possible to write good code that is not susceptible to failure
under any circumstances, even under a successful internal or external hack. For this
reason, it is important to apply the proper configuration to an application, preventing a
successful attack against even the most well thought out lines of code. As any
developer can attest, configuration and deployment issues have traditionally been the
cause of many a headache. Fortunately, ASP.NET simplifies both of these areas by
improving the deployment process for both code and ASP.NET pages and by providing
extensible application configuration. In this chapter, you'll learn how to configure the
application data, where it can be stored, and how to modify configuration handlers
through the use of the Web.config file. We'll discuss authentication and authorization,
application and session level objects, the new events added to the global.asax file,
caching data, and Microsoft Passport.

Web.config

The Web.config file is used to store configuration information about a specific
application. Up until now, ASP applications used the global.asa file to manage state-
aware configuration information encompassing Web applications, but the Microsoft
Development Environment 7.0 includes a true configuration file that allows you to store
stateless system and application configuration information.

The default Web.config file is automatically generated when you create a new project,
and it contains settings that will allow you to personalize the behavior of your
application. It will also allow you to draw on the extensibility of this file by adding your
own configuration sections and event handlers.

The following sections discuss the Web.config's structure, default tags and properties,
how to create a configuration file, and how to obtain the values from a configuration file
and apply them in an application.

Structure

The ASP.NET Web.config file has an XML hierarchical design structure. The file is a
text-based document that contains pairs of tags that outline basic attributes of the
application and define the characteristics of how the application is to behave. The
element tags can also contain nodes that further define a structure under the root tag.
An XML node is an entity that contains attributes. The attributes identify specific
information that the application is looking for. The root tag is a universal base that is

 267

expected by a reading application. In the case of ASP.NET, the reading application is
the compiler.

The structures of the XML element tags are almost identical to the structure of the tags
found in HTML. The difference is that XML tags are user-defined, signifying that
applications transacting with files or other applications using XML will need to know the
meaning of each tag in order to communicate. Microsoft is making significant advances
in the way XML is being used in the browser. If you are using Microsoft Internet
Explorer 5.0 or later, copy the following configuration example, located in the next
paragraph, into a text editor and save it with an .xml extension. Open the file in the IE
Web browser and review the contents. The browser has the ability to validate XML files
for a well-defined structure. Had our document not been well formed, the browser would
have generated a meaningful error that would have guided us to correcting the problem
in the XML file.

Let's take a look at an example. The following code is an example of a configuration
section taken from the Web.config file of the Microsoft Development Environment 7.0:
<configuration>
 <authorization>
 <allow users="*" />
 <!-- Allow all users -->
 <!--
 <allow users="[comma separated list of users]"
roles="[comma
 separated list of roles]"/>
 <deny users="[comma separated list of users]"
roles="[comma
 separated list of roles]"/> -->
 </authorization>
 </configuration>

Even though the XML format is recognized and validated in the browser, the data
contained in the XML is not validated for authenticity or integrity. The browser will have
no way to determine if the information included in the XML structure is true or false.
This is because the actual XML node names, attributes, and values are user defined
and not identified by the browser. For any processing to occur, a communicating
application would need to assimilate this file; define what each node, attribute, and
value means; and respond to it. In the case of the default structure in Web.config file,
the .NET IDE compiler understands the meaning of each tag and can act in response to
the settings.

Configuration

The configuration section handler, such as DictionarySectionHandler, can be supplied
by the Microsoft .NET Framework or by the developer; in this case it is known as a
custom handler.
Each configuration section contains nodes that define the settings for that particular
area of ASP.NET. For example, the authentication node configuration attribute shown
in Table 9.1 demonstrates the mode attribute defaulting to Windows authentication.
However, if you look at the Microsoft Definition column in the table, you will see the
other recognized values for this attribute. In this case, Cookies, Passport, and None will
also work as valid authentication values in this node.

 268

Table 9.1: Web.config Tags and Default Properties

DEFAULT CONFIGURATION
ATTRIBUTES

MICROSOFT WEB.CONFIG
DEFINITION

<compilation defaultLanguage="vb"
debug="true" />

The defaultLanguage attribute
denotes the default language
for the applications running
under this configuration file.
Setting the debug attribute to
true will turn on ASPX
debugging. Setting it to false
will improve runtime
performance.

<customErrors mode="RemoteOnly" /> Values for the mode attribute
are RemoteOnly, On, and Off.
RemoteOnly allows remote
users to see detailed error
message or custom error
pages. Something more
informative than a simple
error number and description.

On: Shows the Custom Error
Page, but never a detailed
description of the error.
The detailed error page is
shown, but never a custom
error page.

<authentication mode="windows" /> Allows the developer to set
the type of authentication.
The choices are Windows,
Forms, Passport, and None.

<authorization>
//<allow users="*" />
 <deny users="?" />
</ authorization>

Allows the developer to
determine the authorization
policies for the application.
The developer can choose to
allow or deny everyone, only
anonymous users, specific
users, and groups.

<trace enabled="false"
requestLimit="10"
pageOutput="false" traceMode="
SortByTime"localOnly="true"/>

Application-level tracing
allows an output log for every
page in the application.

If the pageOutput attribute is
set to "True", then trace login
ensues and displays
information at the bottom of
the page. If set to false, then
it is stored in the trace.axd

 269

Table 9.1: Web.config Tags and Default Properties
DEFAULT CONFIGURATION
ATTRIBUTES

MICROSOFT WEB.CONFIG
DEFINITION
page in your applications root
directory.

<sessionStatemode="inproc"
stateConnectionString=" tcpip=
127.0.0.1:42424"
sqlConnectionString="datasource=
127.0.0.1;userid=sa;password="
cookieless="false"
timeout="20"
/>

The mode attribute can
contain one of three values:
inproc, sqlserver (database-
based), and stateserver
(memory-based).
The cookieless attribute
supports a boolean entry. If
true, then the cookie identier
is stored in the URL. If false,
then regular cookies will be
used if supported by the
client.

The timeout is the time, in
seconds, for which the
session is valid for each
request.

The sqlConnectionString is
the connection to the
SQLServer Database, which
will be maintaining state if you
choose this option.
The stateConnectionString is
the IP Address of the server
or PC allocated to maintain
state information in memory.
The Port attribute follows the
colons in the IP Address. The
Port is a reserved number
that is assigned to the listener
on the State Server.

<httpHandlers>
<add verb="*" path="*.vb"
type="System.Web.
HttpNotFoundHandler,
System.Web" />

<add verb="*" path="*.cs"

type="System.Web.
HttpNotFoundHandler,
System.Web" />

<add verb="*" path="*.vbproj"
type="System.Web.
HttpNotFoundHandler, System.Web" />

This section provides
information to prevent specific
types of source code from
being downloaded.

 270

Table 9.1: Web.config Tags and Default Properties
DEFAULT CONFIGURATION
ATTRIBUTES

MICROSOFT WEB.CONFIG
DEFINITION

<add verb="*" path="*.csproj"
type="System.Web.
HttpNotFoundHandler,System.Web" />
<add verb="*" path="*
.webinfo"

type="System.Web.
HttpNotFoundHandler,System.Web" />

</httpHandlers>

<globalization requestEncoding="
utf-8" responseEncoding=
"utf-8" />

Sets the globalization settings
for application requests and
responses. There are five
attributes that can be used in
this section, including the
request-Enconding and
responseEncoding as we just
mentioned. Also, there is
fileEncoding, culture, and
uiCulture. See the MSDN
Web site for further details.

You can change the way the application authenticates by changing the value of the
mode attribute in the authentication node and user node of the Web. config file, as
shown later in the chapter.

Later on in this chapter we will talk about the different modes of authentication and
demonstrate how they are used.

Getting/Setting the Values of Attributes

Aside from being able to view and modify the values of the attributes during the design,
it is sometimes worthwhile to be able to see and manipulate the values of the attributes
during runtime. For example, if you built a chat application and were monitoring the
incoming text for inappropriate text, you might want to have the power to automatically
disable someone who violates the rules from using the application. However, before
you can a person's authorization capabilities, you will need to know who the person is.
To acquire this information, your application will probably need some form of initial user
authentication. Once the user's identification has been established, it is possible to
store and control the user's abilities within the application.

In this case, we will use Windows authentication in the Web.config file as shown in this
example:
<authentication mode="Windows" />

We will also deny unauthenticated users by using the following code. This, following
alteration to the authorization node in the Web.config file, will force users to
authenticate before using the application.
<authorization>
 <deny users="?"/>

 271

</authorization>

Our Web.config settings now dictate that any .aspx file that spawns from this relative
path of the virtual directory will require basic network authentication and deny access to
anonymous users. So, if you are coming in via HTTP, you will encounter a standard
Windows Network Authentication dialog box and be forced to log in before you can
continue using the application.
Consequently, keep in mind that the Web.config file attributes are modified to override
the machine-level configuration file, keeping the developer from having to modify the
Directory Security Settings in IIS directly, as shown in Figure 9.1 . Overriding the
security settings of the IIS server can be achieved by placing the Web.config file in the
application's root directory. It is as equally important to keep in mind that all
subdirectories automatically become heir to these settings. However, it is possible for
subdirectories to have their own individual Web.config file as well, and the child
configuration files will override their parent directory's settings in such cases. Please
Visit
http://msdn.Microsoft.com/library/enus/cpguidnf/html/cpconconfiguringnetframeworkapp
lications.asp for more details on this matter.

Figure 9.1: Authentication methods.

Application Root Directory
The application root directory, also known in IIS as the local path, is the user-folder that
typically contains all of the primary application files. Each Web site has a root virtual
directory and might even have an ancillary structure below the root virtual directory.
You can add supplemental virtual directories, directories, and files to the root structure
through IIS. These ancillary directories might house include files, other directive
material, and pictorial files that add visual embellishments to your Web site.

 272

The virtual root directory can be a physical location on your computer, a shared drive
on another computer, or a redirection URL. The default directory is <Your Harddrives
default drive letter>:\InetPub\wwwroot, but it can be made to look at any one of the
aforementioned locations to find your application's root directory.

Your application's root directory has an alias that Web browsers use to locate, access,
and process file content. The process known as URL mapping, or the ability to
associate a URL with a physical directory, helps to resolve the physical path when a
user, who is requesting a page from your virtual directory, types your URL in their Web
browser.

Creating a Configuration

In the following code example, you will create a configuration that will force a user to
authenticate through windows and will not authorize them to use the application until
they successfully log in:

1. Once the IDE is up and running, click on File, New, Project, and the
wizard in Figure 9.2 will appear and assist in the creation of a new .NET
application. Click on ASP.NET Web Application in the Templates
window and type in a new name and location for the new Web service.

Figure 9.2: Creating a new project.

2. Double-click on the Web.config File in the Solution Explorer pane, and
modify the authorization node as shown in Figure 9.3. We are changing
the line containing <allow users="*" /> to <deny users="?"/>. This will
force the authentication of anonymous users.

 273

Figure 9.3: The Web.config file.

3. The default authentication method in IIS is Anonymous Access and
Integrated Windows Authentication. We will discuss these in further
detail later in the chapter, but for now we are going to deselect both the
default authentication method checkbox and the Integrated Windows
Authentication checkbox. Then, check the Basic Authentication box as
Figure 9.4 shows, and click the OK button to accept these changes. This
will force us to log in under the Windows Account Login each time we
run our application, as shown in Figure 9.5.

 274

Figure 9.4: IIS authentication methods.

 275

Figure 9.5: Windows account authentication.

4. Double-click on your WebForm1.aspx file and rename it MyAuth.aspx in
the FileName Properties pane. Next, using the controls in the Web form
section of the Control toolbox, copy in a textbox control and name it
txtStatus. Expand it a bit, and set it's TextMode property to multiline.
Then, double-click on the Web form, and you will be taken to the
MyAuth.aspx.vb* file. Place the code in the paragraph below in the
Page_Load Event. Rerun the application and satisfy the authentication
dialog box by entering your user identification and password. You
should now see a form that looks like Figure 9.6.

 276

Figure 9.6: User is authenticated.

5. Copy the following code into the Page_Load Event of the aspx.vb* file:
 'Obtain the authentication type.
 Dim strAuthMethod As String
 'Determine the authentication type.
 strAuthMethod =
User.Identity.AuthenticationType
 Select Case Len(strAuthMethod)
 Case Is > 0
 'If authenticated then obtain the
user name.
 Dim strUserName As String
 strUserName = User.Identity.Name
 txtStatus.Text = "Domain and User
Name: " &
strUserName & vbCrLf & _
 "Authenticated Via: " &
strAuthMethod
 Case Else
 'The code should not get here, but
handle
 'it if it does.

 277

 txtStatus.Text = "Failed!"
 End Select

6. We can also manipulate the expiration of the cache by adding the
following lines of code to the top of the Page_Load Event. The location
of these two lines should be the same as the location of the code in
Figure 9.7. Once you add the following lines of code, start the Web
application, and you will be forced to log in.

Response.Cache.SetExpires(DateTime.Now.AddSeconds(15))

Response.Cache.SetCacheability(HttpCacheability.Public)

Figure 9.7: Manipulating the cache.

Immediately stop the application and restart it. You should notice that you weren't
required to log in because the page has been cached on the Web server for 15
seconds. Stop the application once more and wait at least 15 seconds. Then, restart
the Web application and you will see that you are required to log in once again. This is
because your cached server page expired.

Try different expiration settings with the cache, for instance an expiration of 1 second.
The expiration happens so quickly that you will have to log in each time.

 278

Performance and Scalability

Concentration is a card game that forces its participants to rely upon memory to
achieve victory. The greater the collaborative memory of the players in a game, the
shorter the duration of the game being played. This same philosophy about memory
applies to building scalable, high-performance Web applications.

By storing things in memory, the performance of an application and Web server can
increase because the application doesn't need to make trips to the server to obtain
information it previously acquired. In turn, the less busy a server is handling redundant
tasks, the freer it is to satisfy a greater number of meaningful requests by a greater
number of users, thereby making the server more scalable as well.

There are several methods that allow us to take advantage of information retention,
thereby increasing performance and scalability of our application and Web server; they
include caching, application and server variables, static objects, and the global.asax
file.

Caching

Caching is the ability to store page output and data in memory the first time it is
requested, eliminating the need for the Web server to re-create this information every
time a client request is made. There are several ways to cache information, and the
cache can be stored on the client, the Web server, or in the request stream of a
browser. In effect, caching can reduce the number of round trips from the client to the
server or, at a minimum, reduce the amount of work the server needs to perform to
summons the information. ASP.NET provides two powerful types of caching. There is
output caching which is new in .NET, and HttpCachePolicy class caching.

Output caching enables the Web server to store dynamic page content and user control
responses on the Web server. The output cache will handle all the requests. After a
page has been cached, subsequent requests are satisfied by the cached version for as
long as the duration is set. Try this out by placing the following line of code at the top of
your .aspx page we just created:
<%@ OutputCache Duration = "30" VaryByParam="None" %>

The duration of the OutputCache is stored in seconds. Run the application from the IDE
the first time, and you will encounter the Microsoft Network Authentication dialog box.
Log in and immediately close the browser or click the stop-debugging icon on the
toolbox. Quickly, run the application from IDE once more. Now you should be able to
enter the application without having to authenticate through the Microsoft Network
Authentication dialog box. Once again, stop the browser and wait for the duration to
expire, and then start the application. You should now be forced to authenticate through
the Microsoft Network Authentication Dialog box. This example demonstrates the
effectiveness of the OutputCache method; it allows the server to cache Web pages in
the server's memory and avoids server-side processing of pages that are continually
accessed within the duration you supply.

Additionally, the VaryByParam parameter is a required OutputCache parameter; it gives
you the ability to vary the number of documents that are cached for a single page. For
instance, suppose your application accessed a database table that contained all of the
states in the United States. This information is for the most part constant, so it does not
make sense to have your Web server query the database to populate a drop-down
listbox for each person who visits your site. To eliminate this problem, you can simply
add the following line of code to the OutputCache directive:

 279

<%@ OutputCache Duration = "3600" VaryByParam="state" %>

For the next hour, anyone who attempts to access the site using a state that was used
by anyone else in the same duration will receive an immediate response from the
server. The trip to the database to acquire the information will have been eliminated.

Additionally, there is also something known as HttpCachePolicy class caching, or
programmatic caching, which allows you to set the cache in code. So, instead of
supplying the directive at the top of the page, like we did using the OutputCache, we
could use the following code in a server-side event. Remove the OutputCache Directive
we included in our application, and copy these lines of code in the Page_Load Event of
the WebForm1.aspx.vb file:
Response.Cache.SetExpires(DateTime.Now.AddSeconds(90))
Response.Cache.SetCacheability(HttpCacheability.Public)

Once you run the code, you will realize that the HttpCachePolicy class caching reacts
the same way the OutputCache Directive did. However, the benefit is that you have
more control over the HttpCachePolicy class because it is declared programmatically.
Leaving the last lines as they are in the application, copy the following lines to
Button1_Click Event:
Response.Cache.SetExpires(Now)
Exit Sub

Now try running the application once again. If you beat the expiration limit of the
previous example we created, you will bypass the authentication process. But, if you
wait for the previous cache to expire, then click the Send Message button. You are now
forced to reauthenticate because we programmatically expired the cached page with
the code we just included.

You can also add items to the cache object. Add the following lines of code to the
Page_Load Event, just underneath the code you wrote that set the expiration and
cacheability of the cache object:
txtMessage.Text = ""
If Len(Cache("MyMessage")) > 0 Then
Cache("MyMessage") = "Old Cache"
txtMessage.Text = Cache("MyMessage")
Else
Cache("MyMessage") = "Cache expired...New Cache."
txtMessage.Text = Cache("MyMessage")
End If

Run this code the first time, and you will see the message stating that this is a new
cache. Press the F5 key, and you will now see that we are dealing with the new cache,
which has become the old cache. Items stored in the cache object will continue to
persist as dictionary objects.
An advantage to using HttpCachePolicy class caching OutputCache Directive is the
ability to manipulate the properties, methods, and events of the cache directly in the
code. The advantage to using either of these methods to control caching is reducing the
number of times a Web server is required to access static information. For more
information about the cache, visit
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguidnf/html/cpconaspoutputcache.asp. There are also other ways to increase the

 280

performance and scalability of our application and Web server, including a feature
called State Maintenance.

State Variables, Application and session-level variables are all server-side variables,
meaning that their values are stored and accessed only on the Web server. The
primary difference between session and application variables is the type of data they
store. Session variables store values that are user specific, such as a user ID or other
information that is specific to each individual accessing a Web application. Application
variables, on the other hand, are used to store information that is site specific in
application variables. This means that all users on a Web site will share application
variables because they are not tied to each individual user.

Traditionally, session state has always been considered evil for several reasons. For
one, session variables consume server memory. As each individual user stores unique
information in a session variable, memory resources are depleted. Also, there is a
question about how long a session variable should persist in the Web server's memory.
If session variables persisted for too long in a Web server's memory space, there might
be a chance that a large number of concurrent users could completely deplete a Web
server's memory, forcing it to crash.

Session variables also used to be considered evil because of their limitations in Web
farms. Because session variable data is stored on the Web server that fulfills the user's
page request, there was no way for each Web server to pass along session variables in
a Web farm. So, session variables had serious scalability limitations.

Furthermore, session variables were cookie dependent. So without the assistance of a
cookie, session variables were completely stateless and useless. The responsibility of
the session variable is to store unique information for each user who is accessing the
Web site, and the responsibility of a cookie was to help identify who the users were. So,
if a user's browser did not support the use of cookies, session-level variables were in
fact worthless.

Because of this, Microsoft has changed the way in which session state is handled.
Session state is handled in an out-of-process fashion, meaning the session state is
separated from the process. Session information can be stored on a separate server
that is accessible to every Web server in a Web farm, completely refuting the old
scalability issues. Also, the users no longer need to support cookies on their PC in
order for Session Variables to work properly. We will further expound on cookies a little
later in this chapter.

Likewise, if the server that has been selected to store the session variables is dedicated
to doing nothing more than handling out-of-process Web server session requests,
memory management issues are suddenly alleviated as well. In addition to this, the
.NET session variables do not require cookies to support state. The session ID, a
unique identifier that is assigned to a user by a Web server when a Web site is first
accessed, becomes part of the URL, allowing even a browser with disabled cookie
support to maintain session-state on a Web server.

Keep in mind that you must set the .enableSessionState property in the .aspx file to
true to provide session variable support to a client. Also, you must set the sessionState
mode property equal to StateServer in the Web.config file to cookie-less session IDs.

Once this is done, copy the following code into the Page_Load Event of a new .aspx
page. Then run the code in the .NET IDE. It will display the session variables on the
page, and the session ID will be visible in the URL.
'Declaring the session variable.

 281

Session("MyAddress") = "1111111 Sullivan Avenue"
Session("MyCity") = "GASullivanville"

'Accessing the session variable.
Response.Write Session("MyAddress")
Response.Write Session("MyCity")

Like session-level data, application-level data is also stored in name/value pairs on the
Web server. Copy the following code into the Page_Load Event of a new .aspx page.
Then run the code in the .NET IDE. It will display the application variable on the page.
Everyone who accesses the page will see the same data because everyone shares it.
Thus, the variables only have to exist once, making them less harmful than traditional
session state variables and still using considerably less overhead than traditional
session variables.
'Declaring the application variable.
Application("ThisSitesFavoriteURL") =
"http://www.gasullivan.com"

'Accessing the application variable.
Response.Write Application("ThisSitesFavoriteURL")

There are also concurrency issues that should be thought about before you decide to
use application-state variables. Keep in mind that the threads of a multiple or free-
threaded application can access values deposited in application-state variables in a
simultaneous manner. Occasionally, one thread collides with another thread while
performing their individual pieces of work, sometimes leading to catastrophic errors in
the application.

So, when using application-state variables, it is sometimes important to use the
Application object's Lock and Unlock methods to prevent more than one thread from
colliding with another as they concurrently attempt to access application-state variables.
For example, if your application variable is responsible for keeping a count of the
number of users accessing the Web server, you might want to lock the method, prior to
incrementing the count. Users who access the application variable in its locked state
cannot modify the application-state variables. When the method has been unlocked,
after application variable after the increment is complete, you can then unlock the
application variable for normal use.

The downside to this scenario is that you can lose data that you might have otherwise
wanted to track, the request made by one thread to modify an application variable
during it's locked state will simply be ignored. So, if you want to keep track of dynamic
data, application variables are probably not what you will want to use. But, if you simply
want a ballpark figure, or if you are keeping track of static data like we did in the
aforementioned example, then the application variable will work just fine.

The following lines of code demonstrate the lock method of the Application object:
Application.Lock
Application("ServerPoll") = Application("ServerPoll") + 1
Application.Unlock
Response.Write "This Poll Has Been Visited: " &

 282

Application("ServerPoll") & " Times."

global.asax file

The global.asax file is an optional ASP.NET application file. It responds to ASP.NET
HTTPModules and application-level raised events and is generally housed in the root
directory of the ASP.NET application. The contents of this file cannot be downloaded,
as it is configured to reject any direct URL requests. If the file is not present, the
ASP.NET framework automatically presumes that there is no predefined session or
application event handlers.

Note This global.asax file does not replace the global.asa, where the

global.asa already exists, and it cannot intrinsically communicate
with a global.asa file, but it can peacefully coexist with it in the same
directory if you decide to mix ASP with ASP.NET Technology in the
same virtual directory.

The global.asax file does not really contribute to the performance or scalability of a Web
application. Its true role is to provide built-in events that we can enlist when certain
behaviors occur within our Web application. The traditional global.asa file offered four
events, which were the session and application's Start and End events. But, the
global.asax file supports more than 17 global events that you can participate in. The
following is a list of each event of the Base and Global classes, as well as its
usefulness:

§ The Application_Error event occurs when an unhandled error is
encountered.

§ The Application_EndRequest event occurs when the application ends.
§ The Application_AuthenticateRequest event fires just prior to any

authentication attempts occurring.
§ The Global_AuthorizeRequest event symbolizes that the request is

preparing to be authorized.
§ The Global_Disposed event fires after responding to a request and a

reference to an object has been dereferenced.
§ The Global_AuthorizeRequest event reacts when user authorization has

been deemed verified.
§ The Global_BeginRequest event occurs immediately before each new

request has been responded to.
§ The Global_PreSendRequestHeaders event transpires when right

before headers are sent-off to the client.
§ The Global_AuthenticateRequest fires when the user's identity has been

acknowledged.
§ The Global_BeginRequest fires once a response has been issued to

pacify a request.
§ The Global_EndRequest event happens immediately after each new

request has been responded to.
§ The Global_PreSendRequestContent happens right before content is

transmitted to the client.
§ The Global_PreRequestHandlerExecute and

Global_PostRequestHandlerExecute events fire just before a page or
web service is about to execute and immediately after it has completed.

§ The Global_ReleaseRequestState event happens when the application
is through with the request state of an application.

 283

§ The Global_UpdateRequestCache event lets us know that the IIS is
done fulfilling the request and that the page is now ready to be cached
for future requests.

§ The Global_AcquireRequestState event happens immediately before an
.aspx page either acquires or reacquites state information from a
running Web application.

§ The Global_ResolveRequestCache event indicates that the cache could
be out-of-date and need updating.

I should also point out that when the Global.asax is modified, the ASP.NET page
framework will detect this modification and close all connections with users by sending
the Application_OnEnd event to them. The application domain is then automatically
restarted by the next request received, implementing the Application_OnStart event.

Security

Security can be a funny thing. Some individuals store their most valuable possessions
within a million dollar vault at a financial institution but sleep in a domicile behind a
twenty-dollar lock. Although sometimes this makes no sense, the point is that security is
a very arbitrary thing, often justified by cost, convenience, and a sense of well-being.

It might make sense for an individual to allow a small-time Web hosting company to
host his or her personal homepage, forced to succumb to the mercy of whatever
authentication and other security measures that are available for a nominal cost each
year. However, it might not be a good idea for a multibillion dollar corporation to do the
same thing.

Determining the correct amount of security required to protect a site depends chiefly
upon the value that is placed upon what being protected, as well as the likelihood that it
could be stolen or damaged in the event of a successful break in. To prevent this from
happening, it is often necessary to challenge a user through authentication before
authorizing that user to do anything.

Authentication versus Authorization

The terms authentication and authorization sound so much alike, and without giving it
much thought, it might easily be construed to mean the same thing. However, this is not
the case at all. To authenticate someone means to acknowledge a relationship with
them or to prove something. To authorize means to grant power or authority to do
something.

Keep in mind that it is possible to authenticate a user without authorizing that user to do
anything, and it is possible to authorize any user to perform an unlimited number of
requests but to deny a specific authentication to keep that user from doing anything but
attempting to log in.

With ASP.NET, all client communications are filtered through the Internet Information
Server (IIS). It is the job of IIS to translate and, if optionally configured, to authenticate
user requests before resources are returned to the client. Consider the Web service we
built earlier in this chapter. The settings in the Web.config caused Network
Authentication to take place before we could use the application. Once we were
authenticated, we were then authorized. Because we have the ability to capture the
name of users and their role, we can either authorize them to use the application or

 284

deny them access to the application. This can easily be achieved in very few lines of
code.

ASP.NET uses IIS 5.0 as the primary host environment. There are five types of
authentication methods available in IIS 5.0: basic, digest, Integrated Windows
Authentication (with built-in NTLM or Kerberos support), anonymous, and certificate
authentication. There are also three forms of built-in .NET authentication, including
Windows, Forms, and Passport Authentication.

Basic authentication is a widely accepted method of authentication. A modal Network
Login dialog box will appear in front of the Web form, forcing the user to authenticate
with a valid Windows User Account through the Web server before being granted the
ability to use the application.

Basic authentication is part of the HTTP specification, and is supported by most Web
browsers. The only real downside to basic authentication is that user IDs and
passwords are sent over the Internet in an unencrypted fashion. An individual with ill
intentions and the correct equipment could possibly intercept this information.

Another form of authentication is digest authentication. New to IIS 5.0, this method of
authentication sends the password information over the Internet in the form of a secure
hash value. The downside to digest authentication is that it can only be completed if the
domain server resolving the request possesses a plain-text copy of the requestor's
password. Hence, the domain controller must be extremely secure from attacks.

The third form of authentication is Integrated Windows Authentication, which sends
sensitive authentication information over the Internet in a cryptographic format. If the
client is running IE 4.0 or higher and is on using a Windows-based system that is not
connecting via proxy, IIS can be configured to use the built-in NTLM or Kerberos
authentication systems.

A fourth method of authentication is anonymous authentication, giving users access to
public areas of your Web site without prompting them for their username or password
first. Windows uses the IUSR_YourComputerName Account, which is automatically
included in the Guest Account of your PC's local users and groups. So, whatever
security you have applied to the Guest Account, using the default settings or other
ones, will also apply to the anonymous user, so be careful.

The fifth method of authentication is certificate authentication, which can use client
certificates or server certificates for authentication through Secure Sockets Layer
(SSL).

In the example we created earlier in this chapter, we took advantage of basic Windows
authentication. It was a simple example that we created for our own use, so we weren't
really concerned that our personal information was being sent in clear text. Also, we
were accessing everything locally through the .NET IDE, so our requests were fulfilled
on our own IIS servers and not strewn across our network to perform for URL or IP
resolution.

In .NET, Forms Authentication is a means by which the application is responsible for
authenticating a request. If the authentication is rejected, the request can be redirected
to another form using client-side redirection. If the authentication is successful, a form
that contains credentials for acquiring an identity is issued by the system. All requests
made after a successful authentication will contain this form in the request header and
are validated by an ASP.NET handler.

 285

Passport Authentication is a very robust Microsoft Passport Single Sign-In (SSI)
authentication system that offers customers an unparalleled level of security and
interoperability between member sites. We will provide an example for configuring
passport authentication later in this chapter.

Forms-Based Authentication

Upon the first request issued by any client to a server, that individual is redirected to a
form that asks for an ID and password. Provided these two credentials match what the
server is expecting, the server provides the client with a cookie that will be stored on
the client's PC. The cookie is sent to the client in a cryptographic form and uniquely
identifies who that person is.

Each time thereafter when the client makes a request to the server, this cookie is sent
in the request header section and identifies that this user has been authenticated to use
the site. The beauty of this is that it is established in the Web.config section of the
ASP.NET solution:
<authentication mode = "Forms">
 <forms name="login.aspx" loginURL="A URL HERE"
 <credentials passwordFormat="SHA1">
 <user name="cole" password="MyPassword" />
 </credentials>
</authentication>
<authorization>
 <deny users="?"/>
</authorization>

In this example, the .NET application requires proof of authentication on a forms-based
level, and if not found, the user will be redirected to the page shown in the loginURL
attribute. If the user has already been authenticated, this information will have been
included in the header section of the request.

In the following example, the users' credentials are checked before they are allowed to
proceed:
Public Sub Login(ByVal sender as System.Object, ByVal e As
System.EventArgs)
 With System.Web.Security.FormsAuthentication
If(.Authenticate(txtUserID.Text, txtPassword.Text)) Then
.RedirectFromLoginPage(txtUserID.Text, False)
lblMySignOnStatus.Text = "Valid login"
 Else
lblMySignOnStatus.Text = "Invalid login"
 End If
 End With
End Sub

 286

Cookies

Traditionally, cookies were HTTP text-only headers that were typically created by a
hosting Web application and automatically stored on a user's hard drive by the user's
browser. Cookies were ordered into memory and the HTTP header by the user's
browser when requested by a hosting Web application.

As explained earlier in this chapter, cookies were a hit-and-miss sort of thing. If a user
did not have cookies enabled as an option in their Web browser, then the attempt to
read or write the cookie to and from the user's PC simply failed. If a cookie stored
information like a username or password, and the option was disabled, the user would
be forced to manually login each time the Web site required such credentials. To
combat this issue, session variables were used to store the initial log in, so that the user
was spared having to repetitiously log in each time the request for these credentials
was issued by the Web server. But, an initial manual login would still be required each
time a new session was used.

In ASP.NET, cookies have been retooled to work around those who disable cookies in
their Web browsers. Cookies are now fused as part of the URL and can follow the
navigation in this demeanor, similar to storing items in a QueryString, throughout the
entire Web site. The example below shows you how to use cookies in ASP.NET by
modifying the cookieless attribute in the sessionState tag of the Web.Config File:
<sessionState
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user id=sa;password="
cookieless="true"
timeout="20"
/>

Now, add the following lines of code into the Page_Load Event of an aspx.vb page and
disable cookies in your Web browser.
Response.Cookies("MyUserName").Value = "Cole"

Run the page, and you will see something similar to the following in the URL of your
Web browser:
http://localhost/WebApplication1/(ucgclbiy3jngowuo3zqi5m45)/WebF
orm1.aspx

If you view the source in your browser, you will also see the value of the cookie being
used to identify the user.

Cookies are an ideal way to maintain state on the Web, because HTTP is a stateless
protocol that does not inherently support persistence, making it difficult to distinguish
one user from another. Thus, creating cookieless identifiers can assist in the proper
identification of each user over the Internet, even if cookies are not supported in the
client's Web browser.

Cookies store text-based information in name/value pairs as you saw in the previous
example. Cookies are a great way of storing user identifiers and passwords so that the
user can be easily identified the next time he or she accesses the Web site, eliminating
the need for unnecessary reauthentications each time the Web site is visited.

 287

Essentially, cookies can be anything you want to make them, because you are not
limited to a specific genre of information that you can store in them, as long as what you
are storing is text based. In a situation where cookies are enabled in the client's Web
browser and used by the Web server, there are several essential parts of a cookie,
including the name of the cookie, its value, the expiration date, the path, the domain,
and the need for a secure connection in order to use the cookie.

The name and value attributes, better known as name/value pairs, and the path
property are the most important of the aforementioned properties. You need to name
your cookie, or you will never be able to locate it. Also, you'll probably want to supply a
value to the name of the cookie; otherwise, there is really no point to creating it in the
first place.

Additionally, the expiration property dictates how long the cookie will live before the
information is no longer accessible, and the path property denotes the URL path within
which the cookie is valid. If you store personal information in a cookie without setting
this attribute, values might automatically stay in the HTTP header, so pages outside the
path could potentially have access to your cookie information. If the path is not explicitly
set, the path defaults to the URL path of the document that created the cookie.

Furthermore, the domain property extends the path property. By setting the domain
property, you can allow multiple servers within the same domain to access the same
cookie information or even assign cookies to be accessible to a single server on a
domain.

Lastly, the secure connection property allows you to specify if the cookie property will
only work over a secure connection, such as SSL. Because most sites do not use
secure connections, the default value for this property is set to false.

Look at the code in the next paragraph. The class method, Values.Add, allows you to
add a name and value to the HttpCookie object. The name/value pair will exist in the
header of the Web documents that are passed between the client and server. You can
expire the cookie by using the class method.Expires.AddMinutes(# of minutes). There
are additional properties for the Expires method, including a range of expirations from
.AddMilliseconds to .AddYears. You might even decide to never expire your cookie.
The following is an example of code that sets and gets traditional cookies. You can test
this method by copying the following lines of code in the Page_Load event of an .aspx
file, dropping a textbox control on the Webform, and running the code. The result
should look like Figure 9.8.
'Declare local variables
 Dim objSetVoter As HttpCookie
 Dim objGetVoter As HttpCookie
 'Declare and set new reference to a Cookie.
 objSetVoter = New HttpCookie("OnlineVoterID")
 'Expire the cookie in one second.
 objSetVoter.Expires.AddSeconds(1)
 'Now create a voterID key and a
 'corresponding value.
 objSetVoter.Values.Add(txtOnlineVote.Text, _
 txtVoterName.Text)
 'Now append it to the response.

 288

 Response.AppendCookie(objSetVoter)
 'Fill objGetCookie.
 objGetVoter = Request.Cookies("OnlineVoterID")
 'If populated, show the results in a textbox.
 If objGetVoter.Name <> "" Then
 txtMyResults.Text = objGetVoter.Value
 End If

Figure 9.8: Expiring a traditional cookie.

As I mentioned in this section, for traditional cookies to work across HTTP, users must
enable cookies in the Options Settings of the Web browser they are using. In the past,
the single most frustrating thing about cookies was their dependence upon the settings
of an individual's Web browser. If users decided to disable the use of cookies within
their browser, you must have the ability to obtain the information elsewhere. In the case
where a cookie was supposed to store a user ID and encrypted password for
reauthentication on a machine the Enable Cookies property is disabled, the user will
have to log in each time to recapture this information. This can be frustrating to a user
who does not want to store cookies on their PC, as well as frustrating to a developer
who watches the performance of their Web application deplete to some degree, as the
application makes unnecessary trips to the database, or some other data storage
medium, to look up the same values for a user, over and over again. ASP.NET allows
us to overcome a situation where cookies use is not enabled in a user's Web browser,
by adding the identifier to the URL.

 289

Working with Passport Authentication

Microsoft Passport Authentication might be considered one of the easiest forms of
authentication. The reason for this is that most of the authentication code is already
taken care of for you behind the scenes. In order to test Passport Authentication, you
must set up a Microsoft PREP Account. If you are familiar with a Microsoft Messenger
Account, then a PREP Account should present no challenge to you. A PREP account is
just like your Messenger Account, with the exception that it is for test purposes only.
In order to obtain a Microsoft PREP Account, please visit the following Web site:
http://www.microsoft.com.
For more information, follow along with the section "Installing the Microsoft Passport
SDK from the Web Site" later in this chapter.

It is important to remember that Microsoft Passport is still being developed. The
information you will read is current as of the writing of this book. However, some of the
information in this section might be outdated by the time the book is printed.

To test Microsoft Passport Authentication, log in to the PREP Account you created and
modify the following lines of code in the Web.Config file of your .ASPX Page:
<authentication mode-"Passport">
 <passport redirectURL="internal"/>
</authentication>
<authorization>
 <deny users="?"/>
</authorization>

To learn more about becoming a Microsoft Passport member, please read the
following.

Microsoft Passport is a single sign-in service and express purchase service that can be
integrated into a participating Web site. There are many advantages to using the
service, some of which follow. Microsoft Passport allows a Web server to offload
authentication on an outside, yet central, source. A benefit to the client is that privileged
information is provided to a single authority. User IDs and passwords need only be
remembered by one site instead of many sites accessed on the Internet.
Imagine if users could sign on to every site on the Internet by using one user ID and
password, without jeopardizing the integrity of their credentials. Microsoft Passport
allows them to do just that by not forcing them to repeatedly enter confidential
information into each Web site they visit. Their information is only entered at the time of
the Passport sign up or when they edit personal information. Furthermore, from a
server standpoint, Microsoft Passport offloads the responsibility of maintaining sensitive
client information and allows for the collection of shared information that might normally
be derived from several Web sites. Microsoft Passport also supplies shared information
about members that can assist in marketing efforts. In addition, it provides other
information that can assist in the personalization of a Web site, allowing users to feel
catered to instead of canned, and it can gather information from users without annoying
them.
This is possible because users sign up for Passport Services at a single location. They
enter personal information only once. Much of the information requested is optional.
Table 9.2 lists the information that must be supplied when creating a Passport account;
the items that are not mandatory are indicated with an asterisk. It also shows the
information that is shared across the Internet to Microsoft Passport-supporting Web
sites. Most of the mandatory information that is shared applies to personalizing a site.

 290

Table 9.2: Shared Information

SHARED NOT
SHARED

Passport Unique Identifies (PUID) Sign in
Name

Zipcode, Region, Country [a] Password

Birthdate[a] Secret
Question

Age Under 13 - Flag[b]

Language Preference (LCID Format)

Language Preference (LCID Format)

Gender[a]

Accessibility (ADA) (Boolean Value)[a]

Nick Name[a]

Preferred E-mail[a]
[a]An optional field during Passport Member Registration. So, it is used only if it is
provided.

[b]An optional field, so only if it was provided and only if the member is older than 13
years of age.

The users' language, your PUID (Passport Unique Identifier), and whether or not are
under 13 years of age are the three items that are mandatory when signing up for
Microsoft Passport, and they are shared across servers. This information allows a Web
server to know what language format it should be using. The under 13 years of age
allows a Web server to know if a child is accessing the Web site, allowing the host to
tone down the content or deny the user if the content is too mature.
Currently, there are arguments that characterize Passport as being too intrusive. But,
after careful examination, I have found this to be false. In Table 9.2, you gain an
understanding of just how discrete the information you provide is to each participating
Web site you visit. In reality, the only things that are shared are the PUID, whether or
not you are under 13 years of age, and your language preference. Everything else is
either optional or not shared.

The Passport Development Site
The following Web site, www.passport.com/SDKDocuments/SDK21/default.htm, is an
MSN Web site that allows you to specify your system topology and automatically walks
you through a step-by-step instructional tour for employing the Passport service on your
Web site. The Express Purchase option on a subsequent Web site is platform
independent. The benefit to using this site is that it will guide you through every step of
the implementation, from getting started to after implementation.

A Final Walkthrough before Installation

Prior to installation, it is important to review the subsequent hardware, software, and
operational requirements to ensure that the system that will be performing the
installation of the Microsoft Passport Software Development Kit (SDK) is able to handle

 291

it. Also, it is important to remember that when you install the SDK, you should be
logged on under the Administrator Account or at least make sure you have
Administrative rights when installing under a User Account. This is because the SDK
changes registry settings, installs files in the system folder, may stop and start critical
services running on the PC, and installs virtual directories or ISAPI filters to the default
Web site's root directory. So, if you are not an Administrator, or have Administrator
privileges, these things cannot happen.

Installing the Microsoft Passport SDK from the Web Site
The best instructional methods for the installation of the SDK are on its Web site. To
install the SDK from the Web site, access
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/m
sdn-files/027/001/644/msdncompositedoc.xml. There are several installation options to
choose from, so be careful when choosing the ones that apply to you. It might be best
to start with the Development/Test Site because you will probably test your site for
functionality, accuracy, and integrity before actually deploying it for others to use. The
remainder of our Passport examples will focus on the integration of a Web application
with the Passport Deployment/Test Site.
Upon completion of the setup, the default.asp can be attempted. The next page is
displayed. Click on the Microsoft Passport sign in and you are directed to the Microsoft
Passport Member Service Sign In Screen. Type in the sign-in name and password you
created to use for test, and click the Sign In button. Don't confuse this with your regular
sign-in name and password, or you will be rejected and redirected to the previous page
(see Figure 9.9).

Figure 9.9: Member Services login.

For this example, we will use the SDK from the Web site and reboot when prompted.
Look for the location of your installation on your hard drive. Then, open the Internet
Services Manager and create a new virtual directory. From the wizard, browse to the

 292

location of the folder you created during the installation of the SDK. It will contain the
following files: default.asp, logout.asp, LTDefault.asp, makefile, placefile,
pleasewait.asp, signoutcheckmark (a quicktime player file), sources, and trans_pixel.
Open the Default.asp file in Internet Explorer. You should be taken to a site that forces
you to log in with your MSPassport username and password. Figure 9.10 displays the
results of your Microsoft Passport login. Listed below is what each of the labels means
in the order they appear:

§ TicketAge is the difference in time between your last screen refresh and
the time you initially logged in.

§ TimeSinceSignIn represents the total amount of time you have been
logged on.

§ Accessibility denotes whether or not you allow other sites to share your
public information.

§ Birthdate is the members entered date-of-birth.
§ Birthdate Precision represents the age range of the individual. Valid

values are 0 through 5, depending upon the age of the individual and
whether or not certain parts of their birthdate were not provided (e.g., the
member might have withheld the month or day of their birth date).

§ City is the geographical identifier that corresponds with the member's
entered city of residence.

§ Flags is a section that is reserved for network flags.
§ Gender depicts the sex of the individual, "M" for male and "F" for female.

This is an optional field, so other valid values are "U" for unknown and
Null if the member did not supply gender information when signing up for
a Passport Account.

§ Language Preference is the local identifier chosen by the user. It follows
the LCID format.

§ Member ID High represents the upper portion of a member's PUID.
§ Member ID Low represents the lower portion of a member's PUID.
§ Member Name is the alternate name (i.e. nickname) specified by the

user.
§ Preferred Email is the preferred email address as specified by the

member during Passport signup.
§ Profile Version is the version of the profile used by the member.
§ Wallet is the result of whether or not the member has a wallet account

associated with their Passport service.
§ Postal Code depicts the postal code in which the member resides.
§ Country ISO 3166-1 compliant country code that represents the zip code

of the member.
§ Region the region in which the member resides.

 293

Figure 9.10: The default Passport screen.

For more information on the Microsoft Passport Core Profile Table, please go to
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/ppsdk14/Reference/miscref/r_profilecoretable.asp.
You are authenticatedILoveMyPassport
MemberIdLow:-910445580
MemberIdHigh:-1668754781
Member Name:Customer!@passporttest.com
Alias:ILoveMyPassport
Country:US
Postal Code:98052
Region:35841

Birthdate:2/11/1970
Gender:M

profileVersion:1
Flags:0

Your ticket is910 seconds old.
Now, modify the Web browser URL to point the default.asp file.

 294

Congratulations, you are now an authenticated test site user and
should
see a screen similar to the one in Figure 9.10. You are
authenticated as
ILoveMyPassport!!

Your Passport Manager is currently in Test Mode (SiteID = 1). The Test Mode site is
not yet known to the Login server's table of Site IDs, so it doesn' t have the authority to
sign out URLs. Therefore, clicking on the Sign Out link will redirect you to this test site.

Notice the message at the bottom of the screen. It says that Passport Manager is
currently in Test Mode but that the Test Mode site is not yet known to the Login server's
table of Site IDs to Sign Out URLs. For this reason, the Login server will be unable to
log you out. Thus, the only way to log out at this point is to end the session by closing
the browser. This will remain the case until Microsoft recognizes your site as a valid
Passport Internet Site.
Right now, let's try out a nifty tool that will allow you to configure your test Passport site.
Click on the Start button on the lower left-hand corner of your desktop, and then click
Programs, Microsoft Passport, and Passport Administration Utility. This is the
application that gives you the power to dictate the configuration of your Passport Web
site. For convenience, we will use the default Web site that was provided with the SDK.
Check out the default screen in Figure 9.11.

Figure 9.11: Passport Manager Administration.

These are the defaults that command the site we accessed in Figure 9.10. Notice that
the Install Dir points to the directory that contains the files created when you installed
the SDK. You will also notice that the Time Window, shown in seconds, does not reflect
the time that displayed in the http://localhost/passport/ltdefault.asp directory. However,
if you attempt to modify the default site ID and commit the changes, the test site will no
longer work properly. The site ID defaults to 1, denoting that the account is in test

 295

mode. Microsoft only grants the full core profile when you register your site with
Microsoft on the Web.

Cobranding Your Site

Microsoft provides you with the ability to alter all the Microsoft Passport pages by
applying cascading style sheets. This will allow you to apply your own look and feel to
the Passport login screen.

Licensing Passport

To get approval to register your Passport Web site for public use, you will need to
complete the following items:

1. Sign a non-exclusive service agreement with the Microsoft Corporation.
2. Make sure your site has been cobranded.
3. Provide Microsoft with the location of your Cobranding template file.
4. Make sure that your Web site complies with Microsoft's standards.

For additional details, please review the Microsoft Passport SDK.

Wrapping Up

Authentication can be applied by using a standard Microsoft Windows logon, basic
authorization, forms authorization, or a standard Microsoft Passport logon, and security
for a Web site can be driven using any one of the aforementioned authentication
methods.

Microsoft Passport, the latest method of authentication added to the Microsoft Suite of
authentication services, allows an integrated way of authenticating individuals logging
on to a Web site and takes out some the additional code and hard drive space that is
sometimes necessary to store authentication and personalized information. The SDK
on the Web site makes it very easy to download and install Microsoft Passport service
on almost all Windows-based PCs, and the development around the tool can be as
simple or complex and the developer wishes to make it.

In the preceding example, the implementation of Microsoft Passport was extremely
simplistic, but it gives you the idea of the fundamental tools and code that are
necessary for getting a test site up and running. The templates and example that are
installed with the SDK allow you to perform cobranding around your own custom Web
site without having to start completely from scratch.
In Chapter 10, we will be walking through an entire application from start to finish,
touching everything from a methodology for design and architecting a solution, to a
project plan, and then right down to the development solution.

 296

Chapter 10: ASP.NET Application: A Walkthrough

Overview

If at first you don't succeed, get a bigger hammer.
Larry Brenner
This quote may seem out of place for the chapter, but I hope you'll see that it fits right
in. We talked in Chapter 1 about the inherent difficulties with building traditional Web
applications. We had to use the technological equivalent of bubble gum and baling wire
to get the job done, and it wasn't always a success. After reading this book, you should
be able to see how Visual Studio .NET, namely, Visual Basic .NET and ASP.NET,
really is the bigger hammer for developers.

Now that we've explored the foundation and underlying parts of what you need to be
productive with ASP.NET, its time to bring it all together. First, we're going to walk
through the thought process and design documents behind the sample application.
Next, will be a short look at why the planning process is very important, regardless of
project size. Finally, we'll build some key parts of the Northwind Traders customer site
to learn the why, what, and how.

The sample application I chose to build for this book is based on the Northwind Traders
sample database that comes with SQL Server. Originally it was written in XML and
used XSLT for rendering via XML for SQL Server (SQLXML.) Although the original
sample application illustrates using XML from data to presentation tier, I thought this
would be an interesting candidate for migration to .NET, showing that a Microsoft Visual
Basic .NET application is more maintainable than a native XML application. The
scenario is of a prototype for this fictional client, so that is the level of functionality that
the sample has been designed for. Several outstanding examples of enterprise
applications and books extensively cover this subject. One of the best that I've seen is
the gasTIX demo application, which has been extensively tested and has some great
features. You can find this application at gastix.net.

Why Plan?

It may seem ironic that we need to justify designing applications before building them.
Ready, fire, aim appears to be the standard that sets our industry apart from other
industries. A root cause might very well be that what we do is a blending of art and
science, and that makes it difficult to tie down exactly what the requirements are at the
beginning. Another root cause may be the tools themselves that allow us to rapidly
create prototypes and proofs of concept, thereby empowering the user to exclaim
"That's great! Let's just use this!"

It may appear, at first glance, that going through the design phase is a waste of time,
especially given the ease with which we can now create the UI. And then there is the
inevitable pressure from those who sponsor your projects, who might not always see
the value, either. There are many great resources that cover this subject adequately, if
not brilliantly. Check out the resources section for some recommendations. That said,
I'm going to very briefly cover the topic and then illustrate the documentation and
development mindset by focusing on several key parts of the Northwind application.
In the Software Project Survival Guide (Microsoft Press, 1997), Stephen McConnell
illustrates why many, if not most, projects are doomed to failure. The main reason that
approximately 70 percent of projects fail is that they suffer from a lack of planning and

 297

design. McConnell gives specific steps and practices to follow throughout the design
and development phases. Here is an example of my recommended steps for the
prototyping process:
§ Gather the Information. It's important to gather the background information in

order to understand and determine the problem. We have to figure out what
the questions are before we can answer them, and gathering techniques that
are available will help us do just that. In this example, we used user
interviews and because there was an existing prototype on which to base our
project, we give that a thorough examination.

§ Create the Vision/Scope. We then take the information that was compiled
and turn that into a vision statement. The vision statement is S.M.A.R.T.: It's
specific, has a measured goal, is applicable to the problem, is realistic given
available resources, and is time-based. The scope lists the feature set that
will be included as we implement the vision statement and develop it into a
solution. Any features not on this list will not be a part of this phase of the
project.

§ Create the Functional Requirements/Specification. Based on the problem
defined, the vision created, and the scope declared, we now move toward
the actual design of the solution.

§ Build the Prototype. At this point, we begin the actual implementation and
development work, creating and modifying stored procedures; building
components; and developing forms, other user interfaces, and Web services.
We'll also do some unit testing as well.

§ Conduct User Review. Once we've built the prototype and done an
appropriate level of testing, we demonstrate it to the users and/or the project
sponsors. Feedback is collected and, if the functionality of the prototype is
acceptable, the user signs off. At this point, we put the feedback into the
functional specification.

§ Amend Functional Specifications/Begin Development of Application.
After making any necessary changes to the functional specification, we then
begin development work on the application itself. It's important to realize that
the prototype exists only to validate the proof of concept. Once that happens,
it is thrown away and is not used in the actual application. We start
development of the application from square one, using the functional
specification as our guide.

As you can discern from these steps, the process enables the project team to create a
successful prototype that fulfills the business requirement. The secret is in the process;
having a plan allows you to answer the questions and also tells you what questions to
ask. That said, let's walk through the design requirements for this project.

Northwind Traders Sample Application Documentation

For this walkthough, we're going to handle this project as I would any other—starting
with the vision and scope and then working outward. Let's review the design documents
created for this application, beginning with the business case.

Business Case

It's very important to build the business case. The relevance and necessity of the
project must be laid out so that the project sponsor (the ones who have the funding)
has a reason to fund it. Let's start out with the background.

 298

Background

Northwind Traders, Inc., is a privately held food distribution company headquartered in
Washington. Northwind has both domestic and international customers and suppliers.
The company has a geographically distributed sales staff, with North American
Operations and the Customer Service/Support Call Center located in Washington and
European Operations located in London, England. Currently, the company relies on its
quarterly catalog to transmit the bulk of its information to its customers, with additional
telemarketing support provided by the Customer Service Support Call Center.

Northwind has relied heavily on its Distribution Information System (DIS). DIS is an
Access database application that has been updated several times since its inception in
Access 2.0. The current version of DIS is based on a client/server architecture, with
most of the original functionality split between Microsoft Access 2000 as the client on
the front end and a Microsoft SQL Server database as the server on the back end. The
system is used for product inventory, sales analysis, invoice generation, order
fulfillment and tracking, employee information, supplier information, and customer
information. Although DIS has proven itself for Northwind's past requirements, it does
not easily allow the sales staff access to current product and sales information in a
timely manner, nor does it help to ease the load of the customer service and sales staff,
whose primary vehicle for accepting customer orders has been email, fax, and over the
phone.

Based on internal research by the company's executive staff, a Web-enabled n-tier
architecture would allow the sales staff to be much more efficient by granting them
access to up-to-date product information. It would also empower the management team
to be more proactive in shaping Northwind's long-term market strategy through the use
of real-time sales data and marketing information. This is a long-term goal. It has been
decided by Northwind management that a business-to-consumer online presence is the
most immediate need. However, it is crucial that the base functionality of the current
system and the existing business processes be retained in the application.

The company has commissioned and developed a prototype of the consumer site that
is written entirely using XML and related technologies. The prototype incorporates
shopping cart functionality, the ability to check orders, and the assignment of a
Northwind account representative to the new customer. Using Microsoft SQL Server
2000 native XML queries and extensible -style language transformations for flexibility,
the overall site was impressive to the client in terms of overall appearance and site flow.
The account management staff liked the ability to link contact information directly to the
customer's session. The IT staff did not feel, however, that the site was maintainable or
easily modifiable.

After learning about Microsoft Visual Basic .NET, Northwind commissioned a new
prototype using .NET but retaining a majority of the existing functionality and overall
look and feel of the original. The company would also like to add Web service
functionality to this application to provide catalog information to clients directly.

Project Documentation

Here is the project documentation for the prototype. Countless books have been written
on the subject of great design practices. I wrote the following as a quick but practical
design guide.

 299

Vision/Scope

The vision statement provides a high level guideline of the solution that is to be
developed. The scope states exactly what features will be included in the vision
implementation.

Vision Statement

Rearchitect the distribution information system consumer prototype into an n-tier
architecture proof of concept that maintains the existing functionality, allows greater
maintainability by Northwind personnel, and exposes a catalog web service prototype
by the end of fiscal year 2002.

Application Scope

The Distribution Information System, Phase 1 will include the look and feel of the XML-
based version and the following functionality:

§ Ability to browse and order current products
§ Ability to check account status
§ Ability to get sales agent information
§ A catalog Web service

Functional Specification

The functional requirements/specification lays out the information needed to develop
the application. We include the architecture, data model, component functionality, and
other related information, such as, in our case, a Web service.

Architecture
Figure 10.1 illustrates the architecture of the prototype. This diagram lays out the
components and the respective tiers.

 300

Figure 10.1: Architectural diagram of the Northwind prototype.

 301

Components

Much of the core functionality will be included in the Northwind namespace, which will
contain the backbone of the system. The architectural layout of the contained classes
within it is as follows:

§ DBUtil. Responsible for generic database functionality: data tier.

§ DB_Products. Responsible for product-related functionality:
business/data tier.

§ DB_Customers. Responsible for customer-related functionality outside
of ordering: business/presentation tier.

§ DB_Orders. Responsible for order and order detail related functionality:
business/presentation tier.

§ NWShoppingCart. Responsible for shopping cart functionality:
business tier.

Data Model
The Northwind data model consists of 13 tables, 14 views, and 27 stored procedures.
In Figure 10.2, you can see the relationships of the tables as well as the tables
themselves. As in many other databases you've worked on or developed, this database
uses primary and foreign keys to establish the relationships. We'll look at the stored
procedures and added database functionality in the next section.

 302

Figure 10.2: Data model.

Examining the Data Store

The data store for the prototype is based upon the Northwind sample database
included with SQL Server 2000. Because this is based on an earlier prototype with an
existing database, it's important to examine the data store as one of the first stages. We
do this to understand if any additional changes need to be made. The Northwind
database has been modified with the following changes:

§ Agents stored procedure/functionality
§ Stored procedures

Agent's Stored Procedure and Functionality

The purpose of the agent is to connect the customer with a Northwind sales
representative on the Web site upon login. The GetCustomerAgentInfo stored
procedure provides the information via SQLXML upon customer login. As outlined in
the scope, this is a necessary requirement for successful implementation.
The SQL itself is relatively simple, using an alias on the employees table (agent) and
tying it to the customers table by the customer ID. We'll use this information on the
customer's personal shopping page to acquaint (or reacquaint) the customer with their
sales rep as needed. The following is the Get-CustomerAgent stored procedure. Once
again, we use stored procedures for our lower-level data access. This gives us the
ability to secure the data because the stored procedures can be restricted to specific
user accounts. Another advantage is that stored procedures are precompiled so that
they can be accessed faster. We discussed data-related matters in Chapter 8 .
CREATE PROCEDURE GetCustomerAgentInfo @@custid varchar(40) AS

 303

 SELECT Agent.firstname, agent.lastname,
agent.titleofcourtesy,
agent.extension, agent.photo
 FROM Employees As Agent, Customers
 WHERE Customers.CustomerID=@@custid AND
Customers.EmployeeID=Agent.EmployeeID

The information is extracted in the following code into the AgentInfo class and put into
the highlighted fields in Figure 10.3 .
 Do While nwDataReader.Read
 'populate our agent object for return
 With AgentInfo1
 .FirstName = CStr(nwDataReader.GetString(0))
 .LastName = CStr(nwDataReader.GetString(1))
 .TitleOFCourtesy = CStr(nwDataReader.GetString(2))
 .Extension = CStr(nwDataReader.GetString(3))
 .Photo = nwDataReader.GetSqlBinary(4)
 End With
 Loop
 Return AgentInfo1
 nwDataReader.Close()
Public Class AgentInfo
 Public FirstName As String
 Public LastName As String
 Public TitleOFCourtesy As String
 Public Extension As String
 Public Photo As SqlBinary = New SqlBinary()
End Class

 304

Figure 10.3: Agent information panel.

In keeping with the n-tier architectural philosophy, we'll retrieve our customer
information in the following class. This allows us ready-made access to just the
information we need.
Public Class CustomerInfo
 Public EmployeeID As Int32
 Public CustomerID As String
 Public CompanyName As String
 Public ContactName As String
 Public ContactTitle As String
 Public Address As String
 Public City As String
 Public Region As String
 Public PostalCode As String
 Public Country As String
 Public Phone As String
 Public Fax As String
End Class

Notice that all the information we need is contained in the class for easy access.

Note I chose to use custom classes, such as the one above, simply for

convenience. Even though it maintains state, we have all the

 305

information needed without having to make another trip to the
database.

In the following class, NWCustomerInfo, we retrieve and format all of the customer-
related information that we'll need so that the customer can shop:
 Public Class NWCustomerinfo
 Public Function GetCustomerAgentInfo(ByVal CustID As String)
As
AgentInfo
 Dim nwDataReader As SqlDataReader
 Dim ds As DataSet = New DataSet()
 Dim AgentInfo1 As AgentInfo = New AgentInfo()
 Dim nwConn1 = New SqlConnection("user
id=sa;password=;initial
catalog=northwind;data source=maxum;Connect Timeout=30")
 Dim nwCommand As SqlCommand = New SqlCommand ()
 With nwCommand
 .CommandText = "GetCustomerAgentInfo"
 'set the type for stored procedure

 .CommandType = CommandType.StoredProcedure
 .Connection = nwConn1
 .Connection.Open()
 'create and add the parameters

 Dim mycParm As SqlParameter =
.Parameters.Add("@@CustID",
SqlDbType.NVarChar, 40)
 'set direction for parms

 mycParm.Direction = ParameterDirection.Input
 'assign value to parms
 mycParm.Value = CustID
 'execute

 nwDataReader =
.ExecuteReader(CommandBehavior.SingleRow)
 End With

Note Take notice of the use of the DataReader in this example. It gives
better performance than a data set, and because we aren't
updating, this makes a good choice. We then extract the data into
the appropriate classes in the remaining part of this code (following)
and send it on its way:
 Do While nwDataReader.Read
 'populate our agent object for
return
 With AgentInfo1
 .FirstName =
CStr(nwDataReader.GetString(0))

 306

 .LastName =
CStr(nwDataReader.GetString(1))
 .TitleOFCourtesy =
CStr(nwDataReader.GetString(2))
 .Extension =
CStr(nwDataReader.GetString(3))
 .Photo =
nwDataReader.GetSqlBinary(4)
 End With
 Loop
 Return AgentInfo1
 nwDataReader.Close()

 End Function

In the Page_Load event for Default.aspx, we'll use the information that the customer-
related classes provide. This allows us to initialize the content, extract the information
provided by our objects, and populate the controls accordingly as needed.

Note We only want to load certain things once; hence the majority of the

code is within the If Not Page.ispostback block, for performance
sake.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 If Not Page.IsPostBack Then

 Dim CustID As String =
Response.Cookies("NWAppCustID").Value
 Dim nwCust1 As Northwind.NWCustomerinfo = New
Northwind.NWCustomerinfo()
 Dim nwCustInfo As Northwind.CustomerInfo =
nwCust1.GetCustomerInfo(CustID)
 Dim nwCustAgentInfo As Northwind.AgentInfo =
nwCust1.GetCustomerAgentInfo(CustID)
 'Extract the Information from the agent object and put it into
 'the appropriate controls

 With nwCustAgentInfo
 With nwCustInfo
 litCompanyName.Text() = .CompanyName
 litCustID.Text() = .CustomerID
 litCustFullName.Text() = .ContactName
 'Use the DBObject to grab the photo directly from the database

 imgAgent.ImageUrl =
"/enw/dbobject/Employees[@EmployeeID='" & .EmployeeID &
"']/@Photo"
 End With

 307

 litAgentFullName.Text() = .TitleOFCourtesy & "."
&
.FirstName & " " & .LastName
 litAgentPicName.Text() = .FirstName & " " &
.LastName
 litExtension.Text() = .Extension
 End With
 End If
 End Sub

The information is extracted from the stored procedure and then populated in an
instance of the AgentInfo class, which is then returned to the Page_Load Event of
CustomerPortal.aspx. The information is then loaded into each control, with strings
loaded into literal Web service controls, and the photo is directly loaded into the image
controls' ImageURL property via a SQLXML DBObject call. I chose the literal field
because it is lightweight and designed for exactly this purpose.
The highlighted fields in Figure 10.3 illustrate the literal control placement within the
template, which allows for customization for each customer and its corresponding
agent.

Stored Procedures

Now let's take a look at the stored procedures in the Northwind data store. The ones
currently in use in the prototype are listed fully with a short explanation of functionality.

§ CustOrdersDetail. This procedure is used to extract an existing order
detail from the database. Notice that the discount is being factored in
automatically.
CREATE PROCEDURE CustOrdersDetail @OrderID int
AS
SELECT ProductName,
 UnitPrice=ROUND(Od.UnitPrice, 2),
 Quantity,
 Discount=CONVERT(int, Discount * 100),
 ExtendedPrice=ROUND(CONVERT(money, Quantity * (1
- Discount) *
Od.UnitPrice), 2)
FROM Products P, [Order Details] Od
WHERE Od.ProductID = P.ProductID and Od.OrderID =
@OrderID

§ CustOrdersOrders. This procedure is used to extract an existing order
from the database. The information can then be combined with the
order detail information.
CREATE PROCEDURE CustOrdersOrders @CustomerID
nchar(5)
AS
SELECT OrderID,
 OrderDate,

 308

 RequiredDate,
 ShippedDate
FROM Orders
WHERE CustomerID = @CustomerID
ORDER BY OrderID

§ GetCategoriesProductsParam. This procedure is used to extract
products within categories from the database:
CREATE PROCEDURE GetCategoriesProductsParam @@catid
int AS
SELECT
categories.categoryname,Products.ProductId,Products.P
roductName, Produc
ts.QuantityperUnit, Products.UnitPrice FROM
Categories, Products WHERE
Products.CategoryID=Categories.CategoryID AND
Categories.CategoryID=@@catid

§ GetCustomerAgentInfo. As previously discussed, this stored
procedure links a given customer with its sales representative, called
an agent:
CREATE PROCEDURE GetCustomerAgentInfo @@custid
varchar(40) AS
 SELECT Agent.firstname, agent.lastname,
agent.titleofcourtesy,
agent.extension, agent.photo
 FROM Employees As Agent, Customers
 WHERE Customers.CustomerID=@@custid AND
Customers.EmployeeID=Agent.EmployeeID

§ GetOrders. The GetOrders stored procedure will return all relevant
order information, including order detail information, fully formatted as
XML:
CREATE PROCEDURE GetOrders @@ordid varchar(40) AS
 SELECT 1 As Tag,
 NULL As Parent,
 Orders.OrderID as [Order!1!OrderID],
 Orders.OrderDate as
[Order!1!OrderDate!element],
 Orders.RequiredDate as
[Order!1!RequiredDate!element],
 Orders.ShippedDate as
[Order!1!ShippedDate!element],
 Orders.Freight as
[Order!1!FreightCost!element],

 309

 NULL AS
[ShippingAddress!2!Name!element],
 NULL AS
[ShippingAddress!2!Address!element],
 NULL AS
[ShippingAddress!2!City!element],
 NULL AS
[ShippingAddress!2!Region!element],
 NULL AS
[ShippingAddress!2!Country!element],
 NULL AS [Shipper!3!ShipperID],
 NULL AS
[Shipper!3!CompanyName!element],
 NULL AS [Agent!4!AgentID],
 NULL AS [Agent!4!Name!element],
 NULL AS [Agent!4!Photo]
 FROM Orders
 WHERE Orders.OrderID=@@ordid
 UNION ALL
 SELECT
2,1,NULL,NULL,NULL,NULL,NULL,Orders.ShipName,Orders.S
hipAddress,

Orders.ShipCity,Orders.ShipRegion,Orders.ShipCountry,
NULL,NULL,NULL,
NULL,NULL
 FROM Orders
 WHERE Orders.OrderID=@@ordid
 UNION ALL
 SELECT
3,1,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL
,Shippers.
ShipperID,Shippers.CompanyName,NULL,NULL,NULL
 FROM Orders INNER JOIN Shippers ON
Orders.ShipVia=Shippers.ShipperID
 WHERE Orders.OrderID=@@ordid
 UNION ALL
 SELECT
4,1,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL
,NULL,NULL,
Employees.EmployeeID,
 Employees.FirstName+'
'+Employees.LastName,'http://localhost/enw?sql=select
+photo+from+

 310

employees+where+employeeid='+convert(varchar,Employee
s.EmployeeID)+
'&contenttype=image/jpeg'
 FROM Orders INNER JOIN Employees ON
Orders.EmployeeID=Employees.EmployeeID
 WHERE Orders.OrderID=@@ordid
 FOR XML EXPLICIT

§ GetProductListPhoto. The GetProductListPhoto stored procedure
returns product information along with a photo:
CREATE PROCEDURE GetProductListPhoto AS
 SELECT *
 FROM Products, Categories, Suppliers
 WHERE
Products.SupplierID=Suppliers.SupplierID
 AND
Products.CategoryID=Categories.CategoryID
 AND Products.Highlight=1
 AND DATALENGTH(Products.Photo) > 0
CREATE PROCEDURE GetProductSupplierInfo @@prodid
varchar(40) AS
 SELECT *
 FROM Products, Suppliers
 WHERE Products.ProductID=@@prodid
 AND Products.SupplierID=Suppliers.SupplierID
 FOR XML AUTO

§ GetShippingOrderInfo. This stored procedure returns complete
shipper information, by order, in a custom format as XML:
CREATE PROCEDURE GetShippingOrderInfo @@shipid
varchar(40) AS
 SELECT 1 As Tag,
 NULL As Parent,
 Shippers.ShipperID AS
[Shipper!1!ShipperID!id],
 Shippers.CompanyName AS
[Shipper!1!CompanyName!element],
 NULL as [Order!2!ShippedBy!idref],
 NULL as [Order!2!OrderID!id],
 NULL as
[Order!2!OrderDate!element],
 NULL as
[Order!2!RequiredDate!element],

 311

 NULL AS
[ShippingAddress!3!OrderID!idref],
 NULL AS
[ShippingAddress!3!Name!element],
 NULL AS
[ShippingAddress!3!Address!element],
 NULL AS
[ShippingAddress!3!City!element],
 NULL AS
[ShippingAddress!3!Region!element],
 NULL AS
[ShippingAddress!3!Country!element],
 NULL AS [Items!4!OrderID!idref],
 NULL AS [Item!5!OrderID!idref],
 NULL AS [Item!5!ProductID!id],
 NULL AS [Item!5!Quantity!element],
 NULL AS
[Item!5!ProductName!element]
 FROM Shippers
 WHERE Shippers.ShipperID=@@shipid
 UNION ALL
 SELECT 2,1,
 Orders.ShipVia,
 NULL,
 Orders.ShipVia,
 Orders.OrderID,
 Orders.OrderDate,
 Orders.RequiredDate,
 Orders.OrderID,
 Orders.ShipName,
 Orders.ShipAddress,
 Orders.ShipCity,
 Orders.ShipRegion,
 Orders.ShipCountry,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
 FROM Orders
 WHERE Orders.ShipVia=@@shipid AND ShippedDate IS
NULL
 UNION ALL

 312

 SELECT
3,2,Orders.ShipVia,NULL,Orders.ShipVia,Orders.OrderID
,Orders.OrderDate
,Orders.RequiredDate,Orders.OrderlD,Orders.ShipName,O
rders.ShipAddress
,Orders.ShipCity,Orders.ShipRegion,Orders.ShipCountry
,NULL,NULL,NULL,
NULL,NULL
 FROM Orders
 WHERE Orders.ShipVia=@@shipid AND ShippedDate IS
NULL
 UNION ALL
 SELECT
4,2,Orders.ShipVia,NULL,Orders.ShipVia,Orders.OrderID
,NULL,NULL,Orders
.OrderID,NULL,NULL,NULL,NULL,NULL,Orders.OrderID,NULL
,NULL,NULL,NULL
 FROM Orders
 WHERE Orders.ShipVia=@@shipid AND ShippedDate IS
NULL
 UNION ALL
 SELECT
5,4,Orders.ShipVia,NULL,Orders.ShipVia,Orders.OrderID
,NULL,NULL,Orders
.OrderID,NULL,NULL,NULL,NULL,NULL,Orders.OrderID,[Ord
er
Details].OrderID,[Order Details].ProductID,[Order
Details].Quantity,Products.ProductName
 FROM [Order Details], Orders, Products
 WHERE Products.ProductID=[Order
Details].ProductID
 AND [Order Details].OrderID=Orders.OrderID
 AND Orders.ShipVia=@@shipid
 AND ShippedDate IS NULL
 AND Products.UnitsInStock >= [Order
Details].Quantity
 ORDER BY
[Shipper!1!ShipperID!id],[Order!2!OrderID!id],Tag,[Sh
ippingAddress!3!
OrderID!idref],[Items!4!OrderID!idref],[Item!5!OrderI
D!idref]
 FOR XML EXPLICIT

§ GetShoppingCartInfo. If we chose to use the sqlserver state engine,
the stored procedure would be useful for returning the shopping cart

 313

information. We are using the in-process state management, so this is
not necessary.
CREATE PROCEDURE GetShoppingCartInfo @@sid
varchar(40) AS
SELECT * FROM Cart,Products, Categories WHERE
Cart.ProductID=Products.ProductID AND
Products.CategoryID=Categories.CategoryID AND
Cart.Session=@@sid FOR
XML AUTO

§ GetTop3Products. This stored procedure displays the top three
products that haven't been purchased by the customer. This is useful
for moving merchandise that has been sitting around:
CREATE PROCEDURE GetTop3Products @@custid varchar(40)
AS
 select top 3 Products.*
 from Products
 where Highlight=1
 and ProductID NOT IN (select
OrderDetails.ProductID
 from
[order details]
OrderDetails,Orders

where
Orders.CustomerID=@@custid

and
OrderDetails.OrderID=Orders.OrderID)
 order by Products.UnitPrice

§ GetTop6Products. This stored procedure displays the top six products
that are regularly purchased by the customer. It is the data that is
displayed upon login.

CREATE PROCEDURE GetTop6Products @@custid varchar(40)
AS
select top 6
Products.ProductId,Products.ProductName,Products.Quant
ityperUnit,
Products.UnitPrice
 from Products
 where ProductID IN (
 select top
6
Products.ProductID

 314

 from [order
details]
OrderDetails,Orders,Products
 where
Orders.CustomerID=@@custid
 and
OrderDetails.OrderID=Orders.OrderID
 and
OrderDetails.ProductID=Products.ProductID
 group by
Products.ProductID
 order by
SUM(OrderDetails.Quantity) DESC)
 OR ProductID IN (
 select top
3
Products.ProductID
 from [order
details]
OrderDetails,Orders,Products
 where
Orders.CustomerID=@@custid
 and
OrderDetails.OrderID=Orders.OrderID
 and
OrderDetails.ProductID=Products.ProductID
 group by
Products.ProductID
 order by
SUM(OrderDetails.Quantity))

§ Login. This stored procedure verifies the username and password that

has been entered by the customer:
CREATE PROCEDURE Login @@uid char(5), @@pwd
varchar(10) AS
SELECT CustomerID FROM Customers WHERE
Customers.CustomerID=@@uid AND
Customers.[Password]=@@pwd

§ Ten Most Expensive Products. This stored procedure allows
Northwind to get the most expensive stuff out in front on its clients.
This data is the first they see upon entering the site.
CREATE procedure [Ten Most Expensive Products] AS
SET ROWCOUNT 10

 315

SELECT ProductName AS TenMostExpensiveProducts,
QuantityPerUnit,
Photo, UnitPrice
FROM Products
ORDER BY UnitPrice DESC

The Northwind database has other stored procedures that are not being used but were
created as part of the original prototype. By browsing through them in the database,
you may come up with some uses yourself.

Implementing the Data Tier

Our data tier primarily consists of the DB_Utils component. It's our custom data access
component. By using a single point of access, we're providing a high level of
maintainability by centralizing data functions and providing application longevity by
abstracting data access from the other tiers. The data tier will communicate with
parameterized stored procedures to return just the data needed. This provides greater
control over who sees the data, and it provides for business rule storage in the data tier
if the architecture should call for it.

Related to the data tier is the issue of where to store the connection string. In COM+,
we'd use a constructor in the application package. In .NET, however, we'll use
Web.config to hold this information. It's a good idea to keep this information in one spot
where it can be easily updated. Let's take a look and see exactly how to do that. You
begin by adding a section inside of the Web.config file for your connection string:
<configuration><appsettings>
<add key="NWconnection"
VALUE="server=MAXUM; uid=sa; pwd=; database=northwind" />
</appsettings>
</configuration>

You use it from your application code in the following manner:
StrNWConn = ConfigurationSettings.AppSettings.("NWConnection")

There is currently a single method in this component that is used for login purposes. It
simply passes in the username and password as parameters to the GetLogin stored
procedure and returns the customer ID as a string.

Implementing the Business Tier

The business tier contains the processing functionality that encapsulates the business
rules for Northwind. We break this functionality into the following components, starting
with the Customer component. Because the functional specification stated that the
original functionality of the application needed to be maintained, we can accomplish this
through these components.

 316

Customer Component

The customer component deals with extracting and formatting the customer information
to send to the performance tier:
Public Function GetCustomerInfo(ByVal CustID As String) As
CustomerInfo
 Dim nwDataReader As SqlDataReader
 Dim CustInfo1 As CustomerInfo = New CustomerInfo()
 Dim nwConn1 = New SqlConnection("user
id=sa;password=;initial
catalog=northwind;data source=maxum;Connect Timeout=30")
 Dim nwCommand As SqlCommand = New SqlCommand()
 With nwCommand
 .CommandText = "GetCustomerInfoPara"
 'set the type for stored procedure
 .CommandType = CommandType.StoredProcedure
 .Connection = nwConn1
 .Connection.Open()
 'create and add the parameters
 Dim mycParm As SqlParameter =
.Parameters.Add("@@CustID",
SqlDbType.NVarChar, 40)
 'set direction for parms
 mycParm.Direction = ParameterDirection.Input
 'assign value to parms
 mycParm.Value = CustID
 'execute
 nwDataReader = .ExecuteReader()
 End With

 Do While nwDataReader.Read

 With CustInfo1
 .EmployeeID = CInt(nwDataReader.GetInt32(0))
 .CustomerID = CStr(nwDataReader.GetString(1))
 .CompanyName = CStr(nwDataReader.GetString(2))
 .ContactName = CStr(nwDataReader.GetString(3))
 .ContactTitle = CStr(nwDataReader.GetString(4))
 End With
 Loop

 Return custinfo1
 nwDataReader.Close()

 317

 End Function

In this case, we use the GetTop6Products to retrieve the six most requested products
by the given customer:
 Public Function GetTop6Products(ByVal CustID As String) As
DataSet
 Dim nwDataAdapter As SqlDataAdapter = New
SqlDataAdapter()
 Dim CustInfo1 As CustomerInfo = New CustomerInfo()
 Dim nwConn1 = New SqlConnection("user
id=sa;password=;initial
catalog=northwind;data source=maxum;Connect Timeout=30")
 Dim nwCommand As SqlCommand = New SqlCommand()
 Dim NWTop6 As DataSet = New DataSet()
 With nwCommand
 .CommandText = "GetTop6Products"
 'set the type for stored procedure
 .CommandType = CommandType.StoredProcedure
 .Connection = nwConn1
 .Connection.Open()
 'create and add the parameters
 Dim mycParm As SqlParameter =
.Parameters.Add("@@CustID",
SqlDbType.NVarChar, 40)
 'set direction for parms
 mycParm.Direction = ParameterDirection.Input
 'assign value to parms
 mycParm.Value = CustID
 'execute
 nwDataAdapter.SelectCommand = nwCommand
 nwDataAdapter.Fill(NWTop6)
 End With
 Return NWTop6
 End Function

Product Component

The product component is what we use to populate product information in the Web site.
It's important to note that this code is also used to retrieve product information for the
entire site and return it to the calling page as a data set. The page then takes the
information and can use it however it needs to.
Public Function GetProductsByCategory(ByVal CatID As Integer) As
DataSet
 Dim nwDataAdapter As SqlDataAdapter = New
SqlDataAdapter()

 318

 Dim nwConn1 = New SqlConnection("user
id=sa;password=;initial
catalog=northwind;data source=maxum;Connect Timeout=30")
 Dim nwCommand As SqlCommand = New SqlCommand()
 Dim NWCatProd As DataSet = New DataSet()
 With nwCommand
 .CommandText = "GetCategoriesProductsParam"
 'set the type for stored procedure
 .CommandType = CommandType.StoredProcedure
 .Connection = nwConn1
 .Connection.Open()
 'create and add the parameters
 Dim mycParm As SqlParameter =
.Parameters.Add("@@CatID",
SqlDbType.NVarChar, 40)
 'set direction for parms
 mycParm.Direction = ParameterDirection.Input
 'assign value to parms
 mycParm.Value = CatID
 'execute
 nwDataAdapter.SelectCommand = nwCommand
 nwDataAdapter.Fill(NWCatProd)
 End With
 Return NWCatProd
 End Function

Shopping Cart Component

The shopping cart component holds the information as the customer shops online. The
Add method is where items are added in preparation for check out, checking for like
items and incrementing the quantity if necessary or adding a new entry. The LineTotal
method computes and returns the total as a string. The shopping cart itself consists of
CartItem objects, which contain the properties necessary for later purchase of the
specific item.
 Public arrNWShoppingCart As New ArrayList()
 Public Class CartItem
 Public ProductID As Integer
 Public ProductName As String
 Public Quantity As Integer
 Public UnitPrice As Double
 Private LineTotal As Double
 End Class

 Public Function LineTotal() As String

 319

 Dim LineItem As CartItem
 For Each LineItem In arrNWShoppingCart
 LineTotal = LineItem.Quantity * LineItem.UnitPrice
 Next
 Return String.Format("{0:c}", LineTotal)
 End Function

 Public Sub Add(ByVal Line As CartItem)
 Dim LineItem As CartItem
 For Each LineItem In arrNWShoppingCart
 If Line.ProductID = LineItem.ProductID Then
 LineItem.Quantity += 1
 Return
 End If
 Next

 arrNWShoppingCart.Add(Line)
 End Sub
We started with the data store and then examined the components in the data and
business tiers. We also included in the business tier a Web service to return the current
catalog as a data set to customers so that they can use that information on their own
Web sites or however they choose. The important point here, as we also learned in
Chapter 7, is that Web services enable us to have the benefits of using resources and
applications without having to be responsible for storing them.

Web Services

Part of the prototype was to add Web services functionality that would provide catalog
information to customers. In our case, the customer will always have an updated
catalog of the Northwind products to use for ordering without having to download or
request the latest copy. As products are updated in the database, they are updated for
the customer via the Web service that is provided.

Let's explore the steps to create a catalog data set that uses a data connection from
within the Server Explorer. In our example, we are going to expose our product
information for ease of ordering.

1. Create a new ASP.NET Web service Visual Basic project. Name it
NorthwindService1.

2. In the Server Explorer, expand Servers, <NAME OF YOUR SERVER>,
SQL Servers, < NAME OF YOUR SERVER >, Northwind, Tables.

3. Click and drag the Products table onto the Web service design surface.
4. Right-click on the Web service design surface and select Generate

Dataset.

Let's create an XML data set called NWCatalog. This is what the Web service
will return.

5. In the Generate Dataset dialog box, enter NWCatalog in the New field
for the data set name.

6. Click the OK button to add a data set that defines the data schema that
we specified.

 320

7. Double-click the NWCatalog.xsd file in the Solution Explorer window to
preview the data.

8. Right-click on the Designer, select View Code.
9. Place your cursor on the line immediately following Inherits

System.Web.Services.WebService, and type the following code:
<WebMethod()> Public Function GetNorthwindCatalog()
As NWCatalog

 Dim NWDataSet As New NWCatalog()
 SqlDataAdapter1.Fill(NWDataSet)
 Return NWDataSet

 End Function

The <WebMethod> exposes the function through the Web service. We'll use
this for testinf. Notice also that we're using an instance of our catalog data set,
filling it, and passing the data set back. The end result should look like this:
Public Class Northwindservice1
 Inherits System.Web.Services.WebService
<WebMethod()> Public Function GetNorthwindCatalog() As
NWCatalog
 Dim NWDataSet As New NWCatalog()
 SqlDataAdapter1.Fill(NWDataSet)
 Return NWDataSet
 End Function
End Class

10. Build and run the application. The Web service will display a diagnostic

page similar to Figure 10.4.

 321

Figure 10.4: Web service diagnostic page.

11. Click on the GetNorthwindCatalog link on the page and the screen
shown in Figure 10.5 will appear.

 322

Figure 10.5: Web service diagnostic page with Web method information.

12. Click Invoke. The Web service will return the results as XML, as
displayed in Figure 10.6.

 323

Figure 10.6: Web service return page.

Implementing the Presentation Tier

The presentation layer within our prototype consists of several Web forms and a
cascading style sheet. Let's examine each, starting with the style sheet.

The NorthWind Cascading Style Sheet

Cascading style sheets are very important within the presentation layer for maintaining
a consistent look and feel throughout the entire application. Here is the style sheet used
for the prototype, which helps to fulfill the look and feel requirement in the functional
specification:
td.newsheader { font-size: 9pt; font-family: Tahoma; font-
weight: bold }
table { }
input { font-weight: bold }
h1 { font-size: 24pt; font-family: Arial Black }
td { font-size: 9pt; color:#506399 }
span.copyright { font-family: Arial; font-size: 8pt }
span.productname { font-family:Arial;font-weight:bold;font-
size: 10pt;color:white}
span.quantity {font-size:8pt;color:#DDDDDD}
span.price { font-size:9pt;color:white}
td.news { font-size: 8pt; font-family: Tahoma }

 324

body { font-weight: bold; background-image:
url(Images/backgrd.gif); }

This is then saved in the project as NorthWind.css and implemented in each page in
the header with the following line of code:
<LINK href="Northwind.css" type=text/css rel=stylesheet >

Web Forms

The presentation tier is responsible for communicating with the user. In the Northwind
prototype, we are using several Web forms as the presentation tier. The Web forms
included in the process are broken down as follows:

§ Default. This is the main form in this application; everything else
branches from here. The user can display categories and their
associated products from this page and can log in as well. Upon login,
users will also see their respective agent and a list of current orders, as
shown in Figure 10.7.

Figure 10.7: Default.aspx.

§ Login. A user who attempts to add a product to the shopping cart before
being logged in will be directed to the login page. Authentication is based
upon the customer's username and password. See Figure 10.8 .

 325

Figure 10.8: Login.aspx.

§ Check Out. When users select the checkout link, they will be directed to
this page. Summary information about the transaction will be displayed,
and the user will be given an order number for this transaction.

Figure 10.9: Checkout.aspx.

Implementing Authentication

As discussed in Chapter 9, ASP.NET can handle authentication in a variety of different
ways. In this particular prototype, we are going to use forms-based authentication. It is
easy to implement and allows us to store our information in a centralized location.

We'll use forms-based authentication to control who has access to certain sensitive
areas of the site and to redirect users automatically to the login page if they want to
place an order.

Let's start by setting this up in Web.config. We modify several different sections of the
file to activate our authentication:
 <!-- AUTHENTICATION
 This section sets the authentication policies of the
application. Possible modes are "Windows",
 "Forms", "Passport" and "None"

 326

 -->
 <authentication mode="Forms">
Here we specify the authentication mode, the URL, and the type of protection we
desire. For a review of this, refer to Chapter 9 .
 <forms name="NWAuth" loginUrl="login.aspx"
protection="All" path="/" />
 </authentication>

The second part in Web.config only allows authorized users access to default.aspx, and
denies everyone else:
 <!-- set secure paths -->
 <location path="default.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>

Open the Login.aspx page and insert the following code:
 Private Sub cmdLogin_Click(ByVal sender As System.Object,
ByVal e As
System.EventArgs) Handles cmdLogin.Click

 Session("custid") = txtCustID.Text
 Session("pwd") = txtPwd.Text
 If Page.IsValid Then
 pnlLogin.Visible() = False
 Dim nwCust1 As NWCustomerinfo = New NWCustomerinfo()
 Dim dbutil1 As DB_Util = New DB_Util()
 Dim CustomerID As String
 CustomerID = dbutill.GetLogin(txtCustID.Text,
txtPwd.Text)

 If (CustomerID <> "") Then

FormsAuthentication.RedirectFromLoginPage(CustomerID,
False)
 Else
 pnlLogin.Visible() = True
 End If
 End If
 End Sub

 327

The purpose of this is to call the aforementioned customer component and
authenticate. If there's a match, we are redirected to the default page. It works like
magic.

Wrapping Up

This last chapter ties together the major concepts in the book in a practical way. We
walked through the architecture, design rationale, and documents and then moved into
the implementation of the application itself.
Following Chapter 10 are the reference and resource appendices. The reference
appendix contains usage and syntax information on several of the most used
assemblies within the .NET Framework. The resource appendix contains current Web
sites and books that you'll find of value. You can check the book Web page at
wiley.com/compbooks/alexander for updates and additions to the list and to download
the most recent version of the Northwind application. I plan on continually revising it
and checking the builds up through RTM, just in case.

 328

Appendix A: .NET Framework Class Library
References
This is an overview of the most used high-level namespaces of the .NET Framework
class library. It's been broken down by functionality. For a drill-down, search on "class
library" in Visual Studio .NET help.

General Functionality
§ System. Elementa l and base classes that contain definitions for common

value and reference data types, events and their handlers, interfaces,
attributes, and processing exception handling. Also includes services that
support data type conversion, method parameter handling, mathematical
operations, program invocation, application environment management, and
managed/unmanaged supervision of applications.

§ System.CodeDom. Contains classes used for representing source code
document elements and structure.

§ System.Collections. Contains interfaces and classes used for object
collections such as lists, hashtables, queues, and dictionaries.

§ System.ComponentModel. Contains classes that are used for components
and controls run-time/design-time behavior implementation. It also includes
base classes and interfaces for applying attributes and type conversion, data
binding, and licensing.

§ System.Configuration. Provides classes and interfaces that allow
programmatic access of .NET Framework configuration settings and enables
error handling in .config files.

§ System.Globalization. Includes localization and culture-related information
classes, including language, country/region, calendar usage information,
corresponding date, currency, and number format, and string sort order as
well.

§ System.Diagnostics. Provides classes that allow interaction with system
processes, event logs, and performance counters. It also provides debugging
and trace classes.

§ System.Text. Contains classes representing common character encodings;
abstract base classes for converting blocks of characters to and from blocks
of bytes; and a helper class that manipulates and formats String objects
without creating intermediate instances of String. Provides access to the
.NET Framework regular expression engine. The namespace provides
regular expression functionality that may be used from any platform or
language.

§ Microsoft.Win32. Provides classes that handle operating system events and
utilize the system registry.

Data Management Functionality
§ System.Data. Contains classes that enable the ADO.NET architecture.

§ System.Data.Common. Provides functionality shared by the .NET data
providers.

§ System.Data.OleDb. Contains the OLE DB .NET Data Provider classes.

 329

§ System.Data.SqlClient. Contains the SQL Server .NET Data Provider
classes.

§ System.Data.SqlTypes. Provides classes for SQL Server native data types.

§ System.Web.SessionState. Furnishes classes and interfaces that provide
session state data storage for a single client within a Web application on the
server.

Graphics Functionality
§ System.Drawing. Provides access to GDI+ graphics functionality.
§ System.Drawing.Printing. Provides print-related services.

COM+/Component-Related Functionality
§ System.EnterpriseServices. Supplies COM+ service access infrastructure for

.NET Framework objects. This namespace also enables the use of a COM+
Compensating Resource Manager (CRM) service in managed code, which
allows inclusion of non-transactional objects in Microsoft Distributed
Transaction Coordinator (DTC) transactions.

§ System.Reflection. Exposes classes that enable a compiler or tool to emit
metadata and Microsoft intermediate language (MSIL) and PE file
generation.

§ System.Resources. Provides classes and interfaces that enable the creation,
storage, and management of application culture-specific resources.

§ System.Runtime.InteropServices. Provides classes for accessing COM
objects, and native APIs from .NET. Also handles marshalling.

§ System.Runtime.Remoting. Provides classes and interfaces that support
development and configuration of distributed applications.

§ System.Runtime.Serialization. Contains classes for object serialization and
deserialization.

§ System.Threading. Provides multithreaded programming classes and
interfaces, including functionality for thread scheduling, thread pool
management, wait notification, deadlock resolution, and synchronizing
mutually exclusive threads.

File I/O Functionality
§ System.IO. Enables synchronous and asynchronous reading and writing on

both data files and streams.

Network-Related Functionality
§ System.DirectoryServices. Provides Active Directory access to managed

code.
§ System.Management. Provides Windows Management Instrumentation

(WMI) infrastructure access, management instrumentation application
support, and exposure of management information and events through WMI
to consumers such as Microsoft Application Center or Microsoft Operations
Manager.

 330

§ System.Messaging. Supplies classes for the connection, monitoring, and
administration of network message queues and message sending, receiving,
or peeking.

§ System.Net. Provides programmatic access for many current network
protocols, and exposes a managed implementation of the Windows Sockets
(Winsock) interface.

Security Functionality
§ System.Security. Provides the supporting infrastructure of the common

language runtime security system, including permissions and policy
management base classes, cryptographic services, and authentication.

§ System.Security.Principal. Defines a security context object under which
code is running.

Web Application Functionality
§ System.Web. Supplies classes and interfaces that support browser/server

communication, such as HTTP request and output management, server-side
utility and process access, cookie manipulation, file transfer, exception
information, and caching.

§ System.Web.Caching. Provides classes for server resource caching. This
could include ASP.NET pages, Web services, and user controls, hashtables,
and other data structures.

§ System.Web.Configuration. Contains classes that are utilized for ASP.NET
configuration.

§ System.Web.Hosting. Provides support functionality for ASP.NET managed
application hosting external to Microsoft Internet Information Server (IIS).

§ System.Web.Mail. Contains classes that enable message construction and
delivery through an SMTP server.

§ System.Web.Security. Contains classes that implement ASP.NET Web
application security.

Web Service Functionality
§ System.Web.Services. Supplies classes that support Web Services

creation and development.
§ System.Web.Services.Configuration. Provides configuration classes for

XML Web services created using ASP.NET.
§ System.Web.Services.Description. Contains classes that enable the

description of an XML Web service through the use of Web Services
Description Language (WSDL).

§ System.Web.Services.Discovery. Supplies classes that allow XML Web
service clients to discover available XML Web services on a Web server.

§ System.Web.Services.Protocols. Consists of the classes that provide
support for protocols used during communication between XML Web
service clients and XML Web services created with ASP.NET.

 331

Web Control Functionality
§ System.Web.UI. Provides classes and interfaces that enable Web page

user interface element creation, provide common functionality for all
controls, support for data binding, view state, and page request
management.

§ System.Web.UI.HtmlControls. Provides classes that allow you to create
HTML server controls on a Web page.

§ System.Web.UI.WebControls. Contains classes that allow you to create
Web server controls on a Web page.

XML-Related Functionality
§ System.Xml. Provides standards-based processing support for XML

utilization.
§ System.Xml.Schema. Enables XML Schemas (XSD) support.

§ System.Xml.Serialization. Contains classes that are used for object
serialization into XML formatted documents or streams.

§ System.Xml.XPath. Contains standards-based XPath parser and
evaluation engine.

§ System.Xml.Xsl. Provides support for standards-based Extensible
Stylesheet Transformation (XSLT) transforms.

Windows Forms Development-Related Functionality
§ System.Windows.Forms. Contains classes for creating Windows-based

applications that utilize rich user interface Microsoft Windows features and
that also extend design-time support for Windows Forms.

§ System.ServiceProcess. Provides classes that allow for implementation,
installation, and controlling Windows service applications.

.NET Language Support Functionality
§ Microsoft.CSharp. Contains classes that support compilation and code

generation using the C# language.
§ Microsoft.Jscript. Contains the JScript runtime and classes that support

compilation and code generation using the JScript language.
§ Microsoft.VisualBasic. Contains the Visual Basic .NET runtime, utilized for

application development and maintenance.
§ Microsoft.Vsa. Contains interfaces that enable .NET Framework script engine

integration into applications, and for runtime code compilation and execution.

 332

Appendix B: Resources
These are some resources that I've found helpful in my study of .NET and related
technologies. A more up-to-date version can be found at the Web site for this book.

.NET Development
gasTix. (www.gastix.net) GasTIX.net is G. A. Sullivan's .NET-focused Web portal,
designed to provide practical information and hands-on tools enabling you to learn
about implementing enterprise-class applications utilizing Microsoft's .NET platform.
Dotnetmasters Site. (www.dometmasters.com) Site for .NET premier training.
Microsoft.com .NET site. (http://msdn.microsoft.com/net/default.asp) The .NET home
site.
Visual Studio .NET site. (http://msdn.microsoft.com/vstudio/nextgen/) Product
information for the rapid application development environment Visual Studio .NET.
MSDN SOAP Developer Info Site. (http://msdn.microsoft.com/soap/) Information
about one of the key enabling technologies for the XML Web services model and .NET.
ASP.NET site. (www.asp.net/) Information about ASP.NET.
GOTDOTNET site. (www.gotdotnet.com/) Run by the product team, this site contains
tutorials and code samples that demonstrate ASP.NET and the .NET Framework.
MSDN Online XML Developer Center. (http://msdn.microsoft.com/xml/) Information
about another of the key technologies for the XML Web services model and .NET.
.NET Enterprise Servers site. (www.microsoft.com/servers/net/) Product information
on the XML-enabled software servers that provide the infrastructure for running .NET
solutions.
IBuySpy Solutions site. (www.ibuyspy.com) The granddaddy of .NET sample sites, it
demonstrates best practices for creating ASP.NET applications.
.NET Extreme. (www.dotnetextreme.com/) A good site on .NET for beginners. Lots of
articles and sample code.
Rational .Net Developers site.
(http://rational.devx.com/index.htm/CONTENT_ID/5959) Information on how the
Rationalproducts interact with .NET
Lutz Roeder's Programming .NET. (www.aisto.com/roeder/dotnet/) Tools for
Microsoft's .NET platform. Some very cool stuff here.
123ASPX.Com. (www.123aspx.com) The biggest and baddest ASP.NET directory site
on the planet.
scottgu: asp.net tips and tricks. (www.eraserver.net/scottgu) Scott is the co-creator
of ASP.NET. 'nuff said...
dotnetjunkies site. (www.dotnetjunkies.com/) Lots of tutorials and code.
ASP.NET Pro Magazine site. (www.aspnetpro.com/) Home of the only magazine
devoted solely to the ASP.NET developer.
CodeSwap site. (www.vscodeswap.net) CodeSwap is the largest pool of code samples
produced by developers for developers.
4GuysFromRolla site. (www.4guysfromrolla.com) These 4 guys are machines! This
site rocks! (And they're in college.)
.NET Zone site. (www.devx.com/dotnet) The .NET Zone site has a ton of different
resources.

General Web Development
ArticleCentral site. (www.articlecentral.com) This site monitors several sites around
the clock and stores them in an index here.
Webmonkey site. (http://hotwired.lycos.com/webmonkey/) A web developer's
resource. It has a great HTML reference.

 333

Web Developers Virtual Library. (www.wdvl.com/) Another good resource for general
Web development.

List of Figures
Chapter 1: Getting Your Feet Wet with .NET

Figure 1.1: The .NET Framework Roadmap, as envisioned by Microsoft.
Figure 1.2: High-level parts of the .NET Framework.
Figure 1.3: The .NET common language runtime diagram.
Figure 1.4: .NET My Services and service fabric.
Figure 1.5: Communication flow among ASP.NET components.
Figure 1.6: System.Web, where all the magic happens.
Figure 1.7: The Visua l Basic .NET IDE.
Figure 1.8: Adding controls to the Web form.
Figure 1.9: ASP.NET page output.

Chapter 2: The Development Environment and Language Changes
Figure 2.1: MyProfile tab in Visual Studio .NET.
Figure 2.2: The Start Page.
Figure 2.3: The new IDE in Visual Studio .NET.
Figure 2.4: IDE Toolbox in auto-hide mode.
Figure 2.5: The Designer pane with tabs.
Figure 2.6: The new code outlining feature in the Code Editor.
Figure 2.7: The Solution Explorer window.
Figure 2.8: To-do item in code on the Task List window.
Figure 2.9: The New Project dialog box.
Figure 2.10: Web Form design screen for the Hello World application.
Figure 2.11: Running the Hello, World application.
Figure 2.12: Debugging screen in Visual Studio .NET.

Chapter 3: Object-Oriented Changes in Visual Basic .NET
Figure 3.1: Adding a reference to a .NET DLL.
Figure 3.2: Setting Object Strict in the project properties dialog box.
Figure 3.3: The Employee class and its subclasses.
Figure 3.4: Intellisense for an overloaded method.
Figure 3.5: Available members for the Uselnterface class.

Chapter 4: Introduction to Web Application Development
Figure 4.1: The URL (request) and Web page (response).

Chapter 5: ASP.NET Pages and Web Forms
Figure 5.1: Web form designer, form view.
Figure 5.2: List of trace logs.
Figure 5.3: Summary of the selected trace.
Figure 5.4: List of events for the selected trace.
Figure 5.5: Control tree for the selected trace.
Figure 5.6: Cookies for the selected trace.
Figure 5.7: HTTP headers for the selected trace.
Figure 5.8: Form variables for the selected trace.
Figure 5.9: Server variables for the selected trace.

Chapter 6: Using ASP.NET Web Controls
Figure 6.1: Textbox control example.
Figure 6.2: DropDownList control example.
Figure 6.3: The New Project dialog box.
Figure 6.4: The New Project dialog box.
Figure 6.5: Adding an Item.
Figure 6.6: Add New Item dialog box.
Figure 6.7: Web user control.
Figure 6.8: My Web User Control.
Figure 6.9: The Global.asax file.

 334

Figure 6.10: The output pane.
Figure 6.11: The Solution Explorer and Properties panes.
Figure 6.12: The default display for our control.
Figure 6.13: Test driving our control.

Chapter 7: Web Services: Family Fun with XML, SOAP, and WSDL
Figure 7.1: Table output from HTML.
Figure 7.2: Solution Explorer window with five new files.
Figure 7.3: Public methods of example Web service.
Figure 7.4: Test page for the multiply method.
Figure 7.5: Web form design view of test application.
Figure 7.6: Web references for test application.
Figure 7.7: Proxy class added to test project.
Figure 7.8: Copying the Web project.
Figure 7.9: Progress dialog box for Web project copy operation.
Figure 7.10: New Solution dialog box.
Figure 7.11: New solution with no projects.
Figure 7.12: Selecting the server.
Figure 7.13: Add existing project.
Figure 7.14: Project file still listed as client 2.
Figure 7.15: Project listed as client 2 in IDE.
Figure 7.16: Information properties of project.
Figure 7.17: Full property page for project.
Figure 7.18: Project correctly listed as client 3.
Figure 7.19: Modified Web form.
Figure 7.20: Method call pending.
Figure 7.21: Method call complete.

Chapter 8: ASP.NET Data Access Topics
Figure 8.1: A typical life cycle for a DataSet.
Figure 8.2: The hierarchy of classes contained in a DataSet.
Figure 8.3: IDE with the Server Explorer open, and the Data Connections option
highlighted.
Figure 8.4: The Customers table in the Northwind sample database, accessed with
the Server Explorer.
Figure 8.5: Dialog for setting up a new connection.
Figure 8.6: The Data tab in the toolbox, showing the data-related controls available for
drag and drop onto the design surface.
Figure 8.7: A design surface with a SqlConnection control dragged onto it and created
as SqlConnection1.
Figure 8.8: The first option screen in the DataAdapter configuration wizard.
Figure 8.9: Choosing the data access method for a DataAdapter.
Figure 8.10: The screen in the DataAdapter configuration wizard for selecting the
stored procedures to use for database operations.
Figure 8.11: The screen from Figure 8.10 after stored procedures have been selected.
The mapping of data columns to stored procedure parameters is shown in the grid on
the right.
Figure 8.12: Specifying a SQL statement to use for selection of records in a
DataAdapter.
Figure 8.13: The query builder accessed from the DataAdapter configuration wizard.
Figure 8.14: The dialog box for creating a DataSet control.
Figure 8.15: The layout of WebForm1 after all controls have been added to it.

Chapter 9: ASP.NET Web Application Services
Figure 9.1: Authentication methods.
Figure 9.2: Creating a new project.
Figure 9.3: The Web.config file.

 335

Figure 9.4: IIS authentication methods.
Figure 9.5: Windows account authentication.
Figure 9.6: User is authenticated.
Figure 9.7: Manipulating the cache.
Figure 9.8: Expiring a traditional cookie.
Figure 9.9: Member Services login.
Figure 9.10: The default Passport screen.
Figure 9.11: Passport Manager Administration.

Chapter 10: ASP.NET Application: A Walkthrough
Figure 10.1: Architectural diagram of the Northwind prototype.
Figure 10.2: Data model.
Figure 10.3: Agent information panel.
Figure 10.4: Web service diagnostic page.
Figure 10.5: Web service diagnostic page with Web method information.
Figure 10.6: Web service return page.
Figure 10.7: Default.aspx.
Figure 10.8: Login.aspx.
Figure 10.9: Checkout.aspx.

 336

List of Tables
Chapter 2: The Development Environment and Language Changes

Table 2.1: Changes in Integer Data Types from VB6 to Visual Basic .NET
Table 2.2: VB6 Keywords Replaced by Elements of the .NET Framework Classes

Chapter 3: Object-Oriented Changes in Visual Basic .NET
Table 3.1: Inheritance Keywords

Chapter 4: Introduction to Web Application Development
Table 4.1: HTML Controls versus HTML Tags
Table 4.2: Some Common Events

Chapter 6: Using ASP.NET Web Controls
Table 6.1: Commonly Used Default Web Forms Server Controls
Table 6.2: Differences between Web Server Controls and Web User Controls

Chapter 8: ASP.NET Data Access Topics
Table 8.1: Classes in Data Provider Namespaces for Connected Access to Data in
ADO.NET
Table 8.2: Frequently Used Methods for Command Object
Table 8.3: Commonly Used Properties, Methods, and Events for a DataTable
Table 8.4: Controls to Place on WebForm1 and Properties to Set for Each Control

Chapter 9: ASP.NET Web Application Services
Table 9.1: Web.config Tags and Default Properties
Table 9.2: Shared Information

 337

List of Sidebars
Chapter 4: Introduction to Web Application Development

WHY YOU'VE GOT JUST 15 SECONDS...
WHAT IS ICANN?

Chapter 7: Web Services: Family Fun with XML, SOAP, and WSDL
PROTOCOLS CURRENTLY SUPPORTED
IDENTIFYING EXISTING CANDIDATES FOR CONVERSION

	Developing Web Applications with Visual Basic.NET and ASP.NET
	Table of Contents
	Introduction
	Chapter 1 - Getting Your Feet Wet with .NET
	Chapter 2 - The Development Environment and Language Changes
	Chapter 3 - Object-Oriented Changes in Visual Basic.NET
	Chapter 4 - Introduction to Web Application Development
	Chapter 5 - ASP.NET Pages and Web Forms
	Chapter 6 - Using ASP.NET Web Controls
	Chapter 7 - Web Services: Family Fun with XML, SOAP, and WSDL
	Chapter 8 - ASP.NET Data Access Topics
	Chapter 9 - ASP.NET Web Application Services
	Chapter 10 - ASP.NET Application: A Walkthrough
	Appendixes
	Appendix A - .NET Framework Class Library References
	Appendix B - Resources

	Lists
	List of Figures
	List of Tables
	List of Sidebars

